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In this article, we investigate a Markovian queuing model with server break-
down and Single working vacation. Arrival follows Poisson process with param-
eter λ. Service while the single working vacation epoch, normal working epoch
together with vacation epoch are all exponentially assigned with rate µb, µv
and ηrespectively. After taking first vacation the server wait idle in the system
to serve. This type of vacation is called Single Working Vacation (SWV). If
the queue length increases, service rate changes from slow rate to normal rate.
When the server may subject to sudden breakdown with rate α and after it
should be repaired and goes to normal service with rate β. This queue model
has been analysed with the help of Matrix Geometric Method (MGM) to find
steady state probability vectors. Using it some performance measure is also
determined.
AMS subject classification number— 60K25,60K30 and 90B22
Key Words —- Working Vacation (WV), Single Working Vacation (SWV) , Stability

condition, Server breakdown, Matrix Geometric Method (MGM);

1 Introduction

Queueing systems with SWV and absolute service have acquired importance
over the most recent twenty years because of large extent uses mainly man-
ufacturing system, service system, telecommunications, and computer system.
Its discoveries might be utilized to give quicker client support, increment traffic
stream, further develop request shipments from a stockroom, or plan infor-
mation organizations and call focuses. Numerous significant utilization of the

1
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queueing theory are traffic flow vehicles, airplane, individuals, correspondences,
booking patients in medical clinics, occupations on machines, programs on PC,
and office configuration banks, mail depots, stores. In numerous genuine queue-
ing circumstances, after assistance fulfillment, if no customer in the queue, a
server goes on a vacation epoch. This type is known as vacation queue. Using
survey paper by Doshi (1986) many researchers introduced queueing model with
vacations.

Servi and Finn (2002) developed an M/M/1 queueing model upon WV. Wu
and Takagi (2003) analysed an M/G/1 queueing model upon MWV. Analysis of
GI/M/1 queueing model upon MWV studied by Baba (2005). Server will only
take one WV if the queue become null. So, if the queue has no customers when
the server come back from SWV, he will idle on the system and wait for the
customers to arrive instead of picking up another WV. A multi-server system
with an SWV were proposed by Lin and Ke (2009). The use of inactive epoch
a M/G/1 model were studied by Levy and Yechiali (1975).

The vacation models and the model in which the server may goes to break-
downs and repairs, is well ascertained in survey papers B.T. Doshi. William
J. Gray et al (2000) overworked on multiple types of server breakdowns in
queueing theory. A queueing model with server breakdowns, repairs, vacations,
and backup server is studied by Srinivas R.Chakravarthy (2020).Agelenbe et al
(1991) analyzed the queues with negative arrivals. A matrix-Geometric method
approach is a useful tool for solving the more complex queueing problems. Neuts
(1978) deliberate Markov c hains with applications queueing theory, which have
a matrix geometric invariant probability vector. Neuts (1981) derived Matrix
Geometric solution in stochastic models.

Transient solution for the queue-size distribution in a finite-buffer model
with general independent input stream and single working vacation was ex-
plained by Wojciech M Kempa et al (2018). Rachita Sethi et al (2019) studied
performance analysis of machine repair problem with working vacation and ser-
vice interruptions. Seenivasan et al (2021) studied performance examination of
two heterogeneous servers queuing model with an irregularly reachable server
utilizing MGM. Seenivasan et al (2021) investigated a retrial queueing model
with two heterogeneous servers using the MGM. Praveen Deora et al (2021) an-
alyzed the cost analysis and optimization of machine repair model with working
vacation and feedback policy. M/M/1 queueing model with working vacation
and two type of server breakdown was discussed by Praveen Kumar Agrawal et
al (2021).
1 Our study, deals with an SWV and server breakdown in M/M/1 queueing
model. In accordance with FCFS principle customers are served. This model
has been analysed using MGM. The excess of this study designated as follows.
We providing construction of model in section 2. Performance measures for-
malized in section 3. Mathematical illustrations solved in section 4. And brief
conclusion in final section.

1Corresponding Author: M.Seenivasan, Mathematics Wings - DDE, Annamalai University,
Annamalainagar-608002,India.
Email: emseeni@yahoo.com
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2 Construction of the Model

We consider a Single Working Vacation (SWV) and Server breakdown in M/M/1
model. The customers show up in line as per Poisson process with parameter
λ. They create a queue dependent on her/his request for appearance. At a
normal working period, influx customers served at a service rate µb, following an
exponential distribution. The server starts a single vacation of arbitrary length
if there is no customer in the system with parameter η follows an exponential
distribution. During a SWV period, influx customers get service with rate
µv, following an exponential distribution. If the queue forms, then the server
chop and shift its rate from µv to µb, the normal working interval starts. For
next vacation server waits idle to serve influx customers. This type of vacation
is called Single Working Vacation (SWV). If not, the server starts a normal
working period when a customer arrival occurs.

When the server may subject to sudden breakdown with rate α and after it
should be repaired and goes to normal service with rate β. The transition rate
diagram is shown in Figure 1.

µvµvµvµv

ααααα β β β β β

α α α αβ β β β

λ λ λ λ

λ λ λ λ

µB µB µB

λ λ λ λ

0,0 0,1 0,2 0,3 0,4

1,0 1,1

2,1

1,2

2,2

1,3

2,3

1,4

2,42,0

η η η η ηµB

Figure 1: The transition rate diagram

Let {k(t), n(t) : t ≥ 0}; limt→∞ p{k(t) = i, n(t) = j} be a Markov process,
where k(t) and n(t) represent state of process at time t respectively.
k(t) = 0, when server is on SWV,
k(t) = 1, when server is on normal working epoch
k(t) = 2, when server is on breakdown
n(t) denotes total customer in the system.
The Quasi-birth and death Process along with the state space Ω as follow

3
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Ω = {(0, 0)U(1, 0)U(2, 0)U(i, j); i = 0, 1, 2, j = 1, 2, ...., n ≥ 1}

Consider a QBD process with Infinitesimal generator matrix Q is presented
below

Q =


A0 C1 · · · · · · · · · · · · · · · · · ·
C0 C2 C3 · · · · · · · · · · · · · · ·
0 C3 C2 C3 · · · · · · · · · · · ·
0 · · · C3 C2 · · · · · · · · · · · ·
0 · · · · · · C3 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·


Where

A0 =

(−(λ+ η) η 0
0 −(λ+ α) α
0 β −(β + λ)

)
; C1 =

(
λ 0 0
0 λ 0
0 0 λ

)
;

C0 =

(
µv 0 0
µb 0 0
0 0 0

)
; C2 =

(−(λ+ µv + α+ η) η α
0 −(λ+ µb + α) α
β β −(2β + λ)

)
;

C3 =

(
µv 0 0
0 µb 0
0 0 0

)
We define pij = {k = i, n = j}; where j denote number of customers in the
system & i denote the server state.
Probability vector are defined as P = (P0, P1, P2, . . .) where, Pj = (p0j , p1j , p2j),
j = 0, 1, 2, 3, ...
The static probability row matrix is represented by using PQ = O. (1)
Pj = P0R

j where j ≥ 1 (2)
The normalizing equation is defined by
P0 [I −R]

−1
e = 1 (3)

Where ‘e’ is the column unit vector with all its element equal to one.
The static condition of such a QBD, (See Neuts (1981)) can be obtained by the
drift condition
PC1e < PC3e (4)
Where the row vector P = (P0, P1, P2) is obtained from the Infinitesimal gen-
erator
S = C1 + C2 + C3. S is given by

S =

(−(α+ η) η α
0 −α α
β β 2β

)
(5)

S is irreducible and the row vector P can be shown to be unique such that
PS = 0 and Pe = 1 (6)
From Equation(6), we have
P1 = ( 2η−α

α )P0

P2 = (η+αβ )P0

P0 = [1 + (η+αβ ) + ( 2η−α
α )]−1 (7)

The static condition takes format
λ[P0 + P1 + P2] < µbP0 + µvP1 (8)
Equation(5) gives the static probability of S.

4
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Once the rate matrix R obtained, the probability vectors Pj ’s (j ≥ 1) are ob-
tained from Eq.(2) and Eq.(3).

3 Performance Measures

Performance measure have been found using steady-state probabilities as given
below
When the server is idle mean no. of customers presented E(I) = P0 (9)
When the server is SWV mean no. of customers presented

E(SWV ) =
∞∑
j=0

jp0j (10)

When the server is normal busy period mean no. of customers presented

E(BP ) =
∞∑
j=1

jp1j (11)

When the server is on breakdown mean no. of customers presented

E(BD) =
∞∑
j=1

jp1j (12)

Mean no. of customer in the system is
E(N) = E(I) + E(WV ) + E(BP ) + E(BD) (13)

4 Mathematical Study

Here, we make mathematical calculation for model given by the segment above.
Our goals are to show effect of a parameter on system features. By modifying
λ, four illustrations are presented in these sections.
The parameter λ value varies and all other argument values are fixed. Illustra-
tion 1 to Illustration 4 is presented below.

Illustration 1

We take λ = 0.1,µb = 0.6,µv = 0.5,α = 0.2,η = 0.5,β = 0.7 and the rate
matrix is

R =

(
0.0942 0.0781 0.0193
0.0126 0.1347 0.0167
0.0534 0.1106 0.0834

)
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Table 1.Probability vectors
p0j p1j p2j Total

P0 0.1215 0.5476 0.1479 0.8170

P1 0.0262 0.0996 0.0232 0.1496

P2 0.0050 0.0181 0.0042 0.0273

P3 0.0009 0.0033 0.0007 0.0049

P4 0.0002 0.0006 0.0001 0.0009

P5 0.0000 0.0001 0.0000 0.0001

Total 0.9998

By substituting R matrix in equation (1) vector P0 are obtained and normal-

ization equation P0 [I −R]
−1
e = 1 for the mathematical argument selected

previously, row vector P1 is granted by P0 = (0.1215, 0.05476, 0.1479). More,
the balance vector Pj ’s gained from Pj = P0R

j , j = 1, 2, 3, . . . and are shown in
Table 1. Column 2, 3 and 4 contains the three elements of Pj , j = 0, 1, 2, . . ..
Final column constitutes the total of two elements. Total probability was con-
firmed to be 0.9998 ≈ 1.

Illustration 2
We take λ = 0.2,µb = 0.6,µv = 0.5,α = 0.2,η = 0.5,β = 0.7 and the rate matrix
is

R =

(
0.1807 0.1644 0.0313
0.0250 0.2694 0.0274
0.1024 0.2328 0.1507

)
Table 2.Probability vectors

p0j p1j p2j Total

P0 0.1655 0.3782 0.0979 0.6416

P1 0.0494 0.1519 0.0303 0.2316

P2 0.0158 0.0561 0.0103 0.0822

P3 0.0053 0.0201 0.0036 0.0290

P4 0.0018 0.0070 0.0013 0.0101

P5 0.0006 0.0025 0.0004 0.0035

P6 0.0002 0.0009 0.0002 0.0013

P7 0.0001 0.0003 0.0001 0.0005

P8 0.0000 0.0001 0.0000 0.0001

Total 0.9999

By substituting R matrix in equation (1) vector P0 are obtained and normal-

ization equation P0 [I −R]
−1
e = 1 for the mathematical argument selected

previously, row vector P1 is granted by P0 = (0.1655, 0.3782, 0.0979). More, the

6
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balance vector Pj ’s gained from Pj = P0R
j , j = 1, 2, 3, . . . and are shown in Ta-

ble 1. Column 2, 3 and 4 contains the three elements of Pj , j = 0, 1, 2, . . .. Final
column constitutes the total of two elements. Total probability was confirmed
to be 0.9999 ≈ 1.

Illustration 3
We take λ = 0.3,µb = 0.6,µv = 0.5,α = 0.2,η = 0.5,β = 0.7 and the rate matrix
is

R =

(
0.2587 0.2552 0.0391
0.0363 0.4018 0.0345
0.1452 0.3612 0.2067

)

Table 3.Probability vectors
p0j p1j p2j Total

P0 0.1615 0.2511 0.0640 0.4766

P1 0.0602 0.1612 0.0282 0.2536

P2 0.0257 0.0919 0.0139 0.1315

P3 0.0120 0.0485 0.0070 0.0675

P4 0.0059 0.0251 0.0036 0.0346

P5 0.0030 0.0129 0.0018 0.0177

P6 0.0015 0.0066 0.0009 0.0090

P7 0.0008 0.0034 0.0005 0.0047

P8 0.0004 0.0017 0.0002 0.0023

P9 0.0002 0.0009 0.0001 0.0012

P10 0.0001 0.0005 0.0001 0.0007

P11 0.0001 0.0002 0.0000 0.0003

P12 0.0000 0.0001 0.0000 0.0001

Total 0.9997

By substituting R matrix in equation (1) vector P0 are obtained and normal-

ization equation P0 [I −R]
−1
e = 1 for the mathematical argument selected

previously, row vector P1 is granted by P0 = (0.1615, 0.2511, 0.0640). More, the
balance vector Pj ’s gained from Pj = P0R

j , j = 1, 2, 3, . . . and are shown in Ta-
ble 1. Column 2, 3 and 4 contains the three elements of Pj , j = 0, 1, 2, . . .. Final
column constitutes the total of two elements. Total probability was confirmed
to be 0.9997 ≈ 1.

Illustration 4
We take λ = 0.4,µb = 0.6,µv = 0.5,α = 0.2,η = 0.5,β = 0.7 and the rate matrix
is

R =

(
0.3275 0.3420 0.0441
0.0453 0.5253 0.0392
0.1802 0.4836 0.2546

)
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Table 4.Probability vectors
p0j p1j p2j Total

P0 0.1304 0.1578 0.0421 0.3303

P1 0.0574 0.1478 0.0227 0.2279

P2 0.0296 0.1083 0.0141 0.1520

P3 0.0171 0.0738 0.0091 0.1000

P4 0.0106 0.0491 0.0060 0.0657

P5 0.0068 0.0323 0.0039 0.0430

P6 0.0044 0.0212 0.0026 0.0282

P7 0.0029 0.0139 0.0017 0.0185

P8 0.0019 0.0091 0.0011 0.0121

P9 0.0012 0.0059 0.0007 0.0078

P10 0.0008 0.0039 0.0005 0.0052

P11 0.0005 0.0025 0.0003 0.0033

P12 0.0003 0.0017 0.0002 0.0022

P13 0.0003 0.0011 0.0001 0.0014

P14 0.0001 0.0007 0.0001 0.0009

P15 0.0001 0.0004 0.0001 0.0006

P16 0.0001 0.0003 0.0000 0.0004

P17 0.0000 0.0002 0.0000 0.0002

P18 0.0000 0.0001 0.0000 0.0001

Total 0.9998

By substituting R matrix in equation (1) vector P0 are obtained and normal-

ization equation P0 [I −R]
−1
e = 1 for the mathematical argument selected

previously, row vector P1 is granted by P0 = (0.1304, 0.1578, 0.0421). More, the
balance vector Pj ’s gained from Pj = P0R

j , j = 1, 2, 3, . . . and are shown in Ta-
ble 1. Column 2, 3 and 4 contains the three elements of Pj , j = 0, 1, 2, . . .. Final
column constitutes the total of two elements. Total probability was confirmed
to be 0.9998 ≈ 1.

Table 4.Performance Measures
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λ E(I) E(SWV ) E(BP ) E(BD) E(N)

0.1 0.8170 0.0397 0.1486 0.0347 1.0400

0.2 0.6416 0.1090 0.3736 0.0708 1.1950

0.3 0.4766 0.2079 0.7529 0.1128 1.5502

0.4 0.3303 0.3412 1.4211 0.1792 2.2718

Figure 2

Figure 3

9

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 30, NO.2, 2022, COPYRIGHT 2022 EUDOXUS PRESS, LLC

218 SEENIVASAN 210-221



Figure 4

Figure 5

10

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 30, NO.2, 2022, COPYRIGHT 2022 EUDOXUS PRESS, LLC

219 SEENIVASAN 210-221



Figure 6

Out of the above figures, we derived few performance measurements with the
effect of λ such as mean no., of customer if server is idle, mean no., of customer
if server is on SWV, mean no., of customer if server is on busy period, mean no.,
of customer if server is on breakdown and mean no., of customers throughout
system respectively. From Figure 2 shows that arrival rate increases, mean no.,
of customer if server is idle decreases, Figure 3, Figure 4, Figure 5 and Figure
6 shows arrival rate increases, mean no., of customer if server is SWV, busy
period, breakdown and mean no., of customers throughout system increases.

5 CONCLUSION

In this article, we have studied a single-server queueing model along with SWV
and server breakdown. We derived the static probability row vector by MGM
and also we derived some performance measures for mean no., of customers
in the system during server is idle, SWV, normal busy period, breakdown and
mean no., of customers throughout system respectively with the effect of λ.
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Abstract

Numerous image formulae for a diversity of polynomials and functions
subjected to a variety of fractional integrals and derivatives have been
given. In this paper, we aimto construct image formulae for the product
of incomplete H-functions and a general class of polynomials under the
Katugampola fractional integral and derivative operators . We also pro-
vide some particular instances of our main findings in corollaries, among
many others.

Keywords: Fractional Integral operators, Incomplete H-functions, Fox’s
H-function, Mellin-Barnes type contour integral.
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1 Introduction and preliminaries

We begin by recalling the well-known Gamma function Γ defined by (see, e.g.,
[19, Section 1.1])

Γ(µ) =


∫∞

0
e−vvµ−1dv (<(µ) > 0)

Γ(µ+k)
(µ)k

(µ ∈ C \ Z≤0; k ∈ N0),
(1.1)

∗ Corresponding author
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where the Pochhammer symbol (µ)ν (µ, ν ∈ C) is defined, in terms of Gamma
function Γ (see, e.g., [19, p. 2 and p. 5]), by

(µ)ν =
Γ(µ + ν)

Γ(µ)
(µ + ν ∈ C \ Z≤0, ν ∈ C \ {0}; µ ∈ C \ Z≤0, ν = 0)

=

{
1 (ν = 0, µ ∈ C \ {0}) ,
µ(µ + 1) · · · (µ + n− 1) (ν = n ∈ N, µ ∈ C) ,

(1.2)

it being assumed that (0)0 = 1. Here and throughout, let C, R, R+, Z, and
N denote the sets of complex numbers, real numbers, positive real numbers,
integers, and positive integers, respectively. Also let N0 := N ∪ {0} and Z≤`
be the set of integers which are less than or equal to some integer ` ∈ Z. The
incomplete Gamma function γ(µ, u) and its complement Γ(µ, u) defined by

γ(µ, u) =

∫ u

0

e−vvµ−1dv (u ≥ 0; <(µ) > 0), (1.3)

and

Γ(µ, u) =

∫ ∞
u

e−vvµ−1dv (u ≥ 0; <(µ) > 0 when u = 0), (1.4)

respectively, satisfy the following relation:

γ(µ, u) + Γ(µ, u) = Γ(µ) (<(µ) > 0). (1.5)

Srivastava et al. [21] used the incomplete Gamma functions to introduce the
following incomplete H-functions (see also [5]):

γm,n
p,q (z) = γm,n

p,q

 z

∣∣∣∣∣∣
(e1,E1, y), (ei,Ei)2,p

(fi,Fi)1,q


= γm,n

p,q

 z

∣∣∣∣∣∣
(e1,E1, y), (e2,E2), · · · , (ep,Ep)

(f1,F1), (f2,F2), · · · , (fq,Fq)


:=

1

2πi

∫
C

G(ξ, y) z−ξdξ, (1.6)

where

G(ξ, y) =

γ(1− e1 − E1ξ, y)
m∏
i=1

Γ(fi + Fiξ)
n∏
i=2

Γ(1− ei − Eiξ)

q∏
i=m+1

Γ(1− fi − Fiξ)
p∏

i=n+1

Γ(ei + Eiξ)

; (1.7)
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Γm,np,q (z) = Γm,np,q

 z

∣∣∣∣∣∣
(e1,E1, y), (ei,Ei)2,p

(fi,Fi)1,q


= Γm,np,q

 z

∣∣∣∣∣∣
(e1,E1, y), (e2,E2), · · · , (ep,Ep)

(f1,F1), (f2,F2), · · · , (fq,Fq)


:=

1

2πi

∫
C

F(ξ, y) z−ξdξ, (1.8)

where

F(ξ, y) =

Γ(1− e1 − E1ξ, y)
m∏
i=1

Γ(fi + Fiξ)
n∏
i=2

Γ(1− ei − Eiξ)

q∏
i=m+1

Γ(1− fi − Fiξ)
p∏

i=n+1

Γ(ei + Eiξ)

. (1.9)

For convergence conditions of these incomplete H-functions as well as the de-
scription of the contour C, one may refer to [21]. They [21] explored a variety
of intriguing properties of these incomplete H-functions, such as decomposi-
tion and reduction formulas, derivative formulas, various integral transforms,
and computational representations, as well as applied some significantly general
RiemannLiouville and Weyl type fractional integral operators to each of these
incomplete H-functions.

Srivastava [17] introduced the following general class of polynomials:

Sm
n [x] =

[n/m]∑
k=0

(−n)mk
k!

An,k x
k (m ∈ N, n ∈ N0) , (1.10)

where the coefficients An,k (n, k ∈ N0) are arbitrary real or complex constants.
By properly specializing An,k, the general class of polynomials may generate
many existing polynomials as special instances, including Jacobi and Laguerre
polynomials (see, e.g., [15]). In particular, setting A0,0 = 1 and x = 0 reduces
Sm
n [x] to unity.

There have been many introductions and investigations of fractional integrals
and derivatives. Two of them are recalled here. The left-sided and right-sided
Riemann-Liouville fractional integrals Iαa+f and Iαb−f of order α ∈ C are defined
as (see, e.g., [10, 12–14])

(
Iαa+f

)
(x) =

1

Γ(α)

∫ x

a

(x− τ)α−1f(τ) dτ (x > a, <(α) > 0), (1.11)

and

(
Iαb−f

)
(x) =

1

Γ(α)

∫ b

x

(τ − x)α−1f(τ) dτ (b > x, <(α) > 0), (1.12)
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respectively. The Riemann-Liouville fractional derivatives Dα
a+f and Dα

b−f of
order α ∈ C (<(α) ≥ 0) are defined by

(Dα
a+f)(x) =

(
d

dx

)n (
In−αa+ f

)
(x) (x > a) (1.13)

and

(Dα
b−f)(x) =

(
− d

dx

)n (
In−αb− f

)
(x) (x < b), (1.14)

where n = [<(α)] + 1.
For ρ ∈ R \ {0}, the left-sided and right-sided Katugampola fractional inte-

grals, respectively, denoted by ρIλa+ and ρIλb− of order λ ∈ C (<(λ) > 0), are
defined as (see [7])

(
ρIλa+φ

)
(s) =

ρ1−λ

Γ(λ)

∫ s

a

τρ−1φ(τ)

(sρ − τρ)1−λ dτ (s > a), (1.15)

and

(
ρIλb−φ

)
(s) =

ρ1−λ

Γ(λ)

∫ b

s

τρ−1φ(τ)

(τρ − sρ)1−λ dτ (b > s). (1.16)

It is noted that

(i) when ρ = 1, (1.15) and (1.16), respectively, reduce to Riemann-Liouville
fractional integrals (1.11) and (1.12);

(ii) taking ρ → 0+, (1.15) and (1.16), respectively, reduce to the famous
Hadamard fractional integrals (see [6]; see also [7]):

(
Hλ
a+φ

)
(s) =

1

Γ(λ)

∫ s

a

(
log

s

τ

)λ−1 φ(τ)

τ
dτ (s > a, <(λ) > 0), (1.17)

and

(
Hλ
b−φ

)
(s) =

1

Γ(λ)

∫ b

s

(
log

τ

s

)λ−1 φ(τ)

τ
dτ (s < b, <(λ) > 0). (1.18)

The matching Katugampola fractional derivatives on the left and right sides,
designated respectively by ρDλ

a+ and ρDλ
b−, are defined as (see [8])

(
ρDλ

a+φ
)

(s) =

(
s1−ρ d

ds

)n (
ρIn−λa+ φ

)
(s)

=
ρλ−n+1

Γ(n− λ)

(
s1−ρ d

ds

)n ∫ s

a

τρ−1φ(τ)

(sρ − τρ)λ−n+1
dτ, (1.19)
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and (
ρDλ

b−φ
)

(s) =

(
−s1−ρ d

ds

)n (
ρIn−λb− φ

)
(s)

=
ρλ−n+1

Γ(n− λ)

(
−s1−ρ d

ds

)n ∫ b

s

τρ−1φ(τ)

(τρ − sρ)λ−n+1
dτ, (1.20)

where n = [<(λ)] + 1.

The identities in Lemmas 1.1 and 1.2 provide the image formulae for the
power function tα when the fractional integral and derivative operators of Katugam-
pola are used. In this case, we make major use of the well-known beta function
(see, e.g., [19, p. 8]):

B(α, β) =


∫ 1

0

tα−1(1− t)β−1 dt (<(α) > 0, <(β) > 0)

Γ(α) Γ(β)

Γ(α+ β)
(α, β ∈ C \ Z≤0) .

(1.21)

Proofs have been omitted.

Lemma 1.1 Let ρ > 0, <(α) > 0, and <(λ) > 0. Then

(
ρIλ0+t

α
)

(s) = ρ−λ
Γ
(
α
ρ + 1

)
Γ
(
α
ρ + 1 + λ

)sα+ρλ (1.22)

and

(
ρIλ0−t

α
)

(s) = (−ρ)−λ
Γ
(
α
ρ + 1

)
Γ
(
α
ρ + 1 + λ

)sα+ρλ. (1.23)

Lemma 1.2 Let ρ > 0, <(α) > 0, <(λ) > 0, and n = [<(λ)] + 1. Then

(
ρDλ

0+t
α
)

(s) = ρλ
Γ
(
α
ρ + 1

)
Γ
(
α
ρ + 1− λ

)sα−ρλ (1.24)

and

(
ρDλ

0−t
α
)

(s) = (−ρ)λ
Γ
(
α
ρ + 1

)
Γ
(
α
ρ + 1− λ

)sα−ρλ. (1.25)

Numerous image formulae for a diversity of polynomials and functions sub-
jected to a variety of fractional integrals and derivatives have been given (see,
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e.g., [1], [2], [3], [4], [9], [18], [22], [23], [24], [25]). The purpose of this article
isto establish image formulae for the product of incomplete H-functions and
a general class of polynomials under the Katugampola fractional integral and
derivative operators. Among many others, we also present some specific exam-
ples of our major results.

2 Katugampola fractional integral operators in-
volving incomplete H-functions and general
class of polynomials

In this part, we state the following theorems that establish the image formulae
for product of the incomplete H-functions and the general class of polynomials
under the left- and right-sided Katugampola fractional integral operators.

Theorem 2.1 Let <(λ) > 0, a, b ∈ R, ρ, α, β ∈ R+, y ≥ 0, and s > 0. ThenρIλ0+S
m
n [atα]Γm,np,q

btβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p

(fj ,Fj)1,q

 (s) = ρ−λsρλ
[ n
m ]∑
k=0

(−n)mk
k!

An,k(asα)k

× Γm,n+1
p+1,q+1

bsβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p(
−αk
ρ , βρ )

(fj ,Fj)1,q, (−λ− αk
ρ ,

β
ρ )


(2.1)

andρIλ0+S
m
n [atα]γm,n

p,q

btβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,q

(fj ,Fj)1,w

 (s) = ρ−λsρλ
[ n
m ]∑
k=0

(−n)mk
k!

An,k(asα)k

× γm,n+1
p+1,q+1

bsβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p(
−αk
ρ , βρ )

(fj ,Fj)1,q, (−λ− αk
ρ ,

β
ρ )

 .
(2.2)

Proof. Let ∆ be the left-handed member of (2.1). Using (1.15), (1.10) and
(1.8), and changing the order of integrals, which may be readily verified under
the constraints, we have

∆ =

[n/m]∑
k=0

(−n)mk
k!

An,k a
k

∫
C

F(ξ, y)b−ξ
(
ρIλ0+

[
tαk−βξ

])
(s) dξ. (2.3)

Employing (1.22) to evaluate the right-handed Katugampola fractional integral
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in (2.3), we obtain

∆ = ρ−λsρλ
[n/m]∑
k=0

(−n)mk
k!

An,k(sαa)k
1

2πi

∫
C

F(ξ, y)(bsβ)−ξ
Γ
[
1 + αk

ρ −
β
ρ ξ
]

[
1 + λ+ αk

ρ −
β
ρ ξ
]dξ,

which, upon expressing the integral in terms of (1.8), yields the desired right-
handed member of (2.1).

The proof of (2.2) would run in parallel with that of (2.1). We omit the
specific.

Theorem 2.2 Let <(λ) > 0, a, b ∈ R, ρ, α, β ∈ R+, y ≥ 0, and s < 0. ThenρIλ0−S
m
n [atα]Γm,np,q

btβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p

(fj ,Fj)1,q

 (s) = (−ρ)−λsρλ
[ n
m ]∑
k=0

(−n)mk
k!

An,k(asα)k

× Γm,n+1
p+1,q+1

b sβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p(−αkρ ,
β
ρ )

(fj ,Fj)1,q, (−λ− αk
ρ ,

β
ρ )


(2.4)

andρIλ0−S
m
n [atα]γm,n

p,q

btβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p

(fj ,Fj)1,q

 (s) = (−ρ)−λsρλ
[ n
m ]∑
k=0

(−n)mk
k!

An,k(asα)k

× γm,n+1
p+1,q+1

bsβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p(−αkρ ,
β
ρ )

(fj ,Fj)1,q, (−λ− αk
ρ ,

β
ρ )

 .
(2.5)

Proof. The proof would proceed in the same manner as the proof of Theorem
2.1. We omit specifics.

3 Katugampola fractional derivative operators
with incomplete H-functions and general class
of polynomials

The following two theorems provide the image formulae for product of the in-
complete H-functions and the general class of polynomials under the left- and
right-sided Katugampola fractional derivative operators. Since the proofs here
would be identical to those used in Theorems 2.1 and 2.2, we omit the required
proofs.
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Theorem 3.1 Let <(λ) > 0, a, b ∈ R, ρ, α, β ∈ R+, y ≥ 0, and s > 0. ThenρDλ0+S
m
n [atα]Γm,np,q

btβ∣∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p

(fj ,Fj)1,q

 (s)

= ρλsρλ
[n/m]∑
k=0

(−n)mk
k!

An,k(asα)kΓm,n+1
p+1,q+1

bsβ∣∣∣∣∣
(e1,E1, y), (ej ,Ej)2,p, (−αkρ ,

β
ρ )

(fj ,Fj)1,q, (λ− αk
ρ ,

β
ρ )


(3.1)

andρDλ0+S
m
n [atα]γm,n

p,q

btβ∣∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p

(fj ,Fj)1,q

 (s)

= ρλsρλ
[n/m]∑
k=0

(−n)mk
k!

An,k(asα)kγm,n+1
p+1,q+1

bsβ∣∣∣∣∣
(e1,E1, y), (ej ,Ej)2,p, (−αkρ ,

β
ρ )

(fj ,Fj)1,q, (λ− αk
ρ ,

β
ρ )

 .
(3.2)

Theorem 3.2 Let <(λ) > 0, a, b ∈ R, ρ, α, β ∈ R+, y ≥ 0, and s < 0. ThenρDλ0−Sm
n [atα]Γm,np,q

btβ∣∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p

(fj ,Fj)1,q

 (s)

= (−ρ)λsρλ
[n/m]∑
k=0

(−n)mk
k!

An,k(asα)kΓm,n+1
p+1,q+1

bsβ∣∣∣∣∣
(e1,E1, y), (ej ,Ej)2,p, (−αkρ ,

β
ρ )

(fj ,Fj)1,q, (λ− αk
ρ ,

β
ρ )


(3.3)

andρDλ0−Sm
n [atα]γm,n

p,q

btβ∣∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p

(fj ,Fj)1,q

 (s)

= (−ρ)λsρλ
[n/m]∑
k=0

(−n)mk
k!

An,k(asα)kγm,n+1
p+1,q+1

bsβ∣∣∣∣∣
(e1,E1, y), (ej ,Ej)2,p, (−αkρ ,

β
ρ )

(fj ,Fj)1,q, (λ− αk
ρ ,

β
ρ )

 .
(3.4)

4 Particular cases and remarks

Due to the generality of both incomplete H-functions and the general class
polynomials, the main identities established in the preceding sections may result
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in a variety of simpler formulae as special instances. For example, the case y = 0
of (1.8) reduces to the Fox’s H-function (see, e.g., [20, p. 10]; see also [11], [16]):

Γm,np,q

 z

∣∣∣∣∣ (e1,E1), (ei,Ei)2,p

(fi,Fi)1,q

 = Hm,n
p,q

 z

∣∣∣∣∣∣
(e1,E1), (ei,Ei)2,p

(fi,Fi)1,q


= Hm,n

p,q

 z

∣∣∣∣∣ (e1,E1), (e2,E2), · · · , (ep,Ep)

(f1,F1), (f2,F2), · · · , (fq,Fq)

 .
(4.1)

For another example, putting m = 1, n = p, q being replaced by q+1 and taking
appropriate parameters, the functions (1.6) and (1.8) reduce, respectively, to

the incomplete Fox-Wright Ψ-functions pΨ
(γ)
q and pΨ

(Γ)
q (see [21, Eqs. (6.3) and

(6.4)]; see also [2, Eqs. (14) and (15)]):

γ1,p
p,q+1

−z
∣∣∣∣∣∣

(1− e1,E1, y), (1− ej ,Ej)2,p

(0, 1), (1− bj ,Bj)1,q

 = pΨ
(γ)
q

 (e1,E1, y), (ej ,Ej)2,p;

(bj ,Bj)1,q;
z


(4.2)

and

Γ1,p
p,q+1

−z
∣∣∣∣∣∣

(1− e1,E1, y), (1− ej ,Ej)2,p

(0, 1), (1− bj ,Bj)1,q

 = pΨ
(Γ)
q

 (e1,E1, y), (ej ,Ej)2,p;

(bj ,Bj)1,q;
z

 .
(4.3)

The following corollaries cover some of them.

Corollary 4.1 Let <(λ) > 0, a, b ∈ R, and ρ, α, β ∈ R+. ThenρIλ0+S
m
n [atα]Hm,n

p,q

btβ∣∣∣∣ (ej ,Ej)1,p

(fj ,Fj)1,q

 (s) = ρ−λsρλ
[n/m]∑
k=0

(−n)mk
k!

An,k(asα)k

×Hm,n+1
p+1,q+1

bsβ∣∣∣∣ (ej ,Ej)1,p(−αkρ ,
β
ρ )

(fj ,Fj)1,q, (−λ− αk
ρ ,

β
ρ )


(4.4)

(s > 0)

andρIλ0−S
m
n [atα]Hm,n

p,q

btβ
∣∣∣∣∣∣

(ej ,Ej)1,p

(fj ,Fj)1,q

 (s) = (−ρ)−λsρλ
[n/m]∑
k=0

(−n)mk
k!

An,k(asα)k

×Hm,n+1
p+1,q+1

bsβ∣∣∣∣ (ej ,Ej)1,p(
−αk
ρ , βρ )

(fj ,Fj)1,q, (−λ− αk
ρ ,

β
ρ )


(4.5)
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(s < 0).

Proof. Taking y = 0 in (2.1) and (2.4), we get the required results.

Corollary 4.2 Let <(λ) > 0, a, b ∈ R, and ρ, α, β ∈ R+. ThenρDλ0+S
m
n [atα]Hm,n

p,q

btβ∣∣∣∣∣ (ej ,Ej)1,p

(fj ,Fj)1,q

 (s) = ρλsρλ
[ n
m ]∑
k=0

(−n)mk
k!

An,k(asα)k

×Hm,n+1
p+1,q+1

bsβ∣∣∣∣∣
(ej ,Ej)1,p, (−αkρ ,

β
ρ )

(fj ,Fj)1,q, (λ− αk
ρ ,

β
ρ )


(4.6)

(s > 0)

andρDλ0−Sm
n [atα]Hm,n

p,q

btβ∣∣∣∣∣ (ej ,Ej)1,p

(fj ,Fj)1,q

 (s) = ρλsρλ
[n/m]∑
k=0

(−n)mk
k!

An,k(asα)k

×Hm,n+1
p+1,q+1

bsβ∣∣∣∣∣
(ej ,Ej)1,p, (−αkρ ,

β
ρ )

(fj ,Fj)1,q, (λ− αk
ρ ,

β
ρ )


(4.7)

(s < 0).

Proof. Taking y = 0 in (3.1) and (3.3), we get the required results.

Corollary 4.3 Let <(λ) > 0, a, b ∈ R, ρ, α, β ∈ R+, y ≥ 0, and s > 0. ThenρIλ0+S
m
n [atα]pΨ

(Γ)
q

btβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p

(fj ,Fj)1,q

 (s) = ρ−λsρλ
[n/m]∑
k=0

(−n)mk
k!

An,k(asα)k

× p+1Ψ
(Γ)
q+1

bsβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p(1 + αk
ρ ,

β
ρ )

(fj ,Fj)1,q, (1 + λ+ αk
ρ ,

β
ρ )


(4.8)

andρIλ0+S
m
n [atα]pΨ

(γ)
q

btβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p

(fj ,Fj)1,q

 (s) = ρ−λsρλ
[n/m]∑
k=0

(−n)mk
k!

An,k(asα)k

× p+1Ψ
(γ)
q+1

bsβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p(1 + αk
ρ ,

β
ρ )

(fj ,Fj)1,q, (1 + λ+ αk
ρ ,

β
ρ )

 .
(4.9)
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Proof. Using (4.2) and (4.3) in (2.1) and (2.2) gives the required identities.

Corollary 4.4 Let <(λ) > 0, a, b ∈ R, ρ, α, β ∈ R+, y ≥ 0, and s < 0. ThenρIλ0−S
m
n [atα]pΨ

(Γ)
q

btβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p

(fj ,Fj)1,q

 (s)

= (−ρ)−λsρλ
[n/m]∑
k=0

(−n)mk
k!

An,k(asα)kp+1Ψ
(Γ)
q+1

bsβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p(1 + αk
ρ ,

β
ρ )

(fj ,Fj)1,q, (1 + λ+ αk
ρ ,

β
ρ )


(4.10)

andρIλ0−S
m
n [atα]pΨ

(γ)
q

btβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p

(fj ,Fj)1,q

 (s)

= (−ρ)−λsρλ
[ n
m ]∑
k=0

(−n)mk
k!

An,k(asα)kp+1Ψ
(γ)
q+1

bsβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p(1 + αk
ρ ,

β
ρ )

(fj ,Fj)1,q, (1 + λ+ αk
ρ ,

β
ρ )


(4.11)

Proof. Employing (4.2) and (4.3) in (2.4) and (2.5) provides the desired identi-
ties.

Corollary 4.5 Let <(λ) > 0, a, b ∈ R, ρ, α, β ∈ R+, y ≥ 0, and s > 0. ThenρDλ0+S
m
n [atα]pΨ

(Γ)
q

btβ
∣∣∣∣∣∣

(e1,E1, y), (ej ,Ej)2,p

(fj ,Fj)1,q

 (s)

= ρλsρλ
[n/m]∑
k=0

(−n)mk
k!

An,k(asα)kp+1Ψ
(Γ)
q+1

bsβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p, (1 + αk
ρ ,

β
ρ )

(fj ,Fj)1,q, (1− λ+ αk
ρ ,

β
ρ )


(4.12)

andρDλ0+S
m
n [atα]pΨ

(γ)
q

btβ
∣∣∣∣∣∣

(e1,E1, y), (ej ,Ej)2,p

(fj ,Fj)1,q

 (s)

= ρλsρλ
[ n
m ]∑
k=0

(−n)mk
k!

An,k(asα)kp+1Ψ
(Γ)
q+1

bsβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p, (1 + αk
ρ ,

β
ρ )

(fj ,Fj)1,q, (1− λ+ αk
ρ ,

β
ρ )

 .
(4.13)

Proof. Applying (4.2) and (4.3) to (3.1) and (3.2) offers the desired results.
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Corollary 4.6 Let <(λ) > 0, δ ∈ C \ Z≤−1, a, b ∈ R, ρ, α, β ∈ R+, y ≥ 0,
and s > 0. ThenρIλ0+L

(δ)
n (atα)Γ1,n

p,q

btβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p

(fj ,Fj)1,q

 (s) = ρ−λsρλ
[n]∑
k=0

(−n)k
k! n!

(1 + δ)n
(1 + δ)k

(asα)k

× Γ1,n+1
p+1,q+1

bsβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p(−αkρ ,
β
ρ )

(fj ,Fj)1,q, (−λ− αk
ρ ,

β
ρ )


(4.14)

andρIλ0+L
(δ)
n (atα)γ1,n

p,q

btβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,q

(fj ,Fj)1,w

 (s) = ρ−λsρλ
[n]∑
k=0

(−n)k
k! n!

(1 + δ)n
(1 + δ)k

(asα)k

× γ1,n+1
p+1,q+1

bsβ∣∣∣∣ (e1,E1, y), (ej ,Ej)2,p(−αkρ ,
β
ρ )

(fj ,Fj)1,q, (−λ− αk
ρ ,

β
ρ )

 ,
(4.15)

where L
(δ)
n (x) are Laguerre polynomials.

Proof. Setting m = 1 and choosing An,k = (1 + δ)n/ {(1 + δ)k n!} in the results

in Theorem 2.1, with the aid of Laguerre polynomials L
(δ)
n (x) (see, e.g., [15, p.

201, Eq. (3)]), we obtain the desired identities here.

Likewise, as with Corollary 4.6, substituting m = 1 and selecting An,k =
(1 + δ)n/ {(1 + δ)k n!} in the identities in Theorems 2.2–3.2 and Corollaries 4.1–
4.5 results in the corresponding formulae involving the Laguerre polynomials.
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New Fixed Points Outcomes for Fractal Creation
by Applying Different Fixed Point Technique
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Abstract

Fractal like Julia set is regarded as one of the striking and significant mathemat-
ical fractals in the field of science and technology. There are different numerical
iterative techniques which generate these fractals and in fact these numerical it-
erative techniques are the strength of fractal geometry. In recent past, Julia sets
have been studied through numerical techniques like Picard, Mann, and Ishikawa
etc. which are the examples of one-step, two-step, and three-step iterative tech-
niques respectively. In this article, we have concentrated our research work on the
computation as well as the different features of cubic Julia sets for the complex
polynomial Pm,n(z) = z3 +mz+ n. This generation process has been carried-over
through a new numerical four-step iterative technique. We have generated new and
ever seen cubic Julia sets for the above complex polynomial. The cubic Julia sets
generated through above polynomial have important mathematical properties. It is
also fascinating that some of the generated cubic Julia sets are analogous to frac-
tal shaped antennas, butterfly and some categories of ants. Some of the generated
cubic Julia sets can also be categorized as wall-decorated pictures.

Key words: Cubic Julia sets; Four-Step Iterative Technique; Escape Criterion;
Complex Cubic Equation
Mathematics Subject Classification(2010): 37C25; 28A80; 54E35; 54E50

1

1 Introduction
Fractals have many applications in various fields of science and technology. The pro-
duction of cell phone has become possible only due to fractal shaped antennas. This
was not possible before the introduction of this notion. The Chaos theory is what frac-
tals are all about, and that is at the core of most Cosmological Models which describe
our entire Universe on both the scales of very small and large. Fractal geometry is very
practical for all sorts of things from biology to physics to cosmology to even the stock
market. For instance veins and arteries form fractal trees, some mineral deposits are
distributed under the fractal laws through the soil, and the stock market, perhaps not
quite a natural phenomenon, behaves according to fractal laws.

If we look back into the history of fractal geometry, we find that the interest in
fractal geometry with respect to Julia sets began in the 19th century. Named after

1Corresponding author: Haryana Education Department, Haryana, India
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the esteemed French mathematician Gaston Julia, the Julia set expresses a complex
and rich set of dynamics, giving rise to a large range of breathtaking visuals. Gaston
was first who invented Julia sets and examined their features [27] (p−122). In 1918,
a masterpiece of him on Julia sets was published which was the major event in the
history of fractal geometry. In this masterpiece, Gaston Julia first proposed the latest
idea on a Julia set and that made him famous in the world of mathematics. Julia sets
live in complex plane and this is the place where all chaotic behavior of complex plane
occurs [9] (p− 221). When all the computational experiments were far ahead of its
time, Herald Cramer gave the first approximate graphical representation to Julia sets.
Mathematical items like Julia sets were recognized when computer graphics became
user friendly [28].

What makes Julia sets interesting to analysis is that, despite being borne out of ap-
parently easy iterative techniques, they can be very tangled and often fractal in nature.
Due to fascination of computer experiments and incredulity of their graphical represen-
tation, Mandelbrot and Julia asets remain a topic of modern research with much interest
being in evoking the tangled structure of Julia sets and in calculating their properties
such as ’fractal dimension’ [14]. For detailed investigation on Mandelbrot and Julia
sets, one can follow the related work and complex dynamics system in references like
[4, 5, 6, 8, 9, 12, 16, 18, 25, 26, 39].These sets (Julia sets) have been computed and
examined for cubic [2, 3, 7, 9, 12, 13], quadratic [9, 19, 27], and also for higher degree
polynomials using Picard iteration,which is an example of one-step numerical proce-
dure.

Julia sets may be generated for any order complex polynomial. In this research
Paper, we have emphasized our research work on cubic Julia sets with reference to
complex polynomial of order 3. In 1988, Branner and Hubbard, by a series of papers,
paid concerned with the way in which the space of polynomial of degree d > 3 is de-
composed when the polynomial are classified according to their active behavior using
iterative procedure. However their results are satisfied only for d = 3. They also dis-
pense with the good framework of the locus connectedness for cubic polynomials [2].
In 1992, their second paper of this series was also dedicated to the account of dynami-
cal system complex cubic polynomial. They also raised the query when the Julia set of
a cubic polynomial became a Cantor set [3].

In 1998, Liaw found the regularities for the parameter space of the cubic polynomi-
als in the two dimensional projections. The projection of the parameter points that have
non-totally disconnected Julia sets can be observe as a combination of Mandelbrot-like
sets [20]. In the same year Cheng and Liaw established asymptotic similarity between
the parameter spaces (the Mandelbrot set) and the dynamic space (the Julia sets) of
cubic mappings. The dynamic spaces and the parametric spaces of cubic polynomials
consist many small copies of the Julia sets and Mandelbrot sets respectively of the stan-
dard quadratic mapping [7]. In 2001, Liaw studied the orientations, sizes, and positions
of above small copies to understand the formation of the cubic polynomials [21].

In 1999, Yan, Liu, and Zhu worked on a general complex cubic iteration and pro-
duced results on the range of Mandelbrot and Julia sets generated from above cubic
iteration[41]. These results are helpful in plotting the above generated sets. In 2003,
Tomova produced results about the limits of cubic Julia and Mandelbrot sets for com-
plex polynomial z3 + pz+ q and also for Julia and Mandelbrot sets of higher orders
polynomial of the form zn + c, [40].

In 2006, Fu et.al. generated higher order Julia set and Mandelbrot sets by applying
fast computing algorithm [15]. Mamta et.al. studied and computed superior Julia sets
for nth degree complex polynomial [32, 33], for cubic [6] and for quadratic complex
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polynomials [17, 30, 31] using superior iterates (a two-step feedback procedure). Su-
perior Julia sets have also been analysed under the effect of noises [34, 35]. In 2018,
Narayanet.al. computed and analysed new collection of antifractals for the complex
polynomial z̄n + c in the GK-orbit [23].

In our previous article, we have computed and examined new collection of frac-
tals using faster iteration with s-convexity [24].Recently, Rahman, Nisar and Gola-
mankaneh, also studied the generalized Riemann–Liouville fractional integral for the
functions with fractal support. They explored reverse Minkowski’s inequalities and cer-
tain other related inequalities by employing generalized Riemann–Liouville fractional
integral for the functions with fractal support [29].

Fractals have also vital role in various domains ranging from mathematical to en-
gineering applications, nano technology to bio medical domain. However, for a deep
understanding of fractals and to review the relevant areas, one must go through some
recent implementations of non-linear concepts in various areas of machine learning,
microprocessors and computer science related to data analysis [10, 37]. For more ap-
plications of numerical computing techniques one may see [11, 38].

In this research paper, we have explored new and ever seen cubic fractal sets for
the complex cubic polynomial z→ z3+mz+n , using new different numerical iterative
technique (a four-step feedback system) with improved escape criterion. We have also
analysed the characteristics of the above generated cubic Julia sets.

2 Material and Method
In past years, researchers focused mainly on three types of feedback procedures like
Picard iterates, a one-step feedback system [27], Mann iterates, a two-step feedback
system [17, 36], Ishikawa iterates, a three-step feedback system [6] etc. In 2014, Mu-
jahid et. al. introduced a new four-step iterative procedure and proved that it is faster
than all of Mann, Picard and Agarwal et. al. processes. They supported analytic proof
by a numerical example and mentioned that this process is independent of all above
processes. They also demonstrated some strong and weak convergence results for two
non-expansive functions [1].

In this research paper, we have computed Julia sets for the cubic complex poly-
nomial using this faster four-step feedback procedure with improved escape criterion
which provides the different results than the previous results.

Definition 2.1. Let S be a non-empty set and p be a self-map from S to S. For a point
s0 in S, the Picard orbit (generally called orbit of p) is the set of all iterates of a point
s0, that is: P(p,s0) = {sn : sn = p(sn−1), n = 1,2, · · ·}, where P(p,s0) of p at the initial
point s0 is the sequence (pns0)

Definition 2.2. The filled in Julia set of the function F(z) = zn + c is defined as

K(F) = {z ∈ C : Fk(z) does not tend to ∞}

where Fk(z) is the kth iterate of function F, K(F) denotes the filled in Julia set and C is
the complex space. The boundary of K(F) is known as Julia set of the function F. Julia
set is the set of those points whose orbits are bounded under Fc(z) = zn + c.

Definition 2.3. (New Iterative Procedure-NIP) Let X be a non-empty set such that
T : X → X and {xn} be a sequence of iterates of initial point x0 ∈ X such that

3
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{xn+1 : xn+1 = (1−un)Tyn +unT zn ;

yn = (1− vn)T xn + vnT zn ;

zn = (1−wn)xn +wnT xn; n = 0,1,2, · · · ,},

where un,vn,wn ∈ [1,0] and {un},{vn},{wn} are sequences of positive numbers. For
the sake of simplicity, we take un = u,vn = v,wn = w.

2.1 Escape Criterion for Cubic Complex Polynomial
In computation of fractals like Julia and Mandelbrot sets, there is always need to es-
tablish a criterion called ‘Escape criterion’ which enacts a chief role in the graphical
representation of Mandelbrot as well as Julia sets and these criteria are different for
different order complex polynomials.
Here, in this part, we demonstrate the new escape criterion using NIP for the complex
cubic polynomials:

Pm,n(z) = z3 +mz+n

where m and n are complex numbers.
The following theorem and results provide the escape criterion using NIP for the above
mentioned complex polynomial.

Theorem 2.1. Consider that |z| > |n| > (|m|+2/|u|)1/2, |z| > |n| > (|m|+2/|v|)1/2,
and |z|> |n|> (|m|+2/|w|)1/2, where 0 < u < 1, 0 < v < 1, 0 < w < 1, and c is in the
complex plane.
Define

z1 = (1−u)Pm,n(z)+uPm,n(z) ,

z2 = (1−u)Pm,n(z1)+uPm,n(z1) ,

...

zn = (1−u)Pm,n(zn−1)+uPm,n(zn−1) ,n = 2,3,4, · · ·

where Pm,n(z) is the fuction of z.
Then |z| → ∞ as n→ ∞

Proof. Consider

|P′m,n(z)|= |(1−w)z+wP
′′
m,n(z)| whereP

′′
m,n(z) = z3 +mz+n

= |(1−w)z+w(z3 +mz+n)|
= |z−wz+wz3 +mwz+wn)|
≥ |wz3 +mwz+ z−wz|− |wn|
≥ |z|(|wz2 +mw+1−w|)−w|z|, (∵ |z| ≥ n)

≥ |z|(|wz2 +mw|− |1−w|)−w|z|
= |z|(w|z2 +m|−1)

i.e.
|P′m,n(z)| ≥ |z|(w|z2 +m|−1) (2.1)
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Also

|Pm,n(z)|= |(1− v)P
′′
m,n(z)+ vP

′
m,n(z)|

≥ |(1− v)(z3 +mz+n+ v|z|(w|z2 +m|−1|)) [By using Eq.(2.1)]

= |(1− v)z3 +m(1− v)z+n(1− v)+ vw|z|(|z2 +m|− v|z||)
≥ |(1− v)z3 +m(1− v)z|− (1− v)|z|+ vw|z|(|z2 +m|− v|z|)
= |z|[(1− v)|z2 +m|−1]+ vw|z||z2 +m|
≥ |z|[(vw− v+1)(|z2|− |m|−1)]

Since,

zn = (1−u)Pm,n(zn−1)+uP
′
m,n(zn−1)

We have

|z1|= |(1−u)Pm,n(z)+uP
′
m,n(z)|

≥ |(1−u)[|z|(vw− v+1)|z2 +m|−1]+u[|z|(w|z2 +m|−1)]

≥ |z||(uv+ vw−uvw−u− v+1)|z2 +m|− |(1−u)|z||
+uw|z||z2 +m|−u|z|

= |z|[(uv+ vw+uw−uvw−u− v+1)|z2 +m|−1]

≥ |z|[(uv+ vw+uw−uvw−u− v+1)(|z2|− |m|)−1]

= |z|R[|z2|− (|m|+1/R)]

where

R = uv+ vw+uw−uvw−u− v+1

Since, |z| > |n| > (|m|+ 2/|u|)1/2, |z| > |n| > (|m|+ 2/|v|)1/2, and |z| > |n| > (|m|+
2/|w|)1/2, so that we have |z| > (|m|+2/R)1/2, this mean |z2|− (|m|+1/R) > (1/R)
so that R(|z2|− (|m|+1/R))> 1. Therefore there exists a λ > 0 such that

|z1|> (1+λ)|z|

Repeating the same argument, we get

|zn|> (1+λ)n|z|

Thus, orbit of z tends to infinity as n→ ∞. This completes the proof.

Corollary 2.1.1. Consider the complex cubic polynomial Pm,n(z) = z3 +mz+n where
m, n are complex numbers and assume
|z|>max[ |n|,(|m|+2/|u|)1/2,(|m|+2/|v|)1/2,(|m|+2/|w|)1/2] then |zn|> (1+λ)n|z|
and |zn| →∞ as n→∞. This provides the ‘escape criterion’ for the above complex cu-
bic polynomial.
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Corollary 2.1.2. Assume
|zk|> max[ |n|,(|m|+2/|u|)1/2,(|m|+2/|v|)1/2,(|m|+2/|w|)1/2] for some k ≥ 0 then
|zk|> (1+λ)n|zk−1| and |zn| → ∞ as n→ ∞.
This result provides an algorithm to generate cubic Julia sets for the above mentioned
complex polynomial.

3 Result And Discussion

3.1 Fractals as Cubic Julia sets
Cubic Julia sets, applying new different fixed point technique, are generated through
complex polynomial Pm,n(z) = z3 +mz+n, using cubic escape criterion with the soft-
ware Mathematica 10.0, See Figures 1-20.

Figure 1: Ants Cubic Julia set for u= v=.48, w=.28, m=-
3.2, n=.56I

Figure 2: Ants Cubic Julia set for u= v=.477, w=.283,
m=-3.13, n=.59I

3.2 Graphical Execution of Cubic Julia Sets Employed NIP
For the graphical execution of cubic Julia sets we iterate complex cubic polynomial
Pm,n(z) = z3+mz+n, and define the prisoner set using escape criterion under the above
new different iterative procedure. We have also generated some interested and ever
seemed cubic Julia sets.
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Figure 3: Cubic Julia set for u= v=.42, w=.05, m=-1.6,
n=.45I

Figure 4: Cubic Julia set for u= v=.45, w=.09, m=-2.3,
n=.52I

Figure 5: Cubic Julia set for u= v=.44 w=.07 m=.6-.01I
n=1.2I

Figure 6: Cubic Julia set for u= v=.44 w=.03 m=.62-.01I
n=1I

In this paper we have used two sets of parameters, u,v,wand m,n, and by changing
parametric cost of these set of pairs, we have also noticed many important observations
as follow:

7
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Figure 7: Cubic Julia set for u= v=.44 w=.07 m=.62-.01I
n=1I

Figure 8: Cubic Julia set for u= v=.57 w=.05 m=.6+.01I
n=1.2I

Figure 9: Antenna Cubic Julia set for u= v=.15 w=.83
m=2.5 n=-.80I

Figure 10: Antenna Cubic Julia set for u= v=.15 w=.83
m=2.62 n=-.80I

Figure 11: Antenna Cubic Julia set for u= v=.46 w=.366
m=-29.1 n=.75I

Figure 12: Antenna Cubic Julia set for u= v=.46 w=.366
m=-3.1 n=.59I

8
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Figure 13: Cubic Julia set for u= v=.48,w=.32 m=-3.13,
n=-.59I

Figure 14: Cubic Julia set for u= v=.48, w=.32 m=-3.03,
n=-.89I

Figure 15: Cubic Julia set for u= v=.5, w=.03, m=1.2I
n=0

Figure 16: Cubic Julia set for u= v=.5, w=.05,m=-1.17I
n=0

• It has been observed that the Figures 1 - 14 and Figures 17 - 20 show the perfect
mathematical reflexive symmetry about imaginary axes only whereas the Figures
15 - 16 show the perfect mathematical reflexive symmetry about both the axes
(real as well as imaginary axes).

• It is noticed that the prisoner sets of the cubic Julia sets in the Figures 1 - 5, Figure
17 and Figures 11 - 16 are mathematically disconnected whereas the prisoner
sets of the remaining cubic Julia sets are mathematically connected.

9
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Figure 17: Cubic Julia set for u= v=.03 w=.95 m=1.0
n=1.001I

Figure 18: Cubic Julia set for u= v=.5 w=.01 m=1.3 n=-
.80I

Figure 19: Cubic Julia set for u= v=.19 w=.376 m=2.2
n=.40I

Figure 20: Butterfly Cubic Julia set for u= v=.5 w=.3 m=-
2.03 n=-.6I

• It is also noticed that the cubic Julia sets in Figure 1 and Figure 2 capture the shape
of ants, Figures 4 - 8, look like as meditating posture, the cubic Julia in Figures
9-12 and Figure 19 take the shape of antennas, the cubic Julia set in Figure 20
take the shape of a butterfly and the Julia sets in Figure 3-4 and Figures 13-14
are wall-decorated pictures.

Conclusion
In this research paper, a new different four-step iterative procedure has been applied to
the complex cubic polynomial Pm,n(z) = z3+mz+n, and significant as well as exciting
results have been obtained.We have obtained new and ever seen cubic Julia sets as
output for the above complex cubic polynomial. Some of the generated cubic Julia sets
have perfect mathematical reflexive symmetry about the axes. From above generated
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cubic Julia sets, some Julia sets are connected and some are disconnected which is
also an important mathematical property of fractals.It is also fascinating to see that
some of the generated cubic Julia sets take the shape of antennas which is an important
application of fractals, some cubic Julia sets capture the shape of ants and the butterfly,
some cubic Julia sets look like as meditating posture, and some other look like as wall-
decorated pictures.
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Abstract

Recently, the idea of ϕ-fixed point and the elementary results on ϕ-
fixed points were first investigated by Jleli et al. [Jleli M, Samet B, Vetro C
(2014) Fixed point theory in partial metric spaces via ϕ-fixed point’s con-
cept in metric spaces. Journal of Inequalities and Applications, 2014(1):1-
9.]. Based on this work, Karapinar et al. [Karapinar E, O’Regan D, Samet
B (2015) On the existence of fixed points that belong to the zero set of
a certain function. Fixed Point Theory and Applications, 2015(1):1-14.]
established the new ϕ-fixed point results, which can be reduced to the
famous fixed point result of Boyd and Wong in 1969. However, the main
result of Karapinar et al. does not cover the ϕ-fixed point results of Jleli
et al. This paper aims to fulfill this gap by proving ϕ-fixed point results
covering several ϕ-fixed point results and fixed point results. Key words:
ϕ-fixed point; ϕ-Picard mapping; Control function
Mathematics Subject Classification(2010): 46T99; 47H10; 54H25

1

1 Introduction and preliminaries

In 2014, Jleli et al. [1] had initiated the concept of (F,ϕ)-contraction with the
help of some control function, which is one of the interesting generalizations of
the classical Banach contraction principle and first introduced the concepts of
ϕ-fixed point and ϕ-Picard mapping. Moreover, they also proved some ϕ-fixed
point theorems for contractive mappings expanded some fixed point results in
metric spaces. Consistent with Jleli et al. [1], we will be needed the following
notations, definitions, and results in this research.

1Corresponding author: Department of Mathematics and Statistics,
Faculty of Science and Technology, Thammasat University Rangsit Center,
Pathum Thani 12120, Thailand
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LetX be a nonempty set, ϕ : X → [0,∞) be a given function and T : X → X
be a mapping. By FT and Zϕ the set of all fixed points of T and the set of
all zeros of the function ϕ, respectively, i.e., FT := {x ∈ X : Tx = x} and
Zϕ := {x ∈ X : ϕ(x) = 0}.

Definition 1.1 ([1]). Let X be a nonempty set and ϕ : X → [0,∞) be a
given function. An element z ∈ X is said to be a ϕ-fixed point of the mapping
T : X → X if and only if z is a fixed point of T and ϕ(z) = 0 (i.e., z ∈ FT ∩Zϕ).

Definition 1.2 ([1]). Let (X, d) be a metric space and ϕ : X → [0,∞) be a
given function. A mapping T : X → X is said to be a ϕ-Picard mapping if and
only if, for each x, z ∈ X, the following conditions are satisfied:

(i) FT ∩ Zϕ = {z} for some z ∈ X;

(ii) Tnx→ z as n→∞ for each x ∈ X.

To describe the control function, which is an important class of this work,
let F be the family of all functions F : [0,∞)3 → [0,∞) satisfying the following
conditions:

(F1) max{a, b} ≤ F (a, b, c) for all a, b, c ∈ [0,∞);

(F2) F (0, 0, 0) = 0;

(F3) F is continuous.

As examples, the following functions F1, F2, F3 : [0,∞)3 → [0,∞) belong to F :

(i) F1(a, b, c) = a+ b+ c for all a, b, c ∈ [0,∞);

(ii) F2(a, b, c) = max{a, b}+ c for all a, b, c ∈ [0,∞);

(iii) F3(a, b, c) = a+ a2 + b+ c for all a, b, c ∈ [0,∞).

Definition 1.3 ([1]). Let (X, d) be a metric space, ϕ : X → [0,∞) be a given
function, and F ∈ F . A mapping T : X → X is said to be an (F,ϕ)-contraction
mapping if there exists k ∈ [0, 1) such that

F (d(Tx, Ty), ϕ(Tx), ϕ(Ty)) ≤ kF (d(x, y), ϕ(x), ϕ(y))) ∀(x, y) ∈ X2. (1.1)

Theorem 1.4 ([1]). Let (X, d) be a complete metric space, ϕ : X → [0,∞) be a
lower semi-continuous function, F ∈ F and T : X → X be an (F,ϕ)-contraction
mapping. Then FT ⊆ Zϕ and T is a ϕ-Picard mapping.

Remark 1.5. Note that if we set F (a, b, c) = a + b + c for all a, b, c ∈ [0,∞)
and ϕ(x) = 0 for all x ∈ X in (1.1), then the contractive condition (1.1) reduces
to the Banach contractive condition.
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In recent years, Jleli et al.’s fixed point theorem has been generalized and
extended in several directions. One such generalization was introduced by Kara-
pinar et al. [2] by replacing the constant k of the contractive condition (1.1)
with the control function, which was first introduced by Boyd and Wong [3].
They also proved the existence and uniqueness results of a ϕ-fixed point for new
nonlinear mappings. Nevertheless, this result expands all conditions of results
of [1], except that the condition (F2) is replaced by

(F2?) F (a, 0, 0) = a for all a ≥ 0.

Here, we recall the definition of the following class as given by Boyd and
Wong [3]. Denote Ψ the set of functions ψ : [0,∞) → [0,∞) satisfying the
following conditions:

(ψ1) ψ is upper semi-continuous from the right;

(ψ2) ψ(t) < t for each t > 0.

Combining this definition with Jleli et al.’s theorem, Karapinar et al. [2]
proved the following theorem:

Theorem 1.6 ([2]). Let (X, d) be a complete metric space. Suppose that the
mapping T : X → X satisfies the following condition:

F (d(Tx, Ty), ϕ(Tx), ϕ(Ty)) ≤ ψ(F (d(x, y), ϕ(x), ϕ(y))) ∀(x, y) ∈ X2, (1.2)

where ϕ : X → [0,∞) is lower semi-continuous, ψ ∈ Ψ, and F : [0,∞)3 →
[0,∞) is a function satisfying the following conditions:

(F1) max{a, b} ≤ F (a, b, c) for all a, b, c ∈ [0,∞);

(F2?) F (a, 0, 0) = a for all a ≥ 0;

(F3) F is continuous.

Then FT ⊆ Zϕ and T is a ϕ-Picard mapping.

In the case of ψ defined by ψ(t) = kt for some k ∈ [0, 1), Theorem 1.6
seem almost similar to a generalization of Theorem 1.4 except that Theorem
1.6 use the control function F satisfying conditions (F1), (F2?), (F3) rather
than Theorem 1.4 use the control function F satisfying conditions (F1), (F2),
(F3). It is easy to see that the condition (F2?) is stronger than the condition
(F2) since there are many functions satisfying the condition (F2) but it does not
satisfy the condition (F2?). For example, functions F1, F2, F3 : [0,∞)3 → [0,∞)
defined by F1(a, b, c) = a+a2+b+c, F2(a, b, c) = ln(a+1)+(a+b)ec+max{a, b},
and F3(a, b, c) = max{2a, b}+ c for all a, b, c ≥ 0. From the above observation,
we can conclude that the main theorem of [2] is not a proper extension of
Theorem 1.4.

The main goal of this work is to fulfill the mentioned gap by using the new
technique for improving Theorem 1.6 via the original control function, which
was introduced by Jleli et al. in [1]. For simplicity, the following diagram shows
the relation of Karapinar et al.’s results and our results, which describes the
objectives of this research.
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BCP

Jleli et al.’s theorem

Karapinar et al.’s theorem

Fix

BCP

Jleli et al.’s theorem

Karapinar et al.’s theorem

Our main theorem

Figure 1: The conceptual research framework

2 Main results

In section, we will prove the generalized ϕ-fixed point results by using the new
technique, which is the improved version of the ϕ-fixed point theorem of Kara-
pinar et al. [2], but it replaces the condition (F2?) by the condition (F2).

Theorem 2.1. Let (X, d) be a complete metric space and T be a self mapping
on X such that

F (d(Tx, Ty), ϕ(Tx), ϕ(Ty)) ≤ ψ(F (d(x, y), ϕ(x), ϕ(y))) ∀(x, y) ∈ X2, (2.1)

where ϕ : X → [0,∞) is lower semi-continuous, F ∈ F and ψ ∈ Ψ. Then
FT ⊆ Zϕ and T is a ϕ-Picard mapping.

Proof. The first step is to prove that FT ⊆ Zϕ. Let x ∈ FT . Letting y = x in
(2.1), we have

F (0, ϕ(x), ϕ(x)) ≤ ψ(F (0, ϕ(x), ϕ(x))). (2.2)

Assume that ϕ(x) > 0. It follows from (F1) that F (0, ϕ(x), ϕ(x)) > 0. By (2.2)
and (ψ1), we get

F (0, ϕ(x), ϕ(x)) ≤ ψ(F (0, ϕ(x), ϕ(x))) < F (0, ϕ(x), ϕ(x)),

which is a contradiction. Therefore, ϕ(x) = 0, which implies that

FT ⊆ Zϕ. (2.3)

Next, we will show that T is a ϕ-Picard mapping. Let x0 be an arbitrary
point in X. Define the sequence {xn} ⊆ X by xn = Txn−1 for all n ∈ N. If
xn∗ = xn∗−1 for some n∗ ∈ N, then xn∗ is a fixed point of T . Hence, for the
rest of the proof, we assume that xn = xn−1 for all n ∈ N, that is,

d(xn, xn−1) > 0 (2.4)

for each n ∈ N. Now, we will claim that

lim
n→∞

d(xn+1, xn) = lim
n→∞

ϕ(xn) = 0. (2.5)
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From (F1) and (2.4), we obtain

F (d(xn, xn−1), ϕ(xn), ϕ(xn−1)) > 0

for all n ∈ N. This allows to use the condition (ψ2) and so by using the
contractive condition (2.1), we obtain

F (d(xn+1, xn), ϕ(xn+1), ϕ(xn)) ≤ ψ(F (d(xn, xn−1), ϕ(xn), ϕ(xn−1)))

< F (d(xn, xn−1), ϕ(xn), ϕ(xn−1)) (2.6)

for all n ∈ N. This shows that {F (d(xn+1, xn), ϕ(xn+1), ϕ(xn))} is a decreasing
sequence. Furthermore, it is easy to see that it is also bounded below by 0 and
hence it converges to some point r ≥ 0, that is,

lim
n→∞

F (d(xn+1, xn), ϕ(xn+1), ϕ(xn)) = r. (2.7)

From (2.6), (2.7) and the squeeze theorem, we get

lim
n→∞

ψ(F (d(xn, xn−1), ϕ(xn), ϕ(xn−1))) = r. (2.8)

Assume that r > 0. So we have

r
(2.8)
= lim sup

n→∞
ψ(F (d(xn, xn−1), ϕ(xn), ϕ(xn−1)))

(ψ1)

≤ ψ(r)

(ψ2)
< r

which provides a contradiction. Therefore, r = 0, that is,

lim
n→∞

F (d(xn+1, xn), ϕ(xn+1), ϕ(xn)) = 0,

and thus, by (F1), we get

lim
n→∞

d(xn+1, xn) = lim
n→∞

ϕ(xn) = 0,

that is, Equation (2.5) holds.
Now, we shall prove that {xn} is a Cauchy sequence. Assume on the contrary

that {xn} is not a Cauchy sequence. Then there exists ε > 0 for which we can
find subsequences

{
xm(k)

}
and

{
xn(k)

}
of {xn} with n(k) > m(k) ≥ k and

d
(
xm(k), xn(k)

)
≥ ε (2.9)

for all k ∈ N. Corresponding to m(k), we may choose n(k) such that it is the
smallest integer satisfying (2.9). Then we have

d
(
xm(k), xn(k)−1

)
< ε.
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By the triangular inequality, we have

ε ≤ d
(
xm(k), xn(k)

)
≤ d

(
xm(k), xn(k)−1

)
+ d

(
xn(k)−1, xn(k)

)
< ε+ d

(
xn(k)−1, xn(k)

)
.

Letting k →∞ in the above inequality and using (2.5), we have

lim
k→∞

d
(
xm(k), xn(k)

)
= ε. (2.10)

By a similar way, we can show that

lim
k→∞

d
(
xm(k)+1, xn(k)+1

)
= ε. (2.11)

Using (F3), (2.5), (2.10) and (2.11), it follows that

lim
k→∞

F
(
d
(
xm(k), xn(k)

)
, ϕ
(
xm(k)

)
, ϕ
(
xn(k)

))
= F (ε, 0, 0) (2.12)

and

lim
k→∞

F
(
d
(
xm(k)+1, xn(k)+1

)
, ϕ
(
xm(k)+1

)
, ϕ
(
xn(k)+1

))
= F (ε, 0, 0). (2.13)

Now, we choose x = xm(k) and y = xn(k) in (2.1), we infer

F
(
d
(
xm(k)+1, xn(k)+1

)
, ϕ
(
xm(k)+1

)
, ϕ
(
xn(k)+1

))
≤ ψ

(
F
(
d(xm(k), xn(k)), ϕ(xm(k)), ϕ(xn(k))

))
.

Taking the limit superior as k → ∞ on both sides of the above inequality and
using (2.13), we deduce

F (ε, 0, 0) ≤ lim sup
k→∞

ψ
(
F
(
d(xm(k), xn(k)), ϕ(xm(k)), ϕ(xn(k))

))
. (2.14)

Using the condition (ψ1) and (2.12), we obtain

lim sup
k→∞

ψ
(
F
(
d(xm(k), xn(k)), ϕ(xm(k)), ϕ(xn(k))

))
≤ ψ(F (ε, 0, 0)) < F (ε, 0, 0).

(2.15)
From (2.14) and (2.15) together with (ψ2), we obtain

F (ε, 0, 0) ≤ ψ(F (ε, 0, 0)) < F (ε, 0, 0),

which is a contradiction. Therefore, {xn} is a Cauchy sequence. By the com-
pleteness of X, there exists a point z ∈ X such that

lim
n→∞

d(xn, z) = 0. (2.16)

Using (2.5), (2.16) and the lower semi-continuity of ϕ, we get

0 ≤ ϕ(z) ≤ lim inf
n→∞

ϕ(xn) = 0,
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which implies that
ϕ(z) = 0. (2.17)

Next, we will prove that z is a fixed point of T . From (F2), (F3), (2.5) and
(2.16), we get

lim
n→∞

F (d(xn, z), ϕ(xn), 0) = F (0, 0, 0) = 0.

Note that from (ψ2), it follows that lim
t→0+

ψ(t) = 0. Then

lim
n→∞

ψ(F (d(xn, z), ϕ(xn), 0)) = lim
t→0+

ψ(t) = 0. (2.18)

Hence, from (F1), (2.1), (2.17) and (2.18), we conclude that

d(xn+1, T z) ≤ ψ(F (d(xn, z), ϕ(xn), 0))→ 0 as n→∞.

Therefore, by the uniqueness of the limit, we obtain z = Tz, i.e., z is a fixed
point of T .

Finally, we will show that T has a unique fixed point. Suppose that u and
v are fixed points of T such that u 6= v. Then d(u, v) > 0. Therefore,

F (d(u, v), 0, 0) = F (d(Tu, Tv), 0, 0)

(2.1)

≤ ψ(F (d(u, v), 0, 0))

(ψ2)
< F (d(u, v), 0, 0),

which is a contradiction. Thus, the fixed point of T is unique. This completes
the proof.

The following example shows that Theorem 2.1 is more applicable than many
other results in the literature.

Example 2.2. Let X = [0,∞) and d : X × X → R be defined by d(x, y) =
|x − y| for all x, y ∈ X. Then (X, d) is a complete metric space. Assume that
T : X → X and ψ : [0,∞)→ [0,∞) are defined by

Tx =


x2

2 , 0 ≤ x < 1
2 ,

1
8x , x ≥ 1

2 ,
and ψ(t) =


t
2 , 0 ≤ t < 1,

1
2 sin

(
1

2t−1

)
+ 1

2 , t ≥ 1.

Clearly, by the graph in Figure 2, we have ψ ∈ Ψ.
Now, we will show that the fixed point result of Boyd and Wong [3] can not

be applied in this example. For any x ∈
(
0, 12
)

and y = 1
2 , we obtain

d (Tx, Ty) =

∣∣∣∣x22 − 1

4

∣∣∣∣ =
1

4
−x

2

2
>

1

4
−x

2
=

∣∣∣∣x2 − 1

4

∣∣∣∣ = ψ

(∣∣∣∣x− 1

2

∣∣∣∣) = ψ (d (x, y)) .

Hence, T does not satisfy the Boyd and Wong’s contractive condition. Also, the
Banach contraction principle is not applicable, since T is not continuous at 1

2 .
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Figure 2: The graph of ψ in blue line

Next, we will show that Theorem 2.1 can be applied in this example. Let
ϕ : X → [0,∞) and F : [0,∞)3 → [0,∞) be defined by

ϕ(x) = x, x ∈ X and F (a, b, c) = a+ a2 + b+ c, a, b, c ≥ 0.

It is easy to see that F ∈ F and ϕ is lower semi-continuous. Now, we claim that
the mapping T satisfies the contractive condition (2.1). Suppose that x, y ∈ X.
We have to consider the following cases:

Case 1. If (x, y) ∈
[
0, 12
)2

, then we get

F (d(Tx, Ty), ϕ(Tx), ϕ(Ty)) = d(Tx, Ty) + (d(Tx, Ty))2 + ϕ(Tx) + ϕ(Ty)

= |Tx− Ty|+|Tx− Ty|2+Tx+ Ty

=
|x2 − y2|

2
+
|x2 − y2|2

4
+
x2

2
+
y2

2

=
|(x+ y)(x− y)|

2
+
|(x+ y)(x− y)|2

4
+
x2

2
+
y2

2

≤ |x− y|
2

+
|x− y|2

2
+
x

2
+
y

2
(2.19)

≤ ψ(|x− y|+|x− y|2+x+ y)

= ψ(d(x, y) + (d(x, y))2 + ϕ(x) + ϕ(y))

= ψ(F (d(x, y), ϕ(x), ϕ(y))).

8
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Case 2. If (x, y) ∈
[
1
2 ,∞

)2
, then we get

F (d(Tx, Ty), ϕ(Tx), ϕ(Ty)) = d(Tx, Ty) + (d(Tx, Ty))2 + ϕ(Tx) + ϕ(Ty)

= |Tx− Ty|+|Tx− Ty|2+Tx+ Ty

=

∣∣∣∣ 1

8x
− 1

8y

∣∣∣∣+

∣∣∣∣ 1

8x
− 1

8y

∣∣∣∣2 +
1

8x
+

1

8y

<
1

2
sin

(
1

2(|x− y|+|x− y|2+x+ y) + 1

)
+

9

16
(2.20)

= ψ(|x− y|+|x− y|2+x+ y)

= ψ(d(x, y) + (d(x, y))2 + ϕ(x) + ϕ(y))

= ψ(F (d(x, y), ϕ(x), ϕ(y))).

Case 3. Let (x, y) ∈
[
0, 12
)
×
[
1
2 ,∞

)
∪
[
1
2 ,∞

)
×
[
0, 12
)
. Without loss of

generality, we may assume that x ∈
[
0, 12
)

and y ∈
[
1
2 ,∞

)
and so |x− y|+|x−

y|2+x+ y > 1, then

F (d(Tx, Ty), ϕ(Tx), ϕ(Ty)) = d(Tx, Ty) + (d(Tx, Ty))2 + ϕ(Tx) + ϕ(Ty)

= |Tx− Ty|+|Tx− Ty|2+Tx+ Ty

=

∣∣∣∣x22 − 1

8y

∣∣∣∣+

∣∣∣∣x22 − 1

8y

∣∣∣∣2 +
x2

2
+

1

8y

≤ 1

2
sin

(
1

2(|x− y|+|x− y|2+x+ y) + 1

)
+

9

16
(2.21)

= ψ(|x− y|+|x− y|2+x+ y)

= ψ(d(x, y) + (d(x, y))2 + ϕ(x) + ϕ(y))

= ψ(F (d(x, y), ϕ(x), ϕ(y))).

The validity of the conditions (2.19), (2.20) and (2.21) can be checked by plotting
3D surface in MATLAB, shown as Figure 3. Without loss of generality and for
the sake of simplicity, we restrict the domain in Figure 3 to [0, 3]. Therefore,
all the required hypotheses of Theorem 2.1 are fulfilled, and so T has a unique
ϕ-fixed point. In this case, the point 0 is a unique ϕ-fixed point of T .

Remark 2.3. If we take ϕ(x) = 0 for all x ∈ X in Theorem 2.1, then we
get the real proper generalization of the Boyd and Wong fixed point theorem.
However, if we take the same function ϕ in Theorem 1.6 and use (F2?), we can
see that the obtained result is equivalent to the Boyd and Wong fixed point
theorem. This yields the advantage of our main result with the several results
in the literature as shown in Figure 4.
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Figure 3: The value of the comparison of the L.H.S. and the R.H.S. of (2.19)
and (2.21)

Our theorem

ϕ(x) = 0

Karapinar et al’s

theorem

ϕ(x) = 0

BCP

Boyd-Wong’s theorem

F (a, b, c) = a+ b+ c

BCP

Boyd-Wong’s theorem

Figure 4: The difference of consequence between our theorem and Karapinar et
al.’s theorem

3 Conclusions

Inspired by the problem of the relaxing of the hypothesis of the control function
F in Theorem 1.6, we proposed a new technique for solving this problem. By
the help of this suggested technique, our main theorem has the new proof, which
seems to be simpler than the proof in [2]. The obtained result of this paper is a
real proper generalization of the result in [1], and it also covers several famous
fixed point results and ϕ-fixed point results in the literature. For the part of
an application, we can use the main result in this work for applying in the
homotopy result, and the fixed point results in partial metric spaces like the
application in [2] since the class F is weaker than the class defined in [2].
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Abstract

The Covid-19 outbreak hit us as a serious health crisis with vacci-
nation to be seen as the only way out of it. And media can play the
role of an advocate to fight against this epidemic by spreading important
awareness regarding various protocols and vaccination strategies. Since
breakthrough infections are becoming highly common, a two dose vaccine
regime may be the need of the hour even for individuals with a pre-existing
illness to build better immunity. Thus in this paper, our aim is to analyse
a mathematical model with two dose vaccination strategy in the presence
of media and breakthrough infections. An SIV1V2R model is formulated
and the dynamical analysis is done. The basic reproduction number is ob-
tained and the local stability analysis of both the disease-free and endemic
equilibrium point is discussed based on reproduction number. The global
stability of the endemic equilibrium point is done by graph theoretic ap-
proach. Finally, the numerical validation of the analytic solution is done
using MATLAB using the real data of India for some important parame-
ters to address a few vital questions which involves the role of media on
the vaccination strategy. And sensitive model parameters effecting the
basic reproduction number and endemic equilibrium points are identified
using sensitivity analysis techniques like PRCC(partial rank correlation
coefficient). Thus, the outcomes demonstrated the trend a two-dose vac-
cine model can follow and how the effect of media can help bring down
the infections. This model provides support that two dose vaccination
against COVID-19 with media presence for awareness is highly effective
in controlling this epidemic.

Keywords: Vaccine; Covid-19; Global Stability; Parameter Sensitiv-
ity

1 Introduction

Since the advancements in medication and technology particularly with the
initiation of vaccination, there has been an improvement in the quality of life
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in the age of infectious diseases. After the primary creation of vaccine by a
doctor for pox from a live pox virus in 1796, in order to produce vaccines
for alternative diseases several scientists and doctors followed his path as well.
Many diseases are currently preventable like contagious disease, mumps, rubella,
serum hepatitis, and respiratory illness due to the use of such vaccines[1, 2].
Due to the spread of SARS-CoV-2 virus, the COVID-19 outbreak was declared
a pandemic and since then the development of COVID-19 vaccines has been
the top priority of responsible stakeholders to control the outbreak. Afterwards
with the availability of various types of vaccines to the world, the focus shifted to
process of vaccination. There is an urgent need for the disbursement of vaccines
to the general public so that the vaccines are effective to suppress the infection
and in a very timely manner. Therefore, coming up with concerned strategies
is crucial to the success of vaccination and control of epidemic as several of the
vaccines need over one dose over a lifespan. Specially since the talk has now
been shifted on the number of doses(one or two) [3], decisions regarding single
or multi dose vaccines is a matter of great importance to avoid confusion among
the general public.

1.1 Two-Dose Vaccine

For the ongoing Covid-19 epidemic, the often suggested vaccine strategy may
be a two-dose program and even a booster dose in future[4, 5]. The second
dose isn’t thought of to be a booster vaccine but rather the use of this par-
ticular dose is with the aim to produce immunity to those that don’t answer
the primary dose. For example, more or less two to five of individuals don’t
develop immunity once the primary dose of the MMR(Measles, Mumps and
Rubella) vaccine is given emphasising on the need of multi dose regime. Re-
cently Covid-19 Vaccines have received emergency use authorization developed
by Oxford-AstraZeneca, Pfizer-BioNTech and Moderna in different countries.
Mass vaccination campaigns and clinical trials can provide high levels of pro-
tection against severe and symptomatic disease using 2 dose vaccines [6]. Due
to a weak one-dose vaccine immunity in some vaccines, there could be short-
term benefits where the virus may still continue to replicate [7]. This could
eventually lead to immune escape mutations by the virus and thus a two-dose
strategy may be able to mitigate this effect. Even for individuals who already
have some existing illness, when co-infected with Covid may show better im-
munity when administered by two dose of vaccines than one dose vaccine as
seen in the case of cancer patients in [8]. Multidose vaccines when compared
to single-dose injection may offer a stronger protection against infection of the
same vaccines and communication initiatives are needed to spread information
about such regimes[9]. The ongoing discussions related to vaccination regimes
are often led by media and influences the decision making of individuals.

2
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1.2 Effect of media

The behavior of public with respect to vaccination may be altered due to in-
volvement of media. People who may be infected may not come in contact with
others because of the weakening effects due to their illness or due to the sug-
gestions by public health organizations to quarantine to avoid infecting others.
Hygienic measures may be taken up by general public to reduce the chance of
getting infected and take steps to avoid large public gatherings. An example
is of the 1994 outbreak of plague which presented with complex dynamics in a
state in India [10]. After the outbreak of the disease many people in order to es-
cape the disease fled the state of Surat and led to the transmission of the disease
to other parts of the country. Thus, there is a need of proper discourse of infor-
mation to the public. The media in particular greatly influences an individual’s
behavior toward a diseases and may also lead to interventions to control disease
spread by governmental health care institutions. Awareness programs by media
can make people comprehensive about a disease towards taking precautionary
measures like wearing protective masks, social distancing and more importantly
vaccination to suppress the chances of infection.

1.3 Empirical Literature and Structure of study

The most recent development in mathematical modelling in the field of biology
or epidemic can be seen in [11, 12, 13, 14, 15]. There has been innumerable devel-
opments in mathematical modeling and numerical methods and its applications
which is able to provide a better understanding and prediction for various types
of systems like models depicting the relationship between computer viruses and
epidemiology [16, 17, 18, 19, 20]. Mathematical models are able to provide a
compatible understanding with the real-world dynamics of infection diseases. In
order to exhibit the dynamics of Covid-19, there are many models available in
the literatures for systems of nonlinear differential equations, making the mod-
els more realistic [21]. We have seen good researches in epidemic or infectious
disease models[22, 23]. In [24], a deterministic model for Varicella Zoster Virus
dynamics with vaccination is studied. Mathematical model on the outbreaks of
influenza and to manage it by vaccination is discussed in [25]. A Dengue Epi-
demic model is considered amid vaccination in [26] and in [27] dynamic models
is discussed with the importance of vaccination. And as of the recent Covid-19
outbreak some models with respect to vaccinations are discussed are discussed
in [28, 29]. In [7] one dose regime is recommend if it produces a strong im-
mune response. However, if a single vaccine dose is poor then the manufacturer
recommended two-dose regime is suggested for a potential positive long term
outcomes. Thus, a two dose vaccine Covid-19 model needs to be studies to
understand its impact on the transmission of infection.

There may be some countries like the developing nations that may not be
able to sustain a two-dose vaccination program for respiratory illness, and def-
initely would not be able to get funding for the multi-dose respiratory illness
inoculation process. Thus, one needs to address the following questions: is it
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doable to form one dose respiratory illness vaccination program that would re-
place a two-dose respiratory illness vaccination strategy? Is the involvement of
media important in increasing vaccination process and reducing infection?. We
shall aim to address these questions by developing a multi-dose vaccine model
consisting of the susceptible, infected, vaccinated(First and second dose) and
recovered (SIV1V2R) individuals in Section 2 and investigating the impact of
media involvement to dispense information to the public. In section 3 the model
dynamics are analyzed for the equilibrium point. We shall establish the local
and global(graph theoretic method) for the endemic equilibrium. In Section 5
we will proceed with the numerical simulation where in we shall valid our results
and understand the behaviour of our system. Under numerical discuss, we aim
to find the sensitivity Indices of endemic equilibrium point to find the relevant
parameters and their impact on the populations, followed by uncertainty anal-
ysis for the basic reproduction number to find important parameters related to
transmission of infection in a two dose regime system. As part of our study,
numerical discussion will help quantify the sensitivity index of the various pa-
rameters and give an insight to understand the effectiveness of the two dose
regime and media to our variables and transmission of infection.
The novelty of our study is to encapsulate a two dose vaccination
regime and the role of the media for a Covid-19 system and dynami-
cally analysing thoroughly along with real data numerical validation.

2 The Model

The Model developed in this paper is motivated by the model by Kermack
and McKendrick [30] which consists of the Susceptible, Infected and Removed
(SIR) epidemiological class. SIR model was one of the revolutionary in its time
but in present life with full of advanced technology, SIR model is one of the
cornerstones of Mathematical Epidemiology. While assuming constant birth
and death rate, SIR model divided the population into three different classes;
Susceptible(S),Infected(I) and Recovered (R). The working of the SIR model
can bee seen in Fig 1 for better understanding.

Figure 1: Flowchart of Model
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The differential Equations for the basic SIR model is ans follows:

dS

dt
= µN − βSI − µS

dI

dt
= βSI − γI − µI

dR

dt
= γI − µR.

A two-dose regime may be able to provide better immunity to the general public
and even to those who have some pre-existing illness [8]. Thus with this as
motivation, we have extended the paper by incorporating two new vaccinated
classes V1 and V2 in reference to the current scenario of covid. The model
assumptions are considered as follows:

• Only a fraction of susceptible population get vaccinated due to the ru-
mours regarding vaccinations.

• The interaction between susceptible and infected classes follow Holling
type-II functional response.

• The population can still join the susceptible class and be prone to getting
infected after two doses. These kind of infections are termed as ’Break-
through’ infections [31, 32] and exist for all types of vaccines prescribed
against SARS-COVID-2. Breakthrough infections can be attributed to
occurrence of severe variants (such as the delta variant), low immune re-
sponse to vaccination and traveling to places that are seeing significant
surge in cases. But the infections are mild in nature and may not lead to
hospitalisation.

• The natural recovery is also not permanent and they can still get reinfected
as defined by Indian Council Of Medical Research (ICMR). ICMR defines
this reinfection as occurrence of two positive tests at a gap of at least 102
days with one interim negative test [31] .

Therefore, in reference to the assumptions, the extended model SIV1V2R is
given by,

dS

dt
= (1− p)µN − µS − b1IS

(1 + αI)
+ ψR

dI

dt
=

b1IS

(1 + αI)
− µI − γI

dV1
dt

= pµN − µV1 − p1V1

dV2
dt

= p1V1 − µV2 − p2V2

dR

dt
= γI + p2V2 − µR− ψR.

(1)
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The system is bounded in the region {S, I, V1, V2, R;S + I + V1 + V2 +R = N}.

Table 1: Table for Variables and Parameters

Variables and Parameters Interpretation

S Susceptible Individual Density
I Infected Individual Density
R Recovered Individual Density
V1 Vaccinated Individual Density After 1st Dose
V2 Vaccinated Individual Density After 2nd Dose
N Total Population Density
µ Birth and Death rate
p Rate of First Dose of Vaccine
p1 Rate of Second Dose of Vaccine
p2 Rate at which Vaccinated Individuals get Recovered
b1 Rate of Infection
γ Rate at which Infected Individuals Recover/ Natural Recovery Rate
ψ Rate at which Recovered Individuals get Susceptible Again
α Effect of Media

The description of the parameters and variables can be seen in Table 1 for our
system. We can see the mechanism graphically in the schematic diagram in Fig
2 for the proposed model.
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Figure 2: Schematic diagram of the SIV1V2R model. Susceptible individuals S
can either move to the infected I or the vaccinated class V1. At the rate of p,
the susceptible who get vaccinated with the first dose will join vaccinated class
V1 . After recovering naturally the infected individuals join the recovered class
R at the rate of γ. At the rate of p1 individuals who receive the second dose of
vaccination after getting the first dose will move towards the vaccinated class
V2. Individuals move towards the recovered class R at the rate of p2 after

receiving both the doses. Individuals from the recovered class R join back to
the class of susceptible S at the rate of ψ owing to breakthrough

infections/reinfections even after after getting vaccinated with both the doses
or recovering from the infection naturally.

2.0.1 Questions Addressed by the Research Work

Our research takes a dig at the following unaddressed issues:

• Exploring the calibre of infected class response to complete vaccination.
Can vaccination act as a lodestar to reduce infection ?

• The relation of media and pandemic. What is the role of media in infected
and susceptible classes ?

• What is the degree of correlation, if there exist any, between the paramet-
ric values and the endemic equilibrium?.

3 Model Dynamics

3.1 Basic Reproduction Number

The basic reproduction number particularly for the study infectious diseased is
considered a central concept and is the spectral radius of the next generation
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method. For the dynamic analysis of any general disease transmission model,
the basic reproduction number R0 [33, 34] is a crucial element. The trend or
behaviour of R0 can give significant implications for upcoming outbreaks. It
gives the number of secondary infections arising due to a single infection. In
the system, if R0 > 1 then the disease will continue and if R0 ≤ 1 then the
disease will die out. To explore the impact of vaccination we will be dealing
with R0 > 1 when the infection is present in the system. R0 can be written as,

R0 =
b1N

(µ+ γ)
.

3.2 Existence of equilibrium points

Equilibrium points are the steady state solutions where the system may ap-
proach in the long run. Our analysis will be around the equilibrium points and
its stability as it can help to study the system behaviour in long run in reference
to multi-dose vaccination. Thus, we shall first obtain the equilibrium points and
the conditions for their existence. Our main focus will be on disease-free equilib-
rium point and endemic equilibrium point [35]. The system (1) posses a disease
free or boundary equilibrium point E0(S0, 0, V 0

1 , V
0
2 , R

0) given by,

S0 =
(1− p)N(µ+ ψ)(µ+ p1)(µ+ p2) + pp1p2ψN

(µ+ ψ)(µ+ p1)(µ+ p2)
, V 0

1 =
pµN

(µ+ p1)

V 0
2 =

pp1µN

(µ+ p1)(µ+ p2)
, R0 =

pp1p2µN

(µ+ ψ)(µ+ p1)(µ+ p2)
.

Endemic or interior equilibrium point E∗(S∗, I∗, V ∗
1 , V

∗
2 , R

∗) for the system
(1) is given by

S∗ =
(µ+ γ)(1 + αI∗)

b1
=

(1 + αI∗)N

R0
,

V ∗
1 =

pµN

(µ+ p1)
, V ∗

2 =
pp1µN

(µ+ p1)(µ+ p2)
,

I∗ =
µ(µ+ ψ)(µ+ p1)(µ+ p2)[(1− p)Nb1 − (µ+ γ)] + ψb1pp1p2µN

[(µ+ ψ)(µ+ γ)(αµ+ b1)− ψb1γ](µ+ p1)(µ+ p2)
,

R∗ =
γµ(µ+ ψ)(µ+ p1)(µ+ p2)[(1− p)Nb1 − (µ+ γ)] + ψb1pp1p2µNγ + pp1p2µN [(µ+ γ)(µ+ ψ)(αµ+ b1 − ψb1γ)]

(µ+ ψ)(µ+ p1)(µ+ p2)[(µ+ ψ)(µ+ γ)(αµ+ b1)− ψb1γ]
,

where the equilibria exists if R0 >
1

(1−p) and (αµ+ b1) > ψb1γ.

We will now be analysing the stability of boundary and interior equilibrium
points for the system (1).
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3.3 Local Stability analysis

We shall prove the local stability for the model about the disease free and en-
demic equilibrium point to visualize the conditions under which the epidemic
system can be stabilized [36]. General Jacobian matrix for our system is given
by,

J =

∣∣∣∣∣∣∣∣∣∣

(−µ− b1I
1+αI ) − b1S

(1+αI)2 0 0 ψ
b1I

(1+αI) ( b1S
(1+αI)2 − µ− γ) 0 0 0

0 0 (−µ− p1) 0 0
0 0 p1 (−µ− p2) 0
0 γ 0 p2 (−µ− ψ).

∣∣∣∣∣∣∣∣∣∣
General characteristic equation pertaining to the jacobian matrix above is

given by,[(
µ+

b1I

1 + αI
+ λ

)(
b1S

(1 + αI)2
− µ− γ − λ

)
(µ+ p1 + λ) (µ+ p2 + λ) (µ+ ψ + λ)

]
,[(

− b1I

1 + αI

)(
b1S

(1 + αI)2

)
(µ+ p1 + λ) (µ+ p2 + λ) (µ+ ψ + λ)

] [(
b1Iγψ

1 + αI

)
(µ+ p1 + λ) (µ+ p2 + λ)

]
= 0.

Characteristic equation pertaining to the boundary equilibrium point E0 is
given by,

(µ+ λ)(b1S
0 − µ− γ − λ)(µ+ p1 + λ)(µ+ p2 + λ)(µ+ ψ + λ) = 0.

Eigen values corresponding to boundary equilibrium point E0 are λ1 =
−µ, λ2 = b1S

0 − (µ + γ) < 0 if b1S
0 < (µ + γ) or R0 < N

S0 , λ3 = −(µ +
p1), λ4 = −(µ + p2), λ5 = −(µ + ψ). Consequently, E0 is stable if R0 <
N
S0 . Next, the characteristic equation pertaining to interior equilibrium point
E∗(S∗, I∗, V ∗

1 , V
∗
2 , R

∗) is given as follows:

λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5 = 0,

where
a1 = 5µ+ ψ + p1 + p2 + γ + b1I

1+αI −
b1S

(1+αI)2 ,

a2 = −(µ + b1I
1+αI )(

b1S
(1+αI)2 − µ − γ) +

b21SI
(1+αI)3 + (3µ + ψ + p1 + p2)(2µ + γ +

b1I
1+αI −

b1S
(1+αI)2 ) + (µ+ ψ)(2µ+ p1 + p2) + (µ+ p1)(µ+ p2),

a3 = (3µ+ψ+p1+p2){ b21SI
(1+αI)3 −(µ+ b1I

1+αI )(
b1S

(1+αI)2 −µ−γ)}+[(2µ+p1+p2)(µ+

ψ)+(µ+p1)(µ+p2)][2µ+γ+
b1I

1+αI −
b1S

(1+αI)2 ]+(µ+ψ)(µ+p1)(µ+p2)− b1Iψγ
1+αI ,

a4 = {(2µ+ p1 + p2)(µ+ψ)+ (µ+ p1)(µ+ p2)}{ b21SI
(1+αI)3 − (µ+ b1I

1+αI )(
b1S

(1+αI)2 −
µ−γ)}+(µ+ψ)(µ+p1)(µ+p2)[2µ+γ+

b1I
1+αI −

b1S
(1+αI)2 ]− (2µ+p1+p2)

b1Iψγ
1+αI ,

a5 = (µ + ψ)(µ + p1)(µ + p2)[
b21SI

(1+αI)3 − (µ + b1I
1+αI )(

b1S
(1+αI)2 − µ − γ)] − (µ +

p1)(µ+ p2)
b1Iψγ
1+αI .

Thus, the endemic equiliria is locally stable according to Routh- Hurwitz criteria
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if a′is > 0, i = 1, 2, 3, 4, 5 under the following conditions: I∗(1+αI∗) > S∗, R0 >
N(1+αI∗)2

S∗ ,
b21S

∗I∗

(1+αI∗)3 > (µ+ b1I
∗

1+αI∗ )(
b1S

∗

(1+αI∗)2 −µ−γ),
I∗

1+αI∗ <
(µ+ψ)(µ+p1)(µ+p2)

b1ψγ
,

(µ + ψ)(µ + p1)(µ + p2)[2µ + γ + b1I
∗

1+αI∗ − b1S
∗

(1+αI∗)2 ] > (2µ + p1 + p2)
b1I

∗ψγ
1+αI∗

and (µ + ψ)[
b21S

∗I∗

(1+αI∗)3 − (µ + b1I
∗

1+αI∗ )(
b1S

∗

(1+αI∗)2 − µ − γ)] > b1I
∗ψγ

1+αI∗ along with

a1a2a3 > a23+a
2
1a4 and (a1a4−a5)(a1a2a3−a23−a21a4) > a5(a1a2−a3)2+a25a1.

4 Global stability

To establish global stability we shall use the graph-theoretic method as in [37,
38, 39]. We shall construct the lyapunov function through a directed graph with
the help of the terminologies from [37]. To construct the lyapunov function we
shall use a directed graph . A directed graph has a set of ordered pair say
(i, j) and vertices where (i, j) is known as arc to terminal vertex j from initial
vertex i. For the terminal vertex j, d−(j) is the in-degree of j which denotes the
number of arcs in the digraph. And for initial vertex is i, d+(i) is the out-degree
of vertex i which denotes the number of arcs in the digraph. Let us consider
a weighted directed graph say χ(J) over a q × q weighted matrix J where the
weights(aij) of each arc if they exist are aij > 0, and if otherwise then aij = 0.
we consider ci as the co-factor of lij of the Laplacian of χ(J) which is given by:

lij =

{
−aij i ̸= j∑
k ̸=i aij i = j.

If there is a strongly connected path i.e directed to and fro path for the arcs in
χ(J) then ci > 0∀i = 1, 2..., q. We shall also use Theorem 3.3 and Theorem 3.4
from [37, 39], which will help us in the construction of lyapunov function. The
theorems states:

• Theorem3.3 of [37]: if aij > 0 and d−(i) = 1, for some i, j, then

ciaij =

q∑
k=1

cjajk.

• Theorem 3.4 of [37]: if aij > 0 and d+(j) = 1, for some i, j, then

ciaij =

q∑
k=1

ckaki.

We shall also use Theorem 3.5 of [37] as below:

Theorem 4.1. Let us consider an open set L ⊂ Rm and a function f : L→ Rm

for a system
ż = f(z) (2)

and assuming:
a) ∃ Mi : L→ R , Hij : L→ R and aij ≥ 0 such that

10
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Figure 3: Directed graph for α = 1 for the associated weights

M ′
i =M ′

i |2 ≤
∑q
j=1 aijHij(z), with z ∈ L, i = 1, . . . , q.

b) For J = [aij ], of (H,J) each directed cycle Bc satisfies:∑
(i,j)∈ϵ(Bc)

Hij(z) ≤ 0 , z ∈ L

where ϵ(Bc) is set of arcs in Bc.
Then for ci ≥ 0, i = 1, . . . , q the function is:

M(z) =

q∑
i=1

ciMi(z)

satisfies M ′|2 ≤ 0, that is, M(z) is a Lyapunov function for 2.

4.1 Lyapunov Function Construction

Construction: M1 = (S−S∗)2

2 , M2 = I − I∗ − I∗ ln I
I∗ , M3 =

(V1−V ∗
1 )2

2 , M4 =
(V2−V ∗

2 )2

2 and M5 = (R−R∗)2

2 . Now by differentiation;

M ′
1 = (S − S∗)S′ ≤ ((1 − p)µN + µS∗)(S + V2) +

b1S
∗IS

(1+αI) + ψRS = a14H12 +

a12H12 + a15H15 where a14 = (1− p)µN + µS∗, a12 = b1S
∗, a15 = ψ.

M ′
2 = ( I−I

∗

I )I ′ ≤ b1IS
(1+αI) + (µ + γ)I∗(I + V2 + 1) = a21H21 + a24H24 where

a21 = b1, a24 = (µ+ γ)I∗.
M ′

3 = (V1 − V ∗
1 )V

′
1 ≤ (pµN + µV ∗

1 + p1V
∗
1 )(V1 + S) = a31G31 where a31 =

(pµN + µV ∗
1 + p1V

∗
1 ).

M ′
4 = (V2 − V ∗

2 )V
′
2 ≤ p1V1V2 + (µ + p2)(V2 + S) = a43G43 + a41G41 where

a43 = p1, a41 = (µ+ p2).
M ′

5 = (R−R∗)R′ ≤ γIR+p2V2R+(µ+ψ)(R+ I) = a25G25+a45G45+a52G52

where a25 = γ, a45 = p2, a52 = (µ+ψ). We get an associated weighted directed
graph as shown in Fig 3. Then by Theorem3.5[37] ∃c′is, 1 ≤ i ≤ 5 such that
M =

∑q
i=1 ciMi is a lyapunov function. Using Theorem 3.3 and 3.4 we get the

relation between ci.
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For a31 > 0 and d−(3) = 1, we get c3a31 = c4a43 and for a52 > 0 and d−(5) =
1 we get c5a52 = c1a15 + c2a25 + c4a45. Hence, c1 = c4 = c2 = 1, c3 =
a43
a31

and c5 = a15+a25+a45
a52

. Thus, the lyapunov function is M = M1 +M2 +
p1

(pµN+µV ∗
1 +p1V ∗

1 )M3 +M4 +
p2+γ+ψ
(µ+ψ) M5. And for M ′:

M ′ = (S − S∗)S′ + ( I−I
∗

I )I ′ + p1
(pµN+µV ∗

1 +p1V ∗
1 ) (V1 − V ∗

1 )V
′
1 + (V2 − V ∗

2 )V
′
2 +

p2+γ+ψ
(µ+ψ) (R−R∗)R′.

If we consider the set U = {x ∈ R5
+ :M ′ = 0} then we see that S = S∗, V1 = V ∗

1 ,
V2 = V ∗

2 , I = I∗ and R = R∗. Hence, we get the unique equilibrium point
(S∗, I∗, V ∗

1 , V
∗
2 , R

∗). Therefore we say that the equilibrium point is globally
stable using LaSalle’s Invariance principle .

5 Numerical Simulation

In this section, we will discuss a numerical example in support of the analytic
results of our system. We would try to encapsulate the sensitivity analysis of
endemic equilibrium, global sensitivity analysis of basic reproduction number
along with validation of our analytic solution for media effect. So, on computing

Parameters Values/Units Source
µ 0.0035342 Assumed
p 0.004545 https://www.mygov.in/covid-19
p1 0.0001 https://www.mygov.in/covid-19
p2 0.00909 https://www.mygov.in/covid-19
b1 0.62 Assumed
γ 0.0476 Assumed
ψ 0.0011 https://www.mygov.in/covid-19
α 0.5 Assumed
N 140 Assumed

Table 2: Parameters and Values for SIV1V2R model

the values using the parameters (mentioned in Table 2 where some values taken
from the mygov.in site on 15 june,2021.) in the system of equations and we’ll get
unique positive equilibrium at (SIV1V2R) resting at (0.3348, 6.0267, 16.8756,
1.5341 ,25.3862) as seen in Fig 4, giving a glimpse about the behaviour or the
condition of epidemic in future. Now, if we focus on the effect of vaccination on
other classes like Susceptible and Infected, then we get to know by graph that:

• From Fig 5a, graph to analyse the relation between susceptible and Vac-
cinated class(First dose). Here we can see that the susceptible individu-
als are constant with increase in the vaccination process but on further
increasing the vaccination, the susceptible individuals are exponentially
increasing. As more and more people get vaccinated then through word
of mouth and more confidence build on the idea of vaccination, more sus-
ceptible people will be willing to get vaccinated.
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Figure 4: SIV1V2R Dynamic Graph

• Now by analysing the effect of complete(two dose) vaccination over in-
fection rate (from Fig 5b), we get to know that the infectants goes on
declining as individuals are getting vaccinated. This implies that two
dose vaccination regime will help suppress transmission of infection and
suppress the outbreak.

5.1 Sensitivity Indices of endemic equilibrium point

We shall now discuss the sensitivity analysis of equilibrium point with respect
to the estimated parameters of our system. We aim to investigate the degree
to which a parameter may affect the concerned variable through an affirmative
relationship or a negative relationship through this process of parameter sen-
sitivity analysis. We get the proportion that a relative change in a parameter
brings to the relative change in a variable through the sensitivity index obtained.
Definition[40, 41]: For the variable v that depends differentiably on a parameter
h, we define the normalised forward sensitivity index Ω of a variable as:

Ωvh =
∂v

∂h
× h

v
. (3)

Thus, using the above method we get the sensitivity indices for each variable
with respect to the parameters for endemic equilibrium as given in Table 3 and
shown in Fig 6. For interpretation, if the index is positive it means that an
increase in parameter will lead to the increase in the variable with the index
value/magnitude. And a negative index implies that a increase in the parameter
will lead to decrease in variable by the index value.
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(a) Relation between Susceptible and
Vaccinated classes

(b) Relation between Vaccinated and
Infected classes

Figure 5: Relations with respect to Vaccinated class

- S∗ I∗ V ∗
1 V ∗

2 R∗

p −0.039 −.0046 1.1240 1.0837 −0.0096
α −0.8494 0.0036 0 0 0.0042
p1 1.0794 ∗ 10−4 1.2664 ∗ 10−4 −0.2222 0.7498 6.6345 ∗ 10−4

p2 3.9757 ∗ 10−5 4.7074 ∗ 10−5 0 −0.7214 2.4647 ∗ 10−4

γ 0.1506 −0.9124 0 0 0.1019
µ 0.7197 0.7636 −0.7854 −1.0332 0.1196
ψ 0.1591 0.1867 0 0 −0.0219
N 0.8817 1.0461 1.1336 1.1475 1.2177
b1 −0.9964 0.0042 0 0 0.0049

Table 3: Sensitivity indices, Ωvihj
= ∂vi

∂hj
∗ hj

vi
, of the state variables at the

endemic equilibrium, vi, to the parameters, hj

5.2 Uncertainty analysis of R0

For our model we shall also determine uncertainty analysis for R0 by LHS
method to get more validation for the relation between R0 and its parameters.
PRCC(partial rank correlation coefficient)[42] is one technique which will help
us quantify the uncertainty for any model. We consider the four parameters
from R0 and have chosen normal distribution for them as in Fig 7. We find the
PRCC values using Matlab with the following pdfs and shown in:
b1 ∼ Normal(0.62, 0.01),
N ∼ Normal(140, 0.2),
γ ∼ Normal(0.0476, 0.01),
µ ∼ Normal(0.0035342, 0.01).

We get the PRCC values for our input parameters which can be seen in Fig8.
We get the following indexes for the parameters: b1 = 0.21, N = 0.26, µ = −0.96
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Figure 6: Bar graph for Sensitivity Index of S∗, I∗, V ∗
1 , V

∗
2 , R

∗ with respect to
the parameters

Figure 7: Distribution of parameters for R0

and γ = −0.96. The graphs shows that R0 is positively correlated to b1 and N .
The effect of the parameter µ and γ will bring about an opposite change in the
transmission of infection as it is negatively correlated. Since the value µ and
γ parameters are close to 1, it indicates a strong correlation to change in R0.
Thus, these two parameters are strongly negatively correlated to R0.
We shall now check the contour plot for R0 with respect to some combination of
important parameters as in Fig 9. In Fig 9a we can see that the b1 has a direct
response to R0, as the value of b1 increases the gradation of color approaches to
the highest color which is yellow. In a similar manner in Fig 9b we see that N
too has direct response as we can see the color gradation approach yellow as N
increases. And µ has a high indirect response to R0, as the value of µ increases
the gradation of color approaches to the lowest color which is dark blue and R0

decreases.
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Figure 8: PRCC: input variables

(a) (b)

Figure 9: Contour plots of ρ0.

5.3 Media Effect (α) on Susceptible and Infected class

Media Effect helps in spreading awareness among people to stay safe from epi-
demic and has an ideal impact on the epidemic dynamics which can be seen
through graph line when α is either at 0.5 or at 0 in the following:

• In Fig 10a, both values of α effect on susceptible population are shown. As
the value of α increases, S also increases as now they will be less vulnerable
to catching infection and avoiding decrease in S population. Thus, media
will have a positive impact on S individuals as they get awareness of the
implications of catching infections, advantages of vaccinations or protocols
to follow to avoid risk of getting infected.

• We see in Fig 10b, that media causes a decreasing effect in infected class.
Its shows that media effect plays an effective role in decreasing infection
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and spreading awareness among population about the epidemic outbreak.

(a) Media effect on Susceptible class (b) Media effect on Infected class

Figure 10: Media Effect

6 Conclusion

In this paper our aim is to completely analyze the model and be able to become
answerable to all those question we aimed to address at the start of our study.
As novelty we have studied a two dose vaccination regime and the role of the
media for a Covid-19 system and dynamically analysed our system thoroughly
along with real data numerical validation. We have looked up on the analysis of
model and studied their steady states like Disease Free Equilibrium(DFE) and
Endemic Equilibrium(EE). We also found their local stability by finding their
eigen values and using Routh-Hurwitz Stability Criteria. In context to the en-
demic equilibria, global stability analysis of the system has been performed using
the graph-theoretic method. For numerical analysis we have taken some real
data from Government site of India as an example of Covid-19 to make graph
on them thus to analyse the situation created. The incorporation of two dose
vaccination regime in the system brings about a desirable outcome for reduc-
ing infection. Later we used sensitivity analysis technique to identify sensitive
model parameters effecting the R0 and endemic equilibrium point. It was able
to provide us with the degree of positive or negative correlation with which each
variable is bound to the parameters present in the model. We have performed
Latin hypercube sampling method for our model to determine uncertainty anal-
ysis for R0 to understand the role certain parameters play in the transmission
of infection. We also showed the effective role media plays in spreading aware-
ness among population and help reduce infection. Also it is understood that α
(the effect of media) will bring down the infections and increase the susceptible
population by offering subsequent protection by awareness.
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Therefore, on analysing we have seen that without media effect there is no such
great awareness among people because media is one of the important ways that
makes a country united or be aware of the various protocols and regimes related
to an outbreak. Also, a two dose vaccination regime may be the need of the
hour to vanquish such an infectious diseases. As the cases of breakthrough infec-
tions and co-infections of already existing ailments increase, so the application
of a two dose vaccine regime along with media influence can help provide better
immunity and suppress infections as seen in our results. Thus, a two dose vac-
cination regime and the role of the media is of paramount importance in policy
formation and execution for this deadly epidemic.
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Abstract

Motivated from the fixed point hypothesis, we demonstrate the pres-
ence and uniqueness for coupled coincidence type point including a con-
tractive condition for a map in partially metric utilizing mixed g-monotone.
A model is likewise outfitted to exhibit the legitimacy of the speculations
of our outcomes.
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1

1 Introduction

A different idea of generalized metric space perceived as partial metric space
offered by Matthews [6]. Many authors had given imperative results on such
type of spaces [8, 9, 10].

Bhaskar and Lakshmikantam [2] established coupled fixed point and demon-
strated certain coupled fixed point results for maps which gratify the property
of mixed monotone. Also, present applications for periodic boundary value
problem. Authors have extended numerous outcomes on coupled fixed point
hypotheses on metric spaces, e.g., in [1, 2, 3, 4, 5, 7, 11].

We foremost verify the presence of coupled coincidence points. Then, we
demonstrate uniqueness of coupled coincidence point results for a map having
the property of mixed g-monotone in partial metric spaces. At the end we
support the result by giving an example.
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The view of partial metric spaces given by Matthews [6].
Definition 2.1. [6] Presuppose Z be a null set. A partial metric on Z defines
as a function p : Z × Z → Rn for every s, t, z ∈ Z:

(1) s = t ⇐⇒ p(s, s) = p(s, t) = p(t, t)

(2) p(s, s) ≤ p(s, t),

(3) p(s, t) = p(t, s)

(4) p(s, t) ≤ p(s, t) + p(z, t)− p(z, z)

A pair (Z, p) known as partial metric space, and p is partial metric on Z where,
Z is a null set.
If p is a partial metric on Z, the function pr : Z × Z → R+ defined as

pr(s, t) = 2 p(s, t)− p(s, s)− p(t, t)

is a metric on Z.
The prevailing definitions given by [2].
Definition 2.2. [2] A point (s, v) ∈ Z × Z for a map T : Z × Z → Z possesses
T (s, v) = s, T (v, s) = h then it is known as coupled fixed point.
Definition 2.3. [4] Assume (S,≤) is partially ordered set, let two mappings
F : S × S → S and g : S → S. Then F possesses property of the mixed
g-monotone if F (s, w) is g-non-decreasing in its starting element and is g-non-
increasing in its next element, for s, w ∈ S

s1, s2 ∈ S, gs1 ≤ gs2 =⇒ F (s1, w) ≤ F (s2, w)

w1, w2 ∈ S, gw1 ≤ gw2 =⇒ F (s, w1) ≥ F (s, w2).

2 Main Theorem

Theorem 2.1. Presuppose (Z,≤, p) be a complete partially ordered set. Pre-
suppose mappings T : Z × Z → Z and g : Z → Z possesses property of
mixed g-monotone. Presuppose T (Z × Z) ⊆ g(Z) and for any s0, v0 ∈ Z with
gs0 ≤ T (s0, v0) and gv0 ≥ T (v0, s0)

p(T (s, v), T (u, z)) ≤ p(gs, gu)− ψ(p(gv, gz))

+ L min{p(gs, T (s, v)), p(gu, T (u, z)),
p(gu, T (s, v)), p(gs, T (u, z))}.

(2.1)

for every s, u, v, z ∈ Z with gs ≥ gu, gv ≤ gz, and L ≥ 0. Here ψ : [0,∞)→[0,∞)
is a map which is non-decreasing, continuous and non-negative in (0,∞), ψ(0)
= 0 and limt→∞ ψ(t) = ∞. Presuppose either Z has the subsequent properties
or T is continuous.

1. If a decreasing sequence {vm} → Z, therefore gvm ≥ v for every m.

2. If an increasing sequence {sm} → Z, therefore gsm ≤ s for every m.

2
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Then T and g possesses coupled coincidence point.

Proof. Presuppose s0, v0 ∈ Z such that gs0 ≤ T (s0, v0) and gv0 ≥ T (v0, s0).
Since T (Z × Z) ⊆ g(Z), select s1, v1 ∈ Z thus gs1 = T (s0, v0) and gv1 =
T (v0, z0).

Again, take s2, v2 ∈ Z such that gs2 = T (s1, v1) and gv2 = T (v1, s1). As
T possesses the property of mixed g- monotone, we have gs0 ≤ gs1 ≤ gs2 and
gv2 ≤ gv1 ≤ gv0. Persistent the same procedure, we can create {zm} and {vm}
in Z such that

gsm = T (sm−1, vm−1) ≤ gsm+1 = T (sm, vm)

and

gvm+1 = T (vm, sm) ≤ gvm = T (vm−1, sm−1).

If, for some integer m, we have (gsm+1, gvm+1) = (gsm, gvm), then T (sm, vm) =
gsm and T (vm, sm) = gvm,thus T and g has a coincidence point (sm, vm).
We presume that (gsm+1, gvm+1) ̸= (gsm, gvm) for allm ∈ N, that is, we assume
that either gsm+1 ̸= gsm or gvm+1 ̸= gvm. we have,

p(gsm+1, gsm) = p(T (sm, vm), T (sm−1, vm−1))

≤ p(gsm, gsm−1)− ψ(p(gvm, gvm−1))

+ L min{p(gsm, T (sm, vm)), p(gsm−1, T (sm−1, vm−1)),

p(gsm, T (gsm−1, vm−1)), p(gsm−1, T (sm, vm))}
= p(gsm, gsm−1)− ψ(p(gvm, gvm−1))

(2.2)

similarly,

p(gvm+1, gvm) ≤ p(gvm, gvm−1)− ψ(p(gsm, gsm−1)) (2.3)

Let δm = p(gsm+1, gsm) + p(gvm+1, gvm).
Add (2) and (3), we have

δm ≤ δm−1 − ψ(δm−1) (2.4)

If ∃m1 ∈ N∗ s.t. p(gsm1 , gsm1−1) = 0, p(gvm1 , gvm1−1) = 0, then gsm1−1 =
gsm1 = T (gsm1−1, gvm1−1); gvm1−1 = gvm1 = T (gvm1 , gsm1−1) and T has cou-
pled coincidence point and the evidence is done. In other case p(gsm+1, gsm) ̸=
0; p(gvm+1, gvm) ̸= 0 for every m ∈ N. At that point utilizing presumption on
ψ , we get

δm ≤ δm−1 − ψ(δm−1) ≤ δm−1 (2.5)

δm is a positive sequence and possesses a limit δ∗. Take limit m→ ∞, we have

δ∗ ≤ δ∗ − ψ(δ∗)

3
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Thus ψ(δ∗) = 0, utilizing supposition on ψ , we accomplished δ∗ = 0, ie.
limm→∞(δm) = 0

lim
m→∞

p(sm+1, sm) + p(vm+1, vm) = 0

=⇒ lim
m→∞

p(sm+1, sm) = lim
m→∞

p(vm+1, vm) = 0 (2.6)

We will show that {gsm}, {gvm} are Cauchy groupings in Z. Assume that in
any event one {gsm} or {gvm} be not a Cauchy sequence. At that point there
exists ϵ > 0 and two subsequence mk > nk ≥ k such that

rk = p(gsmk
, gsnk

) + p(gvmk
, gvnk

) ≥ ϵ, (2.7)

∀ k = 1, 2, 3, . . .. Further, relating to nk, select mk such that it is smallest
integer mk > nk ≥ k gratify (2.7), we have

p(gsmk
, gsnk

) + p(gvmk
, gvnk

) < ϵ. (2.8)

Using triangle inequality and (2.7) and (2.8), we get

ϵ ≤ rk = p(gsmk
, gsnk

) + p(gvmk
, gvnk

)

≤ p(gsmk
, gsn−1k) + p(gsn−1k , gsnk

) + p(gvmk
, gvn−1k), p(gvn−1k , gvnk

)

< ϵ+ δmk−1

Let k → ∞ and taking equation (2.6), we have limn,m→∞ rk = ϵ > 0.
Now, we get

p(gsmk+1
, gsnk+1

) = p(T (gsmk
, gvmk

), T (gsnk
, gvnk

))

≤ p(gsmk
, gsnk

)− ψ(p(gvmk
, gvnk

) + L min{p(gsmk
, T (gsmk

, gvmk
)), p(gsnk

, T (gsnk
, gvnk

)),

p(gsnk
, T (gsnk

, gvnk
)), p(gsmk

, T (gsmk
, gvmk

))}
≤ p(gsmk

, gsnk
)− ψ(p(gvmk

, gvnk
).

(2.9)

Similarly,

p(gvmk+1
, gvnk+1

) ≤ p(gvmk
, gvnk

)− ψ(p(gsmk
, gsnk

). (2.10)

Using (2.9) and (2.10), we get

rk+1 ≤ rk − ψ(rk) (2.11)

∀ k ∈ 1, 2, 3, . . . take k → ∞ in equation (11).

ϵ = lim
k→∞

rk+1 ≤ lim
k→∞

[rk − ψ(rk)] < ϵ. (2.12)

a contraction. Thus {gsm} and {gvm} are Cauchy sequence.
Using lemma, {gsm} and {gvm} are Cauchy sequence in (Z, pt). As, (Z, p) is
complete, thus (Z, pt) is complete, so ∃ s, v ∈ Z
limm→∞ pt(gsm, s) = limm→∞ pt(vm, v) = 0
By lemma, we get

4
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p(s, s) = limm→∞ p(gsm, s) = limm→∞ p(gsm, gsm)

p(v, v) = limm→∞ p(gvm, v) = limm→∞ p(gvm, gvm)

By condition and equation we get limm→∞ p(gsm, gsm) = 0.
Thus follows as p(u, u) = limm→∞ p(gsm, u) = limm→∞ p(gsm, gsm) = 0, sim-
ilarly p(v, v) = limm→∞ p(gvm, v) = limm→∞ p(gvm, gvm) = 0
We now prove thatT (s, v) = s, T (v, s) = v.

Case1: As Z is a complete, ∃ s, v ∈ Z
limm→∞ sm = s, limm→∞ v = v we prove that (s, v) is coupled coincidence point
of T and g.

s = lim
m→∞

gsm+1 = lim
n→∞

T (sm, vm) = T ( lim
m→∞

sm, lim
m→∞

vm)

v = lim
m→∞

gvm+1 = lim
m→∞

T (vm, sm) = T ( lim
m→∞

vm, lim
m→∞

sm)
(2.13)

As g is continuous, we attain

lim
m→∞

g(gsm) = gs, lim
m→∞

g(gvm) = gv. (2.14)

Commutativity of T and g gives

g(gsm+1) = g(T (sm, vm)) = T (gsm, gvm)

g(gvm+1) = g(T (vm, sm)) = T (gvm, gsm).
(2.15)

By continuity of T , {g(gsm+1)} is converges to T (s, v) and {g(gvm+1)} converges
to T (v, z). From uniqueness of the limit and (2.14), we accomplish T (s, v) = gs
and T (v, s) = gv, consequently, T and g possesses a coupled incident point.
Case2: Presuppose that the condition (a) and (b) of the result holds.
The sequence {gsm} → s, {gvm} → v

p(T (s, v), gs) ≤ p(T (s, v), gsm+1) + p(gsm+1, gs)

= p(T (s, v), T (sm, vm)) + p(gsm+1, gs)

≤ p(gs, gsm)− ψ(p(gv, gvm))

+ L min{p(gs, T (s, v)), p(gsm, T (sm, vm)), p(gsm, T (s, v)), p(gs, T (sm, vm))}+ p(gsm+1, gs)

Letting m→ ∞, we have p(T (s, v), s) ≤ 0
Thus T (s, v) = s, correspondingly, in similar way we can prove that T (v, s) =
v.

Theorem 2.2. Presuppose the assumptions of Theorem 3.1 hold. Presuppose
there exists z ∈ Z which is comparable to s and v for every s, v ∈ Z. Thus T
and g possesses only one coupled coincidence point.

Proof. Succeeding the proof of Theorem 3.1, the arrangement of coupled coin-
cidence points of T and g is non-empty. We will prove that coupled coincidence

5
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points are (s, v) and (ś, v́), then

g(s) = T (s, v), g(v) = T (v, s)

and g(ś) = T (ś, v́), g(v́) = T (v́, ś),

then

gs = gś and gv = gv́. (2.16)

Select (d, z) ∈ Z × Z comparable with both.
Let d0 = d, z0 = z and choose d1, z1 ∈ Z so that gd1 = T (d0, z0) and

gz1 = T (z0, d0).
Then, similarly to the evidence of Theorem 3.1, we can inductively define se-
quences {gdm} and {gzm} as follows

gdm+1 = T (dm, zm) and gzm+1 = T (zm, dm).

Since (gs, gv) = (T (s, v), T (v, s)) and (T (d, z), T (z, d)) = (gd1, gz1) are com-
parable, then gs ≤ gd1 and gv ≥ gz1. It is easy to prove using the mathematical
induction,

gs ≤ gdm gv ≥ gzm ∀ m ∈ N.

Now, from the contractive condition (1)

p(gs, gsm+1) = p(T (s, v), T (sm, vm))

≤ p(gs, gsm)− ψ(p(gv, gvm))

+ L min{p(gs, T (s, v)), p(gsm, T (sm, vm)), p(gsm, T (s, v)), p(gs, T (sm, vm))}
≤ p(gs, gsm)− ψ(p(gv, gvm))

(2.17)

Similarly

p(gv, gvm+1) = p(gv, gvm)− ψ(p(gs, gsm)) (2.18)

Adding (2.17) and (2.18), we get

p(gs, gsm+1) + p(gv, gvm+1) ≤ p(gs, gsm) + p(gv, gvm)− [ψ(p(gv, gvm)) + ψ(p(gs, gsm))]
(2.19)

This implies

p(gs, gsm+1) + p(gv, gvm+1) ≤ p(gs, gsm) + p(gv, gvm) (2.20)

Thus, the sequence is non-increasing. hence, there exist α ≥ 0.

lim
m→∞

p(gs, gsm) + p(gv, gvm) = α (2.21)

6
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We shall prove that α = 0. Presuppose in contrary, α > 0. Take m → ∞ in
equation (2.21), we have

α ≤ α− ψ(α) < α (2.22)

a contradiction. Therefore, α = 0, that is

lim
m→∞

p(gs, gsm) + p(gv, gvm) = 0.

It implies

lim
m→∞

p(gs, gsm) = lim
m→∞

p(gv, gvm) = 0.

Similarly, we can prove

lim
m→∞

p(gś, gsm) = lim
m→∞

p(gv́, gvm) = 0.

From last equalities, we have gs = gś and gv = gv́.

Example 2.3. Presume Z = [0, 1] with usual partial metric p defined as p :
Z × Z → [0,1] with p(s, v) = max(s, v). The (Z, p) is complete partial metric
space for any s, v ∈ Z.

p(s, v) = |s− v|

Thus (Z, pt) is complete Euclidean metric space.
Presume the mapping T : Z × Z → Z given as T (s, v) = 2s−v

4 ; s ≥ v

Take ψ : [0,∞) → [0,∞) such that ψ(t) = t
4

As, T has the property of mixed g-monotone property and is continuous.
Now, we discuss the following possibilities for (s, v) and (u, z) with gs ≤ gu, gv ≥
gz

Case 1- If (s, v) = (u, z) = (0, 0)
Then clearly p(T (s, v), T (u, z)) = 0
Thus (1) holds.

Case 2- If (s, v) = (u, z) = (1, 0)
Then LHS of (1)
= p(T (s, v), T (u, z)) = p(T (1, 0), T (1, 0)) = p( 12 ,

1
2 ) =

1
2 ,

which is less than RHS of (1)
Thus (1) holds.

Case 3- If (s, v) = (u, z) = (1, 1)
Thus (1) holds.

Case 4- If (s, v) = (1, 0); (u, z) = (0, 0)
Thus (1) holds.

Case5- If (s, v) = (1, 0); (u, z) = (1, 1)
Thus (1) holds.

Therefore, all the properties of Theorem 3.1 are gratified.
Also, g and T possesses unique coupled coincidence point as (0, 0).

7
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Conclusions

As introduced toward the start of this work, Bhaskar and Laksmikantham,
stretch out this hypothesis to partially ordered metric spaces and present the
idea of coupled fixed point for mixed-monotone map.

Acquiring results as concerns the presence and the uniqueness of certain
coupled coincidence point hypotheses for a map possesses the property of mixed
g-monotone in partial metric spaces.
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Abstract
This numerical study looked at the effects of thermophoresis diffusion, Brown-
ian motion parameter influences, and suction/injection influence in a hydromag-
netic (MHD) Casson nanofluid in a convectively heated nonlinear extending surface
(in 2D). Using similarity transformations, the leading partial differential equations
(PDEs) are renewed into a set of ordinary differential equations (ODEs) with suit-
able boundary conditions, and then numerically resolved using a 4thorder Runge-
Kutta approach based on the shooting technique and the MATLAB application.
Graphs are used to investigate the effects of dimensionless parameters such as lo-
cal Grashof temperature and concentration parameter, permeability, Joule impact,
thermo radiative impression, Dufour and chemical reactive impression on nanopar-
ticle volume fraction profiles, temperature, and movement. Tables and graphs are
used to examine other characteristics of importance, such as the skin friction coef-
ficient, heat, and mass transfer in a variety of situations, as well as the relationship
between these parameters.

Key words: Casson Nanofluid; MHD; Heat Generation/Absorption, Ther-
mophoresis Diffusion, RK-4th order.

1 Introduction

There are several applications, including the learning of non-Newtonian fluids across
an extended sheet, which was completed with extreme kindness. Although the elas-
ticity of non-Newtonian fluid behaviour may be assessed, their fundamental equa-
tions are occasionally used to classify the rheological features. The fundamental
relations in non-Newtonian fluids are extra difficult because they provide the rheo-
logical non-dimensional characteristics. Non-Newtonian fluids include a variation of
fluids used in the oil industry, as well as cooling courses for micro-ships, unclosed-
flow switching, and multiplex systems.

Because of its applications in paramedical sciences, geo and astrophysics, oil
reservoirs, and geothermal engineering, free convective heat transport is a mean-
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ingful part of fluid dynamics. The term ”thermal radiation” refers to a method of
converting internal energy into electromagnetic waves. Thermal radiation and non-
linear thermal radiation are employed in a variety of applications, including space
vehicles, paper and glass manufacture, gas turbines, space technologies, and hyper-
sonic combat. The flow model is based on a mix of Tiwari and Das models, as well
as the Buongiorno’s model.The influence of MHD Casson fluid flow through a con-
vective surface with crossdiffusion, chemical reaction, and nonlinear radiative heat
is accounted for using convective and boundary conditions, according to Ramudu
et al. [1].Butt et al. [2] assessed the entropy generative impression of a flow tra-
versed by a permeable stretched surface of hydromagnetic Casson nanofluid. Afify
[3] addresses Casson nano fluid’s work in the presence of viscid dissipative impres-
sion on a stretched sheet with slip limits. AlHossainy et al [4] address a SQLM
(spectral quasi linearization method) mathematical work for the impact of stress
on hydromagneto nanofluid flow with permeability influence in three dimensions.
The timedependent nonlinearly convective stream of thin film nano liquid across
an inclined stretchable sheet with a magnetic effect was studied by Saeed et al.
[5]. The use of this current fractional operator to investigate Newtonian heating
impacts for the generalized Casson fluid flow is the focus of Tassaddiq et al. [6]
research. In this study, the MHD and porous impacts of such fluids are also taken
into account. MHD Casson nanofluid (Ag and Cu water) boundary layer flow and
heat transference across a stretched surface through a porous mode were studied
by Siddiqui and Shankar [7]. Faraz [8] investigated a mathematical study on an
axisymmetric Casson nanofluid flow over a radially stretched sheet with hydromag-
netic impact. Hady et al. [9] inspected the radiative effect and heat transmission
of a viscid nanofluid across a nonlinear stretched sheet. In the company of porous
mode, Mahantha and Shaw [10] proposed a 3dimensional convective Casson fluid
flow with convective limits passing through a linear stretched sheet. Vendabai [11]
investigate a hydromagnetic boundary layer Casson nanofluid flow passing through
an upright exponentially stretched cylinder with transverse magneto impact and
heat generating or absorptive impression. Alotaibi et al. [12] investigated the influ-
ence of viscid dissipative impact over a convectively intensive nonlinear spreading
surface, as well as suction or injection and heat absorption or generation impacts,
on a hydromagnetic boundary layer flow of Casson nanofluid flow. Oyelakin et al.
[13] studied a flow of timedependent Casson nanofluid across a stretched surface
with thermal radiative imprint and slip limiting settings.

Many studies of Newtonian and nonNewtonian fluids have been directed in order
to examine the impacts of fluid movements, as well as various types of nanofluid
flows across various surfaces. In fresh years, a large number of inspections on the
boundary layer flow of Casson nanofluids in a variety of geometries have been carried
out. Ullah et al. [14] looked at the effect of thermo radiative, convective limiting
circumstances, and heat generation/absorption on a timedependent hydromagnetic
mixed connective slip Casson fluid flow, as well as chemically reactive influence, on
a nonlinearly stretched sheet in a porous mode. The local fractional linear trans-
port equations (LFLTE) in fractal porous media are studied by Singh et al. [15].
Dwivedi and Singh [16] produced a new finite difference collocation approach that
was designed using the Fibonacci polynomial and then used to one super and two
sub-diffusion problems with better reliability. Imtiaz et al. [17] examined how a con-
vective Casson nanofluid flow goes through a stretched cylinder and the restrictions
that come with it. Eid and Mahny [18] describe a computational study to determine
the heatgenerating influence of Sisko nanofluid across a nonlinear stretched sheet
with porous mode. Eid [19] investigated a twophase nanofluid flow with hydromag-
netic influence, as well as chemical reactive and heat generating effects, across an
exponentially stretched sheet. Chemical reaction effects on a convectively heated
nonlinear stretched surface of Carreau nanofluid were explored by Eid et al [20].
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Eid [21] investigated the chemical reactive effects of H2O-NPs (nanoparticles) in
unsteady and stagnation point flow on a stretched sheet in the soaking porous
mode. Mustafa and Khan [22] investigated a Casson model flow over a nonlinear
stretched sheet with magneto impacts. Wahiduzzaman et al [23] did a mathemati-
cal investigation of hydromagnetic Casson fluid flow in the presence of porous mode
passing through a nonisotherm stretched sheet. The Casson nanofluid flow between
stretched discs with radiative influence was deliberated by Khan et al [24]. The
viscid dissipative impression of hydromagnetic Casson nanofluid passing through
permeable stretched sheet was observed by Besthapu and Bandari [25]. Pramanik
[26] discusses the thermo radiative and Nusselt number impressions in the pres-
ence of a porous mode of nonNewtonian Casson flow passing over an exponentially
stretched surface.

The vast range of commercial and manufacturing experiments of flow behaviour
across stretched surfaces has attracted numerous writers, including artificial fibres,
metallic sheet manufacture, petroleum industries, metal spinning, polymer process-
ing, and so on. Reddy[27] examined the thermal radiative effect and chemically
reactive impact of a hydromagnetic Casson fluid flow over an exponentially per-
suaded permeable stretched surface. Vijayaragavan [28] used a permeable stretched
sheet to investigate the heat source or sink effect of timeindependent hydromagnetic
Casson fluid flow. Haq et al. [29] examined timedependeny free convection slip flow
of secondgrade fluid across an endless hot inclined plate. Lahmar et al. [30] ex-
amined the impacts of thermal conductivity and Nusselt number on the squeezing
of a timedependent nanofluid by a tending magneto. Nadeem et al. [31] consid-
ered a nonNewtonian shear thinning Casson fluid flow with permeability impact
passes across a stretchy linear sheet. Mass transference of hydromagnetic Casson
fluid with suction and chemical reactive impression was explored by Shehzad et
al [32]. Dahab et al. [33] investigated the influence of extending surface over a
nonlinearly heated extending surface using hydromagnetic Casson nanofluid flow.
Ibrahim et al. [34] conducted a mathematical investigation of a dissipative hydro-
magnetic mixed convective Casson nanofluid with chemical reactive effect across
a nonlinear permeable stretched sheet with heat source impression. Hayat et al.
[35] took into account mixed convective stagnation point Casson fluid flow as well
as convective constraints. The goal of Puneeth et al. [36] is to figure out what
function mixed convection, Brownian motion, and thermophoresis play in the dy-
namics of a Casson hybrid nanofluid in a bidirectional nonlinear stretching sheet.
The heat transfer and entropy of an unstable Casson nanofluid flow, where fluid
is positioned across a stretched flat surface flowing nonuniformly, were explored by
Jamshed et al. [37]. Over a nonlinear stretched sheet, Shah et al [38] discussed
chemically reactive hydromagnetic Casson nanofluid flow with radiation influence
and entropy generating impression. Soret or diffusion thermo or thermo difusion
effect is described as matter diffusion caused by a gradient of heat, whereas Dufour
efect is defined as heat diffusion caused by a gradient of concentration. For exces-
sively big temperature and concentration gradients, these consequences have played
a substantial influence. The majority of the time, these two impacts are regarded
as secondorder effects. Its uses include contaminant movement in groundwater,
chemical reactors, and geosciences. Several academics are drawn to the field of
heat flux mass transfer because of its wide range of applications in numerous fields.
Fiber optics manufacturing, plastic emulsion, glass cutting, nanoelectronics freez-
ing, catalytic reactors, wire drawing, and improved oil extraction are all examples
of Brownian motion effects and thermophoresis in the scientific and technical sphere.

The current study attentions on the Casson nanofluid flow over a nonlinear in-
clined stretching surface with Buoyancy and Dufour impacts, as a result of the
above mentioned literature review and the rising need for nonNewtonian nanofluid
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flows in industry and engineering. When compared to Newtonian based nanofluid
flow, Casson nanofluid is more useful for cooling and friction-reducing agents. The
goal of this research is to show a comprehensive mathematical investigation of the
impression of buoyancy force, permeability, joule heating impression, and chemical
reactive with heat generative or absorption, suction or blowing impact, and vis-
cid dissipative impression of 2-dimensional hydromagneto Casson fluid flow permits
through nonlinear outspreading plate along with CBC (convective boundary con-
ditions) ref [12]. PDEs (dimension form) of existing effort were turned into ODEs
with the support of several similarity transformations. The RK4th order process
cracked nondimensional ODEs with the help of the shooting procedure. MATLAB
software is used to create graphs and tables that highlight the rooted parameter
behaviour.

2 Problem Structure:

Deliberate hydromagnetic convective nanofluid flow in the section (y > 0) over an
exponentially extensible sheet as 2-dimensional incompressible (density is constant)
time-independent viscid along with the impact of the viscous dissipative and sev-
eral non-dimensional parameters. X-axis indicated for surface and y-axis erect to
surface. The extensible surface is projected to have a velocity outline of the power
law uw(x) = axn where a, n is non-zero constants. Magnetic field is covered with
B(x) = B0x

(n−1/2) and the electric field is zero, but the induced magnetic field is
unnoticed by the weak magnetic amount of Reynolds. Tw(x) = T∞ +Axn, where
A is non-zero secure rate, T∞ displays the free stream temperature. C∞ displays
the ambient nano-particles concentration. Flow chart of existing work is exposed
in [Figure 1].

Figure 1: Bodily Modal of recent effort.

The Casson fluid rheological state equation [references [21], [31]] is:

τij =

{
2(µB +

τy√
2π

)eij if π > πc

2(µB +
τy√
2π

)eij if π < πc .
(1)

Where deformation component rate product π = eijeij , where eij displays the
(i, j)th deformation component rate, π is the multiple of the sections of deformation
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component rate product, πc indicates to the non-Newtonian fluid critical rate of this
deformation component rate product, µB signifies Casson fluid plastic viscosity, τy
shows yield stress.

Consider the apparatuses of velocity function V = [u(x, y), v(x, y), 0], the tem-
perature function T = T (x, y) and concentration function C = C(x, y). The motion,
temperature and the concentration relations in a Casson nanofluid are inscribed as

∂u

∂x
+

∂v

∂y
= 0, (2)

u
∂u

∂x
+v

∂v

∂y
= ν(1+

1

β
)
∂2u

∂y2
− σB2(x)u

ρf
− ν

k′
u+g0βT (T −T∞)+g0βC(C−C∞), (3)

u
∂T

∂x
+v

∂T

∂y
= α

∂2T

∂y2
+

Q0

ρcp
(T−T∞)+τ [DB(

∂T

∂y

∂C

∂y
)+

DT

T∞
(
∂T

∂y
)2]+

µ

ρcp
(1+

1

β
)(
∂u

∂y
)2

+
σB2(x)u2

ρcp
− 1

ρcp

∂qr
∂y

+
DBKT

cscp

∂2C

∂y2
, (4)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

DT

T∞

∂2T

∂y2
− k1(C − C∞). (5)

where, u and v show the x-axis and y-axis velocity apparatuses respectively, ν

displays the kinematic viscosity, β = µB

√
2πC

τy
indicates the Casson fluid param-

eter, σ displays the conductivity electrical field, ρ indicates the fluid density, the
thermophoresis and Brownian diffusions coefficients are direct by DT , and DB re-
spectively, Q0 specifies the dimensional heat source or sink coefficient, α shows the

thermal diffusivity, T pointed for temperature,τ =
(ρC)p
(ρC)f

directs the ratio of the

effective heat capacity to efficient liquid heat capacity, and Cp indicates the specific
heat.

The existing work boundary conditions are specified by

u = uw = axn, v = vw, T = Tw = T∞ +Axn, DB
∂C

∂y
+

DT

T∞

∂T

∂y
= 0, at y = 0.

u → 0, T → T∞, C → C∞, at y → ∞. (6)

Where, a > 0 is for the stretching channel walls.
The Roseland approximation of the radiative heat flux is arranged by

qr =
−4σ∗

3k∗
∂T 4

∂y
, (7)

Here T 4 as a linear relation of temperature via Taylor’s sequence expansion about
T∞ and ignoring advanced terms, thus

T 4 ≈ 4T∞
3T − T∞

4. (8)

In view of the similarity transformation

u = axnf ′(η), v = −ax(n−1)/2

√
ν

a
(
n+ 1

2
f(η) +

n− 1

2
ηf ′(η)), (9)

η =

√
a

ν
x(n−1)/2y, θ(η) =

T − T∞

Tw − T∞
, ϕ(η) =

C − C∞

Cw − C∞
. (10)

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 30, NO.2, 2022, COPYRIGHT 2022 EUDOXUS PRESS, LLC

294 Sanju Jangid 290-311



With (7)-(10), equations (2)-(6)are reduced to the next arrangement.

(1 +
1

β
)f ′′′ − n(f ′)2 + (

n+ 1

2
)ff ′′ −Mnf ′ + k2f

′ +GT θ +GCϕ = 0, (11)

((1 +Nr)/Pr)θ′′ − nf ′θ + (
n+ 1

2
)fθ′ +Nbθ′ϕ′ +Nt(θ′)2 + (1 +

1

β
)Ec(f ′′)2

+Qθ +MnEc(f ′)2 +Duϕ′′ = 0, (12)

ϕ′′ + (
n+ 1

2
)Scfϕ′ +

Nt

Nb
θ′′ − ScKϕ = 0. (13)

With limit circumstances

f(0) = fw, f ′(0) = 1, θ(0) = 1, Nbϕ′(0) +Ntθ′(0) = 0, at η = 0.
(14a)

f ′(∞) → 0, θ(∞) → 0, ϕ(∞) → 0, at η → ∞.
(14b)

Where, Mn = σB2(x)
ρaxn−1 shows the magnetic parameter, k2 = ν

k′axn−1 indicates the

permeability parameter, GT = g0βT (Tw−T∞)
a2x2n−1 and GC = g0βC(Cw−C∞)

a2x2n−1 indicate the
local temperature and concentration Grashof number respectively, Pr = ν

α shows

the Prandtl number, Q = Q0

ρacpxn−1 indicates the heat generation or absorption,

Nr = 16σ∗T∞
3

3kk∗ directs the radiation parameter, Ec =
u2
w

cp(Tw−T∞) shows the Eck-

ert number, Nb = τDB(Cw−C∞)
ν directs the Brownian motion parameter, Nt =

τDT (Tw−T∞)
νT∞

indicates the thermophoresis diffusion influence, Du = DBKT (Cw−C∞)
cscpν(Tw−T∞)

specifies the Dufour number, Sc = ν
DB

directs the Schmidt number, K = k1

axn−1

shows the chemical reaction parameter, and fw = −2vw

(n+1)
√
νaxn−1

indicates the suc-

tion or blowing parameter.
Physical Quantities:
Skin Friction Coefficient(Cfx): The skin friction coefficient is known as fol-

lows:

Cfx =
τw
ρu2

w

, where τw = µB(1 +
1

β
)(
∂u

∂y
)y=0. (15)

Heat Transfer Coefficient: The non-dimensional Nusselt number (Nux) is given
by

Nux =
xqw

k(Tw − T∞)
, where qw = −k(

∂T

∂y
)y=0. (16)

Mass Transfer Coefficient: The rate of mass transfer is derived by a Sherwood
number (Shx) which is given by

Shx =
xmw

DB(Cw − C∞)
, where mw = −DB(

∂C

∂y
)y=0. (17)

After solving the equation (15), (16) and (17) with equation (9) and (10), we
gain

drag force

Rex
1/2Cfx = (1 +

1

β
)f ′′(0),

local Nusselt
Rex

1/2Nux = −θ′(0),
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local Sherwood
Rex

1/2Shx = −ϕ′(0). (18)

Where,τw indicates the wall shear stress, k signifies the thermo nano-fluid con-
ductivity, qw shows the surface heat flux, and mw directs the surface mass flux,
Rex = uwx

ν shows the local Reynolds number.
We explain the reduces equations (11)-(13) with limitations (14a) and (14b)

using Runge -Kutta fourth-order method along with shooting technique.

3 Results and Discussion:

The impacts of the numerous types of non-dimensional parameters values to have a
physical considerate of the work like, the magneto impact Mn, fw (suction or blow-
ing), β Casson parameter, heat source or sink impact Q, Dufour impact Du, Brow-
nian diffusivity Nb, Eckert parameter Ec, thermophoresis diffusivity Nt, radiative
impact Nr, Prandtl effect Pr, Schmidt impact Sc, chemically reactive influence K,
permeability influence k2, Grashof number impact (GT and GC), and power law
index n, over the momentum graphs f ′(η), temperature graphs θ(η), and concentra-
tion graphs ϕ(η) discussed through graphs [Figure 2 - Figure 23] and tables along

with the influence of drag force Rex
1/2Cfx, local Nusselt Rex

1/2Nux local Sher-

wood Rex
1/2Shx. Non-dimensional equations (11)-(13) with limitations (14a) and

(14b) solved by Runge- Kutta fourth-order method with shooting technique. After
we find the values of heat transfer and mass transfer and draw the graph by MAT-
LAB software. Consider the values of parameters n = 3 or 1, β = 0.1 or 1,Mn =
0.1, k2 = 0.1, P r = 0.1, Q = 0.1, Nr = 0.1, Sc = 0.1,K = 0.1, GT = 0.1, GC =
0.1, Ec = 0.1, Du = 0.1, Nb = 0.1, Nr = 0.1, fw = 0.1.

The influence of the Casson nanofluid parameterβ on the momentum profile with
power law index n = 3 and 1 is seen in [Figure 2] . The momentum graph drops as β
increases in both situations of n, owing to the upsurge in plastic dynamic viscosity,
which produces hindrance in the fluid flow. When n = 3, the momentum of the
Casson nanofluid is greater than that of the Casson nanofluid when n = 1. With
the track erect to the x-axis, [Figure 3] displays the lowering momentum impact of
increased magnetic number Mn owing to the solid Lorentz force, which generates
greater resistance in the fluid flow in both situations of Casson fluid β = 0.1 and
1. [Figure 4] depicts the failure velocity with suction or blowing parameter fw
due to nanofluid heat and thermolayer thickness for n = 3 and n = 1. When the
permeability parameter k2 rises to β = 0.1 and 1, the momentum decreases as seen
in [Figure 5]. The momentum upsurges due to a rise in buoyant force with growing
values of local concentration Grashof number GC and local temperature Grashof
number GT , in [Figure 6] and [Figure 7] for β = 0.1 and 1, respectively.
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Figure 2: Velocity display of Casson fluid parameter β.

Figure 3: Velocity display of Magnetic parameter Mn.

Figure 4: Velocity display of parameter fw.
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Figure 5: Velocity display of parameter k2.

Figure 6: Velocity display of parameter GC .

Figure 7: Velocity display of parameter GT .
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[Figure 8] illustrations the result of increasing the Dufour number on temper-
ature between β = 0.1 and 1. [Figure 9] depicts the increasing influence of tem-
perature on Eckert number Ec. The temperature rise as a result of the viscous
dissipative term, which generates heat as a result of frictional heating between the
fluid constituents. This additional heat resulted in a rise in temperature, which was
connected to an increase in boundary layer breadth. [Figure 10] shows how temper-
ature rises when the radiation parameter Nr between β = 0.1 and 1 increases. The
k∗ (absorption coefficient) lowers when there is an ascendant in Nr. An increase
in fw falloffs the nanofluid heat and thermolayer width owing to heated nanofluid
pulled close to sheet is seen in [Figure 11]. As a result, in both scenarios of β
= 0.1 and 1 with increase fw, the temperature decreases. The Prandtl number Pr
represents the ratio of momentum and thermal diffusivity. The temperature is low-
ered when Pr is increased (in [Figure 12]). Due to thermal layer thickness, [Figure
13] depicts the temperature increase with increasing heat production or absorption
parameter Q (heat create in fluid for Q > 0 and heat absolve in fluid for Q < 0).

Figure 8: Temperature display of parameter Du,

Figure 9: Temperature display of parameter Ec.
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Figure 10: Temperature display of parameter Nr.

Figure 11: Temperature display of parameter fw.

Figure 12: Temperature display of parameter Pr.
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Figure 13: Temperature display of parameter Q.

Figure 14: Concentration display of parameter Du.

Figure 15: Concentration display of parameter Ec.
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Figure 16: Concentration display of parameter fw.

Figure 17: Concentration display of parameter K.

Figure 18: Concentration display of parameter Nr.
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Figure 19: Concentration display of parameter Nb.

Figure 20: Concentration display of parameter Nt.

Figure 21: Concentration display of parameter Pr.
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Figure 22: Concentration display of parameter Sc.

Figure 23: Concentration display of parameter Q.
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[Figure 14] depicts an increment of concentration shape with growing Dufour
number Du. [Figure 15]-[Figure 19] show the decay volume fraction graph for both
β = 0.1 and 1 of Eckert parameter Ec, suction or blowing impact fw, chemically
reactive imapct K, and radiation parameter Nr. [Figure 20] describes the falling
impact of concentration profile of upsurge Brownian parameter Nb for both β =
0.1 and 1. Similarly, impact of decay volume fraction of increase thermo-diffusion
influence showing in [Figure 20]. [Figure 21] shows the effect of rise Prandtl number
Pr on growing concentration profile for both β = 0.1 and 1. Increasing Schmidt
number Sc and heat generation and absorption parameter Q impact with declines
volume fraction influence explains in [Figure 22] and [Figure 23] respectively.

Table I: Numerical result of drag force coefficient, Nusselt number Nu, and
Sherwood number of numerous parameters when β = 0.1 and 1 and n = 3.
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Mn k2 GT GC fw Pr Nr Nb Nt Ec Q Du Sc K f
′′
(0) θ′(0) ϕ′(0)

-0.6589 -0.6429 -0.4222
-0.7599 -0.6269 -0.4360

0 -0.8538 -0.6119 -0.4492
2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
4 -1.1769 -0.6389 -0.4182

-1.5325 -0.6179 -0.4352
-1.8312 -0.6009 -0.4492
-0.6159 -0.6459 -0.4192
-0.5609 -0.6499 -0.4162

1 -0.5309 -0.6549 -0.4122
0.1 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

3 -1.0129 -0.6469 -0.4122
-0.7849 -0.6579 -0.4032
-0.5249 -0.6719 -0.3942
-0.6169 -0.6459 -0.4192
-0.5639 -0.6499 -0.4162

1 -0.5119 -0.6539 -0.4132
0.1 0.1 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

3 -0.9879 -0.6489 -0.4102
-0.7638 -0.6599 -0.4022
-0.5458 -0.6699 -0.3952
-0.6129 -0.6459 -0.4192
-0.5559 -0.6509 -0.4152

1 -0.4999 -0.6549 -0.4122
0.1 0.1 0.1 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

3 -0.9723 -0.6499 -0.4092
-0.7287 -0.6629 -0.4002
-0.4903 -0.6739 -0.3922
-
0.785275

-
2.792727

-
0.107859

-
0.794275

-
3.240827

-
0.389959

-0.8139 -3.4749 -2.2192
-
0.2

-0.8229 -3.1099 -3.8882

3 0.1 0.1 0.1 -
0.1

7 0.1 0.1 0.1 0.1 0.1 0.1 9 0.1

0.1 -1.5580 -2.90922 0.11995
0.2 -1.6079 -3.4316 -0.0675

-1.7109 -3.9492 -1.5985
-1.7639 -3.7849 -3.0582
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-0.6639 -0.6419 -0.4222
-0.6639 -0.7779 -0.2868

0.1 -0.6639 -0.9079 -0.1568
0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.3 -1.1969 -0.6379 -0.4188
-1.1969 -0.7729 -0.2838
-1.1969 -0.9039 -0.1518
-0.6639 -0.6419 -0.4222
-0.6639 -0.5789 -0.4852

0.1 -0.6639 -0.5529 -0.5122
0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

2 -1.1969 -0.6379 -0.4188
-1.1969 -0.5765 -0.4808
-1.1969 -0.5505 -0.5058
-0.6639 -0.6419 -0.4222
-0.6639 -0.6479 -0.5152

0.1 -0.6639 -0.6539 -0.5342
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1

0.5 -1.1971 -0.6379 -0.4188
-1.1977 -0.6439 -0.5092
-1.1977 -0.6499 -0.5272
-0.6639 -0.6419 -0.4222
-0.6639 -0.6409 -0.2822

0.1 -0.6635 -0.6399 -0.1442
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1

0.3 -1.1971 -0.6379 -0.4188
-1.1955 -0.6369 -0.2828
-1.1945 -0.6359 -0.1482
-0.6639 -0.6419 -0.4222
-0.6636 -0.5239 -0.5412

0.1 -0.6636 -0.3749 -0.6902
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1

1 -1.1971 -0.6379 -0.4188
-1.1971 -0.6009 -0.4558
-1.1971 -0.5549 -0.5018
-0.6639 -0.6419 -0.4222
-0.6639 -0.5309 -0.5337

0.1 -0.6639 -0.4019 -0.6627
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2 0.1 0.1 0.1

4 -1.1971 -0.6379 -0.4188
-1.1971 -0.5249 -0.5318
-1.1971 -0.3939 -0.6638
-0.6639 -0.6419 -0.4222
-0.6639 -0.7019 -0.3632

0.1 -0.6639 -0.7899 -0.2762
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 5 0.1 0.1

7.5 -1.1971 -0.6379 -0.4188
-1.1971 -0.7019 -0.3558
-1.1971 -0.7979 -0.2602
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-0.6639 -0.6419 -0.4222
-0.6636 -0.6409 -0.5572

0.1 -0.6642 -0.6389 -0.6972
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1

0.5 -1.1971 -0.6379 -0.4188
-1.1979 -0.6369 -0.5388
-1.1999 -0.6349 -0.6628
-0.6639 -0.6419 -0.4222
-0.6639 -0.6409 -0.4832

0.1 -0.6639 -0.6409 -0.5472
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1

2 -1.1971 -0.6379 -0.4188
-1.1971 -0.6369 -0.4798
-1.1981 -0.6369 -0.5438

Table II: Mathematical outcome of drag force coefficient, Nusselt number Nu,
and Sherwood number of Casson nanofluid parameter β when n = 3.

β Mn k2 GT GC fw Pr Nr Nb Nt Ec Q Du Sc K f
′′
(0) θ′(0) ϕ′(0)

-0.5589 -0.5389 -0.4982
-0.6049 -0.5489 -0.4872

0.1 -0.6419 -0.5519 -0.4842
0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.3 -0.6639 -0.6419 -0.4222

-0.7819 -0.6469 -0.4152
-0.8732 -0.6469 -0.4142

4 Conclusion:

The impact of hydromagnetic Casson nanofluid’s boundary layer on a nonlinear
stretching sheet in 2D with the impact of viscid dissipative impact, Dufour number
Du, heat absorption or generation Q impact, and suction or blowing impact, among
other things, is examined mathematically. The skinfriction coefficient grows as
permeability and Grashof number increase. As the Dufour number improves, the
Nusselt number drops, whereas the Sherwood number drops as the chemical reactive
impression improves. The Runge Kutta 4th order procedure, as well as the shooting
technique and MATLAB software, are used to arrive at the mathematical answer.
The following are some of the study’s key findings:

• Momentum display decreases when β, Mn, and fw rise, but increases as k2,
GT , and GC rise.

• The temperature graph decreases whenDu, fw, and Pr increase, and increases
as Ec, Nr, and Q increase.

• The volume fraction distribution improved when Du, Nt, Pr increased and
falloffs in Ec, fw, K, Nr, Nb, Sc, and Q decreased.

• The skin friction coefficient decreases when Mn, Nr, fw, Nb, Ec, Q, Sc, K
increases, while it climbs as k2, GT , GC , β, Pr, Nt, and Du increase.

• The Nusselt number increases as Mn, Nr, Nt, Ec, Q, Sc, and K levels rise,
but decreases as k2, GT , GC , β, fw, Pr, Nb, and Du levels rise.

• The Sherwood number increased when k2, GT , GC , and Nt increased, but
decreased as Mn, β, fw, Nb, Sc, and K increased.
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Abstract

In this paper, two-parameter singularly perturbed parabolic equations
are examined by two level method using non-polynomial spline. We have
used non-polynomial quadratic spline in space and finite difference dis-
cretization in time. Stability analysis is carried out. The approximate
solution is shown to converge point-wise to the true solution. Numerical
solution of singularly perturbed parabolic equations consisting of linear
as well as non-linear has been solved. Three numerical examples are pre-
sented to show the efficiency and effectiveness of the developed method.

Key words: Two-parameter singularly perturbed problems; Non-
polynomial splines; Stability analysis
Mathematics Subject Classification(2010): 65L10; 65D07

1

1 Introduction

We consider the two-parameter singularly perturbed one dimensional parabolic
partial differential equation(PDE) of the form:

zκ − ϵdzλλ + ϵcr(λ)zλ + s(λ)z = g(λ, κ), (λ, κ) ∈ QT , (1.1)

subject to

z = 0, (λ, κ) ∈ ∂S × I, (1.2)

1Corresponding author: Department of Mathematics
Sri Venkateswara College
University of Delhi, New Delhi, India
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and

z(λ, 0) = z0(λ), λ ∈ S, (1.3)

where, QT = S × I, S ≡ r : l < r < m, ∂S ≡ {l} ∪ {m}, I ≡ (0, T ) and
l(> 0),m(> 0) ∈ R, z = z(λ, κ), r(λ) and s(λ) are continously differentiable
functions and g(λ, κ) is continuous function defined on QT . Also 0 < ϵc ≪ 1
and 0 < ϵd ≪ 1. The above problems occur in various fields of sciences, such
as, elasticity, mechanics, chemical reactor theory and convection-diffusion pro-
cess. There are numerous asymptotic expansion methods available for solu-
tion of problems of the above type. But there were difficulties in applying
these asymptotic expansions in the inner and outer regions. Many researchers
have derived numerical methods for solving singularly perturbed boundary value
problems(SPBVPs). Scheme based on parametric spline functions has been de-
veloped by Khan et al.[5]. Fractional Kersten-Krasil’shchik coupled KdV mKdV
System arising in multi-component plasmas have been numerically solved by
Goswami et al.[3]. A uniform convergent numerical method is given by Clavero
et al.[2] and Kadalbajoo et al.[4] to solve the one-dimensional time-dependent
convection-diffusion problem. Sharma and Kaushik [8] solved a singularly per-
turbed time delayed convection diffusion problem on a domain which is rect-
angular. Zahra et al.[10], Aziz and Khan [1] have also used spline methods
for solution of SPBVPs. An efficient numerical approach for fractional multi-
dimensional diffusion equations with exponential memory is given by Singh et
al.[9]. In recent past, Mohanty et al. [7] have solved singularly perturbed
parabolic equations using methods based on spline in tension. In this paper,
we develop a new algorithm for solving SPBVPs associated with homogeneous
Dirichlet boundary conditions.
This paper is divided into 5 sections as follows: In Section 2, the non-polynomial
spline scheme is derived. In Section 3, we discuss application of the method for
SPBVPs with scheme of O(k+h2). Truncation error is also discussed in Section
3. In Section 4, stability analysis is carried out. In Section 5 three problems are
solved which confirm theoretical behaviour along with the rate of convergence.

2 Non-polynomial Spline

We divide the [l,m] interval uniformaly as

l = λ0 < λ1 < λ2 < · · · < λn−1 < λn = m,

where

λi = l + ih, 0 ≤ i ≤ n and h =
(m− l)

n
.

Let

Ri(λ) = ai cos τ(λ− λi−1/2) + bi sin τ(λ− λi−1/2) + ci, (2.1)

2
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be a non-polynomial spline defined on closed interval [l,m] reduces to polynomial
spline which is quadratic as τ −→ 0 and τ > 0.
To calculate ai, bi and ci, we define

Ri(λi) = zi, R
′
i(λi−1/2) = Pi−1/2,

R′′
i (λi) = Di, 0 ≤ i ≤ n− 1. (2.2)

Using above interpolatory conditions we get

ai = − 1

τ2
Di sec

(
ϑ

2

)
− 1

τ
Pi−1/2 tan(

ϑ

2
),

bi =
1

τ
Pi−1/2,

ci = zi+1 −
1

τ2
Di,

where, ϑ = τh.

Using continuity conditions, R
(m)
i−1(λi−1/2) = R

(m)
i (λi−1/2),m = 0, 1 we get the

expression as follows:

zi−1 − 2zi + zi+1 = h2(δDi−1 + ηDi + ζDi+1), 0 ≤ i ≤ n− 1 (2.3)

where,

δ =
sec(ϑ2 )− 1

ϑ2
,

η =
4 sec(ϑ2 )(1− cos2(ϑ2 )) + 2(1− sec(ϑ2 ))

ϑ2
,

ζ = δ.

When τ → 0, it means ϑ → 0, then (δ, η, ζ) → (1/8, 6/8, 1/8), and the scheme
given by (2.3) reduces into polynomial quadratic spline relation as:

zi−1 − 2zi + zi+1 =
1

8
h2(Di−1 + 6Di +Di+1), 0 ≤ i ≤ n− 1. (2.4)

3 Application of the scheme

We consider a SPBVP of the form

zκ − ϵdzλλ + ϵcr(λ)zλ + s(λ)z = g(λ, κ), (λ, κ) ∈ QT , (3.1)

where, QT = S × I, S ≡ r : l < r < m, ∂S ≡ {l} ∪ {m}, I ≡ (0, T ) and
l(> 0),m(> 0) ∈ R. The above equation with

z = 0, (λ, κ) ∈ ∂S × I,

and

z(λ, 0) = z0(λ), λ ∈ S.
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Here, we use the following derivative approximations of higher order as:

z′i =
zi+1 − zi−1

2h
,

z′i−1 =
−3zi−1 + 4zi − zi+1

2h
,

z′i+1 =
zi−1 − 4zi + 3zi+1

2h
,

zjti =
zj+1
i − zji

k
,

zjti−1 =
zj+1
i−1 − zji−1

k
,

zjti+1 =
zj+1
i+1 − zji+1

k
.

We consider the following ordinary differential equation

ϵd
d2z

dλ2
= ϵcr(λ)

dz

dλ
+ s(λ)z − g(λ)

≡ G(λ, z, z′). (3.2)

After implementing scheme (2.3) on BVP (3.2), we obtain:

zi−1 − 2zi + zi+1 = h2(δGi−1 + ηGi + ζGi+1), 1 ≤ i ≤ n− 1 (3.3)

where,

Gi−1 = G(λi−1, zi−1, z
′
i−1),

Gi = G(λi, zi, z
′
i),

Gi+1 = G(λi+1, zi+1, z
′
i+1),

Using derivative approximations, we obtain

Ãzi−1 + B̃zi + C̃zi+1 = −h2(δgi−1 + ηgi + ζgi+1), 1 ≤ i ≤ n− 1 (3.4)

where,

Ã = ϵd +
3

2
hδϵcri−1 − δh2si−1 +

h

2
ηϵcri −

h

2
ζϵcri+1,

B̃ = −2ϵd − 2hδϵcri−1 − ηh2si + 2hζϵcri+1,

C̃ = ϵd +
1

2
hδϵcri−1 − ζh2si+1 −

h

2
ηϵcri −

3h

2
ζϵcri+1.

For solving parabolic equation (3.1) we obtain the two level spline scheme by
replacing zi by

1
2 (z

j+1
i + zji ), zi+1 by 1

2 (z
j+1
i+1 + zji+1), zi−1 by 1

2 (z
j+1
i−1 + zji−1)

, gi by (
zj+1
i −zji
k +gji ), gi+1 by (

zj+1
i+1−z

j
i+1

k +gji+1) and gi−1 by (
zj+1
i−1−z

j
i−1

k +gji−1)
in (3.4) and hence we obtain as follows:

A1z
j+1
i−1 +A2z

j+1
i +A3z

j+1
i+1 = A4z

j
i−1 +A5z

j
i +A6z

j
i+1 − h2(δgji−1 + ηgji + ζgji+1),

1 ≤ i ≤ n− 1 (3.5)

4
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where,

A1 =
−h2δ
k

+
1

2
(ϵd +

3

2
hδϵcri−1 − δh2si−1 +

h

2
ηϵcri −

h

2
ζϵcri+1),

A2 =
−h2η
k

+
1

2
(−2ϵd − 2hδϵcri−1 − ηh2si + 2hζϵcri+1),

A3 =
−h2ζ
k

+
1

2
(ϵd +

1

2
hδϵcri−1 − ζh2si+1 −

h

2
ηϵcri −

3h

2
ζϵcri+1),

A4 =
−h2δ
k

+
1

2
(−ϵd −

3

2
hδϵcri−1 + δh2si−1 −

h

2
ηϵcri +

h

2
ζϵcri+1),

A5 =
−h2η
k

+
1

2
(2ϵd + 2hδϵcri−1 + ηh2si − 2hζϵcri+1),

A6 =
−h2ζ
k

+
1

2
(−ϵd −

1

2
hδϵcri−1 + ζh2si+1 +

h

2
ηϵcri +

3h

2
ζϵcri+1).

Error

Here, we expand the scheme(3.5) in terms of z(λi, κj) using Taylor's series and
get the expression for truncation error as follows:

ti =

[
h2[1− (δ + η + ζ)]D2

λ −
1

2
k[δh2si−1 + ηh2si + ζh2si+1]Dt + h3[δ − ζ]D3

λ

+h4[
1

12
− δ + ζ

2
]D4

λ −
1

4
k2[δh2si−1 + ηh2si + ζh2si+1]D

2
t + h5[

δ − ζ

3!
]D5

λ

+h6[
1

360
− δ + ζ

24
]D6

λ + ...

]
zji , 1 ≤ i ≤ n− 1. (3.6)

For δ + η + ζ = 1 and δ = ζ, the method of O(k + h2) is obtained.

4 Stability Analysis

Here, we obtain the expression which gives information regarding stability of
the scheme (3.5). We take Zji as actual solution which satisfies the equation

A1Z
j+1
i−1 +A2Z

j+1
i +A3Z

j+1
i+1 = A4Z

j
i−1 +A5Z

j
i +A6Z

j
i+1 − h2(δgji−1 + ηgji

+ζgji+1), 1 ≤ i ≤ n− 1. (4.1)

We assume that an error eji = Zji − zji exist at each point (λi, κj), then by
subtracting (3.5) from (4.1) we get the expression as

A1e
j+1
i−1 +A2e

j+1
i +A3e

j+1
i+1 = A4e

j
i−1 +A5e

j
i +A6e

j
i+1,

1 ≤ i ≤ n− 1. (4.2)

To derive stability analysis for the scheme (3.5), we assume that the solution of
the homogeneous part of (4.2) is of the form eji = ϖjeiρ, where ϖ ∈ C, i =

√
−1

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 30, NO.2, 2022, COPYRIGHT 2022 EUDOXUS PRESS, LLC

316 Shahna 312-322



and ρ ∈ R . Finally, we get the amplification factor as

ϖ =
A4e

−iρ +A5 +A6e
iρ

A1e−iρ +A2 +A3eiρ
, (4.3)

then,

ϖ =
− h2

kϵd
(δ + ρ)− h2

ϵd
(δqi−1 − ηqi + ζqi+1) + 2B1 sin

2(ρ2 ) + iB2 sin(
ρ
2 )

− h2

kϵd
(δ + ρ) + h2

ϵd
(δqi−1 − ηqi + ζqi+1)− 2B1 sin

2(ρ2 ) + iB2 sin(
ρ
2 )
,

where

B1 = 1 +
h2

kϵd
(δ + ζ) + h

ϵc
ϵd
(δpi−1 − 2ζpi+1) + h2

1

ϵd
(δqi−1 + ζqi+1),

B2 =
h2

kϵd
(δ − ρ) +

1

2ϵd
[hϵc(δpi−1 + ηpi − ζpi+1) + h2(ζqi+1 − δqi−1)].

The condition for the scheme to be stable is |ϖ|≤ 1. As we know that 0 ≤
sin2(ρ2 ) ≤ 1 and ϵd ∝ h, then from above relation it is easily verified that |ϖ|≤ 1
for every ρ. Hence the developed method is unconditionally stable.

5 Numerical Illustrations

We consider three second order SPBVPs. The maximum absolute errors(MAE)
are tabulated in Tables 1-4 depending upon the choice of parameters. The
convergence rate is denoted by αn and is computed by following expression:

αn = ln2(Ern,k/Er2n,k),

and there is a different way to find rate of convergence denoted by α̃n and is
computed by using

α̃n = ln2(Ern,k/Er2n,k/2).

Example 1:

Consider the following problem from Zahra et al.[10].

zκ − ϵd zλλ + zλ = g(λ, κ), T = 1,

in [0,1] associated with z(0, κ) = 0, z(1, κ) = 0 and z0(λ) = exp(−1/ϵd) + (1 −
exp(−1/ϵd))λ− exp(−(1− λ)/ϵd), where
g(λ, κ) = exp(−κ)(−c1 + c2(1− λ) + exp(−(1− λ)/ϵd)).

The analytical solution is z(λ, κ) = exp(−κ)(c1 + c2λ − exp(−(1 − λ)/ϵd)),
where c1 = exp(−1/ϵd), c2 = 1 − exp(−1/ϵd). The numerical results for N =
24, 25, 26, 27 and ϵd = 1/28, 1/210, 1/212, 1/224, 1/226 using parameters (δ, η, ζ) =
1
8 (1, 6, 1) compared with Zahra et al.[10] are tabulated in Table 1. And for
N = 24, 25, 26, 27, 28, 29 and ϵd = 1, 1/4, 1/16, 1/64 using parameters (δ, η, ζ) =
1
8 (1, 6, 1) compared with Clavero et al.[2] are tabulated in Table 2.

6
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Example 2:

Consider the following PDE from Zahra et al.[10]

zκ − ϵd zλλ + ϵc zλ = g(λ, κ), T = 1,

in [0,1] associated with z(0, κ) = 0, z(1, κ) = 0 and z0(λ) = [ϕ1 cos(πλ) +
ϕ2 sin(πλ) + ψ1 exp(θ1λ) + ψ2 exp(−θ2(1− λ))], where
g(λ, κ) = exp(−κ)[{−ϕ1 cos(πλ) − ϕ2 sin(πλ) − ψ1 exp(θ1λ) − ψ2 exp(−θ2(1 −
λ))} + ϵd{ϕ1π2 cos(πλ) + ϕ2π

2 sin(πλ) − ψ1

θ21
exp(θ1λ) − ψ2

θ22
exp(−θ2(1 − λ))} +

ϵc{−ϕ1π cos(πλ) + ϕ2π sin(πλ) +
ψ1

θ1
exp(θ1λ) +

ψ2

θ2
exp(−θ2(1− λ))}]. The an-

alytical solution is z(λ, κ) = exp(−κ)[ϕ1 cos(πλ) + ϕ2 sin(πλ) + ψ1 exp(θ1λ) +
ψ2 exp(−θ2(1− λ))] where,

ϕ1 =
ϵdπ

2 + 1

ϵ2cπ
2 + (ϵdπ2 + 1)2

,

ϕ2 =
ϵcπ

ϵ2cπ
2 + (ϵdπ2 + 1)2

,

ψ1 = −ϕ1
1 + exp(−θ2)

1− exp(θ1 − θ2)
,

ψ2 = ϕ1
1 + exp(θ1)

1− exp(θ1 − θ2)
,

θ1 =
ϵc −

√
ϵ2c + 4ϵd
2ϵd

,

θ2 =
ϵc +

√
ϵ2c + 4ϵd
2ϵd

.

The numerical results for N = 24, 25, 26, 27, 28, ϵd = 1, 1/4, 1/16 and ϵc =
10−3, 10−4, 10−5 using parameters (δ, η, ζ) = 1

8 (1, 6, 1) are tabulated in Table 3.

Example 3:

Consider the following PDE from Mohanty et al.[6]

ϵd zλλ − zκ +
1

λ
zλ = g(λ, κ), 0 ≤ λ ≤ 1, κ > 0

The analytical solution is z(λ, κ) = exp(−κ) sinhλ. The right-hand-side func-
tions, initial and boundary conditions may be obtained using the actual solution
given above as a test procedure. The numerical results for N = 24, 25, 26, 27, 28

and ϵd = 1/2, 1/8, 1/16, 1/32, 1/64, 1/128 using parameters (δ, η, ζ) = 1
12 (1, 10, 1)

compared with Mohanty et al.[6] are tabulated in Table 4.
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Table 1: MAE of example 1 for (δ, η, ζ) = 1
8(1, 6, 1)

Method N\
ϵd

1/28 1/210 1/212 1/224 1/226

Presented
method

24 1.2136 ×
10−02

1.3494 ×
10−02

1.3835 ×
10−02

1.3949 ×
10−02

1.3949 ×
10−02

αn 1.1344 0.9591 0.9231 0.91170 0.91170
Zahra et al.[10] 3.5638 ×

10−02
5.1972 ×
10−02

6.7088 ×
10−02

7.3818 ×
10−02

7.1839 ×
10−02

Presented
method

25 5.5284 ×
10−03

6.9407 ×
10−03

7.2961 ×
10−03

7.4147 ×
10−03

7.4147 ×
10−03

αn 1.4946 1.0549 0.9785 0.9554 0.9554
Zahra et al.[10] 1.300 ×

10−02
1.4234 ×
10−02

2.3185 ×
10−02

3.4126 ×
10−02

3.4128 ×
10−02

Presented
method

26 1.9619 ×
10−03

3.3406 ×
10−03

3.7029 ×
10−03

3.8238 ×
10−03

3.8238 ×
10−03

αn 2.1590 1.1997 1.0249 0.9776 0.9776
Zahra et al.[10] 9.3378 ×

10−03
8.3305 ×
10−03

8.2129 ×
10−03

1.5756 ×
10−02

1.5761 ×
10−02

Presented
method

27 4.4173 ×
10−04

1.4543 ×
10−03

1.8198 ×
10−03

1.9419 ×
10−03

1.9419 ×
10−03

Zahra et al.[10] 8.4218 ×
10−03

7.9579 ×
10−03

7.6243 ×
10−03

9.1052 ×
10−03

9.1078 ×
10−03

8
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Table 2: MAE of example 1 for (δ, η, ζ) = 1
8(1, 6, 1)

Method N \ ϵd 1 1/4 1/16 1/64
Presented
Method

24 7.8074 ×
10−04

1.2280 ×
10−03

1.0487 ×
10−02

1.0921 ×
10−01

Clavero et al.[2] 1.3076 ×
10−03

1.7398 ×
10−03

4.0133 ×
10−02

5.9664 ×
10−02

α̃n 1.7534 1.9008 2.5426 1.3506
Presented
Method

25 2.3156 ×
10−04

3.2887 ×
10−04

1.8000 ×
10−03

4.2823 ×
10−02

Clavero et al.[2] 7.9078 ×
10−04

9.6845 ×
10−03

2.5552 ×
10−03

3.7372 ×
10−02

α̃n 1.8952 1.8851 2.4931 2.0663
Presented
Method

26 6.2255 ×
10−05

8.9033 ×
10−05

3.1971 ×
10−04

1.0225 ×
10−02

Clavero et al.[2] 3.6986 ×
10−04

5.1056 ×
10−03

1.5865 ×
10−02

2.1792 ×
10−02

α̃n 1.9602 1.9124 2.4935 2.6020
Presented
Method

27 1.5998 ×
10−05

2.3652 ×
10−05

5.6774 ×
10−05

1.6841 ×
10−03

Clavero et al.[2] 1.8894 ×
10−04

2.6223 ×
10−03

9.5603 ×
10−03

1.2381 ×
10−03

α̃n 1.9638 1.9347 2.4473 2.5951
Presented
Method

28 4.1011 ×
10−06

6.1867 ×
10−06

1.0409 ×
10−05

2.7872 ×
10−04

Clavero et al.[2] 9.5517 ×
10−05

1.3289 ×
10−03

5.5999 ×
10−03

6.9704 ×
10−03

α̃n 1.9676 1.9514 2.3371 2.6674
Presented
Method

29 1.0486 ×
10−06

1.5996 ×
10−06

2.0601 ×
10−06

4.3874 ×
10−05

Clavero et al.[2] 4.8028 ×
10−05

6.6891 ×
10−04

3.2019 ×
10−03

3.9052 ×
10−03
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Table 3: MAE of example 2 for (δ, η, ζ) = 1
8(1, 6, 1)

ϵd 1 1/4 1/16
ϵc \
N

10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5

24 5.7028×
10−06

5.6372×
10−06

5.6328×
10−06

7.6099×
10−03

7.5937×
10−03

7.5920×
10−03

3.0375×
10−01

3.0260×
10−01

3.0248×
10−01

αn 1.4451 1.4479 1.4482 1.8084 1.8084 1.8084 1.8258 1.8258 1.8258
25 2.0944×

10−06
2.0671×
10−06

2.0643×
10−06

2.1726×
10−03

2.1681×
10−03

2.1676×
10−03

8.5684×
10−02

8.5356×
10−02

8.5324×
10−02

αn 1.8444 1.8459 1.8461 1.8568 1.8568 1.8568 1.9140 1.9140 1.9140
26 5.8324×

10−07
5.7502×
10−07

5.7420×
10−07

5.9986×
10−04

5.9857×
10−04

5.9845×
10−04

2.2736×
10−02

2.2650×
10−02

2.2640×
10−02

αn 1.9487 1.9496 1.9497 1.9306 1.9306 1.9306 1.9572 1.9572 1.9572
27 1.5108×

10−07
1.4886×
10−07

1.4864×
10−07

1.5736×
10−04

1.5702×
10−04

1.5698×
10−04

5.8551×
10−03

5.8328×
10−03

5.8800×
10−03

αn 1.9810 1.9815 1.9816 1.9658 1.9658 1.9658 1.9786 1.9786 1.9786
28 3.8272×

10−08
3.7696×
10−08

3.7639×
10−08

4.0284×
10−05

4.0197×
10−05

4.0188×
10−05

1.4856×
10−03

1.4799×
10−03

1.4799×
10−03

Table 4: MAE of example 3 for (δ, η, ζ) = 1
12(1, 10, 1)

Method N \ ϵd 1/2 1/8 1/16 1/32 1/64 1/128
Presented
method

24 7.2294 ×
10−04

8.0022 ×
10−04

8.2241 ×
10−04

8.3576 ×
10−04

8.4320 ×
10−04

8.4714 ×
10−04

Mohanty
et al.[6]

0.2924 ×
10−03

0.4454 ×
10−03

0.4777 ×
10−03

0.5054 ×
10−03

0.5344 ×
10−03

0.5615 ×
10−03

Presented
method

25 1.2613 ×
10−05

1.3899 ×
10−05

1.4267 ×
10−04

1.4488 ×
10−04

1.4610 ×
10−04

1.4675 ×
10−04

Mohanty
et al.[6]

0.7286 ×
10−04

0.1129 ×
10−03

0.1239 ×
10−03

0.1410 ×
10−03

0.1869 ×
10−03

0.3134 ×
10−03

Presented
method

26 2.2181 ×
10−05

2.4391 ×
10−05

2.5022 ×
10−05

2.5721 ×
10−05

2.5610 ×
10−05

2.5721 ×
10−05

Mohanty
et al.[6]

0.1814 ×
10−04

0.2835 ×
10−04

0.3166 ×
10−04

0.3984 ×
10−04

0.9429 ×
10−04

0.1684 ×
10−03

Presented
method

27 3.9130 ×
10−06

4.2982 ×
10−06

4.4079 ×
10−06

4.5295 ×
10−06

4.5102 ×
10−06

4.5295 ×
10−06

Mohanty
et al.[6]

0.4524 ×
10−05

0.7091 ×
10−05

0.7987 ×
10−05

0.1088 ×
10−04

0.4743 ×
10−04

0.9120 ×
10−04

Presented
method

28 6.9111 ×
10−07

7.5878 ×
10−07

7.7796 ×
10−07

7.9929 ×
10−07

7.7590 ×
10−07

7.9929 ×
10−07

Mohanty
et al.[6]

0.1129 ×
10−05

0.1771 ×
10−05

0.2002 ×
10−05

0.2844 ×
10−05

0.1821 ×
10−05

0.5283 ×
10−04
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Conclusion

We have presented two level scheme using non-polynomial spline for solving
singularly perturbed parabolic equations based on one dimension. In examples
1, 2 and 3, we have computed maximum absolute errors for different values
of N and ϵd for the sake of comparison with references [2,6,10] and results are
tabulated in Tables 1-4. From tables it is shown that our method is much better
in accuracy than the methods given by Clavero et al.[2], Mohanty et al.[6] and
Zahra et al.[10]. It has already been proved that the presented algorithm gives
higher numerical rate of convergence. It has also shown that the scheme is
unconditionally stable.
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Abstract

We present two non polynomial spline methods based on quasi-variable
mesh using off-step points to solve the system of boundary value prob-
lems which are nonlinear. We also discuss how the methods handle the
presence of singularity. The proposed methods has been shown second
and third-order convergent for a model linear problem. The methods are
implemented on existing problems which are linear, non linear as well as
singular. The obtained numerical results approximate the exact solutions
very well and validate the theoretical findings.

Key words: Off-step, non polynomial, quasi-variable mesh, singular,
nonlinear, system.
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1 Introduction

In this paper, we seek solution for the following system of M boundary value
problems(BVPs) which are non linear as well as singular.

d2yi

dx2
= f i(x, y1, ..., yi, ..., yM ,

dy1

dx
, ...,

dyi

dx
, ...,

dyM

dx
), (1.1)

yi(0) = ai, y
i(1) = bi, where ai, bi ∈ R, i = 1(1)M. (1.2)

We consider −∞ < yi, dy
i

dx <∞ and the conditions such that f i is continuous

and its partial derivatives w.r.t. yj and dyi

dx exist, continuous and are positive.

Also partial derivative w.r.t. dyi

dx is bounded by some K > 0, j, i = 1(1)M, to
ensure the existence [13] of a unique solution (1.1)− (1.2).
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Such systems like the fourth order Euler differential equations [5], coupled
Navier stokes in fluid dynamics and Maxwell’s equations of electromagnetism[9],
system of differential equations[28], fourth order non linear differential equations
[27] simulates many real world problems. A few more examples are as follows:
(i)In Plate deflection theory

(−1)ny(2n)(x) = f(x, y(x)), n ∈ N
y(2i)(a) = A2i, y

(2i)(b) = B2i, i ∈ [0, k − 1]

(ii)Three box cars on a level track connected by springs is modelled as follows:

mx′′1 = −sx1 + sx2,

mx′′2 = sx1 − 2sx2 + sx3,

mx′′3 = −sx3,
where m,x1, x2, x3 and s are masses,positions of the boxcars and Hooke’s constant.

(iii)A horizontal earthquake wave F affects every floor of a building. If there
are three floors, then equations for the floor is modelled as follows:

M1x
′′
1 = −(r1 + r2)x1 + r2x2,

M2x
′′
2 = r2x1 − (r2 + r3)x2 + r3x3,

M3x
′′
3 = r3x2 − (r3 + r4)x3,

where Mi, x1, x2, x3 and ri are point masses of each floor, location of masses

and Hooke’s constant.

Such systems of BVPs comprising first or second order BVPs not only models
many real life problems but are also instrumental in solving many higher or-
der problems by decomposing them. Authors like Aftabizadeh[1], Agarwal[2],
Regan[24] have developed theories related to existence and uniqueness of so-
lutions for these BVPs. But, for our work, we focus on system of second or-
der BVPs which are non linear as well singular in nature. These problems
have extensive application and has been the cause of interest for many authors.
Many efficient numerical methods have been developed to solve second order
BVPs and ‘Splines’ have been very instrumental for solving such problems. Mo-
hanty et.al.([15],[16], [18], [21]) developed AGE iterative methods. In these
methods, using Taylor’s theorem derivatives are approximated and accordingly
a finite difference scheme was developed. Then the resultant system solved
by splitting the coefficient matrix into sum of three matrices. Also Mohanty
et.al.([17],[19],[20],[22]) derived polynomial and non polynomial spline methods
based on uniform and variable mesh to solve class of problems ranging from
linear, nonlinear, singular and singularly perturbed BVP. A third order cubic
spline method based on non uniform mesh was developed by Kadalbajoo et.
al[12] to solve singularly perturbed BVPs. BVPs of eighth order were solved
by Akram and Rehman[4] using kernel space method. Eighth and sixth order
BVPs were solved by Siddiqi and Akram ([30], [31]) using non-polynomial and

2
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septic spline. Jha and Bieniasz[11] developed a scheme based on geometric mesh
to solve sixth order differential equation by converting it into system of second
order differential equations. Infact, very recently, apart from the schemes based
on classical finite differences some other kinds of methods were also developed.
Bhrawy et. al.[6] developed collocation method based on Jacobi polynomials
and solved nonlinear second-order initial value problems. Dwivedi and Singh
[7] developed collocation method based on Fibbonacci polynomial to solve sub
diffusion equations. Singh et.al.[32] developed finite difference scheme based on
homotopy analysis transform technique to solve fractional non-linear coupled
problem. Such considerable amount of work has motivated us to develop a nu-
merical method to solve the higher order problem as well as system of linear
and non linear singular BVPs.

In this paper, generalized non polynomial spline schemes have been devel-
oped which are based on off-step points using quasi-variable mesh. We use a
second order BVP to derive the methods. As per the methods developed, we de-
compose the higher order BVP into system of second order BVPs (1) alongwith
modifying the boundary conditions. Also, we have solved singular BVPs. The
off-step points used in the method allows us to overcome the singularity. More-
over, since we use the quasi-variable mesh the error gets uniformly distributed
throughout the solution domain. Finally, as we use the boundary conditions in
the scheme, we get a tri-diagonal matrix with block elements representing the
system of equations to be solved.

We have solved seven problems and demonstrated the accuracy of the pro-
posed methods. The BVPs considered in this paper have been solved by other
methods as well. Twizell [29] used modified extrapolation method to solve fourth
order linear BVPs, Akram and Siddiqi[3] used non polynomial spline method
which is second order convergent to solve linear sixth order BVPs. Khan and
Khandelwal[14]and Sakai and Usmani[25] used splines to solve nonlinear fourth
and sixth order BVPs.

2 Method Formulation

We use a non linear BVP of second order and derive the method in scalar form:

y′′ = f(x, y, y′), subject to y(0) = a, y(1) = b. (2.1)

Now, we divide the solution region [0,1] into N + 1 points such as xj , j =

0(1)N with mesh size hj such that xj = xj−1 + hj ,
hj+1

hj
= σj , j = 1(1)N − 1

where the σj is the mesh ratio. When mesh ratio is one, the quasi-variable
mesh converts to a uniform mesh with width, say h. Now, we choose σj = σ
a constant ∀j without loss of generality. Also, let the exact solution of (2.1)
be y(xj) or yj at the grid points xj . Now, we define the the following non
polynomial spline function:

Sj(x) = dj sin(kx− kxj) + cj cos(kx− kxj) + bj(x− xj) + aj , xj−1 ≤ x ≤ xj .(2.2)
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Here, Sj(x) has continuous second derivative in [0, 1] and Sj(x), S′j(x) inter-
polates at the mesh points xj . Using the definition of the spline, we determine
values for the unknowns aj , bj , cj and dj as:

aj = yj +
fj
k2
, (2.3)

bj =
fj − fj− 1

2

k2hj
− yj−1 − yj

hj
,

cj = − fj
k2
,

and dj = −
fk cos θj − fj− 1

2

k2 sin khj
. (2.4)

Using the spline’s first derivative continuity conditions, we get the non poly-
nomial spline method based on off-step points as:

σyj−1 − yj(1 + σ) + yj+1 = h2j (Pσfj− 1
2

+Qσfj +Rσfj+ 1
2
) + T 3

j , (2.5)

where

R =
2khj+1 − sin khj+1

2k2hj+1 sin khj+1
, P =

khj − sin khj cos khj
khj sin khj

, (2.6)

Q =
2(σj + 1)( cos(khjσ − khj)− cos(khjσ + khj))− 2σkhj sin(khjσ + khj)

(khj)2( cos(khjσ − khj)− cos(khjσ + khj))
.(2.7)

Now, we also derive the consistency condition using (2.5)− (2.7) i.e.,

tan(
khj
2

) + tan(
khj+1

2
) =

khj
2

+
khj+1

2
. (2.8)

We solve equation (2.8) for khj and consider the non-zero smallest positive
root khj = 8.98681891. But, with this, the order of error term T 3

j in (2.5)
remains four. Now, we derive another off-step method using Taylor’s expansion
for j = 1(1)N − 1 as

yj−1 − yj(1 + σ) + σyj+1 = h2jσ(Afj− 1
2

+Bfj+ 1
2
) + T 2

j , (2.9)

for A =
(2 + σ)

6
, B =

(2σ + 1)

6
. (2.10)
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Now, the following approximations are defined at xj , j = 1(1)N − 1,

Sj = (σ + 1)σ, (2.11)

ȳj+ 1
2

=
yj + yj+1

2
, (2.12)

ȳj− 1
2

=
yj + yj−1

2
, (2.13)

ȳ′j+ 1
2

=
yj+1 − yj
hjσ

, (2.14)

ȳ′j− 1
2

=
yj − yj−1

hj
, (2.15)

ȳ′j =
yj+1 − yj(1− σ2)− σ2yj−1

Sjhj
, (2.16)

f̄j = f(xj , yj , ȳ′j), (2.17)

f̄j− 1
2

= f(xj− 1
2
, ȳj− 1

2
, ȳ′j− 1

2
), (2.18)

f̄j+ 1
2

= f(xj+ 1
2
, ȳj+ 1

2
, ȳ′j+ 1

2
). (2.19)

Next, we define higher order approximation of yj and y′j to raise order of the

error term T 3
j in equation (2.5) :

ŷj = yj + h2jδ(f̄j− 1
2

+ f̄j+ 1
2
), (2.20)

ŷ′j = ȳ′j − hjγ(f̄j− 1
2
− f̄j+ 1

2
), (2.21)

where γ, δ are unknowns. This gives us the modified f̄j i.e.,

f̂j = f(xj , ŷj , ŷ′j). (2.22)

Now, expanding the approximations (2.12)− (2.22) we get the following:
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P =
σ

3
+O(khj

2), (2.23)

R =
1

3
+O(khj

2), (2.24)

Q =
(σ + 1)

6
+O(khj

2), (2.25)

ȳj+ 1
2

= yj+ 1
2

+
(hjσ)2

8
y′′j +O(h3j ), (2.26)

ȳj− 1
2

= yj− 1
2

+
(hj)

2

8
y′′j +O(h3j ), (2.27)

ȳ′j+ 1
2

= y′j+ 1
2

+
(hjσ)2

24
y′′′j +O(h3j ), (2.28)

ȳ′j− 1
2

= y′j− 1
2

+
(hj)

2

24
y′′′j +O(h3j ), (2.29)

ŷj = yj + δh2j (2y
′′
j ) +O(h3j ), σ 6= 1, (2.30)

ŷ′j = y′j +
h2jy
′′′
j

6
((1 + 3γ)σ + 3γ) +O(h3j ), (2.31)

f̄j+ 1
2

= fj+ 1
2

+
(hjσ)2y′′j

8

∂f

∂yj
+

(hjσ)2y′′′j
24

∂f

∂y′j
+O(h3j ), (2.32)

f̄j− 1
2

= fj− 1
2

+
h2jy
′′
j

8

∂f

∂yj
+
h2jy
′′′
j

24

∂f

∂y′j
+O(h3j ), (2.33)

f̂j = fj + 2h2jδy
′′
j

∂f

∂yj
+
h2j
6

(σ + 3γ(1 + σ))y′′′j
∂f

∂y′j
+O(h3j ). (2.34)

Thus, we develop the first method by discretizing the proposed BVP (2.1)
based on the method (2.9) as:

σyj−1 − (1 + σ)yj + yj+1 = h2j (Aσf̄j− 1
2

+Bσf̄j+ 1
2
) + T 2

j . (2.35)

In this method, we can show that for σ 6= 1, the order of truncation error T 2
j

is O(h4j ) using the approximations (2.32) − (2.33). Also, if we use the off-step
non-polynomial scheme(2.5) along with the approximation (2.26) − (2.34), we
get the second method as:

yj+1 − (1 + σ)yj + σyj−1 = h2jσ(P f̄j− 1
2

+Qf̂j +Rf̄j+ 1
2
)

− h4j [(
Rσ2 +Q4((1 + 3γ)σ + 3γ) + P

24
)y′′′j

∂f

∂y′j

+ (
Rσ2

8
+ 2Qδ +

P

8
)y′′j

∂f

∂yj
] + T 3

j . (2.36)

The coefficients of order four of hj is equated to zero to get the value
of δ, γ so as to raise the order of local truncation error T 3

j . Thus, we get

6
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γ = − (Rσ2+P+4Qσ)
12Q(1+σ) , δ = − (R+Pσ2)

16Q . In case of uniform mesh, the local trun-

cation error becomes of order six. We also ensure the necessary condition for
convergence of the methods provided by Jain [10], that the coefficients A,B in
method (2.35)and in method (2.36) P,Q and R are positive for σ > 0. Hence,
both the proposed off-step three point discretization using the approximate so-
lutions Yj at xj are as follows:

Yj+1 − (σ + 1)Yj + σYj−1 = h2jσ(AF̄j− 1
2

+BF̄j+ 1
2
), (2.37)

and

Yj+1 − (σ + 1)Yj + σYj−1 = h2jσ(RF̄j+ 1
2

+QF̂j + PF̄j− 1
2
). (2.38)

3 Generalised Methods

We develop the generalized methods by using the following approximations and
scalar methods developed in the last section, thus, solving (1.1)− (1.2) we get,

Sj = (σ + 1)σ, (3.1)

Ȳ ij+ 1
2

=
Y ij + Y ij+1

2
, (3.2)

Ȳ ij− 1
2

=
Y ij + Y ij−1

2
, (3.3)

Ȳ ′
i
j+ 1

2
=

Y ij − Y ij+1

hjσ
, (3.4)

Ȳ ′
i
j− 1

2
=

Y ij − Y ij−1
hj

, (3.5)

Ȳ ′
i
j =

Y ij+1 − (1− σ2)Y ij − σ2Y ij−1
Sjhj

, (3.6)

7
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f̄ ij = f i(xj , Yj , Y
(1)
j , Y

(2)
j , ..., Y ij , ..., Y

(M)
j , Ȳ ′

(1)
j , Ȳ ′

(2)
j , ..., Ȳ ′

i
j , ..., Ȳ

′(M)
j ),(3.7)

f̄ ij− 1
2

= f i(xj− 1
2
, Ȳj− 1

2
, Ȳ

(1)

j− 1
2

, Ȳ
(2)

j− 1
2

, ..., Ȳ ij− 1
2
, ..., Ȳ

(M)

j− 1
2

,

Ȳ ′
(1)

j− 1
2
, Ȳ ′

(2)

j− 1
2
, ..., Ȳ ′

i
j− 1

2
, ..., Ȳ ′

(M)

j− 1
2
), (3.8)

f̄ ij+ 1
2

= f i(xj+ 1
2
, Ȳj+ 1

2
, Ȳ

(1)

j+ 1
2

, Ȳ
(2)

j+ 1
2

, ..., Ȳ ij+ 1
2
, ..., Ȳ

(M)

j+ 1
2

,

Ȳ ′
(1)

j+ 1
2
, Ȳ ′

(2)

j+ 1
2
, ..., Ȳ ′

i
j+ 1

2
, ..., Ȳ ′

(M)

j+ 1
2
), (3.9)

Ŷ ij = Y ij + h2jδi(f̄
i
j+ 1

2
+ f̄ ij− 1

2
), (3.10)

Ŷ ′
i

j = Ȳ ′
i
j + hjγi(f̄

i
j+ 1

2
− f̄ ij− 1

2
), (3.11)

f̂ ij = f i(xj , Ŷj , Ŷ
(1)
j , Ŷ

(2)
j , ..., Ŷ ij , ..., Ŷ

(M)
j , Ŷ ′

(1)

j , Ŷ ′
(2)

j , ..., Ŷ ′
i

j , ..., Ŷ
′(M)

j ),(3.12)

Y ij+1 − (1 + σ)Y ij + σY ij−1 = h2jσ(Af̄ ij− 1
2

+Bf̄ ij+ 1
2
), (3.13)

Y ij+1 − (1 + σ)Y ij + σY ij−1 = h2jσ(Rf̄ ij+ 1
2

+Qf̂ ij + P f̄ ij− 1
2
), (3.14)

where

A =
(2 + σ)

6
, B =

(2σ + 1)

6
, (3.15)

P =
khj − sin khj cos khj

k2khj sin khj
, R =

2khj+1 − sin khj+1

2k2khj+1 sin khj+1
, (3.16)

Q =
2(σ + 1)( cos(khjσ − khj)− cos(khjσ + khj))− 2σkhj sin(khjσ + khj)

(khj)2( cos(khjσ − khj)− cos(khjσ + khj))
.(3.17)

4 Illustration of the Method

Consider a linear singular BVP of fourth order as follows:

d4y(x)

dx4
= a(x)y(x) + d(x), x 6= 0, (4.1)

y(0) = c1, y(1) = d1,
d2y

dx2
(0) = c2,

d2y

dx2
(1) = d2. (4.2)

where a(x) is singular and c1, c2, d1, d2 are real constants. Using (1.1), we
write the problem (4.1)− (4.2) as follows:

d2y

dx2
(x) = z(x), (4.3)

d2z

dx2
(x) = a(x)y(x) + d(x), (4.4)

y(0) = c1, y(1) = d1, (4.5)

z(0) = c2, z(1) = d2. (4.6)

8
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We use the method(3.14) to the BVP (4.3)− (4.6). The method is given as
follows:

σYj−1 − Yj(1 + σ) + Yj+1 = h2
jσ(RZ̄j+ 1

2
+QẐj + PZ̄j− 1

2
), (4.7)

σZj−1 − Zj(1 + σ) + Zj+1 = h2
jσ(R(aj+ 1

2
Ȳj+ 1

2
+ dj+ 1

2
)

+Q(aj Ŷj + dj) + P (aj− 1
2
Ȳj− 1

2
+ dj− 1

2
)). (4.8)

Then, we approximate aj± 1
2

for the BVP (4.7)− (4.8) as

aj− 1
2

= aj −
hja
′
j

2
+
h2ja
′′
j

8
+O(h3j ), (4.9)

aj+ 1
2

= aj +
σhja

′
j

2
+

(hjσ)2a′′j
8

+O(h3j ). (4.10)

Similarily, we approximate dj± 1
2
. Using the relations (4.9)−(4.10) in (4.7)−(4.8)

we get,

σYj−1 − Yj(1 + σ) + Yj+1 = h2
jσ(RZ̄j+ 1

2
+QẐj + PZ̄j− 1

2
), (4.11)

σZj−1 − Zj(1 + σ) + Zj+1 = h2
jσ(R(aj+ 1

2
Ȳj+ 1

2
+ dj+ 1

2
)

+Q(aj Ŷj + dj) + P (aj− 1
2
Ȳj− 1

2
+ dj− 1

2
)).(4.12)

Finally, substituting (3.1)− (3.12) in (4.11)− (4.12) we get the difference equation
of BVP (4.3)− (4.6)as follows:

[
b11j b12j
b21j b22j

] [
Yj−1

Zj−1

]
+

[
d11j d12j
d21j d22j

] [
Yj
Zj

]
+

[
p11j p12j
p21j p22j

] [
Yj+1

Zj+1

]
=

[
ψ1
j

ψ2
j

]
, (4.13)

9
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where

b11j = −σ +
h4
j

2
σ2Qδaj , b12j =

h2
jσ

2

2
,

b21j =
h2
j

2
σ2Raj− 1

2
, b22j = −σ +

h4
j

2
σ2Qδaj ,

d11j = (1 + σ) +Qδajh
4
jσ

2, d12j =
h2
jσ

2(2Q+R+ P )

2
,

d21j =
σ2

2
[h2
jaj(2Q+R+ P ) + h3

j (−P + σR)
a′j
2

+R
h4
jσ

2a′′j
8

],

diag22j = (1 + σ) +Qδajh
4
jσ

2,

p11j = −1 +
ajh

4
jσ

2Qδ

2
, p12j =

Rh2
jσ

2

2
,

p21j = h2
jσ

2R

2
aj+ 1

2
, p22j = −1 +

ajh
4
jσ

2Qδ

2
,

ψ1
j = −h4

j2bjQσ
2,

ψ2
j = −σ2[h2

jdj(2Q+ P +R) +
d′jh

3
j

2
(−P +R) +

d′′j h
4
j

8
(R+ P )].

5 Convergence Analysis

We provide the convergence of method (3.14) for the coupled second order BVP (4.3)−
(4.6). The convergence of scalar singular BVP has been already provided by Mohanty
[23]. Now, once the condition (4.5) − (4.6) is substituted in the difference equation
(4.13), it is written in matrix form as follows:

HŶ + ψ̂ =
[
bj dj pj

]  ˆYj−1

Ŷj
ˆYj+1

+ ψ̂j = 0̂, (5.1)

where bj , pj , dj are block elements of order 2 in tridiagonal block matrix H.

Ŷ = [Ŷ1, Ŷ2, ..., Ŷj , ...ŶN−1]T , where Ŷj = [Yj , Zj ]
T ,

ψ̂ = [ψ̂1 + b1[c1, c2]T , ψ̂2, ..., ψ̂j , ...ψ̂N−1 + pN−1[d1, d2]T ]T , where ψ̂j = [ψ1
j , ψ

2
j ]T ,

0̂ is a zero vector with N − 1 components.

Let [[y1, z1]T , [y2, z2]T ......, [yj , zj ]
T , ...[yN−1, zN−1]T ]T ∼= ŷ be the exact solution satisfying

Hŷ + ψ̂ + T̂ 3
j = 0, (5.2)

where T̂ 3
j is the truncation error, then the error vector E is given by ŷ− Ŷ. We get the error

equation from(5.1)and(5.2), i.e., HE = T̂ 3
j . (5.3)

For some k1, k2 > 0, let |aj |≤ k1 and |a′j |≤ k2. Using (4.13) and neglecting the
higher order terms of hj we get,

‖pj‖∞≤ max
1≤j≤N−2

1 +
h2
jσ

2P

2
,

1 +
h2
jσ

2P

2
(k1 +

hjσ

2
k2),

(5.4)

10
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‖bj‖∞≤ max
2≤j≤N−1

σ +
h2jσ

2R

2
,

σ +
h2jσ

2R

2
(k1 +

hj

2
k2).

(5.5)

We prove the irreducibility of H for sufficiently small hj as well as ‖bj‖∞≤ σ and
‖pj‖∞≤ 1 from (5.4)− (5.5).
Let the sum of elements of jth row of H be sumj ,

sumj =

σ +
h2
jσ

2

12
(P + 2(R+Q)), j = 1,

σ +
h2
jσ

2a′j
24

(R+ 2(P +Q))aj + σ2

2
(h2
jRaj + h3

j (−P + 2Rσ)), j = 2,
(5.6)

sumj =


h2
jσ

2

2
(R+Q+ P ), j = 3(2)N − 4,

h2
jσ

2aj

2
(R+Q+ P ) +

h3
jσ

2a′j
4

(−2P + σR), j = 4(2)N − 3,
(5.7)

sumj =

1 +
h2jσ

2

12
(R+ 2(Q+ P )), j = N − 2,

1 +
h2jσ

2aj

12
(R+ 2(Q+ P )) +

h3
jσ

2a′j
4

(−2R+ Pσ), j = N − 1.
(5.8)

We can easily prove that H is Monotone using 0 < L ≤ min(L1, L2) in (5.6)− (5.8)
and for sufficiently small hj . Therefore, H−1 ≥ 0 and exist. Hence by (5.3) we have,

||E||= ||H−1||||T̂ 3
j ||. (5.9)

Now for sufficiently small hj , by (2.23)− (2.25) and (5.6)− (5.8) we can say that:

sumj >


h2
jσ(2+3σ)

12
, j = 1,

h2
jσ(2+3σ)L

12
, j = 2,

(5.10)

sumj ≥


h2
j (σ+1)

2
, j = 3(2)N − 4,

h2
j (σ+1)L

2
, j = 4(2)N − 3,

(5.11)

sumj >


h2
jσ(2σ+3)

12
, j = N − 2,

h2
jσ(2σ+3)L

12
, j = N − 1.

(5.12)

We can also say for σ 6= 0:

sumj > max[
h2
jσ(2 + 3σ)

12
,
h2
jσ(2 + 3σ)L

12
]

=
h2
jσ(2 + 3σ)L

12
, for j = 1, 2, (5.13)

sumj ≥ max[
h2
j (1 + σ)

2
,
h2
j (1 + σ)L

2
]

=
h2
j (1 + σ)L

2
, for j = 3(1)N − 3, (5.14)

sumj > max[
h2
jσ(2σ + 3)

12
,
h2
jσ(2σ + 3)L

12
]

=
h2
jσ(2σ + 3)L

12
, for j = N − 2, N − 1. (5.15)
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Then, we use a result proved by Varga [33] for i = 1(1)N − 1,

Hi,j
−1 ≤ 1

sumj
, where Hi,j

−1 is the (i, j)thelement of H−1 (5.16)

By using (5.13)− (5.15), we have

1

sumj
≤


12

h2
j (3σ+2)σL

, j = 1, 2,

2
h2
j (σ+1)L

, j = 3(1)N − 3,

12
h2
j (2σ+3)σL

, j = N − 2, N − 1.

(5.17)

Now, we show that the error defined in equation (5.9) is bounded and is of order O(h3
j ).

For this, we define norm of H−1 and T̂ 3
j such that,

‖ Hj,i−1 ‖= max
j∈[1,N−1]

N−1∑
i=1

| Hj,i−1 |, also ‖ T ‖= max
j∈[1,N−1]

| T̂ 3
j | . (5.18)

Thus, using (5.3) and (5.16)− (5.18) we get the bound for the error term as follows:

‖ E ‖≤ O(h5
j )

12

h2
jLσ

(6σ3 + 18σ2 + 16σ + 5)

(6σ3 + 19σ2 + 19σ + 6)
= O(h3

j ). (5.19)

This proves the method (3.14) has third order convergence for BVPs (4.1)− (4.2).
Therefore, we can say that method (3.14) has third order convergence for BVP (1.1)−
(1.2). Similarly, method (3.13) has second order convergence.

6 Numerical Illustrations

We have solved seven problems. For quasi-variable mesh and uniform mesh, we have
tabulated root mean square errors and maximum absolute errors respectively in Tables
1-7. We have chosen h1 = (1−σ)

(1−σN )
, σ 6= 1. The remaining hj ’s are calculated by the

relation hj = σhj−1, j = 2(1)N − 1. Figures 1-7 presents the graphs of numerical
solution and the exact solution in case of fourth order method based on uniform mesh.
Related numerical results are provided in Table 1-7.

Gauss Elimination and Newton’s method for block elements has been used for
solving system of linear and nonlinear BVPs respectively with initial approximation
y0 = 0. The order of convergence (OC) for fourth order method based on uniform
mesh is also provided. Matlab 07 has been used for doing all calculations.

Problem 6.1 (Nonlinear boundary value problem)

d4y(x)

dx4
= 6e−4 y − 12

(1 + x)4
,

y(0) = 0, y(1) = .6931,
d2y

dx2
(0) = −1,

d2y

dx2
(1) = −.25.
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Table 1: Problem 6.1
Off-step mesh |

N Method1 Method2 | Uniform mesh method [29]
8 4.4398e-003 4.8610e-006 | 7.2499e-007 0.37e-005
16 2.0758e-003 1.2961e-006 | 4.6937e-008 0.29e-006
32 1.3702e-003 6.7628e-007 | 2.9600e-009 0.19e-007

The exact solution is given by y(x) = log(1 + x). In Table 1, results for quasi-variable
mesh taking σ = 0.9 and for uniform mesh is tabulated.

Problem 6.2 (Sixth order linear boundary value problem ):

d6y(x)

dx6
+ y(x) = 6(5 sin(x) + 2x cos(x)), x ∈ [0, 1]

y(0) = 0,
d2y

dx2
(0) = 0,

d4y

dx4
(0) = 0,

y(1) = 0,
d2y

dx2
(1) = 3.84416,

d4y

dx4
(1) = −14.42007.

The exact solution is y(x) = (x2 − 1) sin(x). In Table 2, results for quasi-variable
mesh taking σ = 0.9 and for uniform mesh is tabulated.

Problem 6.3 (Fourth order non linear boundary value problem)

d4y(x)

dx4
= 3(

dy

dx
)2 + 4.5y3, x ∈ [0, 1]

y(0) = 4,
d2y

dx2
(0) = 24, y(1) = 1,

d2y

dx2
(1) = 1.5e.

The exact solution is y(x) = 4
(1+2x+x2)

. In Table 3, results for quasi-variable mesh

taking σ = 0.9 and for uniform mesh is tabulated.

Figure 1: Exact solution vs Numerical solution in uniform mesh method
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Table 2: Problem 6.2
Off-step mesh |

N Method1 Method2 | Uniform mesh method [3] [26]

8 6.4952e-004 4.2946e-006 | 6.5901e-007 1.5379 e-006 8.1514e-005
16 5.9397e-004 9.9183e-007 | 4.1831e-008 1.9790 e-007 2.1052 e-005
32 5.1433e-004 4.7874e-007 | 2.6133e-009 4.0596 e-008 5.3084 e-006

Table 3: Problem 6.3
Off-step mesh |

N Method1 Method2 | Uniform mesh method [25]
8 1.2451e-003 8.4710e-005 | 2.2780e-005 1.44 e-003
16 2.7555e-004 2.1499e-005 | 1.5362e-006 9.33 e-004
32 4.0919e-004 9.7519e-006 | 9.8628e-008 5.90 e-005
64 3.1887e-004 6.4390e-006 | 6.2300e-009 3.69 e-006

Problem 6.4 (Sixth order non linear boundary value problem)

d6y(x)

dx6
= y2e−x, x ∈ [0, 1]

y(0) = 1, y(1) = e,

d2y

dx2
(0) = 1,

d2y

dx2
(1) = e,

d4y

dx4
(0) = 1,

d4y

dx4
(1) = e.

The exact solution is y(x) = ex. In Table 4, results for quasi-variable mesh taking
σ = 0.9 and for uniform mesh is tabulated.

Figure 2: Exact solution vs Numerical solution in uniform mesh method
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Table 4: Problem 6.4
Off-step mesh |

N Method1 Method2 | Uniform mesh method [14]
8 2.64952e-004 2.0457e-007 | 5.1651e-008 7.02e-006
16 5.9397e-004 4.9805e-008 | 3.2495e-009 4.35e-006
32 5.1433e-004 2.4007e-008 | 2.0334e-010 7.87e-007

Problem 6.5 (Fourth order non-linear singular boundary value problem)

x
d4y(x)

dx4
+

4d3y(x)

dx3
= xy2 − 4 cos(x)− xsin(x), x 6= 0.

The exact solution is y(x) = sin(x). In Table 5, results for quasi-variable mesh
taking σ = 0.9 and for uniform mesh is tabulated.

Figure 3: Exact solution vs Numerical solution in uniform mesh method

Figure 4: Exact solution vs Numerical solution in uniform mesh method
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Table 5: Problem 6.5
Off-step mesh |

N Method1 Method2 | Uniform mesh method OC
8 1.4374e-004 4.2067e-006 | 1.6791e-006 -
16 8.8426e-005 1.2629e-006 | 1.5413e-007 3.4455
32 5.7765e-005 6.0728e-007 | 1.2889e-008 3.5810
64 4.0494e-005 4.0146e-007 | 7.7938e-010 4.1476

Problem 6.6 (Sixth order non-linear singular boundary value problem)

x
d6y(x)

dx6
+ 6

d5y(x)

dx5
+ 2xy(x) = xey, x 6= 0.

The exact solution is y(x) = ex. In Table 6, results for quasi-variable mesh taking
σ = 0.9 and for uniform mesh is tabulated.

Table 6: Problem 6.6
Off-step mesh |

N Method1 Method2 | Uniform mesh method OC
8 6.1864e-004 5.6862e-007 | 4.5498e-007 -
16 3.1623e-004 1.4817e-007 | 3.7876e-008 3.5865
32 2.2083e-004 7.6631e-008 | 2.9520e-009 3.6815
64 2.0493e-004 6.7278e-008 | 2.2125e-010 3.7379

Figure 5: Exact solution vs Numerical solution in uniform mesh method
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Problem 6.7 (System of second order boundary value problem)

d2y(x)

dx2
+
dy(x)

dx
+ xy(x) +

dz(x)

dx
+ 2xz(x) = g1(x),

d2z(x)

dx2
+ z(x) + 2

dy(x)

dx
+ x2y(x) = g2(x),

y(0) = 0, z(0) = 1, y(1) = 0, z(1) = 1,

where g1(x) = −2 cos(x)(1 + x) + πcos(xπ) + 2xsin(xπ) + 2 sin(x)(2x − 2 − x2) ,
g2(x) = −4 cos(x)(x− 1) + 2 sin(x)(2− x2 + x3) + (1− π2) sin(xπ) and x ∈ [0, 1]. The
exact solution is y(x) = 2(1− x) sin(x), z(x) = sin(xπ).

Table 7: Problem 6.7
z | y

N [8] Uniform mesh method | [8] Uniform mesh method
.08 7.5e-004 3.5686e-007 | 2.2e-004 1.8284e-006
.24 8.2e-004 1.4754e-006 | 2.3e-004 2.0723e-006
.40 6.5e-004 2.5123e-006 | 2.3e-004 6.2430e-007
.56 2.8e-004 3.1366e-006 | 2.2e-004 3.9577e-006
.72 2.6e-004 2.9899e-006 | 2.6e-004 5.6498e-006
.88 8.0e-004 1.2382e-005 | 5.5e-004 3.9716e-006
.96 4.8e-004 1.4964e-006 | 3.1e-004 1.5857e-006

7 Final Remarks

In this paper, two methods of second and third order respectively have been developed
to solve singular BVPs both linear as well as nonlinear. For numerical illustration, we
have considered seven problems consisting of fourth and sixth order linear and nonlin-
ear BVPs. Table 1−4, 7 proves improvement in results when compared with problems

Figure 6: Exact solution vs Numerical solution in uniform mesh method
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solved by methods using extrapolation, polynomial and non polynomial splines and
also by using reproducing kernel space method.

In our methods minimal grid points i.e., three grid points at a time has been used
as compared to existing methods. Due to the use of three grid points, the numerical
scheme is converted to a tri-diagonal representation of system of difference equations
which can be easily solved by any standard method available in the literature. Also,
due to the use of off-step mesh, singularity has been controlled in singular BVPs.
We have also solved nonlinear singular BVP and so far such kind of BVP has not
been solved. Therefore, for such problems we have presented the numerical order of
convergence(OC) based on uniform mesh.

The methods developed are effective and straight forward and can be extended to
solve boundary value problems with cartesian as well as polar coordinates. Due to
the ability to operate with polar coordinate, many problems on fluid flow with polar
symmetry can be attended. Moreover, we can also use the methods to solve wide
variety of higher order singularly perturbed BVPs.
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Numerical study of the space fractional Burger’s

equation by using Lax-Friedrichs-implicit scheme

Swapnali Doley1,∗, A. Vanav kumar1 and L. Jino1,2

December 25, 2021

Abstract

This paper deals with the numerical solution of space fractional Burger’s
equation using the implicit finite difference scheme and Lax-Friedrichs-
implicit finite difference scheme respectively. The Riemann-Liouville based
fractional derivative (non-integer order) is fitted for the diffusion term of
fractional order 1.0 < α ≤ 2.0. The Mathematical induction is used to es-
timate a stability of both the implicit and Lax-Friedrichs-implicit schemes.
The study shows that the implicit based scheme is stable and the results
are good in agreement with the exact solution. Finally, the significance
of space fractional order with respect to the solution is discussed. It is
noted that the solution of space fractional Burger’s equation get affected
by changing the space fractional order.

Key words: Lax-Friedrichs, implicit scheme, fractional calculus, fi-
nite difference method

1

1 Introduction

Fractional Calculus plays an important role in various fields of science and engi-
neering. Examples include ground water flow modeling, electric circuit design,
quantum mechanics, optics, plasma model, dengue fever transmission dynamics
and atmospheric CO2 dynamics model [1, 2, 3, 4, 5]. Due to its wide applica-
tions, solving techniques of those fractional equations are extensively improved
by the researchers. For instance, Goswami et al. [6] used Homotopy perturba-
tion Sumudu transform for solving time-fractional regularized long wave equa-
tions. Later, they used the techniques to find the solutions for the time frac-
tional Schrdinger equations and fractional equal width equations (describes the
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hydro-magnetic waves) [7, 8]. Also, Goswami et al. [9] made a mixed approach
of Homotopy perturbation and Laplace transform to solve the fifth order KdV
equations in order to illustrate the plasma’s magneto-acoustic waves. Recently,
Hashmi et al. [10] used B-spline method to solve the fractional telegraph equa-
tion and quoted that the scheme is efficient. In numerical methods there are
numerous methods including finite difference method (FDM), finite element
method, finite volume method etc. Out of this methods FDM is a pioneering
tool used among the investigators. In the present investigation, we establish
two schemes namely the implicit FDM and Lax-Friedrichs implicit FDM for the
space fractional Burger’s equation (SFBE).

Fractional calculus application gives a real system better than integer-order.
The Burger’s equations arises in various domain such as fluid and gas dynam-
ics, theory of shock waves, traffic flow, etc [11, 12, 13, 14]. Many researchers
have applied various analytical techniques, numerical algorithms/schemes for
extracting the solution for the Burger’s equation. The exact solution and ex-
plicit FDM solutions for the 1-D Burger’s equation was surveyed by Kutluay
et al. [15]. Aksan and Ozdes [16] constructed variational method for solving
the Burger’s equation. Inan and Bahadir [17] converted non-linear Burger’s
equation into linear using Hopf-Cole transformation and obtained Numerical
solution (NS) using explicit exponential FDM. Pandey et al. [18] coupled Hopf-
Cole transformation and Douglas FDM to get the NS with accuracy of second
order in time and fourth order in space.

Zhang et al.[19] used the implicit FDM to solve the fractional convection-
diffusion equation. It is found that the NS is unconditionally stable. Sousa [20]
obtained the NS for the fractional advection diffusion equation using explicit-
central difference FDM, explicit-upwind FDM and Lax-Wendroff FDM. The
study consider Riemann-Liouville fractional derivative for space fractional and
Caputo fractional derivative for the time derivative. The result shows that all
the explicit FDM schemes are stable under restricted conditions. Later, Sousa
[21] presented the explicit-Lax-Wendroff method for the Riemann-Liouville deriva-
tive based space fractional advection diffusion equation. The study illustrates
that the scheme is second order accurate and conditionally stable. Bekir and
Gnerb [22] and Das et al. [23] used (G’/G) expansion method to solve the mod-
ified Riemann-Liouville derivative based fractional Burger’s equation. Esen and
Tasbozan[24] solved the time fractional Burger’s equation by applying the B-
spline quadratic Galerkin method. Moreover, Esen and Tasbozan[25] used finite
element method based cubic B-spline for the time fractional Burger’s equation.
They also compared the NS with the various exact solutions (ES) and found
that the scheme is stable and accurate. Rawashdeh [26] proposed a new scheme
named the fractional reduced differential transform to solve the TFBE. It is
noted that the proposed scheme is accurate and good comparable with the ES.
Yokus [27] studied the FDM based NS with respect to the fractional derivatives
such as Caputo, shifted Grunwald and Riemann-Liouville and obtained the solu-
tions using the software Mathematica 11. Saad and Eman[28] have applied the
variational iteration method (VIM) for the Riemann-Liouville based fractional
Burger’s equation and compared the results with the ES.
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In this work, we propose a numerical solution based on implicit FDM scheme
and Lax-Friedrichs FDM scheme to solve a non-linear SFBE. Generally, the
Lax-Friedrichs method is used for achieving the solutions for a hyperbolic based
PDE’s [29]. In general, an implicit scheme is the most well-known schemes for
approximating the PDEs. This paper presents an approximation based on Lax-
Friedrichs-implicit FDM to non-linear SFBE with appropriate initial/boundary
conditions. The stability of a proposed scheme is analysed along with the nu-
merical results.

2 Mathematical equation

Time fractional Burgers’ equation was discussed in the articles [16, 24, 25, 26].
Following their study, we consider the non-linear SFBE as,

∂u(x, t)

∂t
+ u

∂u(x, t)

∂x
= µ

∂αu(x, t)

∂xα
, (x, t) ∈ [a, b]× (0, Tmax] (2.1)

included with initial values

u(x, 0) = u0(x) (2.2)

and respective boundary values

u(0, t) = h1(t);u(1, t) = h2(t), t ∈ [0, T ] (2.3)

where µ > 0 is kinematic viscosity, u0(x) , h1(t) and h2(t) are specified bound-
aries. u(x) is unknown functional.

To solve the SFBE in this work, let us consider the Riemann-Liouville frac-
tional derivatives [20, 21, 30].

(0D
α
x )u(x, t) =

1

Γ(r − α)

dr

dxr

∫ x

L

u(t)

(x− t)α−r+1
dt, α > 0 (2.4)

where Γ (.) is the Gamma function.
For space fractional derivative (0D

α
x)u (x, t), we taken the Grunwald and

shifted-Grunwald formula at level tn+1 [31].

∂αu(x, t)

∂xα
=

1

hα

i+1∑
j=0

gαj u
k+1
i−j+1+O (h) (2.5)

where gαj =
α (α− 1) . . . .(α− k + 1)

j!
,

We can express, gα0 = 1, . . . , gαj =

(
1− α

j

)
gαj−1, j = 1, 2, 3, . . . .
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2.1 Implicit scheme

The implicit scheme is one of the more accurate scheme for a non-linear Burger’s
equation [32]. Here, we consider a same for SFBE due to its stability than the
explicit scheme [21, 31, 33, 34].

Let u(xi, tk) is denoted as uki . Define, tk = kτ, k = 0, 1, 2, ...., n; xi =
ih, i = 0, 1, 2, ....,m. Here, h = L/m is the step size on space and τ = T/n is
the step size on time respectively. Now,let us consider the nonlinear term,
uk+1uk+1

x by denoting it on Taylor expansion using the explicit time layer. We
approximate the equation (2.1) by using an implicit FDM and approximated
Riemann-Liouville derivatives equation (2.5) in space fractional viscous terms
as follows.

(uk+1
i − uki )

τ
+
uki
2

(
uk+1
i+1 − u

k+1
i−1

2h

)
+
uk+1
i

2

(
uki+1 − uki−1

2h

)
=

µ

hα

i+1∑
j=0

gαj u
k+1
i−j+1

(2.6)

(
uk+1
i − uki

)
+ τ

uki
2

(
uk+1
i+1 − u

k+1
i−1

2h

)
+ τuk+1

i

(
uki+1 − uki−1

4h

)
= τ

µ

hα

i+1∑
j=0

gαj u
k+1
i−j+1

(2.7)

−τ
(
uki
4h

+
µ

hα
gα2

)
uk+1
i−1 +

(
1 +

τ
(
uki+1 − uki−1

)
4h

− µτ

hα
gα1

)
uk+1
i

+τ

(
uki
4h
− µ

hα
gα0

)
uk+1
i+1 − τ

µ

hα

i+1∑
j=3

gαj u
k+1
i−j+1 = uki

(2.8)

When k = 0,

−τ
(
u0i
4h

+
µ

hα
gα2

)
u1i−1 +

(
1 +

τ
(
u0i+1 − u0i−1

)
4h

− µτ

hα
gα1

)
u1i

+τ

(
u0i
4h
− µ

hα
gα0

)
u1i+1 − τ

µ

hα

i+1∑
j=3

gαj u
1
i−j+1 = u0i

(2.9)

When k ≥ 1,

−τ
(
uki
4h

+
µ

hα
gα2

)
uk+1
i−1 +

(
1 +

τ
(
uki+1 − uki−1

)
4h

− µτ

hα
gα1

)
uk+1
i

+τ

(
uki
4h
− µ

hα
gα0

)
uk+1
i+1 − τ

µ

hα

i+1∑
j=3

gαj u
k+1
i−j+1 = uki

(2.10)
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Rewriting above equation, we get

aki u
k+1
i−1 + bki u

k+1
i + cki u

k+1
i+1 = uki + dki (2.11)

where, aki = −τ
(
uki
4h

+
µ

hα
gα2

)
, bki =

(
1+

τ
(
uki+1 −uki −1

)
4h

−µτ
hα
gα1

)
, cki =

τ

(
uki
4h
− µ

hα
gα0

)
, dki = τ

µ

hα
∑i+1
j=3 g

α
j u

k+1
i−j+1

The boundary/initial conditions are,

u0i = u (ih) , uk0 = h1 (t) , ukm = h2 (t)

where k = 0, 1, 2, ..., n, i = 0, 1, 2, ....,m. The truncation error is
O
(
τ2, h2

)
.

2.1.1 Stability analysis - implicit FDM

Let us investigate the stability of the numerical implicit scheme (2.8) by using
von-Neumann analysis. Let Ukj is the ES of u(x, t) at the point (xj , tk). Define

ekj = Ukj − u
k

j
(2.12)

Then, by substituting Equation (2.12) into Equation (2.11),we have

aki e
k+1
i−1 + bki e

k+1
i + cki e

k+1
i+1 = eki + dki (2.13)

We put eki = ρk eipjh (i =
√
−1), in equation (2.6) and p is the wave number.

ρk+1

[
τ

(
ρk eipjh

2h

)
isin (ph) +

(
1 +

τ
(
isin (ph) ρk

)
2h

)
− τ µ

hα

i+1∑
r=0

gαj e
ip(1−r)h

]
= ρk

(2.14)

ρk+1

ρk
=

1[
τ

(
ρk eipjh

2h

)
isin (ph) +

(
1 +

τ
(
isin (ph) ρk eipjh

)
2h

)
− τ µ

hα
∑i+1
r=0 g

α
j e

ip(1−r)h

]
≤ 1

(2.15)

It is obvious that the above scheme is unconditionally stable.
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2.2 Lax-Friedrichs Scheme

As a result of its application to a nonlinear space fractional problem and the
dissipative nature of the solution, the Lax-Friedrichs scheme is considered to
be a classic first-order method. The Lax-Friedrichs scheme of the fractional
equation (2.1) is approximated by as below:

uk+1
i −1

2

(
uki−1 + u

k

i+1

)
τ

+
uki
2

(
uk+1
i+1 − u

k+1
i−1

2h

)
+
uk+1
i

2

(
uki+1 − uki−1

2h

)

=
µ

hα

i+1∑
j=0

gαj u
k+1
i−j+1

(2.16)

−τ(
uk

4h
)uk+1
i−1 + (1 +

τ(uki+1 − uki−1)

4h
)uk+1
i +τ

(
uk

4h

)
uk+1
i+1−τ

µ

hα

i+1∑
j=0

gαj u
k+1
i−j+1

=
1

2

(
uki−1 + u

k

i+1

)
(2.17)

When k = 0

−τ(
u0

4h
)u1i−1 + (1 +

τ(u0i+1 − u0i−1)

4h
)u1i + τ(

u0

4h
)u1i+1 − τ

µ

hα

i+1∑
j=0

gαj u
1
i−j+1

=
1

2
(u0i−1 + u0i+1)

(2.18)

When k ≥ 1

−τ(
uk

4h
)uk+1
i−1 + (1 +

τ(uki+1 − uki−1)

4h
)uk+1
i + τ(

uk

4h
)uk+1
i+1 − τ

µ

hα

i+1∑
j=0

gαj u
k+1
i−j+1

=
1

2
(uki−1 + uki+1)

(2.19)

2.2.1 Stability Analysis - Lax-Friedrichs-implicit FDM

Let us consider the von-Neumann based method in preparation for estimating
the stability of Lax-Friedrichs implicit scheme for SFBE. Let Uki be the approx-
imate solution of fractional schemes (2.17).

eki = Uki − uki (2.20)
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Define, eki = ρkeipjh(i =
√

(−1) in Eq. (2.17), We get

ρk+1

[
τ

(
ρkeipjh

2h

)
isin (ph) +

(
1+

τ
(
isin (ph) eipjh ρk

)
2h

)
−τ µ

hα

i+1∑
r=0

gαj e
ip(1−r)h

]
=
(
ρk cos(ph)

)
(2.21)

ρk+1

ρk
=

cos(ph)[(
1+

τ
(
isin (ph) eipjh ρk

)
2h

)
+ τ

(
ρkeipjh

2h

)
isin (ph) −τ µ

hα
∑i+1
r=0 g

α
j e

ip(1−r)h

]
(2.22)

We know, the value of the sin (ph) and cos (ph) ≤ 1

3 Numerical Results

The verification of NS and accuracy of the schemes (implicit FDM and Lax-
Friedrichs-implicit FDM) are illustrated in this section. In addition, the be-
havior of the solution with respect to change in the parameters are considered.
This types of Burger’s equation are used in predicting the important real world
applications such as fluid flow, contaminant flow, boundary layer flow, aquifer
flow, etc.

The accuracy of the FDM based schemes are measured using the L∞ error
norm, which is defined below:

L∞ =‖ Uk − uN ‖∞= Maxj |Uk − (uN )j | (3.1)

where Uk and uN denotes the ES and NS respectively at the node points xk,
for some fixed time.

3.1 Example 1

Consider the space fractional Burger’s equation with source term to find error
values as follows:

∂u(x, t)

∂t
+ u

∂u(x, t)

∂x
=
∂αu(x, t)

∂xα
+ f(x, t), (x, t) ∈ [a, b]× (0, Tmax] (3.2)

with initial and boundary conditions as

u (x, 0) = x; and u (0, t) = 0; u (1, t) =
1

1 + t

The exact solution [27]
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(𝑎) (𝑏)

Figure 1: Comparison of (a). ES and (b). NS

u (x, t) =
x

1 + t
(3.3)

and the respective source term is,

f (x, t) = − 1

1 + t
.

1

Γ (2− α)
µx1−α (3.4)

Table 1: Comparison the Maximum errors (L∞) between ES and NS
τ α implicit FDM Lax-Friedrichs FDM
1/100 1.9 6.68689189E − 03 4.27211449E − 03
1/100 1.7 1.03293294E − 02 9.42116044E − 03
1/100 1.5 1.12734595E − 02 1.07855788E − 02
1/100 1.3 1.18441200E − 02 1.14968475E − 02
1/100 1.1 1.22581907E − 02 1.18474280E − 02
1/1000 1.9 3.30544871E − 03 1.65415841E − 03
1/1000 1.7 9.85641548E − 03 7.98325112E − 03
1/1000 1.5 9.89541454E − 03 9.75634282E − 03
1/1000 1.3 9.90254650E − 03 9.76487132E − 03
1/1000 1.1 9.91051481E − 03 9.80037527E − 03

The verification of NS for the SFBE (2.18) with the ES is illustrated in the
Fig. 1. The comparison is done against the time, t = 0 to 1 and space, x = 0 to
1. Both the NS and ES are good in comparable. Also, the Table. 3.1 shows the
L2 between the ES and NS. It is found that the Lax-Friedrichs-implicit FDM
has lesser L2 than the implicit FDM for every α.
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(𝑎) (𝑏)

Figure 2: variation of U at (a) µ = 0.1 (b) µ = 1.0

3.2 Example 2

Also, consider the SFBE without source term to find the characteristics of NS
as

∂U(x, t)

∂t
+ u

∂U(x, t)

∂x
= µ

∂αU(x, t)

∂xα
(3.5)

with initial and boundary conditions as

U (x, 0) = 0; U (0, t) = 1; U (1, t) = 0

Figure 2 shows the variation of U with respect to the space fractional pa-
rameter (α) and space coordinates (x) at kinematic viscosity µ = 0.1 and 1.0
respectively. It is noted that, by increasing the parameter α, U decreases its
intensity and travelling distance along the space.

4 Conclusion

The NS of SFBE has been evaluated by using implicit and Lax-Friedrichs-
implicit FDM respectively. It is noted that both the implicit scheme is un-
conditionally stable and are good in agreement with the ES. It is found that L2

of the Lax-Friedrichs-implicit is lesser than the implicit FDM. Also, it is found
that the variation in space fractional order strongly affects the flow character-
istics.
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Optimal Control of two-strain typhoid

transmission using treatment and proper

hygiene/sanitation practices

Tsegaye Kebede Irena1, Sunita Gakkhar
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Abstract

A mathematical model is developed to predict the optimum level of
measures required to control a two-strain typhoid infection. The model
considers symptomatic individuals and carriers together with environmen-
tal bacteria with different sensitivities to antimicrobials. Treatment for
symptomatic individuals in each strain and use of sanitation and proper
hygiene practices are considered as control measures. Our simulation re-
sults show that combining the three control interventions highly influ-
enced the number of symptomatic individuals and environmental bacteria
in both the strains. However, there are still a significant number of asymp-
tomatic carriers in both the strains. This result shows that combating a
two-strain typhoid infection requires some control interventions that re-
duce the number of asymptomatic carriers to near zero, along with optimal
treatment combined with proper hygiene/sanitation practices. Further,
efficiency analysis is used to investigate the impact of each control strat-
egy on reducing the number of infected individuals and bacteria in both
the strains. The study result suggests that implementing the combination
of all the three control interventions is the most effective control strategy.

Key words: Salmonella Typhi; Two-strain typhoid infection; Asymp-
tomatic carriers; Efficiency analysis
Mathematics Subject Classification(2010): 44A15; 46F12; 54B15;
46F99

1

1 Introduction

Typhoid, a disease caused by Salmonella Typhi bacteria, is a significant cause
of illness and death in low-resource regions worldwide, especially Sub-Saharan
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Africa and South/Southeast Asia [1]. It is a severe febrile illness often accom-
panied by headache, loss of appetite, malaise, abdominal pain, diarrhea, and
(in severe cases) intestinal perforation and neurological complications [2]. It is
estimated to cause nearly 12 million cases and over 128 000 deaths globally each
year [6]. It is estimated that the case fatality rate for untreated patients ranges
between 10 and 20%, but drops to 1–4% with appropriate and timely antimicro-
bial treatment [4, 3, 5]. The infection is usually spread through contaminated
food and water from the environment and direct contact with an infected person
[7, 8].

Typhoid fever can be prevented and controlled through public health inter-
ventions such as providing safe drinking water, promoting hygiene and sanita-
tion, and ensuring adequate and timely patient care. Antimicrobial treatment
is the cornerstone for reducing severe illness and even death. However, misuse
of antimicrobials for treatment leads to the emergence of resistant strains of
Salmonella Typhi, known as treatment-induced acquired resistance [9, 10]. In
typhoid endemic areas, clinicians frequently prescribe antimicrobials to patients
with suspected typhoid without blood culture confirmation. This practice re-
sults in delayed treatment leading to the development of antimicrobial resistance
[3, 11, 12, 13]. Treatment-induced acquired resistance has complicated treat-
ment, increasing morbidity and mortality, and is considered one of the most
significant challenges in managing the disease [14, 15].

In existing litrature, several typhoid epidemiological models have been devel-
oped and analyzed to better understand the transmission dynamics of typhoid
[16, 17, 18, 19, 20, 21, 22, 23]. Among them, only a few have explored the
effect of control strategies for typhoid with optimal control theory [16, 17]. Op-
timal control theory is a mathematical optimization that deals with finding a
control for a dynamical system over a period of time. Although the impor-
tance of optimal control theory in epidemiology is well recognized, its applica-
tions in typhoid dynamics are scarce. No attempts have been made to predict
the optimal level of control measures required to combat a two-strain typhoid
infection. Our aim is to investigate the optimal control strategies in a two-
strain dynamic model involving antimicrobial-sensitive and resistant strains of
typhoid. A mathematical model for a two-strain typhoid dynamics is explored
considering treatment-induced acquired resistance and re-infection [24]. Three
time-dependent controls are introduced in this model to explore the optimal
control strategy for controlling the disease.

The paper is organized as follows: In Section 2, the model in [24] is modified
by adding three time-dependent controls u1(t), u2(t) and u3(t), and three posi-
tive parameters ϵ, b1 and b2. Also, a description of these parameters is given. In
Section 3, a mathematical analysis of the time-dependent model is performed.
In Section 4, numerical simulations and discussions of the corresponding results
are presented. A short conclusion of the study is made in Section 5.
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2 Model with controls

The mathematical model developed by Irena and Gakkhar [24] is considered to
investigate the infection dynamics in a two-strain typhoid disease. The state
variables Ij , Cj , and Bj represent the number of symptomatic infectious indi-
viduals, asymptomatic carriers, and bacteria for the strain j, respectively, while
S represents the susceptible individuals. The model presented in [24] is

dS
dt = π − µS − (λ1 + λ2)S + (1− p)r1I1 + r2I2
dI1
dt = (1− α)[λ1S − ψλ2I1]− (µ+ d1 + r1)I1 + ϕ1C1

dC1

dt = αλ1S − ψλ2C1 − (µ+ ϕ1)C1

dB1

dt = δ1I1 + ω1C1 − ξ1B1

dI2
dt = (1− α)λ2[S + ψ(I1 + C1)] + pr1I1 − (µ+ d2 + r2)I2 + ϕ2C2

dC2

dt = αλ2(S + ψC1)− (µ+ ϕ2)C2

dB2

dt = δ2I2 + ω2C2 − ξ2B2

(2.1)

where

λj =
βj(Ij + θCj)

N
+ ηf(B)gj(B)

and j = 1, 2 represent the sensitive and resistant strains, respectively.
On the basis of sensitivity analysis of the model, three time-dependent con-

trols are introduced in the model: (i) treatment of the symptomatic individuals
in each strain (u1(t), u2(t)), which were constant parameters in our previous
work [24], and (ii) proper hygiene/sanitation practices in order to prevent con-
tamination of food and water to reduce both direct and environmental trans-
mission (u3(t)). The first two controls, u1 and u2, also decrease the bacteria
excretion of symptomatic individuals in both strains so that the bacteria shed-
ding rates by symptomatic individuals δ1 and δ2 in model (2.1) are replaced by
(1− (1− p)u1)δ1 and (1− ϵu2)δ2, respectively. The parameter ϵ represents the
efficacy of treatment for symptomatic individuals with resistant strain. Also,
the second control u3 increases the decay rate of bacteria so that the bacteria
decay rates ξ1 and ξ1 are replaced by ξ1 + b1u3 and ξ2 + b2u3, respectively.
The parameters b1 and b2 denote the bacteria decay rates (sensitive and AMR
strains, respectively) induced by sanitation and proper hygiene practices. The
schematic diagram in Figure 1 shows the transmission dynamics of the time-
dependent model. Thus, the resulting dynamic model is given by the following

3
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Figure 1: Flow diagram of the model.

system of nonlinear ODEs:

dS
dt = π − µS − (1− u3)(λ1 + λ2)S + (1− p)u1I1 + ϵu2I2
dI1
dt = (1− u3)(1− α)[λ1S − ψλ2I1]− (µ+ d1 + u1)I1 + ϕ1C1

dC1

dt = (1− u3)[αλ1S − ψλ2C1]− (µ+ ϕ1)C1

dB1

dt = δ1(1− (1− p)u1)I1 + ω1C1 − (ξ1 + b1u3)B1

dI2
dt = (1− α)(1− u3)λ2[S + ψ(I1 + C1)] + pu1I1

−(µ+ d2 + ϵu2)I2 + ϕ2C2

dC2

dt = (1− u3)αλ2(S + ψC1)− (µ+ ϕ2)C2

dB2

dt = δ2(1− ϵu2)I2 + ω2C2 − (ξ2 + b2u3)B2

(2.2)

The model is associated with the nonnegative initial conditions:

S(0), Ij(0), Cj(0), Bj(0) for j = 1, 2.

The description of the associated model parameters are given in Table 1 and
are assumed to be nonnegative.

4
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Table 1: Description the model parameters.
Parameter Description

α Fraction of newly infected individuals who becomes asymp-
tomatic carriers

β1, β2 Ingestion rate of sensitive and resistant strains of bacteria
through human-to-human interaction

δ1, δ2 Shedding rate of bacteria by symptomatic cases with sensitive
and resistant strains

ϵ Efficacy of treatment of symptomatic individuals with resistant
strain

η Ingestion rate of bacteria from the contaminated environment
θ Relative infectiousness of asymptomatic carriers
µ Natural mortality rate of human population

ξ1, ξ2 Decay rate of sensitive and resistant strains of bacteria in the
environment

π Influx rate of individuals into susceptible class
ϕ1, ϕ2 Symptoms development rate by asymptomatic carriers with

sensitive and resistant strains
ψ Factor reducing the risk of re-infection with resistant strain

due to activates of immune cells to the previous infection with
a sensitive strain

ω1, ω2 Shedding rate of bacteria by asymptomatic carriers with sen-
sitive and resistant strains

b1, b2 Sanitation-induced bacteria decay rates (sensitive and resistant
strains)

d1, d2 Disease-induced death rate for symptomatic cases with sensi-
tive and resistant strains

p Fraction of those symptomatic individuals infected with a sen-
sitive strain who acquire treatment-induced resistance

The objective functional to be minimized is

J(u1, u2, u3) =

∫ T

0

 2∑
i=1

Ai(Ii + Ci) +A3

2∑
j=1

Bj +
1

2

3∑
k=1

Dku
2
k

 dt (2.3)

subject to the state system (2.2), where Ai and Di (i = 1, 2, 3) are appropriate
weight constants. The aim is to minimize the total number of infective individ-
uals as well as bacteria while keeping the implementation cost of the strategies
associated to the controls low.
We seek to find an optimal control triplet (u∗1, u

∗
2, u

∗
3) such that

J(u∗1, u
∗
2, u

∗
3) = min

Ω
J(u1, u2, u3)

where
Ω =

{
(u1, u2, u3) ∈ L1(0, T ) | 0 ≤ ui ≤ 1, i = 1, 2, 3

}
5
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is the control set.

3 Optimal control analysis

The existence of optimal control triplet (u∗1, u
∗
2, u

∗
3) is guaranteed due to a priori

boundedness of the state solutions, convexity of the integrand of J on Ω, and
the Lipschitz property of the state system [25].

The necessary conditions that an optimal solution must satisfy come from
Pontryagin’s Maximum Principle [26]. This principle converts (2.2) and (2.3)
into a problem of minimizing pointwise a Hamiltonian H with respect to u1, u2
and u3:

H = A1(I1 + C1) +A2(I2 + C2) +A3(B1 + B2) +
D1

2
u21 +

D2

2
u22 +

D3

2
u23

+λ1[π − µS − (1− u3)(λ1 + λ2)S + (1− p)u1I1 + ϵu2I2]

+λ2[(1− u3)(1− α)(λ1S − ψλ2I1)− (µ+ d1 + u1)I1 + ϕ1C1]

+λ3[(1− u3)(αλ1S − ψλ2C1)− (µ+ ϕ1)C1]

+λ4[δ1(1− (1− p)u1)I1 + ω1C1 − (ξ1 + b1u3)B1] (3.1)

+λ5[(1− u3)(1− α)λ2(S + ψ(I1 + C1)) + pu1I1

−(µ+ d2 + ϵu2)I2 + ϕ2C2]

+λ6[(1− u3)αλ2(S + ψC1)− (µ+ ϕ2)C2]

+λ7[δ2(1− ϵu2)I2 + ω2C2 − (ξ2 + b2u3)B2]

where λi, i = 1, 2, ..., 7 are the adjoint functions.
By applying Pontryagin’s Maximum Principle [26] and the existence result

for the optimal control triplet from [25], the following adjoint system is obtained

6
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together with transversality conditions λk(T ) = 0:

dλ1
dt

=
1

B1 + B2

× [(1− u3)ηf(B)((λ1 − (1− α)λ2 − αλ3)B1 + (λ1 − (1− α)λ5 − αλ6)B2)

+ µ(B1 + B2)λ1]

+
(1− u3)

N2
[B1(λ1 − (1− α)λ2 − αλ3)(I1 + θC1)(I1 + C1 + I2 + C2)]

+
β2(1− u3)(I2 + θC2)

N2
[(λ1 − (1− α)λ5 − αλ6 + (λ5 − λ2)(1− α)ψ)I1

+ (λ1 − (λ5(1− α) + αλ− 6)(1− ψ)− ψλ3)C1

+ (λ1 − (1− α)λ5 − αλ6)I2 + (λ1 − (1− α)λ5 − αλ6)C2],

dλ2
dt

=−A1 − [(1− p)u1 − S(1− u3)
β1(S + (1− θ)C1 + I2 + C2)− β2(I2 + θC2)

N2
]λ1

+ (µ+ d1 + u1)λ2

− (1− u3)(1− α)[
β1S(S + (1− θ)C1 + I2 + C2)

N2
− β2ψ(S + C1 + I2 + C2)(I2 + θC2)

N2

− ψηf(B)B2

B1 + B2
]λ2 − (1− u3)[

αβ1S(S + (1− θ)C1 + I2 + C2)

N2
+
β2ψC1(I2 + θC2)

N2
]λ3

− (1− u1)δ1λ4 − pu1λ5

− (1− u3)(1− α)[
β2(I2 + θC2)(S(ψ − 1) + ψ(I2 + C2))

N2
+
ψηf(B)B2

B1 + B2
]λ5

+
(1− u3)αβ2(S + ψC1)(I2 + θC2)

N2
λ6,

dλ3
dt

=−A1 + S(1− u3)
β1(−I1 + θ(S + I1 + I2 + C2))− β2(I2 + θC2)

N2
λ1 + (µ+ ϕ1)λ3

+ [(1− u3)(1− α)
β1S(−I1 + θ(S + I1 + I2 + C2)) + β2ψI1(I2 + θC2)

N2
+ ϕ1]λ2

− (1− u3)
αβ1S(−I1 + θ(S + I1 + I2 + C2))− β2ψ(I2 + θC2)(S + I1 + I2 + C2)

N2
λ3

+ (1− u3)
ψηf(B)B2

B1 + B2
λ3 − ω1λ4

− (1− u3)(1− α)[
β2(I2 + θC2)(S(ψ − 1) + ψ(I2 + C2))

N2
+
ψηf(B)B2

B1 + B2
]λ5

− (1− u3)α[
β2(I2 + θC2)(S(ψ − 1) + ψ(I1 + I2 + C2))

N2
+
ψηf(B)B2

B1 + B2
]λ6,

7
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dλ4
dt

=−A3 +
(1− u3)ηS

(1 + B1)2(1 + B2)
λ1 + (ξ1 + b1u3)λ4

− (1− u3)ηf(B)B2

(B1 + B2)2
[(1− α)((S + ψI1)λ2 − (S + ψ(I1 + C1))λ5)

+ (αS + ψC1)λ3 − α(S + ψC1)λ6]− (1− u3)η[
B1S((1− α)λ2 + αλ3)

(1 + B1)2(1 + B2)(B1 + B2)

+
B2{−ψC1λ3 + αλ6(S + ψC1) + ψ(−1 + α)λ2I1 + (1− α)λ5 (S + ψ(C1 + I1))}

(1 + B1)2(1 + B2)(B1 + B2)
],

dλ5
dt

=−A2 − [u2 + S(1− u3)
β1(I1 + θC1)− β2(S + I1 + C1 + (1− θ)C2)

N2
]λ1

+ (1− u3)(1− α)
β1S(I1 + θC1) + β2ψI1(S + I1 + C1 + (1− θ)C2)

N2
λ2

+ (1− u3)
β1αS(I1 + θC1) + β2ψC1(S + I1 + C1 + (1− θ)C2)

N2
λ3

+ [(µ+ d2 + u2)−
(1− u3)(1− α)(S + I1 + C1 + (1− θ)C2)(S + ψ(I1 + C1))β2

N2
]λ5

− (1− u3)α(S + ψC1)(S + I − 1 + C1 + (1− θ)C2)β2
N2

λ6 − (1− ϵu2)δ2λ7,

dλ6
dt

=−A2 + S(1− u3)
β2(−I2 + θ(S + I1 + C1 + I2))− β1(I1 + θC1)

N2
λ1

+ (1− u3)(1− α)
β1S(I1 + θC1) + β2ψI1(−I2 + θ(C1 + S + I1 + I2))

N2
λ2

+ (1− u3)
αβ1S(I1 + θC1) + β2ψC1(−I2 + θ(S + I1 + C1 + I2))

N2
λ3

− [
(1− u3)(1− α)(S + ψ(I1 + C1))(−I2 + θ(S + I1 + C1 + I2))β2

N2
+ ϕ2]λ5 + (µ+ ϕ2)λ6

− (1− u3)α(S + ψC1)(−I2 + θ(S + I1 + C1 + I2))β2
N2

λ6 − ω2λ7,

dλ7
dt

=−A3 +
(1− u3)ηS

(1 + B1)(1 + B2)2
λ1 + (ξ1 + b1u3)λ4

− (1− u3)ηf(B)B1

(B1 + B2)2
[(1− α)((S + ψI1)λ2 − (S + ψ(I1 + C1))λ5)

+ (αS + ψC1)λ3 − α(S + ψC1)λ6]− (1− u3)η[
B1S((1− α)λ2 + αλ3)

(1 + B1)(1 + B2)2(B1 + B2)

+
B2{−ψC1λ3 + αλ6(S + ψC1) + ψ(−1 + α)λ2I1 + (1− α)λ5(S + ψ(C1 + I1))}

(1 + B1)(1 + B2)2(B1 + B2)
]

(3.2)

8
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Furthermore, the optimal control characterization is

u∗1 = max

{
0,min

(
(λ2 + (1− p)(δ1λ4 − λ1)− pλ5)I

∗
1

D1
, 1

)}
u∗2 = max

{
0,min

(
ϵ(λ5 + δ2λ7 − λ1)I

∗
2

D2
, 1

)}
(3.3)

u∗3 = max {0,min (ũ3, 1)}

where

ũ3 =
ηf(B)
D3

[−λ1S∗ +
S∗B∗

1(1− α)λ2 + αλ3
B∗
1 + B∗

2

+
B∗
2 (ψ(1− α)(λ5 − λ2)I

∗
1 + ((1− α)λ5 + αλ6)(S

∗ + ψC∗
1 )− ψλ3C

∗
1 )

B∗
1 + B∗

2

]

+
b1λ4B∗

1 + b2λ7B∗
2

D3
− β1
D3N∗ (I

∗
1 + θC∗

1 )(λ1 − λ2 + α(λ2 − λ3))S
∗

− β2
D3N∗ (I

∗
2 + θC∗

2 )[λ1S
∗ + ψλ3C

∗
1 + (S∗ + ψC∗

1 )(−λ5 + α(λ5 − λ6))

+ψ(1− α)(λ2 − λ5)I
∗
1 ].

4 Numerical results

This section presents the numerical simulation results by solving the optimality
system, which comprises the state system (2.2), adjoint system (3.2), control
characterization (3.3), and corresponding initial and final conditions, using the
forward-backward sweep method [27, 28].

For numerical simulations, we consider the model parameter values presented
in Table 2.

Table 2: Model parameter values used in numerical simulations [24], the unit is
per week if appropriate.
α = 0.3 β1 = 0.006 β2 = 0.0052 δ1 = 1.0
δ2 = 1.05 η = 1.379× 10−10 θ = 0.35 µ = 0.0005
ξ1 = 0.2415 ξ2 = 0.2415 π = 105/52 ϕ1 = 0.00096
ϕ2 = 0.0017 ψ = 0.95 ω1 = 0.05 ω2 = 0.06
d1 = 0.00125 d2 = 0.002 p = 0.1

Additionally, the following parameter values are chosen:

A1 = A2 = 10, A3 = 25, D1 = 5, D2 = 8, D3 = 10, b1 = 0.2, b2 = 0.1,

ϵ = 0.75, T = 100 weeks.

The following control strategies are explored in order to determine the optimum
strategy that significantly reduces typhoid transmission:

9
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A: Treatment of the symptomatic individuals in each strain (u1, u2) only;

B: Employing sanitation and proper hygiene (u3) only;

C: Employing all the three control interventions (u1, u2, u3).

The control profile for each control strategy is shown in Fig. 2, and the effect
of each control strategy on the reduction of infection is depicted in Fig. 3.

(a) (b)

(c)

Figure 2: Control profile for (a) optimal treatment only, (b) optimal sanitation
and proper hygiene only, and (c) optimal treatment combined with sanitation
and proper hygiene

Our simulation results reveal that the combination of all control interventions
highly influenced the symptomatic individuals and environmental bacteria in
both the strains. However, there are still a significant number of asymptomatic
carriers in both the strains, which play an important role in the evolution and
transmission of typhoid infections. This reflects that asymptomatic carriers may
have long-term impacts on the spread of typhoid infection even in the presence
of the two control interventions.

4.1 Efficiency analysis

Here an efficiency analysis is performed to determine the best control strategy
without considering costs associated with each control strategy [29, 30]. So, we

10

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 30, NO.2, 2022, COPYRIGHT 2022 EUDOXUS PRESS, LLC

364 Tsegaye Kebede Irena 355-369



(a) (b)

(c) (d)

(e)   (f)

Figure 3: Effect of each control strategy on reducing the number of infectious
humans and bacteria: (a) Symptomatic individuals with sensitive strain, (b)
Asymptomatic carriers with sensitive strain, (c) Symptomatic individuals with
resistant strain, (d) Asymptomatic carriers with resistant strain, (e) Sensitive
strain of bacteria in the environment, (f) Resistant strain of bacteria in the
environment

investigate the impact of each control strategies on the reduction of infectious
humans and bacteria by introducing the efficiency index, F. The efficiency index
for human and bacteria population in the strain j are, respectively, computed

11
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as:

FIj+Cj =

(
1− A

Ij+Cj
c

A
Ij+Cj
o

)
× 100 and FBj =

(
1− A

Bj
c

A
Bj
o

)
× 100

where

AIj+Cj =

∫ T

0

(
Ij(t) + Cj(t)

)
dt and ABj =

∫ T

0

Bj(t)dt

represent the cumulative number of infectious humans and bacteria with strain
j, respectively, during the time interval [0, T ]. The efficiency index is calculated
for human and bacteria population in both the strains and presented in Table
3. Note that the control strategy with the highest efficiency index will be the
best. From Table 3, it follows that strategy C is the most effective for reducing

Table 3: Efficiency index
Strategy AI1+C1

c AB1
c FI1+C1 FB1 AI2+C2

c AB2
c FI2+C2 FB2

No control 87084 340679 0.0 0.0 3617 16767 0.0 0.0
A 1958 4567 97.75 98.66 508 3933 85.96 76.54
B 6541 12887 92.45 96.22 3143 10817 13.11 35.49
C 1918 2525 97.80 99.23 493 2792 86.37 83.35

the disease burden, followed by strategy A and strategy B.

5 Conclusions

The novelty of this study is its ability to predict the optimal level of control
interventions that include treatment and proper hygiene/ sanitation practices.
On the basis of sensitivity analysis of a two-strain typhoid model incorporat-
ing symptomatic infection, asymptomatic carriers, and environmental bacteria,
some control measures were suggested in [24]. Accordingly, the time-dependent
functions representing the treatment of sensitive and resistant strains are con-
sidered as control measures. Proper hygiene and sanitation are also considered
as another control measure to prevent contamination of food and water. The
necessary and sufficient conditions for the existence of optimal controls are es-
tablished and the optimality system is developed. The characterization of the
optimal control is determined by the Pontryagin’s maximum principle. The nu-
merical simulations are performed for every single control and combination of
the two controls. The simulation results reveal that with the combination of the
two control interventions, the number of symptomatic individuals and doses of
S. Typhi bacteria in both the strains reduced to near zero. However, there is
still a significant number of asymptomatic carriers in both strains, which play
an essential role in the evolution and transmission of typhoid infections. So, ad-
ditional preventive measures need to be implemented in order to further reduce
the population of asymptomatic carriers. The effects of each control strategy on
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the reduction of infection in both the strains is investigated through efficiency
analysis. From the study results, we conclude that the fight against a two-strain
typhoid infection requires some control interventions that reduce the number of
asymptomatic carriers to near zero, along with optimal treatment combined
with sanitation and proper hygiene.
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Abstract

The aim of this research article is to define bicomplex Laplace trans-
form of fractional order or fractional Laplace transform by the application
of the Mittag-Leffler function. Various properties of bicomplex fractional
Laplace transform along with the convolution theorem have also been
given. Inverse bicomplex fractional Laplace transform has also been de-
fined. Application of bicomplex fractional Laplace transform in the solu-
tion of diffusion equation has been given.
Key words: Bicomplex numbers, Fractional derivative, fractional Laplace
transform, Mittag-Leffler function.
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1 Introduction

In recent years, mathematicians and physicists have focused their efforts on
bicomplex algebra. In 1882, Segre [25] introduced bicomplex numbers. Detailed
study of bicomplex numbers are presented by Riley [20], Price [18], Rönn [24].
A bicomplex number is defined as an ordered pair of complex numbers, similar
like how a complex number is defined as an ordered pair of real numbers.

In recent years, the fractional order differential equations with boundary
conditions have gained more attention in a variety of scientific and engineering
domains. The Mittag-Leffler function (see, e.g. [7, 10]) has an important contri-
bution in the study of fractional calculus, it has been used to solve fractional or-
der differential equations. The Mittag-Leffler function has caught the interest of
a number of authors working in the field of fractional calculus (FC) and its appli-
cations such as, usage of a fractional operator involving Mittag–Leffler function
for the generalized Casson fluid flow [29], to established the fractional calculus
operators with Appell function kernels and Caputo-type fractional differential
operators [16], Epidemiological analysis of fractional order COVID-19 model
with Mittag-Leffler kernel [6]. In recent developments authors have worked on
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the area of fractional calculus such as, to study a guava fruit model associated
with a non-local additionally non-singular fractional derivative [27], the approx-
imate solution of nonlinear Caudrey-Dodd-Gibbon equation of fractional order
[28], analysis of fractional blood alcohol model [26].

Many authors have studied the applications of the fractional integral trans-
form [9, 13, 14, 17, 23]. Efforts have been made by authors to introduce the
Mittag-Leffler function (ML function) in bicomplex space along with applica-
tions to fractional calculus and integral transform [4, 5]. In 2011 bicomplex
Laplace transform is introduced by Kumar et al. [15] and its convolution the-
orem and applications in bicomplex space are discussed by Agarwal et al. [1],
bicomplex double Laplace transform is derived by Goswami et al. [8].

Following the path, efforts are made to extend the fractional Laplace trans-
form in bicomplex space. Fractional Laplace transformation method is a effec-
tive and strong tool for finding a solution of the fractional differential equation.
In this article bicomplex fractional Laplace transform and its properties in bi-
complex space are introduced.

2 Preliminaries

2.1 Bicomplex Numbers

Definition 2.1 (Bicomplex Number). A bicomplex number ξ ∈ T can be writ-
ten as [25]

ξ = x0 + i1x1 + i2x2 + jx3, where x0, x1, x2, x3 ∈ R. (2.1)

Here T, R represents the set of bicomplex numbers and real numbers respec-
tively.

We shall use the notations, x0 = Re(ξ), x1 = Imi1(ξ), x2 = Imi2(ξ), x3 =
Imj(ξ).

Idempotent representation is particularly important since it allows for term-
by-term addition, multiplication, and division.

Definition 2.2 (Idempotent Representation). Every bicomplex number has
following idempotent representation [18]

ξ = z1 + i2z2 = (z1 − i1z2)e1 + (z1 + i1z2)e2. (2.2)

Hence if ξ1 = (z1 − i1z2) and ξ2 = (z1 + i1z2) then

ξ = ξ1e1 + ξ2e2, (2.3)

where e1, e2 are idempotent elements in T such that e1 =
1 + i1i2

2
=

1 + j

2
, e2 =

1− i1i2
2

=
1− j

2
and e1 + e2 = 1, e1.e2 = 0.

Projection Mappings
P1 : T → T1 ⊆ C, P2 : T → T2 ⊆ C for a bicomplex number ξ = z1 + i2z2 are

2
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given by (see, e.g. [2, 22]):

P1(ξ) = P1(z1 + i2z2) = (z1 − i1z2) ∈ T1, (2.4)

and
P2(ξ) = P2(z1 + i2z2)(z1 + i1z2) ∈ T2, (2.5)

where

T1 = {ξ1 = z1 − i1z2 |z1, z2 ∈ C} and T2 = {ξ2 = z1 + i1z2 |z1, z2 ∈ C}. (2.6)

2.2 Bicomplex One-Parameter Mittag-Leffler Function

The bicomplex one parameter ML function defined Agarwal et al. [5] is given
by

Eα(ξ) =
∞∑
n=0

ξn

Γ(αn+ 1)
, (2.7)

where ξ,α ∈ T, ξ = z1 + i2z2 and |Imj(α)|< Re(α).

2.3 Modified Riemann- Liouville Derivative

Definition 2.3 (Modified Riemann-Liouville Derivative, [12] ). Let g : R →
R, y → g(y) represents a continuous function (not necessarily differentiable)
function

1. If g(y) is a constant M then its fractional derivative of order µ is given by

JDµ
yM =

{
M

Γ(1−µ)yµ if µ ≤ 0,

0 if µ > 0.

2. If g(y) is not a constant then its fractional derivative of order µ is given
by

JDµ
y (g(y)− g(0)) =

1

Γ(−µ)

∫ y

0

g(ζ)dζ

(y − ζ)µ+1
, µ < 0, (2.8)

JDµ
y (g(y)− g(0)) = JDµ

y g(y) =J Dy(gµ−1(y)), µ > 0, (2.9)

(gµ(y)) =
(
gµ−n(y)

)(n)
, n ≤ µ ≤ n+ 1, n ≥ 1. (2.10)

2.4 Laplace Transform of Fractional Order

Let g(x) denotes the function which vanishes for negative values of the variable
x. Its Laplace transform (LT) of order α is defined by the expression (see, e.g.
[13, 14, 19]), when it is finite,

Lα(g(x)) =

∫ ∞
0

Eα(−sαxα)g(x)(dx)α, 0 < α < 1, (2.11)

3
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where s ∈ C.
Sufficient condition for this integral to be finite is that (see, e.g.[13])∫ ∞

0

|g(x)|(dx)α < M <∞. (2.12)

If g(u) is a continuous function, the integral with respect to (du)α is defined as
(see, e.g. [14]) the fractional differential equation’s solution y(u)

dy = g(t)(du)α, x ≥ 0, y(0) = 0, (2.13)

where

y =

∫ u

0

g(v)(dv)α = α

∫ u

0

g(v)

(u− v)1−α dv, 0 < α < 1. (2.14)

Jumarie [11] gave the the proof of the above result as follows:

x(α)(u) = g(u), 0 < α ≤ 1. (2.15)

Its solution is obtained by fractional derivative as

x(u) = D−αg(u) =
1

Γα

∫ u

0

(u− t)α−1g(t)dt. (2.16)

Again
dαx = g(u)(du)α, (2.17)

or
Γ(α + 1)dx = g(u)(du)α. (2.18)

On integrating

x(u) =
1

Γ(α + 1)

∫ u

0

g(t)(dt)α. (2.19)

From equations (2.16) and (2.19), equation (2.14) can be obtained.

3 Bicomplex Laplace transform of Fractional or-
der

In this section we introduce the bicomplex fractional Laplace transform with
convergence conditions using the bicomplex ML function.

Definition 3.1 (Class C). Let C be the class of bicomplex-valued functions
defined with the following properties, for any f ∈ C

1. f(x) vanishes for negative values of the variable x.

2. f is piecewise continuous in the interval (0, a] for any a ∈ (0,+∞).

4
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3.
∫∞

0
|f(x)|j(dx)α < M <∞.

Now we introduce the bicomplex Laplace transform of fractional order α as
follows:
Let Laplace transform of order α of f(t) ∈ C for t ≥ 0 can be written as

Lα(f(t))s1 = Fα(s1) =

∫ ∞
0

Eα(−sα1 tα)f(t)(dt)α, 0 < α < 1, (3.1)

where s1 ∈ C and take another LT of order α of f(t) ∈ C for s2 ∈ C

Lα(f(t))s2 = Fα(s2) =

∫ ∞
0

Eα(−sα2 tα)f(t)(dt)α, 0 < α < 1. (3.2)

Now we take linear combination of Fα(s1) and Fα(s2) with e1 and e2 such as

Lα(f(t))s1e1 + Lα(f(t))s2e2

= Fα(s1)e1 + Fα(s2)e2

=

∫ ∞
0

Eα(−sα1 tα)f(t)(dt)αe1 +

∫ ∞
0

Eα(−sα2 tα)f(t)(dt)αe2

=

∫ ∞
0

(Eα(−sα1 tα)e1 + Eα(−sα2 tα)e2) f(t)(dt)α

=

∫ ∞
0

Eα(−ξαtα)f(t)(dt)α

= Fα(ξ)

= Lα(f(t))ξ,

(3.3)

where ξ = s1e1 + s2e2 ∈ T.
Since Fα(s1) and Fα(s2) are complex valued functions which are convergent and
analytic for respectively, so by application of decomposition theorem of Ringleb
[21], (see, e.g. [20]) bicomplex valued function Fα(ξ) = Fα(s1)e1 + Fα(s2)e2

will be convergent and analytic.

Definition 3.2 (Bicomplex Laplace Transform of Fractional Order). Let g(t) ∈
C be a bicomplex valued function. Then bicomplex Laplace transform of frac-
tional order α of g(t) for t ≥ 0 can be defined as

Lα(g(t))ξ = Gα(ξ) =

∫ ∞
0

Eα(−ξαtα)g(t)(dt)α = lim
M→∞

∫ M
0

Eα(−ξαtα)g(t)(dt)α,

(3.4)
where 0 < α < 1, ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C.

3.1 Some Basic Properties of Bicomplex Fractional Laplace
Transform

Theorem 3.3 (Linearity Property). Let Fα(ξ) and Gα(ξ) be the bicomplex
fractional Laplace transform of order α of class C functions f(t) and g(t) re-
spectively, then

5
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Lα (f(t) + g(t)) = Fα(ξ) +Gα(ξ). (3.5)

Proof. Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1 then

Lα (f(t) + g(t)) =

∫ ∞
0

Eα(−ξαtα) (f(t) + g(t)) (dt)α

=

∫ ∞
0

Eα(−sα1 tα) (f1(t) + g1(t)) (dt)αe1

+

∫ ∞
0

Eα(−sα2 tα) (f2(t) + g2(t)) (dt)αe2

=

∫ ∞
0

Eα(−sα1 tα)f1(t)(dt)αe1 +

∫ ∞
0

Eα(−sα1 tα)g1(t)(dt)αe1

+

∫ ∞
0

Eα(−sα2 tα)f2(t)(dt)αe2 +

∫ ∞
0

Eα(−sα2 tα)g2(t)(dt)αe2

=

∫ ∞
0

Eα(−ξαtα)f(t)(dt)α +

∫ ∞
0

Eα(−ξαtα)g(t)(dt)α

= Lα (f(t)) + Lα (g(t))

= Fα(ξ) +Gα(ξ).

(3.6)

Theorem 3.4. Let Fα(ξ) be the bicomplex fractional Laplace transform of order
α of function f(t) ∈ C and ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C, 0 < α < 1 and k
is a constant then

Lα (kf(t)) = kFα(ξ). (3.7)

Proof. Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1, then

Lα (kf(t)) =

∫ ∞
0

Eα(−ξαtα) (kf(t)) (dt)α

=

∫ ∞
0

Eα(−sα1 tα) (kf1(t)) (dt)αe1 +

∫ ∞
0

Eα(−sα2 tα) (kf2(t)) (dt)αe2

= k

∫ ∞
0

Eα(−sα1 tα)f1(t)(dt)αe1 + k

∫ ∞
0

Eα(−sα2 tα)f2(t)(dt)αe2

= k

∫ ∞
0

Eα(−ξαtα)f(t)(dt)α

= kLα (f(t))

= kFα(ξ).

(3.8)

6
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Theorem 3.5 (Bicomplex Fractional Laplace Transform of Derivatives). Let
Fα(ξ) be the bicomplex fractional LT of order α of function f(t) ∈ C and ξ =
s1e1 + s2e2 ∈ T, 0 < α < 1 then

Lα

(
JDαf(t)

)
= ξαFα(ξ)− f(0), (3.9)

where JDα is defined in the definition (2.3).

Proof. Let ξ = s1e1 + s2e2 ∈ T and 0 < α < 1 then

Lα

(
JDαf(t)

)
=

∫ ∞
0

Eα(−ξαtα) (Dαf(t)) (dt)α

= [f(t)Eα(−ξαtα)]
∞
0 −

∫ ∞
0

f(t) (−ξαEα(−ξαtα)) (dt)α

= −f(0) + ξα
∫ ∞

0

f(t)Eα(−ξαtα)(dt)α

= ξαLα (f(t))− f(0)

= ξαFα(ξ)− f(0).

(3.10)

Corollary 3.6. Let Fα(ξ) be the bicomplex fractional LT of order α of function
f(t) ∈ C and ξ = s1e1 + s2e2 ∈ T, 0 < α < 1 then

Lα

(
JD2αf(t)

)
= ξ2αFα(ξ)− ξαf(0)− fα(0), (3.11)

where JD2α is defined in the definition (2.3).

Proof. Let ξ = s1e1 + s2e2 ∈ T, 0 < α < 1 and Dαf(t) = F (t) then

Lα

(
JD2αf(t)

)
= Lα

(
JDαF (t)

)
= ξαLα (F (t))− F (0)

= ξαLα

(
JDαf(t))

)
− fα(0)

= ξα (ξαLα (f(t))− f(0)))− fα(0)

= ξ2αLα (f(t))− ξαf(0)− fα(0)

= ξ2αFα(ξ)− ξαf(0)− fα(0).

(3.12)

Proceeding in similar manner, we obtain the result contained in the following
corollary:

Corollary 3.7. Let Fα(ξ) be the bicomplex fractional LT of order α of function
f(t) ∈ C and ξ = s1e1 + s2e2 ∈ T, 0 < α < 1 then

Lα

(
JDnαf(t)

)
= ξnαFα(ξ)−

(
ξnα−αf(0) + ξnα−2αfα(0) + ξnα−3αf2α(0) + · · ·+ fnα−α(0)

)
,

(3.13)

where JDnα is defined in the definition (2.3).

7
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Theorem 3.8 (Change of Scale Property). Let Fα(ξ) be the bicomplex fractional
Laplace transform of order α of function f(t) ∈ C and ξ = s1e1 + s2e2 ∈
T, s1, s2 ∈ C, a > 0 and 0 < α < 1 then

Lα(f(at)) = (1/a)αFα

(
ξ

a

)
. (3.14)

Proof. Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1 then from equations
(3.4) and (2.14) we have

Lα(f(at)) =

∫ ∞
0

Eα(−ξαtα)f(at)(dt)α

= lim
M→∞

∫ M
0

Eα(−ξαtα)f(at)(dt)α

= lim
M→∞

α

∫ M
0

(M− t)α−1Eα(−ξαtα)f(at)(dt)

= lim
M→∞

α

∫ M
0

(M− t)α−1Eα(−sα1 tα)f1(at)(dt)e1

+ lim
M→∞

α

∫ M
0

(M− t)α−1Eα(−sα2 tα)f2(at)(dt)e2,

(3.15)

putting at = x =⇒ dt = dx
a , a > 0,

Lα(f(at)) = lim
M→∞

α

∫ aM

0

(
M− x

a

)α−1

Eα

(
−sα1

xα

aα

)
f1(x)

dx

a
e1

+ lim
M→∞

α

∫ aM

0

(
M− x

a

)α−1

Eα

(
−sα2

xα

aα

)
f2(x)

dx

a
e2

= lim
M→∞

α

∫ aM

0

(aM− x)α−1

aα−1
Eα

(
−sα1

xα

aα

)
f1(x)

dx

a
e1

+ lim
M→∞

α

∫ aM

0

(aM− x)α−1

aα−1
Eα

(
−sα2

xα

aα

)
f2(x)

dx

a
e1

= (1/a)αFα

(
ξ1
a

)
e1 + (1/a)αFα

(
ξ2
a

)
e2

= (1/a)αFα

(
ξ

a

)
.

(3.16)

Theorem 3.9 (Shifting Property). Let Fα(ξ) be the bicomplex fractional Laplace
transform of order α of f(t) ∈ C and ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C, c > 0
and 0 < α < 1 then

Lα(f(t− c)) = Eα(ξαcα)Fα(ξ). (3.17)
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Proof. Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1 then from equations
(3.4) and (2.14) we have

Lα(f(t− c)) =

∫ ∞
0

Eα(−ξαtα)f(t− c)(dt)α

= lim
M→∞

∫ M
0

Eα(−ξαtα)f(t− c)(dt)α

= lim
M→∞

α

∫ M
0

(M− t)α−1Eα(−ξαtα)f(t− c)(dt)

= lim
M→∞

α

∫ M
0

(M− t)α−1Eα(−sα1 tα)f1(t− c)(dt)e1

+ lim
M→∞

α

∫ M
0

(M− t)α−1Eα(−sα2 tα)f2(t− c)(dt)e2.

(3.18)

Putting t− c = x =⇒ dt = dx

= lim
M→∞

α

∫ M−c
0

(M− x− c)α−1Eα(−sα1 (x+ c)α)f1(x)(dx)e1

+ lim
M→∞

α

∫ M−c
0

(M− x− c)α−1Eα(−sα2 (x+ c)α)f2(x)(dx)e2

= Eα(−sα1 cα) lim
M→∞

α

∫ M−c
0

(M− x− c)α−1Eα(−sα1 xα)f1(x)(dx)e1

+ Eα(−sα2 cα) lim
M→∞

α

∫ M−c
0

(M− x− c)α−1Eα(−sα2 xα)f2(x)(dx)e2

= Eα(ξαcα)Lα(f(t))

= Eα(ξαcα)Fα(ξ).

(3.19)

Theorem 3.10 (Bicomplex Fractional Laplace Transform of Integrals). Let
Fα(ξ) be the bicomplex fractional Laplace transform of order α of f(t) ∈ C and
ξ = s1e1 + s2e2 ∈ T, 0 < α < 1 then

Lα

(∫ t

0

f(v)(dv)α
)

=
1

ξαΓ(1 + α)
Lα(f(t)). (3.20)

Proof. Since

JDα
t

∫ t

0

f(v)(dv)α = α! f(t), (3.21)

by using equation (3.9)

Lα

(
JDα

t

∫ t

0

f(v)(dv)α
)

= ξαLα

(∫ t

0

f(v)(dv)α
)
,

Lα (α! f(t)) = ξαLα

(∫ t

0

f(v)(dv)α
)
.

(3.22)

9
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Hence,

Lα

(∫ t

0

f(v)(dv)α
)

= Γ(α + 1)ξ−αLα (f(t)) . (3.23)

Theorem 3.11. Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1 then

(i) Lα(tαf(t)) = −JDα
ξ Lα(f(t)),

(ii) Lα(Eα(−cαtα)f(t))ξ = Fα(ξ + c),

(iii) Lα(−tαf(t)) =J Dα
ξ Lα(f(t)).

Proof. (i) Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1 then from
equation (3.4) we have

Lα(tαf(t))

=

∫ ∞
0

Eα(−ξαtα)tαf(t)(dt)α

=

∫ ∞
0

Eα(−sα1 tα)tαf1(t)(dt)αe1 +

∫ ∞
0

Eα(−sα2 tα)tαf2(t)(dt)αe2

= − JDα
s1

∫ ∞
0

Eα(−sα1 tα)f1(t)(dt)αe1 − JDα
s2

∫ ∞
0

Eα(−sα2 tα)f2(t)(dt)αe2

= − JDα
ξ Lα(f(t)).

(3.24)

(ii) Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1 then from equation
(3.4) we have

Lα(Eα(−cαtα)f(t))ξ =

∫ ∞
0

Eα(−ξαtα)Eα(−cαtα)f(t)(dt)α

=

∫ ∞
0

Eα(−(ξ + c)αtα)f(t)(dt)α

= Fα(ξ + c).

(3.25)

(iii) Let ξ = s1e1 + s2e2 ∈ T, s1, s2 ∈ C and 0 < α < 1 then from equation
(3.4) we have

Lα(−tαf(t))

=

∫ ∞
0

Eα(−ξα(−t)α)tαf(t)(dt)α

=

∫ ∞
0

Eα(−sα1 tα)tαf1(t)(dt)αe1 +

∫ ∞
0

Eα(−sα2 tα)tαf2(t)(dt)αe2

= − JDα
s1

∫ ∞
0

Eα(−sα1 tα)f1(t)(dt)αe1 − JDα
s2

∫ ∞
0

Eα(−sα2 tα)f2(t)(dt)αe2

= − JDξ
αLα(f(t)).

(3.26)
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3.2 Convolution Theorem

Convolution is a mathematical operation on two functions f, g. which is useful
in signal theory, image processing. Convolution of order µ of the functions
f(t), g(t) defined by Jumarie [14] given by

(f ∗ g) (t) =

∫ t

0

f(t− v)g(v)(dv)µ. (3.27)

Theorem 3.12. Let f, g ∈ C and Let Fα(ξ) and Gα(ξ) be the bicomplex frac-
tional Laplace transform of order α of functions f(t) and g(t) respectively, then

Lα (f ∗ g) (t) = Fα(ξ)Gα(ξ) = Lα (f(t))Lα (g(t)) . (3.28)

Proof.

Lα (f(t) ∗ g(t)) =

∫ ∞
0

(dt)αEα(−ξαtα)

∫ t

0

f(t− v)g(v)(dv)α

=

∫ ∞
0

(dt)αEα(−(s1e1 + s2e2)αtα)

∫ t

0

f(t− v)g(v)(dv)α

=

(∫ ∞
0

(dt)αEα(−sα1 tα)

∫ t

0

f(t− v)g(v)(dv)α
)
e1

+

(∫ ∞
0

(dt)αEα(−sα2 tα)

∫ t

0

f(t− v)g(v)(dv)α
)
e2

=

(∫ ∞
0

(dt)αEα(−sα1 (t− v)α)Eα(−sα1 vα)

∫ t

0

f(t− v)g(v)(dv)α
)
e1

+

(∫ ∞
0

(dt)αEα(−sα2 (t− v)α)Eα(−sα2 vα)

∫ t

0

f(t− v)g(v)(dv)α
)
e2.

(3.29)

Put p = t− v, q = v, to obtain

Lα (f(t) ∗ g(t)) =

(∫ ∞
0

∫ ∞
0

(dp)αEα(−sα1 pα)Eα(−sα1 qα)f(p)g(q)(dq)α
)
e1

+

(∫ ∞
0

∫ ∞
0

(dp)αEα(−sα2 pα)Eα(−sα2 qα)f(p)g(q)(dq)α
)
e2

=

(∫ ∞
0

∫ ∞
0

Eα(−sα1 pα)Eα(−sα1 qα)f(p)g(q)(dp)α(dq)α
)
e1

+

(∫ ∞
0

∫ ∞
0

Eα(−sα2 pα)Eα(−sα2 qα)f(p)g(q)(dp)α(dq)α
)
e2

(3.30)
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Hence,

Lα (f(t) ∗ g(t)) = (Fα(s1)Gα(s1)) e1 + (Fα(s2)Gα(s2)) e2

= Fα(ξ)Gα(ξ)

= Lα(f(t))Lα(g(t)).

(3.31)

4 Bicomplex Fractional Inverse Laplace Trans-
form

Definition 4.1. Generalized Dirac’s function δα(x) of fractional order α, 0 <
α < 1 is given by (see, e.g. [14])∫

R
f(x)δα(x)(dx)α = αf(0). (4.1)

The relation between Dirac’s function and ML function is given by (see, e.g.
[14]) the following result

α

(Mα)α

∫ +i1∞

−i1∞
Eα(i1(−ωx)α)(dω)α = δα(x), (4.2)

where Mα is the period of the complex-valued ML function defined by the re-
lation Eα(i1(Mα)α) = 1.

Theorem 4.2. Let Fα(ξ) be the bicomplex fractional Laplace transform of order
α of function f(t) ∈ C and ξ = s1e1 + s2e2 ∈ T and 0 < α < 1 then

f(t) =
1

(Mα)α

∫
H

Eα(ξαxα)Fα(ξ)(dξ)α, (4.3)

where H is closed contour in T.

Proof. Let Fα(ξ) be the bicomplex fractional Laplace transform of bicomplex-
valued function f(t). Then Fα(ξ) = Fα(s1)e1 + Fα(s2)e2. The inverse formula
for complex fractional Laplace transform (see, e.g. [14] ) are

f1(t) =
1

(Mα)α

∫ +i1∞

−i1∞
Eα(sα1 x

α)Fα(s1)(ds1)α

=
1

(Mα)α

∫
γ1

Eα(sα1 x
α)Fα(s1)(ds1)α,

(4.4)

and

f2(t) =
1

(Mα)α

∫ +i1∞

−i1∞
Eα(sα2 x

α)Fα(s2)(ds2)α

=
1

(Mα)α

∫
γ2

Eα(sα2 x
α)Fα(s2)(ds2)α,

(4.5)
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where Mα is the period of the complex-valued ML function defined by the re-
lation Eα(i1(Mα)α) = 1 and γ1 and γ2 be closed contours taken along the the
vertical lines as follows γ1 = −i1∞ to i1∞,γ2 = −i1∞ to i1∞.

Now, using complex inversions (4.4) and (4.5), we get

f(t) = f1(t)e1 + f2(t)e2

=
1

(Mα)α

(∫
γ1

Eα(sα1 x
α)Fα(s1)(ds1)α e1 +

∫
γ2

Eα(sα2 x
α)Fα(s2)(ds2)α e2

)
=

1

(Mα)α

∫
(γ1,γ2)

Eα((s1e1 + s2e2)αxα)Fα(s1e1 + s2e2) ((ds1)αe1 + (ds2)αe2)

=
1

(Mα)α

∫
H

Eα(ξαxα)Fα(ξ)(dξ)α,

(4.6)

where H = (γ1, γ2) and

ξ = s1e1 + s2e2 ⇒ dξ = ds1e1 + ds2e2 ⇒ (dξ)α = (ds1)αe1 + (ds2)αe2. (4.7)

5 Application of Bicomplex Fractional Laplace
Transform

Agarwal et al.[3] discussed fractional differential equations in bicomplex space.
Bicomplex fractional Laplace transform has great advantage in finding the so-
lution of fractional order differential equations. We have solved the following
homogeneous fractional order differential equations using bicomplex fractional
Laplace transform.

(D2α + 2Dα + 2)y(t) = 0, (5.1)

where y(0) = 1 and yα(0) = −1.
By taking bicomplex fractional LT on both sides of order α, we get

Lα

(
y2α + 2yα + 2y

)
= 0, (5.2)

s2αLα(y(t))− sαy(0)− yα(0) + 2 (sαLαy(t)− y(0)) + 2Lαy(t) = 0, (5.3)(
s2α + 2sα + 2

)
Lαy(t) = sα + 1, (5.4)

⇒ Lαy(t) =
sα + 1

(sα + 1)
2

+ 1
. (5.5)

Hence,
Lαy(t) = Lα (Eα(−tα) cosα(tα)) . (5.6)

Therefore
y(t) = Eα(−tα) cosα(tα), (5.7)

where cosα(tα) is fractional order cosine function (see, e.g. [13, 19]).
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5.1 Application to Diffusion equation

Consider the following partial fractional differential equation

Dα
t u(x, t) = cDβ

xu(x, t), 0 < α, β < 1, (5.8)

with initial condition u(x, t) = f(x). It is very simple case of diffusion equation
(see, e. g. [13]).
By taking bicomplex fractional LT of the equation (5.8) with respect to t,

sαū(x, s)− f(x) = cDβ
x ū(x, s). (5.9)

Taking fractional Fourier transform of equation (5.9) defined by Jumarie [13]
with respect to x,

sα ˆ̄u(ζ, s)− f̂(ζ) = c(−i1ζβ)ˆ̄u(ζ, s), (5.10)

or
(sα + i1cζ

β)ˆ̄u(ζ, s) = f̂(ζ), (5.11)

ˆ̄u(ζ, s) =
f̂(ζ)

(sα + i1cζβ)
. (5.12)

By taking inverse Bicomplex fractional Laplace transform

û(ζ, t) = f̂(ζ)Eα(−i1cζβtα), (From [19, Property 3.4]). (5.13)

Finally by taking Inverse Fractional Fourier transform defined by Jumarie [13]
of the equation (5.13)

u(x, t) =
1

(Mβ)β

∫ +∞

−∞
Eβ(i1ζ

βxβ) Eα(−i1cζβtα) f̂(ζ) (dζ)α. (5.14)

6 Conclusion

In this paper, the Laplace transform of fractional order or fractional Laplace
transform in bicomplex space, the extension of complex Laplace transform of
fractional order has been derived. Various properties along with the convolution
theorem have also been derived. Bicomplex fractional Laplace transform may
be used in finding the solution of bicomplex fractional Schrödinger equation.
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