INTEGRATED PEST MANAGEMENT FOR JUTE CULTIVATION: MACHINE LEARNING APPROACHES FOR PEST CLASSIFICATION

Authors

  • Dr. P. Latha, Martha Rajesh, Sadevuda Nithin, Thota Sai Kiran, Puram Karthik Doi:10.48047/JOCAAA.34.4.538-551

Keywords:

Jute cultivation, pest detection, deep learning, MLCNN, sustainable agriculture.

Abstract

Jute cultivation, like many agricultural systems, faces significant challenges due to pest infestations from species such as the alfalfa weevil, Bactrocera tsuneonis, Cicadellidae, Dacus dorsalis,Pseudococcus comstocki Kuwana, wheat blossom midge, Xylotrechus, and yellow cutworm. These pests can cause considerable crop damage, contributing to 20–40% of global agricultural production
losses each year.

References

Saleem, M.H., Ali, S., Rehman, M., Hasanuzzaman, M., Rizwan, M., Irshad, S., Shafiq, F., Iqbal, M., Alharbi, B.M., Alnusaire, T.S., & Qari, S.H. (2020). Jute: a Potential Candidate for Phytoremediation of Metals—A Review. Plants, 9(2), 258. doi:10.3390/plants9020258

Rahman, R. (2023). Jute in South Asia. Retrieved January 23, 2023, from http://www.ecostepltd.com/assets/base/img/content/resources/Jute-in-South-Asia.pdf

Downloads

Published

2025-04-23

How to Cite

Dr. P. Latha, Martha Rajesh, Sadevuda Nithin, Thota Sai Kiran, Puram Karthik. (2025). INTEGRATED PEST MANAGEMENT FOR JUTE CULTIVATION: MACHINE LEARNING APPROACHES FOR PEST CLASSIFICATION. Journal of Computational Analysis and Applications (JoCAAA), 34(4), 538–551. Retrieved from https://eudoxuspress.com/index.php/pub/article/view/2335

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.