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Abstract

Besides the feedforward neural networks, there are the recurrent net-
works, where the impulses can be transmitted in both directions due to
some reaction connections in these networks. Recurrent neural networks
are linear or nonlinear dynamic systems. The dynamic behavior presented
by the recurrent neural networks can be described both in continuous time,
by differential equations and at discrete times by the recurrence relations
(difference equations). The distinction between recurrent (or dynamic)
neural networks and static neural networks is due to recurrent connec-
tions both between the layers of neurons of these networks and within the
same layer, too. The aim of this paper is to describe a Recurrent Fuzzy
Neural Network (RFNN) model, whose learning algorithm is based on the
Improved Particle Swarm Optimization (IPSO) method. Each particle
(candidate solution), which is moving permanently includes the parame-
ters of the membership function and the weights of the recurrent neural-
fuzzy network; initially, their values are randomly generated. The RFNN
presented in this paper is unlike the others variants of RFNN models, by
the number of the evolution directions that they use: in this paper, we up-
date the velocity and the position of all particles along three dimensions,
while in [8] are used two dimensions.

Keywords: recurrent networks; Improved Particle Swarm Optimiza-
tion method; fuzzy rules; Wavelet Neural Network; feedback weight; de-
layed operator.

1 Introduction

Neural network (NN) is one of the important components in Artificial Intelli-
gence (AI). NN architectures used in modelling of the nervous systems can be
classified into three categories, each with a different philosophy: feedforward,
recurrent (feedback), self-organizing map. Neural networks (NNs) are used in
many different application domains in order to solve various information pro-
cessing problems. For several years now, neural network models have enjoyed
wide popularity [4], being applied to problems of regression, classification, com-
putational science, computer vision, data processing and time series analysis.
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Figure 1: Schematic diagram of the WNN.

The main drawback of the feedforward neural networks is that the updating
of the weights can fall [17] in a local minimum. An other major drawback of the
feedforward neural networks consists in the fact that their application domain
is limited to static problems due their inherent feedforward structure.

Since recurrent networks incorporate feedback, they have powerful represen-
tation capability and can [17] successfully overcome disadvantages of feedfor-
ward networks. This feedback implies that the network has [12] local memory
characteristics that is able to store activity patterns and present those patterns
to the network more than once, allowing the layer with feedback connections to
use its own past activation in its preceding behavior.

The Recurrent Neural Network (RNN) has the feedforward and feedback
connections contrasted which provides it with nonlinear mapping capacity and
dynamical characteristics, so it can be used [22] to simulate dynamical system
and solve dynamic problems. Different architectures can be created [12] by
adding recurrent connections at different points in the basic feedforward archi-
tecture.

Recently some researchers have proposed several recurrent neuro- fuzzy net-
works. Kumar et al. 2004 compares the traditional feedforward approach of
RNNs to forecast monthly river flows. Lin & Hsu, 2007 has proposed [10] a
recurrent wavelet-based neuro- fuzzy system with the reinforcement hybrid evo-
lutionary learning algorithm for solving various control problems. Carcano et
al., 2008 has simulated [3] daily river flows for water resource purposes using the
Jordan Recurrent Neural Network. Maraqua et al., 2012 has proposed [12] the
use of a recurrent network architecture as a classification engine for automatic
Arabic Sign Language recognition system. Šter, 2013 has introduced [18] an
extended architecture of recurrent neural networks (called Selective Recurrent
Neural Network) for dealing with long term dependencies.

1.1 Wavelet Neural Networks

Neural networks employing wavelet neurons are referred to as Wavelet Neural
Networks(WNNs) [10]; they are characterized by weights and wavelet bases.

Lin & Chin, 2004 was proposed a Recurrent Neural Fuzzy Network (RNFN)
where each fuzzy rule corresponding to a WNN (see Figure 1) consists (see [11],
[8]) of single-scaling wavelets. The shape and position of the wavelet bases are
shown [11] in Figure 2.

An ordinary wavelet neural network model is often used to normalize input
vectors in the interval [0, 1]. The functions φa.b(xi) are used to input vectors

2

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

214 ANASTASSIOU et al 213-225



Figure 2: Wavelet bases are over-complete and compactly supported.

to fire up the wavelet interval; a such value is given in the following equation,
which gives the shape of the M wavelet bases φ0.0, φ1.0, . . . , φm.m: φ(xi) = cos(xi), −0.5 ≤ xi ≤ 0.5

0 otherwise, φa.b(xi) = cos(axi − b),
(1)

b = 1, a, a = 1,m, b being a shifting parameter and a meaning a scaling
parameter corresponding to the maximum value of b.

A crisp value ϕa.b can be obtained as follows:

ϕa.b =

∑n
j=1 φa.b(xi)

|X|
, (2)

where |X| represents the number of input dimensions and n is the dimension of
the input vector to the model.

1.2 Z- transform

The Z- transform is [20] the discrete- time counterpart of the Laplace transform.
The Z- transform can be considered to be an extension of the discrete- time
Fourier transform as the Laplace transform can be considered an extension of
the Fourier transform.

The bilateral Z- transform of a discrete- time sequence x(n) is:

Z{x(n)} = X(z) =

∞∑
n=−∞

x(n)z−n. (3)

For causal sequences (n ≥ 0) the Z- transform becomes:

Z{x(n)} = X(z) =
∞∑
n=0

x(n)z−n. (4)

The equation (4) is called the unilateral Z- transform; it exists only if the
power series from its expression converges.

3
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There are several methods for computing the inverse Z- transform, namely
the sequence x(n), given X(z):

1. using the inversion integral :

x(n) =
1

2πj

∮
Γ

X(z)zn−1dz, (5)

where
∮

Γ
means the integration along the closed contour Γ in the coun-

terclockwise closed contour in the region of convergence of X(z);

2. by a power series expansion: expressing X(z) in a power series in z−1,
x(n) can be achieved by identifying it with the coefficient of z−n in the
power series expansion;

3. by partial fraction expansion: for a rational functions, can be obtained
a partial fraction expansion of X(z) over its poles and the table of Z-
transform helps to identify the sequences corresponding to the terms in
that partial fraction expansion.

1.3 Application of Genetic Algorithms

The specialists think that the Genetic Algorithms are a computational intelli-
gence application as well as the expert systems, fuzzy systems, neural networks,
the intelligent agents, hybrid intelligent systems, electronic voice.

The genetic algorithms are some adaptive techniques of heuristic search,
based on the genetic and selection natural principles, enunciated by Darwin
(the best adapted will survive). The mechanism is similar to the evolutionary
biological process. This process has a feature through that only the species
which one adapt better to the environment are capable to survive and to develop
into generations, while that those less adapted fail to survive and they disappear
in time, as a result of the natural selection. The main notions that allow the
analogy between the solution of the search problems and the natural evolution
are:

1. Population. A population consists in some individuals (chromosomes)
that have to live in an environment to which they must adapt.

2. Fitness. Each of the population individuals is adapted more or less to the
environment. The fitness is a measure of the degree of adaptation to the
environment.

3. Chromosome. It is a ordered set of elements, named genes, whose values
establish the individual features.

4. Generation. A stage in a population evolution. If we see evolution as an
iterative process in which a population turns to another population, then
the generation is an iteration in this process.

5. Selection. The process of natural selection has the survival of individuals
with a high environmental fitness (high fitness) as effect.

4
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Figure 3: The RNFN architecture.

6. Reproduction. It is the process through which one passes from one gen-
eration to another. The individuals of the new generation inherit some
features from their precursors (parents) but they can also get some new
features as a result of some processes of mutation that have a random
character. In the case when in the reproduction process at least two par-
ents occur, the inherited features of the survivor (son) are obtained by
combining (crossover) of the parent features.

The remainder of the paper is organized as follows. In Section 2 is discussed
and analyzed the RNFN. We follow with the learning algorithm of the recurrent
model in Section 3. We conclude in Section 4.

2 RNFN Architecture

The network construction is based on fuzzy rules, each corresponding to a
Wavelet Neural Network (WNN).

The figure Figure 3 illustrates the RNFN model, whose training algorithm
is based on Improved Particle Swarm Optimization (IPSO) method.

The nodes from the first layer constitute some input nodes; hence they only
pass the input signal to the next layer, namely:

O
(1)
i = x

(1)
i . (6)

The neurons in the second layer act as a membership function, meaning
that they determine how an input value belongs to a fuzzy set. The following
Gaussian function is chosen as the membership function:

5
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Figure 4: Delayed cell.

O
(2)
ij = e

− (I(2)ij
−mij)

2

σ2
ij , (7)

where:

• mij and σij are the mean and standard deviation, respectively;

• I(2)
ij denotes the input of this layer for the discrete time scan:

I
(2)
ij = O

(2)
i +O

(f)
ij , (8)

where

O
(f)
ij = O

(2)
ij (t− 1)θij . (9)

The inputs of this layer contain the terms of memory O
(2)
ij (t− 1), that store

network information at a previous time; this information, which is an additional
input of the network will be reintroduced at the entrance of the second layer.

The weight θij constitutes the feedback weight of the network and z−1 sig-
nifies the delayed operator.

Figure 4 represents [14] a delayed cell, X(z) being the Z- transform of the
signal x[n].

The neurons of the third layer achieve the product operation of their input
signals:

O3
j =

n∏
i=1

O
(2)
ij =

n∏
i=1

e
− (I(2)ij

−mij)
2

σ2
ij , (10)

where n is the number of external dimensions.
The neurons of the fourth layer receive both the output of a WNN, denoted

ŷj and of a neuron from the third layer, namely O3
j . The mathematical function

of each node j is:

O4
j = ŷpj ·O

3
j , (11)

ŷpj being the local output of the WNN for the output yp and the j-th rule:

ŷpj =
M∑
k=1

wpjkϕa.b, (12)

with ϕa.b from (2), where:

• M = m+1 denotes the number of wavelet bases, which equals the number
of existing fuzzy rules in the considered model,

6
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• the link wpjk is the output action strength associated with in the p output,
j-th rule and k-th ϕa.b.

The fifth layer acts as a defuzzifier namely it provides the nonfuzzy outputs
yp of the fuzzy recurrent neural network:

yp =
1

1 + e
−λ·

∑M
j=1

O4
j∑M

j=1
O3
j

=
1

1 + e
−λ·

∑M
j=1

ŷ
p
j
·O3
j∑M

j=1
O3
j

, (13)

namely:

yp =
1

1 + e
−λ·

∑M
j=1

(w
p
j1
ϕ1.1+w

p
j2
ϕ2.1+...+w

p
jM

ϕm.m)·O3
j∑M

j=1
O3
j

, λ ∈ <. (14)

3 Learning Algorithm of RNFN

The training algorithm of the network is based on the Improved optimization
method Particle Swarm Optimization (IPSO). The new optimization algorithm
called the IPSO enhances the traditional PSO (Particle Swarm Optimization)
to enable it to obtain optimal solution capability.

We assume that each particle includes the mean, deviation and weight vari-
ables of the RNFN, being d- dimensional.

The following parameters will be determined by the learning procedure:

• the position vector Xi = (xi1, xi2, . . . , xid),

and respectively

• the velocity vector Vi = (vi1, vi2, . . . , vid)

of the i- th particle in the N -dimensional search space.
We denote by:

• Pi = (Pi1, Pi2, . . . , Pid) the best position of each particle,

• Pg = (Pg1, Pg2, . . . , Pgd) the fittest particle found so far,

according to an user-defined fitness function.
The steps of the learning procedure are:
Step 1 (Individual initialization). Set the initial values for every particle like

being random values.
Step 2 (Evaluate fitness). Evaluate each particle in a swarm, by defining

the fitness function:

fi =
1

Y
, (15)

where

Y =

√√√√ 1

N

N∑
p=1

(yp − yp)2, (16)
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• N represents the number of input data,

• yp, p = 1, N are the model outputs,

• yp, p = 1, N constitute the desired outputs.

After a generation of learning, we achieve the following fifth best particles,
ordered according to their fitness: unimportant, rather unimportant, moderately
important, rather important, very important particles.

The input (preferred) particles are:

1. unimportant particle

Cu = (Cu1, Cu2, . . . , Cud),

with the fitness Fu;

2. rather unimportant particle

Cr = (Cr1, Cr2, . . . , Crd),

with the fitness Fr;

3. moderately important particle

Cm = (Cm1, Cm2, . . . , Cmd),

with the fitness Fm;

4. rather important particle

CR = (CR1, CR2, . . . , CRd),

with the fitness FR;

5. very important particle

Cv = (Cv1, Cv2, . . . , Cvd),

with the fitness Fv.

The membership functions of the fuzzy terms unimportant, rather unimpor-
tant, moderately important, rather important, and respectively very important
can be represented as fuzzy numbers in Figure 5,

being defined in the following relations:

µunimportant =


1− x

0.25 , if 0 ≤ x ≤ 0.25,

0, otherwise.
(17)

8
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Figure 5: The membership functions of importance.

µrather unimportant =


x

0.25 if 0 ≤ x ≤ 0.25,

1− x−0.25
0.25 if 0.25 < x ≤ 0.5,

(18)

µmoderately important =


x−0.25

0.25 , if 0.25 ≤ x ≤ 0.5,

1− x−0.5
0.25 , if 0.5 < x ≤ 0.75,

(19)

µrather important =


x−0.5
0.25 , if 0.5 ≤ x ≤ 0.75,

1− x−0.75
0.25 , if 0.75 < x ≤ 1,

(20)

µvery important =


x−0.75

0.25 , if 0.75 ≤ x ≤ 1,

0, otherwise.
(21)

The output (created) particle is output particle:

Co = (Co1, Co2, . . . , Cod),

with the fitness Fo.
Step 3 (Improve the capability of finding the global solution (ICFGS)). Set:

D1 = D2 = D3 = 1 the magnitudes of the three evolution directions, Ts = 1
the initial index of the ICFGS, the number NL of the ICFGS loop, the fifth
particles with the best fitness values from the local best swarm to Cu, Cr, Cm,
CR, Cv.

Use a special equation to update the: unimportant particle, rather unim-
portant particle, moderately important particle and rather important parti-
cle to generate the migrant individuals, based on the best individual, Xi =
(xi1, . . . , xid) in the aim of improving the fitness value [8]:

xid =


xid + ρ(xLid − xid), if r1 <

xid−xLid
xLid−x

U
id

xid + ρ(xUid − xid) otherwise,

(22)

9
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where ρ and r1 are random numbers in the range of [0, 1] and L, U meaning
”lower” and ”upper”.

Compute Co:
Coj = Cuj +D1(Cuj − Crj)+

+D2(Cuj − Cmj) +D3(Cuj − CRj) (23)

Evaluate the new fitness Fo corresponding to the newly created output par-
ticle Co.

Update the unimportant particle Cu, the rather unimportant particle Cr,
moderately important particle Cm, rather important particle CR and the very
important particle Cv as follows:

(1) If Fo > Fv then 
Cv = Co
CR = Cv
Cm = CR
Cr = Cm
Cu = Cr.

(2) Else if Fo > FR and Fo < Fv then
CR = Co
Cm = CR
Cr = Cm
Cu = Cr.

(3) Else if Fo > Fm and Fo < FR then Cm = Co
Cr = Cm
Cu = Cr.

(4) Else if Fo > Fr and Fo < Fm then{
Cr = Co
Cu = Cr.

(5) Else if Fo > Fu and Fo < Fr then

Cu = Co.

(6) Else if Fo = Fu = Fr = Fm = FR = Fv
then

Co = Co +Nr (Nr ∈ [0, 1]).

(7) Else if Fo <= Fu then it will decrease the moving velocity: D1 = −0.5D1

D2 = −0.5D2

D3 = −0.5D3

to obtain a good fitness.

10
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The random number Nr is added at the statement (23) to prevent the learn-
ing algorithm from falling into a local optimum.

Test If Step 3 isn’t finished then Ts = Ts + 1; else update the global best: if
the fitness value of the new particle is higher than that of the global best, then
the global best will also be replaced with the particle.

Step 4 (Update the velocity and the position). Update the velocity and the
position of all particles along each dimension using the equations:

vk+1
id = ω · vkid + c1 · rand(·)(Pid − xkid) + c2 · rand(·)(Pgd − xkid) (24)

xk+1
id = xkid + vk+1

id , (25)

where: w is the coefficient of the inertia term; c1 and c2 are called the cognitive
term and the society term, respectively; the function rand(·) yields uniformly
distributed random numbers in [0, 1].

The second term from (24) known as the cognitive component, represents
the personal thinking of each particle, which encourages the particles to move
toward their own best positions. The third term from (24) called the social
component represents the collaborative effect of the particles, in finding the
global optimal solution.

4 Conclusion

Dynamic or Recurrent Neural Networks (RNNs) are unlike from static neu-
ral networks since they include feedback or recurrent connections between the
network layers and within the layer itself.

The learning algorithm of the Recurrent Neural Fuzzy Network (RNFN)
model presented in this paper is based on the Improved Particle Swarm Op-
timization (IPSO) method, which is similar to evolutionary algorithms, but
requires less computational bookkeeping and generally fewer lines of code. The
new optimization algorithm called the IPSO enhances the traditional PSO (Par-
ticle Swarm Optimization) to enable it to obtain optimal solution capability.

The RFNN presented in this paper is unlike the others variants of RFNN
models, by the number of the evolution directions that they use: in this paper,
we update the velocity and the position of all particles along three dimensions.

The network construction is based on fuzzy rules, each corresponding to a
WNN (Wavelet Neural Network).
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Abstract

We obtain in this paper the analytical forms of the solutions for the following
di¤erence equations

xn+1 =
xn¡1xn¡4

xn¡2(§1 § xn¡1xn¡4)
, n = 0, 1, ...,

where the initial conditions are arbitrary real numbers. Also, we study the
dynamics behavior of the solutions of the considered equations.

Keywords: di¤erence equations, recursive sequences, stability, periodic solution.
Mathematics Subject Classi…cation: 39A10
——————————————————————

1 Introduction

The behavior of the solutions of the di¤erence equations has been investigated by
many authors, see for examples: Agarwal et al. [1] investigated the global stability,
periodicity character and gave the solution of some special cases of the di¤erence
equations

xn+1 = axn +
bxnxn¡3

cxn¡2+dxn¡3 .
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Cinar [2] investigated the solutions of the following di¤erence equation

xn+1 =
axn¡1

1+bxnxn¡1
.

Elabbasy et al. [3] investigated the global attractivity of the equilibrium point and
the asymptotic behavior of the solutions of the following di¤erence equation and gave
the solution of some special cases of the di¤erence equation

xn+1 =
axn¡lxn¡k

bxn¡p¡cxn¡q
.

Elsayed [8] deal with some properties of the solutions of the di¤erence equation

xn+1 = axn +
bxn

cxn¡dxn¡1
,

and obtained the form of the solution of special case of this di¤erence equation
Karatas et al. [11] get the form of the solution of the di¤erence equation

xn+1 =
xn¡5

1+xn¡2xn¡5
.

In [14] Wang et al. investigated the global attractivity of the equilibrium point, and
the asymptotic behavior of the solutions of the following di¤erence equation

xn+1 =

Ps

i=1
Aki

xn¡ki

B0+
Pt

j=1
Blj

xn¡lj

.

In [15] Yalç¬nkaya studied the behavior of the following di¤erence equation

xn+1 = α+ xn¡m

xk
n

.

Zayed et al. [17] studied a qualitative behavior of the rational recursive sequence

xn+1 =
α+βxn+γxn¡1
A+Bxn+Cxn¡1

.

Other related results on rational di¤erence equations can be found in refs. [4-16].
In this paper, we study the existence of the analytical solutions for the following

di¤erence equations

xn+1 =
xn¡1xn¡4

xn¡2(§1§ xn¡1xn¡4)
, n = 0, 1, ..., (1)

where the initial conditions are arbitrary real numbers. Also, we study the global
behavior of the solutions.
The following theorem will be useful in our current study.

Theorem A [13]: Assume that pi 2 R, i = 1, 2, ..., k and k 2 f0, 1, 2, ...g. Then
kX

i=1

jpij < 1,

is a su¢cient condition for the asymptotic stability of the di¤erence equation

xn+k + p1xn+k¡1 + ...+ pkxn = 0, n = 0, 1, ... .

In the following we investigate the behavior of the solutions for some di¤erent
cases of Eq.(1).
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2 On the Equation xn+1 =
xn¡1xn¡4

xn¡2(1+xn¡1xn¡4)

In this section we give a speci…c form of the solution of the equation

xn+1 =
xn¡1xn¡4

xn¡2(1 + xn¡1xn¡4)
, n = 0, 1, ..., (2)

where the initial values are arbitrary positive real numbers.

Theorem 1 Let fxng1n=¡4 be a solution of Eq.(2). Then for n = 0, 1, ...

x6n¡2 =
x¡2xn

0xn
¡3

xn
¡1x

n
¡4

n¡1Y
i=0

³
(1+(3i+1)x¡1x¡4)
(1+(3i+2)x0x¡3)

´
, x6n¡1 =

xn+1
¡1 xn

¡4
xn
0xn

¡3

n¡1Y
i=0

³
(1+(3i+1)x0x¡3)
(1+(3i+3)x¡1x¡4)

´
,

x6n =
xn+1
0 xn

¡3
xn
¡1x

n
¡4

n¡1Y
i=0

³
(1+(3i+2)x¡1x¡4)
(1+(3i+3)x0x¡3)

´
,

x6n+1 =
xn+1
¡1 xn+1

¡4
x¡2xn

0xn
¡3(1+x¡1x¡4)

n¡1Y
i=0

³
(1+(3i+2)x0x¡3)
(1+(3i+4)x¡1x¡4)

´
,

x6n+2 =
xn+1
0 xn+1

¡3
xn+1
¡1 xn

¡4(1+x0x¡3)

n¡1Y
i=0

³
(1+(3i+3)x¡1x¡4)
(1+(3i+4)x0x¡3)

´
,

x6n+3 =
xn+1
¡1 xn+1

¡4
xn+1
0 xn

¡3(1+2x¡1x¡4)

n¡1Y
i=0

³
(1+(3i+3)x0x¡3)
(1+(3i+5)x¡1x¡4)

´
.

Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n ¡ 1. That is;

x6n¡8 =
x¡2xn¡1

0 xn¡1
¡3

xn¡1
¡1 xn¡1

¡4

n¡2Y
i=0

(1+(3i+1)x¡1x¡4)
(1+(3i+2)x0x¡3)

, x6n¡7 =
xn
¡1x

n¡1
¡4

xn¡1
0 xn¡1

¡3

n¡2Y
i=0

(1+(3i+1)x0x¡3)
(1+(3i+3)x¡1x¡4)

,

x6n¡6 =
xn
0 xn¡1

¡3
xn¡1
¡1 xn¡1

¡4

n¡2Y
i=0

1+(3i+2)x¡1x¡4
1+(3i+3)x0x¡3

, x6n¡5 =
xn
¡1x

n
¡4

x¡2xn¡1
0 xn¡1

¡3 (1+x¡1x¡4)

n¡2Y
i=0

1+(3i+2)x0x¡3
1+(3i+4)x¡1x¡4

,

x6n¡4 =
xn
0xn

¡3
xn
¡1x

n¡1
¡4 (1+x0x¡3)

n¡2Y
i=0

³
(1+(3i+3)x¡1x¡4)
(1+(3i+4)x0x¡3)

´
,

x6n¡3 =
xn
¡1x

n
¡4

xn
0xn¡1

¡3 (1+2x¡1x¡4)

n¡2Y
i=0

³
(1+(3i+3)x0x¡3)
(1+(3i+5)x¡1x¡4)

´
.

Now, it follows from Eq.(2) that

x6n¡2 =
x6n¡4x6n¡7

x6n¡5(1+x6n¡4x6n¡7)

3
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=

xn
0 xn¡3

xn¡1xn¡1
¡4 (1+x0x¡3)

n¡2Q
i=0

(
(1+(3i+3)x¡1x¡4)
(1+(3i+4)x0x¡3)

)
xn¡1xn¡1

¡4
xn¡1
0 xn¡1

¡3

n¡2Q
i=0

(
(1+(3i+1)x0x¡3)
(1+(3i+3)x¡1x¡4)

)
µ

xn
¡1x

n
¡4

x¡2xn¡1
0 xn¡1

¡3 (1+x¡1x¡4)

n¡2Q
i=0

³
(1+(3i+2)x0x¡3)
(1+(3i+4)x¡1x¡4)

´¶
µ
1 +

xn
0 xn

¡3
xn
¡1x

n¡1
¡4 (1+x0x¡3)

n¡2Q
i=0

³
(1+(3i+3)x¡1x¡4)
(1+(3i+4)x0x¡3)

´
xn
¡1x

n¡1
¡4

xn¡1
0 xn¡1

¡3

n¡2Q
i=0

³
(1+(3i+1)x0x¡3)
(1+(3i+3)x¡1x¡4)

´¶

=

x0x¡3
(1+x0x¡3)

n¡2Q
i=0

(
(1+(3i+1)x0x¡3)
(1+(3i+4)x0x¡3)

)
 xn¡1xn¡4

x¡2xn¡1
0 xn¡1

¡3 (1+x¡1x¡4)

n¡2Q
i=0

(
(1+(3i+2)x0x¡3)
(1+(3i+4)x¡1x¡4)

)1+ x0x¡3
(1+x0x¡3)

n¡2Q
i=0

(
(1+(3i+1)x0x¡3)
(1+(3i+4)x0x¡3)

)
=

³
x¡2xn¡1

0 xn¡1
¡3 (1+x¡1x¡4)

xn
¡1x

n
¡4

´ n¡2Q
i=0

³
(1+(3i+4)x¡1x¡4)
(1+(3i+2)x0x¡3)

´ x0x¡3
(1+(3n¡2)x0x¡3)(

1+
x0x¡3

(1+(3n¡2)x0x¡3)
)

=
³

x¡2xn
0xn

¡3(1+x¡1x¡4)
xn
¡1x

n
¡4

´ n¡2Q
i=0

³
(1+(3i+4)x¡1x¡4)
(1+(3i+2)x0x¡3)

´
1

(1+(3n¡1)x0x¡3) .

Hence, we have

x6n¡2 =
x¡2xn

0xn
¡3

xn
¡1x

n
¡4

n¡1Y
i=0

³
(1+(3i+1)x¡1x¡4)
(1+(3i+2)x0x¡3)

´
.

Similarly
x6n¡1 =

x6n¡3x6n¡6
x6n¡4(1 + x6n¡3x6n¡6)

=

xn¡1xn¡4
xn
0 xn¡1

¡3 (1+2x¡1x¡4)

n¡2Q
i=0

(
(1+(3i+3)x0x¡3)
(1+(3i+5)x¡1x¡4)

)
xn
0 xn¡1

¡3
xn¡1
¡1 xn¡1

¡4

n¡2Q
i=0

(
(1+(3i+2)x¡1x¡4)
(1+(3i+3)x0x¡3)

)
µ

xn
0xn

¡3
xn
¡1x

n¡1
¡4 (1+x0x¡3)

n¡2Q
i=0

³
(1+(3i+3)x¡1x¡4)
(1+(3i+4)x0x¡3)

´¶
µ
1 +

xn
¡1x

n
¡4

xn
0xn¡1

¡3 (1+2x¡1x¡4)

n¡2Q
i=0

³
(1+(3i+3)x0x¡3)
(1+(3i+5)x¡1x¡4)

´
xn
0 xn¡1

¡3
xn¡1
¡1 xn¡1

¡4

n¡2Q
i=0

³
(1+(3i+2)x¡1x¡4)
(1+(3i+3)x0x¡3)

´¶

=

x¡1x¡4
(1+2x¡1x¡4)

n¡2Q
i=0

(
(1+(3i+2)x¡1x¡4)
(1+(3i+5)x¡1x¡4)

)
 xn

0 xn¡3
xn¡1xn¡1

¡4 (1+x0x¡3)

n¡2Q
i=0

(
(1+(3i+3)x¡1x¡4)
(1+(3i+4)x0x¡3)

)1+ x¡1x¡4
(1+2x¡1x¡4)

n¡2Q
i=0

(
(1+(3i+2)x¡1x¡4)
(1+(3i+5)x¡1x¡4)

)

=
³

xn
¡1x

n¡1
¡4 (1+x0x¡3)

xn
0xn

¡3

´ n¡2Q
i=0

³
(1+(3i+4)x0x¡3)
(1+(3i+3)x¡1x¡4)

´ x¡1x¡4
(1+(3n¡1)x¡1x¡4)(

1+
x¡1x¡4

(1+(3n¡1)x¡1x¡4)
)

=
³

xn
¡1x

n¡1
¡4 (1+x0x¡3)

xn
0xn

¡3

´ n¡2Q
i=0

³
(1+(3i+4)x0x¡3)
(1+(3i+3)x¡1x¡4)

´
x¡1x¡4

(1+(3n)x¡1x¡4)
.

Hence, we have

x6n¡1 =
xn+1
¡1 xn

¡4
xn
0xn

¡3

n¡1Q
i=0

³
(1+(3i+1)x0x¡3)
(1+(3i+3)x¡1x¡4)

´
.

Similarly, we can easily obtain the other relations. Thus, the proof is completed.
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Theorem 2 Eq.(2) has x = 0 as a unique equilibrium point and it is unstable.

Proof: For the equilibrium points of Eq.(2), set

x =
x2

x (1 + x2)
.

Then
x2

¡
1 + x2

¢
= x2, ) x2

¡
1 + x2 ¡ 1¢ = 0, ) x4 = 0.

Thus the equilibrium point of Eq.(2) is x = 0.
Let f : (0, 1)3 ¡! (0, 1) be a function de…ned by

f (t, u, v, w) = vw
u(1+vw)

.

Thus the linearized equation of Eq.(2) about the equilibrium point x is given by

yn+1 =
4P

i=0

∂f (x,x,x,x)
∂xn¡i

.

The proof follows by Theorem A.
Numerical examples

For con…rming the results of this section, we consider some numerical examples
which represent di¤erent types of solutions to Eq.(2).
Example 1. Consider Eq.(2) with x¡4 = 0.21, x¡3 = 2, x¡2 = 0.5, x¡1 = 7, x0 =
0.3. See Fig. 1.
Example 2. Consider Eq.(2) with x¡4 = 9, x¡3 = 2, x¡2 = 6, x¡1 = 7, x0 = 3.
See Fig. 2.
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Figure 1.
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Figure 2.
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3 On the Equation xn+1 =
xn¡1xn¡4

xn¡2(¡1+xn¡1xn¡4)

In this section we obtain the solution of the di¤erence equation

xn+1 =
xn¡1xn¡4

xn¡2(¡1 + xn¡1xn¡4)
, n = 0, 1, ..., (3)

where the initial values are arbitrary non zero real numbers with x¡1x¡4 6= 1, x¡3x0 6=
1.

Theorem 3 Every solution fxng1n=¡4 of Eq.(3) has the form

x12n¡4 =
x2n
0 x2n¡3

x2n¡1x
2n¡1
¡4

(¡1+x¡1x¡4)n

(¡1+x¡3x0)n
, x12n¡3 =

x2n
¡1x

2n
¡4

x2n0 x2n¡1¡3

(¡1+x¡3x0)n

(¡1+x¡1x¡4)n
,

x12n¡2 =
x¡2x2n0 x2n

¡3
x2n¡1x

2n
¡4

(¡1+x¡1x¡4)n

(¡1+x¡3x0)n
, x12n¡1 =

x2n+1¡1 x2n
¡4

x2n0 x2n¡3
(¡1+x¡3x0)n

(¡1+x¡1x¡4)n
,

x12n =
x2n+10 x2n

¡3
x2n
¡1x

2n
¡4

(¡1+x¡1x¡4)n

(¡1+x¡3x0)n
, x12n+1 =

x2n+1¡1 x2n+1
¡4

x¡2x2n0 x2n¡3
(¡1+x¡3x0)n

(¡1+x¡1x¡4)n+1
,

x12n+2 =
x2n+10 x2n+1¡3
x2n+1¡1 x2n¡4

(¡1+x¡1x¡4)n

(¡1+x¡3x0)n+1
, x12n+3 =

x2n+1¡1 x2n+1¡4
x2n+10 x2n

¡3

(¡1+x¡3x0)n

(¡1+x¡1x¡4)n
,

x12n+4 =
x¡2x2n+10 x2n+1

¡3
x2n+1¡1 x2n+1¡4

(¡1+x¡1x¡4)n+1

(¡1+x¡3x0)n
, x12n+5 =

x2n+2¡1 x2n+1
¡4

x2n+10 x2n+1
¡3

(¡1+x¡3x0)n+1

(¡1+x¡1x¡4)n+1
,

x12n+6 =
x2n+20 x2n+1¡3
x2n+1¡1 x2n+1¡4

(¡1+x¡1x¡4)n

(¡1+x¡3x0)n+1
, x12n+7 =

x2n+2¡1 x2n+2
¡4

x¡2x2n+10 x2n+1¡3

(¡1+x¡3x0)n

(¡1+x¡1x¡4)n+1
.

Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n ¡ 1. That is;

x12n¡16 =
x2n¡20 x2n¡2¡3
x2n¡2¡1 x2n¡3¡4

(¡1+x¡1x¡4)n¡1

(¡1+x¡3x0)n¡1
, x12n¡15 =

x2n¡2¡1 x2n¡2
¡4

x2n¡20 x2n¡3
¡3

(¡1+x¡3x0)n¡1

(¡1+x¡1x¡4)n¡1
,

x12n¡14 =
x¡2x2n¡20 x2n¡2¡3

x2n¡2¡1 x2n¡2¡4

(¡1+x¡1x¡4)n¡1

(¡1+x¡3x0)n¡1
, x12n¡13 =

x2n¡1¡1 x2n¡2¡4
x2n¡20 x2n¡2¡3

(¡1+x¡3x0)n¡1

(¡1+x¡1x¡4)n¡1
,

x12n¡12 =
x2n¡10 x2n¡2¡3
x2n¡2¡1 x2n¡2¡4

(¡1+x¡1x¡4)n¡1

(¡1+x¡3x0)n¡1
, x12n¡11 =

x2n¡1¡1 x2n¡1¡4
x¡2x2n¡20 x2n¡2¡3

(¡1+x¡3x0)n¡1

(¡1+x¡1x¡4)n
,

x12n¡10 =
x2n¡10 x2n¡1¡3
x2n¡1¡1 x2n¡2¡4

(¡1+x¡1x¡4)n¡1

(¡1+x¡3x0)n
, x12n¡9 =

x2n¡1
¡1 x2n¡1¡4

x2n¡1
0 x2n¡2¡3

(¡1+x¡3x0)n¡1

(¡1+x¡1x¡4)n¡1
,

x12n¡8 =
x¡2x2n¡10 x2n¡1¡3

x2n¡1¡1 x2n¡1¡4

(¡1+x¡1x¡4)n

(¡1+x¡3x0)n¡1
, x12n¡7 =

x2n¡1x
2n¡1
¡4

x2n¡1
0 x2n¡1¡3

(¡1+x¡3x0)n

(¡1+x¡1x¡4)n
,

x12n¡6 =
x2n0 x2n¡1¡3

x2n¡1¡1 x2n¡1¡4

(¡1+x¡1x¡4)n¡1

(¡1+x¡3x0)n , x12n¡5 =
x2n¡1x

2n
¡4

x¡2x2n¡1
0 x2n¡1¡3

(¡1+x¡3x0)n¡1

(¡1+x¡1x¡4)n .

Now, it follows from Eq.(3) that

x12n¡4 = x12n¡6x12n¡9
x12n¡7(¡1+x12n¡6x12n¡9)

=

(
x2n0 x2n¡1¡3

x2n¡1
¡1 x2n¡1

¡4
(¡1+x¡1x¡4)n¡1
(¡1+x¡3x0)

n

)(
x2n¡1¡1 x2n¡1¡4
x2n¡10 x2n¡2¡3

(¡1+x¡3x0)
n¡1

(¡1+x¡1x¡4)n¡1

)
x2n¡1x2n¡1¡4

x2n¡1
0

x2n¡1¡3
(¡1+x¡3x0)

n

(¡1+x¡1x¡4)n

(
¡1+ x2n

0 x2n¡1
¡3

x2n¡1¡1 x2n¡1¡4
(¡1+x¡1x¡4)n¡1
(¡1+x¡3x0)

n
x2n¡1¡1 x2n¡1¡4
x2n¡1
0

x2n¡2¡3
(¡1+x¡3x0)

n¡1

(¡1+x¡1x¡4)n¡1

)

=

(
x0x¡3

(¡1+x¡3x0)

)
(

x2n
¡1x

2n¡1
¡4

x2n¡10 x2n¡1¡3

(¡1+x¡3x0)n

(¡1+x¡1x¡4)n

)(
¡1+

(
x0x¡3

(¡1+x¡3x0)

)) = x2n0 x2n¡3
x2n¡1x

2n¡1
¡4

(¡1+x¡1x¡4)n

(¡1+x¡3x0)n
,
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x12n¡3 = x12n¡5x12n¡8
x12n¡6(¡1+x12n¡5x12n¡8)

=

x2n¡1x2n¡4
x¡2x2n¡1

0
x2n¡1¡3

(¡1+x¡3x0)
n¡1

(¡1+x¡1x¡4)n
x¡2x2n¡10 x2n¡1¡3

x2n¡1¡1 x2n¡1¡4
(¡1+x¡1x¡4)n

(¡1+x¡3x0)
n¡1

x2n0 x2n¡1
¡3 (¡1+x¡1x¡4)n¡1

x2n¡1¡1 x2n¡1¡4 (¡1+x¡3x0)
n

(
¡1+

x2n
¡1x

2n
¡4(¡1+x¡3x0)n¡1

x¡2x2n¡10 x2n¡1¡3 (¡1+x¡1x¡4)n
x¡2x2n¡10 x2n¡1¡3 (¡1+x¡1x¡4)n

x2n¡1¡1 x2n¡1¡4 (¡1+x¡3x0)
n¡1

)

=
x2n¡1¡1 x2n¡1¡4
x2n0 x2n¡1¡3

(¡1+x¡3x0)n

(¡1+x¡1x¡4)n¡1
x¡1x¡4

(¡1+x¡1x¡4) =
x2n
¡1x

2n
¡4

x2n0 x2n¡1¡3

(¡1+x¡3x0)n

(¡1+x¡1x¡4)n ,

Similarly, we can easily obtain the other relations. Thus, the proof is completed.

Theorem 4 Eq.(3) has three equilibrium points which are x = 0 and x = §p
2and

all of them are unstable.

Proof: The proof is similar to Theorem 2 and will be omitted.
Lemma 1. It is easy to see that every solution of Eq.(3) is unbounded except in the
case x¡3x0 = x¡1x¡4.

Theorem 5 Eq.(3) has a periodic solution of period twelve i¤ x¡3x0 = x¡1x¡4. More-
over the periodic solution has the following form(

x¡4, x¡3, x¡2, x¡1, x0,
x¡1x¡4

x¡2(¡1+x¡1x¡4)
, x0x¡3

x¡1(¡1+x¡3x0)
, x¡3, x¡2 (¡1 + x¡1x¡4) ,

x¡1, x0
(¡1+x¡3x0)

, x¡1x¡4
x¡2(¡1+x¡1x¡4)

, x¡4, x¡3, ...

)
.

Proof: First suppose that there exists a prime period twelve solution of Eq.(3) of
the following form(

x¡4, x¡3, x¡2, x¡1, x0,
x¡1x¡4

x¡2(¡1+x¡1x¡4)
, x0x¡3

x¡1(¡1+x¡3x0)
, x¡3, x¡2 (¡1 + x¡1x¡4) ,

x¡1, x0
(¡1+x¡3x0)

, x¡1x¡4
x¡2(¡1+x¡1x¡4)

, x¡4, x¡3, ...

)
.

Then we see from Theorem 3 that

x12n¡4 =
x2n0 x2n¡3

x2n¡1x
2n¡1
¡4

(¡1+x¡1x¡4)n

(¡1+x¡3x0)n
= x¡4, x12n¡3 =

x2n¡1x
2n
¡4

x2n
0 x2n¡1¡3

(¡1+x¡3x0)n

(¡1+x¡1x¡4)n
= x¡3,

x12n¡2 =
x¡2x2n0 x2n¡3

x2n¡1x
2n
¡4

(¡1+x¡1x¡4)n

(¡1+x¡3x0)n
= x¡2, x12n¡1 =

x2n+1
¡1 x2n¡4
x2n0 x2n¡3

(¡1+x¡3x0)n

(¡1+x¡1x¡4)n
= x¡1,

x12n =
x2n+10 x2n¡3(¡1+x¡1x¡4)n

x2n¡1x
2n
¡4(¡1+x¡3x0)n

= x0, x12n+1 =
x2n+1
¡1 x2n+1¡4 (¡1+x¡3x0)n

x¡2x2n0 x2n¡3(¡1+x¡1x¡4)n+1
= x¡1x¡4

x¡2(¡1+x¡1x¡4)
,

x12n+2 =
x2n+10 x2n+1¡3
x2n+1¡1 x2n¡4

(¡1+x¡1x¡4)n

(¡1+x¡3x0)n+1
= x0x¡3

x¡1(¡1+x¡3x0)
,

x12n+3 =
x2n+1¡1 x2n+1¡4
x2n+10 x2n¡3

(¡1+x¡3x0)n

(¡1+x¡1x¡4)n
= x¡3,

x12n+4 =
x¡2x2n+10 x2n+1¡3

x2n+1¡1 x2n+1¡4

(¡1+x¡1x¡4)n+1

(¡1+x¡3x0)n = x¡2 (¡1 + x¡1x¡4) ,

x12n+5 =
x2n+2¡1 x2n+1¡4
x2n+10 x2n+1¡3

(¡1+x¡3x0)n+1

(¡1+x¡1x¡4)n+1
= x¡1,

x12n+6 =
x2n+20 x2n+1¡3
x2n+1¡1 x2n+1¡4

(¡1+x¡1x¡4)n

(¡1+x¡3x0)n+1
= x0

(¡1+x¡3x0)
,

x12n+7 =
x2n+2¡1 x2n+2¡4

x¡2x2n+10 x2n+1¡3

(¡1+x¡3x0)n

(¡1+x¡1x¡4)n+1
= x¡1x¡4

x¡2(¡1+x¡1x¡4)
.
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Then we get (¡1 + x¡3x0) = (¡1 + x¡1x¡4) .
Second assume that (¡1 + x¡3x0) = (¡1 + x¡1x¡4) . Then we see from the form of
the solution of Eq.(3) that

x12n¡4 = x¡4, x12n¡3 = x¡3, x12n¡2 = x¡2, x12n¡1 = x¡1, x12n = x0,

x12n+1 = x¡1x¡4
x¡2(¡1+x¡1x¡4)

, x12n+2 =
x0x¡3

x¡1(¡1+x¡3x0)
, x12n+3 =

x¡1x¡4
x0

= x¡3,

x12n+4 = x¡2 (¡1 + x¡1x¡4) , x12n+5 = x¡1,

x12n+6 = x0
¡1+x¡3x0

, x12n+7 =
x¡1x¡4

x¡2(¡1+x¡1x¡4)
.

Thus we have a periodic solution of period twelve and the proof is complete.

Theorem 6 Eq.(3) has a periodic solution of period six i¤ x¡1x¡4 = x¡3x0 = 2 and

has the form
n

x¡4, x¡3, x¡2, x¡1, x0, 2
x¡2

, x¡4, x¡3, x¡2, ...
o

.

Proof: The proof is consequently from the previous Theorems and will be omitted.
In the following we present some …gures illustrate the behavior of the solutions of
Eq.(3) under some di¤erent initial values.
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plot of x(n+1)= x(n-1)x(n-4)/(x(n-2)(-1+x(n-1)x(n-4))

Figure 3.
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x(
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plot of x(n+1)= x(n-1)x(n-4)/(x(n-2)(-1+x(n-1)x(n-4))

Figure 4.
x¡4 = 3, x¡3 = 2, x¡2 = 5, x¡4 = 3, x¡3 = 2, x¡2 = 3,
x¡1 = 4, x0 = 6. x¡1 = 2/3, x0 = 1.

The following cases can be treated similarly.

4 On the Equation xn+1 =
xn¡1xn¡4

xn¡2(1¡xn¡1xn¡4)

In this section we get the solution of the third following equation

xn+1 =
xn¡1xn¡4

xn¡2(1¡xn¡1xn¡4)
, n = 0, 1, ..., (4)

where the initial values are arbitrary positive real numbers.
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Theorem 7 Assume that fxng1n=¡4 be a solution of Eq.(4). Then for n = 0, 1, ...

x6n¡2 =
x¡2xn

0xn
¡3

xn
¡1x

n
¡4

n¡1Y
i=0

³
(1¡(3i+1)x¡1x¡4)
(1¡(3i+2)x0x¡3)

´
, x6n¡1 =

xn+1
¡1 xn

¡4
xn
0xn

¡3

n¡1Y
i=0

³
(1¡(3i+1)x0x¡3)
(1¡(3i+3)x¡1x¡4)

´
,

x6n =
xn+1
0 xn

¡3
xn
¡1x

n
¡4

n¡1Y
i=0

³
1¡(3i+2)x¡1x¡4
1¡(3i+3)x0x¡3

´
, x6n+1 =

xn+1
¡1 xn+1

¡4
x¡2xn

0xn
¡3(1¡x¡1x¡4)

n¡1Y
i=0

³
1¡(3i+2)x0x¡3
1¡(3i+4)x¡1x¡4

´
,

x6n+2 =
xn+1
0 xn+1

¡3
xn+1
¡1 xn

¡4(1¡x0x¡3)

n¡1Y
i=0

³
(1¡(3i+3)x¡1x¡4)
(1¡(3i+4)x0x¡3)

´
,

x6n+3 =
xn+1
¡1 xn+1

¡4
xn+1
0 xn

¡3(1¡2x¡1x¡4)

n¡1Y
i=0

³
(1¡(3i+3)x0x¡3)
(1¡(3i+5)x¡1x¡4)

´
.

Theorem 8 Eq.(4) has the unique equilibrium point x = 0 and it is unstable.

Example 3. Consider Eq.(4) with x¡4 = 3, x¡3 = 5, x¡2 = 2, x¡1 = 2/3, x0 =
0.4. See Fig. 5.

0 10 20 30 40 50 60 70 80 90 100
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-2

-1

0

1

2

3

4

5

n

x(
n)

plot of x(n+1)= x(n-1)x(n-4)/(x(n-2)(1-x(n-1)x(n-4))

Figure 5.

5 On the Equation xn+1 =
xn¡1xn¡4

xn¡2(¡1¡xn¡1xn¡4)

Here we obtain the analytical form of the solutions of the equation

xn+1 =
xn¡1xn¡4

xn¡2(¡1¡xn¡1xn¡4)
, n = 0, 1, ..., (5)

where the initial values are arbitrary non zero real numbers with x¡1x¡4 6= ¡1, x¡3x0 6=
¡1.
Theorem 9 Let fxng1n=¡4 be a solution of Eq.(5). Then for n = 0, 1, 2, ... the solution
of Eq.(5) is given by

x12n¡4 =
x2n0 x2n¡3

x2n¡1x
2n¡1
¡4

(¡1¡x¡1x¡4)n

(¡1¡x¡3x0)n
, x12n¡3 =

x2n¡1x
2n
¡4

x2n0 x2n¡1¡3

(¡1¡x¡3x0)n

(¡1¡x¡1x¡4)n
,

x12n¡2 =
x¡2x2n0 x2n¡3

x2n¡1x
2n
¡4

(¡1¡x¡1x¡4)n

(¡1¡x¡3x0)n
, x12n¡1 =

x2n+1¡1 x2n¡4
x2n0 x2n

¡3
(¡1¡x¡3x0)n

(¡1¡x¡1x¡4)n
,

9
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x12n =
x2n+10 x2n¡3
x2n¡1x

2n
¡4

(¡1¡x¡1x¡4)n

(¡1¡x¡3x0)n , x12n+1 =
x2n+1¡1 x2n+1¡4
x¡2x2n

0 x2n¡3
(¡1¡x¡3x0)n

(¡1¡x¡1x¡4)n+1
,

x12n+2 =
x2n+10 x2n+1¡3
x2n+1¡1 x2n¡4

(¡1¡x¡1x¡4)n

(¡1¡x¡3x0)n+1
, x12n+3 =

x2n+1¡1 x2n+1¡4
x2n+10 x2n¡3

(¡1¡x¡3x0)n

(¡1¡x¡1x¡4)n ,

x12n+4 =
x¡2x2n+1

0 x2n+1¡3
x2n+1¡1 x2n+1¡4

(¡1¡x¡1x¡4)n+1

(¡1¡x¡3x0)n
, x12n+5 =

x2n+2
¡1 x2n+1¡4

x2n+1
0 x2n+1¡3

(¡1¡x¡3x0)n+1

(¡1¡x¡1x¡4)n+1
,

x12n+6 =
x2n+20 x2n+1¡3
x2n+1¡1 x2n+1¡4

(¡1¡x¡1x¡4)n

(¡1¡x¡3x0)n+1
, x12n+7 =

x2n+2¡1 x2n+2¡4
x¡2x2n+10 x2n+1¡3

(¡1¡x¡3x0)n

(¡1¡x¡1x¡4)n+1
.

Theorem 10 Eq.(5) has x = 0 as a unique equilibrium point which is unstable.

Lemma 2. It is easy to see that every solution of Eq.(5) is unbounded except in the
case x¡3x0 = x¡1x¡4.

Theorem 11 Eq.(5) has a periodic solution of period twelve i¤ x¡3x0 = x¡1x¡4.
Moreover the periodic solution has the form fx¡4, x¡3, x¡2, x¡1, x0,

x¡1x¡4
x¡2(¡1¡x¡1x¡4) ,

x0x¡3
x¡1(¡1¡x¡3x0)

, x¡3, x¡2 (¡1¡ x¡1x¡4) , x¡1, x0
¡1¡x¡3x0

, x¡1x¡4
x¡2(¡1¡x¡1x¡4)

, x¡4, ...g

Theorem 12 Eq.(5) has a periodic solution of period six i¤ x¡3x0 = x¡1x¡4 = ¡2
and will be taken the form fx¡4, x¡3, x¡2, x¡1, x0, ¡2x¡2

, x¡4, ...g.

Example 4. Fig. 6 below shows the behavior of the solution of Eq.(5) whenever
x¡4 = 3, x¡3 = 5, x¡2 = ¡7, x¡1 = 4, x0 = 2.
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Figure 6.
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Abstract: Many studies have reported empirical evidence of asymmetries in asset

return distributions. Meanwhile, optimal solutions to the Conditional Value-at-Risk

(CVaR) minimization are highly susceptible to estimation error of the risk measure be-

cause the estimate depends on only a small portion of sampled scenarios. In this paper,

based on the robust optimization techniques Chen et al.(2007)[19], we propose a compu-

tationally tractable worst-case Conditional Value-at-Risk (CVaR). In the situation, the

sampled scenario returns are generated by a factor model with some asymmetric affine

uncertainty set. The remarkable characteristic of the new method is that the robust

optimization model retains the complexity of original portfolio optimization problem,

i.e., the robust counterpart problem is still a linear programming problem. Moreover, it

takes into consideration asymmetries in the distributions of scenarios returns used for

defining CVaR. We present some numerical experiments with simulated and real market

data to illustrate the behavior of the robust optimization model.

Keywords: Portfolio optimization, Conditional value at risk(CVaR), Robust optimiza-

tion, Linear programming(LP).

1. Introduction

Portfolio optimization problem is an attractive and important research topic since the pioneering

Markowitz work on optimal portfolio selection [1]. It is now well known that while mean-variance

optimization is appropriate for symmetrically distributed portfolio returns, it results in unsatisfac-

tory asset allocations when returns are asymmetrically distributed, or when downside risk is more

weighted than upside risk.

∗E-mail: wfh@amss.ac.cn.
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Since the middle of 1990s, Value-at-Risk (VaR, [4]), a new measure of downside risk, has become

popular in financial risk management. It has even been recommended as a standard on banking

supervision by the Basel Committee. However, Critics have pointed out numerous shortcomings

of VaR [5]. On the other hand, Conditional Value-at-Risk (CVaR), defined as the mean of the

tail distribution exceeding VaR, has attracted much attention in recent years. As a measure of

risk, CVaR exhibits some better properties than VaR. First, it can deal with the asymmetric

distribution of asset return better than mean-variance analysis, especially for assets with returns

that are heavy-tailed. Secondly, minimizing CVaR usually results in solving a convex programming

problem, such as a linear programming problem, which allows the decision maker to deal with a

large-scale portfolio problem efficiently [6, 7]. Finally, Artzner et al.[5] demonstrate that CVaR

is a coherent measure of risk, which has been widely accepted as a benchmark to evaluate risk

measures. All these stimulate the application of CVaR in practice, and CVaR is getting more and

more popular in financial management.

In fact, it is noted that in the process of portfolio selection, the original data brought to the

model are not always accurate, i.e., it may be subject to some errors. Thus the result may be

influenced by perturbations in the parameters. As pointed out by Black and Litterman [8], in

the classical mean-variance model, the portfolio decision is very sensitive to the mean and the

covariance matrix, especially to the mean. Chopra and Ziemba [9] showed that small changes in

the input parameters can result in large changes in the optimal portfolio allocation. Thus, the

modeling risk arises due to the uncertainty of the underlying probability distribution.

Being aware of the importance of robustness in recent years, researchers from both finance

and operations research have paid increasing attentions to the robust version of portfolio selection

problems. Lobo and Boyd (2000)[10], Goldfarb and Iyengar (2003)[11] studied the robust port-

folio problem under the mean-variance framework. Instead of assuming precise information on

the mean and the covariance matrix of asset returns, they introduced some types of uncertainties,

such as polyhedral uncertainty, box uncertainty and ellipsoidal uncertainty, in the parameters in

determining the mean and the covariance matrix, and they then transformed the problem into

semidefinite programs(SDP) or second-order cone programs(SOCP), which can be efficiently solved

by interior-point algorithms developed in recent years. Halldórsson and Tütüncu (2004) [12] ap-

plied their interior-point method for saddle-point problems to the robust mean-variance portfolio

selection under the box uncertainty of the elements in the mean vector and the covariance matrix.

El Ghaoui, Oks and Oustry (2003)[13] investigated the robust portfolio optimization problem using

worst-case VaR, where only the first- and second-moment information on the distribution is avail-

able. Several formulations corresponding to various structures of partial information have been

extensively exploited to derive the resulting portfolio selection problems in a form of a semidefi-

nite program(SDP). Natarajan, Pachamanova, and Sim, (2008) [14] proposed a computationally

tractable approximation method for minimizing the VaR of a portfolio based on robust optimiza-

tion techniques in Chen et al.(2007)[19]. The method results in the optimization of a modified VaR

2
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measure, Asymmetry-Robust VaR, that takes into consideration asymmetries in the distributions

of returns and is coherent. Zhu and Fukushima (2009)[15] further investigated the worst-case CVaR

risk measure with several structures of uncertainty in the underlying distribution. They focus on

the uncertainty in the probability distribution used for defining CVaR. Such a modeling is called

distributionally robust modeling. It is true that the probability estimation itself is under uncertain-

ty and we cannot know the true one. However, it is not easy to imagine what form of uncertainty

set is proper for the probability measure. In this sense, employing the uncertainty of probability

distribution may not provide investors with a satisfactory solution.

On the other hand, since the estimate of CVaR is computed by using only an upper tail part of

the loss distribution, a large number of samples are required for assuring the statistical reliability

of the estimate. Especially when CVaR is employed as the objective of a portfolio optimization, a

much larger number of samples are required for ensuring the accuracy of the optimal portfolio. In

practice, however, the number of samples which is available for the estimation is limited, and the

estimated CVaR and the resulting optimal portfolio may contain considerable estimation error.

Meanwhile, many studies have reported empirical evidence of asymmetries and large kurtosis

in asset return distributions. Empirically, however, there is evidence that both short- and long-

horizon stock returns can be skewed and highly leptokurtic (Fama 1976 [22], Duffee 2002 [23]).

Furthermore, the returns of portfolios involving derivatives or credit risky assets can have extremely

left-skewed distributions (Schönbucher 2000 [24]). More recently, Ang and Chen (2002)[25] find that

the asymmetries in the data reject the null hypothesis of multivariate normal distributions. Conine

and Tamarkin (1981) [26] also claim that though diversification can change skewness exposure, the

remaining idiosyncratic skewness is relevant in asset pricing and thus portfolio optimization under

asymmetric distribution is a significant topic for research.

In this paper, we further study the Worse-Case Conditional Value-at-Risk by supposing the

sampled scenario returns are generated by a factor model with some asymmetric affine uncertainty

set in order to Mitigate the fragility of CVaR-based portfolio optimization problem. Motivated

by the works in Chen et al.(2007)[19], we provide a computationally tractable robust optimization

method for minimizing the Worse-Case CVaR of a portfolio. Moreover, it takes into consideration

asymmetries in the distributions of returns used for defining CVaR.

Notations: Throughout this paper, we use boldface letter such as x for vector to distinguish

it from scalar x.

2. Conditional value-at-risk (CVaR)

The conditional value-at-risk (CVaR) has gained growing popularity in financial risk management

due to the coherence property and tractability in its optimization.

Let f(x ,y) be the loss associated with the decision vector x , to be chosen from a certain subset

X of Rn, and the random vector y in Rm. For convenience, the underling probability of y will be

3
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assumed to have a density function p(.).

The probability of f(x ,y) not exceeding a threshold α is then given by

Ψ(x , α) =

∫
f(x ,y )≤α

p(y)dy . (2.1)

As a function of α for fixed x , Ψ(x , α) is the cumulative distribution function for the loss associated

with x .

For a confidence level β and a fixed x ∈ X the value-at-risk, denoted by VaRβ(x ) is defined as

VaRβ(x ) = min{α ∈ R : Ψ(x , α) ≥ β}. (2.2)

The conditional value-at-risk, denoted by CVaRβ(x ), is defined as the expected value of the loss

that exceeds VaRβ(x ), that is,

CVaRβ(x ) = (1− β)−1
∫
f(x ,y )≥VaRβ(x )

f(x ,y)p(y)dy . (2.3)

The CVaR is a coherent risk measure [5]. We note that the problem involved CVaRβ(x ) is difficult

to proceed due to its convoluted and implicit version. Rockafellar and Uryasev made a remarkable

contribution in [6] by introducing a simpler auxiliary function Fβ on X×R, defined by

Fβ(x , α) = α+ (1− β)−1
∫
y∈Rm

[f(x ,y)− α]+p(y)dy , (2.4)

In practice, the probability density function p(y) is often not available, or is very difficult to

estimate. Instead, we might have T different scenarios Y = (y [1],y [2], . . . ,y [T ]) that are sampled

from the probability distribution or that have been obtained from computer simulations. Evaluating

the auxiliary function F̃β(x , α) using the scenarios Y, we have

F̃β(x , α) = α+ (1− β)−1
T∑
t=1

πt[f(x ,y [t])− α]+, (2.5)

where y [t] denotes the tth sample (the subscript [t] is used to distinguish a vector from a scalar)

generated by simple random sampling with respect to x according to its density function p(.), and

T denotes the number of samples, where πt are probabilities of scenarios y [t]. If πt is equal to T−1

for all t, then (2.5) reduces to

F̃α(x , α) = α+
1

T (1− β)

T∑
t=1

[f(x ,y [t])− α]+. (2.6)

Obviously, F̃α(x , α) is convex and piecewise linear with respect to α. Further, F̃α(x , α) is convex

for (x , α) if f(x ,y) is convex (see Theorem 2 in [6]). Replacing [f(x ,y [t]) − α]+ by the auxiliary

variables dt along with appropriate constraints, we obtain the equivalent optimization problem

min
(x ,d ,α)∈Rn×RT×R

α+
1

T (1− β)

T∑
t=1

dt,

s.t. x ∈ X

dt ≥ f(x ,y [t])− α, t = 1, . . . , T, (2.7)

d ≥ 0.
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Generally, the loss and return functions of portfolio allocation are chosen by:

f(x ,y) = −xTy , Rp(x) = Ep[x
Ty ] = xTEp[y ] = xT r , (2.8)

in which y is the vector of the assets’ return, r is the vector of the expected assets’ return,

and xT r is the mean return of the portfolio. Hence, adding an auxiliary variable θ ∈ R, the

minimization model of CVaR (2.9) becomes the following linear programming (LP) problem with

variables (x ,d , α, θ) ∈ Rn × RT × R× R.

min θ

s.t. x ∈ X

α+
1

T (1− β)

T∑
t=1

dt ≤ θ, (2.9)

dt ≥ −xTy [t] − α, t = 1, . . . , T,

d ≥ 0.

Portfolio optimization tries to find an optimal trade-off between the risk and the return ac-

cording to the investor’s preference. Thus, the portfolio selection problem using CVaR as a risk

measure can be represented as

min
x∈X

CVaRβ(x )

where X denotes the constraint on the portfolio position, which usually includes the budget con-

straint and no short sales constraint

xT1 = 1, x ≥ 0. (2.10)

Let µ be the smallest expected return of the portfolio required by the investor. From (2.8), this

return requirement can be represented as

xT r ≥ µ. (2.11)

Therefore, the feasible decision set of portfolios can be denoted as

X = {x | xT1 = 1, x ≥ 0, xT r ≥ µ}. (2.12)

From (2.9) and 2.12, the mean-CVaR Portfolio optimization can be be written as the following

linear program

min θ

s.t. α+
1

T (1− β)

T∑
t=1

dt ≤ θ,

dt ≥ −xTy [t] − α, t = 1, . . . , T, (2.13)

d ≥ 0.

xT1 = 1, x ≥ 0, xT r ≥ µ.
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3. Worst-Case Conditional value-at-risk (CVaR)

However, optimal solutions to the CVaR minimization are highly susceptible to estimation error of

the risk measure because the estimate depends on only a small portion of sampled scenarios, for

example Y = (y [1],y [2], . . . ,y [T ]).

A practical way to alleviate the effect of such a perturbation is to employ a statistical model.

For example, Konno, Waki and Yuuki (2002) replace the observed returns Y = (y [1],y [2], . . . ,y [T ])

in 2.6 with values estimated by a regression approach. Based on the robust optimization techniques

in Chen et al.(2007)[19], we suppose that future asset returns r̃ are generated by the following factor

model

r = r0 + ∆r z , z ∈ C (3.1)

in which r0 is a vector of expected returns, and ∆r is a matrix of factor loadings. The factors z

are stochastically independent with following support set

C =
{
z : ∃v, w ∈ RN+ , z = v −w , ‖P−1v + Q−1w‖ ≤ Ω

}
, (3.2)

and P = diag(p1, . . . , pN ), Q = diag(q1, . . . , qN ). The parameters pj > 0 and qj > 0 are the

”forward”and the ”backward” deviations of random variable zj , j = 1, . . . , N , respectively. The

uncertainty set C is convex, and its size is controlled by Ω. Intuitively speaking, the uncertain

factors z are decomposed into two random variables: v = max{z , 0} and w = max{−z , 0}, so

that z = v − w . The multipliers 1
pj

and 1
qj

normalize the effective perturbation contributed by

both v and w such that the norm of the aggregated values falls within the budget of uncertainty.

Therefore, considered sampling error of the samples, we present the Sample-based Worst-Case

CVaR, its mathematical definition is as follows:

WSCVaRβ(x ) = sup
(r 1,...,rT )∈SΩ

CVaRβ(x ), ) (3.3)

where

SΩ =
{
r t : r t = r0

t + ∆r tz t, z t ∈ Ct)
}
, (3.4)

Ct =
{
z t : ∃v, w ∈ RN+ , z t = v t −w t, ‖P−1

t vt + Q−1
t wt‖ ≤ Ω

}
. (3.5)

Next, we prove the WSCVaR 3.3 is a coherent risk measure.

Theorem 3.1 If (r1, . . . , rT ) ∈ SΩ§then WSCVaR is a coherent risk measure.

Proof. Letting ρ(x ) = CVaRβ(x ), ρw(x ) = WSCVaRβ(x ), we have

ρw(x ) = sup
(r 1,...,rT )∈SΩ

ρ(x ).

As CVaRβ(x ) is a coherent risk measure, so ρ(x ) satisfies four axioms of Coherent risk measure.

In what following, we prove ρw(x ) also satisfies four axioms of Coherent risk measure.

6
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• Monotonicity: if x < y , then ρ(x ) < ρ(y). Therefore

ρw(x ) = sup
(r 1,...,rT )∈SΩ

ρ(x ) < sup
(r 1,...,rT )∈SΩ

ρ(y) = ρw(y);

• subadditivity: for all x ,y , we have

ρw(x + y) = sup
(r 1,...,rT )∈SΩ

ρ(x + y) ≤ sup
(r 1,...,rT )∈SΩ

[ρ(x ) + ρ(y)] = ρw(x ) + ρw(y);

• positive homogeneity: for any λ > 0, we have

ρw(λx ) = sup
(r 1,...,rT )∈SΩ

ρ(λx ) = λ sup
(r 1,...,rT )∈SΩ

ρ(x ) = λρw(x );

• translation invariance: for any constant a ∈ R, we have

ρw(x + a) = sup
(r 1,...,rT )∈SΩ

ρ(x + a) = sup
(r 1,...,rT )∈SΩ

ρ(x ) + a = ρw(x ) + a.

Therefore, the theorem is true.

Chen, Sim and Sun [19] stated the uncertainty set SΩ is convex, and its size is determined by

Ω. Therefore, SΩ is a compact convex set. Let f(x ,y) = −xT r be the loss associated with the

decision vector x , to be chosen from a certain subset X of Rn, and the random vector r in Rm.

So, from 2.6, WSCVaR can be converted to the following form:

WSCVaRβ(x ) = max
(r 1,...,rT )∈SΩ

min
{
α+

1

T (1− β)

T∑
t=1

max{−rTt x − α, 0}
}
. (3.6)

Next, we will show the WSCVaR enjoys an important nature, in the process the dual-norm

‖u‖∗, (see Bertsimas and Sim [18]) is required. It is defined as:

‖u‖∗ = max
{‖x ‖≤1}

uTx .

Theorem 3.2 If (r1, . . . , rT ) ∈ SΩ, we have

WSCVaRβ(x) = CVaRβ(x) +
Ω

T (1− β)

T∑
t=1

‖ut‖∗. (3.7)

Proof. From 3.6, we can obtain

WSCVaRβ(x ) = max
(r 1,...,rT )∈SΩ

min
{
α+

1

T (1− β)

T∑
t=1

max{−rTt x − α, 0}
}

= max
z t∈Ct

min
{
α+

1

T (1− β)

T∑
t=1

max{−(r0
t )
Tx − (∆r tz t)

Tx − α, 0}
}

= CVaRβ(x ) + max
z t∈Ct

max
{ 1

T (1− β)

T∑
t=1

(∆r tz t)
Tx
}

= CVaRβ(x ) +
1

T (1− β)

T∑
t=1

max
z t∈Ct

{
z Tt y t

}
,y t = ∆rTt x .

7
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Observe that

max
{z t∈Ct}

z Tt y t

= max
{vt,wt∈R

N
+ :‖P−1

t vt+Q
−1

t wt‖≤Ω}
(v t −w t)

Ty t

= max
{vt,wt∈R

N
+ :‖v t+w t‖≤Ω}

(Pty t)
Tv t − (Qty t)

Tw t

= Ω‖ut‖∗

where ut = max{Pty t,−Qty t, 0} = max{Pty t,−Qty t}
Note: Theorem 3.7 indicates that the WSCVaR can be seen as the original CVaR plus a regular

item. It is easy to know that CVaRβ(x ) ≤ WSCVaRβ(x ). Obvious, WSCVaR is more cautious

than the original CVaR.

4. Computing WSCVaR and its application in portfolio manage-

ment

By the Chen, Sim and Sun [19] Theorem 2 and Theorem 3.2, adding an auxiliary variable ht ∈
R, t = 1, 2, . . . , T , the WSCVaR (3.7) can be transformed into the following form

min α+
1

T (1− β)

T∑
t=1

dt + +
Ω

T (1− β)

T∑
t=1

ht,

s.t. ‖u t‖∗ ≤ ht, t = 1, 2, . . . T,

ut ≥ −Pt∆rTt x , t = 1, 2, . . . T, (4.1)

ut ≥ Qt∆rTt x , t = 1, 2, . . . T,

dt ≥ (r0
t )
Tx − α, t = 1, . . . , T,

d ≥ 0.

The complete formulation and complexity class of the robust counterpart depends on the repre-

sentation of the dual norm constraint, ‖u t‖∗ ≤ ht, t = 1, 2, . . . T . Table 1 lists the common choices

of norms, the representation of their dual norms which is come from reference [18](See page 14,

Table 2).

Table 1: Representation of the dual norm for u ≥ 0.

Norms ‖t‖ ‖u‖∗ ≤ h

l2 ‖t‖2 ‖u‖2 ≤ h

l1 ‖t‖1 uj ≤ h,∀j = {1, . . . , N}

l∞ ‖t‖∞
N∑
j=1

uj ≤ h

l1
⋂
l∞ max{ 1

Ω‖t‖1, ‖t‖∞ } Ωδ +
N∑
j=1

vj ≤ h; vj + δ ≥ uj , ∀j ∈ N ; δ ∈ R+, v ∈ RN+

8
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In [18], Bertsimas and Sim discussed the nature and size of the proposed robust conic problem.

In terms of keeping the model linear and simplicity in size, the l1 norm also is an attractive choice.

In this paper, we adopt l1 norm. So under l1 norm, the constraints ‖u t‖∗ ≤ ht, t = 1, 2, . . . T in

(4.1) is equivalent to

ujt ≤ ht,∀j = {1, . . . , N}, t = 1, 2, . . . T. (4.2)

Hence, the resulting problem (4.2) is still a linear constraint.

For the constraint term ut ≥ −Pt∆rTt x , t = 1, 2, . . . T in (4.1), as discussed in [18], when all

the data entries of the problem have independent random perturbation, we can further reduce

the size of the robust model. In this article, we assume that the dimension of x and u is identical

(n=N), that is, zjt in (3.4)is the independent random variable associated with the j-th data element,

and ∆r j contains mostly zeros except at the entries corresponding to the data element, such as

∆r jt = (0, . . . , 0,∆rjt , 0, . . . , 0)T . Then ujt ≥ −p
j
t (∆r jt )

Tx will reduce to ujt ≥ −p
j
t∆r

j
t · xj . Then,

the constraint term ut ≥ −Pt∆rTt x , t = 1, 2, . . . T in (4.1) can be transformed into the following

form

ujt ≥ −p
j
t∆r

j
t · xj , j = 1, . . . , n, t = 1, 2, . . . T. (4.3)

Based on investor preferences, portfolio optimization try to find the balance between risk and

return. Therefore, the WSCVaR-based portfolio problem can be expressed as

min
x∈X

WSCVaRβ(x ),

where X denotes the constraint on the portfolio position, which usually includes the budget con-

straint, no short sales constraint, and the return requirement. Therefore, the feasible decision set

of portfolios can be denoted as

X = {x | xT1 = 1, x ≥ 0, xT r ≥ µ}. (4.4)

From (4.1) (4.2) and (4.3), adding an auxiliary variable θ ∈ R, the AWCVaR-based robust port-

folio selection problem can be written as the following linear programming problem with variables

(x ,d ,u t, ht, θ, α)

min θ

s.t. α+
1

T (1− β)

T∑
t=1

dt + +
Ω

T (1− β)

T∑
t=1

ht ≤ θ,

ujt ≤ ht,∀j = {1, . . . , N}, t = 1, 2, . . . T,

ujt ≥ −p
j
t∆r

j
t · xj , j = 1, . . . , n, t = 1, 2, . . . T, (4.5)

ujt ≥ q
j
t∆r

j
t · xj , j = 1, . . . , n, t = 1, 2, . . . T,

dt ≥ (r0
t )
Tx − α, t = 1, . . . , T,

d ≥ 0,u t ≥ 0,

xT1 = 1, x ≥ 0, xT r ≥ µ.

9
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5. Computational Experiments

We compare the performance of minimizing-portfolio WSCVaR under our approach with the initial

CVaR method [6]. Firstly, we use simulated asset returns and show that our WSCVaR approach

performs well for negatively-skewed returns. Secondly, we compare initial CVaR method and the

robust portfolio optimization methods by employing a widely available data set of Hedge Funds

returns, from http://www.hedgeindex.com.

In our numerical experiments, the methods have the following meanings:

• ”CVaR” stands for the initial mean-CVaR Portfolio optimization model (2.13)[6];

• ”WSCVaR” stands for the robust mean-WSCVaR Portfolio optimization model (4.5).

We utilize Matlab2012 to solve models CVaR and WSCVaR, which are linear programming prob-

lems.

5.1. Experiments with Simulated Data

Consider a portfolio of n = 20 assets with uncertain returns r̃ti , i = 1, . . . , n, t = 1, . . . , T . Each

return r̃ti is determined by a simple single factor model r̃ti = r̂ti + z̃(ωti), where r̂ti = 1. The factors

z̃t(ωi) are independent and distributed as follows:

z̃(ωti) =


√
ωti(1−ω

t
i)

ωti
, with probability ωti ,

−
√
ωti(1−ω

t
i)

1−ωti
, with probability 1− ωti .

(5.1)

Note that the mean and the standard deviation of z̃(ωti) are the same for all ωti ∈ (0, 1) - they are

0 and 1, respectively. However, the degree of symmetry of z̃t(ωti) can be different. Higher values

for ωti(e.g., ω
t
i = 0.9) result in larger negative skew. We generate values for ωti as follows:

ωti =
1

2

(
1 +

i

N + t

)
, i = 1, . . . , n, t = 1, . . . , T. (5.2)

Therefore, the return distributions for stocks with high index numbers in the portfolio are more

negatively skewed than those for stocks with low index numbers.

We use exact values for the parameters in the CVaR and WSCVaR optimization problems.

These parameters include the standard deviation and average returns for the CVaR approaches,

and the backward and forward deviations for the WSCVaR approach are set to ptj = 1.5, qtj = 2.

∆rtj is set to the vector of standard deviation of asset returns estimated by the T samples. We

use a training set of 1,000 simulated returns from the above distributions that is T = 1000. The

optimal portfolio allocations resulting from the five approximate CVaR optimization approaches

for β = 1% are shown in Figure 1.

10
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Figure 1-Optimal portfolio weights (as proportions) for assets numbered 1 through 20 resulting

from different optimization formulations.

The behavior of the CVaR approach is erratic. In fact, the optimal weights for the portfolios

found by the CVaR approach vary widely from sample to sample. WSCVaR is able to detect the

asymmetry in the distributions, and allocates less in assets with more negatively skewed return

distributions (those with high index numbers).

5.2. Experiments with Hedge Funds

We select 12 Credit Suisse/Tremont Hedge Fund Indices (listed in Table 2) as the candidates

for constructing hedge fund portfolios. Monthly returns of these indices, from January 1994 to

December 2012 (240 samples in total) are used as the data set, which can be freely downloaded

from http://www.hedgeindex.com.

Table 2: Credit Suisse/Tremont Hedge Fund Indices

1 Convertible Arbitrage

2 Dedicated Short Bias

3 Emerging Markets

4 Equity Market Neutral

5 Event Driven

6 Distressed

7 Multi-Strategy

8 Risk Arbitrage

9 Fixed Income Arbitrage

10 Global Macro

11 Long/Short Equity

12 Managed Futures
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To construct an optimal portfolio with an accuracy to certain degree, we need to generate

adequate scenarios with the given 240 samples. A question we face first in scenario generation is

which distribution the asset returns follow. Statistic test shows that most of the distributions of

returns of these hedge fund indices are skewed and exhibit a high kurtosis. Thus, the returns should

not be modeled by a normal distribution. Table 3 shows the means and standard deviations of

these 12 asset returns within three different but overlapped time periods. Each of these three time

periods covers 100 months. The beginning and the end dates for each time period are specified

in Table 3. We find that, for most assets, there exist remarkable differences among three periods

for both the mean and the standard deviation, especially for the mean. For example, the mean of

asset 4 during the time period of 1/31/1994-4/30/2002 is 15 times of that during the time period

of 6/30/2002-9/30/2010.

Table 3: Mean and standard deviation of asset returns within different time periods

Time 1/31/1994-4/30/2002 8/31/1997-11/30/2005 6/30/2002-9/30/2010

Asset Mean Std Mean Std Mean Std

1 0.0084 0.0143 0.0066 0.0147 0.0046 0.0254

2 0.0005 0.0534 -0.0003 0.0534 -0.0036 0.0454

3 0.0061 0.0554 0.0048 0.0448 0.0091 0.0296

4 0.0090 0.0094 0.0076 0.0070 0.0006 0.0424

5 0.0094 0.0178 0.0080 0.0178 0.0072 0.0175

6 0.0110 0.0202 0.0092 0.0193 0.0070 0.0182

7 0.0086 0.0193 0.0073 0.0192 0.0074 0.0184

8 0.0078 0.0130 0.0056 0.0134 0.0041 0.0109

9 0.0057 0.0117 0.0039 0.0117 0.0029 0.0214

10 0.0117 0.0381 0.0088 0.0270 0.0087 0.0160

11 0.0107 0.0342 0.0096 0.0320 0.0062 0.0226

12 0.0038 0.0332 0.0062 0.0358 0.0075 0.0347

Since the distribution of asset returns is unknown, we adopt a distribution free method to

generate scenarios given in Topaloglou et al. (2002)[20] and Zhu et al. (2013)[16].

We use back test method to check the performances of the robust approaches and the traditional

approach in portfolio management, and the initial wealth is set at 1. Firstly, asset returns of the

first N=162 (from 1/31/1994 to 7/31/2007) months are used to generate T=500 scenarios. Portfo-

lio optimization models of the CVaR, and WSCVaR are then, respectively, solved to generate the

traditional and the robust portfolio strategies. In month N+1, the two portfolios are constructed

according to the derived strategies. At the beginning of month N+2, the scenarios are reproduced

using the data from month 2 up to month N+1. The portfolio models are then re-solved, respec-

tively, using the updated scenarios to generate new portfolio strategies for month N+1. The above

procedure repeats until the end of the data set.

In this experiments, we also use exact values for the parameters in the CVaR, WSCVaR

optimization problems. These parameters include the standard deviation and average returns

for the CVaR, and the backward and forward deviations for the WSCVaR approach are set to
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pjt = 1.5, qjt = 2. ∆rjt is set to the vector of standard deviation of asset returns estimated by the

i− th T samples.
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Figure 2-Portfolio Values for Out-of-Sample Observations When a Simple Buy-and-Hold Strategy

is Employed

From Figure 2, we can see the optimal portfolio allocation based on the WSCVaR approach

tends to result in stable returns, whereas, for example, the behavior of the optimal portfolio obtained

with the CVaR approach is some erratic. In addition, the portfolio Values for generated by the

WSCVaR model is better than the initial CVaR model at the end of investment period. But, during

the gradually declining period from June to October, 2008, robust portfolio strategies perform better

than the traditional ones in most cases.

6. Conclusion

With an asymmetric affine uncertainty set based on the factor model, which is often employed

in practice for estimating the asset return distribution, we propose a computationally tractable

robust optimization method for minimizing the Worse-Case CVaR of a portfolio. The remarkable

characteristic of the new method is that the robust optimization model retains the complexity of

original portfolio optimization problem, i.e., the robust counterpart problem is still a linear pro-

gramming problem. Specially in the new method, we incorporate information about asymmetries

in the distributions of uncertainties. We present some numerical experiments with simulated and

real market data to illustrate the behavior of robust optimization model.
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Abstract. In this paper, we introduce an interval-valued capacity which is motivated by

the goal to represent reasonable capacity and to define the Choquet integral with respect
to an interval-valued capacity. We also investigate some properties of the Choquet integral
with respect to an interval-valued capacity on the space of fuzzy sets and discuss their
applications, for examples, interval-valued similarity measure and interval-valued distance

measure induced by the Choquet integral with respect to an interval-valued capacity.

1. Introduction

The theory of fuzzy sets defined by Zadeh (1965) has been researching many new approaches
and theories, for examples, entropy, similarity measures, distance measures, Choquet integrals,
fuzzy sets, and intuitionistic fuzzy sets which are applied to theories treating reasonability and
uncertainty. Note that measuring the similarity between fuzzy sets is important in pattern
recognition research and decision making.

Balopoulos-Hatzimichailidis-Papadopoulos [2], Fan-Ma-Xie [5], Hong-Lee [6], Li-Sheng [13],
Liu [11], Turksen [22], Wang-Li [23], Wei-Chen [25], Xu-Xia [26], Zeng-Li [27], Zeng-Guo
[28], and Zhang-Zhang-Mei [29] have studied some properties and applications of similarity
measures, entropy, and distance measures on interval-valued fuzzy sets (or fuzzy set), and
Choquet [3], Murofushi-Sugeno [15,16], and Narukawa-Murofushi-Sugeno [18,19] have studied
the theory of fuzzy measures(or capacity) and Choquet integrals. Couso-Montes-Gil [4], Jang
[12], Murofushi-Sugen0-Suzaki [17], Pedrycz-Yang-Ha [20], andWang [24] have studied various
convergence properties of the Choquet integral with respect to a capacity.

By using interval-valued functions, we have studied the Choquet integral with respect to a
fuzzy measure of interval-valued functions which are able to better handle the representation
of decision making and information theory (see [7-11]). Recently, we studied some convergence
properties of the Choquet integral with respect to an interval-valued capacity functional (see

1991 Mathematics Subject Classification. 28E10, 28E20, 03E72, 26E50 11B68.
Key words and phrases. Choquet integral, fuzzy set, interval-valued capacity, interval-valued similarity

measure.
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[12]). Main purpose of this paper is to provide some applications of the Choquet integral with
respect to an interval-valued capacity on the space of all fuzzy sets.

In section 2, we define an interval-valued similarity measure and an interval-valued distance
measure, and discuss some basic properties of them. In section 3, we define an interval-valued
capacity and the Choquet integral with respect to an interval-valued capacity of a fuzzy
set, and discuss some properties of them. In section 4, we prove that an interval-valued
mapping induced by the Choquet integral with respect to a continuous from below interval-
valued capacity is an interval-valued similarity measure on the space of fuzzy sets, and discuss
their applications, for examples, the interval-valued similarity measure and the interval-valued
distance measure. In section 5, we discuss various convergence properties of the interval-valued
distance measure induced by the Choquet integral with respect to an interval-valued capacity.
In section 6, we give a brief summary results and some conclusions.

2. Choquet integrals and interval-valued similarity measures

In this section, we consider the Choquet integral with respect to a capacity and discuss
their properties. Let [0, 1] be the unit interval in the set of real numbers and Ω be a σ-algebra
on a set X.

Definition 2.1. ([14-17]) (1) A real-valued set function µ : Ω −→ [0, 1] is called a capacity if
it satisfies the following properties:

(i) µ(∅) = 0 and µ(X) = 1, and
(ii) µ(E1) ≤ µ(E2) whenever E1, E2 ∈ Ω and E1 ⊂ E2.
(2) A capacity µ is said to be continuous from below if for each increasing sequence {En} ⊂

Ω, µ(∪∞
n=1En) = limn→∞ µ(En).

(3) A capacity µ is said to be continuous from above if for each decreasing sequence
{En} ⊂ Ω, µ(∩∞

n=1En) = limn→∞ µ(En).
(4) A capacity µ is said to be continuous if it is continuous from above and continuous

from below.
(5) A capacity µ is said to be subadditive if µ(E1 ∪ E2) ≤ µ(E1) + µ(E2) whenever

E1, E2 ∈ Ω and E1 ∩ E2 = ∅.

We consider the Choquet integral with respect to a capacity which was introduced by
Murofushi at el ([15-17]). Throughout this paper, we assume that the membership function
of a fuzzy set A is a measurable function ηA from X to [0, 1].

Definition 2.2. ([14-17]) (1) The Choquet integral with respect to a capacity µ of a fuzzy
set A is defined by

(C)

∫
Adµ =

∫ 1

0

µηA(r)dr (1)

where µηA(r) = µ({x ∈ X|ηA(x) > r}) for all r ∈ [0, 1] and the integral on the right-hand
side is the Lebesgue integral of µηA .

(2) A fuzzy set A is said to be µ-integrable if the Choquet integral of A on X exists.

We note that if A,B are fuzzy sets on X, then A ≤ B means ηA(x) ≤ ηB(x) for all x ∈ X
and that ηA∨B(x) = ηA(x) ∨ ηB(x) and ηA∧B(x) = ηA(x) ∧ ηB(x) for all x ∈ X.

Theorem 2.1. ([14-17]) Let A and B be µ-integrable fuzzy sets.
(1) If A ≤ B, then (C)

∫
Adµ ≤ (C)

∫
Bdµ.

(2) If E1, E2 ∈ Ω and E1 ⊂ E2, then (C)
∫
E1
Adµ ≤ (C)

∫
E2
Adµ.
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(3) If we define ηA∨B = ηA(x) ∨ ηB(x) and ηA∧B(x) = ηA(x) ∧ ηB(x) for all x ∈ X, then

(C)

∫
A ∨Bdµ ≥ (C)

∫
Adµ ∨ (C)

∫
Bdµ,

and

(C)

∫
A ∧Bdµ ≤ (C)

∫
Adµ ∧ (C)

∫
Bdµ.

Let [[0, 1]] is the set of all closed intervals in [0, 1] as follows:

[[0, 1]] = {ā = [a−, a+]|a−, a+ ∈ [0, 1] and a− ≤ a+}.

For any a ∈ [0, 1], we define a = [a, a]. Obviously, a ∈ [[0, 1]](see [7-13, 21-223, 25, 27-29]).

Definition 2.3. Let I be an index set. If ā = [a−, a+], b̄ = [b−, b+], ān = [a−n , a
+
n ] ∈ [[0, 1]] for

all n ∈ N and k ∈ [0, 1], then we define arithmetic, minimum, maximum, order, and inclusion
operations as follows:

(1) kā = [ka−, ka+],
(2) āb̄ = [a−b−, a+b+],
(3) ā ∧ b̄ = [a− ∧ b−, a+ ∧ b+],
(4) ā ∨ b̄ = [a− ∨ b−, a+ ∨ b+],
(5) ā ≤ b̄ if and only if a− ≤ b− and a+ ≤ b+,
(6) ā < b̄ if and only if ā ≤ b̄ and ā ̸= b̄,
(7) ā ⊂ b̄ if and only if b− ≤ a− and a+ ≤ b+,
(8) 1− ā = [1− a+, 1− a−],
(9) supn∈I ān = [supn∈I a

−
n , supn∈I a

+
n ], and

(10) infn∈I ān = [infn∈I a
−
n , infn∈I a

+
n ].

Theorem 2.2. For ā, b̄, c̄ ∈ [[0, 1]], we have
(1) idempotent law: ā ∧ ā = ā and ā ∨ ā = ā,
(2) commutative law: ā ∧ b̄ = b̄ ∧ ā and ā ∨ b̄ = b̄ ∨ ā,
(3) associative law: (ā ∧ b̄) ∧ c̄ = ā ∧ (b̄ ∧ c̄) and (ā ∨ b̄) ∨ c̄ = ā ∨ (b̄ ∨ c̄),
(4) absorptive law: ā ∧ (ā ∨ b̄) = ā ∨ (ā ∧ b̄) = ā, and
(5) distributive law: ā ∧ (b̄ ∨ c̄) = (ā ∧ b̄) ∨ (ā ∧ c̄) and ā ∨ (b̄ ∧ c̄) = (ā ∨ b̄) ∧ (ā ∨ c̄).

Let F(X) be the family of all fuzzy sets A of X with the membership measurable function
ηA : X → [0, 1]. Recall that for A,B ∈ F(X), A ≡ B means µ({x ∈ X|ηA(x) ̸= ηB(x)}) = 0,
where µ is a capacity on X. We introduce the definitions of similarity measures and distance
measures on F(X), and some characterizations of them(see [2,5,6,14,26-29]).

Definition 2.4. (1) A real-valued function s : F(X) × F(X) −→ [0, 1] is called a similarity
measure if it satisfies the following properties:

(i) s(A,Ac) = 0 if A is a crisp set,
(ii) for A,B ∈ F(X), s(A,B) = 1 if and only if A ≡ B,
(iii) for A,B ∈ F(X), s(A,B) = s(B,A), and
(iv) if A,B,C ∈ F(X) and A ≤ B ≤ C, then s(A,C) ≤ s(A,B) and s(A,C) ≤ s(B,C).
(2) A real-valued function d : F(X) × F(X) −→ [0, 1] is called a distance measure if it

satisfies the following properties:
(i) d(A,Ac) = 1 if A is a crisp set,
(ii) for A,B ∈ F(X), d(A,B) = 0 if and only if A ≡ B,
(iii) for A,B ∈ F(X), d(A,B) = d(B,A), and
(iv) if A,B,C ∈ F(X) and A ≤ B ≤ C, then d(A,C) ≥ d(A,B) and d(A,C) ≥ d(B,C).
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It is easy to see that if s is a similarity measure and we define l1 = 1 − s, then l1 is a
distance measure and that if d is a distance measure and we define l2 = 1 − d, then l2 is a
similarity measure.

Definition 2.5. (1) An interval-valued function S = [s−, s+] : F(X) × F(X) −→ [[0, 1]] is
called an interval-valued similarity measure if it satisfies the following properties:

(i) S(A,Ac) = 0 if A is a crisp set,
(ii) for A,B ∈ F(X), S(A,B) = 1 if and only if A ≡ B,
(iii) for A,B ∈ F(X), S(A,B) = S(B,A), and
(iv) if A,B,C ∈ F(X) and A ≤ B ≤ C, then S(A,C) ≤ S(A,B) and S(A,C) ≤ S(B,C).
(2) An interval-valued function D = [d−, d+] : F(X)× F(X) −→ [[0, 1]] is called a distance

measure if it satisfies the following properties:
(i) D(A,Ac) = 1 if A is a crisp set,
(ii) for A,B ∈ F(X), D(A,B) = 0 if and only if A ≡ B,
(iii) for A,B ∈ F(X), D(A,B) = D(B,A), and
(iv) if A,B,C ∈ F(X) and A ≤ B ≤ C, then D(A,C) ≥ D(A,B) and D(A,C) ≥ D(B,C).

By the definitions of an interval-valued similarity measure and an interval-valued distance
measure, we can obtain the following theorem.

Theorem 2.3. (1) An interval-valued function S = [s−, s+] is an interval-valued similarity
measure if and only if real-valued functions s− and s+ are real-valued similarity measures,
and 0 ≤ s− ≤ s+ ≤ 1.

(2) An interval-valued function D = [d−, d+] is an interval-valued distance measure if and
only if real-valued functions d− and d+ are real-valued distance measures, and 0 ≤ d− ≤ d+ ≤
1.

(3) If S is an interval-valued similarity measure and we define H = 1−S = [1−s+, 1−s−],
then H is an interval-valued distance measure.

(4) If D is an interval-valued distance measure and we define L = 1−D = [1−d+, 1−d−],
then L is an interval-valued similarity measure.

Proof. (1) (=⇒) Suppose that S is an interval-valued similarity measure. If A is a crisp
set, then

0 = S(A,Ac) = [s−(A,Ac), s+(A,Ac)].

Thus s−(A,Ac) = 0 and s+(A,Ac) = 0. Since S(A,B) = S(B,A) for all A,B ∈ F(X),

s−(A,B) = s−(B,A) and s+(A,B) = S+(B,A).

Let A,B,C ∈ F(X) and A ≤ B ≤ C. Then we have

S(A,C) ≤ S(A,B) and S(A,C) ≤ S(B,C).

Thus, we have
s−(A,C) ≤ s−(A,B) and s−(A,C) ≤ s−(B,C),

and
s+(A,C) ≤ s+(A,B) and s+(A,C) ≤ s+(B,C),

Therefore, we obtain that s− and s+ are real-valued similarity measures and 0 ≤ s− ≤ s+ ≤ 1.
(⇐=) The proof is similar to the proof of (=⇒).
(2) The proof is similar to the proof of (1).
(3) Let S be an interval-valued similarity measure and we defineH = 1−S = [1−s+, 1−s−].

If A is a crisp set, then S(A,Ac) = 0. Thus, H(A,Ac) = 1 − S(A,Ac) = 1 − 1 = 0. Let
A,B ∈ F(X). Then, A ≡ B if and only if S(A,B) = 1, that is, H(A,B) = 1− S(A,B) = 0.
If A,B ∈ F(X), then S(A,B) = S(B,A). Then,

H(A,B) = 1− S(A,B) = 1− S(B,A) = H(B,A).
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If A,B,C ∈ F(X) and A ≤ B ≤ C, then

S(A,C) ≤ S(A,B) and S(A,C) ≤ S(B,C).

Thus, we have

H(A,C) = 1− S(A,C) ≥ 1− S(A,B) = H(A,B)

and

H(A,C) = 1− S(A,C) ≥ 1− S(B,C) = H(B,C).

Therefore, H is an interval-valued distance measure.
(4) The proof is similar to the proof of (3).

3. The Choquet integral with respect to an interval-valued capacity

In this section, we define an interval-valued capacity and the Choquet integral with respect
to an interval-valued capacity of a fuzzy set. Note that a mapping dH : [[0, 1]] × [[0, 1]] −→
[0,∞) is the Hausdorff metric defined by

dH(A,B) = max

{
sup
x∈A

inf
y∈B

|x− y|, sup
y∈B

inf
x∈A

|x− y|
}

(2)

for all A,B ∈ [[0, 1]], and ([[0, 1]], dH) is a metric space. By the definition of the Hausdorff
metric, it is easy to see that for any ā = [a−, a+], b̄ = [b−, b+] ∈ [[0, 1]], we have

dH(ā, b̄) = max
{
|a− − b−|, |a+ − b+|

}
. (3)

We recall that for any {ān} ⊂ [[0, 1]] and ā ∈ [[0, 1]],

dH − lim
n→∞

ān = ā means lim
n→∞

dH(ān, ā) = 0. (4)

We define an interval-valued capacity µ̄ = [µ−, µ+] : Ω −→ [[0, 1]] on a measurable space
(X,Ω) as follows:

Definition 3.1. (1) An interval-valued set function µ̄ : Ω −→ [[0, 1]] is called an interval-
valued capacity if it satisfies the following properties:

(i) µ̄(∅) = 0 and µ̄(X) = 1, and
(ii) µ̄(E1) ≤ µ̄(E2) whenever E1, E2 ∈ Ω and E1 ⊂ E2.
(2) An interval-valued capacity µ̄ is said to be continuous from above if for each increasing

sequence {En} ⊂ Ω, µ̄(∪∞
n=1En) = dH − limn→∞ µ̄(En).

(3) An interval-valued capacity µ̄ is said to be continuous from below if for each decreasing
sequence {En} ⊂ Ω, µ̄(∩∞

n=1En) = dH − limn→∞ µ̄(En).
(4) An interval-valued capacity µ̄ is said to be continuous if it is continuous from above

and continuous from below.
(5) An interval-valued capacity µ̄ is said to be subadditive if µ̄(E1 ∪E2) ≤ µ̄(E1) + µ̄(E2),

whenever E1, E2 ∈ Ω and E1 ∩ E2 = ∅.

It is easy to see that for each increasing sequence {En} ⊂ Ω with E = ∪∞
n=1En,

lim
n→∞

dH(µ̄(En), µ̄(E)) = 0 if and only if lim
n→∞

µ−(En) = µ−(E) and lim
n→∞

µ+(En) = µ+(E), (5)

and for each decreasing sequence {En} ⊂ Ω with F = ∩∞
n=1En,

lim
n→∞

dH(µ̄(En), µ̄(F )) = 0 if and only if lim
n→∞

µ−(En) = µ−(F ) and lim
n→∞

µ+(En) = µ+(F ). (6)

By (5) and (6), we can directly derive the following theorem.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

256 JEONG GON LEE et al 252-265



6 LEE-CHAE JANG

Theorem 3.1. (1) An interval-valued set function µ̄ = [µ−, µ+] : Ω −→ [[0, 1]] is an interval-
valued capacity if and only if µ− and µ+ are capacities and µ− ≤ µ+.

(2) An interval-valued capacity µ̄ = [µ−, µ+] is continuous from below if and only if µ−

and µ+ are continuous from below and µ− ≤ µ+.
(3) An interval-valued capacity µ̄ = [µ−, µ+] is continuous from above if and only if µ−

and µ+ are continuous from above and µ− ≤ µ+.
(4) An interval-valued capacity µ̄ = [µ−, µ+] is continuous if and only if µ− and µ+ are

continuous and µ− ≤ µ+.
(5) An interval-valued capacity µ̄ = [µ−, µ+] is subadditive if and only if µ− and µ+ are

subadditive and µ− ≤ µ+.

Recall that if ([0, 1],M,m) is the Lebesgue measure space and C([0, 1]) is the family of all
closed subsets of I, then the Aumann integral of a closed set-valued function G : [0, 1] −→
C([0, 1]) is defined by

(A)

∫
Gdm =

{∫
gdm| g ∈ S(G)

}
, (7)

where S(G) is the set of all integrable selections of G, that is,

S(G) = {g : [0, 1] −→ [0, 1]|
∫
gdm <∞ and g(r) ∈ G(r) m− a.e.}. (8)

We note that m − a.e. means almost everywhere in the Lebesgue measure m (see[1,16]).
Then, we introduce the following theorems which are used to define the Choquet integral
with respect to an interval-valued capacity of a fuzzy set.

Theorem 3.2. ([13, Lemma 2.1]) If a closed set-valued function G : [0, 1] −→ C([0, 1]) is
M-measurable, then (A)

∫
Gdm is convex in [0, 1].

Theorem 3.3. ([13, Lemma 2.2]) If a closed set-valued function G : [0, 1] −→ C([0, 1]) is M-
measurable and integrably bounded, that is, there exists a integrable function φ : [0, 1] −→ [0, 1]
such that

sup
x∈G(r)

x ≤ φ(r) for r ∈ [0, 1], (9)

then (A)
∫
Gdm is nonempty compact convex in [0, 1].

From Theorem 3.3, we can see that (A)
∫
Gdm is a nonempty bounded and closed subset in

[0, 1] under the same assumption of G. Thus, we obtain the following corollary (see [12,13,21]).

Corollary 3.4. If an interval-valued function G = [g−, g+] : I −→ [[0, 1]] is M-measurable
and integrably bounded, then g−, g+ ∈ S(F ) and

(A)

∫
Gdm =

[∫
g−dm,

∫
g+dm

]
, (10)

where the integrals on the right-hand side are the Lebesgue integral with respect to m.

We write
∫
gdm =

∫ 1

0
g(r)dm(r) for all measurable functions g. By using an interval-valued

capacity, we define the Choquet integral with respect to an interval-valued capacity of a fuzzy
set A.

Definition 3.2. (1) The Choquet integral with respect to an interval-valued capacity µ̄ of a
fuzzy set A ∈ F is defined by

(C)

∫
Adµ̄ = (A)

∫ 1

0

µ̄A(r)dr, (11)
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where ηA is the membership measurable function of A, µ̄A(r) = µ̄({x ∈ X|ηA(x) > r}) for all
r ∈ [0, 1], and the integral on the right-hand side is the Aumann integral in (7).

(2) A fuzzy set A ∈ F is said to be µ̄-integrable if (C)
∫
Adµ̄ ∈ [[0, 1]].

Note that if an interval-valued capacity µ̄ is continuous from below and A ∈ F(X), then
µ̄A : I −→ [[0, 1]] is continuous from below on [0, 1]. Thus, we obtain that µ̄A is M-measurable
and integrably bounded on [0, 1]. Thus, by Definition 3.2 and Corollary 3.4, we can easily
obtain the following theorem.

Theorem 3.5. If an interval-valued capacity µ̄ is continuous from below and A ∈ F, then we
have

(C)

∫
Adµ̄ =

[
(C)

∫
Adµ−, (C)

∫
Adµ+

]
, (12)

where the integrals on the right-hand side are Choquet integrals.

Proof. By Definition 3.2 and Corollary 3.4, we can derive

(C)

∫
Adµ̄ = (A)

∫ 1

0

µ̄A(r)dr

= (A)

∫ 1

0

[µ−
A(r), µ

+
A(r)]dr

=

[∫ 1

0

µ−
A(r)dr,

∫ 1

0

µ+
A(r)dr

]
=

[
(C)

∫
Adµ−, (C)

∫
Adµ+

]
.

By Theorem 3.5, we can easily obtain the following basic properties of the Choquet integrals
with respect to a continuous from below interval-valued capacity of a fuzzy set.

Theorem 3.6. Let (X,Ω) be a measurable space. Assume that an interval-valued µ̄ is con-
tinuous from below.

(1) If A,B ∈ F(X) and A ≤ B, then

(C)

∫
Adµ̄ ≤ (C)

∫
Bdµ̄.

(2) If A,B ∈ F(X) and we define η(A∨B)(x) = ηA(x) ∨ ηB(x) for all x ∈ X, then

(C)

∫
A ∨Bdµ̄ ≥ (C)

∫
Adµ̄ ∨ (C)

∫
Adµ̄.

(3) If A,B ∈ F(X) and we define η(A∧B)(x) = ηA(x) ∧ ηB(x) for all x ∈ X, then

(C)

∫
A ∧Bdµ̄ ≤ (C)

∫
Adµ̄ ∧ (C)

∫
Adµ̄.

4. Interval-valued similarity measures induced by the Choquet integral

In this section, we discuss some applications of the Choquet integral with respect to a
continuous from below interval-valued capacity of a fuzzy set.

Theorem 4.1. Assume that an interval-valued µ̄ is continuous from below and µ̄(X) =
{̄µ}(X) = 1. If we define an interval-valued function Sµ̄ : F× F −→ [[0, 1]] as following

Sµ̄(A,B) = 1− (C)

∫
|ηA − ηB|dµ̄ (13)

for all A,B ∈ F(X), then Sµ̄ is an interval-valued similarity measure.
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Proof. (i) If A is a crisp measurable set, then the membership measurable function ηA of
a fuzzy set A is defined by

ηA(x) =

{
1 if x ∈ A
0 if x ∈ Ac = I \A.

We note that if the membership measurable function ηAc of the complement of a fuzzy set A,
then

ηAc(x) =

{
0 if x ∈ A
1 if x ∈ Ac = I \A.

Thus, we have |ηA(x)− ηAc(x)| = 1 for all x ∈ X. Therefore, we have

Sµ̄(A,A
c) = 1− (C)

∫
|ηA − ηAc |dµ̄

= 1−
∫ 1

0

µ̄({x ∈ X| |ηA(x)− ηAc(x)| > r})dr

= 1−
∫ 1

0

µ̄(X)dr = 0.

(ii) If A ≡ B, then ηA = ηB µ̄− a.e. on X. Thus, we have

Sµ̄(A,B) = 1− (C)

∫
|ηA − ηB |dµ̄

= 1−
∫ 1

0

µ̄({x ∈ X| |ηA(x)− ηB(x)| > r})dr

= 1−
∫ 1

0

µ̄(∅)dr = 1.

If Sµ̄(A,B) = 1, then ∫ 1

0

µ̄({x ∈ X| |ηA(x)− ηB(x)| > r})dr = 0.

Then, it is easy to see that

µ̄({x ∈ X| |ηA(x)− ηB(x)| > r}) = 0 m− a.e. on I. (14)

From (14), we have

µ̄({x ∈ X| |ηA(x)− ηB(x)| ̸= 0}) = 0,

that is, ηA = ηB µ̄− a.e. on X and hence A ≡ B.
(iii) If A,B ∈ F(X), then we have

Sµ̄(A,B) = 1− (C)

∫
|ηA − ηB |dµ̄

= 1− (C)

∫
|ηB − ηA|dµ̄ = Sµ̄(B,A).

(iv) If A,B,C ∈ F(X) and A ≤ B ≤ C, then ηA ≤ ηB ≤ ηC . Thus, we have

|ηA(x)− ηB(x)| ≤ |ηA(x)− ηC(x)| and |ηB(x)− ηC(x)| ≤ |ηA(x)− ηC(x)|, (15)

for all x ∈ X. By (15) and Theorem 2.2 (1), we have

Sµ̄(A,C) = 1− (C)

∫
|ηA − ηC |dµ̄

≤ 1− (C)

∫
|ηA − ηB |dµ̄ = Sµ̄(A,B),
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and

Sµ̄(A,C) = 1− (C)

∫
|ηA − ηC |dµ̄

≤ 1− (C)

∫
|ηB − ηC |dµ̄ = Sµ̄(B,C),

By (i),(ii),(iii), and (iv), we see that Sµ̄ is an interval-valued similarity measure.
By Theorem 4.1 and Theorem 2.3(3), we can easily obtain the following corollary.

Corollary 4.2. Assume that an interval-valued µ̄ is continuous from below and µ̄(X) =
{̄µ}(X) = 1. If we define an interval-valued function Dµ̄ = 1 − Sµ̄ = (C)

∫
|ηA − ηB |dµ̄ for

all A,B ∈ F(X), then Dµ̄ is an interval-valued distance measure.

In order to illustrate the proposed similarity measure are reasonable, we give the following
example.

Example 4.1. Let X = {x1, x2, x3} and Ω = ℘(X) be the power set of X. Suppose that
µ̄ : Ω −→ [[0, 1]] is defined by

µ̄(E) = [µ−(E), µ+(E)], (16)

where m(E) is the cardinality of E ∈ Ω, µ−(E) =
(
m(E)
m(X)

)2
, and µ+(E) = m(E)

m(X) . Since X

is a finite set, clearly, we see that µ̄ is a continuous from below interval-valued capacity on
a measurable space (X,Ω) and µ̄(X) = {̄µ}(X) = 1. . The three patterns are denoted as
follows:

A1 = {(x1, 0.3), (x2, 0.2), (x3, 0.1)},
A2 = {(x1, 0.2), (x2, 0.2), (x3, 0.2)}, and
A3 = {(x1, 0.4), (x2, 0.4), (x3, 0.4)}.

Assume that a sample B = {(x1, 0.3), (x2, 0.2), (x3, 0.1)} is given. In order to interpret the
measure of similarity of B with these patterns, we calculate the proposed interval-valued
similarity measure Sµ̄ as follows:

Sµ̄(A1, B) = 1−
3∑
i=1

(|ηA1(x(i)) − ηB(x(i))|)(µ̄(A(i)) = 1, (17)

Sµ̄(A2, B) = 1−
3∑
i=1

(|ηA2(x(i)) − ηB(x(i))|)(µ̄(A(i)) =

[
14

15
,
43

45

]
, and (18)

Sµ̄(A3, B) = 1−
3∑
i=1

(|ηA3(x(i)) − ηB(x(i))|)(µ̄(A(i)) =

[
4

5
,
38

45

]
. (19)

By (17), (18), and (19), we interpret that B is equal(or, absolutely similar) to A1 and B is
more similar to A2 than similar to A3.

Example 4.2. Let X = {x1, x2, x3} and Ω = ℘(X) be the power set of X. Suppose that
ν̄ : Ω −→ [I] is defined by

ν̄(E) = [ν−(E), ν+(E)], (20)

where m(E) is the cardinality of E ∈ Ω, ν−(E) =
(
m(E)
m(X)

)3
, and ν+(E) =

(
m(E)
m(X)

)2
.

The three patterns are denoted as follows:

A1 = {(x1, 0.3), (x2, 0.2), (x3, 0.1)},
A2 = {(x1, 0.2), (x2, 0.2), (x3, 0.2)}, and
A3 = {(x1, 0.4), (x2, 0.4), (x3, 0.4)}.
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Assume that a sample B = {(x1, 0.3), (x2, 0.2), (x3, 0.1)} is given. In order to interpret the
measure of similarity of B with these patterns, we calculate the proposed interval-valued
similarity measure Sν̄ as follows:

Sν̄(A1, B) = 1, Sν̄(A2, B) =

[
43

45
,
131

135

]
, and Sν̄(A3, B) =

[
38

45
,
13

15

]
. (21)

Thus, we can see that there is an interpretation of the notions of these patterns under two
different interval-valued capacity µ̄ and ν̄ as follows:

Sµ̄(A1, B) = 1 = Sν̄(A1, B),

Sµ̄(A2, B) =

[
14

15
,
43

45

]
<

[
43

45
,
131

135

]
= Sν̄(A2, B), and

Sµ̄(A3, B) =

[
4

5
,
38

45

]
<

[
38

45
,
13

15

]
= Sν̄(A3, B).

Therefore, this means that ν̄ has more positive sense than µ̄.

5. Convergence in the interval-valued distance measure

Throughout this section, we assume that µ̄ = [µ−, µ+] is continuous from below. At
first, we introduce uniformly µ-integrability and convergence in the interval-valued distance
measure on F(X).

Definition 5.1. ([26]) Let µ be a capacity on a measurable space (X,Ω), {An} be a sequence
of fuzzy sets and A be a fuzzy set.

(1) A sequence {An} converges to A almost everywhere on X if there exist a null set N ∈ Ω
with µ(N) = 0 such that

ηA(x) = lim
n→∞

ηAn(x), for all x ∈ N c. (22)

(2) A sequence {An} converges in the distance measure dµ to A if

lim
n→∞

dµ(ηAn , ηA) = 0, (23)

where dµ(ηAn , ηA) = (C)
∫
|ηAn(x)− ηA(x)|dµ for all n ∈ N.

Remark that convergence in the distance measure dµ is equal to convergence in µ-mean(see
[4 ])

Definition 5.2. ([4]) Let µ be a capacity on a measurable space (X,Ω) and I ⊂ N be an
index set. A class {An}n∈I of fuzzy sets is said to be uniform µ-integrable if

(i) sup
n∈I

dµ(An, 0) <∞, (24)

(ii) ∀ε > 0, ∃δ(ε) > 0 such that dE,µ(An, 0) < ε if E ∈ Ω and µ(E) < δ(ε), (25)

where dE,µ(An, 0) = (C)
∫
E
|ηAn |dµ for all n ∈ N.

We also introduce various convergence properties of the Choquet integral on F(X) as
follows:

Theorem 5.1. ([4]) Let a capacity µ be subadditive and {An} a sequence of fuzzy sets in
F(X). Then {An} is an uniformly µ-integrable if and only if

lim
a→∞

sup
n∈N

d[|ηAn |>a],µ(An, 0) = 0. (26)
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Theorem 5.2. ([4]) Let a capacity µ be subadditive and a sequence {An} of fuzzy sets in
F(X) converges to a fuzzy set A in F(X) µ-almost everywhere on X and An ≤ B for some
µ-integrable fuzzy set B, then we have

(1) An and A are µ-integrable for all n ∈ N, and
(2) {An} converges to A in the distance measure dµ, that is,

lim
n→∞

dµ(An, 0) = 0. (27)

We assume that an interval-valued capacity µ̄(X) = [µ−, µ+] is continuous from below.
Then we define convergence in the interval-valued distance measure Dµ̄ and uniform µ̄-
integrability on f(X). It is easy to see that

Dµ̄(A,B) = [dµ−(A,B), dµ+(A,B)], for all A,B ∈ F(X). (28)

Definition 5.3. Let I ⊂ N be an index set.
(1) A sequence {An} converges in the interval-valued distance measure Dµ̄ to A if

dH − lim
n→∞

Dµ̄(An, A) = 0, (29)

where

dH − lim
n→∞

Dµ̄(An, A) = lim
n→∞

dH{Dµ̄(An, A), 0}

and

Dµ̄(An, A) = [dµ−(An, A), dµ−(An, A)]

for all n ∈ N.
(2) A class {An}n∈I of fuzzy sets in F(X) is said to be µ̄-integrable if

(i) sup
n∈I

Dµ̄(An, 0) <∞, (30)

(ii) ∀ε > 0, ∃δ(ε) > 0 such that DE,µ̄(An, 0) < ε if E ∈ Ω and µ̄(E) < δ(ε), (31)

where DE,µ̄(An, 0) = (C)
∫
E
|ηAn |dµ̄ for all n ∈ N.

By (3), it is easy to see that (29) holds if and only if

lim
n→∞

max{dµ−(An, A), dµ+(An, A)}) = 0, (32)

By Definition 5.1 and Definition 5.3, we obtain various convergence properties of the interval-
valued distance measure Dµ̄ as follows:

Theorem 5.3. Let I ⊂ N be an index set.
(1) A class {An}n∈I is uniformly µ̄-integrable if and only if it is uniformly µ−-integrable

and uniformly µ+-integrable, and µ− ≤ µ+.
(2) A sequence {An} of fuzzy sets in F(X) converges to a fuzzy set A ∈ F(X) in the interval-

valued distance measure Dµ̄ if and only if {An} converges to A in the distance measures dµ−

and dµ+ , and dµ− ≤ dµ+ .

Proof. (1) Let {An} be a sequence of fuzzy sets in F(X). If {An} converges to A in the
interval-valued distance measure Dµ̄, then, by (12) and (29),

lim
n→∞

dµ−(An, A) ≤ lim
n→∞

(max{dµ−(An, A), dµ+(An, A)})
= lim

n→∞
dH(Dµ̄(An, A), 0) = 0. (33)

As in the same method with (33), we obtain

lim
n→∞

dµ+(An, A) = 0. (34)

Thus, by (33) and (34), {An} converges to A in the distance measure dµ− and dµ+ .
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Conversely, if we take an interval-valued distance measure µ̄ = [µ−, µ+], then, similarly,
we can obtain the converse result.

(2) Suppose that {An}n∈I is uniformly µ̄-integrable and µ̄ is continuous from below. By
(12) and Definition2.3 (9), we have

sup
n∈I

Dµ̄(An, 0) = sup
n∈I

[dµ−(An, 0), dµ+(An, 0)]

= [sup
n∈I

dµ−(An, 0), sup
n∈I

dµ+(An, 0)] <∞, (35)

and for arbitrary ε > 0 and E ∈ Ω, there exists δ(ε) > 0 such that

sup
n∈I

DE,µ̄(An, 0) = sup
n∈I

[dE,µ−(An, 0), dE,µ+(An, 0)]

= [sup
n∈I

dE,µ−(An, 0), sup
n∈I

dE,µ+(An, 0)] < ε, (36)

if µ̄ < δ(ε). By (35) and (36), {An} converges to A in the distance measures dµ− and dµ+ ,
nd dµ− ≤ dµ+ .

Conversely, if we take an interval-valued distance measure µ̄ = [µ−, µ+], then, similarly,
we can obtain the converse result.

Theorem 5.4. Let an interval-valued capacity µ̄ be subadditive and {An} a sequence of fuzzy
sets in F(X). Then, {An} is an uniformly µ̄-integrable if and only if

lim
a→∞

sup
n∈N

D[|ηAn |>a],µ̄(An, 0) = 0. (37)

Proof. Since an interval-valued capacity µ̄ = [µ−, µ+] is subadditive, by Theorem 3.1(5),
µ− and µ+ are subadditive. From Theorem 5.3 (1), {An} is an uniformly µ̄-integrable if
and only if {An} is an uniformly µ−-integrable and an uniformly µ+-integrable. Thus, by
Theorem 5.1, {An} is an uniformly µ−-integrable if and only if

lim
a→∞

sup
n∈N

d[|ηAn |>a],µ−(An, 0) = 0 (38)

and {An} is an uniformly µ+-integrable if and only if

lim
a→∞

sup
n∈N

d[|ηAn |>a],µ+(An, 0) = 0 (39)

By (38) and (39), and (12), we have

lim
a→∞

sup
n∈N

dH(D|ηAn |>a],µ̄(An, 0), 0)

= lim
a→∞

sup
n∈N

max{d[|ηAn |>a],µ−(An, 0), d[|ηAn |>a],µ+(An, 0)} = 0. (40)

Conversely, by the similar method of the above proof, we can obtain the converse result.

Lemma 5.5. Assume that an interval-valued capacity µ̄ = [µ−, µ+] is continuous from below.
Then {An} is µ̄-integrable if and only if {An} is µ−-integrable and µ+-integrable

Proof. The proof is trivial.

Theorem 5.6. Let an interval-valued capacity µ be subadditive. If a sequence {An} of fuzzy
sets in F(X) converges to a fuzzy set A in F(X) µ-almost everywhere on X and An ≤ B for
some µ̄-integrable fuzzy set B, then we have

(1) An and A are µ̄-integrable for all n ∈ N, and
(2) {An} converges to A in the interval-valued distance measure Dµ̄, that is,

dH − lim
n→∞

Dµ̄(An, 0) = 0. (41)
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Proof. Since B is µ̄-integrable fuzzy set and An ≤ B, by Theorem 5.3 (1), we have
(i)An and A are µ−-integrable and µ−-integrable for all n ∈ N, and
(ii) {An} converges to A in the distance measure dµ− and in the distance measure dµ+ .
Thus, by Lemma 5.5 and Theorem 5.3 (1) and (12), we obtain
(1) An and A are µ̄-integrable for all n ∈ N, and
(2) {An} converges to A in the interval-valued distance measure Dµ̄, that is,

dH − lim
n→∞

Dµ̄(An, 0) = 0. (42)

6. Conclusions

In this paper, we define the concept of interval-valued capacity which means reasonable ca-
pacity. By using Aumann integral of integrably bounded interval-valued functions in Corollary
3.4, we consider the Choquet integral with respect to a continuous interval-valued capacity
of a fuzzy set.

From Definitions 2.3, 3.1, 3.2 and Theorems 3.5, 3.6, we discuss interval-valued similarity
measures induced by the Choquet integral with respect to a continuous interval-valued ca-
pacity on F(X). By Examples 4.1 and 4.2, it is possible that we interpret the interval-valued
measure of similarity of a sample with the three patterns. From Definitions 5.1, 5.2, 5.3, and
Theorems 5.3, 5.4, and 5.6, we can provide the concept of convergence in the interval-valued
distance measure and discuss various convergence properties of the interval-valued distance3
measure on the space of fuzzy sets for the Choquet integral.

In the future, by using these results of this paper, we can develop various problems and
models for representing uncertain similarity measures and uncertain distance measures in
pattern recognition research, information theory, decision making, and fuzzy risk analysis,
etc.

Acknowledgement This paper was supported by Wonkwang University in 2013.

References

[1] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965) 1-12.
[2] V. Balopoulos, A.G. Hatzimichailidis, B.K. Papadopoulos, Distance and similarity measures for fuzzy

operators, J. Math. Anal. Appl. 12 (1965) 1-12.

[3] G. Choquet, Theory of capacities, Ann. Inst. Fourier 5 (1953) 131-295.
[4] I. Couso, S. Montes, P. Gil, Stochastic convergence, uniform integrability and convergence in mean on

fuzzy measure spaces, Fuzzy Sets and Systems 129 (2002) 95-104.
[5] Jin-Lum Fan, Yuan-Liang Ma, and Wei-Xin Xie, On some properties of distance measures, Fuzzy Sets

and Systems , 117 (2001), 355-361.
[6] D.H. Hong, S.H. Lee, Some algebraic properties and distance measures for interval-valued fuzzy numbers,

Information Sciences, 148 (2002), 1-10.

[7] L.C. Jang, B.M. Kil, Y.K. Kim, J.S. Kwon, Some properties of Choquet integrals of set-valued functions,
Fuzzy Sets and Systems, 91 (1997), 61-67.

[8] L.C. Jang, J.S. Kwon, On the representation of Choquet integrals of set-valued functions and null sets,
Fuzzy Sets and Systems, 112 (2000), 233-239.

[9] L.C. Jang, Interval-valued Choquet integrals and their apllications, J. Appl. Math. and Computing, 16(1-
2) (2004), 429-445.

[10] L.C. Jang, A note on the monotone interval-valued set function defined by the interval-valued Choquet
integral, Commun. Korean Math. Soc., 22 (2007), 227-234.

[11] L.C. Jang, On properties of the Choquet integral of interval-valued functions, Journal of Applied Math-
ematics, 2011 (2011), Article ID 492149, 10pages.

[12] L.C. Jang, A note on convergence properties of interval-valued capacity functionals and Choquet integrals,
Information Sciences, 183 (2012), 151-158.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

264 JEONG GON LEE et al 252-265



14 LEE-CHAE JANG

[13] L.S. Li, Z. Sheng, The fuzzy set-valued measures generated by fuzzy random variables, Fuzzy Sets and
Systems, 97 (1998), 203-209.

[14] X. Liu, Entropy, distance measure and similarity measure of fuzzy sets and their relations, Fuzzy Sets
and Systems, 52 (1992), 305-318.

[15] T. Murofushi, M. Sugeno, An interpretation of fuzzy measures and the Choquet integral as an integral
with respect to a fuzzy measure, Fuzzy Sets and Systems, 29 (1989), 201-227.

[16] T. Murofushi, M. Sugeno, A theory of fuzzy measures: representations, the Choquet integral, and null

sets, J. Math. Anal. Appl., 159 (1991), 532-549.
[17] T. Murofushi, M. Sugeno,M. Suzaki, Autocontinuity, convergence in measure, and convergence in distri-

bution, Fuzzy Sets and Systems 92(2)(1997) 197-203.
[18] Y. Narukawa, T. Murofushi, M. Sugeno, Regular fuzzy measure and representation of comonotonically

additive functional, Fuzzy sets and Systems, 112 (2000), 177-186.
[19] Y. Narukawa, T. Murofushi, M. Sugeno, Extension and representation of comonotonically additive func-

tional, Fuzzy sets and Systems, 121 (2001), 217-226.
[20] W. Pedrycz, L. Yang, M. Ha, On the fundamental convergence in the (C) mean in problems of information

fusion, J. Math. Anal. Appl. 358 (2009) 203-222.
[21] P. Pucci, G. Vitillaro, A representation theroem for Aumann integrals, J. Math. Anal. Appl. , 102 (1984),

86-101.
[22] I.B. Turksen, Non-specificity and interval-valued fuzzy sets, Fuzzy sets and Systems, 80 (1996), 87-100.

[23] G. Wang and X. Li, The applications of interval-valued fuzzy numbers and interval-distribution numbers,
Fuzzy Sets and Systems, 98 (1998), 331-335.

[24] Z. Wang, Convergence theorems for sequences of Choquet integral, Int. Gen. Syst. 26 (1997) 133-143.
[25] S.H. Wei, S.M. Chen, Fuzzy risk analysis based on interval-valued fuzzy sets, Expert Systems with Appli-

cations, 36(2009), 2285-2299.
[26] Z. Xu, M. Xia, Distance and similarity measures for hesitant fuzzy sets, Information Sciences 181(2011),

2128-2138.

[27] W. Zeng and H. Li, Relationship between similarity measure and entropy of interval-valued fuzzy sets,
Fuzzy Sets and Systems, 157(2004), 1447-1484.

[28] W. Zeng and P. Guo, Normalized distance, similarity measure, inclusion measure and entropy of interval-
valued fuzzy sets and their relationship, Information Sciences 179(2008), 1334-1342.

[29] H. Zhang, W. Zhang, C. Mei, Entropy of interval-valued fuzzy sets based on distance and its relationship
with similarity mesaure, Knowledge-Based Systems, 22(2009), 449-454.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

265 JEONG GON LEE et al 252-265



n-JORDAN ∗-DERIVATIONS ON INDUCED FUZZY C∗-ALGEBRAS

GANG LU, YANDUO WANG, AND PENGYU YE

Abstract. Using the fixed point alternative theorem, we investigate the Hyers-Ulam
stability of of n-Jordan ∗-derivations on induced fuzzy C∗-algebras associated with the
following functional equation f (y − x) + f (x− z) + f (3x− y + z) = f (3x).

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [43]
concerning the stability of group homomorphisms. Hyers [22] gave a first affirmative par-
tial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized
by Aoki [1] for additive mappings and by Rassias [38] for linear mappings by considering
an unbounded Cauchy difference. Those results have been recently complemented in [9].
A generalization of the Aoki and Rassias theorem was obtained by Găvruta [21], who
used a more general function controlling the possibly unbounded Cauchy difference in
the spirit of Rassias’ approach. The stability problems for several functional equations
or inequalities have been extensively investigated by a number of authors and there are
many interesting results concerning this problem (see [8, 15], [23]–[31], [39]–[41]).

We recall a fundamental result in fixed point theory.
Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if

d satisfies
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.1 (see [14, 18]). Let (X, d) be a complete generalized metric space and let
J : X → X be a strictly contractive mapping with Lipschitz constant L < 1. Then for
each given element x ∈ X, either

d(Jnx, Jn+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

By using the fixed point method, the stability problems of several functional equations
have been extensively investigated by a number of authors (see [10, 13, 14, 17, 19, 28,
33, 34, 37, 46]).

2010 Mathematics Subject Classification. Primary 39B62, 39B52, 46B25.
Key words and phrases. Fuzzy normed space; additive functional equation; Hyers-Ulam stability;
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In 1984, Katsaras [27] defined a fuzzy norm on a linear space and at the same year
Wu and Fang [44] also introduced a notion of fuzzy normed space and gave the general-
ization of the Kolmogoroff normalized theorem for fuzzy topological linear space. In [7],
Biswas defined and studied fuzzy inner product spaces in linear space. Since then some
mathematicians have defined fuzzy metrics and norms on a linear space from various
points of view [6, 20, 30, 42, 45]. In 1994, Cheng and Mordeson introduced a definition
of fuzzy norm on a linear space in such a manner that the corresponding induced fuzzy
metric is of Kramosil and Michalek type [29]. In 2003, Bag and Samanta [6] modified
the definition of Cheng and Mordeson [16] by removing a regular condition. They also
established a decomposition theorem of a fuzzy norm into a family of crisp norms and in-
vestigated some properties of fuzzy norms (see [3]). Following [2], we give the employing
notion of a fuzzy norm.

Let X be a real linear space. A function N : X×R→ [0, 1](the so-called fuzzy subset)
is said to be a fuzzy norm on X if for all x, y ∈ X and all a, b ∈ R:
(N1) N(x, a) = 0 for a ≤ 0;
(N2) x = 0 if and only if N(x, a) = 1 for all a > 0;
(N3) N(ax, b) = N(x, b

|a|) if a 6= 0;

(N4) N(x+ y, a+ b) ≥ min{N(x, a), N(y, b)};
(N5) N(x, .) is a non-decreasing function on R and lima→∞N(x, a) = 1;
(N6) For x 6= 0, N(x, .) is (upper semi) continuous on R.
The pair (X,N) is called a fuzzy normed linear space. One may regard N(x, a) as the
truth value of the statement the norm of x is less than or equal to the real number a

′
.

Definition 1.2. Let (X,N) be a fuzzy normed linear space. Let xn be a sequence in X.
Then xn is said to be convergent if there exists x ∈ X such that limn→∞N(xn−x, a) = 1
for all a > 0. In that case, x is called the limit of the sequence xn and we denote it by
N -limn→∞ xn = x.

Definition 1.3. A sequence xn in X is called Cauchy if for each ε > 0 and each a > 0
there exists n0 such that for all n ≥ n0 and all p > 0, we have N(xn+p − xn, a) > 1− ε.

It is known that every convergent sequence in fuzzy normed space is Cauchy. If each
Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy
normed space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector space X, Y is
continuous at point x0 ∈ X if for each sequence {xn} converging to x0 in X, then the
sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X, then
f : X → Y is said to be continuous on X(see [2])

Definition 1.4. [36] Let X be a ∗-algebra and (X,N) a fuzzy normed space.

(1) The fuzzy normed space (X,N) is called a fuzzy normed ∗-algebra if

N(xy, st) ≥ N(x, s) ·N(y, t) and N(x∗, t) = N(x, t).

(2) A complete fuzzy normed ∗-algebra is called a fuzzy Banach ∗-algebra.

Example 1.5. Let (X, ‖.‖) be a normed ∗-algebras. Let

N(x, a) =

{
a

a+‖x‖ , a > 0 , x ∈ X,
0, a ≤ 0, x ∈ X

Then N(x, t) is a fuzzy norm on X and (X,N(x, t)) is a fuzzy normed ∗-algebra.
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Definition 1.6. Let (X, ‖ · ‖) be a C∗-algebra and N a fuzzy norm on X.

(1) The fuzzy normed ∗-algebra (X,N) is called an induced fuzzy normed ∗-algebra.
(2) The fuzzy Banach ∗-algebra (X,N) is called an induced fuzzy C∗-algebra.

Definition 1.7. Let (X, ‖ · ‖) be an induced fuzzy normed ∗-algebra. Then a C-linear
mapping D : (X,N)→ (X,N) is called a fuzzy n-Jordan ∗-derivation if

D(xn) = D(x)xn−1 + xD(x)xn−2 + · · ·+ xn−2D(x)x+ xn−1D(x),

D(x∗) = D(x)∗

for all x ∈ X.

Throughout this paper, assume that (X,N) is an induced fuzzy C∗-algebra.

2. Main results

Lemma 2.1. Let (Z,N) be a fuzzy normed vector space and f : X → Z be a mapping
such that

N (f (y − x) + f (x− z) + f (3x− y + z) , t) ≥ N

(
f (3x) ,

t

2

)
(2.1)

for all x, y, z ∈ X and all t > 0. Then f is additive.

Proof. Letting x = y = z = 0 in (2.1), we get

N(3f(0), t) = N

(
f(0),

t

3

)
≥ N

(
f(0),

t

2

)
for all t > 0. By (N5) and (N6), N(f(0), t) = 1 for all t > 0. It follows from (N2) that
f(0) = 0.

Letting x = z = 0 in (2.1), we get

N(f(y) + f(0) + f(−y), t) ≥ N

(
f(0),

t

2

)
= 1

for all t > 0. It follows from (N2) that f(−y) + f(y) = 0 for all y ∈ X. Thus

f(−y) = −f(y)

for all y ∈ X.
Letting x = 0 and replacing z by −z in (2.1), we get

N(f(y) + f(z) + f(−y − z), t) ≥ N

(
f(0),

t

2

)
= 1

for all t > 0. It follows from (N2) that

f(y) + f(z) + f(−y − z) = 0

for all y, z ∈ X. Thus

f(y + z) = f(y) + f(z)

for all y, z ∈ X, as desired. �
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Theorem 2.2. Let φ : X3 → [0,∞) be a function such that there exists an L < 1 with

φ
(x

3
,
y

3
,
z

3

)
≤ L

3
φ(x, y, z) (2.2)

for all x, y, z ∈ X. Let f : X → X be a mapping such that

N (f (µ(y − x)) + f (µ(x− z)) + f (µ(3x− y + z))− µf (3x) , t)

≥ t

t+ φ(x, y, z)
,

(2.3)

N
(
f(wn)− f(w)wn−1 − wf(w)wn−2 − · · · − wn−2f(w)w − wn−1f(w)

+f(v∗)− f(v)∗, t) ≥ t

t+ φ(w, v, 0)

(2.4)

for all x, y, z, w, v ∈ X, all t > 0 and all µ ∈ T1 := {c ∈ C : |c| = 1}. Then the limit
A(x) = N − limn→∞ 3nf

(
x
3n

)
exists for each x ∈ X and the mapping A : X → X is a

fuzzy n-Jordan ∗-derivation satisfying

N(f(x)− A(x), t) ≥ 3(1− L)t

3(1− L)t+ Lφ (x, 2x, 0)
(2.5)

for all x ∈ X and all t > 0.

Proof. Letting µ = 1, y = 2x , z = 0 in (2.3), we have

N (3f (x)− f(3x), t) ≥ t

t+ φ (x, 2x, 0)
(2.6)

and so

N
(

3f
(x

3

)
− f(x), t

)
≥ t

t+ φ
(
x
3
, 2x

3
, 0
) =

t

t+ L
3
φ (x, 2x, 0)

for all x ∈ X. Thus

N

(
3f
(x

3

)
− f(x),

L

3
t

)
≥

L
3
t

L
3
t+ L

3
φ (x, 2x, 0)

=
t

t+ φ (x, 2x, 0)
(2.7)

for all x ∈ X.
Consider the set

G := {g : X → X}
and introduce the generalized metric on G:

d(g, h) := inf{a ∈ R+ : N(g(x)− h(x), at) ≥ t

t+ φ (x, 2x, 0)
}

for all x ∈ X and all t > 0, where inf φ = +∞. It is easy to show that (S, d) is complete
(see the proof of [32, Lemma 2.1]

Now, we consider the linear mapping Q : G→ G such that

Qg(x) := 3g
(x

3

)
for all x ∈ X.
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Let g, h ∈ G be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ φ (x, 2x, 0)

for all x ∈ X and all t > 0. Hence

N(Qg(x)−Qh(x), Lεt) = N
(

3g
(x

3

)
− 3h

(x
3

)
, Lεt

)
= N

(
g
(x

3

)
− h

(x
3

)
,
L

3
εt

)
≥

Lt
3

Lt
3

+ φ
(
x
3
, 2x

3
, 0
) ≥ Lt

3
Lt
3

+ L
3
φ (x, 2x, 0)

=
t

t+ φ (x, 2x, 0)

for all x ∈ X and all t > 0. Thus d(g, h) = ε implies that d(Qg,Qh) ≤ Lε. This means
that

d(Qg,Qh) ≤ Ld(g, h)

for all g, h ∈ G.
It follows from (2.7) that d(f,Qf) ≤ L

3
.

By Theorem 1.1, there exists a mapping A : X → X satisfying the following:
(1) A is a fixed point of Q, i.e.,

A
(x

3

)
=

1

3
A(x) (2.8)

for all x ∈ X. The mapping A is a unique fixed point of Q in the set

M = {g ∈ G : d(f, g) <∞}.

This implies that A is a unique mapping satisfying (2.8) such that there exists an a ∈
(0,∞) satisfying

N(f(x)− A(x), at) ≥ t

t+ φ (x, 2x, 0)

for all x ∈ X.
(2) d(Qkf, A)→ 0 as k →∞. This implies the equality

N − lim
k→∞

3kf
( x

3k

)
= A(x)

for all x ∈ X;
(3) d(f, A) ≤ 1

1−Ld(f,Qf), which implies the inequality

d(f, A) ≤ L

3(1− L)
.

This implies that the inequality (2.5) holds.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

270 GANG LU et al 266-276



6 G. LU, Y.WANG, AND P.YE

Next we show that A is additive. It follows from (2.2) that

∞∑
k=0

3kφ
( x

3k
,
y

3k
,
z

3k

)
= φ(x, y, z) + 3φ

(x
3
,
y

3
,
z

3

)
+ 32φ

( x
32
,
y

32
,
z

32

)
+ · · ·

≤ φ(x, y, z) + Lφ(x, y, z) + L2φ(x, y, z) + · · ·

=
1

1− L
φ(x, y, z) <∞

for all x, y, z ∈ X.
By (2.3),

N

(
3kf

(
µ
y − x

3k

)
+ 3kf

(
µ
x− z

3k

)
+ f

(
µ

3x− y + z

3k

)
− 3kµf

(
3

3k
x

)
, 3kt

)
≥ t

t+ φ
(
x
3k
, y
3k
, z
3k

)
and so

N

(
3kf

(
µ
y − x

3k

)
+ 3kf

(
µ
x− z

3k

)
+ 3kf

(
µ

3x− y + z

3k

)
− 3kµf

(
3

3k
x

)
, t

)
≥

t
3k

t
3k

+ φ
(
x
3k
, y
3k
, z
3k

) =
t

t+ 3kφ
(
x
3k
. y
3k
, z
3k

)
for all x, y, z ∈ X, all t > 0 and all µ ∈ T1. Since limk→∞

t

t+3kφ( x

3k
, y

3k
, z

3k
)

= 1 for all

x, y, z ∈ X and all t > 0,

N (A (µ(y − x)) + A (µ(x− z)) + A (µ(3x− y + z))− µA (3x) , t) = 1

for all x, y, z ∈ X, all t > 0 and all µ ∈ T1. So

A (µ(y − x)) + A (µ(x− z)) + A (µ(3x− y + z)) = µA (3x) (2.9)

for all x, y, z ∈ X, all t > 0 and all µ ∈ T1. Letting x = y = z = 0 in (2.9), we have
A(0) = 0. Let µ = 1, x = 0 and replace z by −z in (2.9). By the same reasoning as in
the proof of Lemma 2.1, one can easily show that A is additive. Letting y = 2x, z = 0
in (2.9), we get

µA(x) = 3A
(
µ
x

3

)
= A(µx)

for all x ∈ X and µ ∈ T1. The mapping A : X → X is C-linear by [35, Theorem 2.1].
By (2.4) and letting v = 0 in (2.4), we get

N

(
3nkf

(
wn

3nk

)
− 3nkf

(w
3k

)(w
3k

)n−1
− 3nk

w

3k
f
(w

3k

)(w
3k

)n−2
− · · ·

−3nk
(w

3k

)n−2
f
(w

3k

)
w − 3nk

(w
3k

)n−1
f
(w

3k

)
, 3nkt

)
≥ t

t+ φ( w
3k
, 0, 0)
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for all w ∈ X and all t > 0. Thus

N

(
3nkf

(
wn

3nk

)
− 3nkf

(w
3k

)(w
3k

)n−1
− 3nk

w

3k
f
(w

3k

)(w
3k

)n−2
− · · ·

−3nk
(w

3k

)n−2
f
(w

3k

)
w − 3nk

(w
3k

)n−1
f
(w

3k

)
, t

)
≥

t
3nk

t
3nk + φ( w

3k
, 0, 0)

≥ t

t+ (3n−1L)kφ(w, 0, 0)

for all w ∈ X and all t > 0. Since limk→∞
t

t+(3n−1L)kφ(w,0,0)
= 1 for all w ∈ X and all

t > 0, we get

N(D(wn)−D(w)wn−1 − wD(w)wn−2 − · · · − wn−2D(w)w − wn−1D(w), t) = 1

for all x ∈ X and all t > 0. So

D(wn)−D(w)wn−1 − wD(w)wn−2 − · · · − wn−2D(w)w − wn−1D(w) = 0

for all w ∈ X.
Letting w = 0 in (2.4), similarly, we get D(v∗)−D(v)∗ = 0 for all v ∈ X.
Therefore, the mapping D : X → X is a fuzzy n-Jordan ∗-derivation. �

Corollary 2.3. Let p be a real number with p > 1 , θ ≥ 0, and X be a normed vector
space with norm ‖ · ‖. Let f : X → X be a mapping satisfying

N (f (µ(y − x)) + f (µ(x− z)) + f (µ(3x− y + z))− µf (3x) , t)

≥ t

t+ θ(‖x‖p + ‖y‖p + ‖z‖p)
,

(2.10)

N
(
f(wn)− f(w)wn−1 − wf(w)wn−2 − · · · − wn−2f(w)w − wn−1f(w)

+f(v∗)− f(v)∗, t) ≥ t

t+ θ(‖w‖p + ‖v‖p)
(2.11)

for all x, y, w, v ∈ X, all t > 0 and all µ ∈ T1. Then the limit A(x) = N−limn→∞ 3nf
(
x
3n

)
exists for each x ∈ X and the mapping A : X → X is a fuzzy n-Jordan ∗-derivation
satisfying

N(f(x)− A(x), t) ≥ (3p − 3)t

(3p − 3)t+ θ(1 + 2p)‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.2 by taking

φ(x, y, z) = θ(‖x‖p + ‖y‖p + ‖z‖p)

and L = 31−p. �

Theorem 2.4. Let φ : X3 → [0,∞) be a function such that there exists an L < 1 with

3Lφ
(x

3
,
y

3
,
z

3

)
≤ φ(x, y, z) (2.12)
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for all x, y, z ∈ X. Let f : X → X be a mapping satisfying (2.3) and (2.4). Then the
limit A(x) = N − limn→∞

1
3n
f (3nx) exists for each x ∈ X and the mapping A : X → X

is a fuzzy n-Jordan ∗-derivation satisfying

N(f(x)− A(x), t) ≥ 3(1− L)t

3(1− L)t+ φ (x, 2x, 0)
(2.13)

for all x ∈ X and all t > 0.

Proof. Let (G, d) be generalized metric space defined in the proof of Theorem 2.2. Con-
sider the linear mapping Q : G→ G such that

Qg(x) :=
1

3
g(3x)

for all x ∈ X.
It follow from (2.6) that

N

(
f(x)− 1

3
f(3x),

1

3
t

)
≥ t

t+ φ (x, 2x, 0)

for all x ∈ X and all t > 0. Thus d(f,Qf) ≤ 1
3
. Hence

d(f, A) ≤ 1

3(1− L)
,

which implies that the inequality (2.13) holds.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let θ ≥ 0 and let p be a positive real number with p < 1. Let X be a
normed vector space with normed ‖ · ‖. Let f : X → X be a mapping satisfying (2.10)
and (2.11). Then A(x) = N − limn→∞

1
3n
f(3nx) exists for each x ∈ X and defines a

fuzzy n-Jordan ∗-derivation A : X → X such that

N(f(x)− A(x), t) ≥ (3− 3p)t

(3− 3p)t+ θ(1 + 2p)‖x‖p

for every x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.4 by taking

φ(x, y, z) = θ(‖x‖p + ‖y‖p + ‖z‖p)
and L = 3p−1. �
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[25] W. Jab loński, Sum of graphs of continuous functions and boundedness of additive operators, J.

Math. Anal. Appl. 312 (2005), 527–534.
[26] S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer,

New York, 2011.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

274 GANG LU et al 266-276



10 G. LU, Y.WANG, AND P.YE

[27] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst. 12 (1984), 143–154.
[28] H. Khodaei, R. Khodabakhsh and M. Eshaghi Gordji, Fixed points, Lie ∗-homomorphisms and Lie

∗-derivations on Lie C∗-algebras, Fixed Point Theory 14 (2013), 387–400.
[29] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975),

326–334.
[30] S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets Syst. 63

(1994), 207–217.
[31] G. Lu and C. Park, Hyers-Ulam stability of additive set-valued functional equations, Appl. Math.

Lett. 24 (2011), 1312–1316.
[32] D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random

normed spaces, J. Math. Anal. Appl. 343 (2008), 567–572.
[33] F. Moradlou and M. Eshaghi Gordji, Approximate Jordan derivations on Hilbert C∗-modules, Fixed

Point Theory 14 (2013), 413–425.
[34] C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in

Banach algebras, Fixed Point Theory Appl. 2007, Article ID 50175 (2007).
[35] C.Park, Homomorphisms between Poisson JC∗-algebras, Bull. Braz. Math. Soc. 36 (2005), 79–97.
[36] C. Park, K. Ghasemi and S. Ghaleh, Fuzzy n-Jordan ∗-derivations on induced fuzzy C∗-algebras,

J. Comput. Anal. Appl. 16 (2014), 494–502.
[37] C. Park and J. M. Rassias, Stability of the Jensen-type functional equation in C∗-algebras: A fixed

point approach, Abs. Appl. Anal. 2009, Article ID 360432 (2009).
[38] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc.

72 (1978), 297–300.
[39] Th. M. Rassias (Ed.), Functional Equations and Inequalities, Kluwer Academic, Dordrecht, 2000.
[40] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl.

251 (2000), 264–284.
[41] Th .M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Math. Appl.

62 (2000), 23–130.
[42] B. Shieh, Infinite fuzzy relation equations with continuous t-norms, Inform. Sci. 178 (2008), 1961–

1967.
[43] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed., Wiley, New York, 1940.
[44] C. Wu and J. Fang, Fuzzy generalization of Klomogoroff’s theorem, J. Harbin Inst. Technol. 1

(1984), 1–7.
[45] J. Z. Xiao and X.-H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets Syst.

133 (2003), 389–399.
[46] T. Z. Xu, J. M. Rassias and W. X. Xu, A fixed point approach to the stability of a general mixed

additive-cubic functional equation in quasi fuzzy normed spaces, Internat. J. Phys. Sci. 6 (2011),
313–324.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

275 GANG LU et al 266-276



n-JORDAN ∗-DERIVATIONS ON INDUCED FUZZY C∗-ALGEBRAS 11

Gang Lu
1. Department of Mathematics, Zhejiang University, Hangzhou 310027, People’s Repub-
lic of China
2.Department of Mathematics, School of Science, ShenYang University of Technology,
Shenyang 110178, P. R. China

E-mail address: lvgang1234@hanmail.net

Yanduo Wang
Department of Mathematics, School of Science, ShenYang University of Technology,
Shenyang 110178, P. R. China

E-mail address: 515585832@qq.com

Pengyu Ye
Department of Mathematics, School of Science, ShenYang University of Technology,
Shenyang 110178, P. R. China

E-mail address: yuxiang163com@163.com

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

276 GANG LU et al 266-276



Global stability analysis of a delayed viral infection model with

antibodies and general nonlinear incidence rate

A. M. Elaiw, N. H. AlShamrani and M. A. Alghamdi

Department of Mathematics, Faculty of Science, King Abdulaziz University,

P.O. Box 80203, Jeddah 21589, Saudi Arabia.

Email: a_m_elaiw@yahoo.com (A. Elaiw).

Abstract

In this paper, we study the global properties of a viral infection model with antibody immune response.

The incidence rate is given by a general function of the populations of the uninfected target cells, infected

cells and free viruses. The model contains two types of intracellular discrete time delays to describe the

time required for viral contacting an uninfected target cell and viral emission. We have established a

set of conditions on the general incidence rate function and determined two threshold parameters R0

(the basic infection reproduction number) and R1 (the antibody immune response activation number)

which are su¢ cient to determine the global behavior of the model. The global asymptotic stability of

the equilibria of the model has been proven by using direct Lyapunov method and applying LaSalle�s

invariance principle.

Keywords: Virus dynamics; Intracellular delay; global stability; antibody immune response; Lyapunov

functional.
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1 Introduction

In recent years, several works have been devoted to study and develop mathematical models of the virus

dynamics such as human immunode�ciency virus (HIV) (see e.g. [1]-[14]), hepatitis B virus (HBV) [15]-[18],

hepatitis C virus (HCV) [19]-[21] and human T cell leukemia HTLV [22], etc. Mathematical models of viral

infection can help for understanding the viral dynamics and developing antiviral drug therapies. In reality,

the immune response needs an indispensable components to do its job such as antibodies, cytokines, natural

killer cells, and T cells. The antibody immune response is a part of the adaptive system in which the body

responds to pathogens by primarily using antibodies that produced from the B cells. While the other part

is the Cytotoxic T Lymphocytes (CTL) immune response where the CTL attacks and kills the infected cells

[4]. In some infections such as in malaria, the CTL immune response is less e¤ective than the antibody

immune response [23]. Mathematical models of viral infection with antibody immune response have been

proposed and analyzed in ([24]-[29]). The basic model of viral infection with antibody immune response has

introduced by Murase et. al. [24] and Shi�Wang [29] as:

_x(t) = s� dx(t)� �v(t)x(t); (1)

_y(t) = �v(t)x(t)� ay(t); (2)

_v(t) = ky(t)� bz(t)v(t)� cv(t); (3)

_z(t) = rz(t)v(t)� �z(t); (4)

where x(t), y(t), v(t) and z(t) denote the populations of uninfected target cells, infected cells, free virus

particles and antibody immune cells at time t, respectively. Parameters s, k and r represent, respectively,

the rate at which new healthy cells are generated from the source within the body, the generation rate

constant of free viruses produced from the infected cells and the proliferation rate constant of antibody

immune cells. Parameters d, a, c and � are the natural death rate constants of the uninfected cells, infected

cells, free virus particles and antibody immune cells, respectively. Parameter � is the infection rate constant

and b is the removal rate constant of the virus due to the antibodies. All the parameters given in model

(1)-(4) are positive.

2
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The intracellular time delay between the time of the virus contacting the target cells and the time of

generating new infectious viruses has been neglected in system (1)-(4). In fact, the intracellular delay in

the infection process is actually exists (see e.g. [8]-[12]). Note that, the infection rate in model (1)-(4)

is presented to be bilinear in x and v, which can not be completely describe the interaction between the

uninfected target cells and viruses. Nevertheless, there are many types of improved incidence rates which are

more commonly used due to their bene�t for helping us gain the uni�cation theory through passing over the

unessential details (see e.g. [30] and [31]). Variety of viral infection models with antibody immune response

have been considered with di¤erent forms of the incidence rate such as saturated incidence rate, �xv
1+�v where

� � 0, [27], Beddington-DeAngelis functional response, �xv
1+x+�v , �;  � 0 [26], and general form,  (x; v)v

[28]. In [28], a discrete time delay has been incorporated within the model. However, the infection rate does

not depend on the infected cells y. In some viral infections such as HBV, the infection rate depends on x, y

and v [17], [16]. In [32], the infection rate is given by  (x; y; v)v, however the antibody immune response has

been neglected. Our aim in this paper is to investigate the global stability analysis of a viral infection model

with general incidence rate function and antibody immune response taking into consideration two types of

discrete time delays.

The rest of the paper is designed as follows. In the next section, we introduce the model and discuss

the non-negativity and boundedness of the solutions. In Section 3, we de�ne two threshold parameters and

discuss the existence of the model�s equilibria. In Section 4, we study the global asymptotic stability of the

equilibria using suitable Lyapunov functional and applying LaSalle�s invariance principle. Finally, conclusion

is given in Section 5.

3
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2 The mathematical model

In this section, we consider the following viral infection model with general incidence rate taking into con-

sideration the antibody immune response.

_x(t) = s� dx(t)�  (x(t); y(t); v(t))v(t); (5)

_y(t) = e��1�1 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)� ay(t); (6)

_v(t) = ke��2�2y(t� �2)� bz(t)v(t)� cv(t); (7)

_z(t) = rz(t)v(t)� �z(t); (8)

where �1 and �2 are the delay parameters. We assume that, the virus contacts an uninfected target cell at

time t� �1, the cell becomes infected at time t. The term e��1�1 represents the probability of surviving the

contacted cell during the time delay interval, where �1 is the death rate constant of the contacted cells. In

addition, we assume that a cell infected at time t��2 starts to generate new infectious viruses at time t. The

term e��2�2 denotes the probability of surviving the infected cell during the time delay interval, where �2

is a constant. The de�nitions of all variables and parameters are identical to those given in Section 1. The

incidence rate of infection is presented by a general function in the form  (x; y; v)v, where  is continuously

di¤erentiable and satis�es the following assumptions [28] and [32]:

Assumption A1.  (0; y; v) = 0 for all y; v � 0 and  (x; y; v) > 0 for all x > 0, y � 0, v � 0.

Assumption A2.
@ (x; y; v)

@x
> 0 for all x > 0, y � 0 and v � 0:

Assumption A3.
@ (x; y; v)

@y
< 0,

@ (x; y; v)

@v
< 0 for all x; y; v > 0:

Assumption A4.
@ ( (x; y; v)v)

@v
> 0 for all x; y; v > 0:

Let the initial states of system (5)-(8) be given as:

x(�) = �1(�); y(�) = �2(�); v(�) = �3(�); z(�) = �4(�);

�j(�) � 0; � 2 [��; 0); j = 1; :::; 4;

�j(0) > 0; j = 1; :::; 4; (9)

where � = maxf�1; �2g; (�1(�); �2(�); �3(�); �4(�)) 2 C([��; 0];R4�0). We denote by C = C([��; 0];R4�0) the

4

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

280 Elaiw et al 277-295



Banach space of continuous functions mapping the interval [��; 0] into R4�0; with norm k�k = sup
�����0

j�(�)j

for � 2 C. We note that the system (5)-(8) with initial states (9) has a unique solution [33].

2.1 Non-negativity and boundedness of solutions

In this section, we show that the solutions of model (5)-(8) with initial states (9) are non-negative and

ultimately bounded.

Proposition 1. Assume that Assumption A1 is satis�ed. Then the solutions of (5)-(8) with the initial

states (9) are non-negative and ultimately bounded.

Proof. At the beginning, we show that x(t) is positive for all t � 0. Let us assume in contrary that

x(t) � 0 on the time interval [0; ] where  is a constant, and let where t 2 [0; ] be such that x(t) = 0,

. Then from Eq. (5) we get _x(t) = s > 0. Thus, for su¢ ciently small " > 0, we have x(t) > 0 for some

t 2
�
t; t+ "

�
. This contradicts our assumption and then x(t) > 0, 8 t � 0: Now from Eqs. (6)-(8) we get

y(t) = y(0)e�at + e��1�1
tZ
0

e�a(t��) (x(� � �1); y(� � �1); v(� � �1))v(� � �1)d�;

v(t) = v(0)e�
R t
0
(c+bz(�))d� + ke��2�2

tZ
0

e�
R t
�
(c+bz(�))d�y(� � �2)d�;

z(t) = z(0)e�
R t
0
(��rv(�))d�;

which yield y(t), v(t), z(t) � 0 for all t 2 [0; � ]. By a recursive argument, we get that y(t); v(t); z(t) � 0 for

all t � 0:

Next we prove the ultimate bound of the solutions of system (5)-(8). From Eq. (5) we get _x(t) � s�dx(t)

and thus lim supt!1 x(t) � s
d . Let T1(t) = e��1�1x(t� �1) + y(t), then

_T1(t) = e��1�1 (s� dx(t� �1)�  (x(t� �1); y(t� �1); v(t� �1))v(t� �1))

+ e��1�1 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)� ay(t);

= se��1�1 � de��1�1x(t� �1)� ay(t) � se��1�1 � �1
�
e��1�1x(t� �1) + y(t)

�
= se��1�1 � �1T1(t) � s� �1T1(t);

5
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where �1 = minfd; ag. Hence lim supt!1 T1(t) � L1, where L1 =
s

�1
. Since x(t) and y(t) are non-negative,

then lim supt!1 y(t) � L1. Moreover, let T2(t) = v(t) + b
r z(t), then

_T2(t) = ke��2�2y(t� �2)� cv(t)�
b�

r
z(t) � ke��2�2L1 � �2(v(t) +

b

r
z(t))

= ke��2�2L1 � �2T2(t) � kL1 � �2T2(t);

where �2 = minfc; �g. It follows that, lim supt!1 T2(t) � L2, where L2 =
kL1
�2
. Since v(t) and z(t) are

non-negative, then lim supt!1 v(t) � L2 and lim supt!1 z(t) � L3, where L3 = r
bL2. Therefore, all the

state variables of the model are ultimately bounded.

2.2 The equilibria and threshold parameters

At any equilibrium we have

s� dx�  (x; y; v)v = 0; (10)

e��1�1 (x; y; v)v � ay = 0; (11)

ke��2�2y � bvz � cv = 0; (12)

(rv � �)z = 0: (13)

From Eq. (13), either z = 0 or z 6= 0. If z = 0, then from Eqs. (10)-(12) we get

y =
s� dx
ae�1�1

=
c

ke��2�2
v; v =

k(s� dx)
ace�1�1+�2�2

: (14)

Substituting from Eq. (14) into Eq. (11) we get:�
 

�
x;
s� dx
ae�1�1

;
k(s� dx)
ace�1�1+�2�2

�
� ac

k
e�1�1+�2�2

�
v = 0: (15)

Eq. (15) has two possible solutions v = 0 or v 6= 0. If v = 0; then from Eqs. (10) and (11), we get x = s=d

and y = 0 which leads to the infection-free equilibrium E0(x0; 0; 0; 0) where x0 = s=d. If v 6= 0; then we have

 

�
x;
s� dx
ae�1�1

;
k(s� dx)
ace�1�1+�2�2

�
� ac

k
e�1�1+�2�2 = 0:

Let

�1 (x) =  

�
x;
s� dx
ae�1�1

;
k(s� dx)
ace�1�1+�2�2

�
� ac

k
e�1�1+�2�2 = 0;

6
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then, we have

�01 (x) =
@ 

@x
� d

ae�1�1
@ 

@y
� kd

ace�1�1+�2�2
@ 

@v
:

Because of Assumptions A2 and A3, we have �01 (x) > 0 which implies that function �1(x) is strictly

increasing w.r.t. x. Moreover,

�1(0) =  

�
0;

s

ae�1�1
;

ks

ace�1�1+�2�2

�
� ac

k
e�1�1+�2�2 = �ac

k
e�1�1+�2�2 < 0;

�1(x0) =  (x0; 0; 0)�
ac

k
e�1�1+�2�2 =

ac

k
e�1�1+�2�2

�
k (x0; 0; 0)

ac
e��1�1��2�2 � 1

�
:

Therefore, if
k (x0; 0; 0)

ac
e��1�1��2�2 > 1; then there exist a unique x1 2 (0; x0) such that �1(x1) = 0.

It follows from (12) and (14) that y1 =
d(x0 � x1)
ae�1�1

> 0 and v1 =
kd(x0 � x1)
ace�1�1+�2�2

> 0. It means

that, a chronic-infection equilibrium without antibody immune response E1(x1; y1; v1; 0) exists when

k (x0; 0; 0)

ac
e��1�1��2�2 > 1. Let us de�ne the basic infection reproduction number as:

R0 =
k (x0; 0; 0)

ac
e��1�1��2�2 :

The parameter R0 determines whether a chronic-infection can be established. The other possibility of Eq.

(13) is z 6= 0 which leads to v2 =
�

r
. From Eq. (10) we let

�2(x) = s� dx�  (x; s� dx
ae�1�1

; v2)v2 = 0:

According to Assumptions A2 and A3, we know that �2 is a decreasing function of x. Clearly, �2(0) = s > 0

and �2(x0) = � (x0; 0; v2)v2 < 0. Thus, there exists a unique x2 2 (0; x0) such that �2(x2) = 0. It follows

from Eq. (14) that, y2 =
d(x0 � x2)
ae�1�1

> 0 and z2 =
k (x2; y2; v2)

abe�1�1+�2�2
� c

b
=
c

b

�
k (x2; y2; v2)

ace�1�1+�2�2
� 1
�
. Then, if

k (x2; y2; v2)

ace�1�1+�2�2
> 1 then z2 > 0. Now we de�ne the antibody immune response activation number as

R1 =
k (x2; y2; v2)

ace�1�1+�2�2
;

which determines whether a persistent antibody immune response can be established. Hence, z2 can be

rewritten as z2 =
c

b
(R1 � 1). It follows that, there is a chronic-infection equilibrium with antibody immune

response E2(x2; y2; v2; z2) when R1 > 1.

Clearly from Assumptions A2 and A3, we have

R1 =
k (x2; y2; v2)

ace�1�1+�2�2
<
k (x0; y2; v2)

ace�1�1+�2�2
<

k (x0; 0; 0)

ace�1�1+�2�2
= R0:

7
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2.3 Global stability analysis

In this section, the global asymptotic stability of the three equilibria of model (5)-(8) will be established by

using direct Lyapunov method and applying LaSalle�s invariance principle. In the remaining parts of the

paper we shall use the following function: H : (0;1)! [0;1),

H(u) = u� 1� lnu:

Theorem 1. Let Assumptions A1-A3 be hold true and R0 � 1; then the infection-free equilibrium E0 is

globally asymptotically stable (GAS).

Proof. We construct a Lyapunov functional as:

U0 = x� x0 �
Z x

x0

 (x0; 0; 0)

 (�; 0; 0)
d� + e�1�1y +

a

k
e�1�1+�2�2v +

ab

rk
e�1�1+�2�2z

+

tZ
t��1

 (x(�); y(�); v(�))v(�)d� + ae�1�1
tZ

t��2

y(�)d�: (16)

We calculate dU0
dt along the solutions of model (5)-(8) as:

dU0
dt

=

�
1�  (x0; 0; 0)

 (x; 0; 0)

�
(s� dx�  (x; y; v) v) +  (x(t� �1); y(t� �1); v(t� �1))v(t� �1)� ae�1�1y

+ ae�1�1y(t� �2)�
ac

k
e�1�1+�2�2v � ab

k
e�1�1+�2�2zv +

ab

k
e�1�1+�2�2zv � ab�

rk
e�1�1+�2�2z

+  (x; y; v)v �  (x(t� �1); y(t� �1); v(t� �1))v(t� �1) + ae�1�1(y � y(t� �2))

= s

�
1�  (x0; 0; 0)

 (x; 0; 0)

��
1� x

x0

�
+

�
 (x; y; v)

 (x0; 0; 0)

 (x; 0; 0)
� ac

k
e�1�1+�2�2

�
v � ab�

rk
e�1�1+�2�2z

= s

�
1�  (x0; 0; 0)

 (x; 0; 0)

��
1� x

x0

�
+
ac

k
e�1�1+�2�2

�
 (x; y; v)

 (x; 0; 0)
R0 � 1

�
v � ab�

rk
e�1�1+�2�2z: (17)

From Assumptions A2-A3 we know that  (x; y; v) is an increasing function of x and decreasing function of

y and v. Then, the �rst term of Eq. (17) is less than or equal zero and

 (x; y; v) <  (x; 0; 0), x; y; v > 0:

It follows that

dU0
dt

� s

�
1�  (x0; 0; 0)

 (x; 0; 0)

��
1� x

x0

�
+
ac

k
e�1�1+�2�2 (R0 � 1) v �

ab�

rk
e�1�1+�2�2z: (18)

8
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Therefore, if R0 � 1, then dU0
dt � 0 for all x; y; v; z > 0. We note that the solutions of system (5)-(8) converge

to 
, the largest invariant subset of
�
dU0
dt = 0

	
[33]. From (18), we have dU0

dt = 0 i¤ x = x0, v = 0 and z = 0.

The set 
 is invariant and for any element belongs to 
 satis�es v = 0 and z = 0. We can see from Eq. (7)

that

_v = 0 = ke��2�2y(t� �2):

It follows that, y = 0. Hence dU0
dt = 0 i¤ x = x0 and y = v = z = 0. Using LaSalle�s invariance principle, we

derive that E0 is GAS.

Assumption A5.

�
1�  (x; y; v)

 (x; yi; vi)

��
 (x; yi; vi)

 (x; y; v)
� v

vi

�
� 0; i = 1; 2 for all x; y; v > 0:

Theorem 2. Let Assumptions A1-A5 be hold true and R1 � 1 < R0, then the chronic-infection equilibrium

without antibody immune response E1 is GAS.

Proof. De�ne:

U1 = x� x1 �
Z x

x1

 (x1; y1; v1)

 (�; y1; v1)
d� + e�1�1y1H

�
y

y1

�
+
a

k
e�1�1+�2�2v1H

�
v

v1

�
+
ab

rk
e�1�1+�2�2z

+  (x1; y1; v1)v1

tZ
t��1

H

�
 (x(�); y(�); v(�))v(�)

 (x1; y1; v1)v1

�
d� + ae�1�1y1

tZ
t��2

H

�
y(�)

y1

�
d�: (19)

9
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Calculating the time derivative of U1 along the trajectories of system (5)-(8), we obtain

dU1
dt

=

�
1�  (x1; y1; v1)

 (x; y1; v1)

�
(s� dx�  (x; y; v) v)

+ e�1�1
�
1� y1

y

��
e��1�1 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)� ay

�
+
a

k
e�1�1+�2�2

�
1� v1

v

� �
ke��2�2y(t� �2)� cv � bvz

�
+
ab

rk
e�1�1+�2�2(rvz � �z)

+  (x; y; v)v �  (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

+  (x1; y1; v1)v1 ln

�
 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

 (x; y; v)v

�
+ ae�1�1

�
y � y(t� �2) + y1 ln

�
y(t� �2)

y

��
=

�
1�  (x1; y1; v1)

 (x; y1; v1)

�
(s� dx) +  (x1; y1; v1)

 (x; y; v)v

 (x; y1; v1)

� y1
y
 (x(t� �1); y(t� �1); v(t� �1))v(t� �1) + ay1e�1�1

� ac

k
e�1�1+�2�2v � ay(t� �2)

v1
v
e�1�1 +

ac

k
e�1�1+�2�2v1

+
ab

k
e�1�1+�2�2v1z �

ab�

rk
e�1�1+�2�2z

+  (x1; y1; v1)v1 ln

�
 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

 (x; y; v)v

�
+ ae�1�1y1 ln

�
y(t� �2)

y

�
: (20)

Using the equilibrium conditions for E1:

s = dx1 + ae
�1�1y1;  (x1; y1; v1)v1 = ae�1�1y1 =

ac

k
e�1�1+�2�2v1;

10
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we obtain

dU1
dt

= dx1

�
1�  (x1; y1; v1)

 (x; y1; v1)

��
1� x

x1

�
+ 3ae�1�1y1

� ae�1�1y1
 (x1; y1; v1)

 (x; y1; v1)
+ ae�1�1y1

 (x; y; v)v

 (x; y1; v1)v1

� ae�1�1y1
y1 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

y (x1; y1; v1)v1

� ae�1�1y1
v

v1
� ae�1�1y1

v1y(t� �2)
vy1

+ ae�1�1y1 ln

�
 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

 (x; y; v)v

�
+ ae�1�1y1 ln

�
y(t� �2)

y

�
+
ab

k
e�1�1+�2�2

�
v1 �

�

r

�
z: (21)

Using the following equalities:

ln

�
 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

 (x; y; v)v

�
= ln

�
y1 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

y (x1; y1; v1)v1

�
+ ln

�
 (x1; y1; v1)

 (x; y1; v1)

�
+ ln

�
 (x; y1; v1)

 (x; y; v)

�
+ ln

�
v1y

vy1

�
;

ln

�
y(t� �2)

y

�
= ln

�
vy1
v1y

�
+ ln

�
v1y(t� �2)

vy1

�
;

we get

dU1
dt

= dx1

�
1�  (x1; y1; v1)

 (x; y1; v1)

��
1� x

x1

�
+ ae�1�1y1

�
 (x; y; v)v

 (x; y1; v1)v1
� v

v1
� 1 +  (x; y1; v1)

 (x; y; v)

�
� ae�1�1y1

��
 (x1; y1; v1)

 (x; y1; v1)
� 1� ln

�
 (x1; y1; v1)

 (x; y1; v1)

��
+

�
y1 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

y (x1; y1; v1)v1
� 1� ln

�
y1 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

y (x1; y1; v1)v1

��
+

�
v1y(t� �2)

vy1
� 1� ln

�
v1y(t� �2)

vy1

��
+

�
 (x; y1; v1)

 (x; y; v)
� 1� ln

�
 (x; y1; v1)

 (x; y; v)

���
+
ab

k
e�1�1+�2�2

�
v1 �

�

r

�
z: (22)

11
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Eq. (22) can be simpli�ed as:

dU1
dt

= dx1

�
1�  (x1; y1; v1)

 (x; y1; v1)

��
1� x

x1

�
+ ae�1�1y1

�
1�  (x; y; v)

 (x; y1; v1)

��
 (x; y1; v1)

 (x; y; v)
� v

v1

�
� ae�1�1y1

�
H

�
 (x1; y1; v1)

 (x; y1; v1)

�
+H

�
v1y(t� �2)

vy1

�
+H

�
y1 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

y (x1; y1; v1)v1

�
+H

�
 (x; y1; v1)

 (x; y; v)

��
+
ab

k
e�1�1+�2�2

�
v1 �

�

r

�
z: (23)

From Assumptions A1 and A5, we get that the �rst and second terms of Eq. (23) are less than or equal

zero. Now we show that if R1 � 1 then v1 � �
r = v2. Let R0 > 1, then we want to show that

sgn(x2 � x1) = sgn(v1 � v2) = sgn(y1 � y2) = sgn(R1 � 1):

From Assumptions A2-A4, for x1; x2; y1; y2; v1; v2 > 0, we have

( (x2; y2; v2)�  (x1; y2; v2))(x2 � x1) > 0; (24)

( (x1; y1; v1)�  (x1; y2; v1))(y2 � y1) > 0; (25)

( (x1; y1; v1)�  (x1; y1; v2))(v2 � v1) > 0; (26)

( (x2; y2; v2)v2 �  (x2; y2; v1)v1)(v2 � v1) > 0: (27)

First, we claim sgn(x2 � x1) = sgn(v1 � v2). Suppose this is not true, i.e., sgn(x2 � x1) = sgn(v2 � v1).

Using the conditions of the equilibria E1 and E2 we have

(s� dx2)� (s� dx1) =  (x2; y2; v2)v2 �  (x1; y1; v1)v1

= ae�1�1(y2 � y1): (28)

Then,

sgn(x2 � x1) = sgn(y1 � y2) (29)

12
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Moreover,

(s� dx2)� (s� dx1) =  (x2; y2; v2)v2 �  (x1; y1; v1)v1

= ( (x2; y2; v2)v2 �  (x2; y2; v1)v1) + ( (x2; y2; v1)v1 �  (x1; y2; v1)v1)

+ ( (x1; y2; v1)v1 �  (x1; y1; v1)v1):

Therefore, from inequalities (24) and (29) we get:

sgn (x1 � x2) = sgn (x2 � x1) ;

which leads to contradiction. Thus, sgn (x2 � x1) = sgn (v1 � v2) : Using the equilibrium conditions for E1

we have k (x1;y1;v1)
ace�1�1+�2�2

= 1, then

R1 � 1 =
k (x2; y2; v2)

ace�1�1+�2�2
� k (x1; y1; v1)

ace�1�1+�2�2

=
k

ac
e��1�1��2�2 [ (x2; y2; v2)�  (x2; y2; v1) +  (x2; y2; v1)

� (x1; y2; v1) +  (x1; y2; v1)�  (x1; y1; v1)] :

We get sgn(R1�1) = sgn(v1�v2): Hence, if R0 > 1; then x1; y1; v1 > 0, and if R1 � 1, then v1 � v2 =
�
r . It

follows from the above discussion that dU1dt � 0 for all x; y; v; z > 0. The solutions of system (5)-(8) converge

to 
, the largest invariant subset of
�
(x; y; v; z) : dU1dt = 0

	
[33]. We have dU1

dt = 0 i¤ x = x1; v = v1; z = 0

and H = 0 i.e.

y1 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)
y (x1; y1; v1)v1

=
v1y(t� �2)

vy1
= 1 for almost all �i 2 [0; � ]; i = 1; 2: (30)

From Eq. (30), if v = v1 then y = y1 and hence dU1
dt = 0 i¤ x = x1; y = y1; v = v1 and z = 0. So 
 contains a

unique point, that is E1. Thus, the global asymptotic stability of the chronic-infection equilibrium without

antibody immune response E1 follows from LaSalle�s invariance principle.

Theorem 3. Let Assumptions A1-A5 be hold true and R1 > 1, then the chronic-infection equilibrium

with antibody immune response E2 is GAS.

13
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Proof. We construct a Lyapunov functional as follows:

U2 = x� x2 �
Z x

x2

 (x2; y2; v2)

 (�; y2; v2)
d� + e�1�1y2H

�
y

y2

�
+
a

k
e�1�1+�2�2v2H

�
v

v2

�
+
ab

rk
e�1�1+�2�2z2H

�
z

z2

�

+  (x2; y2; v2)v2

tZ
t��1

H

�
 (x(�); y(�); v(�))v(�)

 (x2; y2; v2)v2

�
d� + ae�1�1y2

tZ
t��2

H

�
y(�)

y2

�
d�: (31)

Function U2 satis�es:

dU2
dt

=

�
1�  (x2; y2; v2)

 (x; y2; v2)

�
(s� dx�  (x; y; v)v)

+ e�1�1
�
1� y2

y

��
e��1�1 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)� ay

�
+
a

k
e�1�1+�2�2

�
1� v2

v

� �
ke��2�2y(t� �2)� cv � bvz

�
+
ab

rk
e�1�1+�2�2

�
1� z2

z

�
(rvz � �z)

+  (x; y; v)v �  (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

+  (x2; y2; v2)v2 ln

�
 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

 (x; y; v)v

�
+ ae�1�1

�
y � y(t� �2) + y2 ln

�
y(t� �2)

y

��
: (32)

Applying s = dx2 + ae
�1�1y2, we get

dU2
dt

= d

�
1�  (x2; y2; v2)

 (x; y2; v2)

�
(x2 � x) + ae�1�1y2 � ae�1�1y2

 (x2; y2; v2)

 (x; y2; v2)

+  (x; y; v)v
 (x2; y2; v2)

 (x; y2; v2)
�  (x2; y2; v2)v2

y2 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)
y (x2; y2; v2)v2

+ ae�1�1y2 �
ac

k
e�1�1+�2�2v � ae�1�1y(t� �2)

v2
v
+
ac

k
e�1�1+�2�2v2

+
ab

k
e�1�1+�2�2v2z �

ab�

rk
e�1�1+�2�2z � ab

k
e�1�1+�2�2z2v +

ab�

rk
e�1�1+�2�2z2

+  (x2; y2; v2)v2 ln

�
 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

 (x; y; v)v

�
+ ae�1�1y2 ln

�
y(t� �2)

y

�
(33)

By using the equilibrium conditions of E2

 (x2; y2; v2)v2 = ae�1�1y2; cv2 = ke��2�2y2 � bv2z2; � = rv2;
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and the following equalities

cv = cv2
v

v2
=
�
ke��2�2y2 � bv2z2

� v
v2
;

ln

�
 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

 (x; y; v)v

�
= ln

�
y2 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

y (x2; y2; v2)v2

�
+ ln

�
 (x2; y2; v2)

 (x; y2; v2)

�
+ ln

�
 (x; y2; v2)

 (x; y; v)

�
+ ln

�
v2y

vy2

�
;

ln

�
y(t� �2)

y

�
= ln

�
vy2
v2y

�
+ ln

�
v2y(t� �2)

vy2

�
;

we obtain

dU2
dt

= d

�
1�  (x2; y2; v2)

 (x; y2; v2)

�
(x2 � x) + ae�1�1y2

�
 (x; y; v)v

 (x; y2; v2)v2
� v

v2
� 1 +  (x; y2; v2)

 (x; y; v)

�
� ae�1�1y2

��
 (x2; y2; v2)

 (x; y2; v2)
� 1� ln

�
 (x2; y2; v2)

 (x; y2; v2)

��
+

�
y2 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

y (x2; y2; v2)v2
� 1� ln

�
y2 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

y (x2; y2; v2)v2

��
+

�
v2y(t� �2)

vy2
� 1� ln

�
v2y(t� �2)

vy2

��
+

�
 (x; y2; v2)

 (x; y; v)
� 1� ln

�
 (x; y2; v2)

 (x; y; v)

���
: (34)

We can rewrite (34) as

dU2
dt

= dx2

�
1�  (x2; y2; v2)

 (x; y2; v2)

��
1� x

x2

�
+ ae�1�1y2

�
1�  (x; y; v)

 (x; y2; v2)

��
 (x; y2; v2)

 (x; y; v)
� v

v2

�
� ae�1�1y2

�
H

�
 (x2; y2; v2)

 (x; y2; v2)

�
+H

�
y2 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)

y (x2; y2; v2)v2

�
+H

�
v2y(t� �2)

vy2

�
+H

�
 (x; y2; v2)

 (x; y; v)

��
: (35)

We note that from Assumptions A2 and A5, the �rst and second terms of Eq. (35) are less than or equal

zero. Noting that x; y; v; z > 0, we have that dU2
dt � 0. The solutions of model (5)-(8) converge to 
, the

largest invariant subset of
�
(x; y; v; z) : dU2dt = 0

	
[33]. We have dU2

dt = 0 i¤ x = x2; v = v2 and H = 0 i.e.,

y2 (x(t� �1); y(t� �1); v(t� �1))v(t� �1)
y (x2; y2; v2)v2

=
v2y(t� �2)

vy2
= 1 for almost all �i 2 [0; � ]; i = 1; 2: (36)

If v = v2, then from Eq. (36) we get y = y2. The set 
 is invariant and for any element belongs to 
 satis�es

v = v2 =
�
r . From Eq. (7) we get z = z2. Therefore, dU2dt = 0 i¤ x = x2; y = y2; v = v2 and z = z2. The

global asymptotic stability of the chronic-infection equilibrium with antibody immune response E2 follows

from LaSalle�s invariance principle.
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3 Conclusion

In this paper, we have proposed a delayed viral infection model with general incidence rate function and

antibody immune response. The model has been incorporated with two kinds of discrete time delays repre-

senting the time needed for infecting an uninfected target cell and viral production. We have derived a set of

conditions on the general functional response and have determined two threshold parameters R0 and R1 to

prove the existence and the global stability of the model�s equilibria. The global asymptotic stability of the

three equilibria, infection-free, chronic-infection without antibody immune response and chronic-infection

with antibody immune response has been proven by using direct Lyapunov method and LaSalle�s invariance

principle.
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STABILITY OF GENERALIZED CUBIC SET-VALUED

FUNCTIONAL EQUATIONS

DONGSEUNG KANG

Abstract. We will show the general solution of the functional equation

f(ax + by) + f(bx− ay) + (a + b)2(a− b)f(y)

= a2bf(x + y) + ab2f(x− y) + (a + b)(a− b)2f(x)

and investigate the Hyers-Ulam stability of cubic set-valued functional
equation when b = 1 .

1. Introduction

The theory of set-valued functions in Banach spaces is connected to the
control theory and the mathematical economics. Aumann [4] and Debreu [8]
wrote papers that were motivated from the topic. We refer the reader to
the papers by [1], [18], [10], [3], [17], [7] and [9].

The stability problem of functional equations originated from a question
of Ulam [25] concerning the stability of group homomorphisms. Hyers [11]
gave a first affirmative partial answer to the question of Ulam. Afterwards,
the result of Hyers was generalized by Aoki [2] for additive mapping and
by Rassias [23] for linear mappings by considering a unbounded Cauchy
difference. Later, the result of Rassias has provided a lot of influence in the
development of what we call Hyers-Ulam stability or Hyers-Ulam-Rassias
stability of functional equations. For further information about the topic,
we also refer the reader to [13], [12], [5] and [6].

Jun and Kim [15] introduced the following cubic functional equation:

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)

and established a general solution. Najati [20] investigated the following
generalized cubic functional equation:

(1.1) f(ax+ y) + f(ax− y) = af(x+ y) + af(x− y) + 2(a3 − a)f(x) .

In this paper, we deal with the following functional equation:

(1.2) f(ax+ by) + f(bx− ay) + (a+ b)2(a− b)f(y)

= a2bf(x+ y) + ab2f(x− y) + (a+ b)(a− b)2f(x)
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Keywords : Hyers-Ulam-Rassias Stability, Cubic Mapping, Set-Valued Functional
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for all x , y ∈ X and integers a, b (a > b ≥ 1) . We will show the general
solution of the functional equation (1.2) and investigate the Hyers-Ulam
stability of cubic set-valued functional equation when b = 1 .

2. A generalized cubic functional equation

In this section let X and Y be vector spaces and we investigate the general
solution of the functional equation (1.2).

Theorem 2.1. A function f : X → Y satisfies the functional equation (1.1)
if and only if it satisfies the functional equation

(2.1) f(ax+ y) + f(x− ay)− a2f(x+ y)− af(x− y)

= (a− 1)(a2 − 1)f(x)− (a+ 1)(a2 − 1)f(y)

Proof. See [16, Theorem 2.1]. �

Theorem 2.2. A function f : X → Y satisfies the functional equation (1.1)
if and only if it satisfies the functional equation (1.2).

Proof. Suppose that f satisfies the equation (1.1). Since f satisfies the
equation (1.1), it is easy to show f(0) = 0 , f(x) = −f(−x) and f(ax) =
a3f(x) for all x ∈ X and integer a (a 6= 0 ,±1). Replacing x and y in the
equation (1.1), we obtain

(2.2) f(x+ ay)− f(x− ay) = a[f(x+ y)− f(x− y)] + 2a(a2 − 1)f(y)

for all x , y ∈ X and an integer a (a 6= 0 ,±1). By letting x = ax in the
equation (2.2), we have

(2.3) f(ax+ y)− f(ax− y) = a2[f(x+ y)− f(x− y)] + 2(1− a2)f(y)

for all x , y ∈ X and an integer a (a 6= 0 ,±1). By replacing x and y in the
equation (2.3), we get

(2.4) f(x+ ay) + f(x− ay) = a2[f(x+ y) + f(x− y)] + 2(1− a2)f(x)

for all x , y ∈ X and an integer a (a 6= 0 ,±1). Replacing a by b in the
equation (1.1), we have

(2.5) f(bx+ y) + f(bx− y) = bf(x+ y) + bf(x− y) + 2(b3 − b)f(x)

Letting y = by in the equation (1.1),

(2.6) f(ax+ by) + f(ax− by) = af(x+ by) + af(x− by) + 2(a3 − a)f(x)

Letting y = ay in equation (2.5),

(2.7) f(bx+ ay) + f(bx− ay) = bf(x+ ay) + bf(x− ay) + 2(b3 − b)f(x)

Replacing x and y in the equation (2.7),

(2.8) f(ax+ by)− f(ax− by) = bf(ax+ y)− bf(ax− by) + 2(b3 − b)f(y)

Replacing x and y in equation (2.6),

(2.9) f(bx+ ay)− f(bx− ay) = af(bx+ y)− af(bx− y) + 2(a3 − a)f(y)
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Adding two equations (2.6) and (2.8), we obtain

(2.10) 2f(ax+ by) = af(x+ by) + af(x− by) + 2(a3 − a)f(x)

+bf(ax+ y)− bf(ax− y) + 2(b3 − b)f(y)

Subtracting (2.9) from (2.7), we have

(2.11) 2f(bx− ay) = bf(x+ ay) + bf(x− ay) + 2(b3 − b)f(x)

−af(bx+ y) + af(bx− y)− 2(a3 − a)f(y)

Now, adding two equations (2.10) and (2.11), we get

(2.12) 2[f(ax+ by) + f(bx− ay)] = a[f(x+ by) + f(x− by)]

+b[f(ax+ y)− f(ax− y)] + 2(a3 − a)f(x) + 2(b3 − b)f(y)

+b[f(x+ ay) + f(x− ay)]− a[f(bx+ y)− f(bx− y)]

+2(b3 − b)f(x)− 2(a3 − a)f(y)

The desired result is obtained from the equation (2.12) by using the equa-
tions (2.3) and (2.4). Conversely, suppose that f satisfies the equation (1.2).
Letting b = 1 in the equation (1.2), we have the equation (2.1). The remains
follow from Theorem 2.1. �

If f satisfies the equation (1.2), we call f a generalized cubic mapping.

3. Stability of the generalized cubic set-valued functional
equation

In this section, we first introduce some definitions and notations which
are needed to prove the main theorems. Let Y be a Banach space. The
family of all closed subsets, containing 0 , of Y will be denoted by Cz(Y ) .
Let A ,B be nonempty subsets of a real vector space X and λ a real number.
We define

A+B = {a+ b ∈ X | a ∈ A , b ∈ B}
λA = {λa ∈ X | a ∈ A} .

Lemma 3.1 ( [21]). Let λ and µ be real numbers. If A and B are nonempty
subset of a real vector space, then

λ(A+B) = λA+ λB

(λ+ µ)A ⊆ λA+ µA .

Moreover, if A is a convex set and λµ ≥ 0 , then we have

(λ+ µ)A = λA+ µA .
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A subset A ⊆ X is said to be a cone if A + A ⊆ A and λA ⊆ A for all
λ > 0 . If the zero vector in X belongs to A , then we say that A is a cone
with zero.

Let Cb(Y ) be the set of all closed bounded subsets of Y , Cc(Y ) the set
of all closed convex subsets of Y and Ccb(Y ) the set of all closed bounded
convex subsets of Y . For elements A ,B of Cc(Y ) and positive real values
λ , µ , we denote

A⊕B = A+B .

For a subset A of Y , the distance function d(· , A) and the support function
s(· , A) are defined by

d(x ,A) := inf {||x− y|| | y ∈ A} for all x ∈ Y
s(x∗ , A) := sup {〈x∗ , x〉|| |x ∈ A} for all x∗ ∈ Y ∗ .

For A ,A′ ∈ Cb(Y ) , the Hausdorff distance h(A ,A′) between A and A′ is
defined by

h(A ,A′) := inf {α ≥ 0 |A ⊆ A′ + αBY , A
′ ⊆ A+ αBY } ,

where BY is the closed unit ball in Y . Castaing and Valadier [7] proved that
(Ccb(Y ) ,⊕ , h) is a complete metric semigroup. Rȧdström [22] showed that
(Ccb(Y ) ,⊕ , h) is isometrically embedded in a Banach space. The following
remark is directly obtained from the notion of the Hausdorff distance.

Remark 3.2. Let A ,A′ , B ,B′ , C ∈ Ccb(Y ) and α > 0 . Then the following
properties hold:

(1) h(A⊕A′, B ⊕B′) ≤ h(A ,B) + h(A′ , B′)
(2) h(αA ,αB) = αh(A ,B)
(3) h(A ,B) = h(A⊕ C ,B ⊕ C) .

First, let X be a real vector space , A ⊂ X a cone with zero and Y a
Banach space.

Theorem 3.3. If f : A + (−1)A → Cz(Y ) is a set-valued mapping with
f(0) = {0} satisfying

(3.1) f(ax+ y) + f(x− ay) + (a2 − 1)(a+ 1)f(y)

⊆ a2f(x+ y) + af(x− y) + (a2 − 1)(a− 1)f(x)

and

sup{diam(f(x)) |x ∈ A} <∞
for all x , y ∈ A and an integer a (a ≥ 2) , then there exists a unique gen-
eralized cubic mapping C : A + (−1)A → Y such that C(x) ∈ f(x) for all
x ∈ A .

Proof. Letting y = 0 in (3.1), we have

(3.2) f(ax) ⊆ a3f(x)
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for all x ∈ A and an integer a (a ≥ 2) . Replacing x by anx , n ∈ N in (3.2) ,
we get

f(an+1x) ⊆ a3f(anx)

and
1

a3(n+1)
f(an+1x) ⊆ 1

a3n
f(anx)

for all x ∈ A and an integer a (a ≥ 2) . Let fn(x) = 1
a3n

f(anx) for each
x ∈ A ,n ∈ N . Then {fn(x)}n≥0 is a decreasing sequence of closed subsets
of the Banach space Y . Also, we obtain

diam(fn(x)) =
1

a3n
diam(f(anx)) .

Since sup{diam(f(x)) |x ∈ A} <∞ , we have

lim
n→∞

diam(fn(x)) = 0 .

Using the Cantor theorem for the sequence {fn(x)}n≥0 , we get that
∩n≥0fn(x) is a singleton set and we denote this intersection by C(x) for
all x ∈ A . Hence we obtain a map C : A+ (−1)A→ Y and

C(x) ∈ f0(x) = f(x)

for all x ∈ A . We claim that C is generalized cubic. We note that

fn(ax+ y) + fn(x− ay) + (a2 − 1)(a+ 1)fn(y)

=
f(an(ax+ y))

a3n
+
f(an(x− ay))

a3n
+

(a2 − 1)(a+ 1)f(any)

a3n

⊆ a2f(an(x+ y))

a3n
+
af(an(x− y))

a3n
+

(a2 − 1)(a− 1)f(anx)

a3n

= a2fn(x+ y) + afn(x− y) + (a2 − 1)(a− 1)fn(x)

for all x ∈ A and an integer a (a ≥ 2) . By the definition of C , we obtain

C(ax+ y) + C(x− ay) + (a2 − 1)(a+ 1)C(y)

= ∩∞n=0

(
fn(ax+ y) + fn(x− ay) + (a2 − 1)(a+ 1)fn(y)

)
⊆ ∩∞n=0

(
a2fn(x+ y) + afn(x− y) + (a2 − 1)(a− 1)fn(x)

)
for all x ∈ A and an integer a (a ≥ 2) . Hence we have

||C(ax+ y) + C(x− ay) + (a2 − 1)(a+ 1)C(y)

−a2C(x+ y)− aC(x− y)− (a2 − 1)(a− 1)C(x)||
≤ a2diam(fn(x+ y)) + a diam(fn(x− y)) + (a2 − 1)(a− 1)diam(fn(x)) ,

which tends to zero as n→∞ . Thus C satisfies the equality (1.2). Hence C
is a generalized cubic, as claimed. Next, let us prove the uniqueness of C .
Assume f has two generalized cubic functional equations C1 and C2 from
A+ (−1)A into Y . Then we have

(an)3Ci(x) = Ci(anx) ∈ f(anx)
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for all x ∈ X ,n ∈ N and i ∈ {1 , 2} . Then we have

(an)3||C1(x)− C2(x)|| = ||(an)3C1(x)− (an)3C2(x)||
= ||(C1(anx)− C2(anx)||
≤ diam(f(anx))

for all x ∈ X ,n ∈ N . Since sup{diam(f(x)) |x ∈ A} <∞ , C1(x) = C2(x) ,
for all x ∈ X . �

Definition 3.4. Let f : X → Ccb(Y ) . The generalized cubic set-valued
functional equation is defined by

(3.3) f(ax+ y)⊕ f(x− ay)⊕ (a2 − 1)(a+ 1)f(y)

= a2f(x+ y)⊕ af(x− y)⊕ (a2 − 1)(a− 1)f(x)

for all x ∈ A and an integer a (a ≥ 2) . Every solution of the generalized
cubic set-valued functional equation is called a generalized cubic set-valued
mapping.

Theorem 3.5. Let φ : X ×X → [0, ∞) be a function such that

(3.4) φ̃(x, y) :=

∞∑
j=0

1

a3j
φ(ajx, ajy) <∞

for all x, y ∈ X and an integer a (a ≥ 2) . Suppose that f : X → (Ccb(Y ), h)
is a mapping with f(0) = {0} satisfying

(3.5) h
(
f(ax+ y)⊕ f(x− ay)⊕ (a2 − 1)(a+ 1)f(y),

a2f(x+ y)⊕ af(x− y)⊕ (a2 − 1)(a− 1)f(x)
)
≤ φ(x, y)

for all x, y ∈ X and an integer a (a ≥ 2) . Then there exists a unique
generalized cubic set-valued mapping C : X → (Ccb(Y ), h) such that

(3.6) h(f(x), C(x)) ≤ 1

a3
φ̃(x, 0)

for all x, y ∈ X and an integer a (a ≥ 2) .

Proof. Let y = 0 in the inequality (3.5). Since f(x) is convex, we have

h
(
f(ax)⊕ f(x), a2f(x)⊕ af(x)⊕ (a2 − 1)(a− 1)f(x)

)
≤ φ(x, 0) ,

that is,

(3.7) h
(
f(x),

1

a3
f(ax)

)
≤ 1

a3
φ(x, 0)

for all x ∈ X . Replacing x by akx , k ∈ N , we get

h
(
f(akx),

1

a3
f(ak+1x)

)
≤ 1

a3
φ(akx, 0)

and

h
( 1

a3k
f(akx),

1

a3(k+1)
f(ak+1x)

)
≤ 1

a3(k+1)
φ(akx, 0)
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for all x ∈ X . Using the induction on k , we obtain

(3.8) h
(
f(x),

1

a3n
f(anx)

)
≤ 1

a3

n−1∑
k=0

1

a3k
φ(akx, 0)

for all x ∈ X and n ∈ N . Dividing the inequality (3.8) by a3m and replacing
x by amx , we have

(3.9) h
( 1

a3m
f(amx),

1

a3(n+m)
f(an+mx)

)
≤ 1

a3
1

am

n−1∑
k=0

1

a3k
φ(am+kx, 0)

for all x ∈ X and n ,m ∈ N . Since the right-hand side of the inequality (3.9)
tends to zero as m → ∞ , the sequence { 1

a3n
f(anx)} is a Cauchy sequence

in (Ccb(Y ), h) . By the completeness of Ccb(Y ) , we can define

C(x) := lim
n→∞

1

a3n
f(anx)

for all x ∈ X and an integer a (a ≥ 2) . We note that

h
(f(an(ax+ y))

a3n
⊕ f(an(x− ay))

a3n
⊕ (a2 − 1)(a+ 1)f(any)

a3n
,

a2f(an(x+ y))

a3n
⊕ af(an(x− y))

a3n
⊕ (a2 − 1)(a− 1)f(anx)

a3n

)
≤ 1

a3n
φ(anx, any)

for all x, y ∈ X and an integer a (a ≥ 2) . By the definition of C , we have

h
(
C(ax+ y)⊕ C(x− ay)⊕ (a2 − 1)(a+ 1)C(y),

a2C(x+ y)⊕ aC(x− y)⊕ (a2 − 1)(a− 1)C(x)
)

≤ lim
n→∞

1

a3n
φ(anx, any) = 0 .

Hence C is a generalized cubic set-valued mapping. Now, by taking n→∞
in the inequality (3.8), we have the inequality (3.6). It remains to show the
uniqueness of C . Assume C ′ : X → (Ccb(Y ), h) is another generalized cubic
set-valued mapping satisfying the inequality (3.6). Then

h
(
C(x), C ′(x)

)
=

1

a3n
h
(
C(anx), C ′(anx)

)
≤ 1

a3n
h
(
C(anx), f(anx)

)
+

1

a3n
h
(
f(anx), C ′(anx)

)
≤ 2

a3(n+1)
φ̃(anx, 0)

for all x ∈ X . Since 2
a3(n+1) φ̃(anx, 0)→ 0 as n→∞ , we may conclude that

the generalized cubic set-valued mapping C is unique. �
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Corollary 3.6. Let 0 < p < 3 , θ ≥ 0 be real numbers and let X be a
real normed space. Suppose that f : X → (Ccb(Y ), h) is a mapping with
f(0) = {0} satisfying

h
(
f(ax+ y)⊕ f(x− ay)⊕ (a2 − 1)(a+ 1)f(y),

a2f(x+ y)⊕ af(x− y)⊕ (a2 − 1)(a− 1)f(x)
)
≤ θ(||x||p + ||y||p)

for all x, y ∈ X and an integer a (a ≥ 2) . Then there exists a unique
generalized cubic set-valued mapping C : X → (Ccb(Y ), h) satisfying

h(f(x), C(c)) ≤ θ

a3 − ap
||x||p

for all x, y ∈ X and an integer a (a ≥ 2) .

Proof. It follows from Theorem 3.5 by letting φ(x, y) = θ(||x||p + ||y||p) for
all x, y ∈ X . �

4. Stability of set-valued functional equation by the fixed
point method

Now, we will investigate the stability of the given functional equation
(3.3) using the alternative fixed point method. Before proceeding the proof,
we will state the theorem, the alternative of fixed point; see [19] and [24].

Definition 4.1. Let X be a set. A function d : X ×X → [0, ∞] is called a
generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y ;
(2) d(x, y) = d(y, x) for all x, y ∈ X ;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Theorem 4.2. [ The alternative of fixed point [19], [24] ] Suppose that we
are given a complete generalized metric space (Ω, d) and a strictly contractive
mapping T : Ω→ Ω with Lipschitz constant L . Then for each given x ∈ Ω ,
either

d(Tnx, Tn+1x) =∞ for all n ≥ 0 ,

or there exists a natural number n0 such that

(1) d(Tnx, Tn+1x) <∞ for all n ≥ n0 ;
(2) The sequence (Tnx) is convergent to a fixed point y∗ of T ;
(3) y∗ is the unique fixed point of T in the set

4 = {y ∈ Ω|d(Tn0x, y) <∞} ;

(4) d(y, y∗) ≤ 1
1−L d(y, Ty) for all y ∈ 4 .

Theorem 4.3. Suppose that f : X → (Ccb(Y ), h) is a mapping with f(0) =
{0} satisfying

(4.1) h
(
f(ax+ y)⊕ f(x− ay)⊕ (a2 − 1)(a+ 1)f(y),
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a2f(x+ y)⊕ af(x− y)⊕ (a2 − 1)(a− 1)f(x)
)
≤ φ(x, y)

for all x, y ∈ X and an integer a (a ≥ 2) and there exists a constant L with
0 < L < 1 for which the function φ : X2 → R+ satisfies

(4.2) φ(ax, 0) ≤ a3Lφ(x, 0)

for all x ∈ X . Then there exists a unique generalized cubic set-valued map-

ping C : X → (Ccb(Y ), h) given by C(x) = limn→∞
f(anx)
a3n

such that

(4.3) h(f(x), C(x)) ≤ 1

a3(1− L)
φ̃(x, 0)

for all x, y ∈ X and an integer a (a ≥ 2) .

Proof. Consider the set

Ω = {g | g : X → Ccb(Y ) , g(0) = {0}}
and introduce the generalized metric on Ω defined by

d(g1, g2) = inf {µ ∈ (0,∞) |h(g1(x) , g2(x)) ≤ µφ(x, 0) , for all x ∈ X} .
We note that inf ∅ :=∞ . It is easy to show that (Ω, d) is complete; see [14].
Now we define a function T : Ω→ Ω by

(4.4) T (g)(x) =
1

a3
g(ax)

for all x ∈ X . Note that for all g1, g2 ∈ Ω , let µ ∈ (0, ∞) be an arbitrary
constant with d(g1, g2) = µ . Then

(4.5) h(
1

a3
g1(ax) ,

1

a3
g2(ax)) ≤ µ

a3
φ(ax, 0)

for all x ∈ X . By using (4.2), we have

(4.6) h(
1

a3
g1(ax) ,

1

a3
g2(ax)) ≤ µLφ(x, 0)

for all x ∈ X . Hence we obtain

d(Tg1, T g2) ≤ Ld(g1, g2)

for all g1 , g2 ∈ Ω , that is, T is a strictly self-mapping of Ω with the Lipschitz
constant L . Letting y = 0 in the inequality (4.1), we get

h(
1

a3
f(ax) , f(x)) ≤ 1

a3
φ(x, 0)

for all x ∈ X . This means that

d(Tf, f) ≤ 1

a3
.

By Theroem 4.2, there exists a fixed point C : X → (Ccb(Y ), h) of T in
{g ∈ Ω | d(g1 , g2) <∞} such that {T kf} → 0 ad k →∞ . Hence we have

(4.7) C(x) = lim
n→∞

f(anx)

a3n
,
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for all x ∈ X . Also, we have

d(f, C) ≤ 1

1− L
d(Tf, f) ≤ 1

a3
1

1− L
.

This implies that the inequality (4.3) holds for all x ∈ X . By the inequalities
(4.1) and (4.2), we have

h
(
C(ax+ y)⊕ C(x− ay)⊕ (a2 − 1)(a+ 1)C(y),

a2C(x+ y)⊕ aC(x− y)⊕ (a2 − 1)(a− 1)C(x)
)

≤ lim
n→∞

Lnφ(anx, any) = 0

for all x, y ∈ X and an integer a (a ≥ 2) . Thus C is a unique generalized
cubic set-valued mapping. �

Corollary 4.4. Let 0 < p < 3 and θ ≥ 0 be real numbers and let X be
a real normed space. Suppose that f : X → (Ccb(Y ), h) is a mapping with
f(0) = {0} satisfying

(4.8) h
(
f(ax+ y)⊕ f(x− ay)⊕ (a2 − 1)(a+ 1)f(y),

a2f(x+y)⊕af(x−y)⊕ (a2−1)(a−1)f(x)
)
≤ θ(||x||p + ||y||p)

for all x, y ∈ X and an integer a (a ≥ 2) . Then there exists a unique
generalized cubic set-valued mapping C : X → (Ccb(Y ), h) such that

(4.9) h(f(x), C(x)) ≤ θ

a3 − ap
||x||p

for all x ∈ X and an integer a (a ≥ 2) .

Proof. It follows from Theorem 4.3 by letting φ(x, y) = θ(||x||p + ||y||p) for
all x, y ∈ X . Then we can choose L = ap−3 and hence we have the desired
result. �

References

[1] K.J. Arrow and G. Debreu, Existence of anequilibrium for a competitive economy,
Econometrica 22 (1954), 265–290.

[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math.
Soc. Japan 2 (1950), 64–66.

[3] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston (1990).
[4] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal.Appl. 12 (1965)

1–12.
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Abstract: In the classical theory of convergence spaces, both regularity (p-regularity)

and topologicallness (p-topologicallness) are important notions. It is well known that

topologicallness (p-topologicallness) can be described by a sophisticated Fischer-type

diagonal condition, and regularity (p-regularity) can be described by dualizing that

diagonal condition. Additionally, regularity (p-regularity) can also be characterized by

the notion of closures of filters. In this paper, for stratified L-generalized convergence

spaces, a new regularity (p-regularity) is defined by duzlizing a Fischer-type diagonal

condition, which is used to describe the L-topologicallness of stratified L-convergence

spaces (a subcategory of stratified L-generalized convergence spaces). Additionally, a

characterization on this new regularity (p-regularity) by a notion of closures of stratified

L-filters, is also presented.

Keywords: Topology; Lattice-valued topology; Lattice-valued convergence space; reg-

ularity; Diagonal condition

1 Introduction

p-topologicallness [17] and p-regularity [11] are dual notions in the classical theory

of convergence spaces [16]. For a set X, let F(X) denote the set of all filters on X.

Let q and p be convergence structures on a set X. Then the space (X, q) is called

p-topological if it satisfies either of the two conditions below.

(1) Up(F)
q→ x whenever F q→ x, where Up(F) is the neighborhood of F w.r.t p.

∗Corresponding author. Tel./fax: +86 15206506635/+86 635 8258028.
E-mail address: lilingqiang0614@126.com, liqingguoli@yahoo.com.cn. Mailing address: Depart-

ment of Mathematics, Liaocheng University, Liaocheng, 252059, P.R.China

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

307 Lingqiang Li et al 307-318



A new regularity (p-regularity) of stratified L-generalized convergence spaces 2

(2) (Fischer-type diagonal condition) Let J be any set, ψ : J −→ X, and let

σ : J −→ F(X) have the condition that σ(j)
p→ ψ(j), for all j ∈ J . If F ∈ F(J) is

such that ψ(F)
q→ x, then kσF q→ x. Here, kσF =

⋃
F∈F

⋂
j∈F

σ(j) ∈ F(X) is called the

compression of F relative to σ.

The space (X, q) is called p-regular if it satisfies either of the two conditions below.

(1) Fp
q→ x whenever F q→ x, where Fp is the closure of F w.r.t p.

(2) (Dual Fischer-type diagonal condition) Let J be any set, ψ : J −→ X, and let

σ : J −→ F(X) have the condition that σ(j)
p→ ψ(j), for all j ∈ J . If F ∈ F(J) is such

that kσF q→ x, then ψ(F)
q→ x.

When p = q, p-topologicallness and p-regularity are refereed to topologicallness and

regularity [1, 3, 12], respectively.

Stratified L-generalized convergence spaces defined by Jäger [7] are lattice- valued

extensions of convergence spaces. In [9], Jäger studied a regularity of stratified L-

generalized convergence spaces both by a dual Fischer-type diagonal condition and

a notion of α-lever closures of stratified L-filters. Later, Li and Jin [14] generalized

Jäger’s regularity to p-regularity. Quite recently, by modifying Jäger’s Fischer-type

diagonal condition, the first author and his co-author [15] introduced a new Fischer-

type diagonal condition, and proved that this condition happens to characterize the

topologicallness of stratified L-convergence spaces [4, 13] (a subcategory of stratified

L-generalized convergence spaces). In this paper, by dualizing that diagonal condition,

a new regularity (p-regularity) of stratified L-generalized convergence spaces is defined,

and a characterization on this new regularity (p-regularity) by the notion of closures

of stratified L-filters, is also presented.

The contents are arranged as follows. Section 2 fixes some notions and notations

used in this note. Section 3 recalls the Fischer-type diagonal notion such that strati-

fied L-convergence spaces are L-topological. Section 4 presents the main results. That

is, by dualizing a Fischer-type diagonal condition in Section 3, we define a new regu-

larity (p-regularity) of stratified L-generalized convergence spaces and then present a

characterization on that regularity (p-regularity) by a notion of closures of stratified

L-filters.

In this paper, if not otherwise specified, L = (L,≤) is always a complete lattice

with a top element 1 and a bottom element 0, which satisfies the distributive law

α ∧ (
∨

i∈I βi) =
∨

i∈I(α ∧ βi). A lattice with these conditions is called a complete

Heyting algebra or a frame. The operation →: L× L −→ L given by α → β =
∨{γ ∈

L : α∧ γ ≤ β}, is called the residuation with respect to ∧. For the properties of ∧ and

→, please refer to the literatures [6, 7, 14].

For a set X, the set LX of functions from X to L with the pointwise order becomes

a complete lattice. Each element of LX is called an L-set (or a fuzzy subset) of X. And
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we make no difference between a constant function and its value since no confusion will

arise. Let f : X −→ Y be a function. We definef← : LY −→ LX [6] by f←(µ) = µ ◦ f

for µ ∈ LY .

Let X be a set. A fuzzy partial order (or, an L-partial order) on X [2] is a re-

flexive, transitive and antisymmetric fuzzy relation on X. The pair (X,R) is called

an L-partially ordered set. Let [LX ] : LX × LX −→ L be a function defined by

[LX ](λ, µ) =
∧

x∈X(λ(x) → µ(x)). Then [LX ] is an L-partial order on LX [2, 19].

The value [LX ](λ, µ) ∈ L is interpreted as the degree that λ is contained in µ. In

the sequel, we use the symbol [λ, µ] to denote [LX ](λ, µ) for simplicity. The following

lemma is useful to the subsequent section.

Lemma 1.1. [14] Let f : X −→ Y be an function. For any λ, µ, ν ∈ LX and any

{λi}i∈I , {µi}i∈I ⊆ LX , we have (1) λ ≤ µ implies [λ, ν] ≥ [µ, ν]; (2) [λ,∧i∈Iµi] =

∧i∈I [λ, µi]; (3) λ ∧ [λ, µ] ≤ µ; (4) [∨i∈Iλi, µ] = ∧i∈I [λi, µ]; (5) [λ, µ] ≤ [f→(λ), f→(µ)].

A stratified L-filter [6] on a set X is a function F : LX −→ L such that: (F0)

F(0) = 0, (F1) F(1) = 1, (F2) ∀λ, µ ∈ LX , F(λ) ∧ F(µ) = F(λ ∧ µ), (Fs) ∀α ∈ L,

F(α) ≥ α. The set F s
L(X) of all stratified L-filters on X is ordered by F ≤ G ⇔

∀λ ∈ LX ,F(λ) ≤ G(λ). There is a natural fuzzy partial order on F s
L(X) inherited

from L(LX). Precisely, for all F ,G ∈ F s
L(X), if we let [F s

L(X)](F ,G) = [LLX
](F ,G) =∧

λ∈LX (F(λ) → G(λ)), then [F s
L(X)] is an L-partially order.

Example 1.2. (1) For each point x in a set X, the function [x] : LX −→ L, [x](λ) =

λ(x) is a stratified L-filter on X. (2) If {Fj|j ∈ J} ⊆ F s
L(X), then

∧
j∈J Fj ∈ F s

L(X).

(3) Let f : X −→ Y be a function. If F ∈ F s
L(X), then the function f⇒(F) ∈

F s
L(Y ), where f⇒(F) : LY −→ L is defined by λ 7→ F(λ ◦ f) = F(f←(λ)).

2 Fischer-type diagonal condition of stratified L-

convergence spaces

In this section, we shall recall the Fischer-type diagonal condition such that a stratified

L-convergence space is L-topological.

Definition 2.1. A stratified L-generalized convergence structure [7, 18] on a set X is

a function limq : F s
L(X) −→ LX satisfying (LC1) ∀x ∈ X, limq[x](x) = 1; and (LC2)

∀F ,G ∈ F s
L(X), F ≤ G =⇒ limqF ≤ limqG. The pair (X, limq) is called a stratified L-

generalized convergence space. The pair (X, limq) is called a stratified L-convergence

space [13] (or, a stratified L-ordered convergence space in [4]) if lim : F s
L(X) −→

LX is a function satisfying (LC1) and (LC2′) ∀F ,G ∈ F s
L(X), [F s

L(X)](F ,G) ≤
[LX ](limqF , limqG). Because (LC2)′⇒(LC2), a stratified L-convergence space is a
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stratified L-generalized convergence space. A function f : X −→ X ′ between two

stratified L-generalized convergence spaces (X, limq), (X ′, limq′) is called continuous if

for all F ∈ F s
L(X) and all x ∈ X we have limq F(x) ≤ limq′ f⇒(F)(f(x)).

For a given source (X
fi−→ (Xi, lim

qi))i∈I , the initial structure, limq on X is defined

by ∀F ∈ F s
L(X),∀x ∈ X, limqF(x) =

∧
i∈I

limqif⇒i (F)(fi(x)).

For a given sink ((Xi, lim
qi)

fi−→ X)i∈I , the final structure, limq on X is defined by

limqF(x) =

{
1, F ≥ [x];∨

i∈I,xi∈Xi,Gi∈Fs
L(Xi),fi(xi)=x,f⇒i (Gi)≤F limqiGi(xi), F 6≥ [x].

When X = ∪i∈Ifi(Xi), the final structure limq can be simplified as [14]

limqF(x) =
∨

i∈I,xi∈Xi,Gi∈Fs
L(Xi),fi(xi)=x,f⇒i (Gi)≤F

limqiGi(xi).

In the theory of convergence spaces, Fischer-type diagonal condition is formulated

by the aid of the notion of compression. The situation with lattice-valued convergence

is similar. In [8], Jäger introduced an lattice-valued version of compression, which first

appeared in [5] with a slightly different formalization.

Let σ : J −→ F s
L(X) be a function and F ∈ F s

L(X). Then the function kLσF :

LX −→ L defined by

∀λ ∈ LX , kLσF(λ) := F(σ̂(λ)), where σ̂(λ) = σ(−)(λ) ∈ LJ

forms a stratified L-filter on X; and it is called the compression of F w.r.t σ.

In [15], the first author and his co-author modified Jäger’s compression and intro-

duced a Fischer-type diagonal condition. It was proved that a stratified L-convergence

space with this diagonal condition is L-topological.

Note that when a function σ : J −→ F s
L(X) being given, that means an L-filter

σ(j) is selected for each j ∈ J . In this sense, we call σ : J −→ F s
L(X) an L-filter select

function. The definition below generalizes that notion.

Definition 2.2. [15] A function σ = (σ1, σ2) : J −→ F s
L(X)×L0, where L0 = L−{0},

is said to be an L-filter select degree function. For any j ∈ J , the value σ2(j) ∈ L is

interpreted as the degree to which the stratified L-filter σ1(j) is selected. Obviously,

an L-filter select function can be regarded as an L-filter select degree function with

σ2 ≡ 1.

Definition 2.3. [15] Let σ : J −→ F s
L(X) × L0 be an L-filter select degree function

and F ∈ F s
L(J). If the function kLσF : LX −→ L defined by

∀λ ∈ LX , kLσF(λ) := F(σ̂(λ)), where σ̂(λ) = σ2(−) → σ1(−)(λ) ∈ LJ
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forms a stratified L-filter on X, then we call such F compressible w.r.t σ and call kLσF
as the compression of F w.r.t σ. It is easily seen that kLσF satisfies (F1), (F2) and

(Fs) for any F ∈ F s
L(J).

If σ : J −→ F s
L(X)× L0 is an L-filter select function, then kLσF ∈ F s

L(X) for any

F ∈ F s
L(J). In this case, kLσF coincides with Jäger’s compression. Thus, Definition

2.3 generalizes Jäger’s compression.

Theorem 2.4. [15] Let (X, limq) be a stratified L-convergence spaces. Then (X, limq)

is L-topological if and only if it satisfies the following condition (Lf).

(Lf) Let J be any set, ψ : J −→ X, and let σ : J −→ F s
L(X)× L0. If F ∈ F s

L(J)

is compressible w.r.t σ, then for each x ∈ X,

limqψ⇒(F)(x) ∗
∧
j∈J

limqσ(j)(ψ(j)) ≤ limqkLσF(x),

where limq σ(j)(ψ(j)) := σ2(j) → limq σ1(j)(ψ(j)).

Obviously, the condition (Lf) implies the following condition (Lfw).

(Lfw): Let J be any set, ψ : J −→ X, and let σ : J −→ F s
L(X) × L0 have the

condition ∀j ∈ J , σ2(j) = limq σ1(j)(ψ(j)) (which means that limq σ(j)(ψ(j)) ≡ 1).

If F ∈ F s
L(J) is compressible w.r.t σ, then limq ψ⇒(F)(x) ≤ limq kLσF(x) for each

x ∈ X.

Note that in the proof of the sufficiency of Theorem 2.4, the selected σ, ψ satisfies

the condition σ2(j) = limq σ1(j)(ψ(j)) (see Theorem 4.9 in [15]). It follows imme-

diately that (Lf)⇔(Lfw). In addition, the characterization on L-topologicallness of

stratified L-convergence spaces by the notion of neighborhoods of stratified L-filters,

was presented in [10].

3 regularity and p-regularity of stratified L-

generalized convergence spaces

In this section, by dualizing the condition (Lfw) we define a new regularity (p-

regularity) of stratified L-generalized convergence spaces. Then we also present a char-

acterization on that regularity (p-regularity) by a notion of closures of stratified L-

filters.

Let (X, limp, limq) be a pair of stratified L-generalized convergence spaces.

p-(DLfw): Let J be any set, ψ : J −→ X, and let σ : J −→ F s
L(X)× L0 have the

condition ∀j ∈ J , σ2(j) = limp σ1(j)(ψ(j)). If F ∈ F s
L(J) is compressible w.r.t σ, then

limq kLσF(x) ≤ limq ψ⇒(F)(x) for each x ∈ X.
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When limp = limq, the condition p-(DLfw) is denoted as (DLfw). Obviously, the

condition (DLfw) is obtained by dualizing the condition (Lfw).

It is easily seen that when L = {0, 1}, the condition p-(DLfw) is equivalent to the

crisp dual Fischer-type diagonal condition.

Definition 3.1. Let (X, limp, limq) be a pair of stratified L-generalized convergence

spaces. Then (X, limq) is called p-regular if it satisfies the dual Fischer-type diagonal

condition p-(DLfw). When limp = limq, then (X, limq) is called regular if it is p-

regular.

In the following, we shall give a characterization on regularity (p-regularity) by the

notion of closures of stratified L-filters.

Definition 3.2. Let (X, limp) be a stratified L-generalized convergence space, and let

λ ∈ LX . Then the L-set λp ∈ LX defined by

∀x ∈ X, λp(x) =
∨

F∈Fs
L(X): limp F(x)6=0

(limpF(x) → F(λ))

is called the closure of λ w.r.t (X, limp).

Remark 3.3. When L = {0, 1}, a stratified L-generalized convergence space reduces

to a convergence space. Then it is easily seen that x ∈ λp ⇔∃F p→ x s.t. λ ∈ F. This

shows that closure is precisely the crisp closure in [16] when L = {0, 1}.

Lemma 3.4. Let (X, limp) be a stratified L-generalized convergence space. Then for

all λ, µ ∈ LX and all α ∈ L we get (1) λ ≤ λp; (2) λ ≤ µ implies λp ≤ µp; (3) αp ≥ α.

Proof. (1) For each x ∈ X, by limp[x](x) = 1 we get λp(x) ≥ [x](λ) = λ(x). So, λ ≤ λp.

Take λ = 1 in (1), we obtain 1p = 1.

(2) It follows from the property (F2) of stratified L-filters.

(3) For each x ∈ X we have

αp(x) =
∨

limF(x)6=0

(limpF(x) → F(α))
(Fs)

≥
∨

limF(x)6=0

(limpF(x) → α) ≥ α.

Theorem 3.5. Let (X, limp) be a stratified L-generalized convergence space. For each

F ∈ F s
L(X), the function Fp : LX −→ L, defined by ∀λ ∈ LX ,Fp(λ) =

∨
µ∈LX (F(µ)∧

[µp, λ]), is a stratified L-filter, called the closure of F w.r.t (X, limp).

Proof. (F1) That Fp(1) = 1 is obvious. That Fp(0) = 0 follows by

Fp(λ) =
∨

µ∈LX

(F(µ) ∧ [µp, λ]) ≤
∨

µ∈LX

(F(µ) ∧ [µ, λ]) ≤ F(λ).
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(F2) Obviously, Fp(λ ∧ µ) ≤ Fp(λ) ∧ Fp(µ). Conversely,

Fp(λ) ∧ Fp(µ) =
∨

a∈LX

(F(a) ∧ [ap, λ]) ∧
∨

b∈LX

(F(b) ∧ [bp, µ])

=
∨

a,b∈LX

(F(a) ∧ F(b) ∧ [ap, λ] ∧ [bp, µ])

≤
∨

a,b∈LX

(F(a ∧ b) ∧ [(a ∧ b)p, λ ∧ µ])

≤
∨

c∈LX

(F(c) ∧ [cp, λ ∧ µ]) = Fp(λ ∧ µ).

(Fs) By 1p = 1, it follows that Fp(α) =
∨

µ∈LX (F(µ) ∧ [µp, α]) ≥ F(1) ∧ α = α.

Remark 3.6. When L = {0, 1}, a stratified L-generalized convergence space reduces

to a convergence space. It is easily seen that Fp is precisely the filter generated by

{A : A ∈ F} as a filterbasis [16].

Lemma 3.7. Let J,X, σ, ψ satisfy the condition in p-(DLfw). Then for any λ, µ ∈ LX

we have [µp, λ] ≤ [φ̂(µ), ψ←(λ)].

Proof. Note that ∀j ∈ J , σ2(j) = limp σ1(j)(ψ(j)) 6= 0. Then

[µp, λ] =
∧
x∈X

(
∨

G∈Fs
L(X):limp G(x)6=0

(limpG(x) → G(µ)) → λ(x))

=
∧
x∈X

∧

G∈Fs
L(X):limp G(x)6=0

((limpG(x) → G(µ)) → λ(x))

≤
∧
j∈J

(limpσ1(j)(ψ(j)) → σ1(j)(µ)) → λ(ψ(j)))

≤
∧
j∈J

(σ2(j) → σ1(j)(µ)) → ψ←(λ)(j))

=
∧
j∈J

(σ̂(µ)(j) → ψ←(λ)(j)) = [σ̂(µ), ψ←(λ)].

Lemma 3.8. Let J,X, σ, ψ satisfy the condition in p-(DLfw), and let F ∈ F s
L(X).

Then the function Fσ : LJ −→ L, defined by Fσ(λ) =
∨

µ∈LX (F(µ)∧[σ̂(µ), λ]), satisfies

(F1), (F2), (Fs) and kLσFσ ≥ F .

Proof. (F1): It is obvious. (F2): Obviously, Fσ(λ ∧ µ) ≤ Fσ(λ) ∧ Fσ(µ). Conversely,

Fσ(λ) ∧ Fσ(µ) =
∨

a∈LX

(F(a) ∧ [σ̂(a), λ]) ∧
∨

b∈LX

(F(b) ∧ [σ̂(b), µ])

=
∨

a,b∈LX

(F(a) ∧ F(b) ∧ [σ̂(a), λ] ∧ [σ̂(b), µ])

≤
∨

a,b∈LX

(F(a ∧ b) ∧ [σ̂(a ∧ b), λ ∧ µ])

≤
∨

c∈LX

(F(c) ∧ [σ̂(c), λ ∧ µ]) = Fσ(λ ∧ µ).
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(Fs): For any β ∈ L, we have

Fσ(β) =
∨

µ∈LX

(F(µ) ∧ [σ̂(µ), β]) ≥ F(1) ∧ [σ̂(1), β] = 1 ∧ β = β.

It follows by the following inequality that kLσFσ ≥ F . For any λ ∈ LX ,

kLσFσ(λ) = Fσ(σ̂(λ)) =
∨

µ∈LX

(F(µ) ∧ [σ̂(µ), σ̂(λ)]) ≥ F(λ).

Theorem 3.9. Let (X, limp, limq) be a pair of stratified L-generalized convergence

spaces. Then (X, limq) is p-regular if and only if limq F ≤ limq Fp for any F ∈ F s
L(X).

Proof. Necessity: Let

J = {(G, y) ∈ F s
L(X)×X|limpG(y) 6= 0}, ψ : J −→ X, (G, y) 7→ y,

σ : J −→ F s
L(X)× L0, (G, y) 7→ (G, limpG(y)).

Then (1) σ2(j) = limp σ1(j)(ψ(j)) 6= 0. (2) For any F ∈ F s
L(X) we have Fσ ∈ F s

L(J).

Indeed, by Lemma 3.8, we need only to check that Fσ(0) = 0.

Fσ(0) =
∨

µ∈LX

(F(µ) ∧ [σ̂(µ), 0]) =
∨

µ∈LX

(F(µ) ∧
∧
j∈J

(σ̂(µ)(j) → 0))

≤
∨

µ∈LX

(F(µ) ∧ (
∧
y∈X

(σ̂(µ)([y], y) → 0))

=
∨

µ∈LX

(F(µ) ∧ (
∧
y∈X

((limp[y](y) → [y](µ)) → 0))

=
∨

µ∈LX

(F(µ) ∧ (
∧
y∈X

(µ(y) → 0)) =
∨

µ∈LX

(F(µ) ∧ [µ, 0])

≤
∨

µ∈LX

F(µ ∧ [µ, 0]) ≤ F(0) = 0.

(3) ψ⇒(Fσ) = Fp. For any λ, µ ∈ LX ,

[µp, λ] =
∧
x∈X

(
∨

G∈Fs
L(X):limp G(x)6=0

(limpG(x) → G(µ)) → λ(x))

=
∧
x∈X

∧

G∈Fs
L(X):limp G(x)6=0

((limpG(x) → G(µ)) → λ(x))

=
∧
j∈J

(limpσ1(j)(ψ(j)) → σ1(j)(µ)) → λ(ψ(j)))

=
∧
j∈J

(σ2(j) → σ1(j)(µ)) → ψ←(λ)(j))

=
∧
j∈J

(σ̂(µ)(j) → ψ←(λ)(j)) = [σ̂(µ), ψ←(λ)].
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It follows that

ψ⇒(Fσ)(λ) = Fσ(ψ←(λ)) =
∨

µ∈LX

(F(µ)∧[σ̂(µ), ψ←(λ)]) =
∨

µ∈LX

(F(µ)∧[µp, λ]) = Fp(λ).

(4) Fσ is compressible w.r.t. σ. For any λ, µ ∈ LX ,

[σ̂(λ), σ̂(µ)] =
∧
j∈J

(σ̂(λ)(j) → σ̂(µ)(j))

=
∧

(G,y):limp G(y)6=0

((σ2(j) → σ1(j)(λ)) → (σ2(j) → σ1(j)(µ))

≤
∧

([y],y):y∈X

((limp[y](y) → [y](λ)) → (limp[y](y) → [y](µ)))

=
∧
y∈X

(λ(y) → µ(y)) = [λ, µ].

Therefore, for any λ ∈ LX ,

kLσFσ(λ) = Fσ(σ̂(λ)) =
∨

µ∈LX

(F(µ) ∧ [σ̂(µ), σ̂(λ)]) ≤
∨

µ∈LX

(F(µ) ∧ [µ, λ]) ≤ F(λ).

By Lemma 3.8, we have kLσFσ = F ∈ F s
L(X). Thus kLσFσ is compressible w.r.t. σ.

Applying (1)-(4) in p-(DLfw) we have limqF ≤ limqFp.

Sufficiency: Let J,X, σ, ψ satisfy the condition in (DLfw). Then for any F ∈ F s
L(J),

by (X, limq) is p-regular we have that limq kLσF ≤ limq kLσFp(x). For any λ ∈ LX ,

by Lemma 3.7 we have

kLσFp(λ) =
∨

µ∈LX

(kLσF(µ) ∧ [µp, λ]) =
∨

µ∈LX

(F(σ̂(µ)) ∧ [µp, λ])

≤
∨

µ∈LX

(F(σ̂(µ)) ∧ [σ̂(µ), ψ←(λ)]) ≤ F(ψ←(λ)) = ψ⇒(F)(λ).

So, kLσFp ≤ ψ⇒(F), and hence limqψ⇒(F) ≥ limqkLσFp ≥ limqkLσF , i.e., the

condition p-(DLfw) holds.

The next two theorems show that p-regularity behave reasonably well relative to

initial and final structures.

Definition 3.10. Let f : (X, limq) −→ (Y, limp) be a function between stratified L-

generalized convergence spaces. Then f is said to be a closure function if f→(λq) ≥
f→(λ)p for all λ ∈ LX .

Lemma 3.11. Let f : (X, limq) −→ (Y, limp) be a function between stratified L-

generalized convergence spaces, and let F ∈ F s
L(X). (1) If f is continuous, then

f⇒(F q) ≥ f⇒(F)p. (2) If f is a closure function, then f⇒(F q) ≤ f⇒(F)p.
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Proof. (1) Let f be a continuous function. Then for each λ ∈ LY we check below that

(f←(λ))q ≤ f←(λp). Indeed, for each x ∈ X,

(f←(λ))q(x) =
∨

G∈Fs
L(X):limq G(x)6=0

(
limqG(x) → G(f←(λ))

)

≤
∨

G∈Fs
L(X):limq G(x)6=0

(
limpf⇒(G)(f(x)) → f⇒(G)(λ)

)

≤
∨

H∈Fs
L(Y ):limpH(x)6=0

(
limpH(f(x)) → H(λ)

)
= f←(λp)(x),

where the first inequality holds for the continuity of f . Then for each F ∈ F s
L(X) and

each λ ∈ LY

f⇒(F q)(λ) = F q(f
←(λ)) =

∨

µ∈LX

([µq, f
←(λ)] ∧ F(µ))

≥
∨

ν∈LY

([(f←(ν))q, f
←(λ)] ∧ F(f←(ν))) ≥

∨

ν∈LY

([f←(νp), f
←(λ)] ∧ F(f←(ν)))

≥
∨

ν∈LY

([νp, λ] ∧ f⇒(F)(ν)) = f⇒(F)p(λ).

Thus f⇒(F q) ≥ f⇒(F)p. (2) Let f be a closure function. Then for each λ ∈ LY ,

f⇒(F)p(λ) =
∨

µ∈LY

(f⇒(F)(µ) ∧ [µp, λ]) =
∨

µ∈LY

(F(f←(µ)) ∧ [µp, λ])

≥
∨

ν∈LX

(F(f←f→(ν)) ∧ [f→(ν)p, λ]) ≥
∨

ν∈LX

(F(ν) ∧ [f→(ν)p, λ])

≥
∨

ν∈LX

(F(ν) ∧ [f→(νq), λ]) =
∨

ν∈LX

(F(ν) ∧ [νq, f
←(λ)])

= F q(f
←(λ)) = f⇒(F q)(λ),

where the third inequality holds for f being a closure function, and the third equality

follows from Lemma 1.1 (7). By the arbitrariness of λ, we get f⇒(F q) ≤ f⇒(F)p.

Theorem 3.12. Let {(Xi, lim
qi , limpi)}i∈I be pairs of stratified L-generalized conver-

gence spaces and let limq (resp., limp) be the initial structure on X relative to the source

(X
fi−→ (Xi, lim

qi))i∈I (resp., (X
fi−→ (Xi, lim

pi))i∈I). If each limqi is pi-regular, then

(X, limq) is p-regular.

Proof. Let F ∈ F s
L(X) and x ∈ X. Then by Lemma 3.11 (1) we have f⇒i (Fp) ≥

f⇒i (F)pi
for all i ∈ I. It follows by each (Xi, lim

qi) being pi-regular that

limqFp(x) =
∧
i∈I

limqif⇒i (Fp)(fi(x)) ≥
∧
i∈I

limqif⇒i (F)pi
(fi(x))

≥
∧
i∈I

limqif⇒i (F)(fi(x)) = limqF(x).

Thus (X, limq) is p-regular.
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Theorem 3.13. Let {(Xi, lim
qi , limpi)}i∈I be pairs of stratified L-generalized conver-

gence spaces, and let limq be the final structure on X w.r.t. the sink ((Xi, lim
qi)

fi−→
X)i∈I with X = ∪i∈Ifi(Xi). If each limqi is pi-regular and limp is a stratified L-

generalized convergence structure on X such that each fi : (Xi, lim
pi) −→ (X, limp)

is a closure function, then (X, limq) is p-regular.

Proof. Let F ∈ F s
L(X) and x ∈ X. Then

limqF(x) =
∨

i∈I,xi∈Xi,Gi∈Fs
L(Xi),fi(xi)=x,f⇒i (Gi)≤F

limqiGi(xi)

≤
∨

i∈I,xi∈Xi,Gi∈Fs
L(Xi),fi(xi)=x,f⇒i (Gi)≤F

limqiGipi
(xi)

≤
∨

i∈I,xi∈Xi,Gi∈Fs
L(Xi),fi(xi)=x,f⇒i (Gi)p

≤Fp

limqiGipi
(xi)

=
∨

i∈I,xi∈Xi,Gi∈Fs
L(Xi),fi(xi)=x,f⇒i (Gipi

)≤f⇒i (Gi)p
≤Fp

limqiGipi
(xi)

≤
∨

i∈I,xi∈Xi,Hi∈Fs
L(Xi),fi(xi)=x,f⇒i (Hi)≤Fp

limqiHi(xi) = limqFp(x),

where the first inequality holds for pi-regularity of limqi , the second equality follows

from Lemma 3.11 (2). Then limq is p-regular by limq F ≤ limq Fp.

The regularity has similar characterization and properties, we omit them here.

4 Conclusion

In this paper, by dualizing the Fischer-type diagonal condition (Lfw), which is used

to describe the L-topologicallness of stratified L-convergence spaces, we define a new

regularity (p-regularity) of stratified L-generalized convergence spaces. Then we also

present a characterization on that regularity (p-regularity) by the notion of closures

of stratified L-filters. The regularity (p-regularity) is proved to behave reasonably well

relative to initial and final structures.
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[2] R. Bělohlávek, Fuzzy Relational Systems: Foundations and Principles, Kluwer Academic
Publishers, New York, 2002.

[3] C.H. Cook, H.R. Fischer, Regular Convergence Spaces, Math. Annalen 174 (1967) 1–7.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

317 Lingqiang Li et al 307-318



A new regularity (p-regularity) of stratified L-generalized convergence spaces 12

[4] J.M. Fang, Stratified L-ordered convergence structures, Fuzzy Sets and Systems 161
(2010) 2130–2149.

[5] W. Gähler, Monadic convergence structures, In: Topological and Algebraic Structures in
Fuzzy Sets, (S.E. Rodabaugh, E.P. Klement, eds.), Kluwer Academic Publishers, Dor-
drecht, 2003.
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Abstract

The notions of uni-soft filters and uni-soft G-filters in residuated lattices are introduced,

and their relations, properties and characterizations are investigated. Conditions for a

uni-soft filter to be a uni-soft G-filter are provided.
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1 Introduction

Non-classical logic has become a formal and useful tool in dealing with fuzzy and uncertain

informations. Various logical algebras have been proposed as the semantical systems of

non-classical logic systems. Residuated lattices are important algebraic structures which

are basic of BL-algebras, MV -algebras, MTL-algebras, Gödel algebras, R0-algebras, lat-

tice implication algebras, and so forth. The (fuzzy) filter theory in the logical algebras

has an important role in studying these algebras and completeness of the corresponding

non-classical logics, and it is studied in the papers [1], [2], [3], [9], [12], [13] and [14].

Filter theory, which is an important notion, in residuated lattices is studied by Shen and

Zhang [11] and Zhu and Xu [16]. Uncertainty is an attribute of information. As a new

mathematical tool for dealing with uncertainties, Molodtsov [10] introduced the concept

of soft sets. Since then several authors studied (fuzzy) algebraic structures based on soft

*Corresponding author.

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

319 Young Bae Jun 319-334



set theory in several algebraic structures. In order to lay a foundation for providing a soft

algebraic tool in considering many problems that contain uncertainties, Jun [7] discussed

the union soft sets with applications in BCK/BCI-algebras. Also, Jun et al. [8] discussed

uni-soft sets applied to commutative BCI-ideals.

In this paper, we introduce uni-soft filters and uni-soft G-filters in residuated lattices,

and investigate their properties. We consider characterizations of uni-soft filters and uni-

soft G-filters. We provide conditions for a uni-soft filter to be a uni-soft G-filter.

2 Preliminaries

Definition 2.1 ([1, 5, 6]). A residuated lattice is an algebra L := (L,∨,∧,⊙,→, 0, 1) of

type (2, 2, 2, 2, 0, 0) such that

(1) (L,∨,∧, 0, 1) is a bounded lattice.

(2) (L,⊙, 1) is a commutative monoid.

(3) ⊙ and → form an adjoint pair, that is,

(∀x, y, z ∈ L) (x ≤ y → z ⇔ x⊙ y ≤ z) .

In a residuated lattice L, the ordering ≤ is defined as follows:

(∀x, y ∈ L) (x ≤ y ⇔ x ∧ y = x ⇔ x ∨ y = y ⇔ x→ y = 1)

and x′ will be reserved for x→ 0, and x′′ = (x′)′, etc. for all x ∈ L.

Proposition 2.2 ([1, 5, 6, 12, 13]). In a residuated lattice L, the following properties are

valid.

1 → x = x, x→ 1 = 1, x→ x = 1, 0 → x = 1, x→ (y → x) = 1. (2.1)

x→ (y → z) = (x⊙ y) → z = y → (x→ z). (2.2)

x ≤ y ⇒ z → x ≤ z → y, y → z ≤ x→ z. (2.3)

z → y ≤ (x→ z) → (x→ y), z → y ≤ (y → x) → (z → x). (2.4)

Definition 2.3 ([11]). A nonempty subset F of a residuated lattice L is called a filter of

L if it satisfies the conditions:

(∀x, y ∈ L) (x, y ∈ F ⇒ x⊙ y ∈ F ) . (2.5)

(∀x, y ∈ L) (x ∈ F, x ≤ y ⇒ y ∈ F ) . (2.6)

2
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Proposition 2.4 ([11]). A nonempty subset F of a residuated lattice L is a filter of L if

and only if it satisfies:

1 ∈ F. (2.7)

(∀x ∈ F ) (∀y ∈ L) (x→ y ∈ F ⇒ y ∈ F ) . (2.8)

Definition 2.5 ([15]). A nonempty subset F of L is called a G-filter of L if it is a filter

of L that satisfies the following condition:

(∀x, y ∈ L) ((x⊙ x) → y ∈ F ⇒ x→ y ∈ F ) . (2.9)

A soft set theory is introduced by Molodtsov [10], and Çaǧman et al. [4] provided new

definitions and various results on soft set theory.

In what follows, let U be an initial universe set and E be a set of parameters. Let

P(U) denotes the power set of U and A,B,C, · · · ⊆ E.

Definition 2.6 ([4, 10]). A soft set (f̃ , A) over U is defined to be the set of ordered pairs

(f̃ , A) :=
{
(x, f̃A(x)) : x ∈ E, f̃A(x) ∈ P(U)

}
,

where f̃A : E → P(U) such that f̃(x) = ∅ if x /∈ A. The soft set (f̃ , A) is simply denoted

by f̃A.

For a soft set f̃A over U and a subset τ of U, the τ -exclusive set of f̃A, denoted by

e(f̃A; τ), is defined to be the set

e(f̃A; τ) :=
{
x ∈ A | f̃A(x) ⊆ τ

}
.

3 Uni-soft filters

In what follows, we take a residuated lattice L as a set of parameters.

Definition 3.1. A soft set f̃L over U is called a uni-soft filter of L if it satisfies:

(∀x, y ∈ L)
(
x ≤ y ⇒ f̃L(x) ⊇ f̃L(y)

)
, (3.1)

(∀x, y ∈ L)
(
f̃L(x) ∪ f̃L(y) ⊇ f̃L(x⊙ y)

)
. (3.2)

3
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Proposition 3.2. Every uni-soft filter f̃L of L satisfies:

(∀x ∈ L)
(
f̃L(x) ⊇ f̃L(1)

)
. (3.3)

(∀x, y ∈ L)
(
f̃L(x) ∪ f̃L(x→ y) ⊇ f̃L(y)

)
. (3.4)

Proof. Let x, y ∈ L. Since x ≤ 1, we have f̃L(x) ⊇ f̃L(1) by (3.1). Since x⊙ (x→ y) ≤ y,

it follows from (3.2) and (3.1) that

f̃L(x) ∪ f̃L(x→ y) ⊇ f̃L(x⊙ (x→ y)) ⊇ f̃L(y).

This completes the proof.

Lemma 3.3. If a soft set f̃L over U satisfies two conditions (3.3) and (3.4), then

(∀x, y, z ∈ L)
(
x ≤ y → z ⇒ f̃L(x) ∪ f̃L(y) ⊇ f̃L(z)

)
, (3.5)

(∀x, y, z ∈ L)
(
x⊙ y ≤ z ⇒ f̃L(x) ∪ f̃L(y) ⊇ f̃L(z)

)
. (3.6)

Proof. Assume that x ≤ y → z for all x, y, z ∈ L. Then x→ (y → z) = 1, and so

f̃L(x) ∪ f̃L(y) =
(
f̃L(x) ∪ f̃L(1)

)
∪ f̃L(y)

=
(
f̃L(x) ∪ f̃L(x→ (y → z))

)
∪ f̃L(y)

⊇ f̃L(y) ∪ f̃L(y → z) ⊇ f̃L(z).

Since x ≤ y → z ⇔ x⊙ y ≤ z, we know that (3.5) induces (3.6).

We consider characterizations of uni-soft filters.

Theorem 3.4. A soft set f̃L over U is a uni-soft filter of L if and only if it satisfies two

conditions (3.3) and (3.4).

Proof. The necessity is from Proposition 3.2.

Conversely, let f̃L be a soft set over U that satisfies (3.3) and (3.4). Let x, y ∈ L be

such that x ≤ y. Then x→ y = 1 and so

f̃L(x) = f̃L(x) ∪ f̃L(1) = f̃L(x) ∪ f̃L(x→ y) ⊇ f̃L(y).

Since x⊙ y ≤ x⊙ y for all x, y ∈ L, it follows from (3.6) that f̃L(x) ∪ f̃L(y) ⊇ f̃L(x⊙ y)

for all x, y ∈ L. Therefore f̃L is a uni-soft filter of L.

4
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Theorem 3.5. A soft set f̃L over U is a uni-soft filter of L if and only if it satisfies the

condition (3.5).

Proof. The necessity is from Lemma 3.3 and Theorem 3.4.

Conversely let f̃L be a soft set over U satisfying (3.5). Since

x ≤ x→ 1 and x→ y ≤ x→ y

for all x, y ∈ L, it follows from (3.5) that

f̃L(x) = f̃L(x) ∪ f̃L(x) ⊇ f̃L(1) and f̃L(x) ∪ f̃L(x→ y) ⊇ f̃L(y)

for all x, y ∈ L. Hence f̃L is a uni-soft filter of L by Theorem 3.4.

Proposition 3.6. Every uni-soft filter f̃L of L satisfies the following condition:

(∀x, y, z ∈ L)
(
f̃L(x→ (y → z)) ∪ f̃L(x→ y) ⊇ f̃L(x→ (x→ z))

)
. (3.7)

Proof. Let x, y, z ∈ L. Using (2.2) and (2.4), we have

x→ (y → z) = y → (x→ z) ≤ (x→ y) → (x→ (x→ z)).

It follows from Theorem 3.5 that

f̃L(x→ (y → z)) ∪ f̃L(x→ y) ⊇ f̃L(x→ (x→ z)).

This completes the proof.

Theorem 3.7. A soft set f̃L over U is a uni-soft filter of L if and only if f̃L satisfies the

condition (3.3) and

(∀x, y, z ∈ L)
(
f̃L(x→ (y → z)) ∪ f̃L(y) ⊇ f̃L(x→ z)

)
. (3.8)

Proof. Assume that f̃L is a uni-soft filter of L. Then the condition (3.3) is valid. Using

(3.4) and (2.2), we have

f̃L(x→ z) ⊆ f̃L(y) ∪ f̃L(y → (x→ z))

= f̃L(y) ∪ f̃L(x→ (y → z))

for all x, y, z ∈ L.

Conversely, let f̃L be a soft set over U satisfying (3.3) and (3.8). Taking x := 1 in

(3.8) and using (2.1), we have

f̃L(z) = f̃L(1 → z) ⊆ f̃L(1 → (y → z)) ∪ f̃L(y)
= f̃L(y → z) ∪ f̃L(y)

for all y, z ∈ L. Thus f̃L is a uni-soft filter of L by Theorem 3.4.

5
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Proposition 3.8. Every uni-soft filter f̃L of L satisfies the following condition:

(∀a, x ∈ L)
(
f̃L(a) ⊇ f̃L((a→ x) → x)

)
. (3.9)

Proof. If we take y := (a→ x) → x and x := a in (3.4), then

f̃L((a→ x) → x) ⊆ f̃L(a) ∪ f̃L(a→ ((a→ x) → x))

= f̃L(a) ∪ f̃L((a→ x) → (a→ x))

= f̃L(a) ∪ f̃L(1) = f̃L(a).

This completes the proof.

Theorem 3.9. A soft set f̃L over U is a uni-soft filter of L if and only if it satisfies the

following conditions:

(∀x, y ∈ L)
(
f̃L(x) ⊇ f̃L(y → x)

)
, (3.10)

(∀x, a, b ∈ L)
(
f̃L(a) ∪ f̃L(b) ⊇ f̃L((a→ (b→ x)) → x)

)
. (3.11)

Proof. Assume that f̃L is a uni-soft filter of L. Using (3.4), (2.1) and (3.3), we have

f̃L(y → x) ⊆ f̃L(x) ∪ f̃L(x→ (y → x)) = f̃L(x) ∪ f̃L(1) = f̃L(x)

for all x, y ∈ L. Using (3.8) and (3.9), we get

f̃L((a→ (b→ x)) → x) ⊆ f̃L((a→ (b→ x)) → (b→ x)) ∪ f̃L(b) ⊆ f̃L(a) ∪ f̃L(b)

for all a, b, x ∈ L.

Conversely, let f̃L be a soft set over U satisfying two conditions (3.10) and (3.11). If

we take y := x in (3.10), then f̃L(x) ⊇ f̃L(x → x) = f̃L(1) for all x ∈ L. Using (3.11)

induces

f̃L(y) = f̃L(1 → y) = f̃L(((x→ y) → (x→ y)) → y) ⊆ f̃L(x→ y) ∪ f̃L(x)

for all x, y ∈ L. Therefore f̃L is a uni-soft filter of L by Theorem 3.4.

Theorem 3.10. A soft set f̃L over U is a uni-soft filter of L if and only if the nonempty

τ -exclusive set of f̃L is a filter of L for all τ ∈ P(U).

6
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Proof. Assume that f̃L is a uni-soft filter of L and let τ ∈ P(U) be such that e(f̃L; τ) ̸= ∅.
Let x, y ∈ L be such that x ∈ e(f̃L; τ) and x → y ∈ e(f̃L; τ). Then τ ⊇ f̃L(x) and

τ ⊇ f̃L(x → y). It follows from (3.3) and (3.4) that f̃L(1) ⊆ f̃L(x) ⊆ τ and f̃L(y) ⊆
f̃L(x) ∪ f̃L(x → y) ⊆ τ . Hence 1 ∈ e(f̃L; τ) and y ∈ e(f̃L; τ), and therefore e(f̃L; τ) is a

filter of L by Proposition 2.4.

Conversely, suppose that e(f̃L; τ) is a filter of L for all τ ∈ P(U) with e(f̃L; τ) ̸= ∅. For
any x ∈ L, let f̃L(x) = δ. Then x ∈ e(f̃L; δ) and e(f̃L; δ) is a filter of L. Hence 1 ∈ e(f̃L; δ)

and so f̃L(x) = δ ⊇ f̃L(1). For any x, y ∈ L, let f̃L(x) = δx and f̃L(x → y) = δx→y. If we

take δ = δx ∪ δx→y, then x ∈ e(f̃L; δ) and x→ y ∈ e(f̃L; δ) which imply that y ∈ e(f̃L; δ).

Thus

f̃L(x) ∪ f̃L(x→ y) = δx ∪ δx→y = δ ⊇ f̃L(y).

Therefore f̃L is a uni-soft filter of L by Theorem 3.4.

Theorem 3.11. For a soft set f̃L over U , let f̃ ∗
L be a soft set over U which is given as

follows:

f̃ ∗
L : L→ P(U), x 7→

{
f̃L(x) if x ∈ e(f̃L; τ),

U otherwise,

where τ ∈ P(U) with τ ̸= U . If f̃L is a uni-soft filter of L, then so is f̃ ∗
L.

Proof. Suppose that f̃L is a uni-soft filter of L. Then e(f̃L; τ) is a filter of L for all

τ ∈ P(U) with e(f̃L; τ) ̸= ∅ by Theorem 3.10. Thus 1 ∈ e(f̃L; τ), and so f̃ ∗
L(1) = f̃L(1) ⊆

f̃L(x) ⊆ f̃ ∗
L(x) for all x ∈ L. Let x, y ∈ L. If x ∈ e(f̃L; τ) and x → y ∈ e(f̃L; τ), then

y ∈ e(f̃L; τ). Hence

f̃ ∗
L(x) ∪ f̃ ∗

L(x→ y) = f̃L(x) ∪ f̃L(x→ y) ⊇ f̃L(y) = f̃ ∗
L(y).

If x /∈ e(f̃L; τ) or x→ y /∈ e(f̃L; τ), then f̃
∗
L(x) = U or f̃ ∗

L(x→ y) = U . Thus

f̃ ∗
L(x) ∪ f̃ ∗

L(x→ y) = U ⊇ f̃ ∗
L(y).

Therefore f̃ ∗
L is a uni-soft filter of L.

Theorem 3.12. If f̃L is a uni-soft filter of L, then the set

La := {x ∈ L | f̃L(a) ⊇ f̃L(x)}

is a filter of L for every a ∈ L.

7
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Proof. Since f̃L(1) ⊆ f̃L(a) for all a ∈ L, we have 1 ∈ La. Let x, y ∈ L be such that

x ∈ La and x → y ∈ La. Then f̃L(x) ⊆ f̃L(a) and f̃L(x → y) ⊆ f̃L(a). Since f̃L is a

uni-soft filter of L, it follows from (3.4) that

f̃L(a) ⊇ f̃L(x) ∪ f̃L(x→ y) ⊇ f̃L(y)

so that y ∈ La. Hence La is a filter of L by Proposition 2.4.

Theorem 3.13. Let a ∈ L and let f̃L be a soft set over U. Then

(1) If La is a filter of L, then f̃L satisfies the following condition:

(∀x, y ∈ L) (f̃L(a) ⊇ f̃L(x) ∪ f̃L(x→ y) ⇒ f̃L(a) ⊇ f̃L(y)). (3.12)

(2) If f̃L satisfies (3.3) and (3.12), then La is a filter of L.

Proof. (1) Assume that La is a filter of L. Let x, y ∈ L be such that

f̃L(a) ⊇ f̃L(x) ∪ f̃L(x→ y).

Then x→ y ∈ La and x ∈ La. Using (2.8), we have y ∈ La and so f̃L(a) ⊇ f̃L(y).

(2) Suppose that f̃L satisfies (3.3) and (3.12). Then 1 ∈ La by (3.3). Let x, y ∈ L be

such that x ∈ La and x → y ∈ La. Then f̃L(a) ⊇ f̃L(x) and f̃L(a) ⊇ f̃L(x → y), which

imply that f̃L(a) ⊇ f̃L(x) ∪ f̃L(x → y). Thus f̃L(a) ⊇ f̃L(y) by (3.12), and so y ∈ La.
Therefore La is a filter of L by Proposition 2.4.

4 Uni-soft G-filters

Definition 4.1. A soft set f̃L over U is called a uni-soft G-filter of L if it is a uni-soft

filter of L that satisfies:

(∀x, y ∈ L)
(
f̃L((x⊙ x) → y) ⊇ f̃L(x→ y)

)
. (4.1)

Note that the condition (4.1) is equivalent to the following condition:

(∀x, y ∈ L)
(
f̃L(x→ (x→ y)) ⊇ f̃L(x→ y)

)
. (4.2)

8
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Example 4.2. Let L := [0, 1] (unit interval). For any a, b ∈ L, define

a ∨ b = max{a, b}, a ∧ b = min{a, b},

a→ b =

{
1 if a ≤ b,

b otherwise,
and a⊙ b = min{a, b}.

Then L := (L,∨,∧,⊙,→, 0, 1) is a residuated lattice. Let f̃L be a soft set over U defined

by

f̃L : L→ P(U), x 7→

{
τ if x ∈ [1

2
, 1],

U otherwise,

where τ ∈ P(U) with τ ̸= U . Then f̃L is a uni-soft G-filter of L.

Theorem 4.3. Let f̃L be a soft set over U . Then f̃L is a uni-soft G-filter of L if and

only if it is a uni-soft filter of L that satisfies the following condition:

(∀x, y, z ∈ L)
(
f̃L(x→ (y → z)) ∪ f̃L(x→ y) ⊇ f̃L(x→ z)

)
. (4.3)

Proof. Assume that f̃L is a uni-soft G-filter of L. Then f̃L is a uni-soft filter of L. Note

that x ≤ 1 = (x → y) → (x → y), and thus x → y ≤ x → (x → y) for all x, y ∈ L.

It follows from (3.1) that f̃L(x → y) ⊇ f̃L(x → (x → y)). Combining this and (4.2), we

have

f̃L(x→ y) = f̃L(x→ (x→ y)) (4.4)

for all x, y ∈ L. Using (3.7) and (4.4), we have

f̃L(x→ (y → z)) ∪ f̃L(x→ y) ⊇ f̃L(x→ z)

for all x, y, z ∈ L.

Conversely, let f̃L be a uni-soft filter of L that satisfies the condition (4.3). If we put

y = x and z = y in (4.3) and use (2.1) and (3.3), then

f̃L(x→ y) ⊆ f̃L(x→ (x→ y)) ∪ f̃L(x→ x)

= f̃L(x→ (x→ y)) ∪ f̃L(1)
= f̃L(x→ (x→ y))

for all x, y ∈ L. Therefore f̃L is a uni-soft G-filter of L.

9
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Theorem 4.4. Let f̃L be a soft set over U that satisfies the condition (3.3) and

(∀x, y, z ∈ L)
(
f̃L(x) ∪ f̃L((y → z) → (x→ y)) ⊇ f̃L(y)

)
. (4.5)

Then f̃L is a uni-soft G-filter of L.

Proof. If we take z := 1 in (4.5) and use (2.1), then

f̃L(x) ∪ f̃L(x→ y) = f̃L(x) ∪ f̃L(1 → (x→ y))

= f̃L(x) ∪ f̃L((y → 1) → (x→ y))

⊇ f̃L(y).

Hence f̃L is a uni-soft filter of L by Theorem 3.4. Let x, y, z ∈ L. Since

x→ (y → z) ≤ (x→ y) → (x→ (x→ z))

by (2.2) and (2.4), we have f̃L(x → (y → z)) ⊇ f̃L((x → y) → (x → (x → z))) by (3.1).

It follows from (3.1), (3.3), (3.4), (2.4) and (4.5) that

f̃L(x→ y) ∪ f̃L(x→ (y → z)) ⊇ f̃L(x→ y) ∪ f̃L((x→ y) → (x→ (x→ z)))

⊇ f̃L(x→ (x→ z))

⊇ f̃L(((x→ z) → z) → (x→ z))

= f̃L(((x→ z) → z) → (1 → (x→ z)))

⊇ f̃L(x→ z).

Therefore f̃L is a uni-soft G-filter of L by Theorem 4.3.

The following example shows that any uni-soft G-filter may not satisfy the condition

(4.5).

Example 4.5. The uni-soft G-filter f̃L of L in Example 4.2 does not satisfy the condition

(4.5) since

f̃L(
2
3
) ∪ f̃L((13 → 1

4
) → (2

3
→ 1

3
)) = f̃L(

2
3
) ∪ f̃L(1) = τ ⊉ U = f̃L(

1
3
).

Proposition 4.6. For a uni-soft filter f̃L of L, the condition (4.5) is equivalent to the

following condition.

(∀x, y ∈ L)
(
f̃L((x→ y) → x) ⊇ f̃L(x)

)
. (4.6)

10
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Proof. Assume that the condition (4.5) is valid. It follows from (3.3) and (2.1) that

f̃L((x→ y) → x) = f̃L(1) ∪ f̃L((x→ y) → x)

= f̃L(1) ∪ f̃L((x→ y) → (1 → x))

⊇ f̃L(x)

for all x, y ∈ L.

Conversely, suppose that the condition (4.6) is valid. It follows from (2.2) and (3.4)

that

f̃L(x) ∪ f̃L((y → z) → (x→ y)) = f̃L(x) ∪ f̃L(x→ ((y → z) → y))

⊇ f̃L((y → z) → y) ⊇ f̃L(y)

for all x, y ∈ L.

Combining Theorem 4.4 and Proposition 4.6, we have the following result.

Theorem 4.7. Every uni-soft filter satisfying the condition (4.6) is a uni-soft G-filter.

Proposition 4.8. Every uni-soft filter f̃L of L with the condition (4.5) satisfies the fol-

lowing condition.

(∀x, y ∈ L)
(
f̃L((x→ y) → y) ⊇ f̃L((y → x) → x)

)
. (4.7)

Proof. Let f̃L be a uni-soft filter of L that satisfies the condition (4.5) and let x, y ∈ L.

Since x → ((y → x) → x) = (y → x) → (x → x) = (y → x) → 1 = 1, that is,

x ≤ (y → x) → x, we have ((y → x) → x) → y ≤ x → y by (2.3). It follows from (2.4),

(2.2) and (2.3) that

(x→ y) → y ≤ (y → x) → ((x→ y) → x)

= (x→ y) → ((y → x) → x)

≤ (((y → x) → x) → y) → ((y → x) → x).

Using (3.1), (3.3), (2.1), (2.2) and (4.5), we have

f̃L((x→ y) → y) ⊇ f̃L((((y → x) → x) → y) → ((y → x) → x))

= f̃L(1) ∪ f̃L(1 → ((((y → x) → x) → y) → ((y → x) → x)))

= f̃L(1) ∪ f̃L((((y → x) → x) → y) → (1 → ((y → x) → x)))

⊇ f̃L((y → x) → x).

Hence the condition (4.7) is valid.

11
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Corollary 4.9. Every uni-soft filter f̃L of L with the condition (4.6) satisfies the condition

(4.7).

Proposition 4.10. Every uni-soft G-filter f̃L of L with the condition (4.7) satisfies the

condition (4.5).

Proof. Let f̃L be a uni-soft G-filter of L that satisfies the condition (4.7). For any x, y, z ∈
L, we have

f̃L(z) ∪ f̃L((x→ y) → (z → x)) = f̃L(z) ∪ f̃L(z → ((x→ y) → x))

⊇ f̃L((x→ y) → x)

⊇ f̃L((x→ y) → ((x→ y) → y))

⊇ f̃L((x→ y) → y)

⊇ f̃L((y → x) → x)

by (2.2), (3.4), (3.1), (2.4), (4.2) and (4.7). Since (x→ y) → x ≤ y → x ≤ z → (y → x),

it follows from (3.1) that f̃L((x→ y) → x) ⊇ f̃L(z → (y → x)) and so from (3.4) that

f̃L(z) ∪ f̃L((x→ y) → (z → x)) ⊇ f̃L(z) ∪ f̃L((x→ y) → x)

⊇ f̃L(z) ∪ f̃L(z → (y → x))

⊇ f̃L(y → x).

Therefore

f̃L(z) ∪ f̃L((x→ y) → (z → x)) ⊇ f̃L(y → x) ∪ f̃L((y → x) → x) ⊇ f̃L(x).

Hence the condition (4.5) is valid.

Theorem 4.11. Let f̃L be a uni-soft filter of L. Then f̃L is a uni-soft G-filter of L if

and only if the following condition holds:

(∀x ∈ L)
(
f̃L(x→ (x⊙ x)) = f̃L(1)

)
. (4.8)

Proof. Suppose that f̃L is a uni-soft G-filter of L. Since x → (x → (x ⊙ x)) = 1 for all

x ∈ L, we have f̃L(x→ (x→ (x⊙ x))) = f̃L(1). It follows from (4.3) and (2.1) that

f̃L(x→ (x⊙ x)) ⊆ f̃L(x→ (x→ (x⊙ x))) ∪ f̃L(x→ x) = f̃L(1)

and so from (3.3) that f̃L(x→ (x⊙ x)) = f̃L(1) for all x ∈ L.

12
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Conversely, let f̃L be a uni-soft filter of L which satisfies the condition (4.8) and let

x, y ∈ L. Since

x→ (x→ y) = (x⊙ x) → y ≤ (x→ (x⊙ x)) → (x→ y)

by (2.2) and (2.4), it follows from (3.1) that

f̃L(x→ (x→ y)) ⊇ f̃L((x→ (x⊙ x)) → (x→ y)).

Hence, we have

f̃L(x→ y) ⊆ f̃L((x→ (x⊙ x)) → (x→ y)) ∪ f̃L(x→ (x⊙ x))

⊆ f̃L(x→ (x→ y)) ∪ f̃L(x→ (x⊙ x))

= f̃L(x→ (x→ y)) ∪ f̃L(1)
= f̃L(x→ (x→ y))

by using (3.4), (4.8) and (3.3). Hence f̃L is a uni-soft G-filter of L.

Theorem 4.12. A soft set f̃L over U is a uni-soft G-filter of L if and only if it is a

uni-soft filter of L with an additional condition:

(∀x, y ∈ L)
(
f̃L(x→ y) = f̃L(x→ (x→ y))

)
. (4.9)

Proof. Suppose that f̃L is a uni-soft G-filter of L. Then f̃L is a uni-soft filter of L. Let

x, y ∈ L. Since x → y ≤ x → (x → y), we have f̃L(x → y) ⊇ f̃L(x → (x → y)) by (3.1).

Hence f̃L(x→ y) = f̃L(x→ (x→ y)) by using (4.2).

Conversely, let f̃L be a uni-soft filter of L with the condition (4.9). It follows from

Proposition 3.6 that

f̃L(x→ (y → z)) ∪ f̃L(x→ y) ⊇ f̃L(x→ (x→ z)) = f̃L(x→ z)

for all x, y, z ∈ L. Therefore f̃L is a uni-soft G-filter of L by Theorem 4.3.

Proposition 4.13. Every uni-soft G-filter f̃L of L satisfies the following conditions:

(∀x, y, z ∈ L)
(
f̃L(x→ (y → z)) ⊇ f̃L((x→ y) → (x→ z))

)
. (4.10)

(∀x, y, z ∈ L)
(
f̃L(x→ (y → z)) = f̃L((x→ y) → (x→ z))

)
. (4.11)
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Proof. Let f̃L be a uni-soft G-filter of L. Using (2.2), (4.3), (2.4) and (3.3), we have

f̃L((x→ y) → (x→ z)) = f̃L(x→ ((x→ y) → z))

⊆ f̃L(x→ (y → z)) ∪ f̃L(x→ ((y → z) → ((x→ y) → z)))

= f̃L(x→ (y → z)) ∪ f̃L((y → z) → ((x→ y) → (x→ z)))

= f̃L(x→ (y → z)) ∪ f̃L(1)
= f̃L(x→ (y → z))

for all x, y, z ∈ L. Thus (4.10) holds. Since (x → y) → (x → z) ≤ x → (y → z) for all

x, y, z ∈ L, it follows from (3.1) that f̃L((x → y) → (x → z)) ⊇ f̃L(x → (y → z)) and so

that

f̃L(x→ (y → z)) = f̃L((x→ y) → (x→ z))

for all x, y, z ∈ L by using (4.10).

Proposition 4.14. Assume that L satisfies the divisibility, that is, x ∧ y = x⊙ (x → y)

for all x, y ∈ L. If f̃L is a uni-soft G-filter of L satisfying (4.11), then the following

equality is true.

(∀x, y, z ∈ L)
(
f̃L((x⊙ y) → z) = f̃L((x ∧ y) → z)

)
. (4.12)

Proof. Using the divisibility and (2.2), we have

(x ∧ y) → z = (x⊙ (x→ y)) → z = (x→ y) → (x→ z)

for all x, y, z ∈ L. It follows from (2.2) and (4.11) that

f̃L((x⊙ y) → z) = f̃L(x→ (y → z))

= f̃L((x→ y) → (x→ z))

= f̃L((x ∧ y) → z)

for all x, y, z ∈ L.

Theorem 4.15. Let L satisfy the divisibility, that is, x∧y = x⊙ (x→ y) for all x, y ∈ L.

Then every uni-soft filter f̃L of L satisfying the condition (4.12) is a uni-soft G-filter of

L.

Proof. Using Proposition 3.6, (2.2) and (4.12), we have

f̃L(x→ (y → z)) ∪ f̃L(x→ y) ⊇ f̃L(x→ (x→ z))

= f̃L((x⊙ x) → z) = f̃L((x ∧ x) → z) = f̃L(x→ z)

for all x, y, z ∈ L. Therefore f̃L is a uni-soft G-filter of L by Theorem 4.3.

14
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Theorem 4.16. Let f̃L and g̃L be uni-soft filters of L such that f̃L(1) = g̃(1) and f̃L ⊇ g̃L,

i.e., f̃L(x) ⊇ g̃L(x) for all x ∈ L. If f̃L is a uni-soft G-filter of L, then so is g̃L.

Proof. Assume that f̃L is a uni-soft G-filter of L. Using (2.2) and (2.1), we have

x→ (x→ ((x→ (x→ y)) → y)) = (x→ (x→ y)) → (x→ (x→ y)) = 1

for all x, y ∈ L. Thus

g̃(x→ ((x→ (x→ y)) → y)) ⊆ f̃L(x→ ((x→ (x→ y)) → y))

= f̃L(x→ (x→ ((x→ (x→ y)) → y)))

= f̃L(1) = g̃(1)

by hypotheses and (4.4), and so

g̃(x→ ((x→ (x→ y)) → y)) = g̃(1)

for all x, y ∈ L by (3.3). Since g̃L is a uni-soft filter of L, it follows from (3.4), (2.2) and

(3.3) that

g̃(x→ y) ⊆ g̃(x→ (x→ y)) ∪ g̃((x→ (x→ y)) → (x→ y))

= g̃(x→ (x→ y)) ∪ g̃(x→ ((x→ (x→ y)) → y))

= g̃(x→ (x→ y)) ∪ g̃(1)
= g̃(x→ (x→ y))

for all x, y ∈ L. Therefore g̃L is a uni-soft G-filter of L.

References

[1] R. Belohlavek, Some properties of residuated lattices, Czechoslovak Math. J. 53(123)

(2003) 161–171.

[2] K. Blount and C. Tsinakis, The structure of residuated lattices, Internat. J. Algebra

Comput. 13(4) (2003) 437–461.

[3] R. A. Borzooei, S. Khosravi Shoar and R. Americ, Some types of filters in MTL-

algebras, Fuzzy Sets and Systems 187 (2012) 92–102.
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Abstract

In this paper, we study the global dynamics of a viral infection model with antibody immune

response. The incidence rate is given by a general function of the population of the uninfected

target cells, infected cells and free viruses. We have established a set of conditions on the

general incidence rate function and determined two threshold parameters R0 (the basic infection

reproduction number) and R1 (the antibody immune response activation number) which are

su¢ cient to determine the global behavior of the model. The global asymptotic stability of

the equilibria of the model has been proven by using direct Lyapunov method and applying

LaSalle�s invariance principle.

Keywords: Virus dynamics; global stability; antibody immune response; Lyapunov functional.
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1 Introduction

Several works have been devoted to propose mathematical models of viral infectious dynamics such

as human immunode�ciency virus (HIV) (see, for example, [1]-[22]), hepatitis B virus (HBV) [23]-

[26], hepatitis C virus (HCV) [27]-[29] and human T cell leukemia HTLV [30], etc. Mathematical

models of viral infection can help for understanding the viral dynamics and developing antiviral

drug therapies. In reality, the immune response needs an indispensable components to do its job

such as antibodies, cytokines, natural killer cells, and T cells. The antibody immune response is a

part of the adaptive system in which the body responds to pathogens by primarily using antibodies

that produced from the B cells. While the other part is the Cytotoxic T Lymphocytes (CTL)

immune response where the CTL attacks and kills the infected cells [7]. In some infections such

as malaria, the CTL immune response is less e¤ective than the antibody immune response [31].

Mathematical models of viral infection with antibody immune response have been proposed and

analyzed in ([32]-[39]). The basic model of viral infection with antibody immune response has

introduced by Murase et. al. [32] and Shi�Wang [39] as:

_x = s� dx� �vx; (1)

_y = �vx� ay; (2)

_v = ky � bzv � cv; (3)

_z = rzv � �z; (4)

where x, y, v and z denote the populations of uninfected target cells, infected cells, free virus

particles and antibody immune cells at time t, respectively. Parameters s, k and r represent,

respectively, the rate at which new healthy cells are generated from the source within the body,

the generation rate constant of free viruses produced from the infected cells and the proliferation
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rate constant of antibody immune cells. Parameters d, a, c and � are the natural death rate

constants of the uninfected target cells, infected cells, free virus particles and antibody immune

cells, respectively. Parameter � is the infection rate constant and b is the removal rate constant of

the viruses due to the antibodies. All the parameters given in model (1)-(4) are positive.

Note that, the infection rate in model (1)-(4) is presented to be bilinear in x and v, which

can not be completely describe the interaction between the uninfected target cells and viruses.

Nevertheless, there are many types of an improved incidence rate which are more commonly used

due to their bene�t for helping us gain the uni�cation theory through passing over the unessential

details (see e.g. [40] and [41]). Variety of viral infection models with antibody immune response

have been considered di¤erent forms of the incidence rate such as saturated incidence rate, �xv
1+�v

where � � 0 [42], [37], [35], Beddington-DeAngelis functional response, �xv
1+x+�v , �;  � 0 [36], and

general form,  (x; v)v [38].

However the infection rate does not depend on the infected cells y. In some viral infections such

as HBV, the infection rate depends on x, y and v [25], [24]. In [43], the infection rate is given by

 (x; y; v)v, however the antibody immune response has been neglected. Our aim in this paper is

to investigate the global stability analysis of the viral infection model with general incidence rate

function and antibody immune response.

The rest of the paper is designed as follows. In the next section, we introduce the model and

discuss the non-negativity and boundedness of the solutions. In Section 3, we de�ne two threshold

parameters and discuss the existence of the model�s equilibria. In Section 4, we study the global

asymptotic stability of the equilibria using suitable Lyapunov functional and applying LaSalle�s

invariance principle. Finally, conclusion is given in Section 5.
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2 The mathematical model

In this section, we consider the following viral infection model with general incidence rate taking

into consideration the antibody immune response.

_x = s� dx�  (x; y; v)v; (5)

_y =  (x; y; v)v � ay; (6)

_v = ky � bzv � cv; (7)

_z = rzv � �z: (8)

The de�nitions of all variables and parameters are identical to those given in Section 1. The

incidence rate of infection is presented by a general function in the form  (x; y; v)v, where  is

continuously di¤erentiable and satis�es the following assumptions (see [38] and [43]):

Assumption A1.  (x; y; v) > 0 for all x > 0, y � 0, v � 0, and  (0; y; v) = 0 for all y � 0,

v � 0.

Assumption A2.
@ (x; y; v)

@x
> 0 for all x > 0, y � 0 and v � 0:

Assumption A3.
@ (x; y; v)

@y
< 0,

@ (x; y; v)

@v
< 0 for all x > 0, y > 0 and v > 0:

Assumption A4.
@ ( (x; y; v)v)

@v
> 0 for all x > 0, y > 0 and v > 0:

2.1 Positive invariance

In the following proposition, we show that the non-negative orthant R4�0 is the positively invariant

and there exists a compact set which is positively invariant for model (5)-(8).

Proposition 1. Assume that Assumption A1 is satis�ed. Then there exist positive numbers

Li, i = 1; 2; 3, such that the compact set

� = (x; y; v; z) 2 R4�0 : 0 � x; y � L1; 0 � v � L2; 0 � z � L3
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is positively invariant.

Proof. First, we prove that the orthant R4�0 is positively invariance for system (5)-(8). We

have

_x jx=0= s > 0;

_y jy=0=  (x; 0; v)v � 0 for all x > 0; v � 0;

_v jv=0= ky � 0 for all y � 0;

_z jz=0= 0:

Hence, all the solutions are nonnegative.

Next we show that the solutions of system are bounded. Let T1(t) = x(t) + y(t), then

_T1(t) = (s� dx�  (x; y; v)v) +  (x; y; v)v � ay;

= s� dx� ay � s� �1(x+ y) = s� �1T1(t);

where �1 = minfd; ag. Hence 0 � T1 (t) � s
�1
for all t � 0 if T1 (0) � s

�1
. It follows that, 0 �

x(t); y(t) � L1 for all t � 0 if x(0) + y(0) � L1, where L1 = s
�1
. Moreover, let T2(t) = v(t) + b

rz(t),

then

_T2(t) = ky � cv � b�

r
z � kL1 � �2(v +

b

r
z) = kL1 � �2T2(t);

where �2 = minfc; �g. Hence 0 � T2(t) � L2 for all t � 0 when T2 (0) � L2. It follows that

0 � v(t) � L2 and 0 � z(t) � L3 for all t � 0 if v(0)+ b
rz(0) � L2, where L2 =

kL1
�2

and L3 = r
bL2.

Therefore, x(t); y(t); v(t) and z(t) are all bounded.
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2.2 The equilibria and threshold parameters

At any equilibrium we have

s� dx�  (x; y; v)v = 0; (9)

 (x; y; v)v � ay = 0; (10)

ky � bzv � cv = 0; (11)

rzv � �z = 0: (12)

From Eq. (12), either z = 0 or z 6= 0. If z = 0, then from Eqs. (9)-(11) we get

y =
s� dx
a

=
c

k
v; v =

k(s� dx)
ac

: (13)

Substituting from Eq. (13) into Eq. (10) we get:

�
 

�
x;
s� dx
a

;
k(s� dx)

ac

�
� ac

k

�
v = 0: (14)

Eq. (14) has two possible solutions v = 0 or v 6= 0. If v = 0; then from Eqs. (9) and (10), we get

x = s=d and y = 0 which leads to the infection-free equilibrium E0(x0; 0; 0; 0) where x0 = s=d. If

v 6= 0; then we have

 

�
x;
s� dx
a

;
k(s� dx)

ac

�
� ac

k
= 0:

Let

�1 (x) =  

�
x;
s� dx
a

;
k(s� dx)

ac

�
� ac

k
= 0:

Then, we have

�01 (x) =
@ 

@x
� d

a

@ 

@y
� kd

ac

@ 

@v
:
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Because of Assumptions A2 and A3, we have �01 (x) > 0 which implies that function �1(x) is

strictly increasing w.r.t. x. Moreover,

�1(0) =  

�
0;
s

a
;
ks

ac

�
� ac

k
= �ac

k
< 0;

�1(x0) =  (x0; 0; 0)�
ac

k
=
ac

k

�
k (x0; 0; 0)

ac
� 1
�
:

Therefore, if
k (x0; 0; 0)

ac
> 1; then there exists a unique x1 2 (0; x0) such that �1(x1) = 0.

Therefore from Eq. (13) we obtain y1 =
d(x0 � x1)

a
> 0 and v1 =

kd(x0 � x1)
ac

> 0. It follows

that, if
k (x0; 0; 0)

ac
> 1, then there exists a chronic-infection equilibrium without antibody immune

response E1(x1; y1; v1; 0).

Let us de�ne the basic reproduction number as:

R0 =
k (x0; 0; 0)

ac
:

The parameter R0 determines whether a chronic-infection can be established. The other possibility

of Eq. (12) is z 6= 0 which leads to v2 =
�

r
. From Eq. (9) we let

�2(x) = s� dx�  
�
x;
s� dx
a

; v2

�
v2 = 0:

Assumptions A2 and A3 provide that �2 is a decreasing function of x. Clearly, �2(0) = s > 0

and �2(x0) = � (x0; 0; v2)v2 < 0. Thus, there exists a unique x2 2 (0; x0) such that �2(x2) = 0.

It follows from Eqs. (11) and (13) that, y2 =
d(x0 � x2)

a
> 0 and z2 =

k (x2; y2; v2)

ab
� c

b
=

c

b

�
k (x2; y2; v2)

ac
� 1
�
. Then if

k (x2; y2; v2)

ac
> 1 then z2 > 0. Now we De�ne the antibody

immune response activation number as:

R1 =
k (x2; y2; v2)

ac
;

which determines whether a persistent antibody immune response can be established. Hence, z2

can be rewritten as z2 =
c

b
(R1 � 1). It follows that, there is a chronic-infection equilibrium with
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antibody immune response E2(x2; y2; v2; z2) i¤ R1 > 1.

Clearly from Assumptions A2 and A3, we have

R1 =
k (x2; y2; v2)

ac
<
k (x0; y2; v2)

ac
<
k (x0; 0; 0)

ac
= R0:

2.3 Global stability analysis

In this section, the global asymptotic stability of the three equilibria of model (5)-(8) will be

established by using direct Lyapunov method and applying LaSalle�s invariance principle. Let us

de�ne the function H : (0;1)! [0;1) as

H(w) = w � 1� lnw:

Theorem 1. Let Assumptions A1-A3 be hold true and R0 � 1; then the infection-free equilibrium

E0 is globally asymptotically stable (GAS).

Proof. We construct a Lyapunov functional as:

U0 = x� x0 �
Z x

x0

 (x0; 0; 0)

 (�; 0; 0)
d� + y +

a

k
v +

ab

rk
z: (15)

We calculate dU0
dt along the solutions of model (5)-(8) as:

dU0
dt

= d

�
1�  (x0; 0; 0)

 (x; 0; 0)

�
(x0 � x) +

�
 (x; y; v)

 (x0; 0; 0)

 (x; 0; 0)
� ac

k

�
v � ab�

rk
z

= s

�
1�  (x0; 0; 0)

 (x; 0; 0)

��
1� x

x0

�
+
ac

k

�
 (x; y; v)

 (x; 0; 0)
R0 � 1

�
v � ab�

rk
z: (16)

From Assumptions A2 and A3 we know that  (x; y; v) is an increasing function of x and decreasing

function of y and v. Then the �rst term of Eq. (16) is less than or equal zero and

 (x; y; v) <  (x; 0; 0), x; y; v > 0:
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It follows that

dU0
dt

� s

�
1�  (x0; 0; 0)

 (x; 0; 0)

��
1� x

x0

�
+
ac

k
(R0 � 1) v �

ab�

rk
z: (17)

Therefore, if R0 � 1, then dU0
dt � 0 for all x; y; v; z > 0. We note that the solutions of system

(5)-(8) converge to 
, the largest invariant subset of
n
dU0
dt = 0

o
[44]. From (17), we have dU0

dt = 0

i¤ x = x0, v = 0 and z = 0. The set 
 is invariant and for any element belong to 
 satis�es v = 0

and z = 0. We can see from Eq. (7) that

_v = 0 = ky:

It follows that, y = 0. Hence dU0
dt = 0 i¤ x = x0 and y = v = z = 0. Using LaSalle�s invariance

principle, we derive that E0 is GAS.

Assumption A5�
1�  (x; y; v)

 (x; yi; vi)

��
 (x; yi; vi)

 (x; y; v)
� v

vi

�
� 0; i = 1; 2 for all x; y; v > 0:

Theorem 2. Assume that Assumptions A1-A5 are satis�ed and R1 � 1 < R0, then the chronic-

infection equilibrium without antibody immune response E1 is GAS.

Proof. De�ne a Lyapunov functional as:

U1 = x� x1 �
Z x

x1

 (x1; y1; v1)

 (�; y1; v1)
d� + y1H

�
y

y1

�
+
a

k
v1H

�
v

v1

�
+
ab

rk
z:

Calculating the time derivative of U1 along the trajectories of system (5)-(8), we obtain

dU1
dt

=

�
1�  (x1; y1; v1)

 (x; y1; v1)

�
(s� dx�  (x; y; v) v) +

�
1� y1

y

�
( (x; y; v)v � ay)

+
a

k

�
1� v1

v

�
(ky � bzv � cv) + ab

rk
(rzv � �z)

=

�
1�  (x1; y1; v1)

 (x; y1; v1)

�
(s� dx) +  (x1; y1; v1)

 (x; y; v)v

 (x; y1; v1)

� y1
y
 (x; y; v)v + ay1 �

ac

k
v � ayv1

v
+
ac

k
v1 +

ab

k
v1z �

ab�

rk
z: (18)
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Using the equilibrium conditions for E1:

s = dx1 + ay1;  (x1; y1; v1)v1 = ay1 =
ac

k
v1;

we obtain

dU1
dt

= d

�
1�  (x1; y1; v1)

 (x; y1; v1)

�
(x1 � x) + 3ay1 � ay1

 (x1; y1; v1)

 (x; y1; v1)
+ ay1

 (x; y; v)v

 (x; y1; v1)v1

� ay1
y1 (x; y; v)v

y (x1; y1; v1)v1
� ay1

v

v1
� ay1

v1y

vy1
+
ab

k

�
v1 �

�

r

�
z: (19)

Collecting terms of Eq. (19) we get

dU1
dt

= dx1

�
1�  (x1; y1; v1)

 (x; y1; v1)

��
1� x

x1

�
+ ay1

�
 (x; y; v)v

 (x; y1; v1)v1
� v

v1
� 1 +  (x; y1; v1)

 (x; y; v)

�
+ ay1

�
4�  (x1; y1; v1)

 (x; y1; v1)
� y1 (x; y; v)v

y (x1; y1; v1)v1
� v1y

vy1
�  (x; y1; v1)

 (x; y; v)

�
+
ab

k

�
v1 �

�

r

�
z: (20)

Eq. (20) can be simpli�ed as:

dU1
dt

= dx1

�
1�  (x1; y1; v1)

 (x; y1; v1)

��
1� x

x1

�
+ ay1

�
1�  (x; y; v)

 (x; y1; v1)

��
 (x; y1; v1)

 (x; y; v)
� v

v1

�
+ ay1

�
4�  (x1; y1; v1)

 (x; y1; v1)
� y1 (x; y; v)v

y (x1; y1; v1)v1
� v1y

vy1
�  (x; y1; v1)

 (x; y; v)

�
+
ab

k

�
v1 �

�

r

�
z: (21)

From Assumptions A1 and A5, we get that the �rst and second terms of Eq. (21) is less than or

equal zero. Since the geometrical mean is less than or equal to the arithmetical mean, then the

third term of Eq. (21) is also less than or equal zero.

Now we show that if R1 � 1 then v1 � �
r = v2. Let R0 > 1, then we want to show that

sgn(x2 � x1) = sgn(v1 � v2) = sgn(y1 � y2) = sgn(R1 � 1):
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From Assumptions A2-A4, for x1; x2; y1; y2; v1; v2 > 0, we have

( (x2; y2; v2)�  (x1; y2; v2))(x2 � x1) > 0; (22)

( (x1; y1; v1)�  (x1; y2; v1))(y2 � y1) > 0 (23)

( (x1; y1; v1)�  (x1; y1; v2))(v2 � v1) > 0; (24)

( (x2; y2; v2)v2 �  (x2; y2; v1)v1)(v2 � v1) > 0: (25)

First, we claim sgn(x2�x1) = sgn(v1�v2). Suppose this is not true, i.e., sgn(x2�x1) = sgn(v2�v1).

Using the conditions of the equilibria E1 and E2 we have

(s� dx2)� (s� dx1) =  (x2; y2; v2)v2 �  (x1; y1; v1)v1

= a(y2 � y1); (26)

then sgn(x1 � x2) = sgn(y2 � y1). Moreover

(s� dx2)� (s� dx1) =  (x2; y2; v2)v2 �  (x1; y1; v1)v1

= ( (x2; y2; v2)v2 �  (x2; y2; v1)v1) + ( (x2; y2; v1)v1 �  (x1; y2; v1)v1)

+ ( (x1; y2; v1)v1 �  (x1; y1; v1)v1):

Therefore, from inequalities (22)-(26) we get:

sgn (x1 � x2) = sgn (x2 � x1) ;

which leads to contradiction. Thus, sgn (x2 � x1) = sgn (v1 � v2) : Using the equilibrium conditions

for E1 we have
k (x1;y1;v1)

ac = 1, then

R1 � 1 =
k (x2; y2; v2)

ac
� k (x1; y1; v1)

ac

=
k

ac
( (x2; y2; v2)�  (x2; y2; v1) +  (x2; y2; v1)

�  (x1; y2; v1) +  (x1; y2; v1)�  (x1; y1; v1)):
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We get sgn(R1 � 1) = sgn(v1 � v2): Hence, if R0 > 1; then x1; y1; v1 > 0, and if R1 � 1, then

v1 � v2 =
�
r . It follows from the above discussion that dU1

dt � 0 for all x; y; v; z > 0 and dU1
dt = 0

i¤ x = x1; y = y1; v = v1 and z = 0. So 
 contains a unique point, the equilibrium E1. Thus, we

prove the global asymptotic stability of the chronic-infection equilibrium without antibody immune

response E1 by using LaSalle�s invariance principle.

Theorem 3. Let Assumptions A1-A5 be hold true and R1 > 1, then the chronic-infection

equilibrium with antibody immune response E2 is GAS.

Proof. We construct a Lyapunov functional as follows:

U2 = x� x2 �
Z x

x2

 (x2; y2; v2)

 (�; y2; v2)
d� + y2H

�
y

y2

�
+
a

k
v2H

�
v

v2

�
+
ab

rk
z2H

�
z

z2

�
: (27)

Function U2 satis�es:

dU2
dt

=

�
1�  (x2; y2; v2)

 (x; y2; v2)

�
(s� dx�  (x; y; v)v) +

�
1� y2

y

�
( (x; y; v)v � ay)

+
a

k

�
1� v2

v

�
(ky � bzv � cv) + ab

rk

�
1� z2

z

�
(rzv � �z): (28)

Applying s = dx2 + ay2, we get

dU2
dt

= d

�
1�  (x2; y2; v2)

 (x; y2; v2)

�
(x2 � x) + ay2

� ay2
 (x2; y2; v2)

 (x; y2; v2)
+  (x; y; v)v

 (x2; y2; v2)

 (x; y2; v2)

�  (x2; y2; v2)v2
y2 (x; y; v)v

y (x2; y2; v2)v2
+ ay2 �

ac

k
v � ayv2

v

+
ac

k
v2 +

ab

k
v2z �

ab�

rk
z � ab

k
z2v +

ab�

rk
z2: (29)

By using the equilibrium conditions of E2

 (x2; y2; v2)v2 = ay2; cv2 = ky2 � bv2z2; � = rv2;

and the following equality

cv = cv2
v

v2
=

v

v2
(ky2 � bv2z2);
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we obtain

dU2
dt

= d

�
1�  (x2; y2; v2)

 (x; y2; v2)

�
(x2 � x) + ay2

�
 (x; y; v)v

 (x; y2; v2)v2
� v

v2
� 1 +  (x; y2; v2)

 (x; y; v)

�
+ ay2

�
4�  (x2; y2; v2)

 (x; y2; v2)
� y2 (x; y; v)v

y (x2; y2; v2)v2
� v2y

vy2
�  (x; y2; v2)

 (x; y; v)

�
: (30)

We can simplify (30) as:

dU2
dt

= dx2

�
1�  (x2; y2; v2)

 (x; y2; v2)

��
1� x

x2

�
+ ay2

�
1�  (x; y; v)

 (x; y2; v2)

��
 (x; y2; v2)

 (x; y; v)
� v

v2

�
+ ay2

�
4�  (x2; y2; v2)

 (x; y2; v2)
� y2 (x; y; v)v

y (x2; y2; v2)v2
� v2y

vy2
�  (x; y2; v2)

 (x; y; v)

�
: (31)

We note that from assumptions A2, A5 and the relationship between the arithmetical and geometri-

cal means, we have dU2
dt � 0. One can easily see that

dU2
dt = 0 at E2. The global asymptotic stability

of the chronic-infection equilibrium with antibody immune response E2 follows from LaSalle�s in-

variance principle.

3 Conclusion

In this paper, we have proposed a viral infection model with general incidence rate function and

antibody immune response. We have derived a set of conditions on the general functional response

and have determined two thresholds parameters R0 and R1 to prove the existence and global stabil-

ity of the model�s equilibria. The global asymptotic stability of the three equilibria, infection-free,

chronic-infection without antibody immune response and chronic-infection with antibody immune

response has been proven by using direct Lyapunov method and LaSalle�s invariance principle.
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NEWTON’S METHOD FOR COMPUTING THE FIFTH
ROOTS OF p-ADIC NUMBERS

Y.H. KIM, H.M. KIM, AND J. CHOI

Abstract We consider Newton’s method to compute the fifth root of a p-adic

number in Qp. We have the sufficient conditions for the convergence of Newton’s

method and the speed of its convergence. We also calculate the number of iterations

to obtain a number of corrected digits in the approximation.

1. Introduction

Let p be a prime and Qp be the field of p-adic numbers. The theory
of the field of p-adic numbers introduced by Hensel has been related
to several areas of mathematics including number theory, analysis and
other modern mathematics, and recently to physics. The study of this
field has been an important area of research in mathematics([9]).

The application of classical methods in numerical analysis to p-
adic numbers and polynomials and the analysis of their convergence
in Qp have been a recent development([2-3], [5], [7], [10-11]). Newton’s
method is the most often used method to find zeros of polynomials. In
[7], the authors applied Newton’s method to compute the cubic root
of a p-adic number. In [2-3], the authors also used Newton-Raphson
method to compute square and cube roots of p-adic numbers in Qp.
Computing the q-th root of a p-adic number is useful in the field of
computer science and cryptography, specially when q is a prime. In
[6], Kim-Choi give the conditions for the existence of the q-th roots of
p-adic numbers in Qp when (p, q) = 1, and also have the condition for
the existence the fifth roots including p = q.

In this paper, we use Newton’s method to compute the fifth root
of a p-adic number in Qp. We have the sufficient conditions for the
convergence of Newton’s method and the speed of its convergence. We
also calculate the number of iterations to obtain a number of corrected
digits in the approximation.

2010 Mathematics Subject Classification: 11E95, 26E30, 65H04
Key words and phrases: Newton’s method, p-adic roots
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2 Y.H. KIM, H.M. KIM, AND J. CHOI

2. Preliminaries

The following definitions and results are needed for our discussion.
See [4] and [8] for details.

Definition 1. Let p ∈ N be a prime number and x ∈ Q (x 6= 0). The
p-adic order of x, ordpx, is defined by

ordpx =

{
the highest power of p which divides x, if x ∈ Z,
ordpa− ordpb, if x = a

b
, a, b ∈ Z, b 6= 0.

Consider a map | · |p : Q→ R+ as follows.

Definition 2. Let p ∈ N be a prime number and x ∈ Q. The p-adic
norm | · |p of x is defined by

|x|p =

{
p−ordpx, if x 6= 0,

0, if x = 0.

The field of p-adic numbers Qp is the completion of Q with respect to
the p-adic norm |·|p of Definition 2. The elements of Qp are equivalence
classes of Cauchy sequences in Q with respect to the extension of the
p-adic norm defined by

|a|p = lim
n→∞

|an|p,

where {an} is a Cauchy sequence in Q representing a ∈ Qp.

Theorem 1. Every equivalence class a in Qp satisfying |a|p ≤ 1 has
exactly one representative Cauchy sequence {ai} such that
(1) ai ∈ Z, 0 ≤ ai < pi for i = 1, 2, . . .,
(2) ai ≡ ai+1 (mod pi) for i = 1, 2, . . . .

From this, every p-adic number a ∈ Qp has a unique representation

a =
∞∑

n=−m

anp
n,

where a−m 6= 0 and an ∈ {0, 1, 2, . . . , p− 1} for n ≥ −m. We represent
the given p-adic number a as a fraction in the base p as follows:

a = . . . an . . . a2a1a0.a−1 . . . a−m.

This representation is called the canonical p-adic expansion of a.

Definition 3. Let Zp = {a ∈ Qp| a =
∑∞

i=0 aip
i} be the set of p-adic

integers and Z×p = {a ∈ Qp| a =
∑∞

i=0 aip
i, a0 6= 0} be the set of p-adic

units.
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3

From Definition 3, it is easy to see that Zp = {a ∈ Qp| |a|p ≤ 1} and
Z×p = {a ∈ Qp| |a|p = 1}. Hence the following theorem follows.

Theorem 2. Let a be a p-adic number of norm p−n. Then a = pnu
for some u ∈ Z×p .

From now, we discuss the conditions for the existence of p-adic roots.

Definition 4. A p-adic number x ∈ Qp is said to be a q-th root of
a ∈ Qp of order k ∈ N if and only if xq ≡ a (mod pk).

When q = 5, the q-th root of a ∈ Qp is called the fifth root of a.

The following lemmata are essential for our discussions([4]).

Lemma 3. Let a, b ∈ Qp. Then a and b are congruent modulo pk and
write a ≡ b (mod pk) if and only if |a− b|p ≤ 1/pk.

Lemma 4. Let a, b ∈ Qp. If |a− b|p < |b|p, then |a|p = |b|p.
The next theorem is the basis for the existence of p-adic roots([8]).

Theorem 5. (Hensel’s lemma) Let F (x) = c0 + c1x + · · · + cnx
n be

a polynomial whose coefficients are p-adic integers. Let F ′(x) = c1 +
c2x+ 3c3x

2 + · · ·+ ncnx
n be the derivative of F (x). Let a0 be a p-adic

integer such that F (a0) ≡ 0 (mod p) and F ′(a0) 6≡ 0 (mod p). Then
there exists a unique p-adic integer a such that

F (a) = 0 and a ≡ a0 (mod p).

The following theorem follows from Theorem 5, and provides the
condition between p-adic numbers and congruence([4]).

Theorem 6. A polynomial with integer coefficients has a root in Zp if
and only if it has an integer root modulo pk for any k ≥ 1.

Some results of the existence of square roots of p-adic numbers are
obtained from Theorem 6([4]). In [6], we have the conditions for the
existence of the fifth roots of p-adic numbers in Qp as followings.

Theorem 7. A rational integer a not divisible by p has a fifth root in
Zp (p 6= 5) if and only if a is a fifth residue modulo p.

From Theorem 7, we have the following theorem([6]).

Theorem 8. Let p be a prime number. Then we have:
(1) If p 6= 5, then a = pordpau ∈ Qp for some u ∈ Z×p has a fifth root

in Qp if and only if ordpa = 5m for m ∈ Z and u = v5 for some unit
v ∈ Z×p .

(2) If p = 5, then a = 5ord5au ∈ Q5 for some u ∈ Z×5 has a fifth root in
Q5 if and only if ord5a = 5m for m ∈ Z and u ≡ 1 (mod 25) or u ≡ k
(mod 5) for some k (2 ≤ k ≤ 4).
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4 Y.H. KIM, H.M. KIM, AND J. CHOI

3. Newton’s Method

Newton’s method is a well known numerical method to find zeros of
a polynomial f(x) in R([1]). The iterative formula for this method is
given by

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, . . . . (3.1)

To seek the fifth root of a is to find the zero of f(x) = x5 − a. The
iteration (3.1) for Newton’s method becomes the recurrence relation

xn+1 =
4x5n + a

5x4n
, n = 0, 1, 2, . . . . (3.2)

Like for real numbers, we can show that Newton’s method also con-
verges quadratically for convergence.

Let a(6= 0) ∈ Qp be a p-adic number such that

|a|p = p−ordpa = p−5m, m ∈ Z.
The following theorem is the result when p 6= 5.

Theorem 9. Let p 6= 5 and {xn} be the sequence of p-adic numbers
obtained from the Newton’s iteration (3.2). If x0 is a fifth root of a of
order r with |x0|p = p−m and r > 5m, then

(1) |xn|p = p−m, n = 1, 2, . . . ,
(2) x5n ≡ a (mod p2

nr−5m(2n−1)),
(3) {xn} converges to the fifth root of a.

Proof. We will prove (1) and (2) by induction.
(i) First, we prove it when p > 5. Let n = 1. By assumption, we have

x50 = a+ bpr (0 < b < p). (3.3)

From (3.2), (3.3) and Lemma 4, we have

|x1|p =
|4x50 + a|p
|5x40|p

=
|5a+ 4bpr|p
|5x40|p

=
max{|5a|p, |4bpr|p}

|5x40|p
= p−m. (3.4)

Also by (3.2), we have

x51 − a =
(x50 − a)2

3125x200
(1024x150 + 203ax100 + 22a2x50 + a3). (3.5)

To calculate the p-adic norm of x51 − a, we let

h(x) = 1024x15 + 203ax10 + 22a2x5 + a3. (3.6)

From (3.3), we have

h(x0) = 1250a3 + 3500a2bpr + 3275ab2p2r + 1024b3p3r. (3.7)
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Using the strong triangle inequality, we have from (3.7) that

|h(x0)|p
≤ max

{
|2 · 54a3|p, |22537a2bpr|p, |52131ab2p2r|p, |210b3p3r|p

}
= max

{
p−15m, p−10m−r, p−5m−2r, p−3r

}
= p−15m.

(3.8)

Also the p-adic norm of the denominator of the right hand of (3.5) is

|3125x200 |p = |55x200 |p = p−20m. (3.9)

Since x0 is a fifth root of a of order r, we have

|(x50 − a)2|p = p−2r. (3.10)

By (3.5), (3.8), (3.9) and (3.10), we have

|x51 − a|p ≤ p5m−2r.

By Lemma 3, x51−a ≡ 0 (mod p2r−5m). Hence (1) and (2) is true when
n = 1.

Now assume that
|xn−1|p = p−m, (3.11)

x5n−1 = a (mod p2
n−1r−5m(2n−1−1)), (3.12)

and so
x5n−1 = a+ bp2

n−1r−5m(2n−1−1) (0 < b < p). (3.13)

From (3.2), (3.11) and (3.13), we have

|xn|p =
|4x5n−1 + a|p
|5x4n−1|p

=
|5a+ 4bp2

n−1r−5m(2n−1−1)|p
|5x4n−1|p

=
max{|5a|p, |4bp2

n−1r−5m(2n−1−1)|p}
|5x4n−1|p

= p−m.

(3.14)

Thus (1) is proved by (3.4), (3.11) and (3.14). Also from (3.2), it follows
that

x5n − a =
(x5n−1 − a)2

55x20n−1
h(xn−1). (3.15)

Let Q = p2
n−1r−5m(2n−1−1) for simplicity. From (3.13),

h(xn−1) = 2 · 54a3 + 22 · 53 · 7a2bQ+ 52 · 131ab2Q2 + 210b3Q3. (3.16)

Since r > 5m, the p-adic norm of h(xn−1) in (3.16) is

|h(xn−1)|p ≤ max{p−15m, p−15m−2n−1(r−5m),

p−15m−2
n(r−5m), p−15m−3·2

n−1(r−5m)}
= p−15m.

(3.17)
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Since xn−1 is a fifth root of a of order 2n−1r − 5m(2n−1 − 1), we have
from (3.12), (3.15) and (3.17) that

|x5n − a|p ≤ p−2
nr+5m(2n−1).

By Lemma 3, we have x5n−a ≡ 0 (mod p2
nr−5m(2n−1)). Thus (2) is true

for all n ∈ N.

(ii) When p < 5, there are two cases, p = 3 and p = 2.
The proof is the same with (i) when the first case p = 3, because 3

is no factor of any coefficients of terms of h(x0) in (3.7). It means that
|h(x0)|p ≤ p−15m, and so x51 ≡ a (mod p2r−5m). By assuming x5n−1 ≡ a

(mod p2
n−1r−5m(2n−1−1)), we have x5n ≡ a (mod p2

nr−5m(2n−1)) using the
same process of (i). Moreover we can check easily |xn|3 = 3−m by
induction.

The other case is p = 2. Let n = 1, |x1|p = p−m is obtained easily
from (3.4). And we have

x51 − a =
(x50 − a)2

3125x200
h(x0), (3.18)

where h(x) is the polynomial in (3.6). Since r > 5m, we have

|h(x0)|p ≤ max{p−15m−1, p−10m−r−2, p−5m−2r, p−3r−10} ≤ p−15m.
(3.19)

In (3.18), we have

|3125x200 |p = p−20m, (3.20)

and, by assumption,

|(x50 − a)2|p = p−2r. (3.21)

Also (3.19), (3.20) and (3.21) imply |x51 − a|p ≤ p−2r+5m, and so x51 ≡
a (mod p2r−5m). Thus (1) and (2) are true when n = 1 if p = 2.

Assume that |xn−1|p = p−m and x5n−1 ≡ a (mod p2
n−1r−5m(2n−1−1)).

That is,

x5n−1 = a+ bp2
n−1r−5m(2n−1−1) (0 < b < p). (3.22)

It follows (3.15) and (3.16), and so we have

|h(xn−1)|p ≤ max{p−15m−1, p−15m−2−2n−1(r−5m),

p−15m−2
n(r−5m), p−15m−10−3·2

n−1(r−5m)}
≤ p−15m.

(3.23)

By (3.15), (3.17), (3.20) and (3.23), we have

|x5n − a|p ≤ p−2
nr+5m(2n−1).
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Hence we have that for all n ∈ N, x5n ≡ a (mod p2
nr−5m(2n−1)). We

note that |xn|2 = 2−m is obtained easily from (3.14). So we complete
the proof of (1) and (2).

From (2), we have

|x5n − a|p ≤ p−2
nr+5m(2n−1) (3.24)

for each prime p(6= 5). (3) follows immediately from the inequality
(3.24) as n→∞. �

When p = 5, we have the following theorem.

Theorem 10. Let p = 5 and {xn} be the sequence of p-adic numbers
obtained from the Newton’s iteration (3.2). If x0 is a fifth root of a of
order r with |x0|p = p−m and r > 5m+ 1, then

(1) |xn|p = p−m, n = 1, 2, . . . ,
(2) x5n ≡ a (mod p2

nr−(5m+1)(2n−1)),
(3) {xn} converges to the fifth root of a.

Proof. (1) and (2) will be proved by induction. Let n = 1. By assump-
tion x50 ≡ a (mod pr), and from (3.2) and Lemma 4, we have

|x1|p =
|5a+ 4bpr|p
|5x40|p

=
max{|5a|p, |4bpr|p}

|5x40|p
=
p−5m−1

p−4m−1
= p−m.

By calculating the p-adic norms of h(x0) in (3.7), we have

|h(x0)|p ≤ max{p−15m−4, p−10m−r−3, p−5m−2r−2, p−3r} = p−15m−4,

since r > 5m+ 1. Also we have |3125x200 |p = p−20m−5. Thus

|x51 − a|p ≤ p−2r+5m+1,

and so x51 ≡ a (mod p2r−(5m+1)) by Lemma 3. Hence it is true when
n = 1. Now we assume that

|xn−1|p = p−m

and

x5n−1 ≡ a (mod p2
n−1r−(5m+1)(2n−1−1)).

In the similar manner as (3.14), (3.16) and (3.17), we have

|xn|p =
|4x5n−1 + a|p
|5x4n−1|p

=
|5a+ 4bp2

n−1r−(5m+1)(2n−1−1)|p
|5x4n−1|p

=
max{|5a|p, |4bp2

n−1r−(5m+1)(2n−1−1)|p}
|5x4n−1|p

=
p−5m−1

p−4m−1
= p−m
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and

|h(xn−1)|p ≤ max{p−15m−4, p−15m−4−2n−1[r−(5m+1)]

p−15m−4−2
n[r−(5m+1)], p−15m−3−3·2

n−1[r−(5m+1)]}
= p−15m−4.

And so we have

|x5n − a|p ≤ p−2
nr+(5m+1)(2n−1). (3.25)

It follows that (1) and (2) are true for all n ∈ N.

(3) follows from the inequality (3.25) as n→∞. �

To determine the rate of convergence of the sequence {xn} given by
(3.2), we consider the sequence {en} defined by

en = xn+1 − xn, ∀n ∈ N. (3.26)

From Theorem 9 and Theorem 10, we obtain the following theorem.

Theorem 11. If x0 is the fifth root of a of order r, then the sequence
{en} in (3.26) is en ≡ 0 (mod pαn), where

αn =

{
2nr − 5m · 2n +m, if p 6= 5,

2nr − (5m+ 1) · 2n +m, if p = 5.

Proof. (i) First, let p 6= 5. Then, from the Newton’s iteration formula
(3.2), we have

en = xn+1 − xn =
1

5x4n
(a− x5n), ∀n ∈ N. (3.27)

By computing the p-adic norms of each side of the equation (3.27),
we have from Theorem 8 that

|en|p = |xn+1 − xn|p =

∣∣∣∣ 1

5x4n

∣∣∣∣
p

· |a− xn|p ≤ p−2
nr+5m·2n−m.

Hence en ≡ 0 (mod pαn) by Lemma 3.
(ii) Let p = 5. By a similar way as (i), we have from Theorem 9 that

|en|p =

∣∣∣∣ 1

5x4n

∣∣∣∣
p

· |a− xn|p ≤ p−2
nr+(5m+1)·2n−m.

Hence en ≡ 0 (mod pαn) by Lemma 3. This completes the proof. �

From Theorem 11, we have that the rate of convergence of the se-
quence {xn} is of order αn. Thus the number of correct digits in the
approximation increases by αn for every iteration.

We can compute the number of iterations to obtain certain finite dig-
its. From Theorem 9 and Theorem 10, we have the following corollary.
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Corollary 12. (1) For p 6= 5, let {xn} be the sequence of approximation
in Theorem 9. Then the number of iterations to obtain at least M
correct digits is

n =

[
ln
(
M−4m
r−5m

)
ln 2

]
. (3.28)

(2) Let p = 5 and {xn} be the sequence of approximation in Theorem
10. Then the number of iterations to obtain at least M correct digits is

n =

 ln
(
M−(4m+1)
r−(5m+1)

)
ln 2

 . (3.29)

Proof. (1) Since we need M correct digits in the approximation, we
must set the order to M +m to find the number of iterations with M
correct digits. That is,

2nr − 5m(2n − 1) = M +m. (3.30)

From (3.30), we have

2n =
M − 4m

r − 5m
.

Since {xn} converges to the fifth root of a by Theorem 8 (3) and r > 5m,
we have the equation (3.28).

(2) As in the proof of (1), we set

2nr − (5m+ 1)(2n − 1) = M +m. (3.31)

From (3.31), we have

2n =
M − 4m− 1

r − (5m+ 1)
. (3.32)

Since r > 5m+ 1, the result follows from (3.32). �

The numbers in (3.28) and (3.29) are sufficient numbers of iterations
to provide at least M correct digits in the approximation.
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Abstract. In 1940 S. M. Ulam proposed at the University of Wisconsin the problem: “Give conditions in order for a linear

mapping near an approximately linear mapping to exist”. In 1982-2013, the second author solved the above Ulam problem

for a variety of quadratic mappings. Interesting stability results have been achieved by S. A. Mohiuddine et al., since 2009.

In this paper, we solve the Ulam stability problem for Euler-Lagrange (α,β;k) quadratic mapping. The other authors of

this research area have established important results also on functional inequalities.

Keywords and phrases: Quartic functional equations and inequalities; Various normed spaces; Ulam stability.

AMS subject classification (2000): 39B.

1. Introduction

In 1940 S. M. Ulam [36] proposed the famous “Ulam stability problem”, which was solved by D.

H. Hyers [4], in 1941, for additive mappings. In 1950 T. Aoki [3] solved this Ulam problem for weaker

additive mappings. In 1978 Th. M. Rassias [33] generalized the theorem of Hyers for linear mappings. In

1982-1999, J. M. Rassias ( [23–30]) generalized this problem. For more detail of Ulam stability problem,

we refer to [5, 6, 8–11,19, 20, 32, 34] and references therein.

In 1992, the second author [23, 24] introduced the term “Euler-Lagrange functional equation” and

“Euler-Lagrange quadratic mappings”, of satisfying

Q(x + y) + Q(x − y) = 2
[

Q(x) + Q(y)
]

(1.1)

and then solved the Ulam stability problem of the Euler-Lagrange quadratic functional equation (1.1). In

1996, J. M. Rassias [30] established the Ulam stablity of the general Euler-Lagrange quadratic functional

equation

Q(αx + βy) + Q(βx − αy) = (α2 + β2)
[

Q(x) + Q(y)
]

. (1.2)

In 2009-2014, S. A. Mohiuddine et al. ( [1,2,12–18]) solved this problem in several normed spaces. In

2008-2012 J. M. Rassias et al. ( [21,22,31,37]) solved the generalized Ulam problem via various methods.

In 2010, M. E. Gordji et al [7] established Ulam stabilities on Banach algebras. Also J. Rätz [35] results

are interesting on orthogonal mappings.

In this paper, we solve the Ulam stability problem for the Euler-Lagrange (α, β; k) quadratic mapping

satisfying

kQ(αx + βy) + Q(kβx − αy) = (α2 + kβ2)
[

kQ(x) + Q(y)
]

. (1.3)

1
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Let us note that Q(x) = |x|2 satisfies equation (1.3) because the following Euler-Lagrange quadratic

identity

k|αx + βy|2 + |kβx − αy|2 = (α2 + kβ2)
[

k|x|2 + |y|2
]

(1.4)

holds with any fixed reals α, β and k.

Definition 1.1. Let X be a normed linear space and let Y be a real complete normed linear space.

Then a non-linear mapping Q : X → Y is called Euler-Lagrange quadratic if equation (1.3) holds for

all 2-dimensional vectors (x, y) ∈ X2, and any fixed reals α, β and k. We note that Q may be called

quadratic because the above Euler-Lagrange identity (1.4) holds and because the functional equation

Q(mnx) = (mn)2Q(x) (1.5)

holds for all x ∈ X, all n ∈ N :

m = α2 + kβ2. (1.6)

Assume m ∈ R − {0, 1} and k ∈ R − {−1, 0}.

In fact, substitution of x = y = 0 in equation (1.3) yields

(k + 1)(1 − m)Q(0) = 0,

or

Q(0) = 0, m 6= 1 (and k 6= −1). (1.7)

Substituting x = x, y = 0 in (1.3), one gets that

kQ(αx) + Q(kβx) = kmQ(x) + mQ(0), (1.8)

or

Q(αx) +
1

k
Q(kβx) = mQ(x) +

m

k
Q(0), (1.9)

holds for all x ∈ X, and any fixed real k 6= 0. Employing (1.7), we obtain from (1.8) that

Q(αx) + Q(kβx) = kmQ(x). (1.10)

Moreover, substitution x → αx, y = kβx in (1.3), we find that

kQ(mx) + Q(0) = m
[

kQ(αx) + Q(kβx)
]

,

or

kQ(αx) + Q(kβx) = km−1Q(mx) +
1

m
Q(0), (1.11)

or

Q(αx) +
1

k
Q(kβx) = m−1Q(mx) +

1

km
Q(0) (1.12)

holds for all x ∈ X, and any fixed reals k 6= 0, m 6= 0. Functional Equations (1.8) and (1.11), or (1.9)

and (1.12) yield

km−1Q(mx) +
1

m
Q(0) = kmQ(x) + mQ(0),

or

km
[

Q(x) − m−2Q(mx)
]

=

(

1

m
− m

)

Q(0),

2
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or

km
[

Q(x) − m2Q(mx)
]

=

(

1 − m2

m

)

Q(0),

or

Q(x) − m−2Q(mx) =

(

1

k

1 − m2

m2

)

Q(0). (1.13)

Employing (1.7), one gets

Q(x) = m−2Q(mx), (1.14)

or

Q(mx) = m2Q(x) (1.15)

Replaying x → mx in (1.15), we find

Q(m2x) = m2Q(mx),

or

Q(m2x) = m4Q(x) (1.16)

Then by induction on n ∈ N with x → mn−1x yields equation (1.5).

Definition 1.2. Let X be a normed linear space and let Y be a real complete normed linear space. Then

we call the non-linear mapping Q̄ : X → Y, a 2-dimensional quadratic weighted mean if

Q̄(x) =
kQ(αx) + Q(kβx)

km
(1.17)

holds for all x ∈ X and any fixed reals k, m 6= 0.

Let us note that from (1.8) and (1.17), one get

Q̄(x) =
kmQ(x) + mQ(o)

km
,

or

Q̄(x) = Q(x) +
1

k
Q(o), (1.18)

for all x ∈ X, and any fixed real k 6= 0. From (1.7) and (1.18), we obtain

Q̄(x) = Q(x), (1.19)

for all x ∈ X.

2. Stability for Euler-Lagrange quadratic mappings

Let us introduce the Euler-Lagrange (α, β; k) quadratic functional inequality

∥

∥kf(αx + βy) + f(kβx − αy) − (α2 + kβ2)
[

kf(x) + f(y)
]
∥

∥ ≤ c, (2.1)

for all 2-dimensional vectors (x, y) ∈ X2 and any fixed reals α, β and k as well as m = α2 + kβ2, with

m ∈ R − {0, 1} (k ∈ R − {−1, 0}), and c(:= constant inde of x, y) ≥ 0.

Then we prove the following theorem.

Theorem 2.1. Let X be a normed linear space and let Y be a real complete normed linear space. Let

us denote,

f̄(x) =
kf(αx) + f(kβx)

km
(2.2)

3
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holds for all x ∈ X and any fixed reals k, m 6= 0. Also let us assume m : |m| > 1. Then the limit

Q(x) = lim
n→∞

m−2nf(mnx), (2.3)

exists for all x ∈ X, all n ∈ N, and any fixed real m : |m| > 1 and Q : X → Y is the unique quadratic

mapping satisfying functional equation (1.3) such that

∥

∥f(x) − Q(x)
∥

∥ ≤ c3 =
c2

m2 − 1
, |m| > 1, (2.4)

where

c2 = m2c1 =
|k + 1|

(

1 + |m|
)

+ |1 + m|

|k| |k + 1|
c,

c3 =
c2

m2 − 1
.

Moreover , identity

Q(x) = m−2nQ(mnx) (2.5)

holds for all x ∈ X all n ∈ N, and any fixed reals: α, β; k, m : |m| > 1 with m ∈ R − {0, 1},

(k ∈ R − {−1, 0}).

Proof of Existence in Theorem 2.1.

In fact, substitution of x = y = 0 in equality (2.1) yields

|k + 1| |1 − m|
∥

∥f(0)
∥

∥ ≤ c,

or
∥

∥f(0)
∥

∥ ≤
c

|k + 1| |1− m|
, k 6= −1, m 6= 1. (2.6)

Substituting x = x, y = 0 in (2.1), one gets that

∥

∥kmf(x) − [kf(αx) + f(kβx)] + mf(0)
∥

∥ ≤ c,

or
∥

∥f(x) − f̄(x) +
1

k
f(0)

∥

∥ ≤
c

|k||m|
, k 6= 0, m 6= 0, |m| > 1 (2.7)

from (2.2). Moreover substitution x → αx, y = kβx in (2.1), we find that

∥

∥kf(mx) + f(0) − m[kf(αx) + f(kβx)]
∥

∥ ≤ c,

or
∥

∥kf(αx) + f(kβx) − km−1f(mx) −
1

m
f(0)

∥

∥ ≤
c

|m|
,

or
∥

∥f̄(x) − m−2f(mx) −
1

km2
f(0)

∥

∥ ≤
c

|k| m2
, (2.8)

Functional inequalities (2.6),(2.7),(2.8) and triangle inequality yields

∥

∥f(x) − m−2f(mx)
∥

∥ ≤
∥

∥f(x) − f̄(x) +
1

k
f(0)

∥

∥ +
∥

∥f̄(x) − m−2f(mx) −
1

km2
f(0)

∥

∥

+
∥

∥

∥

1

km2
f(0) −

1

k
f(0)

∥

∥

∥

≤
c

|k| |m|
+

c

|k| m2
+

|1 − m2 |

|k|m2

∥

∥f(0)
∥

∥

=
1 + |m|

|k| m2
c +

|1 − m2|

|k|m2

∥

∥f(0)
∥

∥
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≤

(

1 + |m|

|k| m2
+

|1 − m2|

|k|m2

1

|k + 1||1− m|

)

c

=

(

1 + |m|

|k| m2
+

|1 + m|

|k||k + 1|m2

)

c

= c1 =
|k + 1|

(

1 + |m|
)

+ |1 + m|

|k||k + 1|m2
c,

or
∥

∥f(x) − m−2f(mx)
∥

∥ ≤ c1 =
c2

m2
, (2.9)

where

c2 = m2c1 =
|k + 1|

(

1 + |m|
)

+ |1 + m|

|k||k + 1|
c, (2.10)

holds for fixed k, m 6= 0, m 6= 1, m > 1. Replacing x → mx in (2.9) and then multiplying by m−2, we

find
∥

∥m−2f(mx) − m−4f(m2x)
∥

∥ ≤ m−2c1, m 6= 0 (2.11)

From (2.9) and (2.11), one gets

∥

∥f(x) − m−4f(m2x)
∥

∥ ≤
∥

∥f(x) − m−2f(mx)
∥

∥ +
∥

∥m−2f(mx) − m−4f(m2x)
∥

∥ ≤ 1 + m−2c1,

or
∥

∥f(x) − m−4f(m2x)
∥

∥ ≤ (1 + m−2)c1, m 6= 0. (2.12)

Employing (2.9) and (2.12) without induction, we obtain

∥

∥f(x) − m−2nf(mnx)
∥

∥ ≤
∥

∥f(x) − m−2f(mx)
∥

∥ +
∥

∥m−2f(mx) − m−4f(m2x)
∥

∥ + · · ·

+‖m−2(n−1)f(mn−1x) − m−2nf(mnx)
∥

∥

≤
(

1 + m−2 + · · ·+ m−2(n−1)
)

c1,

or
∥

∥f(x) − m−2nf(mnx)
∥

∥ ≤
1 − m−2n

1 − m−2
c1 =

m2

m2 − 1

(

1 − m−2n
)

c1, (2.13)

or the general inequality:

∥

∥f(x) − m−2nf(mnx)
∥

∥ ≤
1

m2 − 1

(

1 − m−2n
)

c2, (2.14)

where |m| > 1, c2 = m2c1.

Claim now that the sequence

{

fn(x)
}

, fn(x) =
{

m−2nf(mnx)
}

(2.15)

converges. Note that from the general inequality (2.14) and the completeness of Y , one proves that the

above sequence (2.15) is a Cauchy sequence. In fact, if i > j > 0, then

∥

∥fi(x) − fj(x)
∥

∥ =
∥

∥m−2if(mix) − m−2jf(mjx)
∥

∥

= m−2j
∥

∥m−2(i−j)f(mix) − f(mjx)
∥

∥

= m−2j
∥

∥f(mjx) − m−2(i−j)f(mi−j · mjx)
∥

∥

≤ m−2j ·
1

m2 − 1
(1 − m−2(i−j))c2,

or
∥

∥fi(x) − fj(x)
∥

∥ ≤
1

m2 − 1
(m−2j − m−2i)c2, |m| > 1, (2.16)
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or

0 ≤ lim
i>j→∞

∥

∥fi(x) − fj(x)
∥

∥ ≤ 0,

or

lim
i>j→∞

∥

∥fi(x) − fj(x)
∥

∥ = 0, (2.17)

completing the proof that the sequence
{

fn(x)
}

converges. Hence Q = Q(x) is well-defined via the

formula (2.3). This means that the limit (2.3) exists for all x ∈ X.

In addition claim that mapping Q satisfies the functional equation (1.3) for all vectors (x, y) ∈ X2 .

In fact, it is clear from functional inequality (2.1) and the limit (2.3) that inequality

∥

∥

∥
k lim

n→∞

m−2nf
[

mn(αx + βy)
]

+ lim
n→∞

m−2nf
[

mn(kβx − αy)
]

−(α2 + kβ2)
[

k lim
n→∞

m−2nf(mnx) + lim
n→∞

m−2nf(mny)
]

∥

∥

∥

≤ c( lim
n→0

m−2n) = 0, |m| > 1, (2.18)

or
∥

∥kQ(αx + βy) + Q(kβx − αy) − (α2 + kβ2)[kQ(x) + Q(y)
∥

∥ = 0,

or mapping Q satisfies the functional equation (1.3) for all x, y ∈ X, and |m| > 1. Thus Q is a 2-

dimensional quadratic mapping. It is now clear from general inequality (2.14), n → ∞, and the formula

(2.3) that inequality (2.4) holds in X, completing the existence proof of this Theorem 2.1.

Proof of Uniqueness in Theorem 2.1.

Let Q′ : X → Y be another 2-dimensional quadratic mapping satisfying equation (1.3), such that

∥

∥f(x) − Q′(x)
∥

∥ ≤ c3

(

=
c2

m2 − 1

)

, (2.4)′

for all x ∈ X, and any fixed real m : |m| > 1.

To prove the above-mentioned uniqueness employ (2.5) for Q and Q′, as well, so that

Q′(x) = m−2nQ′(mnx) (2.5)′

holds for all x ∈ X, all n ∈ N, and any fixed real m : |m| > 1.

Moreover, the triangle inequality and functional inequalities (2.4)-(2.4)′ yield

∥

∥Q(mnx) − Q′(mnx)
∥

∥ ≤
∥

∥Q(mnx) − f(mnx)
∥

∥ +
∥

∥f(mnx) − Q′(mnx)
∥

∥,

or
∥

∥Q(mnx) − Q′(mnx)
∥

∥ ≤ 2c3, (2.19)

for all x ∈ X, all n ∈ N, and any fixed real m : |m| > 1. Then from (2.5)-(2.5)′, and (2.19), one proves

that
∥

∥Q(x) − Q′(x)
∥

∥ =
∥

∥m−2nQ(mnx) − m−2nQ′(mnx)
∥

∥,

or
∥

∥Q(x) − Q′(x)
∥

∥ ≤ 2m−2nc3, (2.20)

holds for all x ∈ X, all n ∈ N, and any fixed real m : |m| > 1. Therefore from (2.20), and n → ∞, one

establishes

0 ≤ lim
n→∞

∥

∥Q(x) − Q′(x)
∥

∥ ≤ 2
(

lim
n→∞

m−2n
)

c3 = 0, |m| > 1,

6
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or
∥

∥Q(x) − Q′(x)
∥

∥ = 0,

or

Q(x) = Q′(x), |m| > 1, (2.21)

for all x ∈ X, completing the proof of uniqueness and thus the stability of Theorem 2.1.

Theorem 2.2. Let X be a normed linear space and let Y be a real complete normed linear space. Let

us denote
¯̄f(x) = m2f̄(m−1x) =

m

k

[

kf

(

1

m
αx

)

+f

(

k

m
βx

)]

(2.2)′

holds for all x ∈ X and any fixed reals k, m 6= 0. Also let us assume |m| < 1. Then the limit

Q(x) = lim
n→∞

m2nf(m−nx), (2.3)′

exists for all x ∈ X, all n ∈ N, and any fixed real m : |m| < 1, and Q : X → Y is the unique quadratic

mapping satisfying functional equation (2.3)′, such that

∥

∥f(x) − Q(x)
∥

∥ ≤ c4 =
c1

1 − m2
.

Moreover, identity

Q(x) = m2nQ(m−nx) (2.5)′

holds for all x ∈ X, n ∈ N and |m| < 1, m 6= 0. From (2.7) with x → m−1x(m 6= 0, |m| < 1) and

multiplying by m2, one find
∥

∥

∥

∥

m2f(m−1x) − ¯̄f(x) +
m2

k
f(0)

∥

∥

∥

∥

≤
|m|

|k|
c, (2.22)

where
¯̄f(x) = m2f̄(m−1x) =

m

k

[

kf
(

m−1αx
)

+ f

(

k

m
βx

)]

, m 6= 0, |m| < 1. (2.23)

From (2.8) with x → m−1x (m 6= 0, |m| < 1), one obtains
∥

∥

∥

∥

f̄(m−1x) − m−2f(x) −
1

km2
f(0)

∥

∥

∥

∥

≤
c

|k| m2
.

Multiplying by m2, we get
∥

∥

∥

∥

¯̄f(x) − f(x) −
1

k
f(0)

∥

∥

∥

∥

≤
c

|k|
. (2.24)

Functional inequalities (2.6),(2.23),(2.24) and triangle inequality yield

∥

∥f(x) − m2f(m−1x)
∥

∥ ≤

∥

∥

∥

∥

f(x) − ¯̄f(x) +
1

k
f(0)

∥

∥

∥

∥

+

∥

∥

∥

∥

¯̄f(x) − m2f(m−1x) −
m2

k
f(0)

∥

∥

∥

∥

+

∥

∥

∥

∥

m2

k
f(0) −

1

k
f(0)

∥

∥

∥

∥

≤
c

|k|
+

|m|

|k|
c +

|m2 − 1|

|k|

∥

∥f(0)
∥

∥

=
1 + |m|

|k|
c +

|1− m2|

|k|
‖f(0)‖

≤

(

1 + |m|

|k|
+

|1 + m|

|k||k + 1|

)

c

=
|k + 1|

(

1 + |m|
)

+ |1 + m|

|k||k + 1|
c = c2,
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or
∥

∥f(x) − m2f(m−1x)
∥

∥ ≤ c2, (2.25)

where

c2 =
|k + 1|

(

1 + |m|
)

+ |1 + m|

|k||k + 1|
c, |m| < 1, k 6= 0, k 6= −1, m 6= 0.

Replacing x → m−1x in (2.25) and multiplying by m2 , we get

m2f(m−1x) − m4f(m−2x)‖ ≤ m2c2, (2.26)

From (2.25)-(2.26), one finds

∥

∥f(x) − m4f(m−2x)
∥

∥ ≤
∥

∥f(x) − m2f(m−1x)
∥

∥ +
∥

∥m2f(m−1x) − m4f(m−2x)
∥

∥ ≤ (1 + m2)c2,

or
∥

∥f(x) − m4f(m−2x)
∥

∥ ≤
(

1 + m2
)

c2, m 6= 0. (2.27)

Employing (2.25) and (2.27), without induction, we get

∥

∥f(x) − m2nf(m−nx)
∥

∥ ≤
∥

∥f(x) − m2f(m−1x)
∥

∥ +
∥

∥m2f(m−1x) − m4f(m−2x)
∥

∥ + · · ·

+
∥

∥m2(n−1)f(m−(n−1)x) − m2nf(m−nx)
∥

∥

≤
(

1 + m2 + · · ·+ m2(n−1)
)

c2

or
∥

∥f(x) − m2nf(m−nx)
∥

∥ ≤
1 − m2(n−1)

1 − m2
c2 =

c2

1 − m2
(1 − m2(n−1)), (2.28)

or the general inequality:
∥

∥f(x) − m2nf(m−nx)
∥

∥ ≤
c2

1− m2
, (2.29)

where |m| < 1, m 6= 0.

Rest of the proof is similar to the proof of Theorem 2.1.

Assume the following condition on f :

f(0) = 0. (2.30)

From (2.30) and (2.7)-(2.8), we get

∥

∥f(x) − f̄(x)
∥

∥ ≤
c

|k| |m|
, (2.31)

and
∥

∥f̄(x) − m−2f(mx)
∥

∥ ≤
c

|k| m2
, k 6= 0, m 6= 0, |m| > 1. (2.32)

From (2.31)-(2.32), one obtains

∥

∥f(x) − m−2f(mx)
∥

∥ ≤
∥

∥f(x) − f̄(x)
∥

∥ +
∥

∥f̄(x) − m−2f(mx)
∥

∥,

or
∥

∥f(x) − m−2f(mx)
∥

∥ ≤ c′1 =
|m|+ 1

|k| m2
c, k 6= 0, m 6= 0, |m| > 1. (2.33)

Thus

∥

∥f(x) − m−2nf(mnx)
∥

∥ ≤
∥

∥f(x) − m−2f(mx)
∥

∥ +
∥

∥m−2f(mx) − m−4f(m2x)
∥

∥

+ · · ·+
∥

∥m−2(n−1)f(mn−1x) − m−2nf(mnx)
∥

∥

≤
(

1 + m−2 + · · ·+ m−2(n−1)
)

c′1,
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or
∥

∥f(x) − m−2nf(mnx)
∥

∥ ≤
1 − m−2n

1 − m−2
c′1 =

m2

m2 − 1

(

1 − m−2n
)

c′1,

or
∥

∥f(x) − m−2nf(mnx)
∥

∥ ≤
1

m2 − 1

(

1 − m−2n
)

c′2, (2.34)

where

|m| > 1, with c′2 = m2c′1 =
|m|+ 1

|k|
c.

Therefore the following Theorem 2.1a holds.

Theorem 2.1a. Let X be a normed linear space and let Y be a real complete normed linear space.

Then the limit (2.3) exists for all x ∈ X, all n ∈ N, |m| > 1 and Q : X → Y is the unique quadratic

mapping satisfying equation (1.3), such that

∥

∥f(x) − Q(x)
∥

∥ ≤
c′2

m2 − 1
=

|m|+ 1

m2 − 1

1

|k|
c, k 6= 0, |m| > 1. (2.35)

The proof of this Theorem 2.1a is similar to the proof of the previous Theorem 2.1.

Alternatively: |m| < 1, f(0) = 0:

From (2.30) and (2.22) , (2.24), we get

∥

∥f(x) − ¯̄f(x)
∥

∥ ≤
c

|k|
, (2.36)

and
∥

∥

¯̄f − m2f(m−1x)
∥

∥ ≤
|m|

|k|
c, (2.37)

k 6= 0, m 6= 0, |m| < 1. From (2.36)-(2.37), one obtains

∥

∥f(x) − m2f(m−1x)
∥

∥ ≤
∥

∥f(x) − ¯̄f(x)
∥

∥ +
∥

∥

¯̄f(x) − m2f(m−1x)
∥

∥

or
∥

∥f(x) − m2f(m−1x)
∥

∥ ≤ c′2 =
|m| + 1

|k|
c (2.38)

k 6= 0, m 6= 0, |m| < 1. Thus

∥

∥f(x) − m2nf(m−nx)
∥

∥ ≤
∥

∥f(x) − m−2f(mx)
∥

∥

+ · · ·+
∥

∥m2(n−1)f(m−(n−1)x) − m2nf(m−nx)
∥

∥

≤
(

1 + m2 + · · ·+ m2(n−1)
)

c′2,

or
∥

∥f(x) − m2nf(m−nx)
∥

∥ ≤
1

1 − m2

(

1 − m2n
)

c′2, (2.39)

where |m| < 1, m 6= 0.

Therefore the following Theorem 2.2a (analogous to Theorem 2.1a) holds for |m| < 1, m 6= 0.

Theorem 2.2a. Let X be a normed linear space, and Y a real complete normed linear space. Then the

limit (2.3)′ exists for all x ∈ X, n ∈ N, |m| < 1; m 6= 0, and Q : X → Y is the unique quadratic mapping

satisfying equation (1.3), such that

∥

∥f(x) − Q(x)
∥

∥ ≤
c′2

1 − m2
=

1 + |m|

1 − m2

1

|k|
c, (2.40)
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k 6= 0, |m| < 1; m 6= 0.

Special case: Replacing α = β = 1 in equation (1.3) and (2.1), one gets

kf(x + y) + f(kx − y) = (k + 1)
[

kf(x) + f(y)
]

, k ∈ R − {−1, 0}. (2.41)

Thus

m = k + 1 ∈ R − {0, 1}.

Also
∥

∥kf(x + y) + f(kx − y) − (k + 1)
[

kf(x) + f(y)
]
∥

∥ ≤ c, k ∈ R − {−1, 0}. (2.42)
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1 Introduction and preliminaries

The mathematical inequalities play an important role in the mathematical branches and their

enormous application can not be underestimated. Afterwards, many researchers[1-13] studied the

properties of convexity and achieve some different integral inequalities. The purpose of this paper

is to introduce the definition of (h − (α,m))−logarithmically convex functions and establish some

new integral inequalities of these classes of functions. Before stating our results, we need recall some

notions.

Throughout this paper, by ℜ, we denote the set of all real numbers.

Definition 1.1 Let f : I ⊂ ℜ → ℜ be a function define on interval I of real numbers. Then f is

called convex (see[4]) if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)
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and 20142BAB201005) and the Science and Technology Project of Educational Commission of Jiangxi Province, China

(GJJ11346).
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for all x, y ∈ I and t ∈ [0, 1].

In [2] , Toader gave the definition of m−convexity as follows.

Definition 1.2 The function f : [a, b] → ℜ, 0 ≤ a < b is said to be m−convex , where m ∈ [0, 1], if

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y)

holds for all x, y ∈ [0, 1] and t ∈ [0, 1]. We say that f is m−concave if −f is m−convex.

In [3] , Mihesan gave the definition of (α,m)−convexity as follows.

Definition 1.3 The function f : [a, b] → ℜ, 0 ≤ a < b is said to be (α,m)−convex , where (α,m) ∈

[0, 1]2, if

f(tx+m(1− t)y) ≤ tαf(x) +m(1− tα)f(y)

holds for all x, y ∈ [0, 1] and t ∈ [0, 1].

In [1], Özedemir et al. gave the definition of (h− (α,m))−convexity as follows.

Definition 1.4 Let h : K ⊂ ℜ → ℜ be a nonnegative function, h ̸= 0. The function f : L ⊂ ℜ → ℜ

is said to be (h − (α,m))−convex function if f is non-negative and for all x, y ∈ [0, 1] and t ∈ (0, 1)

for (α,m) ∈ [0, 1]2, we have

f(tx+m(1− t)y) ≤ hα(t)f(x) +m(1− hα(t))f(y).

In [5], Bai gave the definition of m− and (α,m)−logarithmically convex functions as follows.

Definition 1.5 The function f : [a, b] → (0,∞),0 ≤ a < b is said to be m−logarithmically convex,

where m ∈ (0, 1], if

f(tx+m(1− t)y) ≤ [f(x)]t[f(y)]m(1−t)

holds for all x, y ∈ [0, 1] and t ∈ [0, 1].

Definition 1.6 The function f : [a, b] → (0,∞),0 ≤ a < b is said to be (α,m)−logarithmically

convex, where (α,m) ∈ (0, 1]2, if

f(tx+m(1− t)x) ≤ [f(x)]t
α
[f(x)]m(1−tα)

holds for all x, y ∈ [0, 1] and t ∈ [0, 1].
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2 Main results

In this section, we will introduce the concept of (h− (α,m))−logarithmically convex functions. We

give some new integral inequalities of these classes of functions. First, we present the definition of

(h− (α,m))−logarithmically convex functions as follow.

Definition 2.1 Let h : K ⊂ ℜ → ℜ be a nonnegative function, h ̸= 0. The function f : L ⊂ ℜ → ℜ

is said to be (h− (α,m))−logarithmically convex function if f is nonnegative and for all x, y ∈ L and

t ∈ (0, 1) for (α,m) ∈ (0, 1]2, we have

f(tx+m(1− t)y) ≤ [f(x)]h
α(t)[f(y)]m

(
1−hα(t)

)
.

Obviously, if h(t) = t, then (h−(α,m))−logarithmically convex function is a (α,m)−logarithmically

convex function; if h(t) = t,α = 1, then (h−(α,m))−logarithmically convex function is am−logarithmically

convex function.

Before giving our results, we need the following lemma which is proved by Özdemir et al. [13].

Lemma 2.1 Let f : [a, b] → ℜ, 0 ≤ a < b be continuous on [a, b] such that f ∈ L([a, b]). Then the

equality ∫ b

a
(x− a)p(x− b)qf(x)dx = (b− a)p+q+1

∫ 1

0
(1− t)ptqf(tx+ (1− t)y)dt

holds for some fixed p, q > 0.

Theorem 2.1 Let f : [a, b] → ℜ, 0 ≤ a < b be continuous on [a, b] such that f ∈ L([a, b]). If the

mapping f is (h− (α,m))−logarithmically convex on [a, b] for all t ∈ (0, 1) and (α,m) ∈ (0, 1]2, then∫ b

a
(x− a)p(x− b)qf(x)dx ≤ (b− a)p+q+1[β(

q

1−m
+ 1,

p

1−m
+ 1)]1−m

×
{∫ 1

0
[f(a)]

hα(t)
m f(

b

m
)1−h

α(t)dt

}m (2.1)

where β(x, y) =
∫ 1
0 (t)

x−1(1− t)y−1dt.

Proof. Using Lemma 2.1 , we have∫ b

a
(x− a)p(x− b)qf(x)dx = (b− a)p+q+1

∫ 1

0
(1− t)ptqf(ta+ (1− t)b)dt. (2.2)

Since f is (h− (α,m))−logarithmically convex on [a, b], we know that for every t ∈ (0, 1)

f(ta+ (1− t)b) = f(ta+m(1− t)(
b

m
)) ≤ [f(a)]h

α(t)[f(
b

m
)]m
(
1−hα(t)

)
. (2.3)
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From (2.1), (2.2), (2.3) and Hölder inequality, we can conclude that∫ b

a
(x− a)p(x− b)qf(x)dx

= (b− a)p+q+1

∫ 1

0
(1− t)ptqf(ta+ (1− t)b)dt

= (b− a)p+q+1

∫ 1

0
(1− t)ptqf(ta+m(1− t)

b

m
)dt

≤ (b− a)p+q+1

∫ 1

0
(1− t)ptq[f(a)]h

α(t)[f(
b

m
)]m
(
1−hα(t)

)
dt

≤ (b− a)p+q+1

{∫ 1

0
[(1− t)ptq]

1
1−mdt

}1−m{∫ 1

0

{
[f(a)]h

α(t)[f(
b

m
)m(1−hα(t))]

} 1
mdt

}m
≤ (b− a)p+q+1

{∫ 1

0
[(1− t)

p
1−m t

q
1−mdt

}1−m{∫ 1

0

{
[f(a)]

hα(t)
m [f(

b

m
)1−h

α(t)]
}
dt

}m
≤ (b− a)p+q+1[β(

q

1−m
+ 1,

p

1−m
+ 1)]1−m

{∫ 1

0

{
[f(a)]

hα(t)
m [f(

b

m
)1−h

α(t)]
}
dt

}m
.

Hence, the proof of theorem 2.1 is completed.

Remark 2.1 If α = 1, then we can conclude the following inequality:∫ b

a
(x− a)p(x− b)qf(x)dx ≤ (b− a)p+q+1[β(

q

1−m
+ 1,

p

1−m
+ 1)]1−m

×
{∫ 1

0

{
[f(a)]

h(t)
m [f(

b

m
)1−h(t)]

}
dt

}m
.

Theorem 2.2 Let f : [a, b] → ℜ, 0 ≤ a < b be continuous on [a, b] such that f ∈ L([a, b]). If

the mapping |f |
k

k−1 (k > 1) is (h − (α,m))−logarithmically convex on [a, b] for all t ∈ (0, 1) and

(α,m) ∈ (0, 1]2, then∫ b

a
(x− a)p(x− b)qf(x)dx ≤ (b− a)p+q+1[β(kq + 1, kp+ 1)]

1
k

[ ∫ 1

0
|f(a)|

k2hα(t)
k−1 dt

] k−1

k2

×
[ ∫ 1

0
|f( b

m
)|

k2m
(k−1)2

(1−hα(t))
] (k−1)2

k2

(2.4)

where β(x, y) =
∫ 1
0 (t)

x−1(1− t)y−1dt.

Proof. Using Lemma 2.1 , we have∫ b

a
(x− a)p(x− b)qf(x)dx = (b− a)p+q+1

∫ 1

0
(1− t)ptqf(ta+ (1− t)b)dt. (2.5)

Taking into account that |f |
k

k−1 is (h− (α,m))−logarithmically convex on [a, b], we deduce that

|f(ta+ (1− t)b)|
k

k−1 = |f(ta+m(1− t)(
b

m
))|

k
k−1 ≤ |f(a)|

k
k−1

hα(t)|f( b
m
)|

k
k−1

m(1−hα(t)). (2.6)
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Hence, from (2.4), (2.5), (2.6) and Hölder inequality, we can achieve the following inequality:∫ b

a
(x− a)p(x− b)qf(x)dx

= (b− a)p+q+1

∫ 1

0
(1− t)ptqf(ta+ (1− t)b)dt

≤ (b− a)p+q+1

[ ∫ 1

0
(1− t)kptkqdt

] 1
k
{∫ 1

0

∣∣∣∣f(ta+m(1− t)
b

m
)

∣∣∣∣ k
k−1

dt

} k−1
k

= (b− a)p+q+1[β(kq + 1, kp+ 1)]
1
k

{∫ 1

0

∣∣∣∣f(ta+m(1− t)
b

m
)

∣∣∣∣ k
k−1

dt

} k−1
k

≤ (b− a)p+q+1[β(kq + 1, kp+ 1)]
1
k

[ ∫ 1

0
|f(a)|

k
k−1

hα(t)|f( b
m
)|

k
k−1

m(1−hα(t))dt

] k−1
k

.

(2.7)

Using Hölder inequality again, we have[ ∫ 1

0
|f(a)|

k
k−1

hα(t)|f( b
m
)|

k
k−1

m(1−hα(t))dt

] k−1
k

≤
{[∫ 1

0
|f(a)|

k2

k−1
hα(t)dt

] 1
k
[ ∫ 1

0

[
|f( b

m
)|

k
k−1

m(1−hα(t))] k
k−1dt

] k−1
k
} k−1

k

≤
{[∫ 1

0
|f(a)|

k2

k−1
hα(t)dt

] 1
k
[ ∫ 1

0

[
|f( b

m
)|(

k
k−1

)2m(1−hα(t))]dt] k−1
k
} k−1

k

(2.8)

Combining with (2.7) and (2.8), we can conclude that (2.4) holds. Hence, the proof of theorem 2.2 is

completed.

Remark 2.2 If α = 1, then we can conclude the following inequality:∫ b

a
(x− a)p(x− b)qf(x)dx ≤ (b− a)p+q+1[β(kq + 1, kp+ 1)]

1
k

[ ∫ 1

0
|f(a)|

k2h(t)
k−1 dt

] k−1
k2

×
[ ∫ 1

0
|f( b

m
)|

k2m
(k−1)2

(1−h(t))
] (k−1)2

k2

.

Theorem 2.3 Let f : [a, b] → ℜ, 0 ≤ a < b be continuous on [a, b] such that f ∈ L([a, b]). If the

mapping |f |l (l ≥ 1) is (h − (α,m))−logarithmically convex on [a, b] for all t ∈ (0, 1) and (α,m) ∈

(0, 1]2, then∫ b

a
(x− a)p(x− b)qf(x)dx ≤ (b− a)p+q+1[β(q + 1, p+ 1)]

l−1
l

[
β(ql + 1, pl + 1)

] 1
l2
[ ∫ 1

0
|f(a)|

l3hα(t)
l−1 dt

] l−1

l3

×
[ ∫ 1

0
|f( b

m
)|

l2m(1−hα(t))

(l−1)2 dt

] (l−1)2

l3

(2.9)

where β(x, y) =
∫ 1
0 (t)

x−1(1− t)y−1dt.

Proof. Using Lemma 2.1 , we have∫ b

a
(x− a)p(x− b)qf(x)dx = (b− a)p+q+1

∫ 1

0
(1− t)ptqf(ta+ (1− t)b)dt. (2.10)

5
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Since, |f |l is (h− (α,m))−logarithmically convex on [a, b], we have

|f(ta+ (1− t)b)|l = |f(ta+m(1− t)(
b

m
))|l ≤ |f(a)|lhα(t)|f( b

m
)|lm(1−hα(t)). (2.11)

From (2.9), (2.10), (2.11) and Hölder inequality, we can achieve the following inequality:∫ b

a
(x− a)p(x− b)qf(x)dx

= (b− a)p+q+1

∫ 1

0
(1− t)ptqf(ta+m(1− t)(

b

m
))dt

≤ (b− a)p+q+1

∫ 1

0
[(1− t)p(t)q]

l−1
l [(1− t)p(t)q]

1
l f(ta+m(1− t)(

b

m
))dt

≤ (b− a)p+q+1

[ ∫ 1

0
(1− t)p(t)qdt

] l−1
l
{∫ 1

0
[(1− t)p(t)q]|f(ta+m(1− t)(

b

m
))|ldt

} 1
l

= (b− a)p+q+1[β(q + 1, p+ 1)]
l−1
l

{∫ 1

0
[(1− t)p(t)q]|f(ta+m(1− t)(

b

m
))|ldt

} 1
l

.

(2.12)

Using Hölder inequality again, we have{∫ 1

0
[(1− t)p(t)q]|f(ta+m(1− t)(

b

m
))|ldt

} 1
l

≤
{∫ 1

0
[(1− t)p(t)q]|f(a)|lhα(t)|f( b

m
)|lm(1−hα(t))dt

} 1
l

≤
{{∫ 1

0
[(1− t)p(t)q]ldt

} 1
l
{∫ 1

0

[
|f(a)|lhα(t)|f( b

m
)|lm(1−hα(t))

] l
l−1

dt
} l−1

l

} 1
l

≤
[
β(ql + 1, pl + 1)

] 1
l2
[ ∫ 1

0
|f(a)|

l2hα(t)
l−1 |f( b

m
)|

l2m(1−hα(t))
l−1 dt

] l−1
l2

≤
[
β(ql + 1, pl + 1)

] 1
l2
[ ∫ 1

0
|f(a)|

l3hα(t)
l−1 dt

] l−1

l3
[ ∫ 1

0
|f( b

m
)|

l3m(1−hα(t))

(l−1)2 dt

] (l−1)2

l3

.

(2.13)

By (2.12) and (2.13), we can achieve that (2.9) holds. Hence, the proof of theorem 2.3 is completed.

Remark 2.3 If α = 1, then we can conclude the following inequality:∫ b

a
(x− a)p(x− b)qf(x)dx ≤ (b− a)p+q+1[β(q + 1, p+ 1)]

l−1
l

[
β(ql + 1, pl + 1)

] 1
l2
[ ∫ 1

0
|f(a)|

l3h(t)
l−1 dt

] l−1
l3

×
[ ∫ 1

0
|f( b

m
)|

l2m(1−h(t))

(l−1)2 dt

] (l−1)2

l3

.
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[13] M. E. Özdemir, E. Set and M. Alomari, Integral inequalities via several kinds of convexity, Creat.

Math. Inform. 20 (2011), no. 1, 62-73.

7

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 20, NO.2, 2016, COPYRIGHT 2016 EUDOXUS PRESS, LLC

380 Jianhua Chen et al 374-380



On Gosper’s q-Trigonometric Function
Mahmoud Jafari Shah Belaghi
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Abstract. In this paper, we study about periodicity of q-trigonometric function
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1 Introduction

The q-shifted factorial [1, 3] is defined by

(a; q)n =

{
1 n = 0,∏n−1
m=0(1− aqm) n = 1, 2, ....

(1)

and it is assumed that a 6= q−m, m = 0, 1, .... The q-shifted factorial [1, 3] is
also defined for any complex number α,

(a; q)α =
(a; q)∞

(aqα; q)∞
, (2)

where (a; q)∞ := limn→∞
∏n
m=0(1−aqm) and the principal value of qα is taken

and it is assumed that 0 < q < 1.
The q-Gamma function was introduced by Thomae [6] and Jackson [5], (see

[3], page 20)

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, 0 < q < 1. (3)

A q-analogue of Legendre’s duplication formula [5, 7] has the form

Γq(2x)Γq2(
1

2
) = (1 + q)2x−1Γq2(x)Γq2(x+

1

2
). (4)

Gosper [4] defined q-trigonometric functions as follows:

sinq(πz) := q(z−1/2)
2 (q2z; q2)∞(q2−2z; q2)∞

(q; q2)2∞
, 0 < q < 1, (5)

cosq(πz) := qz
2 (q1+2z; q2)∞(q1−2z; q2)∞

(q; q2)2∞
, 0 < q < 1. (6)

1
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It can be seen [4] that

cosq(z) = sinq(
π

2
− z). (7)

By using (5), (6) and (7), one can see that, for the cases x = 0 and x = π
2 ,

sinq(x) and cosq(x) are;

sinq(0) = 0, sinq(
π
2 ) = 1,

cosq(0) = 1, cosq(
π
2 ) = 0.

(8)

There are many identities involving q-shifted factorial [1, 3], but in this paper
we are using the following identities;

For all a ∈ C and n ∈ N, following equations hold

(q2a; q2)n = (qa; q)n(−qa; q)n, (9)

(a; q)2n = (a; q2)n(aq; q2)n, (10)

(q1−a−n; q)n = (qa; q)n(−1)n q−(n2)−an. (11)

2 Main result

In the next lemma we show that the equations (9) and (10) are also valid for
any complex number α,

Lemma 1. For all a, α ∈ C, the following equations hold

(q2a; q2)α = (qa; q)α(−qa; q)α, (12)

(a; q)2α = (a; q2)α(aq; q2)α. (13)

Proof. To prove (12) we use (2), then we have

(q2a; q2)α =
(q2a; q2)∞

(q2a+2α; q2)∞
.

By using the definition of q-shifted factorial (1), we obtain

(q2a; q2)α =
(q2a; q2)∞

(q2a+2α; q2)∞

=

∏∞
i=0(1− q2a+2i)∏∞

i=0(1− q2a+2α+2i)

=

∏∞
i=0(1− qa+i)(1 + qa+i)∏∞

i=0(1− qa+α+i)(1 + qa+α+i)

=

∏∞
i=0(1− qa+i)∏∞

i=0(1− qa+α+i)

∏∞
i=0(1 + qa+i)∏∞

i=0(1 + qa+α+i)

=
(qa; q)∞

(qa+α; q)∞

(−qa; q)∞
(−qa+α; q)∞

= (qa; q)α(−qa; q)α.

2
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The proof of (12) is complete. To Prove the next equation, we use (1) and
(2), then we have

(a; q2)α(aq; q2)α
(a; q)2α

=
(a; q2)∞(aq; q2)∞(aq2α; q)∞

(aq2α; q2)∞(aq2α+1; q2)∞(a; q)∞

=
(a; q2)∞(aq; q2)∞

(a; q)∞

(aq2α; q)∞
(aq2α; q2)∞(aq2α+1; q2)∞

,

each fraction in the last line is equal 1, since (c; q)∞(cq
1
2 ; q)∞ = (c; q

1
2 )∞ (see

[8] , page 13). The proof of (13) is complete.

In the next lemma, we want to modify the equation (11).

Lemma 2. For all α and β ∈ C, the following equation holds

(q1−α−β ; q)α = (qβ ; q)α
sin√qπ(α+ β)

sin√qπ(β)
q−(α2)−αβ , (14)

where sinq is defined as in (5).

Proof. After applying the equation (2) for both numerator and denominator of
the left hand side of the following equation, we obtain that

(q1−α−β ; q)α
(qβ ; q)α

=
(q1−α−β ; q)∞(qα+β ; q)∞

(q1−β ; q)∞(qβ ; q)∞

and by using the definition of sinq which is written in (5), we have

(q1−α−β ; q)∞(qα+β ; q)∞
(q1−β ; q)∞(qβ ; q)∞

=
sin√qπ(α+ β)

sin√qπ(β)
q−(α2)−αβ .

Therefore proof is complete.

Theorem 1. For all n ∈ N and x ∈ C, the following equations hold

sinq(x+ nπ) = (−1)nsinq(x), (15)

cosq(x+ nπ) = (−1)ncosq(x), (16)

tanq(x+ nπ) = tanq(x), (17)

cotq(x+ nπ) = cotq(x). (18)

Proof. We use lemma 2 for prove the equation (15). Taking any arbitrary n ∈ N
and a ∈ C, then we have

(q1−n−a; q)n = (qa; q)n
sin√qπ(a+ n)

sin√qπ(a)
q−(n2)−na. (19)

3
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By comparing the equations (11) and (19), we obtain

sin√qπ(a+ n)

sin√qπ(a)
= (−1)n.

Substituting q with
√
q and x with aπ completes the proof of equation (15).

By using (7) and (15), one can shows that (16) is valid for all n ∈ N and

x ∈ C, and the last two equations (17) and (18) comes from
sinq(x)
cosq(x)

and
cosq(x)
sinq(x)

,

respectively.

Remark 1. The cosq(x) is an even function, its come from the definition (6)
directly. And the sinq(x) is an odd function, since by using (7), we can write
sinq(x) = cosq(

π
2−x) and also we know that cosq(x) is an even function then we

have sinq(x) = cosq(x− π
2 ), again apply (7), we obtain cosq(x− π

2 ) = sinq(π−x).
Now by using the Theorem 1, we obtain sinq(π − x) = −sinq(−x). Therefore
sinq(x) = −sinq(−x).

Lemma 3. For all k ∈ Z, zeroes of q-sine and q-cosine functions are kπ and
(2k+1)π

2 , respectively.

Proof. Since sinq is an odd function, therefore its enough to prove the lemma
for positive value of k. We prove the lemma for positive value of k by induction.
For k = 1 and using (15), we have

sinq(π) = sinq(0 + π) = sinq(0) = 0,

since sinq(0) = 0 comes from definition of sinq. Then lemma is valid for k = 1.
Assume that sinq(nπ) = 0 is true. We need to show that sinq((n+ 1)π) = 0 is
also true. By using (15), we have

sinq((n+ 1)π) = sinq(nπ + π) = (−1)sinq(nπ) = 0.

Therefore zeroes of sinq(x) are kπ, for all k ∈ Z. About the zeroes of cosq(x),
take any arbitrary k ∈ Z, and by using the (7), we have

cosq(
(2k + 1)π

2
) = cosq(kπ +

π

2
) = sinq(−kπ) = 0.

Therefore zeroes of cosq(x) are (2k+1)π
2 , for all k ∈ Z.

Lemma 4. For all z ∈ C, the following equation holds

(qz+1; q)z = (−q 1
2 ; q

1
2 )2z(q

1
2 ; q)z.

4
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Proof. Taking a = 1, α = 2z and substituting q with q
1
2 in (12), and applying

to (−q 1
2 ; q

1
2 )2z, we obtain

(−q 1
2 ; q

1
2 )2z

(q
1
2 ; q)z

(qz+1; q)z
=

(q; q)2z

(q
1
2 ; q

1
2 )2z

(q
1
2 ; q)z

(qz+1; q)z
. (20)

By using (2), the right hand side of (20) can be written as

(q; q)2z
(qz+1; q)z

(q
1
2 ; q)z

(q
1
2 ; q

1
2 )2z

=

(q;q)∞
(q2z+1;q)∞

(qz+1;q)∞
(q2z+1;q)∞

(q
1
2 ; q)z

(q
1
2 ; q

1
2 )2z

,

=
(q; q)∞

(qz+1; q)∞

(q
1
2 ; q)z

(q
1
2 ; q

1
2 )2z

,

= (q; q)z
(q

1
2 ; q)z

(q
1
2 ; q

1
2 )2z

. (21)

By substituting q with q
1
2 and then taking a = q

1
2 in equation (13), one can

see that the right hand side of (21) is equal 1 and this completes the proof.

Lemma 5. For all z ∈ C, the following equation holds

(q
1
2−z; q)z = (qz+1; q)z

q−
z2

2

(−q 1
2 ; q

1
2 )2z

cos√q(πz). (22)

Proof. By using the Lemma 4 the equation (22) can be written as

(q
1
2−z; q)z = (q

1
2 ; q)zq

− z22 cos√q(πz). (23)

The equation (23) is a special case of lemma 2 when β = 1
2 , since cosq(z) =

sinq(
π
2 − z) and also cosq is an even function.

Corollary 1. For the positive integers value of n, Lemma 5 deduce to

(q
1
2−n; q)n = (−1)n(qn+1; q)n

q−
n2

2

(−q 1
2 ; q

1
2 )2n

.

Proof. The result is obtained by using Theorem 1.

Euler (see [2], page 271 or [3], page 222) found the following formula in
connection with partitions,

(−q; q)∞(q; q2)∞ = 1.

In the next lemma, we want to generalize this Euler’s formula.

5
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Theorem 2. For all z ∈ C, the following equation holds

(qz+1; q)z = (−q; q)z(q; q2)z.

Proof. By substituting q with q
1
2 and then taking a = −q 1

2 in equation (13), we
have

(−q 1
2 ; q

1
2 )2z = (−q 1

2 ; q)z(−q; q)z,

now, we apply the result to Lemma 5 and obtain

(qz+1; q)z = (−q 1
2 ; q)z(−q; q)z(q

1
2 ; q)z. (24)

Taking a = 1
2 in the equation (12) and then applying to the right hand side

of the equation (24) completes the proof.

Theorem 3. For all x ∈ C, the following equation holds,

Γq(2x)Γq(
1

2
) = Γq(x)Γq(x+

1

2
)(−q 1

2 ; q
1
2 )2x−1.

Proof. By using the definition of q-Gamma function (3) and then applying the
equation (2), we can write

Γq(2x)Γq(
1
2 )

Γq(x)Γq(x+ 1
2 )

=
(qx; q)∞(qx+

1
2 ; q)∞

(q2x; q)∞(q
1
2 ; q)∞

=
(qx; q)x

(q
1
2 ; q)x

, (25)

the last equation holds since (qx; q)x = (qx;q)∞
(q2x;q)∞

and (q
1
2 ; q)x = (q

1
2 ;q)∞

(q
1
2
+x;q)∞

. Tak-

ing β = 1
2 in Lemma 2 and applying for the denominator of the last fraction in

(25), we get

(qx; q)x

(q
1
2 ; q)x

=
(qx; q)x

(q
1
2−x; q)x

sin√qπ( 1
2 + x)

sin√qπ( 1
2 )

q−
x2

2 ,

=
(qx; q)x

(q
1
2−x; q)x

cos√q(πx) q−
x2

2 .

Now, by using Lemma 4, we have

(qx; q)x

(q
1
2−x; q)x

cos√q(πx) q−
x2

2 =
(qx; q)x

(qx+1; q)x
(−q 1

2 ; q
1
2 )2x.

Making use of (2), we have

(qx; q)x
(qx+1; q)x

(−q 1
2 ; q

1
2 )2x =

(qx; q)∞
(q2x; q)∞

(q2x+1; q)∞
(qx+1; q)∞

(−q 1
2 ; q

1
2 )2x.

6
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After expanding the first and second fractions and then a simplification,
yields

(qx; q)∞
(q2x; q)∞

(q2x+1; q)∞
(qx+1; q)∞

(−q 1
2 ; q

1
2 )2x =

1− qx

1− q2x
(−q 1

2 ; q
1
2 )2x,

=
1

1 + qx
(−q 1

2 ; q
1
2 )2x,

= (−q 1
2 ; q

1
2 )2x−1.
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APPROXIMATE QUADRATIC FORMS ON RESTRICTED DOMAINS

WON-GIL PARK AND JAE-HYEONG BAE*

Abstract. Let r, s be nonzero real numbers with r + s = 1. In [9], Najati and Jung investigated a
quadratic functional equation g(rx + sy) + rs g(x − y) = rg(x) + sg(y). We introduce a functional
equation f(rx + sy, rz + sw) + rsf(x − y, z − w) = rf(x, z) + sf(y, w) and investigate the relation
between the above two functional equations. And we find out the general solution and the Hyers-Ulam
stability of the latter on restricted domains.

1. Introduction

In 1940 and in 1968, Ulam [12] proposed the general Ulam stability problem:
“When is it true that by slightly changing the hypotheses of a theorem one can still assert that the

thesis of the theorem remains true or approximately true?”
In 1941, Hyers [7] solved this problem for linear mappings. In 1950, Aoki [2] provided a generaliza-

tion of the Hyers’ theorem for additive mappings. This stability concept is also applied to the case of
other functional equations. For more results on the stability of functional equations (see [5, 6, 11]).
In 1998, S.-M. Jung [8] investigated the Hyers-Ulam stability for additive and quadratic mappings on
restricted domains.

Let X and Y be real vector spaces. For a mapping g : X → Y , consider the quadratic functional
equation:

(1.1) g(x+ y) + g(x− y) = 2g(x) + 2g(y).

In 1989, J. Aczel [1] solved the solution of the equation (1.1). Later, many different quadratic func-
tional equations were solved by numerous authors [3, 8, 10]. In recent, A. Najati and S.-M. Jung [9]
introduced a generalized quadratic functional equation

(1.2) g(rx+ sy) + rs g(x− y) = rg(x) + sg(y),

where r, s are nonzero real numbers with r+ s = 1. In 2007, the authors [4] solved the solution of the
2-variable quadratic functional equation

(1.3) f(x+ y, z + w) + f(x− y, z − w) = 2f(x, z) + 2f(y, w).

Consider a generalized 2-variable quadratic functional equation

(1.4) f(rx+ sy, rz + sw) + rsf(x− y, z − w) = rf(x, z) + sf(y, w),

where r, s are nonzero real numbers with r + s = 1.

2000 Mathematics Subject Classification. Primary 39B52, 39B72.
Key words and phrases. Solution, Stability, Approximate quadratic form.
* Corresponding author.
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2 WON-GIL PARK AND JAE-HYEONG BAE

In this paper, we investigate the relation between (1.2) and (1.4) by the same method as the proofs
of Theorem 1 and Theorem 2 in [4]. And we find out the general solution and the Hyers-Ulam stability
of (1.4) in the spirit of Najati and Jung [9].

2. Relation between (1.2) and (1.4)

The functional equation (1.4) induces the quadratic functional equation (1.2) as follows.

Theorem 2.1. Let f : X×X → Y be a mapping satisfying (1.4) and let g : X → Y be the mapping
given by

(2.1) g(x) := f(x, x)

for all x ∈ X, then g satisfies (1.2).

Proof. By (1.4) and (2.1), we obtain

g(rx+ sy) + rsg(x− y) = f(rx+ sy, rx+ sy) + rsf(x− y, x− y)

= rf(x, x) + sf(y, y)

= rg(x) + sg(y)

for all x, y ∈ X. �

Example 1. Let X be a real algebra and D : X → X a derivation on X. Define a mapping
f : X ×X → X by

f(x, y) := D(xy) = xD(y) +D(x)y

for all x, y ∈ X. Then we see that

f(rx+ sy, rz + sw) + rsf(x− y, z − w) = D[(rx+ sy)(rz + sw)] + rsD[(x− y)(z − w)]

= (rx+ sy)D(rz + sw) +D(rx+ sy)(rz + sw) + rs[(x− y)D(z − w) +D(x− y)(z − w)]

= (rx+ sy)[rD(z) + sD(w)] + [rD(x) + sD(y)](rz + sw)

+ rs
(
(x− y)[D(z)−D(w)] + [D(x)−D(y)](z − w)

)
= r2xD(z) + s2yD(w) + r2D(x)z + s2D(y)w + rsxD(z) + rsyD(w) + rsD(x)z + rsD(y)w

= r[xD(z) +D(x)z] + s[yD(w) +D(y)w] = rD(xz) + sD(yw) = rf(x, z) + sf(y, w)

for all x, y, z, w ∈ X. Thus f satisfies (1.4). Define a mapping g : X → X by

g(x) := D(x2) = xD(x) +D(x)x

for all x ∈ X. Then g satisfies (2.1). By Theorem 2.1, g satisfies (1.2).

The quadratic functional equation (1.2) induces the functional equation (1.4) with an additional
condition.

Theorem 2.2. Let a, b, c ∈ R and g : X → Y be a mapping satisfying (1.2). If f : X ×X → Y is
the mapping given by

(2.2) f(x, y) := ag(x) +
b

4
[g(x+ y)− g(x− y)] + cg(y)
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APPROXIMATE QUADRATIC FORMS ON RESTRICTED DOMAINS 3

for all x, y ∈ X, then f satisfies (1.4). Furthermore, (2.1) holds if r is a rational number and
a+ b+ c = 1.

Proof. By (1.2) and (2.2), we see that

f(rx+ sy, rz + sw) + rsf(x− y, z − w)

= ag(rx+ sy) +
b

4

[
g
(
r(x+ z) + s(y + w)

)
− g
(
r(x− z) + s(y − w)

)]
+ cg(rz + sw)

+rs
(
ag(x− y) +

b

4

[
g(x− y + z − w)− g(x− y − z + w)

]
+ cg(z − w)

)
= ag(rx+ sy) + rsag(x− y) +

b

4

[
g
(
r(x+ z) + s(y + w)

)
+ rsg

(
(x+ z)− (y + w)

)]
− b
4

[
g
(
r(x− z) + s(y − w)

)
+ rsg

(
(x− z)− (y − w)

)]
+ cg(rz + sw) + rscg(z − w)

= a
[
g(rx+ sy) + rsg(x− y)

]
+
b

4

[
rg(x+ z) + sg(y + w)

]
− b
4

[
rg(x− z) + sg(y − w)

]
+ c
[
g(rz + sw) + rsg(z − w)

]
= a[rg(x) + sg(y)] +

b

4

(
r
[
g(x+ z)− g(x− z)

]
+ s
[
g(y + w)− g(y − w)

])
+ c[rg(z) + sg(w)]

= rf(x, z) + sf(y, w)

for all x, y, z, w ∈ X.
Let r be a rational number. Since g satisfies (1.2), it also satisfies (1.1) (see Theorem 2.3. in [9]).

Letting x = y = 0 and y = x in (1.1), respectively,

g(0) = 0 and g(2x) = 4g(x)

for all x ∈ X. By (2.2) and the above two equalities,

f(x, x) = ag(x) +
b

4
[g(2x)− g(0)] + cg(x)

= (a+ b+ c)g(x)

= g(x)

for all x ∈ X. �

Example 2. Consider the function g : R2 → R given by g(x) := xTAx for all x ∈ R2, where A is
a 2× 2 real matrix. Then we see that

g(rx+ sy) + rs g(x− y) = (rx+ sy)TA(rx+ sy) + rs(x− y)TA(x− y)

= (rxT + syT )A(rx+ sy) + rs(xT − yT )A(x− y)

= r2xTAx+ rs(xTAy + yTAx) + s2yTAy + rs(xTAx− xTAy − yTAx+ yTAy)

= r(r + s)xTAx+ s(r + s)yTAy = rg(x) + sg(y)
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for all x,y ∈ R2, where r, s are nonzero real numbers with r + s = 1. Thus g satisfies (1.2). Let
a, b, c ∈ R and define f(x,y) := ag(x) + b

4 [g(x+y)− g(x−y)] + cg(y) for all x,y ∈ R2. By Theorem
2.2, the function f satisfies (1.4). In fact,

f(x,y) =

(
x
y

)T(
a b

2
b
2 c

)(
Ax
Ay

)
for all x,y ∈ R2.

Example 3. Let Mn be the algebra of n × n real matrices. Consider the mapping g : Mn → Mn

given by g(A) := A2 for all A ∈Mn. Then we see that

g(rA+ sB) + rs g(A−B) = (rA+ sB)2 + rs(A−B)2

= r2A2 + rs(AB +BA) + s2B2 + rs(A2 −AB −BA+B2)

= r2A2 + rsAB + rsBA+ s2B2 + rsA2 − rsAB − rsBA+ rsB2

= r(r + s)A2 + s(r + s)B2 = rg(A) + sg(B)

for all A,B ∈ R2, where r, s are nonzero real numbers with r + s = 1. Thus g satisfies (1.2). Let
a, b, c ∈ R and define

f(A,B) := aA2 + bA ◦B + cB2,

where A ◦ B the Jordan product 1
2(AB + BA) of A and B for all A,B ∈ Mn. Then the mapping

f :Mn ×Mn →Mn satisfies (2.2). By Theorem 2.2, the mapping f satisfies (1.4).

3. Solution of the equation (1.4)

We recall that r, s are nonzero real numbers with r + s = 1. In the following theorem, we find out
the general solution of the functional equation (1.4).

Theorem 3.1. Let f : X ×X → Y be a mapping such that f(x, y) = f(−x,−y) for all x, y ∈ X.
Then f satisfies (1.3) if it satisfies (1.4). If r and s are rational numbers and f satisfies (1.3), then it
also satisfies (1.4).

Proof. Letting x = y = z = w = 0 in (1.4), we gain f(0, 0) = 0. Putting y = w = 0 in (1.4), we get
f(rx, rz) = r2f(x, z) for all x, z ∈ X. Replacing x by x+ y and z by z + w in (1.4), we have

(3.1) f(rx+ y, rz + w) = rf(x+ y, z + w) + sf(y, w)− rsf(x, z)

for all x, y, z, w ∈ X. Replacing y by −y and w by −w in (3.1), we obtain

f(rx− y, rz − w) = rf(x− y, z − w) + sf(y, w)− rsf(x, z)

for all x, y, z, w ∈ X. Adding (3.1) to the above equation, we see that

(3.2) f(rx+y, rz+w)+f(rx−y, rz−w) = r[f(x+y, z+w)+f(x−y, z−w)]+2sf(y, w)−2rsf(x, z)

for all x, y, z, w ∈ X. Replacing y by x+ ry and w by z + rw in (3.1), we obtain

(3.3) f(r(x+ y) + x, r(z + w) + z) = rf(2x+ ry, 2z + rw) + sf(x+ ry, z + rw)− rsf(x, z)
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for all x, y, z, w ∈ X. Replacing x, y, z, w by 2x, ry, 2z, rw in (3.1), respectively, we obtain

(3.4) rf(2x+ ry, 2z + rw) = r2f(2x+ y, 2z + w)− r2sf(y, w) + rsf(2x, 2z)

for all x, y, z, w ∈ X. Replacing y by ry and w by rw in (3.1), we obtain

(3.5) sf(x+ ry, z + rw) = rsf(x+ y, z + w)− rs2f(y, w) + s2f(x, z)

for all x, y, z, w ∈ X. Replacing x, y, z, w by x+ y, x, z + w, z in (3.1), respectively, we obtain

(3.6) f(r(x+ y) + x, r(z + w) + z) = rf(2x+ y, 2z + w) + sf(x, z)− rsf(x+ y, z + w)

for all x, y, z, w ∈ X. By (3.3), (3.4), (3.5) and (3.6), we see that

(3.7) f(2x+ y, 2z + w) + 2f(x, z) + f(y, w) = 2f(x+ y, z + w) + f(2x, 2z)

for all x, y, z, w ∈ X. Putting y = −x and w = −z in (3.7), we get f(2x, 2z) = 4f(x, z) for all x, z ∈ X.
Therefore, it follows from (3.7) that

f(2x+ y, 2z + w) + f(y, w) = 2f(x+ y, z + w) + 2f(x, z)

for all x, y, z, w ∈ X. Replacing y by y − x and w by w − z in the above equation, we have

f(x+ y, z + w) + f(y − x,w − z) = 2f(x, z) + 2f(y, w)

for all x, y, z, w ∈ X. Hence f satisfies (1.3).
Conversely, let r and s be rational numbers and let f satisfy (1.3). Then there exist two symmetric

bi-additive mappings S1, S2 : X × X → Y and a bi-additive mapping B : X × X → Y such that
f(x, y) = S1(x, x) +B(x, y) + S2(y, y) for all x, y ∈ X (see [4]). Since r and s are rational numbers,

rf(x, z) + sf(y, w)− rsf(x− y, z − w)

= r2S1(x, x) + 2rsS1(x, y) + s2S1(y, y) + r2B(x, z) + rsB(x,w) + rsB(y, z) + s2B(y, w)

+ r2S2(z, z) + 2rsS2(z, w) + s2S2(w,w)

= S1(rx, rx) + 2S1(rx, sy) + S1(sy, sy) +B(rx, rz) +B(rx, sw) +B(sy, rz) +B(sy, sw)

+ S2(rz, rz) + 2S2(rz, sw) + S2(sw, sw)

= S1(rx+ sy, rx+ sy) +B(rx+ sy, rz + sw) + S2(rz + sw, rz + sw)

= f(rx+ sy, rz + sw)

for all x, y, z, w ∈ X. Therefore f satisfies (1.4). �

4. Stability of the equation (1.4)

From now on, let X be a real normed space and Y a Banach space.
The authors proved a generalized Hyers-Ulam stability theorem on a functional equation (1.3). The

following theorem is a particular case of Theorem 4 in [4].

Theorem 4.1 Let δ ≥ 0 be fixed. If a mapping f : X ×X → Y satisfies the inequality

(4.1) ∥f(x+ y, z + w) + f(x− y, z − w)− 2f(x, z)− 2f(y, w)∥ ≤ δ

for all x, y, z, w ∈ X, then there exists a unique 2-variable quadratic mapping F : X ×X → Y such
that ∥f(x, y)− F (x, y)∥ ≤ 1

3δ for all x, y ∈ X.
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Using a similar method used in the paper [8], we obtain the following theorem.

Theorem 4.2 Let d > 0 and δ ≥ 0 be fixed and let X ̸= {0}. If a mapping f : X × X → Y
satisfies the inequality (4.1) for all x, y, z, w ∈ X with ∥x+z∥+∥y+w∥ ≥ d, then there exists a unique
2-variable quadratic mapping F : X ×X → Y such that

(4.2) ∥f(x, y)− F (x, y)∥ ≤ 5

3
δ

for all x, y ∈ X.

Proof. Assume that ∥x+ z∥+ ∥y + w∥ < d. Let

t =
1

2

(
1 +

d

∥x+ z∥

)
(x+ z) if ∥x+ z∥ ≥ ∥y + w∥;

t =
1

2

(
1 +

d

∥y + w∥

)
(y + w) if ∥x+ z∥ < ∥y + w∥.

If x+ z = y + w = 0, then one can choose a t ∈ X with ∥t∥ = d
2 . Note that

2∥t∥ = ∥x+ z∥+ d ≥ d if ∥x+ z∥ ≥ ∥y + w∥;
2∥t∥ = ∥y + w∥+ d > d if ∥x+ z∥ < ∥y + w∥.

Clearly, we see that

∥x+ z − 2t∥+ ∥y + w + 2t∥ ≥ 4∥t∥ − (∥x+ z∥+ ∥y + w∥) ≥ 2d− (∥x+ z∥+ ∥y + w∥)
≥ 2d > d,

∥x+ z − y − w∥+ 4∥t∥ ≥ ∥x+ z − y − w∥+ 2d ≥ 2d > d,

∥x+ z + 2t∥+ ∥ − y − w + 2t∥ ≥ max{∥x+ z + 2t∥, ∥ − y − w + 2t∥} ≥ d,

∥x+ z∥+ 2∥t∥ ≥ 2∥t∥ ≥ d, 2∥t∥+ ∥y + w∥ ≥ 2∥t∥ ≥ d, 4∥t∥ ≥ 2d > d.(4.3)

These inequalities (4.3) come from the corresponding substitutions attached between the right-hand
sided parentheses of the following functional identity.

Besides from (4.1) with x = y = z = w = 0 we get ∥f(0, 0)∥ ≤ δ
2 . Therefore from (4.1), (4.3) and

the new functional identity

2[f(x+ y, z + w) + f(x− y, z − w)− 2f(x, z)− 2f(y, w)− f(0, 0)]

= [f(x+ y, z + w) + f(x− y − 2t, z − w − 2t)− 2f(x− t, z − t)− 2f(y + t, w + t)]

− [f(x− y − 2t, z − w − 2t) + f(x− y + 2t, z − w + 2t)− 2f(x− y, z − w)− 2f(2t, 2t)]

+ [f(x− y + 2t, z − w + 2t) + f(x+ y, z + w)− 2f(x+ t, z + t)− 2f(−y + t,−w + t)]

+ 2[f(x+ t, z + t) + f(x− t, z − t)− 2f(x, z)− 2f(t, t)]

+ 2[f(t+ y, t+ w) + f(t− y, t− w)− 2f(t, t)− 2f(y, w)]

− 2[f(2t, 2t) + f(0, 0)− 4f(t, t)],
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we get

2∥f(x+ y, z + w) + f(x− y, z − w)− 2f(x, z)− 2f(y, w)− f(0, 0)∥
≤ δ + δ + δ + 2δ + 2δ + 2δ = 9δ,

or

(4.4) ∥f(x+ y, z + w) + f(x− y, z − w)− 2f(x, z)− 2f(y, w)∥ ≤ 9

2
δ + ∥f(0, 0)∥ ≤ 5δ.

Applying now Theorem 4.1 and the above inequality, there exists a unique 2-variable quadratic map-
ping F : X × X → Y satisfying (4.2) such that F (x, y) = limn→∞ 2−2nf(2nx, 2ny), completing the
proof. �

We recall that r, s are nonzero real numbers with r + s = 1.

Theorem 4.3. Let d > 0 and δ ≥ 0 be given. Assume that a mapping f : X ×X → Y such that
f(x, y) = f(−x,−y) and

(4.5) ∥f(rx+ sy, rz + sw) + rsf(x− y, z − w)− rf(x, z)− sf(y, w)∥ ≤ δ

for all x, y, z, w ∈ X with ∥x+ z∥+ ∥y + w∥ ≥ d. Then there exists K > 0 such that f satisfies

(4.6) ∥f(x+ y, z + w) + f(x− y, z − w)− 2f(x, z)− 2f(y, w)∥ ≤ 4(2 + |r|+ |s|)
|rs|

δ

for all x, y, z, w ∈ X with ∥x+ z∥+ ∥y + w∥ ≥ K.

Proof. Let x, y, z, w ∈ X with ∥x+z∥+∥y+w∥ ≥ 2d. Since 2∥y+w∥ = ∥x+y+z+w+y+w−x−z∥ ≤
∥x+ y + z + w∥+ ∥y + w∥+ ∥x+ z∥, we get

2∥y + w∥ − ∥x+ z∥ ≤ ∥x+ y + z + w∥+ ∥y + w∥.

Since ∥x+ z∥ = ∥x+ y + z + w − y − w∥ ≤ ∥x+ y + z + w∥+ ∥y + w∥, we have

(4.7) max{∥x+ z∥, 2∥y + w∥ − ∥x+ z∥} ≤ ∥x+ y + z + w∥+ ∥y + w∥.

If ∥x+ z∥ < d, then, since ∥x+ z∥+ ∥y + w∥ ≥ 2d, we get 2∥y + w∥ > 2d = d+ d > d+ ∥x+ z∥ and
2∥y + w∥ − ∥x+ z∥ > d. So we have

(4.8) max{∥x+ z∥, 2∥y + w∥ − ∥x+ z∥} ≥ d.

By (4.7) and (4.8), we have ∥x+ y + z + w∥+ ∥y + w∥ ≥ d. So it follows from (4.5) that

(4.9) ∥f(rx+ y, rz + w) + rsf(x, z)− rf(x+ y, z + w)− sf(y, w)∥ ≤ δ

for all x, y, z, w ∈ X with ∥x+ z∥+ ∥y + w∥ ≥ 2d. So

(4.10) ∥f(ry + x, rw + z) + rsf(y, w)− rf(x+ y, z + w)− sf(x, z)∥ ≤ δ

for all x, y, z, w ∈ X with ∥x+ z∥+ ∥y + w∥ ≥ 2d.
Let x, y, z, w ∈ X with ∥x+ z∥+ ∥y + w∥ ≥ 4d

(
1/|r|+

∣∣1− 1/|r|
∣∣). If ∥y + w∥ > 2d/|r|, then

(4.11) ∥x+ z∥+ ∥x+ ry + z + rw∥ ≥ |r|(∥y + w∥) ≥ 2d.
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If ∥y + w∥ ≤ 2d/|r|, then ∥x+ z∥ ≥ 2d(1/|r|+ 2|1− 1/|r||) and

(4.12) ∥x+ z∥+ ∥x+ ry + z + rw∥ ≥ 2∥x+ z∥ − |r| · ∥y + w∥ ≥
(

2

|r|
+ 4

∣∣∣∣1− 1

|r|

∣∣∣∣− 1

)
≥ 2d.

Therefore we get that ∥x + z∥ + ∥x + ry + z + rw∥ ≥ 2d from (4.11) and (4.12). Hence by (4.9) we
have

(4.13) ∥f(r(x+ y) + x, r(z + w) + z) + rsf(x, z)− rf(2x+ ry, 2z + rw)− sf(x+ ry, z + rw)∥ ≤ δ

for all x, y, z, w ∈ X with ∥x+ z∥+ ∥y+w∥ ≥ 4d
(
1/|r|+

∣∣1− 1/|r|
∣∣). Set M := 4d

(
1/|r|+

∣∣1− 1/|r|
∣∣).

Then

(4.14) ∥x+ y + z + w∥+ ∥x+ z∥ ≥ M

2
≥ 2d, ∥2x+ 2z∥+ ∥y + w∥ ≥M ≥ 4d

for all x, y, z, w ∈ X with ∥x + z∥ + ∥y + w∥ ≥ M . From (4.9) and (4.10), we get the following
inequalities:

∥f(r(x+ y) + x, r(z + w) + z) + rsf(x+ y, z + w)− rf(2x+ y, 2z + w)− sf(x, z)∥ ≤ δ,

∥rf(ry + 2x, rw + 2z) + r2sf(y, w)− r2f(2x+ y, 2z + w)− rsf(2x, 2z)∥ ≤ δ|r|,
∥sf(ry + x, rw + z) + rs2f(y, w)− rsf(x+ y, z + w)− s2f(x, z)∥ ≤ δ|s|.

Using (4.13) and the above three inequalities, we get

(4.15) ∥f(2x+ y, 2z + w) + 2f(x, z) + f(y, w)− 2f(x+ y, z + w)− f(2x, 2z)∥ ≤ 2 + |r|+ |s|
|rs|

δ

for all x, y, z, w ∈ X with ∥x + z∥ + ∥y + w∥ ≥ M . If x, y, z, w ∈ X with ∥x + z∥ + ∥y + w∥ ≥ 2M ,
then ∥x+ z∥+ ∥y + w − x− z∥ ≥M . So it follows from (4.15) that

(4.16) ∥f(x+ y, z + w) + 2f(x, z) + f(y − x,w − z)− 2f(y, w)− f(2x, 2z)∥ ≤ 2 + |r|+ |s|
|rs|

δ

for all x, y, z, w ∈ X with ∥x+ z∥+ ∥y + w∥ ≥ 2M .
Letting y = 0 and w = 0 in (4.16), we get

(4.17) ∥4f(x, z)− f(2x, 2z)− 2f(0, 0)∥ ≤ 2 + |r|+ |s|
|rs|

δ

for all x, z ∈ X with ∥x+z∥ ≥ 2M . Letting x = 0 and z = 0 (and y, w ∈ X with ∥y∥ ≥ 2M, ∥w∥ ≥ 2M)
in (4.16), we get

(4.18) ∥f(0, 0)∥ ≤
(
(2 + |r|+ |s|)/|rs|

)
δ.

Therefore it follows from (4.16), (4.17) and (4.18) that

∥f(x+ y,z + w) + f(y − x,w − z)− 2f(x, z)− 2f(y, w)∥
≤ ∥f(x+ y, z + w) + 2f(x, z) + f(y − x,w − z)− 2f(y, w)− f(2x, 2z)∥

+ ∥4f(x, z)− f(2x, 2z)− 2f(0, 0)∥+ 2∥f(0, 0)∥

≤ 4(2 + |r|+ |s|)
|rs|

δ
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for all x, y, z, w ∈ X with ∥x + z∥ ≥ 2M . Since f(x, y) = f(−x,−y) for all x, y ∈ X, the above
inequality holds for all x, y, z, w ∈ X with ∥y + w∥ ≥ 2M . Therefore

∥f(x+ y, z + w) + f(y − x,w − z)− 2f(x, z)− 2f(y, w)∥ ≤ 4(2 + |r|+ |s|)
|rs|

δ

for all x, y, z, w ∈ X with ∥x+ z∥+ ∥y+w∥ ≥ 4M . This completes the proof by letting K := 4M . �

Theorem 4.4 Let d > 0 and δ ≥ 0 be given. Assume that a mapping f : X × X → Y such that
f(x, y) = f(−x,−y) and (4.5) for all x, y, z, w ∈ X with ∥x + z∥ + ∥y + w∥ ≥ d. Then there exists
K > 0 such that f satisfies

∥f(x+ y, z + w) + f(x− y, z − w)− 2f(x, z)− 2f(y, w)∥ ≤ 19(2 + |r|+ |s|)
|rs|

δ

for all x, y, z, w ∈ X.

Proof. By Theorem 4.3, there exists K > 0 such that f satisfies (4.6) for all x, y, z, w ∈ X with
∥x+ z∥+ ∥y + w∥ > K. By (4.4) and (4.18), we get that

∥f(x+ y, z + w) + f(x− y, z − w)− 2f(x, z)− 2f(y, w)∥ ≤ 18(2 + |r|+ |s|)
|rs|

δ + ∥f(0, 0)∥

≤ 19(2 + |r|+ |s|)
|rs|

δ

for all x, y, z, w ∈ X. �

Theorem 4.5 Let d > 0 and δ ≥ 0 be given. Assume that a mapping f : X × X → Y such that
(4.5) and f(x, y) = f(−x,−y) for all x, y, z, w ∈ X with ∥x+ z∥+ ∥y + w∥ ≥ d. Then there exists a
unique quadratic mapping F : X ×X → Y such that F (x, y) = limn→∞ 4−nf(2nx, 2ny) and

∥f(x, y)−Q(x, y)∥ ≤ 19(2 + |r|+ |s|)
3|rs|

δ

for all x, y ∈ X.

Proof. The result follows from Theorem 4.1 and Theorem 4.4. �

Corollary 4.6. Let r and s be rational numbers and a mapping f : X ×X → Y satisfy f(x, y) =
f(−x,−y) for all x, y ∈ X. Then f is quadratic if and only if the asymptotic condition
(4.19)
∥f(rx+ sy, rz+ sw)+ rsf(x− y, z−w)− rf(x, z)− sf(y, w)∥ → 0 as ∥x+ z∥+ ∥y+w∥ → ∞

holds true.

Proof. The asymptotic condition (4.19) is equivalent to the condition that there exists a sequence
{δn} monotonically decreasing to 0 such that

(4.20) ∥f(rx+ sy, rz + sw) + rsf(x− y, z − w)− rf(x, z)− sf(y, w)∥ ≤ δn

for all x, y, z, w ∈ X with ∥x+ z∥+ ∥y + w∥ ≥ n.
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It follows from (4.20) and Theorem 4.4 that there exists a unique quadratic mapping Qn : X×X →
Y such that

(4.21) ∥f(x, y)−Qn(x, y)∥ ≤ 19(2 + |r|+ |s|)
|rs|

δn

for all x, y ∈ X. Since {δn} is monotonically decreasing, the quadratic mapping Qm satisfies (4.21)
for all m ≥ n. The uniqueness of Qn implies Qm = Qn for all m ≥ n. By letting n→ ∞ in (4.21), we
conclude that f is quadratic.

The converse is trivial. �
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