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Some properties on non-admissible and admissible functions
sharing some sets in the unit disc *

Feng-Lin Zhou
Department of Informatics and Engineering, Jingdezhen Ceramic Institute,
Jingdezhen, Jiangxi, 333403, China

<e-mail: zhoufenglin@jci.edu.cn>

Abstract

In this paper, we deal with the uniqueness problem of two non-admissible functions sharing
some values and sets in the unit disc, and also investigate the problem on an admissible
function and a non-admissible function sharing some values and sets. Some theorems of this
paper improve the results given by Fang. In addition, the results in this paper analogous
version of the uniqueness theorems of meromorphic functions sharing some sets on the whole
complex plane which given by Yi and Cao.

Key words: uniqueness; meromorphic function; admissible; non-admissible.
Mathematical Subject Classification (2010): Primary 30D 35.

1 Introduction and main results

We should assume that reader is familiar with the basic results and the standard notations of the
Nevanlinna value distribution theory of meromorphic functions (see Hayman [6] , Yang [14] and
Yi and Yang [18]). For a meromorphic function f, we use S(r, f) to denote any quantity satisfying
S(r, f) = o(T(r, f)) for all r outside a possible exceptional set of finite logarithmic measure, and
use C to denote the open complex plane, C .= CJ{oo} to denote the extended complex plane,
and D = {z: |z| < 1} to denote the unit disc.

R. Nevanlinna [10] proved the following well-known theorems.

Theorem 1.1 (see [10]) If f and g are two non-constant meromorphic functions that share five
distinct values ay, as,as,aq,a5 IM in C, then f(z) = g(2).

After this work, the uniqueness of meromorphic functions with shared sets and values attract-
ed many investigations (see [18]). Moreover, the uniqueness theory of meromorphic functions is
an important subject in the value distribution theory. In this paper, we mainly investigate the
uniqueness of meromorphic functions with slow growth sharing some sets in the unit disc.

We firstly introduce the following basic notations and definitions of meromorphic functions in
D(see [2, 4, 7, 12, 8, 13, 22]).

Definition 1.1 (see [12]). Let f be a meromorphic function in D and lim,_,,- T(r, f) = co. Then
: T(r, f)
D = limsup ———————
(f) = lmeup -
is called the (upper) index of inadmissibility of f. If D(f) = oo, f is called admissible.

*This work was supported by the NSF of China (11561033), the Natural Science Foundation of Jiangxi Province
in China (20151BAB201008), and the Foundation of Education Department of Jiangxi of China (GJJ150902).
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Definition 1.2 (see [12]). Let f be a meromorphic function in D and lim,_,,- T'(r, f) = co. Then

. log* T(r, f)
Mﬂ~4f§p:EaTj5

is called the order (of growth) of f.

The Second Main Theorem for admissible functions (see [12, Theorem 3]) is very important in
studying the uniqueness of two admissible functions in the unit disc I, which was proved by in
2005.

Theorem 1.2 (see [12, Theorem 3]). Let f be an admissible meromorphic function in D, q be a
positive integer and ai,as, ..., aq be pairwise distinct complex numbers. Then, forr — 17, r ¢ E,

(=270 1) < 38 (r 5= ) + ()

where E C (0,1) is a possibly occurring exceptional set with fE dr < oo. If the order of f is

1—r

finite, the remainder S(r, f) is a O <log ﬁ) without any exceptional set.

In 2005, Titzhoff [12] also obtained the five values theorem for admissible functions in the unit
disc D as follows.

Theorem 1.3 (see [5, 12]). If two admissible functions f, g share five distinct values, then f = g.

From Theorem 1.2(see [12, Theorem 3]), we can easily obtain a lot of theorems similar to
meromorphic functions in the complex plane. In 1999, Fang [5] investigated the uniqueness of
admissible functions sharing two sets and three sets and obtained a series of theorems. In 2015,
Xu, Yang and Cao [15] investigated the problem on shared values of admissible function and non-
admissible function, and obtained some interesting results. Inspired by Xu, Yang and Cao [15] and
Fang[5], we further study the problem on shared-sets of admissible function and non-admissible
function in the unit disc.

The following theorem also plays a very important role in studies non-admissible functions
sharing some sets in this paper.

Theorem 1.4 (see [12, Theorem 2]). Let f be a meromorphic function inD and lim,_,;- T(r, f) =
00, q be a positive integer and ai,as,...,a, be pairwise distinct complex numbers. Then, for
r—1",ré¢kF,

+5(r, f)-

f—aj —r

<wwmw<zN@ 1)H%f
j=1

Remark 1.1 In contrast to admissible functions, the term log ﬁ in Theorem 1.4 does not nec-
essarily enter the remainder S(r, f) because the non-admissible function f may have T(r, f) =

O (log ﬁ)

Remark 1.2 We can see that S(r,f) = o (log ﬁ) holds in Theorem 1.4 without a possible
exception set when 0 < D(f) < oo.

The following lemma for non-admissible functions in the unit disc is used in this paper.
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Lemma 1.1 (see [15]). Let f(z) be a meromorphic function in D and lim, - T(r, f) = oo,
a;(j =1,2,...,q) be q distinct complex numbers, and k;(j =1,2,...,q) be positive integers or co.
If [ is a non-admissible function, then

and

q
1 ki — 1 1
—2—2 T < E L _N. —_— 1
q k]+1 (T7f)_ k]+1 kj)(rafaj>+0glr+s(raf)v

where Ty, (nf%a) is used to denote the zeros of f — a in |z| < r, whose multiplicities are no

%) is the corresponding counting functions, and

=0 if kj = oo, S(r, f) is stated as in Theorem

greater than k and are counted only once, Nk)(
71Nk)( )= N(r ) and

1 1
’f—aj ’ f—aj k +1

‘©+

k
1

The main purpose of this paper is to deal with the problem of two non-admissible functions
sharing some sets, and an admissible function sharing some sets with an non-admissible function.
Section 2, the uniqueness of two non-admissible functions sharing some sets in D are investigated
and some results showed that the number and weight of sharing sets is related with the index of
inadmissibility of functions in D. In section 3, the problem of an admissible function and a non-
admissible function sharing some sets is studied, and one of those results shows that admissible

function and non-admissible function can share at most five distinct values with reduced weighted
1.

2 The uniqueness and sharing sets of non-admissible func-
tions in the unit disc

Let S be a set of distinct elements in C and X C C. Define

E(S,D, f)= U {z €D|fu(2) =0, counting multiplicities},
acs

E(S,D, f) = U {z €D|fa(z) =0, ignoring multiplicities},
a€sS
where fo(2) = f(2) —aif a € C and foo(2) = 1/f(2).

For two non-constant meromorphic functions f, g, we say f and g share the set S C'M (counting
multiplicities) in D if E(S,D, f) = E(S,D, g); we say f and g share the set S IM (ignoring mul-
tiplicities) in D if E(S,D, f) = E(S,D,g). In particular, as S = {a} and a € C, we say f and g
share the value a CM in D if E(a,D, f) = E(a,D, g), and we say f and g share the value a IM
in D if E(a,D, f) = E(a,D,g). We use Ey(a,D, f) to denote the set of zeros of f — a in D, with
multiplicities no greater than k, in which each zero counted only once. We say that f(z) and g(z)
share the value a with reduced weight k in D, if Fy(a,D, f) = Ey)(a,D, g). If D = C, we have the
simple notation as before, E(S, f), E(S, f), Ey)(a, f) and so on(see [18]).

The deficiency of a € C with respect to a meromorphic function f on the unit disc D is defined
by

m(r, ﬁ) N(Ta = a)
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and the reduced deficiency by

O(a, /) = O©(0, f —a) = 1 — tmsup U 71
’ ’ ro1- L(r, f)

We now show our main theorems. The first theorem can be called five values theorem of
non-admissible functions.

Theorem 2.1 Let fi and fo be two non-admissible meromorphic functions in the unit disc D
satisfying 1 < D(f1), D(f2) < 00, and fi, fo share a;(j =1,2,3,4,5) IM. Then fi(z) = fa(z).

Remark 2.1 From Theorem 2.1, we can get that f1(z) = fa(z) if f1, f2 share five distinct values
and D(f1),D(f2) > 1. However, the conclusion holds in Theorem 1.8 under the condition which
f1, fo are admissible functions, that is, D(f1) = oo, and D(fs) = oo. Thus, we can see that
Theorem 2.1 is a greatly improvement of Theorem 1.3.

In order to prove Theorem 2.1, we will prove the following general results of two non-admissible
functions sharing some sets.

Theorem 2.2 Let fi and fo be two mon-admissible meromorphic functions in the unit disc D
satisfying 0 < D(f1), D(f2) < oo. Suppose that

Sj:{aj,aj+b,...7aj+(l—l)b}, j:1,2,...,q,

with b #0, S;NS; =0, (i #j) and ¢ > 2+ max { I:ﬁfl)} , [#fz)} }, where [x] denotes the largest

integer less than or equal to x. Let k; (j =1,2,...,q) be positive integers or oo satisfying
ki >ky > >k (1)
and - -
Epy(S5,D, f1) = Exy(S;,D, fa), (1=1,2,...,9). (2)

Furthermore, let

-1

=> 000, fi—a) =Y > 00, f; — (aj + sb)), (i = 1,2),

j=1s5=0
and
Al _ ZT:?Z; 0 (0 fl a]+3b Xq:zk +50f1 (aj+sb))
km +1 kj+1
j=m s=0
(Im =30+ 1)k, (21 —1k,
B 4 1 DESERAS
n—1 -1
4 = > Ym0 0(0, f2 — (a; + sb)) zq:li kj +6(0, f2 — (a; + sb))
ky +1 ki +1
j=n s=0
(In—=3l+ Dk, (20— 1)k,
— -2
where m and n are positive integers in {1,2,...,q} and a is an arbitrary complex number or co. If
2 2

min{A4;, As} > and max{A4;, Az} > (3)

D(f1)+ D(f2)’ D(f1) + D(f2)

Then f1(z) = fa(2).
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By letting I =1, g =5 and k; = ko = -+ = k5 = 0o in Theorem 2.2, we can get Theorem 2.1
easily. Now, we start to prove Theorem 2.2 as follows.

Proof of Theorem 2.2: Suppose that f1(z) # f2(z). From the second fundamental theorem in
the unit disc (Theorem 1.4) we have

-1

(al+p =T 1) < ZZN(ﬂﬁ_(l%kﬁN( fll )

s fur a; + sb)

1
+10g1 +S(Taf1)'

—r
By definition we have

— 1
N <7”, fl_dk> < (L=0(0, f1 = di)) T(r, f1) + S(r, f1)-

From Lemma 1.1 and the definition of deficiency, it follows that for s € {0,1,...,1 — 1}

ki 1 1 1
< Ve (r, e Hb)) e QW)
= T—ilN’%‘) (7"7 i (a +Sb)> a1 (00 S (o + )T fr)
+S(’l",f1).

Thus, we obtain

(gl+p—2)T(r, f1)

p q -1
< {Z(l—@((),ﬁ— } (rf)+).> ki Nij(r ;)

o Sk T (o s
q -1 1
- ;8:0 1 (=00 fu = (ay +8b) ¢ T f1) +log 7= + 5(r. o)

Since ©(0, f — a) > 0 for any meromorphic function f and any complex number a € C.
Without loss of generality, we assume that there exist infinitely many d such that ©(0, f; —d) > 0
and d € {a;j +sb:j= 1,2,...,qands =0,1,...,1 —1}. We denote them by d (k =1,2,...,00).
Obviously, O(f1) = X32,0(0, fi —dy). Thus there exits a p such that X7 _,©(0, f1 —di) > O(f1)—
holds for any given ¢ (> 0). Noting that

k1 ko kg 1
ki1 7 k2t 1 kq+17 2
we can deduce that
(gl +p—2)T(r, f1)
k q 1-1 )
< (=0l + T ) + Zj; o) < — +Sb)>
m—11-1 k. i
J _ m 1— _ ) T
" =~ Z:(:) (kj 1 et 1) (1=6(0, f1 = (aj + b)) ¢ T(r, f1)
n ilil 5(0, f1 — (aj + sb)) T(r 1) +10
7j=1s5=0 kj +1 P & 1-—
999
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namely,
I(m — 1)k, 9 1
Bi—¢|T Ny,
( 1 B 6) (7"f1)<Jz:;S:0]%+ k) ( i = (a; + D)
+1 !
g T
where
S S0 000, fr — (aj + b)) & k; +6(0, fi — (a; + sb))
B J -2
- 1 ;nz% k1 o)
By a similar discussion as above, we also have
-1
lln—1)k, kn - 1 1
-+ By — Ny _— 1
(e ) T < LY M () + oo
where
n—1 -1
S, 6(0, (a; + sb)) i k 5(0, i+ sb
By = Zim 20 Lo = (@ 4 b)) | Sk 00—ty D) g,
kn+1 ki +1
j=n s=0
Hence
Ilm— 1)k, ln—1)k,
By —¢|T By—¢|T
(e by ) 16+ (G 4 B ) T
q -1 -1
km = 1 kn — 1
< =Ny ( )+ Ny ( )
;SZO km+1 5) fl—(a]+5b> ;SZO kin—f—l 7 f2_<a/j+8b>
1
21
+ ogl_

We now assert that fi(z) — fa(z) # sb, s = 1,2,...,1 — 1. Otherwise, we get that a; (j =
1,2,...,q) are the Picard exceptional values of fi, and that a; + (I — 1)b (j = 1,2,...,q) are
the Picard exceptional values of fo. By ¢ > 2 + ﬁ and Theorem 1.4, we get a contradiction.

Similarly, we have fa(z) — f1(2) £ sb,s=1,2,...,1—1.
By condition (2) and the first fundamental theorem, we have

j:] s=0

_ 1 1 i 1
<N<“f1 f2>+ZN< fl—fz—sb)+z_;N<r’f2—fl—sb)

s=1 s

< (20— 1)(T(r, f1) + T(r, f2)) + O(1).

and

DN (=)

<N(’“’f11f2>+§N( f—;—b)+ZN<f—;—b)
< @U=1)(T(r, fr) +T(r, f2)) + O(1).
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Therefore, from the above discussion we obtain

I(m — Dk, Hn = Dkn
(U v e ) 16+ (G 4 B ) T
km, kn

< (20-1) (ka - an) (T(r, f1) +T(r, f2)) + 21log

1—7r’

namely,

(A17€)T(T,f1)+(1427€)T(T,f2)SZIOgl_T. (4)

Since 0 < D(f1), D(f2) < oo, we have S(r, f1) = o (log 1;) ,S(r, f2) = o <log 1;). And from
the definition of index, for any ¢ satisfying

O<25<min{D(fl),D(fg),max{Al,Ag}D(fl)iD(fz)}, (5)
there exists a sequence {r;} — 1~ such that
T(ri 1) > (D)~ ) log T, T(riaf2) > (D(f2) — ) log 1. ()

for all t — oco. From (4)-(6), we have

[(D(f1) —€)(A1 — &) + (D(f2) — €)(A2 — &) — 2]log

1
<oll . 7
ofle ). @
From (7) and e being arbitrary, the above inequality contradicts to (3). Therefore, the proof of
Theorem 2.2 is completed.
We can get the following corollaries from Theorem 2.2.

1—Tt

Corollary 2.1 Let k; (j =1,2,...,q) be positive integers or oo satisfying (1), and let fi and fo
be two non-admissible meromorphic functions in the unit disc D satisfying 0 < D(f1), D(f2) < oo
and (2). Suppose that

Sj:{aj7aj+b7---7a’j+(l_1)b}7 j:1’27""q’

with b # 0, $;NS; =0, (i # j) andq>2+max{[mlfl>] [ 1 ]

—

g
>
)
3

8,
N\
)
S
=)
+
g
v
~
>
(9
~
)

S
§Y)
v
~+

integer less than or equal to x. If

q
k; (2 — 20)ks 2
szj+1+ ks +1 >2+D(f1)+D(f2)'

Then fi(z) = f2().

Proof: Let m = n = 3. Noting that O(f;) > 0 and §(0, f; — (a; + sb)) > 0 for j =1,2,...,¢ and
i =1,2, one can deduce from Theorem 2.2 that Corollary 2.1 follows. O

The following corollary is an analog of a result due to H.-X. Yi (Theorem 10.7 in [18], see also
[21]) on C.

Corollary 2.2 Let fi and fo be two non-admissible meromorphic functions in the unit disc D
satisfying 0 < D(f1), D(f2) < oco. Suppose that

Sj:{aj,aj—i-b,...,aj—i-(l—l)b}, i=12,...,q,
with b #0, S;NS; =0, (i # j) and

1 max{“ A +2D<f2>>z’“max{ [D(lfo} ’ L?(lﬂ] }}
IfE(Sj,ID),fl) = E(Sj,}]]),fg), (j=1,2,...,9). Then f1(z) = f2(2).
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Proof: Let k1 = ko = ... = kg = 00. One can deduce from Corollary 2.1 that Corollary 2.2 follows
immediately. O

Let [ = 1. Then it is easily derived the following corollary from Corollary 2.1, which is an analog
of the Corollary of Theorem 3.15 in [18].

Corollary 2.3 Leta; (j =1,2,...,q) be q distinct complex numbers in C, and ki (7=1,2,...,9)
be positive integers or oo satisfying (1), and let fi and fy be two non-admissible meromorphic
functions in the unit disc D satisfying 0 < D(f1), D(f2) < 0o and Ekj)(aj,]D), fi) = Ekj)(aj,]D), f2).
Set D := min{D(f1), D(f2)}. Then
() if D>1,q=7Tand k; > 2, then f1(z) = f2(2);
(i) if D > 1, ¢ =6 and kg > 4, then f1(z) = f2(2);
(#i7) if D > 2 and q =17, then f1(2) = f2(2);
(i) if D> 3, g =6 and k3 > 2, then f1(z) = fa(2);
(v) if D>6,q=5, ks >3 and ks > 2, thenfl( )= f2
(vi) if D > 10, ¢ =5 and ky > 4, then f1(z) = fa(2);
(vii) if D > 12, =5, k3 > 5 and ky > 3, then f1(z) = fo
(viti) if D > 42, g =05, k3 > 6 and ky > 2, then f1(2) = fo )

We now state another main theorem.

Theorem 2.3 Let fi and fo be two mon-admissible meromorphic functions in the unit disc D
satisfying 0 < D(f1), D(f2) < oco. Suppose that

Sj :{C+aj,chajw,...,chajwl*l}, 1=1,2...,q,

witha; #0, (j =1,2,...,q), w = exp(3F), S;NS; =0, (i # j) and q > 2+max{{D(1fl)} , {D(lfz)} }
Let k; (7 =1,2,...,q) be positive integers or oo satisfying (1), and

Er)(S;,D, f1) = B,y (S5,D, f2), (1=1,2,...,0). (8)
Furthermore, let
q -1
=00, fi—a) =Y 0(0, fi — (c+a;uw)), (i =1,2),
a j=1s=0
and
A o Z Z (07f1_(c+a’j izk +50f1 (c—i—ajws))
5 ko + 1 kj+1
j=m s=0
I(m—2)k,, lkn
bt 1l Bl o) -
n—1 -1 500 . ) q -1 s
A, — 21 225=00(0, f2 — (¢ + ajw® +Z ki +6(0, fo — (¢ + a;w®))
LT ko + 1 kj+1
j=n s=0
lln—2)k, lkm,
— C] -2
PR E e Gt
where m and n are positive integers in {1,2,...,q} and a is an arbitrary complex number or oco. If
2 2

min{As, A4} > and max{Asz, Ay} > 9)

D(f1) + D(f2)’ D(f1)+ D(f2)

Then (f1(2) — o) = (fu(2) - o).
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Proof: We assume that (fi(z) — ¢)! # (f2(2) — ¢)!. Without loss of generality, we assume that

there exist infinitely many d such that ©(0, fi —d) >0 and d & {c+a;w®:j=1,2,...,gands =

0,1,...,1 —1}. We denote them by dj, (k =1,2,...,00). Obviously, O(f1) = > -, ©(0, f1 — dx).

Thus there exits a p such that Y F_, ©(0, f1 — di) > O(f1) — £ holds for any given & (> 0).
Using a similar discussion as in the proof of Theorem 2.2, we obtain

(l(m—l)l’f + By — 5> T(r, f1) + (W + By — s) T(r, f)
o

q 1-1 q 1-1
N 1
< Noo(r v
j:zls:o km+1 k) (7 f1— (c+ a;w?®) ;gk +1 fg—(c+ajws))
1
-|-210g1
where
SIS 00, fr — e+ aw®)) Ak + (0, i = (c+ o))
By = == == ! —2.
YT S0 8(0, fo = (e ajw®)) A Ky +5(0, fo — (¢ + ajw?))
By = == == ! - 2.
! Fo + 1 ;;} bl +0(f2)

Furthermore, from condition (8) and the first fundamental theorem, we have

~

- 1 — 1
D R e IR e e el

=1s5=0
<UT(r, fr) +T(r, f2)) + O(1).

<.

and

—
—

1 — 1

22N ) <N =)
< UT(r, fr) +T(r, f2)) + O(1).

[

Therefore, from the above discussion we obtain

(W + By - 5) T(r, fr) + (W + By — e) T(r, f)

namely,

(As = <) T(r, f1) + (As — £) T, ) < 2log - L (10)

Since 0 < D(f1), D(f2) < o0, we have S(r, f1) = o (log 1%) S(r, f2) = o (10g 1%) And from
the definition of index, for any e satisfying

0 < 2¢ < min {D(fl)’D(fQ)’maX{AB’A4}D(fl)—?—D(fg)}’ (11)
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there exists a sequence {r;} — 1~ such that

T(ri. /1) > (D(f) = €)log =, T(r1. f2) > (D(fz) ~ ) log 1, (12)
for all t — co. From (10)-(12), we have
(D() = )Aa =)+ (D(f2) ~ s — )~ Alog 1 <o log =) (13)

From (13) and € being arbitrary, the above inequality contradicts to (9).
Therefore, the proof of Theorem 2.3 is completed. a
We have an analog of a result due to H.-X. Yi (Theorem 10.8 in [18], see also [21]).

Corollary 2.4 let fi and fo be two non-admissible meromorphic functions in the unit disc D
satisfying 0 < D(f1), D(f2) < co. Suppose that

S; ={c+aj,ctaw,....ctam'™t} j=1,2,...,4q,

E(8;,D, f1) = E(S;,D, fa) for j = 1,2,....q, then (f1(2) = ) = (f2(2) — o)".

Proof: Let m=n =1 and k1 = k2 = ... = co. Noting that ©(f;) > 0 and 6(0, f; — (a; + sb)) >0
for j=1,2,...,q and i = 1,2, Then Corollary 2.4 follows immediately from Theorem 2.2. O

3 The problem of sharing sets of admissible function and
non-admissible function in the unit disc

We now show that an admissible function can share sufficiently many sets concerning multiple
values with another non-admissible function as follows.

Theorem 3.1 If f1 is admissible and fo is a non-admissible satisfying lim,_,,- T(r, f2) = oo,
a;(j =1,2,...,q) be q distinct complex numbers, and let k;j(j =1,2,...,q) be positive integers or
oo satisfying (1). Then

Ek]‘)(a’j7D?fl):Ekj)(a/j7]D)7f2)7 (.]:15275q)
and
I k; (m — 1)k,

-2>0

j=m+1

do not hold at same time.

Theorem 3.2 If f1 is admissible and fo is a non-admissible satisfying lim,_,,- T(r, f2) = oo.
Suppose that
S; = {C+aj,chajw,...,chajwl*l}, i=12...,q,

witha; #0, (j=1,2,...,q), w= exp(?), S;iNS; =0, (i #j). Then E(S;,D, f1) = E(S;,D, f2)
forj=1,2...,q, andqg>1+ % can not hold at the same time.

To prove the above theorems, we require the following lemmas.

Lemma 3.1 (see [12, Lemma 1)). Let f(2), g(z) satisfylim,_,;- T'(r, f) = oo and lim,_,- T(r,g) =
oo. If there is a K € (0,00) with

T(r,f) < KT(r,g) + S(r, f) + 5(r,9),
then each S(r, f) is also an S(r,g).
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Lemma 3.2 If f1 is admissible and fo is a non-admissible satisfying lim, ;- T(r, f2) = 00, a;(j =
1,2,...,q) be g distinct complex numbers, and let k;(j = 1,2,...,q) be positive integers or oo
satisfying (1). Set As = By + % Then (2) and As > 0 do not hold at same time, where
B1,8;(j =1,2,...,q) are stated as in Theorem 2.1.

Proof: Suppose that (2) and As > 0 can hold at the same time. Since f;(z) is an admissible
function, using the same argument as in Theorem 2.2 and from Theorem 1.2 and Lemma 1.1, for
any €(0 < 2e < As), we have

km — 1
+Bl€> T(T7f1)<zv km+1Nkj)(T’m)+S(T’fl)’

(m — 1)k,
T + 1

where B is stated as in Section 2.
Since f1 is admissible and f; is non-admissible, we can get that fi(z) Z fa(z). Thus, by
condition (2) and the first fundamental theorem, we have

>

j=1s=

-1 -1

_ 1 _ 1 — 1
N <7" fl_(aﬁ_sb)) =N (7” fl—f2> N (Tfl—f2—5b>

S

1717 1
+S§_:1N<T7 f2—f1—Sb)
<@L =1)(T(r, f1) + T(r, f2)) + O(1).

From the two above inequality, we get

m — 3)l + 1]k, 20 — Dk,
(U 2t s b ) 1) < G0 ), (19)
Since 0 < € < Ajs, we have [(m;iz%m + By — e > 0. From (14), we have

L (2= Dk,
5 — & km+1

T(r, f1) < I (7, f2). (15)

From Lemma 3.1, (15) and A;ﬁ% > 0, we can get that each S(r, f1) is also an S(r, fa2).
Since f1(z) is admissible and f»(z) is non-admissible, we can get T(r, f2) = S(r, f1). Thus, we

have
T(Tv f2) = S(T’ fl) = S(T7 fQ) = O(T(Ta f2))

This is a contradiction. Hence, we can get that (2) and As > 0 do not hold at the same time. O

Lemma 3.3 If f1 is admissible and fo is a non-admissible satisfying lim, ;- T(r, f2) = 00, a;(j =
1,2,...,q) be g distinct complex numbers, and let k;(j = 1,2,...,q) be positive integers or oo

satisfying (1). Set Ag = Bz + % Then (8) and Ag > 0 do not hold at same time, where

Bs,S;(j =1,2,...,q) are stated as in Theorem 2.3.

Proof: Suppose that (8) and Ag > 0 can hold at the same time. Since f;(z) is an admissible
function, using the same argument as in Theorem 2.3 and from Theorem 1.1 and Lemma 1.1, for
any €(0 < € < Ag), we have

Nij(

(““””“’" )+ S, ),

(e ——
kpm +1 km +1 fi — (c+ a;w?)
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where Bs is stated as in Section 2.
From the assumptions of Lemma 3.3, we can get that (f1(2) — ¢)! #Z (f2(z) — ¢)!. Thus, by
condition (8) and the first fundamental theorem, we have

q - 1 o 1
ZZNkj)(T’ fi— (C-Hljws)) <N, (fi=o)t = (fo— C)l)
<UT(r, fr) +T(r, f2)) + O(1).

From the two above inequality, we get

A T 2R m - < :
( km 1 + BS € T(’ﬂ fl) = km + lT(Ta f2) (16)
Since 0 < £ < Ag, we have % + B3 — e > 0. From (16), we have
T(r, f1) < L C 1)ka(r f2) (17)
VS Ay e k1 P

From Lemma 3.1, (17) and A;ﬁg klkil > 0, we can get that each S(r, f1) is also an S(r, f2). Since

f1(2) is admissible and f>(z) is non-admissible, we can get T'(r, f2) = S(r, f1). Thus, we have

T(r, fo) = S(r, f1) = S(r, f2) = o(T(r, f2)).

This is a contradiction. Hence, we can get that (8) and Ag > 0 do not hold at the same time.

Thus, the proof of Lemma 3.3 is completed. a
Proof of Theorem 3.1: Let [ = 1, and since O(f;) > 0 (¢ = 1,2) and 6(0, f1 — a;) > 0
(j=1,2,...,q), the assertion follows from Lemma 3.2.

Proof of Theorem 3.2: Let ky = ko = -+ = k; = o0, and since O(f;) > 0 (: = 1,2) and

5(0, fi —a;) >0 (j =1,2,...,q), the assertion follows from Lemma 3.3.
It is very interesting to consider distinct small functions instead of distinct complex numbers
(see [9, 11, 17],etc). Thus it may be interesting to consider the following questions:

Question 3.1 What condition on two non-admissible functions in the unit disc D sharing small
functions will guarantee that the two non-admissible functions are identical?

Question 3.2 How many small functions can an admissible function and non-admissible function
in the unit disc D share at most?
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THE FIXED POINT ALTERNATIVE TO THE STABILITY OF AN
ADDITIVE (¢, 5)-FUNCTIONAL EQUATION

SUNGSIK YUN!, CHOONKIL PARK?**, AND HEE SIK KIMK?*

ABSTRACT. In this paper, we solve the additive (a, §)-functional equation

f(@) + fy) +2f(2) = af Bz +y + 22)), (0.1)

where «, 5 are fixed real or complex numbers with o # 4 and af = 1.
Using the fixed point method and the direct method, we prove the Hyers-Ulam
stability of the additive (o, 8)-functional equation (0.1) in Banach spaces.

1. INTRODUCTION AND PRELIMINARIES

The stability problem of functional equations originated from a question of Ulam
[24] concerning the stability of group homomorphisms.

The functional equation f(x +y) = f(z) + f(y) is called the Cauchy equation. In
particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [9] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by
Rassias [18] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Gavruta [8] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach. See [5, 7, 14, 15, 20, 21, 19, 22, 23, 19, 25] for more information on functional
equations.

We recall a fundamental result in fixed point theory.

Theorem 1.1. [2, 6] Let (X,d) be a complete generalized metric space and let J :
X — X be a strictly contractive mapping with Lipschitz constant o < 1. Then for
each given element x € X, either

d(J"z, J"r) = 0o
for all nonnegatz’ve integers n or there exists a positive integer ng such that
(1) d(J"z, J"r) < oo, Vn > ny;
(2) t he sequence {J”m} converges to a fixed point y* of J;
(3) y* is the unique fized point of J in the set Y = {y € X | d(J™0z,y) < co};
(4) dly,y") < 125d(y, Jy) forally €Y.

In 1996, G. Isac and Th.M. Rassias [10] were the first to provide applications of
stability theory of functional equations for the proof of new fixed point theorems
with applications. By using fixed point methods, the stability problems of several

2010 Mathematics Subject Classification. Primary 39B52, 39B62, 47H10.

Key words and phrases. Hyers-Ulam stability; additive (o, 8)-functional equation; fixed point
method; direct method; Banach space.
*Corresponding authors.
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functional equations have been extensively investigated by a number of authors (see
3, 4, 12, 13, 16, 17]).

In Section 2, we solve the additive («, §)-functional equation (0.1) in vector spaces
and prove the Hyers-Ulam stability of the additive (o, §)-functional equation (0.1) in
Banach spaces by using the fixed point method.

In Section 3, we prove the Hyers-Ulam stability of the additive («, )-functional
equation (0.1) in Banach spaces by using the direct method.

Throughout this paper, assume that X is a normed space and that Y is a Banach
space. Let a, 8 be fixed real or complex numbers with a # 4 and a8 = 1.

2. ADDITIVE (a, )-FUNCTIONAL EQUATION (0.1) IN BANACH SPACES [
We solve the additive («, 3)-functional equation (0.1) in vector spaces.
Lemma 2.1. Let X and Y be vector spaces. If a mapping f : X — Y satisfies
f@) + fy) +2f(2) = af (B(z +y + 22)) (2.1)
forall x,y,z € X, then f: X =Y is additive.
Proof. Assume that f: X — Y satisfies (2.1).
Letting x =y = 2z =0in (2.1), we get 4f(0) = af(0). So f(0) = 0.
Letting y = —x and z = 0 in (2.1), we get f(x)+ f(—z) =0 and so f(—z) = — f(z)
for all x € X.
Letting z = —2z and y = 0in (2.1), we get f(—2z)+2f(2) = 0 and so f(2z) = 2f(2)
for all z € X. Thus
x 1
1(3)=50@
for all x € X.
Letting z = — %% in (2.1), we get

F@)+ 1) = f@+y) = @)+ f)+2f (<57) =0

and so

fl@+y)=f)+ fy)
for all z,y € X. U

Using the fixed point method, we prove the Hyers-Ulam stability of the additive
(o, B)-functional equation (2.1) in Banach spaces.

Theorem 2.2. Let o : X3 — [0,00) be a function such that there exists an L < 1 with

L
forallx,y,z € X. Let f: X — Y be a mapping satisfying f(0) =0 and
1f (@) + fy) +2f(2) —af (Blz+y+22))[| < plz,y,2) (2.3)

for all x,y,z € X. Then there ezists a unique additive mapping A : X — Y such that

I£(2) = A@)I < 5

(1[:[/)@ (z, 2, —x) + ¢ (22,0, —x)) (2.4)

forallz e X.
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Proof. Letting y = z and z = —x in (2.3), we get

12f (z) + 2f (—=)|| < o(z, 2, —x) (2.5)
for all z € X.
Replacing = by 2z and letting y = 0 and z = —x in (2.3), we get
1f(22) + 2f(—2)|| < ¢(22,0, —x) (2.6)
for all z € X.
It follows from (2.5) and (2.6) that
1f(22) = 2f(2)|| < p(z, 2, —2) + (22,0, —x) (2.7)
for all z € X.

Consider the set
S:={h: X =Y, h(0)=0}

and introduce the generalized metric on S:

d(g,h) =inf {p € Ry : ||g(x) — h(2)|| < ple (z,z,—x) + ¢ (22,0, 1)), Vo € X},

where, as usual, inf ¢ = 4o00. It is easy to show that (.5, d) is complete (see [11]).
Now we consider the linear mapping J : S — S such that

X
Jg(x) :=2g (2>
for all z € X.

Let g, h € S be given such that d(g,h) = e. Then

lg(z) — h(z)]| <elp(z,r,—2) + ¢ (22,0, —2))
for all x € X. Hence

oo = (5) -2 (2)] <2 (o (5-5-5) o 0-)

L
< 2€§(¢($,$, —Z’)+(,0(2$,0, 33)) ( ( ,—.T)—FQO(QQE, 07 —.T))
for all z € X. So d(g,h) = ¢ implies that d(Jg, Jh) < Le. This means that
d(Jg, Jh) < Ld(g, h)

for all g,h € S.
It follows from (2.7) that

o-2r(G)] = e(55-3) e (03

< (gp(l’,l‘, —13) +90(2$707 _I))

for all z € X. So d(f,Jf) < £.
By Theorem 1.1, there exists a mapping A : X — Y satisfying the following:
(1) Ais a fixed point of J, i.e.,

Ay =24(3) (2.8)
for all x € X. The mapping A is a unique fixed point of J in the set
M ={geS:d(f g) <oo}.
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This implies that A is a unique mapping satisfying (2.8) such that there exists a
p € (0, 00) satisfying
Hf(:(,’) - A(I)H < N(‘P (SL’, Z, —JZ) +¢ (21‘7 07 —l‘))
for all z € X;
(2) d(J'f, A) — 0 as | — oco. This implies the equality

lim 2" f (;) = A(x)

l—00

for all x € X;
(3) d(f, A) < =¢d(f, Jf), which implies
L
_ < _ _
1) = AW < 570 o, —2) + 9 (20,0, )
for all z € X.
It follows from (2.2) and (2.3) that

[A(z) + A(y) + 2A(2) — A (B(x +y + 22))]|

1() 7 () o () o (0 (55|

< lim2"gp<x kA Z)

= lim 2"
n—oo

for all z,y,z € X. So
A(z) + A(y) + 2A(2) —aA (B +y+22)) =0
for all x,y,z € X. By Lemma 2.1, the mapping A : X — Y is additive. 0

Corollary 2.3. Let r > 1 and 6 be nonnegative real numbers, and let f : X —Y be
a mapping satisfying

1f (@) + f(y) +2f(2) —af Bz +y+22)| <Ozl + lyll" + [I=]") (2.9)
for all x,y,z € X. Then there exists a unique additive mapping A : X — 'Y such that

1f () = A(2)]| <

—50llzll"

forallz € X.

Proof. The proof follows from Theorem 2.2 by taking p(z,y, z) = 0(||z||"+|ly||" +1/z]|")
for all z,y,z € X. Then we can choose L = 2" and we get the desired result.

Theorem 2.4. Let o : X3 — [0,00) be a function such that there exists an L < 1 with

Ty z
<
o (z,y,2) 2L90<2 5 2)

forall x,y,z € X. Let f : X — Y be a mapping satisfying f(0) =0 and (2.3). Then
there exists a unique additive mapping A : X — 'Y such that

@) = A@)]| < 5 (e @2 —2) + ¢ (2.0, ~2)
forallz e X.
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Proof. It follows from (2.7) that

(@) = 3520 < 500, —2) + (22,0, -2)

for all z € X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 2.2.
Now we consider the linear mapping J : S — S such that

Jo(w) = 59 (22)

for all z € X.
The rest of the proof is similar to the proof of Theorem 2.2.

O

Corollary 2.5. Let r < 1 and 0 be positive real numbers, and let f : X — Y be a
mapping satisfying (2.9). Then there ezists a unique additive mapping A : X — Y
such that

1f(z) = A(2)]| < 0|=|"

forallz € X.

Proof. The proof follows from Theorem 2.4 by taking ¢(z,y, 2) = 0(||z||"+||ly||"+12]|")
for all z,y,z € X. Then we can choose L = 2"! and we get desired result. U

3. ADDITIVE (a, f)-FUNCTIONAL EQUATION (0.1) IN BANACH SPACES [/

In this section, using the direct method, we prove the Hyers-Ulam stability of the
additive (o, 5)- functional equation (2.1) in Banach spaces.

Theorem 3.1. Let ¢ : X3 — [0,00) be a function and let f: X — Y be a mapping
satisfying f(0) =0 and

Wy ) =Y Yo (5. 0 2) <

; 2072172
7j=1

1f (@) + fy) +2f(2) —af (Blx+y+22)| < ¢(z,y,2) (3.1)
for all x,y,z € X. Then there exists a unique additive mapping A : X — 'Y such that

1
1f(z) = Al < 5(¥(z, 2, —2) + ¥ (22,0, ~2)) (3.2)
forallz € X.
Proof. 1t follows from (2.7) that

-2 (9] < (55-5) (20

for all z € X. Hence
¥ ﬁ __9j+1 i
= s (5) -2 ()|

x T m—l
ZY_omre ()|l <
()27 ()| <X
J
m-l T T T - T T
<2 (W (2j+l’ 2j+17_2j+1) Y (QJO _2a+1)> 83)

Jj=l
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for all nonnegative integers m and [ with m > [ and all z € X. It follows from (3.3)
that the sequence {2* f(%)} is Cauchy for all z € X. Since Y is a Banach space, the
sequence {2% f (57)} converges. So one can define the mapping A: X — Y by

A(x) := lim 2% f (;)

k—o0

for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in (3.3), we get
(3.2).
Now, let T': X — Y be another additive mapping satisfying (3.2). Then we have

1A(z) = T(x)| = ||2°A (51) - (;) H
A (2) 21 (2) - r ()21 ()

q r T g 2 T
2\1/(2q 207 21 +2 2q0 2 )’

which tends to zero as ¢ — oo for all x € X. So we can conclude that A(x) = T'(z)
for all x € X. This proves the uniqueness of A.
The rest of the proof is similar to the proof of Theorem 2.2. O

Corollary 3.2. Let r > 1 and 0 be nonnegative real numbers, and let f : X — Y be
a mapping satisfying (2.9). Then there exists a unique additive mapping A : X — Y
such that

If(z) = A(2)]| <

—50llzll

forallz € X.

Proof. The proof follows from Theorem 3.1 by taking p(z,y, z) = 0(||z||"+|ly||"+1/z]|")
for all x,y,z € X. O

Theorem 3.3. Let p : X3 — [0,00) be a function and let f : X — Y be a mapping
satisfying f(0) =0, (3.1) and

U(x,y,z Z

(22, 27y, 272) < o0

I\D‘,_;

for all x,y,z € X. Then there exists a unique additive mapping A : X — 'Y such that

1F@) = A@)] < S (a7, ~2) + (22,0, ~2)) (3.4
forallz € X.
Proof. 1t follows from (2.7) that
|#) = Sr@0)] < 56 @ —2) + 0 (20,0, -)
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for all z € X. Hence

|5 @) = o sma)

m—

Z

S L5 ) - gt (2]

S Zl <2j+1 SO<29:L’, 2‘71',—2‘7.’,[') -+ 2j+190(2‘7+1x,07_2]x)> (35)
]:

for all nonnegative integers m and [ with m > [ and all z € X. It follows from (3.5)
that the sequence {2% f(2"x)} is a Cauchy sequence for all z € X. Since Y is complete,
the sequence {5 f(2"z)} converges. So one can define the mapping A: X — Y by

Ax) := lim 21f(2” )

for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in (3.5), we get
(3.4).

The rest of the proof is similar to the proofs of Theorems 2.2 and 3.1. O
Corollary 3.4. Let r < 1 and 0 be positive real numbers, and let f : X — Y be

a
mapping satisfying (2.9). Then there ezists a unique additive mapping A : X — Y
such that

442"
2—

1F (@) = Al)]| < 5= 0l

forallz € X.

Proof. The proof follows from Theorem 3.3 by taking ¢(z,y, 2) = 0(||z||"+||y||"+||z]|")
for all z,y,z € X. O
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1 Introduction and basic notes

Consider Dirichlet series

f(S) = Zane)\nsa 5:U+it7 (1)
n=1
where
D<A <A< <A <o,y >0 as n— oo; (2)

s = o + it (o,t are real variables); a,, are nonzero complex numbers and

limsup(Ap41 — An) = h < 400, (3)
n—-+oo
log™ |an
lim sup M =0, (4)
n——+oo A’rL
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Science Foundation of Jiangxi Province in China (20151BAB201008), and the Foundation of Education Depart-
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Science Foundation(2015A030313628) and The Training plan for Outstanding Young Teachers in Higher Education
of Guangdong(Yqgdufe1405).
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then from (2) and (3), by using the similar method in [19] or [15], we can get

ogn

1
lim sup N _p< +oo,  limsup = 0. (5)

n—00 n n—00 n
Then the abscissas of convergence and absolutely convergence is 0, that is, f(s) is an analytic
function in the left half plane H = {s = o+ it : 0 < 0,t € R}.

We denote D to be the class of all functions f(s) satisfying (2)-(4) and analytic in Res < 0,
denote D, to be the class of all functions f(s) satisfying (2)-(3) and analytic in Re < o where
—o0 < a < +00. Thus, if —00 < @ < 0 and f(s) € D, then f(s) € Dg; if 0 < a < +00 and
f(s) € Dy, then f(s) € D. We denote II;, to be the class of all exponential polynomial of degree
almost k, that is,

k
M =) b;ed®: (by,ba, ..., by) € CF
j=1

For f(s) € D,

M) = max |f@+it),  mlof) = max{lanle™)

—oo<t<oo
are called, respectively, the maximum modulus, the maximum term of f(s) for Res = ¢ < 0.

Definition 1.1 Let f(s) € D, the order of f(s) can be defined by

) loglog™ M (o, f)
p =limsup ——————=
o0~ —log(—o)

logxr x=>1

where log+x{ 0 vl

For p = 0,0 < p < o0,p = o0, f(s) can be called, respectively, zero order, finite order,
infinite order Dirichlet series. Considerable attention has been paid to the growth and the value
distribution of analytic functions defined by Dirichlet series; see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 16, 17, 18] for some results.

For f(s) € Dy, —00 < a < 400, we denote E, (f,a) by the error in approximating the function
f(s) by exponential polynomials of degree n in uniform norm as

En ) = inf - )y :172a"'a
(fre)=mf [ f=plla n

where

| f=plla= _ Jmax |f (a4 it) — p(a +it)|.

In 2010, the authors [17] investigated the relations between the error E,(f, «) and the growth
order of f(s), and obtained some equivalence relation between F, (f,«) and the regular growth of
f(s) with finite order as follows:

Theorem 1.1 (see [17]). Let f(s) € D be of finite order p, then for any real number —oo < o < 0,

we have
m M =1 <= limsup log™ [E”(f»a)efaxﬁl] =1:
o—0— Ul(ié) n—-+00 BUl < )\n+1 ) ’

logt [En(fia)e” 1]

and there exists a increasing, positive integer sequence {n,} satisfying

log* [E, (. )™ )
lim =1, lim 2t — 1,

v—~+00 An, i v—+0oo /\nu
BUI “ain
log* [, (fr)e ]
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where B = 2™ g Ui (r) = rP") | p(r) satisfies the following conditions:
P
(1) there exists a real number ro > 0, p(r) is nonnegative, continuous, monotone on [rg, +00),
and tends to p as r — +00;
(i) lim, 4o p'(r)rlogr = 0,;
(11i) Uy (kr) = [kP4+0(1)]U1(r)(r — +00) for every positive integer k, and Uy (r) is an increasing
function on r > r{ > ro.

Recently, the authors [18] further investigated the relations between the error E,(f, ) and the
growth order of f(s) when f(s) has infinite order, by introducing the concept of S-order.

Theorem 1.2 (see [18]). Let f(s) € D be of finite S-order pg, then for any real number —oo <

a < 0, we have
lim sup BAn)
n—oo log Ay —loglog™ (Ep_1(f, a)e=*)

Remark 1.1 In Theorem 1.2, the definitions of S-order and the function B8(x) will be introduced
in Section 2.

Thus, a question arises naturally: what will happen when pg = oo in Theorem1.2?
In this paper, we will investigate the above question by using the type functions Us(x) to
enlarge the growth of the denominator —log(—o) and obtain the main results as follows.

Theorem 1.3 If Dirichlet series f(s) € D of infinite 8-order, then we have

+ +
lim sup —B(log Mo, F)) =T <= limsup —ﬁ(log m(e, F)

c—=0=  logU, (_%T) o—=0t  log U, (_%7) -

where 0 < T < oo and Us(x) = 2P®) satisfies the following conditions

(i) p(x) is monotone and lim,_, o, p(x) = oo;

(1) limg s oo % =1, wherex' =z (1+ m)

Remark 1.2 From Lemma 2.1 and Lemma 1.1 in Section 2, we can prove the conclusion of
Theorem 1.3 eastly.

Remark 1.3 This type function Us(z) is different from the type function Uy(x) in Theorem 1.1.

Remark 1.4 If Dirichlet series f(s) of infinite order has infinite 5-order and satisfies

log™ M
Jim sup 208" M0, ) _ (6)
70~ logUs ()
then T is called the By -order of Dirichlet series f(s).

Theorem 1.4 If Dirichlet series f(s) € D with infinite B-order, then for any fixed real number
—00 < a < 0, we have

Bllog™ M (o, f))

lim sup =T < limsup ¥, (f,a, \,)) =T} (7)
oc—0~ 10g U (%U) n— 00
where \

I .
log Us (log*[En_l(f’a)efaAn])
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Remark 1.5 From Theorem 1.4, we can see that the type function Us(x) is more simple then the
type function of Wang [16].

Theorem 1.5 Under the assumptions of Theorem 1.4, we have

iy PUog” Mo, f)

=T < the right hand of (7) is verified,
o207 log Uy (_%,)

and there exists a subsequence {\,} C {An} satisfying

plin;o Vi) (fr 06 Anp) =T, and pILII()lo m _1, ®)
where
Uy (f5 0 ) = /3(/\n<Ap>) |
g Uz <1°g+[En<p1;2(;)04)8‘“n<p>]>

Remark 1.6 From Theorem 1.5, we get the necessary and sufficient conditions for the limit about
the regular growth of f(s), however, Wang [16] only gave the necessary and sufficient conditions
for the superior limit. Thus, our results of this paper are more accurate than the previous form

116].

2 Some Lemmas and the concept of S-order

According to observations, we find that to study the growth of Dirichlet series better, many
mathematicians proposed the type functions U(x) to enlarge the growth of the denominator log _%7
or —o (see [13, 4, 12]), or use some function to control the molecular M (o, f) or m(o, f) in the
definition of order. In this paper, we will deal with the growth of Dirichlet series of infinite order
by using a class of functions to reduce M (o, f) or m(o, f) which is better than the previous form.
So, we firstly give the definition of S-order of Dirichlet series as follows, which is an extension of
[10].

Let § be the class of all functions () satisfies the following conditions:

(i) B(x) is defined on [a, +00),a > 0, and positive, strictly increasing, differential and tends to
+00 as x — +00;

(i) z8'(z) = o(1) as ¢ — +o0.

Definition 2.1 ([18]). If Dirichlet series f(s) of infinite order satisfies

where f(x) € §F, then p* is called the B-order of f(s).

Remark 2.1 Obviously, the functions h(zx) = log, z,p > 2,p € Ny satisfy the conditions (i) and
(ii), where p is a positive integer, and log; x = logz and log, x = log(log,_, x). Thus, p-order is
regard as a special case of B-order of Dirichlet series.

Remark 2.2 Furthermore, $-order is more precise than p-order to some extent. In fact, for p(> 2)
is a positive integer, we can find function B(x) € § and a positive real function M(x) satisfying

lim sup B(log M(x))

=t, 0<t< ,
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and
=0.

. log,, (log M (z)) . log,, ; (log M (x))
limsup ——— =00, and limsup
=300 logx =300 log z
For example, let
M(z) = exp,{(tlogz)"/"},  B(z) = (log,, =),

where t is a finite positive real constant and 0 < d < 1, we can get that p,(M) = 00, ppt1(M) =0
and pg(M) =t, where p,(f) denote the p-order of f, and pg(f) the B-order of f.

Remark 2.3 If p* = oo in Definition 2.1, then f(s) is called a Dirichlet series of infinite 3-order.

Lemma 2.1 (see [16]). Let f(z) € § and ¢(x) be the function satisfying

1 +
limsupw =0, (0<0< ),
z—oo  logw
if M(x) satisfies limsup,,_, w =v(>0). Then we have
o 2@ o M (@) _
T—00 1Og xr

Proof: To prove this lemma, two cases will be considered as follows.

Case 1. If p(x) is not a constant. From the assumptions of Lemma 2.1, we can get that
p(x) = o0 as & — 0o. Then, for sufficiently large =, we have ¢(x) > 1. From S(z) € § , we have
lim,_,o0 log M(z) = co. Then from the Cauchy mean value theorem, there exists &(log M (x) <
& < B(z)log M(x)) satisfying

B(p(z)log M(x)) — Blog M(x)) _ B'(€) —e8()
log((x)log M(x)) —loglog M(x) — (log&)’ ’

that is,
B(p(z)log M(x)) = B(log M (x)) + log p(x)EB'(§). (9)

Since z3'(z) = o(1) as © — +oo and limsup,,_, ., lolgogf) =0,(0 < p < 0), by (9), we can get the
conclusion of Lemma 2.1.

Case 2. If ¢(x) is a constant. By using the same argument as in Case 1, we can prove that
Lemma 2.1 is true.

Thus, this completes the proof of Lemma 2.1. O

The following lemma plays an important role to deal with the growth of Dirichlet series, which
shows the relation between M (o, f) and m(o, f) of such functions.

Lemma 2.2 ([19]). If Dirichlet series (1) satisfies (2) (3), then for any given ¢ € (0,1) and for
o(< 0) sufficiently reaching 0, we have

(o, f) < Mo, f) < K(€)—m((1 - <)o f),

where K (g) is a constant depending on ¢ and (3).

Lemma 2.3 If f(s) € Dy(—o0 < a < 4+00), then for any positive integer n € Ny := N\{0}, we
have
|an|6a)\n < KZEn—l(fa Oé),

where Ko > 1 is a real constant.
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Proof: From the definition of F,,(f, «), there exists p(s) € II,,_1 such that

If = plla < KoEp1(f, ). (10)

Since f(s) € D, and from [19, P.16], for any real numbers to,9(# 0), we have

IR
lim 7/ eVtdt =0 (11)
R—400 +
and
I :
e = Rli—r>nooR/tO fla+it)e it (12)
From (11), for any real number x # 0, we have
lim — / " erletit)gp — . (13)
R—oo R to

Thus, from (12) and (13), for any p;(s) € II,,_1, we have

1 [ ;
ane® = lim —/ [f (a + it) — p1(a + it)]e " at,

R—oo R to
that is,
|anle®® < If = pilla. (14)
From (10) and (14), we can prove the conclusion of Lemma 2.3. ad

3 The proof of Theorem 1.4

We prove the conclusions of Theorem 1.4 by using the properties of two functions S(z) and
Us(z), this method is different from the previous method to some extent.
We first prove 7 <—=" of Theorem 1.4. Suppose that

An
limsup ¥, (f, o, \p,) = limsup Brn)
n—oo n—o00 IOg U2 An

=T (15)
(log+ [En_1(f,0)e—An] )

Let
An: nil(f}a)e_a)‘"’ TL:].,2,...,

then for any positive real number 7 > 0, for sufficiently large n, we have

An
A <y (T +7)logUs [ —22— 1 ),
7<( rlog 2<10g+An)>

where ~(z) is the inverse functions of S(z). Let Va(z) and Us(x) be two reciprocally inverse
functions, then we have

A 1 -1
) N e )

Thus, we have
—1
logt (Anet?) < Ay ((Vz (eXp{T i Tﬁ(An)}» + a> . (16)
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For any fixed and sufficiently small o < 0, set

1 1
G=y|@+)ogly | —+ —— | ],

0 _glogUs (%U)

that is,
1 1 1
e (w{ e o
—0 —UIOgUQ (%U) T+T
If A\, <G, for sufficiently large n, let V5 (exp {T%FT ()\n)}) > 1, from o < 0,(16),(17) and the

definition of Uz (z), we have

log™ A,e*? < G <(V5 (exp { 7 i Tﬂ(/\n)}) > - + a>

1 1
<G=~|(T+71)loglUs | — 4+ ——+
0 —glogU, (}U)

<o (@ + g |1+ omyez (= )] ). (1)

g

If A, > G, from (16) and (17), we have

logt A, M < A, ((v2 <exp {T i Tﬁ(G)})>1 + o>

-1

1 1
<=+ — | +o]<o0. (19)

—0 —ologlU, (_%7)

For sufficiently large n, from (18) and (19), we have

log" A,e*n? <y ((T +7)log {(1 +oll)Uz <1)]>

—0

Since A,, = E,,_1e~%* and 7 is arbitrary, by Lemma 2.1,Lemma 2.3 and Theorem 1.3, we can get

+
Jim sup B(log M(;ﬂf)) <T
os0—  logUs(=5)

Suppose that
B(1 Mo, f

=n<T.
oot logUs(=)

Thus, there exists any real number £(0 < e < 2), for any positive integer n and any sufficient small
o < 0, from Lemma 2.2, we have

—0

log* |an|e?? <log M(o, f) < v ((T — 2¢) log Us( ! )) . (20)

From (15), there exists a subsequence {\,,(,}, for sufficiently large p, we have

)\n( )
B( A, > (T —¢)logU — . 21
( (p)) ( 5) g Uz (1 ¥ 4n(p)> ( )
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Take a sequence {0, } satisfying

(- 20togua( L)) = A (22)

1+ log Ug(ﬁ)

From (20) and (22), we get

1 log™ A

log™ Anp) + Mnp)op < <(77 — 2¢) log Us( —o )> 1 + log U. n(p:(p) ,

> + log Un (142
that is,
1 An 1
< (p) 1 + ®)
log A’n(p) 1Og U2(10g+nAp (p) )

Thus, we have

1 An(p) 1 14o(1) An(p)

ELIR Y QR < U, —_ (23)
—o, log™ Ayp) log Ua( logi%u ) s

From (22) and (23), we have

log™t Anp) logt A, »

)‘n(p) )‘n(p) )‘n(p)
= ——"—7| (n—2e)(1+o0(1))logUs(—F—"—) | [ 1 +logUs(———) | -
log™ Auy) ( log™ Angp) log™ An(p)

An 1 A,
An(p) = P ((T —2¢)log UQ(%)) (1 + log Uz((m())>

Thus, from the Cauchy mean value theorem, there exists a real number £ between 1;;"%()(1 +
n(p

>‘np n(p n(p
log U242 )y (= 26)(1+0(1)) log U (52248 and (51— 2¢) (1 +0(1)) log U (24— ) such

An(p) An(p) An(p)
B(Anw) =B ——— (1 +logUs(————) | v | (1 —2¢)(1 + o(1)) log Us(————)
Bote) log™ Any) log™ An(y) log™ An(y)
= 8 (7 (=221 + 0(1) tog (220
log+ An(p
An(p) An(p)
+log [ ——— (1 +logU2(7) 6/ (8),
<log+ Anp) < g™ Anp)
Since \
__An(p) __An(p)
lim log (1°g+A ) (1+10gU2(10g+A ) )>) =0
p—ro0 log Ug(ﬁ)

then for sufficiently large p, we have

An , An
8 (ni) = (1= 22)(L+ o(D) log Ua (52 —) + Kat B (O log Ua( 3", (24)
n(p) n(p)

where K5 is a constant.

1023 Hong-Yan Xu et al 1016-1028



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

From (21),(24) and n < T, we can get a contradiction. Thus, we can get

i sup 5008 M (@)

=T
oc—0~ IOg U2(jg')

Hence, the sufficiency of Theorem 1.4 is completed.

We can prove the necessity of Theorem 1.4 by using the similar argument as in the proof of the
sufficiency of Theorem 1.4.

Thus, the proof of Theorem 1.4 is completed.

4 The Proof of Theorem 1.5

We will consider two steps as follows:
Step one: We first prove the sufficiency of Theorem 1.5. From the conditions of Theorem 1.5,
for any e(> 0), there exists a subsequence {\,,(,)} such that

An(p) . Bwm)
My =y | (T =) logUs [ —2"@ )}, fim 2@y 25
27 (( ) log Uz <log+ Aﬂ(p))) 2% BOmipen)) (25)

that is,

P < (ol O }) (swo{reoan})”
) <y ——B(\, , logt Ay = Mg Vi ——B(\, .
log* Ay~ 2 \TP T2 ) 08" Au(p) 2 Anp) Va | exp 78w

Take the sequence {o,} satisfying

1 1
Aoy = | (T =) log U :
” ”<< e 2<ap+oplogv2<_;>>)

1 1 1
—op + oplog UQ(}%) =V (exp{T_ EB(/\n(p))}> . (26)

For any sufficiently small 0 < 0 and —c0 < o < ¢ < 0, we have

Eoo1(f,0) (1 = po-illa <Y larle™® < M(o, £) > et (27)
k=n k=n

where p,_1(s) = 22;11 ape**. From (3), we take 0 < h/ < h satisfying A\, 41 — A\, > A’ for any

integer n > 1. Thus, for sufficiently small o < 0 such that o > &, from (27) we have

Eno1(f,0) < M(o, f)er(@0) 3~ Qe
k=n

o0
< M(o, f)et (e ghn Z g5k
k=n

ap’ -1
= M(o, f)e* (=) (1 —e3h ) .
Then for sufficiently small ¢ < 0 and —oo < a < g < 0, we have

Mo, f) > KsEp_1(f,a)e (=) = K3 A, M7, (28)
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where K3 = 1 — 5", For sufficiently small o < 0, we take 0, < 0 < 0,41, from (25),(26) and

(28), we have

10g+ M(o, f) > log+ An(p) + )\n(p)O'p +0(1) (29)
1 —1
> An(p) <V2 (eXP{T — 5'60\"(”))}) + Up> +0(1)
1 1 -0

> T — ¢)log U- + P +0O(1

7 <( Jlog Us <ap crplogUg(_l%)>> logUg(_%Tp) -1 M)
> (14 o)y [ (T = )1ogl [ —— + ! —or
- ! R Us(—) ) ) logUa(—-) — 1

P

1 1 -0
> (1+4o0(1))y <(T —¢)logUs <—a + olog U2(1o')>) log U2(%") -t

Set
1 1 1

1
— = I+ ——— | =R R(14+—— ) =R
- + olog Ug(}a) T ( + log UQ(T)) ’ ( + log UQ(R)) ’

by using a simple calculation, we can get R’ > %U Thus, from the definitions of Us(z) (ii), we
can get
: log Uz (r)
limsup ——————

=1. 30
o—0- logUs(L) (30)

Since

IOg log UQZ% )—1

lim sup =0,

o0~ log Uz(_%,)
and from Lemma 2.1, (29) and (30), we have

s 208" M. )

=T.
om0 logUs(=)

Step two: The necessity of the Theorem 1.5 will be proved as follows. From Theorem 1.4, we
can get that the right hand of (7) is verified. Next, we will prove that (8) also holds. We take a
positive decreasing sequence {¢;}(0 < &; < T),e; — 0(i = 00).

Set

B(An)
log Us (ﬁ)

it follows that Vi, F; # ® and F; C F;_;. For each i, we arrange the n(€ F;) in an increasing
sequence {n(® (p)}p21, then we consider the two cases in the following.

. B
Case 1. Suppose that lim, 4 W
n{*)(p)

Fi=<{n:V,(fia,\,) = >T —¢;p, (31)

=1 for any ¢. Then there exists N; € F;(i € Ny),

when n()(p) > N;, we have
B (Ao 1))
B ()‘n“)(p))
Note F;11 C Fj, take N;y1 > N;, denote F) the subset of F;

<1+e;. (32)

Fi’:{neFZ-:NignSNHl},

thus the elements of F! satisfy (31) and (32).
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Therefore let F = [J;2, F/ and arrange the n(€ E}) in an increasing sequence {n, }. Thus, the
necessity of Theorem 1.5 is proved.
B(An(“( +1)> ;
m # 1, then since )\n(i)(p+1) >

> 1. Hence there exists {n()(p)} € {n(p)} (still marked

Case 2. If there exists ¢ € Ny satisfying lim, oo

. B, (i) )
)\n(i)(p)7 we get lim, Wm
n P

with {n()(p)}) and positive real constant 7 > 0, it follows that

B (An(i)(p-i-l))

>14T.
B (A ()

Let
/(1) =n@(1),0'(2) =0 3), - n'(p) =0 (2p ~ 1),
n(1) =n®(1),n"(2) = 0V (4), - 0" (p) =l (2p), -
where {n/(p)},{n” (p)} are two increasing positive integer sequences, and
n(p) <n'(p+1), BAwrp) > A+7)BAwp), v=12---.

From (31), for any sufficiently large p, when n ¢ F; satisfies n/(p) < n < n’(p), there exists a
positive real number § > 0 such that

A A 1
M < (T = 8)logUn(—22—)), —22— >, B0} 33
<o (@-onosta( ). S 2 v (el gpo).
Thus we have
logT A <\, 1 +o]. (34)

Va (exp{7i5500)})

Set
1 1
G=~r|T-0)loglUy | —+ ——F+—~ ,
—0 —ologU, (}U)
that is,
1 1 1
S — (exp {5B(G)}) . (35)
0 —ologU, (}U) T -
If A, > G, from (34) and (35), we have
log™ Apen <\, ! +o| <. (36)
Va (exp{7L5500m)})
If A\, < G, from (34) and (35), we have
1 1
log® |anle? < G =~ [ (T —6)logUs | — + ————— . (37)
0 —ologU, (%)
Choose the sequence {o,} satisfying
1 -1
Up = — |:‘/2 (exp {H/B()\n//(p))})] 5 (38)
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from the assumptions of the necessity of Theorem 1.5, there exists an integer No € N, such that
1%} (exp {ﬁﬁ(Am}) > 1. Then for n > Ny, we have

1 -1
10g+ Ane("p}\n < )\71, <V2 <6Xp {HB()\H)}> —+ O'p) .
When n > n(p), it follows X\, > A,(), and from (38), we have
1 -1
log* AneTt <\, (VQ (exp {Hﬂ@‘n”(ﬁ))}) + Jp) =0. (39)

For sufficiently large v, we have A,y > A, as No < n < n/(p), and
-1
+ opA !
log™ Ape??? < Xy | Vo exp{mﬂ()\n)} +op |-

Since A\pr(p) <y (H%Tﬂ()\nu(p))) and o, < 0, from the definition of ¢, N2, we can get

1 T-9 1
og” e < (00w ) < (T onts (7)) o
p

Thus, from (36), (37), (39) and (40), we have

1 1
logt A, e <~ | (T = 6)loglUy | — + ————— , as n > Na.
7 _glogUs (_%r)
By Lemma 2.2, we have
1 +
lim 2008 MO ) 5 (41)

From (41), Theorem 1.3, we can get a contradiction with the following equality

im Plos™ Mo, /) _

e=07 Jog U, (_%T)

Thus, the proof of Theorem 1.5 is completed by Step one and Step two.
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Abstract

In the present paper we establish several fuzzy differential subordinations regardind the operator I (m, A, 1),

given by I (m,A\,0) : A — A, IT(m,\ 1) f(2) =2+3772, (%)majzj and A = {f € H(U), f(z) =

2+ a22> + ..., z € U} is the class of normalized analytic functions. A certain fuzzy class, denoted by
SIS (m, A, 1), of analytic functions in the open unit disc is introduced by means of this operator. By making
use of the concept of fuzzy differential subordination we will derive various properties and characteristics of
the class SIS (m, )\, 1). Also, several fuzzy differential subordinations are established regarding the operator
I(m,\1).

Keywords: fuzzy differential subordination, convex function, fuzzy best dominant, differential operator.
2000 Mathematical Subject Classification: 30C45, 30A20.

1 Introduction

S.S. Miller and P.T. Mocanu have introduced [10], [11] and developed [12] in the one complex variable
functions theory the admissible functions method known as ”the differential subordination method” . The
application of this method allows to one obtain some special results and to prove easily some classical results
from this domain.

G.I. Oros and Gh.Oros [13], [14] wanted to launch a new research direction in mathematics that combines
the notions from the complex functions domain with the fuzzy sets theory.

In the same way as mentioned, we can justify that by knowing the properties of a differential expression
on a fuzzy set for a function one can be determined the properties of that function on a given fuzzy set. We
have analyzed the case of one complex functions, leaving as ”open problem” the case of real functions. We are
aware that this new research alternative can be realized only through the joint effort of researchers from both
domains. The ”open problem” statement leaves open the interpretation of some notions from the fuzzy sets
theory such that each one interpret them personally according to their scientific concerns, making this theory
more attractive.

The notion of fuzzy subordination was introduced in [13]. In [14] the authors have defined the notion of
fuzzy differential subordination. In this paper we will study fuzzy differential subordinations obtained with the
differential operator studied in [3] using the methods from [4], [5].

Denote by U the unit disc of the complex plane, U = {z € C : |z] < 1} and H(U) the space of holomorphic
functions in U.

Let A, = {f € H{U) : f(2) = z+ app12" ™t +..., z€ U} with Ay = A and Ha,n] = {f € H(U) : f(z) =
a+an2" + a2t +..., z€U} forae C and n € N.

Denote by K = {f € A:Re Z]{,”(Z) +1>0, z€ U} , the class of normalized convex functions in U.

(=)
In order to use the concept of fuzzy differential subordination, we remember the following definitions:

Definition 1.1 [9] A pair (A, F4), where Fa : X — [0,1] and A ={z € X : 0 < Fa(z) < 1} is called fuzzy
subset of X. The set A is called the support of the fuzzy set (A, Fa) and Fa is called the membership function
of the fuzzy set (A, Fa). One can also denote A = supp(A4, Fa).
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Remark 1.1 In the development work we use the following notations for fuzzy sets:
Fi(py (f (2)) =supp(f (D), Fy(py) ={z € D:0 < Fppyf (2) < 1},
Fyp) (9(2)) =supp(g (D), Fyp):) = {z € D: 0 < Fypyg (2) < 1},
p(U) =supp(p(U), Fpy) ={z € U : 0 < Fyw) (p(2)) < 1},
q (U) =supp(q (U) , Fyy’) = {2 € U : 0 < Fyw) (¢(2)) < 1},
h(U) =supp(h (U), Fpy) ={2 € U : 0 < Fn) (h(2)) < 1}

We give a new definition of membership function on complex numbers set using the module notion of a
complex number z =z + iy, z,y € R, |z| = /22 +y% > 0.

Example 1.1 Let F: C — Ry a function such that Fg (2) = |F (z)|, V 2 € C. Denote by Fc (C) = {2z € C:
0<F(2)<1}={2€C:0<|F(2)| <1} =supp(C, F¢) the fuzzy subset of the complex numbers set.

Remark 1.2 We call the subset Fc (C) ={z€ C:0< |F (2)| <1} =Ux(0,1) the fuzzy unit disk.

Example 1.2 Let FF : C — Ry, F(2) = g;‘lj, where |z| = \/x2+y? > 0. A fuzzy subset of the com-
plex numbers set is A = {z € C: 0 < Fa(z) < 1} =supp(A,Fa) = {z € C : |z| < 2}, where Fa(z) =
F(z), ze{|z| <2}
{ 0, zeC—{|z| <2}
We show that the fuzzy subset is nonempty. Indeed, for z = 0, F4(0) = F(0) =1, so 2z =0 € A. More
we see that the fuzzy subset A contains all the complex numbers with the properties |z| < 2 and all the complex

numbers for which |z| > 2 not belong to A, i.e. supp(A, Fa) = {z € C: 2?2+ y? < 4}.

Remark 1.3 The membership functions can be defined otherwise and we propose that each choose how to define
according to their research.

Definition 1.2 (/13]) Let D C C, zg € D be a fized point and let the functions f,g € H (D). The function f
is said to be fuzzy subordinate to g and write f <x g or f(z2) <r g(2), if are satisfied the conditions:

1) f (20) = g (20) ,
2) Frpyf (2) < Fypyg(2), z € D.

Definition 1.3 ([14, Definition 2.2]) Let ¢ : C3> x U — C and h univalent in U, with v (a,0;0) = h (0) = a. If

p is analytic in U, with p (0) = a and satisfies the (second-order) fuzzy differential subordination

Fycsxinth(p(z), 20" (2) 22p"(2);2) < Fyaonh(z), zel, (1.1)

then p is called a fuzzy solution of the fuzzy differential subordination. The univalent function q is called a
fuzzy dominant of the fuzzy solutions of the fuzzy differential subordination, or more simple a fuzzy dominant, if
Foanp(z) < Fyuyq(z), z € U, for all p satisfying (1.1). A fuzzy dominant q that satisfies Fy1)G(2) < Fyuyq(2),
z € U, for all fuzzy dominants q of (1.1) is said to be the fuzzy best dominant of (1.1).

Lemma 1.1 ([12, Corollary 2.69.2, p. 66]) Let h € A and L[f](z) = G(2) = L [;h(t)dt, z € U. If
Re (G +1) > L, 2 U then L(f) =G € K.

Lemma 1.2 ([15]) Let h be a convex function with h(0) = a, and let v € C* be a complex number with Re v > 0.
Ifp e Hla,n] withp(0) =a, ¥ : C2xU = C, ¥ (p(2),2p' (2);2) =p(2) + %zp’ (2) an analytic function in U
and Fyc2xv) (P(Z) + %ZP/(Z)> < Franh(2), ice. p(2) + 320 (2) <7 (2), z € U, then Fyanp(2) < Fyang(z) <

Fryh(z), ie. p(2) <7 g(2) <7 Mz), z € U, where g(z) = —1 I h(t)t?/"=1dt, z € U. The function q is
convex and is the fuzzy best dominant.

Lemma 1.3 ([15]) Let g be a convez function in U and let h(z) = g(z)+nazg'(z), z € U, where a« > 0 and n is a
positive integer. If p(z) = g(0)+ppz" +pn12" T +..., 2 € U, is holomorphic in U and Fyy (p(z) + azp/(2)) <
Fruyh(2), i.e. p(z) +azp'(z) <7 h(z), z € U, then Fyanp(z) < Fyung(z), i-e. p(z) <r g(2),z € U, and this
result is sharp.

We will study the following differential operator, known as multiplier transformation.
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Definition 1.4 For fe A={f € H{U): f(z) =2+ axz*+ ..., z€ U}, m € NU{0}, \,l > 0, the operator
I(m,\1) f(z) is defined by the following infinite series I (m, A1) f(2) =2+ 372, 1) (%) ajzd.
Remark 1.4 [t follows from the above definition that (I+ 1)1 (m+1,\1) f(z) =[l+1=XNTI(m,\I) f(z)+
Xz (I (m,\ 1) f(2), z€U.

Remark 1.5 For [ = 0, A > 0, the operator DY = I (m, \,0) was introduced and studied by Al-Oboudi [2],
which is reduced to the Salagean differential operator [16] for A = 1. The operator I (m,1,1) was studied by Cho
and Srivastava [8] and Cho and Kim [7]. The operator I (m,1,1) was studied by Uralegaddi and Somanatha [17]
and the operator I (o, A,0) was introduced by Acu and Owa [1]. Cdtas [6] has studied the operator I, (m, \,1)
which generalizes the operator I (m, A1) .

2 Main results
Using the operator I (m, \,1) we define the class SI% (m, A, 1) and we study fuzzy subordinations.

Definition 2.1 Let f (D) =supp(f (D), Fyp)) = {z € D : 0 < Fp)yf (2) < 1}, where Fy(py- is the member-
ship function of the fuzzy set f (D) asociated to the function f.

The membership function of the fuzzy set (uf) (D) asociated to the function pf coincide with the membership
function of the fuzzy set f (D) asociated to the fuction f, i.e. F,pypy ((nf)(2)) = Fppyf (2), z € D.

The membership function of the fuzzy set (f + g) (D) asociated to the function f + g coincide with the half
of the sum of the membership functions of the fuzzy sets f (D), respectively g (D), asociated to the function f,

respectively g, i.e. Fiyiqypy ((f +9)(2)) = Ff(D)f(z);E"(D’g(Z), z€D.

Remark 2.1 Fi;iq)p) ((f +g)(2)) can be defined in other ways.

Remark 2.2 Since 0 < Fypyf(z) <1 and0 < Fypyg(z) <1, it is evidently that 0 < F(s44p) ((f + 9) (2)) <
1, ze€ D.

Definition 2.2 Let § € (0,1], A\,1 > 0 and m € N. A function f € A is said to be in the class SI% (m, A1) if
it satisfies the inequality F(jm x5y @) (I (m, A1) f (2)) >4, 2z €U

Theorem 2.1 The set SIS (m,\,1) is conver.

Proof. Let the functions f; (z) = Z"‘Z;iz ajrz’, k =1,2, 2 € U, be in the class SI}S_- (m, A\, ). Tt is sufficient
to show that the function h (2) = n1f1 (2) + n2f2 (2) is in the class SI% (m, A,1) with 7; and 7 nonnegative
such that n; +n = 1.

We have ' (z) = (1 f1 + pafo) (2) = i f{ (2) + pafs (2), 2 € U, and
(Lm0 B (2)) = (L m A (o1 fo + piaf) (2)) = por (1 (m A D) fr (2)) + o (T (mo A D) f (2))'

From Definition 2.1 we obtain that
/
Fiamanny @)y T (m, N DR (2) = Faman o frtue )y @) @ mN) (pfi + paf2) (2)) =
!

Fltmad) s fip £y @) (1 (L (m, M) f1(2))" + w2 (1 (m, N1) fo ( ))) =
F(ulz(m,x,z)fl)’(u)(/tl(I(W'J\J)fl(2))’)+F<u21(m A z)fz)/w)(ltz(I(m»Nl)h(z)) ) .

5 —
Fiim oty @) (M) f1(2)) +F(I(m A £2)! (o) (A l)f2(z))

Since f1, fo € SIS (m, )\ ,1) we have 0 < F(1(m 05y @) (L (m, A1) fi (2)) <1 and

§ < Famanfoy@) L (m A1) f2(2) <1,z€U.
Fiima sy @) (mA0) f1(2)) +F(1(m A £y () L (M 1) f2(2))

Therefore § < < 1 and we obtain that
8 < Ermanny @) L (m, A1) h(z ) <1, Wthh means that h € SI% (m, A, 1) and SI% (m,\,1) is convex. m

We highlight a fuzzy subset obtained using a convex function. Let the function h (z) = H‘Z z € U. After

a short calculation we obtain that Re (Z}}LL,/;S) + 1) = Ret™ > 0,s0 h € K and h(U) = {z € C : Rez >

—Zz

0}. We define the membership function for the set h(U) as Fpwy (h(2)) = Reh(z), z € U and we have
Frnh (z) =supp(h (U) , Fy)) ={z € C:0< Fhu (h(2) <1} ={2€U:0< Rez < 1}.

Remark 2.3 In this case the membership function can be defined otherwise too and we recommend that those
interested to make it in accordance with their scientific concern.
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Theorem 2.2 Let g be a convex function in U and let h(z) = g(z) + C+—22g’ (2), where z € U, ¢ > 0. If
f€SI%(m, A1) and G (2) = L. (f) (2) = S5 [, t°f (t)dt, z € U, then

Firman @y L (m, A1) f (z))/ < Fyanh(z), de (I(m,\I)f (2)) <rh(z), zeU, (2.1)

implies F(jim xney ) L (m, A1) G (2)) < Fyuyg (2), ice. (I(m,\1)G(2)) <x g(2), 2 € U, and this result is
sharp.

Proof. We obtain that .
Panye (z) =(c+ 2)/ t°f () dt. (2.2)
0

Differentiating (2.2), with respect to z, we have (¢ + 1) G (2) + 2G’ (2) = (¢ + 2) f (2) and
(c+ 1) T (m,\1)G(2) + 2T (m,\1)G(2) = (c+2) T (m,\1) f(2), ze€U. (2.3)
Differentiating (2.3) we have

(I (m,\1)G (2)) 2(I(m,\ 1) G (2)" =T (m,\1) f(2), zeU. (2.4)

+2
Using (2.4), the fuzzy differential subordination (2.1) becomes

Fromanow) (<I<m,A,z>G(z>>’ z(f(m,A,Z>G<z>>")<F<U)( (=) + zg'<z>). (2.5)

c+2
If we denote
p(z) =T (mA\)G(2), zeU, (2.6)
then p € H[1,1].
Replacing (2.6) in (2.5) we obtain F,) (p (2) + =520 (z)) < Fyw) (g (2) + 529’ (2)), zeU.
Using Lemma 1.3 we have Fj,yp (2) < Fyung (2), 2z € U, ie. Fiamaney ) I (m,\1)G (z))' < Fyang (2),
z € U, and g is the fuzzy best dominant. We have obtained that (LG (2)) <7 g(2), 2 € U. m

Example 2.1 If f € SI3 (1,3, 3), then f' (2) + 321" (2) <F ﬁ implies G' (z) + $2G" (2) <F 12, where
G(z)=2 [Jtf(t)dt

Theorem 2.3 Let h(z) = %,56 [0,1) andc > 0. If \,1 >0, m € N and I (f) (z) = <% [ t°f (¢
z € U, then

I [SIﬁi (m,A,l)] c SIZ (m, A1), (2.7)

1 e+l

where 8 =28 —1+ (c+2)(2—28) [, FFxdt.

Proof. The function h is convex and using the same steps as in the proof of Theorem 2.2 we get from
the hypothesis of Theorem 2.3 that F, (p(z) + c_1%2210' (z)) < franh (2), where p(z) is defined in (2.6).
Using Lemma 1.2 we deduce that F,np (2) < Fyang (2) < Fraoyh (2), ie. Fimaney o) I (m, A1) G (2)) <
Fyang (2) < Fruyh (2), where g (z) = &5 [ t“"‘l%i—l)tdt 28—1+ (CHZF(EQ 26) I L2 gt Since g is convex

EZsy
and ¢ (U) is symmetric with respect to the real axis, we deduce

Frimppaw) I (m, A1) G (2)) > ‘IZI‘li:ang(U)g(z) = Fyug (1) (2.8)

1 e+l

and B* =g(1) =28 -1+ (c+2)(2-28) |, FFxdt.
From (2.8) we deduce inclusion (2.7). m

Theorem 2.4 Let g be a conver function, g(0) = 1 and let h be the function h(z) = g(z) + 2¢'(2), z € U. If
M1I>0, meN, fe A and satisfies the fuzzy differential subordination

Fiuaman gy @) T (m A1) f(2) < Fuoyh(z), de (I(m,A\l1) f(2)) <7 h(z), z€U, (2.9)
then FI(m,A,l)f(U)M < Fyuny(2), i.e. M <7 g(2), z € U, and this result is sharp.
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oo [(14A(G—1)F+1\™ i
ImADf(z) _ 25, (P ) "ay 20
4 z

Proof. Consider p(z) =
that p € H[1, 1].

Let I (m,\1) f(z) = zp(2), for z € U. Differentiating we obtain (I (m,\,1) f(2))" = p(z) + 2p/(2), z € U.
Then (2.9) becomes Fy,y (p(2) + 2p'(2)) < Fruh(z) = Fyuy (9(2) + 29/ (2)) , z € U.

By using Lemma 1.3, we have F,np(z) < Fyang(2), 2 € U, ie. Fiiiman gy @)
z € U.We obtain that M <7 g(2), z € U, and this result is sharp. m

=1+pz+pz?+.., z¢€ U We deduce

ImADIG) <

g(U)g(Z),

Theorem 2.5 Let h be an holomorphic function which satisfies the inequality Re (1 + h (i))> > —7, zeU,

and h(0) = 1. If \,\1 > 0, m € N, f € A and satisfies the fuzzy differential subordination
Firman gy @y L (my A1) f (2)) < Fhanh(z), de. (I(m, A1) f(2) <Fh(z), z€U, (2.10)

then FI(m,M)f(U)M < Fyuya(z), e M <5 q(z), z € U, where q(z) = %foz h(t)dt. The
function q is convex and it is the fuzzy best dominant.

Proof. Let p(z ) = M, z € U, p € H][1,1]. Since Re (1 + h,(g)) > —1, z €U, from Lemma 1.1,

we obtain that ¢ (z) = 1 fo t)dt is a convex function and verifies the differential equation asscociated to the
fuzzy differential bubordlnatlon (2.10) q (2) + 2¢' (2) = h (2), therefore it is the fuzzy best dominant.
Differentiating, we obtain (I (m,\,1) f(2))" = p(2)+2p'(2), z € U and (2.10) becomes F, ) (p(z) + 2p/(2)) <
Fh(U)h(Z), zeU.
Using Lemma 1.3, we have Fj,p(2) < Fyuyq(z), z € U, ie. FI(mA’l)f(U)W < Fyunyq(z), z € U
We have obtained that M <rq(2),z€U. m

Corollary 2.6 Let h(z) = H(fii;l)z a convez function in U, 0 < B < 1. If\,1>0,meN, f e A and verifies
the fuzzy differential subordination

Eaman @y T (m, N1 f(2) < Fronh(z), ie. (I(m, A1) f(2)) <7 h(z), z€U, (2.11)

then FI(m’,\)l)f(U)M < Fyuya(z), ie. 1mADIGE) q(2), z € U, where q is given by q(z) =28 — 1+

z

@ In(1+42), z € U. The function q is convex and it is the fuzzy best dominant.

Proof. We have h(z) = % with h(0) = 1, ' (2) = 7(21&1;)5) and b (z) = ?ﬁ;)ﬁz, therefore

Re (378 +1) = Re (452) = Re ({2205iemt) = 110 > 0> -4,
Following the same steps as in the proof of Theorem 2.5 and considering p(z) =
differential subordination (2.11) becomes Fy(m a1 vy (P(2) + 2p'(2)) < Franh(z), z € U.
By using Lemma 1.2 for v = 1 and n = 1, we have Fj,p(z) < Fyu)q(2), i.e., Froma l)f(U)M
Fyuya(2) and q(2) = L [Fh(t)dt =1 [F D g — 0 1 4 20B 1n(142),2€U. m

1mADIE) - he fuzzy

Example 2.2 Let h(z) = ﬁ_i with h (0) =1, W' (2) = ﬁ and h'" (2) = ﬁ.
" L. P
Since Re (ZZ,(S) +1) = Re (iz) = Re (};Zﬁgzg;z/ﬁ:iz) = 1+2pl(;/;0+p2 >0 > —%, the function h is

convez in U.
Let f(z)=z+2%, z€U. Forn=1,m=1,1=2, A=1, we obtain I (1,1,2) f (2) = 2f (2) + 32/ (z) =
2+ 422 Then (I(1,1,2) f (2)) = 1+ 52 and X121 = 14 42 We have g (2) = L [ 1=tdt = —1 + 220+2),
Using Theorem 2.5 we obtain 1 + %z <F h;z, z € U, induce 1 + %z <Fr -1+ M, eU.

Theorem 2.7 Let g be a conver function such that g (0) = 1 and let h be the function h(z) = g (2) + z¢' (2),
zeU. If \,\1 >0, meN, feA and the fuzzy differential subordination

Fl(m,)\,l)f(U) <ZI§Tm—’:;:l>;,;-)(£)(Z)> < Fh(U)h’ (Z) , e <ZI§Tm—’:;:l>;,;-)(£)(Z)> <rh (Z) , z€U (212)

holds, then F(y, x l)f(U)% < Fyung(2), i.e. W <r g(z), z € U, and this result is sharp.
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Proof. Consider p(z) = % We have p' (z) = % —p(z)- U?{;&—W and we

obtain p (2) +z-p' (2) = (%) .

Relation (2.12) becomes F,1) (p(2) + 2p'(2)) < Fruyh(z) = Fyw) (g(z) +2¢'(2)), z € U. By using Lemma
1.3, we have F,np(z) < Fyung(z), z € U, ie. Fl(m’)\’l)f(U)% < Fyung(z), z € U. We obtain that
W <rg(2),z€U. n
Theorem 2.8 Let g be a convex function such that g(0) = 1 and let h be the function h(z) = g(z) + z¢'(2),
zeU. If\,1 >0, meN, fe A and the fuzzy differential subordination

Frimpansw) (BT (m+ 1,010 f (2) + (2= 52) I(m,\D) f(2)) < Fru)h(z), ie

o ImA LD f(2) + (QH)\l)I(m,)\,l)f(z)<;h(z), ZeU (2.13)

I+1
holds, then Frim sl (m, A1) f(2)] < Fyuyg(2), ie. [I(m,\1) f(2)] <7 g(2), z € U. This result is
sharp.

Proof. Let p(z) = (I (m,\1)f(2))’. We deduce that p € H[1,1]. We obtain p(z) 4+ z - p'(2) =
L(m, A1) () 42 (LA D [ (2) = 1(m, A1) f (2) 4 SEEADIERNImADIE)
lﬁlf(m+1 A F(2)+ (2= 85 Lm0 f(2).
The fuzzy differential subordination becomes F,i) (p(2) + 2p'(2)) < Frw)yh(z) = g(U) (9(2) + z¢'(2)) . By
using Lemma 1.3, we have Fj,p(2) < Fyang(2), z € U, ie. Framanpw) L (m, A1) f(z )) < F s 9(2), z€ U,
and this result is sharp. =

Theorem 2.9 Let h be an holomorphic function which satisfies the inequality Re {1 + Z;Z,/;S)} > —7, zeU,

and h(0) =1. If \,1 >0, m € N, f € A and satisfies the fuzzy differential subordination
Frimansw) (BT m+ 1,00 f (2) + (2= 52) T (m, A1) £ (2)) < Fuanh(z), de.

l+1 [+1
i I(m+1,\10) f(2)+ <2—J;>I(m,)\,l)f(z) <Fh(z), z€U, (2.14)
then FI(m,\l)f(U) (I (m,\0) f(2) < Fyua(z), ie. (I(m,A\1)f(2) <7 q(z), 2 € U, where q is given by
=1 fo t)dt. The function q is convexr and it is the fuzzy best dominant.
Proof. Since Re (1—|— h,(iz))) > —%, z € U, from Lemma 1.1, we obtain that q(z) = 1 fo t)dt is a

convex function and verifies the differential equation asscociated to the fuzzy differential subordlnatlon (2.14)
q(z) + z¢' (z) = h(z), therefore it is the fuzzy best dominant.

Considering p (z) = (I (m, \,1) f (2))’, we obtain p(z)+2p/(z) = LI tm+ 1,00 f(2)+(2 =51 T (m,\ D) f (2)
z € U. Then (2.14) becomes Fy, (p(2) + 2p'(2)) < Franh(z), z € U.

Since p € H[1, 1], using Lemma 1.3, we deduce Fj,np(2) < Fynq(2), z € U ie. Framaaypw) (L (m, A1) f(2) <
F,1n4(z), z € U. We have obtained that (I (m,\,1) f(2)) <r q(z), 2 €U. m

Corollary 2.10 Let h(z) = % be a convex function in U, where 0 < 8 < 1.IfA 1 >0, meN, fe A
and satisﬁe§ the differential subordination Fr(m 1 (B21(m+ 1,00 f(2) + (2= Y28 T (m, A1) f(2)) <
Fh(U)h(Z), 1.€.

I+1 I+1

Tl(m +1,M0 f(2)+ (2 — )\> I(m,\1) f(2) <Fh(2), =z€U, (2.15)

then Fyma ) (Lm0 1)) < Fyoya(a), ie. (LmAD £)) <5 a(2), = € U, where g is given by
q(z)=2—-1+2(1- ﬁ)w, for z € U. The function q is convex and it is the fuzzy best dominant.

Proof. Following the same steps as in the proof of Theorem 2.8 and considering p(z) = (I (m, \,1) f (2))’,
the fuzzy differential subordination (2.15) becomes Fj,r) (p(2) + zp’(z)) < Fhanh(z), z € U.

By using Lemma 1.2 for v = 1and n = 1, we have Fj, ¢y ) p(z) < (U) ( ) i, Friman sy (I (m, Al) f(2) <
Fyunaq(z), ie. (I(m, A1) f(2)) <7 q(2), z € U, and q(z) = L fo 1 ﬁz 1+( ff_t Ut gt = 26 —1+2(1
B)lin(z+1), z€eU. m
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Example 2.3 Let h(z) = %;j a convez function in U with h (0) =1 and Re (ZZ,/;S) + 1) > —3 (see Example
Letf()—z+z,z€U Forn=1,m=1,1=2, A=1, we obtain I (1,1,2) f (2) = 3 (2) + 32/ (z) =
z+ 32% and (I(1,1,2) f (2 ) =148 52. We obtain also H'1[(m—|—1)\l fl)+(2-4)I m)\l f(z) =
1,2) f( (I /

By
3[(2,1,2)f()—](1,1,2)f() 22+4z,where[(2,1,2)f(): I(1,1,2) f(2) + % (112) (2)) =
z 2In(1+2z
3z + 1022 We have q(2) = £ [; 1H5dt = 1+%.
Using Theorem 2.9 we obtain 2z + 42° <5 %;;, z € U, induce 1+ %z <Fr—1+ M ze U

References

[1] M. Acu, S. Owa, Note on a class of starlike functions, RIMS, Kyoto, 2006.

[2] F.M. Al-Oboudi, On univalent functions defined by a generalized Sdalagean operator, Ind. J. Math. Math.
Sci., 2004, n0.25-28, 1429-1436.

[3] A. Alb Lupas, A special comprehensive class of analytic functions defined by multiplier transformation,
Journal of Computational Analysis and Applications, Vol. 12, No. 2, 2010, 387-395.

[4] A. Alb Lupas, Gh. Oros, On special fuzzy differential subordinations using Sdldgean and Ruscheweyh oper-
ators, Applied Mathematics and Computation, Volume 261, 2015, 119-127.

[5] Alina Alb Lupasg, A Note on Special Fuzzy Differential Subordinations Using Generalized Salagean Operator
and Ruscheweyh Derivative, Journal of Computational Analysis and Applications, Vol. 15, No. 8, 2013,
1476-1483.

[6] A. Catag, On certain class of p-valent functions defined by new multiplier transformations, Proceedings
Book of the International Symposium on Geometric Function Theory and Applications, August 20-24,
2007, TC Istanbul Kultur University, Turkey, 241-250.

[7] N.E. Cho, T.H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math.
Soc., 40 (3) (2003), 399-410.

[8] N.E. Cho, H.M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier
transformations, Math. Comput. Modelling, 37 (1-2) (2003), 39-49.

[9] S.Gh. Gal, A. 1. Ban, Elemente de matematicd fuzzy, Oradea, 1996.

[10] S.S. Miller, P.T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl.,
65(1978), 298-305.

[11] S.S. Miller, P.T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 32(1985),
157-171.

[12] S.S. Miller, P.T. Mocanu, Differential Subordinations. Theory and Applications, Monographs and Textbooks
in Pure and Applied Mathematics, vol. 225, Marcel Dekker Inc., New York, Basel, 2000.

[13] G.I. Oros, Gh. Oros, The notion of subordination in fuzzy sets theory, General Mathematics, vol. 19, No.
4 (2011), 97-103.

[14] G.I. Oros, Gh. Oros, Fuzzy differential subordinations, Acta Universitatis Apulensis, No. 30/2012, pp.
55-64.

[15] G.I. Oros, Gh. Oros, Dominant and best dominant for fuzzy differential subordinations, Stud. Univ. Babes-
Bolyai Math. 57(2012), No. 2, 239-248.

[16] G. St. Saldgean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin,
1013(1983), 362-372.

[17] B.A. Uralegaddi, C. Somanatha, Certain classes of univalent functions, Current topics in analytic function
theory, World Sci. Publishing, River Edge, N.J., (1992), 371-374.

1035 Alina Alb Lupas 1029-1035



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

On some differential sandwich theorems involving a multiplier
transformation and Ruscheweyh derivative

Alb Lupag Alina
Department of Mathematics and Computer Science, Faculty of Science
University of Oradea
1 Universitatii street, 410087 Oradea, Romania
alblupas@gmail.com

Abstract
In this paper we obtain some subordination and superordination results for the operator IRY'}" and we
m,n

establish differential sandwich-type theorems. The operator IRy’;" is defined as the Hadamard product of
the multiplier transformation I (m, A,l) and Ruscheweyh derivative R™.

Keywords: analytic functions, differential operator, differential subordination, differential superordination.
2010 Mathematical Subject Classification: 30C45.

1 Introduction

Consider H (U) the class of analytic function in the open unit disc of the complex plane U = {z € C: |z| < 1},
H (a,n) the subclass of H (U) consisting of functions of the form f(z) = a + ap2"™ + ap+12"™ + ... and
An={feHU): f(2) =2+ ans12" +..., 2 € U} with A = A;.

Next we remind the definition of differential subordination and superordination.

Let the functions f and g be analytic in U. The function f is subordinate to g, written f < g, if there exists
a Schwarz function w, analytic in U, with w(0) = 0 and |w(z)| < 1, for all z € U, such that f(z) = g(w(z)), for
all z € U. In particular, if the function ¢ is univalent in U, the above subordination is equivalent to f(0) = g(0)
and f(U) C g(U).

Let ¢ : C3> x U — C and h be an univalent function in U. If p is analytic in U and satisfies the second order
differential subordination

V(p(2), 2p'(2), 220" (2); 2) < W(2), for z € U, (1.1)

then p is called a solution of the differential subordination. The univalent function ¢ is called a dominant of
the solutions of the differential subordination, or more simply a dominant, if p < ¢ for all p satisfying (1.1). A
dominant ¢ that satisfies ¢ < ¢ for all dominants ¢ of (1.1) is said to be the best dominant of (1.1). The best
dominant is unique up to a rotation of U.

Let ¢ : C2x U — C and h analytic in U. If pand ¢ (p (), 2p’ (2) , 2%p” (2) ; z) are univalent and if p satisfies
the second order differential superordination

h(z) < (p(2), 20 (2), 2P (2)12),  z €U, (1.2)

then p is a solution of the differential superordination (1.2) (if f is subordinate to F', then F is called to be
superordinate to f). An analytic function ¢ is called a subordinant if ¢ < p for all p satisfying (1.2). An
univalent subordinant ¢ that satisfies ¢ < g for all subordinants ¢ of (1.2) is said to be the best subordinant.

Miller and Mocanu [6] obtained conditions h, ¢ and ¢ for which the following implication holds h(z) <
(p(2),20'(2),2°p" (2);2) = q(2) < p(2).

For two functions f(2) = 2z + 372, a;27 and g(z) = 2+ 372, b;2/ analytic in the open unit disc U,
the Hadamard product (or convolution) of f(z) and g (z), written as (f * g) () is defined by f (z) *x g(2) =
(f*9)(2) = 2+ 32725 ab27.

We need the following differential operators.

Definition 1.1 [5] For f € A, m € NU{0}, A\, I > 0, the multiplier transformation I (m,\,1) f(z) is defined by

the following infinite series I (m,\,1) f(2) =z + Y02, (%jm)m 0,29,
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Remark 1.1 We have (I + 1)1 (m+ 1, \1) f(2) = (1 +1 =X T (m,\1) f(2) + Xz (I (m,\ 1) f(2)), z€U.

Remark 1.2 Forl =0, A >0, the operator DY* = I (m, A,0) was introduced and studied by Al-Oboudi , which
reduced to the Salagean differential operator S™ = I (m,1,0) for A = 1.

Definition 1.2 (Ruscheweyh [8]) For f € A and n € N, the Ruscheweyh derivative R™ is defined by R" : A —
A,

Rf(z) = [(2), Bf(2) =2f (),
(n+ ) R™f(z) = 2(R"f(2)) +nR"f(2), zeU.

Remark 1.3 If f € A, f(z) = 2+ ]2, a;27, then R"f (2) = 2+ 372 Majzj forze U.

i=2 niG-1)

Definition 1.3 (/2/) Let \,l > 0 and n,m € N. Denote by IR;T;” : A — A the operator given by the
Hadamard product of the multiplier transformation I (m, A\,1) and the Ruscheweyh derivative R™, IRT’E"f (2) =
(I (m, A\, 1) % R™) f(2), for any z € U and each nonnegative integers m,n.

Remark 1.4 If f € A and f(2) = 2+ Y25 a;27, then IR f(2) = 2 + 372, (HAgi_ll)'H) (g'("j?:ll))!la?zj,
zeU.

Using simple computation we obtain the following relation.

Proposition 1.1 [I1/For m,n € N and A > 0 we have

o 141- A
IRA,lJrL f(z)= il

m,n A m,n !
IR () + = (TR () (1.3)
Definition 1.4 [7] Denote by Q the set of all functions f that are analytic and injective on U\E (f), where
E(f)y={¢cedU: limcf (2) = oo}, and are such that ' (¢) # 0 for ¢ € OU\E(f).
z—r

Lemma 1.1 [7] Let the function q be univalent in the unit disc U and 0 and ¢ be analytic in a domain D

containing q (U) with ¢ (w) # 0 when w € ¢(U). Set Q(z) = z¢' (2) ¢ (q(2)) and h(z) = 0(q(2)) + Q (2).

Suppose that Q is starlike univalent in U and Re (Zg((zz))) >0 for z € U. If p is analytic with p(0) = ¢ (0),

p(U) € D and 0 (p(2)) + 20" (2) ¢ (p(2)) < 0(q(2)) + 2¢' (2) ¢ (q(2)), then p(z) < q(z) and q is the best
dominant.

Lemma 1.2 [4] Let the function q be convex univalent in the open unit disc U and v and ¢ be analytic in a

domain D containing q (U). Suppose that Re (%{;ﬁ) >0 forz €U and 2. ¥ (2) = z¢' (2) ¢ (q(2)) is starlike

univalent in U. Ifp(z) € H[q(0),1]NQ, with p(U) C D and v (p(z)) + 20" (2) ¢ (p(2)) is univalent in U and
v(g(2)+2¢ (2)p(q(2) <v(p(2)+20 (2)d(p(2)), then q(2) < p(2) and q is the best subordinant.

2 Main results

We intend to find sufficient conditions for certain normalized analytic functions f such that ¢ (z) <

Z(SIR;::FI,'ILf(Z) ) ) )

W <q2(2), z€ U, 0<d <1, where g and g2 are given univalent functions.
ALl

z‘SIRTTL”f(z) . . . .

W € H(U) and let the function q(z) be analytic and univalent in U such that
PARAC

q(z) #0, for all z € U. Suppose that ZS(S) is starlike univalent in U. Let

Theorem 2.1 Let

ST PR (O B 4 )
R€<Bq()+ﬁq<)+1+ 7 q(z)>>0, (2.1)

fora,&,8,ueC, 5#0, z€U and

L+ ) IR (2)
A IRYT (2)

(I+1)

N (@& Biz) = at B

+8
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2
(1+1)(1+90) IR;T—Lnf (2) . Zéle\rfl-Q—Lnf (2) . ‘LLZ26 (IRTjLnf (Z))
Y I m+1,n o 1+5 o 2425
SR N (2 O) (rrz s )

If q satisfies the following subordination

B

U (B z) < ot €a(2)+la () + 5721, (23

Z(S m+1,n 2
for a,&,8,u e C, B#0, then W < q(2), and q is the best dominant.
ALl

z‘;IR:\"lJrl’"f(z)

Proof. Consider p(z) = W, z € U, z # 0, f € A Differentiating we obtain p’ (z) =
PWARAC
540 2RIy 2R gyt 2 (IRYTT )
hY (IRm nf( ))1+6 )\ ( an nf( )>1+5 \ (IR’;!L’,Z’!Lf(Z)>2+5

By using the identity (1.3), we obtain

2 (z)  S(+1) IHLIRYPT () (141 (1 +6) IRY (%) (2.4)
pz) A A CIRYTVMF(2) A IRYTYf (2) '

By setting 0 (w) := a + fw + pw? and ¢ (w) = g, it can be easily verified that 6 is analytic in C, ¢ is
analytic in C\{0} and that ¢ (w) # 0, w € C\{0}.

Also, by letting @ (2) = 20’ () 6 (q (2) = AL and & (2) = 0(q ())+Q (2) = a-+€q ()11 (q (2))*+ AL EL,
we find that @ (z) is starlike univalent in U.

We get I (2) = £q' (2) + 210 (2) ¢’ (2) + BLE + 2L L)

() d(=)
= )

So we deduce that Re( it )> Re( q(2)+ 2[5(12( )+1+Zq”(2) _Zq’(z)) > 0.

! z 2 4 / z
— Bz (’f]((z))) and g(i)) = %q (2) + %”qQ (z2)+1+

z

Q(z) a(z) a(z)
By using (2.4), we obtain o + £p (2) + u (p (2))° + ﬁ%ﬁj) =
(141) (+1) IRT2"F(2) L a4n(+6) IRV F(2) IRV (2) 22 (IRY " f(2))?
a+p >y +4 Y IRQTl’nf(z) B 2\ IRm+1 " 2) f(IRm,nf( ))1+6 12 (IRTLnf( ))2+25 .

By using (2.3), we have a +&p (2) + u(p ()* + BZE < a+£q(2) + (g () + BZLEL.

a(z) -
. mA1n g
W%q( 2), z € U and q is the best

Appying Lemma 1.1, we obtain p(z) < ¢ (z), z € U, i.e.

dominant. m

Corollary 2.2 Let m,n € N, \,1 > 0. Assume that (2.1) holds. If f € A and ¢\';" (o, B, 415 2) < a—l—fiigz

2
I (Hgi) + (1f£"2)(f+;z y fora, B, € C, 5#£0, -1 < B < A <1, where 1/) " s defined in (2.2), then

§IR77L+1 n.f(z) —< 1+AZ
m,n 1+5
(IR} 1(2) 1B

1+Az

e 1s the best dominant.

and

Proof. For ¢ (z) = iiéi, —1< B < A<1in Theorem 2.1 we get the corollary. m

Corollary 2.3 Let m,n € N, \,l > 0. Assume that (2.1) holds. If f € A and )" (o, B,p132) < a +

f(%ti) (H_Z ff’iﬁ, for o, B, 1,6 € C, 0 <y <1, B # 0, where ¢\'|" is defined in (2.2), then
51R7n+171f(z)

) , and (%fz) is the best dominant.

z

~
Proof. Corollary follows by using Theorem 2.1 for ¢ (z) = (ifi) ,0<y<1l m

Theorem 2.4 Let q be analytic and univalent in U such that q (z) # 0 and Z;ZQS) be starlike univalent in U.

Assume that

Re <2q (2)q (2) + %qu (2)q (z)) >0, for&,B,ueC, B8#£0. (2.5)
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IRV f(2)
If fe A —>2L %
ff (IRZL,inf(Z))1+6

defined in (2.2), then

€ Hg(0),1]NQ and ¢\'|" (o, B, p; 2) is univalent in U, where 3" (a, B, p1; 2) is as

a+6a(a) 4+ D <o 0,6, (2.

51R7n+1,n . .
Sl ffi)é , 2 €U, and q is the best subordinant.

implies q (z) < W

zélR;TflJrl’nf(z)
(IR;\’U”f(Z))li}é ’

By setting v (w) = a + fw + pw? and ¢ (w) = g it can be easily verified that v is analytic in C, ¢ is
analytic in C\{0} and that ¢ (w) # 0, w € C\{0}.

Since ’;((5((;))) _ q'(z)q(z)[é”“ﬂz)], it follows that Re (’;;((5((;))” = Re (%q (2) 4 (2) + 2¢* (2) ¢ (z)) > 0, for

a,B,ueC, u#0. ) , , ,
By using (2.4) and (2.6) we get a + &q (2) + (¢ (2))” + B%Z()Z) <a+&p(z)+ulp)” + %Z()Z). Applying
Z‘SIRTlerl’"f(z)

W, z € U, and q is the best subordinant. m
W

Proof. Consider p(z) := zeU,z#0, fe A

Lemma 1.2, we obtain ¢ (z) < p(z) =

Z51Rn1+1,nf(z)
MW E?—l[q(O),l]ﬂQ and
AL

2
z z A—B)z R
a—&-f}igz +u (iigz) + (1fxgz)(1le) =< w;rfl "(a, B3 2), for a, 8,6, u € C, B#0, -1 < B < A<1, where

Corollary 2.5 Let m,n € N, \,l > 0. Assume that (2.5) holds. If f € A,

5 m+41,n
mn : 144z _ 2 IR M (2) 14+Az .
Ni is defined in (2.2), then =5% < TR and {157 is the best subordinant.

Proof. For q(z) = }igz, —1< B < A<1in Theorem 2.4 we get the corollary. m

Z(SIRnH»l,nf(z)
(IRm,)\'r;.lf(z)g)l‘FTs €Hg(0),1]NQ and

A
ate(Lz) g (L 27+2/3“<wm’"( ; C 0,0 < <1, where ¢y;" is defined
1—z /j/ 1—2z 1—22 ALl 04,57M7Z>7f07”04>ﬁ7/1756 ;ﬂ# ) <’7_ ; Wi 67'91%\71 2] e.ﬁne

o ) m+1,n 0%
in (2.2), then (}fz) < W, and (%fz) is the best subordinant.

Corollary 2.6 Let m,n € N, \;l > 0. Assume that (2.5) holds. If f € A,

1—z
Combining Theorem 2.1 and Theorem 2.4, we state the following sandwich theorem.

N
Proof. For q(z) = (H’Z) , 0 <~ <1 in Theorem 2.4 we get the corollary. ®

Theorem 2.7 Let ¢1 and g2 be analytic and univalent in U such that ¢1 (z) # 0 and g2 (z) # 0, for all
z € U, with 20(2) g 20(2) being starlike univalent. Suppose that qi satisfies (2.1) and g2 satisfies (2.5).

q1(%) q2(%)
If f € A,

P IRTTL f(,
W € Hlg(0),1]NQ and PY;" (a, B, ;) is as defined in (2.2) univalent in U, then
ALl

o+ (2) + plq (2)° + Z8E <l (0,8, 2) < a+ €02 (2) + a2 (2)° + Z2E for a, 8,16 € C,

s 111_&?)
. ) JRTHLn
B # 0, implies 1 (z) < 22 IRV (2)
dominant.

W < g2 (2), and @1 and qa are respectively the best subordinant and the best
W

For ¢1 (2) = ﬁ’éiz, g (2) = iigiz, where —1 < By < By < A1 < A; <1, we have the following corollary.

22 IRYTV™ f(2)
(IRy " (=)' "
2 2
z z Al — z m,n z z
H1q(0),1]NQ and a+EFEE +p (}igiz) B < O (B 2) < a kTS (ﬂgiz) +
B(Az—Bs)z 5, for a,B,p,6 € C, B#0, -1 < By < By < Ay < Ay < 1, where Yy s defined in (2.2),

Corollary 2.8 Let m,n € N, X\l > 0. Assume that (2.1) and (2.5) hold. If f € A,

(1+A2Z>(1+B22
5 m+1,n
1+A2 Z IRA,l f(2) 1+As2 1+A 2 1+A52 . .
then 5355 < (R 1) =< 1755, hence 5% and 55 are the best subordinant and the best dominant,

respectively.
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1 Y1 1 72 .
For ¢; (2) = (1'5) , g2 (2) = (1'5) , where 0 < 7 < 9 < 1, we have the following corollary.

zélRm+1’"f(z)
WW € H[q(0),1]N
ALl

71 2m mon 2\ 72 . 272 .
Qanda+€ (1) "+ (12) 432 <0l (@B mz) < o€ (H2) T (12) T3 fora B €

C, B40,0< 1 <75 <1, where & is defined in (2.2), then (12" < ZIIE - (142)7
; ) M <2 <1, where 3" is defined in (2.2), then ($£2) < RO < (H2) ", hence
ALl

1 71 1 Y2 . . i
( +z) and ( +Z> are the best subordinant and the best dominant, respectively.

1—=z 11—z

Corollary 2.9 Letm,n € N, \,l > 0. Assume that (2.1) and (2.5) hold. If f € A,

Changing the functions 6 and ¢ we obtain the following results.

5 m+1,n
Theorem 2.10 Let W eHWU),feA €U, mneN, \l>0 and let the function q(z) be
SARACS

conver and univalent in U such that ¢ (0) =1, z € U. Assume that

Re <o‘;5 + ZZ///((,:))> >0, (2.7)

fora,BeC, 8#0, z€ U, and

I 51Rm+2,n 51 51Rm+1,n
szgrfl,n (a,ﬂ;Z) — 5( ;— 1) z Al f (12;_)6 ( B (A'i‘ 1)) Z Al f(lz-i_)(s (28)
(1R () (1R51 ()
2
sa+sy s (B ()
245 -
4 (7 s )
If q satisfies the following subordination
PN (a, B 2) < aq(z) + B2q (2), (2.9)

sy pmHln
SAie %) ffi)é < q(z), z € U, and q is the best dominant.

fora,f €C, §#0, 2 €U, then ot

25 m—+1,n o
(11;5?57]‘();53” z€U,z#0, f € A. The function p is analytic in U and p (0) = 1.
ALl z

. 6—11Rm,+1,n 5—11Rm+2,n s§—1 IRm+1,n 2
Differentiating we get p’ (2) = 5(+l) 2 O AN A5 XiTAE) ) ass) 2T HIRTT(2)

Proof. Consider p(z) :=

Py (IR;’”f’lnf(z))Ha P (IR;'”f,lnf(z))Ha - A (IR;n.’znf(z))Hé
By using the identity (1.3), we get
2
e mL,n § +1,7
I+ ZJIRA,?_Q’ fz) s+ Z5IR/\7Z+17 f(z) EE) z (]Rz”fl Lf(Z))

Yrprre) TN () Y (mprre)

zp' (2) (2.10)

By setting 0 (w) := aw and ¢ (w) := f, it can be easily verified that 6 is analytic in C, ¢ is analytic in C\{0}
and that ¢ (w) # 0, w € C\{0}.
Also, by letting Q (2) = 2¢' (2) ¢ (¢ (2)) = Bz¢' (z), we find that @ (z) is starlike univalent in U.

Let h(2) =60(q(2)) + Q(2) = ag(2) + Bz¢’ (z). We have Re (zS’((;))) = Re (% + z(f;,/((;))> > 0.
_ BU+y) 2 IRYE() ( 55(z+1)) ZIRTV ()
N e R YA (oS i

By using (2.10), we obtain ap (z) + Bzp’ (2)

Ba+s)(1+1) = (IRYT " f(2))
A (m;ﬁﬁ(@)“é

have p(z) < ¢(2), z € U, ie.

. By using (2.9), we have ap (z) + Bzp’ (z) < ag(z) + Bz¢’ (z). From Lemma 1.1, we
2P IRYTH" £ (2)

W < q(z), z € U, and q is the best dominant. m
ALl
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Corollary 2.11 Let q(z) = 342, c U, -1 < B < A< 1, m,n €N, X\l > 0. Assume that (2.7) holds. If

1+Bz’
feAand ¥\i" (a, ;2 )-<a}_tgz+ﬁ(§+32)2,foraﬂ€(c B#0,-1< B <A<, where $\" is defined in

z IRm+1 " f(2) 1+Az 1+ Az .
(2.8), then (Imef( OB =< 5o, and {755 is the best dominant.
ALl

Proof. For q(z) = iig;, —1 < B < A<1,in Theorem 2.10 we get the corollary. m

v

Corollary 2.12 Letq(z) = (}fj) ;m,n € N, A1 > 0. Assume that (2.7) holds. If f € A and '™ (e, B; 2) <
Z‘SIR;:tlJrl’TLf(z)
(IRy"f(2))°

o <1+z)7+ 287z (H'Z) ,fora,B€C,0<y <1, B#0, where Y\';" is defined in (2.8), then

1—z 1—22 \1-2

¥ %l
(%) , and (1“) is the best dominant.

Proof. Corollary follows by using Theorem 2.10 for ¢ (z) = (}fz)v, 0<y<1l =m

Theorem 2.13 Let g be convex and univalent in U such that q (0) = 1. Assume that

Re (gq/ (z)> >0, fora,B€C, B#£0. (2.11)

8 7 1,
z IR;f;r "f(2)

Iff e A,W € H[q(0),1]NQ and ¥\}" (av, B; ) is univalent in U, where ¥\ (a, B; 2) is as defined

in (2.8), then -
aq (2) + B2 (z) < ¥Y}" (a, B; 2) (2.12)
IRV TV £(2)

5, 0 € C, 0 #0, z €U, and q is the best subordinant.

implies q (z) < W

2P IRYTV" f(2)
(IRy " (=)'

By setting v (w) := aw and ¢ (w) := it can be easily verified that v is analytic in C, ¢ is analytic in C\{0}
and that ¢ (w) # 0, w € C\{0}.

Since ';((5((5)))) = %q’ (2), it follows that Re (255{2;) = Re (%q' (z)) > 0, for a, B € C, B # 0.

Now, by using (2.12) we obtain agq (z) + S2¢' (2) < ap(z) + Bzp’ (2), z € U. From Lemma 1.2, we have

) m—+1,n
q(z)<p(z) = = B ff’i)&, z € U, and ¢ is the best subordinant. m

(1R ()

Proof. Consider p (2) := z2€U,z#0, f € A The function p is analytic in U and p (0) = 1.

Corollary 2.14 Let q(z) = Hgi, -1<B<A<1,z¢eU mmneN, A\l > 0. Assume that (2.11)

ZSIRNL+1,7L o
holds. If f € A, Wﬂz)% e Hq(0),1]NQ, anda%igi + %iBfrz <" (a, B;2), for a,B € C, B #0,
1
2 m+1,n 2
—1< B <A<, where ¢\'|" is defined in (2.8), then %igi =< IR d 342 s the best subordinant.

5, an
m,n 1+6
(IRA,} f(z)) ) 1+Bz

Proof. For ¢(2) = %igi, —1 < B < A<1,in Theorem 2.13 we get the corollary. m

% ZS m+1, n 2
Corollary 2.15 Let g (z (%fz) ,m,n € N, X\l > 0. Assume that (2.11) holds. If f € A, M €
z (IR f(2)
-
Hg(0),1]NQ andoz( ) fﬁlj (i+§> %1/1;’Ll"(a,ﬂ;z),fora,ﬂ€@,O<”y§1,5750, where d)f\rfln 18

(5 m+1n 2
defined in (2.8), then ( ) [T and (lfz)v is the best subordinant.

m;","f( (IR f(2) !

Proof. Corollary follows by using Theorem 2.13 for ¢ (z) = (ifz)v, 0<v<1 =m

z
Combining Theorem 2.10 and Theorem 2.13, we state the following sandwich theorem.
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Theorem 2.16 Let ¢; and gz be convexr and univalent in U such that g1 (z) # 0 and g2 (2) # 0, for all

26 m+1,n 2
z € U. Suppose that q1 satisfies (2.7) and g2 satisfies (2.11). If f € A, (Hi?;’ijw’;f& €HIg(0),1]NQ , and
ALl
Vi (a,B;2) is as defined in (2.8) univalent in U, then aqi (2)+Bzd) (2) < ¥ (a, B;2) < gz (2) +B24¢5 (2),

s m-+1,n
for a,8 € C, B # 0, implies q1 (2) < w < q2(2), z € U, and q1 and qa are respectively the best
ALl
subordinant and the best dominant.

For ¢ (2) = ﬁ‘giz, g (2) = ﬂgzz, where —1 < By < By < A1 < Ay < 1, we have the following corollary.

Corollary 2.17 Let m,n € N, \;I > 0. Assume that (2.7) and (2.11) hold for qi (z) = ii‘;iz and ¢ (2) =
z& m—+41,n p _

71?7;1 f£+)5 € Hig(0),1] N Q and aitdiz 4 BBz Py (o, B 2)
(IRT" £(2)) :

1+B1z (1+Blz)2
=< a%igzz + "((f‘jgﬁjlz, zeU, fora,eC, B#0, -1 < By < By < A; < Ay < 1, where z/;f\rfl’" is defined in

) m+1,n
1+A;2 2 IR f(2) 1+ A5z 1+A; 2 1+ A2 .
(2.2), then 5% < TR < 1752, 2 € U, hence 1755 and {7525 are the best subordinant and the

best dominant, respectively.

}ig;j, respectively. If f € A,

1 71 1 Y2 .
For ¢1 (2) = ({fj) , g2 (2) = ({fj) , where 0 < 77 < 2 < 1, we have the following corollary.

.
Corollary 2.18 Let m,n € N, X\l > 0. Assume that (2.7) and (2.11) hold for q1 (z) = (%fz) " and g2 (2) =
D IRTTLT (2 e 2 A\ m,n
L5 e H[g(0),1)nQ anda (1£2) 42202 (1) <7 (0, B 2)
(IR} £(2)) ’

7 v
=< a(%) ’ + 28122 (H—Z> 2, z€U, fora,p €C, B#0,0<v <7 <1, where )'[" is defined in (2.2),

1—22 \1-2

Y1 sypmtin Y2 71 Y2
then <1fz) < Lfﬁl < (1f2) , 2 € U, hence <1fz) and (1fz) are the best subordinant and
1—z (IR';L”l'Lf(z)) 1—2z 1—2z 1—=z

the best dominant, respectively.

gt
(HJ) 27 respectively. If f € A,

1—2
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FUZZY STABILITY OF A CLASS OF ADDITIVE-QUADRATIC
FUNCTIONAL EQUATIONS

CHANG IL KIM AND GILJUN HAN*

ABSTRACT. In this paper, we consider the following functional equation
af(z+y)+bf(z—y)+cfly—=)
=(a+b)f(z) +cf(—z) + (a+c)f(y) +bf(—y)
for a fixed real numbers a,b,c with a = b+ ¢ and a # 0. We study the

fuzzy version of the generalized Hyers-Ulam stability for it in the sense of
Mirmostafaee and Moslehian.

1. INTRODUCTION AND PRELIMINARIES

In 1940, Ulam proposed the following stability problem (cf. [20]):

“Let G be a group and G5 a metric group with the metric d. Given a constant
0 > 0, does there exists a constant ¢ > 0 such that if a mapping f : G; —
G2 satisfies d(f(xy), f(x)f(y)) < c for all z,y € G1, then there exists a unique
homomorphism h : Gy — G with d(f(x), h(z)) < § for all z € G177

In the next year, Hyers [11] gave a partial solution of Ulam’s problem for the case of
approximate additive mappings. Subsequently, his result was generalized by Aoki
[1] for additive mappings, and by Rassias [19] for linear mappings, to consider the
stability problem with unbounded Cauchy differences. During the last decades, the
stability problems of functional equations have been extensively investigated by a
number of mathematicians ([5], [6], [7], [10], [18]).

Recently, the stability in fuzzy spaces has been extensively studied ([3], [12], [15],
[16], [17]). The concept of fuzzy norm on a linear space was introduced by Katsaras
[14] in 1984. Later, Cheng and Mordeson [4] gave a new definition of a fuzzy norm
in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek
type [13]. In 2008, for the first time, Mirmostaface and Moslehian [16], [17] used
the definition of a fuzzy norm in [2] to obtain a fuzzy version of stability for the
Cauchy functional equation

(1.1) flx+y) = f@)+ f(y)

and the quadratic functional equation

(1.2) flx+y)+ flz—y) =2f(x) +2f(y).

2010 Mathematics Subject Classification. 39B52, 39B72, 46540.

Key words and phrases. additive-quadratic mapping, fuzzy almost quadratic-additive map-
ping, fuzzy normed space.

* Corresponding author.
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2 CHANG IL KIM AND GILJUN HAN

We call a solution of (1.1) an additive mapping and a solution of (1.2) is called
a quadratic mapping. Also,

f@t+y)+fl@—y) —2f(x) - fly) = f(-y) =0
is called Drygas functional equation(see [8], [9] for detail.). It is easy to see that
the function f(x) = px? + gx is a solution of Drygas functional equation and so we
can expect that a solution of Drygas functional equation is an additive-quadratic
mapping.
Now, we consider the following functional equation

af(z+y) +bf(z —y)+cfly—x)
=(a+b)f(z) +cf(—z)+ (a+c)f(y) +bf(~y)

for fixed real numbers a,b, ¢ with a = b + ¢ and a # 0 and show the generalized
Hyers-Ulam stability of (1.3) in a fuzzy sense [18].

(1.3)

Definition 1.1. Let X be a real vector space. A function N : X x R — [0, 1] is

called a fuzzy norm on X if for all x,y € X and all s,t € R,
(N1) N(z,t) =0 for t <0;

(N )x—OlfandonlylfN(x t) =1 for all t > 0;

(N3) N(cx,t) = N(z, ‘C)lfc;éO

(N4) N(z +y,s+t) > min{N(z,s), N(y,t)};

(N5) N(z,-) is a nondecreasing function of R and lim;_,oc N(z,t) = 1;

(N6) for any = # 0, N(z,-) is continuous on R.

In this case, the pair (X , N ) is called a fuzzy normed space.

Let (X, N) be a fuzzy normed space. A sequence {z,} in X is said to be con-
vergent in (X, N) if there exists an « € X such that lim, . N(z, — z,t) = 1 for
all t > 0. In this case, x is called the limit of the sequence {x,} in (X, N) and one
denotes it by N — lim,, o 2, = 2. A sequence {z,} in X is said to be Cauchy if
for any € > 0, there is an m € N such that for any n > m and any positive integer
Py N(Zpyp — T, t) > 1 —¢forall t > 0.

It is well known that every convergent sequence in a fuzzy normed space is
Cauchy. A fuzzy normed space is said to be complete if each Cauchy sequence in it
is convergent and a complete fuzzy normed space is called a fuzzy Banach space.

2. SOLUTIONS AND THE GENERALIZED HYERS-ULAM STABILITY OF (1.3)

In this section, we investigate solutions of (1.3) and prove the generalized Hyers-
Ulam stability of (1.3) in fuzzy Banach spaces. Throughout this section, we assume
that (X, N) is a fuzzy normed space and (Y, N’) is a fuzzy Banach space. In
Theorem 2.3, it can be concluded that any solution of (1.3) is additive-quadratic.
We start with the following lemma.

Lemma 2.1. Let f : X — Y be an odd mapping satisfying (1.3). Then f is an
additive mapping.

Proof. Since a # 0, f(0) = 0. Since f is an odd mapping, the functional equation
(1.3) can be written by

21 afle+y)+00-)f(z-y)=(a+b=0c)f(x) +(a—b+c)f(y)
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for all z,y € X. Interchanging = and y in (2.1), we have

22)  af(z+y) - Ob-)f(x—y)=(a+b=0)f(y) + (a-b+)f(z)
for all x,y € X. By (2.1) and (2.2),

af(z+y)=af(x)+af(y)
for all z,y € X and since a # 0, f is additive. O

Lemma 2.2. Let f : X — Y be an even mapping satisfying (1.3). Then f is a
quadratic mapping.

Proof. Since a # 0, f(0) = 0. Since f is an even mapping, the functional equation
(1.3) can be written by

(2.3) af(z+y)+b+o)f(zr—y)=(a+b+o)f(z)+ (a+b+c)f(y)
for all z,y € X. Letting y = —y in (2.3), we have

(2.4) af(x—y)+b+c)f(z+y)=(a+b+c)f(x)+ (a+b+c)f(y)
for all ,y € X. Since a = b+ ¢, by (2.3) and (2.4), we have

2af(x —y) + 2af(x +y) =daf(z) + daf(y)
for all z,y € X and since a # 0, f is a quadratic mapping. |

Combining Lemma 2.1 and Lemma 2.2, we have the following theorem.

Theorem 2.3. Let f: X — Y be a mapping. If f satisfies (1.3), then f is an
additive-quadratic mapping.

For any mapping f : X — Y, we define the difference operator Df : X2 — Y
by
Df(z,y) = af(z+y)+bf(z—y)+cf(y—z)—(a+b) f(x)—cf (—2)—(a+c) f(y) —bf (—y)
for all z,y € X. For a given ¢ > 0, the mapping f is said to be a fuzzy q-almost
additive-quadratic mapping if
(2.5) N'(Df(z,y),t+s) > min{N(z,1?), N(y, s*)}
for all x,y € X and all positive real numbers t, s.

Theorem 2.4. Let g be a positive real number with q # 1, % and f : X — Y

a fuzzy q-almost additive-quadratic mapping. Then there exists a unique additive-
quadratic mapping F : X — 'Y such that
(2.6)
sup, < {N (@, (1 — 2°7")a|?s)}, ifg>1
N(F(x)—= f(x),t) > < sup, {N(z, (2P71 = 1)9(2 — 20~ 1)9|q|957)}, if L <g<1
sup, . {N(z, (2P~ — 2)7|a|?s7}, if0<g< %

holds for all x € X and allt > 0, where p = %.
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4 CHANG IL KIM AND GILJUN HAN
Proof. By (2.5), (N2), and (N4), since a = b + ¢, we have

t

N/(Df(0,0), t) - N/(f(O), m

)EN/(Oa tq)zl

for all ¢ > 0 and by (N2), f(0) =0.
Case 1. Let ¢ > 1 and define a mapping J,f : X — Y by

f@rz) + f(—2"x) n f@rz) — f(-2"x)

Tnf (@) = 2. 4n 2. on

for all x € X and all positive integer n. Then we have

Jnf(-T) - Jn-‘rlf(x)

(27) 27L+1 -1 2n+1 + 1

= 7Df(—2"1‘, _2n.')3) — W

n n
PR STEE Df(2"x,2"x)

for all x € X and all positive integer n. By (2.5), (2.7), (N3), and (N4), we have

(2.8)
m+n—1 2pi
N/(anf(x) - ']7n+nf(x)7 Z ‘CL| . i tp)
m+n—1 m+n—1 opi
=N'( Y [if@) = Jimaf@)], > T )
. / 2pi p .
> min{N'(J; f(x) — Jit1.f(2), ol 21,15 ) | m<i<m+n-—1}
9i+1 _ | , , 21+l 4 1 S QP

> : ! - __ 9 _ 9 - — 3 (2 ; p
7m1n{N(a'2.4H_1Df( 2'x,—2'x) a~2-42+1Df(2x’2$)’|a\-21t) |

m<i<m+n-—1}

2i+1 4 1 (201 4 1)2r

> min{min{N’( Df(2'x,2%), tP),

o2 g oA
2i+1 _ 1 ; ; (2i+1 o 1)2;01' .
Ny g DI 20, =200, et} [ ms i S metn = 1)

> min{min{N’(Df(2'z, 2'z), 2P 1#P), N'(D f(—2'z, —2'x), 2P " 1P)}m < i < m +n — 1}
> min{min{N(2z,2t), N(-2'2,2)} | m <i<m+n—1}
= N(x,t)

for all x € X, all t > 0, and all positive integers m,n. Let € > 0 be given. Since
lim; o N(x,t) = 1, there is a ¢; such that N(z,t;) > 1 — €. Let to > t;. Since
p <1, ZZOZO %té’ is convergent. Let s > 0. Then there is a positive integer k

such that X771 22 4P ¢ for m,n > k and so by (2.8), we have

i=m |a]-2%
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N/(Jmf<$) - Jm+nf(x)v S)

m+n—1 2pi
> N'(Jf (2) = Tminf(2), Y a2t
> N(z,t2)
>1—¢€

for all z € X. Hence {J,f(x)} is a Cauchy sequence in (Y, N’). Since (Y,N’) is a
fuzzy Banach space, we can define a mapping F': X — Y by

F(z)=N'— lim J,f(z)
n—oo
for all x € X. Letting m = 0 in (2.8), we have

14
(2.9) N'(f(z) = Jnf(2),t) > N(2, —5=5—5—)
> izo ez
for all z € X, all positive integer n, and all ¢ > 0. By (N4), we have
N'(DF(z,y),t)

> win{N'(a[F ~ Juf)(e +9), 73) N'OF = Tl = 9), 17):

@10)  N(EF = Lfly—2) 1) N (@ + DIF - Jufl(a), 5)
= Nl = Jnf)(=2), 1) N'(a + OF = Jaf)(0), 1)
~ N'(IF = T f)(~9), 1) N'(Ju DS ,9), 1))

for all x,y € X and all positive integer n. The first seven terms on the right-hand
of (2.10) tend to 1 as n — oo and by (N4), we have

N'(JaDf (2,1, 5)

Df(—2"x, —2"y) t Df(2"x,2"y) t

2.11 > min{ N’ = AT A
@1) iSO N ),

Df(=2"z,—2"y) t Df(2"x,2"y) t
N/ I _ NI 9 -
( 2.2n ’8)7 ( 2.2n ’8)}
for all z,y € X, all positive integer n and all ¢ > 0. By (N3) and (2.5), we have

Df(£2"x, £2"y) t
NI 9 -
( 2. 4n '3
= N'(Df(£2"z, £2"y, 4" t))
> min{ N (2"z, 2912 =3)2) N (27y, 203n=3)19)}

> min{ N (z, 22~ Dn=3449) N (y, 2(2a-1n=3a40)}

(2.12)

for all z,y € X, all positive integer n, and all ¢ > 0. Since ¢ > 1, by (2.11) and
(2.12), we have

lim N'(J,Df(x,y), 5) =1

n—oo
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and so by (2.10), N'(DF(x,y),t) = 0 for all z,y € X and all ¢ > 0. By (N2),
DF(z,y) =0 for all z,y € X and by Theorem 2.3, F' is additive-quadraic.

Now we will show that (2.6) holds. Let x € X, ¢ >0, s > 0 with 0 < s < ¢ and
0 < e < 1. Since F(z) = N’ — lim,,_,o0 J,, f(2), there is a positive integer n such
that

N'(F(z) — Jof(x),t —s) >1—¢
and so by (2.9),
N'(F(z) = f(x),t)
> min{N'(F(z) — Juf(x),t — ), N'(Juf(z) = f(x),5)}

q
Z Hlll’l{l — €, N(I, ﬁ)}

Sy 2l

> min{l — ¢, N(z, (1 — 2°71)%5%|q|?)}.

and so we have (2.6).
To prove the uniqueness of F', let F} : X — Y be another additive-quadratic
mapping satisfying (2.6). Then

F(z) — Fi(x) = J, F(z) — JoFi(x)
for all x € X and all positive integer n. Hence by (N4), (N5), and (2.6), we have
N'(F(x) - Fi(x),t)
= N'(J,F(z) — J, Fi(z),t)
> min{N'(J,F(z) — Jn f(z), %), N'(JnFi(z) — Jn f(z), %)}
F@2rz) — f(2"z) ¢ F(=2"z) — f(—2"x) ¢t

> min{N'( 5 an 8),]\7/( 5 ’é)a
F(2"z) — f(2» F(-2"z) — f(—2"
(B TR by g P2 T2
WAL & g A )
Fi(2"z) — F(2» Fi(—=2"x) — f(—2"
> sup{N(2"z, (1 — 2P~ 1)12(n=3)444|g|9)}
s<t
> sup{N(z, (1 — 2p*1)q‘a|q3q2(q*1)n*3q)}
s<t

for all z,y € X, all positive integer n and all 0 < s < . Since q¢ > 1,
lim sup{N(z, (1 — 2P—1)Q|a|qsq2(q—l)n—3q} -

Nn—00 gt

and so N'(F(z) — Fy(x),t) =1 for all t > 0. Hence F = Fj.

Case 2. Let % < g < 1 and define a mapping J,f : X — Y by

I L ) — (-2 )

Jnf(x) =
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for all x € X and all positive integer n. Then we have

Inf(@) = Jnt1f(z)
A 2"
= — - z,2” xr) — —— —27 T, —2 x
(2 13) 5 Df 2 (n+1) 2 (n+1) 5 Df 2 (n+1) 2 (n+1)
: - a - a

1 1

for all x € X and all positive integer n. By (2.5), (2.13), (N3), and (N4), we have

(2.14)
m+n—1 i — (i i
2p1+1 21 p(i+1)+4
N/(Jmf(l‘) - Jernf(m)? Z [|a‘ . 4it1 + ‘a| ]tp)
i=m
m+n—1 m+n—1 : (s :
2pz+1 21 p(i+1)+1
Nl( Z [sz(l‘) - Ji+1f(x)]a Z [‘a| . 4it1 + |a‘ ]tp)
) , 2pi+1 21—p(i+1)+i )
> min{N (Jif(x)_‘]i+1f(x)’[‘a|,4i+1 + al ) | m<i<m+n-—1}
1 . . 1 ) )
. / i % i i
2i

, . 20 , ,
Df(g—(z+1)%7 2—(z+1)x) + ﬁDf(_Q—(erl)gC7 —2_(”'1)90),

2-a
opi+1 ) 9l—p(i+1)+i )
— t <1< -1
la] - 4T + a] ) | m<i<m+n—1}
. . ! 1 i [ 2pi+1 p
Z mln{mm{N (WDJC(Z Z, 2 l'), Wt ),
! L Df(—2iz, 2 2
- 4 - v - v 7t
(G/'2'41+1 f( €L, 1')7 ‘CL|'2'4Z+1 )7
2i ) ) 21—p(i+1)+i
N’ D 2—(z+1) 2—(z+1) 2 yp
(gog DA 74 0), Zomtn)
9i . - 9l—p(i+1)+i
N’(2 Df(—27 (g _9=(+ >x),27||tp)} | m<i<m+n-—1}
- a - |la

> min{min{N'(Df(2'z, 2'z), 20" T1#P), N'(D f(—2'x, —2'x), 2P 1¢P),
N’(Df(Qf(Hl)x, 2*(i+1)$)7 21*10(2'+1)t10)7 N’(Df(—27(i+1)x, _2*(i+1)x)7 21*P(i+1)tp)} |
m<i<m-+n-—1}
> min{min{ N (2'z, 2't), N(—2'x, 2't), N(2~ Tz, 2= (+Dy),
N(—270Fg 27U | m<i<m+4n—1}
= N(x,t)

for all x € X, all t > 0, and all positive integers m,n. Let € > 0 be given. Since
lim; o N(z,t) = 1, there is a ¢; such that N(z,t;) > 1 — €. Let to > t;. Since

n+1 1—p(n+1)+n . .
1<p<2, Zfzo[hfﬁ““ +2 p|a‘ |¢5 is convergent. Let s > 0. Then there is a
.. . _ i+l 1—p(i+1)+i
positive integer n such that Z:ZT: 1[‘3‘1?4#1 + 2 p‘al |t5 < s for m,n > k and
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so by (2.14), we have
N/(Jmf(x) - J7n+nf(x)7 5)

m+n—1 i (i 1
2pz+1 21 p(it+1)+i
> N/(Jmf(l‘) - Jm+nf(l'), Z [|(l| . 4it1 + |a| ]tg)
i=m
> N(x7t2)
>1—c¢

for all z € X. Hence {J, f(x)} is a Cauchy sequence in (Y, N’). Since (Y,N’) is a
fuzzy Banach space, we can define a mapping F': X — Y by

F(z)=N'— lim J,f(x)
n— oo
for all x € X. Letting m = 0 in (2.14), we have
14
=i (B + 2l
for all z € X, all positive integer n, and all ¢ > 0. By (N4), we have
N'(DF(2,y),t)

(2.15) N'(f(z) = Juf(x),t) = Nz,

)

> min{ N (alF — Ju fl(e + ), 17) N'OLF — Jufl(e — 9), 1)
t

e16)  NCF—Juflly — ), 1) N'((a+ DIF ~ o fl(x), 1)
t t
7ﬁ ’ﬂ)

= N'OIF = Jnf)(=9), 1), N' (D (@), )}

for all z,y € X and all positive integer n. The first seven terms on the right-hand
of (2.16) tend to 1 as n — oo and by (N4), we have

= N'(e[F = Jnfl(=2), =), N'((a+ ) [F = Jnf](y)

N'(JuDf(r,1), 2)
(2.17) > min{N/(Df(_inz;_Wy), é), N’(w, é),

n— —n —n t n— —n —n t
N'(2"'Df(2 "z,2 y),§)7N’(2 'Df(—27 "z, -2 y),g)}

for all 2,y € X, all positive integer n and all ¢t > 0. By (N3) and (2.5), we have

o (RICE2 2y 4
(2.18) 2. 4n '8
> min{ Nz, 209~ Dn=3949), N (y, 220~ Dn=3ag2))

and
t
N'(2" 'Df(+£2 "z, £27"y), —
210 (21D ( D5
> min{ N (z, 20707 =3049) N (4 20 -0n=30)a)1
for all x,y € X, all positive integer n, and all ¢ > 0. Since % < q <1, by (2.17),
(2.18), and (2.19), we have

lim N'(J,Df(x,y), 5) =1

n—oo
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and so by (2.16), N'(DF(x,y),t) = 0 for all z,y € X and all ¢ > 0. By (N2),
DF(z,y) =0 for all z,y € X and by Theorem 2.3, F' is additive-quadratic.

Now we will show that (2.6) holds. Let x € X, ¢ >0, s > 0 with 0 < s < ¢ and
0 < e < 1. Since F(z) = N’ — lim,,_,o0 J,, f(2), there is a positive integer n such
that

N'(F(x) — Jof(x),t—5)>1—¢
and so by (2.15),
N'(F(z) = f(x),t)
> min{N'(F(z) — J f(x),t — s), N'(Jof(x) — f(z),s)}
[Z?:_ol( |a2|l.);i1 + gl—p‘(;‘rl)ﬂ )}q )}

> min{l — ¢, N(z, (2P7! — 1)9(2 — 2P 1)9|a|%57)}.

> min{l — ¢, N(z,

and so we have (2.6).
To prove the uniqueness of F, let F; : X — Y be another additive-quadratic
mapping satisfying (2.6). Then

F(z) — J,F(x) = Fi(z) — J, F1(x)
for all x € X and all positive integer n. Hence by (N4), (N5), and (2.6), we have
N'(F(z) — Fi(x),t)
= N'(J, F(z) — Jo Fi(z),t)

> min{N'(J F(2) = Juf ), 5) N (i (@) = Ju (), )}

N'(2" Y [F(27"2) — f(27"2))], é% N'2"7HF(=27"2) = f(=27"2))], é)a
N,(F1(2 g;);nf(z I)7§)7N,(F1(*2 z)inf(*? x)’é),

N R R ) - f2 ) ) N @R (<2 ) — -2 ), D)
> sup{N (2", (2 = 1)7(2 — 277114 De]a157))
2 sup{N (z, (271 —1)7(2 = 227120802 057)

> min{N’(

for all x,y € X, all positive integer n and all ¢t > 0. Since % <qg<1, N(F(x)—
Fi(z),t) =1 for all t > 0. Hence F = F.

Case 3. Let 0 < ¢ < % and define a mapping J,f : X — Y by
Jnf(x) = 227127 ) + f(=27"2)] + 2" [f(27") — f(—27")]

for all x € X and all positive integer n. Then we have

(2.20)
Jnf (@) = Jny1f(2)
22n71 + 2n71 227171 _ 2n71

Df(2~ g 9=+l y) 4

Df(—2~ (g _o=(n+1) 4y
a a ’
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for all z € X and all positive integer n. By (2.5), (2.20), (N3), and (N4), we have

m+n—1 91l—p(i+1)+2i

N/(Jmf(x) - Jm-l-nf(x)? ' |a| tp)
m+n—1 min—1 51 _p(i+1)+2i
“NCY @) = Saf@l 3 )

9l—p(i+1)+2i

> min{N'(J; f(z) — Jis1f(x), )y | m<i<m+n-—1}

|al
22i—1 2i—1 ) )
> min{N’(7+Df(2_(‘+1)x, 2+ )
a
22i—1 _ 21’—1 . .
+ = Df(—27 D 9=y,
a |al

221’*1 + 27271 222’*1 +2i71
" d
222’71 _ 21'71 . . 221'71 _ 27571
N'(Z =2 Df(—2-(#Dy 9=y 2 — 2
a lal
| m<i<m+n-—1}
> min{min{ N’ (D f(2~(+V g, 27D ) ol-p(+1)yp)
N'(Df(=27 g —9=@F D) ol=pG+yy | iy < i <m+n—1}
> min{min{ N (270 Yy 270+ N(—270FDg o= (+HUHY | m<i<m+n—1}

21—p(i+1)+2i
) I m<i<mAn—1)

> min{min{N’( Df(2~F g o=+ y) 21=P(EH+1)p)

Qlfp(iJrl)tp)}

= N(z,t)
for all z € X, all ¢ > 0, and all positive integers m,n. Similar to Case 1. and
Case 2., there is a unique cubic mapping C' : X — Y with (2.6). |

We can use Theorem 2.4 to get a classical result in the framework of normed
spaces. For example, it is well known that for any normed space (X,|| - ||), the
mapping Nx : X x R — [0, 1], defined by

Ny (o.1) = 0, ift <|z|
’ Loif t > ||z

a fuzzy norm on X. In [15], [16] and [17], some examples are provided for the fuzzy
norm Nx. Here using the fuzzy norm Nx, we have the following corollary.

Corollary 2.5. Let f : X — Y be a mapping such that f(0) =0 and

(2.21) IDf(z,y)ll < llzll” + [yl

for a fized positive number p such that p # 1,2. Then there exists a unique additive-
quadratic mapping F : X — 'Y such that the inequality

azallzl?, ifl1<p
IF(z) = f(2)]| < § @=peae ozl F1<p<2
@y l=l?, if2<p

holds for all x € X.
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Proof. By the definition of Ny, we have

o, its+e<Di@ )
M (DI s+t) = {1, it s+t > |Df(ay)l.

for all z,y € X and all s,t € R. Now, we claim that

Ny (Df(z,y),s +1t) > min{Nx (z,s?), Nx(y, 1)}
for all z,y € X and s,t > 0. If Ny (Df(z,y),s +t) =1, then it is trivial. Suppose
that Ny (Df(z,y),s +t) = 0. Then s+t < ||Df(z,y)| and by (2.21), either
s < Jlz||? or t < ||ly||P. Hence either Nx(z,s7) = 0 or Nx(y,t?) = 0 and thus
f is a fuzzy g-almost additive-quadratic mapping. By Theorem 2.4, we have the
results. O

The condition p # 1,2 in Corollary 2.5 is indispensable. The following example
shows that the inequality (2.21) is not stable for p = 1, 2, especially in the case of
b=2 and c = —1. We will give the proof when p =1, and the proof when p =2 is
similar. For any f: X — Y, let fo(x) = w and fo(x) = w

Example 2.6. Define mappings ¢,s : R — R by

z, if|zl<1

tz)=¢9-1, ifx<-1
1, ifl<u,
22, if |z < 1

s(z) = :
1, ortherwise

and a mapping f : R — R by

= t(2mz)  s(2nw)
fa)= 342D 4 22D

n=0

We will show that there is a positive integer M such that

(2.22) |Daf(x,y)| < M(|z| + |yl)
for all z,y € R, where
Dag(w,y) = g(x +y) +29(x —y) — g(y — ) — 3g(x) + g(—2) — 29(—y).

But there do not exist an additive-quadratic mapping F' : R — R and a non-
negative constant K such that

(2.23) |F(z) - f(z)] < K|z|?
for all xz € R.

Proof. Note that s,(z) = 0, to,(z) = t(x), and |f(x)] < 2 for all z € R. First,
suppose that 3 < |z| + |y|. Then |Daf,(z,y)| < 40(|z| + |y|). Now suppose that
1> |z| 4 |y|. Then there is a non-negative integer m such that

1 1
WS‘I|+|M<W
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and so 2™|z| < 3, 2™|y[ < 3. Hence {2™(z £y), 2™z, 2™y} C (-1, 1) and so
for any n =0,1,2,---,m, Doto(2"x,2"y) =0 for all z,y € X. Thus

oo

e

1 ., 1 ., 40

DQfO T y 227 1‘72 y) = Z 27D2t(2 €L, 2 )— om+2 _40(‘$|+‘y|)
n=0 n=m-+1

Note that te(z) = 0, se(z) = s(z), and |fe(z)| < 3 for all z € R. First, suppose
that § < |z] + |y|. Then |Dafe(z,y)| < 228(|z| + |y|) for all ,y € R. Now suppose
that z > |z| + |y|. Then there is a non-negative integer k such that

S s =

1 1
ok+2 = (|$| + |y|) o+

Hence {2F(z +y), 2Fz, 2Fy} C (=1, 1) and so for any n = 0,1,2,- - -, m,
Dys.(2"x,2"y) = 0. Hence

— 1 8 1
D2fe {E y Z 4n DQSE( €, 2" ) = Z 47D236(2nx72ny) é g . ﬁ
n=0 n=k+1

and so we have . ) )
(Dasete ) <4(5)" (1al+1ol) "

Thus we have

Dafeli,y) < 22 (Ja] +1y).

and so we have (2.22).
Suppose that there exist an additive mapping A : R — R, a quadratic mapping
@ : R — R, and a non-negative constant K such that A+ @ satisfies (2.23). Since
|f(z)] < 22, by (2.23), we have
10
3n
for all x € X and all positive integers n and so

M)

10
- Kla|* < +Q(V@*+KM2

Q)| < Klaf?
for all x € X. Hence by (2.23), we have

|f = Al@)] < 2K]a|?

for all x € X.
Since f,, A are odd and f. is even,

(2.24) [fe(2)| < 5 “ﬂ()+ﬁ%@-wﬂxﬂ+uu—w%hﬂbﬁ)—AGﬂN < 4K|x|?

for all z € X. Take a positive integer [ such that | > 4K, and pick x € R with
0 < 2z < 1. Then

oo -1
felz) = s 4n > Iz? > 4K x>
n=0 n=0
which contradicts to (2.24). O
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Abstract

In this paper, we devoted study exact controllability for fuzzy differen-
tial equations with the control function in credibility spaces. Moreover we
study exact controllability for every solutions of fuzzy differential equa-
tions. The result is obtained by using extremal solutions.

1 Introduction

The theory of controlled processes is one of the most recent mathematical con-
cepts to enable very important applications in modern engineering. However,
actual systems subject to control do not admit a strictly deterministic analysis
in view of various random factors that influence their behavior. The theory of
controlled processes takes the random nature of a systems behavior into account.
Many researchers have studied controlled processes in a credibility space. Ara-
postathis et al. [1] studied the controllability properties of the class of stochastic
differential systems characterized by a linear controlled diffusion perturbed by a

*This study was supported by research funds from Dong-A University.
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smooth, bounded, and uniformly Lipschitz nonlinearity. Kwun et al. [8] proved
the approximate controllability for fuzzy differential equations driven by Liu
process. Lee et al. [10] examined the exact controllability for abstract fuzzy
differential equations in a credibility space.

Recently, Kwun et al. [14] studied the existence of extremal solutions for
fuzzy differential equations driven by Liu process. Kwun et al. [6, 7] have
studied the existence of extremal solutions for fuzzy differential equations in a
n-dimensional fuzzy vector space. In this paper, using the extremal solutions, we
study the exact controllability for every solutions of fuzzy differential equations
in credibility space. We consider the following fuzzy differential equation:

{ dxz(t,0) = f(t,x(t,0))dCy + Bu(t), t € [0,T], (1)
x(0) =z € En,

where the state function z(¢,6) takes values in X (C Fy) and another bounded
space Y (C Eyn). FEn is the set of all upper semi-continuously convex fuzzy
numbers on R, (60, P,Cr) is credibility space, the state function = : [0,7] x
(©,P,Cr) — X is a fuzzy process, f : [0,7] x X — X is a regular fuzzy
function, u : [0,T] x (©,P,Cr) — Y is a control function, B is a linear bounded
operator from Y to X. C; is a standard Liu process, x¢ € E is an initial value.

2 Preliminaries

In this section, we give basic definitions, terminologies, notations and lemmas
which are most relevant to our investigated and are needed in later section. All
undefined concepts and notions used here are standard.

A fuzzy set of R™ is a function w : R™ — [0,1]. For each fuzzy set u, we
denote by [u]® = {x € R™ : u(x) > a} for any « € [0, 1], its a-level set. Let u,v
be fuzzy sets of R"™. It is well known that [u]® = [v]* for each « € [0, 1] implies
u = v. Let E™ denote the collection of all fuzzy sets of R™ that satisfies the
following conditions:

(1) w is normal, i.e., there exists an o € R™ such that u(xg) = 1;

(2) w is fuzzy convex, ie., u(Ax + (1 — N)y) > min{u(x),u(y)} for any
z,ye R, 0 <A< 1;

(3) u(x) is upper semi-continuous, i.e., u(zg) > limy_,oou(zy) for any z) €
R" (k=0,1,2,...), zp — xo;

(4) [u]® is compact.

Definition 2.1. [17] The complete metric Dy, on Ey is defined by
Dp(u,v) = sup dp([u]®,[v]*)
0<a<l
= sup mas{fuf — vf],Jus — o2},
0<a<l

for any u,v € En, which satisfies dy, (v + w,v + w) = dr(u,v).
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Definition 2.2. [5] Let u,v € C([0,T], Ex). The metric H; on C([0,T], Exn)
is defined by
Hl(uuv) = sup DL(u(t)aU(t))

0<t<T

Let ©® be a nonempty set, and let P the power set of ©. Each element in
P is called an event. In order to present an axiomatic definition of credibility,
it is necessary to assign to each event A a number Cr{A} which indicates the
credibility that A will occur. In order to ensure that the number Cr{A} has
certain mathematical properties which we intuitively expect a credibility to
have, we accept the following four axioms:

1. (Normality) Cr{A} = 1.

(
2. (Monotonicity) Cr is increasing, i.e., Cr{A} < Cr{B} whenever A C B.
3. (Self-Duality) Cr is self-dual, i.e., Cr{A}+Cr{A°} = 1 for any A € P(O).
(Maximality) Cr{U;A;} = sup, Cr{4;} for any {4;} with Cr{A;} <0.5.
Definition 2.3. [11] Let £ be a fuzzy variable with the possibility distri-
bution function p : R — [0,1]. A fuzzy variable ¢ is said to be normal if there

exists a real number r such that u(r) = 1. It is well known that the possibility
of {& < r} is defined by

Pos{¢ < r} = sup p(u)

u<lr

while the necessity of {¢ < r} is defined by

Nec{¢ <r} =1—Pos{¢ <r} =1—sup u(u).

u<r

Definition 2.4. [11] The set function Cr is called a credibility measure if
it satisfies above four axioms, and defined as follows:

Cr{A} = (Pos{A} + Nec{4}),

where Pos{A} =1 — Nec{A°} with A° is the complement of A.

Definition 2.5. [12] Let © be a nonempty set, P be the power set of ©, and
let Cr be a credibility measure. Then the triplet (0, P, C..) is called a credibility
space.

Definition 2.6. [13] A fuzzy variable is a function from a credibility space
(©,P,C,) to the set of real numbers.

Definition 2.7. [13] Let T be an index set and let (©, P, C;) be a credibility
space. A fuzzy process is a function from T x (©,P,C,) to the set of real
numbers.
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That is, a fuzzy process x(t,0) is a function of two variables such that the
function x(¢*,0) is a fuzzy variable for each t*. For each fixed 6*, the function
x(t,0%) is called a sample path of the fuzzy process. A fuzzy process x(t,0) is
said to be sample-continuous if the sample path is continuous for almost all 6.

Definition 2.8. Let (0,P,C,) be a credibility space. For fuzzy ran-
dom variable z(¢,0) in a credibility space, for each a € (0, 1], the a-level set
[x(t,0)]" = [z} (¢,0),22(¢,0)] is defined by

xi'(t,0) = inf (¢, 0) = inf{a € R|z(t,0)(a) > a},
i (t,0) = supx®(t,0) = sup{a € R|z(t,0)(a) > a}.

Definition 2.9. [11] Let & be a fuzzy variable and r is a real number. Then

the expected value of ¢ is defined by

—+o0

0
E¢ = Cr{¢ > r}dr —/ Cr{¢ < r}dr
0 —0o0

provided that at least one of the integrals is finite.
Definition 2.10. [13] A fuzzy process C; is said to be a Liu process if
(1) Co = 0;
(2) C; has stationary and independent increments;

(3) every increment Cyi s — C; is a normally distributed fuzzy variable with
expected value et and variance o2t?, whose membership function is

u(x) = 2(1 + exp (77\1}6—0:1%))1’ x € R.

The parameters e and o are called the drift and diffusion coeflicients, respec-
tively. Liu process is said to be standard if e = 0 and o = 1.

Definition 2.11. [3] Let x(t) be a fuzzy process and let C; be a standard
Liu process. For any partition of closed interval [¢,d] with ¢ =t < -+ < ¢, = d,
the mesh is written as A = maxj<;<n(t; —t;—1). Then the fuzzy integral of x(t)
with respect to Cy is

n

d
| a0aci = fim S attin)(C, i)

i=1
provided that the limit exists almost surely and is a fuzzy variable.

Lemma 2.1. [3] Let C; be a standard Liu process. For any given 6 with
Cr{6} > 0, the path C is Lipschitz continuous, that is, the following inequality
holds

|Cy, — Ch,| < K(0)|t1 — tof,

where K is a fuzzy variable called the Lipschitz constant of a Liu process with

K@) = { suPgesc =S Cr {0} > 0,

0, otherwise,
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and E[KP] < oo, Vp > 0.

Lemma 2.2. [3] Let C; be a standard Liu process, and let h(t;c) be a
continuously differentiable function. Define z; = h(t; C;). Then we have the
following chain rule

Oh(t:Cy) ,, , Oh(t:C))

ot ac 90

dIt =

Lemma 2.3. [3] Let f(t) be continuous fuzzy process, the following inequal-
ity of fuzzy integral holds

[ swac| <k [ o,

where K = K(0) is defined in Lemma 2.1.

Definition 2.12. [14] For the partial ordering <r, a function a € C([0, T] x
(©,P,C,), En) is a <p-lower solution for equation (1)(u = 0) if

a(t,0) <7 U(t)zo + [3 Ut — 5)G(s,a(s,0))dC(s), t € [0,T], @)
CL(O) <rzg € En

and a function b € C([0,T]x (0, P, C,), En) is a <p-upper solution for equation

(1)(u=0) if

{ b(t,0) >r S(t)xo + [5 S(t — 5)F(s,b(s,0))dC(s), t € [0, T], )
b(O) >rxg € En.

Theorem 2.1. [14] Let a,b € C([0,T] x (©,P,C,), Ex) be, respectively,
<p-lower and <p-upper solutions for equation (1)(u = 0) on [0, T]. Then, there
exist monotone sequences {a,} 1 p, {bn} I vin C([0,T) x (©,P,C,), Exn), where
p,7 are extremal solutions to equation (1) in the stochastic fuzzy functional
interval [a,b] := {z € C([0,T] x (©,P,C,), En)|la <p x <r bon [0,T]}.

3 Exact controllability for fuzzy differential equa-
tion using extremal solutions

In this section, we study exact controllability for fuzzy differential equation using
extremal solutions (1). In [14], Park et al. proved the existence of extremal

solutions for the equation (1). Hence we consider extremal solutions for the
equation (1), for each u in Y.

{ xe =U(t)xg + fot Ut — s)G(s,xs)dCs + fg U(t — s)Busds, (4)
z(0) = z¢ € En,
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where U(t) = e"M? is continuous with U(0) = I, |U(t)| < ¢, ¢ > 0, for all

t € [0,7]. And
{ xy = S(t)xo + fot S(t — s)F(s,25)dCs + fg S(t — s)Bugds, (5)
1‘(0) =uz0 € Ey,

where S(t) = €Mt is continuous with S(0) = I, |S(t)| < d, d > 0, for all
t€[0,T].

Now we assume the following hypotheses:
(H].) For Li,Ly >0, ¢ € En,

i, ([U(@)o)”, [wo]*) < Lv, d ([S(E)wo]®, [20]*) < La.

(H2) For z(-),y(-) € C([0,T]x(0,P,C,), En), t € [0,T], there exist positive
numbers mq, my such that

i (IF(t 2)], [F(t )] < madi ()7, []%)

and F(O, X{O} (0)) = O, C;(O7 X{o}(O)) =0.
H3) For Ls > 0, 20 € By, dL([xo]a, [X{O}(O)]a) < Ls.
4) For ¢ > 0, (L1 + cmy K L3T)ec™ET < ¢,
5) For & > 0, (La + dmoK L3T)edm2KT < ¢,
6) Let a, b be, respectively, lower solution and upper solution of equation
(1)(u = 0), then [a, b] is convex.
We define the controllability concept for a fuzzy differential equation.

Definition 3.1. The equation (1) is said to be controllable on [0,T], if for
every xog € En there exists a control u; € Y such that every solutions z(-) of
(1) satisfies a.s. 0, 27 = 2! € X (i.e., [a7]® = [2}]%).

Definition 3.2. Define the fuzzy mappings P; : ﬁ(R) — X and P :
P(R) — X by

T J—
o U*(T — s)Buvgds, vCT
P — fo S 9 us
r(v) { 0, otherwise,

Pa (U) = fOT Sa (T B S)B’Usd87 v C Fu,
’ 0, otherwise,

where ﬁ(R) is a nonempty fuzzy subset of R and I, is the closure of support
u. Then there exist Py, Pg:(i =1, r) such that

zmm=AtwrwwmwamnawmmyL

T
P (vr) = /0 UM(T — s)B(vs)rds, (vs)r € [(US)lv (us)y ],
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T
Pgi(u) = / ST — $)B(og)ids, (va)1 € [(us)f (us)'],
P (u,) = / ST — $)B(va)sds, (va)r € ()" ()]

We assume that }Sﬁ , 1510;7 ]52% and ﬁ% are bijective mappings.

By Definition 3.2, we can introduce a-level set of u; is

[us]® = [(us)i, (us)y]

_ T
= 2 [ B {@)i - Ur @)@y - / UF (T = )G7 (s, (@,)7)dC, }

_ T

HEE) @ = SE o) = [ ST = )R s (2))C,
. T

(Pe)~H{ (@) = UR(T) (wo)s — / U (T = 5)G2 (s, (w,)7)dC, }

Pz = sp )@ - [ CseT - R (s e)2)c ]

Theorem 3.1. If Lemma 2.3 and hypotheses (H1)-(H5) are satisfied, then
the equation (4) is controllable on [0, T7.

Proof By Definition 3.2 and above ug, substitute the control into the equation
(4) yields a-level of z.

T T «
[p]* = {U(T):co +/O U(T — s)G(s,x5)dCs +/O U(T - s)Busds}
T T
= [or@eor + [ U@ =96 (s @arac+ [ UpT -8
- T
<2 [ @) - Up @) o)y - / UP (T = )G7 (s, (w,)7)dC, §
+(B)~H (@) = P o)yt - / SP(T = $)F (s, (w,)7)AC, } | ds,
T T
UR (D)) + [ URT = )G (s (@))dC+ [ U - 9B
<[P @ —vr @@ - [ Ur - 962 e}

P52 = 2D ol — [ " se(T = F2 (s, (e2)dC ) ]

= [ur@eor + | vr@ -6 @,
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wyPa[P e - e - [ U - 676, e}
+(Ps) @i = SP(T) (ao)f / U - ) F s, w)dc. )],

U+ [ URT - 9G s

3P [P (@ - v - [ U - 96t anac,)

HB) @ - s / ST — ) (s, () )dC. ) |

=[P, (@] = [~

Hence this control u; satisfy a.s. 8, 7 = z'.

Also, using this control, we shall show that the nonlinear operator ®; defined
by

(P12)y = U(t)xo + /Ot Ut — s)G(s,x5)dCs + /Ot U(t—s)B
[Pl {g; —U(T)ao — /OT U(T — 7)G(r, xT)dCT}
T
—|—§2_1{a:1 —S(T)xo — | S(T — 7)F(r, xT)dCTHds,

where the fuzzy mappings (]51)*1 satisfy above statements.
Form hypothesis (H2) and Lemma 2.3, for any given 6 with Cr{0} > 0,
z(+), y(-) € C([0,T] x (©,P,Cr), Ex), we have

i ([(@)) [(@13),)")

—d, ( [U(t)xo n /0 t U(t — $)G(s,2)dC,

—&—/OtU(t - S)B% {ﬁ;l{ /OTU G(r, xf)dCT}
+15;1{ /OTS F(r,2,)dC: H ﬁ

vom+ | Ut - )G (s, 92)dC,
+ /Ot Ut — s)B% [P ot~ U)o - /OT U(T ~7)G(r,y,)dC )
+P = S(T)zo - /OT S(T = 7)F (7, y)dC, } | ds] O‘)
<ar([ [ ve- 1662000 [ [ vie-966.umac.])

8
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+dL([/0t Ut — s)B% [P {a! ~ U)o - /OT U(T ~ )G (r,2,)dC, )
+15,;1{m1 — S(T)ao — /OT S(T — 7)F(r, xT)dCTHds] °
/Ot Ut — s)B% [P {a! ~ U)o - /OT U(T ~7)G(r,y,)dC: )

+1551{m1 — S(T)zo — /OT S(T — 7)F(r, yT)dCTH ds} a)

< dL([/t Ut~ $)G(s.2)dC] [/ Ut~ 9)G(s..)d0s) )
0 o OT
+di ([P P {2t = U)o - 0 U(T = 7)G(r, 2,)dC, |

+%P1152_1{x1 = S(T)zo — /OT S(T —7)F(r, xT)dCTHa’

Eplﬁfl{wl — U(T)zo — /OT U(T —7)G(r, yT)dCT}

T Y A G /OT ST = )F(r)dc, )

< dL<[/OtU(ts)G(s,xs)dCsr, [/OT U(tfs)G(s,ys)dCsr>
+dL([/OT U(T ~ $)G(s,2,)dC4] ", [/Ot U(T = 5)G(s,5:)dC,] )

t T
< cle/ dL([xS}O‘, [ys]"‘)ds + cle/ dL([xS}O‘, [ys]a)ds.
0 0
Therefore, by Lemma 2.1, we get
E(H1(q)1367 <I>1y))

= E(tes[lé%] Dy, ((@1$)t» (q)ly)t)>

- (s o (1 01)

E(é{l(;pﬂ Oigglcle(/OT dL([xs]a, [ys]o‘>ds + /OT dg, ([xs]a, [ys]o‘>ds))

< B( sw cle(/OtDL(zs,ys)dH/OTDL(xs,ys)ds))

t€[0,T)

< 2cm1KTE(H1(CL’7y))-

IN

We take sufficiently small T, 2¢m; KT < 1. Hence ®; is contraction map-
ping. By the Banach fixed point theorem, (4) has a unique fixed point. Thus
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the equation (1) is controllable in [0, T7.

Theorem 3.2. If Lemma 2.3 and hypotheses (H1)-(H5) are satisfied, then
the equation (5) is controllable on [0, T7.

Proof By Definition 3.2 and above ug, substitute the control into the equation
(5) yields a-level of Zrp.

T T o
[Er]® = [S(T)onr/o S(T—s)F(s,ms)dC’er/O S(Tfs)Busds}
T T
= [sr@@)r+ [ ST =R @onac,+ [ srr -8
T
<[P {@hr —vrmeor - [ UrT =966 @apac )
B T
P = SR = [ SPT = 9F? (s )7)dC as
T T
SEe0) + [ SHT = 9F (s wdC+ [ 52T - 9B

[P {(wl)?— o [ o e o)
+<152%>*1{<z1>$ / e (r - (s, (e)2)d0, Y]]
:{ / SPT = s)Fy* (s, (24)")dCs

%P;z [(ﬁﬁrl{(xl)f‘ — U (T)(@o); / L UR(T - 567 (s, (w)f)dC )
+(B)~H (@) = P o)y - / TS - o) (2)8)dC }
S2(T) (wo)? + / ST - ) F (s, ()2 C

3P (B @) — U (T o) / " Us(r - )G s, ).}
HB) @ - s / ST — 8B (s, () )dC. ) |

=), ()] = [~

Hence this control u; satisfy a.s. 8, 7 = z!.

Also, using this control, we shall show that the nonlinear operator ®, defined
by

(Pox)y = S(t)xo + /0 S(t—s)F(s,zs)dCs + /0 S(t—s)B

10
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x% {]31—1{;51 —U(T)xo — /OT U(T —7)G(r, mT)dC’T}

+1551{x1 ~ S(T)ao — /OT S(T — 7)F(r, m,)dCTHds

where the fuzzy mappings (P,)~! satisfy above statements.
Form hypothesis (H2) and Lemma 2.3, for any given 6 with Cr{0} > 0,
x()a y() € C([OvT] X (@apvcr)vEN)v we have

di ([(®22))°, [(@29)1)%)

—d, ( [S(t)xo + /0 t S(t — $)F(s,x)dCs

[S o +/ S(t — s)F(s,ys)dC,s
/ St — s) {xl —U(T)zo — /OT U(T — 7)G(r, yf)dcf}
+15;1{x1 ~sm - [ s -npemacas]")
<ar([ [ s-srsraic]’| /O St ) P(s.dc.) )
+dL([/0t S(t— s)B [ et~ U@y - /OT UT ~ )G (r,2,)dC, )
+Py 1{931 S(T)zo — /OT S(T — 7)F(r, xT)dC’THdsr,
/ S(t— )2 [P et~ U@y - /OT U(T ~ )G (r,y,)dC )
+Py {g: ~ S(T)zo — /OT S(T — 7)F(r, yT)dCTHdsr)
<ar([ [ s0-or.rgac] [ [ s6-oreumac]’)
v ( [%Pgﬁfl{xl —U(T)zo — /OT U(T ~)G(r,2,)dC )
+%P215;1{x1 — S(T)zo — /OT S(T = 7)F(7,2,)dC, }] °
B r

{%ngl_l{l'l — U(T)zo — /0 U(T —7)G(r, yr)dCr}

11
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—|—;P215_ { L s(T xo—/ S(T — 7)F(7,y,)dC- Ha)

<d /St—s) (s,z5)d S / S(t—s)F Sys)dCs:| )
+dL /O S(T — s)F(s,xs)dCs , /0 S(T — s)F(s,ys)dcs]a)

t T
< dmak [ dy (ol s+ dmak [ an (fe ) ds
0 0
Therefore, by Lemma 2.1, we get

B(Hi (@52, Ba) )

= E(tes[lé%] Dy, ((q’ﬂ)ta (‘I)M)t))

:E( sup  sup dL([(%x)t]a’[((b?y)t]a))

t€[0,T] 0<a<l

E( tes[%%] 5 dmzK< /OT dr, ([xs]a? [ys]a)ds + /OT dr, ([xs]oﬂ [ys]a)ds»

t T
< E( sup SmgK( DL(xs,ys)ds—F/ DL(a:s,ys)ds)>
te[0,T) 0 0

IN

< 2dmy KTE (H1 (z, y))e

We take sufficiently small T" and 2dmo KT < 1. Hence ®5 is contraction map-
ping. By the Banach fixed point theorem, (5) has a unique fixed point. Thus
the equation (1) is controllable in [0, T7].

Theorem 3.3. If Theorems 3.1 and 3.2 and hypotheses (H1)-(H6) are
satisfied, then the equation (1) is controllable on [0, T7].

Proof For xr € [z, Tr|, if [21, Tr] is convex, then 7 = Az + (1 —N)Tr,0 <
A <1, we can obtain the following result.

[27]" = Par + (1 = A)zr]”

= [A{U(T)xo + /OT U(T — s)G(s,x5)dCs + /OT U(T — s)Busds}

T

+(1/\){S(T)onr/OTS(TS)F(s,:cs)dCer/ S(T*S)Busds}]a

0

= )\[U(T)xo + /OT U(T — 5)G(s,x5)dCs + /OT U(T - S)Busdsr

F1-N) [S(T)zo n /OT S(T — 8)F(s,2,)dCs + /OT S(T — s)Busds} :

12
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T
= A[Ur@Eor + [ UrT -6t s @pac,
3P [P @ - v o)t - / UF (T = )G7 (s, (@,)7)dC, }
~ T
) {7 = ST @or - [ SPT - 9P (s, @p)C, ],

U (T) (o) + / US(T — $)G2 (s, (2)2)dC.

P[P v @ - | LU - )G (s (2)2)dC, )

+(P5) @ = S o) - / " se(T - F (e, e2)dc ]
1= N [sr@ o + [ USSP T = ) B s, ()PC
3 Ps [P @ - U@ o)t - / L UR(T - 567 (s, (w)f)dC )
+(P) " { @) = SP@) o)y /0 JETCENEAN (z)7)dC, }]
S o)t + [ 52T s, i,

5 Pa (B @) - U (T o) - / LU - )G (s (s)2)C, )

+(P5) @) = S (o) - / Cse(T - R (s, (e2)dC ]
= [(ah)F, @) = ')

Hence this control u; satisfy a.s. 0, z7 = 2,27 € [24,Z7]. Therefore every
solutions of the equation (1) are controllable in [0, T].
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Generalized interval-valued intuitionistic fuzzy soft rough set

and its application
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Abstract

In this paper, by integrating interval-valued intuitionistic fuzzy soft set with rough
set theory, the concept of generalized interval-valued intuitionistic fuzzy soft rough
sets is proposed, which is an extension of generalized intuitionistic fuzzy soft rough
sets. Then the properties of this model are investigated. Furthermore, classical repre-
sentations of generalized interval-valued intuitionistic fuzzy soft rough approximation
operators are also introduced. Finally, an approach based on generalized interval-
valued intuitionistic fuzzy soft rough sets in decision making is developed, and we
provide a practical example to illustrate the validity of this approach.

Key words: Interval-valued intuitionistic fuzzy soft set; Rough set; Generalized
interval-valued intuitionistic fuzzy soft rough set; Decision making

1 Introduction

As a framework for the construction of approximations of concepts, rough sets proposed
by Pawlak [21,22], is a formal tool for modeling and processing insufficient and incomplete
information. In Pawlak’s rough set model, the equivalence relation plays an important
role, which seems very stringent in daily life. Therefore many researchers have generalized
the notion of Pawlak rough set by replacing the equivalence relation with other binary
relations. Since the appearance of Pawlak rough set, lots of fruitful results have been
achieved [5,10-12,15,16,25,28,29,31-40,42, 44-46].
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Soft set theory is presented by Molodtsov [17], which is different from the existing
uncertainty theories, such as fuzzy set theory [43], intuitionistic fuzzy set theory [1,2],
interval-valued fuzzy set theory [9,13,24], interval-valued intuitionistic fuzzy set theory
[3,4], rough set theory [21,22], and so on. In [17], the author pointed out that these theories
mentioned above have their inherent difficulties, but soft set has enough parameters so that
it is free from inherent difficulties. Therefore, in recent years more and more researchers
have joined the ranks of soft set research. For example, Maji et al. [18] initiated the study
on hybrid structures involving fuzzy sets and soft sets, and introduced the concept of fuzzy
soft sets, which can be viewed as a generalization of soft sets. Subsequently, Maji et al [19]
modified the concept of fuzzy soft sets, and proposed a generalized fuzzy soft set theory.
Furthermore, Yang et al. [30] extended soft sets to interval-valued fuzzy environment, and
first presented the concept of interval-valued fuzzy soft sets by combining interval-valued
fuzzy set and soft set. By integrating the intuitionistic fuzzy set with soft set theory, Maji
et al. [20] presented the concept of the intuitionistic fuzzy soft set theory. Jiang et al. [14]
initiated the concept of interval-valued intuitionistic fuzzy soft sets by the combination of
the interval-valued intuitionistic fuzzy sets and soft sets. On the basis of [14], Zhang [46]
presented an adjustable approach to interval-valued intuitionistic fuzzy soft sets based
decision making by mean of level soft sets of interval-valued intuitionistic fuzzy soft sets.
Recently, soft set theory has been developed into hesitant fuzzy environment, and the result
is called hesitant fuzzy soft sets [6,26,27]. Because it is unreasonable to use hesitant fuzzy
soft sets to handle some decision making problems, Zhang et al. [41] extended hesitant
fuzzy soft sets to interval-valued hesitant fuzzy environment, and introduced the concept
of interval-valued hesitant fuzzy soft sets by combining the interval-valued hesitant fuzzy
set and soft set theory. More recently, by combining intuitionistic fuzzy soft set and rough
set theory, Zhang et al. [38] introduced the concept of intuitionistic fuzzy soft rough sets,
and gave an approach to decision making based on this model. Furthermore, in [42], they
pointed out the drawback of the intuitionistic fuzzy soft rough sets, proposed a generalized
intuitionistic fuzzy soft rough set model, and then illustrated the validity of this model by
a practical example.

As a generalization of fuzzy soft sets, interval-valued fuzzy soft sets and intuitionistic
fuzzy soft sets, interval-valued intuitionistic fuzzy soft set is more flexible and effective than
other soft set theories to cope with imperfect and imprecise information. Meanwhile, we
can note that the final decision results for the decision approach presented by Zhang [46]
may be different based on different types of thresholds. That is to say, there actually does
not exist a unique or uniform criterion for the evaluation of decision alternatives. That is
its limitations and disadvantages. In order to overcome these limitations, we need to define
a new interval-valued intuitionistic fuzzy soft set model such that the decision approach
based on this model is less affected by subjective factors. In this paper, we mainly devote
to the generalization of intuitionistic fuzzy soft rough sets [42] and propose the concept
of generalized interval-valued intuitionistic fuzzy soft rough sets by integrating interval-
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valued intuitionistic fuzzy soft set with rough set. Also its decision making method is
given. The most advantage of the decision making method is that it will only use the data
information provided by the decision making problem without any additional available
information provided by decision makers. Thus it can avoid the effect of subjective factors
provided by different experts.

The rest of this paper is organized as follows. Section 2 briefly reviews some prelimi-
naries. In Section 3, an interval-valued intuitionistic fuzzy soft relation is first defined by
us. By combining the interval-valued intuitionistic fuzzy soft set and rough sets, then the
concept of generalized interval-valued intuitionistic fuzzy soft rough approximation oper-
ators is presented and the properties of generalized upper and lower interval-valued intu-
itionistic fuzzy soft rough approximation operators are examined. Furthermore, classical
representations of generalized interval-valued intuitionistic fuzzy soft rough approximation
operators are presented. Section 4 is devoted to studying the application of generalized
interval-valued intuitionistic fuzzy soft rough sets. Some conclusions and outlooks for
further research are given in Section 5.

2 Preliminaries

In this section, we shall briefly recall some basic notions being used in the study.
Before introducing the notion of interval-valued intuitionistic fuzzy soft relation, we
first give the concept of soft sets [17] and fuzzy soft sets [18].

Definition 2.1 ( [17]) Let U be an initial universe set and E be a universe set of pa-
rameters. A pair (F,E) is called a soft set over U if F : E — P(U), where P(U) is the
set of all subsets of U.

Definition 2.2 ( [18]) Let U be an initial universe set and E be a universe set of pa-
rameters. A pair (F, E) is called a fuzzy soft set over U if F : E — F(U), where F(U) is
the set of all fuzzy subsets of U.

By using the concepts of soft set and fuzzy soft set, Cagman et al. [7,8] introduced the
definitions of crisp soft relation and fuzzy soft relation, respectively.

Definition 2.3 ( [7]) Let (F,E) be a soft set over U. Then a subset of U x E called a
crisp soft relation from U to E is uniquely defined by

R ={< (u,z), pr(u,x) > |(u,z) € U x E},
1, (u,z)€R

where pr : U x E — {0,1}, pgr(u,z) =
0, (u,x)¢ R.

Definition 2.4 ( [8]) Let (F, E) be a fuzzy soft set over U. Then a fuzzy subset of U x E
called a fuzzy soft relation from U to E is uniquely defined by
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R ={< (u,z), pr(u,x) > |(u,z) € U x E},
where i - U x B — [0, 1], jin(t,2) = (1)

Based on the crisp soft relation proposed by Cagman, Zhang et al. [42] constructed
the following crisp soft rough sets.

Definition 2.5 ( [42]) Let U be an initial universe set and E be a universe set of pa-
rameters. For an arbitrary crisp soft relation R over U x E, we can define a set-valued
function Rg : U — P(E) by Rs(u) = {z € E|(u,z) € R},u e U.

R is referred to as serial if for allu € U, Rg(u) # 0. The pair (U, E, R) is called a crisp
soft approximation space. For any A C E, the upper and lower soft approzimations of A
with respect to (U, E, R), denoted by R(A) and R(A), are defined, respectively, as follows:

R(A) = {u € UlR,(u) N A #£ 0}, R(A) = {u e URy(u) C A}.

The pair (R(A), R(A)) is referred to as a crisp soft rough set, and R, R : P(E) — P(U)
are, referred to as upper and lower crisp soft rough approximation operators, respectively.

Definition 2.6 ( [3,4]) Denote L = {(a,p)|a = [a1,a2] € Int[0,1],8 = [p1,52] €
Int[0,1], g + B2 < 1}, where Int[0, 1] denotes the set of all closed subintervals of [0,1].
We define a relation <p, on L as follows: ¥(a, ), ({,n) € L,

(o, B) <1 (§,m) & [a1,a2] <p1 [€1,8] and [B1, Ba] > 11 [11,m2]
S ap <&,ar <&, B >m, and By > 1.

Then the relation <y, is a partial ordering on L and the pair (L,<r) is a complete lattice
with the smallest element 01, = ([0,0],[1,1]) and the greatest element 11, = ([1,1],[0,0]).
The meet operator N\ and the join operator V on (L,<r) which are linked to the ordering
<1, are, respectively, defined as follows: ¥(«, B), (§,n) € L,

(avﬂ) A (5777) = ([al NE&1, ag A 52]’ [ﬁl Vo, B2V 772])’

(o, B) V (&m) = ([an V &1, a2 V &I, [Br Amr, B2 Amg)).

Definition 2.7 ( [3,4]) Let a set U be fized. The mapping A : U — L is called an
interval-valued intuitionistic fuzzy (IVIF, for short) set on U. An interval-valued intu-
itionistic fuzzy set A on U can also be denoted by

A= {< 2, pa(@) 7al2) > |z € U} = {< 2, (13 (@), w @), 3 (2), 75 ()] > o € U,
where pa(x) = [py(x), ph(2)] and va(z) = [y (x),vx (2)] satisfy 0 < ph(z) + 74 (x) <1
for all x € U, and are, respectively, called the degree of membership and the degree of
non-membership of the element x € U to A.

Let IVIF(U) denotes the family of all interval-valued intuitionistic fuzzy sets on U.
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3 Construction of generalized interval-valued intuitionistic
fuzzy soft rough sets

In this section, we will present the concept of generalized IVIF soft rough sets by using
the IVIF soft relation defined by us.

Definition 3.1 ( [14]) Let U be an initial universe set and E be a universe set of pa-
rameters. A pair (F,E) is called an IVIF soft set over U if F : E — IVIF(U), where
IVIF(U) is the set of all IVIF subsets of U.

In the following, an IVIF soft relation will be presented, which is important for us to
construct generalized IVIF soft rough sets.

Definition 3.2 Let (F,E) be an IVIF soft set over U. Then an IVIF subset of U x E
called an IVIF soft relation from U to E is uniquely defined by

R ={< (u,x), pr(u,x),yr(u,z) > |(u,x) € U x E},
where pg : U x E — Int[0,1] and v : U x E — Int[0,1], for all (u,x) € U x E such
that pr(u,x) = [pg(u, ), ph(u, z)] and yr(u,z) = [y (u, ), 7% (u, z)], which satisfy the
condition 0 < pf(u, ) + 74 (u, ) < 1.

Remark 3.3 In Definition 3.2, if un(u,x) = ph(u,2) and vg(u, x) = v (u, ), namely,
pr U x E — [0,1] and yg : U x E — [0,1], for all (u,x) € U x E such that 0 <
pr(u, x) + yr(u,x) < 1, then R is referred to as an intuitionistic fuzzy soft relation on
U x E. If R is an intuitionistic fuzzy soft relation on U x E and pr(u,z) + yr(u,x) =1,
then R is degenerated to a fuzzy soft relation [8] in Definition 2.4. Hence, among fuzzy
soft relation, intuitionistic fuzzy soft relation [42] and IVIF soft relation, the IVIF soft
relation is the most generalized one. That is, the IVIF soft relation has included fuzzy soft
relation and intuitionistic fuzzy soft relation.

Let U = {uy,uz, - ,up} and E = {x1,z9, - ,x,}. Then the IVIF soft relation R
from U to E can be presented by a table as in the following form

R T T e Tn,

uy | (pr(ui,z1),vr(ur,z1))  (ur(ui,22),yr(u1,22)) - (ur(u1,@n), YR(U1, Zn))
uz | (pr(uz,71),vR(u2,21))  (HR(u2,72),YR(U2,72)) -+  (ur(u2,2n), YR(U2, 7))
Um (UR(um7$1)aFYR(um7w1)) (MR(um7x2)77R(umvx2)> e (MR(um7xn)77R(um7x’n))

From the above form and the definition of IVIF soft set, we know that every IVIF
soft set (F, E') is uniquely characterized by the IVIF soft relation, namely they are mutual
determined. It means that an IVIF soft set (F, E) is formally equal to IVIF soft relation.
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Therefore, we shall identify any IVIF soft set with IVIF soft relation and view these
two concepts as interchangeable. Now, any discussion regard to IVIF soft set could be
converted into analysis about IVIF soft relation, which will bring great convenience for
our future researches.

In this case, according to the definition of IVIF soft relation, we can construct gener-
alized IVIF soft rough sets as follows.

Definition 3.4 Let U be an initial universe set and E be a universe set of parameters.
For an arbitrary IVIF soft relation R over U x E, the pair (U, E, R) is called an IVIF
soft approximation space. For any A € IVIF(E), we define the upper and lower soft
approzimations of A with respect to (U, E, R), denoted by R(A) and R(A), respectively, as
follows:

R(A) = 1< w (), v () > [ € U, )
R(A) = {< u, pp(ay(u), Yr(a)(w) > [u € U} (2)
where
KRy (W) = [er(ME(Ua z) A pa (@), x\e/E(HE(% ) A i ()],
TR(a)(W) = [IGE(%}(% )V vs(2)), x/e\E(’YE(U» ) Vi ()],
fiR(a)(u) = [er(T(u, z) V pp (@), xé\E(VE(U, ) V ()],
TR(4)(u) = [I\E/E(ME(U,@ /\V,Z(ﬂf))ax\e/ (g (u, ) Ay ()]
The pair (R(A), R(A)) is referred to as a generalized IVIF soft rough set of A with respect

to (U,E,R).

By pj(u,z) + 74 (u,z) < 1and pf(z) + 74 (z) <1, it can be easily verified that R(A)
and R(A) € IVIF(U). So we call R,R : IVIF(E) — IVIF(U) generalized upper and

lower IVIF soft rough approximation operators, respectively.

Remark 3.5 If R is an intuitionistic fuzzy soft relation on U x E, then generalized IVIF
soft rough approximation operators R(A) and R(A) in Definition 3.4 degenerate to the
following forms:

R(A) = {< U pig 4y (W), YRy (W) > |u € U},
R(A) = {<u, pupa)(u), Yr(ay(u) > [u € U}

where

tgay(w) =V (pr(u, ) A pa(z)), ygay(w) = A (Yr(u, ) Vya(z)),
el el
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pr(a)(u) = é\E('m(u,m)VMA(x)% TR(4)(u) = \G/E(MR(u,x)A’VA(x))-

In that case, the pair (R(A), R(A)) is generated into a generalized IF soft rough set of
A with respect to (U, E, R) proposed by Zhang et al. [42]. That is, generalized IVIF soft
rough set in Definition 4.4 includes generalized IF' soft rough set [42] as a special case.

Remark 3.6 If R is a fuzzy soft relation on U X E and A € F(E), then generalized IVIF
soft rough approzimation operators R(A) and R(A) degenerate to the following forms:

R(A) = {< s gy () > |u € U}, B(A) = {< w pay(w) > u € U},

\E/E[MR(% 2) N pa(@)]s ppay(v) = é\E[(l — pr(u, ) V pa(@)].

In that case, generalized IVIF soft rough approzimation operators R(A) and R(A) are

where [z 4) (u) =

identical with the soft fuzzy rough approximation operators defined by Sun [23]. That is,
generalized IVIF soft rough approzimation operators in Definition 4.4 are an extension of
the soft fuzzy rough approximation operators defined by Sun [23].

In order to better understand the concept of generalized IVIF soft rough approximation
operators, let us consider the following example.

Example 3.7 Suppose that U = {u1,ug,us,us,us} is the set of five houses under con-
sideration of a decision maker to purchase. Let E be a parameter set, where E =
{e1, €2, e3, e4} ={ expensive; beautiful; size; location}. Mr. X wants to buy the house which
qualifies with the parameters of E to the utmost extent from available houses in U. As-
sume that Mr. X describes the “attractiveness of the houses” by constructing an IVIF soft

relation R from U to E. And it is presented by a table as in the following form.

R el es es es

uy | ([0.7,0.8],[0.2,0.2]) ([0.3,0.4],[0.2,0.5]) ([0.1,0.1],]0.7,0.8]) ([0.3,0.4],[0.1,0.3])
ug | ([0.1,0.2],[0.4,0.6]) ([0.6,0.7],[0.1,0.2]) ([0.2,0.3],[0.5,0.7]) ([0.3,0.6],[0.2,0.3])
us | ([0.5,0.6],[0.2,0.4]) ([0.3,0.6],[0.2,0.3]) ([0.5,0.7],[0.1,0.3]) ([0.1,0.8],[0.1,0.2])
ug | ([0.1,0.3],[0.2,0.6]) ([0.5,0.7],[0.1,0.2]) ([0.1,0.4],[0.3,0.5]) ([0.2,0.3],[0.5,0.7])
us | ([0.8,0.9],[0.0,0.1]) ([0.3,0.5],[0.4,0.5]) ([0.6,0.8],[0.1,0.2]) ([0.4,0.6],[0.1,0.4])

We can see that the precise evaluation for each object on each parameter is unknown
while the lower and upper limits of such an evaluation are given. For example, we can not
present the precise membership degree and mon-membership degree of how beautiful house
ug 18, however, house uo is at least beautiful on the membership degree of 0.6 and it is
at most beautiful on the membership degree of 0.7; house us is not at least beautiful on
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the non-membership degree of 0.1 and it is not at most beautiful on the non-membership
degree of 0.2.
Now give an IVIF subset A over the parameter set E as follows:

A={<e,[0.7,0.8],[0.1,0.2] >, < e5,[0.5,0.7],[0.2,0.3] >
< e3,[0.4,0.6],[0.1,0.3] >, < e4,[0.2,0.6],[0.3,0.4] >}.

By Equations (1) and (2), we have

ngcay(un) = [0.7,0.8], g (u1) = [0.2,0.2], pg 4 (uz) = [0.5,0.7],
Tr(a)(u2) = [0.2,0.3], u (U3) [0.5,0.6], 774)(us) = [0.1,0.3],
K4y (ua) = [0.5,0. 7], 7 ay(ta) = 10.2,0.3], gy 4y (us) = [0.7,0.8],
,YE(A)(UEJ) [O L,0. 2]’ HR(A (ul) [O 2,0. 6], 'YE(A)(Ul) = [0.3,0.4]7
pr(a)(uz) = [0.2,0.6], vp(a)(uz) = [0.3,0.4], pp(a)(us) = [0.2,0.6],
Ve (uz) = [0.2,0.4], pgay(us) = [0.4,0.6), vg(a)(ua) = [0.2,0.3],
tr(ay(us) = [0.2,0.6], yr(a)(us) = [0.3,0.4].
Thus

R(A) = { < uq,[0.7,0.8],[0.2,0.2] >, < ug, [0.5,0.7],[0.2,0.3] >, < us, [0.5,0.6],[0.1,0.3] >
< u4,[0.5,0.7],[0.2,0.3] >, < us,[0.7,0.8],0.1,0.2] >}

and

R(A) = { < u1,[0.2,0.6],[0.3,0.4] >, < uy,[0.2,0.6],[0.3,0.4] >, < us, [0.2,0.6],[0.2,0.4] >
< u4,[0.4,0.6],[0.2,0.3] >, < us,[0.2,0.6],[0.3,0.4] >}.

In what follows, we investigate the properties of generalized IVIF soft rough approxi-

mation operators.

Theorem 3.8 Let (U, E, R) be an IVIF soft approzimation space. Then the generalized
upper and lower IVIF soft rough approzimation operators R(A) and R(A) satisfy the
following properties: VA, B € IVIF(E),

(IVIFSL1) R(A) =~ R(~ A),

(IVIFSU1) R(A) =~ R(~ A);
(IVIFSL2) R(AN B) = R(A)N R(B),
(IVIFSU2) R(AU B) = R(A) U R(B);
(IVIFSL3) A C B = R(A) C R(B),
(IVIFSU3) A C B = R(A) C R(B);
(IVIFSL4) R(AU B) O R(A) U R(B),
(IVIFSU4) R(AN B) C R(A) N R(B);
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Proof. We only prove the properties of the lower IVIF soft rough approximation operator
R(A). The upper IVIF soft rough approximation operator R(A) can be proved similarly.
(IVIFSL1) By Definition 3.4, then we have

~ R(~ A) = {< u,Yr(~a) (W), pr(~ay(u) > lu € U}
= {<u, [V (gl x) Ay (@), \/ (uh(u,2) AyE ()],

el zeFE
[N\ (g lw )V uZa@), \ f(u,2) v ity (2))] > Ju € U}

zeE zeFE

= {<u, [ \/ (ug(u,2) Apy (), \/ (nf(u,2) A pli(@)],

zel zeFE

[\ (g (w2) V@), A\ (f(u ) vayl(@)] > ue U}

el zelR
= {< u, tigay (W), YR(A) (1) > [u € U} = R(A).

(IVIFSL2) By virtue of Equation (2), we have

R(ANB) ={< u, pr(ans)(u), Yr(anp)(v) > [u € U}

={<u, )\ (vr(u,z) V pans(@)), \/ (ur(u,z) Ayans(x)) > |u € U}
zeE zeE

= {<u [\ Orlu,2) v (uy(2) A pg@), )\ O (w2) v (k@) A g ()],
zeE el

[V (ng(u2) A (va (@) Vrg@), \ (g 2) A (v (@) V yh ()] > Jue U}
zel zeE

= {<u (g4 (W) A pg g (), ME(A)(u) A F‘E(g) (w)],
i) (W) V Vae) (W Yy () V Vg ()] > ue U}
= {< u, pray (W) A (s (W), Yr(ay (W) V V(s (u) > [u € U} = R(A) N R(B).

(IVIFSL3) It can be easily verified by Definition 3.4.
(IVIFSL4) By (IVIFSL3), it is straightforward. O

In Theorem 3.8, properties (IVIFSL1) and (IVIFSU1) show that the generalized upper
lower IVIF soft rough approximation operators R and R are dual to each other.

Inspired by the concept of cut sets of IF sets in [44,45], we first present the concept of
cut sets of IVIF sets before investigating the representing method of the generalized IVIF
soft rough approximation operators.

Definition 3.9 Let A = {< z,pa(z),ya(x) > |z € U} € IVIF(U), and (a,p) € L,
where a = [a1, a2, B = [B1, B2] € Int|0, 1] with ag + P2 < 1. The (a, 5)-level cut set of A,
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denoted by A , is defined as follows:

A ={x € Ulpa(x) 211 o, yalz) <pr B}

Aq ={z € Ulpa(z) >p1 o} = {z € Ulpy(z) > on, pfi(z) > as},

and
Aoy = {2 € Ulpale) > 11 0} = {o € Uluz(2) > ar, uf (@) > az)

are, respectively, called the a-level cut set and the strong a-level cut set of membership
generated by A. Meanwhile,

AP ={z € Ulya(z) <p1 B} = {z € Ulys(z) < B, 7L (z) < B2}
and

AP ={x € Ulya(z) <pr B} = {z € Uy, (z) < B1,74(2) < B2}

are, respectively, referred to as the B-level cut set and the strong [-level cut set of non-
membership generated by A.
At the same time, other types of cut sets of the IVIF set A are denoted as follows:

A%y = {z € Ulna(@) > s a,va(@) <pr B}
= {2 € Uluz(z) > a1, pfi(w) > az,74 () < B, 74 (2) < Ba},
which is called the (a+, 3)-level cut set of A;
AZ* = {o € Ulua(e) 210 a,7a(x) <p1 B
= {33 € U|,LLZ($) > almuj(x) > 0(2,"}/2(1‘) < 6177,J4r($) < /BQ}a
which is called the (o, B+)-level cut set of A;
AL = {z € Ulpa() >pr a,va(w) <pr B)
={z e Ulpy(z) > ar, pj(x) > as, 74 (z) < Bi,v4(x) < B},

which is called the (a+, B+)-level cut set of A.

Theorem 3.10 The cut sets of IVIF sets satisfy the following properties: VA € IVIF(U),
a = a1, a2], B = [B1, B2] € Int]0,1] with as + B2 < 1,

(1) AS = A, N AP,

(2) ACB= A} C BS,

(3) (AN B)o = Aa N B, (ANB)? = AP N BP,

(4) o >p1 BE<pin= Aq C Ag, AS C A, A5 C A
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Proof. By Definition 3.9, (1), (2) and (4) are straightforward.

(3) Since
ANB={< x,uanp(x),vanB(x) > |z € U}
= {<a, [ua(2) A ppla), wh (@) A pg(a)],
i (@) Vg (), vh(x) Vyg()] > |z e U},
we have

(AN B)o = {z € Uluy(z) A pg(x) > a1, ph(z) A ppz) > az}
= {z € Ulpy(x) > ar, pp(r) > an, ph(e) > oz, pi(x) > o}
={z e Ulpa(z) 2p1 o, pp(x) 211 o} = Aq N Ba,
and

(ANB)? ={z € Uly,(z) Vv5(x) < Br,74 (2) V Ak (x) < Ba}
={z € Uy, (z) < B1,vg5(z) < Br.vi(z) < Bo,vi(z) < Bo}
= {2 € Ulya(z) <pr B,v8(z) <p1 B} = AP N BP.

Meanwhile, according to (1), we can obtain

(ANB)? =(ANB),N(ANB)?
= (AaNAP) N (BN BP) = AN BE.

Assume that R is an IVIF soft relation from U to E, denote
Ry ={(u,z) €U x Elugr(u,z) > a} = {(u,z) € U x E|lpg(u,z) > a1, ph(u,z) > as},

Ro(u) = {z € Elpr(u,z) >1 o} = {x € Elug(u,x) > a1, pfy(u,2) > s}, o1, 00 € [0,1];
Roy ={(u,z) € U x Elug(u,x) >p1 a} = {(u,x) € U x E|ug(u,x) > al,u;(u, x) > s},
Roy(u) ={z € E|lpg(u,x) >p1 a} = {x € Elug(u,z) > oq,u;(u,x) > g}, a1, a0 € [0,1);
R = {(u,2) €U x Elyr(u,x) <pr 8} = {(u, ) € U x Elvg(u,z) < B1,7f (u,2) < Ba},
RP(u) = {x € Elyr(u,z) <1 B} = {z € Elyg(u,2) < B1, 7% (u, ) < Ba}, B, B2 € [0,1];
R = {(u,2) € U x E|yg(u,x) <pr B} = {(u,2) € U x Elvg(u,x) < b1, 75 (u,7) < fo},
R (u) = {z € Elyr(u, ) <p1 B} = {x € Elvg (u,x) < B1, 7} (u,7) < B2}, B1, B2 € (0,1,

Then Ry, Rat, R? and RP* are crisp soft relations on U x E.
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The following Theorems 3.12 and 3.13 show that the generalized IVIF soft rough

approximation operators can be represented by crisp soft rough approximation operators
proposed by Zhang et al. [42].

Theorem 3.11 Let (U, E, R) be an IVIF soft approximation space, and A € IVIF(E).
Then the generalized upper IVIF soft rough approzrimation operator can be represented as
follows: Yu € U, @ = [a,a] € L7,

(1)
() = \/L [ A Ra(Aa) ()] = \{,[O‘ A Ra(Aat)(w)]
=V TG = V (o BT
(2)
Treay(®) = /}jmm(x&%] = />I[avRa<Aa+>w>1
=\ o T = A o G

and moreover, for any o € LY,
(3) R(A)ar € B (Aas) € Rz (Aa)
(4) [R(A)]*" C RoF(A%F) € R (A%)

~—

C R,
C R~

Proof. (1) For any u € U, we have

\/ [ A Ro(Aq)(u)] = sup{a € L'|u € Ro(Aqs)} = sup{a € L'|Rqo(u) N Ay # 0}
acL!

= sup{a € L'|3z € E[z € Ra(u),z € Au)}

= sup{a € L3z € Elur(u,z) >0 o, pa(x) >11 a]}

— sup{[or, 00] € L'[3z € Blup(u,) > an, (. 2) > an, w5 (2) > a1, w5(2) > o]}
= sup{[or, a] € L[z € Blig(u,2) A w3 (@) 2 v, ii(u,2) A s (0) 2 asl}

= [\ (g, 2) Apz (@), \ (f(u, ) A ph ()] = pga ().

zel zeE

Likewise, we can conclude that

iy (@) = \/ [a A Ra(Aar)@)] = \/ [a A g (Aa) ()

acL! acL!

= \/ [a/\M]'

acL!
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(2) In terms of Definition 2.5 and notations above, we have

N oV R¥(A*)(w)] = inf{a € L'ju € R¥(A")} = inf{a € L'|R*(u) N A” # 0}
aell

= inf{a € L'|3z € Elz € R*(u),z € A*]}

= inf{a € L'|3z € E[yg(u,z) <;1 o, ya(z) <pr a]}

= inf{[o1, 0] € L'|Fz € By (u,z) < a1, 74 (u,2) < g, vy (2) < oa,vf (2) < ag)}

— inf{lo1, az] € L' Fx € Elyg (u,2) V73 (2) < a1, v (us2) V 74 () < ]}

= [\ Grlu2)Vay (@), N\ Ok (w) vk (@) = vz (w)-
el zeFE

Similarly, we can prove that

Y@ =\ [aVRI(AH) ()] = J\ [V RoF(A%)(u)]

acLl! acLl!

= A lavEF (A ()]

acL!

(3) It is easily verified that Ry (Aq+) C
that [R(A)]a+ C Ra+(Aa+) and Ro(As) C |

Royt(Ay) € Ro(As). We only need to prove
R(A)]a.
In fact, Vu € [R(A)]at, we have pp4(u) >p1 a. According to Definition 3.4,

V [up(u, @) A py ()] > ar and V [ph(u,2) A phi(z)] > as. Then Iz € E, such that
z€E zel

pr(us o) A iy (mo) > on and pf(u, o) A pli(zo) > ag, that is, px(u,z0) > ar, py(zo) >
o1, wh(u,20) > ag, and pli(zg) > as. Thus pg(u,z0) >pr a and pa(ze) >pr o, which
imply that zg € Rt (u) and g € Aqay. Namely, Rqy(u) N Agy # 0. By Definition 2.5,
we have u € Ry (At ). Hence [R(A)]ay € Rot (Aay).

On the other hand, for any u € R,(A,), we have Ry (As)(u) = 1. Since Hgay (W) =

B\{:I[ﬁ A Rz(Ap)(u)] >1r a A Ro(As)(u) = «, we obtain u € [R(A)],. Hence, Ry(Ay) C

[R(A)]a-
(4) Similar to the proof of (3), it can be easily verified. O

Theorem 3.12 Let (U, E, R) be an IVIF soft approximation space, and A € IVIF(E).
Then the generalized lower IVIF soft rough approximation operator can be represented as
follows: Yu € U

(1)
pray @) = N [ov (T - R (Aap)w)] = A [V (I - R(A)(u)]
acL! acL!
= N\ lav(d-RH A )W) = N [eV (TR (Aq)(u),
acl! acL!
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(2)
ey () = \/ [ A (T~ Ro(A2F)(w)] = \/ [aA (T~ Ra(A%)(u)]

aeL! acL!
= \/ [e A (T~ Rar(AF)(w)] = \/ [N (T~ Ray (A%)(w)]
aeL! acL!

and moreover, for any o € L',
(3) [E(A)]a+ g E(ACH') g LM(AOH-)
(4) [R(A)]*" € Ra(A™F) C Ray (A7)

Proof. The proof is similar to Theorem 3.12. O

4 Application of IVIF soft rough sets in decision making

In [46], Zhang et al. gave a decision method based on IVIF soft set theory. However,
we note that the decision method need to choose the thresholds in advance by decision
makers. Thus the decision results will be depend on the threshold values at some degree.
Since the thresholds have different kind of subjective preference information, different
experts can obtain the different decision results for the same decision problem. So, in
order to avoid the effect of the subjective information for the decision results, we only
use the data information provided by the decision making problem and don’t need any
additional available information provided by decision makers. Thus the decision results
are more objectively.

Next, we shall develop a new approach to decision making problem based on the
generalized IVIF soft rough sets proposed in this paper.

Let (U, E, R) be an IVIF soft approximation space, where U is the universe of the
discourse, E is the parameter set, and R is an IVIF soft relation on U x E. Then we can
give this decision-making approach based on generalized IVIF soft rough sets with five
steps.

First, according to their own needs, the decision makers can construct an IVIF soft
relation R from U to E, or IVIF soft set (F, E) over U.

Second, for a ceratin decision evaluation problem, we suppose that one wants to find
out the decision alternative in universe with the evaluation value as larger as possible on
every evaluate index. On the basis of the assumption, we construct an optimum normal
decision object A which is an IVIF set on the evaluation universe E as follows:

A={<e;, max pr(uj,e;), min yg(uj,e;) >},

1<i<|U| 1<G<|U]

where |U| denotes the cardinality of the universe set U.
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Third, by Equations (1) and (2), we can compute the generalized IVIF soft rough
approximation operators R(A) and R(A) of the optimum normal decision object A. Thus,
we obtain two most close values R(A) and R(A) to the decision alternative u; of the
universe set U.

Fourth, Atanassov and Gargov [3,4] introduced the notion of IVIF sets, and gave two
operations on two IVIF sets, shown as follows, for all F,G € IVIF(U),

e Union operation:

FUG = {<u[up(u) V ugw), pp(w) V ug(w)),
[ (u) Ay (w), v (w) A (w)] > |u € UY,

e Intersection operation:

FNG = {<u[up(u) A pg(u), whu) A pdw),
[vr (W) Vg (W), v (u) V i (u)] > [u e U}

In general, the union operation and intersection operation on IVIF sets may result
in loss of information in practical decision making problem which affects the accuracy of
decision making. Therefore, inspired by the concept of &-union operation of intuitionistic
fuzzy subset, we also introduce the concept of G-union operation of IVIF subset.

Definition 4.1 Let F,G € IVIF(U). The &-union operation about IVIF sets F' and G
can be defined as follows:

F&G={<ulup(u) + pgu) — ppu) - pgu), phu) + pdu) — ph(u) - péw),
[y (W) - g (W), v (w) - v (u)] > Ju e U}

By using the @-union operation rather than the union and intersection operations, we
can obtain the choice set as follows

H = R(A) & R(A) = {< g, () + pp ) (10) = pgy ) (@) - pa) (),

Pz (W) Tty (@) = iy (1) - b g ()],
[7§(A)(“) ‘ 'Yé(A)(U)a'Y%(A) () "VE(A) (w)] > |u € U}.
Denote H = {< u, pg(w), vy (u) >}.

Finally, define an IVIF value A = (u,7) € L, where u = sup [pg(u;), pi(u;)),
1<<|U|

v = 1<ir1<f|U|[7;I(uj),7E(uj)]. Obviously, IVIF value A = (p,7) is the maximum choice
<<

value in the choice set H. Hence we take the object u; in universe U with the maximum
choice value as the optimum decision for the given decision making problem. That is to
say, if g (uj) >pr pand yg(uj) <pr vy, the optimum decision is u;.
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In general, if there exist two or more objects with the same maximum choice value
, then we can take one of them as the optimum decision for the given decision making
problem.

To illustrate the new method given above, let us consider the example as follows.

Example 4.2 Reconsider Example 3.7. Now all the available information on houses un-
der consideration can be formulated as an IVIF soft relation describing attractiveness of
house that Mr.X is going to buy. By using the second step of the algorithm for general-
ized IVIF soft rough sets in decision making presented in this section, we can obtain the
optimum normal decision object A as follows

A={<e,[0.8,0.9],]0.0,0.1] >, < es,[0.6,0.7],[0.1,0.2] >,
< €3,[0.6,0.8],]0.1,0.2] >, < ey, [0.4,0.8],[0.1,0.2] >}.

According to Equations (1) and (2), we can conclude that

R(A) = { < uy,[0.7,0.8],[0.1,0.2] >, < us, [0.6,0.7], [0.1,0.2] >, < ug, [0.5,0.8],[0.1,0.2] >,
< u4,[0.5,0.7],[0.1,0.2] >, < us,[0.8,0.9],[0.0,0.1] >}

and

R(A) = { < u1,[0.4,0.8],]0.1,0.2] >, < ug,[0.4,0.8],]0.1,0.2] >, < us, [0.4,0.8],[0.1,0.2] >,
< ug,[0.5,0.7],[0.1,0.2] >, < ug,[0.4,0.8],[0.1,0.2] >}.

Now by Definition 4.1, we have

H = R(A)® R(A) = { < u1,[0.82,0.96],[0.01,0.04] >, < us, [0.76,0.94],[0.01,0.04] >,
< ug,[0.70,0.96],[0.01,0.04] >, < u4,[0.75,0.91],[0.01, 0.04] >,
< us, [0.88,0.98], [0.00, 0.02] >}.

Obviously, IVIF value A = ([0.88,0.98],[0.00,0.02]) is the mazimum choice value in the
choice set H. Thus the optimal decision is us. Hence, Mr X will buy the house us.

5 Conclusion

Recently, there has been a growing interest in soft set theory. Some extensions of soft
sets have been obtained by combining soft set theory with other mathematical models,
including fuzzy soft sets, interval-valued fuzzy soft sets, intuitionistic fuzzy soft sets and
interval-valued intuitionistic fuzzy soft sets. Among them, the interval-valued intuitionistic
fuzzy soft set is the most generalized one. This paper is devoted to the discussion of the
combinations of interval-valued intuitionistic fuzzy soft set and rough set. By using an
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interval-valued intuitionistic fuzzy soft relation, we present a new soft rough set model,
called generalized IVIF soft rough sets. Furthermore, the generalized upper and lower IVIF
soft rough approximation operators are represented by crisp soft rough approximation
operators. Finally, a practical application is provided to illustrate the validity of the
generalized IVIF soft rough set.
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GENERALIZATIONS OF HEINZ MEAN OPERATOR INEQUALITIES
INVOLVING POSITIVE LINEAR MAP

CHANGSEN YANG AND YINGYA TAO

ABSTRACT. In this paper, we study the Heinz mean inequalities of two positive operators
involving positive linear map. We obtain a generalized conclusion based on operator Diaz-
Metcalf type inequality. The conclusion is presented as follows: Let ® be a unital positive
linear map, if 0 < m12 < A < M;% and 0 < mo? < B < M>? for some positive real numbers
m1 < My, ma < My, then for a € [0,1] and p > 2, the following inequality holds :

(G2 (4) + B(B))

2p

Moma(My? 2) + Mymy (Ms® 2
2ma (M1~ +ma®) + Myma (Ma” + ma?) O (Ho (A, B)).

<9—(p+4)
. 3—a 14+ 24« 2— o
IHIII{(.Z\JlTnl)T (Mng)T s (Mlml)T (MQmQ)T}

1. INTRODUCTION AND PRELIMINARIES

We represent the set of all bounded operators on H by B(#H). If an operator A satisfies
(Az,x) > 0 for any x € H, then A is called a positive operator. For two self-adjoint operators
Aand B, A > B means A — B > 0. The notation A > 0 means A is an invertible positive
operator.

A linear map ®: B(H) — B(#) is called positive (strictly positive ), if ®(A) > 0
(P(A) > 0) whenever A >0 (A > 0), and P is said to be unital if (/) = . Take A, B >0
and « € [0, 1], the weighted arithmetic operator mean AV,B, geometric mean Af,B and
harmonic mean A!, B are defined as follows :

AV,B = (1—a)A+aB, Af,B = A2(A"2BA"2) Az Al,B =[(1—a)A~! +aB~ 1]

when a = %, we write AVB, AfB and A!B for brevity, respectively. The Heniz mean is

defined by H,(A, B) = w, where A, B > 0 and « € [0, 1]. Recently, M. S. Mosle-
hian, R. Nakamoto and Y. Seo [1, Theorem 2.1, part (ii)] showed that

Theorem 1.1 Let ® be positive linear map, if 0 < m;2 < A < M;? and 0 < my? < B < My?
for some positive real numbers m; < M; and my < M, we can get operator Diaz-Metcalf
type inequality:
Mom,
Mym,
Thus AfB < H,(A, B) implies the following,.

O(A) + B(B) < (fn”—j + TE0(ALB).

2010 Mathematics Subject Classification. Primary 47A63; Secondary 47B20.
Key words and phrases. Heinz mean; Heinz operator inequality; positive linear map.
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Remark 1.2 Let ® be positive linear map, if 0 < m;2 < A < M;? and 0 < my? < B < My?
for some positive real numbers m; < M; and my < M,, then for o € [0,1], the following
inequality holds:

B(A) + 9(B) < (2 + M) p(H, (A, B).

In 2015, Mohammad Sal Moslehian and Xiaohui Fu obtained a second powering of the
operator Diaz-Metcalf type inequality:

Theorem 1.3 [9] Let ® be positive linear map, if 0 < m;?> < A < M;? and 0 < my? < B <
M,? for some positive real numbers m; < M; and mo < M, then the following inequality
holds:

M. Mymy (My® 2) & Momeo (M2 2))2
2m2®(A)+q)(B))2 S ( 1m1< 2 +m2 )+ 2;7122( 1 +m1 ))
My, 8v/Myim My M2 My

In the paper we shall give further generalizations of Remark 1.2 in the following section, along
with presenting p-th powering of some inequality for Heniz mean based on Remark 1.2 and
the following consideration: It is easy to see that the Heniz operator mean interpolates the
arithmetic-geometric operator mean inequality: A!B < AfB < H,(A, B) < AVB, and the
A AtB
AfB B }

)2(<I>(AﬂB))2-

geometric mean has so-called maximal characterization [2], which says that [

?{, g } is positive with X being self-

is positive, and moreover, if the operator matrix{

adjoint, then AfB > X.

2. RESULTS AND PROOFS
In order to prove the first main theorem of the paper, first we give the following lemmas.

lemma 2.1. [3] Let ® be a unital strictly positive linear map and A > 0, then ®(A) ™"

DAY

lemma 2.2. [5] Let A,B > 0, then the following norm inequality holds : [AB| <
illA+ B

lemma 2.3. [4] Let A, B > 0, then for 1 <r < +o0, ||A"+ B"|| < |[(A+ B)"|.
lemma 2.4. [7] (L-H inequality) f 0 < a <1, A> B > 0, then A* > B°.
Theorem 2.5. Let ® be a unital positive linear map, if 0 < m? < A < M;? and

0 < my? < B < M,? for some positive real numbers m; < M, my < M,, then for o € 0, 1]
and p > 2, the following inequality holds :
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M2m2
d(A o(B))?
T 8(4) + 9(B))
2p (2.1)
<9~ MzmQ(M12+m12>lf Mlml(M3f+m22) | ®(H.(A,B)).
min{(Mlml) (Mgmg) 2 (Mlml) (Mgmg) 2 }
Proof. Obviously (2.1) is equivalent to
Mymg p__p
d(A ®(B))2d 2(H,(A,B
”<M1m1 (A) + ©(B))227 2 (Ha(A, B))|
p
<2‘(§+2) MQmQ(M12 + m12) + Mlml(MQQ + m22) '
o min{(Mlml) (M2m2> 2 (Mlml) ‘;0‘ (MQmQ)%a}
Note that
(M12 — A)(m1 - A)A < O
implies
M12m12A*1 — M12 — m12 + A < 0,
therefore
M12m12<I>(A71) + (b(A) < ]\/[12 + m127
which equals to
Mymy Mymp®(A™) + 122 (A) < 1222 (M, 4 my?). (2.2)
Similarly, we have
M22m22<I>(B_1) + @(B) S M22 + m22. (23)
Since
A1+ B!
SAB) < (B =S
therefore
A B
Ha( ) 2 2)
M2m2M1m1 M2 mo
- @ e —a
:<M2m21M1m1) (M221m22) <AﬂO‘B> + <M2m21M1m1) <M221m22)1 (AﬂlfaB)
2
1 I—a 1 1 @ 1
< 2a 2—2a Ha A B
_maX{<M2m2M1m1> Momsy” M2m2M1m1) M2m2> Hia(4, B)
_ Ha(4, B) | (2.4)
min{(M1m1>l_a(M2m2)l+a, (Mlml)a(M2m2)2_a}
If we put

ﬁ = min{(Mlml)l_a(Mzmg)Ha, (Mlml)a(M2m2)2_a}v
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then
BO~(Ha(A, B))
A B
<d~1(H, ,
- ( (M2m2M1m1 M22m22
A B
<®H', ;
= (M2m2M1m1 M22m22))
S%@(MgmngmlA_l + M22m22B_1)
1 -1 2 2 -1
:§(M2m2M1m1<I>(A >+M2 meo q)(B ))
By (2.2) and (2.3), we have
1 M2m2 P P P
- O(A)+ ®(B)))2p2d2(H, (A, B
GG @A) + 2(B) 5505 (U, (A, B))|
1 1 Mgmg P P 2
<Z||(= 2 2
<N GG a(A) + ®(B))* + 550~ (Ha(A B))|
1 1 Mgmg 212
< 2
<N GGz a(A) + ®(B)) + 407 (Ho(A. B))E|
_1 1 Mgmg 1 p
=15 G2 e(A) + ®(B)) + B0~ (Ha(4, B))|
1.1 Mym
gﬂ?M%?mnmwmw@mMm@mﬂ+Mﬁm%w4mp
Mom
<9 (p+2)(M22+m2 + M?mi (M1 +m12))p
Therefore
!Kﬂbnh¢%A)+4XBD%©*%U¥(A»BDH
]\417711 o )

) MQmQ(M12 + m12) —|— Mlml(MQQ + m22) 8
mm{(Mlml) (Mgmg) 2 (Mlml) Jga (Mgmg)%Ta}

Corollary 2.6. In Theorem 2.5, if 1 < p < 2, we get

Mgmg
M1m1

gzﬁp[

®(A) + @(B))

Mgmg(]\/h? + m12) + Mlml(]\/[22 + m22)

min{(Mlml) (M2m2)1ga (M1m1)2+a (MQmQ) g"‘}

] ®P(H,L(A, B)).

Theorem 2.7. Let ® be a unital positive linear map, if 0 < m2 < A < M;? and

0 < my2 < B < M,? for some positive real numbers my; < My, mg < My, then for a € [0, 1]
and p > 2, the following inequality holds :

2 2 2 2 2
(P(A)V,D(B))P < 2—(p+4)[ ' M2+ (1—a)mi®4+ Mo +ams pq)p(Ha(A, B)). (2.5)

min{(Mim1)t=*(Mama)®,(M1m1)*(Mama)l=<}
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Proof. Obviously (2.5) is equivalent to

I(@(A)Va®(B))2 @~ % (Ha(A, B))l

<9-(5+2) Mi? + (1 — a)mi® + My® + ams? ‘
- min{ (M;my )1 =%(Mamsg)®, (Mymy)*(Mams)t=2}
Note that
(M? — (1 —a)A)(m? — A)A™ <0,
implies
M*my? A7 — M2 — (1 —a)m®> + (1 — a)A < 0.
Therefore

MP*m2®(A™Y) + (1 — a)®(A) < My? + (1 — a)m, %
Similarly, we have
My*mo?®(B~Y) + a®(B) < My? + amy?.
Since
A—l B—l
(A B) < (ap) = AP

and by analogy to (2.4)

A B
Mi"mq? My™my
_ H.(A, B)
min{ (Mymy)2=20(Myms)2, (Mymy)** (Mymy)2=20}
By puting
h = min{(Mlml)Q_%‘(Mgmg)?a, (M1m1)2a(M2m2)2_2a},
we have

h® '(H, (A, B))

A B
<h®'(H,
T TS TR T
<hB(H (g, —2

MEm2’ My*mo?
1
§§<I>(M12mfA*1 + My*my*B™1)
1
zi(Mfmfé(A‘l) + My’>mo*®(B™1)).

By (2.6) and (2.7), we have

p

(2.6)

(2.7)
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N
=
=
<
o

=
3

IN

=
N =D =

B(A)V.®(B) + hd ' (H, (A, B)))?|?

IN

I I N N e N

O(AVV,®(B) + hd ' (H,(A, B))|[P

AN
N | r—tL\:)T»—t

(1 = a)®(A) + a®(B) + MEm2®(A™) + Mu>my*®(B~))||P

—(

IA

(\]
kS|
+
[\

)(M12 + (1 — a)m12 + M22 + am22)p.
Therefore

b

I(@(A)Va®(B))2 0% (Ha(A, B))|
M12 + (1 - a)m12 + M22 + ozm22
min{ (Mymy )= (Mymg), (Mymy )*(Mymg)t=2} |

p

<2 (5+2)

Theorem 2.8. Let ® be a unital positive linear map, if 0 < m2 < A < M;? and
0 < me? < B < M,? for some positive real numbers m; < My, ms < M,, § is a ar-
bitrary mean less than or equal to arithmetic mean, then for a € [0,1] and p > 2, the
following inequality holds :

My? + My* 4+ my? + my?
min{ (Mymy )= (Mama)®, (Mymy)*(Mamy)t =}

(B(A)6P(B))P < 2—<2P+4>[ ]2p<I>P(Ha(A, B)).

Proof. By the similar method of proofing Theorem 2.7.

Corollary 2.9. In Theorem 2.8, we easily get

2 2 2 9
HJ(@(A),@(B))<2—<2p+4>[ M2+ My? +my? + my

= miﬂ{(Mlml)l—a(M2m2)0‘7 (Mlml)a(Mgmﬂl—a}} (I)p(Ha(A, B))

Theorem 2.10. [8] Let 0 < m < A, B < M, with the scalars m, M > 0 and o, 7 two
arbitrary means beween harmonic and arithmetic means, then for every positive unital linear
map ¢, 2 < p < o0,

(M +m)*

PP(AcB) < (——
4» Mm

P (P(A)TD(B))".
By AlB < H,(A, B) < AV B, we obtain the following inequality.

Remark 2.11. Let 0 < m < A, B < M, then for every positive unital linear map ® and

0<a<l, K(h)= (hz}i)Z, h = %, p > 2, the following inequality holds :

PP(H, (A, B)) < 22~*KP(h)H,"(®(A), ®(B)). (2.8)
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lemma 2.12. [6] For any bounded operator X,

tI X

|X| <t = || X|| <t = {X* ‘T

}20(1520).

Theorem 2.13. Let 0 < m < A B < M, then for every positive unital linear map ¢ and
O0<a<l1, K(h) = (h“ ,h =2 p > 2 the following inequality holds :

p

®2(H, (A, B))H, 2 (P(A), ®(B)) + Ha_g(qD(A), O(B))P:(H, (A, B)) <2°-'K5(h). (2.9)

Proof. By (2.8) we get
192 (Ha(A, B))Ho 2(2(A), ®(B))|| < 272K (h). (2.10)
By (2.10) and Lemma 2.12, we obtain

[ 2r- 2K2(h)[ . @g(Hap(A,B))Ha‘g@(A),CD(B)) 1-0

| Ho, 2(B(A), (B))®E (Ha(A, B)) 207 2KE (h)] I
and

[ 2P 2K5(h)] H, 2(D(A), ®(B))®:(H, (A, B)) ] -0

| ®5(H,(A, B)Hy ™ 2(D(A), ®(B))  2072KE (h)] i

Summing up these two operator matrices above, put

P2K5(h) =t,

P

®3(H, (A, B)Hy 2 (®(A), ®(B)) 4+ Hy 2 (B(A), ®(B))®2 (H, (A, B)) = X.

> 0.

2t X
X* 2t

Since ®%(H, (A, B))H, 2(®(A), ®(B)) + H, % (®(A), ®(B))®%(H,(A, B)) is self-adioint,
(2.9) follows from the maximal characterization of geometric mean.

Corollary 2.14. Let ® be a unital positive linear map, if 0 < m;? < A < M,? and
0 < my? < B < M,? for some positive real numbers m; < M, my < M,, then for o € [0, 1]
and p > 2, the following inequality holds :

p

H,% (®(A), ®(B))d > (Hu(A, B)) + & 2(H,(A, B))

<27(p+1) M12 + M22 + m12 + m22
= min{ (Mymq)1=(Mama)®, (Mymq)*(Mamg)t=<}

2
2

Ho2 (2(A), ®(B))

dP(H, (A, B)).

Proof. By Corollary 2.9 and the similar method of proofing Theorem 2.13, we can easily get.
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Existence and uniqueness results of nonlocal fractional
sum-difference boundary value problems for fractional
difference equations involving sequential fractional difference
operators.
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Department of Mathematics, Faculty of Applied Science,
King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
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Abstract

In this article, we study some new existence results for a nonlinear fractional
difference equation with fractional sum-difference boundary conditions. Our
problem containing sequential fractional difference operators that have different
orders. The existence and uniqueness results are based on Banach contraction
mapping principle and Schaefer’s fixed point theorem. Finally, we present some
examples to show the importance of these results.

Keywords: Fractional difference equations; boundary value problems; existence.

(2010) Mathematics Subject Classifications: 39A05; 39A12.

1 Introduction

In this paper we consider a fractional sum-difference boundary value problem of a

fractional difference equation of the form

Au(t) = ft+a—Lult+a—1),APA'u(t+ o — p—v + 1)),
u(a —2) = A%u(a— 0 —2) = py(u), (1.1)
u(T + o) = g A%u(n + B),

where t € Nopr :== {0,1,...,T}, pg >0, 2 <a <3 0<8,0,uvr<1 1<
p+v <2 1n€ Noirta-1, f € (Nocgria X RxR,R) is a given function, and
y: C(Ny—sria,R) = R is a given functional.

Mathematicians have used this fractional calculus in recent years to model and
solve various related problems. In particular, fractional calculus is a powerful tool for
the processes which appears in nature, e.g. biology, ecology and other areas.

Fractional difference equations have been interested many researchers since can use

for describing many problems in the real-world phenomena such as physics, chemistry,

LCorresponding author

1097 Laoprasittichok et al 1097-1111



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

2 S. Laoprasittichok , T. Sitthiwirattham

mechanics, control systems, flow in porous media, and electrical networks can be found
in [1] and [2] and the references therein. An excellent papers dealing with discrete
fractional boundary value problems, which has helped to establish some of the basic
theory of this field, one may see the papers [3]-[17], and references cited therein.

For example, Kang et al. [3] obtained sufficient conditions for the existence of
solutions for the nonlocal boundary value problem as follows,

{—A@@%;m@+u—nf@@+u—lm t € Noy = {0,1,..., b}, 12)

y(p—2)=V(y), ylu+b)=2(y),
where 1 < p <2, f e C([0,00),[0,00)) and h € C(N,_1 44-1,[0,00)) are given
functions, and ¥, ® : R**3 — R are given functionals.
Presently, Chasreechai et al. [15] examined a Caputo fractional sum-difference

equation with nonlocal fractional sum boundary value conditions of the form

Asu(t) = ft+a—Lult+a—1),(VPu)(t+a—2)), teNyr,
u(a —2) = y(u), (1.3)
wWT+o)=A"gT+a+y-3)u(T+a+vy-3),

where 1 <a <2, 0< <1 2<v<3 ForUCR,ge€CNyoaria,RTNU),
J € C(Ny—aria X U x U,U) are given functions, y : C(Ny—o714q,U) — U is a given
functional, and for ¢ : Ny_o 740 X Ny—o 710 — [0, 00),

t—p
(Vu)(e) = Ao+ ) = s 3 (1= o) belt s+ B)uls+ )
s=a—p—2

The plan of this paper is as follows. In Section 2, we recall some definitions and
basic lemmas. Also, we derive a representation of the solution to (1.1) by converting
the problem to an equivalent fractional sum equation. In Section 3, the existence and
uniqueness results of the boundary value problem (1.1) are established by Banach
contraction mapping principle and Schaefer’s fixed point theorem. An illustrative

example is presented in Section 4.

2 Preliminaries

In this section, we introduce notations, definitions, and lemmas that are used in the

main results.

rt+1

Definition 2.1. We define the generalized falling function by t* := %, for
—«

any t and « for which the right-hand side is defined. If t + 1 — « is a pole of the

Gamma function and t + 1 is not a pole, then t* = 0.
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Lemma 2.1. [10] If t <r, then t* < r% for any a > 0.

Definition 2.2. For a > 0 and f defined on N,, the a-order fractional sum of f is
defined by

ATF(0) = ey ot~ o))

fort € Noyio and o(s) = s+ 1.

Definition 2.3. For a > 0 and f defined on N,, the a-order Riemann-Liouville
fractional difference of f is defined by

t+a

A%f(t) == ANATO (1) = oo S (e = a(s)=2L £ (o),

S=a

wheret € Nyyn_o and N € N is chosen so that 0 < N —1 < a < N.

Lemma 2.2. [10/ Let 0 < N —1 < a < N. Then

ATAYY(t) = y(t) + Crt2=L 4+ Cot®=2 + . 4 Onte 2,

for some C; € R, with 1 < i < N.

To define the solution of the boundary value problem (1.1) we need the following
lemma that deals with a linear variant of the boundary value problem (1.1) and gives

a representation of the solution.

Lemma 2.3. Let A #0,p,¢ >0, 2<a <3, 0<p3,0<1, ne&Nyqatr-1,
functions h:Ny_qa17-1 =+ R and y: R = R be given. Then the problem

A%u(t) = h(t +a —1), t € Nor,
u(a —2) = Au(a — 0 — 2) = py(u), (2.1)
u(T +a) = g A™%u(n + B),

has the unique solution

W) = e | S+ 6 ()P s — o) e+ a - )
s=a £=0
—;(TM—U(S))Q Lh(s +a — 1) +Ffo’f—(_“)1) [LM— ¥
+ﬁ St — o(s)* L h(s + o 1), (2.2)
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where
n—a+1
q . 4, DNT+a+1)
AN=—— E —s—q)=L —1)e=—— 2.3
F( ) s (77+5 S O_/) (S+O[ / F(T+2) ) ( )
n—oa+2
q 61 0o DNT+a+1)
O =—— —a— 1)2=— —2) — 2.4

Proof. From Lemma 2.2, we find that a general solution for (2.1) can be written as
u(t) = O1t2=1 4 Cot®=2 + Ct*2 + A™h(t + a — 1), (2.5)

for ¢ S Na_37T+a.

Using the fractional difference of order 0 < 6 <1 for (2.5), we obtain

Alu(t) = F(O_le) > (t—o(s) Tt se=! P(C_Qe) D (t—o(s) Tt se=2

s=a—1 s=a—2
Cg t+6 ,
—0—-1 _a—3
+F(_9) S;g(t — o(s))=t=L sa=2
t4+0 s—a
ZZt—a s — o (£)2=Lh(E +a — 1),
s=a £=0

for t € No—g_21+a—0+1-

Applying the condition of (2.1): u(a — 2) = A%u(a — 6 — 2), we have C3 = 0.
So,
u(t) = C1t%= L 4+ Cot®2 + A *h(t + o — 1), (2.6)

From (2.6) and the second condition of (2.1): u(a —2) = py(u), we have

py(u)
o= Fa =) (2.7)
Hence,
u(t) = C1te=1 + F?Ogj—(ib)l)t“ + ANt + a — 1), (2.8)

fort € Ny_37144.

Using the fractional sum of order 0 < 5 <1 for (2.8), we obtain

-8
Au(t) = (1= alo)tset IS (1 o)t

s=a—1 s:a72

1100 Laoprasittichok et al 1097-1111



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

Existence and uniqueness results of a nonlocal fractional sum-difference BVP. ... 5
1 t—B s—a

e t—o(s)(s — o(£)2Lh(E +a—1), 2.9

) 2 2~ oD e P e k), (20

for ¢ € Na+573,T+a+B-
The third condition of (2.1) implies

gA Pu(n + B)

_ Gy —1 .a-1 pqy(u) ! e
TP Z (n+ 8 —o(s)Lsa=t 4 T(A)T(a—1) S;Q(U + B —o(s))l=Ls2=2

s=a—1

d a—1
GG Z; N+ B —a(s) (s —a(&)*=h(E+a—1)

py(u)

= Cl(T—FOA)E‘i‘ m

(T + )7+_Z T+a—o(s)Lh(s+a—1).

s=

Solving the above equation for the constant ', we get

G, = AF(_;)?(y;uz 0 S;Q(n + 8 —o(s) L2 =2 + —AI{)(Z@ 0 (T + )22
T )=Lh(s+a—1) (2.10)

ZZTHﬁ—U B-Y(s — 0(£))2 L h(E +a — 1),

sa§0

where A is defined as (2.3). Substituting C; into (2.8), we obtain (2.2). O

3 Main Results

In this section, we wish to establish the existence results for problem (1.1). To
accomplish this, let C = C(N,_3 o+7, R) be a Banach space of all function v with the
norm defined by

[ulle = max{{|ul|, [|A*A"u]]},

where |lu]| = max |u(t)] and ||[A*AYul| = max |[A*Au(t — p— v+ 2)|.
tEN, _ 3,a+T teN, 3,a4+T

Also define an operator F': C — C by

Fu(t)
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- - [ 33+ B — ()22 s — 0(€)2L £ + 0 — Lu(§ +a— 1)

sa{O
T
AFA'uW(E+a—p—v+1 ZT—i—a—a ()Nt f(s+a—1u(s+a—1),
s=0
nAV o, py(u) ﬁ_tg@
A*A"u(s+a—p—v+1)) +—F(a—1)[t i (3.1)
1 t—a
+m (t—o(s)2 =2 f(s+a—1u(s+a—1),APAu(s + o — p—v+ 1)),

Il
=)

S

for t € Ny_30+7, where A # 0, © are defined as (2.3),(2.4), respectively. The problem
(1.1) has solutions if and only if the operator F' has fixed points.

Our first result is based on Banach contraction mapping principle.

Theorem 3.1. Assume that

(Hy) There exist constants v1,7v2 > 0 such that, for each t € Ny_3 .17 and for all
u,v € C,

|f(t,u(t), APA u(t — p— v +2)) — f(t,v(t), APA"V(t — p— v + 2))|
< mlu(t) —v(t)] + 92 [APAYu(t — p— v+ 2) — APAY(t — p— v+ 2)].

(Hy) There exists a constant w > 0 such that, for all u,v € C,
ly(u) —y(v)] < wlu —v].

(T+2)(T+1)
(Hg) ’YQ —|‘CL)(D < m7

where
v = max{y + 1} (3.2)
0 — (T+a+2)=) qD(T+a+pB) (THa+2)*| (T+a+2)* (3.3)
B IA| I(a+ B+ 1)I(T) I(a+1) Dla+1) '
p(T + o+ 2)2=2 S
b = 1+ (T+4)|—||. 3.4
Ta—1D) +H(T+4) | (3.4)
Then the boundary value problem (1.1) has at least one solution on Ny_3 oi7.
Proof. Denote that,
Hlu—|(t) = [fEu(t), A Au(t — p—v+2)) — f(t,0(t), AFA (t — p— v +2))|.
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For all u,v € C, by computing directly, we have

|Fu— Fvll
o=t q ot —1 a-1
:t@gﬁﬂV—Anwlﬂaggzgn+ﬁ—dﬁf@—d@)HM—M@)
STT +a— o) Hlu—o|(s)| + |12 taA@ pw&;:?ﬁ“)'
1 X -
+m§(t— (s))*=H|u —v|(s)
(THa+2)2* (T+a+2)=L] ¢qT(T+a+p) (T + o)~
s Ollu=vle) | o7~ A T(T(a+B+1) T(a+l)
+]A4T+4W%‘(Mw—vkxi?$a+2ﬁ‘
= (Vllu—vlle) 2+ (Wllu—vlc)
and
|AFAY Fu — A*AYFo|
= nax | (AMAYFu) (t— p— v +2) = (A*A"Fo) (t — p— v + 2)|
7 T+oa—v+2 s+v
< (ﬁ?““‘ >3 (Tra-p-vi2- o) s - o)) x
s=a—v E=a-—1

gIr(T+a+p) (T+aw)e
NTMNa+p+1) I(a+1)

(T + a+2)2=2
Na—1)

(]F( Z Z (TH+a—p—v+2—o0(s) (s—a(f))_”_l)

s=a—v E=a—2

(\F(— Z d(T+a—p—v+2—o(s)* (s—a(r))_”_l)x

S=a—V r=ow

a1 | (Wl = vlle)
(T—l—a+2)[ A

©

p (Wllu—vlc) |©
A

FMNa—1)

+p (Wlu—=vle)

Olle=2lle) §= 0 g oreyyant
o) g(ﬂ +2-0(9))

(T+a+2)(T+a+1)
(T+2)(T+1)

(T+a+2)(T+a+1)
(T +2)(T+ 1)

(Y 4+ w®] ||lu — v]|c.

Thus, |[Fu— Fulle < [+ wP] [lu — vlle.
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By (Hj), we get that F is a contraction mapping, and then Theorem 3.1 implies that

boundary value problem (1.1) has unique solution on N,_3 ,+7. This completes the

proof. O

The second result is based on Schaefer’s fixed point theorem.

Theorem 3.2. (Arzeld-Ascoli Theorem) [18] A set of function in C|[a,b] with the sup
norm, is relatively compact if and only it s uniformly bounded and equicontinuous on

la, b].
Theorem 3.3. [18] If a set is closed and relatively compact then it is compact.

Theorem 3.4. [Schaefer’s fixzed point theorem] [19] Let X be a Banach space
and T : X — X be a continuous and compact mapping. If the set

{r e X : x=XI(x), for some X\ € (0,1)}

1s bounded, then T" has a fized point.

We shall use Schaefer’s fixed point theorem to prove that the operator I’ defined
as (3.1), has a fixed point.

Theorem 3.5. Suppose that there exist constants Ly, Ly > 0 such that, for each
t € No—gotr and u €C,

[f(tu(t), A A u(t — p—v +2))| < Ly max{|[ul], [A*A"u]]},
y(w)] < L.

Then the problem (1.1) has at least one solution on Ny_3 ai7.

Proof. We divide the proof into four steps.

Step L. Verify F' map bounded sets into bounded sets in C(Ny_3 o+7).
Let u € By, = {u € C(Na—3a+7) : |Jullc < L}, and choosing a constant

> Ly®(T +a+2)(T+a+1)
T (TH+2)(TH+1)—LiQ(TH+a+2)(TH+a+1)

Denote that

Hlu —v|(t) = |f(t,u(t), A*A"u(t —p—v+2)) — f(t,v(t), APAv(t — p— v + 2))|
< @ u(t), AMA u(t — p— v+ 2)) = [t 0(t), A*A"(t — p— v+ 2))
= Hlju—vl|@).
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For each u € By, we obtain

[ Ful|
n
T e [ (qﬁ ZZ n+ 06— BL(s — o (€))2=LH|u — v|(€)
a—3,a+T pudsr
T -
;(T+a—a(s))°‘ LH|u —v|(s)| + ta—?_tAl@ I%’(’j(_u)ly)
1 t—a
-ﬁzﬁ (t — o(s))e=2 H|u — v|(s)
s=0
<1HM|(T+a+mﬂ+ﬂWwHQﬁi,QHT+Q+B)_XT+®Q
= e T+ 1) |A| N(T(a+B+1) T(a+1)
O| | pLa (T + o + 2)2=2
+]A{T+4WK‘ o 1)
< L1LQ+ Ly ®.
and

|A*AY Fu|| = | nax | (A*AYFu) (t — p— v +2)|

Na73 sa+T

=  max {|F |Z Z (t—p—v+2—o0(s) (s — (&)L x

t€ENG—3,a+T s=a—v f=a—1

[ @ =
5”[(|Al|¥ 1) 0SS+ - o) — o)

s=a £=0
T
L S

N (T +a—ofs))e=! i b

SZ:(:]( +a—o(s)) +F(o¢—l)‘/\‘

t—v4+2 s4v

s — o(€)1en

+| e o> (t—p—v+2—o(s)"

s=a—v E=a—2

t—v+2 s+v

I Ll'“”c ‘ZZt— p—v+2—o(s)~

S=a—V r=ux

pL2 —2
P22 p_nqo)e
[na—n( Y

(5 — ()=t %Z@«_a@)a—l }
(TH+a+2)(T+a+1) (T+a+mg (T + a + 2)e=L
(T+2)(T+1) _FW+D T Al x

) gI'T+a+p) (T+
N(T)T(a+B+1) T(a+

\_/

(T+3)(T+2)

+{@+a+m@+a+n}x
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pL2 a—2 S,
—(T 2)=11+(T+4)|—
F((%_1)( +a+2) + (T + )’A'

(T+a+2)(TH+a+1)

LiLO + Ly®
(T+2)(T +1) ! 2

Hence, ||Fullc < L where Q and ® are defined on 3.3 and 3.4, respectively. Thus

F' is uniformly bounded.

Step II. Show that F' is continuous on By.
Let € >0 there exists § = max{d;,d2} > 0 such that, for each ¢t € Ny_3,4r and
for all w,v € B, with

max{|u(t) — v(t)|, |[A*A u(t — p— v +2) — AFAY(t — p— v+ 2)|} < dy,

we have
e(T+2)(T+1)

20(T+a+2)(T+a+1)

and for all u,v € Br, with |u — v| < d2, we have

Hlu —v| <

e(T+2)(T+1)
20 (T+a+2)(T+a+1)

ly(u) —y(v)| <
Then, we have

[Fu(t) — Fo(t)]

| [ S 8o ol
_;ﬂa—a(s))MHw-m(s) e pwr(@:?gv)'
+ﬁ :(t — o(8)) L H|u — v|(s)

< Hlu—| (TFJgao:LS)a . (T+o|z/:|— 2)e-L ‘F?TF)(FT(;J?;?U N (Fizojfi;‘
Hly(w) — y()| p(Tﬁj‘ - f))H L+ (T+4) \%‘

= QH|u—v] + @ |ly(u) —y(v)[.
Similarly to the proof above and Theorem 3.1, we obtain

| (A*AYFu) (t — p— v +2) — (A*A"Fo) (t — p— v +2)||
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(TH+a+2)(T+a+1)
(T+2)(T+1)

QI =l + @ ly(w) —y@)l] < S+5=¢

Hence, ||[F'u — Fvl||¢c < e. This means that F is continuous on By.

Step III. Examine F'(B) is equicontinuous with By. For any e > 0, there exists
d = max{dy, d2, 03} > 0 such that, for t1,ts € Ny_3 447

eT(a+1) (T +2)(T+1)
3Li(T+a+2)(T+a+1)

elA(T+2)(T+1)

(T +a+2)(T+a+1) [Ll qN(T+ath) _ (T+aje| | plo l@l]

D(T)T(a+pB+1) I(a—1) I'(a—1)
whenever |ty — t1] < 0o,

|t — 1% < whenever [ty — t1] < 41,

517 <

el'la—1)(T+2)(T+1)
3pLo(T +a+2)(T+a+1)

whenever |ty — t1| < d3.
Then, we have

|Fu(ty) — Fu(ty)|

ng;l— t?;l q = -1 a—1

T

flé+a—Lul+a—1),A"A"u(+a—p—v+1)) ZT—%—@—U (5))2=L x
s=0

fls+a—TLu(s+a—1),A*AMu(s+a—pu—v+1))

() - (825 §

—i—ﬁ[Z(h —U(S>)Ef(8+a— Lu(s+a—1),A*A"u(s+a—pu—v+1))

t1—a

=) (= 0o()= f(s+a—Lu(s +a— 1), APA"u(s + a — p— v+ 1))

o Li| ¢ITT+a+p8) ([T+a) pL: |©
< |- | ATt D Tty +F(a—1)’K’
+%[;(t2—a(s))o‘_l+ ;(tl—a(s))_ + |t tl—( T—n
= et Li| T(T+a+p) (T+a) pLy ’9‘
-2 ! IA|IT(T)T(a+B+1) T(a+1)| T(a—1)|A
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Ly ey a pLo a=2 a=2
+—F<&+1>\t2—t1}+—r<a_1)\t2 5

So HFu — Fv” < e.

Similarly to the proof above and Theorem 3.1, we obtain

|AFAY Fu — A*A” Ful|

(T+a+2)(T+a+1) \to‘—‘l— ﬂ| Li| qIT+a+8) (T+a)*
(T +2)(T + 1) 2 ! IA|IT(TT(a+B8+1) Tla+1)
pLy |O Ly o La ply  a—2  a—2

x| | e gl ‘}

- e+e+e
- +-+-=c
3 3 3

Thus, ||Fu(te) — Fu(ty)||c < e. This means that F'(By) is an equicontinuous set.

As a consequence of Steps I to I1I together with the Arzela-Ascoli theorem, its imply
that ' : C(Nay—gat1) = C(Na—satr) is completely continuous.

Step IV. A priori bounds. We show that the set
E={ue C(Ny3a+r):u=AFu forsome 0< <1} isbounded.

Let w € E. Then u(t) = AM(Fu)(t) for some 0 < A < 1. Thus, for each t € Ny_3 47,
we have

IANFu(t)| < |Fu(t)] < LiLQ+ Ly ® =S
So, we have H)\F uH < &, Similarly to the proof above and Theorem 3.1, we obtain

(T+a+2)(T+a+1)
(T+2)(T+1)

I = Q.

X APAYFul| <

Hence, |AFulle < S. This shows that E is bounded.

By of the Schaefer’s fixed point theorem, we conclude that F' has a fixed point which
is a solution of the problem (1.1). O

4 Some examples

In this section, in order to illustrate our results, we consider some examples.
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Example 4.1. Consider the following boundary value problem

e sin(t+3) ' lu(t+32)| + IATATu (t+ %)

ASu(t) =
(t+%)° HEIES

, teNpy, (4.1)

. . ) 7
where C; are given positive constants with >;_ C; < 1520

Here p=3, q=3,0=14, a=3 =3, p=3% v=3 n=35 T=4
v e—sin2t |’U/(t)‘+|A3A 7
ftut), APFA u (t —p—v+2)) = o7 O and y(u) =Y, o Ciu(ty), t; =
1

2_5'

Let t € N_%% and u,v € R, then

IA|=7.781 £0, ©=1.278, Q~ 106.039, ® ~ 3.119.

Since |f (t,u(t), APFAYu (t — p— v +2)) — f(tv(t), APAYY (t — p— v+ 2))|
< o [u(t) — ()| + 7 | A" A (t+ 5) — APAYY (t+ 35|
is satisfied with v = max{y; + 12} = 1:;49.
Also, we get [y(u) —y(v)| = [Ty Ciu(ts) — S0_q Cov(t)] < 5o Cilults) —v(t),
so (Hy) holds with w = >7_ C; < Tl
We can show that

(T+a+2)(T+a+1)
(T+2)(T+1)

[YQ + w®] = 0.975 < 1.

Hence, by Theorem 3.1, the problem (4.1)-(4.3) has unique solution. O

Example 4.2. Consider the following boundary value problem

5 t—l—% . 3 2 3 25
u(t) = 0 2 sin u<t+§)'+cos A3A U(t—i-ﬁ)’], t€Nos, (44)
7
1 1 (1 1 |u(t:)] -1
”(2) ”(4) 4;CZ1+|u(ti)\’ h=t—3 (45)
13 1 1 29
— ) = =-A"3 — 4
u(2> ! U(G), (4.6)

where Cj; are given positive constants with ZZ:O C; < %
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y(u

13
|f(tu(t), AFAYu (t —p—v +2))| < 50 max{2, 1} ~ 0.414 (L1 207r>

S. Laoprasittichok , T. Sitthiwirattham

, T'=4,

i)

0=

wiN
1
le

y M= » =

Y

wl=
N

and

ol

u(t), AFA U (t — p— v +2)) = &= [2sin]u( )| + cos ‘A%A% (t+

) =37, Zlﬁut)' t; =i— 3. Clearly for t € N_1 13, we have

13

e N ) 1
ly(u)] < Z im<g— 2.
i=0

Hence, by Theorem 3.5, the problem (4.4)-(4.6) has at least one solution. O
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Abstract. The notion of hesitant fuzzy mighty filter of a BFE-algebra is introduced and related properties are
investigated. We provide conditions for a hesitant fuzzy filter to be a hesitant fuzzy mighty filter. We construct

a new quotient structure of a transitive B FE-algebra using a hesitant fuzzy filter and study some properties of it.

1. Introduction

In 2007, Kim and Kim [5] introduced the notion of a BE-algebra, and investigated several
properties. In [1], Ahn and So introduced the notion of ideals in BFE-algebras. They gave several
descriptions of ideals in BE-algebras. Song et al. [8] considered the fuzzification of ideals in BE-
algebras. They introduced the notion of fuzzy ideals in BFE-algebras, and investigated related
properties. They gave characterizations of a fuzzy ideal in B FE-algebras.

The notions of Atanassov’s intuitionistic fuzzy sets, type 2 fuzzy sets and fuzzy multisets etc.
are a generalization of fuzzy sets. As another generalization of fuzzy sets, Torra [9] introduced
the notion of hesitant fuzzy sets which are a very useful to express peoples hesitancy in daily life.
The hesitant fuzzy set is a very useful tool to deal with uncertainty, which can be accurately and
perfectly described in terms of the opinions of decision makers. Also, hesitant fuzzy set theory
is used in decision making problem etc. (see [3, 7, 11, 12, 13, 14, 15]). In [4], Y. B. Jun and
S. S. Ahn introduced the notion of a hesitant fuzzy filter and investigated some properties of it.
The authors [2] defined a hesitant fuzzy implicative filter in a BFE-algebra and discussed some
properties of it.

In this paper, we introduce the notion of hesitant fuzzy mighty filter of a BFE-algebra, and
investigate some properties of it. We consider characterizations of a hesitant fuzzy mighty filter
of a BFE-algebra. We provide conditions for a hesitant fuzzy filter to be a hesitant fuzzy mighty
filter. We construct a new quotient structure of a transitive B F-algebra using a hesitant fuzzy
filter and study some properties of it.

2. Preliminaries

92010 Mathematics Subject Classification: 06F35; 03G25; 06D72.
YKeywords: BFE-algebra; (mighty) filter; hesitant (mighty) filter.
* The corresponding author. Tel: +82 2 2260 3410, Fax: +82 2 2266 3409
YE-mail: han@hanyang.ac.kr (J. S. Han); sunshine@dongguk.edu (S. S. Ahn)
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By a BE-algebra ([5]) we mean a system (X;%,1) of type (2,0) which the following axioms
hold:

(2.1) Ve e X)(zxx=1),
(2.2) (Vre X)(xx1=1),
(2.3) (Vx e X) (1 xx =x),

(2.4) (Vo,y,2 € X) (x* (y*2) =y * (x % 2) (exchange).

We introduce a relation “ <” on X by x <y if and only if x xy = 1.

A BE-algebra (X;*,1) is said to be transitive if it satisfies: for any x,y,2 € X, yx z <
(x % y) * (x * z). A BE-algebra (X;*,1) is said to be self distributive if it satisfies: for any
x,y,2 € X, xx(yxz) = (x*y)*(xxz). Note that every self distributive BFE-algebra is transitive,
but the converse is not true in general (see [5]).

Every self distributive B FE-algebra (X, 1) satisfies the following properties:

(2.5) (Ve,y,ze€ X)(z<y=zsxrx<zxyand yxz < xx*2),

(2.6) (Vo,y € X) (zx (x*xy) =z *y),

(2.7) (Vo,y,z € X) (zxy < (zx2) x (2% y)),
Definition 2.1. Let (X;x*,1) be a BE-algebra and let F' be a non-empty subset of X. Then F'
is a filter of X ([5]) if

(F1) 1 € F;

(F2) Vz,ye X)(zxy,x € F=y€F).
F is a mighty filter ([6]) of X if it satisfies (F1) and

(F3) Vz,y,z€ X)(zx(yxx),z€ F= ((xxy)*xy)xx € F).

Theorem 2.2. ([6]) A filter F' of a BE-algebra X is mighty if and only if
(2.8) Ve,ye X)(yxx € F= ((x*xy)*y)*xx € F).

Definition 2.3. ([9]) Let E be a reference set. A hesitant fuzzy set on E is defined in terms of a
function that when applied to E returns a subset of [0, 1], which can be viewed as the following
mathematical representation:

Hg :={(e,hg(e))|e € E}
where hyp : E — 2([0,1]).
Definition 2.4. Given a non-empty subset A of a BFE-algebra X, a hesitant fuzzy set

Hx :={(z,hx(x))|xz € X}

on satisfying the following condition:

hx(x) =10 for all x ¢ A
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is called a hesitant fuzzy set related to A (briefly, A-hesitant fuzzy set) on X, and is represented
by Hy := {(z,ha(x)) | z € X}, where hy is a mapping from X to ([0, 1]) with ha(z) = 0 for
all x ¢ A.

For a hesitant set Hy := {(x,hx(z)) | v € X} of a BE-algebra X and a subset v of [0, 1], the
hesitant fuzzy 7-inclusive set of Hy, denoted by Hx(7), is defined to be the set

Hx(y) = {z € X|y C hx()}.

For any hesitant fuzzy set Hx = {(z,hx(z)|z € X} and Gx = {(z, gx(x))|z € X}, we call Hx
a hesitant fuzzy subset of Gx, denoted by HxCGy, if hx(z) C gx(z) for all x € X.

3. Hesitant fuzzy mighty filters

Definition 3.1. Given a non-empty subset (subalgebra as much as possible) A of a BFE-algebra
X, let Hy :={(z,ha(z)) | z € X} be an A-hesitant fuzzy set on X. Then Hy = {(x, ha(x)) |
x € X} is called a hesitant fuzzy subalgebra of X related to A (briefly, A-hesitant fuzzy subalgebra
of X) ([4]) if it satisfies the following condition: h4(z) N ha(y) C ha(z xy) for any z,y € A.
An A-hesitant fuzzy subalgebra of X with A = X is called a hesitant fuzzy subalgebra of X. An
A-hesitant fuzzy set Ha := {(z,ha(x)) | z € X} on X is called a hesitant fuzzy filter of X related
to A (briefly, A-hesitant fuzzy filter of X) ([4]) if it satisfies the following condition:

(3.1) (Vx € A)(ha(z) C ha(l)),

(3:2) (Va,y € A)(ha(w +y) N ha(z) C hay).

An A-hesitant fuzzy filter of X with A = X is called a hesitant fuzzy filter of X.

Proposition 3.2. ([4]) Let Hy := {(z,ha(x))|z € X} be an A-hesitant fuzzy filter of a BE-
algebra X where A is a subalgebra of X. Then the following assertions are valid.

(i) (Vo,y € A)(z <y = ha(z) S ha(y)),

(i) (Y2,5,2 € A)(z < a5y = ha(y) 2 ha(x) N ha(2)),

(
) (
(ili) (Vz,y,z € A)(ha(x* (y*2)) Nha(y) C ha(z * 2)),
(iv) (Va,z € A)(ha(a) C ha((a*z) * z).

Proposition 3.3. Every hesitant fuzzy filter of a BE-algebra X is a hesitant fuzzy subalgebra
of X.

Proof. Let Hx = {(z,hx(z))|z € X} be a hesitant fuzzy filter of X. For any z,y € X, we have
hx(x)Nhx(y) C hx(1)Nhx(y) =hx(y* (z*xy)) Nhx(y) C hx(x *y). Hence Hy is a hesitant
fuzzy subalgebra of X. O

The converse of Proposition 3.3 may not be true in general (see Example 3.4).
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Example 3.4. Let X = {0,1,a,b,c} be a BE-algebra ([4]) with the following Cayley table:

x|1 a b c
1{1 a b ¢
all 1 a a
b1l 1 1 a
cll 1 a 1

Let Hx := {(z,hx(z)) | € X} be a hesitant fuzzy set on X defined by
Hx = {(1,[0,1]), (a, (0, 5)), (b; (5, 1)) (e, (0,3)) }

Then Hy is a hesitant fuzzy subalgebra of X, but not a hesitant fuzzy filter of X since hx (b *
a) N hx (b) = hx (1) Nhx(b) = [0,1] N (3, 5] € hx(a) = (0, ).

Definition 3.5. Given a non-empty subset (subalgebra as much as possible) A of a BE-algebra
X, let Hy :={(z,ha(z)) | z € X} be an A-hesitant fuzzy set on X. Then H,y := {(x,ha(x)) |
x € X} is called a hesitant fuzzy mighty filter of X related to A (briefly, A-hesitant fuzzy mighty
filter of X)) if it satisfies (3.1) and

(3.3) (Va,y,2 € A)(ha(z* (y*xx)) Nha(z) C ha(((z*y) *y) xx).
An A-hesitant fuzzy mighty filter of X with A = X is called a hesitant fuzzy mighty filter of X.

Example 3.6. Let X = {1,a,b,c,d,0} be a BE-algebra ([6]) with the following Cayley table:

x|1 a b ¢ d 0
111 a b ¢ d O
all 1 b ¢ d c
bl a 1 b a d
cll a1 1 a a
dil1 1 1 b 1 b
0j1 11111

Let Hx := {(z,hx(x)) | € X} be a hesitant fuzzy set on X defined by
Hx = {(1,10,1]), (a, [3,1]), (4, [3.1]). (, [, 1)), (d, {1, 1}), (0, {3, 1})}
It is easy to check that Hx is a hesitant fuzzy fuzzy mighty filter of X.

Proposition 3.7. Every hesitant fuzzy mighty filter of a BE-algebra X is a hesitant fuzzy filter
of X.

Proof. Let Hxy = {(x,hx(x))|z € X} be a hesitant fuzzy mighty filter of X. Putting y := 1 in
(3.3), we have hx(z* (1xx))Nhx(z) = hx(zxx)Nhx(z) C hx(((z*1)*1)xx) = hx(z). Hence
Hy is a hesitant fuzzy filter of X. 0

The converse of Proposition 3.7 may not be true in general (see Example 3.8).
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Example 3.8. Let X = {1,a,b,¢,d} be a BE-algebra ([5]) with the following Cayley table:
x1 a b ¢ d
111 a b ¢ d
all 1 b ¢ d
bl a 1 ¢ c
c|ll 1 b 1 b
dil1 1111

Let Hx := {(z,hx(x)) | x € X} be a hesitant fuzzy set on X defined by
Hx = {(17 [07 1])7 (CL, [%7 1])7 (b’ [%’ 1])7 (07 [%7 1])7 (d> {%v 1})}

It is easy to check that Hy is a hesitant fuzzy fuzzy filter of X, but not a hesitant fuzzy mighty
filter of X since hx (1% (c*a)) Nhx(1) =hx(1) =[0,1] € hx(((a*c) xc) * a) = hx(a) = [3,1].

Theorem 3.9. Any hesitant fuzzy filter Hxy = {(z, hx(x))|x € X} of a BE-algebra X is mighty
if and only if it satisfies

(3.4) (Va,y € X)(hx(y*x) C hx(((x*y) xy) * x)).

Proof. Assume that a hesitant fuzzy filter Hx is mighty. Setting z := 1 in (3.3), we have
hx(Ix(yxx))Nhx(l) =hx(y*xx) Chx(((x*y)*y)=*2z). Hence (3.4) holds.

Conversely, suppose that the hesitant fuzzy filter Hy = {(z,hx(x))|x € X} satisfies the
condition (3.4). Using (3.2) and (3.4), we have hx(z % (y *xx)) Nhx(z) C hx(y *x) C hx(((z *
y) xy) *xx), for any z,y € X. Hence Hy is a hesitant fuzzy mighty filter of X. n

Proposition 3.10. Let Hy = {(z,hx(x))|x € X} be a hesitant fuzzy mighty filter of a BE-
algebra X. Then Xy, := {x € X|hx(x) = hx(1)} is a mighty filter of X.

Proof. Clearly, 1 € Xp,. Let zx(y*z), 2z € Xg,. Then hx(zx(y*xx)) = hx(1) and hx(z) = hx(1).
It follows from (3.3) that hx(zx (y*z))Nhx(z) = hx(1) C hx(((z*y)*y) xx). By (3.1), we get
hx(((x xy) xy) xx) = hx(1). Hence ((z*y)*y)*xx € Xy,. Therefore Xy, is a mighty filter of
X. U

Theorem 3.11. Let Hx = {(z,hx(x))|z € X} and Gx = {(x,g9x(x))|z € X} be hesitant fuzzy
filters of a transitive BFE-algebra such that HxCGx and hx(1) = gx(1). If Hx is mighty, then
sois Gx.

Proof. Let x,y € X. Note that y* ((yxx)*x) = (yxx)*(y*xx) = 1. Since Hx is a hesitant fuzzy
mighty filter of a BE-algebra X, by (3.4) and HyCGx we have hy (1) = hx(y * ((y * z) xz)) C
hx (((yxx)*2)xy)y) = ((yxa)kx)) © gx (((yx)*x)«y)*+y) = ((y*z)*z)). Since hx(1) = gx (1),
we get gx ((y+ 2)  (((y*2) x2) xy) + y) x ) = gx (g * 2) * 2) xy) #y) * ((y ) x 7)) = gx (1),
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It follows from (3.1) and (3.2) that
gx(y*x) =g(1) N gx(y * x)
=gx((y ) * (((y x 2) % 2) x y) x y) * x)) N gx (y * ) (3.5)
Cox(((y x z) x x) x y) x y) * x).

Since X is transitive, we get

[((((y * @) % 2) * y) * y) * 2]« [((z * y) * y) * 7]
zy)xy) s ((((y* @)« ) xy) xy)
(y* ) * x) xy) * (2 *y)

It follows from Proposition 3.2 that gx (((((y*x)*z)*y)*y)*xx) Ngx(1) = gx (((((y*x) * ) *y) *
y)* ) C gx(((z*y) *y) ). Using (3.5), we have gx(y * ) € gx(((y * ) * 2) xy) * y) x ) C
gx(((x*xy)*y)*x). Therefore gx(y*x) C gx(((z*y)*y)*x). By Theorem 3.9, Gx is a hesitant
fuzzy mighty filter of X. U

Corollary 3.12. Every hesitant fuzzy filter Hx of a transitive BFE-algebra X is mighty if and
only if the hesitant fuzzy filter Hyy is mighty.

Proof. Straightforward. O
Let Hx := {(z,hx(x))|x € X} be a hesitant fuzzy filter of a transitive BE-algebra X. Define

a binary relation “ ~j,, ” on X by putting x ~ y if and only if hx(z *y) = hx(y*z) = hx(1)
for any x,y € X.

R

Lemma 3.13. The relation “ ~y, 7 is an equivalence relation on a transitive BE-algebra X.

Proof. For any x € X, xxx =1 by (2.1). So hx(z *x) = hx(1), hence & ~,, x, which ~y, is
reflexive. Suppose that x ~,, y for any z,y € X. Then hx(x *y) = hx(y *x) = hx(1). Hence
~ny 18 symmetric. Assume that © ~,, y and y ~y, 2z for any z,y,z € X. Then hx(z xy) =
hx(yxx) = hx(1) and hx(yxz) = hx(zxy) = hx(1). By transitivity, (z*y)*[(y*2z)*(x*z)] = 1 and
(zxy)*[(yxx)*(z*xz)] = 1. By Proposition 3.2, we have hx(z*xy)Nhx(y*xz) = hx(1) C hx(r*z)
and hyx(zxy) Nhx(y*xz) = hx(1) € hx(z*x). Hence hx(zxx) = hx(z*xx) = hx(1), i.e.,
T ~py 2. Thus ~y, . is an equivalence relation on X. O

« b

Lemma 3.14. The relation “ ~y, 7 is a congruence relation on a transitive BE-algebra X.

Proof. If v ~p, y and u ~y, v for any z,y,u,v € X, then hx(z *xy) = hx(y *xz) = hx(1)
and hy(u xv) = hx(v*u) = hx(1l). By transitivity, (u * v) * [(z % u) * (x * v)] = 1 and
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(v u) * [(z *xv) % (x*u)] = 1, it follows from Proposition 3.2 that hx(l) = hx(u x v) C
hx((xxu)*((x*v)) and hx(1) = hx(vsu) C hx((z*v)*(x*xu)). Hence hx ((zxu)*(x*xv)) = hx(1)
and hx((z*v)* (z*u)) = hx(1). Therefore z *u ~,, x*v. By a similar way, we can prove that
x * v ~p, y*v. Therefore ~  is a congruence relation on X. U

X is decomposed by the congruence relation ~y, . The class containing x is denoted by [z], .
Denote X/hx = {[z]ny|r € X}. We define a binary relation *" on X/hx by []|ny *' [y|ny =

X
[z % y|p, . This definition is well defined since ~,, is a congruence relation on X.

Lemma 3.15. [1],, = Xy

Proof. [1]p, ={z € X|1 ~p, 2} ={x € X|hx(1*z) = hx(z*x1) = hx(1)} = {zx € X|hx(z) =
hx(1)} = Xy, O

Theorem 3.16. Let X be a transitive BE-algebra X. Then (X/hx;+,[1]n,) is a transitive
BFE-algebra.

Proof. Straightforward. 0

Theorem 3.17. A hesitant fuzzy filter of a transitive BFE-algebra X is mighty if and only if
every filter of the quotient algebra X /hx is mighty.

Proof. Assume that a hesitant fuzzy filter Hy is mighty and let x,y € X be such that [y],, ¥’
[%]ny € [1ny. Then hx(y * ) = hx(1). It follows from (2.3) and (3.3) that hx(1 * (y *x)) N
hx(1) = hx(yxx) = hx(1) C hx(((z *y) *y) *x x). Hence hx(((x *xy) *xy) * x) = hx(1). So
((([2lax # Wy ) * [Wlnx)) # [aelng = [((z * y) x y) * alny € [1ny which proves that {[1]s,} is a
mighty filter of X/hx. By Corollary 3.13, every filter of X/hx is mighty.

Conversely, suppose that every filter of the quotient algebra X/hx is mighty and let z,y € X
be such that y * 2 € [1]n,. Then hx(y * ) = hx(1) and so [y|n, *' [x]ny € [1]ny. Since
{[1]ny} is a mighty filter of X/hx, it follows from Theorem 2.2 that [((z * y) * y) * ]|p, =
(([#lny " [Wlnx) * [Wlax) # [2lax € [Uny. Hence hx((((x +y) * y)*) x 2) = hx(1). Therefore
hx(yxx)=hx(((x *y) *y)) *xz). Thus Hy is a hesitant fuzzy filter of Theorem 3.9. O

Theorem 3.18. A hesitant fuzzy set Hy := {(x, hx(z)|r € X} of a BE-algebra X is a hesitant
fuzzy mighty filter of X if and only if the set Hx () := {x € X|y C hx(x)} is a mighty filter of
X for all v € Z(|0,1]) whenever it is nonempty.

Proof. Suppose that Hy is a hesitant fuzzy mighty filter of X. Let z,y,z € X and v € Z([0, 1])
be such that z x (y * x) € Hx(y) and z € Hx (7). Then hx(z* (y *x)) 2 v and hx(z) 2 v. It
follows from (3.1) and (3.3) that hx(1) 2 hx(((x xy) *xy) x2) 2 hx(z* (y*xx)) Nhx(z) 2 7.
Hence 1 € Hx(v) and ((z *y) xy) xx € Hx(v), and therefore Hx(7) is a mighty filter of X.

Conversely, assume that Hx () is a mighty filter of X for all v € 22([0,1]) with Hx () # 0.
For any = € X, let hx(x) =~. Then z € Hx (7). Since Hx(y) is a mighty filter of X, we have
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1 € hx(y) and so hx(x) = v C hx(1). For any z,y,2 € X, let hx(z * (y * )) = Vas(yra) and
hx(z) = 7.. Let v := Yuu(ysa) N7.. Then z % (y* ) € Hx(v) and z € Hx () which imply that
((zxy)xy)*xx € Hx(y). Hence hx(((z*y) *xy) *x) D v = Yau(yea) NV = hx (2 x (yx2)) N hx(2).
Thus Hx is a hesitant fuzzy mighty filter of X. U
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A Class of New General Iteration Approximation of Common
Fixed Points for Total Asymptotically Nonexpansive
Mappings in Hyperbolic Spaces
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Abstract. In this paper, we introduce and study a class of new general iteration
processes for two finite families of total asymptotically nonexpansive mappings in
hyperbolic spaces, which includes asymptotically nonexpansive mapping, (general-
ized) nonexpansive mapping of all normed linear spaces, Hadamard manifolds and
CAT(0) spaces as special cases. Some important related properties to the new gen-
eral iterative processes are also given and analyzed, and A-convergence and strong
convergence of the iteration in hyperbolic spaces are proved. Furthermore, some
meaningful illustrations for clarifying our results and two open questions are pro-
posed. The results presented in this paper extend and improve the corresponding
results announced in the current literature.

Key Words and Phrases: common fixed point, new general iterative approxi-
mation, A-convergence and strong convergence, total asymptotically nonexpansive
mapping, hyperbolic space.
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1 Introduction and preliminaries

Let (H,d) be a metric space, {T;}7_; and {S;}7_; be two finite families of nonlinear mappings on
nonempty set K C H. Suppose that {a;,} and {f;,} are two real sequences in [a,b] for some
a,b € (0,1) and 0;, := 15’%: For r > 2 and n > 1, in this paper, we consider the following general
iterative sequence {z,}:

Tpn+1 = W(TlnynJrrf% W(ynJrera S?yn+r727 9171); aln)v
Yntr—2 = W(TQTLynJrrfBa W(ynJrrva Sgyn+r737 9271); a2n)a
Yn+4r—-3 = W(Tglyn+r—4a W(yn+r—47 Sgyn+r—4a ng), 04317,)7

(1.1)

Yn+1 = W(Tll—lyna W(ynv S:L—lyna 0(1‘71)77,)7 O‘(rfl)n)7
Yn = W(Tq:nxna W(xru S;ann 9’)"77,)7 arn)~

Remark 1.1 For appropriate and suitable choices of the nonlinear mappings {7;}7_; and {S;}/_,
the positive integer r and the underlying spaces, the iteration (1.1) includes a number of known
iterative processes, which were studied previously by many authors. For more details, see [1-20] and
the references therein, and the following examples:

*The corresponding author: hengyoulan@163.com (H.Y. Lan)
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Example 1.1 If §;, = 0 for i = 1,2,3,---,7 and all n > 1, and {«a;,} is a real sequence in
[e,1 — ¢] for some ¢ € (0,1), then the sequence {z,} in (1.1) reduces to

Tn4+1 = AnYn+r—2 + (]- - Oéln)Tlnyn—&-r—%
Yntr—2 = Q2nYntr—3 + (1 - 0427L)T2nyn+7'—3a

Yn+r—3 = A3nYn+r—4 + (1 - O‘Sn)T;yn+rf4;

Yn+1 = Qr—1)nYn + (1 - a(r—l)n)Txilyn?

Yn = Qppdn + (1 - arn)Tﬁxvu

which was considered by Yildirim and Ozdemir [1] when {7;}/_, is a family of asymptotically quasi-
nonexpansive self-mappings on K C H and H is a Banach space. Further, the iteration process (1.2)
was introduced and studied by Basarir and Sahin [2] for a generalized nonexpansive mapping of the
CAT(0) spaces.

Example 1.2 For » = 3 and «a;, = 0, then (1.1) changes into the iterative process introduced
by Noor [3], which was dealt for variational inequalities of the Hilbert spaces. Moreover, a unified
treatment regarding the iterative process for nonexpansive mapping in hyperbolic spaces was con-
sidered by Akbulut and Giindiiz [4]. For many more, see, for example, the research works of Sahin
and Basarir [5], Suantai [6] and many others in the literature.

Example 1.3 Let r = 2, and a3, = 1, and g, = 0, and T = Sy, then (1.1) becomes to the
following iteration:

Tnt+1 = Tlnyna Yn = W(xnaTanna 92n)~ (13)

The iteration (1.3) is called a modified hybrid Picard-Mann iteration process, which was introduced
and studied by Thakur et al. [7] in CAT(0) space. This process (1.3) is independent of Picard
and Mann iterative process and the convergence process is faster than Picard and Mann iteration
process. For more on (hybrid) Picard-Mann iteration process and a comparison between different
process of modified hybrid Picard-Mann iteration process, see, for example, [7, 8] and the references
therein.

Example 1.4 Let » = 2, and a3y, =0, and Sy, = 1, aa, = 1, then (1.1) is equivalent to

Tptl1 = W(xn, Snxn» 971)7

which is well-known modified Mann iteration process, and was studied by Schu [9] in Banach spaces.

In 2013, Fukhar-ud-din and Khan [21] pointed out “structural properties of the space under
consideration are very important in establishing the fixed point property of the space, for example,
strict convexity, uniform convexity and uniform smoothness etc”. In fact, in recent decades, moti-
vated and governed by questions in most of science problems about hyperbolic groups, the study
on hyperbolic spaces has been developed unremittingly in geometric group theory and metric fixed
point theory in normed linear spaces or Banach spaces. Especially, the concept of hyperbolic spaces
introduced by Kohlenbach [22] and defined below, is more restrictive and more general than that
of being considered in [23] and in [24], respectively (see also [25]). Furthermore, all normed linear
spaces, convex subsets wherein Hadamard manifolds and CAT(0) spaces are the special cases of the
class of hyperbolic spaces due to Kohlenbach [22].

Definition 1.1 A hyperbolic spaces is a metric space (H,d) together with a mapping W : H?
x[0,1] — H satisfying

(i) d(u,W(z,y,a)) < ad(u,z) + (1 — a)d(u, y),

(ii) d(W(ma Y, a)’ W(.’IT, Y, 6)) = |Oé - B|d<.’lﬁ, y)»

(111) W(JZ, y,a) = W(yaxa (1 - Oé)),

(iv) d(W(z, z, ), W (y, w, ) < ad(z,y)+ (1 —a)d(z,w) for all u,z,y,z,w € H and «, 8 € [0, 1].

Remark 1.1 (1) The class of hyperbolic spaces is general in nature and its important example
is the open unit ball B in a complex domain C' with respect to the Poincare metric (also called
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“Poincare distance”)

r—y
1 -2y

1
2

‘ = argtanh(l — o(z,y))2,

dp(z,y) := arg tanh

where o(z,y) := % for all z,y € B. Further, the above example can be extended from

C' to general complex Hilbert spaces (H, (-)) (see [21, 22]).

(2) A metric space (H, d) satistying only (i) in Definition 1.1 is a convex metric space introduced
by Takahashi [26]. A nonempty subset K of a hyperbolic space H is convex if W(z,y,a) € K for all
x,y € K and « € [0, 1]. For more on hyperbolic spaces and a comparison between different notions
of hyperbolic space, see, for example, [27] and the references therein.

(3) A hyperbolic space is uniformly convex if for any » > 0 and € € (0,2], and all u,z,y € H,
there exists 0 € (0, 1] such that
) <o)
provided max{d(z, u),d(y,u)} < rand d(z,y) > re (see [28, 29]). A map 7 : (0,+00) x(0,2] — (0,1],
which provides such § = n(r,€) for given » > 0 and € € (0,2], is known as a modulus of uniform
convexity of H. We call 7 monotone if it decreases with r (for fixed €), i.e., for all € > 0, ro >
r1 > 0(n(re,e) < n(ri,e)). CAT(0) spaces are uniformly convex hyperbolic spaces with modulus of

d(W(z,y,

uniform convexity n(r,e) = % (see [28, 30]). Thus, the class of uniformly convex hyperbolic spaces
includes both uniformly convex normed spaces and CAT(0) spaces as special cases.

In the sequel, let (#H,d) be a metric space, and let K be a nonempty subset of . We shall
denote the fixed point set of a self-mapping on K of T by F(T) ={x € K : Tz = z}.

Definition 1.2 A mapping 7 : K — K is said to be

(i) semi-compact if every bounded sequence {z,} C K, satisfying d(z,,Tz,) — 0 as n — oo,
has a convergent subsequence;

(ii) nonexpansive if d(Tz,Ty) < d(z,y) for any x,y € K;

(iii) quasi-nonexpansive if d(Tz,p) < d(z,p) for all z € K and p € F(T) # 0;

(iv) asymptotically nonexpansive if there exists a sequence {k,} C [0, +00) and lim, o kp =0
such that

d(T"z, T"y) < (1 + kyp)d(z,y), Vz,ye€ K,n>1,

(v) asymptotically quasi-nonexpansive if there exists a sequence {k, } C [0, +00) and lim,, o0 kr, =
0 such that
d(T"x,p) < (1+ kn)d(z,p), VeeK,peF(T),nz=1;

(vi) ({pn}, {&n}, p)-total asymptotically nonexpansive, if there exist nonnegative sequences {uy },
{&,} with u, — 0, &, — 0 and a strictly increasing continuous function p : [0,4+00) — [0, +00) with
p(0) = 0 such that

d(T"z, T"y) < d(z,y) + pnp(d(z,y)) + &, Yo,y € K,n > 1;

(vil)({pen }, {&n ), p)-total asymptotically quasi-nonexpansive, if there exist nonnegative sequences
{tn}, {&n} with p, — 0, &, — 0 and a strictly increasing continuous function p : [0, +00) — [0, +00)
with p(0) = 0 such that

d(T"x,p) < d(z,p) + pnp(d(z,p)) + &, Vo € Kip € Fon > 1
(viii) uniformly L-Lipschitzian if there exists a constant L > 0 such that
d(T"z,T"y) < Ld(z,y), Vz,y € K,n>1.

Remark 1.2 From Definition 1.2, it follows that a (quasi-)nonexpansive mapping is an asymp-
totically (quasi-)nonexpansive mapping with k, = 0 for n > 1, and each asymptotically (quasi-
Jnonexpansive mapping is a ({un }, {€n}, p)-total asymptotically (quasi-)nonexpansive mapping with
&, =0, and p(t) =t > 0. However, in general, the converse of these statement is not true.
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As all we know, the study of such types of problems on the iterative approximation of (common)
fixed points for generalizations of nonexpansive mappings in hyperbolic spaces, is motivated by an
increasing interest in the problems of finding a common fixed point of some nonlinear mappings,
which is the only main tool for analysis of generalized nonexpansive mappings and provides us a
general and unified framework for studying the existence of fixed points of various nonlinear mappings
arising in many branches of nonlinear analysis, topology and applied mathematics, etc.

Inspired and motivated and by the above recent works, in this paper, we shall study some
important related properties to the new general iterative process (1.1) for two finite families of total
asymptotically nonexpansive mappings as well as two finite families of total asymptotically quasi-
nonexpansive mappings in hyperbolic spaces. Results concerning A-convergence as well as strong
convergence of this iteration are proved. The results presented in the paper extend and improve
some recent results given in [1, 2, 4-7, 9, 21].

In order to define the concept of A-convergence in the general setup of hyperbolic spaces, in the
next moment, we first give some basic concepts.

In 1976, Lim [31] introduced the notion of asymptotic center and, consequently, coined the
concept of A-convergence in a general setting of a metric space. Kirk and Panyanak [32] proposed
an analogous version of convergence in geodesic spaces, namely A-convergence, which was originally
introduced by Lim [31]. Further, Kirk and Panyanak [32] showed that A-convergence coincides with
the usual weak convergence in Banach spaces and both concepts share many useful properties.

Let {z,,} be a bounded sequence in a hyperbolic space H. For x € H, we define a continuous
functional (-, {z,}) : H — [0, +00) by

r(z,{z,}) = limsupd(z, z,).

n—00
The asymptotic radius #({z,}) of {x,} is given by
F({zn}) = inf{r(z, {z,}) : z € H}.
The asymptotic center of a bounded sequence {z,} with respect to K C H is defined as follows:

Ax({zn}) ={z € H :r(x,{zn}) <r(y,{za}), Yy € K},

which is the set of minimizers for r(-, {z,}). Further, it is simply denoted by A({z,}) when the
asymptotic center is taken with respect to #H, and a sequence {z,} in H is said to A-converge to
x € H if  is the unique asymptotic center of {u, } for every subsequence {u,} of {x,}. In this case,
we write A-lim,,_, , = 2 and call z the A-limit of {z,}.

Tt is well known that uniformly convex Banach spaces and even CAT(0) spaces enjoy the property
that “bounded sequences have unique asymptotic centers with respect to closed convex subsets”.
The following lemma ensures that this property also holds in a complete uniformly convex hyperbolic
space.

Lemma 1.1 ([30]) Let (#, d, W) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity. Then every bounded sequence {x,} in H has a unique asymptotic
center with respect to any nonempty closed convex subset K of H.

In the sequel, we need the following lemmas.

Lemma 1.2 ([10]) Let (H,d, W) be a uniformly convex hyperbolic space with monotone modulus
of uniform convexity n. Let € H and {a,} be a sequence in [a,b] for some a,b € (0,1). If {x,}
and {y,} are sequences in H such that for some ¢ > 0,

limsupd(z,,x) <c¢, limsupd(yn,z) <ec, lim d(W(xn,yn,an),z) =c,

n—00 n—00 n—00

Then lim,, o0 d(Zp, yn) = 0.

Lemma 1.3 ([10]) Let K be a nonempty closed convex subset of uniformly convex hyperbolic
space, and let {x,,} be a bounded sequence in K such that A({z,}) = {y} and r({z,}) = ¢. If {ym}
is another sequence in K such that lim,,— o 7(Ym, {xn}) = ¢, then lim,, o0 Ym = y-
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Lemma 1.4 ([33]) Let {a,}, {bn} and {w,} be nonnegative real sequences satisfying
ant1 < (1 +wp)ay +b,, Yn>1.

If Zzo:l w, < 0o and Zfﬁ:l b, < oo, then the limit lim, ., a, exist. If there exists a subseqence
{an,} C {a,} such that a,, — 0, then lim, o a,, = 0.

2 Some important related properties

Throughout in this paper, we assume that I = {1,2,---,r}, {T;}/_; and {S;}7_; are two finite
families of total asymptotically nonexpansive mappings on a nonempty subset K of the hyperbolic
space H defined by Definition 1.2, for each i € I and all n > 1, {aun}, {Bin} and {0;,} are the same
as in (1.1). We start with the following important related property of the general iterative process
(1.1) for two finite families of total asymptotically nonexpansive mappings in a hyperbolic space.
Theorem 2.1 Let K be a nonempty closed and convex subset of a hyperbolic space H. Fori € I,
let T; : K — K be a ({ud}, {€.}, p*)-total asymptotically nonexpansive mapping with lim,, . pf, =
0 and lim,, o & = 0, and a strictly increasing continuous function p¢ : [0, +00) — [0, +00) satisfying
p'(0) = 0,andlet S; : K — K, bea ({fi’,}, {€.}, p*)-total asymptotically nonexpansive mapping with

lim,, 00 fif, = 0 and hmn_mog = 0, and a strictly increasing continuous function p* : [0, +00) —
[0, +00) satisfying p*(0) = 0. Assume that F = (\._,(F(T;) N F(S;)) # 0, and for each 1 € 1, the
following conditions hold:

(1) Donmy i < H00, 3002 iy, < 400, 3200, €, < 400, 30T & < oo
(ii) there exists a constant M* > 0 such that

pi(r) < M*r, pi(r) < M*r, Vr>0.

Then, for the sequence {z,} in (1.1), lim,_, o d(x,, p) exists for all p € F.

Proof. Set p, = maxer{pi,, 4%}, and &, = max;er{€),€}, p = max;er{p’,j'}. By condition
(i), we know that > 7 pu, < 400, > o0 &, < +oo. For any p € F and all n > 1, it follows from
(1.1) that

d(yn,p) < arpd(T 2, p) + (1 = apn)d(W (@n, Sy T, 0rn), p)
< apnd(T T, p) + Brnd(zn, p) + (1 — arn — Brn)d(S; T, p)
< pnld(@n, p) + pin,p" (A2, ) + &3] + Brnd(zn, )
+(1 = pn — Brn)[d(@n, p) + 5" (A2, p)) + £
< Qpn[d(@n, D) + pinp(d(@n, p)) + &n] + Brnd(zn, p)
+(1 = arn = Brn)[d(n, p) + pnp(d(2n, p)) + &n]
< Q| (1 + pn M*)d(200, ) + €] + Brnd(2n, D)
(1 = arn = Bra) (1 + pn M*)d(20, p) + &5
< (1 + ppM*)d(Tn,p) + &n (2.1)

and

AdYnt+1:0) < a@-1)nd(L7 Y0, p) + (1 — a-1)0) AW (Yns Sy 1Yns O —1)n): P)
< a1 (T3 1Yn; p) + Bor—1)nd(Yn, p)
+(1 = a@r—1yn = Be—1)n)d(S;_1Yn, P)
< ag-1ynld(Yn, P) + tinp(d(Yn, p)) + &n] + Bar—1)ndYn, p)
+(1 = -1y = Ber—1)n) [A(Yns P) + pnp(d(Yn; ) + &n]
< aro1)nl(L+ o M*)d(Yn, p) + ] + Br—1)nd(Yn; p)
+(1 - Q(r—1)n ﬁ('r l)n)[(l + U M*)d(Yn, p) + &n)
< (14 pn M™)d(yn,p) + &n. (2.2)
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Similarly, we have

d(yn+r—23p) S (]- + ,Uan*)d(yn+7’—3ap) + fna
d(mn+1,p) < (1 + ,UnM*)d(yn—&-r—Qap) +&n-

Thus,
r—1 )
d(zni1,p) < (L4 pa M) d(zn,p) + > (14 M),
j=1
< d(wn,p) [1+ (a4 () (0 M2 + (3) (a0 M)

r—1

+oo ot (D) (M) } +) (1 + pn MY
Jj=1
r—1
< (1+ appn)d(@n,p) + > (14 pn M*)E,
j=1

< (1 + Mypn)d(zn, p) + Ma&y,

where af = (:)M* + (;)(M*)2ﬁbn + (;)(M*)?’(,un)2 + -+ (:)(M*)T(ﬂn)r_l, and by virtue of
condition(i), there exist positive constants M; and My such that al, < M, Z;;}(l + i M*)T < My
for each n > 1. Applying Lemma 1.4 to the above inequality, we have lim,,, d(x,,p) exists for
eachp € F. O

In 1993, Bruck et al. [34] introduced a notion of asymptotically nonexpansive mapping in
the intermediate sense. More accurately, a mapping 7" : K — K is said to be asymptotical-
ly nonexpansive mapping in the intermediate sense, provided that 7' is uniformly continuous and
lim SUPy, 00 Supz,yEK{d(Tnx7 T’ﬂy),d(x’ y)} < 0. Put 577« = max{(), Supm,yEK{d(Tnxa Tny)id(xa y)}}
and Y7 | & < +oo, then d(T"z,T"y) < d(z,y) + &, for any n > 1 and z,y € K. In more detail,
see, for example, [20] and the references therein.

The following result can be obtained from Theorem 2.1 immediately.

Corollary 2.1 Let K be a nonempty closed and convex subset of a hyperbolic space H. For
i€l let T, : K — K be a {£ }-asymptotically nonexpansive mapping in the intermediate sense
and let S; : K — K be a {8} asymptotically nonexpansive mapping in the intermediate sense. If
Yoo &L < oo, > € < +ooforieland F = N (F(T;) N F(S;)) # 0, then, for the sequence
{z,} in (1.1), lim, o d(x,, p) exists for all p € F.

Proof. Let &, = max;er{&, &%}, then 300 | &, < +00. The rest of the proof is trivial. O

Corollary 2.2 Let K be a nonempty closed and convex subset of a hyperbolic space H. Let
T; : K — K be a {k! }-asymptotically nonexpansive mapping w1th S ki <4ocand S;: K —» K

be a {k’}-asymptotically nonexpansive mapping with 3.°° | k% < +oo for i € I. Assume that
F =N._,(F(T;) N F(S;)) # 0. Then, for the sequence {z,} in (1.1), lim,,_, d(2n,p) exists for all
peF.

Proof. Taking k,, = max;er{k%, k. }, then 7% k, < +oo. Let pi(t) = pi(t) = t, & = & =0,
ut, = ki in Theorem 2.1 for i € I. Then all the conditions in Theorem 2.1 are satisfied and so the
result holds. O

Theorem 2.2 Let K be a nonempty closed and convex subset of a uniformly convex hyperbolic
space H with monotone modulus of uniform convexity n. Fori € I,let T; : K — K be a uniformly L;-
Lipschitzian and ({uf}, {€}}, p)-total asymptotically nonexpansive mapping with lim, pi =0
and lim,, o, £& = 0, and a strictly increasing continuous function p° : [0, +oo) [0, +00) satisfying
p'(0) =0,andlet S; : K — K bea umformly L; -Lipschitzian and ({fii }, {1}, p')-total asymptotical-
ly nonexpansive mapping with limy, o f1;, = 0 and limy, fn = 0, and a strictly increasing continu-
ous function p" : [0, +00) — [0, +00) satisfying p*(0) = 0. Suppose that F' = (._, (F(T;)NF(S;)) # 0
and the conditions (i) and (ii) in Theorem 2.1 hold. Then, for ¢ € I and the sequence {z,,} generated
by (1.1), we have

lim d(x,,Tiz,) = lim d(z,,Siz,) = 0.

n—oo n—oo
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Proof. Tt follows from Theorem 2.1 that lim,,_ . d(z,,p) exists for each p € F. Assume that
lim,, o0 (2, p) = ¢ > 0. Otherwise the proof is trivial.

Take limsup on both sides of inequalities (2.1) and (2.2). Since p, — 0 and &, — 0 as
n — oo, we have limsup,,_, ., d(yn,p) < ¢ and limsup, . d(ynt1,p) < c. Similarly, we get
limsup,, o d(Yntr—2,p) < ¢, and so in total

limsup d(ynJrkfl;p) < & Vk = 17 2; T L. (23)

n— oo

Carry liminf on both side of (2.4). Since

V)

r—

A(@nt1,0) < (L4 M) d(yn,p) + > (L4 puM*)7E, (2.4)

J

Il
_

we have

lim inf d(y,,p) > ¢
n—oo

r—k—1
d(xn-i-lap) < (1 + MnM*)Tikd(yn—i-k—h + Z ]- + tn M~ ]gnv vk = 2737 T — 1.

j=1
Also taking liminf on both side of the above estimate, then we get

liminf d(yn4x—1,p) > ¢, Vbk=2,3,---,r—1

n— oo

Thus, in total,

liminf d(yp+k-1,p) > ¢, Vk=1,2,--- r—1 (2.5)

n— oo

Combining (2.3) and (2.5), we have

lim d(ypik—1,p) =¢, Vk=1,2,--- r—1. (2.6)

n— oo
For k =1 in (2.6), we get

lm dW (T zp, W(xn, S; Tn, Orn ), 0rn), p) = . (2.7)

n—oo

Moreover,

d(W(l‘m Sﬁxm o'rm)vp) 0 d(In,p) + (1 - am)d(sfﬂﬁmp)
Ornd(Tp,p) + (1 = 0rp)[(1 + pn M )d(2y, p) + &3]
(1

+ ,Uan*)d(l'n»p) + gn

VANVARNVAN

implies that

lim sup d(W (zy,, S} @p, 0rn), p) < c. (2.8)
n—oo
Obviously,
limsup d(T) 'z, p) < c. (2.9)
n—oo

It follows from (2.7)-(2.9) and Lemma 1.2 that

lim d(T) @, W(xn, Siey, 0rm)) = 0. (2.10)

n—oo
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Again, for k =2,3,--- ;7 — 1, (2.6) can be expressed as

lim d(W(TfTi(kfl)ynJrkf% W(yn+k727 Sﬁf(kfl)ynJrkf% 9(r—k+1)n)a a(r—k+1)n)7p) =cC. (211)

n—oo

By (2.3) and the inequality

AW (Yn1k—2, S (k1) Yn+k—2, O(r—k+1)n), D)

< Ottt 1)nd(Yntr—2,0) + (1 = O—p11)n)A(S7 (4_1)Yn+k—2, D)

<Ok 1)ndYnik—2,0) + (L = 0 — 1)) [(1 + pn M7 )d(Ynyr—2,p) + &nl
< (L4 pnM*)d(Yntk—2,P) + &n,

now we know that

imsup d(W (Yntr—2, S, (k—1)Ynt+k—2, Or—k+1)n): P) < C. (2.12)
n—oo
Further,
limsup d(T;2 (,_1)Yn+k—2,p) < ¢, Vk=2,3,---,r—1 (2.13)
n—oo

From (2.11)-(2.13) and Lemma 1.2, it follows that

Jim d(T7 g1y Yt k=20 W Untk—20 S5 (k1) Yt k=2, 0r—k41)n)) = 0 (2.14)
for k=2,3,---,r—1 and for k = r, we have
nh—>n;o d(xn—i-hp) = nh—>ngo d(W(Tlnyn—i-r—Za W(yn+r—27 S{Lyn—i-r—% oln)a aln)ap) =c (215)

Applying (2.3), the following estimate

d(W (Yntr—2, ST Yn+r—2,01n),p)

< 01nd(Yntr—2,p) + (1 = 01,)d(ST Yn+r—2,P)

< 010d(Yntr—2,0) + (1 = 010)[(1 + pn M) d(Yn+r—2, D) + &5
< (1 + M) d(Yntr—2,p) + &n

implies that

lim sup d(W(ynJrery S?yn+r72, 91n)7p) <ec (216)
n—oo
Also,
lim sup d(TlTLyn-&-r—Q,p) <ec (217)
n—oo

Hence, (2.15)-(2.17) and Lemma 1.2 imply that

”11_>H;o d(TlnynjL'rf% W(yn+r72a S?yn+r727 Hln)) =0. (218)
Observe that
d(xn+17 TlnynerfQ) = d(W(T{LynJrrf% W(yn+r727 S?yn+r72v gln)a aln); Tlnyn+r72)

< (1 - aln)d(W(yn+r—27 ST Yntr—2, oln)a Tlnyn-&-r—Q)
+alnd(T1nyn+T—2a Tlnyn—i-r—2)~

Based on (2.18), this implies

lim d(@p11, T Yntr—2) = 0. (2.19)

n—oQ
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Similarly, since a < ayy, Bin < b for all ¢ € I, we have

d(xn+lap) S alnd(T{LynJrerap) + (1 - aln)d(W(yn+r727 S?yn+r727 91n)7p)
S alnd($n+17p) + O‘lnd(xn+1, T{Lyn+rf2)
+(1 - aln)d(W(yn+T—2a S?yn—&-r—% aln)ap)

(0%
S 1 _121 d(xn+17 T1nyn+1*—2) + d(W(yn+r—2a S?yn—f—r—% 01n)7p)
n

b
S md(xn+1a T1nyn+7‘—2) + d(W(yn+r—27 S?yn-&-r—% Gln)vp)~ (220)

Taking lim inf on both side of the estimate (2.20) and using (2.19), we have

lim inf d(W (yn+r—2, STYn+r—2,01n),p) > c. (2.21)

n—oo

Combining (2.16) and (2.21), we get

lim d(W(yn+T—27 ) S?yn+r—23 01n)7p) =cC. (222)

n—oo

By Lemma 1.2 and (2.22), we have

lim d(yn+r_2, S?yn-&-r—Q) =0.

n—oo
In a similar way, for k =2,3,--- ,r — 1, we compute
AYnth—1, T (k1) Ynth—2)
= dW(T; (_1yYn+k—2, W (Yntk—2, S; (k1) Yn+k—2, Okt 1)n)s Qr—kt1)n )
T (k—1)Yn+h—2)
< (= ap—kr1)n) AW (Yntr—2, S -1y Ynt+k—2, 0~k 1)n)s Ty (- 1) Yn+k—2)
ok yn (T (o) Ynth—2 T7 (1) Yntk—2)-

Utilizing (2.14), we have
Jim d(ynr—1, T (po1yYnsk—2) = 0, V=23, — 1. (2.23)
For k = 1, we calculate

d(yna T:L-Tn) = d(W(TTnJ?n, W(l‘n, S;lx’ru 97“71)7 arn)7 Trnxn)
S arpd(Tl e, T wy) + (1 — ) AW (20, SP Ty, Orn), T ).

Now, using (2.10), we have

lim d(yn, T\ x,) = 0. (2.24)
n—oQ
Reasoning as above, we get that
b
d(ynap) S 17_bd<T;ana yn) + d(W(xnv Sﬁxnv grn)vp)~ (225)

Setting lim inf on both sides of the estimate (2.25) and utilizing (2.6) and (2.24), we know

lim inf d(W (z,, Sy @y, 0r0), 0) > c. (2.26)

n—oo

Inequalities (2.8) and (2.26) collectively imply that

lim d(W(zy, Sy xn, ), p) = c. (2.27)

n—oo
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Consequently, Lemma 1.2 and (2.27) imply that
lim d(x,, Sy z,) =0. (2.28)

n— oo

Note that
d(l‘n, T;lxn) < d(SCn, yn) + d(yn, T;L'rn)
< Oérnd(l‘n, T:an) + (1 - arn)d(W(xnv S:L-Tnv 9rn)7 xn) + d(y'm T:xn)
< (1= Opn)d(zn, Sy'n) + d(Yn, T n)

1—2a
<
~—1-b

From (2.24) and (2.28), we have

A

1- ™

1

lim d(x,, T z,) = 0. (2.29)

n— oo

Moreover

A(@n,yn) < Qpend(wp, T'wn) + (1 — app)d(@n, W(xn, S)'wn, 000))
< O‘rnd(xna T:an) + (1 — Opp — /Brn)d(zna S:}xn)
< bd(xpn, Tl wy) + (1 — 2a)d(xy,, S'xy,).

By (2.28) and (2.29), we have

lim d(xy,,y,) = 0. (2.30)

n—oo

Again, reasoning as above, we have

AdYntr-1,p) < AW (Yn+k—2: 57" (k—1)Yn+k—25 O —k+1)n): D)
b
Jrli_bd(T;l_(k_l)yan—%yn+k—1)~
Now, Utilizing (2.6) and (2.23), we get

lim inf d(W (yn4r—2, S:Lf(kfl)ynJrkaa 9(r7k+1)n)ap) > c. (2.31)

n—oQ

Thus, (2.12) and (2.31) imply in total

lim d(W(y7L+k_2, S,:.L_(k_l)yn+k—2a 0(r7k+1)n)7p) =

n—roo

and by Lemma 1.2, we conclude that

lim d(Ynsh—2, ST (1) Ynsh—2) =0, VE =23, r—1 (2.32)

n— oo

Also,

A(Ynk—2, T (1) Ynth—2)

S dYntk—2,Ynth-1) T dYnsr—1, T (k1) Ynth—2),

Sy (h=1)Ynth=2, 00— k4 1)n)s A=kt )n)) + AWUnth—1, T o1y Yn+k—2)

< dWn+r—1, T7 (1) Yntk—2) + ket 1)n@Yntr—2, Tr (r_1)Yn+k—2)
+(1 = ap—k+1)n)AYntk—2, W (Yntr—2, 7 (1) Yntk—2, Okt 1)n))

< dWnth—1, T (- 1yUnrk—2) + A1) ndYnsk—2, 7 (1) Ynth—2)
+(1 = ap—kr1)n = Ber—k+1)n)dYntk—2, S7_ (k_1)Yn+k—2)

1 1—2a
< md<yn+k71; T;Z(k71)yn+k72) + ﬁd(ynﬂc,% S:}i(kil)yn%%).
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Now, it follows from (2.23) and (2.32) that

lim d(yn+k,2,Tf7(k71)yn+k,2) =0, Vk=23,---,r—1. (2.33)

n—0oo

For k=2,3,--- ,r — 1, we have

AYn k-2, Ynth—1) < dYnik—2, T _1yUntr—2) + AT 1) Ynth—2: Ynsk-1)-

Hence, (2.23) and (2.33) imply that

lim d(Ynir—2,Ynsk-1) = 0. (2.34)

n—oo

Additionally,

d(.’En, yn+k71) S d(fEn, yn) + d(yna yn+1) + -+ d(yn+k72, yn+k71)~
By (2.30) and (2.34), we have

Hm d(@n, Ypin1) =0, Vk=1,2-- r—1. (2.35)

n— oo

Let L = maxieI{Li,f/i}, where L; and L; are Lipschitz constants for T; and S; for ¢ € I,
respectively. Since each T; is uniformly L-Lipschitzian for ¢ € I, we have

d(.’L‘n, Tinxn) ((En, ynJr'r‘fifl) + d(y'rH»rfiflu /Tznirn)
(:rn; yn—i-r—i—l) + d(yn+r—i—1a ,‘Tinyn-‘rr—i—l) + d(ﬂnyn—s—r—i—lyﬂnxn)

(1 + L)d(]}n, yn+r—i—1) + d(y7n+'r'—i—la rfinyn—&—'r'—i—l)

<d
<d
<

forl1<i<pr-—1.
It follows from (2.33) and (2.35) that

li_)m d(xn, T'xy) =0, VI<i<pr-—1. (2.36)
Moreover,
d(l‘n, szn) < d(l‘n, Tinxn) + d(Tzn-rna Tinyn+r—i—1) + d(Tinyn+r—i—1a szn)
S d(l‘n, Tznxn) + Ld(xnv yn+r—i—1) + Ld(j—;;nilyn-i-r—i—h xn)
S d(‘rnv Tznxn) + 2Ld(xna yn+r7¢71) + Ld(/ranilynJrrfiflv yn+r7i71)~

Thus, (2.33), (2.35) an

joN

(2.36) (or (2.29)) imply that d(x,, T;z,) — 0 as n — oo and so

lim d(z,,Tiz,) =0, V1<i<r

n— oo

Similarly, we have

nh_}rr;o d(xpn, Sizy) =0, V1<i<r.
This completes the proof. O

The following results can be obtained from Theorem 2.2 immediately. The proof is similar to
Corollaries 2.1 and 2.2, respectively, and so they are omitted.

Corollary 2.3 Assume that K and F are the same as in Theorem 2.2. Fori € I, let T; : K — K
be a uniformly L;-Lipschitzian and {¢! }-asymptotically nonexpansive mapping in the intermediate
sense and S; : K — K be a uniformly ﬁi—LipschitZian and {é;}—asymptotically nonexpansive map-
ping in the intermediate sense. If S°°° & < 400 and .00 & < 4oo for i € I, then, for the
sequence {z,} in (1.1),

lim d(z,, Tix,) = lim d(x,,S;z,) =0, Viel.

n—oo n—oo
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Corollary 2.4 Suppose that K and F are the same as in Theorem 2.2. For ¢ € I, let
T; : K — K be a uniformly L;-Lipschitzian and {k’} asymptotically nonexpanswe mapping with
S ki < 400, and S; : K - K be a uniformly L;-Lipschitzian and {k’ }-asymptotically nonex-

pansive mapping with Y 2 k% < 4o00. Then,
lim d(x,,Tiz,) = lim d(z,,Siz,) =0, i€l
n— o0 n—r00

where {z,} is the sequence defined by (1.1).

Remark 2.1 (1) It is worth mentioning that Theorems 2.1-2.2 can easily be extended to a more
general class of total asymptotically quasi-nonexpansive mappings for the iteration process (1.1).
And the proofs of Theorems 2.1-2.2 are greatly differ from those of Lemmas 2.1 and 2.2 in [21].
Further, Corollaries 2.1 and 2.3 (Corollaries 2.2 and 2.4, respectively) are so.

(2) Moreover, conclusion of the Theorem 2.2 (Corollaries 2.3 and 2.4, respectively) can be ex-
tended to a more general class of weakly total-asymptotically quasi-nonexpansive mappings (weakly
asymptotically quasi-nonexpansive mappings asymptoticallyin in the intermediate sense and weakly
quasi-nonexpansive mappings). For concepts of the weakly properly, see, for example, Fukhar-ud-din
and Khan [21].

3 Approximation of common fixed points

In this section, we approximate common fixed points of two finite families of total asymptotically
nonexpansive mappings in a hyperbolic space. More briefly, we establish A-convergence and strong
convergence of the iteration process (1.1) for two finite families of total asymptotically nonexpansive
mappings in a hyperbolic space.

Theorem 3.1 Let K be a nonempty closed and convex subset of a complete uniformly convex
hyperbolic space H with monotone modulus of uniform convexity . For ¢ € I, let T; : K — K,
i€l ={123,---,r} be a uniformly L;-Lipschitzian and ({pi}, {€1}, p')-total asymptotically
nonexpanswe mapping with lim,, . pf, = 0 and lim,, o, £& = 0, and a strictly increasing continuous
function p' : [0,+00) — [0, —|—oo) satisfying p'(0) = 0, and let S; : K — K be a uniformly L;-
Lipschitzian and ({}, {fl} p')-total asymptotically nonexpansive mapping with lim,, oo it = 0
and lim, oo € = 0, and with a strictly increasing continuous function p* : [0,400) — [0, +00)
satisfying p*(0) = 0. Assume that F = (\_,(F(T;) N F(S;)) # 0 and for i € I, the following
conditions hold: .

() Doy p < 00, 20T iy, < F00, 307 & < 00, >t &n < Fo0.

(ii) There exists a constant M™* > 0 such that p’(r) < M*r and p*(r) < M*r for all r > 0.

Then the sequence {z,} defined in (1.1) A-converges to a common fixed point p € F.

Proof. Since the sequence {z,} is bounded (by Theorem 2.1), therefore Lemma 1.1 asserts that
{z,} has a unique asymptotic center in K. That is, A({z,}) = {z}. Let {v,} be any subsequence
of {z,,} such that A({v,}) = {v}. Then, by Theorem 2.2, we have

lim d(v,, Tyv,) = h_}m d(vy, Sivn) =0, Viel. (3.1)

n—oo

We claim that v is the common fixed point of {T;}7_; and {S;}]_;.
For each i € I, define a sequence {z,,} in K by z,, = T/"v. Then, we calculate

d(Zm, V) < d(T"v, T"vy) + d(T] vy, T 1vn) + -+ d(Tivn, vn)

m—1
< [d(v,vn) + o' (d(v,00)) + €]+ > AT vy, T o).
j=0

Since each T; is uniformly L;-Lipschitzian with the Lipschitz constant L; for ¢ € I, the above
estimate yields

d(Zm, vn) < [(1 4+ pmM)d(v,vy,) + &) + mLd(Tivn, vy), (3.2)

12
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where L = max;cr{L;, [A/l}
Taking lim sup on both sides of (3.2) and using (3.1), we have

7(2m, {vn}) = limsup d(zm, vy,) < limsup d(v,v,) = (v, {v,}),
n—oo n—oo
which implies that |r(zm,, {vn})—7r(v, {v,})] = 0asm — oo. It follows Lemma 1.3 that lim,, e 770 =
v. by the uniform continuity of T}, we know that
T;(v) = T( lim /™) = limm — coT}" v = v.
m—0o0

From the arbitrariness of i € I, we conclude that v is the common fixed point of {T;}7_,. Similarly,
we can show that v is the common fixed point of {S;};_;. Hence, v € F.

Next, we claim that the common fixed point v is the unique asymptotic center for each subse-
quence {v,} of {z,}.

Contrarily, v # x. It follows Theorem 2.1 that lim,,,~ d(z,,v) exists, and by the uniqueness of
asymptotic centers, we have

lim sup d(vy,, v) < limsup d(v,, ) < limsup d(x,,, )

n—oo n—oo n—oo
< limsup d(z,,v) = limsup d(v,,v),
n— o0 n—oo

a contradiction. Therefore v = z. Since {v,} is an arbitrary subsequence of {x,}, A({v,}) = {=}
for all subsequence {v,} of {z,}, this proves that {z,} A-converges to a common fixed point = of
{Ti}i—y and {Si}i_,. O

From Theorem 3.1, we have the following result.

Corollary 3.1 Let K be a nonempty closed and convex subset of a complete uniformly convex
hyperbolic space ‘H with monotone modulus of uniform convexity n. Fori € I, let T; : K — K be a
uniformly L;-Lipschitzian and {¢! }-asymptotically nonexpansive mapping in the intermediate sense
and S; : K — K be a uniformly f/i—Lipschitzian and {é;}—asymptotically nonexpansive mapping in
the intermediate sense. If for all i € I, 3700 | &) < 400 and 00, & < 400, and F = (\,_, (F(T;)N
F(S;)) # 0, then the sequence {z,} defined in (1.1) A-converges to a common fixed point p € F'.

Corollary 3.2 Let K be a nonempty closed and convex subset of a complete uniformly convex
hyperbolic space H with monotone modulus of uniform convexity n. For i € I, let T; : K — K be
a uniformly L;-Lipschitzian and {k? }-asymptotically nonexpansive mapping with Y2 | k) < +oc,
and S; : K — K be a uniformly f/i—Lipschitzian and {l%;}—asymptotically nonexpansive mapping
with 320 ki < 400, Assume that F = (\/_, (F(T;) N F(S;)) # 0. Then the sequence {z,} defined
in (1.1) A-converges to a common fixed point p € F'.

Proof. Based on Corollaries 2.2 and 2.4, and the proof of Theorem 3.1 in [21], the result holds.
O

In order to prove strong convergence of the iteration (1.1) for two finite families of total asymp-
totically nonexpansive mappings in a hyperbolic space, we first give the following conditions:

(H) There exists a nondecreasing self-mapping on [0, +o00) with f(0) = 0 and f(¢) > 0 for all
t € (0,400) such that d(z, Tx) > f(d(z, F(T))) for all x € K, where T : K — K is a nonlinear
mapping with F(T) # 0 and d(z, F(T)) = inf{d(z,y) : y € F(T)}.

The condition (H) was introduced by Senter and Dotson [35]. Further, based on works of [21, 36, 37],
for two finite families of total asymptotically nonexpansive mappings {7;,i € I'};_; and {S;,7 € I}1_;
on K C H with F = (., (F(T;) N F(S;)) # 0, condition (H) becomes as follows:

(A) d(z,Tx) > f(d(x, F)) or d(z,Sz) > f(d(x, F)) holds for z € K and for at least one T' € {T;}7_,
or S € {S;}I_,, where d(z, F') = inf{d(x,y) : y € F'}.

(B) d(z,Tiz) + d(x,S;x) > f(d(z,F)) for x € K and i € I.
(C1) 5 (Yo d(z, Tix) + 307, d(z, Six)) > f(d(z, F)) for z € K.
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(C2) 3 (maxi<i<, d(z, Tiz) + maxi<i<, d(z, S;z)) > f(d(z, F)) for z € K.
(C3) max { max;<;<, d(z, Tjz), maxi<;<, d(z, S;z)} > f(d(z, F)) for z € K.

Note that the conditions (A), (B) and (C1)-(C3) are equivalent to the condition (H), if T; = .S;
for i € I. We shall use condition (C1) or (Cz) or (Cs) to study strong convergence of the iteration
(1.1).

Now we give the following lemma for proving the strong convergence.

Lemma 3.1 Let K, H, {T;}7_, {S:}{_, and {z,,} be as in Theorem 3.1. Then {x,} converges
strongly to some p € F if and only if

lim inf d(z,, F) = 0.
n—oo

Proof. If {z,} converges strongly to p € F, then lim,,_, o d(x,,p) = 0. Since 0 < d(z,, F) <
d(xn,p), we have liminf,, ., d(z,, F) = 0.

Conversely, suppose that lim inf,,_, - d(z,, F') = 0. It follows from Theorem 2.1 that lim,,_, o d(zy,, F)
exists. Now liminf, _, d(z,, F') = 0 reveals that lim, o d(z,, F) = 0.

Next, we show that {z,} is a Cauchy sequence. By last inequalities in the proof of Theorem 2.1

d(xn+17p) S (1 + Mlﬂn)d($n7p) + M2€n7
taking infimum on p € F' on both sides in the above inequality, we have

d($n+1,F) < (1 + Mlﬂn)d(-rnaF) + M2§n

o0

On account of > 7 | p, < 00, >0 &, < 00, set eMi2iZikn = M. Let Ve > 0. Since
lim,, o d(x, F) = 0, for any given £ > 0, there exists a positive integer ng such that

€ = €
d(@ny, F) < ;77— and n < 3.3
@ ) < qar 5y ™ 2;5 2M Mo (3:3)
=no
The first inequality in (3.3) implies that there exists pg € F such that d(zn,,po0) < m
Hence, for any n > ng and m > 1, we have

d(xno+m7 xno) < d(xno+m7p0) + d(xnoapo)
ng+m-—1
< [eM1 Zkino Kk + 1]d($n0,p0) + M2 [€n0+m71

vo+m—1
M - My 30 k
+€n0+m—26 1Hng+m—1 + §n0+m_3e 1 Ek7n0+m—2 H

ng+m—1
4.+ fnoeMl Ek:ngﬂ Hk]

n=ng

<(M+1)—— 4 MMy——

2(M +1) 20MM,

This implies that {z,} is a Cauchy sequence in H. Sine K is a closed subset of a complete
hyperbolic space H, it is complete. We can assume that lim, . x, = ¢, and ¢ € K. It is easy to
see that F(T) is a close subset in K, so is F(T). Since lim,,_ o d(z,, F) = 0, we obtain g € F(T).
This completes the proof. m|

We now establish strong convergence of the iteration process (1.1) based on Theorem 2.2.

Theorem 3.2 Suppose that K, H, {T;}7_,, {S:};_, and F be the same as in Theorem 3.1, and
{T;}:_;, and {S;}_,, satisfies condition (Cy) (or (Cz), or (Cg)). Then the sequence {x,} defined
in (1.1) converges strongly to some p € F.

Proof. Tt follows from Theorem 2.1 that lim, o d(z,, F') exists. Moreover, Theorem 2.2 implies
that lim,, o d(zy, Tiz,) = lim,— o0 d(2y,, Six,) = 0 for each @ € I. Thus, the condition (Cy) (or
(Ca2), or (C3)) guarantees that lim,_,o f(d(xn, F)) = 0. Since f is nondecreasing with f(0) = 0,
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it follows that lim,_,oc d(zy, F) = 0. Then, Lemma 3.1 implies that {z,} converges strongly to a
common fixed point p € F. O

From Theorem 3.2, we have the following results.

Corollary 3.3 Let K, H, {T;}7_,, {S;};_; and F be the same as in Corollary 3.1. Suppose that
{T;}:_,, and {S;}_;, satisfies condition (Cy) (or (Cz), or (C3)). Then the sequence {x,} defined
in (1.1) converges strongly to some p € F.

Corollary 3.4 Assume that K, H, {T;}I_;, {S:}/_; and F are the same as in Corollary 3.2, and
{T;};_,, and {S;}]_,, satisfies condition (Cy) (or (Cz), or (Cs)). Then the sequence {x,} defined
in (1.1) converges strongly to some p € F.

Theorem 3.3 Let K, H, {T;};_,, {S:};_; and F be the same as in Theorem 3.1. Suppose
that either T; € {T;}7_, or S; € {S;}/_; is semi-compact. Then the sequence {z,} defined in (1.1)
converges strongly to p € F.

Proof. Let T} € {T;}7_; is semi-compact. By Theorem 2.2, we know that lim,,_, o d(T;2y, ) = 0
for all i € I. By Theorem 2.1, {z,} is bounded and 7} is semi-compact, there exists a subsequence
{xn,} of {x,} such that x,,, — ¢ as j — oo. By continuity of T; and Theorem 2.2, we obtain

d(q,T;q) = jhﬁrgo d(wn;, Tizn,) =0, i€l

This implies that ¢ is the common fixed point of {7;}7_,. Similarly, we can show that ¢ is the
common fixed point of {S;}i_;. Hence, ¢ € F. Again, by Theorem 2.1, lim, o d(z,,q) exists.
Therefore, q is the strong limit of the sequence {x,}. As a result, {z,} converges strongly to a point
q. d

From Theorem 3.3, we have the following results.

Corollary 3.5 Let K, H, {T;}/_,, {Si}i_, and F be the same as in Corollary 3.1. Suppose
that either T; € {T;}7_, or S; € {S;}I_; is semi-compact. Then the sequence {x,} defined in (1.1)
converges strongly to p € F.

Corollary 3.6 Suppose that K, H, {T;}7_,, {S:}/_; and {z,,} be the same as in Corollary 3.2,
and either T; € {T;}7_; or S; € {S;}7_; is semi-compact. Then the sequence {x,} defined in (1.1)
converges strongly to p € F.

Remark 3.1 (1) If the uniformly convex hyperbolic spaces with modulus of uniform convexity
reduce to CAT(0) spaces, and iterative process (1.1) reduce to iterative process (1.3), Theorem 3.1,
Lemma 3.1, Theorem 3.2 reduce to Theorems 3.1-3.3 proved by Thakur et al. [7], respectively.

2)Ifr=3and aj, =0and S; =Sy =--- =8, =T, Theorem 3.1, Lemma 3.1, Theorem 3.2
and Theorem 3.3 become to Theorems 1-4 in [5], respectively.

(3) If the uniformly convex hyperbolic spaces with modulus of uniform convexity reduce to
CAT(0) spaces, and = 3 and o, = 0 and ST = S§ = --- = S? = T, where T is a nonexpansive
mappings on K C H, Theorem 3.1, Lemma 3.1, Theorem 3.2 are equivalent to Theorems 1-3 of [6],
respectively.

4 Concluding remarks

In this paper, we introduced and studied the following new general iteration for two finite families
of total asymptotically nonexpansive mappings in hyperbolic spaces H:

Tn+1l = W(Tflyn+r727 W(yn+r72v S?yn+r72a 9177,)7 aln)a
Yntr—2 = W(T;yn-&-r—& W(yn+r—37 Sgyn-&-r—& 0277,)7 OZQn),

Yn4r—3 = W(T??yn+7'—47 W(y7z+7'—47 S??yn+7'—47 6371)7 O[3n), ( )
4.1

Yn+1 = W(Tﬂwm W(yn7 S:‘Llynv 9(7"71)71)’ O‘(rfl)n)v
Yp = W(Tfl’n, W(xn; S;ll'naern)aarn)a
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where {T;}7_, and {S;}_, be two finite families of total asymptotically nonexpansive mappings on
nonempty closed and convex subset K C H, {au,} and {f;,} are two double real sequences in [0, 1],
and for each i € I ={1,2,--- ,r},r>2and n > 1, 0;, := 1’8”’

In order to prove A-convergence and strong convergence of the iteration (4.1) in hyperbolic spaces,
we gave and analyzed some important related properties to the new general iterative processes (4.1),
and proposed some meaningful illustrations for clarifying the results presented in this paper, which
show that our results extend and improve the corresponding results of iterative approximation for
asymptotically (quasi-)nonexpansive mapping, (generalized) (quasi-)nonexpansive mapping of all
normed linear spaces, Hadamard manifolds and CAT(0) spaces as special cases. Our results extended
and improved the corresponding results of [1, 2, 4-7, 9, 21].

It is well known that iterative processes as ubiquitous in the area of abstract nonlinear analysis
and still remain as a main tool for approximation of fixed points of generalizations of nonexpansive
maps. Furthermore, the analysis of general iterative processes, in a more general setup, is a problem
of interest in theoretical numerical analysis. Therefore, on two finite families of total asymptoti-
cally nonexpansive mappings in the setting of the general iteration (4.1), the following two open
questions will be worth further studying:.

(1) If some errors are added in the iteration (4.1), such as the iterative approximating scheme (3.1)
n [11], can the A-convergence and strong convergence presented in this paper be proved?

(2) When T; and S; (i € I) in (4.1) become total asymptotically quasi-nonexpansive mappings,
whether do the results of Theorems 3.1-3.3 hold?
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Abstract

In the present article, we establish an integral identity for Riemann-
Liouville fractional integrals. Some Simpson type integral inequalities
utilizing this integral identity are obtained. It is worth mentioning that
the presented results have close connection with those in [M. Z Sarikaya,
E. Set, M. E Ozdemir, On new inequalities of Simpson’s type for s-convex
functions, Computers and Mathematics with Applications, 60 (2010),
2191-2199)].

Subject class: [2000] 26A15, 26A51, 26D10.
keywords: Simpson’s Inequality, Convex Functions, Power-mean Inequal-
ity, Riemann-Liouville Fractional Integral.

1. Introduction

The following definition for convex functions is well known in the mathe-
matical literature:

A function f: ® # I C R — R. is said to be convex on [, if inequality
f(t(E—‘r (1 _t>y) < tf(l‘) + (1 _t)f(y)a for all T,y € Ite [071]
Many inequalities have been established for convex functions but the most

famous is the Simpson’s inequality, due to its rich geometrical significance and
applications, which is stated as [9]:
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Theorem 1 Let f : [a,b] — R be a four times continuously differentiable
mapping on (a,b) and Hf(‘l)Hoo = SUDge(a,b) |/ (x)| < oo, then we have the
following inequality:

[éf( )+ f(”b) +éf<b>} - bl/ Fayde| < o |19
1)

For recent refinements, counterparts, generalizations and new Simpson’s type
inequalities, see [[9]-[11]].

n [10], Dragomir et. al proved the following recent developments on Simp-
son’s inequality for which the remainder is expressed in terms of derivatives
lower than the fourth.

N
~

Theorem 2 Let [ : [a,b] — R is a differentiable mapping whose derivative is
continuous on (a,b) and f' € Lla,b]. Then we have the following inequality:

030 (52) 0] -2 [

where || /'], = [} |f(x) da| .

The bound of (2) for L-Lipschitzian mapping was given in [8] by = (b —a).

In [8], Sarikaya et. al presented inequalities for differentiable convex func-
tions which are linked with Simpson’s inequality, and the main inequality in [8],
pointed out, is as follows.

<Dy

Theorem 3 Let f: I C [0,00) — R be a differentiable mapping on I° (interior
of I) such that f" € Ly [a,b] where a,b € I with a < b. If |f'| is s—convex on
[a,b], for some fized s € (0,1], then the following inequality holds:

@i () o] - b_a/f

s —4)65FL 42 x 55+2 — 2 % 35%2 4. 2
65+ (s +1)(s +2)

<(b-a) (P @+ 17O ©)

Proposition 1 Under the assumptions of Theorem 3 with s = 1, we have the
following inequality,

[sr@+ 2 (82 + o) -2 [ s

Proposition 2 Under the assumptions of Theorem 3 with f(a) = f (%£2) =
£ (b), we have the following inequality,

< 5(b—a)

CLF @I+ 1 ®)1).
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5(b_a) ’ /
< = UF@I+IF®N).  6)

bla/:f(x)dx—f(a;b>

Theorem 4 Let f : I C [0,00) — R be a differentiable mapping on I° such
that f' € Ly [a,b] where a,b € I with a <b. If |f'|? is s—convex on [a,b], for
some fized s € (0,1] and q > 1, then the following inequality holds:

57 (agb)+ o) - [ rwa] <250 (2) T

2 X 52 4 (s —4)6°T — (25 + )37 L1 (25 +1)3°F1 42 1a
{( 3><65+1(5—|—1)(s+2) ]‘f(b)‘ JrL’)XGSH(S—FI)5—i—2 ]‘f )

(25 +1)3°+ 2 0 [2x5P 4 (s =6 — 25+ 13T L6 Y
+([emarnern VO [P e e gy @)

Proposition 3 Under the assumptions of Theorem 4 with s = 1, we have the following
inequality,
1 a+b 1 1 b b—a [ 5\ 1
- - < 2
[sr@+3r(550) v gr0] - 5 [ r@a <25 (36) .
v, 1/q a, 1/q
(s lror + Zlrar) "+ (g5 lror+ g lror)

6
Proposition 4 Under the assumptions of Theorem 4 with f (a) = f (%£2) =
we have the following inequality,

b p—
s (452 Pt e

1/q 1/q
{(@lrors 2 irer) s (Siror Ziror) "}

Definition 1 Let f € L'[a,b]. The left—sided and right—sided Riemann— Liouville
fractional integrals of order a > 0 with a > 0 are defined by

[ N —

T f(x) = ﬁ /x(x 0@, a<w

and

T f(z) = 1)/(t—a:)°"1f(t)dt, z<b

)

respectively, where T'(.) is Gamma function and its definition is T'(a) = [;° e “u* " du.
It is to be noted that JO, f(z) = J._ f(z) = f().

1139 Muhammad Igbal et al 1137-1145



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

In the case of a = 1, the fractional integral reduces to the classical integral.

Properties relating to this operator can be found in [5] and for useful details on Simp-
son’s type inequalities connected with fractional integral inequalities, the interested
readers are directed to [1]

The main aim of this paper is to establish new Simpson’s type inequalities for
Riemann—Liouville fractional integral using the convexity as well as concavity, for the
class of functions whose derivatives in absolute value at certain powers are convex
functions. we will derive a general integral identity for convex functions.

2. Main Results
In order to prove our main results we need the following integral identity:
Lemma 1 Let I C R be an open interval, a,b € I with a < b and f : [a,b] — R be a
differentiable function such that f' is integrable and 0 < a < 1 on (a,b) with a < b.

If |f| is convez on [a,b], then the following identity for Riemann— Liouville fractional
integrals holds:

@+ 51 (M0) + g1 - gt D e + g s

b—
= Satt T+ L+ (2% = 1) (Is + 1),
where
I = Oi<é—é (1= 0)%) F#b+ (1 =) =2)d,
L= [y (1= =) f'(ta+ (1 —t)=52)dt,
1 [ a
I =) (2( S(1+ D)% — iy "(th+ (1 — t)%£2)dt,

- 1)
Li= [} (m—m(lﬁ) +§)f(ta+(1 t)2tb)dt.

Proof. Integrating by parts, we have

he [ (2 tan) prapt -0l
[ ( )

6 2 2
23— 5= f1b+ (1 —t)2)de |
b—a 0
B bzaa /1(1—t)““f(thr(l—t)aer)dt
- 0
2 1 1,/a+b 20 (! ot a+b
b_a{gf(b) gf( ! )}_m - g -0t
2 [1 1,(a+b 2%
_bfa{éf(b)—’—gf( 2 )}_(bfa)aJ3
4
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b= [ G 0+0° — gge—g — 5 @+ (10"

2[m(1+t) — s — §]f(tb—|—(1—t) b)dt) 1

- b—a o

=) (QQ )/ L+ feb+ (1 —1)°
(20‘—1)13:bfa{ % (a—Qi—b>] o:+1)/0 11 0°
2 1 a+b 2%
:b—a{ +§f( 2 )} )1

Analogously:

Iz:ba[ (b)+3f( )} - a)aJl

@ =D)L= 325 [ 0) + 57 (5] - i Ja.

Adding above equalities, we get

t

+b

)dt)

a+b

b+ (1 —1t) )dt)

bfa Ef( )+ f(a+b) +éf(b)} —ﬁ[J1+Jz+J3+J4]
=h+L+2—-1)(Is+1).
Now making suitable substitutions, we have
= 1 =) f(ta+ (1 — ) %E)dt = W Z)a [ (w =)™ f(u)du
Jo = [y L+ F(th+ (1= ) 2)dt = 2w [1 1,0 (w—a)* " f(u)du
It Je = 2o [ (= ) f(w)du = G 2%2 Ty f (@),
likewise
= fo A=) b+ (1 — ) 2)dt = 2w a(, oy (0= W)t f(u)du
Jo= [l (L0 f(ta+ (1 —t)2E)dt (b a)a L2 (0 —w)* ! f(u)du
Js 4 Jo = e [ (0 — w7 f(u)du = FEELTC f(b), .

which completes our proof.

Theorem 5 Let f and f' be defined as in Theorem 4 and if |f'|

"| is convex on [a,b],

then the following identity for Riemann— Liouville fractional integrals holds:

5@+ 3 (U50) 45 0] - g Um0+ 5 f@)
< O Dt un (I @I+ 1B ©
where 1 = K1 + Ko, 12 = K3 + K4

Proof. By using the properties of modulus on Lemma 1, we have

(57 @+ 37 (430) + 510 - g e + g )] < g
{260@132*{(?3_1*%) ei-9- 4 (2 - D r@ire,
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and d* = 222 71)—{—1

Q=

where ¢ = (%)
Using convexity of |f'|, we have

L7101 o
|11|§/O (6_5(1_t)

/(b + (1 — )=

f’(ﬁw 1oty ae

HE)ron () oo

IN
S—
=
/N
|~
|
N = N
—
—
I
~
\_/

Analogously:
K
\f2|§71|f |Jr SOIE
Using the convexity on |f’| and the fact that for a€ (0,1 and V t € [0,1],

|13\§/0 (m(wm_m_%) £ ltat (=) S
L 1 o 1 1\, ,, 1+t 1-—
- [ a0+ - sy )W e e

< (a7 s O3 (5 )

KS ’ K4 /
=5 {f (a)‘ +7 ‘f (b)‘-

Similarly
Ka |y
< B2 pm)+ 5 @)

To get desired result, adding above inequalities and it is very easy to check

l=e 71 | 1 1 ot 1
K = /O (5(1_t) _E)dt*_é(l_‘;)_uoﬁl)c ot
AT o 1 1 1 atl
K2 = /1_c<67§(17t))dt—g*g(lfc)fmc 5
d-1 1 1 o 1
Ky = /O (2(2a_1)—2(2a_1)(1+t) +§)dt

1
§+2(2a71)} (d=1)- 2022 —1)(a+1) 22 —1)(a+1)

Ko = /dl_l(ﬁ““”‘z(zail—n‘%)dt

N ¢ WS NS DY i U B
22— (a+1) [3 2@ -1 2@°—D(a+1) |3 2@ —1)
This completes the proof. n|
6
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Remark 1 If we take a =1 in Theorem 5 then inequality (6) reduces to inequality
(4).
The corresponding version for powers of the absolute value of the derivative is

incorporated in the following theorem.

Theorem 6 Let f and f' be defined as in Theorem 4 and if |f'|? is a convez on [a, b],
with q > 1, then the following inequality holds:

Héf( )+ f (a+b) +%f(b)} - %[Jﬁf(b)JrJ&f(a)] < (b;a)
{wsw { (K5 Is <a>lq;f<a | (b)‘Z>W+ (K5 | <a>|Q;K6 f <b>4>1/‘1} N

’ q / g\ 1/q / q / qa\ 1/q
¢21_1/q{<K7f O Rl W (Kelf @K 01 H o

Proof. Using the well-known power-mean integral inequality for ¢ > 1 , we have

1] < (/01 (%_5(1_” ) dt)l_l/q (/01 (é—%(l—t)“) /(ta-l-(l—t)a;b)

Using the convexity of |f'|?, we have

/ q / qa\ 1/q
AR CAC P ACI LS

q 1/q
dt)

2
Analogously:

’ ’ 1/
|1-2| Swllfl/q <K5|f (Qb)|q +K(,|f (2a)|q) LZ.

1/q
1A ek (fol(u F 0O 2% (14 8) + a2 (1= ) | (th+ (1 — £)%52) | dt) .
By the convexity of |f'|?, we have

’ / 1/q
1| < gt/ <K7|f (2a)|q +K8|f (Qb)|q) .

Analogously:

’ q / a\ 1/q
|I4|§w21—1/q (K7|f (Zb)| +K8|f (2(1)| ) .

It is very easy to check that
= [H(E -5 A=) (1 + 1) de = Methtiaide a1
0

5 12(a+1)(a+2) 8
= 1G5 ¢ 1—t>a>r<1—t>dt:%,
7:fo m—m(wt) Ha+oa
- m {(dQ —3) <2u3_1 + %> (ai2) <§d2 B 2u+21+1> st 2(2“1—1)]
Ks = [, |smt=1 — o= 1+ )% + 5| (1 —1)dt

= =y | (3 (Q—d)>(%‘1+%)+ﬁ(%—%<2—d))+

1 (2‘1+2+1 . §d2>]
(a+1)(a+2) 2 3 :
This completes the proof. 1
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Remark 2 If we take o = 1 in Theorem 6, then inequality (7) reduces to inequality
as obtained in Proposition 3.

In the following theorem, we obtain estimate of Simpson’s inequality (1) for concave
functions.

Theorem 7 Let f : [a,b] — R be a differentiable function on (a,b) such that f' €
L'[a,b]. If |f'|? is concave on [a,b], for some fived p > 1 with q = 555, then the
following inequality for fractional integrals holds for o > 0 :

57 @+ 37 (“50) 457 0)| - i vz o)+ 5 s(@)

, [ Ksb+ Kga e
ol ()

, [ Ksa + Kgb
f( o )H

by (20 — )| f (71(71;;-21{%) ‘ +

(B

Proof. Using the concavity of |f'|? and the power-mean inequality, we obtain

|71 >t 1+ (=)l
>t T+ 1 =0l
Hence
|f'(tz + (1= t)y)| >t f (@) + (1 = )| f'(y)]-

So |f’| is also concave. By the Jensen integral inequality, we have

' 1 1(1—1)%)|(dta+ L5t
| < (/ (%—%(14)0‘) dt> <f0 (G—> 1 tl) ) (Fa+ b)dt>‘
0 LG =2@a-n)|dt
Ksb+ K
=y f’(u)‘.
Y1
Analogously:
Ksa+ Keb
I < ===
BEAE
K7b+ Ksa
I3 < sy |
Bl < v (K70 H0)
K Kgb
L] < | (%) |
This completes the proof. o

Corollary 1 If we take a = 1 in Theorem 7, then inequality (8) becomes as:

b3 (522) o] o [

5(b—a) [| . (29 +61b
ST {f( 90 )‘Jr

(o)) o
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Remark 3 Inequality (9) is an generalization of obtained inequality as in [9,
Theorem 8]
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The permanence and global attractivity in a
nonautonomous Gilpin-Ayala competition system
with several delayed negative feedbacks
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Abstract: In this paper, a nonautonomous delayed Gilpin-Ayala competition system with-
out instantaneous negative feedbacks (i.e., pure-delay-type system) is investigated. By the
techniques of comparison arguments and constructing Lyapunov functionals something dif-
ferent to usual case, several results to guarantee the permanence of the system are derived by
means of Ahmad and Lazer’s definitions of lower and upper averages of a function. Moreover,
the sufficient conditions for the global attractivity of the positive solution are also obtained,
in which it is not necessarily to require the exponent of nonlinear intraspecific interference to
exceed that of nonlinear interspecific interactions. These results are more general and prac-
tical, and possess a wide range of applications. Obviously, they are basically an extension of
many existing conclusions for nonlinear competitive systems.

Keywords: Permanence; Global attractivity; Nonlinear competition; Lyapunov function-

als; Pure-delays

1 Introduction

The permanence and global stability of ecological systems are always the most important
and ubiquitous problems in mathematical biology. As pointed out by Li and Kuang [1], more
realistic and interesting models of single or multiple species growth should take into account
both the seasonality of the changing environment and the effects of time delays. Moreover, in
view of the fact that in real-life species interactions, instantaneous responses are rare or weak
relatively to delayed responses, more realistic models should consist of delay differential systems
instead of the ones with instantaneous feedbacks. Recently, some model with discrete delay and
distributed delay was studied [2-5]. In the meantime, some scholars [6,7] argue that continuously
distributed delays as ecologically and biologically are more realistic than discrete delays to species
interactions, which is proved true by Caperon [8]. Therefore, a reasonable alternative way is
to study the pure-delay-type systems with both discrete delays and continuously distributed
delays.

One the other hand, it is well know that for Lotka-Volterra model with delays, the stability
is ordinarily delineated in two ways: the one that contain delay independent terms which dom-
inate other intra-specific and inter-specific interaction effects with and without delays, called a
"no-pure-delay-type”, and the other with only delay feedbacks, is named as ”pure-delay-type”.
For no-pure-delay-type system, one can use the no-delay terms to control the delay terms. Var-
ious results have been obtained recently under so-called diagonally dominant conditions and
the conditions are often independent of delays (see [9-13]). However, for the pure-delay-type

*Corresponding author E-mail address: xiaomei_0529@126.com
Author Email: 1inlin418@163.com
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systems, the analysis of the permanence and the global asymptotic stability of the system is
very difficult, let along the nonlinear type system.

Motivated by the works on Gilpin-Ayala competition systems with delays (see [12,14-16]),
in particular, strongly stimulated by the works [1,17-19], which all contain several time delay,
we consider the following Gilpin-Ayala competitive system with several discrete arguments and

continuous time delays
n kl]

i () = z(t) [ Z Z az]k‘ “k (t— Tz]k(t))
2> / bt )+ s)ds] (1.1)

The aim of this paper is, by developing the analytic technique the analytic technique of the
literatures [10, 11, 14-16, 21, 22|, to obtain conditions which guarantee the permanence of the
system (1.1); after that, by constructing a suitable Lyapunov functional, sufficient conditions
about the global attractivity of the positive solution of system (1.1) are gained.

For convenience, we will use following notations in the rest of this paper, let 7, = sup{7;;x(t) |
t € R} and 7 = max{7i;k, 04j1}, then we have 0 < 7, 0,5 < 7. Denote by W;;i(t) =t — 7351 (1),
and the functions \I/”k( ) is the inverse functions of W;j,(t), respectively. In this paper, for
system (1.1) we always assume that
(H1) i >0, Byt > 0.

(Hz) ri(t), ayr(t), Tik(t), are positively continuous and bounded functions on [c, 4+00).

(Hs) Functions blﬂ(t s) are defined on [c,4+00) x [—7,0] such that they are integrable with
respect to s, and f _ Ul(t s)ds are positive, continuous and bounded above with respect to ¢
on [¢, +00).

(H4) T45k(t) are nonnegative, continuous and bounded, ¥;;1(t) = t — 73;,(t) are all invertible.
Furthermore, it is differentiable and satisfy 1 — 7, () > 0 (¢ > ¢).

Stimulated by the application of system (1.1) to population dynamics, we assume that solu-
tions of system (1.1) satisfy the following initial condition

z;(0) = ¢i(0) > 0, 6 € [-7,0], ¢;(0) >0, sup ¢;(0) < +o0. (1.2)

0e[—,0]
2 Basic results

Let g(t) be a continuous function define on [¢, +00). Denote
g" =sup{g(t) | ¢ <t < 400}, ¢' =sup{g(t) | ¢ <t < +o0}.

According to Ahmad and Lazer [10], we define the lower and upper averages of a function g(t).
If ¢ <ty < tg, set

1 b2
Alg, t1, to] = / g(s)ds.
to —t1 Jy,
The lower and upper averages of ¢(t) denoted by mlg] and M[f] are follows

mlg] = lim inf{A[g, t1, t2] | t2a —t1 > s},

S$—+00
and

Mgl = lim sup{Alg, t1, to]|ta —t1 > s}.

S—r+00
Since the set {Alg, ti1, t2] | t2 —t1 > s} decreases as s increases, the limits exist; and since

gl < A[g, l1, tQ] < gu, it follows that gl < m[g} < A[g, l1, tQ] < M[g] < gu
Definition 2.1. The system of differential equation
z(t) = F(t, z(t)), =z=€R"

1147 Lin Lin et al 1146-1164



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

is said to be permanent if there exits a compact set D in R} = {(z1, z2, ..., ©,) € R" | x; >
0 (i=1,2,...,n)}, such that all solutions starting in the interior of R’} ultimately enter D.
Now we consider following single species Logistic type equation

() = [ Zak au ( } (2.1)

Where r(t) and ax(t) (kK = 1,2,. n) are all continuous functions on [0,400), r(t) may be
negative, ag(t) (k =1,2,...,n) are nonnegative and there exists at least one k € 1, 2, ..., n such
that mlag] > 0, and oy (k =1,2,...,n) are positive constants.

From the Lemma of [11], we have
Lemma 2.1. Suppose that m[r] > 0, ax(t) (kK = 1,2,...,n) are nonnegative and there exists
at least one k € {1, 2, ..., n} such that m[ai] > 0, then any solution z(t) of (2.1) with initial
value z(tp) > 0 is bounded above and below on [tg,4+00) and globally attractive. Specially, if
r(t), ax(t) (k =1,2,...,n) are continuous T-periodic functions, then (2.1) has a unique positive,
global attractive T-periodic solution x*(t).

As a matter of fact, according to Lemma 2.2 of [11], if 7(¢) may be negative but M[r] > 0,

ax(t) (k =1,2,...,n) are nonnegative and there exists at least one k € {1, 2, ..., n} such that
mlag] > 0, then we have Lemma 2.2 below corresponding to Lemma 2.1:
Lemma 2.2. Assume that M[r] > 0 and ag(t) (k = 1,2,...,n) are nonnegative and there
exists at least one k € {1, 2, ..., n} such that m[ag] > 0, then any solution z(t) of (2.1) with
initial value z(¢9) > 0 is bounded above and below by strictly positive real numbers on [tg, +00)
and globally attractive. Specially, if r(t), ax(t) (k = 1,2,...,n) are all continuous T-periodic
functions, then system (2.1) has a unique positive, globally asymptotically stable T-periodic
solution z*(t).

By developing the analytic technique of [11,16], it is not difficult to verify the following
results
Lemma 2.3. If (H2) — (Hy) are hold, then we have

aijh (Vi) o
i) )

- al] 1) t Aijk
a0 = )] = [ A )
zg i

where X;(t) is the unique solution of the Logistic system corresponding to Egs. (1.1) with initial
condition Xj;(tg) > 0.

M [agge()) X" (= mige(t)] = M|

Proof. From (Hj)— (Hj) and Lemma 2.1, 2.2, we infer that 7, (%), % and X; TR ()
Tz k ijk
are all bounded, we claim that S
/t1 Qijk ((I);i(s)) a”k( )d to—Tijk(t2) Qijk ((I)l_J;lC(S)) Xqijk (s)ds
ti—rign(t) 1 — Ti/jk ((I)z_ji(s)) ’ t2 1— Ti/jk (q)z_jllc(s)) ’
are all bounded above and below. Then from the definition of lower and upper averages of a

function, we obtain that for to > t1 > ty

M[aijk(t)X?”k (t—Tijk(t))] = lim sup{

to
/ agje (1) X5 7 (¢ =Tk () ds | t2—t1 > s}
t1

s—r+00 to — 11
to— ngk(tQ Qa; ik (I)_l (t)
= lim sup / i ”k_l ) X]a”k( )ds | to —t; > s}
s—+00 t2 - tl t1— T’ij(tl) 1 - ’L]k}( ’L]k(t))
t1 t2 to— Tz]k(tQ CL k t) AXJIUIc t)
. sup (/ / / lJ( z]k( ) ( dt’tg—hzs}
s$—+00 — 1l t1—75k (t1) t1 t2 - ngkz (\Ilmk(t))
3
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(L[ (0 )
b2 no =Ty ((I)i_jllc(t)) L—7/ (q);i(t>)
Similarly, we can testify that the equality for the case of m [a;jx (t)X?“ *(t—7ix(t))] is also true.
Lemma 2.4. If (H2) — (H4) hold, then

dt|t2—t125}:M[

= lim su
s—400 b

M[/_(: bt S)Xfijl(“rs)ds} - M[/_[: biji(t — 5,5)ds X 7' (t )},
m[/_(: biji(t, S)Xfijl(t—l-s)ds} = m[/_(: biji(t — )dsXB”’( )]

where X (t) is the unique solution of the Logistic system corresponding to Egs. (1.1) with initial
condition X;(t9) > 0.
Proof. From (H) — (Hs) and Lemma 2.1, 2.2, it follows that b;;(¢,.) and f biji(t —

s,8)ds, X Bigt (t) are all bounded functions, we conclude that

0 3 to+s 3
/ / z]l X ”l dS / / z]l )X Zjl( )dS
—0oij1 Jt1+s —0i51 Jt2

are all bounded. Therefore, according to the definition of lower and upper averages of a function,

we find that for t9 > t1 > to
0

M [ bigu(t, 5) X7 (¢ s)ds]
e to 0 3;
- slgi-noo Sup {tz — 1 /tlo /UZ:LZ ot ](t " 8)d8> difty =t = S}
- SEIJPOO Sub {tQ : i1 J- il /t1 +s Ul )Xﬁ”l( >dt ‘ f2=t1 2 S}ds
_ [ / . /tm)b (5, )X (1)dt | t2 — 11 > s bds
sotoo P to — 11 ~o t1+s t - ty ! ’

= — Biji —t >
slgpoo sup {tz % / (/_aiﬂ biji(t — s,8)dsX; (t))dt | to —t1 > s}
0
- M| / big(t — 5,5)ds X (1)].

In a similar wa;iﬂwe can show that the equality for the case of m[ff’giﬂ biji(t, S)Xfijl(t + s)ds]
is also hold.
3 Permanence

In this section, we are mainly concerned with the permanence of the system (1.1)-(1.2).
Firstly, for the sake of the permanence with regarding to the system (1.1), we introduce the

following notations
N thijk(t)
a;ik(t) = aijx(t) exp {aijk Ti(s)ds},

t
() = / ’ biji(t, s) exp {@j, /t " ri(u)du}ds.

—0ijl

Then, let us consider the following logistic type equation corresponding to Egs. (1.1)

z;(t) = { Za”k zg ik ( i/a i (t, 8) dsxﬁ“l (t)} (3.1)

Theorem 3.1. In addition to (Hl) — (Hy), assume further that
n kij L L0

(Hs) M[Ti(t) - > (Zaijk(t)X?”k(t — Tijk(t)) + i:/ biji(t, S)Xfijl(t + S)dé‘)} > 0.

j=1, j#i k=1 1=1 " ~7%jl
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Where X;(t) is the unique globally attractive positive solution of the (3.1) with initial condition
Xi(to) > 0. Then Egs. (1.1)-(1.2) is permanent.

Proof. Firstly, we show that any positive solution of system (1.1) is ultimately bounded above
by some positive constant. Let z(t) = (21(t), ..., zn(t)) be any positive solution of system (1.1),
then it follows from (1.1) that for all ¢ > 0

1‘Z(t> < T'Z‘(t)l'i(t). (3.2)
Thus for any ¢ > 0, s <0 and t 4+ s > 0, by integrating (2.11) over interval [t + s,t] we derive
t+s
x;(t+s) > x;(t) exp {/ ri(s)ds} for, t > T. (3.3)
t

Integrate with (3.3), we obtain directly from the system (1. 3) that

zi(t) = { ZZ“W Pt — Tt ZZ/ biji(t, s)x B”l(t + s)ds}

J 1 k=1 =1 1=1 " "3l
lii 0
< xz |: T Z auk “k t - Tnk(t)) - Z/ biil(ta S)xf“l (t + S)ds}
]%Z_Z =1 O34l

< «Tz |: 7, Zauk a“k Z/ ul t S dsxﬁ”l( )] (34)
Oiil

By using the comparlson theorem we find'~
x;i(t) < X;(t), for all ¢ > t. (3.5)
Where X;(t) is the positive solution of system (3.1) with initial condition X;(0) which satisfies
z;(0) < X;(0). From Lemma 2.1, Lemma 2.2 and (3.5), it is not difficult to obtain that
limsup z;(t) < X;(t), for all ¢ > tp.
Hence, fortggflofﬁciently small € > 0, there exists a T;1(¢) > 0 such that for ¢ > Tj;(¢)
xi(t) < X;(t) < X;(¢) + . (3.6)
Now choose My = sup{X;(t)+ec|t >0, i =1, 2, ..., n}, then My does not depend on any
solution of system (3.1), also x;(t) < My, for all ¢ > Ty, where 71 = maxj<ij<n{Ti1}.
Secondly, we shall show that any positive solution of system (1.1) is ultimately bounded

below by some positive constant. To this end, we proceed with following two steps.
Step 1: We show that there exists ey > 0 such that limsup, ., . x;(t) > €, for all i =

1, 2, ..., n. For the convenience of the following discuss, for any constant € > 0, we denote by
Rt =rt)— 3 zamk ) (X5 (¢ = m() + <)
Jj=1, j;éz k=1

Z Z/ biji(t, s) X’B"l(t+s)+6)ds}

j=1, j#il=1 " %l
On the one hand, according to (Hs) in Theorem 3.1, one finds that for any given small
number ¢ > 0, there is M[R;(t,e)] > 0 (i = 1,2,...,n). Therefore, we can choose a sufficiently
small number ¢y > 0, d > 0 such that

ki; lis 0
M(Ri(t2) = 3 aia(t)eg™ Z / bia (L, $)dseg | > 6,
k=1 —0iil
foralli=1, 2, ..., n,ie.,
to ki; liz 0 5
I { [R te) =S an(t)edi bia(t, s)d “’l}dt ty—ty > }>5.
Jm sup g /t1 i(t,€) ;auk( ;/M it (t, s)dseg |t —t1 > s¢ >

Which implies that
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to
1 { [ uk
(] )= Yt
—Z/ bia(t, s)e i”ds}dt|t2—tlzs}:+oo.
—044l

Therefore, there must ex1st A > 0 and a positive number g > 0 such that

t+ i1
/ [ Z ;i (t)eg ™ Z/ bii(t,s) dse’B“l} dt > vy, forall t > T5. (3.7)
t —04il

Now we claim that the following inequality holds

limsupz;(t) > €, forall i=1, 2, ..., n. (3.8)
t—+o00
By way of contradiction, suppose that limsup; ,, . xi(t) < € for a certain p € {1, 2, ..., n},

then there exists 75 > T3 such that x,(t) < 0, for all ¢ > T5. This, together with the (3.6), gives
out that for all ¢t > T5

Ip;
Tp(t) = [ Z (Zamk F(t = Tpn(t) + Z /O bpji(t, s)x ﬁpjl( t+ S)ds)]
j=1 k=1 I=1" "%l
> lip [ Z Z ap]k ( X (t - ijk(t)) + 5)

Jj= 1]75:0’61

Z Z/ mlts Xﬁp]l(t—ks) 5)d5]

] 1, j#p I=1""pil

lpp
_Zappk )" Z/ bppi(t; s) dseﬁppl]

Uppl

kpp PP
> 1, (t) [Rp(t,e) = appr(t)eg Z / bppi(t, 5 d.seg””]. (3.9)
k=1

Tppl
An integration of (3.9) over time interval [T, } leads to

zp(t) > (1) exp { /t [ Zappk i/ bppi(t, s dseﬁp”l}} (3.10)

Ty Oppl

Obviously, which, together with (3.7) result into the conclusion that x,(t) = 400 as t — +o0,
which contradicts to the boundedness of x;(t), for all ¢ > Tj; in (3.6). Hence, the inequality
(3.8) is true.

Step 2: We shall prove that there exists a constant mg > 0, mg is independent of any
solution of system (1.1), i.e., there is a positive constant mgy > 0 such that for any solution
x(t) = (x1(t), ..., xx(t)), one has

liminf z;(t) > mo, forall i =1, 2, ..., n. (3.11)
t——+00

Assume that it is not true, then there exist a certain integer ¢ € {1, 2, ., n} and a sequence of
initial functions {@g (t)}}2 for system (1.1) such that xgk)( t) = x4(t, qﬁq ) k=1, 2, ... satisfy

o €0
lgI_I)l_i}élofJJ((I )(t) < (CESEk forall k=1, 2, ... (3.12)
For each k =1, 2, . . ., from (3.8) we claim that limsup, xgk)(t) > (k—}rl)eg. Hence, by

(3.12) one can infer that there exists two time sequences {sgﬂ)} and {t%k)} such that for each
k=1, 2

0< s <t s i oo s® t® < forall n=1, 2,
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S'gzk) — +o0, t%k) — 400, as n — 400, ﬂé‘((;k) (t%k)) - (kj—iol)” x‘(lk)(sgk)) = (3.13)

)
It follows from (3.6) that for a given small number ¢, there exists T: Q(k) > T} such that :ng) (t) <
Xi(t) + eo, t>TP,
Obviously, by (3.13) there exists a large enough integer V. (1 ) > 0 such that s%) > T( )
k)

for all n > N(k) for each k =1, 2, . Hence, for any ¢ € [sy, ’, 7(1k: and n > N( ), we have
Vqj
. Qqjv
x((gk) (t) = [ Z Z agu (t ( (t— qul/(t))>
j=lv=1
n lqj 0
k /B jl
—ZZ/ bqjl(t,s)< ; )(t—i- s)) v ds}
J=11=1 Uq]yi Vej
k Qaqjv
= xt(zk)(t [Tq (t) — Z Z“qjv(t) (X]( 't - Tgiv(1)) + 5) "
j=1v=1
n lqj 0
ﬂ .
-y / byt (£, 5) (X](k)(t +5) +5) ‘”lds] > —yal®)(t). (3.15)
j=11=1" ~%ajl
Where
SIbS () ) X® By
V= SUP{ [Zaqw(t) <X (t—7qju(t +5 +Z/ bgji(t, s) (t+3)+5) ds} }
teR 25 T —0gjt
Therefore, for any n > Nl( ) and k = 1, 2, ..., an integration of (3.15) over [s%k), Q“)] makes
one lead to
€0 k) (4(k k) (k k k
Grre - o W) 22 () e { -yl -5}
__ % (k) (k)
= k) _
Which means
1
k) — k) > M, forall n>N® k=12 ... (3.16)
Y

It follows from (3.16) that there exists a sufficient large integer Ky such that

t8) — s®) >\ forall k> Ko, n> NP, (3-17)

Hence, for any k > Ky, n > Nl(k) and t € [s%k), t(k)] it follows from (3.13) and (3.14) that

n  Vqj

Q'Cz(;k) (t)= xék) Z Z agju(t k — Tqjv (t)))aqjy

j=1lv=1

_ZZ/_ _ byiu(t, s) (= ;k)(t-l-s))ﬁ‘”lds]
> a9 (1) [ra(t) — 3 g (0) (- 25) ™ z / sl )ds (7 00)

n zlgq:jl Oqql
= 3 S ag(t) (X< ><t — Taju () + €)@
i=L, j#q vl

Z Z/ byt ( )(t+5) +5)Bqﬂd‘9}

i=1, J;ﬁpl 1 ajl

qu
2 mgk) (t) [rq(t) - Zaqqu aqm, Z/ bgql(t, 5) dseg‘”l
v=1

Oqql
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Vgj

Qgiy

E , § :aqav quu(t))+5) q]
Jj=1, J#qv 1

Z Z/ bji(t (k)( t+s)+ 5)Bqﬂd5] (3.18)
j=1, j#p 1=1 " "%l
According to (3.7), (3.13) and (3.14), an integration of (3.18) over time interval [t%k) — A t,(lk)]

makes it reach
t(k> Vqj

€0 (k) (k) (k) (k) _ "
(/€+ 1)2 =Ty (tn )2 Lq (tn )‘) eXp{/(k) \ [B (t 60 Z Zaq]ll

J=1, j#q v=1

(Xt — 745 (1) + € aq]u+z/ bas(t, ) (X" )(t+s)+5)ﬂmd5)]dt}

Oqjl
€0 €0
> m exp €g > m (319)
Where
Vqq lqq
By(t,e0) = rq(t Zaqq,, Z/ byql(t, s) dseﬁqql.

Oqql

Which is contradiction. ThIS shows that there exists a constant mg > 0 (mg > 0 is independent
of any initial function) such that the inequality (2.15) is correct. That is to say, any positive
solution z(t) of the initial value problem (1.1)-(1.2) is ultimately bounded below by a positive
constant mg > 0. From Definition 2.1, the proof of Theorem 3.1 is complete.

Theorem 3.2. In addition to (H;) — (Hy), assume further that

n Fij Qjj <I>ﬁ1 t y
ERNETIRID ol s A USSR

0
-2 2l / bijn(t — 5,5)ds X7 ()] > 0.

J=1, j#il=1 ol
Where X;(t) is the unique globally attractive positive solution of the (3.1) with initial condition
Xi(to) > 0. Then the system (1.1)-(1.2) is permanent.

Proof. In order to prove the correct of Theorem 3.2, We only need to show that (Hs)" implies

the assumption (Hs). Actually, if take into account the fact that
M[Xiot) + o] = M[Xio(t)] + ¢, m[fi(t)] < Alfi(t), t1, t2].

Then we may obtain that

n kij aij (I);l X%‘jk lij 0 .
M) = > (Zm[ (@i ()X, (t)]+2m[/ b,-ﬂ(t—s,s)dsxf”’(t)])

-1
J=1, i k=1 1= 7/ (25:(1) l:l —oi1
n ki
M~ Y (X X 7 +Z / ()X (& + 5)ds)]
Jj=1, j#i k=1 —04j1
kl ]. Ak
1 2 - L age (P () X TR(
- Jim, o / [n S (3t ”4 Y
e 2=t Jy =1, j#i k=1 1= 70 (25,(1))
lz] 0 IB 1 t
1]l - > } . . { A
l:1 UZJl t
0
Z Zazgk SRt — Tk (t) +Z/ biji(t, $) X7 (t + s)ds)]dt | ts — t1 > 5}
J=1, j#i S
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= lim sup{

s§——+00

to n kij
/,51 [T’ Z Zm [aijn(t k(t_Tijk(t))]

ta =t j=1, j#i k=1

+Z / biﬂ(t,s)X@”l(t—l—s)ds})]dt|t2—t1ZS}— lim sup{ : /: [ri(t)

Ule s—400 t2 — tl
Z Zawk SRt — 7)) + Z/ biji(t, )X, (t+ s)ds)]dt | ts —t1 > s}
j=1, j#i k=1 =1 " "%l

n kij

1 to 1 to o
> i () dt— ik (O X5 (=755 (1) | dt
_s—igloosup{tg—h/tl rilt) Z (ZtQ_tl/tl [ajk(> J (=i ))]

j=1, j#i k=1

lz] 1 to 0 Bljl 1 '
+§t2—t1 Kl [/ bz]l<t S)X (t—i—S)dS})dt‘tQ—tl >8}— Einoosup{t /tl [Ti(t)

=1 —0ij1 0 — 11
n Fij » bij 0 By
= Y O apr®X It — mijw(t) + Z/ bijt(t, s) X7 (t + s)ds)]dt | to — t1 > s} = 0.
j=1, j#i k=1 =1 /il

Therefore, we claim from Theorem 3.1 that Theorem 3.2 is correct. The proof is complete.
Theorem 3.3. In addition to (H;) — (Hy), assume further that

aZ] i t Uik
(Hs)" M 7’@ Z Z k k( )) X% (t)]

j=1, ]#zk 1 ngk(q)i_ji(t)) /
Z ZM [ / biji(t — s, 8)dsX;7'(t)] > 0.
j=1, j#i =1 —0iji

Where X;(t) is the unique globally attractive positive solution of the (3.1) with initial condition
Xi(to) > 0. Then Egs. (1.1)-(1.2) is permanent.
Proof. Noticing the following facts that

M[Xio(t) + ¢ = M[Xio(t)] + ¢, m[fi(t)] < M[fi(t)] and Zm fi®)] <> MIfi(0)]

=1
We find that the condition (Hjs)” means the hypothesis (H5) ) ~and so it does the assumption
(Hs). Hence, one can confirm that the result of Theorem 3.3 is also true.
Theorem 3.4. In addition to (H;) — (Hy), assume further that

o] - 3 S = (Zék.—(g))X?“’“(o]

j=1, ];ézk 1 ijk
3 S bt smsxo) o
=1, j#il=1 il

Where X;(t) is the unique globally attractive positive solution of the (3.1) with initial condition
Xi(to) > 0. Then Egs. (1.1)-(1.2) is permanent.
Proof. Taking into account the facts that

M[Xio(t) + ] = M[Xio(t)] + ¢, m[fi(t)] < M[fi(t)].
We declare that the assumption (Hs)” can be deduced from the hypothesis (Hs)"”, so it is evident
that Theorem 3.3 implies the Theorem 3.4.
Theorem 3.5. In addition to (Hy) — (Hy), assume further that

HN" m aUk l]k(t)) X ik (¢
e j 1227%21 L= 7 (D(8) ®)
9
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n Lij 0
3 Zm[/ bin(t — 5, 8)ds X[ (1)] > 0.
=1, jil=l Yol
Where X;(t) is the unique globally attractive positive solution of the (3.1) with initial condition
Xi(to) > 0. Then Egs. (1.1)-(1.2) is permanent.
Proof. As a matter of fact, m[f;(¢)] < M|[fi(t)] and assumption (Hs)"” means that the hypoth-
esis (Hs) is true, so it follows from Theorem 3.1 that the conclusion of Theorem 3.5 is right.
Remark. 3.1 It is easy to verify that M[g] = =7 fo t)dt for a T-periodic function
g(t). So if system (1.1) is a periodic system, i.e., n(t), azjk(t), biji(t,-) are the continuous
T-periodic functions, then X;(¢) in above mentioned Theorems can be replaced by the unique
positive T-periodic solution X7(¢) of (3.1), and the assumptions of Theorem 3.1-Theorem 3.5
are equivalent to each other.
Remark. 3.2 Theorems 3.1-3.5 generalize the main results of Zhao et al. [11], Chen et al. [14,15]
and Xia et al. [16]. We mention here that for general nonautonomous Lotka-Volterra system
(1.1), Teng et al. [21,22] also obtained some similar results as that of Zhao [11]. It is in this
sense, our results can also be seen as the generalization of Theorems of [21,22].

4 Global attractivity

A very basic and important problem accompanying with the ecological dynamics systems
is the global stability of the positive solution for the system. In this section, we will devote
ourselves to give some new criteria to guarantee global attractivity of the positive solution.

Definition 4.1. The bounded solution X*(t) = (zi(t),z5(¢),...,z}(t)) of system (1.1) with
X*(tp) > 0is said to be globally attractive, if for any other solution X (¢) = (1 (t), z2(t), ..., zn(¢))T
with X (0) > 0, there is
tl}gloo | zi(t) —2;(t) |=0, 1=1,2,..,n
Before we state the main result of this section, we first introduce some notations which will
be used in the following discussion. Let @;i(t) be the inverse function of ®;;(t) =t — 7;,(t),

and
W ik (®E(0) @) ik (@%i(@;,ﬁ(t)))
Aijk(t) 1_ PL ’ ijk(t) o —1 (g1 -1 ’
ka( ijk(t)) (1 - Ti/jk ((I)ijk ((I)mk(t)))) (1 o Ti,jk ((I)ijk(t)))

0
Bl(;l) (t) - / bijl(t -5 S)ds z]l / / zgl - S, S)d@ds
ijl —0ijl t+s
(Bz(fl AE;I%) (t / /+ A(”l” ] bz]l( S, 8)d9d$
—04j1 S

)
(8- BY) / | /+ W0 — )bt — s, 5)dods.
oij s

Let u;(t) = Inx;(t), then Egs. (1.1) can be reformulated as

n kij
wit) =71i(t) = > Y air(t) exp {aijkua‘ (t- Tijk(t))}

]lkl

_ZZ/ biji(t, s) exp { Bijuu; (t + s) tds. (4.1)

j=11=1"Y ~%ijl
Now we are in the position of stating the sufficient conditions which guarantee the global

attractivity of system (1.1).
Theorem 4.1. In addition to (H;) — (Hs), we assume further that
(Hg) There exist positive constants A; > 0 (i = 1,2, ...,n), ¢ > 0 such that

10
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ltiglinf {A;(t) } > (, liminf{Ai(t)} > (.

n i 2055k kij
Where A;(t) = 22)\ AN - Y [i: Aadtio ™" AR @) + J %Af}l(t)}

[0
j=1,j#i k 1 itk k=1 i0

s N a2, My

kij ¢
— TG0 4 2)
Z Z [Z ik j'Lk Z/ - s)ds + g/t ) Aijk(s)ds)

J=lj=1 k=1
Jz )\ 1o kM%a]Zk (2)
+Z j A0 Z/t B (54(6) d0+ZB )}
T]'Lk
n ]z )\] l 20ﬂ]’Ll 1
]Z i
=2 Z Ai Bul Z [Z Jll )+ Z Bm l]l t)]
j=1,j#t 1=1 = “ 1M
LB AD (21 BO B2
_ZZ[Z B B ( Z . ijk(S)SJFZ it (1) z‘ﬁ()>
j 1 ~—1 =1 T]k(t l~:1
U ABME S AW CI B0
M 2 1 2 1
+Z JIB (Z Bﬂl zgk ) +Z (Bjil ’le)( >>}
=1 i k=1 =1
Then the solution X*(t) = (x7(t), z5(t), ..., (t)) of (1.1) — (1.2) is globally attractive.
Proof. Let X*(t) = (2f(t), ..., x5 (1)) Wlth xf(tp) > 0 be a positive solution of (1.1), and X (t) =

(z1(2), ..., zn(t)) with z;(tg) > 0 be an any given solution of system (1.1). In order to show the
global attractivity of the bounded solution X*(¢) of system (1.1), we shall show that the solution
U*(t) = (uj(t), ..., ul(t) of system (4.1) is globally attractive. Let U(t) = (ui(t) ,..., un(t))
be any other positive solution of system (4.1). According to Theorem 3.1, there exist positive
constants m;y, Mo (i = 1,2,...,n) and enough large 7' > 0 such that for all ¢ > T, there are
m;0 S ui(t), uf(t) S MiO (Z = 1,2, ,n) (42)

Obviously, So to prove the global attractivty of the system (1.1), it is suffices to verify that
system (4.1) is globally attractive. Firstly, construct a Lyapunov functional as follows

n n kz]
= Z i {(uz(t) Z / wk exp {aijrui(s)} —exp {aijku;(s)})ds
i j=1k=1 Tijn (t
>y

2
/t+ biji(0 — s, s)(exp {Bijiu;(0)} — exp {ﬂijluj-(@)}>d0ds] :
j=11=1"Y ~%jl $

By calculating the right upper derivative of V;(t), we find

n i

n n kl]

t) = -2 Z i [(ul(t) Z Z / Agﬂl exp {aijkuj(s)}—exp {aijku;(s) }) ds

j=1k=1 Tz;k(t

—]Zn; ll y %l/ biji (0 )(exp {Bijiuj(0)} — exp {ﬁijlu}f(G)Ddé’dS]
x [jnl ;A £) (exp { iz (0)} - exp {agre (1)})
" Z IZ BE W) (exp By (0)} — exp {83 (1)} )]
< Qi;A AQ0)(exp {owan (1)} — exp {ogpert (1)}) (wi(t) — i (1)

11
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—2 Z Z Ai Bul (GXP {Birui(t)} — exp {ﬁu‘ﬂﬁ(ﬂ}) (ui(t) — uf(t))

le]n Kji

1230 30 DONAG (eXP {ajikui(t)} — exp {Oéjikuf(t)}) (u; () — uj (1))

i=1 j= 1];ézk 1

23 > Z N B3 () (exp {Bjinui(0)} = exp {Bjau; (1)} ) (us(t) — w3 (1))

i=1 j= 1]751l 1

+2 zn: i [Z Z A(l) (exp {aiﬁuj (t)} — exp {azﬁﬁu; (t)})]

]1k:1

Zn:Z/ z]k eXP {ijruj(s)} — exp {az]ku;(s)}>d8}
J:1 Tijh(t
+22)\{ ZA() (exp{awku] )} — exp{awku )})]

=1 k=1
; ;/ / Ul eXp {5@][% )} — exp {,Bijlu;(s)})dﬁds}
+2iA [ZZB 0 (exp {B575(0)} — exp (B ()}

jlll

n o ki
X [ Z Z/ AS])ﬁ(s) (exp {airu;(s)} —exp {aijku;(s)}>ds]

j= 1375] =17t Tigk ()

+2Z)\ [zz (0)(exp {85101} — e {8505 ()}

]111

Z Z/ bwl —5,8) ( exp {Biﬂuj(s)} — exp {Bijlu;(s)})deds} ) (4.3)
=1

j=1
That is

)< =2 Z Z by A“k (exp {aiikui(t)} — exp {Oémkuf(t)}) (Uz(t) - U;k(t))

'L 1 k=1
—2 Z Z \BL) (t (eXP {Biaui(t) } — exp { Biaru; (t)}) (us(t) — ug(t))
i= 1 1= 1, ki
230 Y S nAR (exp fasn®)} - exp fagani)}) 0 - 150)

i=1 j= 1j;£zk 1

23>0 > Z B0 (exp {Bjui(t)} = exp {Biaui (O)}) (us(t) - wj (1)

i=1 j=1,j#i =1

n o n K5 n ki
2333 3> Al @) (exp {aggu (0} - exp {agui)})

i=1 j=1 k=1J=1 k=1
t
X / o Ag;ll(s)<exp {ozijkuj(s)} — exp {aijku;(s)})ds
f_Tijk t
n n kij n  lij
+2 Z Z Z Z Z Ai A(}z t (exp {aiﬁcu;(t)} — exp {aiﬁu;ﬁ(t)}ﬂ
=1 j=1k=g j=1 I=1

/_ /+ z]l exp {Bl]zu] )} — exp {,Bile;(S)})des
12
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2] n k

+2ZZZZZAB‘~~ () (exp {B5705(1)} — exp {B52(1)})

i=1j=1]=1 j=1k=1

X /t o AS—,)C(S)(exp {aiijj(S)} — exp {aijku;‘(s)})ds
n o n Zz'j”kn lij
230D B (exp {B05(0)} - exp {B505(1)})

=1 5=1 l 1J=11=1
/ / biji(0 exp {Bwlu] )} — exp {ﬁijluj(s)})dﬂds. (4.4)
—0ijl t+s
By further using the inequality a? + b? > 2ab, it follows from (4.4) that

n ki
1(1) < =230 > AR (exp {asnui(t)} — exp {asu; (8)}) (wi(t) - ui (1))

i=1 k=1

—2 Z Z A an (exp {Biaui(t)} — exp {/BiilUZ(t)}> (ui(t) — i (2))

1l1

—I-Z Z Z)\ Aﬂk Kexp {ajiui(t)} —exp {oajikuf(t)}>2 + (u;(t) — uj(t))ﬂ

i=1 j= 1]751k 1

+Z Z Z)\ Bt [(exp{ﬁmui(t)}—exp{ﬁjilu;(t)})2+(uj(t)—u;f(t))ﬂ
i=1 j= 1]7511 1

z] n k‘z]

—|—ZZZZZ Awk [/ Ag;ll(s)ds<exp{aiﬁu§(t)}—exp{aiﬁcu}f(t)})Z

i=1 521 fm1 =1 k=1 Tijk (t)

+ /ttT (t) A,Ejl.,)f(s)<exp {aijk.uj(s)} — exp {aijku;(s)}>2ds}
+ Z Z Z Z Z i A [ i () (exp {aiﬁu;(t)} — exp {O‘ijicu}((t)}f

Zl]lkljlll

/_J /+S wl exp {5zjlug )} — exp {@jzu;‘-(s)})zdﬁds}

7,] n k

D HHHRLEL) / Tk(t)AEJ,k sy (exp (B )} — exp {555 (0)})

=1 j=1 [=1 j=1 k=1

—i—/ttT (t) Ag,)g(s)<exp {aijkuj(s)} — exp {aijku;k»(s)}fds}
+ZZZZZA Bt [ 2 (exp{@.ﬁu )} — exp { B }>2

ijl
i=1j=1 = 13 11=1

2
/ / bi(0 — 5.9)(exp {Bizus(s)} — exp { B ()} ) s
—0ijl t+s
Now let us deﬁne the Lyapunov functional V5(t) as follows

kg n ki ,
= 3)3) 3 3) DY (- IICTAY WIFT

ijk
i=1 j=1 =1 J=1 k=1 t=Tijn(t)

X (exp {aijru(r)} — exp { o (r)}>2drds

13
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ST [ a0 [

i=1 j=1 k=1 J=1 I=1 —Tijl

<exp {Bijiu;(r)} — exp {Bijzu;‘f(r)}) drdfds
+22222y/ B @ o) [ Al
i=1j=1 =1 j=1 k=1 ik (t)

(exp {azjkuj(r)} — exp {aijku"f(r)}> drdf

TS [ w0 [

i=1 j=1 j=1 j=1 =1 —0ijl
(eXP {ﬁwluj T)} — €Xp {ﬁzglu;k (7")}> drdfds.

Calculating the derivative of V5(t) along the positive solution of system (1.1), it follows:

ZZZZZy/ A (s)ds AL} (1)

=1 5=1 =1 =1 k=1 =ik (t)
2
(exp {ozijkuj(t)} — exp {aijku;(t)})
—ZZZZZMW/ AR
’Ll] 1 k=1J=1k=1 zyk(t)

2
(exp {aijru;(s)} —exp {aijku;(s)}) ds
z] n l

+ZZZZZ)\ ”l. f‘ (exp{ﬁwluj )}—exp{ﬁiﬂu}f(t)})Q

zljlkljlll

—ZZZZZM 0 [ -

=1k=1J=11=1

X (exp {Biﬂuj( )} — exp {Biﬂuj )}) drds

+22222W”.%@mw%u

i=1 j=1 [=1 j=1 k=1 =ik (t) 9
(exp {aijkuj (t)} — exp {Olijku;“ (t)}>
—ZZEZ:ZZABSQ /t A
szk;

=1 j=1]=1 j=1k=1 )
(exp {aijkuj( )} — exp {aijkuj(r)}> dr

1_7 n l

+ Z Z Z > Z Ai( 1]21) Bmz (eXP {Bijiuj(t)} —exp {Bijlu;(t)})z

zljllljlll

S [ [ e

i=1j=1 =1 j=11=1

(exp {,Bijluj 7“)} — exp {Bijluj r)}) drds. (4.5)

14
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Finally, we consider the following Lyapunov functional V (t)
V(E) = Va(t) + Valt). (4.6)
Calculating the upper right derivative of V() along the solution of system (1.2), and integrating

with the above—mentioned analysis, one claims that

DYV () < —2 Z Z AAD (@) (exp {viiui(t)} —exp {Oéu‘ku;‘(t)}) (wilt) —uj (t))

=1 k=1

—2 Z Z /\‘Bi(ill) t (eXp {Biaui(t)} — exp {@‘ilu}k(t)}) (wit) — ui(t))

zlll

+Z Z Z)\ Aﬂk (exp{ajikui(t)}—exp{aﬂku;‘(t)})Q

i=1 j= 1];ézk 1

233 st D(0)(exp {Baui®)} — exp B (0)})’

i=1 j=1,j#i I=1

n n kij lij

3000 [ o NAGUO (wt) — i 1) + DO ABE ) (wilt) — u (1))

i= 1] 1]752 k=1 =1
n ]1 n kl]

+ZZZZZ 7 ]zk / AE;;(s)ds<exp{a3i,~cui(t)} exp{op];u t)})2

le 1k 1] 1 k=1 _szk(t)

71 n i

—G—ZZZZZ)\]AJZk ”l )(exp{aﬁiﬁui(t)} eXP{Ok,;u t)})Q

zljlkljlll

ji on k‘m

SIS S 0 [ Ao (esp 00} e {501

zljllljlkl

" 2
+ZZZZZAJB§’LII) le (exp {Biilﬂl )} —exp {&l;u }>
=1 j5=1 l 1J=11=1

'L] n kgz

YYY YN[

i=1j= 1k: 17=1k=1 t=Tjir(t)

+ZZZZZ)‘ B ARt (eXP{ﬁjil“i(t)}—eXP{ﬁjiluf(t)}>2

zljlkljlll

A(Q)( )dsAgl,l( )(exp {ajikui(t)} — exp {ajikuf(t)}y

7,] n k]z

XTI [ @A (exp o)) - o o ()

213 111] Lh=1  t ()

+ Z Z Z Z Z A ( 3121 : Z(ll) (exp {Bjaui(t)} — exp {Bjilu;“(t)})Q. (4.7)

i=1j=1 =1 j=11=1
Meanwhile, by making use of mean value theorem, we can obtain that for any given positive

number € > 0, there are
exp {eu;(t)} —exp {euj (t)(t)} = eexp{eﬁ( &)} (wi(t) — ui (1)),

(
exp {eu;(t)} —exp {euj(t)} = exp{eﬁ ( )}
x (exp {aukuz(t)} — exp { agipu; (t) }),
exp (e (0} —exp (e (1)} =~ expen? )

15
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X (exp {Bu‘luz‘(t)} — exp {ﬁ“luf(t)}) (4.8)
Where ﬁgl)(t), 191(2) (1), 19§3) (t) are all lie between u;(t) and w!(t). Thus, it follows from (4.2) and
(4.8) that for any given positive number € > 0, we have
exp {eu;(t)} — exp {eu; (£)(t)} > emfy (ui(t) — v (¢)),
exp {eu;(t)} — exp {eu; (¢)(t)} < eMy(ui(t) — uj(t)). (4.9)
exp {eu;(t)} —exp {eu; (t)} > aimgo
iik
x ((exp {auirui(t) } — exp {aunu; () }),
exp {eu;i(t)} —exp {eu; (t)} < QLMEO
.

x (exp { auirui(t)} — exp {oz”kuf(t)}) (4.10)
and c
exp {eu;i(t)} — exp {eu; (t)} > ﬂ—mfo
il
x (exp {Biuui(t)} — exp { Biarui () }),
exp {eu;(t)} —exp {eu; (t)} < LMfo
il
X (exp {ﬂiilui(t)} — exp {Bmuf (t)}) (4.11)
Inequality (4.7), (4.9), (4.10) and (4.11) implies that for ¢ > T}
G - &k Aoy szQaM 4
D+V(t) Z { Z —2\; Auk: Z [Z ’ ]zk + Z ey Oéuk zyk’ t)]
i=1 kl j=1,j#i kl ik
n n ]ZkM ]’L
+22[2—a,, z/t ds+z/ o))
Jj=1 5:1 k=1 ik - Z]k T]zk
i\ a2 M2a i
3%k (1 (1) (2)
+ ]a”k Aﬂk Z/t o z]l Jzk( ))dg + Zszl <t)>} }
k=1 i =1

x (exp {azrui(t) } — exp {azpu; (t)}) (Ui(t) — u; (1))

g & Z Q'ilMiz()ﬁj“ (1) NS (1)
+>{- QZAZ-BM Z [Z JB%BM( )+ 70l ®)]

i=1 j=lj3#t =1 ! l 1 /Bu

n Ljs Z M 28541

ZZ[;”/;I ]Zl Z/tf (t) A(l) dS+ZB]Zl wl )

=1j=1 ijk

lji )\ : MQﬁ]u k i
+; j/fi’”l (Z JZZ ’ z]k Z BJ(lzl ) z]ll )]}

=1

(eXP {Bzzluz )} — exXp {/Bllluz t)})( ( ) ( ))
= — Z Ai(t) | (exp {aiikui(t)} — exp {Oéu‘ku;k (t)}) (ul(t) —u; (t)) |
— Z Aq( exp {ﬁ“luZ )} — exp {@-ilu* t)}) (uz(t) —u; (t)) | (4.12)

At the same time, according to hypotheses (Hg) of Theorem 4.1, we declare that there exists a
constant ¢ > 0 such that A;(t), A;(t) > ¢, so it follows from (4.12) that V (¢) is nonincreasing,
and it not difficult to see that ;(t) are bounded for ¢ > T7. Hence, one can further infer that

| wi(t) — () |, | exp {ouirui(t)} — exp {amnui(t)} |, | exp {Buui(t)} — exp {Biaui(t)} | are
16

1161 Lin Lin et al 1146-1164



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.6, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

uniformly continuous on [T, +00). An integration on both sides of (4.10) over time interval
[T1,t) leads to

t) + CZ/T { | (exp {aiikui(s)} — exp {a“kuf(s)}) (uz(s) — u;‘(s)) |
=171

+ | (exp {Biawi(s)} — exp { Biuui (s)}) (wi(s) — i (s)) | }ds <V(Th) < +o0.

1113&&132; /T1 [ | (eXP {aiikui(s)} — eXp {Oéiz‘kuj(s)}) (Ui(s) - Uf(s)) |
+ | (exp {Biilui(s)} — exp {B”luf(s)}) (ul(s) - u;*(s)) | }ds < V() < +00. (4.13)

It follows from (4.13) that
\ (exp {aiikui(s)} — exp {a“kuf(s)}) (ul(s) — uf(s)) e LTy, +0),

| (exp {ﬂmui(s)} — exp {Bmuf(s)}) (ul(s) — u;‘(s)) |€ LTy, +00).

According to Barbalat’s lemma, we conclude that

tlgrnoo | (exp {auirui(t)} — exp {auipu; (1) }) (ui(t) — uj (t)) |[= 0. (4.14)
t£+moo | (exp {Biaui(t)} — exp { B (t) }) (wi(t) — ui(t)) |= 0. (4.15)

By way of contradiction, it easy to obtain from (4.14) and (4.15) that

t_lgrnoo | ui(t) —u;(t) |=0. (4.16)

Therefore, the positive solution X*(¢) of the system (1.1) is also globally attractive. This
completes the proof.

Theorem 4.2. In addition to (H;) — (Hs), we assume further that

(Hg) There exist positive constants \; > 0 (i = 1,2,...,n), ¢ > 0 such that

lim inf {A } > (.

t=-Fo0
Where A;(t) =2 Z Niovigmig ™ AL () - Z [Z Aj %szmﬂkAﬁzl +Zj )\iAE;,)g(t)}
L ] 1,5#1 k=1
+2 Z )\zﬁzzlmzﬁé”B;l Z [Z Aj B]ll jlezzOﬁm Z Ai Bzyl )}
=1 j=1,j#1 l~ 1
k=
_ZZ[ZA o2 Mg A (1 )(i/t ds+ZB D)
J=1j=1 k=1 17t ”k(t)
kj;
+Z>\ o2, M2 A (1) Z / A@ ds—i—z / BSZ Ji;(e))de)
t—Tji(t t—Tjik (t
lji kii t
+ Z )‘] ]leZB]Zl Bg(zll)( ) < ; \/tka(t) dS + Z szl >
_ = ij

s
+ZAJ Mzﬂ“l(z ). Z (BY) - Bzﬂ )]

Then the solutlon X*(t) :E T(t), x3(), ,l’;kl(t)) of (1.1) — (1.2) is globally attractive.
Proof. Let U*(t) = (ui(t), ..., u)(t) be the solution of system (4.1), and U (¢) = (ui(t) , ..., un(t))

17
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be any other positive solution of system (4.1). Then for the Lyapunov functional V' (¢) as defined
n (4.6), similarly to the discuss of Theorem 4.1, one can obtain that the inequality (4.7) is true.
By further making use of (4.9), (4.10) and (4.11), it follows that (4.7) implies

n kji
DTV () < Z{ - QZA ammig AR+ > {ZA aﬂkaOaﬂkAﬂk + ZA Ayl )]
j=1,j#t k=1
*22 Azﬁulmfé”B;l Z [Z Aj B]zll) ]leEOB”l + Z Ai Bzyl )}
=1 j=1,3#i I= 1 = 1
+ZZ [Z)\ aﬂkMza“'“Aﬂk Z/ ds+ZB(2 )
Jj=lj=1 k=1 Tigh(t

0 (@74(0))d0)

+Z)\ aﬂkMQ‘””’“Aﬁ,i Z/t A (s)ds + Z/
T],Lk

Tjik (t

]z
2Bji
+ Z >‘j ]leZO ! lB]Zl Z/t dS + Z Bz]l )
T~

?T‘x
~

T Z AjB; Mfﬂﬁﬂl (Z le f' Z le ' wl ﬂ }(ul(t) - (t))z'

= - Zw) (us(t) = uf (1))’ (4.17)

An integration on both sides of (4.17) over time interval [T7,t) leads to

n t

V(t) + CZ/ (ui(s) — uf(s))'st <V(T1) < +o0.
i=1 7T
Thus n
i t (s) — ul(s)) 2ds Vi) 00
1113«?2?;/71 (ui(s) — uj(s))'2ds < c < +00. (4.18)

It follows from (4.18) that
(ui(s) = ui(s))" € L[T1, +o00).
According to Barbalat’s lemma, we conclude that

lim (ui(t) —uf(t))* = 0. (4.19)

t—+o00
Taking into account the fact that for t > T3
(zi(t) — ;i (t)) = exp {ui(t) } —exp {uj(t)}
One infers that
(mio) | wi(t) — ui (t) [<[ zi(t) — 27 (t) [< (Mio) | wi(t) — ug(t) |
So it follows that
Jim | i) — #7(1) |= 0. (4.20)

Thus, we have verified that the positive solution X*(¢) of the system (1.1) is globally attractive.
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Abstract

In the paper, we presented a family M (u, z) of approximations of the Bateman function
G(z). The family M(u,z) = G(z) for a certain p whenever x is fixed and it presented
asymptotical approximation of the Bateman’s G—function as ¢ — co. We studied the or-
der of convergence of the approximations M (i, z) of the function G(z). Some properties
and bounds of the error are deduced. We presented new sharp double inequality of G(z)
with the upper and lower bounds M (1, z) and M(ﬁa x) (resp.). Also, we show that the
approximations M (u, x) are better than the approximation % + ﬁ for any p in an open

subinterval of [1, 65%4].
2010 Mathematics Subject Classification: 33B15, 26D15.
Key Words: Bateman function, digamma function, monotonicity, sharp inequality, ap-
proximation, error.
1 Introduction.

In 1953, Erdélyi [6] defined the Bateman’s G—function as

G(x):w(x;_l) —w(g), r40,-1,-2, ..

where the digamma function ¢ (x) is given by

¥(a) = - log'(a)
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and I'(x) is the ordinary gamma function defined by [3]
[(x) = / t“le7tdt, x> 0.
0

The function G(z) is very useful in estimating and summing certain numerical and algebraic se-
ries [18]. For more details on bounding the function I'(x) and its logarithmic derivatives ™ (x),
please refer to the papers [2]-[5], [7]-[23] and plenty of references therein.

The function G(x) can be also defined by
2
G(r) = p 2F1(1, 21+ 25 —1),

where
k

' ' = (a) g (ap)p @
’r‘FS(ala "'aarably ...,bs,l') = Z my

is the generalized hypergeometric series [1] defined for r,s € N, a; € C, b; € C — {0, —-1,-2, ...}
and the Pochhammer symbol (a),, is defined by

n—1

r
(@)o=1 and (a), = g(a“) = %(—Z)n) n>1.
The function G(z) satisfies the functional equation [6]:
2
G(l+z)=—-G(z) + - (2)
and it has the integral representation
o8 e—xt

G(xr) =2 dt >0 3
@=2] fod )

which can be deduced from the following known integral representation of the digamma [3]

o8 e—t e—xt
@b(x)—/o (T_l—et)dt’ x> 0.

Qiu and Vuorinen [24] deduced the inequality

1 4(1.5—1log4 1
_+M<G($)<_+_

1/2. 4
T 2 o2 z>1/ (4)

Mahmoud and Agarwal [9] presented the following asymptotic formula for Bateman’s G-function

, T — 00 (5)
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and they deduced the double inequality

1 1 1

—— < G(x) — - ~ < >0 6
2+ 15 = ¢ 222 " (6)
which improve the lower bound of the inequality (4) Also, Mahmoud and Almuashi [11] proved
that the Bateman’s G—function satisfies the double inequality

2m 2m—1
(2" — 1)Bo,, 1 (2" — 1)Bs,
N D P N
2" < G(x) - < 2 om0 M€ (7)

with best bounds, where B,’s are the Bernoulli numbers and they presented some estimates for
the error term of a class of the alternating series, which improve and generalize some recent
results. Mortici [13] established the inequality

O<1/J(x+v)—w(:c)§w(v)+7+%—v r>1; 0<v<l, (8)

where + is the Euler constant, which also improves the inequality (4) of Qiu and Vuorinen. Also,
Alzer presented the double inequality [2]

L Tu(vi2) — a3 ) < (a4 0) —(a) < -~ T(osa),

where n > 0 be an integer, x >0, 0 < v < 1,

n—1
(vw) = (1=0) v+n+1+z:0 r+i+1)( x+@+v)
and
( ) 1 | (l’ _i_n)(x-‘rn)(l—v)(l, L+ 1)(x+n+1)v
(v ) = 0 :
P Trntv o (x 4+ n + v)rtnte

In 2006, Mugattash and Yahdi [17] presented an infinite family of functions I,(x) = ¢(x)
for a certain a when z is fixed. Local and global bounding error functions are found and new
inequalities for the Digamma function are introduced. These functions are shown to approximate
1 locally and asymptotically. The approximations are compared to another approximations of
the Digamma function. The technique of construct of Mugattash and Yahdi is very useful and
can be updated to another functions as we will see in this paper.

In 2014, Guo and Qi improved the results of [8] and presented the two sharp inequalities
1 1 _
In T+ <P(@)+-=<In(z+e7), x>0
x
where the constants % and e~ are the best possible, and
1 -
In n—|—§ +y<Hp(n)<In(n+e™7=1)+7, neN

3
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where the n-th harmonic numbers are defined by
H, = 2”: E neN

and is related to the Psi function by the relation
Hy =7+ (0 +1).

In this paper, we presented a family of functions M (u, x) satisfies that for all > 0 there
exists u € [1,2] such that M (u,z) = G(x) and is asymptotically equivalent to G(z) as z — oc.
We proved that the approximations M (u, x) of the function G(z) are of an order of convergence

of O (ln (z+2)l(2—d)z+4) ) for z > 2 and p € (1, 5%;). Some properties and bounds of the error

(z+1)[(e2—4)z+e?]
are deduced. Also, we presented a new sharp double inequality of the function G(z) between
the lower bound M (ﬁ7 x) and the upper bound M (1, z). We proved that the approximations

M (1, x) are better than the approximation i + # for any p in an open subinterval of [1, ﬁ] )

2 Main Results

Lemma 2.1. For x > 0, we have

1 2 1 2
In{1 < <In(1 .
n( +x+2)+x(1‘+1)_G($)_n< +x+1>+x(x+l) ©)
Proof. Consider the function
H,(x)=In{1+ ! + 2 - G(x) x>0; p>0
© - x+u a:(x—i— 1) ) Y

which can be represented using (3) by the integral formula

oo —(pu+1)t[,2t 1 — 2tett
u(z) = / ‘ C ¢ ]e_”tdt.
0 t(1+et)

The function m; (t) = €2 — 1 —2te! is strictly increasing pass through the origin, then Hy(z) > 0,

that is ) )
In(1+—— _ )
n( +x+1)+x(:ﬁ—|—1)>G(m)

Also, ma(t) = e*—1—2te? is strictly decreasing function pass through the origin, then Hy(z) < 0,

that is | )
In(1 — < G(2).
n( +x+2)+x(x+1)< (z)
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The double inequality (9) show that the function G(z) lies between two functions of the
following family of functions

1 2
M =In(1 >0; u>0. 10
(1) n( +x+u)+x($+1) x> 0; p (10)

and hence we can conclude the following result:
Theorem 1. For every x > 0, there exists u € [1,2] such that
M(p, z) = G(x).

Proof. For a positive fixed z, consider the function My(u) = M(u,z) with 1 < p < 2 and
G(z) = \. Ms(p) is a continuous on [1, 2] and using the inequality (9), we obtain

My(2) < X < My(1).
Then by the Intermediate Value Theorem, there exists u € [1,2] such that May(p) = . O
Also, by using the relations

OM (1, ) 2u + 2u% + 22 + Sux + 4plx + T2 4 Sua? + 62 + xt

= 0
oz 22(14 2)%(p + p? + 4 2px + 22) =
and
OM (u, x) -1
= <0,
o (@+p+1)(@+p)

we obtain the following properties of the family M (u, z).

Lemma 2.2.
1. My(z) = M(u,x) is a positive and strictly decreasing as a function of x, x > 0.
2. My(p) = M(p,x) is strictly decreasing as a function of p, 1 < pu <2

and hence
0< M(2,z) < M(p,xz) < M(1,z), x>0; pell,2]. (11)

Now, we will show that the family M (u,z) presented asymptotical approximation of the
Bateman’s G—function for all p € [1,2].

Theorem 2. For all p € [1,2], the Bateman’s G—function and the family M(u,z) are asymp-
totically equivalent as x — oo, that is

lim G(z)

=1
=00 M (p, )

and this is written symbolically as G(x) ~ M (u, ).
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Proof. Using the inequality (9), we get

M(2,z) < G(x) < M(1,z)

and hence v o
22)_ G _,
M(l,z) — M(1,z) —
But
. M(2,x) 124 34z + 232> +62° +2* .
v—oo M(1,7) (3 +x)(4+ 107 + 522 + 23)
and then
lim Glr) _
z—o0 M (1, ) B
Similarly, we have
lim G(z) =
z—oo M (2, ) N
Using the inequality (11), we obtain
Gl@) _ O) _ G
ML) = M) = M(2.0)

Now, we will study the error of the approximation M (u,z) of the function G(x).

Theorem 3. For any p € [1,2], the error

approaches zero as r — oo and

G(z) =In <1+%1L#) +x(;+ 1 +0 (111 (1+ (I+1>1(m+3>>>.

Proof. From inequality (12), we have

M(?,QJ) _M(Max) §G(x)—M(u,x) SM(L:C>_M<:“7$)

and using (11), we get

Hence
0<|G(x) — M(p, )] < M(1,z) — M(2,2)
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. o< len < (14 i) -
Then

6= 0t +0 (i (14 )
and

l}l_)rgo eu(z) = 0.

As a consequence of the above result, we obtain some bounds of the error e, ().

Corollary 2.3. The error e, (x) is uniformly bounded by £ In (1 + m) Vr>e>0 and
Vel 2].

Proof. Using the inequality (18), we obtain

1
o5 _leu(®)] < In (1 Tt 1><x+3>> |

Also, the function g(z) = In (1 + m) for > 0 is decreasing. Then the errors e, (x) are

uniformly bounded between — In (1 + m> and In (1 + m> [

3 The best bounds of the double inequality (9).

Firstly, we will prove the following auxiliary results:

Lemma 3.1.

) 1
s (ecu—z)_l - ﬂf) =1 (19)
and ( Jie42)
. G(x+2)e""
S, (GG — 12~ - (20)
Proof. Using the double inequality (6) with
1 1 1 1
-4 - d 4=
bla) PR +3/2 and - a(z) v
we get
li —1 < 1li —1 < 1i —1
m1—>r£lo ex(z+2) _ 1 T s xl—glo eGz+2) _ 1 T = rglolo eB@+2) _ 1 -t
But

1 1
lim - 1) = lim ) =1
:c—>oo<€a(m+2)—1 > m_>oo<|:1+l_g%2+%+12i4_0(%)}_1 >
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and

1 1
lim | —————2 ) = lim —z )l =1
x%m(@ﬁ(ft+2)—1 ) :p~>oo<|:1+%_x_12+3%_’_241m4_0(L)]_1 )
Also, using the double inequality (6), we have

U G(z+2) l B(z+2)
< lim G'(x +2)e < lim G'(x +2)e '
T—$00 (eG’(x—l—Z) — 1)2 T—00 (ea(w+2) — ]_)2

. G/(I + 2)6a(x+2)
lim
T—00 (@B($+2) — ]_)2

Now, using the asymptotic formula for Bateman’s G-function (5), we obtain

Then
L Garer [0 Do g @ -0
o @PE P e ([ gt B a0 -
and
Gareen (e 0@l -de g -0@)]
zoo (€@ —1)2  shoo (M+2-L+H+2—0(F)] —1)? B

Now, we will present the sharp bounds of the double inequality (9).

Theorem 4. For all x € (0, 00)

1 2 1 2
In {1 In{1 21
n<+x+ﬁ>+x<x+1><0m<“(+w+1)+x<w+1>’ .

where the constants 1 and 624_ 1 are the best possible.

Proof. Using the inequality (9) and functional equation (2), we get

1
0< m —x < 2.
Now consider the two functions
f(z) = %@+ 1, x>0
and
1
¢(r) = — —z, x> 0.
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Then f'(z) = G'(z +2)e%@+2) < 0 and f(z) is strictly decreasing function. Hence f( )

increasing function. Since % f(1$)|T o =~ 091, and 4 f($)|T . ~ 0.96. Then the function ﬁ is
1

convex and d iz 7o) is increasing function. Thus we get

is strlctly

d 1 od 1 Gz 42)e%E

— < lim ——— = —
dx f(x) 200 d f(z) P (eG(a+2) — 1)2
Using the limit (20), we obtain

d 1 <1 >0
_—— x )
dr f(@) =
Then ¢(z) i d‘il(;) = %m — 1 < 0. Hence
lim ¢(z) < q(z) < lim g(x)
T—00 x—0t
and using the limit (19) and G(2) = 2 — In4, we have
4
1< < . 22
o) < 5 (22)
with best bounds. O

1

In the proof of theorem (4), we proved that the function o] is convex. Also, the second

derivatives of the functions ¢(z) and have the same sign, then we get the following resuts:

Corollary 3.2. The function q(z) is stmctly decreasing and convex for all x > 0.

Corollary 3.3. For every x > 0 there exists a unique number p € (1, ﬁ) such that G(z) =
M (p,x). Conversely for every ju € (1,%) there exists a unique number x > 0 such that
M{p,z) = G(z).

4
@d
q(z) : (0,00) — (1, ﬁ) is bijective and the proof is easy consequence of this result. ]

Proof. The function g(z) is strictly decreasing from (0,00) onto (1 ) then the mapping

Corollary 3.4. Forxz > 2 and p € ( ) 2 4) we have

1) the errors e,(x) are uniformly bounded by +In <§gzz:§;>

x e2_ Az
) 6la) = M) +0 (i)

Proof. Analogues to inequality (17), we can deduce for all x > 2 and p € (1 ) that

724

0 < |G(x) — M, 7)] < ‘M(l,x) M ( A x)‘

<[ (=)

which is equivalent to

(x+2)[(e* — 4)x + 4]
(x4 1)[(e2 —4)x + €?]

0 <leu(z)| < ‘ln
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4 Comparing approximations

Firstly, we will prove the following one side inequality the function G(z) which proves a special
case of a conjecture posed in [9] and proved in [11] about the best bounds of the Bateman’s
function but with different proof.

Lemma 4.1. For all x > 0, we have

1 1 1
K(J])ZG(ZL’)—;—ﬁ—F@, x> 0.

Using the integral representation (3) of G(x) and the formula

1 = ! /OO tte " dt, reN
z (r=11J,
we get . »
K@) = [ et
where
ot)=¢e —1— %t(l +e') + iﬁ’(l + €.
But
o0 tk+ % 4k+3
elt) = ;k' Z T
2 4(k+4) 1
= ;(k+4)( o3 (b [k +3)(k +2) —12])
. t(k+5) 1
= ; (k+5)!(1 + 5Bk +5)(k+7)) > 0.
Hence ¢(z) > 0 and then K(x) > 0. O

As by-product of the the inequalities (6) and (23), we obtain the following double inequality.
Corollary 4.2. For all x > 1, we have

2r+1)(z—1)(2®+1) 2 1 1 202 —x +1

20t (x4 1) <26(1) - <~~~ 553 < 5 g T (24)

0<
r(x+1) =z 222  222(x+1)

Now, we will prove the following auxiliary results:

Lemma 4.3. For all x > xg ~ 2.5315129, we have

1 1
T —— —T> s —T> 1. (25)
e v z(z+1) 222 — 1 6212(z+1) — 1
10
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Proof. Using the inequality (24), we have

2 1 1 T+ 2
2G(z) - —— — — — —1 <
(@) zlx+1) = 222 " <x + 1> u@)
where
(z) 202 —x+1 | T+ 2 -0
u(z) = n x
202 (x + 1) r+1)’
Then T v
3417 317
U/(.I'): (ZL’— +2 )(Zlf— 2 )7
x3(x + 1)2
and the function u(x) has only one positive critical point at z,, = ”#m Now,
10 T4+ V17
(i) = Y 000113 <0,
B+VIT2?  5+VI7
lim u(z) =0
T—00
and
lim u(x) = oo.
z—0~
Hence u(z) has only one positive root xy ~ 2.5315129 and
u(x) <0, YV > xg.
Then ) . . 5
T+
2G(x) — ———— — <1 Vo > x.
(=) rlx+1) =z 222 n(x—i—l)’ v
Lemma 4.4. For all x > x1 =~ 2.6925094, we have
1 - 4
- :
e

r(x+1) =z 22 4+ (2 —4d)x
where
Qe+ (-1 +1) e? + (e — 4)z)
o) = 208 (x + 1) 1“( 4+(e2—4):1:)’ vl
Hence L)
U/(l‘) = %7
11
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where
L(x) = 8¢® + (=32 + 16 + 2e*)x + (=32 — 12* + 6e*)z* + (48 — 362 + 5e*)x® + (32 — 4e?)2?

+(—16 — 4e* + e")a® + (64 — 24e* + 2¢*)a"

and
S(z) = 2°(x + 1)%(4e* + (e* — 16)x + (16 — 8e? + e*)a? > 0, z > 0.

The function L”(x) is a polynomial of fourth degree has one positive root at x; ~ 2.31866 with
L"(3) < 0, then L(z) is concave function on (xr,00). Also, L(xy) > 0 and lim,_,, L(z) = —oc.
Hence, the function L(z) has only one root on (x;,00) at x3 ~ 4.0635204, where L(4.063) > 0
and L(4.064) < 0. Then L(z) > 0 on [z;,z3) and L(z) < 0 for all z > x3. Hence v(x) is
increasing on (zy,xr3) and decreasing function on (x3,00) and it has a maximum point at xs.
But v(2.69) < 0 and v(2.7) > 0 and then v(z) has a root z; ~ 2.6925094 € (x,z3). Also,
lim, o v(z) = 0, then we have
v(x) >0, x> x

and hence

T > .

]

Theorem 5. For a fived x > x1, consider I, be the nonempty open interval of [1, ﬁ} defined
by

I 1 1
= —z —x ).
T 2 1 1 ) 2 1 1

e st tnT @ TR ]

For any p € I, we have
1 1
leu(z)] < ‘G(:r) — <— + @> ’ :

Proof. Using the inequalities (25) and (26), we obtain

4
I, C |1, .
e
For any positive real number p,
1 1 1
—z<p iff —M(p,x)>—=——
e
and hence
! <p iff Gle) — M(uz) > Gla) -~ — — (27)
— i x) — x r)——— —.
e_z(zal)+%+2m% — 1 /1/ /IL’ x 2$2
Also,
1 2 1 1 1
—zrz>p iff 2G(r) - ————=—<In|(1
e ———— (z) 2@+l z 222 ( 7 +u)
12
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and hence

! —x > p iff G(x)—M(u7x)<—G(I)+l+L. (28)

2 1 1

From the inequalities (27) and (28) we have

1 1 1
-——— - M - -+ = L.
G(z) — 53 < G(z) (n, ) < —G(x) + . + 5,2 Vu € I,
Thus . .
|G(z) — M(p,x)| < ’G(x) — (E + 2—ﬁ> . VYpel,. (29)
O
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