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HIGHER-ORDER DEGENERATE BERNOULLI POLYNOMIALS

DAE SAN KIM AND TAEKYUN KIM

Abstract. Carlitz introduced the degenerate Bernoulli polynomials and de-

rived, among other things, the so-called degenerate Staudt-Clausen theorem
for the degenerate Bernoulli numbers as an analogue of the classical Staudt-
Clausen theorem. In this paper, we consider the higher-order Carlitz’s degen-
erate Bernoulli polynomials with umbral calculus viewpoint and derive new

identities and properties of those polynomials associated with special polyno-
mials which are derived from umbral calculus.

1. Introduction

The degenerate Bernoulli polynomials βn (λ, x) (λ ̸= 0) are defined by Carlitz to
be

(1.1)
t

(1 + λt)
1
λ + 1

(1 + λt)
x
λ =

∞∑
n=0

βn (λ, x)
tn

n!
, (λ ̸= 0) , (see [3, 4]) .

Ustinov rediscovered these polynomials in [18], which are called Korobov poly-

nomials of the second kind and denoted by k
(λ)
n (x).

When x = 0, βn (λ) = βn (λ, 0) are called the degenerate Bernoulli numbers.
Now, we observe that

(1.2) lim
λ→0

βn (λ, x) = βn (0, x) = Bn (x) , lim
λ→∞

λ−nβn (λ, λx) = bn (x) ,

where Bn (x) and bn (x) are the Bernoulli polynomials of the first kind and of the
second kind.

The first few degenerate Bernoulli polynomials are given by β0 (λ, x) = 1, β1 (λ, x)
= x − 1

2 + 1
2λ, β2 (λ, x) = x2 − x + 1

6 −
1
6λ

2, β3 (λ, x) = x3 − 3
2x

2 + 1
2x −

3
2λx

2 +
3
2λx + 1

4λ
3 − 1

4λ, . . . . As an analogue of the classical Staudt-Clausen theorem for
Bernoulli numbers, Carlitz proved the so called degenerate Staudt-Clausen theorem
for βn (λ), (λ a rational number) (see [3, 19, 20]). The generalized falling factorials
(x|λ)n for any λ ∈ C are defined as

(x|λ)0 = 1, (x|λ)n = x (x− λ) · · · (x− λ (n− 1)) , (for n > 0) .

Carlitz also found in [4] the following relation expressing sums of generalized
falling factorals in terms of degenerate Bernoulli polynomials: for integers l,m with
l ≥ 1,m ≥ 0,

(1.3)
l−1∑
i=0

(i|λ)m =
1

m+ 1
(βm+1 (λ, l)− βm+1 (λ)) ,

2000 Mathematics Subject Classification. 05A19, 05A40, 11B83.
Key words and phrases. Higher-order degenerate Bernoulli polynomial, Umbral calculus.
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which, by letting λ→ 0, becomes the familiar relation

(1.4)
l−1∑
i=0

im =
1

m+ 1
(Bm+1 (l)−Bm+1) .

For r ∈ N, the Bernoulli polynomials of the second kind of order r are defined
by the generating function to be

(1.5)

(
t

log (1 + t)

)r

(1 + t)
x

=

∞∑
n=0

b(r)n (x)
tn

n!
, (see [16]) ,

and the Bernoulli polynomials of order r are given by

(1.6)

(
t

et − 1

)r

ext =

∞∑
n=0

B(r)
n (x)

tn

n!
, (see [2, 5–7, 9]) .

When x = 0, B
(r)
n = B

(r)
n (0), b

(r)
n = b

(r)
n (0) are called the Bernouli numbers of

the first kind of order r and of the second kind of order r. For µ ∈ C with µ ̸= 1,
the Frobenius-Euler polynomials with order s ∈ N are defined by the generating
function to be

(1.7)

(
1− µ
et − µ

)s

ext =
∞∑

n=0

H(s)
n (x|µ)

tn

n!
, (see [1, 10–12]) .

When x = 0, H
(s)
n (µ) = H

(s)
n (0|µ) are called the Frobenius-Euler numbers of order

s. As is well known, the Stirling number of the second kind is defined by the
generating function to be

(1.8)
(
et − 1

)n
= n!

∞∑
l=n

S2 (l,m)
tl

l!
, (n ∈ Z≥0) , (see [16, 17]) .

For n ≥ 0, the Stirling number of the first kind is given by

(x)n = x (x− 1) · · · (x− (n− 1)) =
n∑

l=0

S1 (n, l)xl, (see [13, 15, 16, 21]) .

Let F be the set of all formal power series in the variable t:

(1.9) F =

{
f (t) =

∞∑
k=0

ak
tk

k!

∣∣∣∣∣ ak ∈ C

}
.

Let P = C [x] and let P∗be the vector space of all linear functionals on P.⟨L| p (x)⟩
denotes the action of the linear functional L on p (x) which satisfies ⟨L+M | p (x)⟩ =
⟨L| p (x)⟩+⟨M | p (x)⟩, and ⟨cL| p (x)⟩ = c ⟨L| p (x)⟩, where c is a complex constant.
The linear functional ⟨f (t)| ·⟩ on P is defined as

(1.10) ⟨f (t)|xn⟩ = an, (n ≥ 0) , where f (t) ∈ F .
Thus, by (1.9) and (1.10), we get

(1.11)
⟨
tk
∣∣xn⟩ = n!δn,k, (n, k ≥ 0) , (see [14, 16]) ,

where δn,k is the Kronecker symbol.

Let fL (t) =
∑∞

k=0
⟨L|xk⟩

k! tk. Then, by (1.11), we get ⟨fL (t)|xn⟩ = ⟨L|xn⟩. So,
the map L 7→ fL (t) is a vector space isomorphism from P∗ onto F . Henceforth,
F denotes both the algebra of formal power series in t and the vector space of all
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linear functionals on P, and so an element f (t) of F will be thought of as both a
formal power series and a linear functional. We call F the umbral algebra and the
umbral calculus is the study of umbral algebra. The order o (f (t)) of a power series
f (t) ̸= 0 is the smallest integer k for which the coefficient of tk does not vanish
(see [14, 16]). If o (f (t)) = 0, then f (t) is called an invertible series; if o (f (t)) = 1,
then f (t) is called a delta series. Let f (t) , g (t) be a delta series and an invertible
series, respectively. Then there exists a unique sequence sn (x)(deg sn (x) = n)

such that
⟨
g (t) f (t)

k
∣∣∣ sn (x)

⟩
= n!δn,k, for k ≥ 0. Such a sequence sn (x) is called

the Sheffer sequence for (g (t) , f (t))which is denoted by sn (x) ∼ (g (t) , f (t)) (see
[14, 16]). The sequence sn (x) is Sheffer for (g (t) , f (t)) if and only if

(1.12)
1

g
(
f (t)

)eyf(t) =
∞∑
k=0

sk (y)

k!
tk, (y ∈ C) , (see [11, 17]) ,

where f (t) is the compositional inverse of f (t) with f (f (t)) = f
(
f (t)

)
= t.

Let f (t) , g (t) ∈ F and p (x) ∈ P. Then we see that

(1.13) f (t) =
∞∑
k=0

⟨
f (t)|xk

⟩ tk
k!
, p (x) =

∞∑
k=0

⟨
tk
∣∣ p (x)

⟩ xk
k!
.

From (1.13), we have

(1.14) tkp (x) = p(k) (x) =
dkp (x)

dxk
, eytp (x) = p (x+ y) .

By (1.14), we get ⟨eyt| p (x)⟩ = p (y) .
For sn (x) ∼ (g (t) , f (t)), we have the following equations ([16]):

(1.15) f (t) sn (x) = nsn−1 (x) , (n ≥ 1) , sn (x+ y) =
n∑

j=0

(
n

j

)
sj (x) pn−j (y) ,

where pn (x) = g (t) sn (x),
(1.16)

sn+1 (x) =

(
x− g′ (t)

g (t)

)
1

f ′ (t)
sn (x) , sn (x) =

n∑
j=0

1

j!

⟨
g
(
f (t)

)−1
f (t)

j
∣∣∣xn⟩xj ,

and

(1.17)

⟨f (t)|xp (x)⟩ = ⟨∂tf (t)| p (x)⟩ ,

d

dx
sn (x) =

n−1∑
l=0

(
n

l

)⟨
f (t)

∣∣xn−l
⟩
sl (x) , (n ≥ 1) .

In particular, for pn (x) ∼ (1, f (t)), qn (x) ∼ (1, g (t)), we note that

(1.18) qn (x) = x

(
f (t)

g (t)

)n

x−1pn (x) , (n ≥ 1) .

Let us assume that sn (x) ∼ (g (t) , f (t)), rn (x) ∼ (h (t) , l (t)). Then we have

(1.19) sn (x) =
n∑

m=0

Cn,mrm (x) , (n ≥ 0) ,
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where

(1.20) Cn,m =
1

m!

⟨
h
(
f (t)

)
g
(
f (t)

) (l (f (t)
))m∣∣∣∣∣xn

⟩
, (see [16]) .

In this paper, we consider, for any positive integer r, the degenerate Bernoulli

polynomials β
(r)
n (λ, x) of order r which are defined by the generating function to

be

(1.21)

(
t

(1 + λt)
1
λ − 1

)r

(1 + λt)
x
λ =

∞∑
n=0

β(r)
n (λ, x)

tn

n!
, (r ∈ Z≥0) .

From (1.20) and (1.21), we note that

(1.22) β(r)
n (λ, x) ∼

((
λ (et − 1)

eλt − 1

)r

,
1

λ

(
eλt − 1

))
.

That is, β
(r)
n (λ, x) is the Sheffer polynomial for the pair(

g (t) =

(
λ (et − 1)

eλt − 1

)r

, f (t) =
1

λ

(
eλt − 1

))
.

The purpose of this paper is to give new identities and properties of the higher-
order degenerate Bernoulli polynomials associated with special polynomials which
are derived from umbral calculus.

2. Higher-order degenerate Bernoulli polynomials

For n ≥ 0, we note that

xn ∼ (1, t) ,

(
λ (et − 1)

eλt − 1

)r

β(r)
n (λ, x) ∼

(
1,

1

λ

(
eλt − 1

))
,

From (1.18), we can derive the following equation:(
λ (et − 1)

eλt − 1

)r

β(r)
n (λ, x) = x

(
λt

eλt − 1

)n

x−1xn = x

(
λt

eλt − 1

)n

xn−1(2.1)

=
n−1∑
l=0

(
n− 1

l

)
λlB

(n)
l xn−l, (n ≥ 1) .

Thus, by (2.1), we get

β(r)
n (λ, x)(2.2)

=
n−1∑
l=0

(
n− 1

l

)
λlB

(n)
l

(
eλt − 1

λ (et − 1)

)r

xn−l

=
n−1∑
l=0

(
n− 1

l

)
λlB

(n)
l

(
t

et − 1

)r (
eλt − 1

λt

)r

xn−l

=

n−1∑
l=0

(
n− 1

l

)
λlB

(n)
l

(
t

et − 1

)r
(
r!

∞∑
k=0

S2 (k + r, r)
λk

(k + r)!
tk

)
xn−l

=
n−1∑
l=0

(
n− 1

l

)
λlB

(n)
l

(
t

et − 1

)r n−l∑
k=0

(
n−l
k

)(
k+r
r

)S2 (k + r, r)λkxn−l−k
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=
n−1∑
l=0

n−l∑
k=0

(
n−1
l

)(
n−l
k

)(
k+r
r

) S2 (k + r, r)λk+lB
(n)
l

(
t

et − 1

)r

xn−l−k

=
n−1∑
l=0

n−l∑
k=0

(
n−1
l

)(
n−l
k

)(
k+r
r

) S2 (k + r, r)λk+lB
(n)
l B

(r)
n−l−k (x) .

Therefore, by (2.2), we obtain the following theorem.

Theorem 2.1. For n ≥ 1, we have

β(r)
n (λ, x) =

n−1∑
l=0

n−l∑
k=0

(
n−1
l

)(
n−l
k

)(
k+r
r

) S2 (k + r, r)λk+lB
(n)
l B

(r)
n−k−l (x) .

Remark. When x = 0 and r = 1, we get

(2.3) βn (λ) =
n−1∑
l=0

n−l∑
k=0

1

k + 1

(
n− 1

l

)(
n− l
k

)
λk+lB

(n)
l Bn−k−l.

From (1.18), (1.22) and

(x|λ)n = λn
(x
λ

)
n

=
n∑

m=0

S1 (n,m)λn−mxm ∼
(

1,
1

λ

(
eλt − 1

))
.

We note that

β(r)
n (λ, x) =

n∑
m=0

S1 (n,m)λn−m

(
eλt − 1

λ (et − 1)

)r

xm(2.4)

=

n∑
m=0

S1 (n,m)λn−m

(
t

et − 1

)r (
eλt − 1

λt

)r

xm

=

n∑
m=0

S1 (n,m)λn−m

(
t

et − 1

)r m∑
k=0

(
m
k

)(
k+r
r

)S2 (k + r, r)λkxm−k

= λn
n∑

m=0

m∑
k=0

(
m
k

)(
k+r
r

)S1 (n,m)S2 (k + r, r)λk−mB
(r)
m−k (x) .

Therefore, by (2.4), we obtain the following theorem.

Theorem 2.2. For n ≥ 0, we have

β(r)
n (λ, x) = λn

n∑
m=0

m∑
k=0

(
m
k

)(
k+r
r

)S1 (n,m)S2 (k + r, r)λk−mB
(r)
m−k (x) .

Remark. For r = 1 and x = 0, we get an expression for the degenerate Bernoulli
numbers:

(2.5) βn (λ) = λn
n∑

m=0

m∑
k=0

1

k + 1

(
m

k

)
S1 (n,m)λk−mBm−k.

Here we use the conjugation representation.
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For β
(r)
n (λ, x) ∼

(
g (t) =

(
λ(et−1)
eλt−1

)r

, f (t) = 1
λ

(
eλt − 1

))
, we observe that⟨

g
(
f (t)

)−1
f (t)

j
∣∣∣xn⟩(2.6)

=

⟨(
t

(1 + λt)
1
λ − 1

)r (
1

λ
log (1 + λt)

)j
∣∣∣∣∣xn

⟩

=λ−j

⟨(
t

(1 + λt)
1
λ − 1

)r∣∣∣∣∣ j!
∞∑
l=j

S1 (l, j)
λl

l!
tlxn

⟩

=j!λ−j
n∑

l=j

(
n

l

)
S1 (l, j)λl

⟨ ∞∑
m=0

β(r)
m (λ)

tm

m!

∣∣∣∣∣xn−l

⟩

=j!λ−j
n∑

l=j

(
n

l

)
S1 (l, j)λlβ

(r)
n−l (λ) .

Therefore, by (1.16) and (2.6), we obtain the following theorem.

Theorem 2.3. For n ≥ 0, r ≥ 1, we have

β(r)
n (λ, x) =

n∑
j=0

λ−j

 n∑
l=j

(
n

l

)
S1 (l, j)λlβ

(r)
n−l (λ)

xj .

Remark. Recall that

(2.7)

(
λ (et − 1)

eλt − 1

)r

β(r)
n (λ, x) ∼

(
1,

1

λ

(
eλt − 1

))
, (x|λ)n ∼

(
1,

1

λ

(
eλt − 1

))
.

Thus, by (2.7), we get

(2.8)

(
λ (et − 1)

eλt − 1

)r

β(r)
n (λ, x) = (x|λ)n , and

eλt − 1

λ
(x|λ)n = n (x|λ)n−1 .

From (2.8), we have(
et − 1

)r
β(r)
n (λ, x) =

(
eλt − 1

λ

)r

(x|λ)n(2.9)

=

{
(n)r (x|λ)n−r , if r ≤ n
0 , if r > n.

By (2.9), we get

trβ(r)
n (λ, x) =

{
(n)r λ

n−r
(

t
et−1

)r (
x
λ

)
n−r

, if r ≤ n
0 , if r > n

(2.10)

=

{
(n)r λ

n−r
∑n−r

m=0 S1 (n− r,m)λ−mB
(r)
m (x) , if r ≤ n

0 , if r > n.

Therefore, from (1.14) and (2.10), we have
(2.11)(

d

dx

)r

β(r)
n (λ, x) =

{
(n)r λ

n−r
∑n−r

m=0 S1 (n− r,m)λ−mB
(r)
m (x) , if r ≤ n

0 , if r > n.
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In particular,

(2.12)
d

dx
βn (λ, x) =

{
nλn−1

∑n−1
m=0 S1 (n− 1,m)λ−mBm (x) , if r ≤ n

0 , if r > n.

To proceed further, we recall that the λ-Daehee polynomials D
(r)
n,λ (x) of order r

are given by

(2.13)

(
λ log (1 + t)

(1 + t)
λ − 1

)r

(1 + t)
x

=
∞∑

n=0

D
(r)
n,λ (x)

tn

n!
, (see [12, 16]) .

From (1.5), (1.11) and (2.13), we have

β(r)
n (λ, y)(2.14)

=

⟨(
t

(1 + λt)
1
λ − 1

)r

(1 + λt)
y
λ

∣∣∣∣∣xn
⟩

=
n∑

l=0

(
n

l

)
λlb

(r)
l

( y
λ

)⟨ log (1 + λt)

λ
(

(1 + λt)
1
λ − 1

)
r∣∣∣∣∣∣xn−l

⟩

=

n∑
l=0

(
n

l

)
λlb

(r)
l

( y
λ

)⟨ ∞∑
m=0

D
(r)

m, 1λ
λm

tm

m!

∣∣∣∣∣xn−l

⟩

=
n∑

l=0

(
n

l

)
λlb

(r)
l

( y
λ

)
D

(r)

n−l, 1λ
λn−l

=λn
n∑

l=0

(
n

l

)
D

(r)

n−l, 1λ
b
(r)
l

( y
λ

)
,

and

β(r)
n (λ, y)(2.15)

=

⟨ ∞∑
l=0

β
(r)
l (λ, y)

tl

l!

∣∣∣∣∣xn
⟩

=

⟨(
t

(1 + λt)
1
λ − 1

)r

(1 + λt)
y
λ

∣∣∣∣∣xn
⟩

=

⟨(
λt

log (1 + λt)

)r∣∣∣∣
 log (1 + λt)

λ
(

(1 + λt)
1
λ − 1

)
r

(1 + λt)
y
λ xn

⟩

=

⟨(
λt

log (1 + λt)

)r∣∣∣∣ ∞∑
l=0

D
(r)
l,λ−1

( y
λ

)
λl
tl

l!
xn

⟩

=

n∑
l=0

(
n

l

)
λlD

(r)
l,λ−1

( y
λ

)⟨ ∞∑
m=0

b(r)m λm
tm

m!

∣∣∣∣∣xn−l

⟩

=
n∑

l=0

(
n

l

)
λlD

(r)
l,λ−1

( y
λ

)
b
(r)
n−lλ

n−l
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=λn
n∑

l=0

(
n

l

)
b
(r)
n−lD

,(r)
l,λ−1

( y
λ

)
.

Therefore, by (2.14) and (2.15), we obtain the following theorem.

Theorem 2.4. For n ≥ 0, we have
n∑

l=0

(
n

l

)
D

(r)

n−l, 1λ
b
(r)
l

(x
λ

)
=

n∑
l=0

(
n

l

)
b
(r)
n−lD

(r)
l,λ−1

(x
λ

)
= λ−nβ(r)

n (λ, x) .

Recalling that

β(r)
n (λ, x) ∼

(
g (t) =

(
λ (et − 1)

eλt − 1

)r

, f (t) =
1

λ

(
eλt − 1

))
,

we observe that

⟨
g
(
f (t)

)−1
f (t)

j
∣∣∣xn⟩

(2.16)

=j!λ−j
n∑

l=j

S1 (l, j)

(
n

l

)
λl

⟨(
t

(1 + λt)
1
λ − 1

)r∣∣∣∣∣xn−l

⟩

=j!λ−j
n∑

l=j

S1 (l, j)

(
n

l

)
λl

⟨ log (1 + λt)

λ
(

(1 + λt)
1
λ − 1

)
r∣∣∣∣∣∣

(
λt

log (1 + λt)

)r

xn−l

⟩

=j!λ−j
n∑

l=j

S1 (l, j)

(
n

l

)
λl

⟨ log (1 + λt)

λ
(

(1 + λt)
1
λ − 1

)
r∣∣∣∣∣∣

∞∑
m=0

b(r)m

λm

m!
tmxn−l

⟩

=j!λ−j
n∑

l=j

S1 (l, j)

(
n

l

)
λl

n−l∑
m=0

(
n− l
m

)
λmb(r)m

⟨ log (1 + λt)

λ
(

(1 + λt)
1
λ − 1

)
r∣∣∣∣∣∣xn−l−m

⟩

=j!λ−j
n∑

l=j

S1 (l, j)

(
n

l

)
λl

n−l∑
m=0

(
n− l
m

)
λmb(r)m D

(r)
n−l−m,λ−1λ

n−l−m

=j!λn
n∑

l=j

n−l∑
m=0

(
n

l

)(
n− l
m

)
S1 (l, j)λ−jb(r)m D

(r)
n−l−m,λ−1 .

From (1.16) and (2.16), we have
(2.17)

β(r)
n (λ, x) = λn

n∑
j=0


n∑

l=j

n−l∑
m=0

(
n

l

)(
n− l
m

)
S1 (l, j)λ−jb(r)m D

(r)
n−l−m,λ−1

xj .

Remark. We have

lim
λ→0

β(r)
n (λ, x) = β(r)

n (0, x) = B(r)
n (x) ,

lim
λ→0

D
(r)
n,λ (x) = (x)n ,

lim
λ→∞

λ−nβ(r)
n (λ, λx) = b(r)n (x) ,
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lim
λ→∞

λ−nD
(r)
n,λ (λx) = B(r)

n (x) .

where r > 0.

From (1.22), we note that

(2.18) pn (x) =

(
λ (et − 1)

eλt − 1

)r

β(r)
n (λ, x) = (x|λ)n ∼

(
1,

1

λ

(
eλt − 1

))
.

By (2.18) and (1.15), we get

(2.19) β(r)
n (λ, x+ y) =

n∑
j=0

(
n

j

)
β
(r)
j (λ, x) (y|λ)n−j ,

and, by (1.14) and (1.15), we get

(2.20)
1

λ

(
eλt − 1

)
β(r)
n (λ, x) = nβ

(r)
n−1 (λ, x) .

From (2.20), we have

(2.21) β(r)
n (λ, x+ λ)− β(r)

n (λ, x) = nλβ
(r)
n−1 (λ, x) .

Therefore, by (2.17), (2.19) and (2.20), we obtain the following theorem.

Theorem 2.5. For n ≥ 0, we have

β(r)
n (λ, x) = λn

n∑
j=0


n∑

l=j

n−l∑
m=0

(
n

l

)(
n− l
m

)
S1 (l, j)λ−jb(r)m D

(r)
n−l−m,λ−1

xj ,

and

β(r)
n (λ, x+ λ) =

n∑
j=0

(
n

j

)
β
(r)
j (λ, x) (λ|λ)n−j

= nλβ
(r)
n−1 (λ, x) + β(r)

n (λ, x) .

For β
(r)
n (λ, x) ∼

(
g (t) =

(
λ(et−1)
eλt−1

)r

, f (t) = 1
λ

(
eλt − 1

))
, we note that

g′ (t)

g (t)
(2.22)

= (log g (t))
′

=r
(
log λ+ log

(
et − 1

)
− log

(
eλt − 1

))′
=
r

t

( ∞∑
l=0

Bl (1)
tl

l!
−

∞∑
l=0

Bl (1)
λltl

l!

)

=
r

t

∞∑
l=1

Bl (1)
(
1− λl

) tl
l!

=r

∞∑
l=0

Bl+1 (1)
(
1− λl+1

) tl

(l + 1)!
.

By (2.22), we get

g′ (t)

g (t)
β(r)
n (λ, x)(2.23)
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=r
∞∑
l=0

Bl+1 (1)
(
1− λl+1

) tl

(l + 1)!
λn

×
n∑

m=0

m∑
k=0

(
m
k

)(
k+r
r

)S1 (n,m)S2 (k + r, r)λk−mB
(r)
m−k (x)

=λnr

n∑
m=0

m∑
k=0

m−k∑
l=0

S1 (n,m)S2 (k + r, r)λk−m

×
m−k∑
l=0

Bl+1 (1)
(
1− λl+1

) 1

(l + 1)!
(m− k)lB

(r)
m−k−l (x)

=λnr
n∑

m=0

m∑
k=0

m−k∑
l=0

1

m− k − l + 1

(
m
k

)(
m−k

l

)(
k+r
r

) (
λk−m − λ1−l

)
× S1 (n,m)S2 (k + r, r)Bm−k−l+1 (1)B

(r)
l (x)

=r
n∑

l=0

n∑
m=l

m∑
k=l

1

k − l + 1

(
m
k

)(
k
l

)(
m−k+r

r

) (λn−k − λn−l+1
)
S1 (n,m)

× S2 (m− k + r, r)Bk−l+1 (1)B
(r)
l (x) .

From (1.16) and (2.23), we have

β
(r)
n+1 (λ, x)(2.24)

=xβ(r)
n (λ, x− λ)− e−λt g

′ (t)

g (t)
β(r)
n (λ, x)

=xβ(r)
n (λ, x− λ)− r

n∑
l=0

(
n∑

m=l

m∑
k=l

1

k − l + 1

(
m
k

)(
k
l

)(
m−k+r

r

) (λn−k − λn−l+1
)

× S1 (n,m)S2 (m− k + r, r)Bk−l+1 (1))B
(r)
l (x− λ) .

Therefore, by (2.24), we obtain the following theorem.

Theorem 2.6. For n ≥ 0, we have

β
(r)
n+1 (λ, x)

=xβ(r)
n (λ, x− λ)− r

n∑
l=0

(
n∑

m=l

m∑
k=l

1

k − l + 1

(
m
k

)(
k
l

)(
m−k+r

r

) (λn−k − λn−l+1
)

×S1 (n,m)S2 (m− k + r, r)Bk−l+1 (1))B
(r)
l (x− λ) .

By β
(r)
n (λ, x) ∼

(
g (t) =

(
λ(et−1)
eλt−1

)r

, f (t) = 1
λ

(
eλt − 1

))
, we get⟨

f (t)
∣∣xn−l

⟩
(2.25)

=

⟨
1

λ
log (1 + λt)

∣∣∣∣xn−l

⟩
=λ−1

⟨ ∞∑
m=1

(−1)
m−1

λm (m− 1)!
tm

m!

∣∣∣∣∣xn−l

⟩
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=λ−1 (−1)
n−l−1

λn−l (n− l − 1)!

= (−λ)
n−l−1

(n− l − 1)!.

From (1.17) and (2.25), we have

(2.26)
d

dx
β(r)
n (λ, x) = n!

n−1∑
l=0

(−λ)
n−l−1

l! (n− l)
β
(r)
l (λ, x) .

Let n ≥ 1. Then, by (1.11) and (1.17), we get

β(r)
n (λ, y)(2.27)

=

⟨ ∞∑
l=0

β
(r)
l (λ, y)

tl

l!

∣∣∣∣∣xn
⟩

=

⟨(
t

(1 + λt)
1
λ − 1

)r

(1 + λt)
y
λ

∣∣∣∣∣xn
⟩

=

⟨
∂t

((
t

(1 + λt)
1
λ − 1

)r

(1 + λt)
y
λ

)∣∣∣∣∣xn−1

⟩

=

⟨(
t

(1 + λt)
1
λ − 1

)r

∂t (1 + λt)
y
λ

∣∣∣∣∣xn−1

⟩

+

⟨(
∂t

(
t

(1 + λt)
1
λ − 1

)r)
(1 + λt)

y
λ

∣∣∣∣∣xn−1

⟩
.

The first term of (2.27) is

(2.28) y

⟨(
t

(1 + λt)
1
λ − 1

)r

(1 + λt)
y−λ
λ

∣∣∣∣∣xn−1

⟩
= yβ

(r)
n−1 (λ, y − λ) .

For the second term of (2.27), we observe that

(2.29) ∂t

(
t

(1 + λt)
1
λ − 1

)r

= r

(
t

(1 + λt)
1
λ − 1

)r−1

∂t

(
t

(1 + λt)
1
λ − 1

)
,

where

∂t

(
t

(1 + λt)
1
λ − 1

)
(2.30)

=
(1 + λt)

1
λ − 1− t (1 + λt)

1
λ−1(

(1 + λt)
1
λ − 1

)2
=

(1 + λt)
1
λ − 1− t

{
(1 + λt)

1
λ−1 − (1 + λt)

−1
}
− t (1 + λt)

−1(
(1 + λt)

1
λ − 1

)2
=− 1

1 + λt

t

(1 + λt)
1
λ − 1

+
1

t
(2.31)
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×

 t

(1 + λt)
1
λ − 1

− 1

(1 + λt)

(
t

(1 + λt)
1
λ − 1

)2
 .

Thus, by (2.29) and (2.30), we get

∂t

(
t

(1 + λt)
1
λ − 1

)r

(2.32)

=− r

(1 + λt)

(
t

(1 + λt)
1
λ − 1

)r

+
r

t


(

t

(1 + λt)
1
λ − 1

)r

− 1

1 + λt

(
t

(1 + λt)
1
λ − 1

)r+1
 .

From (2.32), we note that the second term of (2.27) is

− r

⟨(
t

(1 + λt)
1
λ − 1

)r

(1 + λt)
y−λ
λ

∣∣∣∣∣xn−1

⟩(2.33)

+ r

⟨
(1 + λt)

y
λ

∣∣∣∣∣∣1t

(

t

(1 + λt)
1
λ − 1

)r

− 1

1 + λt

(
t

(1 + λt)
1
λ − 1

)r+1
xn−1

⟩

=− rβ(r)
n−1 (λ, y − λ)

+
r

n

⟨
(1 + λt)

y
λ

∣∣∣∣∣∣

(

t

(1 + λt)
1
λ − 1

)r

− 1

1 + λt

(
t

(1 + λt)
1
λ − 1

)r+1
xn

⟩

=− rβ(r)
n−1 (λ, y − λ)

+
r

n

⟨(
t

(1 + t)
1
λ − 1

)r

(1 + λt)
y
λ

∣∣∣∣∣xn
⟩

− r

n

⟨(
t

(1 + λt)
1
λ − 1

)r+1

(1 + λt)
y−λ
λ

∣∣∣∣∣∣xn
⟩

=− rβ(r)
n−1 (λ, y − λ) +

r

n
β(r)
n (λ, y)− r

n
β(r+1)
n (λ, y − λ) .

By (2.27), (2.28) and (2.33), we get

(2.34)
(

1− r

n

)
β(r)
n (λ, x) = (x− r)β(r)

n−1 (λ, x− λ)− r

n
β(r+1)
n (λ, x− λ) .

Therefore, by (2.34), we obtain the following theorem.

Theorem 2.7. For n ≥ 1, we have

β(r+1)
n (λ, x− λ) =

(
1− n

r

)
β(r)
n (λ, x) +

(n
r
x− n

)
β
(r)
n−1 (λ, x− λ) .

Here we compute

(2.35)

⟨(
t

(1 + λt)
1
λ − 1

)r (
1

λ
log (1 + λt)

)m
∣∣∣∣∣xn

⟩
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in two different ways.
On one hand, it is equal to

λ−m

⟨(
t

(1 + λt)
1
λ − 1

)r

(log (1 + λt))
m

∣∣∣∣∣xn
⟩

(2.36)

=λ−m

⟨(
t

(1 + λt)
1
λ − 1

)r∣∣∣∣∣m!
∞∑

l=m

S1 (l,m)
λl

l!
tlxn

⟩

=m!λ−m
n∑

l=m

(
n

l

)
S1 (l,m)λl

⟨(
t

(1 + λt)
1
λ − 1

)r∣∣∣∣∣xn−l

⟩

=m!λ−m
n∑

l=m

(
n

l

)
S1 (l,m)λl

⟨ ∞∑
k=0

β
(r)
k (λ)

tk

k!

∣∣∣∣∣xn−l

⟩

=m!λ−m
n∑

l=m

(
n

l

)
S1 (l,m)λlβ

(r)
n−l (λ) .

On the other hand, it is equal to⟨
∂t

((
t

(1 + λt)
1
λ − 1

)r (
1

λ
log (1 + λt)

)m
)∣∣∣∣∣xn−1

⟩
(2.37)

=

⟨(
t

(1 + λt)
1
λ − 1

)r

∂t

(
1

λ
log (1 + λt)

)m
∣∣∣∣∣xn−1

⟩

+

⟨(
∂t

(
t

(1 + λt)
1
λ − 1

)r)(
1

λ
log (1 + λt)

)m
∣∣∣∣∣xn−1

⟩
.

The first term of (2.37) is

m

⟨(
t

(1 + λt)
1
λ − 1

)r (
1

λ
log (1 + λt)

)m−1

(1 + λt)
−1

∣∣∣∣∣xn−1

⟩(2.38)

=mλ−(m−1)

⟨(
t

(1 + λt)
1
λ − 1

)r

(1 + λt)
−1

∣∣∣∣∣ (log (1 + λt))
m−1

xn−1

⟩

=mλ−(m−1)

⟨(
t

(1 + λt)
1
λ − 1

)r

(1 + λt)
−1

∣∣∣∣∣ (m− 1)!
∞∑

l=m−1

S1 (l,m− 1)
λltl

l!
xn−1

⟩

=m!λ−(m−1)
n−1∑

l=m−1

(
n− 1

l

)
S1 (l,m− 1)λl

⟨(
t

(1 + λt)
1
λ − 1

)r

(1 + λt)
−λ

λ

∣∣∣∣∣xn−1−l

⟩

=m!λ−(m−1)
n−1∑

l=m−1

(
n− 1

l

)
S1 (l,m− 1)λlβ

(r)
n−1−l (λ,−λ) .

For the second term of (2.37), we recall that

∂t

(
t

(1 + λt)
1
λ − 1

)r

(2.39)
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=− r

(1 + λt)

(
t

(1 + λt)
1
λ − 1

)r

+
r

t


(

t

(1 + λt)
1
λ − 1

)r

− 1

1 + λt

(
t

(1 + λt)
1
λ − 1

)r+1
 .

Now, the second term of (2.37) is

λ−m

⟨
∂t

(
t

(1 + λt)
1
λ − 1

)r∣∣∣∣∣ (log (1 + λt))
m
xn−1

⟩(2.40)

=m!λ−m
n−1∑
l=m

(
n− 1

l

)
S1 (l,m)λl

⟨
∂t

(
t

(1 + λt)
1
λ − 1

)r∣∣∣∣∣xn−1−l

⟩

=m!λ−m
n−1∑
l=m

(
n− 1

l

)
S1 (l,m)λl

{
−r

⟨(
t

(1 + λt)
1
λ − 1

)r

(1 + λt)
−λ
λ

∣∣∣∣∣xn−l−1

⟩

+
r

n− l

⟨(
t

(1 + λt)
1
λ − 1

)r∣∣∣∣∣xn−l

⟩

− r

n− l

⟨(
t

(1 + λt)
1
λ − 1

)r+1

(1 + λt)
−λ

λ

∣∣∣∣∣∣xn−l

⟩
=m!λ−m

n−1∑
l=m

(
n− 1

l

)
S1 (l,m)λl

×
{
−rβ(r)

n−1−l (λ,−λ) +
r

n− l
β
(r)
n−l (λ)− r

n− l
β
(r+1)
n−l (λ,−λ)

}
.

From (2.35), (2.36), (2.37), and (2.40), we have

m!λ−m
n∑

l=m

(
n

l

)
S1 (l,m)λlβ

(r)
n−l (λ)

=m!λ−(m−1)
n−1∑

l=m−1

(
n− 1

l

)
S1 (l,m− 1)λlβ

(r)
n−l−1 (λ,−λ)

+m!λ−m
n−1∑
l=m

(
n− 1

l

)
S1 (l,m)λl

(
−rβ(r)

n−1−l (λ,−λ) +
r

n− l
β
(r)
n−l (λ)

− r

n− l
β
(r+1)
n−l (λ,−λ)

)
,

where n− 1 ≥ m ≥ 1.
After simplification and modification, we get: for n− 1 ≥ m ≥ 1,

n−m∑
l=0

(
n

l

)
S1 (n− l,m)λn−lβ

(r)
l (λ)(2.41)
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=λ

n−m∑
l=0

(
n− 1

l

)
S1 (n− l − 1,m− 1)λn−l−1β

(r)
l (λ,−λ)

+
n−m−1∑

l=0

(
n− 1

l

)
S1 (n− l − 1,m)λn−l−1

×
(
−rβ(r)

l (λ,−λ) +
r

l + 1
β
(r)
l+1 (λ)− r

l + 1
β
(r+1)
l+1 (λ,−λ)

)
=λ

n−m∑
l=0

(
n− 1

l

)
S1 (n− l − 1,m− 1)λn−l−1β

(r)
l (λ,−λ)

− r
n−m−1∑

l=0

(
n− 1

l

)
S1 (n− l − 1,m)λn−l−1β

(r)
l (λ,−λ)

+
r

n

n−m−1∑
l=0

(
n

l + 1

)
S1 (n− l − 1,m)λn−l−1β

(r)
l+1 (λ)

− r

n

n−m−1∑
l=0

(
n

l + 1

)
S1 (n− l − 1,m)λn−l−1β

(r+1)
l+1 (λ,−λ)

=λ

n−m∑
l=0

(
n− 1

l

)
S1 (n− l − 1,m− 1)λn−l−1β

(r)
l (λ,−λ)

− r
n−m−1∑

l=0

(
n− 1

l

)
S1 (n− l − 1,m)λn−l−1β

(r)
l (λ,−λ)

+
r

n

n−m∑
l=0

(
n

l

)
S1 (n− l,m)λn−lβ

(r)
l (λ)

− r

n

n−m∑
l=0

(
n

l

)
S1 (n− l,m)λn−lβ

(r+1)
l (λ,−λ) .

Therefore, by (2.41), we obtain the following theorem.

Theorem 2.8. For n− 1 ≥ m ≥ 1, we have

(
1− r

n

) n−m∑
l=0

(
n

l

)
S1 (n− l,m)λn−lβ

(r)
l (λ)

=λ
n−m∑
l=0

(
n− 1

l

)
S1 (n− l − 1,m− 1)λn−l−1β

(r)
l (λ,−λ)

− r
n−m−1∑

l=0

(
n− 1

l

)
S1 (n− l − 1,m)λn−l−1β

(r)
l (λ,−λ)

− r

n

n−m∑
l=0

(
n

l

)
S1 (n− l,m)λn−lβ

(r+1)
l (λ,−λ) .
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For r > s ≥ 1, by (1.19), (1.20) and (1.22), we get

(2.42) β(r)
n (λ, x) =

n∑
m=0

Cn,mβ
(s)
m (λ, x) ,

where

Cn,m =
1

m!

⟨(
t

(1 + λt)
1
λ − 1

)r−s

tm

∣∣∣∣∣∣xn
⟩

(2.43)

=
1

m!

⟨(
t

(1 + λt)
1
λ − 1

)r−s
∣∣∣∣∣∣ tmxn

⟩

=

(
n

m

)⟨(
t

(1 + λt)
1
λ − 1

)r−s
∣∣∣∣∣∣xn−m

⟩

=

(
n

m

)⟨ ∞∑
l=0

β
(r−s)
l (λ)

tl

l!

∣∣∣∣∣xn−m

⟩

=

(
n

m

)
β
(r−s)
n−m (λ) .

Therefore, by (2.42)and (2.43), we obtain the following theorem.

Theorem 2.9. For r > s ≥ 1, we have

β(r)
n (λ, x) =

n∑
m=0

(
n

m

)
β
(r−s)
n−m (λ)β(s)

m (λ, x) .

Remark. Replacing x by x+ λ in Theorem 2.7, we have

(2.44) β(r+1)
n (λ, x) =

(
1− n

r

)
β(r)
n (λ, x+ λ) +

(n
r
x+

n

r
λ− n

)
β
(r)
n−1 (λ, x) .

From Theorem 2.5, we note that

β(r)
n (λ, x+ λ) =

n∑
j=0

(
n

j

)
β
(r)
j (λ, x) (λ|λ)n−j(2.45)

= nλβ
(r)
n−1 (λ, x) + β(r)

n (λ, x) .

Substituting (2.45) into (2.44), we get
(2.46)

β(r+1)
n (λ, x) =

(
1− n

r

)
β(r)
n (λ, x) +

n

r
(x+ (λ− 1) r − (n− 1)λ)β

(r)
n−1 (λ, x) .

By using this and induction on r, it is shown in [[19]] that

(2.47) β(r)
n (λ, x) = r

(
n

r

) r−1∑
k=0

(−1)
r−1−k

σr−1,k (λ, x, n)
βn−k (λ, x)

n− k
,

where

σr,k (λ, x, n) =
∑

1≤ik<ik−1<···<i1≤r

k∏
j=1

(x+ (λ− 1) ij − (n− j)λ) .
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For r > s ≥ 1, by (1.19), (1.20) and (1.22), we have

(2.48) β(s)
n (λ, x) =

n∑
m=0

Cn,mβ
(r)
m (λ, x) ,

where

Cn,m =
1

m!

⟨(
(1 + λt)

1
λ − 1

t

)r−s

tm

∣∣∣∣∣∣xn
⟩

(2.49)

=

(
n

m

)⟨(
(1 + λt)

1
λ − 1

t

)r−s
∣∣∣∣∣∣xn−m

⟩
.

Observe here that(
(1 + λt)

1
λ − 1

t

)r−s

(2.50)

=

(
e

1
λ log(1+λt) − 1

t

)r−s

=
1

tr−s

(
e

1
λ log(1+λt) − 1

)r−s

=
1

tr−s
(r − s)!

∞∑
l=r−s

S2 (l, r − s) (log (1 + λt))
l

λll!

= (r − s)!
∞∑

l=r−s

S2 (l, r − s)
l!

(
log (1 + λt)

λt

)l

tl−(r−s)

= (r − s)!
∞∑
l=0

S2 (l + r − s, r − s)
(l + r − s)!

tl
(

log (1 + λt)

λt

)l+r−s

= (r − s)!
∞∑
l=0

S2 (l + r − s, r − s)
(l + r − s)!

tl (l + r − s)!

×
∞∑
k=0

S1 (k + l + r − s, l + r − s) (λt)
k

(k + l + r − s)!

= (r − s)!
∞∑
k=0

∞∑
l=0

S1 (k + l + r − s, l + r − s)

× S2 (l + r − s, r − s) λk

(k + l + r − s)!
tk+l

= (r − s)!
∞∑
j=0

∑
k+l=j

S1 (k + l + r − s, l + r − s)

× S2 (l + r − s, r − s) λk

(k + l + r − s)!
tk+l

= (r − s)!
∞∑
j=0

j∑
k=0

S1 (j + r − s, j − k + r − s)
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× S2 (j − k + r − s, r − s) λk

(j + r − s)!
tj .

From (2.49) and (2.50), we have

Cn,m

(2.51)

=

(
n

m

)
(r − s)!

×

⟨ ∞∑
j=0

(
j∑

k=0

S1 (j + r − s, j − k + r − s)S2 (j − k + r − s, r − s) λkj!

(j + r − s)!

)
tj

j!

∣∣∣∣∣∣xn−m

⟩

=

(
n

m

)
(r − s)!

n−m∑
k=0

S1 (n−m+ r − s, n−m− k + r − s)

× S2 (n−m− k + r − s, r − s) λk (n−m)!

(n−m+ r − s)!

=

(
n
m

)(
n−m+r−s

r−s

) n−m∑
k=0

S1 (n−m+ r − s, n−m− k + r − s)S2 (n−m− k + r − s, r − s)λk.

Therefore, by (2.48) and (2.51), we obtain the following theorem.

Theorem 2.10. For r > s ≥ 1, we have

β(s)
n (λ, x)

=
n∑

m=0

{ (
n
m

)(
n−m+r−s

r−s

) n−m∑
k=0

S1 (n−m+ r − s, n−m− k + r − s)

×S2 (n−m− k + r − s, r − s)λk
}
β(r)
m (λ, x)

=
n∑

m=0

{ (
n
m

)(
n−m+r−s

r−s

) n−m∑
k=0

S1 (n−m+ r − s, k + r − s)

×S2 (k + r − s, r − s)λn−m−k
}
β(r)
m (λ, x) .

For (x|λ)n ∼
(
1, 1

λ

(
eλt − 1

))
, by (1.19), (1.20) and (1.22), we get

(2.52) β(r)
n (λ, x) =

n∑
m=0

Cn,m (x|λ)m ,

where

Cn,m =
1

m!

⟨(
t

(1 + λt)
1
λ − 1

)r

tm

∣∣∣∣∣xn
⟩

(2.53)

=
1

m!

⟨(
t

(1 + λt)
1
λ − 1

)r∣∣∣∣∣ tmxn
⟩

=

(
n

m

)⟨(
t

(1 + λt)
1
λ − 1

)r∣∣∣∣∣xn−m

⟩
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=

(
n

m

)⟨ ∞∑
k=0

β
(r)
k (λ)

tk

k!

∣∣∣∣∣xn−m

⟩

=

(
n

m

)
β
(r)
n−m (λ) .

Therefore, by (2.52) and (2.53), we obtain the following theorem.

Theorem 2.11. For n ≥ 0, we have

β(r)
n (λ, x) =

n∑
m=0

(
n

m

)
β
(r)
n−m (λ) (x|λ)m .

Remark. For n ≥ 0, we get
(2.54)

(x|λ)n =

n∑
m=0

{ (
n
m

)(
n−m+r

r

) n−m∑
k=0

S1 (n−m+ r, k + r)S2 (k + r, r)λn−m−k

}
β(r)
m (λ, x) .

By (1.6) and (1.12), we easily get

(2.55) B(s)
n (x) ∼

((
et − 1

t

)s

, t

)
, (s ∈ N) .

From (1.19), (1.20), (1.22) and (2.55), we have

(2.56) B(s)
n (x) =

n∑
m=0

Cn,mβ
(r)
m (λ, x) ,

where

Cn,m =
1

m!

⟨ (λ(et−1)
eλt−1

)r

(
et−1

t

)s (
1

λ

(
eλt − 1

))m

∣∣∣∣∣∣∣∣x
n

⟩(2.57)

=
1

m!λm

⟨(
λt

eλt − 1

)r (
et − 1

t

)r (
t

et − 1

)s (
eλt − 1

)m∣∣∣∣xn⟩
=

1

m!λm

⟨(
λt

eλt − 1

)r (
et − 1

t

)r (
t

et − 1

)s∣∣∣∣m!

∞∑
l=m

S2 (l,m)
λl

l!
tlxn

⟩

= λ−m
n∑

l=m

(
n

l

)
S2 (l,m)λl

⟨(
λt

eλt − 1

)r (
et − 1

t

)r (
t

et − 1

)s∣∣∣∣xn−l

⟩

= λ−m
n∑

l=m

(
n

l

)
S2 (l,m)λl

⟨(
et − 1

t

)r (
t

et − 1

)s∣∣∣∣ ∞∑
k=0

B
(r)
k

λk

k!
tkxn−l

⟩

= λ−m
n∑

l=m

(
n

l

)
S2 (l,m)λl

n−l∑
k=0

(
n− l
k

)
B

(r)
k λk

⟨(
et − 1

t

)r (
t

et − 1

)s∣∣∣∣xn−l−k

⟩
.

Case 1. For r > s ≥ 1, we have⟨(
et − 1

t

)r (
t

et − 1

)s∣∣∣∣xn−l−k

⟩
(2.58)
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=

⟨(
et − 1

t

)r−s
∣∣∣∣∣xn−l−k

⟩

=

⟨
(r − s)!

∞∑
j=0

S2 (j + r − s, r − s) j!
(j + r − s)!

tj

j!

∣∣∣∣∣∣xn−l−k

⟩

= (r − s)!S2 (n− l − k + r − s, r − s) (n− l − k)!

(n− l − k + r − s)!

=S2 (n− l − k + r − s, r − s)
/(n− l − k + r − s

r − s

)
Case 2. For r = s ≥ 1, we get

(2.59)

⟨(
et − 1

t

)r (
t

et − 1

)s∣∣∣∣xn−l−k

⟩
=
⟨

1|xn−l−k
⟩

= δ0,n−l−k = δk,n−l.

Case 3. For s > r ≥ 1, we have

(2.60)

⟨(
et − 1

t

)r (
t

et − 1

)s∣∣∣∣xn−l−k

⟩
=

⟨(
t

et − 1

)s−r
∣∣∣∣∣xn−l−k

⟩
= B

(s−r)
n−l−k.

Therefore, by (2.56), (2.57), (2.58), (2.59) and (2.60), we obtain the following the-
orem.

Theorem 2.12. Let n ≥ 0. Then we have

B(s)
n (x) =



n∑
m=0

{
λ−m

n∑
l=m

n−l∑
k=0

(
n
l

)(
n−l
k

)(
n−l−k+r−s

r−s

)S2 (l,m)

× S2 (n− l − k + r − s, r − s)λk+lB
(r)
k

}
β
(r)
m (λ, x) , if r > s ≥ 1,

λn
n∑

m=0

{
λ−m

n∑
l=m

(
n

l

)
S2 (l,m)B

(r)
n−l

}
β(r)
m (λ, x) , if r = s ≥ 1,

n∑
m=0

λ−m

{
n∑

l=m

n−l∑
k=0

(
n

l

)(
n− l
k

)
S2 (l,m)

×λk+lB
(r)
k B

(s−r)
n−l−k

}
β
(r)
m (λ, x) , if s > r ≥ 1.

Remark. Let r > s ≥ 1. Then we get
(2.61)

β(r)
n (λ, x) =

n∑
m=0

{
λ−m

n∑
l=m

n−l∑
k=0

(
n

l

)(
n− l
k

)
S1 (l,m)λk+lb

(s)
k β

(r−s)
n−l−k (λ)

}
B(s)

m (x) .

For r = s ≥ 1, we have

(2.62) β(r)
n (λ, x) = λn

n∑
m=0

λ−m

{
n∑

l=m

(
n

l

)
S1 (l,m) b

(s)
n−l

}
B(s)

m (x) .

If s > r ≥ 1, then we note that

β(r)
n (λ, x)(2.63)

=λn
n∑

m=0

{
λ−m

n∑
l=m

n−l∑
k=0

n−l−k∑
i=0

(
n
l

)(
n−l
k

)(
n−l−k+s−r

s−r

)S1 (l,m)
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× S1 (n− l − k + s− r, i+ s− r)S2 (i+ s− r, s− r)λ−ib
(s)
k

}
B(s)

m (x) .

From (1.7) and (1.12), we get

(2.64) H(s)
n (x|µ) ∼

((
et − µ
1− µ

)s

, t

)
.

By (1.19), (1.20), (1.22) and (2.64), we have

(2.65) β(r)
n (λ, x) =

n∑
m=0

Cn,mH
(s)
m (x|µ) ,

where

Cn,m

(2.66)

=
1

m!

⟨ (
e

1
λ log(1+λt) − µ

/
1− µ

)s
(
λ
(
e

1
λ log(1+λt) − 1

)/
elog(1+λt) − 1

)r ( 1

λ
log (1 + λt)

)m
∣∣∣∣∣∣xn

⟩

=
1

m!λm (1− µ)
s

⟨(
(1 + λt)

1
λ − µ

)s( t

(1 + λt)
1
λ − 1

)r

(log (1 + λt))
m

∣∣∣∣∣xn
⟩

=
1

λm (1− µ)
s

n∑
l=m

(
n

l

)
S1 (l,m)λl

⟨(
(1 + λt)

1
λ − µ

)s∣∣∣( t

(1 + λt)
1
λ − 1

)r

xn−l

⟩

=
1

λm (1− µ)
s

n∑
l=m

(
n

l

)
S1 (l,m)λl

n−l∑
k=0

(
n− l
k

)
β
(r)
k (λ)

⟨(
(1 + λt)

1
λ − µ

)s∣∣∣xn−l−k
⟩
.

It is easy to show that⟨(
(1 + λt)

1
λ − µ

)s∣∣∣xn−l−k
⟩

(2.67)

=
s∑

i=0

(
s

i

)
(−µ)

s−i

⟨ ∞∑
j=0

(i|λ)j
tj

j!

∣∣∣∣∣∣xn−l−k

⟩

=
s∑

i=0

(
s

i

)
(−µ)

s−i
(i|λ)n−l−k .

From (2.66) and (2.67), we have

Cn,m

(2.68)

=
1

λm (1− µ)
s

n∑
l=m

(
n

l

)
S1 (l,m)λl

n−l∑
k=0

(
n− l
k

)
β
(r)
k (λ)

s∑
i=0

(
s

i

)
(−µ)

s−i
(i|λ)n−l−k

=
1

λm (1− µ)
s

n∑
l=m

n−l∑
k=0

s∑
i=0

(
n

l

)(
n− l
k

)(
s

i

)
S1 (l,m)λl (−µ)

s−i
β
(r)
k (λ) (i|λ)n−l−k .

Therefore, by (2.65) and (2.68), we obtain the following theorem.
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Theorem 2.13. For µ ∈ C with µ ̸= 1, n ≥ 0, we have

β(r)
n (λ, x)

=
1

(1− µ)
s

n∑
m=0

{
λ−m

n∑
l=m

n−l∑
k=0

s∑
i=0

(
n

l

)(
n− l
k

)(
s

i

)
S1 (l,m)λl (−µ)

s−i

× β
(r)
k (λ) (i|λ)n−l−k

}
H(s)

m (x|µ) .

Remark. For n ≥ 0, we have

H(s)
n (x|µ)

=

n∑
m=0

{
1

λm

n−m∑
l=0

n−l∑
k=m

(
n

l

)(
n− l
k

)
S2 (k,m)λk+lB

(r)
l H

(r)
n−l−k−j (µ)

}
β(r)
m (λ, x) .
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KOROBOV POLYNOMIALS OF THE SEVENTH KIND AND OF
THE EIGHTH KIND

DAE SAN KIM, TAEKYUN KIM, TOUFIK MANSOUR, AND JONG-JIN SEO

Abstract. In this paper, we consider the Korobov polynomials of the seventh kind
and of the eighth kind. We present several explicit formulas and recurrence relations
for these polynomials. In addition, we establish connections between our polynomials
and several known families of polynomials.

1. Introduction

The degenerate Bernoulli polynomials are the degenerate version of Bernoulli polyno-
mials introduced by Calitz [3, 4]. On the other hand, the Korobov polynomials of the
first kind are the first degenerate version of the Bernoulli polynomials of the second
kind, see [13,14].

In recent years, many researchers studied various kinds of degenerate versions of fam-
ilies polynomials like Bernoulli polynomials, Euler polynomials, falling factorial poly-
nomials, Bell polynomials and their variants, see [6–10] and references therein. Along
this line of research, we introduced in [8, 9] four kinds of new degenerate versions of
Bernoulli polynomials of the second kind, called the Korobov polynomials of the third,
fourth, fifth, and sixth kind.

Here, we will discuss two other degenerate versions of Bernoulli polynomials of the
second kind, namely, the Korobov polynomials of the seventh and eighth kind. We will
investigate some properties, explicit expressions, recurrence relations, and connections
with other families polynomials with the help of umbral calculus (see [10, 15, 16]). To
do that, we recall some families polynomials. The Bernoulli polynomials of the second
kind bn(x) are given by the generating function

t

log(1 + t)
(1 + t)x =

∑
n≥0

bn(x)
tn

n!
.(1.1)

For x = 0, bn = bn(0) are called the Bernoulli numbers of the second kind. The Daehee
polynomials Dn(x) are defined by the generating function

log(1 + t)

t
(1 + t)x =

∑
n≥0

Dn(x)
tn

n!
.(1.2)

2010 Mathematics Subject Classification. 05A19, 05A40, 11B83.
Key words and phrases. Korobov polynomials of the seventh kind and of the eighth kind, Umbral

calculus.
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When x = 0, Dn = Dn(0) are called the Daehee numbers. The Krobov polynomials
Kn(λ, x) of the first kind are given by

λt

(1 + t)λ − 1
(1 + t)x =

∑
n≥0

Kn(λ, x)
tn

n!
.(1.3)

When x = 0, Kn(λ) = Kn(λ, 0) are called the Korobov numbers of the first kind. The
degenerate falling factorial polynomials (x)n,λ were defined in [7] by the generating
function

(1 + λ)
x
λ

(1+t)λ−1
λ =

∑
n≥0

(x)n,λ
tn

n!
.(1.4)

Clearly, limλ→0(x)n,λ = (x)n, the nth falling factorial polynomial. These polynomials
can be defined as (x)n,λ ∼ (1, f(t)), where

f(t) =

(
1 +

λ2t

log(1 + λ)

) 1
λ

− 1 and f̄(t) =
log(1 + λ)

λ

(1 + t)λ − 1

λ
.(1.5)

Note that we write sn(x) ∼ (g(t), f(t)) if
∑

n≥0 sn(x) t
n

n!
= 1

g(f̄(t))
exf̄(t), where f̄(t) is the

compositional inverse of f(t), see [15, 16]. The degenerate Stirling numbers of the first
kind S1(n, k | λ), n ≥ k ≥ 0, were given in [7] by the generating function

1

k!

(
(1 + t)λ − 1

λ

)k

=
∑
n≥k

S1(n, k | λ)
tn

n!
,(1.6)

so that, in the notation of umbral calculus, S1(n, k | λ) = 1
k!

⟨(
(1+t)λ−1

λ

)k
|xn
⟩

. Then,

it was shown in [7] that

(x)n,λ =
n∑

k=0

(
log(1 + λ)

λ

)k

S1(n, k | λ)xk

with

S1(n, k | λ) =
n∑

m=k

S1(n,m)S2(m, k)λm−k,

where limλ→0 S1(n, k | λ) = S1(n, k) is the Stirling number of the first kind.

Here, we introduce Korobov polynomials of the seventh kindKn,7(λ, x) and of the eighth
kind Kn,9(λ, x), respectively given by

log(1 + λt)

λ log(1 + t)
(1 + λ)

x
λ

(1+t)λ−1
λ =

∑
n≥0

Kn,7(λ, x)
tn

n!
,(1.7)

log(1 + λt)

(1 + t)λ − 1
(1 + λ)

x
λ

(1+t)λ−1
λ =

∑
n≥0

Kn,8(λ, x)
tn

n!
.(1.8)
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KOROBOV POLYNOMIALS OF THE SEVENTH KIND AND OF THE EIGHTH KIND 3

When x = 0, Kn,7(λ) = Kn,7(λ, 0) and Kn,8(λ) = Kn,8(λ, 0) are called the Korobov
numbers of the seventh kind and of the eighth kind, respectively. We observe that

lim
λ→0

λt

(1 + t)λ − 1
(1 + t)x = lim

λ→0

log(1 + λt)

λ log(1 + t)
(1 + λ)

x
λ

(1+t)λ−1
λ

= lim
λ→0

log(1 + λt)

(1 + t)λ − 1
(1 + λ)

x
λ

(1+t)λ−1
λ =

t

log(1 + t)
(1 + t)x,

which implies that limλ→0Kn(λ, x) = limλ→0Kn,7(λ, x) = limλ→0Kn,8(λ, x) = bn(x).
It is immediate to see that Kn,7(λ, x) and Kn,8(λ, x) are Sheffer sequences (see [15,16])

for the respective pairs
(

λ log(1+f(t))
log(1+λf(t))

, f(t)
)

and
(

(1+f(t))λ−1
log(1+λf(t))

, f(t)
)

, where f(t) is given

in (1.5). Thus, (1.7) and (1.8) can be presented as

Kn,7(λ, x) ∼
(
λ log(1 + f(t))

log(1 + λf(t))
, f(t)

)
=

 log
(

1 + λ2t
log(1+λ)

)
log(1 + λf(t))

, f(t)

 ,(1.9)

Kn,8(λ, x) ∼
(

(1 + f(t))λ − 1

log(1 + λf(t))
, f(t)

)
=

(
λ2t

log(1+λ)

log(1 + λf(t))
, f(t)

)
.(1.10)

In the next two sections, we will use umbral calculus in order to study some properties,
explicit formulas, recurrence relations and identities about the Korobov polynomials
of the seventh kind and of the eighth kind. In last section, we present connections
between our polynomials and several known families of polynomials.

2. Explicit expressions

In this section, we present several explicit formulas for the Korobov polynomials of the
seventh kind and of the eighth kind, namely Kn,7(λ, x) and Kn,8(λ, x).

Theorem 2.1. For all n ≥ 0,

Kn,7(λ, x) =
n∑

k=0

n∑
ℓ=k

(
n

ℓ

)
logk(1 + λ)

λk
S1(ℓ, k|λ)Kn−ℓ,7(λ)xk

=
n∑

k=0

n∑
ℓ=k

n−ℓ∑
m=0

(
n

ℓ

)(
n− ℓ
m

)
logk(1 + λ)

λk
S1(ℓ, k|λ)bmDn−ℓ−mλ

n−ℓ−mxk,

Kn,8(λ, x) =
n∑

k=0

n∑
ℓ=k

(
n

ℓ

)
logk(1 + λ)

λk
S1(ℓ, k|λ)Kn−ℓ,8(λ)xk

=
n∑

k=0

n∑
ℓ=k

n−ℓ∑
m=0

(
n

ℓ

)(
n− ℓ
m

)
logk(1 + λ)

λk
S1(ℓ, k|λ)Km(λ)Dn−ℓ−mλ

n−ℓ−mxk.

Proof. We proceed the proof by using the conjugation representation for Sheffer se-
quences (see [15,16]): sn(x) =

∑n
k=0

1
k!
⟨g(f̄(t))−1f̄(t)k|xn⟩xk, for any sn(x) ∼ (g(t), f(t)).
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Thus, by (1.9), we have

Kn,7(λ, x) =
n∑

k=0

1

k!

⟨
log(1 + λt)

λ log(1 + t)

logk(1 + λ)((1 + t)λ − 1)k

λ2k
|xn
⟩
xk

=
n∑

k=0

logk(1 + λ)

λk

⟨
log(1 + λt)

λ log(1 + t)
|((1 + t)λ − 1)k

k!λk
xn
⟩
xk,

which, by (1.6) and (1.7), implies

Kn,7(λ, x) =
n∑

k=0

logk(1 + λ)

λk

⟨
log(1 + λt)

λ log(1 + t)
|
∑
ℓ≥k

S1(ℓ, k|λ)
tℓ

ℓ!
xn

⟩
xk

=
n∑

k=0

n∑
ℓ=k

(
n

ℓ

)
logk(1 + λ)

λk
S1(ℓ, k|λ)

⟨
log(1 + λt)

λ log(1 + t)
|xn−ℓ

⟩
xk(2.1)

=
n∑

k=0

n∑
ℓ=k

(
n

ℓ

)
logk(1 + λ)

λk
S1(ℓ, k|λ)Kn−ℓ,7(λ)xk.

On the other hand, by (2.1), we have

Kn,7(λ, x) =
n∑

k=0

n∑
ℓ=k

(
n

ℓ

)
logk(1 + λ)

λk
S1(ℓ, k|λ)

⟨
log(1 + λt)

λt
| t

log(1 + t)
xn−ℓ

⟩
xk,

which, by (1.1) and (1.2), we obtain

Kn,7(λ, x)

=
n∑

k=0

n∑
ℓ=k

(
n

ℓ

)
logk(1 + λ)

λk
S1(ℓ, k|λ)

⟨
log(1 + λt)

λt
|
∑
m≥0

bm
tm

m!
xn−ℓ

⟩
xk

=
n∑

k=0

n∑
ℓ=k

n−ℓ∑
m=0

(
n

ℓ

)(
n− ℓ
m

)
logk(1 + λ)

λk
S1(ℓ, k|λ)bm

⟨
log(1 + λt)

λt
|xn−ℓ−m

⟩
xk

=
n∑

k=0

n∑
ℓ=k

n−ℓ∑
m=0

(
n

ℓ

)(
n− ℓ
m

)
logk(1 + λ)

λk
S1(ℓ, k|λ)bm

⟨∑
j≥0

Djλ
j t

j

j!
|xn−ℓ−m

⟩
xk

=
n∑

k=0

n∑
ℓ=k

n−ℓ∑
m=0

(
n

ℓ

)(
n− ℓ
m

)
logk(1 + λ)

λk
S1(ℓ, k|λ)bmDn−ℓ−mλ

n−ℓ−mxk,

which completes the proof of formulas for kn,7(λ, x).

Now let us deal with the case Kn,8(λ, x). Similarly, by using the conjugation represen-
tation for Sheffer sequences, (1.10) and (1.6), we obtain

Kn,8(λ, x) =
n∑

k=0

n∑
ℓ=k

(
n

ℓ

)
logk(1 + λ)

λk
S1(ℓ, k|λ)

⟨
log(1 + λt)

(1 + t)λ − 1
|xn−ℓ

⟩
xk(2.2)

=
n∑

k=0

n∑
ℓ=k

(
n

ℓ

)
logk(1 + λ)

λk
S1(ℓ, k|λ)Kn−ℓ,8(λ)xk.
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KOROBOV POLYNOMIALS OF THE SEVENTH KIND AND OF THE EIGHTH KIND 5

On the other hand, by (2.2), we have

Kn,8(λ, x) =
n∑

k=0

n∑
ℓ=k

(
n

ℓ

)
logk(1 + λ)

λk
S1(ℓ, k|λ)

⟨
log(1 + λt)

λt
| λt

(1 + t)λ − 1
xn−ℓ

⟩
xk,

which, by (1.3) and (1.2), we obtain

Kn,8(λ, x)

=
n∑

k=0

n∑
ℓ=k

(
n

ℓ

)
logk(1 + λ)

λk
S1(ℓ, k|λ)

⟨
log(1 + λt)

λt
|
∑
m≥0

Km(λ)
tm

m!
xn−ℓ

⟩
xk

=
n∑

k=0

n∑
ℓ=k

n−ℓ∑
m=0

(
n

ℓ

)(
n− ℓ
m

)
logk(1 + λ)

λk
S1(ℓ, k|λ)Km(λ)

⟨
log(1 + λt)

λt
|xn−ℓ−m

⟩
xk

=
n∑

k=0

n∑
ℓ=k

n−ℓ∑
m=0

(
n

ℓ

)(
n− ℓ
m

)
logk(1 + λ)

λk
S1(ℓ, k|λ)Km(λ)Dn−ℓ−mλ

n−ℓ−mxk,

(2.3)

which completes the proof. �

Now, we express our polynomials in terms of the degenerate falling factorial polyno-
mials.

Theorem 2.2. For all n ≥ 0,

Kn,7(λ, x) =
n∑

ℓ=0

(
n

ℓ

)( n−ℓ∑
m=0

(
n− ℓ
m

)
λn−ℓ−mbmDn−ℓ−m

)
(x)ℓ,λ,

Kn,8(λ, x) =
n∑

ℓ=0

(
n

ℓ

)( n−ℓ∑
m=0

(
n− ℓ
m

)
λn−ℓ−mKm(λ)Dn−ℓ−m

)
(x)ℓ,λ.

Proof. By (1.9), we have

Kn,7(λ, y) =

⟨
log(1 + λt)

λ log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ |xn

⟩
=

⟨
log(1 + λt)

λ log(1 + t)
|(1 + λ)

y
λ

(1+t)λ−1
λ xn

⟩
,

which, by (1.4), implies

Kn,7(λ, y) =

⟨
log(1 + λt)

λ log(1 + t)
|
∑
ℓ≥0

(y)ℓ,λ
tℓ

ℓ!
xn

⟩
=

n∑
ℓ=0

(
n

ℓ

)
(y)ℓ,λ

⟨
log(1 + λt)

λ log(1 + t)
|xn−ℓ

⟩
.

Therefore, by (2.1), we obtain

Kn,7(λ, y) =
n∑

ℓ=0

(
n

ℓ

)( n−ℓ∑
m=0

(
n− ℓ
m

)
λn−ℓ−mbmDn−ℓ−m

)
(y)ℓ,λ,

which completes the proof for Kn,7(λ, y).

By using similar arguments as above together with (1.10) and (1.4), we obtain

Kn,8(λ, y) =
n∑

ℓ=0

(
n

ℓ

)
(y)ℓ,λ

⟨
log(1 + λt)

(1 + t)λ − 1
|xn−ℓ

⟩
.
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Therefore, by (2.2) and (2.3), we have

Kn,8(λ, y) =
n∑

ℓ=0

(
n

ℓ

)( n−ℓ∑
m=0

(
n− ℓ
m

)
λn−ℓ−mKm(λ)Dn−ℓ−m

)
(y)ℓ,λ,

which completes the proof. �

In the next theorem, we find explicit formulas for the coefficient of xj in Kn,7(λ, x) and
Kn,8(λ, x).

Theorem 2.3. For all n ≥ 0 and s = 7, 8,

Kn,s(λ, x)

=
n∑

j=0

(
n∑

k=j

k∑
ℓ=0

ℓ∑
m=0

(−1)ℓ−m

ℓ!

(
ℓ

m

)(
k

j

)
(m|λ)k−j

logj(1 + λ)

λj
S1(n, k|λ)Kℓ,s(λ)

)
xj.

Proof. By (1.4) and (1.9), we have

λ log(1 + f(t))

log(1 + λf(t))
Kn,7(λ, x) = (x)n,λ =

n∑
k=0

logk(1 + λ)

λk
S1(n, k|λ)xk ∼ (1, f(t)).

Thus,

Kn,7(λ, x) =
n∑

k=0

logk(1 + λ)

λk
S1(n, k|λ)

log(1 + λf(t))

λ log(1 + f(t))
xk

=
n∑

k=0

k∑
ℓ=0

logk(1 + λ)

λk
S1(n, k|λ)

Kℓ,7(λ)

ℓ!
(f(t))ℓxk.(2.4)

Note that

(f(t))ℓxk =
ℓ∑

m=0

(
ℓ

m

)
(−1)ℓ−m

(
1 + λ2t/ log(1 + λ)

)m/λ
xk

=
ℓ∑

m=0

k∑
j=0

(
ℓ

m

)
(−1)ℓ−m(m|λ)j (λ/ log(1 + λ))j

(
k

j

)
xk−j.

Therefore,

Kn,7(λ, x)

=
n∑

k=0

k∑
ℓ=0

ℓ∑
m=0

k∑
j=0

(−1)ℓ−m(m|λ)k−j
logj(1 + λ)

λj
S1(n, k|λ)

Kℓ,7(λ)

ℓ!

(
ℓ

m

)(
k

j

)
xj

=
n∑

j=0

(
n∑

k=j

k∑
ℓ=0

ℓ∑
m=0

(−1)ℓ−m

ℓ!

(
ℓ

m

)(
k

j

)
(m|λ)k−j

logj(1 + λ)

λj
S1(n, k|λ)Kℓ,7(λ)

)
xj.

By (1.4) and (1.10), we have

(1 + f(t))λ − 1

log(1 + λf(t))
Kn,8(λ, x) = (x)n,λ =

n∑
k=0

logk(1 + λ)

λk
S1(n, k|λ)xk ∼ (1, f(t)).
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Thus, by using the above arguments, we obtain

Kn,8(λ, x)

=
n∑

j=0

(
n∑

k=j

k∑
ℓ=0

ℓ∑
m=0

(−1)ℓ−m

ℓ!

(
ℓ

m

)(
k

j

)
(m|λ)k−j

logj(1 + λ)

λj
S1(n, k|λ)Kℓ,8(λ)

)
xj,

which completes the proof. �

In the next theorem, we express Korobov polynomials of seventh and eighth kinds in
terms of Korobov polynomials of fifth and sixth kinds.

Theorem 2.4. For all n ≥ 0 and s = 7, 8,

Kn,s(λ, x) =
n∑

ℓ=0

(
n

ℓ

)
Dn−ℓλ

n−ℓKℓ,s−2(λ, x).

Proof. Recall that Korobov polynomials of the fifth kind (see [9]) is given by

t

log(1 + t)
(1 + λ)

x
λ

(1+t)λ−1
λ =

∑
n≥0

Kn,5(λ, x)
tn

n!
.

So, by (1.7), we have

Kn,7(λ, y) =

⟨
log(1 + λt)

λt
| t

log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ xn

⟩
=

n∑
ℓ=0

(
n

ℓ

)
Kℓ,5(λ, y)

⟨
log(1 + λt)

λt
|xn−ℓ

⟩
,

which, by (1.2), implies Kn,7(λ, y) =
∑n

ℓ=0

(
n
ℓ

)
Kℓ,5(λ, y)Dn−ℓλ

n−ℓ.

Recall that Korobov polynomials of the sixth kind (see [9]) is defined by

λt

(1 + t)λ − 1
(1 + λ)

x
λ,y

(1+t)λ−1
λ =

∑
n≥0

Kn,6(λ, x)
tn

n!
.

Similarly, by (1.2) and (1.8), we obtain Kn,8(λ, y) =
∑n

ℓ=0

(
n
ℓ

)
Kℓ,6(λ, y)Dn−ℓλ

n−ℓ, as
claimed. �

In the next theorem, we express our polynomials Kn,7(λ, x) and Kn,8(λ, x) in terms

of degenerate Bernoulli numbers β
(n)
ℓ (λ) of order n, which are given by the generating

function

tn

((1 + λt)1/λ − 1)n
=
∑
ℓ≥0

β
(n)
ℓ (λ)

tℓ

ℓ!
.(2.5)

Theorem 2.5. For all n ≥ 1 and s = 7, 8,

Kn,s(λ, x)

n∑
j=0

(
n∑

k=j

k∑
ℓ=0

ℓ∑
m=0

(−1)ℓ−m
(
n−1
k−1

)(
ℓ
m

)(
k
j

)
ℓ!

(m|λ)k−j

(
log(1 + λ)

λ

)j

β
(n)
n−k(λ)Kℓ,s(λ)

)
xj.
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Proof. It is not hard to see that logn(1+λ)xn

λn ∼ (1, λt/ log(1 + λ)). Thus, by (1.9), we
have

λ log(1 + f(t))

log(1 + λf(t))
Kn,7(λ, x) = x

(
λt

log(1+λ)

(1 + λ2t/ log(1 + λ))1/λ − 1

)n

x−1 logn(1 + λ)xn

λn

=
logn(1 + λ)

λn
x

(
r

(1 + λr)1/λ − 1

)n

|r=λt/ log(1+λ) x
n−1,

which, by (2.5), implies

λ log(1 + f(t))

log(1 + λf(t))
Kn,7(λ, x) =

logn(1 + λ)

λn
x
∑
k≥0

β
(n)
k (λ)

1

k!

(
λt

log(1 + λ)

)k

xn−1

=
n−1∑
k=0

(
n− 1

k

)
β
(n)
k (λ)

(
log(1 + λ)

λ

)n−k

xn−k

=
n∑

k=0

(
n− 1

k − 1

)
β
(n)
n−k(λ)

(
log(1 + λ)

λ

)k

xk.

On the other hand, by (2.4), we have

log(1 + λf(t))

λ log(1 + f(t))
xk

=
k∑

ℓ=0

ℓ∑
m=0

k∑
j=0

Kℓ,7(λ)

ℓ!

(
ℓ

m

)(
k

j

)
(−1)ℓ−m(m|λ)k−−j

λk−j

logk−j(1 + λ)
xj.

Therefore, the polynomials Kn,7(λ, x) is given by

n∑
j=0

(
n∑

k=j

k∑
ℓ=0

ℓ∑
m=0

(−1)ℓ−m
(
n−1
k−1

)(
ℓ
m

)(
k
j

)
ℓ!

(m|λ)k−j

(
log(1 + λ)

λ

)j

β
(n)
n−k(λ)Kℓ,7(λ)

)
xj.

By using similar argument as above with using (1.10), we obtain the formula for the nth
Korobov polynomial kn,8(λ, x) of the eighth kind (we leave the details for the interested
reader). �

3. Recurrences

In this section, we present several recurrences for the Korobov polynomials of the
seventh kind and of the eighth kind. Note that, by (1.9), (1.10) and the fact that
(x)n,λ ∼ (1, f(t)), we obtain Kn,d(λ, x+ y) =

∑n
j=0

(
n
j

)
Kj,d(λ, x)(y)n−j,λ, for d = 7, 8.

Proposition 3.1. For all n ≥ 1 and s = 7, 8,

Kn,s(λ, x) + nKn−1,s(λ, x)

=
n∑

m=0

(
n∑

k=m

n∑
ℓ=k

(
n

ℓ

)(
k

m

)
(1|λ)k−m

logm(1 + λ)

λm
S1(ℓ, k|λ)Kn−ℓ,s(λ)

)
xm.
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Proof. It is well-known that if sn(x) ∼ (g(t), f(t)), then we have f(t)sn(x) = nsn−1(x)

(see [15,16]). Thus, by (1.9) and (1.10), we obtain

((
1 + λ2t

log(1+λ)

) 1
λ − 1

)
Kn,s(λ, x) =

nKn−1,s(λ, x), which implies Kn,s(λ, x) + nKn−1,s(λ, x) =
(

1 + λ2t
log(1+λ)

) 1
λ
Kn,s(λ, x).

By Theorem 2.1 we have

Kn,s(λ, x) + nKn−1,s(λ, x)

=
n∑

k=0

n∑
ℓ=k

(
n

ℓ

)
logk(1 + λ)

λk
S1(ℓ, k|λ)Kn−ℓ,s(λ)

(
1 +

λ2t

log(1 + λ)

) 1
λ

xk

=
n∑

k=0

n∑
ℓ=k

k∑
m=0

(
n

ℓ

)
logk−m(1 + λ)

λk−m
S1(ℓ, k|λ)Kn−ℓ,s(λ)(1|λ)m

tm

m!
xk

=
n∑

k=0

n∑
ℓ=k

k∑
m=0

(
n

ℓ

)(
k

m

)
logk−m(1 + λ)

λk−m
S1(ℓ, k|λ)Kn−ℓ,s(λ)(1|λ)mx

k−m

=
n∑

m=0

(
n∑

k=m

n∑
ℓ=k

(
n

ℓ

)(
k

m

)
(1|λ)k−m

logm(1 + λ)

λm
S1(ℓ, k|λ)Kn−ℓ,s(λ)

)
xm.

which completes the proof. �

In the next result, we express d
dx
Kn,7(λ, x) and d

dx
Kn,8(λ, x) in terms of Kn,7(λ, x) and

Kn,8(λ, x), respectively.

Proposition 3.2. For all n ≥ 0 and s = 7, 8,

d

dx
Kn,s(λ, x) =

log(1 + λ)

λ2

n−1∑
ℓ=0

(
n

ℓ

)
(λ)n−ℓKℓ,s(λ, x).

Proof. Note that d
dx
sn(x) =

∑n−1
ℓ=0

(
n
ℓ

)
⟨f̄(t)|xn−ℓ⟩sℓ(x), for all sn(x) ∼ (g(t), f(t)), see

[15, 16]. So, for sn(x) = Kn,s(λ, x), it remains to compute A = ⟨f̄(t)|xn−ℓ⟩. By (1.9)

and (1.10), we have A = log(1+λ)
λ2 ⟨

∑
j≥1(λ)j

tj

j!
|xn−ℓ⟩ = log(1+λ)

λ2 (λ)n−ℓ, which completes

the proof. �

Theorem 3.3. For all n ≥ 1 and s = 7, 8,

Kn,s(λ, x) =
x log(1 + λ)

λ

n−1∑
ℓ=0

(
n− 1

ℓ

)
(λ− 1)n−1−ℓKℓ,s(λ, x)

+
1

n

n∑
ℓ=0

n−ℓ∑
m=0

(
n

ℓ

)
(n− ℓ)n−ℓ−mus(ℓ,m),

where

u7(ℓ) = bℓ
{

(−λ)n−ℓ−m(x)m,λ − (−1)n−ℓ−mKm,7(λ, x)
}
,

u8(ℓ) = Kℓ(λ)

{
(−λ)n−ℓ−m(x)m,λ −

(
λ− 1

n− ℓ−m

)
Km,8(λ, x)

}
.
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Proof. Since the similarity between Kn,7(λ, x) and Kn,8(λ, x) (see (1.9) and (1.10)), we
omit the proof of the case Kn,8(λ, x) and give only the details of the case Kn,7(λ, x).
By (1.9), we have

Kn,7(λ, y) =

⟨
d

dt

(
log(1 + λt)

λ log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ

)
|xn−1

⟩
= A+B,(3.1)

whereB =

⟨
d
dt

log(1+λt)
λ log(1+t)

(1 + λ)
y
λ

(1+t)λ−1
λ |xn−1

⟩
andA =

⟨
log(1+λt)
λ log(1+t)

d
dt

(1 + λ)
y
λ

(1+t)λ−1
λ |xn−1

⟩
.

First, we compute the term B.

B =

⟨
log(1 + λt)

λ log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ

log(1 + λ)

λ
y(1 + t)λ−1|xn−1

⟩
=
y log(1 + λ)

λ

⟨
log(1 + λt)

λ log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ |(1 + t)λ−1xn−1

⟩
=
y log(1 + λ)

λ

n−1∑
ℓ=0

(
n− 1

ℓ

)
(λ− 1)ℓ

⟨
log(1 + λt)

λ log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ |xn−1−ℓ

⟩

=
y log(1 + λ)

λ

n−1∑
ℓ=0

(
n− 1

ℓ

)
(λ− 1)ℓKn−1−ℓ,7(λ, y)

=
y log(1 + λ)

λ

n−1∑
ℓ=0

(
n− 1

ℓ

)
(λ− 1)n−1−ℓKℓ,7(λ, y).

Now, we compute the first term A,

A =

⟨
t

log(1 + t)

1

t

{
1

1 + λt
− log(1 + λt)

λ log(1 + t)
(1 + t)−1

}
(1 + λ)

y
λ

(1+t)λ−1
λ |xn−1

⟩
=

1

n

⟨{
1

1 + λt
− log(1 + λt)

λ log(1 + t)
(1 + t)−1

}
(1 + λ)

y
λ

(1+t)λ−1
λ | t

log(1 + t)
xn
⟩

=
1

n

⟨{
1

1 + λt
− log(1 + λt)

λ log(1 + t)
(1 + t)−1

}
(1 + λ)

y
λ

(1+t)λ−1
λ |

∑
ℓ≥0

bℓ
tℓ

ℓ!
xn

⟩
.

Note that 1
1+λt
− log(1+λt)

λ log(1+t)
(1 + t)−1 has order at least one. Thus,

A =
1

n

n∑
ℓ=0

(
n

ℓ

)
bℓ

{⟨
(1 + λ)

y
λ

(1+t)λ−1
λ | 1

1 + λt
xn−ℓ

⟩
−
⟨

log(1 + λt)

λ log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ | 1

1 + t
xn−ℓ

⟩}
=

1

n

n∑
ℓ=0

(
n

ℓ

)
bℓ

{ n−ℓ∑
m=0

(−λ)m(n− ℓ)m

⟨∑
k≥0

(y)k,λ
tk

k!
|xn−ℓ−m

⟩

−
n−ℓ∑
m=0

(−1)m(n− ℓ)m

⟨∑
k≥0

Kk,7(λ, y)
tk

k!
|xn−ℓ−m

⟩}
,
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which implies

A =
1

n

n∑
ℓ=0

n−ℓ∑
m=0

(
n

ℓ

)
bℓ

{
(−λ)m(n− ℓ)m(y)n−ℓ−m,λ − (−1)m(n− ℓ)mKn−ℓ−m,7(λ, y)

}
,

Hence, by substituting the expressions of A and B in (3.1), we complete the proof. �

4. Connections with families of polynomials

In this section, we present some examples on the connections with families of poly-
nomials. To do that, we recall for any two Sheffer sequences sn(x) ∼ (g(t), f(t)) and
rn(x) ∼ (h(t), ℓ(t)), we have that sn(x) =

∑n
m=0Cn,mrm(x), where (see [15,16])

Cn,m =
1

m!

⟨
h(f̄(t))

g(f̄(t))
(ℓ(f̄(t)))m|xn

⟩
.(4.1)

We start with the connection to Bernoulli polynomials B
(s)
n (x) of order s. Recall that

the Bernoulli polynomials B
(s)
n (x) of order s are defined by the generating function(

t
et−1

)s
ext =

∑
n≥0B

(s)
n (x) t

n

n!
, equivalently,

B(s)
n (x) ∼

((
et − 1

t

)s

, t

)
(4.2)

(see [2, 5, 15]). In the next result, we express our polynomials in terms of Bernoulli
polynomials of order s.

Theorem 4.1. Let d = 7, 8. For all n ≥ 0, Kn,d(λ, x) =
∑n

k=0Cn,mB
(s)
m (x), where

Cn,m =
n−m∑
ℓ=0

n−ℓ−m∑
k=0

(
n
ℓ

)(
k+m
m

)(
k+s
s

) Kℓ,d(λ)S2(k + s, s)
logk+m(1 + λ)

λk+m
S1(n− ℓ, k +m|λ).

Proof. Since the similarity between Kn,7(λ, x) and Kn,8(λ, x) (see (1.9) and (1.10)), we
omit the proof of the case Kn,8(λ, x) and give only the details of the case Kn,7(λ, x).

Let Kn,7(λ, x) =
∑n

m=0Cn,mB
(s)
m (x). So, by (1.9) and (4.2), we have

Cn,m =
1

m!

⟨
(ef̄(t) − 1)s

f̄ s(t)

log(1 + λt)

λ log(1 + t)
f̄m(t)|xn

⟩

=
1

m!

⟨
(ef̄(t) − 1)s

f̄ s(t)
f̄m(t)| log(1 + λt)

λ log(1 + t)
xn

⟩

=
1

m!

⟨
(ef̄(t) − 1)s

f̄ s(t)
f̄m(t)|

∑
ℓ≥0

Kℓ,7(λ)
tℓ

ℓ!
xn

⟩

=
1

m!

n∑
ℓ=0

(
n

ℓ

)
Kℓ,7(λ)

⟨
s!
∑
k≥0

S2(k + s, s)
f̄k+m(t)

(k + s)!
|xn−ℓ

⟩
.
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Thus,

Cn,m =
s!

m!

n−m∑
ℓ=0

n−ℓ−m∑
k=0

(
n

ℓ

)
Kℓ,7(λ)S2(k + s, s)

⟨
f̄k+m(t)

(k + s)!
|xn−ℓ

⟩

=
s!

m!

n−m∑
ℓ=0

n−ℓ−m∑
k=0

(
n

ℓ

)
Kℓ,7(λ)S2(k + s, s)

logk+m(1 + λ)

(k + s)!λk+m

⟨
((1 + t)λ − 1)k+m

λk+m
|xn−ℓ

⟩

=
s!

m!

n−m∑
ℓ=0

n−ℓ−m∑
k=0

(
n

ℓ

)
Kℓ,7(λ)S2(k + s, s)

logk+m(1 + λ)

(k + s)!λk+m
(k +m)!S1(n− ℓ, k +m|λ).

Therefore,

Cn,m =
n−m∑
ℓ=0

n−ℓ−m∑
k=0

(
n
ℓ

)(
k+m
m

)(
k+s
s

) Kℓ,7(λ)S2(k + s, s)
logk+m(1 + λ)

λk+m
S1(n− ℓ, k +m|λ),

as required. �

Similar techniques as in the proof of the previous theorem, we can express our poly-
nomials Kn,7(λ, x), Kn,8(λ, x) in terms of other families. Below we present two ex-
amples, where we leave the proofs to the interested reader. In the first example,
we express our polynomials in terms of Frobenius-Euler polynomials. Note that the

Frobenius-Euler polynomials H
(s)
n (x|µ) of order s are defined by the generating function(

1−µ
et−µ

)s
ext =

∑
n≥0H

(s)
n (x|µ) t

n

n!
, (µ ̸= 1), or equivalently, H

(s)
n (x|µ) ∼

((
et−µ
1−µ

)s
, t
)

(see [1, 11,12]).

Theorem 4.2. For all n ≥ 0 and d = 7, 8, Kn,d(λ, x) =
∑n

m=0Cn,mH
(s)
m (x|µ), where

Cn,m =
n−m∑
ℓ=0

s∑
k=0

n−ℓ−m∑
j=k

k!
(
j+m
m

)(
n
ℓ

)(
s
k

)
(1− µ)k

logj+m(1 + λ)

λj+m
S1(n− ℓ, j +m|λ)S2(j, k)Kℓ,d(λ).

For what follows, we define the associated sequence for 1 − (1 + λ2t/ log(1 + λ))−1/λ,
namely (x)(n,λ). Thus,

(x)(n,λ) ∼ (1, 1− (1 + λ2t/ log(1 + λ))−1/λ).

Recall here that (x)n ∼ (1, et − 1), (x)(n) ∼ (1, 1 − e−t), (x)n,λ ∼ (1, (1 + λ2t/ log(1 +
λ))1/λ − 1) and (1 + λ2t/ log(1 + λ))1/λ − 1 → et − 1, as λ → 0. Now, we ready to
present our second example.

Theorem 4.3. For all n ≥ 0 and d = 7, 8, Kn,d(λ, x) =
∑n

m=0Cn,m(x)(m,λ), where

Cn,m =
n∑

ℓ=0

(−1)n−ℓ−m

(
n

ℓ

)(
n− ℓ
m

)
(n− 1− ℓ)n−ℓ−mKℓ,d(λ).
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1. Introduction

Euler numbers and polynomials possess many interesting properties and arising in many areas

of mathematics, mathematical physics and statistical physics. Many mathematicians have studied

in the area of the q- extension of Euler numbers and polynomials(see [1, 2, 3, 5, 6, 7, 8, 9, 11,

13]). Recently, Y. Hu studied several identities of symmetry for Carlitz’s q-Bernoulli numbers and

polynomials in complex field(see [3]). D. Kim et al.[4] derived some identities of symmetry for

(h, q)-extension of higher-order Euler numbers and polynomials. D. V. Dolgy et al.[2] derived some

identities of symmetry for higher-order generalized q-Euler polynomials. In this paper, we establish

some interesting symmetric identities for twisted q-Euler polynomials of higher order in complex

field. The purpose of this paper is to present a systemic study of the twisted q-Euler numbers and

polynomials of higher-order by using the multiple q-Euler zeta function. Throughout this paper, the

notations N,Z,R, and C denote the sets of positive integers, integers, real numbers, and complex

numbers, respectively, and Z+ := N ∪ {0}. We assume that q ∈ C with |q| < 1. Throughout this

paper we use the notation:

[x]q =
1− qx

1− q
(cf. [1, 2, 3, 5]) .

Note that limq→1[x] = x. Let ε be the pN -th root of unity(see [10, 12, 13]).

In [5], T. Kim introduced the multiple q-Euler zeta function which interpolates higher-order

q-Euler polynomials at negative integers as follows:

ζq,r(s, x) = [2]rq

∞∑
m1,··· ,mr=0

(−1)
∑r

j=1 mjq
∑r

j=1 mj

[m1 + · · ·+mr + x]sq
, (1)

where s ∈ C and x ∈ R, with x ̸= 0,−1,−2, . . ..

Recently, D. V. Dolgy et al.[2] considered some symmetric identities for higher-order generalized

q-Euler polynomials. The Euler polynomials of order r ∈ N attached to χ are also defined by the

generating function: (
2
d−1∑
l=0

χ(l)(−1)le(x+l)t

edt + 1

)r

=
∞∑

m=0

E(r)
m,χ(x)

tm

m!
. (2)

When x = 0, E
(r)
n,χ = E

(r)
n,χ(0) are called the Euler numbers E

(r)
n,χ attached to χ(see [2, 4]).
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For h ∈ Z, α, k ∈ N, and n ∈ Z+, we introduced the higher order twisted q-Euler polynomials

with weight α as follows(see [7]):

Ẽ(α)
n,q,ε(k|x) =

[2]kq
(1− qα)n

n∑
l=0

(
n

l

)
(−1)l

qαlx

(1 + εqαl+h) · · · (1 + εqαl+h−k+1)
.

In the special case, x = 0, Ẽ
(α)
n,q,w(k|0) = Ẽ

(α)
n,q,w(k) are called the higher-order twisted q-Euler

numbers with weight α.

We consider the higher order q-Euler polynomials of order r attached to χ twisted by ramified

roots of unity as follows(see [10]):

∞∑
n=0

E(r)
n,χ,ε,q(x)

tn

n!
= 2r

∞∑
m1,...,mr=0

(−ε)
∑r

j=0 mj

(
r∏

i=1

χ(mi)

)
e[x+

∑r
j=1 mj ]qt.

In the special case x = 0, the sequence E
(r)
n,χ,ε,q(0) = E

(r)
n,χ,ε,q are called the n-th q-Euler numbers of

order r attached to χ twisted by ramified roots of unity.

As is well known, the higher-order twisted q-Euler polynomials E
(k)
n,q,ε(x) are defined by the

following generating function to be

F̃ (k)
q,ε (t, x) = [2]kq

∞∑
m1,··· ,mk=0

(−1)m1+···+mkεm1+···+mke[m1+···+mk+x]qt

=

∞∑
n=0

E(k)
n,q,ε(x)

tn

n!
,

(3)

where k ∈ N. When x = 0, E
(k)
n,q,ε = E

(k)
n,q,ε(0) are called the higher-order twisted q-Euler numbers

E
(k)
n,q,ε. Observe that if q → 1, ε→ 1, then E

(k)
n,q,ε → E

(k)
n and E

(k)
n,q,ε(x)→ E

(k)
n,χ(x).

By using (3) and Cauchy product, we have

E(k)
n,q,ε(x) =

n∑
l=0

(
n

l

)
qlxE

(k)
l,q,ε[x]n−l

q

= (qxE(k)
q,ε + [x]q)n,

(4)

with the usual convention about replacing (E
(k)
q,ε )n by E

(k)
n,q,ε.

By using complex integral and (3), we can also obtain the multiple twisted q-l-function as

follows:

l(k)q,ε (s, x) =
1

Γ(s)

∫ ∞

0

F̃ (k)
q,ε (−t, x)ts−1dt

= [2]kq

∞∑
m1,··· ,mk=0

(−1)
∑k

j=1 mjε
∑k

j=1 mj

[m1 + · · ·+mk + x]sq
,

(5)

where s ∈ C and x ∈ R, with x ̸= 0,−1,−2, . . ..

By using Cauchy residue theorem, the value of multiple twisted q-l-function at negative integers

is given explicitly by the following theorem:

Theorem 1. Let k ∈ N and n ∈ Z+. We obtain

l(k)q,ε (−n, x) = E(k)
n,q,ε(x).

The purpose of this paper is to obtain some interesting identities of the power sums and

the higher-order twisted q-Euler polynomials E
(k)
n,q,ε(x) using the symmetric properties for multiple
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twisted q-l-function. In this paper, if we take ε = 1 in all equations of this article, then [2] are the

special case of our results.

2. Symmetry identities for multiple twisted q-l-function

In this section, by using the similar method of [2, 3, 4], expect for obvious modifications, we

investigate some symmetric identities for higher-order twisted q-Euler polynomials E
(k)
n,q,ε(x). We

assume that ε be the pN -th root of unity. Let w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). For

h ∈ Z, k ∈ N and n ∈ Z+, we obtain certain symmetry identities for multiple twisted q-l-function.

Observe that [xy]q = [x]qy [y]q for any x, y ∈ C. In (5), we derive next result by substitute

w2x+
w2

w1
(j1 + · · ·+ jk) for x in and replace q and ε by qw1 and εw1 , respectively.

1

[2]kqw1

l
(k)
qw1 ,εw1 (s, w2x+

w2

w1
(j1 + · · ·+ jk))

=
∞∑

m1,··· ,mk=0

(−1)
∑k

j=1 mjεw1
∑k

j=1 mj

[m1 + · · ·+mk + w2x+
w2

w1
(j1 + · · ·+ jk)]sqw1

=

∞∑
m1,··· ,mk=0

(−1)
∑k

j=1 mjεw1

∑k
j=1 mj[

w1(m1 + · · ·+mk) + w1w2x+ w2(j1 + · · ·+ jk)

w1

]s
qw1

=

∞∑
m1,··· ,mk=0

(−1)
∑k

j=1 mjεw1

∑k
j=1 mj

[w1(m1 + · · ·+mk) + w1w2x+ w2(j1 + · · ·+ jk)]sq
[w1]sq

= [w1]sq

∞∑
m1,··· ,mk=0

(−1)
∑k

j=1 mjεw1

∑k
j=1 mj

[w1(m1 + · · ·+mk) + w1w2x+ w2(j1 + · · ·+ jk)]sq

= [w1]sq

∞∑
m1,··· ,mk=0

w2−1∑
i1,··· ,ik=0

(−1)
∑k

j=1 mjεw1
∑k

j=1 mj

[w1(m1 + · · ·+mk) + w1w2x+ w2(j1 + · · ·+ jk)]sq

= [w1]sq

∞∑
m1,··· ,mk=0

w2−1∑
i1,··· ,ik=0

(−1)
∑k

j=1(dw2mj+ij)

× εw1

∑k
j=1(dw2mj+ij)

×
(
[w1(dw2m1 + i1) + · · ·+ w1(dw2mk + ik) + w1w2x+ w2(j1 + · · ·+ jk)]sq

)−1

= [w1]sq

∞∑
m1,··· ,mk=0

w2−1∑
i1,··· ,ik=0

(−1)
∑k

j=1 mj (−1)
∑k

j=1 ij

× εdw1w2

∑k
j=1 mjεw1

∑k
j=1 ij

×
(
[w1w2(x+ dm1 + · · ·+ dmk) + w1(i1 + · · ·+ ik) + w2(j1 + · · ·+ jk)]sq

)−1

(6)

Thus, from (6), we can derive the following equation.

[w2]sq
[2]kqw1

w1−1∑
j1,··· ,jk=0

(−1)
∑k

l=1 jlεw2
∑k

l=1 jl

× l(k)qw1 ,εw1 (s, w2x+
w2

w1
(j1 + · · ·+ jk))

= [w1]sq[w2]sq

∞∑
m1,··· ,mk=0

w2−1∑
i1,··· ,ik=0

w1−1∑
j1,··· ,jk=0

(−1)
∑k

l=1(jl+il+ml)

× εdw1w2
∑k

l=1 mlεw1
∑k

l=1 ilεw2
∑k

l=1 jl

×
(
[w1w2(x+ dm1 + · · ·+ dmk) + w1(i1 + · · ·+ ik) + w2(j1 + · · ·+ jk)]sq

)−1

(7)
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By using the same method as (7), we have

[w1]sq
[2]kqw2

w2−1∑
j1,··· ,jk=0

(−1)
∑k

l=1 jlεw1

∑k
l=1 jl

× l(k)qw2 ,εw2 (s, w1x+
w1

w2
(j1 + · · ·+ jk))

= [w1]sq[w2]sq

∞∑
m1,··· ,mk=0

w2−1∑
j1,··· ,jk=0

w1−1∑
i1,··· ,ik=0

(−1)
∑k

l=1(jl+il+ml)

× εdw1w2

∑k
l=1 mlεw2

∑k
l=1 ilεw1

∑k
l=1 jl

×
(
[w1w2(x+ dm1 + · · ·+ dmk) + w1(j1 + · · ·+ jk) + w2(i1 + · · ·+ ik)]sq

)−1

(8)

Therefore, by (7) and (8), we have the following theorem.

Theorem 2. Let w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). For h ∈ Z , we obtain

[w2]sq[2]kqw2

w1−1∑
j1,··· ,jk=0

(−1)
∑k

l=1 jlεw2

∑k
l=1 jl l

(k)
qw1 ,εw1

(
s, w2x+

w2

w1
(j1 + · · ·+ jk)

)

= [w1]sq[2]kqw1

w2−1∑
j1,··· ,jk=0

(−1)
∑k

l=1 jlεw1
∑k

l=1 jl l
(k)
qw2 ,εw2

(
s, w1x+

w1

w2
(j1 + · · ·+ jk)

) (9)

By (9) and Theorem 1, we obtain the following theorem.

Theorem 3. Let w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). For h ∈ Z, k ∈ N and

n ∈ Z+, we obtain

[w2]sq[2]kqw2

w1−1∑
j1,··· ,jk=0

(−1)
∑k

l=1 jlεw2

∑k
l=1 jlE

(k)
n,qw1 ,εw1

(
w2x+

w2

w1
(j1 + · · ·+ jk)

)

= [w1]sq[2]kqw1

w2−1∑
j1,··· ,jk=0

(−1)
∑k

l=1 jlεw1
∑k

l=1 jlE
(k)
n,qw2 ,εw2

(
w1x+

w1

w2
(j1 + · · ·+ jk)

)
.

(10)

From (4), we note that

E(k)
n,q,ε(x+ y) = (qx+yE(k)

n,q,ε + [x+ y]q)n

=

n∑
i=0

(
n

i

)
qxiE

(k)
i,q,ε(y)[x]n−i

q .
(11)

with the usual convention about replacing (E
(k)
q,ε )n by E

(k)
n,q,ε.

By (11), we have

w1−1∑
j1,··· ,jk=0

(−1)
∑k

l=1 jlεw2

∑k
l=1 jlE

(k)
n,qw1 ,εw1

(
w2x+

w2

w1
(j1 + · · ·+ jk)

)

=

w1−1∑
j1,··· ,jk=0

(−1)
∑k

l=1 jlεw2
∑k

l=1 jl

×
n∑

i=0

(
n

i

)
qw2i(j1+···+jk)E

(k)
i,qw1 ,εw1 (w2x)

[
w2

w1
(j1 + · · ·+ jk)

]n−i

qw1

=

w1−1∑
j1,··· ,jk=0

(−1)
∑k

l=1 jlεw2
∑k

l=1 jl

×
n∑

i=0

(
n

i

)
qw2(n−i)

∑k
l=1 jlE

(k)
n−i,qw1 ,εw1 (w2x)

[
w2

w1
(j1 + · · ·+ jk)

]i
qw1

(12)
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Hence we have the following theorem.

Theorem 4. Let w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). For k ∈ N and n ∈ Z+,

we obtain

w1−1∑
j1,··· ,jk=0

(−1)
∑k

l=1 jlεw2

∑k
l=1 jlE

(k)
n,qw1 ,εw1

(
w2x+

w2

w1
(j1 + · · ·+ jk)

)

=
n∑

i=0

(
n

i

)
[w2]iq[w1]−i

q E
(k)
n−i,qw1 ,εw1 (w2x)

w1−1∑
j1,··· ,jk=0

(−1)
∑k

l=1 jlεw2
∑k

l=1 jl [j1 · · ·+ jk]iqw2 .

For each integer n ≥ 0, let

S(k)n,i,q,ε(w) =

w−1∑
j1,··· ,jk=0

(−1)
∑k

l=1 jlε
∑k

l=1 jl [j1 · · ·+ jk]iq.

The above sum S(k)n,i,q,ε(w) is called the alternating q-power sums.

By Theorem 4, we have

[2]kqw2 [w1]nq

w1−1∑
j1,··· ,jk=0

(−1)
∑k

l=1 jlεw2
∑k

l=1 jlE
(k)
n,qw1 ,εw1

(
w2x+

w2

w1
(j1 + · · ·+ jk)

)

= [2]kqw2

n∑
i=0

(
n

i

)
[w2]iq[w1]n−i

q E
(k)
n−i,qw1 ,εw1 (w2x)S(k)n,i,qw2 ,εw2 (w1)

(13)

By using the same method as in (13), we have

[2]kqw1 [w2]nq

w2−1∑
j1,··· ,jk=0

(−1)
∑k

l=1 jlεw1

∑k
l=1 jlE

(k)
n,qw2 ,εw2

(
w1x+

w1

w2
(j1 + · · ·+ jk)

)

= [2]kqw1

n∑
i=0

(
n

i

)
[w1]iq[w2]n−i

q E
(k)
n−i,qw2 ,εw2 (w1x)S(k)n,i,qw1 ,εw1 (w2)

(14)

Therefore, by (13) and (14) and Theorem 3, we have the following theorem.

Theorem 5. Let w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). For k ∈ N and n ∈ Z+,

we obtain

[2]kqw2

n∑
i=0

(
n

i

)
[w2]iq[w1]n−i

q E
(k)
n−i,qw1 ,εw1 (w2x)S(k)n,i,qw2 ,εw2 (w1)

= [2]kqw1

n∑
i=0

(
n

i

)
[w1]iq[w2]n−i

q E
(k)
n−i,qw2 ,εw2 (w1x)S(k)n,i,qw1 ,εw1 (w2).

By Theorem 5, we obtain the interesting symmetric identity for the higher-order twisted q-Euler

numbers E
(k)
n,q,ε in complex field.

Corollary 6. Let w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). For k ∈ N and n ∈ Z+,

we obtain

[2]kqw2

n∑
i=0

(
n

i

)
[w2]iq[w1]n−i

q S(k)n,i,qw2 ,εw2 (w1)E
(k)
n−i,qw1 ,εw1

= [2]kqw1

n∑
i=0

(
n

i

)
[w1]iq[w2]n−i

q S(k)n,i,qw1 ,εw1 (w2)E
(k)
n−i,qw2 ,εw2 .
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UMBRAL CALCULUS ASSOCIATED WITH NEW DEGENERATE

BERNOULLI POLYNOMIALS

DAE SAN KIM, TAEKYUN KIM, AND JONG-JIN SEO

Abstract. In this paper, we introduce new degenerate Bernoulli polynomi-
als which are derived from umbral calculus and investigate some interesting

properties of those polynomials.

1. Introduction

The Bernoulli polynomials are defined by the generating function

(1.1)
t

et − 1
ext =

∞∑
n=0

Bn (x)
tn

n!
, (see [1–14]) .

When x = 0, Bn = Bn (0) are called the ordinary Bernoulli numbers. From (1.1),
we note that

(1.2) Bn (x) =
n∑

l=0

(
n

l

)
Blx

n−l, (n ≥ 0) , (see [13]) .

Thus, by (1.2), we get

(1.3)
d

dx
Bn (x) = nBn−1 (x) , (n ∈ N) .

In [2], L. Carlitz introduced the degenerate Bernoulli polynomials which are
given by the generating function

(1.4)
t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

βn (x | λ)
tn

n!
.

When x = 0, βn (0 | λ) = βn (λ) are called Carlitz’s degenerate Bernoulli num-
bers (see [2]).

Thus, by (1.4), we get

(1.5) βn (x | λ) =
n∑

l=0

(
n

l

)
βl (λ) (x | λ)n−l , (n ≥ 0) ,

where (x | λ)n = x (x− λ) · · · (x− λ (n− 1)).
Let C be the field of complex numbers and let F be the set of all formal power

series in the variable t over C with

F =

{
f (t) =

∞∑
k=0

ak
tk

k!

∣∣∣∣∣ ak ∈ C

}
.

2010 Mathematics Subject Classification. 11B83, 11B75, 05A19, 05A40.
Key words and phrases. Degenerate Bernoulli polynomial, Higher-order degenerate Bernoulli

polynomial, Umbral calculus.
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2 DAE SAN KIM, TAEKYUN KIM, AND JONG-JIN SEO

Let P = C [x] and P∗ denotes the vector space of all linear functionals on P. The
action of the linear functional L ∈ P∗ on a polynomial p (x) is denoted by ⟨L| p (x)⟩,
and linearly extended as ⟨cL+ c′L′| p (x)⟩ = c ⟨L| p (x)⟩+c′ ⟨L′| p (x)⟩, where c and
c′ ∈ C.

For f (t) =
∑∞

k=0 ak
tk

k! ∈ F , we define a linear functional on P by setting

(1.6) ⟨f (t)|xn⟩ = an

for all n ≥ 0, (see [1, 5, 13]).
Thus, by (1.6), we get

(1.7)
⟨
tk
∣∣xn⟩ = n!δn,k, (n, k ≥ 0) , (see [7, 13]) ,

where δn,k is the Kronecker’s symbol.

Let fL (t) =
∑∞

k=0

⟨
L|xk

⟩
tk

k! . Then we have ⟨fL (t)|xn⟩ = ⟨L|xn⟩ (n ≥ 0). The
mapping L 7→ fL (t) is a vector space isomorphism from P∗ onto F . Henceforth,
F will denote both the algebra of formal power series in t and the vector space of
all linear functionals on P, and so an element f (t) of F will be thought of as both
a formal power seires and a linear functional. We shall call F the umbral algebra.
The umbral calculus is the study of umbral algebra and can be also desribed as a
systematic study of the class of Sheffer sequences. The order o (f) of the non-zero
power series f (t) is the smallest integer k for which the coefficient of tk does not
vanish (see [12, 13]).

For f (t) , g (t) ∈ F with o (f) = 1 and o (g) = 0, there exists a unique sequence
sn (x) of polynomials such that⟨

g (t) f (t)
k
∣∣∣ sn (x)

⟩
= n!δn,k, (n, k ≥ 0) .

The sequence sn (x) is called the Sheffer sequence for (g (t) , f (t)) which is de-
noted by sn (x) ∼ (g (t) , f (t))(see [10, 13]).

Let f (t) ∈ F and p (x) ∈ P. Then by (1.7), we get

(1.8)
⟨
eyt
∣∣ p (x)

⟩
= p (y) , ⟨f (t) g (t)| p (x)⟩ = ⟨g (t)| f (t) p (x)⟩ ,

and

(1.9) f (t) =
∞∑
k=0

⟨
f (t)|xk

⟩ tk
k!
, p (x) =

∞∑
k=0

⟨
tk
∣∣ p (x)

⟩ xk
k!
, (see [13]) .

By (1.9), we easily get

(1.10) p(k) (0) =
⟨
tk
∣∣ p (x)

⟩
=
⟨

1| p(k) (x)
⟩
, (k ≥ 0) ,

where p(k) (0) denotes the k-th derivative of p (x) with respect to x at x = 0.
From (1.10), we have

(1.11) tkp (x) = p(k) (x) .

In [13], it is known that

(1.12) sn (x) ∼ (g (t) , f (t)) ⇐⇒ 1

g
(
f (t)

)exf(t) =

∞∑
n=0

sn (x)
tn

n!
,

where f (t) is the compositional inverse of f (t) such that f
(
f (t)

)
= f (f (t)) = t.

From (1.7), we can easily derive

(1.13) eytp (x) = p (x+ y) , where p (x) ∈ P = C [x] .
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For p (x) ∈ P, we have⟨
eyt − 1

t

∣∣∣∣ p (x)

⟩
=

ˆ y

0

p (u) du, ⟨f (t)|xp (x)⟩ = ⟨∂tf (t)| p (x)⟩ .

Let f1 (t) , f2 (t) , . . . , fm (t) ∈ F . Then we have

(1.14) ⟨f1 (t) f2 (t) · · · fm (t)|xn⟩ =
∑(

n

i1, . . . , im

)⟨
f1 (t)|xi1

⟩
· · ·
⟨
fm (t)|xim

⟩
where the sum is over all nonnegative integers i1, . . . , im such that i1+ · · ·+ im = n.

In this paper, we introduce new degenerate Bernoulli polynomials which are
different Carlitz’s degenerate Bernoulli polynomials and investigate some interesting
properties of those polynomials.

2. Umbral calculus and degenerate Bernoulli polynomials

From (1.1) and (1.13), we have

(2.1) Bn (x) ∼
(
et − 1

t
, t

)
, (n ≥ 0) .

Now, we introduce the new degenerate Bernoulli polynomials which are derived
from Sheffer sequence as follows:

(2.2) βn,λ (x) ∼

(
(1 + λt)

1
λ − 1

t
, t

)
, (n ≥ 0) .

From (1.12) and (2.2), we have

(2.3)
∞∑

n=0

βn,λ (x)
tn

n!
=

t

(1 + λt)
1
λ − 1

ext.

When x = 0, βn,λ = βn,λ (0) are called the degenerate Bernoulli numbers.
Note that

∞∑
n=0

lim
λ→0

βn,λ (x)
tn

n!
= lim

λ→0

t

(1 + λt)
1
λ − 1

ext(2.4)

=
t

et − 1
ext

=
∞∑

n=0

Bn (x)
tn

n!
.

Thus, by (2.4), we get

(2.5) lim
λ→0

βn,λ (x) = Bn (x) , (n ≥ 0) .

From (2.3), we have

∞∑
n=0

βn,λ (x)
tn

n!
=

( ∞∑
l=0

βl,λ
tl

l!

)( ∞∑
m=0

xm

m!
tm

)
(2.6)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
βl,λx

n−l

)
tn

n!
.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.5, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

833 DAE SAN KIM et al 831-840



4 DAE SAN KIM, TAEKYUN KIM, AND JONG-JIN SEO

Thus, by (2.6), we get

βn,λ (x) =
n∑

l=0

(
n

l

)
βl,λx

n−l, (n ≥ 0) ,

and

d

dx
βn,λ (x) =

n∑
l=1

(
n

l

)
βl,λ (n− l)xn−l−1(2.7)

= n
n−1∑
l=0

(
n− 1

l

)
βl,λx

n−1−l

= nβn−1,λ (x) .

From (1.11) and (2.3), we have

(2.8)
t

(1 + λt)
1
λ − 1

xn = βn,λ (x) , (n ≥ 0) ,

and

(2.9) tβn,λ (x) =
d

dx
βn,λ (x) = nβn−1,λ (x) , (n ≥ 1) .

Thus, by (2.8) and (2.9), we get

ˆ x+y

x

βn,λ (u) du(2.10)

=
1

n+ 1
{βn+1,λ (x+ y)− βn+1,λ (x)}

=
eyt − 1

t
βn,λ (x)

=
∞∑
k=1

yk

k!
tk−1βn,λ (x) .

From (2.9), we have

(2.11) βn (x) = t

{
1

n+ 1
βn+1,λ (x)

}
.

Thus, by (2.11), we get⟨
eyt − 1

t

∣∣∣∣βn,λ (x)

⟩
=

⟨
eyt − 1

∣∣ 1

n+ 1
βn+1,λ (x)

⟩
(2.12)

=

ˆ y

0

βn,λ (u) du.

Therefore, by (2.12), we obtain the following theorem.

Theorem 1. For n ≥ 0, we have⟨
eyt − 1

t

∣∣∣∣βn,λ (x)

⟩
=

ˆ y

0

βn,λ (u) du.
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For r ∈ N, the degenerate Bernoulli polynomials of order r are defined by the
generating function

(2.13)

(
t

(1 + λt)
1
λ − 1

)r

ext =
∞∑

n=0

β
(r)
n,λ (x)

tn

n!
.

When x = 0, β
(r)
n,λ = β

(r)
n,λ (0) are called the higher order degenerate Bernoulli

numbers.
Indeed, limλ→0 β

(r)
n,λ (x) = B

(r)
n (x), where B

(r)
n (x) are the higher-order Bernoulli

polynomials which are defined by the generating function(
t

et − 1

)r

ext =
∞∑

n=0

B(r)
n (x)

tn

n!
.

From (2.13), we have

(2.14) β
(r)
n,λ (x) =

n∑
l=0

(
n

l

)
β
(r)
l,λx

n−l, (n ≥ 0) ,

and

d

dx
β
(r)
n,λ (x) =

n∑
l=0

(
n

l

)
β
(r)
l,λ (n− l)xn−l−1(2.15)

= n
n−1∑
l=0

(
n− 1

l

)
β
(r)
l,λx

n−l−1

= nβ
(r)
n−1,λ (x) , (n ≥ 1) .

By (2.8) and (2.13), we easily get

(2.16) β
(r)
n,λ =

∑
l1+···+lr=n

(
n

l1, . . . , lr

)
βl1,λ · · ·βlr,λ.

Thus, by (2.14) and (2.16), we see that β
(r)
n,λ (x) is a monic polynomial of degree

n with coefficients in Q (λ).
From (2.14) and (2.15), we can deriveˆ x+y

x

β
(r)
n,λ (u) du =

1

n+ 1

{
β
(r)
n+1,λ (x+ y)− β(r)

n+1,λ (x)
}

(2.17)

=
eyt − 1

t
β
(r)
n,λ (x) .

If sn (x) ∼ (g (t) , t), then sn (x) is called an Appell sequence.
From (1.12) and (2.13), we have

(2.18) β
(r)
n,λ (x) ∼

((
(1 + λt)

1
λ − 1

t

)r

, t

)
, (n ≥ 0) .

Thus, by (2.18), we note that β
(r)
n,λ (x) is the Appell sequence for

(
(1+λt)

1
λ −1

t

)r

.

From (2.18), we have

(2.19)

(
(1 + λt)

1
λ − 1

t

)r

β
(r)
n,λ (x) ∼ (1, t) , xn ∼ (1, t) , (n ≥ 0) .
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Thus, by (2.19), we get

(2.20) xn =

(
(1 + λt)

1
λ − 1

t

)r

β
(r)
n,λ (x) , (n ≥ 0) .

We observe that(
(1 + λt)

1
λ − 1

t

)r

(2.21)

=
1

tr

(
e

1
λ log(1+λt) − 1

)r
=

1

tr
r!

∞∑
l=r

S2 (l, r)λ−l (log (1 + λt))
l

l!

=
1

tr
r!

∞∑
l=0

S2 (l + r, r)λ−(l+r) 1

(l + r)!
(l + r)!

∞∑
n=l+r

S1 (n, l + r)
λntn

n!

=
1

tr
r!

∞∑
l=0

S2 (l + r, r)λ−(l+r)
∞∑
n=l

S1 (n+ r, l + r)
λn+r

(n+ r)!
tn+r

=

∞∑
n=0

(
n∑

l=0

S2 (l + r, r)S1 (n+ r, l + r)λn−l 1(
n+r
r

)) tn

n!

By (2.20) and (2.21), we get
(2.22)

xm =
m∑

n=0

n∑
l=0

S2 (l + r, r)S1 (n+ r, l + r)λn−l

(
m
n

)(
n+r
r

)β(r)
m−n,λ (x) , (m ≥ 0) .

Therefore, by (2.22), we obtain the following theorem.

Theorem 2. For m ≥ 0, we have

xm =

m∑
n=0

n∑
l=0

S2 (l + r, r)S1 (n+ r, l + r)λn−l

(
m
n

)(
n+r
r

)β(r)
m−n,λ (x) ,

where S1 (m,n) and S2 (m,n) are the Stirling numbers of the first kind and of the
second kind defined by

(x)n =
n∑

l=0

S1 (n, l)xl,

xn =
n∑

l=0

S2 (n, l) (x)l .

From (1.11) and (2.18), we have

(2.23) tβ
(r)
n,λ (x) = t

{
1

n+ 1
β
(r)
n+1,λ (x)

}
, (n ≥ 0) ,

and ⟨
eyt − 1

t

∣∣∣∣β(r)
n,λ (x)

⟩
=

⟨
eyt − 1

∣∣ 1

n+ 1
β
(r)
n+1,λ (x)

⟩
(2.24)
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=

ˆ y

0

β
(r)
n,λ (u) du.

Moreover,

β
(r)
n,λ(2.25)

=

⟨(
t

(1 + λt)
1
λ − 1

)r∣∣∣∣∣xn
⟩

=
∑

n=i1+···+ir

(
n

i1, . . . , ir

)⟨
t

(1 + λt)
1
λ − 1

∣∣∣∣∣xi1
⟩
· · ·

⟨
t

(1 + λt)
1
λ − 1

∣∣∣∣∣xir
⟩

and

(2.26) βn,λ =

⟨
t

(1 + λt)
1
λ − 1

∣∣∣∣∣xn
⟩
, (n ≥ 0) .

Therefore, by (2.24), (2.25) and (2.26), we obtain the following theorem.

Theorem 3. For n ≥ 0, we have⟨
eyt − 1

t

∣∣∣∣β(r)
n,λ (x)

⟩
=

ˆ y

0

β
(r)
n,λ (u) du,

and

β
(r)
n,λ =

∑
n=i1+···+ir

(
n

i1, . . . , ir

)
βi1,λ · · ·βir,λ.

Let Pn = {p (x) ∈ C [x]| deg p (x) ≤ n} , (n ≥ 0). For p (x) ∈ Pn, we assume
that

(2.27) p (x) =
n∑

k=0

bkβk,λ (x) .

From (2.2), we have

(2.28)

⟨
(1 + λt)

1
λ − 1

t
tk

∣∣∣∣∣βn,λ (x)

⟩
= n!δn,k, (n, k ≥ 0) .

Thus, by (2.27) and (2.28), we get⟨
(1 + λt)

1
λ − 1

t
tk

∣∣∣∣∣ p (x)

⟩
=

n∑
l=0

bl

⟨
(1 + λt)

1
λ − 1

t
tk

∣∣∣∣∣βl,λ (x)

⟩
(2.29)

=
n∑

l=0

bll!δl,k = k!bk.

Hence,

bk =
1

k!

⟨
(1 + λt)

1
λ − 1

t
tk

∣∣∣∣∣ p (x)

⟩
(2.30)

=
1

k!

⟨
(1 + λt)

1
λ − 1

t

∣∣∣∣∣ p(k) (x)

⟩
,

where p(k) (x) = dk

dxk p (x).
Therefore, by (2.27) and (2.30), we obtain the following theorem.
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Theorem 4. Let p (x) ∈ Pn. Then we have

p (x) =
n∑

k=0

bkβk,λ (x) ,

where

bk =
1

k!

⟨
(1 + λt)

1
λ − 1

t

∣∣∣∣∣ p(k) (x)

⟩
.

Let p (x) ∈ Pn with p (x) = β
(r)
n,λ (x). Then, we have

(2.31) p(k) (x) =

(
d

dx

)k

β
(r)
n,λ (x) = k!

(
n

k

)
β
(r)
n−k,λ (x) .

Let us assume that

(2.32) p (x) = β
(r)
n,λ (x) =

n∑
k=0

bkβk,λ (x) .

Then, by Theorem 5, we get

bk =
1

k!

⟨
(1 + λt)

1
λ − 1

t

∣∣∣∣∣ p(k) (x)

⟩
(2.33)

=

(
n

k

)⟨
(1 + λt)

1
λ − 1

t

∣∣∣∣∣β(r)
n−k,λ (x)

⟩

=

(
n

k

)⟨
(1 + λt)

1
λ − 1

t

∣∣∣∣∣
(

t

(1 + λt)
1
λ − 1

)r

xn−k

⟩

=

(
n

k

)⟨
1

∣∣∣∣∣∣
(

t

(1 + λt)
1
λ − 1

)r−1

xn−k

⟩

=

(
n

k

)
β
(r−1)
n−k,λ.

Therefore, by (2.32) and (2.33), we obtain the following theorem.

Theorem 5. For r ∈ N and n ≥ 0, we have

β
(r)
n,λ (x) =

n∑
k=0

(
n

k

)
β
(r−1)
n−k,λβk,λ (x) .

Let p (x) ∈ Pn with p (x) =
∑n

k=0 b
(r)
k β

(r)
k,λ (x). By (2.18), we get

⟨(
(1 + λt)

1
λ − 1

t

)r

tk

∣∣∣∣∣ p (x)

⟩
=

n∑
l=0

b
(r)
l

⟨(
(1 + λt)

1
λ − 1

t

)r

tk

∣∣∣∣∣β(r)
l,λ (x)

⟩(2.34)

=
n∑

l=0

b
(r)
l l!δl,k = k!b

(r)
k .
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Thus, by (2.34), we get

(2.35) b
(r)
k =

1

k!

⟨(
(1 + λt)

1
λ − 1

t

)r

tk

∣∣∣∣∣ p (x)

⟩
.

Theorem 6. For p (x) ∈ Pn, we have

p (x) =
n∑

k=0

b
(r)
k β

(r)
k,λ (x) ,

where

b
(r)
k =

1

k!

⟨(
(1 + λt)

1
λ − 1

t

)r

tk

∣∣∣∣∣ p (x)

⟩

=
1

k!

⟨(
(1 + λt)

1
λ − 1

t

)r∣∣∣∣∣ p(k) (x)

⟩
,

where p(k) (x) =
(

d
dx

)k
p (x).
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Regularization Smoothing Approximation of Fuzzy Parametric
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Abstract. This work is motivated by the fact that very little is known about the
fuzzy parametric variational inequalities constrained stochastic optimization prob-
lems in finite dimension real numeral spaces, which are studied more difficult be-
cause of the existence of random variable and fuzzified version. Based on the notion
of quasi-Monte Carlo estimate and method of centres with entropic regularization,
we develop a class of new regularization smoothing approximation approaches to
discretize the stochastic optimization problem with continuous random variable,
and construct a centre iterative algorithm for approximating the optimal solution-
s of the stochastic optimization problems. Further, we give some comprehensive
convergence theorems of optimal solutions for the resulting optimization problem.
Finally, a numerical illustration is analyzed.

Key Words and Phrases. Regularization smoothing approximation, fuzzy para-
metric variational inequality, Stochastic optimization problem, centre iterative al-
gorithm with quasi-Monte Carlo estimate, comprehensive convergence.

AMS Subject Classification. 49J40, 65K05, 90C30, 90C33

1 Introduction

As all we know, mathematical program with equilibrium constraints is a constrained optimization
problem in which the essential constraints are defined by a parametric variational inequality. This
class of problems can be regarded as a generalization of a bilevel programming problem and it
therefore plays an important role in many fields such as transportation, communication networks,
structural mechanics, economic equilibrium, multilevel game, and mathematical programming itself.
See, for example, [1–7] and the reference therein. Moreover, in order to describe the uncertainties,
Monica [5] considered the Bochner integrability setting, a measure space of indices and use random
fuzzy mappings, and presented random fixed point theorems with random fuzzy mappings, extensions
of the ones with random data.

In this paper, we study approximation of optimal solutions for the following fuzzy parametric
variational inequality constrained stochastic optimization problem in n-dimension real numeral set
Rn:

min
x,y(·)

Eω[f(x, y(ω), ω)]

s.t. x ∈ U ⊂ Rn,
y(ω) ∈ C(x, ω)
⟨F (x, y(ω), ω), z(ω)− y(ω)⟩≥∼ 0, for all z(ω) ∈ C(x, ω) and a.e. ω ∈ Ω,

(1.1)

where Eω denotes the mathematical expectation with respect to the random variable ω ∈ Ω on
probability space (Ω,A,Γ), f : Rn+m ×Ω→ R and F : Rn+m ×Ω→ Rm are two nonlinear random
functions, C : Rn×Ω→ 2R

m

is a multi-valued random function, ⟨F (x, y(ω), ω), z(ω)− y(ω)⟩≥∼ 0 are

fuzzy inequalities (also called fuzzy stochastic variational inequality problems, in short, Ṽ Iω), “ ≥
∼ ”

1
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denotes the fuzzified version of “≥” with the linguistic interpretation “approximately greater than
or equal to”, and “a.e.” is the abbreviation for almost everywhere”.

Remark 1.1. Problem (1.1) is brand new in the literature including and can be thought as
a generalized version of some problems, includes a number of stochastic mathematical program
with equilibrium constraints (SMPEC), mathematical programs with fuzzy equilibrium constraints
(MPFEC) mathematical program with equilibrium constraints (MPEC) and mathematical program
with complementarity constraints (MPCC) have been studied by many authors as special cases. See,
for example, [1–4, 6, 8–14] and the references therein, and the following examples.

Example 1.1 If Ω is a singleton, then problem (1.1) reduces to the following MPFEC:

min g(x, u)
s.t. x ∈ U,

u solves Ṽ I (G(x, ·), D(x)),

(1.2)

where g : Rn+m → R and G : Rn+m → Rm is a continuously differentiable function, D : Rn → 2R
m

is
a set valued function, and u solves Ṽ I(G(x, ·), D(x)) if and only if u ∈ D(x) and ⟨G(x, u), z− u⟩≥∼ 0
for all z ∈ D(x). Problem (1.2) was introduced and studied by Hu and Liu [12] and Lan et al.
[13]. Moreover, Hu and Liu [12] pointed out “although a powerful theory has been developed for
variational inequalities, the parameterized setting in MPEC makes these problems very difficult to
solve, and due to the vagueness involved in real world problems, the MPEC problem in a fuzzy
environment becomes an important problem both in theory and in practice”, and “problem (1.2)
is a constrained optimization problem whose constraints include some fuzzy parametric variational
inequalities.

In 2013, inspired by the works of Hu and Liu [12] and other researchers, Lan et al. [13] constructed
an iterative algorithm for finding a solution of a class of mathematical program problems with fuzzy
parametric variational inequality constraints by using a new smoothing approach based on a version
of the method of centres with entropic regularization techniques. In fact, the tolerance approach and
entropic regularization technique have been successfully proposed in solving various problems, which
are important numerical methods for solving fuzzy variational inequalities in a fuzzy environment
and nonlinear semi-infinite programming problems. See, for example, [3, 8, 14–21] and the references
therein.

Example 1.2. Since a solution satisfying a fuzzy inequality system to a membership degree
close to 1 is a near optimal solution to the corresponding regular inequality problem [22], if y(ω) ≡ v
for all ω ∈ Ω and the degree for the fuzzy inequalities in (1.1) is close to 1, then problem (1.1) is
equivalent to the following SMPEC:

min Eω[f(x, v, ω)]
s.t. x ∈ U, ω ∈ Ω

v solves V I(F (x, ·, ω), C(x, ω)),
(1.3)

where V I(F (x, ·, ω), C(x, ω)) denotes the variational inequality problem defined by the pair (F (x, ·,
ω), C(x, ω)) for all x ∈ Rn and ω ∈ Ω. In 2003, Lin et al. [9] considered problem (1.3) and showed
that SMPEC can be thought as a generalization of MPEC, and proposed a smoothing implicit
programming method to establish a comprehensive convergence theory for the lower-level wait-
and-see model. Further, there are many stochastic formulations of MPEC proposed in the recent
discussions. For related works, we refer readers to [1, 3, 6, 8, 10, 11]. However, there has been very
little study on applications of these theories and approaches to (1.1).

Over years of development, optimization approaches have become one of the most promising
techniques for engineering applications and an MPEC is a hard problem because its constraints
fail to satisfy a standard constraint qualification at any feasible point [23]. However, since the
existence of the random variable ω and the fuzzified version “ ≥

∼ ” mean that (1.1) involves multiple
complementarity-type constraints, it is more difficult to solve problem (1.1) than to solve an ordinary
MPCC, MPEC, MPFEC or SMPEC generally. Therefore, our focus in this paper is to develop a
class of new regularization smoothing approximation approaches to define some parameters of the
objective function fuzzy yielded by fuzzy constraints, and consider the approximation-solvability for
an equivalent stochastic parametric optimization problem of problem (1.1).

2
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Motivated and inspired by the above works, we shall give some preliminaries needed throughout
the whole paper in Section 2. Specially, by using the notion of tolerance approach and the fuzzy set
theory, we show that the fuzzy parametric variational inequality constrained stochastic optimization
problem (1.1) and a fuzzy complementarity constrained optimization problem can be converted to a
regular nonlinear parametric optimization problem. In Sections 3, we will construct a centre iterative
algorithm and develop a class of new regularization smoothing approximation approach for solving
the stochastic fuzzy optimization based on quasi-Monte Carlo estimate, and establish comprehensive
convergence theorems of the solution. We also report some numerical simulation analysis results in
Section 4.

2 Preliminaries

Throughout in this paper, we assumption that (Ω,A,Γ) is a complete σ-finite measure space and
the probability measure Γ of our considered space (Ω,A,Γ) is non-atomic. Let B(Rm) be the class
of Borel σ-fields in Rm and P (U) denote the power set of a vector space U .

Definition 2.1. (i) A function y : Ω → Rm is said to be measurable, if for any B ∈ B(Rm),
{ω ∈ Ω : y(ω) ∈ B} ∈ A).

(ii) The multi-valued function Ψ : Ω→ P (U) is called said to be measurable, if for any B ∈ B(U),
Ψ−1(B) = {ω ∈ Ω : Ψ(ω) ∩B ̸= ∅} ∈ A.

(iii) A multi-valued random function Φ : Rn × Ω → 2R
m

is said to be measurable, if for any
x ∈ Rn, Φ(x, ·) is measurable.

(iv) F : Rn+m × Ω → Rm is called a random and continuously differentiable function, when
F (x, z, ω) = ζ(ω) is measurable for any x ∈ Rn and z ∈ Rm, and F (·, ·, ω) is continuously differen-
tiable for all ω ∈ Ω.

Definition 2.2. Let C,C∗ : Rn × Ω→ 2R
m

be two multi-valued random function. Then
(i) C(x, ω) is said to be convex cone, if C(x, ·) is convex cone for every x ∈ Rn, that is,

αy(·) + βw(·) ∈ C(x, ·) for any positive scalarsα, β and all measurable function y(·), w(·) ∈ C(x, ·);

(ii) C∗(x, ω) is called polar (dual) cone of C(x, ω) ⊂ Rm for x ∈ Rn and ω ∈ Ω, if C∗(x, ·) is
polar (dual) cone for every x ∈ Rn, i.e.

⟨ξ, ν(·)⟩ ≥ 0 ∀ξ ∈ Rm and for each measurable function ν(·) ∈ C(x, ·).

In other words, the polar (dual) cone C∗(x, ω) can be expressed as follows:

C∗(x, ω) = {ξ ∈ Rm∥ ⟨ξ, ν(ω)⟩ ≥ 0 ∀ν(ω) ∈ C(x, ω)} .

Definition 2.3. Let σ > 0 and ς > 0 be constants. a function M : Rn → Rm is said to be
Hölder continuous on K ⊂ Rm with order σ and Hölder constant ς if

∥M(u)−M(v)∥ ≤ ς∥u− v∥σ, ∀u, v ∈ K.

holds for all u and v in K.
Remark 2.1. If σ = 1, then the definition of Hölder continuity reduces to definition of Lipschitz

continuity. We note that for two different positive numbers σ and σ′, Hölder continuous functions
with order σ and those with order σ′ constitute different subclasses. For example, the function
M(u) :=

√
∥u∥ for all u ∈ K ⊂ Rm is Hölder continuous with order σ = 1

2 , but not Lipschitz
continuous.

In the sequel, we give some preparations needed later to approximating the optimal solutions
of problem (1.1). First, we propose discretization of the stochastic objective function in (1.1) with
continuous random variable.

3
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Lemma 2.1. Let ζ : Ω → [0,+∞) be the continuous probability density function of ω. Then
the objective function in (1.1) can be represented as

Eω(f(x, y(ω), ω) =
1

L

∑
ω∈ΩL

f(x, y(ω), ω)ζ(ω), (2.1)

where ΩL := {ω1, ω2, · · · , ωL} is a uniformly distributed sample set from Ω.
Proof. Let Ω be a sample space, which is usually denoted using set notation, and the possible

outcomes are listed as elements in the set. If Ω is unbounded, under some mild conditions, we can
approximate the problem by a sequence of programs with bounded sampling spaces (see [11]) for
more details. In the sequel, let Ω be a bounded rectangle. In particular, without loss of generality,
we assume that Ω = [0, 1]κ. Let ζ : Ω → [0,+∞) be the continuous probability density function of
ω. Then the objective function in (1.1) can be represented as

Eω(f(x, y(ω), ω) =

∫
Ω

f(x, y(ω), ω)ζ(ω)dω.

Based on quasi-Monte Carlo method in [24], now we estimate numerical integration to the ob-
jective function in problem (1.1). Roughly speaking, given a function ϕ : Ω → R, the quasi-
Monte Carlo estimate for Eω[ϕ(ω)] is obtained by taking a uniformly distributed sample set ΩL :=
{ω1, ω2, · · · , ωL} from Ω and letting Eω[ϕ(ω)] ≈ 1

L

∑
ω∈ΩL

ϕ(ω). This implies that (2.1) holds. 2

Next, we consider the random membership functions of each fuzzy stochastic inequality and
stochastic fuzzy objective yielded by the fuzzy constraints in (1.1).

Let the membership function for each fuzzy stochastic inequality ⟨F (x, y(ω), ω), z − y(ω)⟩≥∼ 0 as
follows: for all x ∈ Rn and any z ∈ C(x, ω),

µΩ̃z
(x, y(ω), ω) =

 1, if ⟨F (x, y(ω), ω), z − y(ω)⟩ ≥ 0,
µz(⟨F (x, y(ω), ω), z − y(ω)⟩), if ⟨F (x, y(ω), ω), z − y(ω)⟩ ∈ [−tz, 0),
0, if ⟨F (x, y(ω), ω), z − y(ω)⟩ < −tz,

(2.2)

specify the degree to which the regular inequality ⟨F (x, y(ω), ω), z−y(ω)⟩ ≥ 0 is satisfied, where Ω̃z is
a fuzzy set actually determined by the fuzzy stochastic inequality in Rn+m×Ω, tz ≥ 0 is the tolerance
level which can be tolerated by decision makers in the accomplishment of the fuzzy stochastic
inequality ⟨F (x, y(ω), ω), z− y(ω)⟩≥∼ 0. We usually assume that µz(⟨F (x, y(ω), ω), z− y(ω)⟩) ∈ [0, 1]
and it is continuous and strictly increasing over [−tz, 0). Fig. 1 shows different shapes of such
membership functions.

µz(〈F(x, y(ω), ω), z − y(ω)〉)

1

−tz
0

α

µ−1

Ω̃z

(α) 〈F(x, y(ω), ω), z − y(ω)〉

µ
Ω̃z

(x, y(ω), ω)

Figure 1: The membership function µΩ̃z
(x, y(ω), ω).
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Similarly, the random membership function of the objective, µS̃0
(x, y(ω), ω), is defined as follows:

µS̃0
(x, y(ω), ω) =


1, if Eω[f(x, y(ω), ω)] < f,

µ0(Eω[f(x, y(ω), ω)]), if Eω[f(x, y(ω), ω)] ∈ [f, f̄),

0, if Eω[f(x, y(ω), ω)] ≥ f̄ ,
(2.3)

where f and f̄ are two parameters defined as follows:

f̄ = min Eω[f(x, y(ω), ω)]
s.t. x ∈ U, ω ∈ Ω,

⟨F (x, y(ω), ω), z − y(ω)⟩ ≥ 0, ∀z ∈ C(x, ω)
(2.4)

and
f = min Eω[f(x, y(ω), ω)]

s.t. x ∈ U, ω ∈ Ω,
⟨F (x, y(ω), ω), z − y(ω)⟩ ≥ −tz, ∀z ∈ C(x, ω).

(2.5)

By [22, 25], one can know that studying such a problem (1.1) is related to finding “almost
optimal” solutions for a general convex minimization problem (see also [13, 14, 17]). Thus, we
extend the idea and have the following result.

Lemma 2.2. Let C(x, ω) be a convex cone for all x ∈ Rn and ω ∈ Ω. Then the problem Ṽ Iω,
i.e., finding y(ω) ∈ C(x, ω) such that

⟨F (x, y(ω), ω), z(ω)− y(ω)⟩≥∼ 0, ∀z(ω) ∈ C(x, ω), (2.6)

is equivalent to the fuzzy complementarity problem of finding y(ω) ∈ Rm such that

y(ω) ∈ C(x, ω), ⟨F (x, y(ω), ω), y(ω)⟩=∼ 0, F (x, y(ω), ω) ∈
∼ C

∗(x, ω), (2.7)

where “=∼” denotes the fuzzified version of “=” with the linguistic interpretation “approximately
equal to”, “∈∼” denotes the fuzzified version of “∈” with the linguistic interpretation “approximately
in” and C∗(x, ω) is a polar (dual) cone of C(x, ω) ⊂ Rm for all x ∈ Rn and ω ∈ Ω.

Proof. We start by showing that problem (2.7)⊂ problem (2.6). For any x ∈ Rn and ω ∈ Ω,
suppose that y∗(ω) is a solution of problem (2.7), then we have

⟨F (x, y∗(ω), ω), y∗(ω)⟩=∼ 0 (2.8)

and
⟨F (x, y∗(ω), ω), υ(ω)⟩≥∼ 0, ∀υ(ω) ∈ C(x, ω). (2.9)

Combining (2.8) and (2.9), we have ⟨F (x, y∗(ω), ω), υ(ω)− y∗(ω)⟩≥∼ 0 for all υ(ω) ∈ C(x, ω). Thus,
y∗(ω) is also a solution of problem (2.6) for all ω ∈ Ω.

Now we show that problem (2.6) ⊂ problem (2.7). Let y∗(ω) be the solution of problem (2.6)
with the membership degree α ∈ [0, 1] for every ω ∈ Ω. According to the tolerance approach [15, 21],
by (2.2), we have

⟨F (x, y∗(ω), ω), υ(ω)− y∗(ω)⟩ ≥ µ−1

Ω̃z
(α) ≥ −tz, ∀υ(ω) ∈ C(x, ω), (2.10)

where for all υ(ω) ∈ C(x, ω) and any ω ∈ Ω, µ−1

Ω̃z
is the inverse functions of µΩ̃z

(x, ·, ω) and tz > 0 is

the tolerance level which a decision maker can tolerate in the accomplishment of the fuzzy inequality
⟨F (x, y(ω), ω), υ(ω)− y(ω)⟩≥∼ 0. Suppose that for t̄z ≥ 0 and t̂z < 0, either

⟨F (x, y∗(ω), ω), y∗(ω)⟩ > t̄z or ⟨F (x, y∗(ω), ω), y∗(ω)⟩ < t̂z

is true. For any x ∈ Rn and each ω ∈ Ω, since C(x, ω) is a convex cone, we have ⟨F (x, y∗(ω), ω), y∗(ω)⟩ ≥
−tz
λ−1 , tz ≥ 0 when υ(ω) = λy∗(ω) with λ > 1, and ⟨F (x, y∗(ω), ω), y∗(ω)⟩ ≤ tz, when υ(ω) = 0. If
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⟨F (x, y∗(ω), ω), y∗(ω)⟩ > t̄z for t̄z ≥ 0, This leads to a contradiction. If ⟨F (x, y∗(ω), ω), y∗(ω)⟩ < t̂z
for t̂z < 0, then tz ≤ t̂z. There lies a contradiction. Therefore,

t̂z ≤ ⟨F (x, y∗(ω), ω), y∗(ω)⟩ ≤ t̄z,

for t̄z ≥ 0 and t̂z < 0, that is, ⟨F (x, y∗(ω), ω), y∗(ω)⟩=∼ 0. Furthermore, from (2.10), we have for any
υ(ω) ∈ C(x, ω),

⟨F (x, y∗(ω), ω), υ(ω)⟩ ≥ ⟨F (x, y∗(ω), ω), y∗(ω)⟩ − tz ≥ t̂z − tz.

This implies that ⟨F (x, y∗(ω), ω), υ(ω)⟩≥∼ 0 for all υ(ω) ∈ C(x, ω). Hence, we have F (x, y∗(ω), ω) ∈
∼

C∗(x, ω). Therefore, y∗(ω) for any ω ∈ Ω is also a solution of problem (2.7). This completes the
proof. 2

Based on Lemma 2.2 and the work of [21], we have the following results.
Lemma 2.3. Let C(x, ω) is a convex cone with polar (dual) cone C∗(x, ω) for all (x, ω) ∈ Rn×Ω

and α be a new variable. Then the stochastic optimization problem (1.1) can eventually be expressed
as the following regular semi-infinite optimization problem with finitely many variables x, y(ω), ω
and α:

max α
s.t. µS̃0

(x, y(ω), ω) ≥ α,
µΩ̃z

(x, y(ω), ω) ≥ α,
(x, y(ω), ω) ∈ S,
0 ≤ α ≤ 1,

(2.11)

where S = {(x, y(ω), ω) ∈ Rn+m × Ω|x ∈ U, ω ∈ Ω, F (x, y(ω), ω) ∈
∼ C

∗(x, ω)}, and the random
membership functions µS̃0

and µΩ̃z
are the same as in (2.3) and (2.2), respectively.

Proof. It follows from Lemma 2.1 that, in order to find a solution to the stochastic optimization
problem (1.1) with C(x, ω) being a convex cone for (x, ω) ∈ Rn×Ω, we should consider the following
stochastic fuzzy complementarity constrained optimization problem:

min Eω[f(x, y(ω), ω)]
s.t. x ∈ U, ω ∈ Ω, y(ω) ∈ C(x, ω),

⟨F (x, y(ω), ω), y(ω)⟩=∼ 0,
F (x, y(ω), ω) ∈

∼ C
∗(x, ω).

(2.12)

Since a global minimum is often required for practical problems, by the work of [21] and the descrip-
tion of the fuzzy stochastic inequalities (2.6), and a solution of problem (2.12) can be taken as the
solution with the highest membership in the fuzzy decision set and eventually obtained by solving
the following regular nonlinear parametric optimization problem:

max
(x,y(ω),ω)∈S

min
{
µS̃0

(x, y(ω), ω), µΩ̃z
(x, y(ω), ω)

}
,

which implies that the result holds for the new variable α. 2

Remark 2.2. Moreover, if the membership functions µS̃0
and µΩ̃z

in Lemma 2.3 are invertible,
then from (2.11), we get

max α

s.t. (x, y(ω), ω)0 ≥ µ−1

S̃0
(α),

(x, y(ω), ω)C∗ ≥ µ−1

Ω̃z
(α),

(x, y(ω), ω) ∈ S,
0 ≤ α ≤ 1,

(2.13)

where (x, y(ω), ω)0 and (x, y(ω), ω)C∗ can be followed by (2.3) and (2.2), respectively.
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3 Regularization smoothing approximation algorithms

In this section, based on the “method of centres” with entropic regularization, we develop a class
of new smoothing approach and construct a centre iterative algorithm for solving the stochastic
fuzzy optimization (1.1), and give the solution theorems.

In the sequel, we first give the following assumption (HC) for convenience: Define

C(x, ω) := {υ(ω) ∈ Rm|D(x)υ(ω) ≥ 0, D(x) = [di(x)] is an l ×m
matrix, di(x) is the ith row ofD(x), ∀i = 1, 2, · · · , l}. (3.1)

STEP I. The random membership function of the fuzzy stochastic inequalities in (1.1) can be
specified under condition (HC).

From (3.1), it is easy to see that the multi-valued operator C(x, ω) is a convex cone for any
(x, ω) ∈ Rn × Ω, and can be shown that F (x, y(ω), ω) ∈ C∗(x, ω) if and only if there exists a
nonnegative random vector r(ω) = (r1(ω), r2(ω), · · · , rl(ω))T ∈ Rl such that

F (x, y(ω), ω) = r1(ω)dT1 (x) + r2(ω)dT2 (x) + · · ·+ rl(ω)dTl (x) = DT (x)r(ω), (3.2)

that is, for every i = 1, 2, · · · , l, d′i(x)F (x, y(ω), ω) ≥ 0, where d′i(x) is normal to di(x) (see [17, 26]).
It follows that the fuzzy stochastic optimization problem (2.12) can be rewritten as the following

generalized stochastic optimization problem with fuzzy stochastic inequality constraints:

min Eω[f(x, y(ω), ω)]
s.t. x ∈ U, ω ∈ Ω,

di(x)y(ω) ≥ 0, i = 1, 2, · · · , l,
⟨F (x, y(ω), ω), y(ω)⟩≥∼ 0,
⟨−F (x, y(ω), ω), y(ω)⟩≥∼ 0,
d′i(x)F (x, y(ω), ω) ≥

∼ 0, i = 1, 2, · · · , l,

(3.3)

and each fuzzy stochastic inequality in (3.3) can be represented by a fuzzy set S̃j (i.e., represent

of Ω̃z in (2.11) or (2.13)) with corresponding random membership function µS̃j
(x, y(ω), ω) for j =

1, 2, · · · , l + 2. To specify the membership functions µS̃j
, j = 1, 2, · · · , l + 2, similar treatment to

(2.2), we define the membership functions as follows:

µS̃1
(x, y(ω), ω) =

 1, if ⟨F (x, y(ω), ω), y(ω)⟩ ≥ 0,
µ1(⟨F (x, y(ω), ω), y(ω)⟩), if ⟨F (x, y(ω), ω), y(ω)⟩ ∈ [−t1, 0),
0, if ⟨F (x, y(ω), ω), y(ω)⟩ < −t1,

µS̃2
(x, y(ω), ω) =

 1, if ⟨−F (x, y(ω), ω), y(ω)⟩ ≥ 0,
µ2(⟨−F (x, y(ω), ω), y(ω)⟩), if ⟨−F (x, y(ω), ω), y(ω)⟩ ∈ [−t2, 0),
0, if ⟨−F (x, y(ω), ω), y(ω)⟩ < −t2,

µS̃i+2
(x, y(ω), ω) =

 1, if d′iF (x, y(ω), ω) ≥ 0,
µi+2(d′iF (x, y(ω), ω)), if d′iF (x, y(ω), ω) ∈ [−ti+2, 0),
0, if d′iF (x, y(ω), ω) < −ti+2,

(3.4)

where ti+2 ≥ 0 for i = 1, 2, · · · , l, is the tolerance level which one decision maker can tolerate in the
accomplishment of the fuzzy stochastic inequalities in (3.3).

STEP II. Discrete approximation of problem (1.1) with condition (HC) need to be given.
By Lemma 2.1 and STEP I, we have the following problem as an appropriate discrete approxi-

mation of problem (3.3):

min 1
L

∑
ω∈ΩL

f(x, y(ω), ω)ζ(ω)

s.t. x ∈ U ⊂ Rn, ω ∈ ΩL,
di(x)y(ω) ≥ 0, i = 1, 2, · · · , l,
⟨F (x, y(ω), ω), y(ω)⟩≥∼ 0,
⟨−F (x, y(ω), ω), y(ω)⟩≥∼ 0,
d′i(x)F (x, y(ω), ω) ≥

∼ 0, i = 1, 2, · · · , l.

(3.5)
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We note that the sample set ΩL is chosen to be asymptotically dense in Ω. Especially, it follows
from (2.4), (2.5) and (3.5) that the appropriate discrete approximation of two parameter f̄ and f
can be shown as follows, respectively:

f̄ = min 1
L

∑
ω∈ΩL

f(x, y(ω), ω)ζ(ω)

s.t. x ∈ U ⊂ Rn, ω ∈ ΩL,
di(x)y(ω) ≥ 0, i = 1, 2, · · · , l,
⟨F (x, y(ω), ω), y(ω)⟩ ≥ 0,
⟨−F (x, y(ω), ω), y(ω)⟩ ≥ 0,
d′i(x)F (x, y(ω), ω) ≥ 0, i = 1, 2, · · · , l

(3.6)

and
f = min 1

L

∑
ω∈ΩL

f(x, y(ω), ω)ζ(ω)

s.t. x ∈ U ⊂ Rn, ω ∈ ΩL,
di(x)y(ω) ≥ 0, i = 1, 2, · · · , l,
⟨F (x, y(ω), ω), y(ω)⟩ ≥ −t1,
⟨−F (x, y(ω), ω), y(ω)⟩ ≥ −t2,
d′i(x)F (x, y(ω), ω) ≥ −ti+2, i = 1, 2, · · · , l.

(3.7)

STEP III. A new centre iterative method for solving problem (3.8) should be adopt.
It follows from (2.13), (2.3) and (3.4)-(3.7) that an optimal solution of the stochastic optimization

problem (1.1) can be obtained by approximating for the following stochastic parametric optimization
problem: 

max α

s.t. µ−1

S̃0
(α)− 1

L

∑
ω∈ΩL

f(x, y(ω), ω)ζ(ω) ≥ 0,

µ−1

S̃1
(α)− ⟨F (x, y(ω), ω), y(ω)⟩ ≥ 0,

µ−1

S̃2
(α) + ⟨F (x, y(ω), ω), y(ω)⟩ ≥ 0,

−µ−1

S̃j
(α) + d′j−2F (x, y(ω), ω) ≥ 0, j = 3, 4, · · · , l + 2,

di(x)y(ω) ≥ 0, i = 1, 2, · · · , l,
0 ≤ α ≤ 1, x ∈ U, ω ∈ ΩL.

(3.8)

It is interested in developing an efficient algorithm to solve (3.8) based on a framework of centre
iterations. This iterative approach can be traced back to Huard’s work [28]. The basic concepts are
easy to understand and very adaptive to new developments. To describe the approach, we denote
the feasible domain of (3.8) by a set V and define some terminologies. A general assumption for
this approach is that V is bounded and convex, and the interior of V is nonempty.

Definition 3.1 For any given point (x, y(ω), ω, α) in the convex domain V , we define the “dis-
tance L of (x, y(ω), ω, α) to the boundary of V ” by a continuous function

L((x, y(ω), ω, α), V ) = min
i=1,2,··· ,l

j=3,4,··· ,l+2

{
α, 1− α, µ−1

S̃0
(α)− 1

L

∑
ω∈ΩL

f(x, y(ω), ω)ζ(ω),

µ−1

S̃1
(α)− ⟨F (x, y(ω), ω), y(ω)⟩, µ−1

S̃2
(α) + ⟨F (x, y(ω), ω), y(ω)⟩,

−µ−1

S̃j
(α) + d′j−2F (x, y(ω), ω), di(x)y(ω)

}
.

Definition 3.2 Let a distance function L((x, y(ω), ω, α), V ) be defined on a convex domain V .
Then a point (x̄, ȳ(ω), ω, ᾱ) ∈ V is called the “centre of V ”, if it maximizes the distance function
L((x, y(ω), ω, α), V ), i.e.,

(x̄, ȳ(ω), ω, ᾱ) : L((x̄, ȳ(ω), ω, ᾱ), V ) = max {L((x, y(ω), ω, α), V )| (x, y(ω), ω, α) ∈ V } .

Thus, a new centre iterative method for problem (3.8) could be described as follows.
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Algorithm 3.1. Step 1. Taking a point (xk, yk(ω), ω, αk) in V , then we consider the distance
L in convex domain Wk = V ∩ {(x, y(ω), ω, α)|α ≥ αk}.

Step 2. Solving the maximal problem max{L((x, y(ω), ω, α),Wk)| (x, y(ω), ω, α) ∈ Wk} and
denoting the new iterative point (xk+1, yk+1(ω), ω, αk+1) as a centre of Wk, then we have

(xk+1, yk+1(ω), ω, αk+1) :

L((xk+1, yk+1(ω), ω, αk+1),Wk) = max{L((x, y(ω), ω, α),Wk)| (x, y(ω), ω, α) ∈Wk},

where

L((x, y(ω), ω, α),Wk) = min
i=1,2,··· ,l

j=3,4,··· ,l+2

{
α− αk, α, 1− α, µ−1

S̃0
(α)− 1

L

∑
ω∈ΩL

f(x, y(ω), ω)ζ(ω),

µ−1

S̃1
(α)− ⟨F (x, y(ω), ω), y(ω)⟩, µ−1

S̃2
(α) + ⟨F (x, y(ω), ω), y(ω)⟩,

−µ−1

S̃j
(α) + d′j−2F (x, y(ω), ω), di(x)y(ω)

}
is the distance function defined on the convex domain Wk.

Step 3. Start working again with (xk+1, yk+1(ω), ω, αk+1) instead of (xk, yk(ω), ω, αk) and go to
Step 1.

It follows from the properties introduced in [28, Lemma 2.2] and Algorithm 3.1 that the major
computational work lies in the determination of the centres required, i.e., at the kth iteration, the
following “min-max problem” should be solved:

− min
x,y(ω),ω,α

L((x, y(ω), ω, α),Wk) = min
x,y(ω),ω,α

max i=1,2,··· ,l
j=3,4,··· ,l+2

{
αk − α, −α, α− 1,

1
L

∑
ω∈ΩL

f(x, y(ω), ω)ζ(ω)− µ−1

S̃0
(α),

⟨F (x, y(ω), ω), y(ω)⟩ − µ−1

S̃1
(α),

−⟨F (x, y(ω), ω), y(ω)⟩ − µ−1

S̃2
(α),

−d′j−2F (x, y(ω), ω) + µ−1

S̃j
(α), −di(x)y(ω)

}
.

(3.9)

STEP IV A class of new regularization smoothing approximation algorithms is developed under
condition (HC).

Since the maximal membership function (see [12]) in the “min-max” problem (3.9) is non-
differentiability, it is easy to see that one major difficulty encountered is to develop a class of
new smoothing approximation methods, which are based on the notion of newly proposed “entropic
regularization procedure” (see [18]).

Algorithm 3.2.
Step 1. Set k = 0, give the initial iterate (x0, y0(ω), ω, α0) which is an interior point of V defined

by (3.8), a sufficiently small constant ϵ > 0, and an upper bound Q which is the maximum number
of unconstrained minimizations to be performed.

Step 2. Starting from (xk, yk(ω), ω, αk), apply a standard quasi-Newton line search of MAT-
LAB software to solve the unconstrained smooth convex program (3.6), (3.7) and the following
unconstrained smooth convex program:

− min
x,y(ω),ω,α

Lγ((x, y(ω), ω, α),Wk)

= 1
γ ln

{
exp[γ(αk − α)] + exp[γ(−α)] + exp[γ(α− 1)]

+ exp[γ( 1
L

∑
ω∈ΩL

f(x, y(ω), ω)ζ(ω)− µ−1

S̃0
(α))]

+ exp[γ(⟨F (x, y(ω), ω), y(ω)⟩ − µ−1

S̃1
(α))]

+ exp[γ(−⟨F (x, y(ω), ω), y(ω)⟩ − µ−1

S̃2
(α))]

+
l+2∑
j=3

exp[γ(−d′j−2F (x, y(ω), ω) + µ−1

S̃j
(α))]

+
l∑

i=1

exp[γ(−di(x)y)]
}

(3.10)
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with a sufficiently large γ. Denote its solution by (xk+1, yk+1(ω), ω, αk+1) in the light of Algorithm
3.1.

Step 3. If k > 1 and ∥(xk+1, yk+1(ω), ω, αk+1) − (xk, yk(ω), ω, αk)∥2 ≤ ϵ, then the computation
terminates with (xk+1, yk+1(ω), ω, αk+1) as the solution. If k > Q, then the computation terminates
with a failure.

Step 4. k ← k + 1 and go to Step 2.
From Algorithm 3.2, it follows that minx,y(ω),ω,α Lγ((x, y(ω), ω, α),Wk) provides a centre of Wk,

as γ →∞. By using a moderately large γ, we can obtain an accurate approximation. Also because of
the special “log-exponential” form of Lγ((x, y(ω), ω, α),Wk), we can avoid most overflow problems in
computation. Moreover, since problem (3.10) is an unconstrained, smooth, and convex optimization
program, the commonly used solution methods, such as the quasi-Newton line search of MATLAB
software, can be readily applied.

Remark 3.1. We note that Algorithm 3.1 appears in Step 2 of Algorithm 3.2. It is the fuzzy
constraints in (1.1) that yields a fuzzy objective. Hence, a class of new and interesting regularization
smoothing approximation approaches must be chosen to define two parameters in (3.6) and (3.7), and
to employ for solving problem (3.10) which is equivalent to the stochastic parametric optimization
problem (3.8).

STEP V Comprehensive convergence theorems based on Algorithm 3.2 should be proved.
In the sequel, we first give the following lemmas and results.
Lemma 3.1. Let the function φ : Ω→ R be continuous. Then we have

lim
L→∞

1

L

∑
ω∈ΩL

φ(ω)ζ(ω) =

∫
Ω

φ(ω)ζ(ω)dω.

Proof. Taking N = L, Īs = Ω, J = ΩL, xi = ωi (i = 1, 2, · · · ) and f = φζ, then from the results
(2.2) and (2.3) given in Chapter 2 of [24, pp. 13-14], the result holds. This completes the proof. 2

Remark 3.2. By Lemma 3.1, we know immediately that

lim
L→∞

1

L

∑
ω∈ΩL

f(x, y(ω), ω)ζ(ω) =

∫
Ω

f(x, y(ω), ω)ζ(ω)dω (3.11)

and particularly,

lim
L→∞

1

L

∑
ω∈ΩL

ζ(ω) =

∫
Ω

ζ(ω)dω = 1. (3.12)

Lemma 3.2. If ψ(x) is continuous, strictly increasing and linear over a convex set U in Rn,
then its inverse ψ−1 is linear.

Theorem 3.1. Suppose that condition (HC) holds, the set U ⊂ Rn is nonempty and bounded,
F : Rn+m × Ω→ Rm is continuously differentiable, and f : Rn+m × Ω→ R is Hölder continuous in
(x, y(·)) on U × Rm with order σ > 0 and Hölder constant ς(ω) > 0 for all ω ∈ ΩL satisfying∫

Ω

ς(ω)dζ(ω) < +∞.

Then
(i) problem (3.6) has at least one optimal solution when L is large enough;
(ii) (x∗, y∗(·)) is an optimal solution of problem (2.4) when x∗ is an accumulation point of the

sequence {xL} and y∗(·) is defined by

y∗(ω) := max
i=1,2,··· ,l

{−F (x∗, 0, ω),−d′i(x∗)F (x∗, 0, ω), 0}, ω ∈ Ω. (3.13)

Proof. (i) Let FL be the feasible region of problem (3.6). It is not difficult to see that FL is a
nonempty and closed set and the objective function of problem (3.6) is bounded below on FL. Thus,
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there exists a sequence {(xk, yk(ω))ω∈ΩL
} ⊂ FL such that

lim
k→∞

1

L

∑
ω∈ΩL

f(xk, yk(ω), ω)ζ(ω)

= inf
(x,y(ω),ω)ω∈ΩL

1

L

∑
ω∈ΩL

f(x, y(ω), ω)ζ(ω). (3.14)

It follows from the boundedness of U and the Hölder continuity of f that the sequence {xk} and the
function f are bounded.

On the other hand, noting that (xk, yk(ω))ω∈ΩL ∈ FL for every k, we have

0 ≤ yk(ω) ⊥ 1

L

∑
ω∈ΩL

F (xk, yk(ω), ω)ζ(ω) ≥ 0, (3.15)

where the symbol ⊥ means the two vectors are perpendicular to each other. Assume that the
sequence {yk(ω)}ω∈ΩL is unbounded. Taking a subsequence if necessary, let

lim
k→∞
ω∈ΩL

∥yk(ω)∥ = +∞, lim
k→∞
ω∈ΩL

yk(ω)

∥yk(ω)∥
= ȳ(ω), ∥ȳ(ω)∥ = 1. (3.16)

Then, for all ω ∈ ΩL, dividing (3.15) by ∥yk(ω)∥ and letting k → +∞, we have for any x ∈ U ,

0 ≤ ȳ(ω) ⊥ 1

L

∑
ω∈ΩL

F (x, ȳ(ω), ω)ζ(ω) ≥ 0.

This contradicts (3.16) by the continuous differentiability of F , and so {yk(ω)} is bounded for each
ω ∈ ΩL with ζ(ω) > 0. For any ω ∈ ΩL with ζ(ω) = 0, we redefine yk(ω) by

yk(ω) := max
i=1,2,··· ,l

{−F (xk, 0, ω),−d′i(xk)F (xk, 0, ω), 0}.

Hence, the sequence {(xk, yk(ω))ω∈ΩL} is bounded and (3.14) remains valid. Therefore, the closeness
of FL implies that any accumulation point of {(xk, yk(ω))ω∈ΩL

} must be an optimal solution of
problem (3.6).

(ii) By the assumptions, the sequence {xL} contains a subsequence converging to x∗. Without
loss of generality, we suppose limL→∞ xL = x∗.

Firstly, we prove that (x∗, y∗(·)) is feasible to problem (3.6). To this end, we define

ŷL(ω) := max
i=1,2,··· ,l

{
−F (xL, 0, ω),−d′i(xL)F (xL, 0, ω), 0

}
, ω ∈ Ω. (3.17)

It is obvious that (x∗, ŷL(ω))ω∈ΩL
is feasible to problem (3.6) for every L. Since F (x∗, y∗(ω), ω) ≥ 0

by the definition (3.13), it is sufficient to show that

(y∗(ω))TF (x∗, y∗(ω), ω) = 0, ω ∈ Ω. (3.18)

Let ω̄ ∈ Ω be fixed. Since the sample set ΩL is chosen to be asymptotically dense in Ω, there exists
a sequence {ω̄L} of samples such that ω̄L ∈ ΩL for each L and limL→∞ ω̄L = ω̄. Thus, we obtain

(ŷL(ω̄L))TF (xL, ŷL(ω̄L), ω̄L) = 0, L = 1, 2, · · · .

Letting L→ +∞ and taking the continuity of the functions F (x, y(·), ·) on the compact set Ω into
account, we have

(y∗(ω̄))TF (x∗, y∗(ω̄), ω̄) = 0.

By the arbitrariness of ω̄ ∈ Ω, now we know that (3.18) immediately holds. This completes the
proof of the feasibility of (x∗, y∗(·)) in (3.6).
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Next, let (x, y(·)) be an arbitrary feasible solution of (3.6). It follows from the results of (i) and
obvious that (x, y(ω), ω)ω∈ΩL

is feasible to problem (3.6) for any L. Moreover, from the Höcontinuity
of f , we have

1

L

∑
ω∈ΩL

[
f(xL, yL(ω), ω)− f(xL, ŷL(ω), ω)

]
ζ(ω)

=
1

L

∑
ω∈ΩL

[
f(xL, yL(ω), ω)− f(xL, ŷL(ω), ω)

]
ζ(ω)

≤ 1

L

∑
ω∈ΩL

[
∥yL(ω)− ŷL(ω)∥ς(ω)

]
· ζ(ω)→ 0 as k →∞, w.p.1.

which along with Lemma 3.1 yields

lim
L→∞

1

L

∑
ω∈ΩL

f(xk, yk(ω), ω) = lim
L→∞

1

L

∑
ω∈ΩL

f(x∗, y∗(ω), ω) = Eω[f(x∗, y∗(ω), ω)] w.p.1,

which indicates that (x∗, y∗(·)) is an optimal solution of problem (1.1) with probability one and
the feasibility of (xL, yL(ω), ω)ω∈ΩL in (3.6) that (xL, ŷL(ω), ω)ω∈ΩL is also an optimal solution of
problem (3.6). Thus, since f is Hölder continuous in (x, y(·)) on U × Rm, we obtain

1

L

∑
ω∈ΩL

[
f(x∗, y∗(ω), ω)− f(x, y(ω), ω)

]
ζ(ω)

≤ 1

L

∑
ω∈ΩL

[
f(x∗, y∗(ω), ω)− f(xL, ŷL(ω), ω)

]
ζ(ω)

≤ 1

L

∑
ω∈ΩL

∣∣f(x∗, y∗(ω), ω)− f(xL, ŷL(ω), ω)
∣∣ ζ(ω)

≤ 1

L

∑
ω∈ΩL

ζ(ω) ·
[
∥xL − x∗∥+ ∥ŷL(ω)− y∗(ω)∥

]
ς(ω). (3.19)

It follows from (3.12) that the sequence
{

1
L

∑
ω∈ΩL

ζ(ω)
}

is bounded. This yields

lim
L→∞

1

L

∑
ω∈ΩL

∣∣∣f(x∗, y∗(ω), ω)− f(xL, ŷL(ω), ω)
∣∣∣ζ(ω) = 0. (3.20)

Thus, by letting L→ +∞ in (3.19) and taking (3.11) and (3.20) into account, we have∫
Ω

f(x∗, y∗(ω), ω)ζ(ω)dω ≤
∫
Ω

f(x, y(ω), ω)ζ(ω)dω,

which implies that x∗ together with y∗(·) constitutes an optimal solution of problem (3.6). This
completes the proof. 2

Similarly, by Lemma 3.1, (3.11), (3.12) and proof of Theorem 3.1, we have the following result.
Theorem 3.2. Assume that condition (HC) holds, and f , F and U are the same as in Theorem

3.1. Then
(i) problem (3.7) has at least one optimal solution when L is large enough;
(ii) (x∗, y∗(·)) is an optimal solution of problem (2.5) when x∗ is an accumulation point of the

sequence {xL} and y∗(·) is defined by

y∗(ω) := max
i=1,2,··· ,l

{−t1 − F (x∗, 0, ω),−t2 + F (x∗, 0, ω),−ti+2 − d′i(x∗)F (x∗, 0, ω), 0}, ω ∈ Ω.

Now, consider the case that the membership function of each fuzzy stochastic inequality and
the objective function Eω[f(x, y(ω), ω)] in (3.3) is continuous, strictly increasing, and linear over the
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corresponding tolerance interval. A commonly used example in fuzzy set theory is that ψ(x) = 1−bxβ
with b > 0 and β > 1. In this case, from the theory of convex analysis [27], Lemma 3.2, and Theorems
3.1 and 3.2, we have the following simple result.

Theorem 3.3. Suppose that condition (HC) holds. If F : Rn+m×Ω→ Rm is monotone in the
second variable, and µΩ̃z

(x, y(ω), ω) is continuous, strictly increasing and linear for all z ∈ C(x, ω)
and any (x, y(ω), ω) ∈ Rn+m×Ω, then we can find an optimal solution (x∗, y∗(·)) of the stochastic op-
timization problem (1.1) by solving the following stochastic parametric optimization problem: (3.8),
which can be readily approximated by the iterative sequence {(xk+1, yk+1(ω), ω, αk+1)} generated
by Algorithm 3.2.

4 Simulation analysis

In this section, we shall give an example to illustrate the validity of our approaches.
Taking n = 2,m = 3, l = 2, U = [1, 14]× [1, 14], d1(x) = (−1,−1, 3), d2(x) = (−n2, 1,−1),

f(x, y(ω), ω) = (x1 − y1)2 + x2y2 + 2ω, F (x, y(ω), ω) =

 −2x1 + y1 − 3y2 + ω
x1 + x2 + 3y1 − y3 − 2ω
−2x2 + y2 + 2y3 − ω

 ,

C(x, ω) =

{
y(ω) = (y1, y2, y3)T ∈ R3

∣∣∣∣ ( d1(x)
d2(x)

)
y(ω) ≥ 0

}
,

and Letting d′1(x) = (0, 3, 1) and d′2(x) = (1, 2, 0) in (3.3), and ζ(ωℓ) = pℓ (ℓ = 1, 2, · · · , L) in (3.5),
then we have

φ(x, y(ω), ω) := Eω[(x1 − y1)2 + x2y2 + 2ω] = 1
L

∑L
ℓ=1[(x1 − y1)2 + x2y2 + 2ωℓ]pℓ,

f1(x, y(ω), ω) = ⟨F (x, y(ω), ω), y(ω)⟩ = −2x1y1 + x1y2 + x2y2 − 2x2y3 + y21
+ωy1 − 2ωy2 + 2y23 − ωy3,

f2(x, y(ω), ω) = ⟨−F (x, y(ω), ω), y(ω)⟩ = 2x1y1 − x1y2 − x2y2 + 2x2y3 − y21
−ωy1 + 2ωy2 − 2y23 + ωy3,

f3(x, y(ω), ω) = d′1(x)F (x, y(ω), ω) = 3x1 + x2 + 9y1 + y2 − y3 − 7ω,
f4(x, y(ω), ω) = d′2(x)F (x, y(ω), ω) = 2x2 + 7y1 − 3y2 − 2y3 − 3ω.

Thus, problem (3.5) is equivalent to the following generalized fuzzy stochastic inequality constrained
optimization program:

min φ(x, y(ω), ω)
s.t. 1 ≤ x1, x2 ≤ 14, y1, y2, y3 ≥ 0,

−y1 − y2 + y3 ≥ 0, −2y1 + y2 − y3 ≥ 0,
fι(x, y(ω), ω) ≥

∼ 0, ι = 1, 2, 3, 4,

(4.1)

with the membership function µS̃τ
(x, y(ω), ω) (τ = 1, 2, 3, 4), being specified as t1 = 9, t2 = 2, t3 =

6, t4 = 10,

µS̃1
(x, y(ω), ω) =


1, if f1(x) ≥ 0,

1− f1(x,y(ω),ω)
9 , if f1(x, y(ω), ω) ∈ [−9, 0),

0, if f1(x, y(ω), ω) < −9,

µS̃2
(x, y(ω), ω) =


1, if f2(x, y(ω), ω) ≥ 0,

1− f2(x,y(ω),ω)
2 , if f2(x, y(ω), ω) ∈ [−2, 0),

0, if f2(x) < −2,

µS̃3
(x, y(ω), ω) =


1, if f3(x, y(ω), ω) ≥ 0,

1− f3(x,y(ω),ω)
6 , if f3(x, y(ω), ω) ∈ [−6, 0),

0, if f3(x, y(ω), ω) < −6,

µS̃4
(x, y(ω), ω) =


1, if f4(x) ≥ 0,

1− f4(x,y(ω),ω)
10 , if f4(x, y(ω), ω) ∈ [−10, 0),

0, if f4(x) < −10,
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and

µS̃0
(x, y(ω), ω) =


1, if φ(x, y(ω), ω) < f,

f̄−φ(x,y(ω),ω)

f̄−f
, if φ(x, y(ω), ω) ∈ [f, f̄),

0, if ⟨φ(x, y(ω), ω) ≥ f̄ ,

where

f̄ = min φ(x, y(ω), ω)
s.t. 1 ≤ x1, x2 ≤ 14, y1, y2, y3 ≥ 0,

−y1 − y2 + 3y3 ≥ 0, −2y1 + y2 − y3 ≥ 0,
fι(x, y(ω), ω) ≥ 0, ι = 1, 2, 3, 4,

(4.2)

and

f = min φ(x, y(ω), ω)
s.t. 1 ≤ x1, x2 ≤ 14, y1, y2, y3 ≥ 0, ,

−y1 − y2 + 3y3 ≥ 0, −2y1 + y2 − y3 ≥ 0,
f1(x, y(ω), ω) ≥ −9, f2(x, y(ω), ω) ≥ −2,
f3(x, y(ω), ω) ≥ −6, f4(x, y(ω), ω) ≥ −10.

(4.3)

By Bellman and Zadeh’s method of fuzzy decision making [15] and Algorithm 3.2, now we know
that the conditions of Theorem 3.3 hold, and so an optimal solution of the problem (4.1) can
be obtained by solving the following unconstrained and smooth nonlinear parametric optimization
problem:

minx,y(ω),ω,α
1
γ ln

{
exp[γ(αk − α)] + exp[γ(−α)] + exp[γ(α− 1)]

+ exp[γ(φ(x, y(ω), ω)− (f̄ − α(f̄ − f)))]
+ exp[γ(f1(x, y(ω), ω)− 9(1− α))]
+ exp[γ(f2(x, y(ω), ω)− 2(1− α))]
+ exp[γ(−f3(x, y(ω), ω) + 6(1− α))]
+ exp[γ(−f4(x, y(ω), ω) + 10(1− α))]
+ exp[γ(y1 + y2 − 3y3)] + exp[γ(2y1 − y2 + y3)]
+ exp[γ(1− x1)] + exp[γ(1− x2)] + exp[γ(x1 − 14)]

+ exp[γ(x2 − 14)] + exp[γ(−y1)] + exp[γ(−y2)] + exp[γ(−y3)]
}

(4.4)

with γ being sufficiently large, where the optimal values of f̄ and f are obtained by computing (4.2)
and (4.3), respectively.

Choosing x0 = (4.0000, 2.0000), y0(ω) = (1.0547, 1.0564, 0.1574) and α0 = 0.2 and setting L = 3
with the probability p1 = 0.1590, p2 = 0.6821, p3 = 0.1589, and ϵ = 10−5, Q = 106 and fixed γ = 12,
then for each iteration of Algorithm 3.2, we first generate the random variable ω by using normrnd
function (that is, normal distribution function) of MATLAB 7.0 software. Secondly, we solve from
problems (4.2) and (4.3) to problem (4.4) in turn by the commonly used quasi-Newton line search
of MATLAB software 7.0.

Here, the first layer iteration searching optimization is to solve problems (4.2) and (4.3), respec-
tively. And the second optimizing process is to find the optimal solution of problem (4.1) via solving
the unconstrained and smooth nonlinear parametric optimization problem (4.4). We only present
four optimal solution (x∗, y∗(·)) with respect to the random variable ω and the corresponding mem-
bership degree α∗ for whole stochastic optimization problem, which is listed in Table 1. Further,
Table 2 show that each iteration calculation results including iterative solutions with the random
variable ω = 0.128808 for the second optimizing process to this problem. The results for every step
in Table 2 (i.e., k = 0, 1, 2, · · · , 11) come from the first layer iteration process, which are too much
and so they are omitted.
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Table 1: The optimal solution with the random variable and membership degree

k (x∗, y∗(ω), ω) α∗

1 (0.984674, 1.158197, 0.036645, 0.228989, 0.128690, 0.128808) 0.954363
2 (0.987781, 1.219403, 0.024577, 0.187961, 0.097964, 0.345629) 0.949652
3 (0.984337, 1.156955, 0.036586, 0.232004, 0.127346, 0.191080) 0.953185
4 (0.988056, 1.226168, 0.023580, 0.184104, 0.095786, 0.353731) 0.949391

Table 2: Data for Computational results with the random variable ω = 0.128808

k (xk, yk) αk Iterations No.
0 (4.0000, 2.0000, 1.0547, 1.0564, 0.1574) 0.2 46
1 (0.989779,1.252773,0.027679,0.173089,0.106607) 0.871896 16
2 (0.985831,1.166544,0.034618,0.217474,0.125437) 0.924577 13
3 (0.984928,1.159731,0.036190,0.226463,0.128032) 0.945141 15
4 (0.984726,1.158504,0.036552,0.228473,0.128555) 0.951749 14
5 (0.984687,1.158268,0.036623,0.228867,0.128658) 0.953643 9
6 (0.984677,1.158241,0.036639,0.228955,0.128681) 0.954166 4
7 (0.984676,1.158237,0.036638,0.228959,0.128678) 0.954309 3
8 (0.984676,1.158233,0.036638,0.228962,0.128678) 0.954348 5
9 (0.984674,1.158198,0.036645,0.228989,0.128690) 0.954359 1
10 (0.984674,1.158197,0.036645,0.228989,0.128690) 0.954362 1
11 (0.984674,1.158197,0.036645,0.228989,0.128690) 0.954363

5 Concluding remarks

In this paper, by developing a class of new regularization smoothing approximation approaches,
we investigated approximation solvability of the following fuzzy parametric variational inequality
constrained stochastic optimization problems in n-dimension real numeral set Rn:

min
x,y(·)

Eω[f(x, y(ω), ω)]

s.t. x ∈ U,
y(ω) ∈ C(x, ω),
⟨F (x, y(ω), ω), z(ω)− y(ω)⟩≥∼ 0, ∀z(ω) ∈ C(x, ω),

(5.1)

which has been very little studied by right of the known theories and approaches in the literature.
It is because the existence of the random variable and the fuzzified version mean that (5.1) involves
multiple complementarity-type constraints, and solving problem (5.1) is more difficult than solving
an ordinary mathematical program with (fuzzy) equilibrium constraints or stochastic mathematical
program with equilibrium constraints.

Based on the notion of tolerance approach with entropic regularization and fuzzy set theory,
we first showed that solving the stochastic optimization problem with fuzzy parametric variational
inequality constraints is equivalent to solving a fuzzy complementarity constrained stochastic opti-
mization problem, which can be converted to a regular nonlinear parametric optimization problem
with continuous random variables. Then, we constructed a centre iterative algorithm and developed
a class of new regularization smoothing approximation approaches for solving a problem with contin-
uous random variables based on quasi-Monte Carlo estimate and entropic regularization technique,
and discussed a comprehensive convergence theory for approximating the resulting optimization
problem. Finally, numerical example was provided to illustrate our main results applying quasi-
Newton line search of MATLAB software.

We remark that in the paper, based on the concept that fuzzy constraints should yield a fuzzy
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objective, we must choose a class of new regularization smoothing approximation approaches to
define the objective function value of two optimization problems as the parameters in an equivalent
stochastic parametric optimization problem. Hence, the problem presented in this paper is brand
new and the method is also new and interesting.

Whether the corresponding results of Theorem 3.3 hold when the objective function is a fuzzy
stochastic function, the constraints are fuzzy implicit variational inequalities (such as in [14, 17]) or
elliptic inequalities subject to physical phenomenon, and the numerical testing is some large-scale
applications, which are still open questions to be solved in further research.
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Abstract. In this paper, based on the work by Moudafi and inspired by Takahashi and Xu, we try
to investigate the split common fixed point problems for the class of demicontractive mappings in
the setting of two Banach spaces, and obtain the strong and weak convergence theorems. The results
presented in the paper improve and extend some recent well-known corresponding results.
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1 Introduction and Preliminaries

The split common fixed point problem was introduced by Moudafi [1] in 2010. Moudafi
proposed an iteration scheme and obtained a weak convergence theorem of the split
common fixed point problem for demicontractive mappings in the setting of two
Hilbert spaces. Since then, many authors investigated the split common fixed point
problems of other nonlinear mappings in the setting of two Hilbert spaces (see [2-7]).
At the beginning of 2015, Takahashi [8] first attempted to introduce and consider the
split feasibility problem and split common null point problem in the setting of one
Hilbert space and one Banach space. By using hybrid methods and Halperns type
methods under suitable conditions, some strong and weak convergence theorems for
such problems are obtained. The results presented in [8] seem to be the first outside
Hilbert spaces. This naturally brings us to solve the split common fixed point problem
for demicontractive mappings in the setting of two Banach space.

Let E1 and E2 be two real Banach spaces, and A : E1 → E2 be a bounded
linear operator such that A 6= 0. The split common fixed point problem (SCFP) for
nonlinear mappings S and T is to find a point x ∈ E1 such thst

x ∈ F (S) and Ax ∈ F (T ), (1.1)

0Corresponding author: Jong Kyu Kim(jongkyuk@kyungnam.ac.kr)
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where F (S) and F (T ) denote the sets of fixed points of S and T , respectively. We
use Γ to denote the set of solutions of SCFP for mappings S and T , that is,

Γ = {x ∈ F (S)| Ax ∈ F (T )}.

In this paper, we use the following algorithm to approximate a split common fixed
point of demicontractive mappings in the setting of two Banach spaces.

Algorithm: Let E1 and E2 be two real Banach spaces, A : E1 → E2 be a bounded
linear operator, A∗ be the adjoint operator of A and Ji be the normalized duality
mapping from Ei to 2E

∗
i , i = 1, 2. Now, we define the iterative scheme {xn}:

Let x1 ∈ E1 be arbitrary, for all n ≥ 1, set

yn = xn + γJ−11 A∗J2(T − I)Axn, (1.2)

xn+1 = (1− αn)yn + αnS(yn), (1.3)

where S : E1 → E1 and T : E2 → E2 are two demicontractive mappings.

Under some suitable conditions, the iterative scheme {xn} is shown to converge
weakly and strongly to a split common fixed point of demicontractive mappings T
and S. Our result extends the split common fixed point problem from Hilbert spaces
to Banach spaces.

In order to solve this problem mentioned above, we recall the following concepts
and results.

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual space of E,
We denote the value of y∗ ∈ E at x ∈ E by 〈x, y∗〉. When {xn} is a sequence in E, we
denote the strong convergence of {xn} to x ∈ E by xn → x and the weak convergence
by xn ⇀ x.

We recall that T : E → E is demicontractive (see for example [9]) if there exists
a constant η ∈ [0, 1) such that

‖Tx− q‖2 ≤ ‖x− q‖2 + η‖x− Tx‖2, ∀(x, q) ∈ E × F (T ). (1.4)

An operator satisfying (1.4) will be referred to as a η-demicontractive mapping.
It is worth noting that the class of demicontractive maps contains important op-

erators such as the quasi-nonexpansive maps and the strictly pseudocontractive maps
with fixed points.

A mapping T : E → E is called quasi-nonexpansive, if

‖Tx− q‖ ≤ ‖x− q‖

for all (x, q) ∈ E × F (T ). A mapping T : E → E is strictly pseudocontractive, if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + β‖x− y − (Tx− Ty)‖2

for all (x, y) ∈ E × E and for some β ∈ [0, 1).
A mapping T : E → E is called demiclosed at zero, if for any sequence {xn} ⊂ E

and x ∈ E, we have

xn ⇀ x, (I − T )(xn)→ 0⇒ x ∈ F (T ).

A mapping S : E → E is said to be semi-compact, if for any sequence {xn} in E
such that ‖xn − Sxn‖ → 0, (n → ∞), there exists subsequence {xnj

} of {xn} such
that {xnj

} converges strongly to x∗ ∈ E.

2
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The normalized duality mapping J from E to 2E
∗

is defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ E.

Let U = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be Gâteaux differentiable if
for each x, y ∈ U , the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists.

In the case, E is called smooth. E is smooth if and only if J is single-valued. We
denote the single-valued normalized duality mapping by J .

The modulus of convexity of E is defined by

δE(ε) = inf
{

1− ‖x+ y‖
2

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}
,

for every ε with 0 ≤ ε ≤ 2. A Banach space E is said to be uniformly convex if
δ(ε) > 0 for every ε > 0. E is said to be p-uniformly convex, if there exists a constant
a > 0 such that δE(ε) ≥ aεp for all 0 < ε ≤ 2.

Let ρE : [0,∞)→ [0,∞) be the modulus of smoothness of E defined by

ρE(t) = sup{1

2
(‖x+ y‖+ ‖x− y‖)− 1 : x ∈ U, ‖y‖ ≤ t}.

A Banach space E is said to be uniformly smooth if ρE(t)
t → 0 as t → 0. Let q be

a fixed real number with q > 1. Then a Banach space E is said to be q-uniformly
smooth if there exists a constant b > 0 such that ρE(t) ≤ btq for all t > 0. It is well
known that every q-uniformly smooth Banach space is uniformly smooth.

A Banach space E is said to satisfy the Opial’s condition [10] if for any sequence
{xn} ⊂ E, xn ⇀ x implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖,

for all y ∈ E with y 6= x.

Lemma 1.1. [11] Let E be a 2-uniformly convex Banach space. Then the following
inequality holds:

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)c‖x− y‖2, ∀x, y ∈ E, (1.5)

where 0 ≤ λ ≤ 1, c = µ(1) > 0,

µ(t) : = inf
{λ‖x‖2 + (1− λ)‖y‖2 − ‖λx+ (1− λ)y‖2

λ(1− λ)
:

0 < λ < 1, x, y ∈ E and ‖x− y‖ = t
}

> 0.

Lemma 1.2. [11] Let E be a 2-uniformly smooth Banach space with the best smooth-
ness constants κ > 0. Then the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, Jy〉+ 2‖κy‖2,

for all x, y ∈ E.

3
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2 Main Results

Lemma 2.1. Let E1 be a real 2-uniformly convex and 2-uniformly smooth Banach
spaces with the best smoothness constant κ satisfying 0 < κ < 1√

2
, E2 be a real

Banach space, and A : E1 → E2 be a bounded linear operator. Let S : E1 → E1 be β-
demicontractive and T : E2 → E2 be η-demicontractive with F (S) 6= ∅ and F (T ) 6= ∅.
Then the sequence {xn} generated by algorithm (1.2)-(1.3) is Féjer-monotone with
respect to Γ = {x ∈ F (S)|Ax ∈ F (T )}, that is, for every z ∈ Γ,

‖xn+1 − z‖ ≤ ‖xn − z‖, ∀n ∈ N,

where 0 < γ < min
{

1−η
‖A‖2 ,

1−2κ
‖A‖2

}
and αn ∈ (0, 1− β

c ], β < c = µ(1).

Proof. Let z ∈ Γ. Then z ∈ F (S) and Az ∈ F (T ). It follows from Lemma 1.1 and
(1.3) that

‖xn+1 − z‖2 = ‖(1− αn)yn + αnS(yn)− z‖2

= ‖(1− αn)(yn − z) + αn(S(yn)− z)‖2

≤ (1− αn)‖yn − z‖2 + αn‖S(yn)− z‖2

−αn(1− αn)c‖S(yn)− yn‖2 (2.1)

≤ (1− αn)‖yn − z‖2 + αn‖yn − z‖2 + αnβ‖S(yn)− yn‖2

−αn(1− αn)c‖S(yn)− yn‖2

≤ ‖yn − z‖2 − αn(c− β − cαn)‖S(yn)− yn‖2,

where c = µ(1).
On the other hand, It follows from (1.2) and Lemma 1.2 that

‖yn − z‖2 = ‖xn + γJ−11 A∗J2(T − I)Axn − z‖2

= ‖xn − z + γJ−11 A∗J2(T − I)Axn‖2

≤ ‖γJ−11 A∗J2(T − I)Axn‖2 + 2γ〈xn − z,A∗J2(T − I)Axn〉
+2κ2‖xn − z‖2

≤ γ2‖A‖2‖(T − I)Axn‖2 + 2γ〈Axn −Az, J2(T − I)Axn〉
+2κ2‖xn − z‖2

= γ2‖A‖2‖(T − I)Axn‖2 + 2κ2‖xn − z‖2

2γ〈Axn − TAxn + TAxn −Az, J2(T − I)Axn〉
≤ γ2‖A‖2‖(T − I)Axn‖2 + 2κ2‖xn − z‖2

−2γ‖(T − I)Axn‖2 + 2γ〈TAxn −Az, J2(T − I)Axn〉
≤ (γ2‖A‖2 − 2γ)‖(T − I)Axn‖2 + 2κ2‖xn − z‖2

+γ(‖TAxn −Az‖2 + ‖(T − I)Axn‖2)

≤ 7(γ2‖A‖2 − 2γ)‖(T − I)Axn‖2 + 2κ2‖xn − z‖2

+γ(‖Axn −Az‖2 + η|(Axn − TAxn‖2 + ‖(T − I)Axn‖2)

≤ (2κ2 + γ‖A‖2)‖xn − z‖2 − γ(1− η − γ‖A‖2)‖(T − I)Axn‖2,

where A∗ is the adjoint operator of A and Ji is the normalized duality mapping from
Ei to 2E

∗
i , i = 1, 2.

In addition, since 0 < κ < 1√
2

and 0 < γ < 1−2κ2

‖A‖2 , 0 < γ‖A‖2 + 2κ2 < 1, so we

have
‖yn − z‖2 ≤ ‖xn − z‖2 − γ(1− η − γ‖A‖2)‖(T − I)Axn‖2. (2.2)

4
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It follows from (2.1) and (2.2) that

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − γ(1− η − γ‖A‖2)‖(T − I)Axn‖2 (2.3)

−αn(c− β − cαn)‖S(yn)− yn‖2.

Finally, by the assumptions on γ and αn, we obtain the desired result.

Theorem 2.2. Let E1 be a real 2-uniformly convex and 2-uniformly smooth Banach
space satisfying Opial’s condition with the best smoothness constant κ satisfying 0 <
κ < 1√

2
, and E2 be a real Banach space. Let A : E1 → E2 be a bounded linear

operator, S : E1 → E1 and T : E2 → E2 be two demicontractive mappings with
constants β and η with F (S) 6= ∅ and F (T ) 6= ∅, respectively. Assume that I − S
and I − T are demiclosed at zero. If Γ 6= ∅, then the sequence {xn} generated by
algorithm (1.2)-(1.3) converges weakly to a split common fixed point x ∈ Γ, for 0 <
γ < min

{
1−η
‖A‖2 ,

1−2κ
‖A‖2

}
, αn ∈ (δ, 1− β

c −δ), β < c = µ(1), and for small enough δ > 0.

Proof. From (2.3) and the fact that 0 < γ < min
{

1−η
‖A‖2 ,

1−2κ
‖A‖2

}
and αn ∈ (δ, 1− β

c−δ),
we obtain that the sequence {‖xn−z‖} is monotonically decreasing and thus converges
to some positive real limit l(z). From (2.3), we have

γ(1− η − γ‖A‖2)‖(I − T )Axn‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2.

Therefore,
lim
n→∞

‖(I − T )Axn‖ = 0. (2.4)

From the Féjer-monotonicity of {xn}, it follows that the sequence is bounded. Denot-
ing by x a weak-cluster point of {xn}. Let k = 0, 1, 2, ... be the sequence of indices,
such that xnk

⇀ x, as k →∞. Then from (2.4) and demiclosedness of I − T at zero,
we obtain T (Ax) = Ax, that is, Ax ∈ F (T ).

Now, by setting yn = xn + γJ−11 A∗J2(I − T )Axn, it follows that ynk
⇀ x. Again

from (2.3), we obtain

αn(c− β − cαn)‖yn − S(yn)‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2.

Using the convergence of the sequence {‖xn − z‖}, we get

lim
n→∞

‖yn − S(yn)‖ = 0, (2.5)

which combined with the demiclosedness of I − S at zero and the weak convergence
of {ynk

} to y yields S(x) = x. Hence, x ∈ F (S) and therefore x ∈ Γ. Since E1 satises
Opial’s condition, we know that {xn} converges weakly to x ∈ Γ.

Theorem 2.3. Let E1 be a real 2-uniformly convex and 2-uniformly smooth Banach
space satisfying Opial’s condition with the best smoothness constant κ satisfying 0 <
κ < 1√

2
, and E2 be a real Banach space. Let A : E1 → E2 be a bounded linear

operator, S : E1 → E1 and T : E2 → E2 be two demicontractive mappings with
constants β and η with F (S) 6= ∅ and F (T ) 6= ∅, respectively. Assume that I − S
and I − T are demiclosed at zero. If Γ 6= ∅ and S is semi-compact, then the sequence
{xn} generated by algorithm (1.2)-(1.3) converges strongly to a split common fixed
point x ∈ Γ, for 0 < γ < min{ 1−η

‖A‖2 ,
1−2κ
‖A‖2 }, αn ∈ (δ, 1 − β

c − δ), β < c = µ(1), and

for a small enough δ > 0.

Proof. It follows from (1.2) that

‖xn − yn‖ = ‖J1(xn − yn)‖ = ‖γA∗J2(I − T )Axn‖,
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and so, from (2.4) we have
lim
n→∞

‖xn − yn‖ = 0. (2.6)

Since S is semi-compact, from (2.5), there exist subsequence {ynj
} of {yn} such that

{ynj
} converges strongly to x∗ ∈ E1. Using (2.6), we know that {xnj

} converges
strongly to x∗. By Theorem 2.2, we know that {xn} converges weakly to x, so we
have x∗ = x. Since lim

n→∞
‖xn − x‖ exists and lim

j→∞
‖xnj − x‖ = 0, we know that {xn}

converges strongly to x ∈ Γ.
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Abstract

In this study, we apply ”r” times the binomial transform to k-Lucas
sequence. Also, the Binet formula, summation, generating function of
this transform are found using recurrence relation. Finally, we give the
properties of iterated binomial transform with classical Lucas sequence.
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quence.
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1 Introduction and Preliminaries

There are so many studies in the literature that concern about the special
number sequences such as Fibonacci, Lucas and generalized Fibonacci anad
Lucas numbers (see, for example [1]-[3], and the references cited therein). In
Fibonacci and Lucas numbers, there clearly exists the term Golden ratio which
is defined as the ratio of two consecutive of these numbers that converges to

α = 1+
√
5

2 . It is also clear that the ratio has so many applications in, specially,
Physics, Engineering, Architecture, etc.[4]. Also, many generalizations of the
Fibonacci sequence have been introduced and studied matrix applications of
this sequence in [13]-[16].

For n ≥ 1, k-Lucas sequence is defined by the recursive equation:

Lk,n+1 = kLk,n + Lk,n−1, Lk,0 = 2 and Lk,1 = k. (1.1)

In addition, some matrix-based transforms can be introduced for a given
sequence. Binomial transform is one of these transforms and there are also
other ones such as rising and falling binomial transforms(see [5]-[12]). Given

1
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an integer sequence X = {x0, x1, x2, . . .}, the binomial transform B of the
sequence X, B (X) = {bn} , is given by

bn =
n∑

i=0

(
n

i

)
xi.

In [10], authors gave the application of the several class of transforms to
the k-Lucas sequence. For example, for n ≥ 1, authors obtained recurrence
relation of the binomial transform for k-Lucas sequence

bk,n+1 = (2 + k) bk,n − kbk,n−1, bk,0 = 2 and bk,1 = k + 2.

Falcon [11] studied the iterated application of some Binomial transforms to
the k-Fibonacci sequence. For example, author obtained recurrence relation
of the iterated binomial transform for k-Fibonacci sequence

c
(r)
k,n+1 = (2r + k) c

(r)
k,n −

(
r2 + kr − 1

)
c
(r)
k,n−1, c

(r)
k,0 = 0 and c

(r)
k,1 = 1.

Motivated by [11, 12], the goal of this paper is to apply iteratively the bino-
mial transform to the k-Lucas sequence. Also, the properties of this transform
are found by recurrence relation. Finally, the relation of between the trans-
form and the iterated binomial transform of k-Fibonacci sequence by deriving
new formulas are illustrated.

2 Iterated Binomial Transform of k-Lucas Sequences

In this section, we will mainly focus on iterated binomial transforms of k -
Lucas sequences to get some important results. In fact, we will also present
the recurrence relation, Binet formula, summation, generating function of the
transform and relationships betweeen of the transform and iterated binomial
transform of k-Fibonacci sequence.

The iterated binomial transform of the k-Lucas sequences is demonstrated

by B
(r)
k =

{
b
(r)
k,n

}
, where b

(r)
k,n is obtained by applying ”r” times the binomial

transform to k-Lucas sequence. It is obvious that b
(r)
k,0 = 2 and b

(r)
k,1 = 2r + k.

The following lemma will be the key proof of the next theorems.

Lemma 2.1 For n ≥ 0 and r ≥ 1, the following equality hold:

b
(r)
k,n+1 = b

(r)
k,n +

n∑
j=0

(
n

j

)
b
(r−1)
k,j+1.

2
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Proof. By using definition of binomial transform and the well known binomial
equality (

n+ 1

i

)
=

(
n

i

)
+

(
n

i− 1

)
,

we obtain

b
(r)
k,n+1 =

n+1∑
j=0

(
n+ 1

j

)
b
(r−1)
k,j

=

n+1∑
j=1

(
n+ 1

j

)
b
(r−1)
k,j + b

(r−1)
k,0

b
(r)
k,n+1 =

n+1∑
j=1

(
n

j

)
b
(r−1)
k,j +

n+1∑
j=1

(
n

j − 1

)
b
(r−1)
k,j + b

(r−1)
k,0

=

n+1∑
j=0

(
n

j

)
b
(r−1)
k,j +

n+1∑
j=0

(
n

j − 1

)
b
(r−1)
k,j

=
n∑

j=0

(
n

j

)
b
(r−1)
k,j +

n∑
j=−1

(
n

j

)
b
(r−1)
k,j+1

= b
(r)
k,n +

n∑
j=0

(
n

j

)
b
(r−1)
k,j+1

which is desired result.
In [10], the authors obtained the following equality for binomial transform

of k-Lucas sequences. However, in here, we obtain the equality in terms of iter-
ated binomial transform of the k-Lucas sequences as a consequence of Lemma
2.1. To do that we take r = 1 in Lemma 2.1:

bk,n+1 = bk,n +

n∑
j=0

(
n

j

)
Lk,j+1.

Theorem 2.1 For n ≥ 0 and r ≥ 1, the recurrence relation of sequence{
b
(r)
k,n

}
is

b
(r)
k,n+1 = (2r + k) b

(r)
k,n −

(
r2 + kr − 1

)
b
(r)
k,n−1, (2.1)

with initial conditions b
(r)
k,0 = 2 and b

(r)
k,1 = 2r + k.

3
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Proof. The proof will be done by induction steps on r and n.
First of all, for r = 1, from the equality 2.2 in [10], it is true bk,n+1 =

(2 + k) bk,n − kbk,n−1.
Let us consider definition of iterated binomial transform, then we have

b
(r)
k,2 = k2 + 2rk + 2r2 + 2.

The initial conditions are

b
(r)
k,0 = 2 and b

(r)
k,1 = 2r + k.

Hence, for n = 1, the Eq. (2.1) is true, that is b
(r)
k,2 = (2r + k) b

(r)
k,1−

(
r2 + kr − 1

)
b
(r)
k,0.

Actually, by assuming the Eq. (2.1) holds for all (r − 1, n) and (r, n− 1),
that is,

b
(r−1)
k,n+1 = (2r − 2 + k) b

(r−1)
k,n −

(
(r − 1)2 + k (r − 1)− 1

)
b
(r−1)
k,n−1,

and
b
(r)
k,n = (2r + k) b

(r)
k,n−1 −

(
r2 + kr − 1

)
b
(r)
k,n−2.

Now, by taking into account Lemma 2.1, we obtain

b
(r)
k,n+1 = b

(r)
k,n +

n∑
j=0

(
n

j

)
b
(r−1)
k,j+1

=

n∑
j=0

(
n

j

)
b
(r−1)
k,j +

n∑
j=0

(
n

j

)
b
(r−1)
k,j+1

=
n∑

j=1

(
n

j

)(
b
(r−1)
k,j + b

(r−1)
k,j+1

)
+ b

(r−1)
k,0 + b

(r−1)
k,1 .

By reconsidering our assumption, we write

b
(r)
k,n+1 =

n∑
j=1

(
n

j

)(
b
(r−1)
k,j + (2r − 2 + k) b

(r−1)
k,j −

(
r2 − 2r + kr − k

)
b
(r−1)
k,j−1

)
+ b

(r−1)
k,0 + b

(r−1)
k,1

= (2r + k − 1)

n∑
j=1

(
n

j

)
b
(r−1)
k,j −

(
r2 − 2r + kr − k

) n∑
j=1

(
n

j

)
b
(r−1)
k,j−1 + b

(r−1)
k,0 + b

(r−1)
k,1

= (2r + k − 1)

n∑
j=0

(
n

j

)
b
(r−1)
k,j −

(
r2 − 2r + kr − k

) n∑
j=1

(
n

j

)
b
(r−1)
k,j−1 + b

(r−1)
k,0 + b

(r−1)
k,1

− (2r + k − 1) b
(r−1)
k,0

= (2r + k − 1) b
(r)
k,n −

(
r2 − 2r + kr − k

) n∑
j=1

(
n

j

)
b
(r−1)
k,j−1 + (2− 2r − k) b

(r−1)
k,0 + b

(r−1)
k,1 .

4
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Then we have

b
(r)
k,n+1 − (2r + k − 1) b

(r)
k,n = −

(
r2 − 2r + kr − k

) n∑
j=1

(
n

j

)
b
(r−1)
k,j−1 + 4− 2r − k.

(2.2)
By taking n→ n− 1, it is

b
(r)
k,n = (2r + k − 1) b

(r)
k,n−1 −

(
r2 − 2r + kr − k

) n−1∑
j=1

(
n− 1

j

)
b
(r−1)
k,j−1 + 4− 2r − k

= (2r + k − 1) b
(r)
k,n−1 −

(
r2 − 2r + kr − k

) n∑
j=1

[(
n

j

)
−
(
n− 1

j − 1

)]
b
(r−1)
k,j−1 + 4− 2r − k

= (2r + k − 1) b
(r)
k,n−1 −

(
r2 − 2r + kr − k

) n∑
j=1

(
n

j

)
b
(r−1)
k,j−1

+
(
r2 − 2r + kr − k

) n∑
j=1

(
n− 1

j − 1

)
b
(r−1)
k,j−1 + 4− 2r − k

b
(r)
k,n = (2r + k − 1) b

(r)
k,n−1 −

(
r2 − 2r + kr − k

) n∑
j=1

(
n

j

)
b
(r−1)
k,j−1

+
(
r2 − 2r + kr − k

) n−1∑
j=0

(
n− 1

j

)
b
(r−1)
k,j + 4− 2r − k

= (2r + k − 1) b
(r)
k,n−1 −

(
r2 − 2r + kr − k

) n∑
j=1

(
n

j

)
b
(r−1)
k,j−1

+
(
r2 − 2r + kr − k

)
b
(r)
k,n−1 + 4− 2r − k

=
(
r2 + kr − 1

)
b
(r)
k,n−1 −

(
r2 − 2r + kr − k

) n∑
j=1

(
n

j

)
b
(r−1)
k,j−1 + 4− 2r − k.

Hence, we have

b
(r)
k,n −

(
r2 + kr − 1

)
b
(r)
k,n−1 = −

(
r2 − 2r + kr − k

) n∑
j=1

(
n

j

)
b
(r−1)
k,j−1 + 4− 2r− k.

If last expression put in place in the equation (2.2), then we get

b
(r)
k,n+1 = (2r + k − 1) b

(r)
k,n + b

(r)
k,n −

(
r2 + kr − 1

)
b
(r)
k,n−1

= (2r + k) b
(r)
k,n −

(
r2 + kr − 1

)
b
(r)
k,n−1

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.5, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

868 Nazmiye Yilmaz et al 864-873



which completed the proof of this theorem.

The characteristic equation of sequence
{
b
(r)
k,n

}
in (2.1) is

λ2− (2r + k)λ+ r2 + kr− 1 = 0. Let λ1 and λ2 be the roots of this equation.

Then, Binet’s formulas of sequence
{
b
(r)
k,n

}
can be expressed as

b
(r)
k,n =

(
k +
√
k2 + 4

2
+ r

)n

+

(
k −
√
k2 + 4

2
+ r

)n

. (2.3)

In here, we obtain the equalities given in [10] in terms of iterated binomial
transform of the k-Lucas sequences as a consequence of Theorem 2.1. To do
that we take r = 1 in Theorem 2.1 and the Eq. (2.3):

bk,n+1 = (2 + k) bk,n − kbk,n−1,

and

bk,n =

(
k + 2 +

√
k2 + 4

2

)n

+

(
k + 2−

√
k2 + 4

2

)n

.

Now, we give the sum of iterated binomial transform for k-Lucas sequences.

Theorem 2.2 Sum of sequence
{
b
(r)
k,n

}
is

n−1∑
i=0

b
(r)
k,i =

(
r2 + kr − 1

)
b
(r)
k,n−1 − b

(r)
k,n − k − 2r + 2

r2 + kr − k − 2r
.

Proof. By considering Eq. (2.3), we have

n−1∑
i=0

b
(r)
k,i =

n−1∑
i=0

(
λi1 + λi2

)
.

Then we obtain
n−1∑
i=0

b
(r)
k,i =

(
λn1 − 1

λ1 − 1

)
+

(
λn2 − 1

λ2 − 1

)
.

Afterward, by taking into account equations λ1.λ2 = r2 +kr−1 and λ1 +λ2 =
k + 2r, we conclude

n−1∑
i=0

b
(r)
k,i =

(
r2 + kr − 1

)
b
(r)
k,n−1 − b

(r)
k,n − k − 2r + 2

r2 + kr − k − 2r
.

6
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Note that, if we take r = 1 in Theorem 2.2, we obtain the summation of
binomial transform for k-Lucas sequence:

n−1∑
i=0

bk,i = bk,n − kbk,n−1 + k

Theorem 2.3 The generating function of the iterated binomial transform for
{Lk,n} is

∞∑
i=0

b
(r)
k,ix

i =
2− (2r + k)x

1− (2r + k)x+ (r2 + kr − 1)x2
.

Proof. Assume that b (k, x, r) =
∞∑
i=0

b
(r)
k,ix

i is the generating function of the

iterated binomial transform for {Lk,n}. From Theorem 2.1, we obtain

b (k, x, r) = b
(r)
k,0 + b

(r)
k,1x+

∞∑
i=2

(
(2r + k) b

(r)
k,i−1 −

(
r2 + kr − 1

)
b
(r)
k,i−2

)
xi

= b
(r)
k,0 + b

(r)
k,1x− (2r + k) b

(r)
k,0x+ (2r + k)x

∞∑
i=0

b
(r)
k,ix

i

−
(
r2 + kr − 1

)
x2
∞∑
i=0

b
(r)
k,ix

i

= b
(r)
k,0 +

(
b
(r)
k,1 − (2r + k) b

(r)
k,0

)
x+ (2r + k)xb (k, x, r)

−
(
r2 + kr − 1

)
x2 b (k, x, r) .

Now rearrangement of the equation implies that

b (k, x, r) =
b
(r)
k,0 +

(
b
(r)
k,1 − (2r + k) b

(r)
k,0

)
x

1− (2r + k)x+ (r2 + kr − 1)x2
,

which equals to the
∞∑
i=0

b
(r)
k,ix

i in theorem. Hence, the result.

In here, we obtain the generating function given in [10] in terms of iterated
binomial transform of the k-Lucas sequences as a consequence of Theorem 2.3.
To do that we take r = 1 in Theorem 2.3:

∞∑
i=0

bk,ix
i =

2− (2 + k)x

1− (2 + k)x+ kx2
.

7
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In the following theorem, we present the relationship between the iterated
binomial transform of k-Lucas sequence and iterated binomial transform of
k-Fibonacci sequence.

Theorem 2.4 For n > 0, the relationship of between the transforms
{
b
(r)
k,n

}
and

{
c
(r)
k,n

}
is illustrated by following way:

b
(r)
k,n = c

(r)
k,n+1 −

(
r2 + kr − 1

)
c
(r)
k,n−1, (2.4)

where b
(r)
k,n is the iterated binomial transform of k-Lucas sequence and c

(r)
k,n is

the iterated binomial transform of k-Fibonacci sequence.

Proof. By using the Eq.(2.4), let be

b
(r)
k,n = Xc

(r)
k,n+1 + Y c

(r)
k,n−1.

If we take n = 1 and 2, we have the system{
b
(r)
k,1 = Xc

(r)
k,2 + Y c

(r)
k,0,

b
(r)
k,2 = Xc

(r)
k,3 + Y c

(r)
k,1.

By considering definition of the iterated binomial transforms for k-Lucas, k-
Fibonacci sequence and Cramer rule for the system, we obtain{

2r + k = (2r + k)X,
k2 + 2rk + 2r2 + 2 =

(
3r2 + 3rk + k2 + 1

)
X + Y

and
X = 1 and Y = −

(
r2 + kr − 1

)
which is completed the proof of this theorem.

Note that, if we take r = 1 in Theorem 2.4, we obtain the relationship
of between the binomial transform for k-Lucas sequence and the binomial
transform for k-Fibonacci sequence:

bk,n = ck,n+1 − kck,n−1.

Corollary 2.1 We should note that choosing k = 1 in the all results of section
2, it is actually obtained some properties of the iterated binomial transform for
classical Lucas sequence such that the recurrence relation, Binet formula, sum-
mation, generating function and relationship of between binomial transforms
for Fibonacci and Lucas sequences.
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Corollary 2.2 We should note that choosing k = 2 in the all results of section
2, it is actually obtained some properties of the iterated binomial transform for
classical Pell-Lucas sequence such that the recurrence relation, Binet formula,
summation, generating function and relationship of between binomial trans-
forms for Pell and Pell-Lucas sequences.

Conclusion 2.1 In this paper, we define the iterated binomial transform for
k-Lucas sequence and present some properties of this transform. By the results
in Sections 2 of this paper, we have a great opportunity to compare and obtain
some new properties over this transform. This is the main aim of this paper.
Thus, we extend some recent result in the literature.

In the future studies on the iterated binomial transform for number se-
quences, we expect that the following topics will bring a new insight.

(1) It would be interesting to study the iterated binomial transform for Fi-
bonacci and Lucas matrix sequences,

(2) Also, it would be interesting to study the iterated binomial transform for
Pell and Pell-Lucas matrix sequences.
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This research is supported by TUBITAK and Selcuk University Scientific Re-
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Abstract

In this paper, we introduce the Nielsen �xed point theory in digital images. We also deal with some
important properties of the Nielsen number and calculate the Nielsen number of some digital images. We get
some new results using digital covering maps and Nielsen number.
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1 Introduction

Digital topology is often used in computer graphics, pattern recognition and image processing. This topic has been studied
by important researchers such as Rosenfeld, Kong, Kopperman, Boxer, Karaca, Han, etc. Their goal is to determine not
only similarities but also di�erences between digital images and topology.

Fixed point theory with applications is an important area in topology. This theory continues to develop with new
computations and come out of new invariants. Nielsen �xed point theorem is a notable theorem in this theory because it
gives a way to count �xed points. One of the main goals in digital topology is to classify digital images. For this reason,
we use the Nielsen number which is a powerful invariant for digital images.

In 1920s, Jakop Nielsen introduced the Nielsen theory and the Nielsen number. He focused on both the existence
problem of �xed points and the problem of determining the minimal number of �xed points in the homotopy classes. He
did this by introducing the Nielsen number of a self map. This number is a homotopy invariant lower bound for the number
of �xed points of the map. In this area, there are signi�cant works [10, 11, 12, 16, 17, 18, 19].

Boxer [6] introduces the digital covering space and showed that the existence of digital universal covering spaces. Boxer
and Karaca [7] classify digital covering spaces using the conjugacy class corresponding to a digital covering space. Boxer
and Karaca [8] study digital versions of some properties of covering spaces from algebraic topology. Karaca and Ege [20]
get some results related to the simplicial homology groups of 2D digital images. Ege and Karaca [13] give characteristic
properties of the simplicial homology groups.

This paper is organized as follows. The second section provides the general notions of digital images, digital homotopy,
digital covering spaces and digital homology groups. In Section 3 we present the Nielsen �xed point theorem for digital
images, give some examples and properties. In Section 4 we discuss about the relation between Nielsen theory and digital
universal covering space. We �nally make some conclusions about this topic.

2 Preliminaries

A digital image consists of a pair (X,κ), where Z is the set of integers, X ⊂ Zn for some positive integer n, and κ indicates
an adjacency relation for the members of X.

De�nition 2.1. [3]. For a positive integer l with 1 ≤ l ≤ n and two distinct points p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn) ∈
Zn, p and q are cl-adjacent, if
(1) there are at most l indices i such that |pi − qi| = 1, and

(2) for all other indices j such that |pj − qj | 6= 1, pj = qj .
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The notation cl represents the number of points q ∈ Zn that are adjacent to a given point p ∈ Zn. Thus, in Z,
we have c1 = 2-adjacency; in Z2, we have c1 = 4-adjacency and c2 = 8-adjacency; in Z3, we have c1 = 6-adjacency,
c2 = 18-adjacency, and c3 = 26-adjacency [5]. A κ-neighbor of p ∈ Zn [3] is a point of Zn that is κ-adjacent to p.

A digital interval [2] is de�ned by [a, b]Z = {z ∈ Z | a ≤ z ≤ b} where a, b ∈ Z and a < b. A digital image X ⊂ Zn is
κ-connected [15] if and only if for every pair of di�erent points x, y ∈ X, there is a set {x0, x1, . . . , xr} of points of a digital
image X such that x = x0, y = xr and xi and xi+1 are κ-neighbors where i = 0, 1, . . . , r − 1.

De�nition 2.2. [3]. Let X ⊂ Zn0 and Y ⊂ Zn1 be digital images with κ0-adjacency and κ1-adjacency, respectively. A
function f : X −→ Y is said to be (κ0, κ1)-continuous if for every κ0-connected subset U of X, f(U) is a κ1-connected
subset of Y . We say that such a function is digitally continuous.

Proposition 2.3. [3]. Let X ⊂ Zn0 and Y ⊂ Zn1 be digital images with κ0-adjacency and κ1-adjacency, respectively. The
function f : X → Y is (κ0, κ1)-continuous if and only if for every κ0-adjacent points {x0, x1} of X, either f(x0) = f(x1)
or f(x0) and f(x1) are κ1-adjacent in Y .

In a digital image X, if there is a (2, κ)-continuous function f : [0,m]Z → X such that f(0) = x and f(m) = y, then
there exists a digital κ-path [6] from x to y. If f(0) = f(m), then we say that f is digital κ-loop and the point f(0) is the
base point of the loop f . When a digital loop f is a constant function, it is said to be a trivial loop.

De�nition 2.4. Let (X,κ0) ⊂ Zn0 and (Y, κ1) ⊂ Zn1 be digital images. A function f : X → Y is called a (κ0, κ1)-
isomorphism [2] if f is (κ0, κ1)-continuous and bijective and f−1 : Y → X is (κ1, κ0)-continuous.

De�nition 2.5. [3]. Let (X,κ0) ⊂ Zn0 and (Y, κ1) ⊂ Zn1 be digital images. We say that two (κ0, κ1)-continuous functions
f, g : X → Y are digitally (κ0, κ1)-homotopic in Y if there is a positive integer m and a function H : X × [0,m]Z → Y such
that
• for all x ∈ X, H(x, 0) = f(x) and H(x,m) = g(x);
• for all x ∈ X, the induced function Hx : [0,m]Z → Y de�ned by

Hx(t) = H(x, t) for all t ∈ [0,m]Z,

is (2, κ1)-continuous; and
• for all t ∈ [0,m]Z, the induced function Ht : X → Y de�ned by

Ht(x) = H(x, t) for all x ∈ X,

is (κ0, κ1)-continuous.
The function H is called a digital (κ0, κ1)-homotopy between f and g. If these functions are digitally (κ0, κ1)-homotopic,

it is denoted f '(κ0,κ1) g. The digital (κ0, κ1)-homotopy relation [3] is equivalence among digitally continuous functions
f : (X,κ0)→ (Y, κ1).

If f : [0,m1]Z → X and g : [0,m2]Z → X are digital κ-paths with f(m1) = g(0), then de�ne the product (f ∗ g) :
[0,m1 +m2]Z → X [3] by

(f ∗ g)(t) =
{
f(t), t ∈ [0,m1]Z
g(t−m1), t ∈ [m1,m1 +m2]Z.

Let f and f
′
be κ-loops in a digital image (X,x0). We say f

′
is a trivial extension of f [3] if there are sets of κ-paths

{f1, . . . , fr} and {F1, . . . , Fp} in X such that:
(1) r ≤ p,
(2) f = f1 ∗ . . . ∗ fr,
(3) f

′
= F1 ∗ . . . ∗ Fp,

(4) There are indices 1 ≤ i1 < i2 < . . . < ir ≤ p such that Fij = fj , 1 ≤ j ≤ r and i 6= {i1, . . . , ir} implies Fi is a trivial
loop.

If f, g : [0,m]Z → X are κ-paths such that f(0) = g(0) and f(m) = g(m), then a homotopy

H : [0,m]Z × [0,M ]Z → X

between f and g such that for all t ∈ [0,M ]Z, H(0, t) = f(0) and H(m, t) = f(m), holds the endpoints �xed.
Two loops f, f0 with the same base point x0 ∈ X belong to the same loop class [f ]X if they have trivial extensions that

can be joined by a homotopy that holds the endpoints �xed (see [4]).
Let (E, κ) be a digital image and let ε be a positive integer. The κ-neighborhood of e0 ∈ E with radius ε is the set

Nκ(e0, ε) = {e ∈ E | lκ(e0, e) ≤ ε} ∪ {e0},

where lκ(e0, e) is the length of a shortest κ-path from e0 to e in E (see [14]).
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De�nition 2.6. [6]. Let (E, κ0) and (B, κ1) be digital images. A map p : E → B is called a (κ0, κ1)-covering map if the
followings are true:
1. p is a (κ0, κ1)-continuous surjection.
2. for each b ∈ B, there exists an indexing set M such that p−1(b) can be indexed as p−1(b) = {ei|i ∈M} and the following
conditions hold:
• p−1(Nκ1(b, 1)) =

⋃
i∈M Nκ0(ei, 1),

• if i, j ∈M , i 6= j, then Nκ0(ei, 1) ∩Nκ0(ej , 1) = ∅,
• the restriction map p|Nκ0 (ei,1) : Nκ0(ei, 1)→ Nκ1(b, 1) is a (κ0, κ1)-isomorphism for all i ∈M .

Let (E, κ0), (B, κ1) and (X,κ2) be digital images, let p : E → B be a (κ0, κ1)-covering map, and f : X → B be
(κ2, κ1)-continuous. A lifting of f with respect to p is a (κ2, κ0)-continuous function f̃ : X → E such that p ◦ f̃ = f (see
[14]).

De�nition 2.7. [6]. Let (E0, p0, B) be a (κ0, κB)-covering. Suppose C is a set of (κE , κB)-coverings of B such that for
every (E, p,B) ∈ C, there is a (κ0, κE)-covering (E0, pE , E). Then the pair (E0, p0) is a universal covering space of B for
the set C.

De�nition 2.8. [21]. Let S be a set of nonempty subset of a digital image (X,κ). Then the members of S are called
simplexes of (X,κ), if the followings hold:
• If p and q are distinct points of s ∈ S, then p and q are κ-adjacent,
• If s ∈ S and ∅ 6= t ⊂ s, then t ∈ S.

An m-simplex is a simplex S such that |S| = m + 1. For a digital m-simplex P , if P
′
is a nonempty proper subset of

P , then P
′
is called a face of P .

De�nition 2.9. [1]. Let (X,κ) be a �nite collection of digital m-simplices, 0 ≤ m ≤ d for some non-negative integer d. If
the followings hold, then (X,κ) is called a �nite digital simplicial complex :
• If P belongs to X, then every face of P also belongs to X.
• If P,Q ∈ X, then P ∩Q is either empty or a common face of P and Q.

De�nition 2.10. [1]. Let (X,κ) ⊂ Zn be a digital oriented simplicial complex with m-dimension. Cκq (X) is a free abelian
group with basis all digital (κ, q)-simplices in X. A homomorphism ∂q : C

κ
q (X) −→ Cκq−1(X) called the boundary operator.

If σ = [v0, . . . , vq] is an oriented simplex with 0 < q ≤ m, ∂q is de�ned by

∂qσ = ∂q[v0, . . . , vq] =

q∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vq]

where v̂i means the vertex vi is to be deleted from the array.

We remark that for q < 0,m < q, since Cκq (X) is the trivial group, the operator ∂q is the trivial homomorphism for
q ≤ 0, m < q. We notice that ∂q−1 ◦ ∂q = 0 [1] for q ≥ 0.

De�nition 2.11. [1]. Let (X,κ) ⊂ Zn be a digital oriented simplicial complex with m-dimension.
• Zκq (X) = Ker ∂q is called the group of digital simplicial q-cycles.
• Bκq (X) = Im ∂q+1 is called the group of digital simplicial q-boundaries.
• Hκ

q (X) = Zκq (X)/Bκq (X) is called the qth digital simplicial homology group.

3 Nielsen Theory for Digital Images

Let (X,κ) be a digital image and let f : X → X be a digital map. The �xed point set of f is Fix(f) = {x ∈ X : f(x) = x}.
The main object of study in topological �xed point theory is the minimum number of �xed points which is denoted by
M [f ] among all digital maps (κ, κ)-homotopic to f . For example, M [f ] = 0 means that there is a digital map g which is
(κ, κ)-homotopic to f such that g(x) 6= x for all x ∈ X.

To calculate M [f ] we have to examine the �xed point sets of every map homotopic to f . In the �xed point theory, it is
made use of a homotopy invariant, called the Nielsen number of f . Its computation requires only a knowledge of the map
f itself.

De�nition 3.1. Let f : (X,κ1) −→ (Y, κ2) be a (κ1, κ2)-continuous map where (X,κ1) and (Y, κ2) are digital images.
Then f induces homomorphisms f∗ : H

κ1
∗ (X) −→ Hκ2

∗ (Y ) and f∗ can be thought of as a homomorphisms of the integers.
The integer deg(f) to which the number 1 gets sent is called the degree of the map f .

De�nition 3.2. Let (X,κ) be a digital image, A ⊂ X and f : A→ X a digital map. We de�ne the �xed point index of f
as ind(f) = deg(F ) where F (x) = x− f(x) and x ∈ X.
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Some properties of �xed point index can be given as follows. We don't prove these because they are proved similarly in
Algebraic Topology.

1. (Homotopy invariance) Let A ⊂ X × [0,m]Z be digital image with κ-adjacency and F : A→ X be a digital map such
that

Fix(F ) = {(x, t) ∈ A : F (x, t) = x}.
Then ind(f0) = ind(fm), where ft = F (−, t) for 0 ≤ t < m and a positive integer m.

2. (Commutativity) Let (X,κ1) and (Y, κ2) be digital images and let f : A → Y and g : B → X be digital (κ1, κ2)-
continuous maps, respectively, where A ⊂ X, B ⊂ Y . Then Fix(gf) = Fix(fg) and ind(fg) = ind(gf).

Now we de�ne Nielsen number for digital images.

De�nition 3.3. Let (X,κ) be a digital image and f : (X,κ) → (X,κ) a self-map. Two �xed points x, y ∈ Fix(f) are
Nielsen related if and only if there is a κ-path c : [0,m]Z → X satisfying c(0) = x, c(m) = y and the κ-paths c, f ◦ c are
�xed end point homotopic, i.e. there is a digital map H : [0, n]Z × [0,m]Z → X satisfying

H(t, 0) = c(t), H(t,m) = f ◦ c(t), H(0, s) = x, H(n, s) = y.

This is an equivalence relation, hence Fix(f) splits into disjoint Nielsen classes. A �xed point class F is essential if its
index is nonzero. The number of essential �xed point classes is called the Nielsen number of f , denoted N(f).

We give some characteristic examples about the Nielsen number.

Example 3.4. Let (X,κ) be a digital image. If f : X → X is a constant digital map, then N(f) = 1.

Since the boundary Bd(In+1) of an (n+1)-cube In+1 is homeomorphic to n-sphere Sn, we can represent a digital sphere
by using the boundary of a digital cube. Boxer [5] de�nes sphere-like digital image as Sn = [−1, 1]n+1

Z \ {0n+1} ⊂ Zn+1,
where 0n denotes the origin of Zn.

Example 3.5. S1 = {c0 = (1, 0), c1 = (1, 1), c2 = (0, 1), c3 = (−1, 1), c4 = (−1, 0), c5 = (−1,−1), c6 = (0,−1), c7 =
(1,−1)} is digital 1-sphere with 4-adjacency in Z2. Let f : (S1, 4) → (S1, 4) be a digital map of degree 1. Then f can be
considered as identity map and is (4, 4)-homotopic to a �xed point free map. Thus we have N(f) = 0.

Let's give some important properties of Nielsen number for digital images.

Theorem 3.6. Let (X,κ) be any digital image. If f '(κ,κ) g : X → X, then N(f) = N(g).

Proof. We must show that there is a bijection between sets of essential classes of f and g. Let H(t, s) be a digital (κ, κ)-

homotopy from f and g. For every Nielsen class A ⊂ Fix(f), there is one A
′
⊂ Fix(H) containing A. Let

B = {x ∈ X | (x,m) ∈ A
′
}.

So B is a Nielsen class of g or is empty. From homotopy invariance index property, we have ind(f,A) = ind(g,B). If A is
essential, then B is essential. As a result, we �nd a map from the set of essential classes of f to the set of essential classes
of g.

On the other hand, H(x,m− t) gives the inverse map. Consequently, we get N(f) = N(g).

Theorem 3.7. Let (X,κ) be a digital image and f : X → X be a digital map. Any digital map g digital (κ, κ)-homotopic
to f has at least N(f) �xed points.

Proof. Using Theorem 3.6, we have N(f) = N(g). Since each essential Nielsen class of g is nonempty, we get M [g] ≥ N(g)
where

M [g] = min{#Fixg | g '(κ,κ) f : X → X}.

Theorem 3.8. Let (X,κ) and (Y, κ
′
) be any digital images, f : X → Y and g : Y → X be digital maps. Then N(g ◦ f) =

N(f ◦ g).

Proof. For digital maps f and g, if we use commutativity property of �xed point index, i.e. Fix(f ◦ g) = Fix(g ◦ f) and
ind(f ◦ g) = ind(g ◦ f), we have a bijection which preserves index between the sets of essential Nielsen classes. As a result,
we have N(g ◦ f) = N(f ◦ g).

Lemma 3.9. Let A ⊂ X be digital image with κ-adjacency and f : X → X be digital map such that f(X) ⊂ A, where X
is any digital image with κ-adjacency. If fA : A→ A is the restriction of f , then N(fA) = N(f).
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Proof. Let i : A→ X be inclusion map. Assume that g : X → A is given by g(x) = f(x). Using Theorem 3.8, we conclude

N(f) = N(i ◦ g) = N(g ◦ i) = N(fA)

because i ◦ g = f and g ◦ i = fA.

Theorem 3.10. Let (X,κ) and (Y, κ
′
) be any two digital images. Suppose that h : X → Y is a digital (κ, κ

′
)-homotopy

equivalence and let the diagram

X
f //

h

��

X

h

��
Y

g
// Y

be digital (κ, κ
′
)-homotopy commutative, i.e. h ◦ f '(κ,κ

′
) g ◦ h. Then N(f) = N(g).

Proof. Assume that the digital (κ
′
, κ)-homotopy inverse of h is m : Y → X. Then m ◦ h '(κ,κ) 1X and h ◦m '(κ

′
,κ

′
) 1Y .

By Theorem 3.6 and Theorem 3.8, we have

N(f) = N(f(mh)) = N((fm)h) = N(h(fm))

= N((hf)m)

= N((gh)m)

= N(g(hm))

= N(g).

Theorem 3.11. Let (X,κ) be a digital image and f : (X,κ) → (X,κ) be a digital map. N(f) is a lower bound for the
number of �xed points in the homotopy class of f , i.e.

0 ≤ N(f) ≤M [f ] := min{#Fixg | g '(κ,κ) f : X → X}.

Proof. By the de�nition of Nielsen number, we have N(f) ≥ 0. On the other hand, since we know that each Nielsen class
contains at least one �xed point of f , we conclude that 0 ≤ N(f) ≤M [f ].

4 Nielsen Theory and Digital Universal Covering Spaces

Since there is a connection between the digital fundamental group and the digital universal covering of a space, same results
can be also obtained by the lifts of the considered maps to the digital universal coverings. Let (X,κ) be a digital image and
p : X̃ → X̃ be the digital universal covering of X, with group π of covering transformations. Let f̃ : X̃ → X̃ be a lifting of
f , i.e., have a commutative diagram

X̃
f̃ //

p

��

X̃

p

��
X

f
// X

If f̃
′
is another lifting of f̃ , then f̃

′
= α ◦ f̃ for some α ∈ π. The set of all liftings of f is {α ◦ f̃ | α ∈ π}.

For any α ∈ π, f̃ ◦ α is a lifting of f and so we have α
′
◦ f̃ = f̃ ◦ α for some α

′
∈ π. This de�nes a homomorphism

ϕ : π → π given by ϕ(α) = α
′
. De�ne the Reidemeister action of π on π as follows:

π × π → π

(γ, α) 7→ γαϕ(γ)−1,

where γ, α ∈ π. This de�nes an equivalence relation. We say that the Reidemeister classes of its equivalence classes. The
set of the Reidemeister classes determined by ϕ is denoted by R[ϕ] = {[α] | α ∈ π}.

Theorem 4.1. Let (X,κ) be a digital image, f : X → X be a digital map and f̃ : X̃ → X̃ be a lifting of f . Then [α] = [α
′
]

if and only if p(Fix(α ◦ f̃)) = p(Fix(α
′
◦ f̃)), where p : X̃ → X is a digital covering map of f and α, α

′
∈ π.
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Proof. For necessary condition, since the �xed point sets of any two digital homotopic maps are same, we conclude that

[α] = [α
′
]⇒ α '(κ̃,κ̃) α

′

⇒ α ◦ f̃ '(κ̃,κ̃) α
′
◦ f̃

⇒ Fix(α ◦ f̃) = Fix(α
′
◦ f̃)

⇒ p(Fix(α ◦ f̃)) = p(Fix(α
′
◦ f̃)).

For su�cient condition, let a ∈ p(Fix(α ◦ f̃)) = p(Fix(α
′
◦ f̃)). Then we have p(ã) = a and p(ã′) = a. Moreover, we get

α ◦ f̃(ã) = ã = 1X̃(ã) and α
′
◦ f̃(ã) = ã′ = 1X̃(ã′)

Finally, we can say

α(f̃(ã)) = α
′
(f̃(ã)) ⇒ α = α

′
⇒ α '(κ̃,κ̃) α

′
,

where ã is any point of X̃. As a result, we have [α] = [α
′
].

Corollary 4.2. If p(Fix(αf̃)) is any �xed point class, then

Fix(f) =
∐

[α]∈R[ϕ]

p(Fix(αf̃)),

where [α] is a Reidemeister class.

Lemma 4.3. Let (X,κ), (X̃, κ̃) be digital images, f : X → X be a digital map and f̃ : X̃ → X̃ be any lifting of f . Then
any two points in p(Fix(f̃)) ⊂ Fix(f) are Nielsen related. We have also

Fix(f) =
⋃
˜
f
′

p(Fix(f̃ ′))

where f̃ ′ is a lifting of f .

Proof. Let a and b be any two points in p(Fix(f̃)). We say that

p(ã) = ã, p(b̃) = b̃, f̃(ã) = ã, f̃(b̃) = b̃,

for some ã, b̃ ∈ Fix(f̃). We denote a κ̃-path from ã to b̃ in X̃ by θ̃. There is a digital homotopy H̃ such that

H̃ : X̃ × [0,m]Z → X̃

H̃(x̃, 0) = θ̃ and H̃(x̃,m) = f̃ ◦ θ̃
because X̃ is κ̃-connected digital image. Then we have p ◦ H̃ = H : X × [0,m′]Z → X is a digital homotopy between two
κ-paths

θ = p ◦ θ̃ and f ◦ θ = p ◦ (f̃ ◦ θ̃)
which join two points a, b ∈ Fix(f). As a result, a and b are Nielsen related points.

Now we prove the latter statement. Let u ∈ Fix(f) and ũ ∈ p−1(u). Then f(u) = u and p−1(u) = ũ. Moreover,

f̃ ′(ũ) = ũ because f̃ ′ is a lifting of f . We can say the following result.

f̃ ′(ũ) = ũ ⇒ p ◦ f̃ ′(ũ) = p(ũ) = u ⇒ u ∈ p(Fix(f̃ ′)).

Consequently, we have Fix(f) =
⋃
˜
f
′

p(Fix(f̃ ′)).

Let p : X̃ → X be a digital universal covering map. Let

OX = {α ∈ X̃ → X̃ : p ◦ α = p}

denote the group of deck transformations of this digital covering map.

Lemma 4.4. Let C be the set of liftings of f and f̃ , f̃ ′ ∈ C. If p(Fix(f̃)) = p(Fix(f̃ ′)) 6= ∅, then there is an α ∈ OX such

that α ◦ f̃ = f̃ ′ ◦ α.
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Proof. If p(Fix(f̃)) = p(Fix(f̃ ′)) 6= ∅, then there are two points x̃, x̃′ such that p(x̃) = p(x̃′) where

x̃ ∈ Fix(f̃) ⇒ f̃(x̃) = x̃ and x̃′ ∈ Fix(f̃ ′) ⇒ f̃ ′(x̃′) = x̃′ .

Since α ∈ OX , i.e. p ◦ α = p, we have α(x̃) = x̃′ . We conclude that

f̃ ′ ◦ α(x̃) = f̃ ′(x̃′) = x̃′ = α(x̃) = α(f̃(x̃)) = α ◦ f̃(x̃).

As a result, we have αf̃ = f̃ ′α.

Lemma 4.5. Let f̃ ′ = αf̃α−1 for an α ∈ OX . Then p(Fix(f̃)) = p(Fix(f̃ ′)).

Proof. By assumption, we have p(α(x̃)) = p(x̃). If u ∈ p(Fix(f̃)), then p(x̃) = u and f̃(x̃) = x̃. Since

p ◦ f̃(x̃) = u ⇒ p ◦ α−1 ◦ f̃ ′ ◦ α(x̃) = p ◦ f̃ ′(x̃′) = u,

we have u ∈ p(Fix(f̃ ′)). As a result, p(Fix(f̃)) = p(Fix(f̃ ′)).

5 Conclusion

The essential aim of this paper is to determine �xed point properties for a digital image. This work can play an important
role in digital images because Nielsen theory gives an information about the number of �xed points of a map. Since the
Nielsen number is a powerful invariant in digital images, we think that this work will be useful for �xed point theory,
especially Nielsen theory.
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A FIXED POINT THEOREM AND STABILITY OF

ADDITIVE-CUBIC FUNCTIONAL EQUATIONS IN MODULAR

SPACES

CHANG IL KIM, GILJUN HAN∗, AND SEONG-A SHIM

Abstract. In this paper, we investigate a fixed point theorem for a mapping

without the condition of bounded orbit in a modular space, whose induced
modular is lower semi-continunous. Using this fixed point theorem, we prove

the generalized Hyers-Ulam stability for an additive-cubic functional equation

in modular spaces without 42-conditions and the convexity.

1. Introduction and preliminaries

The question of stability for a generic functional equation was originated in 1940
by Ulam [14]. Concerning a group homomorphism, Ulam posted the question ask-
ing how likely to an automorphism a function should behave in order to guarantee
the existence of an automorphism near such functions. Hyers [3] gave the first affir-
mative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem
was generalized by Aoki [1] for additive mappings and by Rassias [12] for linear
mappings by considering an unbounded Cauchy difference, the latter of which has
influenced many developments in the stability theory. This area is then referred to
as the generalized Hyers-Ulam stability. In 1994, P. Gǎvruta [2] generalized these
theorems for approximate additive mappings controlled by the unbounded Cauchy
difference with regular conditions.

A problem that mathematicians has dealt with is ”how to generalize the classical
function space Lp”. A first attempt was made by Birnhaum and Orlicz in 1931. This
generalization found many applications in differential and intergral equations with
kernls of nonpower types. The more abstract generalization was given by Nakano
[10] in 1950 based on replacing the particular integral form of the functional by
an abstract one that satisfies some good properties. This functional was called
modular. This idea was refined, generalized by Musielak and Orlicz [8] in 1959 and
studied by many authors ([4], [7], [11], [19]).

Recently, Sadeghi [13] presented a fixed point method to prove the general-
ized Hyers-Ulam stability of functional equations in modular spaces with the 42-
condition and Wongkum, Chaipunya, and Kumam [15] proved the fixed point theo-
rem and the generalized Hyers-Ulam stability for quadratic mappings in a modular
space whose modular is convex, lower semi-continuous but do not satisfy the 42-
condition.

2010 Mathematics Subject Classification. 39B52, 39B72, 47H09.
Key words and phrases. fixed point theorem, stability, additive-cubic functional equation,

modular space.
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2 CHANG IL KIM, GILJUN HAN, AND SEONG-A SHIM

In this paper, we investigate a fixed point theorem in modular spaces, whose
induced modular is lower semi-continuous, for a mapping with some conditions
in place of the condition of bounded orbit and using this fixed point theorem,
we will prove the generalized Hyers-Ulam stability for the following additive-cubic
functional equation

(1.1) f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 2f(2x) + 4f(x) = 0

in modular spaces without 42-conditions and the convexity.
In fact, the equation (1.1) has been studied in various spaces. For example, in

quasi-Banach spaces ([9]), in F-spaces ([16]), in non-Archimedean fuzzy normed
spaces ([17]), and in intuitionistic fuzzy normed spaces ([18]), etc. Unlike Banach
spaces and F-spaces, due to the absence of the triangle inequality in modular spaces,
we need subtle caculations in the proofs of Lemma 1.4 and Theorem 2.2.

Definition 1.1. Let X be a vector space over a field K(R or C).
(1) A generalized functional ρ : X −→ [0,∞] is called a modular if

(M1) ρ(x) = 0 if and only if x = 0,
(M2) ρ(αx) = ρ(x) for every scalar α with |α| = 1, and
(M3) ρ(αx + βy) ≤ ρ(x) + ρ(y) for all x, y ∈ X and for all nonnegative real

numbers α, β with α+ β = 1.
(2) If (M3) is replaced by

(M4) ρ(αx+ βy) ≤ αρ(x) + βρ(y)
for all x, y ∈ X and for all nonnegative real numbers α, β with α+ β = 1, then we
say that ρ is a convex modular.

Remark 1.2. Let ρ be a modular on a vector space X. Then by (M1) and (M3),
we can easily show that for any positive real number δ with δ < 1,

ρ(δx) ≤ ρ(x)

for all x ∈ X.

For any modular ρ on X, the modular space Xρ is defined by

Xρ := {x ∈ X | ρ(λx)→ 0 as λ→ 0}.

Let Xρ be a modular space and let {xn} be a sequence in Xρ. Then (i) {xn}
is called ρ-convergent to a point x ∈ Xρ if ρ(xn − x) → 0 as n → ∞, (ii) {xn} is
called ρ-Cauchy if for any ε > 0, there is a k ∈ N such that ρ(xn − xm) < ε for
all m,n ∈ N with n,m ≥ k, and (iii) a subset K of Xρ is called ρ-complete if each
ρ-Cauchy sequence is ρ-convergent to an element of K.

Another unnatural behavior one usually encounter is that the convergence of a
sequence {xn} to x does not imply that {cxn} converges to cx for some c ∈ K.
Thus, many mathematicians imposed some additional conditions for a modular to
meet in order to make the multiples of {xn} converge naturally. Such preferences
are referred to mostly under the term related to the 42-conditions.

A modular space Xρ is said to satisfy the 42-condition if there exists k ≥ 2 such
that ρ(2x) ≤ kρ(x) for all x ∈ Xρ. Some authors varied the notion so that only
k > 0 is required and called it the 42-type condition. In fact, one may see that
these two notions coincide. There are still a number of equivalent notions related
to the 42-conditions.
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In [5], Khamsi proved a series of fixed point theorems in modular spaces where the
modulars do not satisfy 42-conditions. His results exploit one unifying hypothesis
in which the boundedness of an orbit is assumed.

Lemma 1.3. (see [5]) Let Xρ be a modular space whose induced modular is lower
semi-continuous and let C ⊆ Xρ be a ρ-complete subset. If T : C −→ C is a
ρ-contraction, that is, there is a constant L ∈ [0, 1) such that

ρ(Tx− Ty) ≤ Lρ(x− y), ∀x, y ∈ C

and T has a bounded orbit at a point x0 ∈ C, that is,

sup{ρ(Tnx0 − Tmx0) | n,m ∈ N ∪ {0}} <∞

then the sequence {Tnx0} is ρ-convergent to a point w ∈ C.

Now, we will prove a fixed point theorem in modular spaces where the map T
do not assume to be the boundedness of an orbit. Our results exploit one unifying
hypothesis in which some conditions are assumed.

Lemma 1.4. Let Xρ be a modular space whose induced modular is lower semi-
continuous and let C ⊆ Xρ be a ρ-complete subset. Let T : C −→ C be a mapping
such that

(1.2) 2Tx = T2x, ∀x ∈ C.

Suppose that there is a constant L ∈ [0, 1) with

(1.3) ρ(2Tx− 2Ty) ≤ Lρ(x− y), ∀x, y ∈ C

and ρ(Txo − xo) < ∞ at xo ∈ C. Then the sequence {Tn x0

4 } is ρ-convergent to
some point w ∈ C and

(1.4) ρ(
x0
4
− w) ≤ 2

1− L
ρ(Tx0 − x0).

Proof. By (M1) and (M3), we have ρ(Tx− Ty) ≤ ρ(2Tx − 2Ty) and so, by (1.3),
T is a ρ-contration. Hence we have

ρ(
1

2
T 2x0 −

1

2
x0) ≤ ρ(T 2x0 − Tx0) + ρ(Tx0 − x0)

≤ (L+ 1)ρ(Tx0 − x0).

Let Gx = 2Tx for all x ∈ C. By (1.3), we have

ρ(
1

2
Tnx0 −

1

2
x0) ≤ ρ(Tnx0 − Tx0) + ρ(Tx0 − x0)

= ρ
(1

2
G(Tn−1x0)− 1

2
Gx0

)
+ ρ(Tx0 − x0)

≤ Lρ
(1

2
Tn−1x0 −

1

2
x0

)
+ ρ(Tx0 − x0)

for all n ∈ N with n ≥ 2 and by induction, we have

ρ(
1

2
Tnx0 −

1

2
x0) ≤ Σn−1k=0L

kρ(Tx0 − x0) ≤ 1

1− L
ρ(Tx0 − x0)

for all n ∈ N. For any non-negative integers m,n with m > n,
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ρ(
1

4
Tnx0 −

1

4
Tmx0) ≤ ρ(

1

2
Tnx0 −

1

2
x0) + ρ(

1

2
Tmx0 −

1

2
x0)

≤ 2

1− L
ρ(Tx0 − x0).

(1.5)

By (1.2), T has a bounded orbit at a point x0

4 ∈ C and thus by Lemma 1.3, {Tn x0

4 }
is ρ-convergent to a point ω ∈ C. Since ρ is lower semi-continuous, by taking n = 0
and m→∞ in (1.5), we have (1.4). �

If ρ is convex, then Lemma 1.4 can be replaced by the following lemma.

Lemma 1.5. All conditions in Lemma 1.4 are assumed. Suppose that ρ is convex
and 0 ≤ L < 2. Then the sequence {Tn x0

4 } is ρ-convergent to some point w ∈ C
and

(1.6) ρ(
x0
4
− w) ≤ 1

2− L
ρ(Tx0 − x0).

Proof. By (M1) and (M4), we have ρ(Tx − Ty) ≤ 1
2ρ(2Tx − 2Ty) and since 0 ≤

L < 2, by (1.3), T is a ρ-contration. Hence by (M4), we have

ρ(
1

2
T 2x0 −

1

2
x0) ≤ 1

2
ρ(T 2x0 − Tx0) +

1

2
ρ(Tx0 − x0)

≤ (
1

4
L+

1

2
)ρ(Tx0 − x0).

Let Gx = 2Tx for all x ∈ C. By (1.3), we have

ρ(
1

2
Tnx0 −

1

2
x0) ≤ 1

2
ρ(Tnx0 − Tx0) +

1

2
ρ(Tx0 − x0)

= ρ
(1

2
G(Tn−1x0)− 1

2
Gx0

)
+

1

2
ρ(Tx0 − x0)

≤ 1

2
Lρ
(1

2
Tn−1x0 −

1

2
x0

)
+

1

2
ρ(Tx0 − x0)

for all n ∈ N with n ≥ 2 and by induction, we have

ρ(
1

2
Tnx0 −

1

2
x0) ≤ Σn−1k=0

Lk

2k+1
ρ(Tx0 − x0) ≤ 1

2− L
ρ(Tx0 − x0)

for all n ∈ N. For any non-negative integers m,n with m > n,

ρ(
1

4
Tnx0 −

1

4
Tmx0) ≤ 1

2
ρ(

1

2
Tnx0 −

1

2
x0) +

1

2
ρ(

1

2
Tmx0 −

1

2
x0)

≤ 1

2− L
ρ(Tx0 − x0).

The rest of the proof is similar to Lemma 1.4. �

Let ρ be a modular on X, V a linear space. Define a set M by

M := {g : V −→ Xρ | g(0) = 0}
and a generalized function ρ̃ on M by

ρ̃(g) := inf{c > 0 | ρ(g(x)) ≤ cψ(x, x), ∀x ∈ V },
for each g ∈M, where ψ : V 2 −→ [0,∞) a mapping. Then M is a linear space, ρ̃ is
a modular on M. Furthermore, if ρ is convex, then ρ̃ is also convex([15]).
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Lemma 1.6. Let V be a linear space, Xρ a ρ-complete modular space, where ρ is
lower semi-continuous and f : V −→ Xρ a mapping with f(0) = 0. Let ψ : V 2 −→
[0,∞) be a mapping. Then we have the following :

(1) Mρ̃ = M and Mρ̃ is ρ̃-complete.
(2) ρ̃ is lower semi-continuous.

Proof. (1) By the definition of Mρ̃, Mρ̃ = M. Let ε > 0 be given. Take any ρ̃-
Cauchy sequence {gn} in Mρ̃. Then there is an l ∈ N such that for n,m ∈ N with
n,m ≥ l,

(1.7) ρ(gn(x)− gm(x)) ≤ εψ(x, x)

for all x ∈ V . Hence {gn(x)} is a ρ-Cauchy sequence in Xρ for all x ∈ X. Since Xρ

is ρ-complete, there is a mapping g : V −→ Xρ such that ρ(gn(x)− g(x)) −→ 0 as
n −→∞ for all x ∈ X. Then there is an m ∈ N such that

ρ(gm(0)− g(0)) = ρ(g(0)) ≤ ε

and hence g ∈Mρ̃. Since ρ is a lower semi-continuous, by (1.7), we have

ρ(gn(x)− g(x)) ≤ lim inf
m−→∞

ρ(gn(x)− gm(x)) ≤ εψ(x, x)

for all x ∈ X. Hence Mρ̃ is ρ̃-complete.
(2) Suppose that {gn} is a sequence in Mρ̃ which is ρ̃-convergent to g ∈Mρ̃. Let

ε > 0. Then for any n ∈ N, there is a positive real number cn such that

ρ̃(gn) ≤ cn ≤ ρ̃(gn) + ε

and so

ρ(g(x)) ≤ lim inf
n→∞

ρ(gn(x)) ≤ lim inf
n→∞

cnψ(x, x) ≤
(

lim inf
n→∞

ρ(gn(x)) + ε
)
ψ(x, x)

for all x ∈ X. Hence ρ̃ is lower semi-continuous. �

2. The generalized Hyers-Ulam stability for (1.1) in modular spaces

Throughout this section, we assume that every modular is lower semi-continuous.
In this section, we will prove the generalized Hyers-Ulam stability for (1.1) by using
our fixed point theorem. We can easily show the following lemma.

Lemma 2.1. Let X and Y be vector spaces. Let f : X −→ Y satisfies (1.1) and
f(0) = 0. Then we have :

(1) f is additive if and only if f(2x) = 2f(x) for all x ∈ X.
(2) f is cubic if and only if f(2x) = 8f(x) for all x ∈ X.

For any mapping g : X −→ Y , let

ga(x) =
1

4
(g(2x)− 8g(x)), gc(x) = g(2x)− 2g(x)

and

Dg(x, y) = g(2x+ y) + g(2x− y)− 2g(x+ y)− 2g(x− y)− 2g(2x) + 4g(x).
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Theorem 2.2. Let V be a linear space, Xρ a ρ-complete modular space. Suppose
that f : V −→ Xρ satisfies f(0) = 0 and

(2.1) ρ(Df(x, y)) ≤ φ(x, y)

for all x, y ∈ V , where φ : V 2 −→ [0,∞) is a mapping such that

(2.2) φ(2x, 2y) ≤ Lφ(x, y)

for some L with 0 ≤ L < 1 and for all x, y ∈ V . Then there exists a unique
additive-cubic mapping F : V −→ Xρ such that

(2.3) ρ(F (x)− 3

16
f(x)) ≤ 4

1− L
ψ(x, x)

for all x ∈ V , where ψ(x, y) = φ(x, 2y) + φ(x, y) + φ(0, y).

Proof. Let ψ(x, y) = φ(x, 2y) + φ(x, y) + φ(0, y). Then by Lemma 1.6, Mρ̃ = M is
ρ̃-complete and ρ̃ is lower semi-continuous.

Define Ta : Mρ̃ −→ Mρ̃ by Tag(x) = 1
2g(2x) for all g ∈ Mρ̃ and all x ∈ V . Let

g, h ∈ Mρ̃. Suppose that ρ̃(g − h) ≤ c for some positive real number c. Then by
(2.3) and Remark 1.2, we have

ρ(Tag(x)− Tah(x)) ≤ ρ(g(2x)− h(2x)) ≤ Lcψ(x, x)

for all x ∈ V and so ρ̃(Tag − Tah) ≤ Lρ̃(g − h). Hence Ta is a ρ̃-contraction. By
(2.1), we get

(2.4) ρ(f(x) + f(−x)) ≤ φ(0, x),

(2.5) ρ(f(3x)− 4f(2x) + 5f(x)) ≤ φ(x, x),

and

(2.6) ρ(f(4x)− 2f(3x)− 2f(2x)− 2f(−x) + 4f(x)) ≤ φ(x, 2x),

for all x ∈ V . By (2.4), (2.5), and (2.6), we obtain

ρ(Tafa(x)− fa(x)) = ρ(
1

2
fa(2x)− fa(x)) ≤ φ(x, 2x) + φ(x, x) + φ(0, x) = ψ(x, x)

for all x ∈ V and hence we have

(2.7) ρ̃(Tafa − fa) ≤ 1.

Let Gg = 2Tag for all g ∈Mρ̃. Then

Gg(x) = g(2x)

for all g ∈ Mρ̃ and for all x ∈ V . Suppose that ρ̃(g − h) ≤ c for some positive real
number c, where g, h ∈ Mρ̃. Then ρ(g(x) − h(x)) ≤ cψ(x, x) for all x ∈ V and by
(2.2), we have

ρ(Gg(x)−Gh(x)) = ρ(g(2x)− h(2x)) ≤ cψ(2x, 2x) ≤ cLψ(x, x)

for all x ∈ V . Hence ρ̃(Gg −Gh) ≤ cL and so

ρ̃(Gg −Gh) ≤ Lρ̃(g − h).

Since Ta is linear, by Lemma 1.4, there is an A ∈ Mρ̃ such that {Tna
fa
4 } is ρ̃-

convergent to A. In fact, we get
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(2.8) lim
n→∞

ρ(
1

2n+2
fa(2nx)−A(x)) = 0

for all x ∈ V . Since ρ̃ is lower semi-continuous, we get

ρ̃(TaA−A) ≤ lim inf
n→∞

ρ̃(TaA− Tn+1
a

fa
4

) ≤ lim inf
n→∞

Lρ̃(A− Tna
fa
4

) = 0

and hence A is a fixed point of Ta in Mρ̃. Replacing x and y by 2nx and 2ny in
(2.1), respectively, by (2.2), we have

ρ(
1

2n+2
Dfa(2nx, 2ny))

≤ ρ(
1

2n+3
Df(2n+1x, 2n+1y)) + ρ(

1

2n
Df(2nx, 2ny))

≤ Ln+1φ(x, y) + Lnφ(x, y)

for all x, y ∈ V and for all n ∈ N. Hence we get

(2.9) lim
n→∞

ρ
( 1

2n+2
Dfa(2nx, 2ny)

)
= 0

for all x, y ∈ V . Note that

ρ
( 1

2n+10
Dfa(2nx, 2ny)− 1

28
DA(x, y)

)
≤ ρ
( 1

2n+9
fa(2n(2x+ y))− 1

27
A(2x+ y)

)
+ ρ
( 1

2n+8
fa(2n(2x− y))− 1

26
A(2x− y)

)
+ ρ
( 1

2n+7
2fa(2n(x+ y))− 1

25
2A(x+ y)

)
+ ρ
( 1

2n+6
2fa(2n(x− y))− 1

24
2A(x− y)

)
+ ρ
( 1

2n+5
2fa(2n2x)− 1

23
2A(2x)

)
+ ρ
( 1

2n+5
2fa(2n(x− y))− 1

23
4A(x− y)

)
for all x, y ∈ V and for all n ∈ N. Hence we have

(2.10) lim
n→∞

ρ
( 1

2n+10
Dfa(2nx, 2ny)− 1

28
DA(x, y)

)
= 0

for all x, y ∈ V . Since

ρ
( 1

29
DA(x, y)

)
≤ ρ
( 1

2n+10
Dfa(2nx, 2ny)− 1

28
DA(x, y)

)
+ρ
( 1

2n+10
Dfa(2nx, 2ny)

)
for all x, y ∈ V and for all n ∈ N, by (2.9) and (2.10), we get

(2.11) DA(x, y) = 0

for all x, y ∈ V . By (1.4) in Lemma 1.4, we get

(2.12) ρ̃(A− 1

4
fa) ≤ 2

1− L
.

Define Tc : Mρ̃ −→ Mρ̃ by Tcg(x) = 1
8g(2x) for all g ∈ Mρ̃ and all x ∈ V . By

(2.4), (2.5), and (2.6), we obtain

ρ(
1

23
fc(2x)− fc(x)) ≤ ψ(x, x)
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for all x ∈ V and hence

(2.13) ρ̃(Tcfc − fc) ≤ 1.

Let Hg = 2Tcg for all g ∈Mρ̃. Then

Hg(x) =
1

4
g(2x).

for all g ∈ Mρ̃ and for all x ∈ V . Let g, h ∈ Mρ̃. Suppose that ρ̃(g − h) ≤ c for
some positive real number c. Then ρ(g(x)− h(x)) ≤ cψ(x, x) for all x ∈ V and by
(2.3), we get

ρ(Hg(x)−Hh(x)) = ρ(
1

4
g(2x)− 1

4
h(2x)) ≤ cψ(2x, 2x) ≤ cLψ(x, x)

for all x ∈ V . Hence ρ̃(Hg −Hh) ≤ cL and so

ρ̃(Hg −Hh) ≤ Lρ̃(g − h).

Since Tc is linear, by Lemma 1.4, there is a C ∈ Mρ̃ such that {Tnc 1
4fc} is ρ̃-

convergent to C. Since ρ̃ is lower semi-continuous, we get

ρ̃(TcC − C) ≤ lim inf
n→∞

ρ̃(TcC − Tn+1
c

1

4
fc) ≤ lim inf

n→∞
Lρ̃(C − Tnc

1

4
fc) = 0

and hence C is a fixed point of Tc in Mρ̃. Replacing x and y by 2nx and 2ny in
(2.1), respectively, by (2.2), we have

ρ(
1

23n+2
Dfc(2

nx, 2ny))

≤ ρ(
1

23n+1
Df(2n+1x, 2n+1y)) + ρ(

1

23n
Df(2nx, 2ny))

≤ Ln+1φ(x, y) + Lnφ(x, y)

for all x, y ∈ V . Hence we get

lim
n→∞

ρ
( 1

23n+2
Dfc(2

nx, 2ny)
)

= 0

for all x, y ∈ V . Similar to A, we have

(2.14) DC(x, y) = 0

for all x, y ∈ V and by (1.4) in Lemma 1.4, we get

ρ(C(x)− 1

4
fc(x)) ≤ 2

1− L
ψ(x, x)

for all x ∈ X. Hence we have

(2.15) ρ̃(C − 1

4
fc) ≤

2

1− L
.

Let F = 1
8C −

1
2A. Since A is a fixed point of Ta, A(2x) = 2A(x) for all x ∈ X

and similarly, C(2x) = 8C(x) for all x ∈ X. By Lemma 2.1, A is additive and C
is cubic. Hence F is an additive-cubic mapping. Since f(x) = 1

6fc(x)− 2
3fa(x), we

have

ρ̃(F − 3

16
f) ≤ ρ̃(A− 1

4
fa) + ρ̃(

1

4
C − 1

16
fc) ≤ ρ̃(A− 1

4
fa) + ρ̃(C − 1

4
fc),
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and hence by (2.12) and (2.15), we have (2.3).
To prove the uniquness of F , let K : V −→ Xρ be another additive-cubic map-

ping with (2.3). By (2.3), we get

ρ(
1

4
K(x)− 1

4
F (x)) ≤ ρ(K(x)− 3

16
f(x)) + ρ(F (x)− 3

16
f(x)))

≤ 8

1− L
ψ(x, x)

for all x ∈ V and so

ρ(
1

16
Ka(x)− 1

16
Fa(x)) ≤ ρ(

1

32
K(2x)− 1

32
F (2x)) + ρ(

1

4
K(x)− 1

4
F (x)))

≤ 8(1 + L)

1− L
ψ(x, x)

for all x ∈ V . Since Fa and Ka are fixed points of Ta, we have

ρ(
1

16
Ka(x)− 1

16
Fa(x)) = ρ(

1

16
TnaKa(x)− 1

16
Tna Fa(x))

≤ 8(1 + L)

1− L
Lnψ(x, x)

for all x ∈ V and for all n ∈ N. Letting n → ∞ in the last inequality, we have
Fa = Ka and similarly, we have Fc = Kc. Thus F = K. �

Comparing the results in a modular and a convex modular, we may see that the
coefficient in the case of convex modular is smaller.

Theorem 2.3. Suppose that every assumption of Theorem 2.2 holds, ρ is convex
and 0 ≤ L < 2. Then there exists a unique additive-cubic mapping F : V −→ Xρ

such that

(2.16) ρ(F (x)− 3

16
f(x)) ≤ 5

32(2− L)
ψ(x, x)

for all x ∈ V , where ψ(x, y) = φ(x, 2y) + φ(x, y) + φ(0, y).

Proof. Define Ta : Mρ̃ −→ Mρ̃ by Tag(x) = 1
2g(2x) for all g ∈ Mρ̃ and all x ∈ V .

Let g, h ∈ Mρ̃. Suppose that ρ̃(g − h) ≤ c for some positive real number c. Then
by (2.3) and (M4), we have

ρ(Tag(x)− Tah(x)) ≤ 1

2
ρ(g(2x)− h(2x)) ≤ 1

2
Lcψ(x, x)

for all x ∈ V and so ρ̃(Tag − Tah) ≤ 1
2Lρ̃(g − h). Hence Ta is a ρ̃-contraction. By

(2.1), we get

(2.17) ρ(f(x) + f(−x)) ≤ φ(0, x),

(2.18) ρ(f(3x)− 4f(2x) + 5f(x)) ≤ φ(x, x),

and

(2.19) ρ(f(4x)− 2f(3x)− 2f(2x)− 2f(−x) + 4f(x)) ≤ φ(x, 2x),

for all x ∈ V . By (2.17), (2.18), and (2.19), we obtain

ρ(
1

2
fa(2x)− fa(x)) ≤ 1

8
φ(x, 2x) +

1

4
φ(x, x) +

1

4
φ(0, x) ≤ 1

4
ψ(x, x)
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for all x ∈ V and hence

ρ(Tafa(x)− fa(x)) ≤ 1

4
ψ(x, x)

for all g ∈Mρ̃ and all x ∈ V . Hence we have

(2.20) ρ̃(Tafa − fa) ≤ 1

4
.

Let Gg = 2Tag for all g ∈Mρ̃. Then

Gg(x) = g(2x)

for all x ∈ V . Suppose that ρ̃(g − h) ≤ c for some positive real number c. Then
ρ(g(x)− h(x)) ≤ cψ(x, x) for all x ∈ V and by (2.2), we have

ρ(Gg(x)−Gh(x)) = ρ(g(2x)− h(2x)) ≤ cψ(2x, 2x) ≤ cLψ(x, x)

for all x ∈ V . Hence ρ̃(Gg −Gh) ≤ cL and so

ρ̃(Gg −Gh) ≤ Lρ̃(g − h).

Since Ta is linear, by Lemma 1.5, there is an A ∈ Mρ̃ such that {Tna
fa
4 } is ρ̃-

convergent to A. In fact, we get

lim
n→∞

ρ(
1

2n+2
fa(2nx)−A(x)) = 0

for all x ∈ V . Since ρ̃ is lower semi-continuous, we get

ρ̃(TaA−A) ≤ lim inf
n→∞

ρ̃(TaA− Tn+1
a

fa
4

) ≤ lim inf
n→∞

Lρ̃(A− Tna
fa
4

) = 0

and hence A is a fixed point of Ta in Mρ̃. Similar to Theorem 2.2, we have

(2.21) DA(x, y) = 0

for all x, y ∈ V and by (1.6) in Lemma 1.5 and (2.20), we get

(2.22) ρ̃(A− 1

4
fa) ≤ 1

4(2− L)
.

Define Tc : Mρ̃ −→ Mρ̃ by Tcg(x) = 1
8g(2x) for all g ∈ Mρ̃ and all x ∈ V . By

(2.17), (2.18), and (2.19), we obtain

ρ(
1

23
fc(2x)− fc(x)) ≤ 1

4
ψ(x, x)

for all x ∈ V and hence

(2.23) ρ̃(Tcfc − fc) ≤
1

4
.

Let Hg = 2Tcg for all g ∈Mρ̃. Then

Hg(x) =
1

4
g(2x).

for all g ∈ Mρ̃ and for all x ∈ V . Let g, h ∈ Mρ̃. Suppose that ρ̃(g − h) ≤ c for
some positive real number c. Then ρ(g(x)− h(x)) ≤ cψ(x, x) for all x ∈ V and by
(2.3), we get
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ρ(Hg(x)−Hh(x)) = ρ(
1

4
g(2x)− 1

4
h(2x)) ≤ cψ(2x, 2x) ≤ cLψ(x, x)

for all x ∈ V . Hence ρ̃(Gg −Gh) ≤ cL and so

ρ̃(Hg −Hh) ≤ Lρ̃(g − h).

Since Tc is linear, by Lemma 1.5, there is a C ∈ Mρ̃ such that {Tnc 1
4fc} is ρ̃-

convergent to C. Since ρ̃ is lower semi-continuous, we get

ρ̃(TcC − C) ≤ lim inf
n→∞

ρ̃(TcC − Tn+1
c

1

4
fc) ≤ lim inf

n→∞
Lρ̃(C − Tnc

1

4
fc) = 0

and hence C is a fixed point of Tc in Mρ̃. Similar to Theorem 2.2, we get

(2.24) DC(x, y) = 0

for all x, y ∈ V and by (1.6) in Lemma 1.5, we get

ρ(C(x)− 1

4
fc(x)) ≤ 1

4(2− L)
ψ(x, x)

for all x ∈ X. Hence we have

(2.25) ρ̃(C − 1

4
fc) ≤

1

4(2− L)
.

Let F = 1
8C −

1
2A. Since A is a fixed point of Ta, A(2x) = 2A(x) for all x ∈ X

and similarly, C(2x) = 8C(x) for all x ∈ X. By Lemma 2.1, A is additive and C
is cubic. Hence F is an additive-cubic mapping. Since f(x) = 1

6fc(x)− 2
3fa(x), by

(2.22) and (2.25), we have

ρ̃(F − 3

16
f) ≤ 1

2
ρ̃(A− 1

4
fa) +

1

2
ρ̃(

1

4
C − 1

16
fc) ≤

1

2
ρ̃(A− 1

4
fa) +

1

8
ρ̃(C − 1

4
fc).

and hence we have (2.16). The rest of the proof is similar to Theorem 2.2. �

Remark 2.4. Sadeghi [13] proved the generalized Hyers-Ulam stability of func-
tional equations in modular spaces with the 42-condition and in [15], authors
proved the stability of mappings f : V −→ Xρ and φ : V 2 −→ [0,∞) satisfying
f(0) = 0,

(2.26) lim
n→∞

φ(2nx, 2ny)

4n
= 0, φ(2x, 2x) ≤ 4Lφ(x, x), ∀x, y ∈ V,

and
ρ(4f(x+ y) + 4f(x− y)− 8f(x)− 8f(y)) ≤ φ(x, y), ∀x, y ∈ V

for some real number L with 0 ≤ L < 1
2 whose codomain is equipped with a convex

and lower semi-continuous modular without 42-conditions. Our results guarantee
the stability of an additive-cubic mapping, whose induced modular is lower semi-
continuous without the convexity and 42-conditions if 0 ≤ L < 1

4 . Further, in [15],
authors left whether the multiple of 4 on the left side of the inequality (6) can be
dropped as a problem. We can solve the problem by using Lemma 1.4 and its proof
is similar to the proof in Theorem 2.2.

In fact, suppose that φ : V 2 −→ [0,∞) is a mapping with (2.26) and that
0 ≤ L < 1

4 . Let f : V −→ Xρ be a mapping such that f(0) = 0 and

(2.27) ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y)) ≤ φ(x, y)
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for all x, y ∈ X. Let ψ(x, y) = φ(x, y) for all x, y ∈ V , f0(x) = 4f(x), and
Tg(x) = 1

4g(2x). Then by (2.27), we have

ρ(Tf0(x)− f0(x)) = ρ(
1

4
f0(2x)− f0(x)) ≤ φ(x, x)

for all x ∈ V and so

(2.28) ρ̃(Tf0 − f0) ≤ 1.

Moreover, by (2.26), we have

(2.29) ρ̃(2Tg − 2Th) ≤ 4Lρ̃(g − h).

Since 0 ≤ L < 1
4 , by Lemma 1.4, there is a fixed point Q ∈Mρ̃ such that {Tn f04 } =

{Tnf} converges to Q in Xρ and

(2.30) ρ(Q(x)− f(x)) ≤ 2

1− 4L
φ(x, x)

for all x ∈ V . We can show that Q is a quadratic mapping ([15]).
Further, suppose that ρ is convex and 0 ≤ L < 1. Then (2.28) and (2.29) can be

replaced by

ρ̃(Tf0 − f0) ≤ 1

4
and

ρ̃(2Tg − 2Th) ≤ 2Lρ̃(g − h),

respectively. By Lemma 1.5 and (1.6),

ρ(Q(x)− f(x)) ≤ 1

4(2− 2L)
φ(x, x) =

1

8(1− L)
φ(x, x)

for all x ∈ V .
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Abstract

In this paper, we consider the uniqueness problem of admissible functions and
non-admissible functions sharing some values in the unit disc. We obtain: If f1 is
admissible and f2 is inadmissible satisfying lim

r→1−
T (r, f2) = ∞, aj(j = 1, 2, . . . ; q)

be q distinct complex numbers. Then
(i) f1(z), f2(z) can share at most three values a1, a2, a3 IM ;
(ii) f1(z), f2(z) can share at most five values aj(j = 1, 2, . . . ; 5) with reduced

weight 1. Our results of this paper are improvement of the uniqueness theorems
of meromorphic functions sharing some values on the whole complex plane which
given by Yi and Cao.
Key words: uniqueness; meromorphic function; admissible; non-admissible.
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1 Introduction and Main Results

In what follows, we shall assume that reader is familiar with the fundamental results and
the standard notations of the Nevanlinna value distribution theory of meromorphic func-
tions such as the proximity function m(r, f), counting function N(r, f), characteristic
function T (r, f), the first and second main theorems, lemma on the logarithmic deriva-
tives etc. of Nevalinna theory, (see Hayman [7] , Yang [16] and Yi and Yang [19]). For a
meromorphic function f , S(r, f) denotes any quantity satisfying S(r, f) = o(T (r, f)) for
all r outside a possible exceptional set of finite logarithmic measure.

We use C to denote the open complex plane, Ĉ := C
⋃
{∞} to denote the extended

complex plane, and D = {z : |z| < 1} to denote the unit disc.

Let f, g be two non-constant meromorphic functions in D and a ∈ Ĉ. If E(a,D, f) =
E(a,D, g), we say f and g share a CM(counting multiplicities) in D. If E(a,D, f) =

∗This work was supported by NSFC(11561033, 11301233, 61202313), the Natural Science Foun- dation
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Department of Jiangxi (GJJ14644) of China.
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E(a,D, g), we say f and g share a IM(ignoring multiplicities) in D. If D is replaced by
C, we give the simple notation as before, E(a, f), E(a, f) and so on(see [16]).

R.Nevanlinna [12] proved the following well-known theorems.

Theorem 1.1 (see [12]) If f and g are two non-constant meromorphic functions that
share five distinct values a1, a2, a3, a4, a5 IM in C, then f(z) ≡ g(z).

Theorem 1.2 (see [12]) If f and g are two distinct non-constant meromorphic functions
that share four distinct values a1, a2, a3, a4 CM in C, then f is a Möbius transformation
of g , two of the shared values, say a1 and a2 are Picard values, and the cross ratio
(a1, a2, a3, a4) = −1.

After their very work, the uniqueness of meromorphic functions with shared values
in the whole complex plane attracted many investigations (see [16]). In 1987 and 1988,
Yi [17, 18] dealt with the problems of multiple values and uniquness of meromorphic
functions sharing some values in the whole complex plane by adopting L.Yang’s method
and obtained some results which improved the concerning theorems due to Gopalakrishna
and Bhoosnurmath’s [6], Ueda [14]. To state the theorems, we will explain some notations
as follows.

Let f(z) be a non-constant meromorphic function, an arbitrary complex number

a ∈ Ĉ, and k be a positive integer. We use Ek)(a, f) to denote the set of zeros of f − a,
with multiplicities no greater than k, in which each zero counted only once. We say that
f(z) and g(z) share the value a with reduced weight k, if Ek)(a, f) = Ek)(a, g).

In 1987, Yi [17] obtained the uniqueness theorems concerning multiple values of mero-
morphic functions as follows.

Theorem 1.3 (see [17, 19, Theorem 3.15]). Let f(z) and g(z) be two non-constant
meromorphic functions, aj(j = 1, 2, . . . , q) be q distinct complex numbers, and let kj(j =
1, 2, . . . , q) be positive integers or ∞ satisfying

(1) k1 ≥ k2 ≥ · · · ≥ kq ≥ 1.

If
Ekj)(aj , f) = Ekj)(aj , g) (j = 1, 2, . . . , q)

and

(2)

q∑
j=3

kj
kj + 1

> 2,

then f(z) ≡ g(z).

In recent, it is an interesting topic to investigate the uniqueness with shared values
in the subregion of the complex plane such as the unit disc, an angular domain, see
[1, 2, 9, 10, 11, 15, 20, 21, 22]. In 1999, Fang [5] studied the uniqueness problem of
admissible meromorphic functions in the unit disc D sharing two sets and three sets.
Later, there were some results of uniqueness of meromorphic function in the unit disc
concerning admissible functions. To state some uniqueness theorems of meromorphic
functions in the unit disc D, we need the following basic notations and definitions of
meromorphic functions in D(see [3], [4], [8]).
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Definition 1.1 Let f be a meromorphic function in D and limr→1− T (r, f) =∞. Then

α(f) := lim sup
r→1−

T (r, f)

− log(1− r)

is called the index of inadmissibility of f . If α(f) =∞, f is called admissible.

Definition 1.2 Let f be a meromorphic function in D and limr→1− T (r, f) =∞. Then

ρ(f) := lim sup
r→1−

log+ T (r, f)

− log(1− r)

is called the order (of growth) of f .

For admissible functions, the following theorem plays a very important role in studies
the uniqueness problems of meromorphic functions in the unit disc.

Theorem 1.4 (see [13, Theorem 3]). Let f be an admissible meromorphic function in
D, q be a positive integer and a1, a2, . . . , aq be pairwise distinct complex numbers. Then,
for r → 1−, r 6∈ E,

(q − 2)T (r, f) ≤
q∑
j=1

N

(
r,

1

f − aj

)
+ S(r, f),

where E ⊂ (0, 1) is a possibly occurring exceptional set with
∫
E

dr
1−r <∞. If the order of

f is finite, the remainder S(r, f) is a O
(

log 1
1−r

)
without any exceptional set.

In 2005, Titzhoff [13] investigated the uniqueness of two admissible functions in the
unit disc D by using the Second Main Theorem for admissible functions (Theorem 1.4)
and obtained the five values theorem in the unit disc D as follows.

Theorem 1.5 (see [13]). If two admissible function f, g share five distinct values, then
f ≡ g.

In 2009, Mao and Liu [11] gave a different method to investigate the uniqueness
problem of meromorphic functions in unit disc and obtained the following results.

Theorem 1.6 (see [11]). Let f, g be two meromorphic functions in D, aj ∈ Ĉ(j =
1, 2, . . . , 5) be five distinct values, and ∆(θ0, δ)(0 < δ < π) be an angular domain such

that for some a ∈ Ĉ,

(3) lim sup
r→1−

log n(r,∆(θ0, δ/2), f(z) = a)

log 1
1−r

= τ > 1.

If f and g share aj(j = 1, 2, . . . , 5) IM in ∆(θ0, δ), then f(z) ≡ g(z).

Remark 1.1 In fact, the condition (3) implies that f is admissible in the unit disc.
Therefore, Theorem 1.6 is one result of uniqueness of admissible functions in the unit
disc.
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For admissible functions in the unit disc D, from Theorem 1.4, using the same argu-
ment as in the proofs of Theorem 1.3, we can easily get the following results.

Theorem 1.7 Let f1(z) and f2(z) be two admissible meromorphic functions in D, aj(j =
1, 2, . . . , q) be q distinct complex numbers, and let kj(j = 1, 2, . . . , q) be positive integers
or ∞ satisfying (1). If f1(z) and f2(z) satisfy

(4) Ekj)(aj ,D, f1) = Ekj)(aj ,D, f2) (j = 1, 2, . . . , q)

and (2), then f1(z) ≡ f2(z), where Ek)(a,D, f) to denote the set of zeros of f − a in D,
with multiplicities no greater than k, in which each zero counted only once.

Remark 1.2 For a ∈ Ĉ and a positive integer k, we can say that f1(z), f2(z) share the
value a in D with reduced weight k, if Ek)(a,D, f1) = Ek)(a,D, f2).

Similar to the corollary of Theorem 1.3 (see [19, Corollary,pp.181.]), we can get the
following corollary.

Corollary 1.1 Let f1(z) and f2(z) be two admissible meromorphic functions in D, aj(j =
1, 2, . . . , q) be q distinct complex numbers, and let kj(j = 1, 2, . . . , q) be positive integers
or ∞ satisfying (1) and (4).

(i) if q = 7, then f1(z) ≡ f2(z);
(ii) if q = 6 and k3 ≥ 2, then f1(z) ≡ f2(z);
(iii) if q = 5, k3 ≥ 3 and k5 ≥ 2, then f1(z) ≡ f2(z);
(iv) if q = 5 and k4 ≥ 4, then f1(z) ≡ f2(z);
(v) if q = 5, k3 ≥ 5 and k4 ≥ 3, then f1(z) ≡ f2(z);
(vi) if q = 5, k3 ≥ 6 and k4 ≥ 2, then f1(z) ≡ f2(z).

Remark 1.3 In Theorem 1.5, the conclusion f(z) ≡ g(z) holds when q = 5 and kj =
∞ (j = 1, 2, . . . , 5). From Corollary 1.1, we can get that f1(z) ≡ f2(z) when q = 5 and
kj (j = 1, 2, . . . , 5) satisfy any of the four conditions (i)-(iv). Hence, Corollary 1.1 is an
improvement of Theorem 1.5.

For non-admissible functions, the following theorem also plays a very important role
in studies theirs uniqueness problems.

Theorem 1.8 (see [13, Theorem 2]). Let f be a meromorphic function in D and limr→1−

T (r, f) =∞, q be a positive integer and a1, a2, . . . , aq be pairwise distinct complex num-
bers. Then, for r → 1−, r 6∈ E,

(q − 2)T (r, f) ≤
q∑
j=1

N

(
r,

1

f − aj

)
+ log

1

1− r
+ S(r, f).

Remark 1.4 (i) In contrast to admissible functions, the term log 1
1−r in Theorem 1.8

does not necessarily enter the remainder S(r, f) because the non-admissible function f

may have T (r, f) = O
(

log 1
1−r

)
.

(ii) If 0 < α(f) < ∞, we can see that S(r, f) = o
(

log 1
1−r

)
holds in Theorem 1.8

without a possible exception set.
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From Theorem 1.8 and Remark 1.4, we can see that the uniqueness of non-admissible
functions is more intricate than the case of admissible functions.

In this paper, we will deal with the uniqueness problem of non-admissible functions
in D. We use Υα to denote the class of non-admissible functions satisfying the condition:
α(f) = α(0 < α <∞) for f ∈ Υα. For the class Υα, we get the following results

Theorem 1.9 Let f(z) ∈ Υα, aj(j = 1, 2, . . . , q) are q distinct complex numbers. If
q = 5 + [ 2

k + k+1
kα ], then there does not exist g(z)(6≡ f(z)) ∈ Υα satisfying

(5) Ek)(aj ,D, f) = Ek)(aj ,D, g), (j = 1, 2, . . . , q),

where [x] denotes the largest integer less than or equal to x.

Corollary 1.2 Let f(z) ∈ Υα. Then f(z) is uniquely determined in Υα by one of the
following cases:

(i) if f have seven point-sets E1)(aj ,D, f)(j = 1, 2, . . . , 7) and α > 1;

(ii) if f have six point-sets E2)(aj ,D, f)(j = 1, 2, . . . , 6) and α > 3
2 ;

(iii) if f have five point-sets E3)(aj ,D, f)(j = 1, 2, . . . , 5) and α > 4.

Remark 1.5 For Corollary 1.1, we can see that the conclusion (iii) in Corollary 1.1 is an
improvement of Theorem 1.6. In fact, the conclusion of Theorem 1.6 is that non-constant
meromorphic function f is uniquely determined in D by five point-sets E∞)(aj ,D, f)(j =
1, 2, . . . , 5) and α(f) =∞.

Theorem 1.10 Let α > 12 and f(z) ∈ Υα, aj(j = 1, 2, . . . , 5) be five distinct complex
numbers. Then f(z) is uniquely determined in Υ by three point-sets E3)(aj ,D, f)(j =

1, 2, 3) and two point-sets E2)(aj ,D, f)(j = 4, 5).

Furthermore, for the uniqueness of regular inadmissibility functions we obtain the
following theorems

Theorem 1.11 Let aj(j = 1, 2, . . . , q) be q distinct complex numbers, and let kj(j =
1, 2, . . . , q) be positive integers or∞ satisfying (1). If f1(z), f2(z) be non-constant regular
inadmissibility functions satisfying 0 < α(f1), α(f2) <∞, (4) and

(6)

q∑
j=3

kj
kj + 1

− 2 >
2

α(f1) + α(f2)
,

then f1(z) ≡ f2(z).

From Theorem 1.11, similar to Corollary 1.1, we can get the following results easily.

Corollary 1.3 Let aj(j = 1, 2, . . . , q) be q distinct complex numbers, and let kj(j =
1, 2, . . . , q) be positive integers or ∞ satisfying (1), α := min{α(f1), α(f2)}. And let
f1(z), f2(z) be non-constant regular inadmissibility functions satisfying 0 < α(f1), α(f2) <
∞ and (4),

(i) if α > 1, q = 7 and k7 ≥ 2, then f1(z) ≡ f2(z);
(ii) if α > 1, q = 6 and k6 ≥ 4, then f1(z) ≡ f2(z);
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(iii) if α > 2 and q = 7, then f1(z) ≡ f2(z);
(iv) if α > 3, q = 6 and k3 ≥ 2, then f1(z) ≡ f2(z);
(v) if α > 6, q = 5, k3 ≥ 3 and k5 ≥ 2, then f1(z) ≡ f2(z);
(vi) if α > 10, q = 5 and k4 ≥ 4, then f1(z) ≡ f2(z);
(vii) if α > 12, q = 5, k3 ≥ 5 and k4 ≥ 3, then f1(z) ≡ f2(z);
(viii) if α > 42, q = 5, k3 ≥ 6 and k4 ≥ 2, then f1(z) ≡ f2(z).

Remark 1.6 In Corollary 1.1, f1(z), f2(z) are all admissible functions, that is, α(f1) =
∞ and α(f2) =∞. From the conclusions of Corollary 1.3, we see that f1(z) ≡ f2(z) holds
when f1(z), f2(z) are non-constant regular inadmissibility functions with min{α(f1), α(f2)}
> ζ and ζ a positive constant. Hence, Corollary 1.3 is an improvement of Corollary 1.1.

The following theorem will show that an admissible function can share sufficiently
many values concerning multiple values with another inadmissible function.

Theorem 1.12 If f1 is admissible and f2 is inadmissible satisfying limr→1− T (r, f2) =
∞, aj(j = 1, 2, . . . , q) be q distinct complex numbers, and let kj(j = 1, 2, . . . , q) be positive
integers or ∞ satisfying (1). Then

(7)

q∑
j=2

kj
kj + 1

− 2 > 0

and (4) do not hold at same time.

Corollary 1.4 If f1 is admissible and f2 is inadmissible satisfying limr→1− T (r, f2) =
∞, aj(j = 1, 2, . . . , q) be q distinct complex numbers. Then

(i) f1(z), f2(z) can share at most three values a1, a2, a3 IM ;
(ii) f1(z), f2(z) can share at most five values aj(j = 1, 2, . . . , 5) with reduced weight

1;
And any one of the following cases can not hold

(iii) q = 4 and Ek1)(a1,D, f1) = Ek1)(a1,D, f2) (k1 ≥ 6), E6)(a2,D, f1) = E6)(a2,D,
f2), E2)(a3,D, f1) = E2)(a3,D, f2) and E1)(a4,D, f1) = E1)(a4,D, f2);

(iv) q = 4 and Ek1)(a1,D, f1) = Ek1)(a1,D, f2) (k1 ≥ 3), E3)(a2,D, f1) = E3)(a2,D,
f2), E2)(a3,D, f1) = E2)(a3,D, f2) and E2)(a4,D, f1) = E2)(a4,D, f2);

(v) q = 5 and Ek)(ai,D, f1) = Ek)(a,D, f2) (k ≥ 2, i = 1, 2), E1)(aj ,D, f1) =

E1)(aj ,D, f2) (j = 3, 4, 5).

2 Some Lemmas

To prove our results, we will require the following lemmas.

Lemma 2.1 (see [13, Lemma 1]). Let f(z), g(z) satisfy limr→1− T (r, f) = ∞ and
limr→1− T (r, g) =∞. If there is a K ∈ (0,∞) with

T (r, f) ≤ KT (r, g) + S(r, f) + S(r, g),

then each S(r, f) is also an S(r, g).
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Lemma 2.2 (see [19, Lemma 3.4]). Let f(z) be a non-constant meromorphic function,
a be an arbitrary complex number, and k be a positive integer. Then

N

(
r,

1

f − a

)
≤ k

k + 1
Nk)

(
r,

1

f − a

)
+

1

k + 1
N

(
r,

1

f − a

)
,

and

N

(
r,

1

f − a

)
≤ k

k + 1
Nk)

(
r,

1

f − a

)
+

1

k + 1
T (r, f) +O(1),

where Nk)

(
r, 1
f−a

)
are denoted by the zeros of f − a in |z| ≤ r, whose multiplicities are

not greater than k and are counted only once.

From Lemma 2.2 and Theorems 1.4 and 1.8, we can get the following Lemma

Lemma 2.3 Let f(z) be a meromorphic function in D and limr→1− T (r, f) =∞, aj(j =
1, 2, . . . , q) be q distinct complex numbers, and kj(j = 1, 2, . . . , q) be positive integers or
∞. If f is an admissible function, thenq − 2−

q∑
j=1

1

kj + 1

T (r, f) ≤
q∑
j=1

kj
kj + 1

Nkj)

(
r,

1

f − aj

)
+ S(r, f);

If f is a non-admissible function, thenq − 2−
q∑
j=1

1

kj + 1

T (r, f) ≤
q∑
j=1

kj
kj + 1

Nkj)

(
r,

1

f − aj

)
+ log

1

1− r
+ S(r, f),

where S(r, f) is stated as in Theorem 1.4.

3 Proofs of Theorems 1.9 and 1.10

3.1 The Proof of Theorem 1.9

Suppose that there exists g(z) ∈ Υα satisfying (5) and f(z) 6≡ g(z). Without loss of
generality, we can assume that aj(j = 1, 2, . . . , q) are all finite numbers, otherwise, a
suitable linear transformation will be done. Since f(z), g(z) ∈ Υα, from Lemma 2.3, we
have

(8)

(
q − 2− q

k + 1

)
T (r, f) ≤ k

k + 1

q∑
j=1

Nk)

(
r,

1

f − aj

)
+ log

1

1− r
+ S(r, f).

If follows form (5) that

(9)

q∑
j=1

Nk)

(
r,

1

f − aj

)
≤ N

(
r,

1

f − g

)
≤ T (r, f) + T (r, g) +O(1).
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From (8) and (9), we have(
qk

k + 1
− 3k + 2

k + 1

)
T (r, f) ≤ k

k + 1
T (r, g) + log

1

1− r
+ S(r, f).

Similarly, we have(
qk

k + 1
− 3k + 2

k + 1

)
T (r, g) ≤ k

k + 1
T (r, f) + log

1

1− r
+ S(r, g).

Combining the above two inequalities, we get

(10)

(
qk

k + 1
− 4k + 2

k + 1

)
{T (r, f) + T (r, g)} ≤ 2 log

1

1− r
+ S(r, f) + S(r, g).

Since f(z), g(z) ∈ Υα and 0 < α <∞, from the definition of index and q = 5+[ 2
k + k+1

kα ],

we have for 0 < ε < α− k+1
qk−4k−2 , there exists a sequence {rm} → 1− such that

(11) T (rm, f) > (α− ε) log
1

1− rm
, T (rm, g) > (α− ε) log

1

1− rm
,

for all m → ∞. From f(z), g(z) ∈ Υα and the assumptions of Theorem 1.9, we can see

that S(r, f) = o
(

log 1
1−r

)
and S(r, g) = o

(
log 1

1−r

)
. From this fact and (10)-(11), we

have

(12)

{
2

(
qk

k + 1
− 4k + 2

k + 1

)
(α− ε)− 2

}
log

1

1− rm
< o

(
log

1

1− rm

)
.

From (12) and 2
(
qk
k+1 −

4k+2
k+1

)
(α − ε) − 2 > 0, we can get a contradiction. Hence, we

have f(z) ≡ g(z).
Thus, this completes the proof of Theorem 1.9.

3.2 The Proof of Theorem 1.10

Suppose that there exists g(z) ∈ Υα satisfying f(z) 6≡ g(z) and

E3)(aj ,D, f) = E3)(aj ,D, g), (j = 1, 2, 3)(13)

E2)(aj ,D, f) = E2)(aj ,D, g), (j = 4, 5).

Without loss of generality, we can assume that aj(j = 1, 2, . . . , 5) are all finite num-
bers, otherwise, a suitable linear transformation will be done. Since f(z), g(z) ∈ Υα,
from Lemma 2.3, we have(

5− 2− 3

4
− 2

3

)
T (r, f)(14)

≤3

4

3∑
j=1

N3)

(
r,

1

f − aj

)
+

2

3

5∑
j=4

N2)

(
r,

1

f − aj

)
+ log

1

1− r
+ S(r, f)

≤3

4

 3∑
j=1

N3)

(
r,

1

f − aj

)
+

5∑
j=4

N2)

(
r,

1

f − aj

)+ log
1

1− r
+ S(r, f).
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From (13), we have

3∑
j=1

N3)

(
r,

1

f − aj

)
+

5∑
j=4

N2)

(
r,

1

f − aj

)
≤ N

(
r,

1

f − g

)
≤ T (r, f) + T (r, g) +O(1).

From this inequality and (14), we have

(15)
5

6
T (r, f) ≤ 3

4
T (r, g) + log

1

1− r
+ S(r, f).

Similarly, we have

(16)
5

6
T (r, g) ≤ 3

4
T (r, f) + log

1

1− r
+ S(r, g).

Since f(z), g(z) ∈ Υα and α > 12, from the definition of index, we have for any ε(0 <
ε < α − 12), there exists a sequence {rm} → 1− satisfying (11) for all m → ∞. From
this fact and (15)-(16), we have

(17)

(
1

6
(α− ε)− 2

)
log

1

1− rm
< o

(
log

1

1− rm

)
.

Since α > 12 and 0 < ε < α− 12, we have 1
6 (α− ε)− 2 1

6 (α− ε)− 2 > 0, a contradiction.
Hence, we have f(z) ≡ g(z).

Thus, this completes the proof of Theorem 1.10.

4 Proof of Theorem 1.11

Without loss of generality, we may assume that all aj(j = 1, 2, . . . , q) are finite, otherwise,
a suitable Möbius transformation will be done. From Lemma 2.3, we haveq − 2−

q∑
j=1

1

kj + 1

T (r, f1) ≤
q∑
j=1

kj
kj + 1

Nkj)

(
r,

1

f1 − aj

)
+ log

1

1− r
(18)

+ S(r, f1).

From (1), we have

(19)
1

2
≤ kq
kq + 1

≤ · · · ≤ k2

k2 + 1
≤ k1

k1 + 1
≤ 1.

9
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From (18) and (19), we have q∑
j=1

kj
kj + 1

− 2

T (r, f1)(20)

≤ k3

k3 + 1

q∑
j=1

Nkj)

(
r,

1

f1 − aj

)
+

2∑
j=1

(
kj

kj + 1
− k3

k3 + 1

)
Nkj)

(
r,

1

f1 − aj

)
+ log

1

1− r
+ S(r, f1)

≤ k3

k3 + 1

q∑
j=1

Nkj)

(
r,

1

f1 − aj

)
+

2∑
j=1

(
kj

kj + 1
− k3

k3 + 1

)
T (r, f1)

+ log
1

1− r
+ S(r, f1).

If f1(z) 6≡ f2(z), from the assumptions of Theorem 1.11, we have

(21)

q∑
j=1

Nkj)

(
r,

1

f1 − aj

)
≤ N

(
r,

1

f1 − f2

)
≤ T (r, f1) + T (r, f2) +O(1).

From this inequality, we have

(22)

 q∑
j=3

kj
kj + 1

+
k3

k3 + 1
− 2

T (r, f1) ≤ k3

k3 + 1
T (r, f2) + log

1

1− r
+ S(r, f1).

Similarly, we have

(23)

 q∑
j=3

kj
kj + 1

+
k3

k3 + 1
− 2

T (r, f2) ≤ k3

k3 + 1
T (r, f1) + log

1

1− r
+ S(r, f2).

Since 0 < α(f1), α(f2) <∞, we have S(r, f1) = o
(

log 1
1−r

)
, S(r, f2) = o

(
log 1

1−r

)
. And

from the definition of index, for any ε satisfying

0 < 2ε < min

α(f1), α(f2), α(f1) + α(f2)− 2∑q
j=3

kj
kj+1

 ,

there exists a sequence {rm} → 1− such that

(24) T (rm, f1) > (α(f1)− ε) log
1

1− rm
, T (rm, f2) > (α(f2)− ε) log

1

1− rm
,

for all m→∞. From (22)-(24), we have

(25)

(α(f1) + α(f2)− 2ε)

q∑
j=3

kj
kj + 1

− 2

 log
1

1− rm
< o

(
log

1

1− rm

)
.
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Since 0 < 2ε < α(f1)+α(f2)− 2

Σq
j=3

kj
kj+1

, we have (α(f1)+α(f2)−2ε)
∑q
j=3

kj
kj+1−2 > 0,

a contradiction. Hence, we have f1(z) ≡ f2(z).
Thus, this completes the proof of Theorem 1.11.

5 Proofs of Theorem 1.12 and Corollary 1.4

5.1 The Proof of Theorem 1.12

We will employ the proof by contradiction, that is, suppose that (4) and (7) hold at the
same time. Since f1(z) is admissible, from Lemma 2.3, and by using the same argument
as in Theorem 1.11, we can easily get q∑

j=3

kj
kj + 1

+
2k2

k2 + 1
− 2

T (r, f1) ≤ k2

k2 + 1
(T (r, f1) + T (r, f2)) + S(r, f1),

that is,

(26)

 q∑
j=2

kj
kj + 1

− 2

T (r, f1) ≤ k2

k2 + 1
T (r, f2) + S(r, f1).

Set K =
∑q
j=2

kj
kj+1 − 2. If K > 0, from (26), we have

(27) T (r, f1) ≤ K ′T (r, f2) + S(r, f1),

where K ′ = 1
K

k2
k2+1 . Since kj > 0(j = 1, 2, . . . , q), we have K ′ > 0 as K > 0. From this

and Lemma 2.1, we can get that each S(r, f1) is also an S(r, f2). Since f1(z) is admissible
and f2(z) is non-admissible, we can get T (r, f2) = S(r, f1). Thus, we have

(28) T (r, f2) = S(r, f1) = S(r, f2) = o(T (r, f2)).

Since limr→1− T (r, f2) =∞ and (28), we can get a contradiction.
Hence, we prove that (4) and (7) do not hold at the same time.

6 The Proof of Corollary 1.4

(i) Suppose that f1(z), f2(z) share four values aj(j = 1, 2, 3, 4) IM , that is, kj =∞(j =
1, 2, 3, 4). Since f1(z) is admissible, from Theorem 1.4, we have

(29) 2T (r, f1) ≤
4∑
j=1

N

(
r,

1

f1 − aj

)
+ S(r, f1).

Since f1(z), f2(z) share four values aj(j = 1, 2, 3, 4) IM , we have

(30)
4∑
j=1

N

(
r,

1

f1 − aj

)
≤ N

(
r,

1

f1 − f2

)
≤ T (r, f1) + T (r, f2) +O(1).
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From (29) and (30), we have

(31) T (r, f1) ≤ T (r, f2) + S(r, f1).

By Lemma 2.1, similar to the proof of Theorem 1.12, we have

T (r, f2) = S(r, f1) = S(r, f2) = o(T (r, f2)).

From this and limr→1− T (r, f2) =∞, we can get a contradiction.
Thus, this completes (i) of Corollary 1.4.
Similar to the proof of Corollary 1.4 (i), we can prove (iii),(iv) and (v) of Corollary

1.4 easily. Here we omit the detail.
(ii) Suppose that f1, f2 share six values aj(j = 1, 2, . . . , 6) with reduced weight 1, that

is,

(32) E1)(aj ,D, f1) = E1)(aj ,D, f2), (j = 1, 2, . . . , 6),

and k1 = k2 = · · · = k6 = 1. Then, we can deduce that

6∑
j=2

kj
kj + 1

− 2 = 5× 1

2
− 2 =

1

2
> 0.

From this and the conclusion of Theorem 1.12, we get a contradiction.
Thus, this completes the proof of Corollary 1.4.
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COMPOSITIONS INVOLVING SCHUR HARMONICALLY

CONVEX FUNCTIONS

HUAN-NAN SHI AND JING ZHANG†

Abstract. The decision theorem of the Schur harmonic convexity for the

compositions involving Schur harmonically convex functions is established and

used to determine the Schur harmonic convexity of some symmetric functions.

2010 Mathematics Subject Classification: Primary 26D15; 05E05; 26B25

Keywords: Schur harmonically convex function; harmonically convex func-

tion; composite function; symmetric function

1. Introduction

Throughout the article, R denotes the set of real numbers, x = (x1, x2, . . . , xn)

denotes n-tuple (n-dimensional real vectors), the set of vectors can be written as

Rn = {x = (x1, x2, . . . , xn) : xi,∈ R, i = 1, 2, . . . , n} ,

Rn++ = {x = (x1, x2, . . . , xn) : xi > 0, i = 1, 2, . . . , n},

Rn+ = {x = (x1, x2, . . . , xn) : xi ≥ 0, i = 1, 2, . . . , n}.

In particular, the notations R, R++ and R+ denote R1, R1
++ and R1

+, respec-

tively.

The following conclusion is proved in reference [1, p. 91], [2, p. 64-65].

Theorem A. Let the interval [a, b] ⊂ R, ϕ : Rn → R, f : [a, b] → R and

ψ(x1, x2, . . . , xn) = ϕ(f(x1), f(x2), . . . , f(xn)) : [a, b]n → R.

† J. Zhang: Correspondence author.
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2 H.-N. SHI AND J. ZHANG

(i) If ϕ is increasing and Schur-convex and f is convex, then ψ is Schur-convex.

(ii) If ϕ is increasing and Schur-concave and f is concave, then ψ is Schur-

concave.

(iii) If ϕ is decreasing and Schur-convex and f is concave, then ψ is Schur-

convex.

(iv) If ϕ is increasing and Schur-convex and f is increasing and convex, then ψ

is increasing and Schur-convex.

(v) If ϕ is decreasing and Schur-convex and f is decreasing and concave, then

ψ is increasing and Schur-convex.

(vi) If ϕ is increasing and Schur-convex and f is decreasing and convex, then

ψ is decreasing and Schur-convex.

(vii) If ϕ is decreasing and Schur-convex and f is increasing and concave, then

ψ is decreasing and Schur-convex.

(viii) If ϕ is decreasing and Schur-concave and f is decreasing and convex, then

ψ is increasing and Schur-concave.

Theorem A is very effective for determine of the Schur-convexity of the composite

functions.

The Schur harmonically convex functions were proposed by Chu et al. [3, 4, 5]

in 2009. The theory of majorization was enriched and expanded by using this

concepts. Regarding the Schur harmonically convex functions, the aim of this

paper is to establish the following theorem which is similar to Theorem A.

Theorem 1. Let the interval [a, b] ⊂ R++, ϕ : Rn++ → R++, f : [a, b]→ R++ and

ψ(x1, x2, . . . , xn) = ϕ(f(x1), f(x2), . . . , f(xn)) : [a, b]n → R++.
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COMPOSITIONS INVOLVING SCHUR HARMONICALLY CONVEX FUNCTIONS 3

(i) If ϕ is increasing and Schur harmonically convex and f is harmonically

convex, then ψ is Schur harmonically convex.

(ii) If ϕ is increasing and Schur harmonically concave and f is harmonically

concave, then ψ is Schur harmonically concave.

(iii) If ϕ is decreasing and Schur harmonically convex and f is harmonically

concave, then ψ is Schur harmonically convex.

(iv) If ϕ is increasing and Schur harmonically convex and f is increasing and

harmonically convex, then ψ is increasing and Schur harmonically convex.

(v) If ϕ is decreasing and Schur harmonically convex and f is decreasing and

harmonically concave, then ψ is increasing and Schur harmonically convex.

(vi) If ϕ is increasing and Schur harmonically convex and f is decreasing and

harmonically convex, then ψ is decreasing and Schur harmonically convex.

(vii) If ϕ is decreasing and Schur harmonically convex and f is increasing and

harmonically concave, then ψ is decreasing and Schur harmonically convex.

(viii) If ϕ is decreasing and Schur harmonically concave and f is decreasing and

harmonically convex, then ψ is increasing and Schur harmonically concave.

2. Definitions and lemmas

In order to prove our results, in this section we will recall useful definitions and

lemmas.

Definition 1. [1, 2] Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn.

(i) x ≥ y means xi ≥ yi for all i = 1, 2, . . . , n.

(ii) Let Ω ⊂ Rn, ϕ: Ω → R is said to be increasing if x ≥ y implies ϕ(x) ≥

ϕ(y). ϕ is said to be decreasing if and only if −ϕ is increasing.
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4 H.-N. SHI AND J. ZHANG

Definition 2. [1, 2] Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn.

We say y majorizes x (x is said to be majorized by y), denoted by x ≺ y,

if
∑k
i=1 x[i] ≤

∑k
i=1 y[i] for k = 1, 2, . . . , n − 1 and

∑n
i=1 xi =

∑n
i=1 yi, where

x[1] ≥ x[2] ≥ · · · ≥ x[n] and y[1] ≥ y[2] ≥ · · · ≥ y[n] are rearrangements of x and y

in a descending order.

Definition 3. [1, 2] Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn.

(i) A set Ω ⊂ Rn is said to be a convex set if

αx + (1− α)y = (αx1 + (1− α)y1, αx2 + (1− α)y2, . . . , αxn + (1− α)yn) ∈ Ω

for all x,y ∈ Ω, and α ∈ [0, 1].

(ii) Let Ω ⊂ Rn be convex set. A function ϕ: Ω → R is said to be a convex

function on Ω if

ϕ (αx + (1− α)y) ≤ αϕ(x) + (1− α)ϕ(y)

holds for all x,y ∈ Ω, and α ∈ [0, 1]. ϕ is said to be a concave function on

Ω if and only if −ϕ is convex function on Ω.

(iii) Let Ω ⊂ Rn. A function ϕ: Ω → R is said to be a Schur-convex function

on Ω if x ≺ y on Ω implies ϕ (x) ≤ ϕ (y) . A function ϕ is said to be a

Schur-concave function on Ω if and only if −ϕ is Schur-convex function on

Ω.

Lemma 1. (Schur-convex function decision theorem)[1, 2] : Let Ω ⊂ Rn be sym-

metric and have a nonempty interior convex set. Ω0 is the interior of Ω. ϕ :

Ω → R is continuous on Ω and differentiable in Ω0. Then ϕ is the Schur −
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COMPOSITIONS INVOLVING SCHUR HARMONICALLY CONVEX FUNCTIONS 5

convex (or Schur− concave, respectively) function if and only if ϕ is symmetric

on Ω and

(x1 − x2)

(
∂ϕ

∂x1
− ∂ϕ

∂x2

)
≥ 0(or ≤ 0, respectively) (1)

holds for any x ∈ Ω0.

Definition 4. [6] Let Ω ⊂ Rn++.

(i) A set Ω is said to be a harmonically convex set if
xy

λx + (1− λ)y
∈ Ω

for every x,y ∈ Ω and λ ∈ [0, 1], where xy =
∑n
i=1 xiyi and

1

x
=( 1

x1
,

1

x2
, . . . ,

1

xn

)
.

(ii) Let Ω ⊂ Rn++ be a harmonically convex set. A function ϕ : Ω → R++ be

a continuous function, then ϕ is called a harmonically convex (or concave,

respectively) function, if

ϕ

(
1

α
x + 1−α

y

)
≤ (or ≥, respectively)

1
α

ϕ(x) + 1−α
ϕ(y)

holds for any x,y ∈ Ω, and α ∈ [0, 1].

(iii) A function ϕ : Ω → R++ is said to be a Schur harmonically convex (or

concave, respectively) function on Ω if
1

x
≺ 1

y
implies ϕ(x) ≤ (or ≥,

respectively) ϕ(y).

By Definition 4, it is not difficult to prove the following propositions.

Proposition 1. Let Ω ⊂ Rn++ be a set, and let
1

Ω
= {
( 1

x1
,

1

x2
, . . . ,

1

xn

)
:

(x1, x2, . . . , xn) ∈ Ω}. Then ϕ : Ω → R++ is a Schur harmonically convex (or

concave, respectively) function on Ω if and only if ϕ(
1

x
) is a Schur-convex (or

concave, respectively) function on
1

Ω
.
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6 H.-N. SHI AND J. ZHANG

In fact, for any u,v ∈ 1

Ω
, there exist x,y ∈ Ω such that u =

1

x
,v =

1

y
.

Let u ≺ v, that is
1

x
≺ 1

y
, if ϕ : Ω → R++ is a Schur harmonically convex

(or concave, respectively) function on Ω, then ϕ(x) ≤ (or ≥, respectively)ϕ(y),

namely, ϕ(
1

u
) ≤ (or ≥, respectively)ϕ(

1

v
), this means that ϕ(

1

x
) is a Schur-convex

(or concave, respectively) function on
1

Ω
. The necessity is proved. The sufficiency

can be similar to proof.

Proposition 2. f : [a, b](⊂ R++) → R++ is harmonically convex (or concave,

respectively) if and only if g(x) =
1

f( 1
x )

is concave (or convex, respectively) on[
1

b
,

1

a

]
.

In fact, for any x, y ∈
[

1

b
,

1

a

]
, then

1

x
,

1

y
∈ [a, b]. If f : [a, b](⊂ R++) → R++ is

harmonically convex (or concave, respectively), then

f

(
1

αx+ (1− α)y

)
≤ (or ≥, respectively)

1
α

f( 1
x )

+ 1−α
f( 1

y )

,

this is

1

f( 1
αx+(1−α)y )

≥ (or ≤, respectively)
α

f( 1
x )

+
1− α
f( 1

y )
,

this means that g(x) =
1

f( 1
x )

is concave (or convex, respectively) on

[
1

b
,

1

a

]
. The

necessity is proved. The sufficiency can be similar to proof.

Lemma 2. (Schur harmonically convex function decision theorem)[5] Let Ω ⊂ Rn++

be a symmetric and harmonically convex set with inner points, and let ϕ : Ω→ R++

be a continuously symmetric function which is differentiable on interior Ω0. Then

ϕ is Schur harmonically convex (or Schur harmonically concave, respectively) on Ω

if and only if

(x1 − x2)

(
x21
∂ϕ(x)

∂x1
− x22

∂ϕ(x)

∂x2

)
≥ 0 (or ≤ 0, respectively), x ∈ Ω0. (2)
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COMPOSITIONS INVOLVING SCHUR HARMONICALLY CONVEX FUNCTIONS 7

3. Proof of main results

Proof of Theorem 1. We only give the proof of Theorem 1 (vi) in detail.

Similar argument leads to the proof of the rest part.

If ϕ is increasing and Schur harmonically convex and f is decreasing and harmon-

ically convex, then by Proposition 1, it follows that ϕ(
1

x1
,

1

x2
, . . . ,

1

xn
) is decreasing

and Schur convex, and by Proposition 2, it follows that g(x) =
1

f( 1
x )

is decreasing

and concave on

[
1

b
,

1

a

]
. And then from Theorem A (iii), it follows that

ϕ

(
1

g(x1)
,

1

g(x2)
, . . . ,

1

g(xn)

)
= ϕ

(
f(

1

x1
), f(

1

x2
), . . . , f(

1

xn
)

)

is increasing and Schur-convex. Again by Proposition 1, it follows that

ψ(x1, x2, . . . , xn) = ϕ(f(x1), f(x2), . . . , f(xn))

is decreasing and Schur harmonically convex.

4. Applications

Let x = (x1, x2, . . . , xn) ∈ Rn. Its elementary symmetric functions are

Er(x) = Er(x1, x2, . . . , xn) =
∑

1≤i1<i2<···<ir≤n

r∏
j=1

xij , r = 1, 2, . . . , n,

and defined E0(x) = 1, and Er(x) = 0 for r < 0 or r > n. The dual forms of the

elementary symmetric functions are

E∗
r (x) = E∗

r (x1, x2, . . . , xn) =
∏

1≤i1<i2<···<ir≤n

r∑
j=1

xij , r = 1, 2, . . . , n,

and defined E∗
0 (x) = 1, and E∗

r (x) = 0 for r < 0 or r > n.

It is well-known that Er(x) is a increasing and Schur-concave function on Rn+[1].

In [7, 6], Shi proved that E∗
r (x) is a increasing and Schur-concave function on

Rn+.
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Theorem 2. For r = 1, 2, . . . , n, n ≥ 2, Er(x) and E∗
r (x) are Schur harmonically

convex function on Rn++.

Proof. Noting that

Er(x) = x1x2Er−2(x3, x4, . . . , xn) + (x1 + x2)Er−1(x3, x4, . . . , xn)

+ Er(x3, x4, . . . , xn), r = 1, 2, . . . , n,

then

(x1 − x2)

(
x21
∂Er(x)

∂x1
− x22

∂Er(x)

∂x2

)
=(x1 − x2)[x21(x2Er−2(x3, x4, . . . , xn) + Er−1(x3, x4, . . . , xn))−

x22(x1Er−2(x3, x4, . . . , xn) + Er−1(x3, x4, . . . , xn))]

=(x1 − x2)2[x1x2Er−2(x3, x4, . . . , xn) + (x1 + x2)Er−1(x3, x4, . . . , xn)] ≥ 0,

by Lemma 2, it follows that Er(x) is Schur harmonically convex on Rn++.

By a direct, though tedious, calculation, and according to Lemma 2, E∗
1 (x),

E∗
2 (x) is Schur harmonically convex on Rn++. When r > 2, it is easy to see that

E∗
r (x) = E∗

r (x1, x2, . . . , xn) = E∗
r (x2, x3, . . . , xn)×

∏
2≤i1<i2<···<ir−1≤n

(x1 +
r−1∑
j=1

xij ),

then

logE∗
r (x) = logE∗

r (x2, x3, . . . , xn) +
∑

2≤i1<i2<···<ir−1≤n

log(x1 +
r−1∑
j=1

xij ).

Now, it leads to

1

E∗
r (x)

∂E∗
r (x)

∂x1
=

∑
2≤i1<i2<···<ir−1≤n

1

x1 +
∑r−1
j=1 xij

,
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and then

∂E∗
r (x)

∂x1
= E∗

r (x)× ∑
3≤i1<i2<···<ir−1≤n

1

x1 +
∑r−1
j=1 xij

+
∑

3≤i1<i2<···<ir−2≤n

1

x1 + x2 +
∑r−2
j=1 xij

 .
By the same arguments,

∂E∗
r (x)

∂x2
= E∗

r (x)× ∑
3≤i1<i2<···<ir−1≤n

1

x2 +
∑r−1
j=1 xij

+
∑

3≤i1<i2<···<ir−2≤n

1

x1 + x2 +
∑r−2
j=1 xij

 .
Thus,

(x1 − x2)

(
x21
∂E∗

r (x)

∂x1
− x22

∂E∗
r (x)

∂x2

)

=(x1 − x2)E∗
r (x)×

[ ∑
3≤i1<i2<···<ir−1≤n

(
x21

x1 +
∑r−1
j=1 xij

− x22

x2 +
∑r−1
j=1 xij

)
+

(x21 − x22) ·
∑

3≤i1<i2<···<ir−2≤n

1

x1 + x2 +
∑r−2
j=1 xij

]

=(x1 − x2)2E∗
r (x)×

[ ∑
3≤i1<i2<···<ir−1≤n

x1x2 + (x1 + x2)
∑r−1
j=1 xij

(x1 +
∑r−1
j=1 xij )(x2 +

∑r−1
j=1 xij )

+

(x1 + x2) ·
∑

3≤i1<i2<···<ir−2≤n

1

x1 + x2 +
∑r−2
j=1 xij

]
≥ 0,

by Lemma 2, it follows that E∗
r (x) is Schur harmonically convex on Rn++. �

For x = (x1, x2, . . . , xn) ∈ Rn, the complete symmetric functions cn(x, r) are

defined as

cn(x, r) =
∑

i1+i2+···+in=r

n∏
j=1

x
ij
j , r = 1, 2, . . . , n,

where c0(x, r) = 1, r ∈ {1, 2, . . . , n}, i1, i2, . . . , in are non-negative integers.
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The dual forms of the complete symmetric functions c∗n(x, r) are

c∗n(x, r) =
∏

i1+i2+···+in=r

n∑
j=1

ijxj , r = 1, 2, . . . , n,

where ij(j = 1, 2, . . . , n) are non-negative integers.

Guan [8] discussed the Schur-convexity of cn(x, r) and proved that cn(x, r) is

increasing and Schur-convex on Rn++. Subsequently, Chu et al. [5] proved that

cn(x, r) is Schur harmonically convex on Rn++.

Zhang and Shi [9] proved that c∗n(x, r) is increasing, Schur-concave and Schur

harmonically convex on Rn++.

In the following, we prove that the Schur harmonic convexity of the composite

functions involving the above symmetric functions and their dual form by using

Theorem 1.

Theorem 3. The following symmetric functions are increasing and Schur harmon-

ically convex on (0, 1)n, r = 1, 2, . . . , n,

Er

(
1 + x

1− x

)
=

∑
1≤i1<i2<···<ir≤n

r∏
j=1

1 + xij
1− xij

, (3)

E∗
r

(
1 + x

1− x

)
=

∏
1≤i1<i2<···<ir≤n

r∑
j=1

1 + xij
1− xij

, (4)

cn

(
1 + x

1− x
, r

)
=

∑
i1+i2+···+in=r

n∏
j=1

(
1 + xj
1− xj

)ij
(5)

and

c∗n

(
1 + x

1− x
, r

)
=

∏
i1+i2+···+in=r

n∑
j=1

ij

(
1 + xj
1− xj

)
. (6)

Proof. Let f(x) =
1 + x

1− x
, x ∈ (0, 1). Then f(x) > 0, f

′
(x) =

2

(1− x)2
> 0, so f is

increasing on (0, 1).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.5, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

916 HUAN-NAN SHI et al 907-922



COMPOSITIONS INVOLVING SCHUR HARMONICALLY CONVEX FUNCTIONS 11

And let g(x) =
1

f( 1
x )

=
x− 1

x+ 1
. Then g

′′
(x) = − 4

(x+ 1)3
< 0, this means that

1

f( 1
x )

is concave on (1,∞), by Proposition 2, it follows that f is harmonically convex

on (0, 1). Since Er(x), E∗
r (x), cn(x, r) and c∗n(x, r) are all increasing and Schur

harmonically convex function on Rn++, by Theorem 1 (iv), it follows that Theorem

3 holds. �

Remark 1. By Lemma 2, Xia and Chu [10] proved that Er

(
1 + x

1− x

)
is Schur har-

monically convex on (0, 1)n. By the properties of Schur harmonically convex func-

tion, Shi and Zhang [11] proved that E∗
r

(
1 + x

1− x

)
is Schur harmonically convex on

(0, 1)n. By Theorem 1, we give a new proof.

Theorem 4. The following symmetric functions are increasing and Schur harmon-

ically convex on Rn++, r = 1, 2, . . . , n,

Er

(
x

1
r

)
=

∑
1≤i1<i2<···<ir≤n

r∏
j=1

x
1
r
ij
, (7)

E∗
r

(
x

1
r

)
=

∏
1≤i1<i2<···<ir≤n

r∑
j=1

x
1
r
ij
, (8)

cn

(
x

1
r , r
)

=
∑

i1+i2+···+in=r

n∏
j=1

x
ij
r
j (9)

and

c∗n

(
x

1
r , r
)

=
∏

i1+i2+···+in=r

n∑
j=1

ijx
1
r
j . (10)

Proof. For r ≥ 1, let p(x) = x
1
r , x ∈ R++. Then p

′
(x) = 1

rx
1
r−1 > 0, so p is

increasing on R++.

And let q(x) =
1

p( 1
x )

= x
1
r = p(x). Then q

′′
(x) = 1

r ( 1
r − 1)x

1
r−2 ≤ 0, this means

that
1

p( 1
x )

is concave on R++, by Proposition 2, it follows that p is harmonically

convex on R++. Since Er(x), E∗
r (x), cn(x, r) and c∗n(x, r) are all increasing and
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Schur harmonically convex function on Rn++, by Theorem 1 (iv), it follows that

Theorem 4 holds. �

Remark 2. By Lemma 2, Chu and Lv [3] proved that the Hamy’s symmetric function

Er

(
x

1
r

)
is Schur harmonically convex on Rn++. Later, K. Z. Guan and R. K. Guan

[12] further studied the harmonic convexity of the generalized Hamy symmetric

function.

By Lemma 2, Meng et al. [13] proved that the dual form of the Hamy’s symmetric

function E∗
r

(
x

1
r

)
is Schur harmonically convex on Rn++.

By Lemma 2, Chu and Sun [4] proved that cn

(
x

1
r , r
)

is Schur harmonically

convex on Rn++ .

By Theorem 1, we give a new proof.

Since f(x) =
1 + x

1− x
is increasing and harmonically convex on (0, 1), from Theo-

rem 1 (iv) and Theorem 4, it follows

Theorem 5. The following symmetric functions are increasing and Schur harmon-

ically convex on (0, 1)n, r = 1, 2, . . . , n,

Er

((
1 + x

1− x

) 1
r

)
=

∑
1≤i1<i2<···<ir≤n

r∏
j=1

(
1 + xij
1− xij

) 1
r

, (11)

E∗
r

((
1 + x

1− x

) 1
r

)
=

∏
1≤i1<i2<···<ir≤n

r∑
j=1

(
1 + xij
1− xij

) 1
r

, (12)

cn

((
1 + x

1− x

) 1
r

, r

)
=

∑
i1+i2+···+in=r

n∏
j=1

(
1 + xj
1− xj

) ij
r

(13)

and

c∗n

((
1 + x

1− x

) 1
r

, r

)
=

∏
i1+i2+···+in=r

n∑
j=1

ij

(
1 + xj
1− xj

) 1
r

. (14)
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Remark 3. By Lemma 2, Long and Chu [14] proved that E∗
r

((
1+x
1−x

) 1
r

)
is Schur

harmonically convex on (0, 1)n. By Theorem 1, we give a new proof.

Theorem 6. The following symmetric functions are increasing and Schur harmon-

ically convex on (0, 1)n, r = 1, 2, . . . , n,

Er

(
x

1− x

)
=

∑
1≤i1<i2<···<ir≤n

r∏
j=1

xij
1− xij

, (15)

E∗
r

(
x

1− x

)
=

∏
1≤i1<i2<···<ir≤n

r∑
j=1

xij
1− xij

, (16)

cn

(
x

1− x
, r

)
=

∑
i1+i2+···+in=r

n∏
j=1

(
xj

1− xj

)ij
(17)

and

c∗n

(
x

1− x
, r

)
=

∏
i1+i2+···+in=r

n∑
j=1

ij

(
xj

1− xj

)
. (18)

Proof. Let h(x) =
x

1− x
, x ∈ (0, 1). Then h

′
(x) =

1

(1− x)2
> 0, so h is increasing

on (0, 1).

And let k(x) =
1

h( 1
x )

= x− 1. Then k
′′
(x) = 0, this means that

1

h( 1
x )

is concave

on (1,∞), by Proposition 2, it follows that h is harmonically convex on (0, 1).

Since Er(x), E∗
r (x), cn(x, r) and c∗n(x, r) are all increasing and Schur harmonically

convex function on Rn++, by Theorem 1 (iv), it follows that Theorem 5 holds. �

Remark 4. By the judgement theorem of Schur harmonic convexity for a class of

symmetric functions, Shi and Zhang [15] proved that Er

(
x

1− x

)
is Schur harmon-

ically convex on (0, 1)n. Here by Theorem 1, we give a new proof.

By the properties of Schur harmonically convex function, Shi and Zhang [11]

proved that E∗
r

(
x

1− x

)
is Schur harmonically convex on

[
1

2
, 1

)n
. By Theorem

1, this conclusion is extended to the collection (0, 1)n.
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By Lemma 2, Sun et al. [16] proved that cn

(
x

1− x
, r

)
is Schur harmonically

convex on [0, 1)n, here by Theorem 1, we give a new proof.

Since f(x) =
x

1− x
is increasing and harmonically convex on (0, 1), from Theo-

rem 1 (iv) and Theorem 4, it follows

Theorem 7. The following symmetric functions are increasing and Schur harmon-

ically convex on (0, 1)n, r = 1, 2, . . . , n,

Er

((
x

1− x

) 1
r

)
=

∑
1≤i1<i2<···<ir≤n

r∏
j=1

(
xij

1− xij

) 1
r

, (19)

E∗
r

((
x

1− x

) 1
r

)
=

∏
1≤i1<i2<···<ir≤n

r∑
j=1

(
xij

1− xij

) 1
r

, (20)

cn

((
x

1− x

) 1
r

, r

)
=

∑
i1+i2+···+in=r

n∏
j=1

(
xj

1− xj

) ij
r

(21)

and

c∗n

((
x

1− x

) 1
r

, r

)
=

∏
i1+i2+···+in=r

n∑
j=1

ij

(
xj

1− xj

) 1
r

. (22)

Remark 5. By Lemma 2, Sun [17] proved that Er

((
x

1− x

) 1
r

)
is Schur harmon-

ically convex on [0, 1)n. Here by Theorem 1, we give a new proof.
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A NOTE ON DEGENERATE GENERALIZED q-GENOCCHI

POLYNOMIALS

JONGKYUM KWON1, JIN-WOO PARK2, AND SANG JO YUN3,∗

Abstract. In this paper,we consider degenerate generalized q-Genocchi poly-

nomials arising from p-adic fermionic q-integral on Zp. We found some inter-
esting identities of these polynomials.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp will
denote the ring of p-adic rational integers, the field of p-adic rational numbers and
the completion of the algebraic closure of Qp, respectively. Let νp be the normalized

exponential valuation of Cp with |p|p = p−νp(p) = 1
p . Let q be an indeterminate in

Cp such that |q − 1|p < p−
1
p−1 .

Let f(x) be a continuous function on Zp. Then the p-adic fermionic q-integral
on Zp is defined by Kim to be∫

Zp
f(x)dµ−q(x) = lim

N→∞

pN−1∑
x=0

f(x)µ−q
(
x+ pNZp

)
=

[2]q
2

lim
N→∞

pN−1∑
x=0

f(x)(−1)xqx, (see [9]).

(1.1)

Thus, by (1.1), we get

q

∫
Zp
f(x+ 1)dµ−q(x) +

∫
Zp
f(x)dµ−q(x) = [2]qf(0), (1.2)

and

qn
∫
Zp
f(x+n)dµ−q(x)+(−1)n−1

∫
Zp
f(x)dµ−q(x) = [2]q

n−1∑
l=0

f(l)ql(−1)n−1−l, (1.3)

where n ∈ N (see [5-10, 12]).
It is known that the q-Euler polynomials are given by the generating function as

follows: ∫
Zp
e(x+y)tdµ−q(y) =

[2]q
qet + 1

ext =
∞∑
n=0

En,q(x)
tn

n!
. (1.4)

When x = 0, En,q = En,q(0) are called q-Euler numbers (see [5, 9, 12]).

1991 Mathematics Subject Classification. 05A10, 05A19.
∗ corresponding author.
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Recently, degenerate q-Euler polynomials are introduced by he generating func-
tion as follows:

[2]q

q(1 + λt)
1
λ + 1

(1 + λt)
x
λ =

∞∑
n=0

En,q,λ(x)
tn

n!
, (see [9]). (1.5)

It is known that the q-Genocchi polynomials are given by the generating function
as follows: ∫

Zp
te(x+y)tdµ−q(y) =

t[2]q
qet + 1

ext =
∞∑
n=0

Gn,q(x)
tn

n!
. (1.6)

When x = 0, Gn,q = En,q(0) are called q-Genocchi numbers (see [1, 2, 4, 6-8]).
Now, the degenerate q-Genocchi polynomials are introduced by the generating

function as follows:

t[2]q

q(1 + λt)
1
λ + 1

(1 + λt)
x
λ =

∞∑
n=0

Gn,q,λ(x)
tn

n!
. (1.7)

Note that limλ→0 Gn,q,λ(x) = Gn,q(x), (n ≥ 0), (see [3]).
For d ∈ N with d ≡ (mod 2) and (d, p) = 1, we set

X = lim←−
N

Z�dpNZ, X∗ =
⋃

0<a<dp, a-p

(a+ dpZp) ,

and

a+ dpNZp =
{
x ∈ X | x ≡ a ( mod dpN )

}
,

where a ∈ Z with 0 ≤ a < dpN − 1.
For d ∈ N with d ≡ 1 (mod 2), let us assume that χ is a Dirichlet character with

conductor d. Now, we consider the generalized q-Genocchi polynomials attached to
χ which are given by the generating function to be∫

X

χ(y)te(x+y)tdµ−q(y) =

(
t[2]q

qdedt + 1

d−1∑
a=0

qq(−1)aχ(a)eat

)
ext

=
∞∑
n=0

Gn,q,χ(x)
tn

n!
, (see [4-6, 8]).

(1.8)

When x = 0, Gn,q,χ = Gn,q,χ(0) are called generalized q-Genocchi numbers attached
to χ.

One of the most recent papers on the theory of Genocchi polynomials and num-
bers is the paper T. Kim(see [6-8]), which deals mainly with the theory of Genocchi
polynomials and numbers. Facts on Bernoulli polynomials and Euler polynomials,
to which Genocchi polynomials may be related, has been derived in Volkenborn
integral (see [3]). While a lot of the properties of Genocchi polynomials bear a
striking resemblance to the properties of Beroulli and Euler polynomials, some
properties are rather different. Note that Genocchi polynomials occur naturally in
the areas of elementary number theory, complex analytic number theory, homo-
topy theory, differential topology, theory of modular forms, p-adic analytic number
theory, quantum physics (see [1-13]).

In the viewpoint of (1.8), we consider degenerate generalized q-Genocchi poly-
nomials which are derived from the fermionic q-integral on Zp. The purpose of
this paper is to investigate some properties and identities of degenerate generalized
q-Genocchi polynomials.
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2. Degenerate generalized q-Genocchi polynomials

In this section, we assume that λ, t ∈ Cp with |λt|p < p−
1
p−1 . For d ∈ N with

d ≡ 1 (mod 2) , let χ be a Dirichlet’s character with conductor d.
In the viewpoint of (1.8), we consider degenerate generalized q-Genocchi poly-

nomials which are given by the generating function to be∫
X

χ(y)t(1 + λt)
x+y
λ dµ−q(y)

=

(
t[2]q

qd(1 + λt)
d
λ + 1

d−1∑
a=0

qa(−1)aχ(a)(1 + λt)
a
λ

)
(1 + λt)

x
λ

=
∞∑
n=0

Gn,χ,q,λ(x)
tn

n!
,

(2.1)

where d ∈ N with d ≡ 1 (mod 2).
From (1.5) and (2.1), we have

∞∑
n=0

Gn,χ,q,λ(x)
tn

n!
=

(
t[2]q

qd(1 + λt)
d
λ + 1

d−1∑
a=0

qa(−1)aχ(a)(1 + λt)
a+x
λ

)

=
[2]q
[2]qd

d−1∑
a=0

qa(−1)aχ(a)

(
t[2]qd

qd(1 + λt)
d
λ + 1

(1 + λt)
d
λ
a+x
d

)

=
∞∑
n=0

(
[2]q
[2]qd

d−1∑
a=0

qa(−1)aχ(a)Gn,qd,λd

(
a+ x

d

)
dntn+1

n!

)
.

(2.2)

Thus, by (2.2), we get

Gn,χ,q,λ(x) =
ndn−1[2]q

[2]qd

d−1∑
a=0

qa(−1)aχ(a)Gn−1,qd,λd

(
a+ x

d

)
, (n ≥ 0). (2.3)

Therefore, by (2.3), we obtain the following theorem.

Theorem 2.1. For d ∈ N with d ≡ 1 (mod 2), n ≥ 0, we have

Gn,χ,q,λ(x) =

∫
X

χ(y)t(x+ y|λ)ndµ−q(y)

=
n[2]q
[2]qd

dn−1
d−1∑
a=0

χ(a)qa(−1)aGn−1,qd,λd

(
a+ x

d

)
,

where

(x|λ)n =x(x− λ) · · · (x− λ(n− 1))

=λn
(x
λ

)
n
.

For n ≥ 0, we observe that

(x+ y|λ)n =λn
(
x+ y

λ

)
n

= λn
n∑
l=0

S1(n, l)

(
x+ y

λ

)l
=

n∑
l=0

S1(n, l)λn−l(x+ y)l.

(2.4)
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By (2.4), we get∫
X

χ(y)t(x+ y|λ)ndµ−q(y) =
n∑
l=0

S1(n, l)λn−l
∫
X

χ(y)t(x+ y)ldµ−q(y)

=
n∑
l=0

S1(n, l)λn−lGl,q,χ(x), (n ≥ 0),

(2.5)

where S1(n, l) is the Stirling number of the first kind. Therefore, by (2.5), we obtain
the following theorem.

Theorem 2.2. For n ≥ 0, we have

Gn,χ,q,λ(x) =
n∑
l=0

S1(n, l)λn−lGl,q,χ(x).

By replacing t by 1
λ (eλt − 1) in (2.1), we get∫

X

χ(y)
1

λ
(eλt − 1)e(x+y)tdµ−q(y) =

∞∑
m=0

Gm,χ,q,λ(x)
1

m!

(
1

λ
(eλt − 1)

)m
=
∞∑
m=0

Gm,χ,q,λ(x)λ−m
∞∑
n=m

S2(n,m)
λn

n!
tn

=
∞∑
n=0

(
n∑

m=0

λn−mS2(n,m)Gm,χ,q,λ(x)

)
tn

n!
,

(2.6)

where S2(n,m) is the Stirling number of the second kind.
From (1.8), we note that∫

X

χ(y)te(x+y)tdµ−q(y) =

(
t[2]q

qdedt + 1

) d−1∑
a=0

qa(−1)aχ(a)e(a+x)t

=
∞∑
n=0

Gn,q,χ(x)
tn

n!
.

(2.7)

By multiplying t on the both side (2.6), we get∫
X

χ(y)te(x+y)tdµ−q(y) =
∞∑
n=0

(
n∑

m=0

1

eλt − 1
λn−m+1S2(n,m)Gm,χ,q,λ(x)

)
tn+1

n!
.

(2.8)

Therefore, by (2.6), (2.7) and (2.8), we obtain the following theorem.

Theorem 2.3. For n ≥ 0, we have

Gn,q,χ(x) =
n−1∑
m=0

n

eλt − 1
λn−mS2(n− 1,m)Gm,χ,q,λ(x).

Let d ∈ N with d ≡ 1 (mod 2). From (1.3), we have

qd
∫
X

(x+ d|λ)nχ(x)dµ−q(x) +

∫
X

(x|λ)nχ(x)dµ−q(x)

=[2]q

d−1∑
a=0

χ(a)qq(−1)a(a|λ)n, (n ≥ 0).

(2.9)
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Therefore, by Theorem 2.1 and (2.8), we obtain the following theorem.

Theorem 2.4. For d ∈ N with d ≡ 1 (mod 2), n ≥ 0, we have

qdGn,χ,q,λ(d) + Gn,χ,q,λ = t[2]q

d−1∑
a=0

χ(a)qq(−1)a(a|λ)n,

where Gn,χ,q,λ = Gn,χ,q,λ(0) are called degenerate generalized q-Genocchi numbers
attached to χ.

Now, we observe that

∞∑
n=0

Gn,χ,q,λ(x)
tn

n!
=

(
t[2]q

∑d−1
a=0 q

a(−1)aχ(a)(1 + λt)
a
λ

qd(1 + λt)
d
λ + 1

)
(1 + λt)

x
λ

=

( ∞∑
m=0

Gn,χ,q,λ
tm

m!

)( ∞∑
l=0

(x|λ)l
tl

l!

)

=
∞∑
n=0

(
n∑

m=0

(
n

m

)
Gm,χ,q,λ(x|λ)n−m

)
tn

n!
.

(2.10)

Thus, by comparing the coefficients on the both sides, we obtain the following
theorem.

Theorem 2.5. For n ≥ 0, we have

Gn,χ,q,λ(x) =
n∑

m=0

(
n

m

)
Gm,χ,q,λ(x|λ)n−m.

Now, we observe that

(−1)n

n!
Gn,χ,q,λ =

(−1)n

n!

∫
X

χ(x)t(x|λ)ndµ−q(x)

=λn
∫
X

(
−xλ + n− 1

n

)
χ(x)tdµ−q(x)

=λn
n∑
l=0

(
n− 1

l − 1

)
(−1)l

λll!

∫
X

χ(x)t(x| − λ)ldµ−q(x)

=
n∑
l=0

(
n− 1

l − 1

)
λn−l(−1)l

1

l!
Gl,χ,q,−λ

=
n∑
l=1

(
n− 1

l − 1

)
λn−l(−1)l

Gl,χ,q,−λ
l!

.

(2.11)

Therefore, by (2.11), we obtain the following theorem.

Theorem 2.6. For n ≥ 0, we have

(−1)n

n!
Gn,χ,q,λ =

n∑
l=1

(
n− 1

l − 1

)
λn−l(−1)l

Gl,χ,q,−λ
l!

.

Note that

lim
λ→0
Gn,χ,q,λ(x) = Gn,q,χ(x), (n ≥ 0).
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Cubic soft ideals in BCK/BCI-algebras
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Abstract. The notions of cubic soft ◦-subalgebras and (closed) cubic soft ideals in BCK/BCI-algebras are intro-

duced, and related properties are investigated. Relations between cubic soft subalgebras, cubic soft ◦-subalgebras

and (closed) cubic soft ideals are discussed. Conditions for a cubic soft subalgebras to be a (closed) cubic soft

ideals are provided. Characterizations of cubic soft ideals are considered. R-union and R-intersection of cubic soft

ideals are discussed.

1. Introduction

To solve complicated problems in economics, engineering, and environment, we can’t success-

fully use classical methods because of various uncertainties typical for those problems. Uncer-

tainties can’t be handled using traditional mathematical tools but may be dealt with using a wide

range of existing theories such as probability theory, theory of (intuitionistic) fuzzy sets, theory

of vague sets, theory of interval mathematics, and theory of rough sets. However, all of these

theories have their own difficulties which are pointed out in [8]. Maji et al. [5] and Molodtsov [8]

suggested that one reason for these difficulties may be due to the inadequacy of the parametriza-

tion tool of the theory. To overcome these difficulties, Molodtsov [8] introduced the concept of

soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties

that have troubled the usual theoretical approaches. Molodtsov pointed out several directions

for the applications of soft sets. At present, works on the soft set theory are progressing rapidly.

Maji et al. [5] described the application of soft set theory to a decision making problem. Maji

et al. [6] also studied several operations on the theory of soft sets. Jun et al. [2, 4] applied the

notion of soft sets to BCK/BCI-algebras and d-algebras.
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0Keywords: cubic soft subalgebra, cubic soft ◦-subalgebra, (closed) cubic soft ideal, R-union, R-intersection.
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Combining cubic sets and soft sets, Muhiuddin and Al-roqi [10] introduced the notions of

(internal, external) cubic soft sets, P-cubic (resp. R-cubic) soft subsets, R-union (resp. R-

intersection, P-union, P-intersection) of cubic soft sets, and the complement of a cubic soft

set. They investigated several related properties, and applied the notion of cubic soft sets to

BCK/BCI-algebras. In [9], Muhiuddin et al. considered several basic operations of cubic soft

sets, namely, “AND” operation and ”OR” operation based on the P-order and the R-order.

They provided an example to illustrate that the R-union of two internal cubic soft sets might

not be internal. They also discussed conditions for the R-union of two internal cubic soft sets

to be an internal cubic soft set, and investigated several properties of cubic soft subalgebras in

BCK/BCI-algebras based on a parameter.

In this paper, we introduce the notions of cubic soft ◦-subalgebras and (closed) cubic soft ideals

in BCK/BCI-algebras, and investigate related properties. We consider relations between cubic

soft subalgebras, cubic soft ◦-subalgebras and (closed) cubic soft ideals, and provide conditions

for a cubic soft subalgebras to be a (closed) cubic soft ideals. We discuss characterizations of

cubic soft ideals. We show that the R-intersection of cubic soft ideals is a cubic soft ideal. We

also show that if parameter sets are mutually disjoint then the R-union of cubic soft ideals is a

cubic soft ideal. We provide an example to show that the R-union of cubic soft ideals is not a

cubic soft ideal when parameter sets are not disjoint.

2. Preliminaries

An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following axioms:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following conditions:

(a1) (∀x ∈ X) (x ∗ 0 = x),

(a2) (∀x, y, z ∈ X) (x ∗ y = 0 ⇒ (x ∗ z) ∗ (y ∗ z) = 0, (z ∗ y) ∗ (z ∗ x) = 0),

(a3) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y),

(a4) (∀x, y, z ∈ X) (((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0).

We can define a partial ordering ≤ by x ≤ y if and only if x ∗ y = 0. A BCK-algebra X is said

to be with condition (S) if, for all x, y ∈ X, the set {z ∈ X | z ∗ x ≤ y} has a greatest element,

written x ◦ y. A BCI-algebra X is said to be p-semisimple if its BCK-part is equal to {0}. In a

p-semisimple BCI-algebra, the following conditions are valid:

(a5) (∀x, y ∈ X) (0 ∗ (x ∗ y) = y ∗ x).

(a6) (∀x, y ∈ X) (x ∗ (x ∗ y) = y).
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A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S for

all x, y ∈ S. A subset I of a BCK/BCI-algebra X is called an ideal of X if it satisfies, for all

x, y ∈ X, the following conditions:

(b1) 0 ∈ I,

(b2) x ∗ y ∈ I, y ∈ I ⇒ x ∈ I.

An ideal I of a BCI-algebra X is said to be closed if 0 ∗ x ∈ I for all x ∈ I. We refer the reader

to the books [1, 7] for further information regarding BCK/BCI-algebras.

By an interval number we mean a closed subinterval ã = [a−, a+] of I, where 0 ≤ a− ≤ a+ ≤ 1.

Denote by [I] the set of all interval numbers. Let us define what is known as refined minimum

and refined maximun (briefly, rmin and rmax) of two elements in [I ]. We also define the symbols

“º”, “¹”, “=” in case of two elements in [I]. Consider two interval numbers ã1 :=
[
a−1 , a+

1

]
and

ã2 :=
[
a−2 , a+

2

]
. Then

rmin {ã1, ã2} =
[
min

{
a−1 , a−2

}
, min

{
a+

1 , a+
2

}]
,

rmax {ã1, ã2} =
[
max

{
a−1 , a−2

}
, max

{
a+

1 , a+
2

}]
,

ã1 º ã2 if and only if a−1 ≥ a−2 and a+
1 ≥ a+

2 ,

and similarly we may have ã1 ¹ ã2 and ã1 = ã2. To say ã1 Â ã2 (resp. ã1 ≺ ã2) we mean ã1 º ã2

and ã1 6= ã2 (resp. ã1 ¹ ã2 and ã1 6= ã2).

Let X be a nonempty set. A function A : X → [I] is called an interval-valued fuzzy set

(briefly, an IVF set) in X. Let [I]X stand for the set of all IVF sets in X. For every A ∈ [I]X and

x ∈ X, A(x) = [A−(x), A+(x)] is called the degree of membership of an element x to A, where

A− : X → I and A+ : X → I are fuzzy sets in X which are called a lower fuzzy set and an upper

fuzzy set in X, respectively. For simplicity, we denote A = [A−, A+].

Molodtsov [8] defined the soft set in the following way: Let U be an initial universe set and E

be a set of parameters. Let P(U) denotes the power set of U and A ⊂ E.

Definition 2.1 ([8]). A pair (F,A) is called a soft set over U, where F is a mapping given by

F : A → P(U).

In other words, a soft set over U is a parameterized family of subsets of the universe U. For

ε ∈ A, F (ε) may be considered as the set of ε-approximate elements of the soft set (F,A). Clearly,

a soft set is not a set. For illustration, Molodtsov considered several examples in [8].

Definition 2.2 ([3]). Let U be a universe. By a cubic set in U we mean a structure

A = {〈x,A(x), λ(x)〉 | x ∈ U}
in which A is an IVF set in U and λ is a fuzzy set in U.

In what follows, a cubic set A = {〈x, µ̄A(x), λA(x)〉 | x ∈ U} is simply denoted by A =

〈µ̄A, λA〉, and denote by CU the collection of all cubic sets in U.
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Definition 2.3 ([10]). Let U be an initial universe set and let E be a set of parameters. A cubic

soft set over U is defined to be a pair (F , A) where F is a mapping from A to CU and A ⊂ E.

Note that the pair (F , A) can be represented as the following set:

(F , A) := {F (ε) | ε ∈ A} where F (ε) = 〈µ̄F (ε), λF (ε)〉.

3. Cubic soft ideals

In what follows, let U be an initial universe set which is a BCK/BCI-algebra unless otherwise

specified.

Definition 3.1 ([10]). A cubic soft set (F , A) over U is said to be a cubic soft BCK/BCI-

algebra over U based on a parameter ε (briefly, ε-cubic soft subalgebra over U) if there exists a

parameter ε ∈ A such that

µ̄F (ε)(x ∗ y) º rmin{µ̄F (ε)(x), µ̄F (ε)(y)} (3.1)

λF (ε)(x ∗ y) ≤ max{λF (ε)(x), λF (ε)(y)} (3.2)

for all x, y ∈ U. If (F , A) is an ε-cubic soft subalgebra over U for all ε ∈ A, we say that (F , A)

is a cubic soft subalgebra over U .

Definition 3.2. Let U be a BCK-algebra with the condition (S). Given a parameter ε ∈ A, a

cubic soft set (F , A) over U is said to be a cubic soft ◦-subalgebra over U based on ε (briefly,

ε-cubic soft ◦-subalgebra over U) if it satisfies the following conditions:

µ̄F (ε)(x ◦ y) º rmin{µ̄F (ε)(x), µ̄F (ε)(y)} (3.3)

λF (ε)(x ◦ y) ≤ max{λF (ε)(x), λF (ε)(y)} (3.4)

for all x, y ∈ U. If (F , A) is an ε-cubic soft ◦-subalgebra over U for all ε ∈ A, we say that (F , A)

is a cubic soft ◦-subalgebra over U .

Definition 3.3. Given a parameter ε ∈ A, a cubic soft set (F , A) over U is said to be a cubic soft

ideal over U based on ε (briefly, ε-cubic soft ideal over U) if it satisfies the following conditions:

µ̄F (ε)(0) º µ̄F (ε)(x), λF (ε)(0) ≤ λF (ε)(x), (3.5)

µ̄F (ε)(x) º rmin{µ̄F (ε)(x ∗ y), µ̄F (ε)(y)} (3.6)

λF (ε)(x) ≤ max{λF (ε)(x ∗ y), λF (ε)(y)} (3.7)

for all x, y ∈ U. If (F , A) is an ε-cubic soft ideal over U for all ε ∈ A, we say that (F , A) is a

cubic soft ideal over U .

Example 3.4. Let (Y, ∗, 0) be a BCI-algebra and consider the adjoint BCI-algebra (Z,−, 0) of

the additive group (Z, +, 0) of integers. Then the direct product U := Y × Z of Y and Z is a

BCI-algebra (see [1]). For any ε ∈ A, let (F , A) be a soft set over U defined by

µ̄F (ε)(x) =

{
ã = [a−, a+]( 6= [0, 0]) if x ∈ Y × N0,

[0,0] otherwise,
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λF (ε)(x) =

{
s if x ∈ Y × N0,

t otherwise,

where N is the set of natural numbers, N0 = N ∪ {0} and s, t ∈ [0, 1] with s < t. Then (F , A) is

an ε-cubic soft ideal over U .

Example 3.5. Let U = {0, a, b, c} be a BCI-algebra with the following Cayley table 1:

Table 1. Cayley table of the operation ∗

∗ 0 a b c

0 0 0 0 c

a a 0 0 c

b b b 0 c

c c c c 0

Let (F , A) be a cubic soft set over U , where A = {ε1, ε2, ε3}, with the tabular representation

in Table 2.

Table 2. Tabular representation of the cubic soft set (F , A)

ε1 ε2 ε3

0 〈[0.5, 0.8], 0.6〉 〈[0.8, 1.0], 0.1〉 〈[0.4, 0.6], 0.7〉
a 〈[0.8, 0.9], 0.7〉 〈[0.3, 0.7], 0.8〉 〈[0.1, 0.2], 0.7〉
b 〈[0.1, 0.7], 0.5〉 〈[0.3, 0.7], 0.8〉 〈[0.1, 0.7], 0.3〉
c 〈[0.2, 0.6], 0.9〉 〈[0.3, 0.7], 0.8〉 〈[0.3, 0.6], 0.2〉

Then (F , A) is not an ε1-cubic soft ideal over U since

µ̄F (ε1)(0) = [0.5, 0.8] � [0.8, 0.9] = µ̄F (ε1)(a).

We know that (F , A) is an ε2-cubic soft ideal over U . (F , A) is not an ε3-cubic soft ideal over

U since

µ̄F (ε3)(a) = [0.1, 0.2] � [0.3, 0.6] = rmin{µ̄F (ε3)(a ∗ c), µ̄F (ε3)(c)}.
Proposition 3.6. If (F , A) is an ε-cubic soft ideal over U , then

(∀x, y ∈ U)
(
x ≤ y ⇒ µ̄F (ε)(y) ¹ µ̄F (ε)(x), λF (ε)(y) ≥ λF (ε)(x)

)
.

Proof. Let x, y ∈ U be such that x ≤ y. Then x ∗ y = 0, and so

µ̄F (ε)(x) º rmin{µ̄F (ε)(x ∗ y), µ̄F (ε)(y)}
= rmin{µ̄F (ε)(0), µ̄F (ε)(y)} = µ̄F (ε)(y)

and

λF (ε)(x) ≤ max{λF (ε)(x ∗ y), λF (ε)(y)}
= max{λF (ε)(0), λF (ε)(y)} = λF (ε)(y).

This completes the proof. ¤
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Proposition 3.7. Let (F , A) be an ε-cubic soft ideal over U for a parameter ε ∈ A. If the

inequality x ∗ y ≤ z holds in U , then

µ̄F (ε)(x) º rmin{µ̄F (ε)(y), µ̄F (ε)(z)}
and λF (ε)(x) ≤ max{λF (ε)(y), λF (ε)(z)}.
Proof. Assume that x ∗ y ≤ z for all x, y, z ∈ U . Then

µ̄F (ε)(x ∗ y) º rmin{µ̄F (ε)((x ∗ y) ∗ z), µ̄F (ε)(z)}
= rmin{µ̄F (ε)(0), µ̄F (ε)(z)} = µ̄F (ε)(z)

(3.8)

and

λF (ε)(x ∗ y) ≤ max{λF (ε)((x ∗ y) ∗ z), λF (ε)(z)}
= max{λF (ε)(0), λF (ε)(z)} = λF (ε)(z),

(3.9)

which implies from (3.6) and (3.7) that

µ̄F (ε)(x) º rmin{µ̄F (ε)(x ∗ y), µ̄F (ε)(y)}
º rmin{µ̄F (ε)(y), µ̄F (ε)(z)}

and

λF (ε)(x) ≤ max{λF (ε)(x ∗ y), λF (ε)(y)}
≤ max{λF (ε)(y), λF (ε)(z)}.

This completes the proof. ¤

Theorem 3.8. In a BCK-algebra U with the condition (S), every ε-cubic soft ideal (F , A) over

U is an ε-cubic soft ◦-subalgebra over U for all ε ∈ A.

Proof. Let ε ∈ A. Since U has the condition (S), we have (x ◦ y) ∗ x ≤ y for all x, y ∈ U. Hence

(3.6), (3.7) and Proposition 3.6 imply that

µ̄F (ε)(x ◦ y) º rmin{µ̄F (ε)((x ◦ y) ∗ x), µ̄F (ε)(x)} º rmin{µ̄F (ε)(x), µ̄F (ε)(y)}
and

λF (ε)(x ◦ y) ≤ max{λF (ε)((x ◦ y) ∗ x), λF (ε)(x)} ≤ max{λF (ε)(x), λF (ε)(y)}
for all x, y ∈ U. Therefore (F , A) is an ε-cubic soft ◦-subalgebra over U for all ε ∈ A. ¤

Theorem 3.9. In a BCK-algebra U, if (F , A) is an ε-cubic soft ideal over U , then it is an

ε-cubic soft subalgebra over U for all ε ∈ A.

Proof. Let (F , A) be an ε-cubic soft ideal over U where ε ∈ A. For any x, y ∈ U, we have

µ̄F (ε)(x ∗ y) º rmin
{
µ̄F (ε)((x ∗ y) ∗ x), µ̄F (ε)(x)

}

= rmin
{
µ̄F (ε)(0), µ̄F (ε)(x)

}

= µ̄F (ε)(x)

and λF (ε)(x ∗ y) ≤ max{λF (ε)((x ∗ y) ∗ x), λF (ε)(x)} = max{λF (ε)(0), λF (ε)(x)} = λF (ε)(x).

Therefore (F , A) is an ε-cubic soft subalgebra over U . ¤
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Theorem 3.9 is not true in a BCI-algebra. In fact, the ε-cubic soft ideal (F , A) in Example

3.4 is not an ε-cubic soft subalgebra over U since

µ̄F (ε) ((0, 0) ∗ (0, 1)) = µ̄F (ε)(0,−1) = [0, 0] � ã = [a−, a+]

= rmin
{
µ̄F (ε)(0, 0), µ̄F (ε)(0, 1)

}

and/or

λF (ε) ((0, 0) ∗ (0, 1)) = λF (ε)(0,−1) = t � s = max
{
λF (ε)(0, 0), λF (ε)(0, 1)

}
.

Definition 3.10. Let U be a BCI-algebra and ε ∈ A. An ε-cubic soft ideal (F , A) over U is

said to be closed if µ̄F (ε)(0 ∗ x) º µ̄F (ε)(x) and λF (ε)(0 ∗ x) ≤ λF (ε)(x) for all x ∈ U.

Example 3.11. The ε2-cubic soft ideal (F , A) in Example 3.5 is closed.

Theorem 3.12. In a BCI-algebra, every closed cubic soft ideal is a cubic soft subalgebra.

Proof. Let (F , A) be a closed cubic soft ideal over U . Then µ̄F (ε)(0 ∗x) º µ̄F (ε)(x) and λF (ε)(0 ∗
x) ≤ λF (ε)(x) for all x ∈ U. It follows from (a3), (3.6) and (3.7) that

µ̄F (ε)(x ∗ y) º rmin{µ̄F (ε)((x ∗ y) ∗ x), µ̄F (ε)(x)}
= rmin{µ̄F (ε)(0 ∗ y), µ̄F (ε)(x)}
º rmin{µ̄F (ε)(y), µ̄F (ε)(x)}

and

λF (ε)(x ∗ y) º rmin{λF (ε)((x ∗ y) ∗ x), λF (ε)(x)}
= max{λF (ε)(0 ∗ y), λF (ε)(x)}
≤ max{λF (ε)(y), λF (ε)(x)}

for all x, y ∈ U . Therefore (F , A) is a cubic soft ideal over U . ¤

We provide a condition for a cubic soft subalgebra over U to be a (closed) cubic soft ideal over

U .

Theorem 3.13. In a p-semisimple BCI-algebra U , every cubic soft subalgebra over U is a closed

cubic soft ideal over U .

Proof. Let (F , A) be a cubic soft subalgebra over a p-semisimple BCI-algebra U and let ε ∈ A

be a parameter. For every x ∈ U , we have

µ̄F (ε)(0) = µ̄F (ε)(x ∗ x) º rmin{µ̄F (ε)(x), µ̄F (ε)(x)} = µ̄F (ε)(x),

λF (ε)(0) = λF (ε)(x ∗ x) ≤ max{λF (ε)(x), λF (ε)(x)} = λF (ε)(x).
(3.10)

Using (3.1), (3.2) and (3.10), we get

µ̄F (ε)(0 ∗ x) º rmin{µ̄F (ε)(0), µ̄F (ε)(x)} = µ̄F (ε)(x),

λF (ε)(0 ∗ x) ≤ max{λF (ε)(0), λF (ε)(x)} = λF (ε)(x).
(3.11)
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For any x, y ∈ U , we have

µ̄F (ε)(x) = µ̄F (ε)(y ∗ (y ∗ x)) º rmin{µ̄F (ε)(y), µ̄F (ε)(y ∗ x)}
= rmin{µ̄F (ε)(y), µ̄F (ε)(0 ∗ (x ∗ y))}
º rmin{µ̄F (ε)(x ∗ y), µ̄F (ε)(y)}

and

λF (ε)(x) = λF (ε)(y ∗ (y ∗ x)) ≤ max{λF (ε)(y), λF (ε)(y ∗ x)}
= max{λF (ε)(y), λF (ε)(0 ∗ (x ∗ y))}
≤ max{λF (ε)(x ∗ y), λF (ε)(y)}

by using (a6), (3.1), (3.2), (a5) and (3.11). Therefore (F , A) is a closed cubic soft ideal over

U . ¤
Corollary 3.14. If a BCI-algebra U satisfies any one of the following conditions:

• U = {0 ∗ x | x ∈ U},
• every element of U is minimal,

• (∀x, y ∈ U) (x ∗ (0 ∗ y) = y ∗ (0 ∗ x)),

• (∀x ∈ U) (0 ∗ x = 0 ⇒ x = 0),

• (∀x, y ∈ U) ((x ∗ y) ∗ z = x ∗ (y ∗ z)),

• (∀x, y ∈ U) (x ∗ y = y ∗ x),

• (∀x ∈ U) (0 ∗ x = x),

• (∀x, y, z ∈ U) ((x ∗ y) ∗ (x ∗ z) = z ∗ y),

then every cubic soft subalgebra over U is a closed cubic soft ideal over U .

Theorem 3.15. For a cubic soft set (F , A) over a BCK-algebra U with condition (S) and a

parameter ε ∈ A, the following are equivalent.

(i) (F , A) is an ε-cubic soft ideal over U .

(ii) For every x, y, z ∈ U , if x ≤ y◦z, then µ̄F (ε)(x) º rmin{µ̄F (ε)(y), µ̄F (ε)(z)} and λF (ε)(x) ≤
max{λF (ε)(y), λF (ε)(z)}.

Proof. Assume that (F , A) is an ε-cubic soft ideal over U and x ≤ y ◦ z for all x, y, z ∈ U . Then

µ̄F (ε)(x) º rmin{µ̄F (ε)(x ∗ (y ◦ z)), µ̄F (ε)(y ◦ z)}
= rmin{µ̄F (ε)(0), µ̄F (ε)(y ◦ z)}
= µ̄F (ε)(y ◦ z)

º rmin{µ̄F (ε)(y), µ̄F (ε)(z)}
and

λF (ε)(x) ≤ max{λF (ε)(x ∗ (y ◦ z)), λF (ε)(y ◦ z)}
= max{λF (ε)(0), λF (ε)(y ◦ z)}
= λF (ε)(y ◦ z)

≤ max{λF (ε)(y), λF (ε)(z)}.
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Conversely suppose that (ii) is valid. Since 0 ≤ x ◦ x for all x ∈ U , it follows from (ii) that

µ̄F (ε)(0) º rmin{µ̄F (ε)(x), µ̄F (ε)(x)} = µ̄F (ε)(x)

and

λF (ε)(0) ≤ max{λF (ε)(x), λF (ε)(x)} = λF (ε)(x)

for all x ∈ U . Since x ≤ (x ∗ y) ◦ y for all x, y ∈ U , we have

µ̄F (ε)(x) º rmin{µ̄F (ε)(x ∗ y), µ̄F (ε)(y)}
and

λF (ε)(x) ≤ max{λF (ε)(x ∗ y), λF (ε)(y)}
for all x, y ∈ U . Therefore (F , A) is an ε-cubic soft ideal over U . ¤

Theorem 3.16. Given a parameter ε ∈ A, a cubic soft set (F , A) over U is an ε-cubic soft ideal

over U if and only if the nonempty sets

µ̄⇐F (ε)[δ1, δ2] :=
{
x ∈ U | µ̄F (ε)(x) º [δ1, δ2]

}

and

λ→F (ε)(t) :=
{
x ∈ U | λF (ε)(x) ≤ t

}

are ideals of U for all [δ1, δ2] ∈ [I] and t ∈ [0, 1].

Proof. Assume that a cubic soft set (F , A) over U is an ε-cubic soft ideal over U . Suppose that

µ̄⇐F (ε)[δ1, δ2]∩λ→F (ε)(t) 6= ∅ for all [δ1, δ2] ∈ [I] and t ∈ [0, 1]. Obviously, 0 ∈ µ̄⇐F (ε)[δ1, δ2]∩λ→F (ε)(t).

Let x and y be elements of U such that x∗y ∈ µ̄⇐F (ε)[δ1, δ2] and y ∈ µ̄⇐F (ε)[δ1, δ2]. Then µ̄F (ε)(x∗y) º
[δ1, δ2] and µ̄F (ε)(y) º [δ1, δ2]. It follows from (3.6) that

µ̄F (ε)(x) º rmin{µ̄F (ε)(x ∗ y), µ̄F (ε)(y)} º rmin{[δ1, δ2], [δ1, δ2]} = [δ1, δ2].

Hence x ∈ µ̄⇐F (ε)[δ1, δ2]. Now if x ∗ y, y ∈ λ→F (ε)(t), then λF (ε)(x ∗ y) ≤ t and λF (ε)(y) ≤ t.

Using (3.7), we have λF (ε)(x) ≤ max{λF (ε)(x ∗ y), λF (ε)(y)} ≤ t, and so x ∈ λ→F (ε)(t). Therefore

µ̄⇐F (ε)[δ1, δ2] and λ→F (ε)(t) are ideals of U.

Conversely, suppose that µ̄⇐F (ε)[δ1, δ2] and λ→F (ε)(t) are ideals of U for all [δ1, δ2] ∈ [I] and

t ∈ [0, 1]. Assume that there exists a ∈ U such that µ̄F (ε)(0) � µ̄F (ε)(a) or λF (ε)(0) > λF (ε)(a).

Let µ̄F (ε)(0) = [0−, 0+] and µ̄F (ε)(a) = [a−, a+]. Then 0− < a− and 0+ < a+ which imply that

0− < δ1 < a− and 0+ < δ2 < a+, that is,

µ̄F (ε)(0) = [0−, 0+] < [δ1, δ2] < [a−, a+]

by taking [δ1, δ2] :=
[

1
2
(0− + a−), 1

2
(0+ + a+)

]
. Hence 0 /∈ µ̄⇐F (ε)[δ1, δ2]. Also 0 /∈ λ→F (ε)(at) where

at = λF (ε)(a). This is a contradiction, and so (3.5) is valid. Assume that there exist a, b ∈ U

such that

µ̄F (ε)(a) � rmin{µ̄F (ε)(a ∗ b), µ̄F (ε)(b)} (3.12)
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or

λ̄F (ε)(a) > max{λ̄F (ε)(a ∗ b), λ̄F (ε)(b)}. (3.13)

For the case (3.12), let µ̄F (ε)(a) = [δ1, δ2], µ̄F (ε)(a ∗ b) = [γ1, γ2] and µ̄F (ε)(b) = [γ3, γ4]. Then

[δ1, δ2] ≺ rmin{[γ1, γ2], [γ3, γ4]} = [min{γ1, γ3}, min{γ2, γ4}].

Hence δ1 < min{γ1, γ3} and δ2 < min{γ2, γ4}. Taking

[τ1, τ2] = 1
2

(
µ̄F (ε)(a) + rmin{µ̄F (ε)(a ∗ b), µ̄F (ε)(b)}

)

implies that

[τ1, τ2] = 1
2
([δ1, δ2] + [min{γ1, γ3}, min{γ2, γ4}])

=
[

1
2
(δ1 + min{γ1, γ3}) , 1

2
(δ2 + min{γ2, γ4})

]
.

It follows that

min{γ1, γ3} > τ1 = 1
2
(δ1 + min{γ1, γ3}) > δ1,

min{γ2, γ4} > τ2 = 1
2
(δ2 + min{γ2, γ4}) > δ2,

and so that

[min{γ1, γ3}, min{γ2, γ4}] Â [τ1, τ2] Â [δ1, δ2] = µ̄F (ε)(a).

Therefore a /∈ µ̄⇐F (ε)[τ1, τ2]. On the other hand, we know that

µ̄F (ε)(a ∗ b) = [γ1, γ2] º [min{γ1, γ3}, min{γ2, γ4}] Â [τ1, τ2],

µ̄F (ε)(b) = [γ3, γ4] º [min{γ1, γ3}, min{γ2, γ4}] Â [τ1, τ2],

which imply that a ∗ b, b ∈ µ̄⇐F (ε)[τ1, τ2]. This is a contradiction, and so

µ̄F (ε)(x) º rmin{µ̄F (ε)(x ∗ y), µ̄F (ε)(y)}
for all x, y ∈ U. Now, (3.13) implies that there exists t0 ∈ (0, 1) such that

λF (ε)(a) ≥ t0 > max{λF (ε)(a ∗ b), λF (ε)(b)}.
Hence a ∗ b, b ∈ λ→F (ε)(t0) but a /∈ λ→F (ε)(t0). This is a contradiction, and therefore

λF (ε)(x) ≤ max{λF (ε)(x ∗ y), λF (ε)(y)}
for all x, y ∈ U. Consequently, (F , A) is an ε-cubic soft ideal over U . ¤

Definition 3.17 ([10]). The R-union of cubic soft sets (F , A) and (G , B) over U is a cubic soft

set (H , C) where C = A ∪B and

H (ε) =





F (ε) if ε ∈ A \B,

G (ε) if ε ∈ B \ A,

F (ε) ∪R G (ε) if ε ∈ A ∩B
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for all ε ∈ C. This is denoted by (H , C) = (F , A) dR (G , B). Also the R-intersection of cubic

soft sets (F , A) and (G , B) over U is a cubic soft set (H , C) where C = A ∪B and

H (ε) =





F (ε) if ε ∈ A \B,

G (ε) if ε ∈ B \ A,

F (ε) ∩R G (ε) if ε ∈ A ∩B

for all ε ∈ C. This is denoted by (H , C) = (F , A) eR (G , B).

Theorem 3.18. If (F , A) and (G , B) are cubic soft ideals over U , then so is the R-intersection

(H , C) = (F , A) eR (G , B) of (F , A) and (G , B).

Proof. Straightforward. ¤

Theorem 3.19. Let (F , A) and (G , B) be cubic soft ideals over U . If A and B are disjoint,

then the R-union of (F , A) and (G , B) is a cubic soft ideal over U .

Proof. By means of Definition 3.17, we can write (F , A) dR (G , B) = (H , C), where C = A∪B

and for all ε ∈ C,

H (ε) =





F (ε) if ε ∈ A \B,

G (ε) if ε ∈ B \ A,

F (ε) ∪R G (ε) if ε ∈ A ∩B

Since A ∩ B = ∅, either ε ∈ A \ B or ε ∈ B \ A for all ε ∈ C. If ε ∈ A \ B, then H (ε) = F (ε)

is a cubic soft ideal over U . If ε ∈ B \ A, then H (ε) = G (ε) is a cubic soft ideal over U . Hence

(H , C) = (F , A) dR (G , B) is a cubic soft ideal over U . ¤

The following example shows that Theorem 3.19 is not valid if A and B are not disjoint.

Example 3.20. Let U = {0, a, b, c} be a BCI-algebra with the Cayley table in Table 3.

Table 3. Cayley table of the operation ∗

∗ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

Consider sets of parameters A := {ε1, ε2, ε3} and B := {ε3, ε4}. Then A and B are not disjoint.

Let (F , A) and (G , B) be cubic soft sets over U with the tabular representations in Table 4 and

Table 5, respectively.

Then (F , A) and (G , B) are cubic soft ideals over U , and the R-union (H , C) = (F , A)dR(G , B)

of (F , A) and (G , B) is represented by Table 6.

Note that

µ̄H (ε3)(c) = [0.4, 0.7] � [0.6, 0.8] = rmin{µ̄H (ε3)(c ∗ a), µ̄H (ε3)(a)}
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Table 4. Tabular representation of the cubic soft set (F , A)

ε1 ε2 ε3

0 〈[0.6, 0.8], 0.3〉 〈[0.5, 0.9], 0.4〉 〈[0.7, 0.9], 0.3〉
a 〈[0.3, 0.7], 0.5〉 〈[0.2, 0.5], 0.7〉 〈[0.6, 0.8], 0.8〉
b 〈[0.3, 0.7], 0.5〉 〈[0.3, 0.6], 0.7〉 〈[0.4, 0.7], 0.8〉
c 〈[0.3, 0.7], 0.5〉 〈[0.2, 0.5], 0.6〉 〈[0.4, 0.7], 0.5〉

Table 5. Tabular representation of the cubic soft set (G , B)

ε3 ε4

0 〈[0.7, 1.0], 0.2〉 〈[0.4, 0.8], 0.1〉
a 〈[0.3, 0.7], 0.7〉 〈[0.2, 0.6], 0.3〉
b 〈[0.6, 0.8], 0.4〉 〈[0.2, 0.6], 0.6〉
c 〈[0.3, 0.7], 0.7〉 〈[0.4, 0.8], 0.6〉

Table 6. Tabular representation of the cubic soft set (H , C)

ε1 ε2 ε3 ε4

0 〈[0.6, 0.8], 0.3〉 〈[0.5, 0.9], 0.4〉 〈[0.7, 1.0], 0.2〉 〈[0.4, 0.8], 0.1〉
a 〈[0.3, 0.7], 0.5〉 〈[0.2, 0.5], 0.7〉 〈[0.6, 0.8], 0.7〉 〈[0.2, 0.6], 0.3〉
b 〈[0.3, 0.7], 0.5〉 〈[0.3, 0.6], 0.7〉 〈[0.6, 0.8], 0.4〉 〈[0.2, 0.6], 0.6〉
c 〈[0.3, 0.7], 0.5〉 〈[0.2, 0.5], 0.6〉 〈[0.4, 0.7], 0.5〉 〈[0.4, 0.8], 0.6〉

and/or λH (ε3)(a) = 0.7 � 0.5 = max{λH (ε3)(a ∗ b), λH (ε3)(b)}. Hence the R-union (H , C) =

(F , A) dR (G , B) of (F , A) and (G , B) is not a cubic soft ideal over U .
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Abstract

We prove Hyers-Ulam stability of the first order delayed homogeneous matrix differ-
ence equation x⃗i+p = A(i)x⃗i for all integers i.

1 Introduction

Throughout this paper, we denote by C, N, N0, and Z the set of all complex numbers, of all
positive integers, of all nonnegative integers, and the set of all integers, respectively. Given a
fixed positive integer n, let (Cn, ∥ · ∥n) be a complex normed space, each of whose elements is
a column vector, and let Cn×n be a vector space consisting of all (n× n) complex matrices.
We choose a norm ∥ · ∥n×n on Cn×n which is compatible with ∥ · ∥n, i.e., both norms obey

∥AB∥n×n ≤ ∥A∥n×n∥B∥n×n and ∥Ax⃗∥n ≤ ∥A∥n×n∥x⃗∥n (1.1)

for all A,B ∈ Cn×n and x⃗ ∈ Cn.
A matrix difference equation is a difference equation with matrix coefficients in which the

value of vector at one point depends on the values of preceding points.
In this paper, we prove Hyers-Ulam stability of the first order delayed homogeneous matrix

difference equation

x⃗i+p = A(i)x⃗i (1.2)

for all integers i ∈ Z, where each transition matrix A(i) is nonsingular and p is a fixed integer
larger than 1. More precisely, we prove that if a vector sequence {y⃗i}i∈Z of Cn satisfies the
inequality

∥y⃗i+p −A(i)y⃗i∥n ≤ ε

for all i ∈ Z, then there exists a solution {x⃗i}i∈Z to the delayed matrix difference equation
(1.2) such that the bound for ∥y⃗i − x⃗i∥n depends on ε and the transition matrices A(i) only.
We refer the reader to [1, 2, 3, 4, 6] for the exact definition of Hyers-Ulam stability.

0Key words and phrases: difference equation; matrix difference equation; delayed matrix difference equa-
tion; Hyers-Ulam stability; approximation.

02010 Mathematics Subject Classification: Primary 39A45, 39B82; Secondary 39A06, 39B42.

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.5, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

941 Soon-Mo Jung et al 941-948



2 Hyers-Ulam stability of matrix difference equation

2 Preliminaries

Throughout this paper, the transition matrix A(i) of Cn×n is defined by

A(i) =


a11(i) a12(i) · · · a1n(i)
a21(i) a22(i) · · · a2n(i)

...
...

. . .
...

an1(i) an2(i) · · · ann(i)


for any integer i. We moreover assume that every A(i) is nonsingular. We will use the
following abbreviation.

Φ(j, k) :=


j−1∏
i=k

A(i) = A(j − 1)A(j − 2) · · ·A(k) (for j > k),

In×n (for j = k),

(2.1)

where we set Φ(j, k) :=
(
Φ(k, j)

)−1
= A(j)−1A(j + 1)−1 · · ·A(k − 1)−1 for j < k and In×n

denotes the (n×n) identity matrix. Sometimes, we use Φ(j) and Φ−1(k, j) instead of Φ(j, 0)

and
(
Φ(k, j)

)−1
, respectively.

In the following lemma, we introduce some properties of Φ(j, k) without proof.

Lemma 2.1 Assume that n is a fixed positive integer. If the transition matrix A(i) of Cn×n

is nonsingular for any integer i, then it holds that

(i) Φ(j + 1, k) = A(j)Φ(j, k);

(ii) Φ−1(j, k + 1) = A(k)Φ−1(j, k);

(iii) A(k − 1)−1Φ−1(j, k) = Φ−1(j, k − 1)

for all integers j and k.

3 Hyers-Ulam stability of x⃗i+p = A(i)x⃗i

We now prove our main theorem concerning Hyers-Ulam stability of the delayed homoge-
neous matrix difference equation (1.2). Obviously, our theorem is a generalization and an
improvement of [5, Theorem 2.1].

Theorem 3.1 Assume that n > 0 and p > 1 are fixed integers and ε is a nonnegative real
number. For all integers i, assume that A(i) is a nonsingular (n× n) complex-valued matrix
for which there exists a constant K > 0 such that

∞∑
j=0

∥∥∥∥∥∥
(

j∏
k=0

A(i+ kp)

)−1
∥∥∥∥∥∥
n×n

≤ K (3.1)
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Soon-Mo Jung and Young Woo Nam 3

for all integers i. If a sequence {y⃗i}i∈Z of Cn satisfies the inequality∥∥y⃗i+p −A(i)y⃗i
∥∥
n
≤ ε (3.2)

for all integers i, then there exists a unique solution {T⃗i}i∈Z to the first order delayed homo-
geneous matrix difference equation (1.2) such that∥∥T⃗i − y⃗i∥∥n ≤ Kε (3.3)

for each integer i.

Proof. In view of (3.2), there exists a sequence {ε⃗i}i∈Z of Cn such that

y⃗i+p −A(i)y⃗i = ε⃗i (3.4)

for all integers i and

sup
i∈Z

∥∥ε⃗i∥∥n ≤ ε. (3.5)

First, we use the induction on m to prove

y⃗i+mp =

(
m−1∏
k=0

A(i+ kp)

)
y⃗i +

m−1∑
j=0

 m−1∏
k=j+1

A(i+ kp)

 ε⃗i+jp (3.6)

for all i ∈ Z and m ∈ N0. Obviously, the equality (3.6) is true for m ∈ {0, 1}. Assume that
the equality (3.6) is true for some positive integer m. It then follows from (3.4) and (3.6)
that

y⃗i+(m+1)p = A(i+mp)y⃗i+mp + ε⃗i+mp

=

(
m∏
k=0

A(i+ kp)

)
y⃗i +

m−1∑
j=0

 m∏
k=j+1

A(i+ kp)

 ε⃗i+jp + ε⃗i+mp

=

(
m∏
k=0

A(i+ kp)

)
y⃗i +

m∑
j=0

 m∏
k=j+1

A(i+ kp)

 ε⃗i+jp,

which follows from (3.6) by replacing m with m+ 1.

If we set

T⃗i(m) :=

(
m∏
k=0

A(i+ kp)

)−1

y⃗i+(m+1)p

for all i ∈ Z and m ∈ N0, then it follows from (3.6) that

T⃗i(m) = y⃗i +

m∑
j=0

(
j∏

k=0

A(i+ kp)

)−1

ε⃗i+jp. (3.7)
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4 Hyers-Ulam stability of matrix difference equation

Let m and n be nonnegative integers with n > m. Then, by (3.7), we have

T⃗i(n)− T⃗i(m) =

n∑
j=m+1

(
j∏

k=0

A(i+ kp)

)−1

ε⃗i+jp

for any fixed integer i. In view of (3.5) and (3.1), we further get

∥∥T⃗i(n)− T⃗i(m)
∥∥
n

=

∥∥∥∥∥∥
n∑

j=m+1

(
j∏

k=0

A(i+ kp)

)−1

ε⃗i+jp

∥∥∥∥∥∥
n

≤
n∑

j=m+1

∥∥∥∥∥∥
(

j∏
k=0

A(i+ kp)

)−1

ε⃗i+jp

∥∥∥∥∥∥
n

≤
n∑

j=m+1

∥∥∥∥∥∥
(

j∏
k=0

A(i+ kp)

)−1
∥∥∥∥∥∥
n×n

∥∥ε⃗i+jp

∥∥
n

≤ ε
n∑

j=m+1

∥∥∥∥∥∥
(

j∏
k=0

A(i+ kp)

)−1
∥∥∥∥∥∥
n×n

→ 0, as m→∞,

for every i ∈ Z. Hence, {T⃗i(m)}m∈N0 is a Cauchy sequence for each fixed i ∈ Z, and we can
define

T⃗i := lim
m→∞

T⃗i(m) (3.8)

for each i ∈ Z.
By (3.4), (3.7), and (3.8), we obtain

T⃗i+p −A(i)T⃗i = y⃗i+p +

∞∑
j=0

(
j∏

k=0

A
(
i+ (k + 1)p

))−1

ε⃗i+(j+1)p

−A(i)y⃗i −
∞∑
j=0

(
j∏

k=1

A(i+ kp)

)−1

ε⃗i+jp

= y⃗i+p +

∞∑
j=0

(
j+1∏
k=1

A(i+ kp)

)−1

ε⃗i+(j+1)p

−A(i)y⃗i −
∞∑
j=0

(
j∏

k=1

A(i+ kp)

)−1

ε⃗i+jp

= y⃗i+p +
∞∑
j=1

(
j∏

k=1

A(i+ kp)

)−1

ε⃗i+jp

−A(i)y⃗i −
∞∑
j=0

(
j∏

k=1

A(i+ kp)

)−1

ε⃗i+jp

= 0⃗
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for all i ∈ Z. Moreover, it follows from (3.5), (3.1), (3.7), and (3.8) that

∥∥T⃗i − y⃗i∥∥n =

∥∥∥∥∥∥
∞∑
j=0

(
j∏

k=0

A(i+ kp)

)−1

ε⃗i+jp

∥∥∥∥∥∥
n

≤
∞∑
j=0

∥∥∥∥∥∥
(

j∏
k=0

A(i+ kp)

)−1

ε⃗i+jp

∥∥∥∥∥∥
n

≤
∞∑
j=0

∥∥∥∥∥∥
(

j∏
k=0

A(i+ kp)

)−1
∥∥∥∥∥∥
n×n

∥∥ε⃗i+jp

∥∥
n

≤ Kε

for all i ∈ Z.
Finally, we prove the uniqueness of the sequence {T⃗i}i∈Z. Assume that {U⃗i}i∈Z is another

solution to the difference equation (1.2). By applying the induction on m, we prove that

U⃗i =

(
m∏
k=0

A(i+ kp)

)−1

U⃗i+(m+1)p (3.9)

for any m ∈ N0. Obviously, (3.9) is true for m = 0. Assume now that (3.9) is true for some
integer m ≥ 0. It then follows from (1.2) and (3.9) that

U⃗i =

(
m∏
k=0

A(i+ kp)

)−1

U⃗i+(m+1)p

=

(
m+1∏
k=0

A(i+ kp)

)−1

A
(
i+ (m+ 1)p

)
U⃗i+(m+1)p

=

(
m+1∏
k=0

A(i+ kp)

)−1

U⃗i+(m+2)p,

which can be obtained from (3.9) by replacing m with m+1. Thus, by (3.1), (3.3), and (3.9),
we have ∥∥T⃗i − U⃗i

∥∥
n

=

∥∥∥∥∥∥
(

m∏
k=0

A(i+ kp)

)−1 (
T⃗i+(m+1)p − U⃗i+(m+1)p

)∥∥∥∥∥∥
n

≤

∥∥∥∥∥∥
(

m∏
k=0

A(i+ kp)

)−1
∥∥∥∥∥∥
n×n

∥∥T⃗i+(m+1)p − y⃗i+(m+1)p

∥∥
n

+

∥∥∥∥∥∥
(

m∏
k=0

A(i+ kp)

)−1
∥∥∥∥∥∥
n×n

∥∥y⃗i+(m+1)p − U⃗i+(m+1)p

∥∥
n

≤ 2Kε

∥∥∥∥∥∥
(

m∏
k=0

A(i+ kp)

)−1
∥∥∥∥∥∥
n×n

→ 0, as m→∞,

for all i ∈ Z, which implies the uniqueness of {T⃗i}i∈Z. �
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6 Hyers-Ulam stability of matrix difference equation

4 Examples

At a glance, the condition (3.1) would seem too strong so that we could seldom find practical
examples. But we get rid of such a misunderstanding through introducing a few examples
for the sequence {A(i)}i∈Z of transition matrices which satisfy the condition (3.1).

Example 4.1 Let us set n = 1 and p = 3. If A(i) = 23 is a (1× 1) matrix for every integer
i, then we have

∞∑
j=0

∣∣∣∣∣∣
(

j∏
k=0

A(i+ 3k)

)−1
∣∣∣∣∣∣ =

∞∑
j=0

(
23 · 23 · · · 23︸ ︷︷ ︸

j+1

)−1
=

∞∑
j=0

2−3(j+1) =
1

7
,

i.e., the condition (3.1) is satisfied with K = 1
7 .

Assume that a sequence {yi}i∈Z of complex numbers satisfies the inequality∣∣yi+3 − 23yi
∣∣ ≤ ε

for all integers i, where ε is an arbitrarily given nonnegative real number. Then, according
to Theorem 3.1, there exists a unique sequence {xi}i∈Z of complex numbers such that

xi+3 = 23xi (4.1)

and

|xi − yi| ≤
1

7
ε

for all integers i.
Indeed, the delayed difference equation (4.1) is strongly related to the nonlinear difference

equation

xi+1 = 2i+1 − 22i+1

xi
.

Example 4.2 We consider the difference equation with two variables given as

(
ui+1

vi+1

)
=


−22i+1

(i2 + 2i+ 2)(i2 + 1)vi − (i2 + 2i+ 2)2i+1

2i+2

i2 + 2i+ 2
− 22i+1

(i2 + 2i+ 2)(i2 + 1)ui


for all integers i, where {ui}i∈Z and {vi}i∈Z are sequences of complex numbers. By a straight-
forward calculation, we show that

(
ui+2

vi+2

)
=


4(i2 + 1)

i2 + 4i+ 5
0

0
4(i2 + 1)

i2 + 4i+ 5


(
ui

vi

)
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for all integers i. We now define the (2× 2) matrix A(i) by

A(i) :=


4(i2 + 1)

i2 + 4i+ 5
0

0
4(i2 + 1)

i2 + 4i+ 5

 =
4(i2 + 1)

(i+ 2)2 + 1
I2×2

for every integer i, where I2×2 denotes the (2× 2) identity matrix. Then we have

(
j∏

k=0

A(i+ 2k)

)−1

=
(i+ 2j + 2)2 + 1

(i2 + 1)4j+1
I2×2

for all nonnegative integers j. Hence, we see that

∞∑
j=0

∥∥∥∥∥∥
(

j∏
k=0

A(i+ 2k)

)−1
∥∥∥∥∥∥
∞

=

∞∑
j=0

(i+ 2j + 2)2 + 1

(i2 + 1)4j+1

≤
∞∑
j=0

(|i|+ 2j + 2)2 + 1

(i2 + 1)4j+1

≤
∞∑
j=0

1

4j+1
+

∞∑
j=0

1

2

j + 1

4j
+

∞∑
j=0

(j + 1)2

4j

≤ 1

3
+

∞∑
j=0

1

2

1

2j
+

∞∑
j=0

9

4

1

2j

=
35

6
,

i.e., the condition (3.1) is satisfied with K = 35
6 .

Let ε is an arbitrarily given nonnegative real number. Assume that a sequence {y⃗i}i∈Z of
C2 satisfies the inequality ∥∥y⃗i+2 −A(i)y⃗i

∥∥
∞ ≤ ε

for all integers i. Then, due to Theorem 3.1 with n = 2, p = 2, and K = 35
6 , there exists

a unique solution {x⃗i}i∈Z to the delayed homogeneous matrix difference equation (1.2) such
that ∥∥x⃗i − y⃗i∥∥∞ ≤ 35

6
ε

for any integer i.
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Abstract

An (n + 3)-dimensional nonlinear mathematical model for the virus dynamics with humoral immunity

and n-stages of infected cells is proposed and analyzed. Two threshold parameters, the basic reproduction

number, RM
0 and the humoral immunity number, RM

1 are derived. Utilizing Lyapunov functions and LaSalle’s

invariance principle, the global asymptotic stability of all steady states of the model is obtained. An example

is presented and some numerical simulations are conducted in order to illustrate the dynamical behavior.

Keywords: Virus dynamics; global stability; humoral immunity; Lyapunov function.

1 Introduction

During the past decades many human viruses have been found such as HIV, HBV, HCV and HTLV-I. To un-

derstand the virus dynamics, several mathematical models for virus dynamics have been proposed and analyzed

(see e.g. [1]-[16]). One of the most important features of mathematical models is the global stability of steady

states which gives us a detailed information and enhances our understanding about the virus dynamics. There-

fore several researchers studied the global stability of virus dynamics models (see e.g. [5], [6], [7], [8], [9], [11],

[12], [13], [14], [19], [20]). Some of these papers consider a single-infected stage for infected cells (see e.g. [5],

[6], [7], [11], [12] and [14]). Other works consider double-infected stages for infected cells, the first stage is the

latently infected cells which contain viruses but do not produce it and the second stage is the actively infected

cells which produce new viruses (see e.g. [8] [9], [19] and [20]). As reported in [21], [22] and [23], due to ongoing

viral replication in the virus dynamics process such as HIV, the time from the contact of viruses and uninfected

target cells to the death of the cells modeled by dividing the process into n short stages y1 → y2 → .... → yn.

Georgescu and Hsieh [20] have proposed a virus dynamics model with multi-staged infected cells. However, the

model does not consider the immune response.

It should be pointed out that the immune response plays an important role in controlling the disease

progression. There are two main responses for immune system, Cytotoxic T Lymphocyte (CTL) immune

response and humoral immune response. The function of the CTL cells is to kill the infected cells. The humoral

immunity is based on the B cells which produce antibodies to attack the viruses [1]. It is mentioned in [24]

that, in malaria, the antibodies are more effective than CTL cells [24]. Several works incorporate the humoral

immune response into the virus dynamics models (see e.g. [25]-[31]). Elaiw and AlShamrani [29], [30] studied

the global stability of virus dynamics models with double-infected stages for infected cells.

The aim of this paper is to study a general virus dynamics model with multi-staged infected cells and

humoral immunity. Our model is an improvement of the model presented in [20] by taking into account the

humoral immune response, and by assuming a more general incidence rate which includes the form given in

[20]. We use Lyapunov functions and LaSalle’s invariance principle to prove the global stability of all the steady

states of the model. We show that there exist two bifurcation parameters, the basic reproduction number RM0
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and the humoral immunity number RM1 . We establish a set of sufficient conditions which guarantee the global

stability of all steady states of the model.

2 The model

In this section we propose the following model:

ẋ = λ− dx− g(x, v), (1)

ẏ1 = g(x, v)− a1φ1(y1), (2)

ẏi = ãi−1φi−1(yi−1)− aiφi(yi), i = 2, 3, ..., n, (3)

v̇ = ãnφn(yn)− pzv − uv, (4)

ż = rzv − bz. (5)

All parameters and variables have the same identifications given in Section 1. The model is a generalization

of several existing model by considering general functions for: (i) the incidence rate of infection g(x, v); (ii)

the production rates of infected cells g(x, v) and ãi−1φi−1(yi−1), i = 2, ..., n; (iii) the removal rate of infected

cells aiφi(yi), i = 1, ..., n; (iii) the production rate of viruses ãnφn(yn). Functions g and φi are continuously

differentiable and satisfy the following conditions:

Condition C1. (i) g(x, v) > 0, g(0, v) = g(x, 0) = 0 for all x, v > 0 and

(ii) ∂g(x,v)
∂x > 0, ∂g(x,v)∂v > 0, ∂g(x,0)

∂v > 0 for all x, v > 0.

Condition C2. (i) g(x, v) ≤ v ∂g(x,0)∂v for all x, v > 0 and

(ii)

(
∂g(x, 0)

∂v

)′
> 0 for all x, v > 0.

Condition C3. (i) φi(yi) > 0 for all yi > 0, φi(0) = 0, i = 1, 2, ..., n,

(ii) φ′i(yi) > 0 for all yi > 0, i = 1, 2, ..., n, and

(iii) there is αi > 0, i = 1, ..., n such that φi(yi) ≥ αiyi for all yi > 0.

3 Properties of solutions

In this section, we study some properties of the solutions of the model such as the non-negativity and bound-

edness.

Proposition 1. Suppose that Conditions C1 and C3 are hold. Then there exist positive numbers Mj ,

j = 1, 2, ..., n+ 2, such that the compact set

Θ =
{

(x, y1, ..., yn, v, z) ∈ Rn+3
≥0 : 0 ≤ x ≤M1, 0 ≤ yi ≤Mi, 0 ≤ v ≤Mn+1, 0 ≤ z ≤Mn+2, i = 1, ..., n

}
is positively invariant.

Proof. Since

ẋ |x=0= λ > 0,

ẏ1 |y1=0= g(x, v) ≥ 0 for all x, v ∈ [0,∞),

ẏi |yi=0= ãi−1φi−1(yi−1) ≥ 0 for all yi−1 ∈ [0,∞), i = 2, 3, ..., n,

v̇ |v=0= ãnφn(yn) ≥ 0 for all yn ∈ [0,∞),

ż |z=0= 0,

Then, the orthant Rn+3
≥0 is positively invariant for system (1)-(5).

To show the boundedness of the solutions we let G1(t) = x(t) + y1(t), then

Ġ1 = λ− dx− a1φ1(y1) ≤ λ− dx− a1α1y1 ≤ λ− δ1 (x+ y1) ≤ λ− δ1G1,
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where δ1 = min{d, a1α1}. It follows that,

G1(t) ≤ e−δ1t
(
G1(0)− λ

δ1

)
+
λ

δ1
.

Hence, 0 ≤ G1(t) ≤ M1 if G1(0) ≤ M1 for t ≥ 0 where M1 = λ
δ1
. The non-negativity of x and y1 implies that,

0 ≤ x(t), y1(t) ≤M1 if x(0) + y1(0) ≤M1. From Eq. (3) and Condition C3, we have

ẏ2 = ã1φ1(y1)− a2φ2(y2) ≤ ã1φ1(M1)− a2α2y2.

It follows that, 0 ≤ y2(t) ≤M2 if y2(0) ≤M2, where M2 =
ã1φ1(M1)

a2α2
. Similarly, we can show 0 ≤ yi(t) ≤Mi if

yi(0) ≤Mi, where Mi =
ãi−1φi−1(Mi−1)

aiαi
i = 3, ..., n. Finally, we let G2(t) = v(t) + p

r z(t), then

Ġ2 = ãnφn(yn)− uv − pb

r
z

≤ ãnφn(Mn)− δ2
(
v +

p

r
z
)

= ãnφn(Mn)− δ2G2,

where δ2 = min{u, b}. It follows that, 0 ≤ G2(t) ≤ Mn+1 if G2(0) ≤ Mn+1, where Mn+1 =
ãnφn(Mn)

δ2
. Since

v(t) and z(t) are non-negative, then 0 ≤ v(t) ≤ Mn+1 and 0 ≤ z(t) ≤ Mn+2 if v(0) + p
r z(0) ≤ Mn+1, where

Mn+2 = r
pMn+1. Therefore, all the variables of the model are bounded and the region Θ is positively invariant

with respect to model (1)-(5). �

4 The steady states and biological bifurcations

In this section, we prove the existence of the steady states of system (1)-(5) and derive two bifurcation param-

eters.

Lemma 1. Assume that Conditions C1-C3 are satisfied, then there exist two bifurcation parameters RM0 >

RM1 > 0 such that

(i) if RM0 ≤ 1, then the system has only one positive steady state Q0 ∈ Θ.

(ii) if RM1 ≤ 1 < RM0 , then then the system has only two positive steady states Q0 ∈ Θ and Q1 ∈ Θ, and

(iii) if RM1 > 1, then then the system has three positive steady states Q0 ∈ Θ, Q1 ∈ Θ and Q2 ∈
◦
Θ.

Proof. At any steady state E(x, y1, ..., yn, v, z), the following equations hold:

λ− dx− g(x, v) = 0, (6)

g(x, v)− a1φ1(y1) = 0, (7)

ãi−1φi−1(yi−1)− aiφi(yi) = 0, i = 2, ..., n, (8)

ãnφn(yn)− uv − pzv = 0, (9)

(rv − b) z = 0. (10)

Eq. (10) has two possibilities, z = 0 and v =
b

r
. When z = 0, then from Eqs. (6)-(9) we get

λ− dx = g(x, v) =

 i∏
j=1

aj
ãj

 ãiφi(yi) =

 n∏
j=1

aj
ãj

uv, i = 1, ..., n, (11)

The continuity and strictly increasing properties of φi imply that φ−1i exists and it is also continuous and strictly

increasing [32]. Define fi(v) = φ−1i

((
i∏

j=1

ãj
aj

)(
n∏
j=1

aj
ãj

)
uv
ãi

)
, i = 1, 2, ..., n, then fi(0) = 0 and fi(v) > 0 for all

v > 0. From Eq. (11), we get

yi = fi(v), x = x0 −
1

d

 n∏
j=1

aj
ãj

uv, (12)
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and

g

x0 − 1

d

 n∏
j=1

aj
ãj

uv, v

−
 n∏
j=1

aj
ãj

uv = 0, (13)

where x0 = λ/d. Condition C1 implies that Eq. (13) has two possible solutions v = 0 and v 6= 0. If v = 0, then

from Eq. (12), we get the disease-free steady state Q0 = (x0,

n+2︷ ︸︸ ︷
0, ..., 0, 0). Let us consider the case v 6= 0. Define

Ψ1 (v) = g

x0 − 1

d

 n∏
j=1

aj
ãj

uv, v

−
 n∏
j=1

aj
ãj

uv = 0.

We have, Ψ1(0) = 0, and Ψ1(v̂) = −λ < 0.where v̂ = λ
u

(
n∏
j=1

ãj
aj

)
. Moreover,

Ψ′1 (0) = −u
d

 n∏
j=1

aj
ãj

 ∂g(x0, 0)

∂x
+
∂g(x0, 0)

∂v
−

 n∏
j=1

aj
ãj

u.

From Condition C1 we have ∂g(x0,0)
∂x = 0, then

Ψ′1 (0) = u

 n∏
j=1

aj
ãj

 1

u

 n∏
j=1

ãj
aj

 ∂g(x0, 0)

∂v
− 1

 .

Therefore, if 1
u

(
n∏
j=1

ãj
aj

)
∂g(x0,0)
∂v > 1, then Ψ′1 (0) > 0 and there exists a v1 ∈ (0, v̂) such that Ψ1(v1) = 0.

Substituting v = v1 in Eq. (6) and letting

Ψ2(x) = λ− dx− g(x, v1) = 0.

According to Condition C1, Ψ2 is a strictly decreasing, Ψ2(0) = λ > 0 and Ψ2(x0) = −g(x0, v1) < 0. Thus,

there exists a unique x1 ∈ (0, x0) such that Ψ2(x1) = 0. On the other hand, from Eq. (12) we have yi,1 =

fi(v1) > 0, i = 1, ..., n. It follows that, a endemic steady state without humoral immune response Q1 =

(x1, y1,1, ..., yn,1, v1, 0) exists when 1
u

(
n∏
j=1

ãj
aj

)
∂g(x0,0)
∂v > 1. Let us define the basic reproduction number as:

RM0 =
1

u

 n∏
j=1

ãj
aj

 ∂g(x0, 0)

∂v
.

The other possibility of Eq. (10) is v = v2 =
b

r
. Let

Ψ3(x) = λ− dx− g(x, v2) = 0.

Clearly, Ψ3 is a strictly decreasing, Ψ3(0) = λ > 0 and Ψ3(x0) = −g(x0, v2) < 0. Thus, there exists a unique

x2 ∈ (0, x0) such that Ψ3(x2) = 0. It follows that,

yi,2 = φ−1i

 i∏
j=1

ãj
aj

 g(x2, v2)

ãi

 > 0.

Further, z2 =
u

p
(RM1 − 1), where

RM1 =
1

u

 n∏
j=1

ãj
aj

 g(x2, v2)

v2
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represents the humoral immunity number. It follows that, if RM1 > 1, then there exists a endemic steady state

with humoral immune response Q2 = (x2, y1,2, ..., yn,2, v2, z2).

Now we show that Q0, Q1 ∈ Θ and Q2 ∈
◦
Θ. Clearly, Q0 ∈ Θ. We have x1 ∈ (0, x0), then

0 < x1 <
λ

d
≤ λ

δ1
= M1.

From Eq. (11), we get

a1α1y1,1 ≤ a1φ1(y1,1) = λ− dx1 < λ⇒ 0 < y1,1 <
λ

a1α1
≤M1.

Also, from Eq. (8), we have

a2α2y2,1 ≤ a2φ2(y2,1) = ã1φ1(y1,1) < ã1φ1(M1)⇒ 0 < y2,1 <
ã1φ1(M1)

a2α2
= M2.

Consequently, for i = 3, ..., n, we have

aiαiyi,1 ≤ aiφi(yi,1) = ãi−1φi−1(yi−1,1) < ãi−1φi−1(Mi−1)⇒ 0 < yi,1 <
ãi−1φi−1(Mi−1)

aiαi
= Mi.

Eq. (9) implies that,

uv1 = ãnφn(yn,1) < ãnφn(Mn)⇒ 0 < v1 <
ãnφn(Mn)

u
≤ ãnφn(Mn)

δ2
= Mn+1.

We have also z1 = 0, then Q1 ∈ Θ. Similarly, one can show that 0 < x2 < M1 and 0 < yi,2 < Mi, i = 1, ..., n.

Now we show that if RM1 > 1, then 0 < v2 < Mn+1 and 0 < z2 < Mn+2. From Eq. (9) we have

uv2 + pv2z2 = ãnφn(yn,2).

Then

uv2 < ãnφn(yn,2) < ãnφn(Mn)⇒ 0 < v2 <
ãnφn(Mn)

u
≤Mn+1,

pv2z2 < ãnφn(yn,2) < ãnφn(Mn)⇒ 0 < z2 <
rãnφn(Mn)

pb
≤Mn+2.

Then, Q2 ∈
◦
Θ. Clearly from Condition C2, we have

RM1 =
1

u

 n∏
j=1

ãj
aj

 g(x2, v2)

v2
≤ 1

u

 n∏
j=1

ãj
aj

 ∂g(x2, 0)

∂v
<

1

u

 n∏
j=1

ãj
aj

 ∂g(x0, 0)

∂v
= RM0 . �

5 Global stability analysis

In this section, we study the global stability of system (1)-(5) by constructing suitable Lyapunov functionals.

The stability of the disease-free steady state Q0 will be given in the following result.

Theorem 1. Let Conditions C1-C3 hold true and RM0 ≤ 1, then Q0 is globally asymptotically stable (GAS)

in Θ.

Proof. Define

V0(x, y1, ..., yn, v, z) = x− x0 −
∫ x

x0

lim
v→0+

g(x0, v)

g(η, v)
dη +

n∑
i=1

i−1∏
j=1

aj
ãj

 yi +

 n∏
j=1

aj
ãj

 v +
p

r

 n∏
j=1

aj
ãj

 z, (14)

where
0∏
j=1

aj
ãj

= 1. It is seen that, V0(x, y1, ..., yn, v, z) > 0 for all x, y1, ..., yn, v, z > 0, while V0(x0,

n+2︷ ︸︸ ︷
0, ..., 0, 0) = 0.

We calculate dV0

dt along the solutions of model (1)-(5) as:

dV0
dt

=

(
1− lim

v→0+

g(x0, v)

g(x, v)

)
ẋ+

n∑
i=1

i−1∏
j=1

aj
ãj

 ẏi +

 n∏
j=1

aj
ãj

 v̇ +
p

r

 n∏
j=1

aj
ãj

 ż. (15)
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We have

n∑
i=1

i−1∏
j=1

aj
ãj

 ẏi = g(x, v)− a1φ1(y1) +
n∑
i=2

i−1∏
j=1

aj
ãj

 (ãi−1φi−1(yi−1)− aiφi(yi))

= g(x, v)−

 n∏
j=1

aj
ãj

 ãnφn(yn).

Then

dV0
dt

= dx0

(
1− lim

v→0+

g(x0, v)

g(x, v)

)(
1− x

x0

)
+ g(x, v) lim

v→0+

g(x0, v)

g(x, v)
− u

 n∏
j=1

aj
ãj

 v − pb

r

 n∏
j=1

aj
ãj

 z

= dx0

(
1− ∂g(x0, 0)/∂v

∂g(x, 0)/∂v

)(
1− x

x0

)
+ u

 n∏
j=1

aj
ãj

 1

u

 n∏
j=1

ãj
aj

 g(x, v)

v

∂g(x0, 0)/∂v

∂g(x, 0)/∂v
− 1

 v

− pb

r

 n∏
j=1

aj
ãj

 z. (16)

From (i) of Condition C2, we have

dV0
dt
≤ dx0

(
1− ∂g(x0, 0)/∂v

∂g(x, 0)/∂v

)(
1− x

x0

)
+ u

 n∏
j=1

aj
ãj

(RM0 − 1
)
v − pb

r

 n∏
j=1

aj
ãj

 z. (17)

From (ii) of Condition C1, we get (
1− ∂g(x0, 0)/∂v

∂g(x, 0)/∂v

)(
1− x

x0

)
≤ 0,

where the equality occurs at x = x0. Therefore, if RM0 ≤ 1, then dV0

dt ≤ 0 for all x, v, z > 0. One can easily

show that dV0

dt = 0 occurs at Q0. Using LaSalle’s invariance principle, we derive that Q0 is GAS. �

To prove the global stability of the two steady states Q1 and Q2, we need the following condition on the

incidence rate function.

Condition C4. (
1− g(x, vi)

g(x, v)

)(
g(x, v)

g(x, vi)
− v

vi

)
≤ 0, x, v > 0, i = 1, 2

Lemma 2. Suppose that Conditions C1-C4 are satisfied and RM0 > 1. Then x1, x2, v1, v2 exist satisfying

sgn(x2 − x1) = sgn(v1 − v2) = sgn(RM1 − 1).

Proof. From Condition C1, for x1, x2, v1, v2 > 0, we have

(g(x2, v2)− g(x1, v2))(x2 − x1) > 0, (18)

(g(x1, v2)− g(x1, v1)) (v2 − v1) > 0. (19)

Using Condition C4 with i = 1, x = x1 and v = v2 we get

(g(x1, v2)v1 − g(x1, v1)v2) (g(x1, v2)− g(x1, v1)) < 0. (20)

It follows from inequality (19) that

(g(x1, v2)v1 − g(x1, v1)v2)(v1 − v2) > 0. (21)

First, we claim sgn(x2 − x1) = sgn(v1 − v2). Suppose this is not true, i.e., sgn(x2 − x1) = sgn(v2 − v1). Using

the conditions of the steady states Q1 and Q2 we have

(λ− dx2)− (λ− dx1) = g(x2, v2)− g(x1, v1)

= (g(x2, v2)− g(x1, v2)) + (g(x1, v2)− g(x1, v1)).
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Therefore, from inequalities (18) and (19) we get:

sgn (x1 − x2) = sgn (x2 − x1) ,

which leads to a contradiction. Thus, sgn (x2 − x1) = sgn (v1 − v2) . Using the steady state conditions for Q1

we have 1
u

(
n∏
j=1

ãj
aj

)
g(x1, v1)

v1
= 1, then

RM1 − 1 =
1

u

 n∏
j=1

ãj
aj

 g(x2, v2)

v2
− 1

u

 n∏
j=1

ãj
aj

 g(x1, v1)

v1

=
1

u

 n∏
j=1

ãj
aj

[ 1

v2
(g(x2, v2)− g(x1, v2)) +

1

v1v2
(g(x1, v2)v1 − g(x1, v1)v2)

]
.

Thus, from inequalities (18) and (21) we get sgn(RM1 − 1) = sgn(v1 − v2). �

Theorem 2. Assume that Conditions C1-C4 are satisfied. If RM1 ≤ 1 < RM0 , then Q1 is GAS in Θ.

Proof. Define:

V1(x, y1, ..., yn, v, z) = x− x1 −
∫ x

x1

g(x1, v1)

g(η, v1)
dη +

n∑
i=1

i−1∏
j=1

aj
ãj


yi − yi,1 − yi∫

yi,1

φi(yi,1)

φi(η)
dη


+

 n∏
j=1

aj
ãj

 v1H

(
v

v1

)
+
p

r

 n∏
j=1

aj
ãj

 z. (22)

We note that, V1 is positive and reaches its global minimum at Q1. Calculating the time derivative of V1 along

the trajectories of system (1)-(5), we obtain

dV1
dt

=

(
1− g(x1, v1)

g(x, v1)

)
(λ− dx− g(x, v)) +

(
1− φ1(y1,1)

φ1(y1)

)
(g(x, v)− a1φ1(y1))

+

n∑
i=2

i−1∏
j=1

aj
ãj

(1− φi(yi,1)

φi(yi)

)
(ãi−1φi−1(yi−1)− aiφi(yi))

+

 n∏
j=1

aj
ãj

(1− v1
v

)
(ãnφn(yn)− uv − pzv) +

p

r

 n∏
j=1

aj
ãj

 (rzv − bz) . (23)

We have
n∑
i=2

i−1∏
j=1

aj
ãj

 (ãi−1φi−1(yi−1)− aiφi(yi)) = a1φ1(y1)−

 n∏
j=1

aj
ãj

 ãnφn(yn). (24)

Then,

dV1
dt

=

(
1− g(x1, v1)

g(x, v1)

)
(λ− dx) + g(x, v)

g(x1, v1)

g(x, v1)
− φ1(y1,1)g(x, v)

φ1(y1)

+ a1φ1(y1,1)−
n∑
i=2

i−1∏
j=1

aj
ãj

 ãi−1φi(yi,1)φi−1(yi−1)

φi(yi)

+
n∑
i=2

i−1∏
j=1

aj
ãj

 aiφi(yi,1)−

 n∏
j=1

aj
ãj

uv −

 n∏
j=1

aj
ãj

 ãn
v1φn(yn)

v

+

 n∏
j=1

aj
ãj

uv1 +

 n∏
j=1

aj
ãj

 pv1z −
pb

r

 n∏
j=1

aj
ãj

 z. (25)
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Using the steady state conditions for Q1:

λ = dx1 + g(x1, v1),

g(x1, v1) =

 i∏
j=1

aj
ãj

 ãiφi(yi,1) =

 n∏
j=1

aj
ãj

uv1, i = 1, ..., n.

We obtain

dV1
dt

=

(
1− g(x1, v1)

g(x, v1)

)
(dx1 − dx) + g(x1, v1)

(
1− g(x1, v1)

g(x, v1)

)
+ g(x1, v1)

g(x, v)

g(x, v1)

− g(x1, v1)
φ1(y1,1)g(x, v)

φ1(y1)g(x1, v1)
+ (n+ 1) g(x1, v1)− g(x1, v1)

n∑
i=2

φi(yi,1)φi−1(yi−1)

φi(yi)φi−1(yi−1,1)

− g(x1, v1)
v

v1
− g(x1, v1)

v1φn(yn)

vφn(yn,1)
+ p

 n∏
j=1

aj
ãj

(v1 − b

r

)
z. (26)

We can rewrite Eq. (26) as follows

dV1
dt

= dx1

(
1− g(x1, v1)

g(x, v1)

)(
1− x

x1

)
+ g(x1, v1)

[
g(x, v)

g(x, v1)
− v

v1

]
+ g(x1, v1)

[
(n+ 2)− g(x1, v1)

g(x, v1)
− φ1(y1,1)g(x, v)

φ1(y1)g(x1, v1)

−
n∑
i=2

φi(yi,1)φi−1(yi−1)

φi(yi)φi−1(yi−1,1)
− v1φn(yn)

vφn(yn,1)

]
+ p

 n∏
j=1

aj
ãj

 (v1 − v2) z

= dx1

(
1− g(x1, v1)

g(x, v1)

)(
1− x

x1

)
+ g(x1, v1)

(
1− g(x, v1)

g(x, v)

)(
g(x, v)

g(x, v1)
− v

v1

)
+ g(x1, v1)

[
(n+ 3)− g(x1, v1)

g(x, v1)
− φ1(y1,1)g(x, v)

φ1(y1)g(x1, v1)
−

n∑
i=2

φi(yi,1)φi−1(yi−1)

φi(yi)φi−1(yi−1,1)

− v1φn(yn)

vφn(yn,1)
− vg(x, v1)

v1g(x, v)

]
+ p

 n∏
j=1

aj
ãj

 (v1 − v2) z. (27)

From Conditions C1 and C4, we get that, the first and second terms of Eq. (27) are less than or equal to

zero. Since the geometrical mean is less than or equal to the arithmetical mean, then (n + 3) ≤ g(x1,v1)
g(x,v1)

+

φ1(y1,1)g(x,v)
φ1(y1)g(x1,v1)

+
n∑
i=2

φi(yi,1)φi−1(yi−1)
φi(yi)φi−1(yi−1,1)

+ v1φn(yn)
vφn(yn,1)

+ vg(x,v1)
v1g(x,v)

. Lemma 2 implies that, if RM1 ≤ 1, then v1 ≤ v2.

It follows that, dV1

dt ≤ 0 for all x, yi, v, z > 0, i = 1, ..., n. The solutions of system (1)-(5) are limited to Ω,

the largest invariant subset of
{

(x, y1, ..., yn, v, z) : dV1

dt = 0
}

. We have dV1

dt = 0 at the singleton {Q1}. Thus,

the global asymptotic stability of the endemic steady state without humoral immune response Q1 follows from

LaSalle’s invariance principle. �

Theorem 3. Let Conditions C1-C4 are satisfied and RM1 > 1, then Q2 is GAS in
◦
Θ.

Proof. We construct a Lyapunov functional as follows:

V2(x, y1, ..., yn, v, z) = x− x2 −
∫ x

x2

g(x2, v2)

g(η, v2)
dη +

n∑
i=1

i−1∏
j=1

aj
ãj


yi − yi,2 − yi∫

yi,2

φi(yi,2)

φi(η)
dη


+

 n∏
j=1

aj
ãj

 v2H

(
v

v2

)
+
p

r

 n∏
j=1

aj
ãj

 z2H

(
z

z2

)
. (28)
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Note that V2 > 0 for all x, y1, ..., yn, v, z > 0 and V2(x2, y1,2, ..., yn,2, v2, z2) = 0. Function V2 satisfies:

dV2
dt

=

(
1− g(x2, v2)

g(x, v2)

)
(λ− dx− g(x, v)) +

(
1− φ1(y1,2)

φ1(y1)

)
(g(x, v)− a1φ1(y1))

+
n∑
i=2

i−1∏
j=1

aj
ãj

(1− φi(yi,2)

φi(yi)

)
(ãi−1φi−1(yi−1)− aiφi(yi))

+

 n∏
j=1

aj
ãj

(1− v2
v

)
(ãnφn(yn)− uv − pzv) +

p

r

 n∏
j=1

aj
ãj

(1− z2
z

)
(rzv − bz) . (29)

Using Eq. (24), we get

dV2
dt

=

(
1− g(x2, v2)

g(x, v2)

)
(λ− dx) + g(x, v)

g(x2, v2)

g(x, v2)
− φ1(y1,2)g(x, v)

φ1(y1)
+ a1φ1(y1,2)

−
n∑
i=2

i−1∏
j=1

aj
ãj

 ãi−1
φi(yi,2)φi−1(yi−1)

φi(yi)
+

n∑
i=2

i−1∏
j=1

aj
ãj

 aiφi(yi,2)

−

 n∏
j=1

aj
ãj

uv −

 n∏
j=1

aj
ãj

 ãn
v2φn(yn)

v
+

 n∏
j=1

aj
ãj

uv2

+

 n∏
j=1

aj
ãj

 pv2z −
pb

r

 n∏
j=1

aj
ãj

 z − p

 n∏
j=1

aj
ãj

 vz2 +
pb

r

 n∏
j=1

aj
ãj

 z2. (30)

Using the steady state conditions for Q2:

λ = dx2 + g(x2, v2), v2 =
b

r
,

g(x2, v2) =

 i∏
j=1

aj
ãj

 ãiφi(yi,2) =

 n∏
j=1

aj
ãj

 (uv2 + pv2z2) , i = 1, ..., n,

we get

dV2
dt

=

(
1− g(x2, v2)

g(x, v2)

)
(dx2 − dx) + g(x2, v2)

(
1− g(x2, v2)

g(x, v2)

)
+ g(x2, v2)

g(x, v)

g(x, v2)

− g(x2, v2)
φ1(y1,2)g(x, v)

φ1(y1)g(x2, v2)
+ (n+ 1) g(x2, v2)− g(x2, v2)

n∑
i=2

φi(yi,2)φi−1(yi−1)

φi(yi)φi−1(yi−1,2)

− g(x2, v2)
v

v2
− g(x2, v2)

v2φn(yn)

vφn(yn,2)
. (31)

We can rewrite Eq. (31) as follows:

dV2
dt

= dx2

(
1− g(x2, v2)

g(x, v2)

)(
1− x

x2

)
+ g(x2, v2)

(
1− g(x, v2)

g(x, v)

)(
g(x, v)

g(x, v2)
− v

v2

)
+ g(x2, v2)

[
(n+ 3)− g(x2, v2)

g(x, v2)
− φ1(y1,2)g(x, v)

φ1(y1)g(x2, v2)
−

n∑
i=2

φi(yi,2)φi−1(yi−1)

φi(yi)φi−1(yi−1,2)

− v2φn(yn)

vφn(yn,2)
− vg(x, v2)

v2g(x, v)

]
. (32)

We note from Conditions C1 and C4 and the relationship between the arithmetical and geometrical means that,

we obtain dV2

dt ≤ 0 for all x, y1, ..., yn, v, z > 0. The solutions of model (1)-(5) are limited to Λ, the largest

invariant subset of
{

(x, y1, ..., yn, v, z) : dV2

dt = 0
}

. It is easy to see that dV2

dt = 0 occurs at Q2. The global

asymptotic stability of Q2 follows from LaSalle’s invariance principle. �
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6 Example and numerical simulations

In this section, we introduce an example and perform some numerical simulations to confirm our theoretical

results. By using the Lyapunov direct method, we have established a set of conditions on the functions g(x, v)

and φi(yi) and on the parameters RM0 and RM1 ensuring the global asymptotic stability of the steady states of

model (1)-(5). We consider the following model with two stages (i.e. n = 2):

ẋ = λ− dx− πxv

(1 + γx) (1 + δv)
, (33)

ẏ1 =
πxv

(1 + γx) (1 + δv)
− a1y1, (34)

ẏ2 = ã1y1 − a2y2, (35)

v̇ = ã2y2 − pzv − uv, (36)

ż = rzv − bz, (37)

where π ∈ (0,∞) and γ, δ ∈ [0,∞). In this example we have

φi(yi) = yi, i = 1, ..., n, g(x, v) =
πxv

(1 + γx) (1 + δv)
,

which guarantee that Condition C3 holds true. Now, we verify Conditions C1, C2 and C4. Clearly, g(x, v) > 0,

g(0, v) = g(x, 0) = 0 for all x, v ∈ (0,∞), and

∂g(x, v)

∂x
=

πv

(1 + γx)2 (1 + δv)
,

∂g(x, v)

∂v
=

πx

(1 + γx) (1 + δv)
2 ,

∂g(x, 0)

∂v
=

πx

1 + γx
.

Then, for all x, v ∈ (0,∞), we have ∂g(x,v)
∂x > 0, ∂g(x,v)∂v > 0 and ∂g(x,0)

∂v > 0. Therefore Condition C1 is satisfied.

We have also

g(x, v) =
πxv

(1 + γx) (1 + δv)
≤ πxv

1 + γx
= v

∂g(x, 0)

∂v
,(

∂g(x, 0)

∂v

)′
=

π

(1 + γx)2
> 0 for all x > 0.

It follows that, C2 is satisfied. Moreover,(
1− g(x, vi)

g(x, v)

)(
g(x, v)

g(x, vi)
− v

vi

)
= − δ (v − vi)2

vi (1 + δv) (1 + δvi)
< 0 for all v, vi ∈ (0,∞), i = 1, 2.

Thus, C4 is satisfied and the global stability results demonstrated in Theorems 1-3 are guaranteed. The

parameters RM0 and RM1 are given by:

RM0 =
ã1ã2π

a1a2u

x0
1 + γx0

, RM1 =
ã1ã2π

a1a2u

x2
(1 + γx2) (1 + δv2)

. (38)

Now, we will perform some numerical simulations for the model (33)-(37). The values of some parameters of

the example are listed in Table 1. The other parameters π, r and γ will be varied. All computations are carried

out by MATLAB.

We are interested to study the following cases:

Case (A): Effect of π and r on the stability of steady states:

In this case, we have chosen three different initial conditions:

IC(1): x(0) = 400, y1(0) = y2(0) = 1, v(0) = 0.2 and z(0) = 0.5,

IC(2): x(0) = 600, y1(0) = y2(0) = 2, v(0) = 0.5 and z(0) = 1,

IC(3): x(0) = 800, y1(0) = 5, y2(0) = 3, v(0) = 0.9 and z(0) = 1.5.

The evolution of the dynamics of model (33)-(37) was observed over a time interval [0, 500]. We fix the value

of γ = 0.5 and change the values of parameters π and r to get three sets as follows:
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Table 1: The values of the parameters of model (33)-(37).

Parameter Value Parameter Value Parameter Value

λ 10 a1 1 p 0.5

d 0.01 a2 1.5 r Varied

β Varied ã1 0.5 b 0.3

γ Varied ã2 1

δ 0.1 u 3

Set (I): We choose, π = 4 and r = 0.3. Using the values of the parameters given in Table 1, we compute

RM0 = 0.89 < 1 and RM1 = 0.80 < 1, which means that the system has a disease-free steady state Q0 and it

is GAS based on Theorem 1. Evidently, Figures 1-5 show that, the states of the system eventually approach

Q0 = (1000, 0, 0, 0, 0) for the three initial conditions IC(1)-IC(3). This case corresponds to the healthy state

where the viruses are cleared.

Set (II): We take π = 5 and r = 0.3. With such choice we have, RM1 = 0.99 < 1 < RM0 = 1.11. Consequently,

Lemma 1 and Theorem 2 state that, Q1 exists and it is GAS. Figures 1-5 show that the numerical simulations

illustrate our theoretical results given in Theorem 2. We observe that, the trajectory of the system will converge

toQ1 = (140.43, 8.60, 2.87, 0.96, 0) for the three initial conditions IC(1)-IC(3). This case corresponds to a chronic

infection but with inactive immune response.

Set (III): We choose, π = 5 and r = 1. Then, we calculate RM0 = 1.11 > 1 and RM1 = 1.08 > 1, this means

that, the system has three steady states Q0, Q1 and Q2. Thus, from Theorem 3, Q2 is GAS. From Figures 1-5, we

observe a consistency between the numerical results and theoretical results of Theorem 3. We observe that, the

trajectory of the system show oscillating behavior for a period before reaching Q2 = (709.56, 2.90, 0.97, 0.3, 0.45),

in the same time frame for the three initial conditions IC(1)-IC(3).

Case (B): Effect of γ on the stability of the steady states

Let us consider π and r be fixed. In this case, we take the values of π = 5 and r = 1, and consider different

values of γ. Here we take the initial condition as given in IC(1), while the evolution of the dynamics of model

(33)-(37) was observed over a time interval [0, 600]. Table 2 contains the values of the bifurcation parameters

RM0 and RM1 with different values of γ of model (33)-(37).

Table 2: The values of the threshold parameters RM0 and RM1 with different values of γ of model (33)-(37).

Different values of γ RM0 RM1 The equilibria

0.30 1.85 1.79 Q2 = (517.67, 4.82, 1.61, 0.3, 4.72)

0.40 1.39 1.34 Q2 = (637.35, 3.63, 1.21, 0.3, 2.06)

0.54 1.03 0.996 Q1 = (763.16, 2.37, 0.79, 0.26, 0)

0.55 1.01 0.98 Q1 = (926.89, 0.73, 0.24, 0.08, 0)

0.60 0.92 0.90 Q0 = (1000, 0, 0, 0, 0)

0.70 0.79 0.77 Q0 = (1000, 0, 0, 0, 0)

Table 2 and Figures 6-10 show that, when γ is increased, the infection rate is decreased which leads to an

increase in the concentration of the uninfected cells and a decrease on the concentrations of the (first/second)

stage of infected cells, free viruses and B cells.

Case (C): Effect of the multiple stages of infected cells on the dynamics of virus dynamics:

To show the effect of multiple stages of infected cells on the dynamical behavior of the virus, we consider
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the following model with single stage of infected cells and compare it with model (33)-(37):

ẋ = λ− dx− πxv

(1 + γx) (1 + δv)
, (39)

ẏ1 =
πxv

(1 + γx) (1 + δv)
− a1y1, (40)

v̇ = ã1y1 − pzv − uv, (41)

ż = rzv − bz. (42)

Consequently, the bifurcation parameters for this system are given by:

Rsingle0 =
ã1π

a1u

x0
1 + γx0

, Rsingle1 =
ã1π

a1u

x2
(1 + γx2) (1 + δv2)

. (43)

Since ãi < ai, then from Eqs. (38) and (43) we have

RM0 =
ã1ã2π

a1a2u

x0
1 + γx0

<
ã1π

a1u

x0
1 + γx0

= Rsingle0 ,

RM1 =
ã1ã2π

a1a2u

x2
(1 + γx2) (1 + δv2)

<
ã1π

a1u

x2
(1 + γx2) (1 + δv2)

= Rsingle1 .

Here we consider the following initial condition: x(0) = 400, y1(0) = 0.5, y2(0) = 1, v(0) = 0.2 and z(0) = 0.5.

The evolution of the dynamics of models (33)-(37) and (39)-(42) was observed over a time interval [0, 600]. Let

us consider the values of parameters listed in Table 1 and choose the values π = 3.5, r = 1.5 and γ = 0.5. By

calculating the bifurcation parameters for systems (33)-(37) and (39)-(42), we obtain

RM0 = 0.78 < 1.16 = Rsingle0 , RM1 = 0.76 < 1.14 = Rsingle1 .

Therefore, with the same values of the parameters, the steady state Q0 is stable for system (33)-(37) but unstable

for system (39)-(42). The presence of multiple stages of infected cells reduces the infection progress. Figures

11-14 show a comparison between the evolution of the uninfected cells, infected cells, free virus particles and B

cells of the two systems (33)-(37) and (39)-(42). We observe that, the concentration of uninfected cells of the

model with three stages of infected cells is larger than that of system with only one single stage of infected cells

(see Figures 11), while the concentrations of first stage of infected cells, viruses and B cells with three stages

are less than that of system with a single stage of infected cells (see Figures 12-14). From a biological point of

view, the multiple stages of infected cells plays a similar role as antiviral treatment in eliminating the virus. We

observe that, if the number of stages of infected cells is increased, then the viral replication is suppressed and

the viruses can be cleared from the body. This give us some suggestions on new drugs to increase the number

of stages of infected cells.

7 Conclusion

We have studied a general virus dynamics model with humoral immunity. We have assumed that the infected

cells passes through n-stages to produce mature viruses. We have obtained two bifurcation parameters, the basic

reproduction number and the humoral immunity number. We have established a set of sufficient conditions

which guarantee the global stability of the model. The global asymptotic stability of the three steady states, Q0,

Q1 and Q2 has been investigated by constructing Lyapunov functionals and using LaSalle’s invariance principle.

To support our theoretical results, we have presented an example and conducted some numerical simulations.
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Figure 1: The uninfected cells for model (33)-(37).
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Figure 2: The first stage infected cells for model (33)-(37).
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Figure 3: The second stage infected cells for model (33)-(37).
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Figure 4: The free virus particles for model (33)-(37).
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Figure 5: The B cells for model (33)-(37).
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Figure 6: The uninfected target cells for model (33)-(37) under different values of γ.
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Figure 7: The first stage infected cells for model (33)-(37) under different values of γ.
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Figure 8: The second stage infected cells for model (33)-(37) under different values of γ.
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Figure 9: The free virus particles for model (33)-(37) under different values of γ.
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Figure 10: The B cells for model (33)-(37) under different values of γ.
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Figure 11: Comparison on the concentration of the uninfected cells for systems (33)-(37) and (39)-(42).
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Figure 12: Comparisons on the concentration of the first stage of infected cells for systems (33)-(37) and

(39)-(42).
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Figure 13: Comparisons on the concentration of the free virus particles for systems (33)-(37) and (39)-(42).
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Figure 14: Comparisons on the concentration of the B cells for systems (33)-(37) and (39)-(42).
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Abstract: This paper is concerned with the following rational recursive sequences  

1 2 1 2
1 1

3 3

, 0,1, ,n n n n
n n

n n

x x y yx y n
A By C Dx

− − − −
+ +

− −

= = =
+ +

"，  

where the parameters , , ,A B C D  are positive constants. The initial condition 3 2, ,x x− −  

1 0,x x−  and 3 2 1 0, , ,y y y y− − −  are arbitrary nonnegative real numbers. We give sufficient 

conditions under which the equilibrium (0,0)  of the system is globally asymptotically 
stable, which extends and includes corresponding results obtained in the cited references 
[12-17]. Moreover, the asymptotic behavior of others equilibrium points is also studied. 
Our approach to the problem is based on new variational iteration method for the more 
general nonlinear difference equations and inequality skills as well as the linearization 
techniques. 

Keywords: recursive sequences; equilibrium point; asymptotical stability; positive 
solutions. 
 
1. Introduction 

Nonlinear Difference equations have been studied because they model numerous real 
life problems in biology, ecology, physics, economics and so forth [1-5]. Today, with the 
dramatically development of computer-based computational techniques, difference 
equations are found to be much appropriate mathematical representations for computer 
simulation, experiment and computation, which play an important role in realistic 
applications [6]. Therefore, recently there has been an increasing interest in the study of 
qualitative analysis of rational difference equations. And the present cardinal problem of 
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 2

asymptotic behavior of solutions for a rational difference equation has received extensive 
attention from researchers (see, e.g., [7-11] and the references therein). 

Elabbasy [12] obtained the form of the solutions of the following rational difference 
system 

 1 1
1 1

-1 -11 1
n n

n n
n n n n

x yx y
x y y x
− −

+ += =
± + +∓

，                    (1.1) 

with nonzero real number initial conditions. 
In particular, Clark and Kulenovic [13, 14] discussed the global stability properties and 

asymptotic behavior of solutions for the recursive sequence 

1 1, , 0,1, ,n n
n n

n n

x yx y n
a cy b dx+ += = =
+ +

"               (1.2) 

where , , , (0, )a b c d ∈ ∞ and the initial conditions 0x and 0y are arbitrary nonnegative 

numbers. 
  In 2012, Zhang et al. [15] investigated the stability character and asymptotic behavior 
of the solution for the system of difference equations 

 -2 -2
1 1

2 1 2 1

, , 0,1, ,n n
n n

n n n n n n

x yx y n
B y y y A x x x+ +

− − − −

= = =
+ +

"        (1.3) 

where , (0, )A B∈ ∞ , and the initial conditions 3 2 1 0 3 2 1 0, , , , , , , (0, ).x x x x y y y y− − − − − − ∈ ∞  

Recently, the following nonlinear two-dimensional difference systems 

1 1 2 21 1( , ), ( , )n n t n s n n s n tx x y y y xϕ ψ+ − − + − −= = ,                   (1.4) 

where 1 1 2 2, , ,t s s t  are all positive integers, was studied by Liu et al. [16], in which they 

gave some sufficient conditions such that every positive solution of this equation 
converges to the unique equilibrium point.  
   More recently, in [17] the authors studied analogous results for the system of 
difference equations 

1 1 1 1,n nx y
n n n n n nx ax by e y cy dx e− −
+ − + −= + = + ,                (1.5) 

where , , ,a b c d are positive constants and the initial values 1 0 1 0, , ,x x y y are positive 

numbers. For more related work, one can refer to [18-22] and references therein. 
Inspired by the above works, the essential problem we consider in this paper is the 

asymptotic behavior of the solution for the difference equation 

1 2 1 2
1 1

3 3

, 0,1, ,n n n n
n n

n n

x x y yx y n
A By C Dx

− − − −
+ +

− −

= = =
+ +

"，            (1.6) 

where the initial conditions 3 2 1 0, , , (0, )x x x x− − − ∈ ∞ , 3 2 1 0, , , (0, )y y y y− − − ∈ ∞ and , , ,A B C D  

are positive constants. 
This paper proceeds as follows. In Section 2, we introduce some definitions and 

preliminary results. The main results and their proofs are given in Section 3. 

2. Preliminaries 
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Let ,x yI I be some intervals of real numbers and 4 4: x y xf I I I× → , 4 4: x y yg I I I× → be 

continuously differentiable functions. Then for every initial conditions ( , )i i x yx y I I∈ × , 

( 3, 2, 1,0)i = − − − , the system of difference equations 

1 -1 -2 -3 -1 -2 -3

1 -1 -2 -3 -1 -2 -3

( , , , , , , , ),
0,1, 2, ,

( , , , , , , , ),
n n n n n n n n n

n n n n n n n n n

x f x x x x y y y y
n

y g x x x x y y y y
+

+

=⎧
=⎨ =⎩

"          (2.1) 

has a unique solution n 3{( , )}n nx y ∞
=− . A point ( , ) x yx y I I∈ ×  is called an equilibrium point 

of (2.1) if ( )( , , , , , , , ),  . , , , , , ,x f x x x x y y y y y g x x x x y y y y= = , i. e., ( , ) ( , )n nx y x y=  

for all 0n ≥ . 
Interval x yI I×  is called invariant for system (2.1) if, for all 0n > , ,n x n yx I y I∈ ∈  

when the initial conditions 3 2 1 0 3 2 1 0, , , , , ,x yx x x x I y y y y I− − − − − −∈ ∈ . 

Definition 2.1 Assume that ( , )x y  is a fixed point of (2.1). Then 

(i) ( , )x y is said to be stable relative to x yI I×  if for every 0ε > , there exits 0δ >  

such that for any initial conditions ,( )  ( 3, 2, 1,0)i i x yx y I I i∈ × =− − − , with 0

3 ii
x x δ

=−
− <∑ ,  

0

3 ii
y y δ

=−
− <∑ , implies ,n nx x y yε ε− < − < . 

(ii) ( , )x y  is called an attractor relative to x yI I× if for all ,( )i i x yx y I I∈ ×  

( 3, 2, 1,0)i = − − − , ,n n n nlim x x lim y y→∞ →∞= = . 

(iii) ( , )x y  is called asymptotically stable relative to x yI I× if it is stable and an 

attractor. 
(iv) Unstable if it is not stable.  

Theorem 2.1 Assume that ( 1) ( ( )) , 0,1,X n F X n n+ = = " , is a system of difference 

equations and X  is the equilibrium point of this system i.e., ( )F X X= .  

(i) If all eigenvalues of the Jacobian matrix FJ , evaluated at X  lie inside the open 

unit disk 1λ < , then X  is locally asymptotically stable.  

(ii) If all eigenvalues of the Jacobian matrix FJ , evaluated at X  has modulus greater 

than one then X  is unstable.  
Definition 2.2 Let , , ,p q s t  be four nonnegative integers such that p q s t n+ = + = . 

Splitting 1 2 1 2( , ) ( , , , , , , , )n nx y x x x y y y= " " into ( , ) ( [ ] , [ ] , [ ] , [ ] )p q s tx y x x y y= , 

where [ ]x σ denotes a vector with σ -components of x , we say that the function 

1 2 1 2( , , , , , , , )n nf x x x y y y" " possesses a mixed monotone property in subsets 2nI of 
2nR if ([ ] ,[ ] ,[ ] ,[ ] )p q s tf x x y y  is monotone nondecreasing in each component of 

[ ] , [ ]p sx y and is monotone nonincreasing in each component of [ ] , [ ]q tx y for 
2( , ) nx y I∈ . In particular, if 0q t= = , then it is said to be monotone nondecreasing 

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.5, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

970 Chang-you Wang et al 968-976



 

 4

in 2nI . 

3. The Main Results 
In this section, we investigate the asymptotic behavior of the equilibrium points of the 

systems (1.6). It is easy to know that the systems (1.6) have four equilibrium points (0, 0) , 
(0, )C , ( , 0)A , and (( ) / (1 ), ( ) / (1 ))A BC BD C AD BD+ − + − . 
Theorem 3.1 The equilibrium point (0, 0) of (1.6) is locally asymptotically stable. 
Proof. We can easily obtain that the linearized system of (1.6) about the equilibrium 
point (0, 0)  is 

1n nDϕ ϕ+ =                            (3.1) 

where 

1

2

3

1

2

3

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

,
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

n

n

n

n
n

n

n

n

n

x
x
x
x

D
y
y
y
y

ϕ

−

−

−

−

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

.           (3.2) 

 
Thus, the characteristic equation of (3.2) is 

8( ) 0f λ λ= = . 
This shows that all the roots of characteristic equation lie inside unit disk. So the 
equilibrium 0,0（ ） is locally asymptotically stable. 
Theorem 3.2 Let 

1 1 1

1 1 1

( , , , , , , , ),
0,1,

( , , , , , , , ),
n n n n k n n n k

n n n n k n n n k

x f x x x y y y
n

y g x x x y y y
+ − − − −

+ − − − −

=⎧
=⎨ =⎩

" "
"

" "
,           (3.3) 

[ , ]a b  be an interval of real numbers and assume that 1 1:[ , ] [ , ] [ , ]k kf a b c d a b+ +× →  and 
1 1:[ , ] [ , ] [ , ]k kg a b c d c d+ +× → are two continuous functions satisfying the mixed monotone 

property. If there exit 

0 1 0 1 0 0min{ , , , } max{ , , , }k k k km x x x x x x M− − + − − +≤ ≤ ≤" " , 

and 

0 1 0 1 0 0min{ , , , } max{ , , , }k k k kn y y y y y y N− − + − − +≤ ≤ ≤" "  

such that 

0 0 0 0 0 0 0 0 0 0([ ] ,[ ] ,[ ] ,[ ] ) ([ ] ,[ ] ,[ ] ,[ ] ) ,p q s t p q s tm f m M n N f M m N n M≤ ≤ ≤    (3.4) 

and 

0 0 0 0 0 0 0 0 0 0([ ] ,[ ] ,[ ] ,[ ] ) ([ ] ,[ ] ,[ ] ,[ ] )p q s t p q s tn g m M n N g M m N n N≤ ≤ ≤ ,   (3.5) 
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then there exit 2
0 0( , ) [ , ]m M m M∈  and 2

0 0( , ) [ , ]n N n N∈ satisfying 

([ ] ,[ ] ,[ ] ,[ ] ), ([ ] ,[ ] ,[ ] ,[ ] )p q s t p q s tM f M m N n m f m M n N= = ,        (3.6) 

and 
([ ] ,[ ] ,[ ] ,[ ] ), ([ ] ,[ ] ,[ ] ,[ ] )p q s t p q s tN g M m N n n g m M n N= = .         (3.7) 

Moreover, if m M= and n N= , then the system (3.3) has a unique equilibrium point 

0 0 0 0( , ) [ , ] [ , ]x y m M n N∈ ×  and every solution of (3.3) converges to ( , )x y . 

Proof. Using 0 0,m M  and 0 0,n N  as two couples of initial iteration, we construct four 

sequences { },{ },{ }i i im M n  and { } ( 1, 2, )iN i = "  from the following equations 

1 1 1 1 1 1 1 1([ ] ,[ ] ,[ ] ,[ ] ), ([ ] ,[ ] ,[ ] ,[ ] )i i p i q i s i t i i p i q i s i tm f m M n N M f M m N n− − − − − − − −= = , 

and 

1 1 1 1 1 1 1 1([ ] ,[ ] ,[ ] ,[ ] ), ([ ] ,[ ] ,[ ] ,[ ] )i i p i q i s i t i i p i q i s i tn g m M n N N g M m N n− − − − − − − −= = . 

It is obvious from the mixed monotone property of functions f  and g  that the 

sequences{ },{ },{ }i i im M n and{ } ( 1, 2, )iN i = " possess the following monotone property 

0 1 1 0 ,i im m m M M M≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤" " "             (3.8) 

and 

0 1 1 0 ,i in n n N N N≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤" " "              (3.9) 

where =0,1,2,i " . 
Moreover, one has  

i l im x M≤ ≤    for ( 1) 1, 0,1,2, .l k i i≥ + + = "          (3.10) 

and 

i l in y N≤ ≤    for ( 1) 1, 0,1,2, .l k i i≥ + + = "           (3.11) 

Set  
lim , lim , lim , lim ,i i i ii i i i

m m M M n n N N
→∞ →∞ →∞ →∞

= = = =           (3.12) 

then  
liminf limsup , liminf limsup .i i i ii i i i

m x x M n y y N
→∞ →∞ →∞ →∞

≤ ≤ ≤ ≤ ≤ ≤    (3.13) 

By the continuity of f and g , we have 

([ ] ,[ ] ,[ ] ,[ ] ), ([ ] ,[ ] ,[ ] ,[ ] )p q s t p q s tM f M m N n m f m M n N= = ,      (3.14) 

and 
([ ] ,[ ] ,[ ] ,[ ] ), ([ ] ,[ ] ,[ ] ,[ ] )p q s t p q s tN g M m N n n g m M n N= = .      (3.15) 

Moreover, if ,m M n N= = , then lim , limi ii i
m M x x n N y y

→∞ →∞
= = = = = = , and then the 

proof is complete. 
Theorem 3.3 If ,A C B D= = , the equilibrium point 0,0（ ） of the systems (1.6) is a 
global attractor for any initial conditions 

8
3 2 1 0 3 2 1 0( , , , , , , , ) (0, )x x x x y y y y A− − − − − − ∈ . 
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Proof. Let 4 4( , ) : (0, ) (0, ) (0, ) (0, )f g ∞ × ∞ → ∞ × ∞  be a function defined by 

1 2
3 2 1 0 3 2 1 0

3

( , , , , , , , ) n n

n

x xf x x x x y y y y
A By

− −
− − − − − −

−

=
+

, 

and 

1 2
3 2 1 0 3 2 1 0

3

( , , , , , , , ) n n

n

y yg x x x x y y y y
A Bx

− −
− − − − − −

−

=
+

. 

We can easily see that the functions f and g  possess a mixed monotone property in 

subsets 8(0, )A  of 8R . 
Let 

0
0 0 3 2 1 0 3 2 1 0 0 0max{ , , , , , , , }, 0M AM N x x x x y y y y n m

B− − − − − −

−
= = < = < . 

We have 
2 2
0 0

0 0
0 0

,m Mm M
A BN A Bn

≤ ≤ ≤
+ +

                   (3.16) 

2 2
0 0

0 0
0 0

,n Nn N
A BM A Bm

≤ ≤ ≤
+ +

                   (3.17) 

Then from (1.6) and Theorem 3.2, there exit 0 0, [ , ]m M m M∈ , 0 0, [ , ]n N n N∈  

satisfying 
2 2

, ,m Mm M
A BN A Bn

= =
+ +

                  (3.18) 

2 2

, .n Nn N
A BM A Bm

= =
+ +

                  (3.19) 

In view of  

0 0m M M A Bn A Bn A BN< < < + < + < + , 

and  

0 0n N N A Bm A Bm A BM< < < + < + < + , 

thus, one has 
 0M m N n= = = = .                      (3.20) 

It follows by Theorem 3.2 that the equilibrium point 0,0（ ） of (1.6) is a global attractor. 
The proof is complete. 
Theorem 3.4 The equilibrium point 0,0（ ） of the system (1.6) is global asymptotically 
stability for any initial conditions           

8
3 2 1 0 3 2 1 0( , , , , , , , ) (0, )x x x x y y y y A− − − − − − ∈ . 

Proof. The result follows from Theorems 3.1 and 3.3. 
Theorem 3.5 The equilibrium point (0, )C , ( , 0)A  of the system (1.6) is unstable. 
Proof. We can easily obtain that the linearized system of the system (1.6) about the 
equilibrium (0, )C  is 

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 22, NO.5, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

973 Chang-you Wang et al 968-976



 

 7

*
1n nDϕ ϕ+ = ,                         (3.21) 

where  

1

2

3 *

1

2

3

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

,
0 0 0 - 0 1 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

n

n

n

n
n

n

n

n

n

x
x
x
x

D
y D
y
y
y

ϕ

−

−

−

−

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

The characteristic equation of the systems (3.20) is 
5 3( )= ( .P λ λ λ λ− −1)                     (3.22) 

It is obvious that (1) 1, (2) 160P P= − = . It follows by the intermediate value theorem for 
continuous function that there exists 1λ >  so that ( ) 0P λ = . Therefore, one of the roots 
of characteristic equation (3.22) lies outside unit disk. According to Theorem 2.1, the 
equilibrium (0, )C  is unstable. 

Similarly, we can obtain that the unique equilibrium ( , 0)A  is unstable. 

Theorem 3.6 If 1BD < , the equilibrium point ( , ) ( , )
1 1
A BC C ADx y

BD BD
+ +

=
− −

 is locally 

asymptotically stable. If 1BD > , the equilibrium point ( , )x y  is unstable. 
Proof. We can easily obtain that the linearized system of (1.6) about the equilibrium 
( , )x y  is 

*
1n nDϕ ϕ+ = ,                            (3.23) 

where  

1

2

3 *

1

2

3

0 0 0 0 0 0 0 -
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

,
0 0 0 - 0 1 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

n

n

n

n
n

n

n

n

n

x B
x
x
x

D
y D
y
y
y

ϕ

−

−

−

−

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

The characteristic equation of (3.23) is 
8( ) 0.P BDλ λ= − =                       (3.24) 

In view of 1BD < , this shows that all the roots of characteristic equation lie inside unit 
disk, so the unique equilibrium ( , )x y  is locally asymptotically stable. If 1BD > , one 
of the roots of characteristic equation lie outside unit disk, so the unique equilibrium 
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( , )x y  is unstable. 

4. Conclusions 
  This paper presents the use of a variational iteration method for systems of nonlinear 
difference equations. This technique is a powerful tool for solving various difference 
equations and can also be applied to other nonlinear differential equations in 
mathematical physics. The variational iteration method provides an efficient method to 
handle the nonlinear structure. We have dealt with the problem of global asymptotic 
stability analysis for a class of nonlinear difference equations. The general sufficient 
conditions have been obtained to ensure the existence, uniqueness and global asymptotic 
stability of the equilibrium point (0,0) for the nonlinear difference equation. These 
criteria generalize and improve some known results in [12-17]. Moreover, the asymptotic 
behavior of others equilibrium points is also studied. In addition, the sufficient conditions 
that we obtained are very simple, which provide flexibility for the application and 
analysis of nonlinear difference equation. 

Remark: Our model and results are different from the existence ones such as those of 
References [12-17]. In particular, the new variational iteration method can be applied to 
the models of References [12-17] and the more general nonlinear difference equations. In 
some sense, we enrich the theoretical results of the difference equations. 
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