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ON THE STABILITY OF THE GENERALIZED QUADRATIC SET-VALUED

FUNCTIONAL EQUATION

HAHNG-YUN CHU† AND SEUNG KI YOO∗

Abstract. In this article, we focus on the n-dimensional quadratic set-valued functional equation
(4− n)f(

∑n

i=1
xi)⊕

∑n

i=1
f(
∑n

j=1
θ(i, j)xj) = 4

∑n

i=1
f(xi), where n ≥ 2 is an integer. We prove

the Hyers-Ulam stability for the set-valued functional equation.

1. Introduction

The stability problem of functional equation concerning group homomorphisms had been first raised

by S. M. Ulam [18] in 1940.

Let (G1, ∗) be a group and let (G2, �, d) be a metric group with the metric d(·, ·). Given ε > 0, does there

exists a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality d(h(x ∗ y), h(x) � h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1?

The first partial solution to Ulam’s question was provided by D. H. Hyers [8] for Banach spaces.

Hyers’ theorem was generalized by T. Aoki [1] for additive mapping. Th. M. Rassias [15] generalized

the result of Hyers as follows:

Let f : X → Y be a mapping between Banach spaces and let 0 ≤ p < 1 be fixed. If f satisfies the

inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p) (1.1)

for some θ ≥ 0 and for all x, y ∈ X, then there exists a unique additive mapping A : X → Y such that

‖A(x) − f(x)‖ ≤ 2θ
2−2p ‖x‖

p for all x ∈ X. If f(tx) is continuous in t for each fixed x ∈ X, then A is

linear.

Thereafter, P. Gǎvruta [7] provided a generalization of Th. M. Rassias’ theorem, more precisely

speaking, in which he replaced the bound ε(‖x‖p+‖y‖p) in (1.1) by control functions φ(x, y) with more

general types for the existence of a unique linear mapping. The functional equation f(x+y)+f(x−y) =

∗ Corresponding author
† The first author’s research has been performed as a subproject of project Research for Applications of Mathematical
Principles (No C21501) and supported by the National Institute of Mathematics Sciences(NIMS).

∗ The corresponding author was supported by Basic Science Research Program through the National Research Foundation
of Korea(NRF) funded by the Ministry of Education, Science and Technology(NRF-2012R1A1A2009512).

2010 Mathematics Subject Classification. Primary 39B82; 47H04; 47H10; 54C60

Key words and Phrases. Hyers-Ulam stability, generalized quadratic set-valued functional equation.
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2 HAHNG-YUN CHU, SEUNG KI YOO

2f(x) + 2f(y) is called the quadratic functional equation and every solution of the quadratic functional

equation is called a quadratic function.

The Hyers-Ulam stsbility of quadratic functional equation was proved by F. Skof [17] for a function

f : E1 → E2 where E1 is a normed space and E2 is a Banach space. P. W. Cholewa [3] considered

Skof’s theorem to a version of abelian groups. Skof’s result was generalized by S. Czerwik [6] who

proved the generalized Hyers-Ulam stability of quadratic functional equation in the spirit of Rassias

approach. Kang and Chu [10] extended the quadratic functional equation to the generalized form

(4−n)f(
∑n
i=1 xi)+

∑n
i=1 f(

∑n
j=1 θ(i, j)xj) = 4

∑n
i=1 f(xi) where n ≥ 2 is an integer and the function

θ is defined by

θ(i, j) =

{
1 if i 6= j

−1 if i = j

and also investigated the Hyers-Ulam stability for the generalized quadratic functional equation. In

[12], Lu and Park defined the additive set-valued functional equations f(αx + βy) = rf(x) + sf(y)

and f(x + y + z) = 2f(x+y2 ) + f(z) and proved the Hyers-Ulam stability of the set-valued functional

equations. In [14], Park et al. investigated stability problems of the Jensen additive, quadratic, cubic

and quartic set-valued functional equation. Kenary et al. [11] proved the stability for various types

of the set-valued functional equation using the fixed point alternative. In recent years, Chu and Yoo

[5] studied the Hyers-Ulam stability of the n-dimensional additive set-valued functional equation. In

[4], they also investigated the Hyers-Ulam stability of the n-dimensional cubic set-valued functional

equation.

Let CB(Y ) be the set of all closed bounded subsets of Y and CC(Y ) the set of all closed convex

subsets of Y . Let CBC(Y ) be the set of all closed bounded convex subsets of Y . For any elements

A,B of CC(Y ), we denote A⊕B = A+B. If A is convex, then we obtain that (α+ β)A = αA+ βA

for all α, β ∈ R+. Let f : X → CBC(Y ) be a mapping. The quadratic set-valued functional equation

is defined by f(x + y) ⊕ f(x − y) = 2f(x) ⊕ 2f(y) for all x, y ∈ X. Every solution of the quadratic

set-valued functional equation is said to be a quadratic set-valued mapping.

In this paper, we introduce the generalized n-dimensional quadratic set-valued functional equation

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj) = 4
n∑
i=1

f(xi) (1.2)

where n ≥ 2 is an integer and the function θ is defined by

θ(i, j) =

{
1 if i 6= j

−1 if i = j

and investigate the Hyers-Ulam stability of the functional equation.

In the set-valued dynamics, every solution of the generalized n-dimensional quadratic set-valued

functional equation is called a n-dimensional quadratic set-valued mapping.
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For a subset A ⊂ Y , the distance function d(·, A) is defined by d(x,A) := inf{‖ x− y ‖: y ∈ A} for

x ∈ Y . For A,B ∈ CB(Y ), the Hausdorff distance h(A,B) is defined by

h(A,B) := inf{α ≥ 0| A ⊆ B + αBY , B ⊆ A+ αBY },

where BY is the closed unit ball in Y . In [2], it was proved that (CBC(Y ),⊕, h) is a complete metric

semigroup. R̊adström [16] proved that (CBC(Y ),⊕, h) is isometrically embedded in a Banach space.

The following remark is easily proved by using the notion of the Hausdorff distance.

Remark 1.1. Let A,A′, B,B′, C ∈ CBC(Y ) and α > 0. Then we have that

(1) h(A⊕A′, B ⊕B′) ≤ h(A,B) + h(A′, B′);

(2) h(αA,αB) = αh(A,B);

(3) h(A,B) = h(A⊕ C,B ⊕ C).

This paper is organized as follows. In section 2, we prove that the generalized n-dimensional set-

valued mapping is actually general type of the quadratic set-valued mapping. We also investigate

Hyers-Ulam stability for the generalized n-dimensional set-valued funational equation.

As applications of the stability, we take to change the control function and obtain the different

approaches to unique generalized n-dimensional functional equation. In section 3, we also get the

Hyers-Ulam staility for the generalized n-dimensional set-valued functional equation by using the fixed

point method which is developed by Margolis and Diaz.

2. Stability of the set-valued functional equation

In this section, we mainly deal with the Hyers-Ulam stability for the generalized n-dimensional

quadratic set-valued functional equation. We first study for properties of the n-dimensional quadratic

set-valued mapping. Next we prove the Hyers-Ulam stabilities for the generalized n-dimensional qua-

dratic set-valued equation. Especially when n is an even numbers, we find the precise control function

depending upon the original function and n-dimensional quadratic set-valued mapping. Similarly we

also obtain the precise control function in the odd case for the generalized n-dimensional quadratic

set-valued functional equation.

Proposition 2.1. Suppose that a mapping f : X → CBC(Y ) defined by

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj) = 4
n∑
i=1

f(xi) (2.1)

for all x1, . . . , xn ∈ X. Then f has the following properties:

(1) f(0) = {0}

(2) f(x) = f(−x) for all x ∈ X
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(3) f is a quadratic set-valued mapping.

Proof. (1) Putting xi = 0 (i = 1, . . . , n) in (2.1), we have f(0) = {0}.

(2) Putting x1 = x and xi = 0 (i = 2, . . . , n) in (2.1), we get (4−n)f(x)⊕f(−x)⊕(n−1)f(x) = 4f(x).

Thus f(x) = f(−x) for all x ∈ X.

(3) Replacing x1 = x, x2 = y and xi = 0 (i = 3, . . . , n), we have (4−n)f(x+y)⊕f(−x+y)⊕f(x−y)⊕

(n−2)f(x+y) = 4f(x)⊕4f(y)⊕(n−2)f(0). So we conclude that f(x+y)⊕f(x−y) = 2f(x)⊕2f(y).

This completes the proof. �

Next, we prove the stability of the generalized n-dimensional quadratic set-valued functional equa-

tion. To extended precisely to the stability theory for the set-valued functional equation, we state the

stability according to dimensions of the equation.

Theorem 2.2. Let n ≥ 2 be an integer and let φ : Xn → [0,∞) be a function such that

φ̃(x1, . . . , xn) :=
∞∑
i=0

1

4i
φ(2ix1, . . . , 2

ixn) <∞ (2.2)

for all x1, . . . , xn ∈ X. Suppose that f : X −→ (CBC(Y ), h) is a mapping with f(0) = {0} and

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ φ(x1, . . . , xn) (2.3)

for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) such that

h(f(x), T (x)) ≤ 1

8
φ̃(x, x, 0, . . . , 0) (2.4)

for all x ∈ X.

Proof. Putting x1 = x2 = x and x3 = · · · = xn = 0 in (2.3), we have

h(
f(2x)

4
, f(x)) ≤ 1

8
φ(x, x, 0, . . . , 0) (2.5)

for all x ∈ X. Replacing x by 2x and dividing by 4 in (2.5)

h(
f(4x)

42
, f(2x)) ≤ 1

32
φ(2x, 2x, 0, . . . , 0) (2.6)

for all x ∈ X. By (2.5) and (2.6), we get

h(
f(4x)

42
, f(x)) ≤ 1

8
φ(x, x, 0, . . . , 0) +

1

4 · 8
φ(2x, 2x, 0, . . . , 0) (2.7)

for all x ∈ X. Using the induction on i, we have that

h(
f(2rx)

4r
, f(x)) ≤ 1

8

r−1∑
i=0

1

4i
φ(2ix, 2ix, 0, . . . , 0) (2.8)

for any positive integer r and for all x ∈ X.
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Now, we show that the sequence { f(2
rx)

4r } converges for all x ∈ X. For any positive integer r and s,

we divide inequality (2.8) by 4s and replace x by 2sx. Then we obtain that the following inequality

h(
f(2r+sx)

4r+s
,
f(2sx)

4s
) ≤ 1

4s
1

8

r−1∑
i=0

1

4i
≤ φ(2s+ix, 2s+ix, 0, . . . , 0) (2.9)

for all x ∈ X. Since the right-hand side of the inequality (2.9) tends to zero as s tends to infinity,

the sequence { f(2
rx)

4r } is a Cauchy sequence in (CBC(Y), h). Therefore, we can define a mapping

T : X → (CBC(Y ), h) as T (x) := limr→∞
f(2rx)

4r for all x ∈ X. It follows from the definition of T and

(2.2) that

h
(

(4− n)T (
n∑
i=1

xi)⊕
n∑
i=1

T (
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

T (xi)
)
≤ lim
r→∞

1

4r
φ(2rx1, . . . , 2

rxn) = 0 (2.10)

for all x1, . . . , xn ∈ X. Hence, we claim that T is an n-dimensional quadratic set-valued mapping.

By letting r → ∞ in (2.8), we have the desired inequality (2.4). Now we prove the uniqueness of T .

Let T ′ : X → (CBC(Y ), h) be another n-dimensional quadratic set-valued mapping satisfying (2.4).

Therefore, we get the following inequality

h(T (x), T ′(x)) =
1

4r
h(T (2rx), T ′(2rx)) ≤ 1

4r
1

8
φ̃(2rx, 2rx, 0, . . . , 0)

for all x ∈ X. Hence, letting r → ∞, the right-hand side of above inequality goes to zero, and it

follows that T (x) = T ′(x) for all x ∈ X. �

Corollary 2.3. Let n ≥ 2 be an integer, 0 < p < 2 and θ ≥ 0 be real numbers and let X be a real

normed space. Suppose that f : X → (CBC(Y ), h) is a mapping satisfying

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ θ

n∑
i=1

‖xi‖p

for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) that satisfies

h(f(x), T (x)) ≤ θ

22 − 2p
‖x‖p

for all x ∈ X.

Proof. The result follows Theorem 2.2 by setting φ(x1, . . . , xn) = θ
∑n
i=1 ‖xi‖p for all x1, . . . , xn ∈

X. �

Theorem 2.4. Let n ≥ 2 be an integer and let φ : Xn → [0,∞) be a function such that

φ̃(x1, . . . , xn) :=
∞∑
i=1

4iφ(
x1
2i
, . . . ,

xn
2i

) <∞ (2.11)
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for all x1, . . . , xn ∈ X. Suppose that f : X −→ (CBC(Y ), h) is a mapping and

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ φ(x1, . . . , xn) (2.12)

for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) such that

h(f(x), T (x)) ≤ 1

8
φ̃(x, x, 0, . . . , 0) (2.13)

for all x ∈ X.

Proof. By (2.11) and (2.12), we get f(0) = {0}. Replacing x by x
2 and multiplying by 4 in (2.5), we

have the following inequality

h(f(x), 4f(
x

2
)) ≤ 1

2
φ(
x

2
,
x

2
, 0, . . . , 0)

for all x ∈ X. The rest of the proof is similar to the proof of Theorem 2.3. �

Corollary 2.5. Let n ≥ 2 be an integer, p > 2 and θ ≥ 0 be real numbers and let X be a real normed

space. Suppose that f : X → (CBC(Y ), h) is a mapping satisfying

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ θ

n∑
i=1

‖xi‖p

for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) that satisfies

h(f(x), T (x)) ≤ θ

2p − 22
‖x‖p

for all x ∈ X.

Proof. The result follows Theorem 2.4 by setting φ(x1, . . . , xn) = θ
∑n
i=1 ‖xi‖p for all x1, . . . , xn ∈

X. �

Let n be an even positive integer. In this case, we can obtain the control function for the Hausdorff

distence between the original mapping and n-dimensional quadratic set-valued mapping.

Theorem 2.6. Let n ≥ 2 be even and let φ : Xn → [0,∞) be a function such that

φ̃(x1, . . . , xn) :=

∞∑
i=0

1

4i
φ(2ix1, . . . , 2

ixn) <∞ (2.14)

for all x1, . . . , xn ∈ X. Suppose that f : X −→ (CBC(Y ), h) is an even mapping with f(0) = {0} and

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ φ(x1, . . . , xn) (2.15)
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for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) such that

h(f(x), T (x)) ≤ 1

4n
φ̃(x,−x, x,−x, . . . , x,−x) (2.16)

for all x ∈ X.

Proof. Put xk = (−1)k−1x (k = 1, . . . , n) in (2.15). Since f is even and the range of f is convex, we

have that

h(
f(2x)

4
, f(x)) ≤ 1

4n
φ(x,−x, x,−x, . . . , x,−x) (2.17)

for all x ∈ X. The rest of the proof is similar to proof of Theorem 2.2. �

Corollary 2.7. Let n ≥ 2 be even, 0 < p < 2 and θ ≥ 0 be real numbers and let X be a real normed

space. Suppose that f : X → (CBC(Y ), h) is an even mapping satisfying

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ θ

n∑
i=1

‖xi‖p

for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) that satisfies

h(f(x), T (x)) ≤ θ

22 − 2p
‖x‖p

for all x ∈ X.

Proof. The result follows Theorem 2.6 by setting φ(x1, . . . , xn) = θ
∑n
i=1 ‖xi‖p for all x1, . . . , xn ∈

X. �

Theorem 2.8. Let n ≥ 2 be even and let φ : Xn → [0,∞) be a function such that

φ̃(x1, . . . , xn) :=
∞∑
i=0

4iφ(
x1

2i+1
, . . . ,

xn
2i+1

) <∞ (2.18)

for all x1, . . . , xn ∈ X. Suppose that f : X −→ (CBC(Y ), h) is an even mapping with f(0) = {0} and

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ φ(x1, . . . , xn) (2.19)

for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) such that

h(f(x), T (x)) ≤ 1

n
φ̃(x,−x, x,−x, . . . , x,−x) (2.20)

for all x ∈ X.
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Proof. Replacing x by x
2 and multiplying by 4 in (2.17), we have the following inequality

h(f(x), 4f(
x

2
)) ≤ 1

n
φ(
x

2
,−x

2
,
x

2
,−x

2
, . . . ,

x

2
,−x

2
)

for all x ∈ X. The rest of the proof is similar to the proof of Theorem 2.3. �

Corollary 2.9. Let n ≥ 2 be even, p > 2 and θ ≥ 0 be real numbers and let X be a real normed space.

Suppose that f : X → (CBC(Y ), h) is an even mapping satisfying

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ θ

n∑
i=1

‖xi‖p

for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) that satisfies

h(f(x), T (x)) ≤ θ

2p − 22
‖x‖p

for all x ∈ X.

Proof. The result follows Theorem 2.8 by setting φ(x1, . . . , xn) = θ
∑n
i=1 ‖xi‖p for all x1, . . . , xn ∈

X. �

As applications for the theorem, we get the Hyers-Ulam stability for the generalized n-dimensional

set-valued functional equation and especially we deal with the odd case for n.

Theorem 2.10. Let n ≥ 2 be odd and let φ : Xn → [0,∞) be a function such that

φ̃(x1, . . . , xn) :=
∞∑
i=0

1

9i
φ(3ix1, . . . , 3

ixn) <∞ (2.21)

for all x1, . . . , xn ∈ X. Suppose that f : X −→ (CBC(Y ), h) is an even mapping with f(0) = {0} and

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ φ(x1, . . . , xn) (2.22)

for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) such that

h(f(x), T (x)) ≤ 2

9(n− 1)
φ̃(x,−x, x,−x, . . . ,−x, x) (2.23)

for all x ∈ X.

Proof. Put xk = (−1)k−1x (k = 1, . . . , n) in (2.22). Since f is even and the range of f is convex, we

have that

h(
f(3x)

9
, f(x)) ≤ 2

9(n− 1)
φ(x,−x, x,−x, . . . ,−x, x)

for all x ∈ X. The rest of the proof is similar to proof of Theorem 2.2. �
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Corollary 2.11. Let n > 2 be odd, 0 < p < 2 and θ ≥ 0 be real numbers and let X be a real normed

space. Suppose that f : X → (CBC(Y ), h) is an even mapping satisfying

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ θ

n∑
i=1

‖xi‖p

for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) that satisfies

h(f(x), T (x)) ≤ 2nθ

(n− 1)(32 − 3p)
‖x‖p

for all x ∈ X.

Proof. The result follows Theorem 2.10 by setting φ(x1, . . . , xn) = θ
∑n
i=1 ‖xi‖p for all x1, . . . , xn ∈

X. �

Theorem 2.12. Let n > 2 be odd and let φ : Xn → [0,∞) be a function such that

φ̃(x1, . . . , xn) :=
∞∑
i=0

9iφ(
x1

3i+1
, . . . ,

xn
3i+1

) <∞ (2.24)

for all x1, . . . , xn ∈ X. Suppose that f : X −→ (CBC(Y ), h) is an even mapping with f(0) = {0} and

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ φ(x1, . . . , xn) (2.25)

for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) such that

h(f(x), T (x)) ≤ 2

n− 1
φ̃(x,−x, x,−x, . . . ,−x, x) (2.26)

for all x ∈ X.

Proof. Put xk = (−1)k−1x (k = 1, . . . , n) in (2.25). Since f is even and the range of f is convex, we

have that

h(9f(
x

3
), f(x)) ≤ 2

n− 1
φ(
x

3
,−x

3
,
x

3
,−x

3
, . . . ,−x

3
,
x

3
)

for all x ∈ X. The rest of the proof is similar to proof of Theorem 2.2. �

Corollary 2.13. Let n > 2 be odd, p > 2 and θ ≥ 0 be real numbers and let X be a real normed space.

Suppose that f : X → (CBC(Y ), h) is an even mapping satisfying

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ θ

n∑
i=1

‖xi‖p
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for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) that satisfies

h(f(x), T (x)) ≤ 2nθ

(n− 1)(3p − 32)
‖x‖p

for all x ∈ X.

Proof. The result follows Theorem 2.12 by setting φ(x1, . . . , xn) = θ
∑n
i=1 ‖xi‖p for all x1, . . . , xn ∈

X. �

3. Stability of the set-valued functional equation by fixed point method

As using the fixed point method, we get plenty of the results related to the generalized n-dimensional

quadratic set-valued functional equation. We first introduce the generalized metric on the given phase

space and recall fundamental results for the fixed point theory. Let X be a set. A function d : X×X →

[0,∞) is the generalized metric on X if d satisfies the following properties:

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The following theorem is very useful for proving Hyers-Ulam stability which is due to Margolis and

Diaz [13].

Theorem 3.1. Let (X, d) be a complete generalized metric space and let J : X → X be a strictly

contractive mapping with Lipschitz constant L < 1. Then for each element x ∈ X, either

d(Jnx, Jn+1x) =∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) <∞};

(4) d(y, y∗) ≤ 1
1−Ld(y, Jy) for all y ∈ Y.

Using the alternative fixed point theorem, we investigate the stability of the even dimensional

quadratic set-valued functional equation.
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ON THE STABILITY OF THE GENERALIZED QUADRATIC SET-VALUED FUNCTIONAL EQUATION 11

Theorem 3.2. Let n ≥ 2 be even. Suppose that an even mapping f : X −→ (CBC(Y ), h) with

f(0) = {0} satisfies the inequality

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ φ(x1, . . . , xn) (3.1)

for all x1, . . . , xn ∈ X, and there exists a constant L with 0 < L < 1 for which the function φ : Xn →

[0,∞) satisfies

φ(2x,−2x, 2x,−2x, . . . , 2x,−2x) ≤ 4Lφ(x,−x, x,−x, . . . , x,−x) (3.2)

for all x ∈ X. Then there exists a n-dimensional quadratic set-valued mapping T : X → (CBC(Y ), h)

given by T (x) = limk→∞
f(2kx)

4k
such that

h(f(x), T (x)) ≤ 1

4n(1− L)
φ(x,−x, x,−x, . . . , x,−x) (3.3)

for all x ∈ X.

Proof. Put xk = (−1)k−1x (k = 1, . . . , n) in (3.1). Since f is even and the range of f is convex, we

have that

h(
f(2x)

4
, f(x)) ≤ 1

4n
φ(x,−x, x,−x, . . . , x,−x) (3.4)

for all x ∈ X.

Let S := {g | g : X → CBC(Y ), g(0) = {0}}. We define a generalized metric on S defined by

d(g1, g2) := inf{µ ∈ (0,∞) | h(g1(x), g2(x)) ≤ µφ(x,−x, x,−x, . . . , x,−x), x ∈ X}.

It is easy to show that (S, d) is complete (see [9]). Now, we define the mapping J : S → S given by

Jg(x) = 1
4g(2x) for all x ∈ X. For g1, g2 ∈ S, let d(g1, g2) = µ. Then

h(
1

4
g1(2x),

1

4
g2(2x)) ≤ 1

4
µφ(2x,−2x, 2x,−2x . . . , 2x,−2x)

for all x ∈ X. Then by (3.2), we have h(Jg1(x), Jg2(x)) ≤ µLφ(x,−x, x,−x, . . . , x,−x) for all x ∈ X.

Therefore, we get d(Jg1, Jg2) ≤ Ld(g1, g2) for any g1, g2 ∈ S. Hence J is a strictly contractive mapping

with Lipschitz constant L. It follows from (3.4) that d(Jf, f) ≤ 1
4n . By Theorem 3.1, the sequence

{Jkf} converges to a fixed point T : X → (CBC(Y ), h) of J in the set {g ∈ S | d(f, g) < ∞} such

that {Jkf} → 0 as k → ∞. This implies T (x) = limk→∞
f(2kx)

4k
for all x ∈ X. And we also have

d(f, T ) ≤ 1
1−Ld(Jf, f) ≤ 1

4n(1−L) . This means that the inequality (3.3) holds. By (3.1),

h
(

(4− n)T (
n∑
i=1

xi)⊕
n∑
i=1

T (
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

T (xi)
)
≤ lim
k→∞

1

4k
φ(x,−x, x,−x, . . . , x,−x) = 0

Therefore, T is a unique n-dimensional quadratic set-valued mapping as desired. �

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.6, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

1017 HAHNG-YUN CHU et al 1007-1020



12 HAHNG-YUN CHU, SEUNG KI YOO

Corollary 3.3. Let n ≥ 2 be even, 0 < p < 2 and θ ≥ 0 be real numbers and let n ≥ 2 be even.

Suppose that f : X −→ (CBC(Y ), h) is an even mapping satisfying

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ θ

n∑
i=1

‖xi‖p

for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) that satisfies

h(f(x), T (x)) ≤ θ

22 − 2p
‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.2 by setting φ(x2, . . . , xn) = θ
∑n
i=1 ‖xi‖p for every x1, . . . , xn ∈

X. Then we can choose L = 2p−2 and we get the desired result. �

Theorem 3.4. Let n ≥ 2 be even. Suppose that an even mapping f : X −→ (CBC(Y ), h) with

f(0) = {0} satisfies the inequality

h
(

(4− n)f(

n∑
i=1

xi)⊕
n∑
i=1

f(

n∑
j=1

θ(i, j)xj), 4

n∑
i=1

f(xi)
)
≤ φ(x1, . . . , xn) (3.5)

for all x1, . . . , xn ∈ X, and there exists a constant L with 0 < L < 1 for which the function φ : Xn →

[0,∞) satisfies

φ(
x

2
,−x

2
,
x

2
,−x

2
, . . . ,

x

2
,−x

2
) ≤ L

4
φ(x,−x, x,−x, . . . , x,−x) (3.6)

for all x ∈ X. Then there exists a n-dimensional quadratic set-valued mapping T : X → (CBC(Y ), h)

given by T (x) = limk→∞ 4kf( x
2k

) such that

h(f(x), T (x)) ≤ L

4n(1− L)
φ(x,−x, x,−x, . . . , x,−x) (3.7)

for all x ∈ X.

Proof. Replacing x by x
2 and multiplying 4 in (3.4), we have

h(f(x), 4f(
x

2
)) ≤ 1

n
φ(
x

2
,−x

2
,
x

2
,−x

2
, . . . ,

x

2
,−x

2
) ≤ L

4n
φ(x,−x, x,−x, . . . , x,−x)

for all x ∈ X. The rest of the proof is similar to proof of Theorem 2.2. �

Corollary 3.5. Let n ≥ 2 be even, p > 2 and θ ≥ 0 be real numbers and let n ≥ 2 be even. Suppose

that f : X −→ (CBC(Y ), h) is an even mapping satisfying

h
(

(4− n)f(
n∑
i=1

xi)⊕
n∑
i=1

f(
n∑
j=1

θ(i, j)xj), 4
n∑
i=1

f(xi)
)
≤ θ

n∑
i=1

‖xi‖p
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ON THE STABILITY OF THE GENERALIZED QUADRATIC SET-VALUED FUNCTIONAL EQUATION 13

for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) that satisfies

h(f(x), T (x)) ≤ θ

n(2p − 22)
‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.9 by setting φ(x2, . . . , xn) = θ
∑n
i=1 ‖xi‖p for every x1, . . . , xn ∈

X. Then we can choose L = 22−p and we get the desired result. �

Finally, we deal with the Hyers-Ulam stability for the odd dimensional quadratic set-valued func-

tional equation.

Theorem 3.6. Let n > 2 be odd. Suppose that an even mapping f : X −→ (CBC(Y ), h) with

f(0) = {0} satisfies the inequality

h
(

(4− n)f(

n∑
i=1

xi)⊕
n∑
i=1

f(

n∑
j=1

θ(i, j)xj), 4

n∑
i=1

f(xi)
)
≤ φ(x1, . . . , xn) (3.8)

for all x1, . . . , xn ∈ X, and there exists a constant L with 0 < L < 1 for which the function φ : Xn →

[0,∞) satisfies

φ(3x,−3x, 3x,−3x, . . . ,−3x, 3x) ≤ 9Lφ(x,−x, x,−x, . . . ,−x, x) (3.9)

for all x ∈ X. Then there exists a n-dimensional quadratic set-valued mapping T : X → (CBC(Y ), h)

given by T (x) = limk→∞
f(3kx)

9k
such that

h(f(x), T (x)) ≤ 2

9(n− 1)(1− L)
φ(x,−x, x,−x, . . . ,−x, x) (3.10)

for all x ∈ X.

Proof. Put xk = (−1)k−1x (k = 1, . . . , n) in (3.8). Since f is even and the range of f is convex, we

have that

h(9f(
x

3
), f(x)) ≤ 2

n− 1
φ(
x

3
,−x

3
,
x

3
,−x

3
, . . . ,−x

3
,
x

3
)

for all x ∈ X. The rest of the proof is similar to proof of Theorem 2.2.

�

Corollary 3.7. Let n > 2 be odd, 0 < p < 2 and θ ≥ 0 be real numbers and let n ≥ 2 be odd. Suppose

that f : X −→ (CBC(Y ), h) is an even mapping satisfying

h
(

(4− n)f(

n∑
i=1

xi)⊕
n∑
i=1

f(

n∑
j=1

θ(i, j)xj), 4

n∑
i=1

f(xi)
)
≤ θ

n∑
i=1

‖xi‖p
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for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional quadratic set-valued mapping T :

X → (CBC(Y ), h) that satisfies

h(f(x), T (x)) ≤ 2θ

(n− 1)(32 − 3p)
‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.4 by setting φ(x2, . . . , xn) = θ
∑n
i=1 ‖xi‖p for every x1, . . . , xn ∈

X. Then we can choose L = 3p−2 and we get the desired result. �
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COMMON BEST PROXIMITY POINTS FOR PROXIMALLY COMMUTING

MAPPINGS IN NON-ARCHIMEDEAN PM-SPACES

GEORGE A. ANASTASSIOU, YEOL JE CHO, REZA SAADATI, AND YOUNG-OH YANG*

Abstract. In this paper, we prove new common best proximity point theorems for proximally com-
muting mappings in complete non-Archimedean PM-spaces. Our results generalized the recent results

of S. Basha [Common best proximity points: global minimization of multi-objective functions, J.

Global Optim. 49(2011), 15–21] and C. Mongkolkeha, P. Kumam [Some common best proximity
points for proximity commuting mappings, Optim. Lett. 7 (2013), 1825–1836].

1. Introduction

Best proximity point theorems provide sufficient conditions that ensure the existence of approximate
solutions which are optimal as well. In fact, if there is no solution to the fixed point equation Tx = x
for a non-self mapping T : A → B, then it is desirable to determine an approximate solution x such
that the error Fx,Tx(t) is maximum.

A classical best approximation theorem was introduced by Fan [13], that is, if A is a nonempty
compact convex subset of a Hausdorff locally convex topological vector space B and T : A → B is a
continuous mapping, then there exists an element x ∈ A such that d(x, Tx) = d(Tx,A). Afterward,
several authors, including Prolla [22], Reich [23], Sehgal and Singh [32, 33] and others, have derived
some extensions of Fan’s theorem in many directions. Other works of the existence of a best proximity
point for contractions can be seen in [2, 5, 12, 15].

In 2005, Anthony Eldred, Kirk and Veeramani [6] have obtained best proximity point theorems
for relatively nonexpansive mappings. Since then, best proximity point theorems for several types of
contractions have been established in [3, 4, 8, 12, 16, 17, 19, 20, 26, 27, 28, 29, 30, 36, 37, 38, 39, 40].

2. Preliminaries

Throughout this paper, the space of all probability distribution functions (briefly, d.f.’s) is denoted
by ∆+ = {F : R ∪ {−∞,+∞} −→ [0, 1] : F is left-continuous and non-decreasing on R, F (0) = 0 and
F (+∞) = 1} and the subset D+ ⊆ ∆+ is the set D+ = {F ∈ ∆+ : l−F (+∞) = 1}. Here l−f(x)
denotes the left limit of the function f at the point x and l−f(x) = limt→x− f(t). The space ∆+ is
partially ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and only if F (t) ≤ G(t)
for all t in R. The maximal element for ∆+ in this order is the d.f. given by

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 2.1. ([31]) A mapping ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t–norm if ∗ satisfies the
following conditions:

(a) ∗ is commutative and associative;
(b) ∗ is continuous;
(c) a ∗ 1 = a for all a ∈ [0, 1];

2010 Mathematics Subject Classification. Primary 90C26, 90C30; Secondary 47H09, 47H10.
Key words and phrases. Common best proximity point; common fixed point; proximally commuting mapping; PM-

space; non-Archimedean PM-space.
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2 G.A. ANASTASSIOU, Y.J. CHO, R. SAADATI, AND Y.O. YANG

(d) a ∗ b ≤ c ∗ d whenever a ≤ c and c ≤ d, and a, b, c, d ∈ [0, 1].

Two typical examples of continuous t–norm are a ∗ b = ab and a ∗ b = min(a, b).

A t–norm ∗ is said to be positive ([31]) if a ∗ b > 0 whenever a, b ∈ (0, 1]. The notation ∗ < ∗′ means
that a ∗ b < a ∗′ b for all a, b ∈ (0, 1).

Definition 2.2. (1) A Probabilistic Metric space (briefly, PM-space) is a triple (X,F, ∗), where X is
a nonempty set, T is a continuous t–norm and F is a mapping from X ×X into D+ such that, if Fx,y

denotes the value of F at the pair (x, y), the following conditions hold:

(PM1) Fx,y(t) = ε0(t) for all t > 0 if and only if x = y;
(PM2) Fx,y(t) = Fy,x(t);
(PM3) Fx,z(t+ s) ≥ Fx,y(t) ∗ Fy,z(s) for all x, y, z ∈ X and t, s ≥ 0.

(2) If, in the above definition, the triangular inequality (PM3) is replaced by

(PM4) Fx,z(max{t, s}) ≥ Fx,y(t) ∗ Fy,z(s) for all x, y, z ∈ X and t, s ≥ 0,

then the triple (X,F, ∗) is called a non-Archimedean PM-space (briefly, NA-PM-space).

It is easy to check that the triangular inequality (PM4) implies (PM3), that is, every NA-PM-space
is itself a PM-space. It is easy to show that (PM4) is equivalent to the following condition:

(PM5) Fx,z(t) ≥ Fx,y(t) ∗ Fy,z(t) for all x, y, z ∈ X and t ≥ 0.

Example 2.3. Let (X, d) be an ordinary metric space and let θ be a nondecreasing and continuous
function from (0,∞) into (0, 1) such that limt→∞ θ(t) = 1. Some examples of these functions are as
follows:

θ(t) =
t

t+ 1
, θ(t) = 1− e−t, θ(t) = e−1/t.

Let a ∗ b ≤ ab for each a, b ∈ [0, 1]. For each t ∈ (0,∞), define

Fx,y(t) = [θ(t)]d(x,y)

for all x, y ∈ X. Then (X,F, ∗) is a NA-PM-space ([1]).

For more details and examples of these spaces see also [7], [9], [10], [11], [14], [18], [21], [24], [25],
[34], [35], [41] and [42].

Definition 2.4. Let (X,F, T ) be a NA-PM-space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X if, for any ε > 0 and λ > 0,
there exists positive integer N such that

Fxn,x(ε) > 1− λ
whenever n ≥ N ;

(2) A sequence {xn} in X is called a Cauchy sequence if, for any ε > 0 and λ > 0, there exists
positive integer N such that

Fxn+p,xn(ε) > 1− λ
whenever n ≥ N and p ∈ N ;

(3) A PM-space (X,F, ∗) is said to be complete if every Cauchy sequence in X is convergent to a
point in X.

Definition 2.5. Let (X,F, ∗) be a PM-space. For each p in X and λ > 0, the strong λ-neighborhood
of p is the set

Np(λ) = {q ∈ X : Fp,q(λ) > 1− λ}
and the strong neighborhood system for X is the union

⋃
p∈V Np, where

Np = {Np(λ) : λ > 0}.
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COMMON BEST PROXIMITY POINTS 3

The strong neighborhood system for X determines a Hausdorff topology for X.

Theorem 2.6. ([31]) If (X,F, ∗) is a PM-space and {pn} and {qn} are sequences such that pn → p
and qn → q as n→∞, then limn→∞ Fpn,qn(t) = Fp,q(t) for all continuity point t of Fp,q.

Let A and B be two nonempty subsets of a PM-space and t > 0. The following notions and notations
are used in the sequel.

FA,B(t) := sup{Fx,y(t) : x ∈ A, y ∈ B},
A0 := {x ∈ A : Fx,y(t) = FA,B(t) for some y ∈ B},
B0 := {y ∈ B : Fx,y(t) = FA,B(t) for some x ∈ A}.

Definition 2.7. A mapping T : X → X is said to be a contraction if there exists a constant k ∈ [0, 1)
such that

(2.1) FTx,Ty(kt) ≥ Fx,y(t)

for all x, y ∈ X and t > 0.

Definition 2.8. A mapping T : X → X is said to be a weak contraction if

(2.2) FTx,Ty(φ(t)) ∗ Fx,y(t) ≥ Fx,y(φ(t))

for all x, y ∈ X and t > 0, where ϕ : [0,∞) → [0,∞) is a continuous and nondecreasing function such
that, for any t > 0, 0 < ϕ(t) < t.

Definition 2.9. A point x ∈ A is said to be a best proximity point of a mapping S : A→ B if it satisfies
the following condition:

Fx,Sx(t)) = FA,B(t)

for all x, y ∈ X and t > 0.

It can be observed that a best proximity reduces to a fixed point if the underlying mapping is a
self-mapping.

Definition 2.10. Let S : A→ B and T : A→ B be two mappings. An element x∗ ∈ A is said to be a
common best proximity point if it satisfies the following condition:

Fx∗,Sx∗(t) = Fx∗,Tx∗(t) = FA,B(t)

for each t > 0.

Observe that a common best proximity point is an element at which the multi-objective functions
x → Fx,Sx(t) and x → Fx,Tx(t) attain a common global maximum since Fx,Sx(t) ≤ FA,B(t) and
Fx,Tx(t) ≤ FA,B(t) for all x and t > 0.

Definition 2.11. A mapping S : A→ B and T : A→ B is said to be a proximally commuting if they
satisfy the following condition:

[Fu,Sx(t) = Fv,Tx(t) = FA,B(t)] =⇒ Sv = Tu

for all u, v, x,∈ A and t > 0.

It is easy to see that the proximal commutativity of self-mappings become commutativity of the
mappings.

Definition 2.12. Two mappings S : A → B and T : A → B are said to be a proximally swapped if
they satisfy the following condition:

[Fy,u(t) = Fy,v(t) = FA,B(t), Su = Tv] =⇒ Sv = Tu

for all u, v,∈ A, y ∈ B and t > 0.
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Definition 2.13. A set A is said to be approximatively compact with respect to a set B if every
sequence {xn} in A satisfies the condition that Fy,xn

(t) → Fy,A(t) for some y ∈ B and for each t > 0
has a convergent subsequence.

Observe that every set is approximatively compact with respect to itself. Also, every compact set
is approximatively compact with respect to any set. Moreover, A0 and B0 are nonempty set if A is
compact and B is approximatively compact with respect to A.

3. Main result

Now, we give our main results in this paper.

Theorem 3.1. Let A and B be nonempty closed subsets of a complete NA-PM-space (X,F, ∗) in which
the t–norm ∗ is positive and ∗ < min such that A is approximatively compact with respect to B. Also,
assume that A0 and B0 are nonempty. Let S : A→ B, T : A→ B be the non-self mappings satisfying
the following conditions:

(a) for each x and y are elements in A and t > 0,

FSx,Sy(φ(t)) ∗ FTx,Ty(t) ≥ FTx,Ty(φ(t)),

where ϕ : [0,∞) → [0,∞) is a continuous and nondecreasing function such that, for any t > 0,
0 < ϕ(t) < t;

(b) T is continuous;
(c) S and T commute proximally;
(d) S and T can be swapped proximally;
(e) S(A0) ⊆ B0 and S(A0) ⊆ T (A0).

Then there exists an element x ∈ A such that Fx,Tx(t) = FA,B(t) and Fx,Sx(t) = FA,B(t).
Moreover, if x∗ is another common best proximity point of the mappings S and T , then it is necessary

that Fx,x∗(t) ≥ FA,B(t) ∗ FA,B(t) for all t > 0.

Proof. Let x0 be a fixed element in A0. In view of the fact that S(A0) ⊆ T (A0), there exists an element
x1 ∈ A0 such that Sx0 = Tx1. Again, since S(A0) ⊆ T (A0), there exists an element x2 ∈ A0 such that
Sx1 = Tx2. By the similar fashion, we can find a sequence {xn} in A0 such that

(3.1) Sxn−1 = Txn

for all n ∈ N. It follows that

(3.2) FSxn,Sxn+1
(φ(t)) ∗ FTxn,Txn+1

(t) ≥ FTxn,Txn+1
(φ(t))

and

(3.3) FSxn,Sxn+1(φ(t)) ∗ FSxn−1,Sxn(t) ≥ FSxn−1,Sxn(φ(t))

for all t > 0. Thus we have

(3.4) FSxn,Sxn+1(t) ≥ FSxn−1,Sxn(t)

for all t > 0, which means that the sequence {FSxn−1,Sxn
(t)} is non-decreasing and bounded above.

Hence there exists r ≤ 1 such that, for any t > 0,

(3.5) lim
n→∞

FSxn−1,Sxn
(t) = r.

If r < 1, then we have

(3.6) FSxn,Sxn+1(φ(t)) ∗ FSxn−1,Sxn(t) ≥ FSxn−1,Sxn(φ(t))

for all t > 0. Taking n → ∞ in the inequality (3.6), by the continuity of ϕ, we get a ∗ r ≥ a, where
a = limn→∞ FSxn−1,Sxn(φ(t)), which is a contradiction unless r = 1. Therefore, it follows that

(3.7) lim
n→∞

FSxn−1,Sxn
(t) = 1.

By the property of F , we conclude that FSxn−1,Sxn(t) tend to 1 for all t > 0.
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Next, we prove that {Sxn} is a Cauchy sequence. We consider two cases.
Case I. Suppose that there exits n ∈ N such that Sxn = Sxn+1. Then we observe that

FSxn+1,Sxn+2(φ(t)) ∗ FTxn+1,Txn+2(t) ≥ FTxn+1,Txn+2(φ(t))

and
FSxn+1,Sxn+2

(φ(t)) ∗ FSxn,Sxn+1
(t) ≥ FSxn,Sxn+1

(φ(t))

for all t > 0. Then we have
FSxn+1,Sxn+2

(t) = 1

for all t > 0, which implies that Sxn+1 = Sxn+2 and so, for each m > n, we conclude that Sxm = Sxn.
Hence {Sxn} is a Cauchy sequence in B.

Case II. The successive terms of {Sxn} are different. Suppose that {Sxn} is not a Cauchy sequence.
Then there exists ε > 0, t > 0 and the subsequences {Sxmk

}, {Sxnk
} of {Sxn} with nk > mk ≥ k such

that

(3.8) FSxmk
,Sxnk

(t) ≤ 1− ε, FSxmk
,Sxnk−1

(t) > 1− ε.

By using (3.8) and the triangular inequality, we have

(3.9)

1− ε ≥ FSxmk
,Sxnk

(t)

≥ FSxmk
,Sxnk−1

(t) ∗ FSxnk−1,Sxnk
(t)

≥ (1− ε) ∗ FSxnk−1,Sxnk
(t).

Thus, using (3.9) and (3.7), we have

(3.10) FSxmk
,Sxnk

(t)→ 1− ε
as k →∞. Again, by the triangular inequality, we have

(3.11) FSxmk
,Sxnk

(t) ≥ FSxmk
,Sxmk+1(t) ∗ FSxmk+1,Sxnk+1(t) ∗ FSxnk+1,Sxnk

(t)

and

(3.12) FSxmk+1,Sxnk+1
(t) ≥ FSxmk+1,Sxmk

(t) ∗ FSxmk
,Sxnk

(t) ∗ FSxnk
,Sxnk+1

(t).

From (3.7), (3.10), (3.11) and (3.12), it follows that

(3.13) FSxmk+1,Sxnk+1(t)→ 1− ε
as k →∞. In view of the fact that

(3.14) FSxmk+1,Sxnk+1
(φ(t)) ∗ FTxmk+1,Txnk+1

(t) ≥ FTxmk+1,Txnk+1
(φ(t)),

we have

(3.15) FSxmk+1,Sxnk+1
(φ(t)) ∗ FSxmk

,Sxnk
(t) ≥ FSxmk

,Sxnk
(φ(t)).

Letting k →∞ in the inequality (3.15), we obtain

a ∗ (1− ε) ≥ a,
where a = FSxmk+1,Sxnk+1

(φ(t)), which is a contradiction by the property of ϕ. Then we deduce that

{Sxn} is a Cauchy sequence in B. Since B is a closed subset a complete NA-PM-space X, there exists
y ∈ B such that Sxn → y as n→∞. Consequently, it follows that the sequence {Txn} also converges
to y. From S(A0) ⊆ B0, there exists an element un ∈ A such that

(3.16) FSxn,un
(t) = FA,B(t)

for all n ∈ N and t > 0. Thus it follows from (3.1) and (3.16) that

(3.17) FTxn,un−1
(t) = FSxn−1,un−1

(t) = FA,B(t)

for all n ∈ N and t > 0. By (3.16), (3.17) and the fact that the mappings S and T are proximally
commuting, we obtain

(3.18) Tun = Sun−1
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for all n ∈ N. Moreover, we have

(3.19)

Fy,A(t) ≥ Fy,un
(t)

≥ Fy,Sxn
(t) ∗ FSxn,un

(t)
= Fy,Sxn

(t) ∗ FA,B(t)
≥ Fy,Sxn(t) ∗ Fy,A(t),

for all t > 0. Therefore, it follows that, for all t > 0, Fy,un
(t) → Fy,A(t) as n → ∞. Since A is

approximatively compact with respect to B, there exists a subsequence {unk
} of the sequence {un}

such that {unk
} converges to some element u ∈ A. Further, since Fy,unk−1(t)→ Fy,A(t) for all t > 0 and

A is approximatively compact with respect to B, there exists a subsequence {unkj
−1} of the sequence

{unk−1} such that {unkj
−1} converges to some element v ∈ A. By the continuity of the mappings S

and T , we have

(3.20) Tu = lim
j→∞

Tunkj
= lim

k→∞
Sunkj

−1 = Sv

and

(3.21)
Fy,u(t) = lim

k→∞
FSxnk

,unk
(t) = FA,B(t),

Fy,v(t) = lim
j→∞

FTxnkj
,unkj

−1
(t) = FA,B(t).

Since S and T can be swapped proximally, we have

(3.22) Tv = Su.

Next, we prove that Su = Sv. Suppose that Su 6= Sv. Then, by (3.20), (3.21), (3.22) and the
property of ϕ, we have

FSu,Sv(φ(t)) ∗ FTu,Tv(t) ≥ FTu,Tv(φ(t))

and so

FSu,Sv(φ(t)) ∗ FSu,Sv(t) ≥ FSu,Sv(φ(t))

for all t > 0, which is a contradiction. Thus Su = Sv and also Tu = Su. Since S(A0) is contained in
B0, there exists an element x ∈ A such that Fx,Tu(t) = FA,B(t) and Fx,Su(t) = FA,B(t). Since S and
T are proximally commuting, we have Sx = Tx. Consequently, we have

(3.23) FSu,Sx(φ(t)) ∗ FTu,Tx(t) ≥ FTu,Tx(φ(t))

and so

(3.24) FSu,Sx(φ(t)) ∗ FSu,Sx(t) ≥ FSu,Sx(φ(t))

for all t > 0, which is impossible if Su 6= Sx. Thus we have Su = Sx and hence Tu = Tx. It follows
that

Fx,Tx(t) = Fx,Tu(t) = FA,B(t)

and

Fx,Sx(t) = Fx,Su(t) = FA,B(t)

for all t > 0. Therefore, x is a common best proximity point of S and T .
To prove the uniqueness of the point x, suppose that x∗ is another common best proximity point of

the mappings S and T . Then we have

Fx∗,Tx∗(t) = FA,B(t), Fx∗,Sx∗(t) = FA,B(t)

for all t > 0. Since S and T are proximally commuting, we get Sx = Tx and Sx∗ = Tx∗. Consequently,
we have

(3.25) FSx∗,Sx(φ(t)) ∗ FTx∗,Tx(t) ≥ FTx∗,Tx(φ(t))

and so

(3.26) FSx∗,Sx(φ(t)) ∗ FSx∗,Sx(t) ≥ FSx∗,Sx(φ(t))
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for all t > 0, which is impossible if Sx∗ 6= Sx. Thus we have Sx = Sx∗. Moreover, it can be concluded
that

Fx,x∗(t) ≥ Fx,Sx(t) ∗ FSx,Sx∗(t) ∗ FSx∗,x∗(t)
≥ FA,B(t) ∗ FA,B(t)

for all t > 0. This completes the proof. �

Corollary 3.2. Let A be a nonempty closed subset of a complete NA-PM-space (X,F, ∗) in which the
t–norm ∗ is positive and ∗ < min such that A is compact. Let S : A → A, T : A → A be the self
mappings satisfying the following conditions:

(a) for each x and y are elements in A and t > 0,

FSx,Sy(φ(t)) ∗ FTx,Ty(t) ≥ FTx,Ty(φ(t)),

where ϕ : [0,∞) → [0,∞) is a continuous and nondecreasing function such that, for any t > 0,
0 < ϕ(t) < t;

(b) T is continuous;
(c) S and T commutative;
(e) S(A) ⊆ A and S(A) ⊆ T (A).

Then S and T have common fixed point.

4. An example

Now, we give an example to illustrate Theorem 3.1.

Example 4.1. Consider the complete metric space R2 with Euclidean metric. Define

F(x1,x2),(y1,y2)(t) =
t

t+ |x1 − y1|+ |x2 − y2|
for all t > 0 and

F(x1,x2),(y1,y2)(t) = 0

for all t ≤ 0. It is easy to show that (X,F, ·) is a NA-PM-space. Let

A = {(x, 1) : 0 ≤ x ≤ 1}, B = {(x,−1) : 0 ≤ x ≤ 1}.

Define two mappings S : A→ B, T : A→ B as follows:

S(x, 1) =
(
0,−1

)
, T (x, 1) =

(
x,−1

)
,

respectively. It is easy to see that FA,B(t) = t
t+2 , A0 = A and B0 = B. Further, S and T are continuous

and A is approximatively compact with respect to B.
First, we show that S and T are satisfy the condition (a) of Theorem 3.1 with ϕ : [0,∞) → [0,∞)

defined by ϕ(t) =
t

2
for all t ∈ [0,∞). Let (x, 1), (y, 1) ∈ A. Without loss of generality, we can take

x > y. Then we have

FS(x,1),S(y,1)(φ(t)) ∗ FT (x,1),T (y,1)(t) = 1 · t
t+|x−y|

≥
t
2

t
2+|x−y|

= FT (x,1),T (y,1)(φ(t))

for all t > 0.
Next, we show that S and T are proximally commuting. Let (u, 1), (v, 1), (x, 1) ∈ A be such that

F(u,1),S(x,1)(t) = FA,B(t) =
t

t+ 2
, F(v,1),T (x,1)(t) = FA,B(t) =

t

t+ 2

for all t > 0. It follows that u = 0 and v = x and hence

S(v, 1) =
(
0,−1

)
= (u,−1) = T (u, 1).
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Finally, we show that S and T are proximally swapped. If it is true that

F(u,1),(y,−1)(t) = F(v,1),(y,−1)(t) = FA,B(t) =
t

t+ 2
, S(u, 1) = T (v, 1)

for some (u, 1), (v, 1) ∈ A and (y,−1) ∈ B, then we get u = v = 0 and so

S(v, 1) = T (u, 1).

Therefore, all the hypothesis of Theorem 3.1 are satisfied. Furthermore, (0, 1) ∈ A is a common best
proximity point of the mappings S and T since

F(0,1),S(0,1)(t) = F(0,1),(0,−1)(t) = F(0,1),T ((0,1)(t) = FA,B(t)

for all t > 0.
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Abstract

The purpose of this paper is to investigate the value distribution of some differ-
ence polynomials G1(z) =

∏m
j=1 f(z + cj) − af(z)n, G2(z) = f(z)n

∏m
j=1 f(z + cj)

and G3(z) = f(z)n
∏m

j=1(f(z + cj) − f(z)), where f(z) is a meromorphic function
and a ∈ C \ {0} and cj , j = 1, 2, . . . ,m are complex constants.
Key words: meromorphic function; difference polynomial; zeros.
Mathematical Subject Classification (2010): 30D35, 39A10.

1 Introduction and main results

This purpose of this paper is to study some properties of value distribution of some
complex difference polynomials of meromorphic functions. The fundamental theorems
and the standard notations of the Nevanlinna value distribution theory of meromorphic
functions will be used(see [7, 15]). In addition, for meromorphic function f , we will
use S(r, f) to denote any quantity satisfying S(r, f) = o(T (r, f)) for all r outside a
possible exceptional set E of finite logarithmic measure limr→∞

∫
[1,r)∩E

dt
t <∞. We use

ρ(f), λ(f) and λ( 1f ) to denote the order, the exponent of convergence of zeros and the

exponent of convergence of poles of f(z) respectively.
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Many people were interested in the value distribution of different expressions of mero-
morphic function and obtained lots of valuable theorems. In 1959, Hayman [8] studied
value distribution of meromorphic function and its derivatives, and obtained the following
famous theorems.

Theorem 1.1 [8]. Let f(z) be a transcendental entire function. Then
(i) for n ≥ 3 and a ̸= 0,Ψ(z) = f ′(z) − af(z)n assumes all finite values infinitely

often.
(ii) for n ≥ 2, Φ(z) = f ′(z)f(z)n assumes all finite values except possibly zero in-

finitely often.

However, Mues [12] proved that the conclusion of Theorem 1.1 is not true for n = 3
by providing a counter example and proved that f ′(z)−af(z)4 has infinitely many zeros.

Recently, the topic of difference product in the complex plane C has attracted many
researchers, a number of papers have focused on value distribution of differences and
differences operator analogues of Nevanlinna theory (including [2, 4, 5, 6, 11]).

In 2007, Laine and Yang [9] proved the following result, which is regarded as a differ-
ence counterpart of Theorem 1.1.

Theorem 1.2 [9]. Let f(z) be a transcendental entire function of finite order, and c
be a non-zero complex constant. Then for n ≥ 2, Φ1(z) = f(z + c)f(z)n assumes every
non-zero value a ∈ C infinitely often.

It is well known that ∆f(z) = f(z + c) − f(z), where c ∈ C \ {0} is a constant
satisfying f(z + c) − f(z) ̸≡ 0, which can be considered as the difference counterpart
of f ′(z). Similarly, ∆f(z) − af(z)n can be considered as the difference counterpart
f ′(z)− af(z)n, where a ∈ C \ {0}.

In 2011, Chen [1] considered the difference counterpart of Theorem 1.1 and obtained
the following theorems.

Theorem 1.3 [1]. Let f(z) be a transcendental entire function of finite order, and let
a, c ∈ C\{0} be constants, with c such that f(z+c) ̸≡ f(z). Set Ψn(z) = ∆f(z)−af(z)n
and n ≥ 3 is an integer. Then Ψn(z) assumes all finite values infinitely often, and for
every b ∈ C one has λ(Ψn(z)− b) = ρ(f).

Theorem 1.4 [1]. Let f(z) be a transcendental entire function of finite order with a
Borel exceptional value 0, and let a, c ∈ C \ {0} be constants, with c such that f(z+ c) ̸≡
f(z). Then Ψ2(z) assumes all finite values infinitely often, and for every b ∈ C one has
λ(Ψ2(z)− b) = ρ(f).

Theorem 1.5 [1]. Let f(z) be a transcendental entire function of finite order with a
finite nonzero Borel exceptional value d, and let a, c ∈ C \ {0} be constants, with c such
that f(z + c) ̸≡ f(z). Then for every b ∈ C with b ̸= −ad2, Ψ2(z) assumes the value b
infinitely often, and λ(Ψ2(z)− b) = ρ(f).

In 2013, Zheng and Chen [16] further investigated the value distribution of some
difference polynomial of entire function and obtained the following theorem.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.6, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

1032 Jin Tu et al 1031-1042



Theorem 1.6 [16]. Let f(z) be a transcendental entire function of finite order with a
finite nonzero Borel exceptional value d, and let a ∈ C \ {0}, c1, c2, . . . , cm be complex
constants satisfying that at least one of them is non-zero. Then for 1 ≤ m < n and every
b(̸= dm−adn) ∈ C, G1(z) =

∏m
j=1 f(z+ cj)−af(z)n assumes the value b infinitely often

and λ(G1(z)− b) = ρ(f).

Thus, it is natural to ask: On What condition can Theorem 1.6 still hold when f(z)
is a transcendental meromorphic function?

The main purpose of this article is to study the above questions and obtain the
following theorem.

Theorem 1.7 Let f(z) be a transcendental meromorphic function of finite order with
two Borel exceptional values d,∞, and let a ∈ C\{0}, c1, c2, . . . , cm be complex constants
satisfying that at least one of them is non-zero. Then for 1 ≤ m < n and every b(̸=
dm−adn) ∈ C, G1(z) =

∏m
j=1 f(z+ cj)−af(z)n assumes the value b infinitely often and

λ(G1(z)− b) = ρ(f).

In addition, we further study the value distribution of some difference polynomials of
meromorphic function of more general form

G2(z) = f(z)n
m∏
j=1

f(z + cj), G3(z) = f(z)n
m∏
j=1

[f(z + cj)− f(z)]

and obtain the following results:

Theorem 1.8 Let f(z) be a transcendental meromorphic function of finite order with
two Borel exceptional values d,∞, and let c1, c2, . . . , cm be nonzero complex constants.
Then for n ≥ 1, G2(z) assumes every value b(̸= dn+m) ∈ C infinitely often and λ(G2(z)−
b) = ρ(f).

Corollary 1.1 Let f(z) be a transcendental meromorphic function of finite order with
two Borel exceptional values 0,∞, and let c1, c2, . . . , cm be nonzero complex constants.
Then for n ≥ 1, G2(z) assumes every nonzero value b ∈ C infinitely often and λ(G2(z)−
b) = ρ(f).

Example 1.1 Let f(z) = ez−2
ez+2 , it is easy to see that 0,∞ are not Borel exceptional

values. Let n = 1,m = 2, c1 = πi, c2 = −πi and b = 1, then we have G2(z) = f(z)f(z +
c1)f(z + c2) − 1 = 4

ez−2 has no zeros. Let n = 2,m = 2, c1 = πi, c2 = −πi and b = 1,

then we have G2(z) = f(z)3f(z+c1)f(z+c2)−1 = −4
ez+1 has no zeros. Hence, this shows

that the condition in Corollary 1.1 is sharp in a sense.

Theorem 1.9 Let f(z) be a transcendental meromorphic function of finite order with
two Borel exceptional values d,∞, and let c1, c2, . . . , cm be nonzero complex constants
and f(z + cj) ̸≡ f(z) for j = 1, 2, . . . ,m. Then for n,m ≥ 1 are two integers, G3(z)
assumes every value b ∈ C \ {0} infinitely often and λ(G3(z)− b) = ρ(f).

Remark 1.1 When b = 0, the conclusion may not hold. For example, let f(z) = ez,
G3(z) = f(z)n[f(z + πi)− f(z)]. Then G3(z) = −2e(n+1)z has no zeros.
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Corollary 1.2 Let f(z) be a transcendental entire function of finite order with a Borel
exceptional values d, and let c1, c2, . . . , cm be nonzero complex constants and f(z+ cj) ̸≡
f(z) for j = 1, 2, . . . ,m. Then for n,m ≥ 1 are two integers, G3(z) assumes every value
b ∈ C infinitely often and λ(G3(z)− b) = ρ(f).

Remark 1.2 It is easily to see that Theorem 1.9 is an improvement of the result in [10,
Theorem 1.4], where they consider the case of m = 1 and the value b can replaced by a
small function α(z). In fact, our results also can allow the value b to be a polynomial,
even be a meromorphic function α(z) ̸≡ 0 satisfying ρ(α) < ρ(f).

Example 1.2 Let f(z) = ez +2z, c = 2πi, α(z) = 4cz, n = 1 and m = 1. Then we know
that f(z) has no Borel exceptional value, and we have G3(z) = f(z)∆f(z)− 4cz = 2cez,
which has no zeros. Hence, the condition on f(z) having a Borel exceptional value is
necessary in Corollary 1.2.

The following result of this paper is the value distribution of differential and difference
polynomial of entire function.

Theorem 1.10 Let f(z) be a transcendental entire function of finite order, and a, c1, . . . ,
cm be nonzero complex constants. Then for any positive integers n ≥ 2m + 3, Ψ(z) =
f (k)(z)

∏m
j=1 f(z + cj)− af(z)n assumes all finite values b ∈ C infinitely often.

Regarding Theorem 1.2, we pose the following question.

Question 1.1 What can be said if the condition n ≥ 2m+3 in Theorem 1.10 is replaced
with 1 ≤ n ≤ 2m+ 2?

2 Some Lemmas

The following lemma is important in the fields of factorization and uniqueness theory
of meromorphic functions which is given by Gross [3]. In 2010, Xu and Yi [13] made a
small changed form as follows.

Lemma 2.1 [13]. Suppose that fj(z)(j = 1, 2, . . . , n + 1) are meromorphic functions
and gj(j = 1, 2 . . . , n) are entire functions satisfying the following conditions.

(i)
∑n
j=1 fj(z)e

gj(z) ≡ fn+1.

(ii) If 1 ≤ j ≤ n + 1, 1 ≤ k ≤ n, the order of fj is less than the order of egk(z). If
n ≥ 2, 1 ≤ j ≤ n + 1, 1 ≤ h < k ≤ n, and the order of fj(z) is less than the order of
egh−gk .

Then fj(z) ≡ 0(j = 1, 2, . . . , n+ 1).

Lemma 2.2 [15]. Let f be a nonconstant meromorphic function and P (f) = a0+a1f +
a2f

2 + · · ·+ anf
n, where a0, a1, a2, · · · , an are constants and an ̸= 0. Then

T (r, P (f)) = nT (r, f) + S(r, f).
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Lemma 2.3 [2, Theorem 2.1]. Let f(z) be a meromorphic function of finite order ρ and
let c be a fixed nonzero complex number, then for each ε > 0, we have

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= O(rρ−1+ε) = S(r, f).

Lemma 2.4 [2, Corollary 2.5]. Let f(z) be a meromorphic function with order ρ =
ρ(f), ρ < +∞, and let η be a fixed nonzero complex number, then for each ε > 0, we have

T (r, f(z + η)) = T (r, f) +O(rρ−1+ε) +O(log r).

Lemma 2.5 [2, Theorem 2.2]. Let f be a meromorphic function with exponent of con-
vergence of poles λ( 1f ) = λ < +∞, c ̸= 0 be fixed, then for each ε > 0,

N(r, f(z + η)) = N(r, f) +O(rλ−1+ε) +O(log r).

Lemma 2.6 [14]. If f(z) is a transcendental meromorphic function with exponent of
convergence of poles λ( 1f ) = λ < +∞, c ̸= 0. Then, for each ε > 0, one has

λ

(
1

f(z + c)

)
= λ

(
1

f(z)

)
= λ, λ

(
1

∆f

)
≤ λ.

Lemma 2.7 Let f(z) be a transcendental meromorphic function with exponent of con-
vergence of poles λ( 1f ) = λ < ρ(f) = ρ < +∞, and let c1, c2, . . . , cm be nonzero complex

constants, and n,m ≥ 1 be integers. Then ρ(G2) = ρ(f).

Proof: We firstly prove that ρ(G2) ≤ ρ(f). We can rewrite G2(z) as the form

G2(z) = f(z)n+m
m∏
j=1

f(z + cj)

f(z)
. (1)

For each ε(0 < ε < ρ− λ), it follows by Lemma 2.3 and (1) that

m(r,G2) ≤ (n+m)m(r, f) +

m∑
j=1

m(r,
f(z + cj)

f(z)
) +O(1) (2)

= (n+m)m(r, f) +O(rρ−1+ε).

By Lemma 2.5, we have

N(r,G2) ≤ nN(r, f) +

m∑
j=1

N(r, f(z + cj)) (3)

≤ (n+m)N(r, f) +O(rλ−1+ε) +O(log r).

Since λ < ρ, it follows from (2) and (3) that

T (r,G2) ≤ (n+m)T (r, f) +O(rρ−1+ε) +O(log r). (4)
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So, we can get that ρ(G2) ≤ ρ(f) easily.
Next, we prove that ρ(G2) ≥ ρ(f). From Lemma 2.3 and (1), we have

(n+m)m(r, f) = m(r, fn+m) ≤ m(r,G2) +

m∑
j=1

m(r,
f(z)

f(z + cj)
) +O(1) (5)

= m(r,G2) +O(rρ−1+ε).

Since λ(1/f) = λ < ρ, for any given ε > 0 there exists r0 > 0 such that for all r > r0 we
have

N(r, f) ≤ rλ+ε. (6)

Thus, it follows from (5) and (6) that

T (r, f) ≤ 1

n+m
m(r,G2) +O(rρ−1+ε) +O(rλ+ε), r > r0. (7)

Since λ < ρ and 0 < ε < ρ− λ, it follows from (7) that ρ(G2) ≥ ρ(f).
Hence, the proof of Lemma 2.7 is proved. 2

By using the same argument as in Lemma 2.7, we can prove the following lemma
easily.

Lemma 2.8 Let f(z) be a transcendental meromorphic function with exponent of con-
vergence of poles max{λ(f), λ( 1f )} = λ < ρ(f) = ρ < +∞, and let c1, c2, . . . , cm be

nonzero complex constants such that f(z + cj) ̸≡ f(z)(j = 1, 2, . . . ,m), and n,m ≥ 1 be
integers. Then ρ(G3) = ρ(f).

Lemma 2.9 [15, page 37]. Let f(z) be a nonconstant meromorphic function in the
complex plane and l be a positive integer. Then

T (r, f (l)(z)) ≤ (l + 1)T (r, f) + S(r, f), N(r, f (l)(z)) = N(r, f) + lN(r, f).

3 Proofs of Theorems 1.7, 1.8 and 1.9

3.1 The Proof of Theorem 1.7

We first prove ρ(G1) = ρ(f). By Lemma 2.2 and Lemma 2.4, we have ρ(G1) ≤ ρ(f). On
the other hand, it follows from Lemma 2.4 that

nT (r, f) = T (r, afn) +O(1) = T

r, m∏
j=1

f(z + cj)−G1(z)

+O(1)

≤
m∑
j=1

T (r, f(z + cj)) + T (r,G1(z)) +O(1)

= mT (r, f) + T (r,G1(z)) +O(rρ−1+ε) +O(log r),

that is,
(n−m)T (r, f) ≤ T (r,G1(z)) +O(rρ−1+ε) +O(log r). (8)
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Since 1 ≤ m < n, it follows from (8) that ρ(f) ≤ ρ(G1). Hence, we can prove that
ρ(G1) = ρ(f).

Since f(z) has two Borel exceptional values d,∞, then f(z), f(z+ cj) can be written
as the form

f(z) = d+
g(z)

p(z)
exp{αzk}, f(z + cj) = d+

g(z + cj)

p(z + cj)
hj(z) exp{αzk}, (9)

where α ̸= 0 is a constant, k(≥ 1) is an integer satisfying ρ(f) = k, and g(z), hj(z) =

eαkcjz
k−1+···+αckj are entire functions such that g(z)hj(z) ̸≡ 0, ρ(g) < k, ρ(hj) ≤ k − 1,

j = 1, 2 . . . ,m, and p(z) is the canonical product formed with the poles of f(z) satisfying

ρ(p) = λ(p) = λ( 1f ) < ρ(f). Set H(z) = g(z)
p(z) ̸≡ 0, then we can see that ρ(H) < ρ(f).

Now we prove that λ(G1 − b) = ρ(f). Suppose that λ(G1 − b) < ρ(f). Since
ρ(G1) = ρ(f) = ρ(G1 − b), then λ(G1 − b) < ρ(G1 − b) = ρ(f) = k and G1(z)− b can be
rewritten as the form

G1(z)− b =
g∗1(z)

p∗1(z)
exp{βzk} = H∗

1 (z) exp{βzk}, (10)

where β(̸= 0) is a constant, g∗1(z)(̸≡ 0) is an entire function satisfying ρ(g∗1) < k. Thus,
by Lemma 2.6, we have ρ(p∗1) = λ(p∗1) ≤ max{λ( 1

f(z) ), λ(
1

f(z+cj)
), j = 1, 2, . . . ,m} =

λ( 1f ) < ρ(f) = k. So, we have ρ(H∗
1 ) < ρ(f) = k.

Thus, from (9), (10) and the definition of G1(z), we have

m∏
j=1

H(z + cj)hj(z)e
mαzk + · · ·+ dm−2

 ∑
1≤i<j≤m

H(z + ci)H(z + cj)hi(z)hj(z)

 e2αz
k

+ dm−1

 m∑
j=1

H(z + cj)hj(z)

 eαz
k

+ dm

− a
(
dn + ndn−1H(z)eαz

k

+ · · ·+H(z)nenαz
k
)
= b+H∗

1 (z)e
βzk .

Since 1 ≤ m < n,aH(z)H∗
1 (z) ̸≡ 0, by comparing growths of both sides of the above

equality, we have β = nα. Thus, we can rewrite the above equality as the form

fn(z)e
nαzk + fn−1(z)e

(n−1)αzk + · · ·+ f1(z)e
αzk = fn+1(z), (11)

where fn+1(z) = b − dm + adn, and f1, . . . , fn are algebraic expressions in the terms
a, d, n,m,H(z),H∗

1 (z),H(z + cj), hj(z), j = 1, 2, . . . ,m, such as addition, subtraction
and multiplication. Since ρ(H) < ρ(f) = k, ρ(hj) ≤ k − 1 and ρ(H∗

1 ) < ρ(f) = k, then

we have ρ(ft) < k = ρ(etαz
k

) for t = 1, 2, . . . , n. Thus, by Lemma 2.1 and (11), we have
ft(z) ≡ 0 for t = 1, 2, . . . , n+ 1, that is, b− dm + adn ≡ 0, which is a contradiction with
the assumption b ̸= dm − adn. Hence, we have that λ(G1 − b) = ρ(f).

This completes the proof of Theorem 1.7.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.6, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

1037 Jin Tu et al 1031-1042



3.2 The proof of Theorem 1.8

Similar to the proof of Theorem 1.7, we can obtain (9).
Now we prove that λ(G2 − b) = ρ(f). Suppose that λ(G2 − b) < ρ(f).
By Lemma 2.7, we have ρ(G2) = ρ(f) = ρ(G2 − b), then λ(G2 − b) < ρ(G2 − b) =

ρ(f) = k and G2(z)− b can be rewritten as the form

G2(z)− b =
g∗2(z)

p∗2(z)
exp{βzk} = H∗

2 (z) exp{βzk}, (12)

where β(̸= 0) is a constant, g∗2(z)(̸≡ 0) is an entire function satisfying ρ(g∗2) < k. Thus,
by Lemma 2.6, we have ρ(p∗2) = λ(p∗2) ≤ max{λ( 1

f(z) ), λ(
1

f(z+cj)
), j = 1, 2, . . . ,m} =

λ( 1f ) < ρ(f) = k. So, we have ρ(H∗
2 ) < ρ(f) = k.

From (9), (12) and the definition of G2(z), we have

(d+H(z)eαz
k

)n
m∏
j=1

[
d+H(z + cj)hj(z)e

αzk
]
= b+H∗

2 (z) exp{βzk}.

By simple calculation, we can rewrite the above equation as the form

fn+m(z)e(n+m)αzk + · · ·+ f1(z)e
αzk + dn+m − b = H∗

2 (z) exp{βzk}, (13)

where fn+m(z) = H(z)n
∏m
j=1H(z + cj)hj(z) ̸≡ 0 and f1, f2, . . . , fn+m−1 are algebraic

expressions in the terms d, n,m,H(z),H(z+ cj), hj(z), j = 1, 2, . . . ,m, such as addition,
subtraction and multiplication. Since ρ(H) < ρ(f) = k, ρ(hj) ≤ k − 1 and ρ(H∗

2 ) <

ρ(f) = k, then we have ρ(ft) < k = ρ(etαz
k

) for t = 1, 2, . . . , n + m. By comparing
growths of both sides of the above equality, we have β = (n+m)α. Thus, it follows from
(13) that

[fn+m(z)−H∗
2 (z)]e

(n+m)αzk + · · ·+ f1(z)e
αzk = b− dn+m, (14)

By Lemma 2.1, we have b = dn+m, a contradiction. Hence, we have λ(G2 − b) = ρ(f).
This completes the proof of Theorem 1.8.

3.3 The proof of Theorem 1.9

Similar to the proof of Theorem 1.7, we can obtain (9).
Now we prove that λ(G3 − b) = ρ(f). Suppose that λ(G3 − b) < ρ(f).
By Lemma 2.8, we have ρ(G3) = ρ(f) = ρ(G3 − b), then λ(G3 − b) < ρ(G3 − b) =

ρ(f) = k and G3(z)− b can be rewritten as the form

G3(z)− b =
g∗3(z)

p∗3(z)
exp{βzk} = H∗

3 (z) exp{βzk}, (15)

where β(̸= 0) is a constant, g∗3(z)(̸≡ 0) is an entire function satisfying ρ(g∗3) < k. Thus,
by Lemma 2.6, we have ρ(p∗3) = λ(p∗3) ≤ max{λ( 1

f(z) ), λ(
1

∆f(z) )} = λ( 1f ) < ρ(f) = k. So,

we have ρ(H∗
3 ) < ρ(f) = k.
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From (9), (13) and the definition of G3(z), we have(
d+H(z)eαz

k
)n m∏

j=1

{
[H(z + cj)hj(z)−H(z)]eαz

k
}
= b+H∗

3 (z) exp{βzk}.

By simple calculation, we can rewrite the above equation as the form

fn+1(z)e
(n+m)αzk + · · ·+ f1(z)e

αzk − b = H∗
3 (z) exp{βzk}, (16)

where fn+1(z) = H(z)n
∏m
j=1[H(z + cj)hj(z)−H(z)] ̸≡ 0 and

fi+1(z) = Cind
n−iH(z)i

m∏
j=1

[H(z + cj)hj(z)−H(z)], i = 0, 1, . . . , n.

Since ρ(H) < ρ(f) = k, ρ(hj) ≤ k − 1 and ρ(H∗
3 ) < ρ(f) = k, then we have ρ(fi) <

k = ρ(etαz
k

) for i = 1, 2, . . . , n+1. By comparing growths of both sides of (16), we have
β = (n+m)α. Thus, it follows from (13) that

[fn+1(z)−H∗
3 (z)]e

(n+m)αzk + · · ·+ f1(z)e
αzk = b, (17)

By Lemma 2.1, we have f1(z) ≡ 0, that is,

dn
m∏
j=1

[H(z + cj)hj(z)−H(z)] ≡ 0,

which is a contradiction with the assumptions f(z+cj) ̸≡ f(z) for j = 1, 2, . . . ,m. Hence,
we have λ(G3 − b) = ρ(f).

This completes the proof of Theorem 1.9.

4 The proof of Theorem 1.10

We will take two case as follows into consideration by using the idea of Theorem 1 in
[16].

Case 1. Suppose that 0 < σ(f) < ∞. We assume that there exists b ∈ C such that
Ψ(z)− b has finitely many zeros only. Set

F (z) =

f (k)(z)
m∏
j=1

f(z + cj)− b

af(z)n
. (18)

It follows from (18) that T (r, F ) ≤ (n+m+ 1)T (r, f) + S(r, f) and F (z) has only finite
1-points, i.e.,

N(r,
1

F − 1
) = O(log r). (19)

Since f(z) is entire, from (18), we have that the poles of F (z) occur only at zeros of f(z),

and those poles which are not zeros of f (k)(z)
m∏
j=1

f(z + cj)− b having multiplicities ≥ n
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at the same time. Moreover, the zeros of F (z) can only occur at zeros of f (k)(z)
m∏
j=1

f(z+

cj)− b which are not poles of F (z). Thus, it follows by Lemma 2.3 and Lemma 2.9 that

N(r, F ) +N(r,
1

F
) ≤ 1

n
N(r, F ) +N(r,

1

f (k)(z)
∏m
j=1 f(z + cj)− b

) (20)

≤ 1

n
T (r, F ) + T (r, f (k)(z)

m∏
j=1

f(z + cj)) +O(1)

≤ 1

n
T (r, F ) + (m+ 1)T (r, f) + S(r, f).

By the second fundamental theorem, it follows from (19) and (20) that

T (r, F ) ≤ N(r, F ) +N(r,
1

F
) +N(r,

1

F − 1
) + S(r, F )

≤ 1

n
T (r, F ) + (m+ 1)T (r, f) + S(r, f),

i.e.,

(1− 1

n
)T (r, F ) ≤ (m+ 1)T (r, f) + S(r, f). (21)

On the other hand, we have

nT (r, f) = T (r, fn) = T (r,
f (k)(z)

∏m
j=1 f(z + cj)− b

aF (z)
)

≤ T (r, f (k)(z)
m∏
j=1

f(z + cj)) + T (r, F ) +O(1)

≤ (m+ 1)T (r, f) + T (r, F ) + S(r, f),

i.e.,
(n−m− 1)T (r, f) ≤ T (r, F ) + S(r, f). (22)

Thus, it follows from (21) and (22) that

(1− 1

n
− m+ 1

n−m− 1
)T (r, F ) ≤ S(r, f). (23)

Since f(z) is a transcendental entire function and n ≥ 2m+ 3, from (23) we can deduce
a contradiction. Hence, for any b ∈ C, Ψ(z)− b has infinitely many zeros.

Case 2. Suppose that σ(f) = 0, then Ψ(z) is also of zero order. We assume that
Ψ(z) is a polynomial, then

T (r,Ψ(z)) = O(log r). (24)

Thus, it follows from (24) and Lemma 2.4 that

T (r, f (k)(z)
m∏
j=0

f(z + cj)− b) = T (r,Ψ(z) + af(z)n) = nT (r, f) + S(r, f). (25)
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On the other hand, we have

T (r, f (k)(z)
m∏
j=1

f(z + cj)) = m(r, f (k)(z)
m∏
j=1

f(z + cj)) (26)

= m

(
r, fm+1(z)

f (k)(z)
∏m
j=1 f(z + cj)

fm+1(z)

)

≤ (m+ 1)m(r, f) +m

(
r,
f (k)(z)

f(z)

)
+

m∑
j=1

m

(
r,
f(z + cj)

f(z)

)
+O(1) + S(r, f)

= (m+ 1)T (r, f) + S(r, f).

From (25), (26) and n ≥ m+2, we can deduce a contradiction with the assumption that
f is transcendental.

Thus, it is easy to see that for any b ∈ C, Ψ(z)− b is a transcendental entire function
with zero order and has infinitely many zeros.

Therefore, this completes the proof of Theorem 1.10.
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On properties of decomposable measures and pseudo-integrals

Dong Qiu∗, Chongxia Lu, Nanxiang Yu
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Abstract

In this paper, we mainly discuss two classes of σ-⊕-decomposable measures and the corresponding
pseudo-integrals: one is based on the generated pseudo-addition (g-case) and the other is based on
the idempotent pseudo-operation (sup and inf). In particular, we obtained the correlation between
the measure zero sets with respect to a σ-⊕-decomposable measure and the corresponding pseudo-
integrals on them. As an application of the main results, we generalized the classical Radon-Nikodym
theorem to the decomposable measure theory based on pseudo-integrals.

Keywords: Pseudo-addition; Pseudo-multiplication; Pseudo-integral; Radon-Nikodym theorem

1 Introduction

Pseudo-analysis is a generalization of the classical analysis, where instead of the field of real numbers a
semiring is taken on a real interval [a, b] ⊂ [−∞,+∞] endowed with pseudo-addition ⊕ and with pseudo-
multiplication ⊙ (see [6, 22, 24, 25, 36]). Based on this structure there were developed the concepts of
⊕-measure (pseudo-additive measure), pseudo-integral, pseudo-convolution, pseudo-Laplace transform,
etc. The advantage of the pseudo-analysis is that there are covered with one theory, and so with unified
methods, problems (usually nonlinear and under uncertainty) from many different fields (system theory,
optimization, decision making, control theory, differential equations, difference equations, etc.). Pseudo-
analysis uses many mathematical tools from different field as functional equations, variational calculus,
measure theory, functional analysis, optimization theory, semiring theory, etc.

Similar ideas were developed independently by Maslov and his collaborators in the framework of
idempotent analysis and idempotent mathematics, with important applications [14, 15]. In particular,
idempotent analysis is fundamental for the theory of weak solutions to Hamilton-Jacobi equations with
non-smooth Hamiltonian, see [14, 15] and also [26, 27] (in the framework of pseudo-analysis). In some
cases, this theory enables one to obtain exact solutions in the similar form as for the linear equations.
Some further developments relate more general pseudo-operations with applications to nonlinear partial
differential equations, see [29]. Recently, these applications have become important also in the field of
image processing [27].

The classical measure theory is one of the most important theories in mathematics and based on
countable additive measures [11, 40]. Although the additive measures are widely used, they do not
allow modeling many phenomena involving interaction between criteria. For this reason, the fuzzy mea-
sure proposed by Sugeno as an extension of classical measure in which the additivity is replaced by a
weaker condition, i.e., monotonicity [39]. So far, there have been many different fuzzy measures, such
as the decomposable measure, the λ-additive measure, the belief measure,the possibility measure and
the plausibility measure, etc. Among the fuzzy measure mentioned before, the decomposable measure
was independently introduced by Dubois and Prade [8] and Weber [42], because of the close relation
with the classical measure theory. Further developments of decomposable measures and related integrals
have been extensive studied [6, 23, 31, 32, 33, 35]. Decomposable measures include several well-known
fuzzy measures such as the λ-additive measure and probability and possibility measures, and they are a
natural setting for relaxing probabilistic assumptions regarding the modeling of uncertainty [9, 34]. De-
composable measures and the corresponding integrals are very useful in decision theory and the theory
of nonlinear differential and integral equations [26, 28, 30, 38].

∗Corresponding author. Tel.:+86-15123126186; Fax:+86-23-62471796; E-mail: dongqiumath@163.com (D. Qiu).
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Based on the above these, the notions of σ-⊕-decomposable measure (pseudo-additive measure) and
corresponding integral (pseudo-integral) based on this measure were introduced [22, 24, 25, 27, 36]. Since
integrals bases on non-additive measure have wide application, there were obtained generalizations of the
classical integral inequalities for integrals with respect to non-additive measures, such as the ineqalities
for Choqut and Sugeno integral were given in [2, 13, 18, 19, 41, 44] and the inequalities for the pseudo-
integrals with respect to σ-⊕-decomposable measure were considered in [1, 3, 4, 17, 20, 21]. In [37],
Sugeno generalize the classical Radon-Nikodym derivatives for functions with respect to fuzzy measures.

In this paper, we will discuss two classes of σ-⊕-decomposable measures and the corresponding pseudo-
integrals: one is based on the generated pseudo-addition (g-case, see [16, 22]) and the other is based on
the idempotent pseudo-operation (sup and inf, see [23, 39]). In Section 2, we recall the notions of pseudo-
addition ⊕ and pseudo-multiplication ⊙ forming a real semiring on the interval [a, b] ⊂ [−∞,+∞]. Then
we will give the notion of σ-⊕-decomposable measure and corresponding pseudo-integral based on this
measure. In Section 3, we will discuss several important properties as monotonicity, continuous from
above and continuous from below for σ-⊕-decomposable measures, and will show the relationship be-
tween the measure zero sets with respect to a σ-⊕-decomposable measure and the corresponding pseudo-
integrals on them. Finally, we will generalize the classical Radon-Nikodym theorem to decomposable
measure theory based on pseudo-integrals.

2 Preliminaries

Let [a, b] be a closed subinterval of [−∞,∞] (in some cases we will also take semiclosed subintervals).
The total order on [a, b] will be denoted by ≼. This can be the usual order of the real line, but it can
also be another order.

Definition 2.1 [17] A binary operation ⊕ : [a, b]× [a, b] → [a, b] is called a pseudo-addition, if it satisfies
the following conditions, for all x, y, z, w ∈ [a, b]:

(1) x⊕ y = y ⊕ x; (commutativity)
(2) x⊕ z ≼ y ⊕ w whenever x ≼ y and z ≼ w; (monotonicity)
(3) (x⊕ y)⊕ z = x⊕ (y ⊕ z); (associativity)
(4) 0⊕ x = x, where 0 is a zero element (usually 0 is either a or b). (boundary condition)

Let [a, b]+ = {x | x ∈ [a, b],0 ≼ x}.

Definition 2.2 [17] A binary operation ⊙ : [a, b] × [a, b] → [a, b] is called a pseudo-multiplication, if it
satisfies the following conditions, for all x, y, z ∈ [a, b]:

(1) x⊙ y = y ⊙ x; (commutativity)
(2) x⊙ z ≼ y ⊙ z whenever x ≼ y and z ∈ [a, b]+; (positively monotonicity)
(3) (x⊙ y)⊙ z = x⊙ (y ⊙ z); (associativity)
(4) 1⊙ x = x, where 1 ∈ [a, b] is an unit element. (boundary condition)

We assume also 0⊙ x = 0 and that ⊙ is a distributive pseudo-multiplication with respect to ⊕, i.e.,

x⊙ (y ⊕ z) = (x⊙ y)⊕ (x⊙ z).

The structure ([a, b],⊕,⊙) is called a real semiring [1, 20]. In this paper we will consider semirings with
the following continuous operations:

Case 1: The pseudo-addition is an idempotent operation and the pseudo-multiplication is not.
(a) x⊕ y = sup(x, y), ⊙ is an arbitrary non-idempotent pseudo-multiplication on the interval [a, b].
We have 0 = a and the idempotent operation sup induces a total order in the following way: x ≼ y if

and only if sup(x, y) = y. In order to keep the semiring structure, ⊙ has to be pseudo-multiplication of
the first type, i.e., a⊙ b = a and then a ̸= 1. Special important case is when this pseudo-multiplication
can be represented by a strictly increasing and continuous generator surjective function g : [a, b] → [0,∞],
i.e., ⊙ is given with

x⊙ y = g−1(g(x) · g(y)),
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such that g(0) = g(a) = 0, with the usual convention 0 · ∞ = 0.
(b) x⊕ y = inf(x, y), ⊙ is an arbitrary non-idempotent pseudo-multiplication on the interval [a, b].
We have 0 = b and the idempotent operation inf induces a total order in the following way: x ≼ y if

and only if inf(x, y) = y. In order to keep the semiring structure, ⊙ has to be pseudo-multiplication of the
second type, i.e., a⊙b = b and then b ̸= 1. Special important case is when this pseudo-multiplication can
be represented by a strictly decreasing and continuous generator surjective function g : [a, b] → [0,∞],
i.e., ⊙ is given with

x⊙ y = g−1(g(x) · g(y)),

such that g(0) = g(b) = 0.

Case 2: The pseudo-operations are defined by a strictly monotone and continuous generator surjective
function g : [a, b] → [0,∞], i.e., pseudo-operations are given with

x⊕ y = g−1(g(x) + g(y)) and x⊙ y = g−1(g(x) · g(y)),

such that g(0) = 0.
If the zero element for the pseudo-addition is a, we will consider increasing generators. Then g(a) = 0

and g(b) = ∞. If the zero element for the pseudo-addition is b, we will consider decreasing generators.
Then g(b) = 0 and g(a) = ∞. If the generator g is increasing (decreasing), then the operation ⊕ induces
the usual order (opposite to the usual order) on the interval [a, b] in the following way: x ≼ y if and only
if g(x) ≤ g(y).

Case 3: Both operations are idempotent. We have
(a) x ⊕ y = sup(x, y), x ⊙ y = inf(x, y), on the interval [a, b]. We have 0 = a and 1 = b. The

idempotent operation sup induces the usual order (x ≼ y if and only if sup(x, y) = y).
(b) x ⊕ y = inf(x, y), x ⊙ y = sup(x, y), on the interval [a, b]. We have 0 = b and 1 = a. The

idempotent operation inf induces the usual order (x ≼ y if and only if inf(x, y) = y).

Let X be a non-empty set, we shall denote by A and B are σ-algebra and Borel σ-algebra of subsets
of a set X, respectively.

Definition 2.3 [3] A set function m : A → [a, b]+ (or semiclosed interval) is called a σ-⊕-decomposable
measure if it satisfies the following conditions:

(1) m(∅) = 0;

(2) m(
∞∪
i=1

Ei) =
∞
⊕
i=1

m(Ei) for any sequence {Ei}i∈N of pairwise disjoint sets from A , where
∞
⊕
i=1

xi =

lim
n→∞

n
⊕
i=1

xi for all {xi} ⊂ [a, b].

A σ-⊕-decomposable measure m also is called σ-sup-decomposable measure if x ⊕ y = sup(x, y) on
the interval [a, b]. A set E is called σ-⊕-decomposable measure zero set if m(E) = 0. It is obvious that
∅ is σ-⊕-decomposable measure zero set.

We notice that if m is a σ-⊕-decomposable measure, where ⊕ has a generator g, then µ = g ◦m is a
σ-additive measure, and if a set E is σ-⊕-decomposable measure zero set, then E is a measure zero set
with respect to µ. In fact, we have that

(1) µ(∅) = g(m(∅)) = g(0) = 0;

(2) µ(
∞∪
i=1

Ei) = g

(
m(

∞∪
i=1

Ei)

)
= g(

∞
⊕
i=1

m(Ei)) =
∞∑
i=1

g(m (Ei)) =
∞∑
i=1

µ (Ei) for any sequence {Ei}i∈N

of pairwise disjoint sets from A ;
(3) If E is a σ-⊕-decomposable measure zero set, then µ(E) = g(m(E)) = g(0) = 0.
We call that m is g-finite, σ-g-finite, totally g-finite, totally σ-g-finite and g-complete, if µ = g ◦m is

finite, σ-finite, totally finite, totally σ-finite and complete (see [11]), respectively.

Definition 2.4 If (X,A ) is a measurable space and m, ν are two σ-⊕-decomposable measure on A . ν
is called absolutely ⊕-continuous with respect to m, if ν(E) = 0 for every measurable set E for which
m(E) = 0.
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It should be noted that if ν is absolutely ⊕-continuous with respect to m, where ⊕ has a generator
g, then g ◦ ν is absolutely continuous with respect to g ◦m (see [11]).

Let f and h be two functions defined on X and with values in [a, b]. Then, for any x ∈ X and λ ∈ [a, b]
we define

(f ⊕ h)(x) = f(x)⊕ h(x),

(f ⊙ h)(x) = f(x)⊙ h(x),

(λ⊙ f)(x) = λ⊙ f(x).

Definition 2.5 [4] The pseudo-characteristic function of a set E is defined with:

χE(x) =

{
0, x /∈ E,
1, x ∈ E,

where 0 is zero element for ⊕ and 1 is unit element for ⊙.

Definition 2.6 A set function m : A → [a, b] (or semiclosed interval) is monotone if

m(E) ≼ m(F )

whenever E,F ∈ A and E ⊂ F .

Denote by µ the usual Lebesgue measure on R. We have

m(E) = ess sup
µ
{x|x ∈ E} = sup{a|µ({x|x ∈ E, x > a}) > 0}.

Further, m is a σ-sup-decomposable measure [17]. More, Mesiar and Pap(see [17]) have showed that any
σ-sup-decomposable measure generated as essential supremum of a continuous density can be obtained
as a limit of pseudo-additive measures with respect to generted pseudo-addition.

In this paper we will consider the semiring ([a, b],⊕,⊙) for three (with completely different behavior)
cases, namely Case 1(a), 2 and 3(a). Observe that the Case 1(b) and 3(b) are linked to Case 1(a) and
3(a) by duality [21].

First, if the pseudo-operations are defined by a monotone and continuous surjective function g :
[a, b] → [0,∞] (i.e., Case 2), then the pseudo-integral for a measurable function f : X → [a, b] is given by

⊕∫
X

f ⊙ dm = g−1

(∫
X

(g ◦ f) d (g ◦m)

)
,

where the integral applied on the right side is the standard Lebesgue integral. In a special case, when
X = [c, d],A = B(X) and m = g−1 ◦ µ, then the pseudo-integral reduces on the g-integral

⊕∫
[c,d]

fdx = g−1

(
d∫
c

g(f(x))dx

)
.

Second, if the semiring is of the form ([a, b], sup,⊙) (i.e., Case 1(a) and Case 3(a)), then we shall
consider complete sup-measure (shortly sup-measure) m only and A = 2X , i.e., for any family {Ei}i∈I
of measurable sets,

m(
∪
i∈I

Ei) = sup
i∈I

m(Ei).

If X is countable (especially, if X is finite) then any σ-sup-decomposable measure m is complete and,
moreover, m(E) = sup

x∈E
ψ(x), where ψ : X → [a, b] is a density function given by ψ(x) = m({x}). Then

the pseudo-integral for a function f : X → [a, b] is given by

⊕∫
X

f ⊙ dm = sup
x∈X

(f(x)⊙ ψ(x)),

where function ψ defines σ-sup-decomposable measure m.

4
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3 Main results

Theorem 3.1 A σ-⊕-decomposable measure m : A → [a, b] is monotone, if ⊕ satisfies one of the
following conditions:

(1) x⊕ y = sup(x, y) on the interval [a, b];
(2) ⊕ has a strictly monotone and continuous surjective generator g.

Proof. If E,F ∈ A and E ⊂ F , then F − E ∈ A . Since F = E ∪ (F − E), we get

m(F ) = m(F − E)⊕m(E).

If ⊕ satisfies Condition (1), then we have

m(F ) = sup{m(F − E),m(E)} ≥ m(E),

i.e., sup{m(E),m(F )} = m(F ). Hence, by x ≼ y if and only if sup(x, y) = y for all x, y ∈ [a, b], we have

m(E) ≼ m(F ).

If ⊕ satisfies Condition (2), then we have

g(m(F )) = g(m(F − E)) + g(m(E)).

Since g(x) ≥ 0 for all x ∈ [a, b], we have g(m(F )) ≥ g(m(E)). Hence, by x ≼ y if and only if g(x) ≤ g(y)
for all x, y ∈ [a, b], we have

m(E) ≼ m(F ).

2

It is easy to see that if F is a σ-⊕-decomposable measure zero set with respect to m, where m is a
σ-⊕-decomposable measure, then E is a σ-⊕-decomposable measure zero set with respect to m, for all
E ⊂ F .

Theorem 3.2 Let (X,A ) be a measurable space. If m : A → [a, b] is a σ-⊕-decomposable measure and
{En} ⊂ A (X) is an increasing sequence for which lim

n→∞
En ∈ A (X), then

m
(
lim
n→∞

En

)
= lim
n→∞

m (En).

Proof. We might write E0 = ∅. Since {En} is an increasing sequence, {Ei − Ei−1} is a sequence of
pairwise disjoint sets from A , then

En =
n∪
i=1

(Ei − Ei−1) and lim
n→∞

En =
∞∪
i=1

(Ei − Ei−1).

Hence, we have

m (En) = m

(
n∪
i=1

(Ei − Ei−1)

)
=

n
⊕
i=1

m (Ei − Ei−1)

and

m
(
lim
n→∞

En

)
= m

( ∞∪
i=1

(Ei − Ei−1)

)
=

∞
⊕
i=1

m (Ei − Ei−1).

By
∞
⊕
i=1

xi = lim
n→∞

n
⊕
i=1

xi for all {xi} ⊂ [a, b], we have

∞
⊕
i=1

m (Ei − Ei−1) = lim
n→∞

n
⊕
i=1

m (Ei − Ei−1) .

Consequently, we get m
(
lim
n→∞

En

)
= lim
n→∞

m (En). 2

Theorem 3.3 Let (X,A ) be a measurable space and m : A → [a, b] be a σ-⊕-decomposable measure,
where ⊕ has a strictly increasing (or decreasing) and continuous surjective generator g. If {En} ⊂ A (X)
is a decreasing sequence, and there exists at least one l ∈ N such that m(El) ≺ b (or m(El) ≺ a). Then

5
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m
(
lim
n→∞

En

)
= lim
n→∞

m (En).

Proof. Suppose m(El) ≺ b for some l ∈ N. For the case m(El) ≺ a, we can prove it by a similar proof.
By Theorem 3.1 and {En} is a decreasing sequence, we have

m(En) ≼ m(El) ≺ b for all n ≥ l,

and therefore

m
(
lim
n→∞

En

)
≺ b.

By the monotonicity of g, we get

g(m(El)) < +∞ and g
(
m
(
lim
n→∞

En

))
< +∞.

Since {En} ia a decreasing sequence, {El − En} is an increasing sequence. By Theorem 3.2, we obtain

m
(
El − lim

n→∞
En

)
= m

(
lim
n→∞

(El − En)
)
= lim
n→∞

m (El − En),

i.e.,

g
(
m
(
El − lim

n→∞
En

))
= g

(
lim
n→∞

m (El − En)
)
.

By the continuity of g and g ◦m is a σ-additive measure, we have

g (m (El))− g
(
m
(
lim
n→∞

En

))
= g

(
m
(
El − lim

n→∞
En

))
= g

(
lim
n→∞

m (El − En)
)

= lim
n→∞

g (m (El − En))

= g (m (El))− lim
n→∞

g (m (En))

= g (m (El))− g
(
lim
n→∞

m (En)
)
.

Since g(m(El)) < +∞, we have

g
(
m
(
lim
n→∞

En

))
= g

(
lim
n→∞

m (En)
)
.

By the strictly monotonicity of g, we get m
(
lim
n→∞

En

)
= lim
n→∞

m (En). 2

Lemma 3.1 [17] Let m be a σ-sup-decomposable measure which is defined by

m(E) = ess sup
µ
{ψ(x)|x ∈ E},

on ([0,∞],B), where ψ : [0,∞] → [0,∞] is a continuous density. Then for any generator g there exist a
family {mλ} of σ-⊕λ-decomposable measures on ([0,∞],B), where ⊕λ is generated by gλ (the function g
on the power λ), λ ∈ (0,∞), such that lim

λ→∞
mλ = m.

Theorem 3.4 Let ([0,∞], sup,⊙) be a semiring with ⊙ generated by a strictly increasing and continuous
surjective generator g. Let m be the same as in Lemma 3.1. If {En} ⊂ B([0,∞]) is a decreasing sequence,
m(En) ≺ b for at least one n ∈ N, then

m
(
lim
n→∞

En

)
= lim
n→∞

m (En).

Proof. Since m is the same one in Lemma 3.1, for the generator g there exist a family {mλ} of σ-⊕λ-
decomposable measures on ([0,∞],B), where ⊕λ is generated by gλ, λ ∈ (0,∞), such that

lim
λ→∞

mλ = m.

Let l ∈ N such that m(El) ≺ b. Thus we have
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mλ(El) ≺ b, λ ∈ (0,∞).

Since f (x) = xµ (µ ̸= 0) is strictly increasing, whenever µ > 0, gλ and g are comonotone functions.
Hence, by Theorem 3.3, we have

mλ

(
lim
n→∞

En

)
= lim
n→∞

mλ (En), λ ∈ (0,∞).

Consequently, we obtain that

lim
λ→∞

mλ

(
lim
n→∞

En

)
= lim
λ→∞

lim
n→∞

mλ (En) = lim
n→∞

lim
λ→∞

mλ (En),

i.e., m
(
lim
n→∞

En

)
= lim
n→∞

m (En). 2

Theorem 3.5 Let (X,⊕,⊙) be a semiring with generated pseudo-operations by a strictly monotone and
continuous surjective generator g, and let m : A (X) → [a, b] be a σ-⊕-decomposable measure. If f :
X → [a, b] is a measurable function with respect to m and E is a σ-⊕-decomposable measure zero set on
A (X), then

⊕∫
E

f ⊙ dm = 0.

Proof. If the pseudo-operations are generated by a strictly monotone and continuous surjective generator
g, i.e., x⊕y = g−1(g(x)+g(y)) and x⊙y = g−1(g(x)·g(y)) for every x, y ∈ [a, b]. Then the pseudo-integral
for a measurable function f : X → [a, b] is given by

⊕∫
E

f ⊙ dm = g−1

(∫
E

g ◦ fdµ
)
,

for every measurable set E, where µ = g◦m is a σ-additive measure. Since E is a set of σ-⊕-decomposable
measure zero on A (X) and g(0) = 0, we have that E is a measure zero set with respect to µ. Hence, by
Theorem C of § 25 of [11], we have

∫
E

g ◦ fdµ = 0. Consequently, by the strictly monotonicity of g, we

obtain that
⊕∫
E

f ⊙ dm = g−1(0) = 0. 2

Example 3.1 Let X = R and let the pseudo-addition be represented by a strictly increasing and continu-
ous generator surjective function g : [0,+∞] → [0,+∞], which is defined by g(x) = x for all x ∈ [0,+∞].
It is easy to see that x⊕ y = x+ y and x⊙ y = x · y for all x, y ∈ [0,+∞]. Hence, we have 0 = 0,1 = 1.
We define a set function m on B(X) by

m(E) = µ(E)

for all E ∈ B(X), where µ is a Lebesgue measure. It is obvious that m satisfies (1) and (2) of Definition
2.3. Consequently, the set function m is a σ-⊕-decomposable measure. Let E be the set of rational
numbers. Since µ(E) = 0, thus m(E) = 0, i.e., E is a set of σ-⊕-decomposable measure zero on B(X).
Hence, for any measurable function f we have

⊕∫
E

f ⊙ dm = 0.

Theorem 3.6 Let (X, sup,⊙) be a semiring with ⊙ generated by a strictly increasing and continuous
surjective generator g, and let m : A (X) → [a, b] be a σ-sup-decomposable measure which is defined by
m(E) = sup

x∈E
ψ(x), where ψ : X → [a, b] is a density function given by ψ(x) = m({x}). If f : X → [a, b]

is a measurable function with respect to m and E is a set of σ-sup-decomposable measure zero on A (X),
then

sup∫
E

f ⊙ dm = 0.

7
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Proof. Let m : A → [a, b] be a σ-sup-decomposable measure which is defined by m(E) = sup
x∈E

ψ(x),

where ψ : X → [a, b] is a density function given by ψ(x) = m({x}). Then the pseudo-integral for a
measurable function f : X → [a, b] is given by

sup∫
E

f ⊙ dm = sup
x∈E

(f(x)⊙ ψ(x)),

for every measurable set E, where function ψ defines σ-sup-decomposable measure m. Since f(x) ≼
sup
x∈E

f(x) and ψ(x) ≼ sup
x∈E

ψ(x) = m(E) for all x ∈ E, by the monotonicity of g, we have

g (f (x)) ≤ g

(
sup
x∈E

f (x)

)
and g (ψ (x)) ≤ g (m (E)),

for all x ∈ E. Hence, by g(x) ≥ 0 for all x ∈ [a, b], we have

g (f (x)) · g (ψ (x)) ≤ g

(
sup
x∈E

f (x)

)
· g (m (E)),

which implies that

g
(
g−1 (g (f (x)) · g (ψ (x)))

)
≤ g

(
g−1

(
g

(
sup
x∈E

f (x)

)
· g (m (E))

))
,

for all x ∈ E. Since ⊙ is generated by a generator g, i.e., y ⊙ z = g−1(g(y)g(z)) for all y, z ∈ [a, b], we
get that

g (f(x)⊙ ψ(x)) ≤ g

(
sup
x∈E

f(x)⊙m(E)

)
,

for all x ∈ E. Hence, we obtain that

f(x)⊙ ψ(x) ≼ sup
x∈E

f(x)⊙m(E)

for all x ∈ E, which implies that

sup
x∈E

(f(x)⊙ ψ(x)) ≼ sup
x∈E

f(x)⊙m(E).

Since E is a set of σ-sup-decomposable measure zero on A (X), we have sup
x∈E

f(x) ⊙ m(E) = 0. Con-

sequently, we have sup
x∈E

(f(x) ⊙ ψ(x)) ≼ 0. By the monotonicity of g and g(y) ≥ 0 for y ∈ [a, b],

we have 0 ≤ g

(
sup
x∈E

(f(x)⊙ ψ(x))

)
≤ g(0) = 0, i.e., g

(
sup
x∈E

(f(x)⊙ ψ(x))

)
= 0, which implies that

sup∫
E

f ⊙ dm = 0. 2

Theorem 3.7 Let (X, sup, inf) be a semiring, and let m be the same as in Theorem 3.6. If f : X → [a, b]
is a measurable function with respect to m and E is a set of σ-sup-decomposable measure zero on A (X),
then

sup∫
E

f ⊙ dm = 0.

Proof. Let m be the same as in Theorem 3.6. Then the pseudo-integral for a measurable function
f : X → [a, b] is given by

sup∫
E

f ⊙ dm = sup
x∈E

(f(x)⊙ ψ(x)),

for every measurable set E, where function ψ defines σ-sup-decomposable measure m. Since f(x) ≼
sup
x∈E

f(x) and ψ(x) ≼ sup
x∈E

ψ(x) = m(E) for all x ∈ E, and y ⊙ z = inf(y, z) for all y, z ∈ [a, b], we have

8
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f(x)⊙ ψ(x) = inf{f(x), ψ(x)} ≼ inf

{
sup
x∈E

f(x),m(E)

}
= sup
x∈E

f(x)⊙m(E),

for all x ∈ E, which implies that

sup
x∈E

(f(x)⊙ ψ(x)) ≼ sup
x∈E

f(x)⊙m(E).

Since E is a set of σ-sup-decomposable measure zero on A (X), we have sup
x∈E

f(x)⊙m(E) = 0. Hence, we

have sup
x∈E

(f(x)⊙ψ(x)) ≼ 0. By y ≼ z if and only if sup(y, z) = z and y⊕ z = sup(y, z) for all y, z ∈ [a, b],

we obtain that

sup
x∈E

(f(x)⊙ ψ(x))⊕ 0 = 0.

By (4) of Definition 2.1, we have sup
x∈E

(f(x)⊙ ψ(x)) = 0, which implies that
sup∫
E

f ⊙ dm = 0. 2

Theorem 3.8 Let (X,⊕,⊙) be a semiring with generated pseudo-operations by a strictly monotone and
continuous surjective generator g, and let m : A (X) → [a, b] be a σ-⊕-decomposable measure. If f : X →
[a, b] is a measurable function and 0 ≺ f a.e. on a measurable set E with respect to m, and if

⊕∫
E

f ⊙ dm = 0,

then m(E) = 0.

Proof. If the pseudo-operations are generated by a strictly monotone and continuous surjective generator
g, i.e., y⊕z = g−1(g(y)+g(z)) and y⊙z = g−1(g(y)·g(z)) for every y, z ∈ [a, b]. Then the pseudo-integral
for a measurable function f : X → [a, b] is given by

⊕∫
E

f ⊙ dm = g−1

(∫
E

g ◦ fdµ
)
,

for every measurable set E, where µ = g ◦m is a σ-additive measure.
Let E = E1∪E2 and E1∩E2 = ∅, where E2 = {x ∈ E |0 ≺ f (x)}. By y ≼ z if and only if g(y) ≤ g(z)

for all y, z ∈ [a, b], the strictly monotonicity of g and g(0) = 0, we obtain that g(f(x)) > 0 for all x ∈ E2.
Since 0 ≺ f a.e. on a measurable set E with respect to m, we have m(E1) = 0. Hence, by Theorem 3.5,

we have
⊕∫
E1

f ⊙ dm = 0, which implies that

⊕∫
E

f ⊙ dm =
⊕∫
E1

f ⊙ dm⊕
⊕∫
E2

f ⊙ dm =
⊕∫
E2

f ⊙ dm.

If
⊕∫
E

f ⊙ dm = 0, then we get that

⊕∫
E2

f ⊙ dm = g−1

(∫
E2

g ◦ fdµ

)
= 0,

i.e.,
∫
E2

g ◦ fdµ = g(0) = 0. By Theorem D of § 25 of [11], we have µ(E2) = 0. Hence, we obtain that

m(E2) = g−1(µ(E)) = 0. Consequently, m(E) = m(E1)⊕m(E2) = 0. 2

Theorem 3.9 Let (X, sup,⊙) be a semiring with ⊙ generated by a strictly increasing and continuous
surjective generator g, and let m be the same as in Theorem 3.6. If f : X → [a, b] is a measurable
function and 0 ≺ f a.e. on a measurable set E with respect to m, and if

sup∫
E

f ⊙ dm = 0,

then m(E) = 0.
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Proof. Let m be the same as in Theorem 3.6. Then the pseudo-integral for a measurable function
f : X → [a, b] is given by

sup∫
E

f ⊙ dm = sup
x∈E

(f(x)⊙ ψ(x)),

for every measurable set E, where function ψ defines σ-sup-decomposable measure m. Let E = E1 ∪E2

and E1 ∩ E2 = ∅, where E2 = {x ∈ E |0 ≺ f (x)}. If 0 ≺ f a.e. on a measurable set E with respect to
m, then m(E1) = 0, which implies that

m(E) = sup{m(E1),m(E2)} = m(E2).

If
sup∫
E

f ⊙ dm = 0, then by g(0) = 0, we have g

(
sup∫
E

f ⊙ dm

)
= g

(
sup
x∈E

(f(x)⊙ ψ(x))

)
= 0. By the

strictly monotonicity of g, we have

g(f(x)⊙ ψ(x)) ≤ g

(
sup
x∈E

(f(x)⊙ ψ(x))

)
= 0,

for all x ∈ E. Since g(y) ≥ 0 for all y ∈ [a, b], we have g(f(x)⊙ψ(x)) = 0, for all x ∈ E. If ⊙ is generated
by a generator g, i.e., y ⊙ z = g−1(g(y)g(z)) for all y, z ∈ [a, b], then we get that

g(f(x)) · g(ψ(x)) = g(f(x)⊙ ψ(x)) = 0.

Since 0 ≺ f(x) for all x ∈ E2, we get g(f(x)) > 0 for all x ∈ E2. Thus, we have g(ψ(x)) = 0, i.e.,
ψ(x) = 0 for all x ∈ E2 ⊂ E. Consequently, we obtain taht m(E2) = sup

x∈E2

ψ(x) = 0, which implies that

m(E) = 0. 2

Theorem 3.10 Let (X, sup, inf) be a semiring, and letm be the same as in Theorem 3.6. If f : X → [a, b]
is a measurable function and 0 ≺ f a.e. on a measurable set E with respect to m, and if

sup∫
E

f ⊙ dm = 0,

then m(E) = 0.

Proof. Let m be the same as in Theorem 3.6. Then the pseudo-integral for a measurable function
f : X → [a, b] is given by

sup∫
E

f ⊙ dm = sup
x∈E

(f(x)⊙ ψ(x)),

for every measurable set E, where function ψ defines σ-sup-decomposable measure m.
Let E = E1 ∪E2 and E1 ∩E2 = ∅, where E2 = {x ∈ E |0 ≺ f (x)}. If 0 ≺ f a.e. on a measurable set

E with respect to m, then m(E1) = 0. Hence, by Theorem 3.7, we have
sup∫
E1

f ⊙ dm = 0, which implies

that

sup∫
E

f ⊙ dm =
sup∫
E1

f ⊙ dm⊕
sup∫
E2

f ⊙ dm =
sup∫
E2

f ⊙ dm.

If
sup∫
E

f ⊙ dm = 0, then we get that
sup∫
E2

f ⊙ dm = sup
x∈E2

(f(x)⊙ ψ(x)) = 0. Hence, we obtain that

f(x)⊙ ψ(x) ≼ sup
x∈E2

(f(x)⊙ ψ(x)) = 0 = f(x)⊙ 0,

for all x ∈ E2. By 0 ≺ f(x) for all x ∈ E2 and (2) of Definition 2.2, we have ψ(x) ≼ 0 for all x ∈ E2,
which implies that m(E2) = sup

x∈E2

ψ(x) ≼ 0. Since f(x) ≼ sup
x∈E2

f(x) and ψ(x) ≼ sup
x∈E2

ψ(x) = m(E2) for

all x ∈ E2, and y ⊙ z = inf(y, z) for all y, z ∈ [a, b], we have

f(x)⊙ ψ(x) = inf{f(x), ψ(x)} ≼ inf

{
sup
x∈E2

f(x),m(E2)

}
= sup
x∈E2

f(x)⊙m(E2),

10
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for all x ∈ E2, which implies that

sup
x∈E2

f(x)⊙ 0 = 0 = sup
x∈E2

(f(x)⊙ ψ(x)) ≼ sup
x∈E2

f(x)⊙m(E2).

By 0 ≺ f(x) for all x ∈ E2 and (2) of Definition 2.2, we have 0 ≼ m(E2). Consequently, we obtain that
m(E2) = 0, which implies that m(E) = m(E1)⊕m(E2) = 0. 2

Theorem 3.11 Let (X,⊕,⊙) be a semiring with generated pseudo-operations by a strictly monotone
and continuous surjective generator g, and let m be a σ-⊕-decomposable measure on A (X) and f be a

measurable function with respect to m on X. Then
⊕∫
E

f ⊙ dm = 0 if and only if f = 0 a.e. for every

measurable set E.

Proof. If the pseudo-operations are generated by a strictly monotone and continuous surjective generator
g, i.e., we have

y ⊕ z = g−1(g(y) + g(z)) and x⊙ y = g−1(g(y) · g(z))

for every y, z ∈ [a, b]. Then the pseudo-integral for a measurable function f : X → [a, b] is given by

⊕∫
E

f ⊙ dm = g−1

(∫
E

g ◦ fdµ
)

for every measurable set E, where µ = g ◦m is a σ-additive measure.

Suppose
⊕∫
E

f ⊙ dm = 0 for every measurable set E. Since g(0) = 0, we have
∫
E

g ◦ fdµ = g(0) = 0 for

every measurable set E. By Theorem E of § 25 of [11], we have g ◦ f = 0 a.e. for every measurable set
E, which implies that f = 0 a.e. for every measurable set E.

Suppose f = 0 a.e. for every measurable set E. Let E1 ∪ E2 = E and E1 ∩ E2 = ∅, where

E1 = {x ∈ E|f(x) = 0}. Then, we have m(E2) = 0. By Theorem 3.5, we have
⊕∫
E2

f ⊙ dm = 0. Hence,

we get that

⊕∫
E

f ⊙ dm =
⊕∫
E1

f ⊙ dm⊕
⊕∫
E2

f ⊙ dm =
⊕∫
E1

f ⊙ dm.

Since f(x) = 0 for all x ∈ E1, we have g(f(x)) = 0 for all x ∈ E1. Hence, we obtain that
∫
E1

g ◦ fdµ = 0,

i.e.,
⊕∫
E1

f ⊙ dm = g−1(0) = 0. Consequently,
⊕∫
E

f ⊙ dm = g−1(0) = 0. 2

Theorem 3.12 Let (X, sup,⊙) be a semiring with ⊙ generated by a strictly increasing and continuous
surjective generator g, and let m be the same as in Theorem 3.6 and f be a measurable function with

respect to m on X. Then
sup∫
E

f ⊙ dm = 0 if and only if f = 0 a.e. for every measurable set E.

Proof. Let m be the same as in Theorem 3.6. Then the pseudo-integral for a measurable function
f : X → [a, b] is given by

sup∫
E

f ⊙ dm = sup
x∈E

(f(x)⊙ ψ(x)),

for every measurable set E, where function ψ defines σ-sup-decomposable measure m.

Suppose
sup∫
E

f ⊙ dm = 0 for every measurable set E. By g(0) = 0, we have

g

(
sup∫
E

f ⊙ dm

)
= g

(
sup
x∈E

(f(x)⊙ ψ(x))

)
= 0.

By the strictly monotonicity of g, we have
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g(f(x)⊙ ψ(x)) ≤ g

(
sup
x∈E

(f(x)⊙ ψ(x))

)
= 0,

for all x ∈ E. Since g(y) ≥ 0 for all y ∈ [a, b], we have g(f(x) ⊙ ψ(x)) = 0, for all x ∈ E. Since ⊙ is
generated by a generator g, i.e., y ⊙ z = g−1(g(y)g(z)) for all y, z ∈ [a, b], we get that

g(f(x)) · g(ψ(x)) = g(f(x)⊙ ψ(x)) = 0,

for all x ∈ E. Let E = E1∪E2 and E1∩E2 = ∅, where E1 = {x ∈ E|f(x) = 0}. Then, we have f(x) ̸= 0
for all x ∈ E2, which implies that g(f(x)) ̸= 0 for all x ∈ E2. Hence, we have g(ψ(x)) = 0, i.e., ψ(x) = 0
for all x ∈ E2 ⊂ E, which implies that m(E2) = sup

x∈E2

ψ(x) = 0. Hence, f = 0 a.e. for every measurable

set E.
Suppose f = 0 a.e. for every measurable set E. Let E1 ∪ E2 = E and E1 ∩ E2 = ∅, where

E1 = {x ∈ E|f(x) = 0}, then m(E2) = 0. By Theorem 3.6, we have
sup∫
E2

f ⊙ dm = 0. Hence, we get that

sup∫
E

f ⊙ dm =
sup∫
E1

f ⊙ dm⊕
sup∫
E2

f ⊙ dm =
sup∫
E1

f ⊙ dm.

Since f(x) = 0 for all x ∈ E1, we have f(x) ⊙ ψ(x) = 0 for all x ∈ E1. Hence, we obtain that
sup∫
E1

f ⊙ dm = sup
x∈E1

(f(x)⊙ ψ(x)) = 0, which implies that
sup∫
E

f ⊙ dm = 0. 2

Theorem 3.13 Let (X, sup, inf) be a semiring, and let m be the same as in Theorem 3.6 and f be a

measurable function with respect to m and 0 ≼ f . Then
sup∫
E

f ⊙ dm = 0 if and only if f = 0 a.e. for

every measurable set E.

Proof. Let m be the same as in Theorem 3.6. Then the pseudo-integral for a measurable function
f : X → [a, b] is given by

sup∫
E

f ⊙ dm = sup
x∈E

(f(x)⊙ ψ(x)),

for every measurable set E, where function ψ defines σ-sup-decomposable measure m. For every mea-
surable set E, let E = E1 ∪ E2 and E1 ∩ E2 = ∅, where E1 = {x ∈ E|f(x) = 0}.

Suppose
sup∫
E

f ⊙ dm = 0 for every measurable set E. By the proof of Theorem 3.10, we have m(E2) =

0. Hence, f = 0 a.e. for every measurable set E.
Suppose f = 0 a.e. for every measurable set E, then m(E2) = 0. By Theorem 3.7, we have

sup∫
E2

f ⊙ dm = 0. Hence, we get that

sup∫
E

f ⊙ dm =
sup∫
E1

f ⊙ dm⊕
sup∫
E2

f ⊙ dm =
sup∫
E1

f ⊙ dm.

Since f(x) = 0 for all x ∈ E1, we have f(x) ⊙ ψ(x) = 0 for all x ∈ E1. Hence, we obtain that
sup∫
E1

f ⊙ dm = sup
x∈E1

(f(x)⊙ ψ(x)) = 0, which implies that
sup∫
E

f ⊙ dm = 0. 2

Theorem 3.14 Let (X,⊕,⊙) be a semiring with generated pseudo-operations by a strictly monotone and
continuous surjective generator g : [a, b] → [0,+∞], and let m : A (X) → [a, b] be a σ-⊕-decomposable
measure. For a measurable function f : X → [a, b] with respect to m, define the set function ν : X → [a, b]
by

ν(E) =
⊕∫
E

f ⊙ dm,

for any measurable set E. Then ν is a σ-⊕-decomposable measure and absolutely ⊕-continuous with
respect to m.
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Proof. If the pseudo-operations are generated by a strictly monotone and continuous surjective generator
g : [a, b] → [0,+∞], i.e., y⊕ z = g−1(g(y)+ g(z)) and y⊙ z = g−1(g(y) · g(z)) for every y, z ∈ [a, b]. Then
the pseudo-integral for a measurable function f : X → [a, b] is given by

ν(E) =
⊕∫
E

f ⊙ dm = g−1

(∫
E

g ◦ fdµ
)
,

for every measurable set E, where µ = g ◦m is a σ-additive measure. Hence, ν is a set function of A to
[a,b].

(1) By ∅ is σ-⊕-decomposable measure zero set and Theorem 3.5, we have

ν(∅) =
⊕∫
∅
f ⊙ dm = 0;

(2) For any sequence {Ei}i∈N of pairwise disjoint sets from A , we have

ν

( ∞∪
i=1

Ei

)
=

∫ ⊕

∞∪
i=1

Ei

f ⊙ dm = g−1

∫
∞∪
i=1

Ei

g ◦ fdµ


= g−1

 ∞∑
i=1

∫
Ei

g ◦ fdµ

 = g−1

 ∞∑
i=1

g

 ⊕∫
Ei

f ⊙ dm


=

∞
⊕
i=1

⊕∫
Ei

f ⊙ dm =
∞
⊕
i=1

ν(Ei).

Consequently, ν is a σ-⊕-decomposable measure. By Theorem 3.5, we obtain that ν is absolutely ⊕-
continuous with respect to m. 2

Theorem 3.15 Let (X,⊕,⊙) be a semiring with generated pseudo-operations by a strictly monotone
and continuous surjective generator g, and let m : A (X) → [a, b] be a totally σ-g-finite-decomposable
measure. If the σ-g-finite-decomposable measure ν is absolutely ⊕-continuous with respect to m, then
there exists a measurable function f on X and g(f(x)) < +∞ for all x ∈ X, such that

ν (E) =
⊕∫
E

f ⊙ dm,

for every measurable set E. The function f is unique in the sense that if also ν (E) =
⊕∫
E

h⊙ dm, then

f = h a.e. with respect to m.

Proof. If the pseudo-operations are generated by a strictly monotone and continuous surjective generator
g, i.e.,

y ⊕ z = g−1(g(y) + g(z)) and x⊙ y = g−1(g(y) · g(z))

for every y, z ∈ [a, b]. Then the pseudo-integral for a measurable function f : X → [a, b] is given by

⊕∫
E

f ⊙ dm = g−1

(∫
E

g ◦ fdµ
)

for every measurable set E, where µ = g ◦m is a σ-additive measure.
Since m is a totally σ-g-finite-decomposable measure, we have µ is a totally σ-finite measure. If

the σ-g-finite-decomposable measure ν is absolutely continuous with respect to m, then g ◦ ν is σ-finite
measure and absolutely ⊕-continuous with respect to µ. Hence, by Theorem B of § 31 of [11], there
exists a finite valued measurable function p with respect to µ on X such that

g(ν (E)) =
∫
E

pdµ,

for every measurable set E. By the strictly monotonicity of g, we have p(x) = (g(g−1(p(x)))) for all
x ∈ X. Let f = g−1 ◦ p, then
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g(ν (E)) =
∫
E

pdµ =
∫
E

g ◦ fdµ,

for all measurable set E, which implies that

ν (E) = g−1

(∫
E

g ◦ fdµ
)

=
⊕∫
E

f ⊙ dm,

for every measurable set E. If ν (E) =
⊕∫
E

h⊙ dm, then g(ν(E)) =
∫
E

g ◦ hdµ. Hence g ◦f = g ◦h a.e. with

respect to µ, i.e., f = h a.e. with respect to m. 2

4 Conclusions

In this paper, we mainly discussed two classes of σ-⊕-decomposable measures and the corresponding
pseudo-integrals: one is based on the generated pseudo-addition (g-case, see [16, 22]) and the other
is based on the idempotent pseudo-operation (sup and inf, see [23, 39]). We got several properties
as monotonicity, continuous from above and continuous from below for σ-⊕-decomposable measures. In
particular, we obtained the correlation between the measure zero sets with respect to a σ-⊕-decomposable
measure and the corresponding pseudo-integrals on them. As an application of the main results, we
generalized the classical Radon-Nikodym theorem, which has been extensively studied and discussed
[5, 7, 10, 12, 43], to the decomposable measure theory based on pseudo-integrals. We also hope that our
results in this paper may lead to significant, new and innovative results in other related fields.
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[4] H. Agahi, Y. Ouyang, R. Mesiar, E. Pap, M. Štrboja, General Chebyshev type inequalities for universal
integral, Information Sciences 107 (2012) 171-178.
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[21] E. Pap, M. Štrboja, I. Rudas, Pseudo-Lp space and convergence, Fuzzy Sets and Systems 238 (2014) 113-128.

[22] E. Pap, g-Calculus, Univerzitet U Novom Sadu. Zbornik Radova. Prirodno-Matematičkog Fakulteta. Serija
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Abstract. In this paper, we use Young’s function to define Zygmund-Orlicz space. We

study boundedness and compactness of composition operator on Zygmund-Orlicz space.

1. Introduction

Let D be the unit disk of the complex plane C and H(D) be the space of all holomorphic
function on D. Let µ be a bounded, continuous and positive function denfined on D. A
function f ∈ H(D) belongs to µ−Zygmund space , denoted as f ∈ Zµ, if

‖f‖µ := sup
z∈D

µ(z)|f ′′(z)| <∞.

Clearly, if µ(z) = 1 − |z|2, the space Zµ is just the Zygmund space, which is denoted by
Z, while when µ(z) = (1− |z|2)α with α > 0, the space Zµ becomes the α-Zygmund space
which is denoted by Zα. It is readily seen that Zµ is a Banach space with the norm

‖f‖Zµ = |f(0)|+ |f ′(0)|+ ‖f‖µ.

For some more information of µ-Zygmund space on the unit disk see [3], while for composition
and integral-type operators between them on the unit disk see for example [4, 6, 7, 8, 9].

Let A1, A2 be two linear subspaces of H(D). If φ is a holomorphic self-map of D, such
that f ◦ φ belongs to A2 for all f ∈ A1, then φ induces a linear operator Cφ : A1 → A2

defined as

Cφf = f ◦ φ,
called the composition operator with symbol φ. This type of operator appears in studies on
isometries of various function spaces. Composition operator has been studied by numerous
authors on many subspaces of H(D) and in paticular on Zygmund spaces and µ-Zygmund
spaces. In [5], Julio C. Ramos Fernández characterized boundedness and compactness of
composition operators on Bloch-Orlicz spaces denoted by Bϕ, where ϕ is Young’s function.
More precisely, let ϕ : [0,∞) → [0,∞) be a strictly increasing convex function such that

ϕ(0) = 0 and lim
t→∞

t
ϕ(t) = lim

t→0+

ϕ(t)
t = 0,

Bϕ = {f ∈ H(D) : sup
z∈D

(1− |z|2)ϕ(λ|f ′(z)|) <∞}

for some λ > 0 depending on f .
It is easy to see that Bϕ is a Banach space with the norm

‖f‖Bϕ = |f(0)|+ ‖f‖ϕ,

The work was supported in part by the National Natural Science Foundation of China (Grant Nos.
11371276; 11301373; 11201331).
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where ‖f‖ϕ = inf{k > 0 : Sϕ( f
′

k ) ≤ 1} is a Minkowski’s functional and Sϕ(f) = supz∈D(1−
|z|2)ϕ(|f(z)|).

This paper is organized as follows: In section 2, we use Young’s function to define the
Zygmund-Orlicz space, as a generalization of Zygmund space. The spaces is defined in a
similar way as Korenblem-Orlicz space and Bloch-Orlicz space in [1, 2, 5]. We study some
of its properties and show that the Zygmund-Orlicz space is isometrically equal to certain
µ-Zygmund space for a very special weight µ. In section 3, we characterize boundedness
and compactness of composition operator on Zygmund-Orlicz space.

Throughout the rest of this paper, C will denote a finite positive constant, and it may
differ from one occurrence to the other.

2. Zygmund-Orlicz spaces

In this section, we define the Zygmund-Orlicz space Zϕ using Young’s function. More
precisely, Zϕ is the class of all analytic functions f in D such that

sup
z∈D

(1− |z|2)ϕ(λ|f ′′(z)|) <∞

for some λ > 0 depending on f . The set Zϕ is an F-space which we call Zygmund-Orlicz
space associated to the function ϕ. We can observe that when ϕ(t) = t with t ≥ 0, we get
back the Zygmund spaces Z.

It is not hard to see that

‖f‖ϕ = inf{k > 0 : Sϕ(
f ′′

k
) ≤ 1}

define a seminorm for Zϕ, where Sϕ(f) = supz∈D(1− |z|2)ϕ(|f(z)|).
In fact, it can be show that Zϕ is a Banach space with the norm

‖f‖Zϕ = |f(0)|+ |f ′(0)|+ ‖f‖ϕ. (2.1)

Also, we can observe that for any f ∈ Zϕ \ {0}, the following relation

Sϕ(
f ′′

‖f‖Zϕ
) ≤ Sϕ(

f ′′

‖f‖ϕ
) ≤ 1 (2.2)

holds. The inequality above allow us to obtain that

|f ′′(z)| ≤ ϕ−1(
1

1− |z|2
)‖f‖ϕ

for all f ∈ Zϕ and for all z ∈ D. Furthermore, we have

|f ′(z)| ≤ |f ′(0)|+ |
∫ |z|

0

|f ′′(ζ)||dζ| ≤ (1 +

∫ 1

0

ϕ−1(
1

1− |z|2t2
)dt)‖f‖Zϕ . (2.3)

Lemma 1. The Zygmund-Orlicz space is isometrically equal to µ-Zygmund space, where

µ(z) =
1

ϕ−1( 1
1−|z|2 )

with z ∈ D. Thus, for any f ∈ Zϕ, we have ‖f‖ϕ = ‖f‖µ = sup
z∈D

µ(z)|f ′′(z)|.

Proof. From (2.2), for any f ∈ Zϕ \ {0} and any z ∈ D, we have

(1− |z|2)ϕ(
|f ′′(z)|
‖f‖ϕ

) ≤ 1

which implies that µ(z)|f ′′(z)| ≤ ‖f‖ϕ for all z ∈ D. Thus Zϕ ⊂ Zµ and ‖f‖µ ≤ ‖f‖ϕ.
Conversely, if f ∈ Zµ, then µ(z)|f ′′(z)| ≤ ‖f‖µ, for all z ∈ D. From here, we have

Sϕ( f ′′

‖f‖ϕ ) ≤ 1. Thus, f ∈ Zϕ and ‖f‖ϕ ≤ ‖f‖µ. �

The following result will be very useful in the next section and it is a version of Lemma
6 in [5]. for completeness, we include an outline of its proof.
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Lemma 2. Let a ∈ D fixed. There exists a holomorphic function fa ∈ H(D), such that

ϕ(|f ′a(z)|) =
1− |a|2

|1− āz|2

for all z ∈ D.

Proof. For z ∈ D, we set u(z) = ϕ−1( 1−|a|2
|1−āz|2 ), then u is a real and continuously differentiable

function. Therefore, its partial derivatives exist and are continuous throughout D. It is clear
that function u satisfies u(z) ≥ ϕ−1( 1

|1−|a|2 ) > 0 for all z ∈ D. Now we set f ′a(z) = u(z)eiv(z)

where v is a real function defined on D. Then, in order for f ′a to be an analytic function
on D, its real parts U(z) = u(z) cos v(z) and its imaginary parts V (z) = u(z) sin v(z) must
satisfy the Cauchy-Riemann equations. We get the relation uvx = −uy and uvy = ux. We
can choose a C1 real function v defined on D such that f ′a is an analytic function on D
satisfying ϕ(|f ′a(z)|) = 1−|a|2

|1−āz|2 . Of course, fa(z) =
∫ z

0
f ′a(ζ)dζ+fa(0) is an analytic function

on D, too. �

Remark. It is clear that for any a ∈ D, the function ga(z) =
∫ z

0
fa(s)ds with z ∈ D and

fa is the function found in Lemma 2.2, belongs to the space Zϕ.

S(g′′a) = sup
z∈D

(1− |z|2)
1− |a|2

|1− āz|2
= sup

z∈D
(1− |σa(z)|2) = 1 (2.4)

where σa(z) = a−z
1−āz denote the automorphism of the disk D. From (2.4), we get ‖ga‖ϕ = 1

for all a ∈ D.

Lemma 3. The composition opreator Cφ is compact on Zϕ if and only if given a bounded
sequence {fn} in Zϕ such that fn → 0 uniformly on compact subsets of D, then ‖Cφfn‖ϕ → 0
as n→∞.

3. Main results

Theorem 1. Let φ be a holomorphic self-map of D. Then Cφ : Zϕ → Zϕ is bounded if and
only if

sup
z∈D

µ(z)

µ(φ(z))
|φ′(z)|2 <∞ and

sup
z∈D

µ(z)|φ′′(z)|
(

1 +

∫ 1

0

ϕ−1(
1

1− |φ(z)t|2
)dt

)
<∞.

Proof. Suppose that

L1 = sup
z∈D

µ(z)

µ(φ(z))
|φ′(z)|2 <∞,

L2 = sup
z∈D

µ(z)|φ′′(z)|
(

1 +

∫ 1

0

ϕ−1(
1

1− |φ(z)t|2
)

)
dt <∞. (3.5)

Then for all f ∈ Zϕ \ {0}, We have the following estimate

Sϕ

( (f ◦ φ)′′(z)

(L1 + L2)‖f‖Zϕ

)
= sup

z∈D
(1− |z|2)ϕ

( |f ′′(φ(z))φ′2(z) + f ′(φ(z))φ′′(z)|
(L1 + L2)‖f‖Zϕ

)
≤ sup

z∈D
(1− |z|2)ϕ

( |f ′′(φ(z))||φ′(z)|2 + |f ′(φ(z))||φ′′(z)|
(L1 + L2)‖f‖Zϕ

)
≤ sup

z∈D
(1− |z|2)ϕ

( |φ′(z)|2
µ(φ(z))‖f‖ϕ + (1 +

∫ 1

0
ϕ−1( 1

1−|φ(z)t|2 )dt)|φ′′(z)|‖f‖Zϕ
(L1 + L2)‖f‖Zϕ

)
≤ sup

z∈D
(1− |z|2)ϕ

( 1

µ(z)

(L1 + L2)‖f‖Zϕ
(L1 + L2)‖f‖Zϕ

)
= sup

z∈D
(1− |z|2)ϕ

( 1

µ(z)

)
= 1
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where we have used the relations (2.1) (2.2) (2.3) and Lemma 2.1. From here, we can
conclude that ‖Cφf‖ϕ ≤ (L1 + L2)‖f‖Zϕ . Moreover from (3.5), take z = 0, we have

ϕ−1(1)|φ′′(0)|
(

1 +

∫ 1

0

ϕ−1(
1

1− |φ(z)t|2
)dt
)
<∞,

and therefore

1 +

∫ 1

0

ϕ−1(
1

1− |φ(0)t|2
)dt <∞. (3.6)

Hence with (2.1) (2.3)

|f(φ(0))|+ |f ′(φ(0))φ′(0)| ≤ |f(0)|+
∫ |φ(0)|

0

|f ′(ξ)||dξ|+ |f ′(0)|+
∫ |φ(0)|

0

|f ′′(ζ)||dζ|

≤ ‖f‖Zϕ + 2(1 +

∫ |φ(0)|

0

|f ′′(ζ)||dζ|)‖f‖Zϕ

= ‖f‖Zϕ + 2(1 +

∫ 1

0

ϕ−1(
1

1− |φ(0)t|2
)dt)‖f‖Zϕ . (3.7)

Combined with (3.6) (3.7), we have ‖Cφf‖Zϕ ≤ C‖f‖Zϕ for all f ∈ Zϕ, and Cφ : Zϕ → Zϕ

is bounded.
Conversely, suppose that there exists a constant C > 0 such that

‖f ◦ φ‖ϕ ≤ C‖f‖ϕ
for all f ∈ Zϕ. By taking the function f(z) = z ∈ Zϕ, we obtain

sup
z∈D

(1− |z|2)ϕ(
|(Cφf)′′(z)|

k
) = sup

z∈D
(1− |z|2)ϕ(

|φ′′(z)|
k

) <∞.

That is

sup
z∈D

µ(z)|φ′′(z)| <∞. (3.8)

For a ∈ D, set ga(z) =
∫ z

0
fa(s)ds and from the remark , we see that ga ∈ Zϕ and ‖ga‖ϕ = 1.

With (2.2), we have that

1 ≥ Sϕ(
(ga ◦ φ)′′(z)

C‖ga‖ϕ
) = sup

z∈D
(1− |z|2)ϕ(

|f ′a(φ(z))φ′2(z) + fa(φ(z))φ′′(z)|
C

).

Hence

µ(z)|f ′a(φ(z))||φ′(z)|2 − µ(z)|fa(φ(z))||φ′′(z)|
≤ µ(z)|f ′a(φ(z))φ′2(z) + fa(φ(z))φ′′(z)| ≤ C,

or

µ(z)|f ′a(φ(z))||φ′(z)|2 ≤ C + µ(z)|fa(φ(z))||φ′′(z)|.

For ga ∈ Zϕ, we have g′a ∈ Bϕ. That is to say fa ∈ Bϕ and from Lemma 2.1 we get fa ∈ Bµ,

where µ(z) =
1

ϕ−1( 1
1−|z|2 )

. Thus, from [11], we have

|fa(z)| ≤ C(1 +

∫ |z|
0

1

µ(t)
dt)‖fa‖Bµ . (3.9)

Hence

sup
z∈D

µ(z)|f ′a(φ(z))||φ′(z)|2 ≤ C + Cµ(z)(1 +

∫ |φ(z)|

0

1

µ(t)
dt)|φ′′(z)|‖fa‖Bµ . (3.10)

It is obvious that supz∈D µ(z)|f ′a(φ(z))||φ′(z)|2 <∞ when |φ(z)| ≤ 1√
2
.

Now for 1√
2
< |φ(z)| < 1, fix a ∈ D, we set

ha(z) = (1− |a|2)

∫ z

0

(

∫ āζ

0

h(t)dt− 1

2

(
∫ āζ

0
h(t)dt)2∫ |a|2

0
h(t)dt

)dζ,
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where h(t) = 1
µ(t) . Then

h′a(z) = (1− |a|2)(

∫ āz

0

h(t)dt− 1

2

(
∫ āz

0
h(t)dt)2∫ |a|2

0
h(t)dt

),

h′′a(z) = (1− |a|2)(āh(āz)−
āh(āz)

∫ āz
0
h(t)dt∫ |a|2

0
h(t)dt

).

It is easy to see that h′a(a) = 1−|a|2
2

∫ |a|2
0

h(t)dt and h′′a(a) = 0. From above, we can see that
ha ∈ Zϕ, and ‖ha‖ϕ ≤ C. Therefore, ‖Cφha‖ϕ ≤ C. Hence, we have

sup
z∈D

(1− |z|2)ϕ(
|(Cφha)′′(z)|

C
)

= sup
z∈D

(1− |z|2)ϕ(
|h′′a(φ(z))||φ′(z)|2 + |h′a(φ(z))||φ′′(z)|

C
) <∞.

From above, put a = φ(z), we obtain

sup
z∈D

µ(z)|φ′′(z)|
∫ |φ(z)|2

0

1

µ(t)
dt ≤ C.

Combined with the boundedness of φ, (3.8) and the following inequality of [12]∫ |φ(z)|2

0

1

µ(t)
dt ≤

∫ |φ(z)|

0

1

µ(t)
dt ≤ C + C

∫ |φ(z)|2

0

1

µ(t)
dt, (3.11)

we have

sup
z∈D

µ(z)|φ′′(z)||φ(z)|
∫ 1

0

ϕ−1(
1

1− |φ(z)t|2
)dt

≤ sup
z∈D

µ(z)|φ′′(z)|
∫ |φ(z)|

0

1

µ(t)
dt

≤ sup
z∈D

µ(z)|φ′′(z)|(C + C

∫ |φ(z)|2

0

1

µ(t)
dt) <∞ (3.12)

Hence with (3.10), we have

sup
z∈D

µ(z)|f ′a(φ(z))||φ′(z)|2 = sup
z∈D

µ(z)

µ(φ(z))
|φ′(z)|2 ≤ C,

sup
z∈D

µ(z)|φ′′(z)|(1 +

∫ 1

0

ϕ−1(
1

1− |φ(z)t|2
)dt) ≤ C.

This completes the proof. �

Theorem 2. Let φ be a holomorphic self-map of D. Then Cφ : Zϕ → Zϕ is compact if and
only if Cφ is bounded and

lim
|φ(z)|→1

µ(z)

µ(φ(z))
|φ′(z)|2 = 0, (3.13)

lim
|φ(z)|→1

µ(z)|φ′′(z)|(1 +

∫ 1

0

ϕ−1(
1

1− |φ(z)t|2
)dt) = 0. (3.14)

Proof. Suppose first that Cφ is bounded and (3.5) holds. Let {fn} be a bounded sequence in
Zϕ converging to 0 uniformly on compact subsets of D. Then, by Lemma 2.3, it is sufficient
to show that‖Cφfn‖ϕ → 0 as n→∞. From (3.13) and (3.14), for ε1, ε2 > 0, we can find an
r ∈ (0, 1) such that

µ(z)

µ(φ(z))
|φ′(z)|2 < ε1 and µ(z)|φ′′(z)|(1 +

∫ 1

0

ϕ−1(
1

1− |φ(z)t|2
) < ε2,
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whenever r < |φ(z)| < 1. From here, we have that

µ(z)|(Cφfn)′′(z)| ≤ µ(z)|f ′′n (φ(z)||φ′(z)|2 + |f ′n(φ(z))||φ′′(z)|)

≤ µ(z)

µ(φ(z))
|φ′(z)|2‖fn‖ϕ

+ µ(z)|φ′′(z)|(1 +

∫ 1

0

ϕ−1(
1

1− |φ(z)t|2
)dt‖fn‖Zϕ

< ‖fn‖ϕε1 + ‖fn‖Zϕε2. (3.15)

On the other hand, since {fn} converges to 0 uniformly on compact subsets of D, sup
|φ(r)|≤r

|f ′′n (φ(z))| →

0, and sup
|φ(r)|≤r

|f ′n(φ(z))| → 0 as n → ∞. From the boundedness of Cφ, set f(z) = z ∈ Zϕ

and f(z) = z2 ∈ Zϕ, we have

M1 = sup
z∈D

µ(z)|φ′(z)|2 <∞, M2 = sup
z∈D

µ(z)|φ′′(z)| <∞. (3.16)

Hence, we have

sup
|φ(r)|≤r

µ(z)|(Cφfn)′′(z)|

≤ sup
|φ(r)|≤r

µ(z)|φ′(z)|2|f ′′n (φ(z))|+ sup
|φ(r)|≤r

µ(z)|φ′′(z)||f ′n(φ(z))|

≤ M1 sup
|φ(r)|≤r

|f ′′n (φ(z))|+M2 sup
|φ(r)|≤r

|f ′n(φ(z))| → 0

With (3.15), we obtain that Cφ is a compact operator on Zϕ.
Suppose that Cφ : Zϕ → Zϕ is compact. It is clear that Cφ : Zϕ → Zϕ is bounded. Let

{zn} be a sequence in D such that |wn| = |φ(zn)| → 1 as n→∞. Set

gn(z) =

∫ z

0

(fwn(s)− fwn(0))ds

then gn ∈ Zϕ and ‖gn‖ϕ = 1. Furthermore, gn → 0 uniformly on compact subsets of D as
n→∞. Hence

0 ← ‖Cφgn‖µ ≥ µ(zn)|g′′n(φ(zn))φ′2(zn) + g′n(φ(zn))φ′′(zn)|
≥ µ(zn)|f ′φ(zn)(φ(zn))||φ′(zn)|2

− µ(zn)|fφ(zn)(φ(zn))− fφ(zn)(0)||φ′′(zn)|. (3.17)

Since Cφ is compact operator on Zϕ, set

swn(z) =
1

ln(1− |wn|2)

∫ z

0

( (ln(1− w̄nζ))2

2 ln(1− |wn|2)
− ln(1− w̄nζ)

)
dζ.

It is easy to see that s′wn(wn) = − 1
2 and s′′wn(wn) = 0. So swn ∈ Zϕ and swn → 0 uniformly

on compact subsets of D as n→∞. For ε3 > 0, we have

ε3 > ‖Cφswn‖µ =
1

2
sup
z∈D

µ(zn)|φ′′(zn)|,

which means

lim
n→∞

µ(zn)|φ′′(zn)| = 0. (3.18)

Set

hn(z) = (1− |wn|2)

∫ z

0

(

∫ w̄nζ

0

h(t)dt− 1

2

(
∫ w̄nζ

0
h(t)dt)2∫ |wn|2

0
h(t)dt

)dζ,
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then {hn} ⊂ Zϕ and {hn} is a sequence converging to 0 uniformly on compact subsets of
D. Furthermore, for ε4 > 0, we have

sup
zn∈D

(1− |zn|2)ϕ
( |(Cφhn)′′(zn)|

k

)
= sup

zn∈D
(1− |zn|2)ϕ

( |h′′n(φ(zn))φ′2(zn) + h′n(φ(zn))φ′′(zn)|
k

)
= sup

zn∈D
(1− |zn|2)ϕ

( 1−|φ(zn)|2
2 |φ′′(zn)|

∫ |φ(zn)|2

0
1
µ(t)dt

k

)
< ε4.

That is to say, for ε4 > 0,∃N , such that 1√
2
< |φ(zn)| < 1 whenever n > N , we have

1− |φ(zn)|2

2
µ(zn)|φ′′(zn)|

∫ |φ(zn)|2

0

1

µ(t)
dt < ε4. (3.19)

Hence, with (3.18) (3.19), we obtain that

µ(zn)|φ′′(zn)|
∫ |φ(zn)|

0

1

µ(t)
dt ≤ µ(zn)|φ′′(zn)|(C1 + C2

∫ |φ(zn)|2

0

1

µ(t)
dt)

≤ Cε3 + C
1− |φ(zn)|2

2
µ(zn)|φ′′(zn)|

∫ |φ(zn)|2

0

1

µ(t)
dt

≤ Cε3 + Cε4. (3.20)

Therefore, with the boundedness of φ and (3.18) (3.20), we have

lim
|φ(z)|→1

µ(z)|φ′′(z)|(1 +

∫ 1

0

ϕ−1(
1

1− |φ(z)t|2
)dt) = 0

and (3.14) hold. Moreover, with (3.17) we have that

µ(zn)|fwn(wn)− fwn(0)||φ′′(zn)| ≤ µ(zn)|φ′′(zn)|(1 +

∫ |wn|
0

1

µ(t)
dt)‖fwn − fwn(0)‖Bµ

≤ (Cε3 + Cε4)‖fwn − fwn(0)‖Bµ . (3.21)

From (3.17) (3.21), we obtain that

µ(zn)

µ(φ(zn))
|φ′(zn)|2 = µ(zn)|f ′wn(wn)||φ′(zn)|2

≤ ‖Cφgn‖µ + µ(zn)|fwn(wn)− fwn(0)||φ′′(zn)|
≤ ‖Cφgn‖µ + (Cε3 + Cε4)‖fwn − fwn(0)‖Bµ .

This implies that

lim
|φ(z)|→1

µ(z)

µ(φ(z))
|φ′(z)|2 = 0,

and (3.13) holds. This completes the proof. �
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Multiple positive solutions for m-point boundary

value problems with one-dimensional p-Laplacian

systems and sign changing nonlinearity ∗

Hanying Feng†, Jian Liu
Department of Mathematics, Shijiazhuang Mechanical Engineering College

Shijiazhuang 050003, Hebei, P. R. China

Abstract: In this paper, we consider the multipoint boundary value problem for the

one-dimensional p-Laplacian system




(φp1(u
′))′ + q1(t)f(t, u, v) = 0, t ∈ (0, 1),

(φp2(v
′))′ + q2(t)g(t, u, v) = 0, t ∈ (0, 1),





u(0) =
m−2∑

i=1

aiu(ξi), u′(1) = βu′(0),

v(0) =
m−2∑

i=1

aiv(ξi), v′(1) = βv′(0),

where φpi
(s) = |s|pi−2s, pi > 1, i = 1, 2, ξi ∈ (0, 1) with 0 < ξ1 < ξ2 < · · · < ξm−2 <

1 and ai ∈ [0, 1),
m−2∑
i=1

ai < 1, β ∈ (0, 1). By using the fixed point index theorem on

cones, we study the existence of positive solutions for the m-point boundary value

problem with sign changing nonlinear term. Some sufficient conditions for the exis-

tence of multiple positive solutions are obtained. Finally, an example is also included

to illustrate the importance of the main result obtained.

Keywords: Multipoint boundary value problem, Fixed point theorem, Cone, Positive

solution, One-dimensional p-Laplacian.

2010 MR Subject Classification: 34B10, 34B15, 34B18

1 Introduction

In this paper, we study the existence of multiple positive solutions to the boundary value
problem (BVP for short) for the one-dimensional p-Laplacian system

{
(φp1(u

′))′ + q1(t)f(t, u, v) = 0, t ∈ (0, 1),
(φp2(v

′))′ + q2(t)g(t, u, v) = 0, t ∈ (0, 1),
(1.1)

∗Supported by NNSF of China (11271106) and HEBNSF of China (A2012506010).
†Corresponding author. E-mail address: fhanying@126.com (H.Feng).
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u(0) =
m−2∑

i=1

aiu(ξi), u′(1) = βu′(0),

v(0) =
m−2∑

i=1

aiv(ξi), v′(1) = βv′(0),

(1.2)

where φpi(s) = |s|pi−2s, pi > 1, i = 1, 2, ξi ∈ (0, 1) with 0 < ξ1 < ξ2 < · · · < ξm−2 < 1.
Multipoint boundary value problems of ordinary differential equations arise in a variety

of areas of applied mathematics and physics. For example, the vibrations of a guy wire
of a uniform cross-section and composed of N parts of different densities can be set up as
a multipoint boundary value problem (see [10]). The study of multipoint boundary value
problems for linear second-order ordinary differential equations was initiated by Il’in and
Moiseev [2]. Since then there has been much current attention focused on the study of
nonlinear multipoint boundary value problems, see ([1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15]).

Karakostas [4] proved the existence of positive solutions for the two-point boundary value
problem

x′′(t)− sign(1− α)q(t)f(x, x′)x′ = 0, t ∈ (0, 1),

with one of the following sets of boundary conditions:

x(0) = 0, x′(1) = αx′(0),

or
x(1) = 0, x′(1) = αx′(0),

where α > 0, α 6= 1. By using indices of convergence of the nonlinearities at 0 and at +∞,
they provided a priori upper and lower bounds for the slope of the solutions.

Ma [11] proved the existence of positive solutions for the multipoint boundary value
problem

x′′(t)− q(t)f(x, x′)x′ = 0, t ∈ (0, 1),

x(0) =
n−2∑

i=1

bix(ξi), x′(1) = αx′(0),

where ξi ∈ (0, 1) with 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, bi ∈ [0, 1), α > 1. They provided
sufficient conditions for the existence of multiple positive solutions to the above BVP by
applying the fixed point theorem in cones.

Recently, Ji [3] investigated the following m-point boundary value problem

(φp(u′))′ + q(t)f(t, u) = 0, t ∈ (0, 1),

u(0) =
m−2∑

i=1

αiu(ξi), u(1) =
m−2∑

i=1

βiu(ξi).

They obtained sufficient conditions that guarantee the existence of positive solutions by using
fixed point theorems on cones.

Motivated by these results, our purpose of this paper is to show the existence of multiple
positive solutions to multipoint BVP (1.1), (1.2). To date no paper has appeared in the
literature which discusses the multipoint boundary value problem for one-dimensional p-
Laplacian systems when nonlinearity in the differential equation may change sign. This
paper attempts to fill this gap in the literature. The interesting point of this paper is the
nonlinear terms f and g may change sign.

For convenience, we list the following assumptions:
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(H1) ai ∈ [0, 1) satisfies
m−2∑
i=1

ai < 1, β ∈ (0, 1);

(H2) f, g ∈ C([0, 1]× [0,+∞)× [0,+∞), (−∞,+∞)) ;
(H3) q1, q2 ∈ L1[0, 1] are nonnegative on (0, 1) and q1, q2 are not identically zero on any

subinterval of (0, 1). Furthermore, q1, q2 satisfy 0 <

∫ 1

0
q1(t)dt < +∞, 0 <

∫ 1

0
q2(t)dt <

+∞.

2 Preliminaries

For the convenience of readers, we provide some background material from the theory of
cones in Banach spaces. We also state in this section the fixed point index theorem on cones.
Definition 2.1. Let E be a real Banach space over R. A nonempty closed set K ⊂ E is said
to be a cone provide that
(i) au + bv ∈ K for all u, v ∈ K and all a ≥ 0, b ≥ 0, and
(ii) u,−u ∈ K implies u = 0.
Every cone K ⊂ E induces an ordering in E given by x ≤ y if and only if y − x ∈ K.

Definition 2.2. The map α is said to be a nonnegative continuous concave functional on a
cone K of a real Banach space E provided that α : K → [0,∞) is continuous and

α(tx + (1− t)y) ≥ tα(x) + (1− t)α(y)
for all x, y ∈ K and 0 ≤ t ≤ 1. Similarly, we say the map γ is a nonnegative continuous
convex functional on a cone K of a real Banach space E provided that γ : P → [0,∞) is
continuous and

γ(tx + (1− t)y) ≤ tγ(x) + (1− t)γ(y)
for all x, y ∈ K and 0 ≤ t ≤ 1.

To prove our results, the following fixed point theorem in cones is fundamental.

Theorem 2.1. ([7]) Let K be a cone in a real Banach space E. Let D be an open bounded
subset of E with Dk = D ∩K 6= ∅. Assume that A : Dk → K is completely continuous such
that A 6= Ax for x ∈ DkK. Then the following results hold:
(1) If ‖Ax‖ ≤ ‖x‖, x ∈ ∂Dk, then ik(A,Dk) = 1.
(2) If there exists e ∈ K\{0} such that x 6= Ax + λe for all x ∈ ∂Dk and all λ > 0, then
ik(A,Dk) = 0.
(3) Let U be open in X such that U ⊂ Dk. If ik(A,Dk) = 1 and ik(A,Uk) = 0, then A has a
fixed point in Dk\Uk. The same result holds if ik(A,Dk) = 0 and ik(A,Uk) = 1.

3 Related lemmas

In this paper, we denote C+[0, 1] = {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]}. φ−1
p1

, φ−1
p2

are,
respectively, the inverse function to φp1 , φp2 .

Let E = C[0, 1] × C[0, 1], define norm ‖(u, v)‖ = ‖u‖ + ‖v‖, where ‖u‖ = max
t∈[0,1]

|u(t)|,
‖v‖ = max

t∈[0,1]
|v(t)|, then E is a Banach space.

Define the cone K ⊂ E by
K = {(u, v) ∈ E | u(t), v(t) ≥ 0, u and v are concave and nondecreasing on [0, 1]} .

Lemma 3.1. Assume that (H1)− (H3) hold. Then, For any x, y ∈ C+[0, 1], the problem
{

(φp1(u
′))′ + q1(t)f(t, x, y) = 0, t ∈ (0, 1),

(φp2(v
′))′ + q2(t)g(t, x, y) = 0, t ∈ (0, 1),

(3.1)

3

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.6, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

1068 Hanying Feng et al 1066-1077







u(0) =
m−2∑

i=1

aiu(ξi), u′(1) = βu′(0),

v(0) =
m−2∑

i=1

aiv(ξi), v′(1) = βv′(0),

(3.2)

has the unique solution (u, v) as

u(t) =
∫ t

0
φ−1

p1

(∫ 1

s
q1(τ)f(τ, x(τ), y(τ))dτ +

φp1(β)
1− φp1(β)

∫ 1

0
q1(τ)f(τ, x(τ), y(τ))dτ

)
ds

+
1

1−
m−2∑

i=1

ai

m−2∑

i=1

ai

∫ ξi

0
φ−1

p1

(∫ 1

s
q1(τ)f(τ, x(τ), y(τ))dτ

+
φp1(β)

1− φp1(β)

∫ 1

0
q1(τ)f(τ, x(τ), y(τ))dτ

)
ds, (3.3)

v(t) =
∫ t

0
φ−1

p2

(∫ 1

s
q2(τ)g(τ, x(τ), y(τ))dτ +

φp2(β)
1− φp2(β)

∫ 1

0
q2(τ)g(τ, x(τ), y(τ))dτ

)
ds

+
1

1−
m−2∑

i=1

ai

m−2∑

i=1

ai

∫ ξi

0
φ−1

p2

(∫ 1

s
q2(τ)g(τ, x(τ), y(τ))dτ

+
φp2(β)

1− φp2(β)

∫ 1

0
q2(τ)g(τ, x(τ), y(τ))dτ

)
ds. (3.4)

Proof. For any x, y ∈ C+[0, 1], suppose (u, v) is a solution of BVP (3.1), (3.2). By integration
of (3.1), it follows that

u′(t) = φ−1
p1

(
φp1(u

′(0))−
∫ t

0
q1(τ)f(τ, x(τ), y(τ))dτ

)
,

u(t) = u(0) +
∫ t

0
φ−1

p1

(
φp1(u

′(0))−
∫ s

0
q1(τ)f(τ, x(τ), y(τ))dτ

)
ds.

Using the boundary condition (3.2), we can easily have

u(t) =
∫ t

0
φ−1

p1

(∫ 1

s
q1(τ)f(τ, x(τ), y(τ))dτ +

φp1(β)
1− φp1(β)

∫ 1

0
q1(τ)f(τ, x(τ), y(τ))dτ

)
ds

+
1

1−
m−2∑

i=1

ai

m−2∑

i=1

ai

∫ ξi

0
φ−1

p1

(∫ 1

s
q1(τ)f(τ, x(τ), y(τ))dτ

+
φp1(β)

1− φp1(β)

∫ 1

0
q1(τ)f(τ, x(τ), y(τ))dτ

)
ds.

In a similar way, we can prove

v(t) =
∫ t

0
φ−1

p2

(∫ 1

s
q2(τ)g(τ, x(τ), y(τ))dτ +

φp2(β)
1− φp2(β)

∫ 1

0
q2(τ)g(τ, x(τ), y(τ))dτ

)
ds

+
1

1−
m−2∑

i=1

ai

m−2∑

i=1

ai

∫ ξi

0
φ−1

p2

(∫ 1

s
q2(τ)g(τ, x(τ), y(τ))dτ

+
φp2(β)

1− φp2(β)

∫ 1

0
q2(τ)g(τ, x(τ), y(τ))dτ

)
ds.
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Lemma 3.2. Assume that (H1)− (H3) hold. If f(t, x, y), g(t, x, y) > 0, for x, y ∈ C+[0, 1],
t ∈ [0, 1], for the unique solution (u, v) of BVP (3.1), (3.2), then u(t) and v(t) are concave,
and u(t), v(t) ≥ 0, u′(t), v′(t) ≥ 0, t ∈ [0, 1].
Proof. From the fact that (φp(u′))′(t) = −q(t)f(t, x(t), y(t)) ≤ 0, we have φp(u′(t)) is
nonincreasing. It follows that u′(t) is also nonincreasing. Thus, we know that the graph of
u(t) is concave down on (0, 1). Then the concavity of u together with boundary u′(1) = βu′(0)
implies that u′(t) ≥ 0 for t ∈ [0, 1]. Similarly, we can prove the graph of v(t) is concave down
on (0,1) and v′(t) ≥ 0 for t ∈ [0, 1].

From u′(t) ≥ 0, we know that
u(ξi) ≥ u(0), for i = 1, 2, . . . , m− 2.

This implies

u(0) =
m−2∑
i=1

aiu(ξi) ≥
m−2∑
i=1

aiu(0).

By 1−
m−2∑
i=1

ai > 0, it is obvious that u(0) ≥ 0. Hence u(1) ≥ u(0) ≥ 0. So from the concavity

of u, we know that u(t) ≥ 0, t ∈ [0, 1]. In a similar way, we can know v(t) ≥ 0, t ∈ [0, 1].
Lemma 3.3. If (u, v) ∈ K, η ∈ (0, 1), then u(t) ≥ η‖u‖, v(t) ≥ η‖v‖, t ∈ [η, 1].
Proof. For u ∈ K, we know u(t) and v(t) are nonnegative, nondecreasing and concave on
[0, 1], then

u(t) ≥ tu(1) ≥ ηu(1) = η‖u‖, v(t) ≥ tv(1) ≥ ηv(1) = η‖v‖, t ∈ [η, 1].
We define

ϕ(t) = θt, θ ∈ (0, 1),

L = 1 +

m−2∑

i=1

aiξi

1−
m−2∑

i=1

ai

,

γ1 = min





η

∫ 1

η
φ−1

p1

(
1

1− φp1(β)

∫ 1

s
q1(τ)dτ

)
ds

Lφ−1
p1

(
1

1− φp1(β)

∫ 1

0
q1(τ)dτ

) ,

η

∫ 1

η
φ−1

p2

(
1

1− φp2(β)

∫ 1

s
q2(τ)dτ

)
ds

Lφ−1
p2

(
1

1− φp2(β)

∫ 1

0
q2(τ)dτ

)





,

γ = ηγ1,
Kρ = {(u, v) ∈ K : ‖(u, v)‖ < ρ},
K∗

ρ = {(u, v) ∈ K : ρϕ(t) < u(t) + v(t) < ρ},
Ωρ = {(u, v) ∈ K : min

η≤t≤1
(u(t) + v(t)) < γρ}

= {(u, v) ∈ K : γ‖(u, v)‖ ≤ min
η≤t≤1

(u(t) + v(t)) < γρ}.

Lemma 3.4. ([7]) Ωρ has the following properties:
(a) Ωρ is open relative to K.
(b) Kγρ ⊂ Ωρ ⊂ Kρ.
(c) u ∈ ∂Ωρ if and only if min

η≤t≤1
(u(t) + v(t)) = γρ.

(d) If u ∈ ∂Ωρ, then γρ ≤ u(t) ≤ ρ, for t ∈ [η, 1].
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Now for convenience we introduce the following notations. Let

fρ
γρ =

{
min

t∈[η,1]

f(t, u, v)
φp1(ρ)

: u + v ∈ [γρ, ρ]
}

, gρ
γρ =

{
min

t∈[η,1]

g(t, u, v)
φp2(ρ)

: u + v ∈ [γρ, ρ]
}

,

fρ
ρϕ(t) =

{
max
t∈[0,1]

f(t, u, v)
φp1(ρ)

: u + v ∈ [ρϕ(t), ρ]
}

, gρ
ρϕ(t) =

{
max
t∈[0,1]

g(t, u, v)
φp2(ρ)

: u + v ∈ [ρϕ(t), ρ]
}

,

f∞ = lim
(u,v)→∞

inf min
t∈[η,1]

f(t, u, v)
φp1(u + v)

, g∞ = lim
(u,v)→∞

inf min
t∈[η,1]

g(t, u, v)
φp2(u + v)

,

f∞ = lim
(u,v)→∞

sup max
t∈[0,1]

f(t, u, v)
φp1(u + v)

, g∞ = lim
(u,v)→∞

sup max
t∈[0,1]

g(t, u, v)
φp2(u + v)

,

1
m1

= 2Lφ−1
p1

(
1

1− φp1(β)

∫ 1

0
q1(τ)dτ

)
,

1
m2

= 2Lφ−1
p2

(
1

1− φp2(β)

∫ 1

0
q2(τ)dτ

)
,

1
M1

= 2η

∫ 1

η
φ−1

p1

(
1

1− φp1(β)

∫ 1

s
q1(τ)dτ

)
ds,

1
M2

= 2η

∫ 1

η
φ−1

p2

(
1

1− φp2(β)

∫ 1

s
q2(τ)dτ

)
ds,

where (u, v) →∞⇔ ‖u‖+ ‖v‖ → ∞.
Remark 2.1. By (H3), it is easy to see that 0 < m1,m2,M1,M2 < ∞, and

M1γ = M1ηγ1 ≤ ηm1 < m1, M2γ = M2ηγ1 ≤ ηm2 < m2.

4 Existence of positive solutions

We now give our results on the existence of multiple positive solutions of BVP (1.1), (1.2).
Theorem 4.1. Assume (H1)− (H3) hold. In addition, the following condition (H4) holds:
(H4) There exist ρ1, ρ2, ρ3 ∈ (0,∞), with ρ1 < γρ2 < ρ2 < ρ3 such that

(1) f(t, u, v), g(t, u, v) > 0, t ∈ [0, 1], u + v ∈ [ρ1ϕ(t),∞);
(2) fρ1

ρ1ϕ(t) < φp1(m1), gρ1

ρ1ϕ(t) < φp2(m2), fρ2
γρ2 ≥ φp1(M1γ), gρ2

γρ2 ≥ φp2(M2γ),
fρ3

ρ3ϕ(t) ≤ φp1(m1), gρ3

ρ3ϕ(t) ≤ φp2(m2).
Then BVP (1.1), (1.2) has at least three positive solutions in K.
Proof. We assume that (H4) holds. Denote

f∗(t, u, v) =
{

f(t, u, v), u + v ≥ ρ1ϕ(t),
f(t, u, ρ1ϕ(t)− u), 0 ≤ u + v < ρ1ϕ(t).

g∗(t, u, v) =
{

g(t, u, v), u + v ≥ ρ1ϕ(t),
g(t, u, ρ1ϕ(t)− u), 0 ≤ u + v < ρ1ϕ(t).

We can see that f∗(t, u, v), g∗(t, u, v) ∈ C([0, 1]× [0,+∞)× [0,+∞), (0,+∞)).
Define the following integral equation systems:

A(u, v)(t) =
∫ t

0
φ−1

p1

(∫ 1

s
q1(τ)f∗(τ, u(τ), v(τ))dτ

+
φp1(β)

1− φp1(β)

∫ 1

0
q1(τ)f∗(τ, u(τ), v(τ))dτ

)
ds

+
1

1−
m−2∑

i=1

ai

m−2∑

i=1

ai

∫ ξi

0
φ−1

p1

(∫ 1

s
q1(τ)f∗(τ, u(τ), v(τ)) dτ

+
φp1(β)

1− φp1(β)

∫ 1

0
q1(τ)f∗(τ, u(τ), v(τ))dτ

)
ds, (4.1)
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B(u, v)(t) =
∫ t

0
φ−1

p2

(∫ 1

s
q2(τ)g∗(τ, u(τ), v(τ))dτ

+
φp2(β)

1− φp2(β)

∫ 1

0
q2(τ)g∗(τ, u(τ), v(τ))dτ

)
ds

+
1

1−
m−2∑

i=1

ai

m−2∑

i=1

ai

∫ ξi

0
φ−1

p2

(∫ 1

s
q2(τ)g∗(τ, u(τ), v(τ)) dτ

+
φp2(β)

1− φp2(β)

∫ 1

0
q2(τ)g∗(τ, u(τ), v(τ))dτ

)
ds. (4.2)

Define operator
F (u, v)(t) = (A(u, v)(t), B(u, v)(t)).
According to the definition of F and Lemma 3.2, it is easy to show that F (K) ⊂ K. By

similar arguments in [5, 12], F : K → K is completely continuous.
Now we consider the following modified problem of (1.1) and (1.2):

{
(φp1(u

′))′ + q1(t)f∗(t, u, v) = 0, t ∈ (0, 1),
(φp2(v

′))′ + q2(t)g∗(t, u, v) = 0, t ∈ (0, 1),
(4.3)





u(0) =
m−2∑

i=1

aiu(ξi), u′(1) = βu′(0),

v(0) =
m−2∑

i=1

aiv(ξi), v′(1) = βv′(0),

(4.4)

From the condition (H4), we have
f∗ρ1

ρ1ϕ(t) < φp1(m1), g∗ρ1

ρ1ϕ(t) < φp2(m2), f∗ρ2
γρ2 ≥ φp1(M1γ), g∗ρ2

γρ2 ≥ φp2(M2γ),
f∗ρ3

ρ3ϕ(t) ≤ φp1(m1), g∗ρ3

ρ3ϕ(t) ≤ φp2(m2).
Firstly, we show that ik(F, K∗

ρ1
) = 1.

In fact, by (4.1), (4.2), f∗ρ1

ρ1ϕ(t) < φp1(m1) and g∗ρ1

ρ1ϕ(t) < φp2(m2), for (u, v) ∈ ∂K∗
ρ1

, we
have

‖A(u, v)(t)‖ = max
0≤t≤1

|A(u, v)(t)| = A(u, v)(1)

=
∫ 1

0
φ−1

p1

(∫ 1

s
q1(τ)f∗(τ, u(τ), v(τ))dτ

7
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+
φp1(β)

1− φp1(β)

∫ 1

0
q1(τ)f∗(τ, u(τ), v(τ))dτ

)
ds

+
1

1−
m−2∑

i=1

ai

m−2∑

i=1

ai

∫ ξi

0
φ−1

p1

(∫ 1

s
q1(τ)f∗(τ, u(τ), v(τ))dτ

+
φp1(β)

1− φp1(β)

∫ 1

0
q1(τ)f∗(τ, u(τ), v(τ))dτ

)
ds

≤
∫ 1

0
φ−1

p1

(∫ 1

0
q1(τ)f∗(τ, u(τ), v(τ))dτ

+
φp1(β)

1− φp1(β)

∫ 1

0
q1(τ)f∗(τ, u(τ), v(τ))dτ

)
ds

+
1

1−
m−2∑

i=1

ai

m−2∑

i=1

ai

∫ ξi

0
φ−1

p1

(∫ 1

0
q1(τ)f∗(τ, u(τ), v(τ))dτ

+
φp1(β)

1− φp1(β)

∫ 1

0
q1(τ)f∗(τ, u(τ), v(τ))dτ

)
ds

=Lφ−1
p1

(
1

1− φp1(β)

∫ 1

0
q1(τ)f∗(τ, u(τ), v(τ))dτ

)

<Lφ−1
p1

(
φp1(ρ1)φp1(m1)

1− φp1(β)

∫ 1

0
q1(τ)dτ

)
=

ρ1

2m1
m1 =

ρ1

2
=
‖(u, v)‖

2
,

‖B(u, v)(t)‖ = max
0≤t≤1

|B(u, v)(t)| = B(u, v)(1)

=
∫ 1

0
φ−1

p2

(∫ 1

s
q2(τ)g∗(τ, u(τ), v(τ))dτ

+
φp2(β)

1− φp2(β)

∫ 1

0
q2(τ)g∗(τ, u(τ), v(τ))dτ

)
ds

+
1

1−
m−2∑

i=1

ai

m−2∑

i=1

ai

∫ ξi

0
φ−1

p2

(∫ 1

s
q2(τ)g∗(τ, u(τ), v(τ))dτ

+
φp2(β)

1− φp2(β)

∫ 1

0
q2(τ)g∗(τ, u(τ), v(τ))dτ

)
ds

≤
∫ 1

0
φ−1

p2

(∫ 1

0
q2(τ)g∗(τ, u(τ), v(τ))dτ

+
φp2(β)

1− φp2(β)

∫ 1

0
q2(τ)g∗(τ, u(τ), v(τ))dτ

)
ds

8
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+
1

1−
m−2∑

i=1

ai

m−2∑

i=1

ai

∫ ξi

0
φ−1

p2

(∫ 1

0
q2(τ)g∗(τ, u(τ), v(τ))dτ

+
φp2(β)

1− φp2(β)

∫ 1

0
q2(τ)g∗(τ, u(τ), v(τ))dτ

)
ds

=Lφ−1
p2

(
1

1− φp2(β)

∫ 1

0
q2(τ)g∗(τ, u(τ), v(τ))dτ

)

<Lφ−1
p2

(
φp2(ρ1)φp2(m1)

1− φp2(β)

∫ 1

0
q2(τ)dτ

)
=

ρ1

2m2
m2 =

ρ1

2
=
‖(u, v)‖

2
.

Therefore, ‖F (u, v)(t)‖ = ‖(A(u, v)(t), B(u, v)(t))‖ = ‖A(u, v)(t)‖ + ‖B(u, v)(t)‖ < ‖(u, v)‖
for (u, v) ∈ ∂K∗

ρ1
. By Theorem 2.1, we have ik(F, K∗

ρ1
) = 1.

Secondly, we show that ik(F, Ωρ2) = 0.

Let (e1(t), e2(t)) ≡ (
1
2
,
1
2
) for t ∈ [0, 1], then (e1(t), e2(t)) ∈ ∂K1. We claim that

(u(t), v(t)) 6= F (u, v)(t) + λ(e1(t), e2(t)), (u, v) ∈ ∂Ωρ2 , λ ≥ 0.
In fact, if not, there exist (u0, v0) ∈ ∂Ωρ2 and λ0 ≥ 0 such that

(u0(t), v0(t)) = F (u0, v0)(t) + λ0(e1(t), e2(t)).
Hence, from Lemma 3.3 and f∗ρ2

γρ2 ≥ φp1(M1γ), we have that for t ∈ [η, 1],

u0(t) =A(u0, v0)(t) + λ0e1(t) ≥ η‖A(u0, v0)(t)‖+
λ0

2
= ηA(u0, v0)(1) +

λ0

2

=η

∫ 1

0
φ−1

p1

(∫ 1

s
q1(τ)f∗(τ, u0(τ), v0(τ))dτ

+
φp1(β)

1− φp1(β)

∫ 1

0
q1(τ)f∗(τ, u0(τ), v0(τ))dτ

)
ds

+
η

1−
m−2∑

i=1

ai

m−2∑

i=1

ai

∫ ξi

0
φ−1

p1

(∫ 1

s
q1(τ)f∗(τ, u0(τ), v0(τ))dτ

+
φp1(β)

1− φp1(β)

∫ 1

0
q1(τ)f∗(τ, u0(τ), v0(τ))dτ

)
ds +

λ0

2

≥η

∫ 1

0
φ−1

p1

(∫ 1

s
q1(τ)f∗(τ, u0(τ), v0(τ))dτ

+
φp1(β)

1− φp1(β)

∫ 1

0
q1(τ)f∗(τ, u0(τ), v0(τ))dτ

)
ds +

λ0

2

>η

∫ 1

η
φ−1

p1

(∫ 1

s
q1(τ)f∗(τ, u0(τ), v0(τ))dτ

+
φp1(β)

1− φp1(β)

∫ 1

s
q1(τ)f∗(τ, u0(τ), v0(τ))dτ

)
ds +

λ0

2

=η

∫ 1

η
φ−1

p1

(
1

1− φp1(β)

∫ 1

s
q1(τ)f∗(τ, u0(τ), v0(τ))dτ

)
ds +

λ0

2

≥η

∫ 1

η
φ−1

p1

(
φp1(ρ2)φp1(M1γ)

1− φp1(β)

∫ 1

s
q1(τ)dτ

)
ds +

λ0

2

=M1γρ2
1

2M1
+

λ0

2
=

γρ2

2
+

λ0

2
.
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Similarly, from Lemma 3.3 and g∗ρ2
γρ2 ≥ φp2(M2γ), we have that for t ∈ [η, 1], We can prove

v0(t) >
γρ2

2
+

λ0

2
. This implies that min

η≤t≤1
(u(t) + v(t)) = γρ2 > γρ2 + λ0, which is a

contradiction. Hence, by Theorem 2.1, it follows that ik(F, Ωρ2) = 0.
Finally, similar to the proof of ik(F, K∗

ρ1
) = 1, we can show that ik(F, K∗

ρ3
) = 1. We can

get the BVP (4.3), (4.4) has at least three positive solutions (u1, v1), (u2, v2) and (u3, v3)
such that

(u1, v1) ∈ K∗
ρ1

, (u1, v1) ∈ Ωρ2\K∗
ρ1

, (u3, v3) ∈ K∗
ρ3
\Ωρ2 .

As a result, the BVP (4.3), (4.4) has at least three positive solutions (u1, v1), (u2, v2) and
(u3, v3) such that u1 + v1, u2 + v2, u3 + v3 ∈ [ρ1ϕ(t),∞), and

f∗(t, u, v) = f(t, u, v), g∗(t, u, v) = g(t, u, v), u + v ≥ ρ1ϕ(t),
which mean (u1, v1), (u2, v2) and (u3, v3) are also solutions of BVP (1.1), (1.2).

Similarly, we can obtain the following conclusions.
Theorem 4.2. Assume (H1)− (H3) hold. In addition, the following condition (H5) holds:
(H5) There exist ρ1, ρ2, ρ3 ∈ (0,∞), with ρ1 < ρ2 < γρ3 such that

(1) f(t, u, v), g(t, u, v) > 0, t ∈ [0, 1], u + v ∈ [min{γρ1, ρ2ϕ(t)},∞);
(2) fρ1

γρ1 ≥ φp1(M1γ), gρ1
γρ1 ≥ φp2(M2γ), fρ2

ρ2ϕ(t) < φp1(m1), gρ2

ρ2ϕ(t) < φp2(m2),
fρ3

γρ3 ≥ φp1(M1γ), gρ3
γρ3 ≥ φp2(M2γ).

Then BVP (1.1) and (1.2) has at least two positive solutions in K.
Theorem 4.3. Assume (H1)− (H3) hold. In addition, the following condition (H6) holds:
(H6) There exist ρ1, ρ2 ∈ (0,∞), with ρ1 < γρ2 such that

(1) f(t, u, v), g(t, u, v) > 0, t ∈ [0, 1], u + v ∈ [ρ1ϕ(t),∞);
(2) fρ1

ρ1ϕ(t) < φp1(m1), gρ1

ρ1ϕ(t) < φp2(m2), fρ2
γρ2 ≥ φp1(M1γ), gρ2

γρ2 ≥ φp2(M2γ),
0 ≤ f∞ < φp1(m1), 0 ≤ g∞ < φp2(m2).

Then BVP (1.1) and (1.2) has at least three positive solutions in K.
Proof. We show that (H6) implies (H4). Let k ∈ (f∞, φp1(m1)). Then there exists r > ρ2,
such that max

t∈[0,1]
f(t, u, v) ≤ kφp1(u + v) for u + v ∈ [r,∞) since 0 ≤ f∞ < φp1(m1). Let

α =
{

max
t∈[0,1]

f(t, u, v) : ρ1ϕ(t) ≤ u + v ≤ r

}
and ρ3 > max

{
φ−1

p1

(
α

φp1(m) − k

)
, ρ2

}
.

Then we have
max
t∈[0,1]

f(t, u, v) ≤ kφp1(u+v)+α ≤ kφp1(ρ3)+α < φp1(m1)φp1(ρ3), for u+v ∈ [ρ1ϕ(t), ρ3).

This implies that fρ3

ρ3ϕ(t) < φp1(m1). Similarly, 0 ≤ g∞ < φp2(m2) implies that gρ3

ρ3ϕ(t) <

φp2(m2). Hence, (H4) holds, by Theorem 4.1, BVP (1.1), (1.2) has at least three positive
solutions in K.
Theorem 4.4. Assume (H1)− (H3) hold. In addition, the following condition (H7) holds:
(H7) There exist ρ1, ρ2 ∈ (0,∞), with ρ1 < ρ2 such that

(1) f(t, u, v), g(t, u, v) > 0, t ∈ [0, 1], u + v ∈ [min{γρ1, ρ2ϕ(t)},∞);
(2) fρ1

γρ1 ≥ φp1(M1γ), gρ1
γρ1 ≥ φp2(M2γ), fρ2

ρ2ϕ(t) < φp1(m1), gρ2

ρ2ϕ(t) < φp2(m2),
φp1(M1) < f∞ ≤ ∞, φp2(M2) < g∞ ≤ ∞.

Then BVP (1.1) and (1.2) has at least two positive solutions in K.
Proof. We show that (H7) implies (H5). Since φp1(M1) < f∞ ≤ ∞, then there exists
ρ3 >

ρ2

γ
, such that

min
t∈[η,1]

f(t, u, v) ≥ φp1(u+v)φp1(M1) ≥ φp1(γρ3)φp1(M1) = φp1(ρ3)φp1(M1γ), u+v ∈ [γρ3, ρ3).

This implies that fρ3
γρ3 ≥ φp1(M1γ). Similarly, φp2(M2) < g∞ ≤ ∞ implies that gρ3

γρ3 ≥
φp2(M2γ). Hence, (H5) holds, by Theorem 4.2, BVP (1.1), (1.2) has at least two positive
solutions in K.

By the arguments similar to that of Theorem 3.1 and Theorem 3.2, we obtain the following
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results.
Theorem 4.5. Assume (H1)− (H3) hold. In addition, the following condition (H8) holds:
(H8) There exist ρ1, ρ2 ∈ (0,∞), with ρ1 < γρ2 such that

(1) f(t, u, v), g(t, u, v) > 0, t ∈ [0, 1], u + v ∈ [ρ1ϕ(t),∞);
(2) fρ1

ρ1ϕ(t) ≤ φp1(m1), gρ1

ρ1ϕ(t) ≤ φp2(m2), fρ2
γρ2 ≥ φp1(M1γ), gρ2

γρ2 ≥ φp2(M2γ).
Then BVP (1.1), (1.2) has at least one positive solutions in K.
Theorem 4.6. Assume (H1)− (H3) hold. In addition, the following condition (H9) holds:
(H9) There exist ρ1, ρ2 ∈ (0,∞), with ρ1 < ρ2 such that

(1) f(t, u, v), g(t, u, v) > 0, t ∈ [0, 1], u + v ∈ [min{γρ1, ρ2ϕ(t)},∞);
(2) fρ1

γρ1 ≥ φp1(M1γ), gρ1
γρ1 ≥ φp2(M2γ), fρ2

ρ2ϕ(t) ≤ φp1(m1), gρ2

ρ2ϕ(t) ≤ φp2(m2).
Then BVP (1.1) and (1.2) has at least one positive solutions in K.

5 Example

Now we present an example to illustrate the main result.
Example 5.1. Consider the following BVP

{
(|u′(t)|u′(t))′ + q1(t)f(t, u, v) = 0, t ∈ (0, 1),
(|v′(t)|v′(t))′ + q2(t)g(t, u, v) = 0, t ∈ (0, 1),

(5.1)





u(0) =
1
2
u(

1
3
) +

1
4
u(

2
3
), u′(1) =

1
2
u′(0),

v(0) =
1
2
v(

1
3
) +

1
4
v(

2
3
), v′(1) =

1
2
v′(0),

(5.2)

where

f(t, u, v) =





1
80

(1 + t)
1
2 (u + v − t

4
)21 +

1
1035

, 0 ≤ u + v ≤ 2,

1
80

(1 + t)
1
2 (2− t

4
)21 +

1
1035

, u + v > 2,

g(t, u, v) =





1
40

(1 + t)
1
4 (u + v − t

4
)19 +

1
1040

, 0 ≤ u + v ≤ 2,

1
40

(1 + t)
1
4 (2− t

4
)19 +

1
1040

, u + v > 2,

q1(t) = q2(t) = 1.

Obviously, p1 = p2 = 3, β = 1, ξ1 =
1
3
, ξ2 =

2
3
, a1 =

1
2
, a2 =

1
4
. Choose ρ1 = 1, ρ2 =

448
√

3
9

, ρ3 = 1200, η =
1
4
, θ =

1
2
, then ϕ(t) =

t

2
. We note γ =

3
√

3
224

, m1 = m2 =

3
√

3
28

, M1 = M2 = 4. Consequently, f(t, u, v) satisfies

(1) f(t, u, v), g(t, u, v) > 0, t ∈ [0, 1], u + v ∈ [
t

2
,∞);

(2) fρ1

ρ1ϕ(t) ≤ 0.018 < φp1(m1) ≈ 0.034, gρ1

ρ1ϕ(t) ≤ 0.03 < φp2(m2) ≈ 0.034,

fρ2
γρ2 ≥ 0.239 > φp1(M1γ) ≈ 0.009, gρ2

γρ2 ≥ 0.147 > φp2(M2γ) ≈ 0.009,
fρ3

ρ3ϕ(t) ≤ 0.026 < φp1(m1) ≈ 0.034, gρ3

ρ3ϕ(t) ≤ 0.011 < φp2(m2) ≈ 0.034.

Thus with Theorem (4.1), BVP (5.1), (5.2) has at least three positive solutions in K.
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An S-partially contractive mapping with a
control function φ

K. Abodayeh1,

Department of Mathematics and Physical Sciences, Prince Sultan University
P. O. Box 66833, Riyadh 11586, Saudi Arabia

Abstract. In this article, we introduce a φ-contraction principle in a partial S-metric space, we

show the existence of a fixed point for a self mapping in a partial S-metric space. Also, we show

that we have uniqueness only under some specific conditions.

Keywords. Partial S-metric space, Banach contraction principle, Fixed point.

1 Introduction and Preliminaries

Finding a fixed point for a self mapping on different types of metric spaces has been
one the main topics of research in pure mathematics. it starts with the Banach
contraction principle which was introduced by Banach in the early nineties.
Since the Banach contraction was introduced, many results were found in fixed
point theory field in different type of metric spaces, such as [13], [14], [15],[16],[22],
[23], [24],[25], [4], [5], [6], [8],[9], [10], [11], [12], [19], [20], [21],[26],[27],[28].

An S- metric space was introduced in [2].

Definition 1. [2] Let X be a nonempty set. An S-metric space on X is a function
S : X3 → [0,∞) that satisfies the following conditions, for all x, y, z, a ∈ X :

• S(x, y, z) ≥ 0,

• S(x, y, z) = 0 if and only if x = y = z,

• S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.

In this article, we are interested in partial S-metric space which was introduced
in [1]. We recall some definitions of partial metric spaces and state some of their

1Corresponding Author E-Mail Address: kamal@psu.edu.sa
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properties.

Definition 2. [1] Let X be a nonempty set. A partial S-metric space on X
is a function Sp : X3 → [0,∞) that satisfies the following conditions, for all
x, y, z, t ∈ X :

(P1) x = y if and only if Sp(x, x, x) = Sp(y, y, y) = Sp(x, x, y)

(P2) Sp(x, y, z) ≤ Sp(x, x, t) + Sp(y, y, t) + Sp(z, z, t)− Sp(t, t, t)

(P3) Sp(x, x, x) ≤ Sp(x, y, z)

(P4) Sp(x, x, y) = Sp(y, y, x).

The pair (X,Sp) is called a partial S-metric space.

We recall some definitions of partial S-metric spaces and state some of their
properties.

Definition 3. A sequence {xn}∞n=0 of elements in X is called Cauchy if the limit
limn,m→∞ Sp(xn, xn, xm) exists and finite. The partial S-metric space (X,Sp) is
called complete if for each Cauchy sequence {xn}∞n=0 there exists z ∈ X such that

Sp(z, z, z) = lim
n
Sp(z, z, xn) = lim

n,m
Sp(xn, xn, xm).

Also, (X,Sp) is a complete partial S-metric space if and only if (X,Ss
p) is a

complete S-metric space. A sequence {xn}n in a partial S-metric space (X,Sp) is
called 0-Cauchy if limn,m→∞ Sp(xn, xn, xm) = 0. We say that (X,Sp) is 0-complete
if every 0-Cauchy in X converges to a point x ∈ X such that Sp(x, x, x) = 0.

Example 1. (see [1]) Let X = Q ∩ [0,∞) with the partial metric p(x, y, z) =
max{x, y, z}. Then (X,Sp) is a 0-complete partial metric space which is not com-
plete.

Definition 4. Let (X,Sp) be a complete partial S-metric space. Set ρp =
inf{Sp(x, y, z) : x, y, z ∈ X} and define the set Xp = {x ∈ X : Sp(x, x, x) = ρp}.

The following Lemma summarizes the relation between certain comparison
functions that usually act as control functions in the studied contractive typed
mappings in fixed point theory. For such a summary and fixed point theory for
φ− contractive mappings, see [18].
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Lemma 1. Let φ : R+ → R+ be a function and relative to the function φ consider
the following conditions:

• (i) φ is monotone increasing.

• (ii) φ(t) < t for all t > 0.

• (iii) φ(0) = 0.

• (iv) φ is right uppersemicontinuous.

• (v) φ is right continuous.

• (vi) limn→∞ φ
n(t) = 0 for all t ≥ 0.

Then the following are valid:

• (1) The conditions (i) and (ii) imply (iii).

• (2) The conditions (ii) and (v) imply (iii).

• (3) The conditions (i) and (vi) imply (ii).

• (4) The conditions (i) and (iv) imply imply (vi).

• (5) If φ satisfies (i) then (iv) ⇔ (v).

2 Main Results

Now, we prove our main result.

Theorem 1. Let (X,Sp) be a complete partial S-metric space. Suppose T : X → X
is a given self mapping satisfying:

Sp(Tx, Tx, Ty) ≤ max{φ(Sp(x, x, y)), Sp(x, x, x), Sp(y, y, y)}, (1)

where φ is defined as in Lemma 1. Then:

(1) the set Xp is nonempty;

(2) there is a unique u ∈ Xp such that Tu = u;
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Proof. For any x ∈ X, we have Sp(Tx, Tx, Tx) ≤ Sp(x, x, x) and hence the se-
quence {Sp(T

nx, T nx, T nx)}n≥0 is a nonincreasing sequence. Now Define

Mx := 2[f−1(Sp(x, x, Tx)) + Sp(x, x, x)],

where f(t) = t− φ(t). Notice that f(0) = 0 (and hence f−1(0) = 0) and f(t) < t
for t > 0 and hence f−1(t) > t for t > 0. Now we prove by induction that

Sp(T
nx, T nx, x) ≤Mx, ∀n ≥ 0. (2)

Notice that the inequality (2) is true for n = 0, 1 since: Sp(x, x, x) ≤ Mx and
Sp(Tx, Tx, x) ≤ f−1(Sp(Tx, Tx, x)) ≤Mx.

Suppose that (2) is true for each n ≤ n0 − 1 for some positive integer n0 ≥ 2.
Then we have

Sp(T
n0x, T n0x, x) ≤ 2Sp(T

n0x, T n0x, Tx) + Sp(Tx, Tx, x)

≤ 2 max{φ(Sp(T
n0−1x, T n0−1x, x)), Sp(T

n0−1x, T n0−1x, T n0−1x),

Sp(x, x, x)}+ Sp(Tx, Tx, x)

≤ 2 max{φ(Sp(T
n0−1x, T n0−1x, x))), Sp(x, x, x)}+ Sp(Tx, Tx, x)

Therefore, we have two cases.

Case 1:

Sp(T
n0x, T n0x, x) ≤ φ(Sp(T

n0−1x, T n0−1x, Tx)) + Sp(Tx, Tx, x)

≤ 2[φ(f−1(Sp(Tx, Tx, x)) + Sp(x, x, x))] + Sp(Tx, Tx, x)

= 2[f−1(Sp(Tx, Tx, x)) + Sp(x, x, x)− f(f−1(Sp(Tx, Tx, x))

+Sp(x, x, x))] + Sp(Tx, Tx, x)

≤ Mx − 2f(f−1(Sp(Tx, Tx, x)) + Sp(x, x, x)) + Sp(Tx, Tx, x)

= Mx − Sp(Tx, Tx, x)− Sp(x, x, x) ≤Mx.

Case 2:

Sp(T
n0x, T n0x, x) ≤ Sp(x, x, x) + Sp(Tx, Tx, x)

≤ Sp(x, x, x) + f−1(Sp(Tx, Tx, x)) = Mx.

Hence, we obtain (2). Next we prove that the sequence {Sp(T
nx, T nx, T nx)}n≥0 is

Cauchy. Equivalently, we show that

lim
n,m→∞

Sp(T
nx, T nx, Tmx) = rx, (3)
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where rx := infn Sp(T
nx, T nx, T nx). Its clear that rx ≤ Sp(T

nx, T nx, T nx) ≤
Sp(T

nx, T nx, Tmx) for all n,m. Also, given any ε > 0, there exists n0 ∈ N such
that Sp(T

n0x, T n0x, T n0x) < rx + ε and φn0(2Mx) < rx + ε. Therefore, for any
m,n > 2n0 we have

rx ≤ Sp(T
nx, T nx, Tmx)

≤ max{φ(Sp(T
n−1x, T n−1x, Tm−1x)), Sp(T

n−1x, T n−1x, T n−1x),

Sp(T
m−1x, Tm−1x, Tm−1x)}

≤ max{φ2(Sp(T
n−2x, T n−2x, Tm−2x)), Sp(T

n−2x, T n−2x, T n−2x),

Sp(T
m−2x, Tm−2x, Tm−2x)}

≤ max{φn0(Sp(T
n−n0x, T n−n0x, Tm−n0x)),

Sp(T
n−n0x, T n−n0x, T n−n0x), Sp(T

m−n0x, Tm−n0x, Tm−n0x)}
≤ max{φn0(Sp(T

n−n0x, T n−n0x, x) + Sp(T
m−n0x, Tm−n0x, x)),

Sp(T
n−n0x, T n−n0x, T n−n0x), Sp(T

m−n0x, Tm−n0x, Tm−n0x)}
< max{φn0(2Mx), rx + ε, rx + ε}
< rx + ε.

Hence, we obtain (3). Since (X,Sp) is a complete partial S-metric space, there ex-
ists z ∈ X such that Sp(z, z, z) = rx. Next, we show that Sp(z, z, z) = p(Tz, Tz, z).

Next, we show that Sp(z, z, z) = Sp(z, z, Tz) = Sp(Tz, Tz, z). For each natural
number n we have

Sp(z, z, Tz) ≤ 2Sp(z, z, zn)− Sp(zn, zn, zn) + Sp(Tz, Tz, zn).

From the contraction condition of our theorem, we deduce that there exists a sub-
sequence of natural numbers {nl} such that Sp(Tz, Tz, znl

) ≤ φ(Sp(z, z, znl−1)), for
l ≥ 1, or Sp(Tz, Tz, znl

) ≤ Sp(z, z, z) for l ≥ 1, or Sp(Tz, z, znl
) ≤ Sp(znl−1, znl−1, znl−1),

for l ≥ 1, in all of these three cases, if we take the limit as l goes toward ∞ we get
Sp(z, z, Tz) ≤ Sp(z, z, z). But, we know by the property (iv) of the partial S-metric
space that Sp(z, z, z) ≤ Sp(z, z, Tz). Therefore,

Sp(z, z, z) = Sp(z, z, Tz). (4)

Now we show that Xp (see Definition 4) is nonempty. For each k ∈ N choose
xk ∈ X with Sp(xk, xk, xk) < ρp + 1/k, where xk = T kx. First, we prove that

lim
m,n→∞

Sp(zn, zn, zm) = ρp. (5)

Given ε > 0, take n0 := [f−1(3/ε)] + 1. If k > n0, then

ρp ≤ Sp(Tzk, T zk, T zk) ≤ Sp(zk, zk, zk) = rxk
≤ Sp(xk, xk, xk) < ρp + 1/k

< ρp + 1/n0 < ρp + 1/f−1(3/ε).
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Set Uk := Sp(zk, zk, zk) − Sp(Tzk, T zk, T zk). Then Uk < 1/f−1(3/ε) for k > n0.
Thus, if m,n > n0 then by (4) and the fact that f (and hence f−1) is increasing,
we have

Sp(zn, zn, zm) ≤ Sp(zn, zn, T zn) + Sp(Tzn, T zn, T zm) + Sp(Tzm, T zm, zm)

−Sp(Tzn, T zn, T zn)− Sp(Tzm, T zm, T zm)

= Un + Um + Sp(Tzn, T zn, T zm)

< 2/f−1(3/ε) + max{φ(Sp(zn, zn, zm)), Sp(zn, zn, zn), Sp(zm, zm, zm)}
≤ max{f−1

(
2/f−1(3/ε)

)
, 3/f−1(3/ε) + ρp}

≤ max{f−1 (2ε/3)) , ρp + ε}
≤ ρp + ε+ f−1(2ε/3).

Therefore, if we let ε → 0 we get (5). Since (X,Sp) is a complete partial metric
space, there exists u ∈ X such that Sp(u, u, u) = limm,n→∞ Sp(zn, zn, zm) = ρp.
Consequently, u ∈ Xp and hence Xp is nonempty.

Now choose an arbitrary x ∈ Xp. Then

ρp ≤ Sp(Tz, Tz, Tz) ≤ Sp(Tz, Tz, z) = Sp(z, z, z) = rx = ρp,

which, using P2, implies that Tz = z. To prove uniqueness of the fixed point we
suppose that u, v ∈ Xp are both fixed points of T. Then

ρp ≤ Sp(u, u, v) = Sp(Tu, Tu, Tv) ≤ max{φ(Sp(u, u, v)), Sp(u, u, u), Sp(v, v, v)}
≤ max{φ(p(u, v)), ρp}.

Case 1: ρp ≤ Sp(u, u, v) ≤ ρp ⇒ Sp(u, u, v) = ρp = Sp(u, u, u) = Sp(v, v, v) ⇒
u = v.

Case 2:

Sp(u, u, v) ≤ φ(Sp(u, u, v))

⇒ Sp(u, u, v)− φ(Sp(u, u, v)) ≤ 0

⇒ f(Sp(u, u, v)) ≤ 0

⇒ f(Sp(u, u, v)) = 0

⇒ Sp(u, u, v) = 0

⇒ u = v.

Thus, the fixed point is unique.

Note that the above theorem does not guarantee uniqueness of the fixed point
in X. However, if (1) is replaced by the condition below, we can show uniqueness
in X.
In the next result, we change our contraction condition so that we obtain unique-
ness of the fixed point in the whole space X.
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Theorem 2. Let (X,Sp) be a complete partial S-metric space. Suppose T : X → X
is a given self mapping satisfying:

Sp(Tx, Tx, Ty) ≤ max

{
φ(Sp(x, x, y)),

Sp(x, x, x) + Sp(y, y, y)

2

}
, (6)

where φ : [0,∞)→ [0,∞) is as in Theorem 1. Then there is a unique point z ∈ X
such that Tz = z. Furthermore, z ∈ Xp.

Proof. Using Theorem 1 we only need to prove uniqueness. Suppose there exists
u, v ∈ X such that Tu = u and Tv = v. Now

Sp(u, u, v) = Sp(Tu, Tu, Tv) ≤ max

{
φ(Sp(u, u, v)),

Sp(u, u, u) + Sp(v, v, v)

2

}
.

Case 1:

Sp(u, u, v) ≤ φ(Sp(u, u, v))

⇒ Sp(u, u, v)− φ(Sp(u, u, v)) ≤ 0

⇒ f(Sp(u, u, v)) ≤ 0

⇒ f(Sp(u, u, v)) = 0

⇒ Sp(u, u, v) = 0

⇒ u = v.

Case 2:

Sp(u, u, v) ≤ Sp(u, u, u) + Sp(v, v, v)

2
⇒ 2Sp(u, u, v)− Sp(u, u, u)− Sp(v, v, v) ≤ 0

⇒ 2Sp(u, u, v)− Sp(u, u, u)− Sp(v, v, v) = 0

⇒ u = v.

As a consequence of Theorem2, we obtain the following Corollary.

Corollary 1. Let (X,Sp) be a 0-complete partial S-metric space. Suppose T :
X → X is a given self mapping satisfying:

Sp(Tx, Tx, Ty) ≤ φ(Sp(x, x, y)), (7)

where φ : [0,∞) → [0,∞) is an increasing function such that f(t) = t − φ(t) is
increasing with f−1 is right continuous at 0. Also assume limn→∞ φ

n(t) = 0 for
all t ≥ 0 (and hence φ(0) = 0, φ(t) < t for t > 0 ). Then there is a unique z ∈ X
such that Tz = z. Also Sp(z, z, z) = 0.
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Example 2. Let X = [0, 1] ∪ [3, 4]. Define Sp : X3 → [0,∞), T : X → X and
φ : [0,∞)→ [0,∞) as follows:

Sp(x, y, z) = max{x, y, z}

T (x) =

{
x
2

, x ∈ [0, 1]

7
5

, x ∈ [3, 4]

φ(t) =
t

1 + t

The above definitions satisfy the hypothesis of Theorem 2. In particular, we make
the following observations:

• (X, p) is a complete partial metric space.

• We can easily prove by induction that φn(t) = t
1+nt

which implies that limn→∞ φ
n(t) =

0.

• T satisfies condition (6):

1) If {x, y, z} ∩ [3, 4] 6= ∅ then

Sp(Tx, Ty, Tz) = max{Tx, Ty, Tz} =
7

5

≤ max

{
φ(Sp(x, y, z)),

Sp(x, x, x) + Sp(y, y, y)

2

}
2) If {x, y, z} ⊂ [0, 1] then

Sp(Tx, Ty, Tz) = max{Tx, Ty, Tz} = max
{x

2
,
y

2
,
z

2

}
≤ max

{
φ(Sp(x, y)),

Sp(x, x, x) + Sp(y, y, y)

2

}
.

By Theorem 2, there is a unique fixed point which is z = 0.
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1 Introduction

In recent years, an intensive research has been conducted on polynomials and operators
in compact disks, such as [1], [3]-[8].

For a real function of real variable f : [0,∞) → R, it is well known that the Gamma
operators are given by Gn(f ;x) = 1

xnΓ(n)

∫∞
0 f(t/n)tn−1e−t/xdt, x ∈ [0,∞). In 2005, Zeng

[9] obtained the approximation properties of Gn defined above, supposed f satisfies expo-
nential growth condition. he studied the approximation properties to the locally bounded
functions and the absolutely continuous functions and obtained some good properties in
real disks.

In this paper, we introduce complex q-Gamma operators as follows

Gn,q(f ; z) =
1

znΓq(n)

∫ ∞/A

0
f

(
t

[n]q

)
tn−1Eq

(
−qt

z

)
dqt. (1)

We give a suitable exponential growth condition in a parabolic domain for f(z). Let
DR={z ∈ C; |z| < R} be with 1 < R < ∞ and suppose that f : [R, +∞) ∪ DR → C is
continuous in [R, +∞) ∪ DR, analytic in DR, i.e. f(z) =

∑∞
k=0 ckz

k, for all z ∈ DR, and

∗Corresponding author.

1
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that there exist M, C,B > 0 and A ∈ (
1
R , 1

)
, with the property |ck| ≤ Mqk(k−1)/2 Ak

[k]q ! , for
all k = 0, 1, ..., which implies |f(z)| ≤ MEq(A|z|) for all z ∈ DR and |f(x)| ≤ CeBx, for
all x ∈ [R, +∞).

We recall some concepts of q-calculus. All of the results can be found in [7]. For any
fixed real number 0 < q ≤ 1 and each nonnegative integer k, we denote q-integers by [k]q,
where

[k]q =

{
1−qk

1−q , q 6= 1;
k, q = 1.

Also q-factorial and q-binomial coefficients are defined as follows:

[k]q! =

{
[k]q[k − 1]q...[1]q, k = 1, 2, ...;

1, k = 0,

and [
n

k

]

q

=
[n]q!

[k]q![n− k]q!
, (n ≥ k ≥ 0).

The q-improper integrals are defined as

∫ ∞/A

0
f(x)dqx = (1− q)

∞∑
−∞

f

(
qn

A

)
qn

A
, A > 0,

provided the sums converge absolutely.
The q−analogs eq(x) and Eq(x) of the exponential function are given as

eq(x) =
∞∑

k=0

xk

[k]q!
=

1
(1− (1− q)x)∞q

, |x| < 1
1− q

, |q| < 1,

Eq(x) =
∞∑

k=0

qk(k−1)/2 xk

[k]q!
= (1 + (1− q)x)∞q , |q| < 1,

where (1−x)∞q =
∏∞

j=0(1−qjx). It is easily observed that eq(x)Eq(−x) = eq(−x)Eq(x) = 1.
The q-Gamma integral is defined as

Γq(t) =
∫ ∞/A

0
xt−1Eq(−qx)dqx, t > 0, (2)

which satisfies the following functional equations: Γq(t + 1) = [t]qΓq(t), Γq(1) = 1.

2 Auxiliary Results

In the sequel, we suppose that ek(t) = tk, k = 0, 1, 2, .... In order to obtain the main
results, we need the following lemmas:
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Lemma 2.1. For n ∈ N and z ∈ C, we have the following identities:

Gn,q(ek; z) =
[n + k − 1]q!
[n− 1]q![n]kq

ek(z), (3)

Gn,q(ek; z) =
[n + k − 1]qz

[n]q
Gn(ek−1; z). (4)

Proof. From (1) and (2), we have

Gn,q(ek; z) =
1

znΓq(n)

∫ ∞/A

0

(
t

[n]q

)k

tn−1Eq

(
−qt

z

)
dqt

=
zk

[n]kqΓq(n)

∫ ∞/A

0

(
t

z

)n+k−1

Eq

(
−qt

z

)
dq

(
t

z

)

=
Γq(n + k)zk

[n]kq [n− 1]q!
=

[n + k − 1]q!
[n− 1]q![n]kq

ek(z),

so we proved (3), and (4) is easily obtained according to (3).

Lemma 2.2. If f is analytic in DR, f(z) =
∑∞

k=0 ckz
k, for all z ∈ DR, then for all n ∈ N

and 1 ≤ r ≤ R, we have

Gn,q(f ; z) =
∞∑

k=0

ck ·Gn,q(ek; z). (5)

Proof. By Lemma 2.1, we obtain that Gn,q(ek; z) is a polynomial of degree ≤ k, k =
0, 1, 2, ... for all z ∈ C. From the hypothesis on f in section 1, it follows that Gn,q(f ; z)
is analytic in DR (see [2], pp. 1171-1172 and p. 1178). Therefore, it is easy to obtain
Lemma 2.2.

3 Main Results

We start with the following quantitative estimates of the convergence for complex q-
Gamma operators attached to an analytic function in a disk of radius R > 1 and center
0.

Theorem 3.1. Let DR={z ∈ C; |z| < R} be with 1 < R < ∞ and suppose that f :
[R, +∞)

⋃
DR → C is continuous in [R, +∞)∪DR, analytic in DR, i.e. f(z) =

∑∞
k=0 ckz

k,
for all z ∈ DR, and f(z) satisfies exponential-type growth condition in the statement of
section 1.
(i) Let 1 ≤ r < 1

A be arbitrary fixed. For all |z| ≤ r, n ≥ 2 (n ∈ N), we have

|Gn,q(f ; z)− f(z)| ≤ Lq,r,A

[n]q
,

where Lq,r,A = Mr2A2Cq,r,A, Cq,r,A is a constant depends only on q, r, A.
(ii) For the simultaneous approximation by complex q-Gamma operators, we have: if 1 ≤
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r ≤ r1 < 1
A are arbitrary fixed, then for all |z| ≤ r and n, p ∈ N, n ≥ 2, we have

|G(p)
n,q(f ; z)− f (p)(z)| ≤ Lq,r1,A

[n]q
p!r1

(r1 − r)p+1
,

where Lq,r1,A is defined at the above point (i).

Proof. (i) Suppose that |z| ≤ r, by Lemma 2.2, we have Gn,q(f ; z) =
∑∞

k=0 ckGn,q(ek; z),
so we get

|Gn,q(f ; z)− f(z)| ≤
∞∑

k=0

|ck| · |Gn,q(ek; z)− ek(z)| =
∞∑

k=2

|ck| · |Gn,q(ek; z)− ek(z)|,

since Gn,q(e0; z) = e0(z) = 1 and Gn.q(e1; z) = e1(z) = z.

By Lemma 2.1, for all |z| ≤ r and n ∈ N, we have

|Gn,q(ek; z)− ek(z)|
=

∣∣∣∣
[n + k − 1]qz

[n]q
Gn,q(ek−1; z)− [n + k − 1]qz

[n]q
ek−1(z) +

[n + k − 1]qz
[n]q

ek−1(z)− ek(z)
∣∣∣∣

≤
∣∣∣∣
[n + k − 1]qz

[n]q

∣∣∣∣ · |Gn,q(ek−1; z)− ek−1(z)|+ |ek(z)| ·
∣∣∣∣
[n + k − 1]q

[n]q
− 1

∣∣∣∣

≤ [n + k − 1]qr
[n]q

|Gn,q(ek−1; z)− ek−1(z)|+ [k − 1]qrk

[n]q
,

step by step, we get by the above recurrence that

|Gn,q(ek; z)− ek(z)|

≤ [n + k − 1]q
[n]q

[n + k − 2]q
[n]q

...
[n + 2]q

[n]q
qnrk

[n]q
+

[n + k − 1]q
[n]q

[n + k − 2]q
[n]q

...
[n + 3]q

[n]q
qn[2]qrk

[n]q

+
[n + k − 1]q

[n]q
[n + k − 2]q

[n]q
...

[n + 4]q
[n]q

qn[3]qrk

[n]q
+ ... +

[n + k − 1]q
[n]q

[n + k − 2]q
[n]q

qn[k − 3]qrk

[n]q

+
[n + k − 1]q

[n]q
qn[k − 2]qrk

[n]q
+

qn[k − 1]qrk

[n]q

≤ [n + k − 1]q
[n]q

[n + k − 2]q
[n]q

...
[n + 2]q

[n]q
rkqn

(
1

[n]q
+

[2]q
[n]q

+ ... +
[k − 1]q

[n]q

)

=
[n + k − 1]q!

[n + 1]q![n]k−2
q

(1 + [2]q + ... + [k − 1]q) qnrk

[n]q
≤ [n + k − 1]q!

[n + 1]q![n]k−2
q

[k]q[k − 1]qrk

[n]q
,

for all |z| ≤ r and n ∈ N.

From Lemma 2.2 and the hypothesis on ck, immediately implies for all n ≥ 2 and
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|z| ≤ r

|Gn,q(f ; z)− f(z)| ≤
∞∑

k=2

|ck| · |Gn,q(ek; z)− ek(z)|

≤ M

∞∑

k=2

[n + k − 1]q!
[n + 1]q![n]k−2

q

[k]q[k − 1]qrk

[n]q
qk(k−1)/2Ak

[k]q!

≤ Mr2A2

[n]q

∞∑

k=2

[
n + k − 1

k − 2

]

q

(
rA

[n]q

)k−2

,

by Heine’s binomial formula (see [7]), we have

∞∑

k=0

[
n + k + 1

k

]

q

(
rA

[n]q

)k

=
1(

1− rA
[n]q

)n+2

q

≤





1(
1− rA

[n0]q

)n0+2

q

, n = n0,

1(
1− rA

[n]q

)∞
q

=
∞∑

j=0

(
rA

(1−q)[n]q

)j

[j]q!
= eq

(
rA

[n]q

)
, n = ∞,

≤ Cq,r,A,

where, n0 is a finite number and Cq,r,A is a constant depends only on q, r, A. Thus

|Gn,q(f ; z)− f(z)| ≤ Mr2A2Cq,r,A

[n]q
,

therefore we have

|Gn,q(f ; z)− f(z)| ≤ Lq,r,A

[n]q
,

where Lq,r,A = Mr2A2Cq,r,A, for all 1 ≤ r < 1
A .

(ii) Denoting by γ the circle of radius r1 > r and center 0, since for any |z| ≤ r and
v ∈ γ, we have |v − z| ≥ r1 − r, by Cauchy’s formulas it follows that for all |z| ≤ r and
n ∈ N, n ≥ 2, we have

|G(p)
n,q(f ; z)− f (p)(z)| =

p!
2π

∣∣∣∣
∫

γ

Gn,q(f ; v)− f(v)
(v − z)p+1

dv

∣∣∣∣

≤ Lq,r1,A

[n]q
p!
2π

2πr1

(r1 − r)p+1
=

Lq,r1,A

[n]q
p!r1

(r1 − r)p+1
,

which proves (ii) and Theorem 3.1.

Next, we will give Voronovskaya type result in compact disks, for complex q-Gamma
operators attached to an analytic function in DR, R > 1 and center 0.
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Theorem 3.2. Suppose that f : DR∪[R,∞) → C is continuous and bounded in DR∪[R,∞)
and analytic in DR. Let 1 ≤ r < 1

A be arbitrary fixed, n ≥ 2 (n ∈ N), then we have the
following Voronovskaya type result

∣∣∣∣Gn,q(f ; z)− f(z)− z2f ′′(z)
[2]q[n]q

∣∣∣∣ ≤
Jq,r,A

[n]2q
,

where Jq,r,A = 1
[2]2q

∑∞
k=3[k − 2]2q [k − 1]q(rA)k < ∞.

Proof. Denoting Eq,k,n(z) = Gn,q(ek; z)−ek(z)− qn[k]q [k−1]qek(z)
[2]q [n]q

, since Eq,0,n(z) = Eq,1,n(z) =
Eq,2,n(z) = 0, then we have

∣∣∣∣Gn,q(f ; z)− f(z)− z2f ′′(z)
[2]q[n]q

∣∣∣∣ ≤
∞∑

k=3

|ck| · |Eq,k,n(z)|,

so, it remains to estimate Eq,k,n(z) for k ≥ 3.
By Lemma 2.1 and simple calculation, we have

Eq,k,n(z) =
[n + k − 1]qz

[n]q
Eq,k−1,n(z) +

qn[k − 1]q[k − 2]q
(
[n + k − 1]q − q2[n]q

)

[2]q[n]2q
zk,

this implies, for all |z| ≤ r, k ≥ 3, n ∈ N,

|Eq,k,n(z)| ≤ [n + k − 1]qr
[n]q

|Eq,k−1,n(z)|+ qn[k − 1]2q [k − 2]q
[2]q[n]2q

rk,

taking in the last inequality, k = 3, 4, ..., and reasoning by recurrence, we obtain

|Eq,k,n(z)| ≤ [n + k − 1]q
[n]q

[n + k − 2]q
[n]q

...
[n + 3]q

[n]q

qn · [2]2q
[2]q[n]2q

rk

+
[n + k − 1]q

[n]q
[n + k − 2]q

[n]q
...

[n + 4]q
[n]q

qn[2]q · [3]2q
[2]q[n]2q

rk

+... +
[n + k − 1]q

[n]q

qn[k − 3]q[k − 2]2q
[2]q[n]2q

rk +
qn[k − 2]q[k − 1]2q

[2]q[n]2q
rk

≤ [n + k − 1]q
[n]q

[n + k − 2]q
[n]q

...
[n + 3]q

[n]q
qnrk

[2]q[n]2q

k∑

j=3

[j − 2]q[j − 1]2q

≤ [n + k − 1]q
[n]q

[n + k − 2]q
[n]q

...
[n + 3]q

[n]q

[k − 2]2q [k − 1]2qq
nrk

[2]q[n]2q
,

by the hypothesis on ck, we have
∣∣∣∣Gn,q(f ; z)− f(z)− z2f ′′(z)

[2]q[n]q

∣∣∣∣ ≤
∞∑

k=3

|ck| · |Eq,k,n(z)|

≤ 1
[2]q[n]2q

∞∑

k=3

[n + k − 1]q
[n]q[k − 1]q

[n + k − 2]q
[n]q[k − 2]q

...
[n + 3]q
[3]q[n]q

[k − 2]2q [k − 1]2q(rA)k

[2]q[k]q

≤ 1
[2]2q [n]2q

∞∑

k=3

[k − 2]2q [k − 1]q(rA)k,
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for all |z| ≤ r and n ≥ 2 (n ∈ N). Since the series
∑∞

k=3 uk+1 and its q-derivative∑∞
k=3[k + 1]quk are uniformly and absolutely convergent in any compact disk included in

the open unit disk, therefore, for 1 ≤ r < 1
A , we have 1

[2]2q [n]2q

∑∞
k=3[k − 2]2q [k − 1]q(rA)k <

∞.

Denoting with ||Pk||r = max{|Pk(z)| : |z| ≤ r}, where Pk(z) is a complex polynomial
of degree ≤ k. Now we will give the exact order of approximation by complex q-Gamma
operators.

Theorem 3.3. In the hypothesis of Theorem 3.1, if f is not a polynomial of degree ≤ 1
in the case (i), we have

||Gn,q(f)− f ||r ≥ 1
[n]q

Ur(f), n ∈ N,

where the constant Ur(f) depends only on f and r.

Proof. Applying the norm || · ||r to the identity

Gn,q(f ; z)− f(z) =
1

[n]q

{
z2

[2]q
f ′′(z) +

1
[n]q

[
[n]2q

(
Gn,q(f ; z)− f(z)− z2

[2]q[n]q
f ′′(z)

)]}
,

we get

||Gn,q(f)− f ||r ≥ 1
[n]q

{∣∣∣∣
∣∣∣∣

e2

[2]q
f ′′

∣∣∣∣
∣∣∣∣
r

− 1
[n]q

[
[n]2q

∣∣∣∣
∣∣∣∣Gn,q(f)− f − e2

[2]q[n]q
f ′′

∣∣∣∣
∣∣∣∣
r

]}
.

Since f is not a polynomial of degree ≤ 1 in DR, it follows that || e2
[2]q

f ′′||r > 0. Indeed,

supposing the contrary it follows that z2f ′′(z) = 0 for all z ∈ DR, therefore we get
f ′′(z) = 0 for all z ∈ DR, by the uniqueness of analytic functions we get f ′′(z) = 0 for all
z ∈ DR, that is f is a linear function in DR, which is in contradiction with the hypothesis.

Now, by Theorem 3.2, we have
∣∣∣∣Gn,q(f ; z)− f(z)− z2f ′′(z)

[2]q[n]q

∣∣∣∣ ≤
1

[2]2[n]2q

∞∑

k=3

[k − 2]2q [k − 1]q(rA)k.

Therefore, there exists an index n0 (depending only on f and r) such that for all n ≥ n0,
we have

∣∣∣∣
∣∣∣∣

e2

[2]q
f ′′

∣∣∣∣
∣∣∣∣
r

− 1
[n]q

[
[n]2q

∣∣∣∣
∣∣∣∣Gn,q(f)− f − e2

[2]q[n]q
f ′′

∣∣∣∣
∣∣∣∣
r

]
≥ 1

[2]2q
||e2f

′′||r,

which implies

||Gn,q(f)− f ||r ≥ 1
[2]2q

||e2f
′′||r,

for all n ≥ n0.
For 1 ≤ n ≤ n0 − 1, we have

||Gn,q(f)− f ||r ≥ 1
[n]q

([n]q||Gn,q(f)− f ||r) =
1

[n]q
Vr,n(f) > 0,
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Therefore, finally we obtain

||Gn,q(f)− f ||r ≥ 1
[n]q

Ur(f),

for all n, with Ur(f) = min
{

Vr,1(f), Vr,2(f), ..., Vr,n0(f), 1
[2]2q
||e2f

′′||r
}

.

Combining Theorem 3.1 with Theorem 3.3, we immediately get the following result:

Corollary 3.4. In the hypothesis of Theorem 3.1 and Theorem 3.3, we have

||Gn,q(f)− f ||r ∼ 1
[n]q

, n ∈ N.

Theorem 3.5. In the hypothesis of Theorem 3.1, if 1 ≤ r ≤ r1 < 1
A are arbitrary fixed

and f is not a polynomial of degree ≤ p− 1, then for all |z| ≤ r and n, p ∈ N (n ≥ 2), we
have

||G(p)
n,q(f)− f (p)||r ∼ 1

[n]q
.

Proof. Taking into account the upper estimate in case (ii) of Theorem 3.1, it remains to
prove the lower estimate only.

Denoting by Γ the circle of radius r1 > r and center 0, since for any |z| ≤ r and v ∈ Γ,
we have |v − z| ≥ r1 − r, by Cauchy’s formulas it follows that for all |z| ≤ r and n ∈ N,
we get

G(p)
n,q(f ; z)− f (p)(z) =

p!
2πi

∫

Γ

Gn,q(f ; v)− f(v)
(v − z)p+1

dv, (6)

as we have the identity

Gn,q(f ; z)− f(z) =
1

[n]q

{
z2

[2]q
f ′′(z) +

1
[n]q

[
[n]2q

(
Gn,q(f ; z)− f(z)− z2

[2]q[n]q
f ′′(z)

)]}
,

(7)
applying (7) to (6), we have

G(p)
n,q(f ; z)− f (p)(z)

=
1

[n]q





p!
2πi

∫

Γ

v2f ′′(v)
[2]q(v − z)p+1

dv +
1

[n]q
p!

2πi

∫

Γ

[n]2q
[
Gn,q(f ; v)− f(v)− v2

[2]q [n]q
f ′′(v)

]

(v − z)p+1
dv





=
1

[n]q





∣∣∣∣∣

∣∣∣∣∣
(

e2f
′′

[2]q

)(p)
∣∣∣∣∣

∣∣∣∣∣
r

+
1

[n]q
p!

2πi

∫

Γ

[n]2q
[
Gn,q(f ; v)− f(v)− v2

[2]q [n]q
f ′′(v)

]

(v − z)p+1
dv



 ,

applying the norm || · ||r to the above identity, we have

||G(p)
n,q(f)− f (p)||r

≥ 1
[n]q





∣∣∣∣∣

∣∣∣∣∣
(

e2f
′′

[2]q

)(p)
∣∣∣∣∣

∣∣∣∣∣
r

− 1
[n]q

∣∣∣∣∣∣

∣∣∣∣∣∣
p!
2π

∫

Γ

[n]2q
[
Gn,q(f ; v)− f(v)− v2

[2]q [n]q
f ′′(v)

]

(v − z)p+1
dv

∣∣∣∣∣∣

∣∣∣∣∣∣
r



 ,
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by using Theorem 3.2, we have
∣∣∣∣∣∣

∣∣∣∣∣∣
p!
2π

∫

Γ

[n]2q
[
Gn,q(f ; v)− f(v)− v2

[2]q [n]q
f ′′(v)

]

(v − z)p+1
dv

∣∣∣∣∣∣

∣∣∣∣∣∣
r

≤ p!
2π

2πr1

(r1 − r)p+1
Jq,r1,A =

Jq,r1,Ap!r1

(r1 − r)p+1
,

by the hypothesis on f , we have
∣∣∣∣
∣∣∣∣
(

e2f ′′
[2]q

)(p)
∣∣∣∣
∣∣∣∣
r

> 0, reasoning exactly as in the proof of

Theorem 3.3, we immediately get the desired result.
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Abstract

In this paper, we shall study the uniqueness problems on meromorphic functions of
differential polynomials of finite order sharing a value. Our results improve or generalize
many previous results on value sharing of meromorphic functions, such as Fang and Hua,
Yang and Hua, Lin and Yi, Zhang, Xu, et al.
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1 Introduction and main results

Let C denote the complex plane and f(z) be a non-constant meromorphic function on C.
We assume the reader is familiar with the standard notion used in the Nevanlinna value
distribution theory such as T (r, f), m(r, f), N(r, f) (see [7, 13, 14]), and S(r, f) denotes
any quantity that satisfies the condition S(r, f) = o(T (r, f)) as r → ∞ outside of a possi-
ble exceptional set of finite linear measure. A meromorphic function a(z) is called a small
function with respect to f(z), provided that T (r, a) = S(r, f).

Let f(z) and g(z) be two non-constant meromorphic functions. Let a ∈ C
∪
{∞}, we say

that f(z), g(z) share a CM (counting multiplicities) if f(z)−a, g(z)−a have the same zeros
with the same multiplicities and we say that f(z), g(z) share a IM (ignoring multiplicities)
if we do not consider the multiplicities. Nk(r, f) denotes the truncated counting function
bounded by k.

Define the order of f as

σ(f) = lim sup
r−→∞

log+ T (r, f)

log r
,

The following well known theorem in value distribution theory was posed by Hayman
and settled by several authors almost at the same time [2, 4].

∗Correspoding author: E-mail: xbzhang1016@mail.sdu.edu.cn(X.B. Zhang); xujunf@gmail.com(J.F. Xu)
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Theorem A: Let f(z) be a transcendental meromorphic function, n ≥ 1 a positive integer.
Then fnf ′ = 1 has infinitely many solutions.

Fang and Hua [5], Yang and Hua [12] got a unicity theorem respectively corresponding
to Theorem A.

Theorem B: Let f and g be two non-constant entire (meromorphic) functions, n ≥ 6(n ≥
11) be a positive integer. If fn(z)f ′(z) and gn(z)g′(z) share 1 CM, then either f(z) = c1e

cz,
g(z) = c2e

−cz, where c1, c2 and c are three constants satisfying 4(c1c2)
n+1c2 = −1, or

f(z) ≡ tg(z) for a constant t such that tn+1 = 1.

Note that fn(z)f ′(z) = 1
n+1(f

n+1(z))′, Fang [6] considered the case of kth derivative
and proved

Theorem C: Let f and g be two non-constant entire functions, and let n, k be two positive
integers with n > 2k+4. If (fn(z))(k) and (gn(z))(k) share 1 CM, then either f(z) = c1e

cz,
g(z) = c2e

−cz, where c1, c2 and c are three constants satisfying (−1)k(c1c2)
n(nc)2k = 1, or

f(z) ≡ tg(z) for a constant t such that tn = 1.

Theorem D: Let f and g be two non-constant entire functions, and let n, k be two positive
integers with n > 2k + 8. If (fn(z)(f(z)− 1))(k) and (gn(z)(g(z)− 1))(k) share 1 CM, then
f(z) ≡ g(z).
For more results on this field, see [8, 9, 17]. Corresponding to Theorems C and D, It is
natural to ask the following question.

Question 1.1. Does Theorem C or D holds if f and g are meromorphic functions?

Remark 1.1. Question 1.1 seems to have been solved by Bhoosnurmath and Dyavanal [3],
but their proofs contain some gaps that were pointed out by Zhang [15, Annex remarks],
Xu et al [10, Remark 2], respectively. The gaps have not been filled as far as we know. Here
we give a partial answer to Problem 1.1.

Theorem 1.1. Let f(z) and g(z) be two non-constant meromorphic functions with σ(f) <
+∞. Let n, k be two positive integers with n > max{3k + 8, 2(σ(f) − 1)k}. If [fn(z)](k)

and [gn(z)](k) share 1 CM, then one of the following two conclusions holds:
(1) f(z) ≡ tg(z) for a constant t such that tn = 1;
(2) f = c3e

dz, g = c4e
−dz, where c3, c4 and d are constants such that (−1)k(c3c4)

n(nd)2k =
1.

Remark 1.2. Theorem 1.1 affirmatively answered Problems 1.1. Namely, Theorem C
holds for the case of meromorphic functions of finite order, provided that n is sufficiently
large. But unfortunately, Theorems D fails if f(z) and g(z) are meromorphic functions
without the condition Θ(∞, f) > 2/n, even if f and g share ∞ CM. We give the following
counterexample.

Example 1.1. Let

f(z) =
h(z)(1− hn(z))

1− hn+1(z)
, g(z) =

1− hn(z)

1− hn+1(z)
, (1.1)

2
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where n is a positive integer and h(z) is a non-constant meromorphic function.

We deduce from (1.1) that fn(f − 1) = gn(g− 1), thus f and g satisfy the conditions of
Theorem D, but f ̸≡ g.
Note that

T (r, f) = T (r, gh) = nT (r, h) + S(r, f).

By the second fundamental theorem, we deduce

N(r, f) =

n∑
j=1

N(
1

h− aj
) ≥ (n− 2)T (r, h) + S(r, f),

where aj( ̸= 1) (j = 1, 2, · · · , n) are distinct roots of the algebraic equation hn+1 = 1.
Therefore,

Θ(∞, f) = 1− lim sup
r→∞

N(r, f)

T (r, f)
≤ 2/n.

When n > 3k + 8, then n
2k + 1 > 5

2 , so from Theorem 1.1 we have

Corollary 1.1. Let f(z) and g(z) be two non-constant meromorphic functions with σ(f) <
3. Let n, k be two positive integers with n > 3k+8. If [fn(z)](k) and [gn(z)](k) share 1 CM,
then one of the following two conclusions holds:
(1) f(z) ≡ tg(z) for a constant t such that tn = 1;
(2) f = c3e

dz, g = c4e
−dz, where c3, c4 and d are constants such that (−1)k(c3c4)

n(nd)2k =
1.

Consider IM sharing value and we have

Theorem 1.2. Let f(z) and g(z) be two non-constant meromorphic functions with σ(f) <
+∞. Let n, k be two positive integers with n > max{9k + 14, 2(σ(f) − 1)k}. If [fn(z)](k)

and [gn(z)](k) share 1 IM, then one of the following two conclusions holds:
(1) f(z) ≡ tg(z) for a constant t such that tn = 1;
(2) f = c3e

dz, g = c4e
−dz, where c3, c4 and d are constants such that (−1)k(c3c4)

n(nd)2k =
1.

Corollary 1.2. Let f(z) and g(z) be two non-constant meromorphic functions with σ(f) <
6. Let n, k be two positive integers with n > 9k + 14. If [fn(z)](k) and [gn(z)](k) share 1
IM, then one of the following two conclusions holds:
(1) f(z) ≡ tg(z) for a constant t such that tn = 1;
(2) f = c3e

dz, g = c4e
−dz, where c3, c4 and d are constants such that (−1)k(c3c4)

n(nd)2k =
1.

2 Preliminary lemmas and a main proposition

Lemma 2.1. [11] Let f(z) be a non-constant meromorphic function and let a0(z), a1(z),
· · · , an(z)(̸≡ 0) be small functions of f . Then

T (r, anf
n + an−1f

n−1 + · · ·+ a0) = nT (r, f) + S(r, f).

3
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Lemma 2.2. [16] Let f(z) be a non-constant meromorphic function, s, k be two positive
integers. Then

Ns(r,
1

f (k)
) ≤ T (r, f (k))− T (r, f) +Ns+k(r,

1

f
) + S(r, f),

Ns(r,
1

f (k)
) ≤ kN(r, f) +Ns+k(r,

1

f
) + S(r, f).

Lemma 2.3. Let f(z) be a non-constant meromorphic function of finite order, and let k
be a positive integer. Suppose that f (k) ̸≡ 0, then

N(r,
1

f (k)
) ≤ N(r,

1

f
) + kN(r, f) +O(log r).

Proof. Note that f is of finite order, by Lemma 1.4
′
in [14, P. 21], we have

m(r,
f ′

f
) = O(log r).

Now we provem(r, f
(k)

f ) = O(log r) by mathematical induction. Suppose that the conclusion
is true for the case of k = m, if k = m+ 1, we have

f (m+1)

f
= (

f (m)

f
)′ +

f (m)

f

f ′

f
.

Then we get

m(r,
f (m+1)

f
) ≤ m(r, (

f (m)

f
)′) +m(r,

f (m)

f
) +m(r,

f ′

f
) +O(1)

= m(r,
(f

(m)

f )′

f (m)

f

f (m)

f
) +O(log r)

≤ m(r,
(f

(m)

f )′

f (m)

f

) +m(r,
f (m)

f
) +O(log r)

= O(log r).

Moreover, we have

m(r,
1

f
) ≤ m(r,

1

f (k)
) +m(r,

f (k)

f
) = m(r,

1

f (k)
) +O(log r).

Hence

T (r, f)−N(r,
1

f
) ≤ T (r, f (k))−N(r,

1

f (k)
) +O(log r).

4
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That is

N(r,
1

f (k)
) ≤ T (r, f (k))− T (r, f) +N(r,

1

f
) +O(log r)

= m(r, f (k)) +N(r, f (k))− T (r, f) +N(r,
1

f
) +O(log r)

≤ m(r, f) +m(r,
f (k)

f
) +N(r, f) + kN(r, f)− T (r, f) +N(r,

1

f
) +O(log r)

= N(r,
1

f
) + kN(r, f) +O(log r).

This completes the proof of Lemma 2.3.

Lemma 2.4. [12] Let f(z) and g(z) be two non-constant meromorphic functions and n, k
be two positive integers, a be a finite nonzero constant. If f and g share a CM, then one of
the following cases holds:
(i) T (r, f) ≤ N2(r, 1/f) + N2(r, 1/g) + N2(r, f) + N2(r, g) + S(r, f) + S(r, g), the same
inequality holding for T (r, g);
(ii) fg ≡ a2; (iii) f ≡ g.

Lemma 2.5. Let f(z) and g(z) be non-constant meromorphic functions, n, k be two positive
integers with n > k + 2, a be a finite nonzero constant. If [fn](k) and [gn](k) share a IM.
Then T (r, f) = O(T (r, g)), T (r, g) = O(T (r, f)) and σ(f) = σ(g).

Proof. Let F = fn. By the second fundamental theorem for small functions, we have

T (r, F (k)) ≤ N(r, f) +N(r,
1

F (k)
) +N(r,

1

F (k) − a
) + S(r, F ). (2.1)

By (2.1) and Lemma 2.1 and Lemma 2.2 with s = 1 applied to F , we have

nT (r, f) ≤ Nk+1(r,
1

F
) +N(r,

1

F (k) − a
) +N(r, f) + S(r, F )

≤ (k + 1)N(r,
1

f
) +N(r,

1

[fn](k) − a
) +N(r, f) + S(r.f)

≤ (k + 2)T (r, f) +N(r,
1

[gn](k) − a
) + S(r, f).

Namely,

(n− k − 2)T (r, f) ≤ N(r,
1

[gn](k) − a
) + S(r, f)

≤ n(k + 1)T (r, g) + S(r, f).

Since n > k + 2, we have T (r, f) = O(T (r, g)). Similarly we have T (r, g) = O(T (r, f)).
Thus σ(f) = σ(g).
This completes the proof of Lemma 2.5.

By the arguments similar to the proof of Lemma 2.5, we get the following proposition.

5
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Proposition 2.1. Let f be a transcendental meromorphic function, n, k be two positive
integers with n > k + 2, a(z)(̸≡ 0,∞) be a small function of f . Then [fn](k) − a(z) has
infinitely many zeros.

Lemma 2.6. [10] Let f and g be two non-constant meromorphic functions, k, n > 2k + 1
be two positive integers. If [fn](k) = [gn](k), then f = tg for a constant t such that tn = 1.

Lemma 2.7. Let f, g be two nonconstant meromorphic functions with σ(f) < +∞, n, k
be two positive integers with n > max{3k + 8, 2(σ(f) − 1)k}. If [fn](k)[gn](k) = 1, then
f = c3e

dz, g = c4e
−dz, where c3, c4 and d are constants such that (−1)k(c3c4)

n(nd)2k = 1.

Proof. Note that n > k+ 2, [fn](k) and [gn](k) share 1 IM. Then by Lemma 2.5 we get
σ(f) = σ(g) < +∞.

First, we prove

f ̸= 0, g ̸= 0. (2.2)

Suppose that z0 is a zero of f with multiplicity s, then z0 is a pole of g, say multiplicity t,
and z0 is a zero of [fn](k) with multiplicity ns− k, a pole of [gn](k) with multiplicity nt+ k,
thus we have

ns− k = nt+ k,

namley

n(s− t) = 2k. (2.3)

Note that n > 3k+8 and we get a contradiction from (2.3). Thus f has no zero. Similarly,
g has no zero. Thus (2.2) holds.
Next we prove

N(r, f) = O(log r), N(r, g) = O(log r). (2.4)

Rewrite [fn](k)[gn](k) = 1 as

[fn](k) =
1

[gn](k)
. (2.5)

We deduce from (2.5) that

N(r, [fn](k)) = N(r,
1

[gn](k)
). (2.6)

As N(r, [fn](k)) = nN(r, f)+kN(r, f), this together with (2.2), (2.6) and Lemma 2.3 implies
that

nN(r, f) + kN(r, f) ≤ kN(r, g) +O(log r). (2.7)

Similarly we get

nN(r, g) + kN(r, g) ≤ kN(r, f) +O(log r). (2.8)

6
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Combining (2.7) and (2.8) yields

N(r, f) +N(r, g) = O(log r). (2.9)

Thus we obtain (2.4), which means that both f and g have at most finitely many poles. Let

f =
eh(z)

p(z)
, g =

eh1(z)

q(z)
, (2.10)

where p(z) and q(z) are polynomials with deg(p(z)) = p, deg(q(z)) = q, h(z) and h1(z) are
nonconstant entire functions. By Corollary 1 in [14, P. 65], h(z) and h1(z) are polynomials
with deg(h(z)) = deg(h1(z)) = h = σ(f). Then

fn =
enh(z)

pn(z)
, gn =

enh1(z)

qn(z)
. (2.11)

Let H(z) = nh(z), P (z) = pn(z), H1(z) = nh1(z), Q(z) = qn(z). By mathematical
induction we get that

[fn](k) =
eH(z)Pk(z)

P k+1(z)
, [gn](k) =

eH1(z)Qk(z)

Qk+1(z)
, (2.12)

where Pk(z) andQk(z) are two polynomials with deg(Pk(z)) = k(h−1+np) and deg(Qk(z)) =
k(h− 1 + nq). By [fn](k)[gn](k) = 1, we have

h(z) + h1(z) ≡ C, (2.13)

where C is a constant. Furthermore, we get

deg(Pk(z)) + deg(Qk(z)) = deg(P k+1(z)Qk+1(z)), (2.14)

which implies that

2k(h− 1) = n(p+ q). (2.15)

By (2.4), if

N(r, f) +N(r, g) ̸= 0, (2.16)

then p+ q ≥ 1, we deduce from (2.15) that

n ≤ 2k(h− 1) = 2k(σ(f)− 1), (2.17)

which contradicts the assumption. Therefore

N(r, f) +N(r, g) = 0, (2.18)

namely both f and g are entire functions and p = q = 0. From (2.15) we obtain that h = 1.
Thus h(z) = dz + l3, h1(z) = −dz + l4.
Rewrite f and g as

f = c3e
dz, g = c4e

−dz,

where c3, c4 and d are nonzero constants. We deduce that (−1)k(c3c4)
n(nd)2k = 1.

This completes the proof of Lemma 2.7.

7
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Lemma 2.8. [1] Let f(z) and g(z) be two non-constant meromorphic functions and n, k be
two positive integers, a be a finite nonzero constant. If f and g share a IM, then one of the
following cases holds:
(i)T (r, f) ≤ N2(r, 1/f)+N2(r, 1/g)+N2(r, f)+N2(r, g)+2N(r, 1/f)+N(r, 1/g)+2N(r, f)+
N(r, g) + S(r, f) + S(r, g), the similar inequality holding for T (r, g);
(ii) fg ≡ a2; (iii) f ≡ g.

3 Proof of Theorem 1.1

Let F = [fn](k), G = [gn](k), F ∗ = fn, G∗ = gn, then F and G share 1 CM.
Thus by Lemma 2.5, one of the following cases holds:
(i) T (r, F ) ≤ N2(r, 1/F ) +N2(r, 1/G) +N2(r, F ) +N2(r,G) + S(r, F ) + S(r,G), the same
inequality holding for T (r,G);
(ii) FG ≡ 1; (iii) F ≡ G.

Case (i). By Lemma 2.1 and Lemma 2.2 with s = 2, we obtain

T (r, F ∗) ≤ Nk+2(r, 1/F
∗) +Nk+2(r, 1/G

∗) + (k + 2)N(r, g) + 2N(r, f)

+S(r, f) + S(r, g)

≤ (k + 2)N(r, 1/f) + (k + 2)N(r, 1/g) + (k + 2)N(r, g) + 2N(r, f)

+S(r, f) + S(r, g)

≤ (2k + 4)T (r, g) + (k + 4)T (r, f) + S(r, f) + S(r, g),

namely

nT (r, f) ≤ (2k + 4)T (r, g) + (k + 4)T (r, f) + S(r, f) + S(r, g). (3.1)

Similarly we have

nT (r, g) ≤ (2k + 4)T (r, f) + (k + 4)T (r, g) + S(r, f) + S(r, g). (3.2)

From (3.1) and (3.2) we deduce that

(n− 3k − 8)(T (r, f) + T (r, g) ≤ S(r, f) + S(r, g), (3.3)

which is a contradiction since n > 3k + 8.

Case (ii). We have [fn](k)[gn](k) = 1. By Lemma 2.7 we get the conclusion (2) of Theorem
1.1.

Case (iii). We have [fn](k) ≡ [gn](k). By Lemma 2.6 we get the conclusion (1) of Theorem
1.1.

This completes the proof of Theorem 1.1.
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4 Proof of Theorem 1.2

Let F = [fn](k), G = [gn](k), F ∗ = fn, G∗ = gn, then F and G share 1 IM.
Thus by Lemma 2.8, one of the following cases holds:
(i) T (r, F ) ≤ N2(r, 1/F ) + N2(r, 1/G) + N2(r, F ) + N2(r,G) + 2N(r, 1/F ) + N(r, 1/G) +
2N(r, F ) +N(r,G) + S(r, F ) + S(r,G), the same inequality holding for T (r,G);
(ii) FG ≡ 1; (iii) F ≡ G.

Case (i). By Lemma 2.1 and Lemma 2.2 with s = 1, 2, we obtain

T (r, F ∗) ≤ Nk+2(r, 1/F
∗) +Nk+2(r, 1/G

∗) + (k + 2)N(r, g) + 2N(r, f)

2(Nk+1(r, 1/F
∗) + kN(r, f)) +Nk+1(r, 1/G

∗) + kN(r, g)

+2N(r, f) +N(r, g) + S(r, f) + S(r, g)

≤ (3k + 4)N(r, 1/f) + (2k + 3)N(r, 1/g) + (2k + 4)N(r, f)

+(2k + 3)N(r, g) + S(r, f) + S(r, g)

≤ (5k + 8)T (r, f) + (4k + 6)T (r, g) + S(r, f) + S(r, g),

namely

nT (r, f) ≤ (5k + 8)T (r, f) + (4k + 6)T (r, g) + S(r, f) + S(r, g). (4.1)

Similarly we have

nT (r, g) ≤ (5k + 8)T (r, g) + (4k + 6)T (r, f) + S(r, f) + S(r, g). (4.2)

From (4.1) and (4.2) we deduce that

(n− 9k − 14)(T (r, f) + T (r, g) ≤ S(r, f) + S(r, g), (4.3)

which is a contradiction since n > 9k + 14.

Case (ii). We have [fn](k)[gn](k) = 1. By Lemma 2.7 we get the conclusion (2) of Theorem
1.2.

Case (iii). We have [fn](k) ≡ [gn](k). By Lemma 2.6 we get the conclusion (1) of Theorem
1.2.

This completes the proof of Theorem 1.2.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant
No. 11171184), the Tian Yuan Special Fund of the National Natural Science Foundation
of China (Grant No. 11426215) and Training plan for the Outstanding Young Teachers in
Higher Education of Guangdong (No. Yq 2013159).

9

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.6, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

1105 Xiao-Bin Zhang et al 1097-1106



References

[1] A. Banerjee, Meromorphic functions sharing one value, Int. J. Math. Math. Sci. 22
(2005) 3587–3598.

[2] W. Bergweiler, A. Eremenko, On the singularities of the inverse to a meromorphic
function of finite order, Rev. Mat. Iberoamericana. 11 (1995), 355–373.

[3] S.S. Bhoosnurmath, R.S. Dyavanal, Uniqueness and value-sharing of meromorphic
functions, Comput. Math. Appl. 53 (2007), 1191–1205.

[4] H.H. Chen, M.L. Fang, On the value distribution of fnf ′, Sci. China Ser. A. 38 (1995),
789–798.

[5] M.L. Fang, X.H. Hua, Entire functions that share one value, J. Nanjing Univ. Math.
Biquarterly 13 (1) (1996), 44–48.

[6] M.L. Fang, Uniqueness and value-sharing of entire functions, Comput. Math. Appl. 44
(2002), 828–831.

[7] W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

[8] W.C. Lin, H.X. Yi, Uniqueness theorems for meromorphic function concerning fixed-
points, Complex Var. Theory Appl. 49 (11) (2004) 793–806.

[9] W.C. Lin, H.X. Yi, Uniqueness theorems for meromorphic function, Indian J. Pure
Appl. Math. 35 (2004) 121–132.
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Regularized optimization method for determining the
space-dependent source in a parabolic equation without iterationI
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Abstract

In this paper, we consider an inverse problem of identifying a space-dependent source in
the parabolic equation which is a classical ill-posed problem. The inverse source problem
is formulated into a regularized optimization problem. Then, a non-iterative algorithm
based on a sequence well-posed direct problems solved by the finite element method is
proposed for solving the optimization problem. In order to obtain a reasonable regular-
ization solution, we utilize the damped Morozov discrepancy principle together with the
linear model function method for choosing regularization parameters. Numerical results
for one- and two-dimensional examples show that the proposed method is efficient and
robust with respect to data noise, especially for reconstructing the discontinuous source
functions. Furthermore, the proposed method is successfully used to solve a real example
of identifying the magnitude of groundwater pollution source.

Keywords: inverse source problem, parabolic equation, optimization, finite element
method, discrepancy principle.

1. Introduction

Inverse source identification problems arise in many branches of applied science and
engineering science, which aim to determine the unknown source from some measurable in-
formation related to the source. For example, Identification of a pollution source intensity
from some given measurements of the pollutant concentrations is crucial to environmental
safeguard in watersheds [1]. In this paper, we consider the inverse problem for determining
the unknown space-dependent source in a parabolic equation from a final measurement.
As we all know, this inverse source problem is ill-posed since small errors inherently pre-
sented in the practical measurement can induce enormous and highly oscillatory errors in
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reconstructing the unknown heat source.
The inverse problem of determining an unknown space-dependent source in the parabol-

ic equation has been considered in a few theoretical papers concerned with existence and
uniqueness of the solution[2, 3]. Recently, many authors are interested in numerical recon-
struction of the space-dependent source in parabolic equations [4, 5, 7, 6, 8, 9, 10, 11, 12].
In [4], the authors transferred the inverse heat source problems to the problems of numer-
ical differentiation for obtaining stable solutions. An effective meshless numerical method
and a finite difference approximate method were proposed in [7] and [6], respectively. In
[9], a regularization method based on the quasi-reversibility method together with the
error estimate was proposed for identifying an unknown space-dependent source in one
dimensional standard heat equation. In [10] and [11], two iterative methods were pro-
posed for finding the spacewise dependent source: one is an iterative algorithm based on a
sequence of well-posed direct problems; the other is a variational conjugate gradient-type
iterative algorithm which also need to solve a sequence of well-posed direct problems at
each iteration. The paper [12] is devoted to identify an unknown heat source depending
simultaneously on both space and time variables that is transformed into an optimization
problem. The aim of this paper is to construct a regularized optimization method, which
is a non-iterative method. We firstly formulate the inverse problem of determining the
spacewise dependent source into a regularized optimization problem. Then, the optimiza-
tion problem is reduced to a system of linear algebraic equations based on a sequence
well-posed direct problems solved by the finite element method.

This paper is organized as follows. In section 2, the source identification problem is
formulated and some properties of the solution of direct problem are given. In section 3,
a regularized optimization method is proposed for solve the source identification problem.
In section 4, implementations of the regularized optimization method are presented. In
section 5, numerical results for one- and two-dimensional examples are given to illustrate
the efficiency and stability of the proposed method with respect to data noise. Finally,
some conclusions are drawn.

2. Mathematical formulation of the source identification problem

Let Ω be a bounded domain possessing piecewise-smooth boundaries in the Euclidean
space Rn, n ≥ 1. x = (x1, x2, · · · , xn) denotes an arbitrary point in Ω, and ∂Ω is used for
the boundary of the domain Ω. Let us denote by QT a cylinder Ω × (0, T ) consisting of
all points (x, t) ∈ Rn+1 with x ∈ Ω and t ∈ (0, T ).

2.1. functional spaces

The space L2(Ω) is a Banach space consisting of all square integrable functions on the
domain Ω with the norm

‖u‖2,Ω =

(∫
Ω
|u(x)|2dx

)1/2

and the scalar product

(u, v) =

∫
Ω
u(x)v(x)dx.

2
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The Sobolev spaces W l
2(Ω), where l is a positive integer, consists of all functions from

L2(Ω) having all generalized derivatives of the first l orders that are square integrable over
Ω. The norm of the space W l

2(Ω) is defined by

‖u‖(l)2,Ω =

 l∑
k=0

∑
|α|=k

‖Dα
xu‖22,Ω

1/2

,

where α = (α1, α2, · · · , αn) is a multi-index, and |α| = α1 + α2 + · · ·+ αn,

Dα
xu ≡

∂|α|u

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n
.

The space
0

W l
2(Ω) is a subspace of W l

2(Ω) in which the set all functions in Ω that are
infinite differentiable and have compact support is dense.

The Sobolev space W l1,l2
2 (QT ) with positive integers li ≥ 0, i = 1, 2 is defined as a

Banach space of all functions u belonging to the space L2(QT ) along with their weak
x-derivatives of the first l1 orders and t-derivatives of the first l2 orders. The norm of the
space W l1,l2

2 (QT ) is defined by

‖u‖(l1,l2)
2,QT

=

∫
QT

 l1∑
k=0

∑
|α|=k

|Dα
xu|2 +

l2∑
k=1

|Dk
t u|2

 dxdt

1/2

.

The space W l1,l2
2,0 (QT ) is a subspace of W l1,l2

2 (QT ) in which the set of all smooth functions
in QT that vanish on the lateral ∂Ω× [0, T ] is dense.

2.2. The source identification problem

The source identification problem considered in this paper is stated as follows: find
the function u(x, t) and the unknown source function f(x) which satisfy the following
parabolic equation and boundary conditions

ut(x, t) = (Lu)(x, t) + f(x), (x, t) ∈ Ω× (0, T ),

u(x, 0) = 0, x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

(2.1)

and the final over-specified measurement

u(x, T ) = g(x), x ∈ Ω, (2.2)

where

Lu ≡
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u.

Moreover, the operator L is supposed to be uniformly elliptic, which means that aij(x) =
aji(x) and

0 < ν
n∑
i=1

ζ2
i ≤

n∑
i,j=1

aij(x)ζiζj ≤ µ
n∑
i=1

ζ2
i (2.3)

3
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with positive constants ν and µ, and arbitrary point ζ = (ζ1, · · · , ζn) ∈ Rn. Considering
the practical engineering applications, we confine the coefficients of the operator L to
satisfying that

aij(x), bi(x), c(x) ∈ C(Ω̄),
∂aij(x)

∂xk
∈ C(Ω̄), k = 1, 2, · · · , n. (2.4)

Remark 1. As mentioned in the introduction, there are many numerical methods [4, 5,
7, 6, 8, 9, 10, 11, 12, 22] for identifying the space-dependent source f(x) in parabolic
equations. However, these methods are mainly concerned and implemented in the one-
dimensional or standard parabolic equations. In other words, some of these methods maybe
not adapted to the generally parabolic equation in (2.1). Limited to our knowledge, we think
the methods proposed in [4, 6, 9, 10, 11, 22] should be adapted and extended to the general
n-dimensional inverse problem (2.1), but some new difficulties maybe occur and should
be overcome. For example, numerical differential problems of both the second order and
the first order, which are both ill-posed, should be computed in [4]. The finite difference
approximation applied to reconstructing the source term in [6, 9] should be improved to
deal with any n-dimensional domain. We pay more attention to the two iteration methods
constructed for the generally problem (2.1) in [10, 11]. In the two iteration methods, the
boundary element method with fundamental solutions of parabolic equations is used to solve
a sequence of well-posed direct problems. Generally, the fundamental solutions of linear
parabolic equations with variable coefficients are very complex, and their existence is also
no general results [23]. Compared to these known methods, the regularized optimization
method proposed in this paper is very simple for solving the general n-dimensional inverse
source problem (2.1), and more suitable for parallel computing which greatly enhance the
efficiency of the regularized method.

2.3. Properties of the direct problem

The direct problem is finding a solution u(x, t) satisfying the problem (2.1) when the
coefficients of the operator L and the source f(x) are known. From results of Chapter 1
in [13], we have the following lemma for the direct problem.

Lemma 1. Let the operator L be uniformly elliptic and its coefficients satisfy (2.4), and
let f(x) ∈ L2(Ω). Then the direct problem (2.1) has a solution u ∈W 2,1

2,0 (QT ), this solution
is unique and the following estimate is valid:

‖u‖(2,1)
2,QT

≤ C1

√
T ‖f‖2,Ω , (2.5)

where the constant C1 does not depend on u.

Therefore, given f(x) ∈ L2(Ω), u(x, T ) is well defined since u(x, t) ∈W 2,1
2,0 (QT ). More-

over, it is reasonable to assume that the over-specified measurement g(x) satisfies

g(x) ∈W 1
2 (Ω). (2.6)

4
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3. Regularized Optimization method

3.1. Regularized optimization functional

We now consider the inverse source problem (2.1)-(2.2) as the following constrained
optimization problem: finding a source function f(x) such that

min
f∈Φ

J(f) =

∫
Ω
|u(x, T ; f)− g(x)|2dx+ α

∫
Ω
|f(x)|2dx, (3.1)

where α is the regularization parameter and the constrained set is

Φ = {f(x) | |f(x)| ≤M, f(x) ∈ L2(Ω)}, (3.2)

M is a constant. The solution u(x, t; f) in (3.1) with respect to the source term f(x) is a
weak solution of (2.1) which satisfies

u(x, 0; f) = 0 (3.3)

and the variational formulation∫
Ω
utψdx+

∫
Ω

 n∑
i,j=1

aij(x)uxiψxj −
n∑
i=1

bi(x)uxiψ − c(x)uψ

 dx =

∫
Ω
f(x)ψdx (3.4)

for any ψ(x) ∈
0

W 1
2 and a.e. t ∈ (0, T ).

Theorem 1. There exists a minimizer f̃(x) ∈ Φ such that

J(f̃) = min
f∈Φ

J(f).

Proof. From the non-negativeness of the functional J(f), it follows that J(f) has the
greatest lower bound inff∈Φ J(f), which means that there exists a minimizing sequence
{fm} in Φ such that

inf
f∈Φ

J(f) ≤ J(fm) ≤ inf
f∈Φ

J(f) +
1

m

with the associated weak solution um := u(x, t; fm). Obviously, there exists a constant C2

such that
‖fm‖2,Ω ≤ C2,

where C2 is independent of m. Thus, we can extract a subsequence, again denoted by
{fm}, such that fm converges weakly to f̃ in Φ due to the closure of Φ.

From Lemma 1, we know that the sequence {um} is bounded in W 2,1
2 (QT ). Hence,

we can also extract a subsequence, still denoted by {um}, such that um converges weakly
to u∗. Therefore, the rest we need to prove that u∗ = u(x, t; f̃). In order to do this,
multiplying both side of the equation∫

Ω
um,tψdx+

∫
Ω

 n∑
i,j=1

aij(x)um,xiψxj −
n∑
i=1

bi(x)um,xiψ − c(x)umψ

 dx =

∫
Ω
fm(x)ψdx

(3.5)

5
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by any function γ(t) ∈ C1[0, T ] with γ(T ) = 0, then integrating with respect to t on [0, T ],
we derive that

−
∫

Ω
u(x, 0)γ(0)ψdx−

∫ T

0
γ

∫
Ω
umψdxdt+

∫ T

0
γ

∫
Ω

 n∑
i,j=1

aij(x)um,xiψxj−

n∑
i=1

bi(x)um,xiψ − c(x)umψ

)
dxdt =

∫ T

0
γ

∫
Ω
f̃ψdxdt+

∫ T

0
γ

∫
Ω

(fm − f̃)ψdxdt.

The last term of the above equality converges to zero since fm converges weakly to f̃ .
Noting that um converges weakly to u∗ in W 2,1

2 (QT ) and Letting m→∞, we have

−
∫

Ω
u(x, 0)γ(0)ψdx−

∫ T

0
γ

∫
Ω
u∗ψdxdt+

∫ T

0
γ

∫
Ω

 n∑
i,j=1

aij(x)u∗xiψxj−

n∑
i=1

bi(x)u∗xiψ − c(x)u∗ψ

)
dxdt =

∫ T

0
γ

∫
Ω
f̃ψdxdt. (3.6)

Obviously, (3.6) is also true for any γ(t) ∈ C∞0 (0, T ), this implies that∫
Ω
u∗tψdx+

∫
Ω

 n∑
i,j=1

aij(x)u∗xiψxj −
n∑
i=1

bi(x)u∗xiψ − c(x)u∗ψ

 dx =

∫
Ω
f̃(x)ψdx

for any ψ(x) ∈
0

W 1
2 and u∗(x, 0) = 0. Hence, it follows that u∗ = u(x, t; f̃) by the definition

of u(x, t; f̃). Then, the weakly lower semi-continuity of J(f) ensures that f̃ is a minimizer
of J(f).

3.2. Approximation by the finite element method

In this subsection, we introduce the finite element method for solving the continuous
minimization problems (3.1), (3.2) and (3.4). Similarly to that done in [14, 15], we first
triangulate the domain Ω with a regular triangulation T h of simplicial elements, and define
Sh to be the continuous piecewise linear finite element space defined over T h. The space
0
Sh, in which all functions vanish on the boundary ∂Ω, is a subspace of Sh. Let {Pi}Mh

i=1 be
the set of interior nodes, i.e., those that do not lie on the boundary ∂Ω. So, a function in

the space
0
Sh is uniquely determined by its value at the point Pi, and the set of pyramid

functions {φj}Mh
j=1 ⊂

0
Sh, defined by

φj(Pi) =

{
1, i = j,

0, i 6= j,
(3.7)

forms a basis of
0
Sh. Obviously, a function v(x) in

0
Sh can be extract that v(x) =∑Mh

j=1 vjφj(x), where vj = v(Pj) is the value of v(x) at Pj . The time interval [0, T ] is
partitioned into N equal subintervals by using nodal points

0 = t0 < t1 < · · · < tN−1 < tN = T

6
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with tm = m∆t and ∆t = T
N . Let um = u(x, tm) for 0 ≤ m ≤ N . Then, we define the

difference quotient

Dtu
m =

um − um−1

∆t

for a given sequence {um}Nm=1 ⊂ L2(Ω).
Let f(x) be extended to the boundary ∂Ω. Then, we define fh =

∑Kh
j=1 fjφj(x) that

approximate f(x) ∈ L2(Ω) and project it into the space Sh, where Kh is the numbers of
all nodes of T h, and fj is the value of f(x) at the j-th node. And now we can formulate
the continuous optimal problem (3.1) as the following finite element approximation

min
f∈Sh

⋂
Φ
J(fh) =

∫
Ω
|uNh (fh)− g(x)|2dx+ α

∫
Ω
|fh|2dx, (3.8)

where umh (fh) =
∑Mh

j=1 u
m
j φj(x) for m = 0, 1, · · · , N satisfies that

u0
h(fh) = 0 (3.9)

and∫
Ω
ψhDtu

m
h (fh)dx+

∫
Ω

 n∑
i,j=1

aij(x)(umh (fh))xi(ψh)xj−

n∑
i=1

bi(x)(umh (fh))xiψh − c(x)umh (fh)ψh

)
dx =

∫
Ω
fh(x)ψhdx (3.10)

for any ψh ∈
0
Sh.

Theorem 2. There exists at least a minimizer to the discrete minimization problem (3.8)-
(3.10).

The proof of Theorem 2 follows the same lines as the proof of Theorem 3.1 in [15].
So, we omit it. On the other hand, from results of [14, 15] we can also obtain that the
minimizer sequence of the discrete minimization problem corresponding to h and ∆t has
a subsequence that converges to a minimizer of the continuous problem (3.1)-(3.4) as
h→ 0,∆t→ 0.

4. Implementations of the regularized optimization method

4.1. Regularized least square method

Due to the linearity of the governing equation and the homogenous boundary and initial
conditions, we easily see that the problem (2.1) satisfies the principle of superposition
in terms of the source function, which is noted in [16, 17] and used to construct inverse
methods for recovering the initial function. Here, we also use this principle of superposition

7
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to formulate the finite element approximation (3.8) into a linear algebraic system. Noting
that

fh =

Kh∑
j=1

fjφj(x), (4.1)

we have

uNh (fh) =

Kh∑
j=1

fju
N
h (φj(x)), (4.2)

where uNh (φj(x)) is computed by the finite element method proposed in [18] when the
spatial domain is one-dimensional; otherwise, for the two-dimensional domain, uNh (φj(x))
is computed by the functions of PDE Toolbox in Matlab. Therefore, we rewrite the
approximation functional J(fh) as the form of f̃ = (f1, f2, · · · , fKh

)T in the form

J(f̃) =

∫
Ω

∣∣∣∣∣∣
Kh∑
j=1

fju
N
h (φj(x))− g(x)

∣∣∣∣∣∣
2

dx+ α

∫
Ω

∣∣∣∣∣∣
Kh∑
j=1

fjφj(x)

∣∣∣∣∣∣
2

dx, (4.3)

From the necessary condition for minimizing the approximation function J(f̃)

∂J(f̃)

∂fi
= 0, i = 1, 2, · · · ,Kh, (4.4)

we obtain the following linear algebraic system

(A+ αG)f̃ = b, (4.5)

where A = (aij)Kh×Kh
, G = (gij)Kh×Kh

, b = (b1, b2, · · · , bKh
)T , and

aij =

∫
Ω
uNh (φi(x))uNh (φj(x))dx, gij =

∫
Ω
φi(x)φj(x)dx, bi =

∫
Ω
uNh (φi(x))g(x)dx. (4.6)

For a given regularization parameter α, the solution f̃∗ of equation (4.5) is a discrete
reconstruction of the unknown source f(x); and f∗h =

∑Kh
j=1 f

∗
j φj(x) is an approximation

of f(x) in the space Sh. Hence, the algorithm for reconstructing the unknown source f(x)
from the final over-specified measurement g(x) = u(x, T ) is summarized as the following
algorithm.

Algorithm 1 : Algorithm with non-iteration for reconstructing the unknown source.

Given the final measurement g(x) = u(x, T ) and a regularization parameter α.

Step 1. Solve the direct problem (2.1) for each basis source term f(x) = φi(x) via the
finite element method, then obtain uNh (φi(x)).

Step 2. Compute the Matrices A and G and the vector b by using (4.6).

Step 3. Solve the regularized linear algebraic system (4.5).

Step 4. Reconstruct the source f(x) by using the formulation (4.1).

8
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Remark 2. The cost of Algorithm 1 is mainly taken in the first step if we run it by
serial computing. Fortunately, we note that the first step of Algorithm 1 can be computed
in parallel. Therefore, the efficiency of Algorithm 1 will be very high if we run it on a
parallel computer system. In addition, we can choose other bases instead of the continuous
piecewise linear finite element basis, such as the polynomial basis, and the trigonometric
function basis, which can greatly reduce the amount of computation if the number of the
basis functions is relatively small.

4.2. Strategy for choosing regularization parameters

Due to the ill-posedness of the inverse source problem, the regularization parameter α
play an important role for reconstructing a reasonable solution. The measurement noises
and the round-off errors may be highly amplified due to the choice of an unreasonable
regularization parameter and therefore making the inverse solution completely useless.
In this study, we employ the damped Morozov discrepancy principle [19, 20] to choose
regularization parameters, i.e., choosing regularization parameters α such that

∫
Ω

∣∣∣∣∣∣
Kh∑
j=1

fju
N
h (φj(x))− gδ(x)

∣∣∣∣∣∣
2

dx+ αγ
∫

Ω

∣∣∣∣∣∣
Kh∑
j=1

fjφj(x)

∣∣∣∣∣∣
2

dx = Cδ2, (4.7)

where γ is the damped coefficient, C is a constant, δ is the noise level which meet that
‖g − gδ‖ ≤ δ. Here, g is the exact data and gδ is the measurement data. In order to
obtain regularization parameters in a stable and quick way, we adopt the linear model
function method proposed in [19, 20] to solve the discrepancy equation (4.7) with γ = 1.5
and C = 1.5.

5. Numerical examples

The solution of the governing equation in (2.1) with nonhomogeneous boundary con-
dition B(x, t) and initial condition u0(x) is not a linear mapping for the source term f(x).
Therefore, we first divide the problem with nonhomogeneous boundary conditions into the
following two problems, i.e.,

u(x, t; f) = u1(x, t; f) + u2(x, t), (5.1)

where u1(x, t; f) satisfies the problem
(u1)t(x, t) = (Lu1)(x, t) + f(x), (x, t) ∈ Ω× (0, T ),

u1(x, 0) = 0, x ∈ Ω,

u1(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

(5.2)

and u2(x, t) is the solution of the following homogeneous equation with nonhomogeneous
initial and boundary conditions

(u2)t(x, t) = (Lu2)(x, t), (x, t) ∈ Ω× (0, T ),

u2(x, 0) = u0(x), x ∈ Ω,

u2(x, t) = B(x, t), (x, t) ∈ ∂Ω× [0, T ].

(5.3)

9
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Then, By using the data g(x)−u2(x, T ), Algorithm 1 can be implemented for reconstruct-
ing the source function f(x).

In all one-dimensional examples of this section, we divide [0, 1] into 100 equal subinter-
vals which means that there are 100 elements and 101 nodes; while in all two-dimensional
examples, we divide [0, 1] × [0, 1] into 50 × 50 equal sub-rectangles which indicates that
the mesh grid has a total of 5000 triangle elements and 2601 nodes. In the computational
process, we obtain actually the final data vector g = {g(Pi)} at the points of the mesh grid
in our simulations, and add a random distributed perturbation to the data vector g with
relative noise level δ̂, i.e., gδ = g+ δ̂(2∗ rand(size(g))−1)∗g. The function rand(size(g)) in
Matlab generates a random vector whose elements are the standard uniform distribution
on the interval (0,1).

In the numerical results listed in Table 1, we report the relative noise levels δ̂, the reg-
ularization parameters, the relative error of the inverse solution computed by the formula

RelError =
‖f∗h − f‖2
‖f‖2

.

The comparisons between the exact solutions and the inverse solutions are showed in
Figure 1 to Figure 8, respectively.

Table 1. Some numerical results for examples 1-5.

Examples δ̂ α RelError

Example 1
0.001 4.2806e-006 3.8244e-003
0.01 4.1359e-005 1.1608e-002

Example 2
0.001 2.7407e-007 3.6889e-002
0.01 3.5558e-006 9.3541e-002

Example 3
0.001 1.0017e-007 1.6677e-001
0.01 3.7607e-006 2.5831e-001

Example 4
0.001 4.7644e-008 1.9297e-002
0.01 4.9258e-007 5.7354e-002

Example 5
0.001 3.5247e-008 1.7401e-001
0.01 1.1364e-006 2.6286e-001

Example 1. We take Ω = (0, 1), T = 1, and Lu = ∆u = ∂2u
∂x2

. Let

u(x, t) =
(
2− exp

(
−π2t

))
sin(πx), (x, t) ∈ [0, 1]× [0, 1].

In this case, f(x) = 2π2 sin(πx), u0(x) = sin(πx), u(0, t) = u(1, t) = 0, and the final
measurement is given by

g(x) = u(x, 1) =
(
2− exp

(
−π2

))
sin(πx), x ∈ [0, 1].

The inverse solutions for different noise levels are showed in Figure 1.

10
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(a) δ̂ = 0.001
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Figure 1: The comparison between the exact solution and its inverse solution.

Example 2. Consider a piecewise smooth heat source:

f(x) =


0, x ∈ [0, 0.3],

5(x− 0.3), x ∈ (0.3, 0.5],

−5(x− 0.7), x ∈ (0.5, 0.7],

0, x ∈ (0.7, 1].

We take Ω = (0, 1), T = 1, Lu = ∆u = ∂2u
∂x2

, u0(x) = 0, u(0, t) = u(1, t) = 0. The final
over-specified measurement u(x, T ) is computed by the finite element method proposed in
[18]. Numerical results for different noise levels are showed in Figure 2.
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Figure 2: The comparison between the exact solution and its inverse solution.
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Example 3. Consider a discontinuous source

f(x) =


0, x ∈ [0, 1/3),

1, x ∈ [1/3, 2/3],

0, x ∈ (2/3, 1].

In this example, we also take Ω = (0, 1), T = 1, Lu = ∆u = ∂2u
∂x2

, and the homogenous
boundary and initial conditions. Because the source f(x) is a discontinuous function,
the direct problem has no analytic solution. So, we obtain the final over-specified mea-
surement u(x, T ) by solving the direct problem with the finite element method [18]. The
reconstructed solutions for different noise levels are showed in Figure 3.
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Figure 3: The comparison between the exact solution and its inverse solution (n = 100).

Example 4.[6] For this two-dimensional example, we take Ω = (0, 1) × (0, 1), T = 1,

Lu = ∂2u
∂x2

+∂2u
∂y2

, the initial value u0(x, y) = sin(πx) sin(πy), (x, y) ∈ Ω, and the homogenous
boundary conditions. The exact source function is defined by

f(x, y) = exp
(
−σ
[
(x− µ1)2 + (y − µ2)2

])
.

Note that when σ is large enough the above source mimics a Dirac delta distribution
δ(x − µ1, y − µ2). Here, we take σ = 80, µ1 = 3

4 and µ2 = 1
2 . The final measurement

u(x, y, T ) is obtained by the functions of PDE Toolbox in Matlab. The exact solution is
showed in Figure 4. The reconstructed solutions and their errors are showed in Figure 5
and Figure 6 for δ̂ = 0.001 and δ̂ = 0.01, respectively.
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Figure 4: The exact solution of example 4.
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Figure 5: The inverse solution and its error for δ̂ = 0.001.
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Figure 6: The inverse solution and its error for δ̂ = 0.01.

Example 5. In this two-dimensional example, we consider a discontinuous function

f(x, y) =


0, (x, y) ∈

{
(x, y)

∣∣∣0 < x, y < 1,
√

(x− 0.5)2 + (y − 0.5)2 ≥ 0.25
}

1, (x, y) ∈
{

(x, y)
∣∣∣√(x− 0.5)2 + (y − 0.5)2 < 0.25

}
.

We also take Ω = (0, 1) × (0, 1), T = 1, Lu = ∂2u
∂x2

+ ∂2u
∂y2

, and the homogenous boundary

and initial conditions. The final measurement u(x, y, T ) is also obtained by the functions
of PDE Toolbox in Matlab. The exact solution is showed in Figure 7. The reconstructed
solutions and their errors are showed in Figure 8 and Figure 9 for δ̂ = 0.001 and δ̂ = 0.01,
respectively.
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Figure 7: The exact solution of example 5.
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Figure 8: The inverse solution and its error for δ̂ = 0.001.
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Figure 9: The inverse solution and its error for δ̂ = 0.01.

6. Application to a real source determination[21, 22]

This real example is taken from references [21] and [22]. Consider acid contaminant
in the groundwater in Fengshui, Zibo of Shandong Province, China. The studied region
is a relatively integrated unit of hydrogeology whose area is about 45 km2. In this region,
the groundwater flow accumulated by atmosphere precipitation is gradually pressed when
it seeps from the southeast to the north-west until it encountered the coal-seam, and so
a strip containing rich groundwater is formed. For this reason, Yuedian and Zhanghua
wellsprings were established in 1980s. However, with the excess exploitation of mines, e.g.
the exploitation of coal-wells, groundwater pollution has become more and more serious
in this region. In particular, acid contaminant of SO2−

4 in Zhanghua wellspring becomes
higher and higher year after year. Based on the measured concentration data in this
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region from 1988 to 1999 along the groundwater flow direction, we are try to determine
the average magnitude of acid contaminant seeping into the aquifer every year.

Under some suitable assumptions on the aquifer, choosing the direction of groundwater
flow which is from Sijiaofang to Zhanghau as the direction of x axis, and Sijiaofang as
zero point, the year of 1988 as initial moment, then this real problem of acid contaminant
in the groundwater system can be characterized by the following system:

∂u
∂t = aLv

∂2u
∂x2
− v ∂u∂x − λu+ f(x)

ne
, 0 < x < L, 0 < t < T,

u(0, t) = 7.96t+ 45.6, 0 ≤ t ≤ T,
u(L, t) = 1.75t2 + 331.6, 0 ≤ t ≤ T,
u(x, 0) = 0.0715x+ 45.6, 0 ≤ x ≤ L,

(6.1)

where u = u(x, t)[mg/l] is the solute concentration at time t and space point x, and
the model parameters: v = 365[m/y] is the average pore water velocity, aL = 1[m] is the
longitude dispersivity, λ = 0.05[y−l] is the attenuation coefficient, ne = 0.25[dimensionless]
is the effective porosity and f(x) represents an average magnitude of the pollutants seeping
into the aquifer every year. In addition, L = 4000[m] denotes the distance from Sijiaofang
to Zhanghau, and T = 11[y]. The boundary conditions and the initial condition in system
(6.1) are obtained by applying data fitting skills from the actually measured data, see [22].
The additional data at the final year of T = 11 is also obtained by the similar technique
as follows:

u(x, T ) = 0.1026x+ 133.2, 0 ≤ x ≤ L. (6.2)

The inverse problem considered here is to determine the source magnitude function f(x)
in (6.1) from the measured data u(x, T ) by the regularized optimization method. In the
numerical implementation, we firstly transform this inverse problem into a dimensionless
form [21] by setting U = u

45.6 , y = x
L , τ = vt

L , then apply Algorithm 1 to solve it by dividing
[0, 1] with 200 equal subintervals. Firstly, assuming that all of the initial boundary data in
the model (6.1) and the additional final data (6.2) are accurate, we reconstruct the source
with regularization parameter α = 0.5 × 10−4. Secondly, in the case of the additional
final data having random noises, we carry out similar computations with the linear model
function method for choosing regularization parameters.

Case 1. Find a solution f∗h =
Kh∑
j=1

f∗j φj(x) in the space Sh. See Figure 10 and Table 2.

Case 2. Find a solution as the form f∗h =
Np∑
j=0

f∗j x
j in the polynomial function space

PNp [x]. Based on analyses of [22], we only take Np = 1 and Np = 2 to reconstruct the
source, respectively. See Table 2.

To show accurateness and reasonableness of the above solutions, we substitute these
solutions into the model (6.1) and reconstruct the additional data denoted by u(x, T ; f∗h).
Then the residuals ‖u(x, T ; f∗h) − u(x, T )‖2 are computed at the 201 nodes and listed in
Table 2 as compared with the actually additional final data (6.2).

From Figure 10 and Table 2, we see that the source magnitude function f(x) in the
model (6.1) can be determined numerically from the additional final data by the proposed
regularized optimization method. We also find from the last column of Table 2 that the
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method used here is better than that in paper [22, 21] in the sense of smaller residuals.
In addition, Algorithm 1 is very fast in the above second case since only two of three final
data for the corresponding basis functions need to be computed.
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Figure 10: Inverse solutions, where δ̂ is the relative noise level.

Table 2. Numerical results for Example 6.

Cases
Relative

noise level
α f∗h(x)

‖u(x, T ; f∗h)
−u(x, T )‖2

Solutions in
the space Sh

0.00 5.0000e-005 See Figure 10(-) 7.0182e-001
0.01 5.1865e-004 See Figure 10(..) 9.5460e-001
0.05 3.8324e-003 See Figure 10(- -) 2.6560e+000

Solutions in
the space
P1[x]

0.00 5.0000e-005 12.997+0.0010584x 2.0369e-001
0.01 1.0177e-001 13.052+0.0010055x 2.7136e-001
0.05 3.4462e-001 13.129+0.00090556x 9.7427e-001

Solutions in
the space
P2[x]

0.00 5.0000e-005
13.001+0.0010514x

+0.0000000019274x2 2.0386e-001

0.01 9.4045e-002
13.343+0.00048213x
+0.00000015466x2 5.6136e-001

0.05 3.5021e-001
13.341+0.00039093x
+0.00000017290x2 9.1224e-001

Results of
[21]

0.00 — 14.507+0.000016411x 3.2952e+000
0.01 4.357e-3 14.507+0.000015817x 3.2972e+000
0.05 1.274e-2 14.515+0.000011783x 3.3075e+000

7. Conclusions

In this paper, we mainly study the inverse problem of determining a space-dependent
source in the parabolic equation. As we all know, the inverse source problem is a classical
ill-posed problem. Basing on a sequence well-posed direct problems solved by the finite
element method, we propose a regularized optimization method for solving the inverse
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source problem, and use the linear model function method to choose regularization pa-
rameters for obtaining a stable solution. The proposed method is a non-iterative method,
and can be extended to the parabolic equation with other boundary conditions, even
mixed boundary conditions. In addition, we find that the regularization parameter plays
an important role in numerically solving the regularized optimization problem. Numerical
results for one- and two-dimensional examples show that the proposed method together
with regularization parameter chosen strategy is efficient and robust with respect to data
noise, especially for reconstructing the discontinuous source functions. Furthermore, the
proposed method is successfully used to solve a real example of identifying the magnitude
of groundwater pollution source.

In Algorithm 1, Matlab is used to compute the final dada for each basis function, it
introduces some errors due to the finite element approximation. Therefore it is desirable
to keep this computational errors less than the noise level. Here, we thank the reviewers
very much for pointing out this fact. Obviously, the mesh grid is denser the error of the
finite element approximation is smaller. Consequently, the computation amount will be
increase if Algorithm 1 is run by serial computing. As mentioned above, we can improve it
by parallel computing. On the other hand, instead of using the linear finite element basis
we approximate the source function f(x) by applying the polynomial function basis such
as in the real life example, or the trigonometric function basis. In this case, the number
of computing the final data for each basis is independent on the mesh. Thereby, we can
improve greatly the efficiency of Algorithm 1 by selecting the number of the basis under
some a priori information about the source function. Results of our numerical examples
show that the proposed regularized optimization method is robust to the error of the finite
element approximation. And we will study the error estimation of the proposed method
in our future work.
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Knowledge reduction in knowledge bases and its

algorithm ∗

Ningxin Xie†

December 1, 2014

Abstract: One of rough set theory’s strengths is the fact that an unknown
target concept can be approximately characterized by existing knowledge struc-
tures in a knowledge base. In this paper, we investigate Knowledge reduction
in knowledge bases and give its algorithm.

Keywords: Knowledge base; Knowledge reduction; Necessary relation; Al-
gorithm.

1 Introduction

Rough set theory was proposed by Pawlak [10] as a mathematical tool for
data reasoning. It may be seen as an extension of classical set theory, has
been proved to be an effective approach to deal with intelligent systems char-
acterized by insufficient and incomplete information and has been successfully
applied to machine learning, intelligent systems, inductive reasoning, pattern
recognition, mereology, image processing, signal analysis, knowledge discovery,
decision analysis, expert systems and many other fields [6, 7, 8, 9].

Basic opinion in rough set theory is that knowledge (human intelligence)
is the ability to classify elements [1, 4]. That is to say, knowledge is a fam-
ily of classifications (or partitions) on the universe. Rough set theory mainly
consider equivalence relations on the universe, which determine partitions on
the universe. One deals with not only a single classification (or partition) on
the universe, but also a family of classifications (or partitions) on the universe.
This leads to the definition of a knowledge base, which is a important concept
in rough set theory.

For a given knowledge base, one of the tasks in data mining and knowledge
discovery is to generate new knowledge through known knowledge.

The purpose of this paper is to investigate knowledge reduction in knowledge
bases.
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Project of Guangxi University for Nationalities (2012MDZD036).
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2 Preliminaries

In this section, we recall basic concepts about rough sets and knowledge
bases.

Throughout this paper, U denotes a non-empty finite set called the universe,
2U denotes the set of all subsets of U , R∗ denote the set of all equivalence
relations on U . All mappings are assumed to be surjective.

For R ⊆ R∗, denote ind(R) =
⋂

R∈R
R. Obviously, ind(R) ∈ R∗. For R ∈ R∗,

denote [x]R = {y ∈ U : xRy}.
Let R ∈ R∗. The pair (U,R) is called a Pawlak approximation space. Based

on (U,R), one can define the following two rough approximations:

R(X) = {x ∈ U : [x]R ⊆ X}, R(X) = {x ∈ U : [x]R ∩X 6= ∅}.

R(X) and R(X) are called the Pawlak lower approximation and the Pawlak
upper approximation of X, respectively.

The boundary region of X, defined by the difference between these rough
approximations, that is BndR(X) = R(X)−R(X).

A set is rough if its boundary region is not empty; Otherwise, it is crisp.
Thus, X is rough if R(X) 6= R(X).

Definition 2.1 ([13]). A pair (U,R) is called a knowledge base, if R ⊆ R∗.
It is well-know that elements in a knowledge base are not of the same impor-

tance, some even are redundant. So we often consider knowledge reductions in a
knowledge base by deleting unrelated or unimportant elements with the require-
ment of keeping the ability of classification. This is the meaning of knowledge
reduction in knowledge bases.

Definition 2.2 ([13]). Let (U,R) be a knowledge base and P ⊆ R.
(1) P is called a coordinate subfamily of R, if ind(P) = ind(R).
(2) R ∈ P is called independent in P, if ind(P −{R}) 6= ind(P); P is called

a independent subfamily of R, if ∀ R ∈ P, R is independent in P.
(3) P is called a knowledge reduction (for short, reduction) of R, if P is both

coordinate and independent.

In this paper, the set of all coordinate subfamilies (resp., all knowledge
reductions) of R is denoted by co(R) (resp., red(R)).

Obviously,

P ∈ red(R) ⇐⇒ P ∈ co(R) and ∀ Q ⊂ P,Q 6∈ co(R).

3 Knowledge reduction in knowledge bases

Proposition 3.1. Let (U,R) be a knowledge base. Then there always exist a
knowledge reduction of R.

2
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Proof. Suppose ∀ R ∈ R, R− {R} 6∈ co(R). Then R ∈ red(R).
Suppose ∃ R1 ∈ R, R−{R1} ∈ co(R). Then, we consider R−{R1}. Again

suppose ∀ R ∈ R−{R1}, (R−{R1})−{R} 6∈ co(R). Then R−{R1} ∈ red(R).
Again suppose ∃ R2 ∈ R−{R1}, (R−{R1})−{R2} ∈ co(R). Then, we consider
R− {R1, R2}. Repeat this process. Since R is finite, we can find a knowledge
reduction of R.

Thus, there always exist a knowledge reduction of R.

Definition 3.2. Let (U,R) be a knowledge base. Put

D(x, y) = {R ∈ R|(x, y) 6∈ R} (x, y ∈ U).

Then
(1) D(x, y) is called the discernibility subfamily of R on x and y.
(2) D(R) = (dij)n×n is called the discernibility matrix of R where U =

{x1, x2, · · ·, xn} and dij = D(xi, xj) (1 ≤ i, j ≤ n).

Example 3.3. Let U = {x1, x2, x3, x4, x5, x6}. We consider the knowledge base
(U,R) where R = {R1, R2, R3, R4} and

U/R1 = {{x1, x2, x5}, {x3, x4, x6}},
U/R2 = {{x1, x6}, {x2, x3, x4, x5}},
U/R3 = {{x1, x2, x5, x6}, {x3, x4}},
U/R4={{x1, x2, x5}, {x3, x4, x6}}.

We can obtain the discernibility matrix D(R) as follows:



∅ {R2} R R {R2} {R1, R4}
{R2} ∅ {R1, R3, R4} {R1, R3, R4} ∅ {R1, R2, R4}
R {R1, R3, R4} ∅ ∅ {R1, R3, R4} {R2, R3}
R {R1, R3, R4} ∅ ∅ {R1, R3, R4} {R2, R3}
{R2} ∅ {R1, R3, R4} {R1, R3, R4} ∅ {R1, R2, R4}

{R1, R4} {R1, R2, R4} {R2, R3} {R2, R3} {R1, R2, R4} ∅




Proposition 3.4. Let (U,R) be a knowledge base. The ∀ x, y, z ∈ U ,
(1) D(x, x) = ∅.
(2) D(x, y) = D(y, z).
(3) D(x, y) ⊆ D(x, z) ∪ D(z, y).

Proof. (1) and (2) are obvious.
(3) Suppose D(x, y) 6⊆ D(x, z)∪D(z, y). Then D(x, y)−D(x, z)∪D(z, y) 6= ∅.

Pick
R ∈ D(x, y)−D(x, z) ∪ D(z, y).

R ∈ D(x, y) implies (x, y) 6∈ R.
Since R 6∈ D(x, z) ∪ D(z, y), we have R 6∈ D(x, z) and R 6∈ D(z, y). Then

(x, z) ∈ R and (z, y) ∈ R. So (x, y) ∈ R. This is a contradiction.
Thus D(x, y) ⊆ D(x, z) ∪ D(z, y).
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Corollary 3.5. Let (U,R) be a knowledge base. Then d is a distance function
on U where

d(x, y) = |D(x, y)| (x, y ∈ U).

Proposition 3.6. Let (U,R) be a knowledge base. Then

P ∈ co(R) ⇐⇒ If (x, y) 6∈ ind(R), then P ∩ D(x, y) 6= ∅.

Proof. (1) “=⇒”. Since P ∈ co(R), we have ind(P) = ind(R). Then (x, y) 6∈
ind(P). So (x, y) 6∈ P for some P ∈ P.

(x, y) 6∈ P implies P ∈ D(x, y). Then P ∈ P ∩ D(x, y).
Thus P ∩ D(x, y) 6= ∅.
“⇐=”. Suppose P 6∈ co(R). Then ind(P) 6= ind(R). This implies ind(P)−

ind(R) 6= ∅. Pick
(x, y) ∈ ind(P)− ind(R).

Since (x, y) 6∈ ind(R), we have P ∩ D(x, y) 6= ∅.
Note that (x, y) ∈ ind(P). Then ∀ P ∈ P, (x, y) ∈ P . So P 6∈ D(x, y). Thus

P ∩ D(x, y) = ∅. This is a contradiction.
Thus P ∈ co(R).

The discernibility family can easily determine knowledge reductions.

Theorem 3.7. Let (U,R) be a knowledge base. Then P ∈ red(R) ⇐⇒
(1) If (x, y) 6∈ ind(R), then P ∩ D(x, y) 6= ∅;
(2) ∀ R ∈ P, ∃ (xR, yR) ∈ ind(R), (P − {R}) ∩ D(xR, yR) = ∅.

Proof. This holds by Proposition 3.6.

Definition 3.8. Let (U,R) be a knowledge base. Put

core(R) =
⋂

P∈red(R)

P.

Then core(R) is called the core of R. Moreover,
(1) R ∈ R is called a necessary relation, if R ∈ core(R).
(2) R ∈ R is called a relatively necessary relation, if R ∈ ⋃

P∈red(R)

P −
core(R).

(3) R ∈ R is called a absolutely dispensable relation, if R ∈ R− ⋃
P∈red(R)

P.

(4) R ∈ R is called a dispensable relation, if R ∈ R− core(R).

Obviously, R is dispensable ⇐⇒ R is relatively necessary or absolutely dis-
pensable.

Proposition 3.9. Let (U,R) be a knowledge base. Then

|red(R)| = 1 ⇐⇒ core(R) ∈ red(R).
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Proof. Necessity. This is obvious.
Sufficiency. Denote red(R) = {Pk : 1 ≤ k ≤ n}. We only need to prove

n = 1.
Suppose n ≥ 2. Since core(R) ∈ red(R), we have core(R) = Pi for some

i. Pick j 6= i. Then Pi =
n⋂

k=1

Pk ⊆ Pj . But Pi 6= Pj . Thus Pi ⊂ Pj . Since

Pj ∈ red(R), we have Pi 6∈ co(R). Then Pi 6∈ red(R). This is a contradiction.
Thus n = 1.

Discernibility family can easily determine the core.

Proposition 3.10. Let (U,R) be a knowledge base. The following are equiva-
lent:

(1) R is a necessary relation;
(2) R is independent in R;
(3) ∃ x, y ∈ U , D(x, y) = {R}.

Proof. (1) =⇒ (2). Suppose that R is not independent in R. Then

ind(R− {R}) = ind(R).

This implies R− {R} ∈ co(R). Consider R− {R}. By Proposition 3.1, ∃ P ⊆
R− {R}, P ∈ red(R).

P ⊆ R− {R} implies R 6∈ P. Then R is not a necessary relation. This is a
contradiction.

(2) =⇒ (1). Suppose that R is not a necessary relation. Then ∃ P ∈ red(R),
R 6∈ P. So P ⊆ R− {R} ⊆ R. This implies

ind(P) ⊇ ind(R− {R}) ⊇ ind(R).

By P ∈ red(R), ind(P) = ind(R). Then ind(R − {R}) = ind(R). So R is
not independent in R. This is a contradiction.

(2) =⇒ (3). Since R is independent in R, we have ind(R− {R}) 6= ind(R).
Then ind(R− {R})− ind(R) 6= ∅. Pick

(x, y) ∈ ind(R− {R})− ind(R).

Denote R = {R1, R2, . . . , Rn}. Then R = Rj for some j ≤ n. So

(x, y) ∈
⋂

1≤i≤n,i 6=j

Ri −
⋂

1≤i≤n

Ri.

This implies (x, y) 6∈ Rj and (x, y) ∈ Ri (i 6= j).
Thus D(x, y) = {R}.
(3) =⇒ (2). Since ∃ x, y ∈ U , D(x, y) = {R}, we have

(x, y) 6∈ R, (x, y) ∈ R
′
(R

′ 6= R).

Then (x, y) ∈ ind(R− {R}). But (x, y) 6∈ ind(R).
Thus ind(R− {R}) 6= ind(R). Hence R is independent in R.
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Proposition 3.11. Let (U,R) be a knowledge base. Denote

R? =
⋃

P∈co(R)

ind(P − {R}).

Then the following are equivalent:
(1) R is a absolutely dispensable relation;
(2) ∀ P ∈ co(R), ind(P − {R}) = ind(R);
(3) R? = ind(R);
(4) R? ⊆ R.

Proof. (1) =⇒ (2). By Proposition 3.1, ∃ Q ⊆ P, Q ∈ red(R). Since R is not
a necessary relation, we have R 6∈ Q, which implies Q ⊆ R− {R}. Then

Q ⊆ P ∩ (R− {R}) = P − {R} ⊆ P.

We have
ind(Q) ⊇ ind(P − {R})) ⊇ ind(P).

Note that P ∈ co(R) and Q ∈ red(R). Then ind(P) = ind(R) = ind(Q).
Thus

ind(P − {R}) = ind(R).

(2) =⇒ (3) =⇒ (4) are obvious.
(4) =⇒ (1). Suppose ∃ P ∈ red(R), R ∈ P. Then P − {R} ⊂ P. Since

P ∈ red(R), we have P − {R} 6∈ co(R). Then ind(P − {R}) − ind(R) 6= ∅.
P ∈ red(R) implies ind(P) = ind(R). Then

ind(P − {R})− ind(P) 6= ∅.

Pick (x, y) ∈ ind(P−{R})− ind(P). Note that ind(P) = ind(P−{R})∩R.
Then (x, y) 6∈ R.

Since P ∈ co(R) and R? ⊆ R, we have ind(P − {R}) ⊆ R. Then (x, y) ∈ R.
This is a contradiction.

Theorem 3.12. Let (U,R) be a knowledge base. Then
(1) R is necessary ⇔ R− {R} 6∈ co(R).
(2) R is relatively necessary ⇔ R− {R} ∈ co(R) and R? 6⊆ R.
(3) R is absolutely dispensable ⇔ R? ⊆ R.
(4) R is dispensable ⇔ R− {R} ∈ co(R).

Proof. This holds by Proposition 3.10 and Proposition 3.11.

Example 3.13. In Example 3.3, we have
(1) R2 is necessary.
(2) R1 and R4 are relatively necessary.
(3) R3 is absolutely dispensable.
(4) R1, R3 and R4 are dispensable.
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4 A algorithm on knowledge reduction

It is more convenient to calculate knowledge reductions and the core in
knowledge bases by using the following discernibility function when there are
many equivalence relations in knowledge bases.

Below, we give a algorithm on the knowledge reductions with the help of
mathematical logic.

“
∨

”(disjunction), “
∧

”(conjunction), “−→”(implication), “←→”(biimplication)
are propositional connectives in mathematical logic. They are read as “or”,
“and”, “if-then”, “if and only if”, respectively.

Let (U,R) be a knowledge base. ∀ R ∈ R, we specify a Boolean variable
“R”. If D(x, y) = {R1, R2, · · ·, Rk} with x, y ∈ U , then we specify a Boolean
function R1 ∨R2 ∨ · · · ∨Rk.

Denote

∨
{R1, R2, · · ·, Rk} or

k∨

i=1

Ri = R1 ∨R2 ∨ · · · ∨Rk,

∧
{R1, R2, · · ·, Rk} or

k∧

i=1

Ri = R1 ∧R2 ∧ · · · ∧Rk.

We stipulate that ∨ ∅ = 1 and ∧ ∅ = 0 where 0 and 1 are two Boolean
constants.

Definition 4.1. Let (U,R) be a knowledge base where U = {x1, x2, · · ·, xn} and
D(R) = (dij)n×n the discernibility matrix of R. We define the discernibility
function ∆(R) of R as follows:

∆(R) =
∧

(
∨

dij).

Example 4.2. In Example 3.3, we have

4(R) = R2∧(R1∨R2∨R3∨R4)∧(R1∨R4)∧(R1∨R3∨R4)∧(R1∨R2∨R4)∧(R2∨R3).

Denote
L(R) = {

∨
dij : 1 ≤ i, j ≤ n}.

We define a binary relation “≤” on L(R) as follows:
∨

dij ≤
∨

dkl ⇐⇒ dij ⊆ dkl for any
∨

dij ,
∨

dkl ∈ L(R).

For any
∨

dij ,
∨

dkl ∈ L(R), we denote

(
∨

dij)
⊔

(
∨

dkl) =
∨

(dij ∪ dkl), (
∨

dij)
l

(
∨

dkl) =
∨

(dij ∩ dkl).

Proposition 4.3. (L(R), ≤) is a poset.

7
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Proof. (1)
∨

dij ≤
∨

dij for any
∨

dij ∈ L(R).

(2) Let
∨

dij ,
∨

dkl ∈ L(R). Suppose
∨

dij ≤
∨

dkl and
∨

dkl ≤
∨

dij . Then
dij ⊆ dkl and dkl ⊆ dij . This implies dij = dkl. So

∨
dij =

∨
dkl.

(3) Let
∨

dij ,
∨

dkl,
∨

dhv ∈ L(R). Suppose
∨

dij ≤
∨

dkl and
∨

dkl ≤∨
dhv. Then dij ⊆ dkl and dkl ⊆ dhv. This implies dij ⊆ dhv. So

∨
dij ≤

∨
dhv.

Thus (L(R), ≤) is a poset.

Proposition 4.4. Let (U,R) be a knowledge base where U = {x1, x2, · · ·, xn}.
If {dij : 1 ≤ i, j ≤ n} is a topology on R, then (L(R),≤,t,u) is a lattice with
top element and bottom element.

Proof. Denote τ = {dij : 1 ≤ i, j ≤ n}. By Proposition 4.3, (L(R), ≤) is a
poset.

For
∨

dij ,
∨

dkl ∈ L(R), since τ is a topology on R, we have dij ∪ dkl ∈
τ, dij ∩ dkl ∈ τ . This implies

(
∨

dij)
⊔

(
∨

dkl) =
∨

(dij ∪ dkl) ∈ L(R),

(
∨

dij)
l

(
∨

dkl) =
∨

(dij ∩ dkl) ∈ L(R).

Obviously, 1L(R) = ∨R, 0L(R) = ∨∅.
Thus (L(R),≤,

⊔
,
d

) is a lattice with top element and bottom element.

Example 4.5. In Example 3.3, (
∨

d23)
d

(
∨

d63) = R3 6∈ L(R). Then (L(R),≤
,t,u) is not a lattice.

Definition 4.6. Let (U,R) be a knowledge base. If ∆(R) =
q∨

k=1

(
pk∧
l=1

Rkl), where

every Pk = {Rkl : l ≤ pk} ⊆ R has not repetitive elements, then
q∨

k=1

(
pk∧
l=1

Rkl) is

called the standard minimum formula of ∆(R). We denote it by ∆∗(R). That
is,

∆∗(R) =
q∨

k=1

(
pk∧

l=1

Rkl).

Example 4.7. In Example 3.3, we have

R2 ≤ (R1∨R2∨R3∨R4), R2 ≤ (R1∨R2∨R4), R2 ≤ (R2∨R3), (R1∨R4) ≤ (R1∨R3∨R4).

Obviously,

R2 ∧ (R1 ∨R2 ∨R3 ∨R4) = R2, R2 ∧ (R1 ∨R2 ∨R4) = R2,

R2 ∧ (R2 ∨R3) = R2, (R1 ∨R4) ∧ (R1 ∨R3 ∨R4) = R1 ∨R4.
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Then ∆(R) = R2 ∧ (R1 ∨R2 ∨R3 ∨R4) ∧ (R1 ∨R4) ∧ (R1 ∨R3 ∨R4) ∧ (R1 ∨
R2 ∨R4) ∧ (R2 ∨R3)

= R2 ∧ (R1 ∨R4)
= (R1 ∧R2) ∨ (R2 ∧R4).

Thus ∆∗(R) = (R1 ∧R2) ∨ (R2 ∧R4).

Theorem 4.8. Let (U,R) be a knowledge base. If ∆∗(R) =
q∨

k=1

(
pk∧
l=1

Rkl) is

the standard minimum formula of ∆(R). Then red(R) = {Pk : k ≤ q} where
Pk = {Rkl : l ≤ pk}.
Proof. (1) Let Pk0 ∈ {Pk : k ≤ q}.

(i) Obviously, ∆∗(R) =
q∨

k=1

(
pk∧
l=1

Rkl) =
q∨

k=1

(
∧Pk). Then

∧Pk0 −→ ∆∗(R).

Since ∆∗(R) = ∆(R) =
∧

(
∨

dij), we have

∆∗(R) ⇐⇒
∨

dij for any 1 ≤ i, j ≤ n.

Then ∀ x, y ∈ U ,
∧Pk0 −→

∨D(x, y).
So ∀ (x, y) 6∈ ind(R),

∧Pk0 −→
∨D(x, y).

Now
∧Pk0 ⇐⇒ Rk0l for any l ≤ pk0 and

∨D(x, y) ←→ R for some R ∈
D(x, y). Then ∀ (x, y) 6∈ ind(R), Rk0l for any l ≤ pk0 −→ R for some R ∈
D(x, y). So ∀ (x, y) 6∈ ind(R), there exists l0 ≤ pk0 such that R = Rk0l0 , i.e.,
R ∈ Pk0 ∩ D(x, y). Thus ∀ (x, y) 6∈ ind(R), Pk0 ∩ D(x, y) 6= ∅.

By Proposition 3.6, Pk0 ∈ co(R).
(ii) To prove Pk0 ∈ red(R), by Theorem 3.7, we only need to show that

∀ R ∈ Pk0 , ∃ (xR, yR) ∈ ind(R), (Pk0 − {R}) ∩ D(xR, yR) = ∅.

Suppose that ∃ R0 ∈ Pk0 such that (Pk0−{R0})∩D(x, y) 6= ∅ for any (x, y) 6∈
ind(R). Pick Rxy ∈ (Pk0 − {R0})∩D(x, y). Then

∧
(Pk0 − {R0}) −→ Rxy and

Rxy −→
∨D(x, y). Thus ∀ (x, y) 6∈ ind(R),

∧
(Pk0 − {R0}) −→

∨D(x, y).
∀ (x, y) ∈ ind(R), we have D(x, y) = ∅. Then

∧
(Pk0 −{R0}) −→

∨D(x, y).
It follows that ∀ x, y ∈ U ,

∧
(Pk0 − {R0}) −→

∨
D(x, y).

Since ∆∗(R) contains all true explanations of ∆(R), we have Pk0 − {R0} ∈
{Pk : k ≤ q}. Then

(
∧Pk0)

∨
(
∧

(Pk0 − {R0}))
= ((

∧
(Pk0 − {R0}))

∧{R0})
∨

((
∧

(Pk0 − {R0}))
∧

1)
= (

∧
(Pk0 − {R0}))

∧
({R0}

∨
1)

= (
∧

(Pk0 − {R0}))
∧

1
=

∧
(Pk0 − {R0}).

This implies Pk0 6∈ {Pk : k ≤ q}. This is a contradiction.
Thus Pk0 ∈ red(R). This show red(R) ⊇ {Pk : k ≤ q}.
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(2) Let P ∈ red(R). Then P ∈ co(R). By Proposition 3.6, P ∩ D(x, y) 6= ∅
for any (x, y) 6∈ ind(R). Similar to the proof of (1) (ii), we have P ∈ {Pk : k ≤
q}.

Thus red(R) ⊆ {Pk : k ≤ q}. Hence red(R) = {Pk : k ≤ q}.

Algorithms 4.9. Let (U,R) be a knowledge base. The algorithm of knowledge
reductions of R is shown as follows:

Input: the knowledge base (U,R);
Output: red(R) and core(R).

Step 1. Input the knowledge base (U,R);
Step 2. Calculate the discernibility matrix D(R) of R;
Step 3. Give discernibility function ∆(R) of R;
Step 4. Calculate standard minimum formula ∆∗(R) of ∆(R);
Step 5. Output all knowledge reductions of R and the core of R.

Example 4.10. We consider Example 3.3.

In Step 1, we input the knowledge base (U,R).
In Step 2, we obtain the discernibility matrix D(R).
In Step 3, we obtain

∆(R) = R2∧(R1∨R2∨R3∨R4)∧(R1∨R4)∧(R1∨R3∨R4)∧(R1∨R2∨R4)∧(R2∨R3).

In Step 4, we obtain ∆∗(R) = (R1 ∧R2) ∨ (R2 ∧R4).
In Step 5, we obtain all knowledge reductions of R: {R1, R2}, {R2, R4} and

core(R) = {R2}.
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Belief reduction in IVF decision information

systems and its algorithm ∗
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December 1, 2014

Abstract: Attribute reduction is one of the main problems in the study of
information systems. This paper investigates belief reduction in IVF decision
information systems by using the generalized D-S theory of evidence and rough
set theory.

Keywords: IVF; Decision information system; Similarity relation; Belief
reduction.

1 Introduction

Imprecision and uncertainty are two important aspects of incompleteness
of information. One theory for the study of insufficient and incomplete informa-
tion in intelligent systems is rough set theory [3]. Another important method
used to deal with uncertainty in information systems is D-S theory of evidence
[4]. There are strong connections between these two theory. It has been demon-
strated that various belief structures are associated with various approximation
spaces such that the different dual pairs of lower and upper approximation
operators induced by approximation spaces may be used to interpret the cor-
responding dual pairs of belief functions induced by belief structures [5, 8, 10].
Based on this observation, D-S theory of evidence may be used to analyze at-
tribute reduction and knowledge acquisition in information systems [7, 9, 12].
In the traditional rough set approach, the values of attributes are assumed to
be nominal data, i.e. symbols. In many applications, however, the decision
attribute-values can be linguistic terms (i.e. interval value fuzzy sets). The
traditional rough set approach would treat these values as symbols, thereby
some important information included in these values such as the partial order-
ing and membership degrees is ignored, which means that the traditional rough
set approach cannot effectively deal with interval value fuzzy initial data (e.g.
linguistic terms). Thus a new rough set model is needed to deal with such data.

∗This work is supported by the National Social Science Foundation of China (No.
12BJL087)

†Corresponding Author, School of Business Administration,, Guangxi University of Fi-
nance and Economics, Nanning, Guangxi 530003, P.R.China. shengluo100@126.com
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The purpose of this paper is to investigate belief reduction in IVF decision
information systems by using the generalized D-S theory of evidence and rough
set theory.

2 Preliminaries

Throughout this paper, “interval-valued fuzzy” denote briefly by “ IVF ”.
U denotes a finite and nonempty set called the universe. 2U denotes the family
of all subsets of U . F (U) denotes the set of all fuzzy sets in U . I denotes [0, 1]
and [I] denotes {[a, b] : a, b ∈ I and a ≤ b}.

2.1 IVF sets

Definition 2.1 ([1]). ∀ a, b ∈ [I], define

(1) a = b ⇐⇒ a− = b−, a+ = b+.
(2) a ≤ b ⇐⇒ a− ≤ b−, a+ ≤ b+; a < b ⇐⇒ a ≤ b, a 6= b.
(3) ac = [1, 1]− a = [1− a+, 1− a−].

Definition 2.2 ([1]). ∀ {ai : i ∈ J} ⊆ [I], define
(1)

∨
i∈J

ai = [
∨

i∈J

a−i ,
∨

i∈J

a+
i ].

(2)
∧

i∈J

ai = [
∧

i∈J

a−i ,
∧

i∈J

a+
i ].

Definition 2.3 ([1]). A mapping A : U → [I] is called an IVF set on U . Denote

A(x) = [A−(x), A+(x)] (x ∈ U).

Then A−(x) (resp. A+(x)) is called the lower (resp. upper) degree to which x
belongs to A. A− (resp. A+) is called the lower (resp. upper) IVF set of A.

The set of all IVF sets in U is denoted by F (i)(U).
Similar to fuzzy sets, the operators ⊆,∩,∪ and the complement of IVF sets

can be defined.

2.2 IVF decision information systems

Definition 2.4 ([6]). (U,A∪D) is called an IVF decision information system,
where U = {x0, x1, · · · , xn−1} is the universe, A is a condition attribute set and
D = {dk ∈ F (i)(U) : k = 1, 2, · · · , r} is a decision attribute set.

Example 2.5 ([6]). Table 1 gives an IVF decision information system (U,A∪D)
where U = {x0, x1, · · · , x9}, A = {a1, a2, a3}, D = {d1, d2, d3}.
Definition 2.6. Let (U,A ∪D) be an IVF decision information system. Then
B ⊆ A determines an equivalence relation as follows:

RB = {(x, y) ∈ U × U : a(x) = a(y) (a ∈ B)}.
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Table 1: An IVF decision information system (U,A ∪D)

a1 a2 a3 d1 d2 d3

x0 2 1 3 [0.7,0.9] [0.15,0.2] [0.4,0.5]
x1 3 2 1 [0.3,0.5] [0.5,0.7] [0.35,0.4]
x2 2 1 3 [0.7,0.8] [0.3,0.4] [0.1,0.2]
x3 2 2 3 [0.15,0.2] [0.5,0.8] [0.2,0.3]
x4 1 1 4 [0.05,0.1] [0.2,0.3] [0.65,0.9]
x5 1 1 2 [0.1,0.2] [0.35,0.5] [1.0,1.0]
x6 3 2 1 [0.25,0.4] [1.0,1.0] [0.3,0.4]
x7 1 1 4 [0.1,0.2] [0.25,0.4] [0.5,0.6]
x8 2 1 3 [0.45,0.6] [0.25,0.3] [0.2,0.3]
x9 3 2 1 [0.05,0.1] [0.8,0.9] [0.05,0.2]

RB forms a partition U/RB = {[x]B : x ∈ U} of U where [x]B = {y ∈ U :
(x, y) ∈ RB}.

The lower and upper approximations of X ∈ F (i)(U) with regard to (U,RB)
as follows:

RB(X)(x) =
∧

y∈[x]B

X(y), RB(X)(x) =
∨

y∈[x]B

X(y) (x ∈ U).

Remark 2.7. If y ∈ [x]B, then [y]B = [x]B. So RB(X)(y) = RB(X)(x) and
RB(X)(y) = RB(X)(x).

Denote RB(X)([x]B) = RB(X)(x), RB(X)([x]B) = RB(X)(x) (∗)
Proposition 2.8. Let (U,A ∪D) be an IVF decision information system and
let C ⊆ B ⊆ A. Then ∀ X ∈ F (i)(U),

(1) RB(Ũ −X) = Ũ −RB(X).
(2) RC(X) ⊆ RB(X) ⊆ X ⊆ RB(X) ⊆ RC(X).

Proof. (1) ∀ x ∈ U ,

RB(Ũ −X)(x) =
∧

y∈[x]B

(Ũ −X)(y) =
∧

y∈[x]B

(Ũ(y)−X(y))

=
∧

y∈[x]B

Ũ(y)−
∨

y∈[x]B

X(y)

= Ũ(x)− ∨
y∈[x]B

X(y) = (Ũ −RB(X))(x).

Then RB(Ũ −X) = Ũ −RB(X).
(2) Since C ⊆ B, ∀ x ∈ U , [x]C ⊇ [x]B . Then

RC(X)(x) =
∧

y∈[x]C

X(y) ≤
∧

y∈[x]B

X(y) = RB(X)(x).
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So RC(X) ⊆ RB(X).
Similarly, RB(X) ⊆ RC(X).
∀ x ∈ U , x ∈ [x]B . Then RB(X)(x) =

∧
y∈[x]B

X(y) ≤ X(x). So RB(X) ⊆ X.

Similarly, X ⊆ RB(X).
Hence

RC(X) ⊆ RB(X) ⊆ X ⊆ RB(X) ⊆ RC(X).

3 The generalized D-S theory of evidence

3.1 Necessity IVF measures and possibility IVF measures

Zadeh’s theory of possibility [11] is based on the idea that the possibility
of an event is determined by its most favorable case only.

N (i) : F (i)(U) → [I] is called a necessity IVF measure if it satisfies

N (i)(∅̃) = 0, N (i)(Ũ) = [1, 1], N (i)(X ∩ Y ) = N (i)(X) ∧N (i)(Y ).

Π(i) : F (i)(U) → [I] is called a possibility IVF measure if it satisfies

Π(i)(∅̃) = 0, Π(i)(Ũ) = [1, 1], Π(i)(X ∪ Y ) = Π(i)(X) ∨Π(i)Y ).

It can easily be checked that N (i) : F (i)(U) → [I] is a necessity IVF measure
iff the function Πi defined by

Π(i)(X) = [1, 1]−N (i)(X) (∀X ∈ F (i)(U))

is a possibility IVF measure.

Proposition 3.1. Let A ∈ 2U . For X ∈ F (i)(U), denote

N
(i)
A (X) =

∧

y∈A

X(y) = [
∧

y∈A

X−(y),
∧

y∈A

X+(y)],

Π(i)
A (X) =

∨

y∈A

X(y) = [
∨

y∈A

X−(y),
∨

y∈A

X+(y)].

Then N
(i)
A (resp. Π(i)

A ) is a necessity (resp. possibility) IVF measure.

Proof. The proof is obvious.

3.2 IVF belief functions

Definition 3.2. Let (M,m) be a belief structure on U . Bel(i) : F (i)(U) →
[I] is called a IVF belief function induced by (M,m) on U , if Bel(i)(X) =∑
{Y :Y ∈M}

m(Y )N (i)
A (X).

It can be prove that Bel(i) is a IVF belief function iff (i) Bel(i)(∅̃) = 0,

(ii) Bel(i)(Ũ) = [1, 1], (iii) Bel(i)(
k⋃

i=1

Xi) ≥
∑

∅6=J⊆{1,2,··· ,k}
(−1)|J|+1Bel(i)(

⋂
i∈J

Xi) .

4
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4 Belief reduction in IVF decision information
systems

4.1 The similarity relation RD

Definition 4.1. Let S = (U,A ∪ D) be a IVF decision information system
where U = {x0, x1, · · · , xn}, A is a condition attribute set, D = {d1, d2, · · · , dr}
is a decision attribute set.

Denote

dk(xi) = Dik (i = 0, 1, · · · , n− 1, k = 1, 2, · · · , r),

For i, j ∈ {0, 1, · · · , n− 1}, define

RD(xi, xj) =
∧
{[1, 1]−Dik ∧Djk| : k = 1, 2, · · · , r}.

Obviously, RD(xi, xi) = [1, 1], RD(xi, xj) = RD(xj , xi). Then RD is a
similarity relation on U . We can obtain the similar decision class SD(x):

SD(x)(y) = RD(x, y) (y ∈ U).

Denote

SD(xi) =
x0

SD(xi)(x0)
+

x1

SD(xi)(x1)
+

x2

SD(xi)(x2)
+

x3

SD(xi)(x3)
+

x4

SD(xi)(x4)
+

x5

SD(xi)(x5)
+

x6

SD(xi)(x6)

+
x7

SD(xi)(x7)
+

x8

SD(xi)(x8)
+

x9

SD(xi)(x9)
(i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9),

U/RD = {SD(x) : x ∈ U}.

Example 4.2. Consider the IVF decision information system S = (U,A∪D)
in Example 2.5.

SD(x0)(x1) = RD(x0, x1)

= ([1, 1]−D01 ∧D11)
∧

([1, 1]−D02 ∧D12)
∧

([1, 1]−D03 ∧D13)

= ([1, 1]− [0.7, 0.9] ∧ [0.3, 0.5])
∧

([1, 1]− [0.15, 0.2] ∧ [0.5, 0.7])
∧

([1, 1]− [0.4, 0.5] ∧ [0.35, 0.4])

= ([1, 1]− [0.3, 0.5])
∧

([1, 1]− [0.15, 0.2])
∧

([1, 1]− [0.35, 0.4])

= [0.5, 0.7]
∧

[0.8, 0.85])
∧

[0.6, 0.65]

= [0.5, 0.65].
Similarly,

SD(x0)(x0) = [1, 1], SD(x0)(x2) = [0.2, 0.3], SD(x0)(x3) = [0.7, 0.8],

SD(x0)(x4) = [0.5, 0.6], SD(x0)(x5) = [0.5, 0.6], SD(x0)(x6) = [0.6, 0.7],

5
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SD(x0)(x7) = [0.5, 0.6], SD(x0)(x8) = [0.4, 0.55], SD(x0)(x9) = [0.8, 0.85].

Thus

SD(x0) =
x0

[1, 1]
+

x1

[0.5, 0.65]
+

x2

[0.2, 0.3]
+

x3

[0.7, 0.8]
+

x4

[0.5, 0.6]
+

x5

[0.5, 0.6]
+

x6

[0.6, 0.7]
+

x7

[0.5, 0.6]
+

x8

[0.4, 0.55]
+

x9

[0.8, 0.85]
.

We can also calculate SD(xi) (i = 1, 2, 3, 4, 5, 6, 7, 8, 9). They record in Table
2.

Table 2: SD(xi)(xj)

x0 x1 x2 x3 x4

x0 [1,1] [0.5,0.65] [0.2,0.3] [0.7,0.8] [0.5,0.6]
x1 [0.5,0.65] [1,1] [0.5,0.7] [0.3,0.5] [0.6,0.65]
x2 [0.2,0.3] [0.5,0.7] [1,1] [0.6,0.7] [0.7,0.8]
x3 [0.7,0.8] [0.3,0.5] [0.6,0.7] [1,1] [0.7,0.8]
x4 [0.5,0.6] [0.6,0.65] [0.7,0.8] [0.7,0.8] [1,1]
x5 [0.5,0.6] [0.5,0.65]] [0.6,0.7] [0.5,0.65] [0.1,0.35]
x6 [0.6,0.7] [0.3,0.5] [0.6,0.7] [0.2,0.5] [0.6,0.7]
x7 [0.5,0.6] [0.6,0.65] [0.4,0.75] [0.6,0.75] [0.4,0.5]
x8 [0.4,0.55] [0.5,0.7] [0.4,0.55] [0.7,0.75] [0.7,0.8]
x9 [0.8,0.85] [0.3,0.5] [0.6,0.7] [0.2,0.5] [0.7,0.8]
−− −− −− −− −− −−

x5 x6 x7 x8 x9

x0 [0.5,0.6] [0.6,0.7] [0.5,0.6] [0.4,0.55] [0.8,0.85]
x1 [0.5,0.65] [0.3,0.5] [0.6,0.65] [0.5,0.7] [0.3,0.5]
x2 [0.6,0.7] [0.6,0.7] [0.4,0.75] [0.4,0.55] [0.6,0.7]
x3 [0.5,0.65] [0.2,0.5] [0.6,0.75] [0.7,0.75] [0.2,0.5]
x4 [0.1,0.35] [0.6,0.7] [0.4,0.5] [0.7,0.8] [0.7,0.8]
x5 [1,1] [0.5,0.65] [0.4,0.5] [0.7,0.75] [0.5,0.65]
x6 [0.5,0.65] [1,1] [0.6,0.7] [0.6,0.75] [0.1,0.2]
x7 [0.4,0.5] [0.6,0.7] [1,1] [0.7,0.75] [0.6,0.75]
x8 [0.7,0.75] [0.6,0.75] [0.7,0.75] [1,1] [0.7,0.75]
x9 [0.5,0.65] [0.6,0.75] [0.6,0.75] [0.7,0.75] [1,1]

4.2 Belief reduction

Denote the probability of X ∈ F (U) by P(X). In [4], define P(X) =∑
x∈U

X(x)P({x}).
Now we define the probability P(i)(X) of X ∈ F (i)(U) by

P(i)(X) =
∑

x∈U

X(x)P(i)({x}) = [
∑

x∈U

X−(x)P(i)({x}),
∑

x∈U

X+(x)P(i)({x})].

6
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Proposition 4.3. Let (U,A ∪D) be an IVF decision information system and
B ⊆ A. For X ∈ F (i)(U), denote

Bel(i)B (X) = P(i)(RB(X)) =
∑

x∈U

RB(X)(x)P({x}).

Pick M = U/RB = {Yx : x ∈ U}. Define the basic probability assignment
mB by

mB(Y ) =

{
|Y |
|U | , if Y ∈M,

0, otherwise.

Then Bel(i)B : F (i)(U) → [I] is an IVF belief function induced by (M,m) on U .

Proof.

Bel(i)B (X) = P(i)(RB(X)) =
∑

x∈U

[RB(X)(x)P({x})]

=
∑

x∈U

[P({x})(
∧

y∈Yx

X(y))] =
∑

Yx∈M
[
∑

x∈Yx

P({x})(
∧

y∈Yx

X(y))]

=
∑

Yx∈M
[P(Yx)(

∧

y∈Yx

X(y))] =
∑

Yx∈M
m(Yx)(

∧

y∈Yx

X(y))

=
∑

{Yx:Yx∈M}
m(Yx)N (i)

Yx
(X). (4.1)

Thus Bel(i)B is an IVF belief function induced by (M,m) on U .

Proposition 4.4. Let (U,A ∪ D) be an IVF decision information system. If
C ⊆ B ⊆ A and X ∈ F (i)(U), then

Bel(i)C (X) ≤ Bel(i)B (X) ≤ X.

Proof. This holds by Proposition 4.3.

Definition 4.5. Let S = (U,A ∪D) be an IVF decision information system.
(1) B ⊆ A is called a belief consistent set in S, if

Bel(i)B (SD(x)) = Bel(i)A (SD(x)) (x ∈ U).

(2) If B ⊆ A is a belief consistent set in S and ∀ C $ B,

Bel(i)C (SD(x)) 6= Bel(i)A (SD(x)) (x ∈ U),

then B is called a belief reduction in S.

Lemma 4.6. Let S = (U,A∪D) be an IVF decision information system. Then
B ⊆ A is a belief consistent set in S ⇐⇒

∑

x∈U

Bel(i)B (SD(x)) =
∑

x∈U

Bel(i)A (SD(x)).

7

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.6, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

1144 Sheng Luo 1138-1147



Proof. “ =⇒ ” Suppose that B is a belief consistent set in S. Then

∀ x ∈ U, Bel(i)B (SD(x)) = Bel(i)A (SD(x)).

Thus ∑

x∈U

Bel(i)B (SD(x)) =
∑

x∈U

Bel(i)A (SD(x)).

“ ⇐= ” Suppose that
∑

x∈U

Bel(i)B (SD(x)) =
∑

x∈U

Bel(i)A (SD(x)).

Then by Proposition 4.4,

∀ x ∈ U, Bel(i)B (SD(x)) ≤ Bel(i)A (SD(x)).

This implies that ∀ x ∈ U,Bel(i)B (SD(x)) = Bel(i)A (SD(x)).
Thus B is a belief consistent set in S.

Theorem 4.7. Let S = (U,A ∪ D) be an IVF decision information system.
Then

B ⊆ A is a belief reduction in S ⇐⇒ ∑
x∈U

Bel(i)B (SD(x)) =
∑

x∈U

Bel(i)A (SD(x))

and ∀ C ( B,
∑

x∈U

Bel(i)C (SD(x)) <
∑

x∈U

Bel(i)A (SD(x)).

Proof. “ =⇒ ” Suppose that B is of belief reduction in S. Then B is a belief
consistent set in S. By Lemma 4.6,

∑

x∈U

Bel(i)B (SD(x)) =
∑

x∈U

Bel(i)A (SD(x)).

By Definition 4.5, ∀ C ( B, x ∈ U , Bel(i)C (SD(x)) 6= Bel(i)A (SD(x)).
By Proposition 4.4, ∀ C ( B, x ∈ U, Bel(i)C (SD(x)) ≤ Bel(i)A (SD(x)).
Thus ∑

x∈U

Bel(i)C (SD(x)) <
∑

x∈U

Bel(i)A (SD(x)).

“ ⇐= ” Suppose that
∑

x∈U

Bel(i)B (SD(x)) =
∑

x∈U

Bel(i)A (SD(x))

and ∀ C ( B,
∑

x∈U

Bel(i)C (SD(x)) <
∑

x∈U

Bel(i)A (SD(x)).

By Lemma 4.6, B is a belief consistent set in S.
By Proposition 4.4, ∀ x ∈ U,Bel(i)C (SD(x)) ≤ Bel(i)A (SD(x)).
Then

Bel(i)C (SD(x)) 6= Bel(i)A (SD(x)).

Thus B is a belief reduction in S.

8
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Algorithms 4.8. Let S = (U,A ∪D) be an IVF decision information system.
The algorithm of belief reduction in S is shown as follows:

Input: the IVF decision information system S.
Output: All belief reductions in S.

Step 1. Input the IVF decision information system S;
Step 2. Pick B ⊆ A;
Step 3. Calculate the similar decision class SD(xj);
Step 4. Calculate Bel(i)A (SD(xj)) and Bel(i)B (SD(xj));
Step 5. Compare Bel(i)A (SD(xj)) and Bel(i)B (SD(xj));
Step 6. By Theorem 4.7, B is a belief reduction in S.

Example 4.9. Consider the IVF decision information system S = (U,A∪D)
in Example 4.2.

By (4.1) and Proposition 3.1,

Bel(i)A (SD(x1)) =
5∑

i=1

m(Xi)
∧

y∈Xi

SD(x1)(y)

=
|X0|
|U | ×

∧

y∈X1

SD(x0)(y) + · · ·+ |X5|
|U | ×

∧

y∈X5

SD(x0)(y)

=
3
10
× [0.2, 0.3] + · · ·+ 1

10
× [0.5, 0.6]

= [0.430, 0.525]

Similarly, we can calculate that

Bel(i)A (SD(x1)) = [0.440, 0.590], Bel(i)A (SD(x2)) = [0.410, 0.590],

Bel(i)A (SD(x3)) = [0.510, 0.675], Bel(i)A (SD(x4)) = [0.490, 0.590],

Bel(i)A (SD(x5)) = [0.470, 0.610], Bel(i)A (SD(x6)) = [0.400, 0.525],

Bel(i)A (SD(x7)) = [0.480, 0.600], Bel(i)A (SD(x8)) = [0.550, 0.675],

Bel(i)A (SD(x9)) = [0.460, 0.625] and

Bel(i)B (SD(x0)) = [0.430, 0.515], Bel(i)B (SD(x1)) = [0.420, 0.590],

Bel(i)B (SD(x2)) = [0.390, 0.580], Bel(i)B (SD(x3)) = [0.490, 0.655],

Bel(i)B (SD(x4)) = [0.430, 0.560], Bel(i)B (SD(x5)) = [0.380, 0.545],

Bel(i)B (SD(x6)) = [0.380, 0.515], Bel(i)B (SD(x7)) = [0.480, 0.600],

Bel(i)B (SD(x8)) = [0.550, 0.675], Bel(i)B (SD(x9)) = [0.440, 0.605].

By Lemma 4.6, B = {a1, a2} is not a belief consistent set in S.
Thus B = {a1, a2} is not a belief reduction in S.

9
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5 Conclusions

In this paper, we have researched belief reduction in IVF decision informa-
tion systems. In future work, we will investigate knowledge acquisition in IVF
decision information systems.
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2 Wan Se Kim

1. Introduction

Let N ≥ 3 and 2∗ := 2N/(N − 2). Let consider a Hilbert space

H1(RN) := {u ∈ L2(RN) : ∇u ∈ L2(RN)}

with the inner product

(u, v) :=

∫
RN

(∇u · ∇v + uv)dx

and the corresponding norm

||u|| :=
(∫

RN
(|∇u|2 + |u|2)dx

)1/2

.

By H−1(RN), we denote its dual with the dual norm || · ||∗ and, by 〈, 〉 , the pairing of
H1(RN) with its dual. We denote by || · ||p the usual norm of Lp(RN) for p ∈ [1,∞].
Let D1,2(RN) := {u ∈ L2∗(RN) : ∇u ∈ L2(RN)} be a Hilbert space with the inner
product

∫
RN ∇u · ∇v and the corresponding norm ||∇u||2.

In this paper, we are concerned with the multiple existence and bifurcation of
positive solutions of the following problem:

(Pµ)

{
−∆u+ u = u2∗−1 + µf in RN ,

u > 0 in RN , N ≥ 3,

where µ ∈ R+, f ∈ H−1(RN), f ≥ 0 and f 6≡ 0 in RN .
A well-known result for the homoneneous case is that all positive regular solution

of
−∆u = u2∗−1

in RN are given by

ωε :=

(
ε
√
N(N − 2)

ε2 + |x|2

)(N−2)/2

with ε > 0. Every ωε is a minimizer for the embedding D1,2(RN) ↪→ L2∗(RN). Namely,
the Sobolev constant

S := inf
06=u∈D1,2(RN )

∫
RN |∇u|

2dx(∫
RN |u|2

∗dx
)2/2∗

is achived by ωε and

(1, 1) ||∇ωε||22 = ||ωε||2
∗

2∗ = SN/2(cf.[2, 6]).

For convenience, we omit “RN” and “dx” in integration and, throughout this paper,
we will use the letter C > 0 to denote the natural various contents independent of u.

Our attempt to show multiplicity of positive solutions for problem (Pµ) relies
on the Ekeland’s variational principle in [13] and the Mountain Pass Theorem in
[5]. Since our problem (Pµ) posesses the critical nonlinearity and the embedding
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Existence and Bifurcation of Positive Global Solutions 3

H1(RN) ↪→ L2∗(RN) is not compact, in taking the opportunity of variational structure
of problem, the (PS) condition is no longer valid and so the Mountain Pass Theorem
in [1] could not be applied directly. However, we can use the Mountain Pass Theorem
without the (PS) condition in [5] to get some (PS)c sequence of the variational
functional for the second solution with c > 0.

In the last decade, the existence and properties of solutions of the problem:

(P0)

{
−∆u+ u = g(x, u), u > 0 in RN ,

u ∈ H1(RN), N ≥ 2

has been stuied by Struss[24], Lions[22, 23], Ding and Ni[12], Cao[7], Zhu[25] and other
authors for the case where g(x, 0) = 0 on RN and g(x, t) has a subcritical superlinear
growth. On the other hand, the nonhomogeneous problem with 1 < p < 2∗ − 1:

(P )

{
−∆u+ u = |u|p−2u+ µf, u > 0 in RN ,

u ∈ H1(RN), N ≥ 2,

where µ ∈ R+, f ≥ 0, f ∈ L2(RN) was studied in [26,11,14,15].
In the critical case p = 2∗, the problem is much more difficult than the subcritical

case. As we mentioned, the Palais-Smale condition does not hold at some critical levels
and the effect of the nonhomogeneous term f to the multiple existence of solutions is
delicate. The multiplicity of the solutions of (Pµ) not only depends on the norm of
f but also the decay rate of f . In [10], it has shown that if 2 < N < 6 and |x|N−2f
is bounded, then there exists µ∗ > 0 such that problem (Pµ) possesses at least two
positive solutions with µ ∈]0, µ∗[. In case that N ≥ 6, there exist µ∗∗, µ∗ > 0 with
µ∗ < µ∗∗ such that for each µ ∈]µ∗∗, µ∗[, problem (Pµ) possesses two positive solutions
and for µ ∈]0, µ∗[ problem (Pµ) has a unique positive solution. In [11], the authors
also gave similar multiplicity results for subcritical caseas. For critical case, In [18],
Hirano and Kim consider the multiplicity of solutions of (Pµ) with −∆+I replaced by
−∆ +αI, α > 0. They assume that p = 2∗, 3 ≤ N ≤ 5, f ∈ L2∗/(2∗−1)(RN)∩L∞(RN)
with f ≥ 0 and f 6≡ 0, and |x|N−2f is bounded. It was shown that there exist µ∗ and
a function α : (0, µ∗) → R+ such that for each α ∈ (0, α(µ)), problem (Pµ) posesses
at least three solutions; the third solution is sign-changing if we assume that there
exist exactly two positive solutions. we also refer [21] for critical case. In [19], the
effact of the shape of the multiplicity of (P ) was investigated when −∆ + I replaced
by −ε∆, ε > 0.

In this paper, we do not assume the decay rate on f but assume only uniform
boundedness of f which is independent of solution u and x ∈ RN . We study also
bifurcation phenomenon and get a bifurcation point of (Pµ). There seems to have
some progress on existence result in elliptic equations. We also refer a multiplicity
result on parabolic equations for subcritical case in [20, 16] and elliptic with Neumann
boundary condition in [17].

We now state our main results:

Proposition 2.3. Assume f ∈ H−1(RN), f ≥ 0, f 6≡ 0 in RN and ||µf ||∗ ≤ C∗N ,
then problem (Pµ) has at least one positive solution uµ such that

(2.1) Iµ(uµ) := c1 = inf{Iµ : u ∈ B̄R0},
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where B̄R0 = {u ∈ H1(RN) : ||u|| ≤ R0} and C∗N = 1
2

(
4

N+2

) (
N
N+2

)(N−2)/4
SN/4.

Theorem 3.6. Assume f ∈ H−1(RN), f ≥ 0 f 6≡ 0 in RN and satisfies
||µf ||∗ ≤ C∗N . Then there exists a positive constant µ∗ > 0 such that (Pµ) possesses
at least two positive solutions for 0 < µ < µ∗, a unique solution for µ = µ∗ and no
positive solution if µ > µ∗.

By Uµ, we denote the second solution of (Pµ).

Theorem 4.5. (i) The set {Uµ} is bounded uniformly in H1(RN),
(ii) (µ∗, uµ∗) is a bifurcation point.

2. Existence of minimal positive solutions

Lemma 2.1. The operator −∆ + I has the maximum principle in H1(RN).

Proof. Let h ≥ 0 and −∆u + u = h. Suppose that u− 6≡ 0, where u+(x) =
max{u(x), 0} and u−(x) = min{u(x), 0}. then 0 <

∫
|∇u−|2 + |u−|2) =

∫
hu−dx

which leads a contradiction. This completes the proof.

In order to get the existence of positive solutions of (Pµ), we consider the energy
functional Iµ of the problem (Pµ) defined by

Iµ(u) :=
1

2

∫
(|∇u|2 + |u|2)− 1

2∗

∫
(u+)2∗ − µ

∫
fu, for u ∈ H1(RN).

First, we study the existence of a local mininum for energy functional Iµ and its
properities. We denote

(2, 1) C∗N :=
1

2

(
4

N + 2

)(
N

N + 2

)(N−2)/4

SN/4.

Lemma 2.2. Assume f ∈ H−1(RN), f(x) ≥ 0, f(x) 6≡ 0 and ||µf ||∗ ≤ C∗N , then
there exits a positive constant R0 > 0 such that Iµ(u) ≥ 0 for any u ∈ ∂BR0 = {u ∈
H1(RN) : ||u|| = R0}.
Proof. We consider the function h(t) : [0,+∞)→ RN defined by

h(t) =
1

2
t− 1

2∗
S−2∗/2t2

∗−1.

Note that h(0) = 0, 2∗ − 1 > 1 and h(t)→ −∞ as t →∞. We can show easly there
a unique t0 > 0 achieving the maxinum of h(t) at t0. Since

h′(t0) =
1

2
− 2∗ − 1

2∗
S−2∗/2t2

∗−2
0 = 0,

we have

t0 =

(
2∗

2(2∗ − 1)

)1/(2∗−2)

S2∗/2(2∗−2).
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Hence, we have

(2, 2) h(t0) =
1

2

(
4

N + 2

)(
N

N + 2

)(N−2)/4

SN/4.

Taking R0 = t0, for all u ∈ ∂BR0 ,

(2, 3)

Iµ(u) =
1

2

∫
(|∇u|2 + |u|2)− 1

2∗

∫
(u+)2∗ − µ

∫
fu

≥ 1

2
||u||2 − 1

2∗
S−2∗/2||u||2∗ − ||µf ||∗||u||

= t0 [h(t0)− ||µf ||∗]

From (2, 2) and (2, 3), we have Iµ(u)|∂BR0
≥ 0. This completes the proof.

Proposition 2.3. Assume f ∈ H−1(RN), f(x) ≥ 0, f(x) 6≡ 0 in RN and
||µf ||∗ ≤ C∗N , then problem (Pµ) has at least one positive solution uµ such that

(2.4) Iµ(uµ) := c1 = inf{Iµ : u ∈ B̄R0},

where B̄R0 = {u ∈ H1(RN) : ||u|| ≤ R0}.
Proof. By Sobolev inequality, the generalized Hölder and Young’s inequality with
ε > 0, there exists Cε > 0, we have

Iµ(u) =
1

2

∫
(|∇u|2 + |u|2)− 1

2∗

∫
(u+)2∗ − µ

∫
fu

≥ 1

2
||u||2 − 1

2∗
S−2∗/2||u||2∗2∗ − ||µf ||∗||u||

≥
(

1

2
− ε
)
||u||2 − 1

2∗
S−2∗/2||u||2∗ − Cε||µf ||2∗.

Taking ε < 1
2
, then, for R0 = t0 as in Lemma 2,2, we can find a CR0 > 0 small

enough such that

(2.5) Iµ(u)|∂BR0
≥ CR0 for ||µf ||∗ ≤ C∗N .

Since there exists a C̃R0 > 0 such that |Iµ(u)| ≤ C̃R0 for all u ∈ B̄R0 and B̄R0 is a
complete metric space with respect to the metric d(u, v) = ||u − v||, u, v ∈ B̄R0 , by
using the Ekeland’s variational principle, from (2.5), we can prove that there exists a
sequence {un} ⊂ B̄R0 and uµ ∈ B̄R0 such that

(2.6) Iµ(un)→ c1,

(2.7) I ′µ(un)→ 0,

(2.8) un → uµ weakly in H1(RN),

un → uµ a.e. in RN ,

∇un → ∇uµ a.e. in RN
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and
un

2∗−1 → uµ
2∗−1 weakly in

(
L2∗(RN)

)∗
as n→∞.

Therefore, uµ is a weak solution of (Pµ). Hence,

(2.9)
〈
I ′µ(uµ), ϕ

〉
= 0 ∀ϕ ∈ H1(RN).

Moreover, by Lemma 2.1, uµ is positive on RN , where I ′µ is the Frėchlet derivative of
Iµ.

Next, we are going to prove (2.4). In fact, by the definition of c1, we know that
Iµ(uµ) ≥ c1 since uµ ∈ B̄R0 , that is,

(2.10) Iµ(uµ) =
1

2

∫
(|∇uµ|2 + |uµ|2)− 1

2∗

∫
|uµ|2

∗ − µ
∫
fuµ ≥ c1

By (2.9) and (2.10), we have

(2.11)

(
1

2
− 1

2∗

)∫
(|∇uµ|2 + |uµ|2)−

(
1− 1

2∗

)
µ

∫
fuµ ≥ c1

On the other hand, by (2.6) - (2.8) and Fatou’s lemma, we get

(2.12)

c1 = lim inf
n

(
1

2
− 1

2∗

)∫
(|∇un|2 + |un|2)− lim sup

n
(1− 1

2∗
)µ

∫
fun

≥
(

1

2
− 1

2∗

)∫
(|∇uµ|2 + |uµ|2)−

(
1− 1

2∗

)
µ

∫
fuµ.

Thus, (2.10) and (2.12) imply (2.4) holds. This completes the proof.

Remark. (i) c1 < 0, (ii) c1 is bounded below, (iii) ||uµ|| = o(1) as µ→ 0+.

Indeed: (i) For t > 0 and ϕ > 0, we have

Iµ(tϕ) =
t2

2

∫
(|∇ϕ|2 + |ϕ|2)− t2

∗

2∗

∫
|ϕ|2∗ − tµ

∫
fϕ ≤ t2

2
||ϕ||2 − tµ

∫
fϕ.

By taking t > 0 sufficiently small, we can see c1 < 0.
(ii) By (2.9) with ϕ = uµ, and c1 = Iµ(uµ), we have

(2.13)

c1 =

(
1

2
− 1

2∗

)∫
(|∇uµ|2 + |uµ|2)−

(
1− 1

2∗

)
µ

∫
fuµ

≥
(

1

2
− 1

2∗

)
||uµ||2 −

(
1− 1

2∗

)
||µf ||∗||uµ||

≥ − 1

22∗

(
(2∗ − 1)2

2∗ − 2

)
||µf ||2∗

by Young’s inequality.
(iii) Since c1 < 0, from (2.13), we see that ||uµ|| → 0 as µ→ 0+.Hence, ||uµ|| = o(1)

as µ→ 0+. We also have that ||uµ|| is uniformly bounded with respect to µ. We will
restate results relating to this remark in Proposition 3.4 more precisely.

Proposition 2.4. Problem (Pµ) possesses at least one minimal positive solution
of (Pµ).
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Proof. Let N be the Nehari manifold

N :=

{
u ∈ H1(RN) :

∫
|∇u|2 + |u|2 =

∫
|u|2∗ +

∫
µfu

}
\ {0} .

Note that ||µf ||∗ � 1 for µ small enough and for each u ∈ H1(RN)\{0} , there exists
a unique tu > 0 such that

t2u

∫
|∇u|2 + |u|2 − t2∗u

∫
|u|2∗ − tu

∫
µfu = 0

and Iµ(tuu) > 0. Then

N =
{
tuu : u ∈ H1(RN) \ {0}

}
and

N ∼= SN−1 =
{
u ∈ H1(RN) : ||u|| = 1

}
.

Hence,

H1(RN) = H1 ∪H2 ∪N , H1 ∩H2 = φ and 0 ∈ H1,

where
H1 =

{
tu : u ∈ H1(RN) \ {0} , t ∈ [0, tu[

}
H2 =

{
tu : u ∈ H1(RN) \ {0} , t > tu

}
.

This implies that for t > 0 with t < tu, tu ∈ H1.
Here, we need to switch our view point, by associating with v a mapping

v : [0,∞[→ H1(RN)

defined by

(v(t))x = v(x, t), x ∈ RN , t ∈ [0,∞[.

In other words, we consider v not as a function of x and t together, but rather as a
mapping v of t into the space H1(RN) of a function of x.

We have, for any v0 ∈ H1, the solution v of the initial value problem:
dv

dt
−∆v + v = v2∗−1 + µf(x),

v(0) = v0,

converges to uµ as t→∞,
Indeed, in the proof of Proposition 2.3, we know that Iµ(v(t)) is decreasing and

limt→∞ Iµ(v(t)) = Iµ(uµ), where Iµ(uµ) is the local minimum.
Since

Iµ(v(t))− Iµ(v(s)) =

∫ t

s

d

dt
Iµ(v(t))dt

=

∫ t

s

〈
d

dt
v,∇Iµ(v(t))

〉
dt

= −
∫ s

t

∥∥∥∥ ddtv
∥∥∥∥2

dt,
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we have, lims,t→∞
∥∥ d
dt
v
∥∥2

= 0. Thus, v′ → 0 a.e. in RN as t → ∞ and hence,〈
I ′µ(v), ϕ

〉
→ 0, ∀ϕ ∈ C∞(RN). Therefore, we have v → uµ as t→∞, since Iµ(v(t))

is decreasing and converges to the local minimum Iµ(uµ).
Now, let v0 = tu, where t ∈]0, 1[ and u is a positive solution. Then u ∈ N and
v0 ∈ H1. Since v0 ≤ u and the solution v converges uµ as t → ∞, by the order
preserving principle, uµ ≤ u . This completes the proof.

Proposition 2.5. Suppose that f ∈ H−1(RN), f ≥ 0, f 6≡ 0 in RN and
||µf ||∗ ≤ C∗N . Then there exist µ̃ ≥ µ̄ > 0 such that (Pµ) possesses a positive solution
for 0 < µ ≤ µ̄ and no positive solution for µ > µ̄.

Proof. By Proposition 2.3, (Pµ) has a positive solution if µ ≤ C∗N/||f ||∗. Suppose (Pµ)
has a positive solution for some µ = µ̄. We show that (Pµ) has a positive solution for
any 0 < µ ≤ µ̄. For fixed 0 < µ < µ̄, using the Lax-Milgram Theorem, we construct
a positive sequence {un} as following;

Let
−∆u1 + u1 = µf

and

(2.14) −∆un + un = u2∗−1
n−1 + µf for n ≥ 2.

Then, by the maximum principle, we have 0 < un < un+1 < · · · < ū for n ≥ 1. And
||u1|| ≤ µ||f ||∗ and ||u1||2∗ ≤ S−1/2||u1|| ≤ S−1/2µ||f ||∗. Multiplying (2.14) by un, we
have ||un|| ≤ S−2∗/2||ū||2∗−1 + µ||f ||∗. Therefore, there exists u in H1(RN) such that

un → u weakly in H1(RN) as n→∞,

un → u a.e. in RN as n→∞,
∇un → ∇u a.e. in RN,

u2∗−1
n → u2∗−1 weakly in (L2∗(RN))∗ as n→∞.

Thus, u is a positive solution of (Pµ).
Next, let u be a positive solution of (Pµ). Then, for any ε > 0, multiplying (Pµ)

by ω2∗
ε , we have

(2.15) −∆uω2∗

ε + uω2∗

ε = u2∗−1ω2∗

ε + µf(x)ω2∗

ε .

Since 2∗ > 2, for any M > 0, there exists a constant C > 0 such that

u2∗−1 ≥Mu− C ∀u > 0.

Hence, we have, from (2.15),

−
∫

∆uω2∗

ε +

∫
uω2∗

ε ≥
∫ (

(Mu− C)ω2∗

ε + µf(x)ω2∗

ε )
)
.

By Green’s formular, we have ∫
∆uω2∗

ε =

∫
u∆ω2∗

ε .
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Thus,

(2.16) µ

∫
f(x)ω2∗

ε ≤ C

∫
ω2∗

ε +

∫ (
1−M − ∆ω2∗

ε

w2∗
ε

)
ω2∗

ε u.

Since

∆w2∗
ε

ω2∗
ε

=
∆(ε+ |x|2)−N

(ε+ |x|2)−N
= 2N(N + 1)(ε+ |x|2)−2

(
N + 2

N + 1
|x|2 − N

N + 1
ε

)
= 2N(N + 1)(ε+ 02)−2

(
N + 2

N + 1
02 − N

N + 1
ε

)
= −2N2ε−1,

we get, from (2.16),

µ

∫
f(x)ω2∗

ε ≤ C

∫
ω2∗

ε +
(
2N2ε−1 + 1−M

) ∫
ω2∗

ε u.

If we choose M = 2N2ε−1 + 1, then, by (1.1), we have

µ ≤
C
∫
ω2∗
ε∫

f(x)ω2∗
ε

=
CSN/2∫
f(x)ω2∗

ε

.

Hence, there exists µ̄ > 0 such that

(2.17) µ̄ ≤ µ̃ + inf
ε>0

C
∫
w2∗
ε∫

f(x)ω2∗
ε

= inf
ε>0

CSN/2∫
f(x)ω2∗

ε

.

Therefore, if µ > µ̄, then (Pµ) has no solution and this completes the proof.

3. Multiplicity of positive solutions

From now on, we assume that f ∈ H−1(RN), f ≥ 0, f 6≡ 0 in RNand f satisfies
||µf ||∗ ≤ C∗N .

We set

µ∗ := sup{µ ∈ R+ : (Pµ) has at least one positive solution in H1(RN)}.

Then, by Proposition 2.5, we have 0 < µ̄ ≤ µ∗ <∞.
Remark. The minimal solution uµ of (Pµ) is increasing with respect to µ. Indeed,

suppose µ∗ > ν > µ. Since

−∆uν + uν − u2∗−1
ν − µf(x) = (ν − µ)f ≥ 0,

uν > 0 is a supersolution of (Pµ). Since f(x) ≥ 0 and f(x) 6≡ 0, u ≡ 0 is a subsolution
of (Pµ) for any µ > 0. By the standard barrier method, we can obtain a solution uµ
of (Pµ) such that 0 ≤ uµ ≤ uν on RN . We note that 0 is not a solution of (Pµ), ν > µ
and uµ is a minimal solution of (Pµ) because uµ also can be derived by an iteration
scheme with initial value u(0) = 0. Therefore, by the maximal principle, 0 < uµ < uν
on RN which completes the proof.
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Now, consider the corresponding eigenvalue problem:

(3.1)µ

{
−∆ϕ+ ϕ = λ(µ)(2∗ − 1)u2∗−2

µ ϕ,

ϕ in H1(RN).

Let λ1 be the first eigenvalue of (3.1)µ;i.e.,

λ1 = λ1(µ) := inf{
∫ (
|∇ϕ|2 + |ϕ|2

)
: ϕ ∈ H1(RN), (2∗ − 1)

∫
u2∗−2
µ ϕ2dx = 1}.

Then, 0 < λ1 <∞ and we can achieve the minimum by some function ϕ1 = ϕ1(µ) ∈
H1(RN) and ϕ1 > 0 in RN if µ ∈]0, µ∗[ (cf. [27]).

We summarize basic properties for λ1(µ) :

Lemma 3.1. (i) For µ ∈]0, µ∗[, λ1(µ) > 1,
(ii) If 0 < µ < ν ≤ µ∗, then λ1(ν) < λ1(µ),
(iii) λ1(µ)→ +∞ as µ→ 0+.

Proof. (i) For given 0 < µ < ν ≤ µ∗, every solution uν of (Pµ) with ν ∈ (µ, µ∗) is a
supersolution of (Pµ). By Taylor expansion, we have

−∆(uν − uµ) + u(uν − uµ) = u2∗−1
ν − u2∗−1

µ + (ν − µ)f

> (2∗ − 1)u2∗−2
µ (uν − uµ)

and moreover, we get∫
∇(uν − uµ)∇ϕ1 +

∫
(uν − uµ)ϕ1 =

∫ (
u2∗−1
ν − u2∗−1

µ

)
ϕ1 +

∫
(ν − µ)fϕ1

> (2∗ − 1)

∫
u2∗−2
µ (uν − uµ)ϕ1.

Therefore, from (3.1)µ, we have∫
∇(uν − uµ)∇ϕ1 +

∫
(uν − uµ)ϕ1 = λ1(µ)(2∗ − 1)

∫
u2∗−2
µ (uν − uµ)ϕ1,

which implies λ1(µ) > 1.
(ii) Since, for 0 < µ < ν ≤ µ∗, uµ < uν and

λ1(µ)(2∗ − 1)

∫
u2∗−2
µ ϕ1(µ)ϕ1(ν) =

∫
∇ϕ1(µ)∇ϕ1(ν) +

∫
ϕ1(µ)ϕ1(ν)

= λ1(ν)(2∗ − 1)

∫
u2∗−2
ν ϕ1(ν)ϕ1(µ),

we have λ1(µ) > λ1(ν).
(iii) First, we show that ||uµ|| → 0 as µ→ 0+. Multiplying (Pµ) by uµ, we have,∫ (

|∇uµ|2 + |uµ|2
)

=

∫
u2∗

µ +

∫
µfuµ

and hence, for ε > 0, we have, by Young’s inequality with ε,(
1− 1

λ1(2∗ − 1)
− ε

2

)
||uµ||2 ≤

µ2

2ε
||f ||2∗ for ε > 0.
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Thus, for ε > 0 small, we have ||uµ||2 ≤ Cεµ
2 for some constant Cε > 0, and hence,

||uµ|| = o(1) as µ → 0+. Next, Multiplying (3.1)µ by ϕ1(µ), we have, by Hölder’s
inequality, that∫ (

|∇ϕ1|2 + |ϕ1|2
)

= λ1 · (2∗ − 1)

∫
u2∗−2
µ ϕ2

1

≤ λ1 · (2∗ − 1)

(∫
u2∗

µ

)(2∗−2)/2∗ (∫
ϕ2∗

1

)2/2∗

≤ λ1 · (2∗ − 1)

(∫
u2∗

µ

)(2∗−2)/2∗ (∫
|∇ϕ1|2 + |ϕ1|2

)
≤ λ1 · (2∗ − 1)S−(2∗−2)/2||uµ||2

∗−2||ϕ1||2

and thus, S(2∗−2)/2 ≤ λ1 ·(2∗−1)||uµ||2
∗−2. Therefore, we have the desired result. This

completes the proof.

Lemma 3.2. Let uµ be a positive solution of (1.3)µ for which λ1(µ) > 1. Then,
for any g ∈ H1(RN), the problem:

(3.2) −∆w + w = (2∗ − 1)u2∗−2
µ w + g(x), w ∈ H1(RN)

has a solution.

Proof. Consider the functional defined by

J(w) =
1

2

∫ (
|∇w|2 + |w|2

)
− 1

2
(2∗ − 1)

∫
u2∗−2
µ w2 −

∫
gw, w ∈ H1(RN).

From Hölder’s inequality and Young’s inequality, we have, for any ε > 0,

J(w) ≥
(

1

2
− 1

2λ1(µ)

)
||w||2 − ε

2
||w||2 − 1

2ε
||g||2∗

=

(
1

2
− 1

2λ1(µ)
− ε

2

)
||w||2 − 1

2ε
||g||2∗

and hence, for small ε > 0, there exist C1,ε > 0 and C2,ε > 0 such that

(3.3) J(w) ≥ C1,ε||w||2 − C2,ε||g||2∗.

Let {wn} ⊂ H1(RN) be the minimizing sequence of J. From (3.3), we have {wn}
is bounded in H1(RN). Hence, passing subsequence, we may have that there exists
w ∈ H1(RN) such that

wn → w weakly in H1(RN) as n→∞,

wn → w a.e. in RN as n→∞
Here, we also note that

∇wn → ∇w a.e. in RN as n→∞.

And
u2∗−1
n → ũ2∗−1 weakly in (L2∗(RN))∗ as n→∞.
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By Fatou’s Lemma
||w||2 ≤ lim inf

n→∞
||wn||2.

The weak convergence and the fact that
∫
u2∗−2
µ w2

n <∞ for n ≥ 1 imply

lim
n→∞

∫
gwn =

∫
gw, lim

n→∞

∫
u2∗−2
µ wn =

∫
u2∗−2
µ w

and hence,
J(w) ≤ lim

n→∞
J(wn) = d.

Then, J(w) = d and w is a minimizer of J. Therefore, w is a critical point of J and
w is a solution of (3.2). This completes the proof.

Proposition 3.3. For µ = µ∗, the problem (Pµ) has a positive solution uµ∗
and λ1(µ∗) = 1. Moreover, the solution uµ∗ is unique in H1(RN).

Proof. For µ ∈]0, µ∗[, multiplying (Pµ) by uµ, we have, by (3.1)µ,∫ (
|∇uµ|2 + |uµ|2

)
=

∫
u2∗

µ + µ

∫
fuµ

≤ 1

λ1(µ)(2∗ − 1)

∫
(|∇uµ|2 + |uµ|2) + µ∗||f ||∗||uµ||

=

(
1

λ1(µ)(2∗ − 1)
+
εµ∗

2

)
||uµ||2 +

µ∗

2ε
||f ||2∗.

By taking ε > 0 small enough, there exists an constant Cε > 0 such that ||uµ|| ≤ Cε for
all µ ∈]0, µ∗[. Then, there exists uµ∗ in H1(RN) such that uµ monotonically increasing
to uµ∗ as µ→ µ∗ and uµ → uµ∗ weakly in H1(RN) as µ→ µ∗. Hence, uµ∗ is a positive
solution of (Pµ) with µ = µ∗. We note that λ1(µ) is a continuous function of µ ∈]0, µ∗].

Define F : R1 ×H1(RN)→ H−1(RN) by

F (µ, u) := ∆u− u+ (u+)2∗−1 + µf(x).

Since uµ → uµ∗ weakly as µ → µ∗, from Lemma 3.1, λ(µ∗) ≥ 1. If λ1(µ∗) > 1,
then Fu(µ

∗, uµ∗)ϕ = ∆ϕ − ϕ + (2∗ − 1)u2∗−2
µ∗ ϕ = 0 has no nontrivial solution. From

Lemma 3.2, F (µ∗, uµ∗) is an isomorphism of R1×H1(RN) onto H−1(RN), and by the
implicitly function theorem to F, we find a neighborhood ]µ∗ − δ, µ∗ + δ[ of µ∗ such
that (Pµ) possesses a positive solution if µ ∈]µ∗ − δ, µ∗ + δ[, which contradicts the
definition of µ∗. Therefore, λ1(µ∗) = 1.

Suppose vµ∗ is a positive solution of (Pµ∗). Then vµ∗ ≥ uµ∗ since uµ∗ is minimal.
Let w = vµ∗ − uµ∗ . Then, since λ1(µ∗) = 1, we have

−∆w + w ≥ (2∗ − 1)u2∗−2
µ∗ w.

Since ϕ1 = ϕ1(µ∗) is the eigenfunction of the problem (3, 1)µ∗ , we have,

(2∗ − 1)

∫
u2∗−2
µ∗ ϕ1w =

∫
∇w∇ϕ1 +

∫
wϕ1 ≥ (2∗ − 1)

∫
u2∗−1
µ∗ wϕ1

and hence, w ≡ 0. This completes the proof.
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Existence and Bifurcation of Positive Global Solutions 13

Proposition 3.4. The minimal solution uµ of (Pµ) increasing continuously
to uµ∗ as µ → µ∗ and uniformly bounded in H1(RN) for all µ ∈]0, µ∗]. Moreover,
||uµ|| ≤ O(µ2) as µ→ 0+.

Proof. It suffices to find the uniform bound of uµ. Multiplying (Pµ) by uµ, we have∫ (
|∇uµ|2 + |uµ|2

)
=

∫
u2∗

µ +

∫
µfuµ

and hence, for ε > 0, we have(
1− 1

λ1(2∗ − 1)
− ε

2

)
||uµ||2 ≤

µ2

2ε
||f ||2∗ for ε > 0.

Therefore, for ε > 0 small, we have ||uµ|| ≤ Cεµ for some constant Cε > 0. Next, fix
τ ∈]0, µ∗]. If µ increases to τ, then uµ is increasing up to uτ and uµ → uτ in H1(RN).
If it is not the case, then, by multiplying uµ on (Pµ) again, we have

||uµ||2 ≤
〈
u2∗−1
τ , uµ

〉
+ τ 〈f, uµ〉

and so
||uµ|| ≤ CS−(2∗−1)/2||uτ ||2

∗−1 + τ ||f ||∗
for some C > 0. Hence, there exists a sequence {uµj} in H1(RN) conversing weakly
to a solution ũ of (Pτ ) but ũ 6= uτ . Since {uµj} coverge to ũ strongly in local L1 sense,
by the maximum principle, we have uµj ≤ ũ < uτ which leads a contradiction to the
minimality of uτ . This completes the proof.

Remark. From Proposition 3.4 , we have that λ(µ) is a continuously decreasing
function from [0, µ∗] onto [1,∞[ and ||uµ|| = o(1) as µ→ 0+.

Next, we are going to find the second solution. In order to get another positive
solution of (Pµ), we consider the following problem:

(3.4)µ

{
−∆v+v = (v + uµ)2∗−1 − u2∗−1

µ in RN ,

v ∈ H1(RN), v > 0 in RN

and the corresponding variational functional:

Jµ(v) :=
1

2

∫ (
|∇v|2 + |v|2

)
− 1

2∗

∫ (
(v+ + uµ)2∗ − u2∗

µ − 2∗u2∗−1
µ v+

)
for v ∈ H1(RN).

Clearly, we can have another positive solution Uµ = uµ+vµ if we show the problem
(3.4)µ possesses a positive solution for µ ∈]0, µ∗[. We look for a critical point of Jµ
which is a weak solution of (3.4)µ by employing standard argument of the Mountain
Pass method without the (PS) condition.

In the proof of the existance second solution, we make use of some arguments in
[9, 10, 11].

Theorem 3.5. The problem (Pµ) possesses at least two positive solutions for
all µ ∈]0, µ∗[.
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Proof.

(i) Let v ∈ H1(RN) \ {0}, Then, for ε > 0, by Young’s inequality,

Jµ(v) =
1

2

∫ (
|∇v|2 + |v|2

)
dx−

∫ ∫ v+

0

(
(uµ + s)2∗−1 − u2∗−1

µ

)
dsdx

≥ 1

2

(
1− 1

λ1

)∫ (
|∇v|2 + |v|2

)
dx

−
∫ ∫ v+

0

(
(uµ + s)2∗−1 − u2∗−1

µ − (2∗ − 1)u2∗−2
µ s

)
dsdx

≥ 1

2

(
1− 1

λ1

)∫ (
|∇v|2 + |v|2

)
dx−

∫ ∫ v+

0

(
εu2∗−2

µ s+ Cεs
2∗−1

)
dsdx

≥ 1

2

(
1− 1

λ1

)
||v||2 − ε

2

∫
u2∗−2
µ

(
v+
)2
dx− Cε

2∗

∫ (
v+
)2∗
dx

≥ 1

2

(
1− 1

λ1

− ε

2(2∗ − 1)λ1

)
||v||2 − Cε

2∗
S−2∗/2||v||2∗

for some constant Cε > 0. Hence, for sufficiently small ε > 0, there exist ρ > 0, δ > 0
such that

Jµ(v)|∂B̃ρ ≥ δ > 0,

where B̃ρ = {u ∈ H1(RN)| ||u|| ≤ ρ}.
(ii) Let v ∈ H1(RN), v ≥ 0 and v 6≡ 0, then, for t > 0, we have

Jµ(tv) =
t2

2

∫ (
|∇v|2 + |v|2

)
dx− 1

2∗

∫ (
(uµ + tv)2∗ − u2∗

µ − 2∗u2∗−1
µ tv

)
dx

≤ t2

2

∫ (
|∇v|2 + |v|2

)
dx− t2

∗

2∗

∫
|v|2∗dx

≤ t2

2
||v||2 − t2

∗

2∗
||v||2∗2∗

Hence, we deduce

Jµ(tv)→ −∞
as t → ∞. Therefore, for each 0 6≡ v ∈ H1(RN) with v ≥ 0, there exists a constant
tv > 0 such that Jµ(tvv) ≤ 0 for t ≥ tv.

Let K1(v) := 1
2

∫
(|∇v|2 + v2)− 1

2∗

∫
(v+)

2∗ − µ
∫
fv.

Because uµ is the critical point of K1(u), we can prove that, for v ∈ H1(RN),

(3, 5) Jµ(v) = Kµ(v)−Kµ(0) = Kµ(v)−K1(uµ).

where

Kµ(v) :=
1

2

∫ (
|∇(v + uµ)|2 + (v + uµ

)2 − 1

2∗

∫
(v+ + uµ)2∗ − µ

∫
f(x)(v + uµ).

(iii) From (ii), there exist small t1 > 0 such that, for 0 < t < t1, Jµ(tωε) <
1
N
SN/2.
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Existence and Bifurcation of Positive Global Solutions 15

Choose t2 > t1 such that Jµ(tωε) ≤ 0 for all t ≥ t2. For t1 ≤ t ≤ t2,

Jµ(tωε) =
t2

2

∫ (
|∇ω|2 + |ωε|2

)
dx− 1

2∗

∫ (
(uµ + tωε)

2∗ − u2∗

µ − 2∗u2∗−1
µ tωε

)
dx

<
t2

2
||ωε||2 −

t2
∗

2∗
||ωε||2

∗

2∗

=

(
t2

2
− t2

∗

2∗

)
SN/2 ≤ 1

N
SN/2.

(iv) Let
Γ := {γ ∈ C([0, 1], H1); γ(0) = 0, γ(1) = t2ωε}

and
cµ = infγ∈Γmaxs∈[0,1]Jµ(γ(s)).

Then, we have

(3.6) 0 < α ≤ cµ ≤ supt≥0Jµ(tωε) <
1

N
SN/2.

We now applying the Mountain Pass Theorem without Palais-Smale condition in
[5] to get a sequence {vn} ⊂ H1(RN) such that

(3.7) Jµ(vn)→ cµ, J ′µ(vn)→ 0 in H−1(RN).

Since

1 + cµ + ||vn||+ ||uµ|| ≥ 1 + cµ + ||vn + uµ||

≥ Jµ(vn)− 1

2∗
J ′µ(vn)(v+

n + uµ)

≥
(

1

2
− 1

2∗

)
||vn||2 −

2

2∗
||vn||||uµ|| −

(
1− 1

2∗

)
||uµ||2

∗

2∗ ,

we see that {vn} is bounded in H1(RN). Hence, there exists a subsequence, say again,
{vn} such that

vn → vµ weakly in H1(RN),

vn → vµ a.e. in RN ,

∇vn → ∇vµ a.e. in RN ,

and

(vn + uµ)2∗−1 − u2∗−1
µ → (v+ + uµ)2∗−1 − u2∗−1

µ weakly in (L2∗(RN))∗.

Hence, vµ is a weak solution of −∆v + v = (v+ + uµ)2∗−1 − u2∗−1
µ .

Using the maximal principle, we get vµ ≥ 0 in RN . Set un := vn+uµ, u := vµ+uµ.
Then

un → u weakly in H1(RN),

un → u a.e. in RN ,

∇un → ∇u a.e. in RN .

From (3.5),

(3.8) Jµ(vn) = Kµ(vn)−Kµ(0) = K1(un)−K1(uµ)→ cµ as n→∞
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and u is a solution of

(3.9) −∆u+ u = u2∗ + µf(x).

Now, we are going to show that u 6≡ uµ. In fact, if u ≡ uµ, i.e., vµ ≡ 0, then un 6→ u
strongly in H1(RN) since Jµ(0) = 0 < uµ. Let c2 := cµ +K1(uµ). By the Brezis-Lieb
Lemma(cf. [4]) we have

(3.10)


||un||2 = ||uµ||2 + ||vn||2 + o(1),

|u+
n |2

∗
= |uµ|2

∗
+ |v+

n |2
∗

+ o(1),∫
fun =

∫
fuµ + o(1) as n→∞.

By (3.8), (3.9), we have∫ (
|∇un|2 + u2

n

)
=

∫
(u+

n )2∗ + µ

∫
f(x)un + o(1),∫ (

|∇uµ|2 + u2
µ

)
=

∫
(u+

µ )2∗ + µ

∫
f(x)uµ.

Hence,

(3.11)

∫ (
|∇vn|2 + v2

n

)
=

∫
(v+
n )2∗ + o(1),

by substracting the two identities above and by (3.10).
Using (3.8), (3.9), (3.10) and (3.11), we have that, as n→∞

c2 = cµ +K1(uµ)

= Jµ(vn) +K1(uµ) + o(1)

= K1(un) + o(1)

= K1(uµ) +
1

2

∫
|∇vn|2 + v2

n −
1

2∗

∫
v2∗

n + o(1)

= K1(uµ) +

(
1

2
− 1

2∗

)∫
(vn)2∗ + o(1)

= K1(uµ) +
1

N

∫
(vn)2∗ + o(1).

By Sobolev inequality:

S||vn||22∗ ≤ ||vn||2 = ||vn||2
∗

2∗ + o(1),

we have ||vn||2
∗

2∗ ≥ SN/2. Thus,

c2 = cµ +K1(uµ) ≥ K1(uµ) +
1

N
SN/2.

This leads a contradiction to (3.6). Therefore, we have vµ > 0. This completes the
proof.

Consequently, we have:
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Existence and Bifurcation of Positive Global Solutions 17

Theorem 3.6. Assume f ∈ H−1(RN), f ≥ 0, f 6≡ 0 in RN and ||µf ||∗ ≤ C∗N .
Then there exists a positive constant µ∗ > 0 such that (Pµ) possesses at least two
positive solutions for 0 < µ < µ∗, a unique solution for µ = µ∗ and no positive
solution if µ > µ∗.

4. Bifurcation

In order to study bifurcation phenomenon, we consider following eigenvalue prob-
lem:

(4.1)µ

{
−∆φ+ φ = η(µ)(2∗ − 1)U2∗−2

µ φ,

φ in H1(RN).

Let η1 be the first eigenvalue of (4.1)µ ;i.e.,

η1 = η1(µ) inf{
∫
|∇φ|2 + |φ|2;φ ∈ H1(RN),

∫
(2∗ − 1)U2∗−2

µ φ2 = 1}

and φ1 > 0 be the corresponding eigenfunction.
In the proof of the following lemma, we make use of arguments in [3].

Lemma 4.1. Let Uµ be a second positive solution of (Pµ) obtained in Theorem
3.5. Then η1(µ) < 1 for 0 < µ < µ∗.

Proof. Suppose contrary that η1(µ) ≥ 1, Let ψ = Uµ − uµ > 0. Then φ1 and ψ
satisfies

(4.2) ∆φ1 − φ1 + (2∗ − 1)U2∗−2
µ φ1 ≤ 0 and ∆ψ − ψ + (2∗ − 1)2∗−2

µ ψ ≥ 0,

respectively. Set σ = ψ/φ1;i.e., ψ = σφ1. Then, by (4.2),

(4.3) σ∇(φ2
1∇σ) = ψ∇ψ − ψ

φ1

∇φ1 ≥ 0.

Let ζ be a C∞ function on R+ with 0 ≤ ζ(t) ≤ 1,

ζ(t) :=

{
1 for 0 ≤ t ≤ 1,

0 for t ≥ 2.

For R > 0, set ζR(t) = ζ
(
|x|
R

)
in RN . Multiplying (4.3) by ζ2

R and intergrating over

RN , we have by Green’ theorem,

(4.4)

∫
ζ2
Rφ

2
1|∇σ|2 ≤ 2

∣∣∣∣∫ φ2
1ζRσ∇σ · ∇ζR

∣∣∣∣
≤ 2

[∫
R<|x|<2R

ζ2
Rφ

2
1|∇σ|2

]1/2 [∫
φ2

1σ
2|∇ζR|2

]1/2

≤ C1

[∫
R<|x|<2R

ζ2
Rφ

2
1|∇σ|2

]1/2 [∫
R<|x|<2R

ψ2∗
]1/2

≤ C2

[∫
R<|x|<2R

ζ2
Rφ

2
1|∇σ|2

]1/2
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for some constants C1 and C2, which implies∫
ζ2
Rφ

2
1|∇σ|2 ≤ C3

for some constant C3 > 0.
Letting R→∞, we see that ∫

φ2
1|∇σ|2 ≤ C3.

But then it follows that the last term in (4.4) tends to 0 as R→∞, so that∫
φ2

1|∇σ|2 = 0.

Therefore, σ is a positive constant and by (4.2), φ1 ≡ ψ = Uµ−uµ, and thus Uµ ≡ uµ,
which leads a contradiction. This completes the proof.

Lemma 4.2. For µ ∈]0, µ∗[, Uµ decreases contonusely to uµ∗ as µ → µ∗ in
H1(RN). Moreover,

(i) Uµ → uµ∗ as µ→ µ∗ by the uniqueness of uµ∗ ,
(ii) limµ→0+ ||Uµ|| = SN/4.

Proof. First, we note that(
1

2
− 1

2∗

)
||Uµ||2 =

1

2
||Uµ||2 −

1

2∗

∫ (
U2∗

µ + µ

∫
fUµ

)
= µ

(
1− 1

2∗

)∫
fUµ − µ

∫
fuµ − µ

∫
fvµ

+
1

2
||uµ||2 +

1

2
||vµ||2 +

∫
∇uµ∇vµ +

∫
uµvµ −

1

2∗

∫
U2∗

µ

≥ µ

(
1− 1

2∗

)∫
fUµ + Jµ(vµ) +H(uµ),

where H(u) = 1
2
||u||2 − 1

2∗

∫
u2∗ − µ

∫
fu.

From Hölder’s and Young’s inequality, for ε > 0, we have(
2∗ − 2

22∗
− ε(2∗ − 1)

22∗

)
||Uµ||2 ≤

2∗ − 1

ε22∗
µ2||f ||2∗ +

1

N
SN/2 +H(uµ).

Since

H(uµ) =

(
1

2
− 1

2∗

)
||uµ||2 − µ

(
1− 1

2∗

)∫
fuµ

≤
(

1

2
− 1

2∗

)
||uµ∗||2,

H(uµ) is uniformly bounded for µ ∈ (0, µ∗]. Moreover, by the remark of Proposition
3.4, H(uµ) = o(1) as µ → 0+. Taking ε > 0 small enought, we have ||Uµ|| ≤ C for
some C > 0. Since 0 < uµ ≤ Uµ, (i) follows from Proposition 3.3 and Proposition 3.4.

For (ii). By (ii) of Lemma 3.1, and (i) and (iii) in the proof of Theorem 3.5, there
exists d > 0 such that

0 < d < Jµ(vµ) = H(Uµ)−H(uµ) <
1

N
SN/2
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and thus, since J ′µ(Uµ)Uµ = 0,

d+H(uµ) ≤ 1

N
||Uµ||2 −

2∗ − 1

2∗
µ

∫
fUµ ≤ H(uµ) +

1

N
SN/2.

Since Uµ is uniformly bounded,

(4.5) d+ o(1) ≤ 1

N
||Uµ||2 ≤

1

N
SN/2 + o(1).

By Sobolev’s inequality, S||Uµ||22∗ ≤ ||Uµ||2 = ||Uµ||2
∗

2∗ + o(1). Then ||Uµ||2
∗

2∗ ≥ SN/2 +
o(1) and so ||Uµ||2 ≥ SN/2 + o(1). Therefore by (4.5), we have

lim
µ→0+

||Uµ|| = SN/2.

Now, fix ρ ∈]0, µ∗]. Suppose µ increase to ρ, then Uµ is decreasing to Uρ in H1(RN)
and we have

||Uµ|| ≤ S−2∗/2||Uρ||2
∗−1 + ρ||f ||∗

and so, there exists a sequence Uµj conving weakly to a solution Ũ of (Pµ) in H1(RN)

with ρ = µ but Ũ 6= Uρ. By the maximum principle, we have Uρ < Ũ ≤ Uµ∗ which
contradicts the uniqueness of solutions bigger than uµ. Therefore, Uµ is decreasing
continuously to Uρ and Uµ → Uρ in H1(RN). This completes the proof.

Lemma 4.3. Let V be a positive supersolution of (Pµ) bigger than uµ, then
V ≤ Uµ.

Proof. Suppose V > Uµ in RN , then W = V − Uµ satisfies

(2∗ − 1)

∫
U2∗−2
µ Wφ1 ≤

∫
∇W · ∇φ1 = η1(2∗ − 1)

∫
U2∗−2
µ Wφ1

and thus, η1(µ) ≥ 1, which leads a conrradiction. This completes the proof.

Remark. From Lemma 4.1 and Lemma 4.3, we can see the uniqueness of
second solutions which are bigger than the minimal solutions uµ.

Now, we state basic properties of the eigenvalue problem (4.1)µ :

Lemma 4.4. (i) 1/(2∗ − 1) < η1(µ) < 1 for 0 < µ < µ∗,
(ii) η1(µ)→ 1/(2∗ − 1)→ 1/(2∗ − 1) as µ→ 0+,
(iii) η1(µ)→ 1 as µ→ µ∗.

Proof. (i) Since φ1 > 0 is an eigenvector corresponding to the the first eigenvalue
η1(µ), we know

η1(µ)(2∗ − 1)

∫
U2∗−1
µ φ1 =

∫
∇Uµ · ∇φ1 =

∫
U2∗−1
µ φ1 + µ

∫
fφ1.

and so,

η1(µ) ((2∗ − 1)− 1)

∫
U2∗−1
µ φ1 = µ

∫
fφ1.

Therefore, by Lemma 4.1, 1 > η1(µ) > 1
2∗−1

.
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(ii) As µ→ 0+,

1

2∗ − 1
< η1(µ) ≤ ||Uµ||2

(2∗ − 1) ||Uµ||2
∗

2∗
≤ SN/2 + o(1)

(2∗ − 1) (SN/2 + o(1))
→ 1

2∗ − 1
.

Thus, η1(µ)→ 1/(2∗ − 1) as µ→ 0+.

(iii) follows from (i) of Lemma 3.1, Proposition 3.3, Lemma 4.1 and (i) of Lemma
4.2. This completes the proof.

In order to show the existence of a bifurcation point, we make use of Theorem 3.2
in [8].

Now, we have:

Theorem 4.5. (i) The set {Uµ} is bounded uniformly in H1(RN),
(ii) (µ∗, uµ∗) is a bifurcation point.

Proof. (i) It follows immediately from the proof of Lemma 4.2.
(ii) For this, define F : R×H1(RN)→ H−1(RN) by

F (µ, u) := ∆u− u+ (u+)2∗−1 + µf(x).

It is easy to see that F (µ, u) is differentiable at solution point (µ, u) for ]0, µ∗[ and

Fu(µ, uµ)w = ∆w − w + (2∗ − 1)u2∗−2
µ w

is an ismorphism of R × H(RN) onto H−1(RN). Then, by the Implicit Function
Theorem, the solution of F (µ, u) near (µ, uµ) are given by a single continuous cuver
and uµ → 0 in H1(RN) as µ→ 0.

We now are going to prove that (µ∗, uµ∗) is a bifurcation point of F. Since Fu(µ
∗, uµ∗)φ =

0, φ ∈ H1(RN) has a solution φ1 > 0 in RN , N (Fu (µ∗, uµ∗)) = span{φ1} is one di-
mensional and codimR (Fu (µ∗, uµ∗)) = 1 by the Fredholm alternative. Suppose there
exists v ∈ H1(RN) satisfying

∆v − v + (2∗ − 1)u2∗−2
µ∗ v = −f(x).

Then

0 =

∫ (
∇v · ∇φ1 + vφ1 − (2∗ − 1)u2∗−2

µ∗ vφ1

)
=

∫
fφ1,

which is impossible because 0 6≡ f ≥ 0. Hence, Fu (µ∗, uµ∗) 6∈ R (Fu (µ∗, uµ∗)) . Thus,
by Theorem 3.2 in [8], (µ∗, uµ∗) is the bifurcation point near which, the solution of
(pµ) form a curve (µ∗ + τ(s), uµ∗ + sφ1 + z(s)) with s near s = 0 and τ(0) = τ ′(0) =
0, z(0) = z′(0) = 0. Finally, we will show that τ ′′(0) < 0 which implies that the
bifurcation curve only turns to the left in the µu−plane. For this, differentiate (Pµ)
in s, we have

(4.6) ∆us − us + (2∗ − 1)u2∗−2us + τ ′(s)f(x) = 0,
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where us = φ1 + z′(s). Multiplying Fu (µ∗, uµ∗)φ1 = 0 by us and (4,6) by φ1, integrat-
ing and substracting, we have

τ ′(s)

∫
fφ1

= (2∗ − 1)

∫ (
u2∗−2
µ∗ − (uµ∗ + sφ1 + z(s))2∗−2

)
(φ1 + z′(s))φ1

= −s(2∗ − 1)(2∗ − 2)

∫
(uµ∗ + θ(sφ1 + z(s)))2∗−3

(
φ1 +

z(s)

s

)
(φ1 + z′(s))φ1

for some θ(s) ∈ (0, 1). Therefore,

τ ′′(0)

∫
fφ1 =

(
lims→0

τ ′(s)

s

)∫
fφ1 = − (2∗ − 1) (2∗ − 2)

∫
(uµ∗)2∗−3 φ3

1

and τ ′′(0) < 0. This completes proof.
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Abstract

In view of Nevanlinna theory in the angular domain, we establish some inequalities of
meromorphic function concerning its derivation in its Borel direction. By applying these
inequalities, we also investigate exceptional values of meromorphic functions with infinite
order in the Borel direction.
Key words: Infinite order; Borel direction; Exceptional value.
Mathematical Subject Classification (2010): 30D30 30D35.

1 Introduction and main results

It is assumed that the reader is familiar with the basic results and the standard notations of the
Nevanlinna theory of meromorphic functions (see [7, 17, 20]). We denote by C the open complex

plane, by Ĉ(= C
⋃
{∞}) the extended complex plane, and by Ω(⊂ C) an angular domain. In

addition, the order of meromorphic function f is defined by

ρ(f) = lim sup
r→∞

log T (r, f)

log r
,

and the exponent of convergence of distinct a-points of f is defined by

ρ(a, f) = lim sup
r→∞

log+N(r, a, f)

log r
.

Let f be a meromorophic function of order ρ(0 < ρ <∞), then we say that a is an exceptional
value in the sense of Borel (evB for short) for f for the distinct zeros if ρ(a, f) < ρ.

It is well known that the singular direction of meromorphic function is an interesting topic
in the field of complex analysis, such as, Julia direction, Borel direction, T direction, Hayman
direction, and so on (see [1, 3, 4, 8, 10, 12, 13, 14]). Moreover, we know that every one singular
direction is always responding to exceptional value, such as, the Julia’s direction relating with
Picard exceptional value and the Borel’s direction relating with Borel exceptional value, and so

∗This work was supported by the NSFC(11561033,11301233, 61202313), the Natural Science Foundation of
Jiangxi Province in China(20132BAB211001, 20151BAB201008) and the Foundation of Education Department of
Jiangxi (GJJ14644) of China.
†Corresponding author
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on. 2011, Peng and Sun [11] gave some examples on T direction which is a singular direction
relating with T exceptional value. In the discussion of the topic of singular direction, we find that
the characteristics of meromorphic functions in the angular domain played an important role(see
[6, 18, 19, 24, 25]). So, we firstly introduce the characteristics of meromorphic functions in the
angular domain as follows [5, 25].

For a meromorphic function f on the angular domain Ω(α, β) = {z : α ≤ arg z ≤ β} and
0 < β − α ≤ 2π. Define

Aα,β(r, f) =
ω

π

∫ r

1

(
1

tω
− tω

r2ω
){log+ |f(teiα)|+ log+ |f(teiβ)|}dt

t
,

Bα,β(r, f) =
2ω

πrω

∫ β

α

log+ |f(reiθ)| sinω(θ − α)dθ,

Cα,β(r, f) = 2
∑

1<|bµ|<r

(
1

|bµ|ω
− |bµ|

ω

r2ω
) sinω(θµ − α),

Sα,β(r, f) = Dα,β(r, f) + Cα,β(r, f),

where Dα,β(r, f) = Aα,β(r, f) + Bα,β(r, f), ω = π
β−α and bµ = |bµ|eiθµ(µ = 1, 2, · · · ) are the poles

of f on Ω(α, β) counted according to their multiplicities. Sα,β(r, f) is called the Nevanlinna’s
angular characteristic, and Cα,β(r, f) is called the angular counting function of the poles of f on
Ω(α, β), and Cα,β(r, f) is the reduced function of Cα,β(r, f). Similarly, the order of meromorphic
function f on Ω(α, β) is defined by

ρα,β(f) = lim sup
r→∞

logSα,β(r, f)

log r
,

and the exponent of convergence of distinct a-points of f on Ω(α, β) is defined by

ρα,β(a, f) = lim sup
r→∞

log+ Cα,β(r, a, f)

log r
.

Suppose that f is a meromorphic function of order ρα,β(f)(0 < ρα,β(f) < ∞), then we say
that a is an exceptional value on the angular domain in the sense of Borel (evaB for short) for f
for the distinct zeros if ρα,β(a, f) < ρα,β(f).

Remark 1.1 By the second fundamental theorem in the whole complex plane, we know that a mero-
morophic function f of order ρ(0 < ρ <∞) at most has two evB for the distinct zeros. However, the
corresponding conclusion can not hold for meromorphic function f with order ρα,β(0 < ρα,β <∞)
on Ω(α, β) since Qα,β(r, f) = O{log(rSα,β(r, f))} is not valid, as r →∞(r 6∈ E) and E is the set
with finite linear measure.

Thus,it is an interesting topic to research the exceptional value of meromorphic functions on
the angular domain.

Before stating the our results, we will introduce the definition as follows.

Definition 1.1 [2]. Let f be a meromorphic function of infinite order, ρ(r) be a real function
satisfying the following conditions:

(i) ρ(r) is continuous, non-decreasing for r ≥ r0 and ρ(r)→∞ as r →∞;
(ii)

lim
r→∞

logU(R)

logU(r)
= 1, R = r +

r

logU(r)
,

where U(r) = rρ(r) (r ≥ r0);
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(iii)

lim sup
r→∞

log T (r, f)

logU(r)
= 1.

Then ρ(r) is called infinite order of meromorphic function f . This definition was given by Xiong
Qinglai[2].

We will give the definition of Borel direction of meromorphic functions f of infinite order ρ(r)
as follows.

Definition 1.2 [2]. Let f be a meromorphic function of infinite order ρ(r). If for any ε(0 < ε <
π), the equality

lim sup
r→∞

log n(Ω(θ − ε, θ + ε, r), f = a)

ρ(r) log r
= 1,

holds for any complex number a ∈ Ĉ, at most except two exception, where n(Ω(θ−ε, θ+ε, r), f = a)
is the counting function of zero of the function f−a in the angular domain Ω(θ−ε, θ+ε), counting
multiplicities. Then the ray arg z = θ is called a Borel direction of ρ(r) order of meromorphic
function f .

Remark 1.2 Chuang [2] proved that every meromorphic function f with infinite order ρ(r) has
as least one Borel direction of infinite order ρ(r).

In 2012, Long and Wu [9] studied the uniqueness of meromorphic functions with infinite order
sharing some values in the Borel direction. Later, Zhang, Xu and Yi [21] further investigated the
uniqueness of meromorphic functions sharing some values in the Borel direction, and improved
the results of Long and Wu. In 2013, Zhang [23] also studied the problems of Borel directions of
meromorphic functions concerning shared values and obtained that if two meromorphic functions
with infinite order share three distinct values, their Borel direction are same. In the same year,
Xu, Wu and Tu [15] investigated the relations between exceptional values and Borel direction, and
obtained a series of results. In this paper, we mainly further investigate the exceptional values of
meromrophic function and its derivation in its Borel direction. Now, we give the main theorem of
this paper as follows.

Theorem 1.1 Let f be a transcendental meromorphic function of infinite order ρ(r) on the whole
complex plane, arg z = θ(0 ≤ θ < 2π) be one Borel direction of ρ(r) order of function f and
Ω := Ω(θ − ε, θ + ε) for any ε(0 < ε < π). Let a, b(6= 0) be distinct points and k be a positive
integer. Then

Sθ−ε,θ+ε(r, f) ≤Cθ−ε,θ+ε(r,∞, f) + (k + 1)Cθ−ε,θ+ε (r, a, f) (1)

+ Cθ−ε,θ+ε

(
r, b, f (k)

)
+Qθ−ε,θ+ε(r, f),

where Qθ−ε,θ+ε(r, f) is defined as in Lemma 2.2 of Section 2.

In order to prove Theorem 1.1, we will prove the more general form of the inequality of mero-
morphic function and its derivation in the Borel direction as follows.

Theorem 1.2 Let f be a transcendental meromorphic function of infinite order ρ(r) on the whole
complex plane, arg z = θ(0 ≤ θ < 2π) be one Borel direction of ρ(r) order of function f and
Ω := Ω(θ − ε, θ + ε) for any ε(0 < ε < π). Let aj , bl(j = 1, 2, . . . , p; l = 1, 2, . . . , q) be distinct
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complex numbers satisfying bl 6= 0, and mj , nl, s be any positive integers. Thenpq −
 p∑
j=1

kq + 1

mj + 1
+

q∑
l=1

1

nl + 1

+
1

s+ 1

(
1 + k

q∑
l=1

1

nl + 1

)]}
Sθ−ε,θ+ε(r, f)

≤ s

s+ 1

(
1 + k

q∑
l=1

1

nl + 1

)
Cθ−ε,θ+ε(r,∞, f | ≤ s)

+ (kq + 1)

p∑
j=1

Cθ−ε,θ+ε (r, aj , f | ≤ mj)

+

q∑
l=1

Cθ−ε,θ+ε

(
r, bl, f

(k)| ≤ nl
)

+Qθ−ε,θ+ε(r, f), (2)

where Cθ−ε,θ+ε(r, a, f | ≤ k) is the counting function of distinct a-points of f on Ω whose multi-
plicities do not exceed k.

Let p = q = 1 and s → ∞,mj → ∞ and nl → ∞ in Theorem 1.2, we can get Theorem 1.1
easily.

We also investigate the problem on exceptional value of meromorphic function and its derivation
in its Borel direction, by applying the conclusions of Theorems 1.1 and 1.2. To state the theorem,
we will introduce the definitions as follows.

Definition 1.3 Let arg z = θ(0 ≤ θ < 2π) be one Borel direction of ρ(r) order of function f and
k be a positive integer, we call that a is

(i) an exceptional value in the sense of Borel for f in the Borel direction (evBB for short) for
distinct zeros of multiplicity ≤ k, if ρkθ(a, f) < 1;

(ii) an exceptional value in the sense of Borel for f in the Borel direction (evBB for short) for
distinct zeros , if ρθ(a, f) < 1; where

ρkθ(a, f) = lim sup
r→∞

log+ Cθ−ε,θ+ε(r, a, f | ≤ k)

logSθ−ε,θ+ε(r, f)
, ρθ(a, f) = lim sup

r→∞

log+ Cθ−ε,θ+ε(r, a, f)

logSθ−ε,θ+ε(r, f)
.

In particular, we say that a is an evBB for f for simple zeros if k = 1, a is an evBB for f for
simple and double zeros if k = 2.

Definition 1.4 Let arg z = θ(0 ≤ θ < 2π) be one Borel direction of ρ(r) order of function f
and k, l be two positive integers, then we call a an evBB for f l for distinct zeros of order ≤ k, if
ρkθ(a, f (l)) < 1, where

ρkθ(a, f (l)) = lim sup
r→∞

log+ Cθ−ε,θ+ε(r, a, f
(l)| ≤ k)

logSθ−ε,θ+ε(r, f)
.

Theorem 1.3 Let f be a transcendental meromorphic function of infinite order ρ(r) on the whole
complex plane, arg z = θ(0 ≤ θ < 2π) be one Borel direction of ρ(r) order of function f and
Ω := Ω(θ − ε, θ + ε) for any ε(0 < ε < π). If ∞ is an evBB for f for distinct poles of order ≤ s,
and aj(j = 1, 2, . . . , p) are evBB for f for distinct zeros of order ≤ mj, and bl(6= 0)(l = 1, 2, . . . , q)
are evBB for f (k) for distinct zeros of order ≤ nl, where k, p, q, s and all of mj , nl are positive
integers. Then

p∑
j=1

kq + 1

mj + 1
+

q∑
l=1

1

nl + 1
+

1

s+ 1

(
1 + k

q∑
l=1

1

nl + 1

)
≥ pq.
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Let p = q = 1 in Theorem 1.3, we can obtain the corollary as follows.

Corollary 1.1 Let f be a transcendental meromorphic function of infinite order ρ(r) on the whole
complex plane, arg z = θ(0 ≤ θ < 2π) be one Borel direction of ρ(r) order of function f and
Ω := Ω(θ − ε, θ + ε) for any ε(0 < ε < π). If ∞ is an evBB for f for distinct poles of order ≤ s,
and a is an evBB for f for distinct zeros of order ≤ m, b(6= 0) is an evBB for f (k) for distinct
zeros of order ≤ n, and s,m, n, k are positive integers. Then

k + 1

m+ 1
+

1

n+ 1
+

n+ 1 + k

(n+ 1)(s+ 1)
≥ 1. (3)

Let s→∞ and m→∞ in (3), that is, ∞, a are evBB for f for distinct zeros. From Corollary
1.1, we have 1

n+1 ≥ 1, which implies n = 0. Thus, we can obtain the following corollary.

Corollary 1.2 Let f be a transcendental meromorphic function of infinite order ρ(r) on the whole
complex plane, arg z = θ(0 ≤ θ < 2π) be one Borel direction of ρ(r) order of function f and
Ω := Ω(θ − ε, θ + ε) for any ε(0 < ε < π). If ∞, a are evBB for f for distinct zeros. Then, for all
positive integers k and n, we have ρnθ (b, f (k)) = 1 for all b 6= 0,∞.

2 Some Lemmas

To prove our results, we need the following Lemmas.

Lemma 2.1 (see [6, 16]). Let f be a nonconstant meromorphic function on Ω(α, β). Then for
arbitrary complex number a, we have

Sα,β

(
r,

1

f − a

)
= Sα,β(r, f) + ε(r, a),

where ε(r, a) = O(1) as r →∞.

Lemma 2.2 (see [5, 6, 25]). Suppose that f is a non-constant meromorphic function in one

angular domain Ω(α, β) with 0 < β − α ≤ 2π, then for arbitrary q distinct aj ∈ Ĉ(1 ≤ j ≤ q), we
have

q∑
i=

Dα,β(r,
1

f − aj
) ≤ 2Sα,β(r, f)− C1(r) +Qα,β(r, f),

where C1(r) = 2Cα,β(r, f)− Cα,β(r, f ′) + Cα,β(r, 1
f ′ ) and

(q − 2)Sα,β(r, f) ≤
q∑
j=1

Cα,β

(
r,

1

f − aj

)
+Qα,β(r, f),

where the term Cα,β(r, 1
f−aj ) will be replaced by Cα,β(r, f) when some aj =∞ and

Qα,β(r, f) =Aα,β

(
r,
f ′

f

)
+Bα,β

(
r,
f ′

f

)
+

q∑
j=1

{
Aα,β

(
r,

f ′

f − aj

)
+Bα,β

(
r,

f ′

f − aj

)}
+O(1). (4)

Lemma 2.3 (see [6, P138].) Let f be a nonconstant meromorphic function in the whole complex
plane C. Given one angular domain on Ω(α, β). Then for any 1 ≤ r < R, we have

Aα,β

(
r,
f ′

f

)
≤ K

{(
R

r

)ω ∫ R

1

log+ T (r, f)

t1+ω
dt+ log+ r

R− r
+ log

R

r
+ 1

}
,
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and

Bα,β

(
r,
f ′

f

)
≤ 4ω

rω
m

(
r,
f ′

f

)
,

where ω = π
β−α and K is a positive constant not depending on r and R.

Remark 2.1 Nevanlinna conjectured that

Dα,β

(
r,
f ′

f

)
= Aα,β

(
r,
f ′

f

)
+Bα,β

(
r,
f ′

f

)
= o (Sα,β (r, f)) (5)

when r tends to +∞ outside an exceptional set of finite linear measure, and he proved that

Aα,β

(
r, f

′

f

)
+Bα,β

(
r, f

′

f

)
= O(1) when the function f is meromorphic in C and has finite order.

In 1974, Gol’dberg[5] constructed a counter-example to show that (3) is not valid.

Lemma 2.4 (see [22, Lemma 4]). Let f be a meromorphic function in C, Ω(α, β) (0 < β−α ≤ 2π)
be a closed angular domain, then

Qα,β (r, f) =

{
O(1), f is of finite order,
O(logU(r)), f is of infinite order,

where Qα,β (r, f) is stated as in (4), U(r) = rρ(r), ρ(r) is the precise order of T (r, f) when f is of
infinite order, E is a set of finite linear measure.

Lemma 2.5 (see [22, Lemma 5]). Let f be a meromorphic function on a closed angular domain

Ω(α, β) and ω = π
β−α , then for any a ∈ Ĉ and for any ε ∈ (0, β−α2 ),

Cα,β(r, a, f) ≥ 2ω sin(ωε)

∫ r

1

n(t,Ωε, f = a)

tω+1
dt+O(1),

Cα,β(r, a, f) ≥ 4ω sin(ωε)

rω
N(r,Ωε, f = a) + o(1),

Cα,β(r, a, f) ≤ 4ω

∫ r

1

n(t,Ω, f = a)

tω+1
dt,

Cα,β(r, a, f) ≤ 2n(r,Ω, f = a),

where Ωε = (α+ ε, β − ε).

Remark 2.2 For the reduced case that each multiple zero of f − a in Ω(α, β) is counted only
once (ignoring multiplicities), Lemma 2.5 still holds, and its proof is similar to the case counting
multiplicities.

Lemma 2.6 (see [3]). Let f be a meromorphic function of infinite order ρ(r). Then the ray
arg z = θ is one Borel direction of ρ(r) order of meromorphic function f if and only if f satisfies
the equality

lim sup
r→∞

logSθ−ε,θ+ε(r, f)

ρ(r) log r
= 1,

for any ε(0 < ε < π
2 ).

3 Proof of Theorem 1.2

Proof: Since f is a meromorphic function of infinite order ρ(r) and arg z = θ(0 ≤ θ < 2π) is
one Borel direction of ρ(r) order of meromorphic function f , by Lemma 2.6, we can get for any
ε(0 < ε < π)

lim sup
r→∞

logSθ−ε,θ+ε(r, f)

ρ(r) log r
= 1. (6)
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By Lemmas 2.2-2.4, we have

Dθ−ε,θ+ε(r,
f ′

f
) = O(logU(r)).

By Ref. [6, 25], we can get Qθ−ε,θ+ε(r,
(k) ) = Qθ−ε,θ+ε(r, f). Thus, we have

Dθ−ε,θ+ε(r,
f (k)

f
) = O(logU(r)) = Qθ−ε,θ+ε(r, f). (7)

Hence, for any positive integer k, we have

p∑
j=1

Dθ−ε,θ+ε(r, aj , f) ≤ Dθ−ε,θ+ε(r, 0, f
(k)) +Qθ−ε,θ+ε(r, f). (8)

By Lemma 2.1, we have

Sθ−ε,θ+ε(r, f
(k)) = Dθ−ε,θ+ε(r, 0, f

(k)) + Cθ−ε,θ+ε(r, 0, f
(k)) +O(1). (9)

Then, it follows from (8) and (9) that

p∑
j=1

Dθ−ε,θ+ε(r, aj , f) ≤ Sθ−ε,θ+ε(r, f (k))− Cθ−ε,θ+ε(r, 0, f (k)) +Qθ−ε,θ+ε(r, f). (10)

From (10), we have

pSθ−ε,θ+ε(r, f) ≤Sθ−ε,θ+ε(r, f (k)) +

p∑
j=1

Cθ−ε,θ+ε(r, aj , f)− Cθ−ε,θ+ε(r, 0, f (k)) (11)

+Qθ−ε,θ+ε(r, f).

By applying Lemma 2.1 and Lemma 2.2, we have

qSθ−ε,θ+ε(r, f
(k)) ≤

q∑
j=1

Cθ−ε,θ+ε(r, aj , f
(k)) + Cθ−ε,θ+ε(r, 0, f

(k))

+ Cθ−ε,θ+ε(r,∞, f (k))− Cθ−ε,θ+ε(r, 0, f (k+1))

− 2Cθ−ε,θ+ε(r,∞, f (k)) + Cθ−ε,θ+ε(r,∞, f (k+1))

+Qθ−ε,θ+ε(r, f)

≤
q∑
j=1

Cθ−ε,θ+ε(r, aj , f
(k)) + Cθ−ε,θ+ε(r, 0, f

(k))

+ Cθ−ε,θ+ε(r,∞, f (k+1))− Cθ−ε,θ+ε(r, 0, f (k+1))

− Cθ−ε,θ+ε(r,∞, f (k)) +Qθ−ε,θ+ε(r, f)

≤
q∑
j=1

Cθ−ε,θ+ε(r, aj , f
(k)) + Cθ−ε,θ+ε(r, 0, f

(k))

+ Cθ−ε,θ+ε(r,∞, f)− Cθ−ε,θ+ε(r, 0, f (k+1)) +Qθ−ε,θ+ε(r, f). (12)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.6, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

1177 Hong Yan Xu et al 1171-1182



It follows from (11) and (12) that

pqSθ−ε,θ+ε(r, f) ≤ Cθ−ε,θ+ε(r,∞, f) + (q − 1)

p∑
j=1

Cθ−ε,θ+ε(r, aj , f)

− (q − 1)Cθ−ε,θ+ε(r, 0, f
(k)) +

p∑
j=1

Cθ−ε,θ+ε(r, aj , f)

+

q∑
l=1

Cθ−ε,θ+ε(r, bl, f
(k))− Cθ−ε,θ+ε(r, 0, f (k+1))

+Qθ−ε,θ+ε(r, f). (13)

If z0 is a zero of f−a of order j > k in Ω(θ−ε, θ+ε), then z0 is a zero of f (k+1) of order j− (k+1)
in Ω(θ − ε, θ + ε), and if z0 is a zero of f (k) − b of order m in Ω(θ − ε, θ + ε), then z0 is a zero of
f (k+1) of order m− 1 in Ω(θ − ε, θ + ε). Moreover, If z0 is the zero of f − a of order > k and also
zero of f (k) in Ω(θ − ε, θ + ε), then z0 is not zero of f (k) − b in Ω(θ − ε, θ + ε) as b 6= 0. Thus, we
have

p∑
j=1

Cθ−ε,θ+ε(r, aj , f) +

q∑
l=1

Cθ−ε,θ+ε(r, bl, f
(k))− Cθ−ε,θ+ε(r, 0, f (k+1))

≤
p∑
j=1

Cθ−ε,θ+ε(r, aj , f | ≤ k + 1) +

q∑
l=1

Cθ−ε,θ+ε(r, bl, f
(k)), (14)

p∑
j=1

Cθ−ε,θ+ε(r, aj , f)− Cθ−ε,θ+ε(r, 0, f (k)) ≤
p∑
j=1

Cθ−ε,θ+ε(r, aj , f | ≤ k).

Substituting (14) to (13), we get

pqSθ−ε,θ+ε(r, f) ≤ Cθ−ε,θ+ε(r,∞, f) + (q − 1)

p∑
j=1

Cθ−ε,θ+ε(r, aj , f | ≤ k)

+

p∑
j=1

Cθ−ε,θ+ε(r, aj , f | ≤ k + 1) +

q∑
l=1

Cθ−ε,θ+ε(r, bl, f
(k))

+Qθ−ε,θ+ε(r, f). (15)

For any positive integer k, we have

Cθ−ε,θ+ε(r, aj , f | ≤ k) ≤ kCθ−ε,θ+ε(r, aj , f)

≤ k

mj + 1

[
mjCθ−ε,θ+ε(r, aj , f | ≤ mj) + Cθ−ε,θ+ε(r, aj , f)

]
≤ k

mj + 1

[
mjC(r, aj , f | ≤ mj) + Sθ−ε,θ+ε(r, f)

]
+O(1), (16)

and

Cθ−ε,θ+ε(r, bl, f
(k)) ≤ 1

nl + 1

[
nlCθ−ε,θ+ε(r, bj , f

(k)| ≤ nl) + Sθ−ε,θ+ε(r, f
(k))
]

+O(1)

Cθ−ε,θ+ε(r,∞, f) ≤ 1

s+ 1

[
sCθ−ε,θ+ε(r,∞, f | ≤ s) + Sθ−ε,θ+ε(r, f)

]
, (17)
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and since Sθ−ε,θ+ε(r, f
(k)) ≤ Sθ−ε,θ+ε(r, f) + kCθ−ε,θ+ε(r,∞, f) + Qθ−ε,θ+ε(r, f), then it follows

from (15)-(17) that

pqSθ−ε,θ+ε(r, f) ≤ (q − 1)

p∑
j=1

k

mj + 1

[
mjCθ−ε,θ+ε(r, aj , f | ≤ mj) + Sθ−ε,θ+ε(r, f)

]
+

p∑
j=1

k + 1

mj + 1

[
mjCθ−ε,θ+ε(r, aj , f | ≤ mj) + Sθ−ε,θ+ε(r, f)

]
+

q∑
l=1

1

nl + 1

[
nlCθ−ε,θ+ε(r, bl, f

(k)| ≤ nl) + Sθ−ε,θ+ε(r, f
(k))
]

+ Cθ−ε,θ+ε(r,∞, f) +Qθ−ε,θ+ε(r, f)

≤ (q − 1)

p∑
j=1

kmj

mj + 1
Cθ−ε,θ+ε(r, aj , f | ≤ mj)

+

p∑
j=1

mj(k + 1)

mj + 1
Cθ−ε,θ+ε(r, aj , f | ≤ mj)

+

q∑
l=1

nl
nl + 1

Cθ−ε,θ+ε(r, bl, f
(k)| ≤ nl)

+ (1 +

q∑
l=1

k

nl + 1
)Cθ−ε,θ+ε(r,∞, f)

+

 p∑
j=1

kq + 1

mj + 1
+

q∑
j=1

1

nl + 1

Sθ−ε,θ+ε(r, f) +Qθ−ε,θ+ε(r, f)

≤ (kq + 1)

p∑
j=1

kmj

mj + 1
Cθ−ε,θ+ε(r, aj , f | ≤ mj)

+

q∑
l=1

nl
nl + 1

Cθ−ε,θ+ε(r, bl, f
(k)| ≤ nl)

+

(
1 +

q∑
l=1

k

nl + 1

)
s

s+ 1
Cθ−ε,θ+ε(r,∞, f | ≤ s)

+

 p∑
j=1

kq + 1

mj + 1
+

q∑
j=1

1

nl + 1
+ (1 +

q∑
l=1

k

nl + 1
)

1

s+ 1


× Sθ−ε,θ+ε(r, f) +Qθ−ε,θ+ε(r, f).
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Since mj , nl, k, p, q and s are positive integers, it follows from the above inequality that

pqSθ−ε,θ+ε(r, f) ≤

 p∑
j=1

kq + 1

mj + 1
+

q∑
j=1

1

nl + 1
+ (1 +

q∑
l=1

k

nl + 1
)

1

s+ 1

Sθ−ε,θ+ε(r, f)

+ (kq + 1)

p∑
j=1

Cθ−ε,θ+ε(r, aj , f | ≤ mj)

+

q∑
l=1

nl
nl + 1

Cθ−ε,θ+ε(r, bl, f
(k)| ≤ nl)

+

(
1 +

q∑
l=1

k

nl + 1

)
s

s+ 1
Cθ−ε,θ+ε(r,∞, f | ≤ s)

+Qθ−ε,θ+ε(r, f). (18)

Thus, from (18), we can prove (2) easily.
Therefore, this completes the proof of Theorem 1.2.

2

4 The proof of Theorem 1.3

Proof: Since f is a meromorphic function of infinite order ρ(r) and arg z = θ(0 ≤ θ < 2π) is
one Borel direction of ρ(r) order of meromorphic function f , by Lemma 2.6, we can get for any
ε(0 < ε < π)

lim sup
r→∞

logSθ−ε,θ+ε(r, f)

ρ(r) log r
= 1. (19)

Since ∞ is an evBB for f for distinct poles of order ≤ s, and aj(j = 1, 2, . . . , p) are evBB for f
for distinct zeros of order ≤ mj , and bl(6= 0)(l = 1, 2, . . . , q) are evBB for f (k) for distinct zeros of
order ≤ nl, from Definition 1.3 and (19), we have that there exists a number η(0 < η < 1) such
that for sufficiently large r,

C(r,∞, f | ≤ s) ≤ (U(r))η, (20)

Cθ−ε,θ+ε(r, aj , f | ≤ mj) < (U(r))η, j = 1, 2, . . . , p, (21)

Cθ−ε,θ+ε(r, bl, f
(k)| ≤ nl) < (U(r))η, l = 1, 2, . . . , q. (22)

Set

Λ :=

p∑
j=1

kq + 1

mj + 1
+

q∑
j=1

1

nl + 1
+ (1 +

q∑
l=1

k

nl + 1
)

1

s+ 1
.

From Theorem 1.2, we have

(pq − Λ)Sθ−ε,θ+ε(r, f) ≤ (kq + 1)

p∑
j=1

Cθ−ε,θ+ε(r, aj , f | ≤ mj)

+

q∑
l=1

nl
nl + 1

Cθ−ε,θ+ε(r, bl, f
(k)| ≤ nl)

+

(
1 +

q∑
l=1

k

nl + 1

)
s

s+ 1
Cθ−ε,θ+ε(r,∞, f | ≤ s)

+Qθ−ε,θ+ε(r, f). (23)
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From (20)-(23), for sufficiently large r, it follows that

(pq − Λ)Sθ−ε,θ+ε(r, f) ≤ O((U(r))η) +Qθ−ε,θ+ε(r, f). (24)

Since η < 1, from (19) and (24) for sufficiently large r, we can get pq − Λ ≤ 0, that is,

p∑
j=1

kq + 1

mj + 1
+

q∑
l=1

1

nl + 1
+

1

s+ 1

(
1 + k

q∑
l=1

1

nl + 1

)
≥ pq.

Thus, this completes the proof of Theorem 1.3.
2

5 Remarks

From the procedure of proofs of Theorems 1.1 and 1.2, we find that the conclusions of Theorems
1.1 and 1.2 can still hold for transcendental meromorphic function f with finite order ρ(0 < ρ <∞)
on the whole complex plane.

Thus, it is a natural question to ask: Does the conclusion of Theorem 1.3 still holds when f
is a transcendental meromorphic function with finite order ρ(0 < ρ < ∞) on the whole complex
plane?

In fact, we can not give a positive answer to the above question. Now, we will give a simple
procedure to prove this assertion as follows.

Firstly, similar to Definitions 1.3 and 1.4, we can get some definitions of exception values
of meromorphic function with finite order in the Borel direction, if ρkθ(a, f) < ρ, ρθ(a, f) <
ρ, ρkθ(a, f (l)) < ρ, when logSθ−ε,θ+ε(r, f) is replaced by log r. Thus, from the definition of Borel
direction, (20)-(23) can be replaced by

C(r,∞, f | ≤ s) ≤ rη
′
, (25)

Cθ−ε,θ+ε(r, aj , f | ≤ mj) < rη
′
, j = 1, 2, . . . , p, (26)

Cθ−ε,θ+ε(r, bl, f
(k)| ≤ nl) < rη

′
, l = 1, 2, . . . , q. (27)

where η′ < ρ and r is sufficiently large, and (24) can be replaced by

(pq − Λ)Sθ−ε,θ+ε(r, f) ≤ O
(
rη

′
)

+Qθ−ε,θ+ε(r, f). (28)

However, by Lemmas 2.1-2.5, we can not be sure to derive a contradiction from (28). Therefore,
Theorem 1.3 may not be true when f is of finite order.
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