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Dynamics of a difference equation with maximum

Taixiang Sun Guangwang Su∗

College of Information and Statistics, Guangxi Univresity of Finance and Economics

Nanning, Guangxi 530003, P.R. China

Abstract The purpose of this work is to investigate the convergence of the solutions
of the following max-type difference equation

zn = max{ 1
zn−s

,
Pn

zαn
n−t

}, n = 0, 1, 2, · · · ,

where s, t ∈ {1, 2, 3, · · · } with s 6= t, αn ∈ (0, 1) is an s-periodic sequence, {Pn}+∞
n=0

is a constant sequence satisfying Pn ∈ (0, 1] for every n ≥ 0. We show that if
{zn}+∞

n=−r (r = max{s, t}) is a positive solution of the above equation with the initial
conditions z−r, z−r+1, · · · , z−1 ∈ (0,+∞), then limn−→∞ zn = 1 or {z2sn+k}+∞

n=0

is eventually monotone for every 0 ≤ k ≤ 2s − 1. Further, we show that if Pn

is a periodic sequence, s = 1 and t is even, then limn−→∞ zn = 1 or {zn}+∞
n=−t is

eventually periodic with period 2.

AMS Subject Classification: 39A10; 39A11.
Keywords: max-type equation, positive solution, eventual periodicity, monotonic-
ity, periodic sequence.

1. Introduction

The max operator arises naturally in certain models in automatic control theory (see [6,7]). In

the recent years, there has been a lot of interest in studying the convergence and boundedness of

max-type difference equations (see [1,3,5,8-11]). In [2], Chen studied the second order max-type

difference equation

zn+1 = max{ 1
zn

,
An

zn−1
}, n = 0, 1, 2, · · · , (1.1)

and showed that every positive solution of (1.1) is eventually periodic with period 2 when

{An}+∞
n=0 is a periodic sequence with period k ≥ 2 and An ∈ (0, 1) for all n ≥ 0.

In [4], the authors studied the following non-autonomous max-type difference equation with

two delays

zn = max{ fn

zα
n−m

,
A

zβ
n−r

}, n = 0, 1, 2, · · · ,

? Project Supported by NNSF of China (11461003)

∗ Corresponding author: E-mail address: s1g6w3@163.com

1
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where α, β ∈ R, {An}+∞
n=0 is a sequence of positive real numbers with a finite limit and m, r ∈

N ≡ {1, 2, 3, · · · } with m 6= r.

In this paper, we study the periodicity, the boundedness and the convergence of the following

max-type difference equation

zn = max{ 1
zn−s

,
Pn

zαn
n−t

}, n = 0, 1, 2, · · · , (1.2)

where s, t ∈ N with s 6= t, αn ∈ (0, 1) is an s-periodic sequence, {Pn}+∞
n=0 is a constant sequence

satisfying Pn ∈ (0, 1] for every n ≥ 0.

2. Some Propositions

In the following, suppose that {zn}+∞
n=−r is a positive solution of (1.2). To obtain the main

results of this paper, we need the following propositions.

Proposition 2.1 (i) znzn−s ≥ 1 for all n ≥ 0.

(ii) For any n ≥ r, zn ≤ max{zn−2s, Pnz
αn−s

n−s−t}.
(iii) If zn = Pn/zαn

n−t > 1/zn−s for some n ≥ r, then zn > zn−2s. If zn = 1/zn−s for some

n ≥ s, then zn ≤ zn−2s.

Proof (i) Since zn ≥ 1/zn−s for any n ≥ 0, we have znzn−s ≥ 1.

(ii) According to (i), we get that for every n ≥ r,

zn = max
{ zn−2s

zn−szn−2s
,

Pnzαn
n−s−t

zαn
n−s−tz

αn
n−t

} ≤ max{zn−2s, Pnzαn
n−s−t}.

(iii) If zn = Pn/zαn
n−t > 1/zn−s for some n ≥ r, then by (i) we obtain that

1 < znzn−s = max{ zn

zn−2s
,
znzαn

n−tPn−s

z
αn−s

n−t−sz
αn
n−t

}

≤ max{ zn

zn−2s
, PnPn−s} =

zn

zn−2s
.

Which implies zn > zn−2s. If zn = 1/zn−s for some n ≥ s, then by (i) we obtain that

zn =
zn−2s

zn−szn−2s
≤ zn−2s.

The proof is complete.

Define

Un = max{zn−1, zn−2, · · · , zn−s−r} (n ≥ r). (2.1)

According to Proposition 2.1 (i), we get max{zn−1, zn−s−1} ≥ 1, from which it follows Un ≥ 1

for any n ≥ r.

Proposition 2.2 (i) Let Un be as in (2.1). Then zn ≤ Un for any n ≥ r and {Un}+∞
n=r is a

decreasing sequence.

(ii) There exist constants R ≥ R′ > 0 such that R′ ≤ zn ≤ R for any n ≥ −r.

Proof (i) If zn−s−t ≤ 1, then zαn
n−s−t ≤ 1. If zn−s−t ≥ 1, then zαn

n−s−t ≤ zn−s−t. According to

Proposition 2.1 (ii), we have that for any n ≥ r,

zn ≤ max{zn−2s, z
αn
n−s−t} ≤ max{zn−1, zn−2, · · · , zn−s−r} = Un.

2
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Further, we get

Un+1 = max{zn, zn−1, · · · , zn−s−r+1} ≤ Un.

(ii) Let R = max{Ur, zr−1, · · · , z−r} and R′ = min{1/Ur, zr−1, · · · , z−r}. Then R′ ≤ zn ≤ R

for any n ≥ −r. The proof is complete.

Now we assume limn−→∞ Un = U and lim infn−→∞ Un = u. According to Proposition 2.2

(i), we obtain the following corollary.

Corollary 2.3 There exists a sequence 1 < n1 < n2 < · · · < nk < · · · such that znk
≥ U and

nk+1 − nk ≤ s + r.

Proposition 2.4 The following statements hold:

(i) U = lim supn−→∞ zn.

(ii) Assume that U > 1. Then {n : U ≤ zn = Pn/zαn
n−t} is a finite set. Further, there exists

N ∈ N such that:

i) zN+2ks ≥ U and zN+2ks = 1/zN+(2k−1)s for any k ≥ 0, and zN+2ks is decreasing.

ii) limk−→∞ zN+(2k−1)s = u = 1/U .

Proof (i) According to (2.1), we see that Un is a subsequence of zn. Thus U ≤ lim supn−→∞ zn.

Further, since zn ≤ Un for all n ≥ r, we obtain

lim sup
n−→∞

zn ≤ lim sup
n−→∞

Un = U.

(ii) If {n : U ≤ zn = Pn/zαn
n−t} is an infinite set, then there exists a sequence t < n1 < n2 <

· · · < nk < · · · such that

U ≤ znk
=

Pnk

z
αnk
nk−t

≤ Pnk
z

αnk
nk−t−s ≤ z

αnk
nk−t−s.

Without loss of generality, suppose that limk−→∞ znk−t−s = u1 and limk−→∞ αnk
= α < 1. Thus

we obtain U = limk−→∞ znk
≤ uα

1 ≤ Uα < U since U > 1. A contradiction.

It follows from the above that there exists M ∈ N such that if n ≥ M and zn ≥ U , then zn =

1/zn−s. By Corollary 2.3 we see that there exists a sequence 1 < n1 < n2 < · · · < nk < · · · such

that znk
≥ U and limk−→∞ znk

= U . Without loss of generality, suppose that nk = 2srk+τ > M

with 0 ≤ τ < 2s for all k ∈ N. Then znk
= 1/znk−s. Write N = 2sr1 + τ . By Proposition 2.1

(iii), we see that for any k ≥ 0,

zN+2ks ≥ U and
1

zN+2ks−s
= zN+2ks ≥ zN+2(k+1)s =

1
zN+2(k+1)s−s

.

Let ik −→ +∞ such that zik −→ u and zik−s −→ u1. Then

1
U

= lim
k−→∞

1
zN+2ks

= lim
k−→∞

zN+(2k−1)s ≥ u = lim
k−→∞

zik ≥ lim
k−→∞

1
zik−s

=
1
u1
≥ 1

U
,

this implies limk−→∞ zN+(2k−1)s = u = 1/U . The proof is complete.

Proposition 2.5 Let N, p, q ∈ N with q ≥ 2 such that

(i) {zN+2ks}+∞
k=0 is monotone.

(ii) zN+2s(p+λ)+t = PN+2s(p+λ)+t/z
αN+2s(p+λ)+t

N+2s(p+λ) > 1/zN+2s(p+λ)+t−s for every λ ∈ {0, q}.

3
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(iii) zN+2s(p+λ)+t = 1/zN+2s(p+λ)+t−s for every 1 ≤ λ ≤ q − 1.

Then zN+2s(p+λ)+t = zN+2s(p+λ+1)+t for every 0 ≤ λ ≤ q − 2.

Proof There are two cases to be considered.

Case 1 {zN+2sk}+∞
k=0 is decreasing. In this case, we claim that zN+2s(p+λ)+t−s = 1/zN+2s(p+λ−1)+t

for any 1 ≤ λ ≤ q − 1. Since, otherwise, if for some 1 ≤ λ ≤ q − 1,

zN+2s(p+λ)+t−s =
PN+2s(p+λ)+t−s

z
αN+2s(p+λ)+t−s

N+2s(p+λ)−s

> 1/zN+2s(p+λ−1)+t,

then by Proposition 2.1 (iii) it follows that

PN+2sp+t

z
αN+2s(p+λ)+t

N+2s(p+λ)

≥ PN+2sp+t

z
αN+2sp+t

N+2sp

= zN+2sp+t ≥ zN+2s(p+λ−1)+t

>
1

zN+2s(p+λ)+t−s
=

z
αN+2s(p+λ)+t−s

N+2s(p+λ)−s

PN+2s(p+λ)+t−s
.

This implies

1 ≥ PN+2sp+tPN+2s(p+λ)+t−s > z
αN+2s(p+λ)+t

N+2s(p+λ) z
αN+2s(p+λ)+t−s

N+2s(p+λ)−s ≥ 1.

A contradiction. From the above claim it follows that

zN+2s(p+λ)+t =
1

zN+2s(p+λ)+t−s
= zN+2s(p+λ−1)+t ≥ zN+2s(p+λ)+t.

Thus zN+2s(p+λ−1)+t = zN+2s(p+λ)+t for every 1 ≤ λ ≤ q − 1.

Case 2 {zN+2ks}+∞
k=0 is increasing. In this case, it follows from Proposition 2.1 (iii) that

PN+2s(p+q)+t

z
αN+2s(p+q−1)+t

N+2s(p+q−1)

≥ PN+2s(p+q)+t

z
αN+2s(p+q)+t

N+2s(p+q)

= zN+2s(p+q)+t > zN+2s(p+q−1)+t

=
1

zN+2s(p+q−1)+t−s
= min{zN+2s(p+q−2)+t,

z
αN+2s(p+q−1)+t−s

N+2s(p+q−1)−s

PN+2s(p+q−1)+t−s
}

= zN+2s(p+q−2)+t ≥ zN+2s(p+q−1)+t

since

PN+2s(p+q)+tPN+2s(p+q−1)+r−s ≤ 1 and z
αN+2s(p+q−1)+t

N+2s(p+q−1) z
αN+2s(p+q−1)+t−s

N+2s(p+q−1)−s ≥ 1,

we have

zN+2s(p+q−1)+t = zN+2s(p+q−2)+t.

In a similar fashion, we may obtain that zN+2s(p+q−1)+t = zN+2s(p+λ)+t for any 0 ≤ λ ≤ q − 2.

The proof is complete.

Proposition 2.6 If there exists N ∈ N such that {zN+2ks}+∞
k=0 is monotone, then {zN+t+2ks}+∞

k=0

is eventually monotone.

Proof If there exists K ∈ N such that

zN+2ks+t = 1/zN+2sk+t−s for all k ≥ K

4
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or

zN+2ks+t = PN+2ks+t/z
αN+2ks+t

N+2ks > 1/zN+2ks+t−s for all k ≥ K,

then by Proposition 2.1 (iii) we obtain that zN+2ks+t ≤ zN+2(k−1)s+t for all k ≥ K (or zN+2ks+t >

zN+2(k−1)s+t for all k ≥ K). Thus {zN+t+2ks}+∞
k=K is monotone.

If there exists a sequence 1 < p1 < q1 < p2 < q2 < · · · < pk < qk < · · · such that

zN+2rs+t =
PN+2rs+t

z
αN+2rs+t

N+2rs

>
1

zN+2rs+t−s
for every pi ≤ r < qi

and

zN+2rs+t =
1

zN+2rs+t−s
for every qi ≤ r < pi+1,

then by Proposition 2.1 (iii) and Proposition 2.5 it follows that zN+2(r−1)s+t < zN+2rs+t for

every pi ≤ r < qi and zN+2(r−1)s+t = zN+2rs+t for every qi ≤ r < pi+1, this follows that

{zN+t+2rs}+∞
r=p1

is increasing. The proof is complete.

3. Main Results

In section, we state the main results of this paper.

Theorem 3.1 Let {zn}+∞
n=−r be a positive solution of (1.2). Then limn−→∞ zn = 1 or {z2ns+k}+∞

n=0

is eventually monotone for every 0 ≤ k ≤ 2s− 1.

Proof If U = lim supn−→∞ zn = 1, then let ik −→ +∞ such that zik −→ u = lim infn−→∞ zn

and zik−s −→ u1. Thus

1 ≥ u = lim
k−→∞

zik ≥ lim
k−→∞

1
zik−s

=
1
u1
≥ 1

U
= 1.

Which implies limn−→∞ zn = 1. Now assume that U = lim supn−→∞ zn > 1.

First we suppose that gcd(s, t) = 1. Then by Proposition 2.4 (iii) we see that there exists

N ∈ N such that the following statements hold:

(1) zN+2nszN+(2n−1)s = 1 for any n ≥ 0.

(2) zN+2ns is decreasing (n ≥ 0) and limn−→∞ zN+2ns = U. xN+(2n−1)s is increasing (n ≥ 0)

and limn−→∞ zN+(2n−1)s = u = 1/U.

Using Proposition 2.6 repeatedly, it follows that for every 1 ≤ i ≤ s − 1, {zN+2ns+it}+∞
n=0 and

{zN+(2n−1)s+it}+∞
n=0 are eventually monotone. Since gcd(s, t) = 1, it follows that for every j ∈

{0, 1, 2, · · · , s−1} there exist some 0 ≤ ij ≤ s−1 and integer λj such that ijt = λjs+j and ijt−
s = (λj−1)s+ j. Thus {zN+2ns+λjs+j}+∞

n=0 and {zN+2ns+(λj−1)s+j}+∞
n=0 are eventually monotone

for every j ∈ {0, 1, 2, · · · , s − 1}, which implies that {z2ns+k}+∞
n=0 is eventually monotone for

every 0 ≤ k ≤ 2s− 1.

If gcd(s, t) = d > 1, then we consider the max-type equation

zn = max{ 1
zn−ds1

,
Pn

zαn
n−dt1

}, n = 0, 1, 2, · · · · · · , (3.1)

where s = ds1 and t = dt1 with gcd(s1, t1) = 1. Write yi
n = znd+i for every 0 ≤ i ≤ d − 1 and

n = 0, 1, 2, · · · . Then (3.1) reduces to the equations

yi
n = max{ 1

yi
n−s1

,
Pnd+i

(yi
n−t1

)αnd+i
}, 0 ≤ i ≤ d− 1, n = 0, 1, 2, · · · . (3.2)

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.3, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

405 Taixiang Sun et al 401-407



By an analogous way as in the above, we obtain that for every 0 ≤ i ≤ d− 1, yi
n is a solution of

equation

yi
n = max{1/yi

n−s1
,

Pnd+i

(yi
n−t1

)αnd+i
}.

Then {yi
2s1n+k}+∞

n=0 is eventually monotone for every 0 ≤ k ≤ 2s1 − 1. Thus for every 0 ≤ k ≤
2s− 1, {z2ns+k}+∞

n=0 is eventually monotone. The proof is complete.

Theorem 3.2 Assume that s = 1, and t is even, and Pn is a periodic sequence. Let {zn}+∞
n=−t

be a positive solution of (1.2). Then limn−→∞ zn = 1 or {zn}+∞
n=−t is eventually periodic with

period 2.

Proof If U = lim supn−→∞ zn = 1, then using arguments similar to ones developed in the proof

of Theorem 3.1 we can obtain limn−→∞ zn = 1. Now assume that U = lim supn−→∞ zn > 1.

According to Proposition 2.4 (iii) and Theorem 3.1, we see that there exists N ∈ N such

that the following statements hold:

(1) zN+2nzN+2n−1 = 1 for any n ≥ 0.

(2) zN+2n is decreasing (n ≥ 0) and limn−→∞ zN+2n = U. zN+2n−1 is increasing (n ≥ 0) and

limn−→∞ zN+2n−1 = u = 1/U.

We claim that zN+2n+1 = 1/zN+2n eventually. In fact, if there exist 1 ≤ k1 < k2 < · · · <

ki < · · · such that

zN+2ki+1 =
PN+2ki+1

z
αN+2ki+1

N+2ki+1−t

,

then by taking a subsequence we may assume that PN+2ki+1 and αN+2ki+1 are constant se-

quences since Pn and αn are periodic sequences. Thus zN+2ki+1 is decreasing since z
αN+2ki+1

N+2ki+1−t

is increasing. A contradiction. Which implies that {zn}+∞
n=−t is eventually periodic with period

2. The proof is complete.

Example 3.3 Assume that s = 1 and t is odd. Let Pn = P ∈ (0, 1) and αn = α ∈ (0, 1) for any

n ≥ 0. Then there exists a positive solution {zn}∞n=−t of (1.2) which is not eventually periodic

such that limn−→∞ zn 6= 1.

Proof Choose the initial values z−t, z1−t, · · · , z−1 ∈ (0,+∞) satisfying

z−t < z2−t < · · · < z−1 < z−t/P, z−t < P 2/(1−α), zk−t = 1/zk−t−1 k ∈ {1, 3, · · · , t− 2}.

Now we show that z2k−1 < z2k+1 and z2k < z2k−2 for any k ∈ N.

By z−1 < z−t/P and z−t < P 2/(1−α), we have z−1 < z−t/P < Pzα−t. Which implies

z0 = max{ 1
z−1

,
P

zα−t

} =
1

z−1
<

1
z−3

= z−2.

z1 = max{ 1
z0

,
P

zα
1−t

} = max{z−1, P zα
−t} = Pzα

−t > z−1.

z2 = max{ 1
z1

,
P

zα
2−t

} = max{ 1
Pzα−t

,
P

zα
2−t

} =
1

Pzα−t

=
1
z1

<
1

z−1
= z0.

z3 = max{ 1
z2

,
P

zα
3−t

} = max{z1, P zα
2−t} = max{Pzα

−t, P zα
2−t} = Pzα

2−t >
1
z2

= z1.

z4 = max{ 1
z3

,
P

zα
4−t

} = max{ 1
Pzα

2−t

,
P

zα
4−t

} =
1

Pzα
2−t

=
1
z3

<
1
z1

= z2.
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Assume that there exists some m ∈ N such that

(1) z2k−1 < z2k+1 and z2k+2 < z2k for any (−t + 1)/2 ≤ k ≤ m.

(2) z2k+1 = Pzα
2k−t for any 0 ≤ k ≤ m and z2k+2z2k+1 = 1 for any (−t + 1)/2 ≤ k ≤ m.

Then

z2m+3 = max{ 1
z2m+2

,
P

zα
2m+3−t

} = max{z2m+1, P zα
2m+2−t}

= max{Pzα
2m−t, P zα

2m+2−t} = Pzα
2m+2−t > Pzα

2m−t = z2m+1.

z2m+4 = max{ 1
z2m+3

,
P

zα
2m+4−t

} = max{ 1
Pzα

2m+2−t

,
P

zα
2m+4−t

}

=
1

Pzα
2m+2−t

=
1

z2m+3
<

1
z2m+1

= z2m+2.

Therefore z2k−1 < z2k+1 and z2k+2 < z2k for any k ≥ (−t+1)/2, which implies that {zn}∞n=−t is

not eventually periodic. Since z2n+1 = Pzα
2n−t (n ∈ N), we obtain limn−→∞ zn 6= 1. The proof

is complete.
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1 Introduction

Let A denote the class of analytic functions in the unit disk

U = {z ∈ C : |z| < 1}

that have the form

f(z) = z +
∞∑
n=2

anz
n. (1)

Further, by S we shall denote the class of all functions in A which are univalent
in U.

The study of operators plays an important role in Geometric Function The-
ory in Complex Analysis and its related fields. Many derivative and integral
operators can be written in terms of convolution of certain analytic functions.
For functions

fj(z) =
∞∑
n=0

an,jz
n (j = 1, 2)

1
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analytic in U , we define the Hadamard product of f1 and f2 as

(f1 ∗ f2) (z) =
∞∑
n=0

an,1,an,2z
n = (f2 ∗ f1) (z) (z ∈ U). (2)

In terms of the Hadamard product (or convolution), the Dziok-Srivastava lin-
ear convolution operator involving the generalized hypergeometric function was
introduced and studied systematically by Dziok and Srivastava [9], [10] and
(subsequently) by many other authors (see, for details, [11] and [20]).

We recall here a general Hurwitz-Lerch Zeta function Φ(z, s, a) defined in
[19] by

Φ(z, s, a) :=
∞∑
n=2

zn

(n+ a)s(
a ∈ C \ Z−0 ; s ∈ C, when |z| < 1; Re(s) > 1 when |z| = 1

)
where, as usual, Z−0 :=

Z\N, and N := {1, 2, 3, . . .}). Several interesting properties and characteristics
of the Hurwitz-Lerch Zeta function Φ(z, s, a) can be found in [8], and the refer-
ences stated there in (see also [16], [21], [22]). Srivastava and Attiya [21] (also
see [4], [12]) introduced and investigated the linear operator.

=µb : A→ A

defined in terms of the Hadamard product by

=µb f (z) = (Gµb ∗ f) (z),
(
z ∈ U ; b ∈ C\Z−0 ; µ ∈ C; f ∈ A

)
(3)

where, for convenience,

Gµb (z) := (1 + b)µ[Φ(z, µ, b)− b−µ] (z ∈ U). (4)

We recall here the following relationships which follow easily by using (1), (3)
and (4)

=µb f (z) = z +

∞∑
n=2

(
1 + b

n+ b

)µ
anz

n. (5)

Motivated essentially by the Srivastava-Attiya operator, Murugusundaramoor-
thy [17] introduced the generalized integral operator =m,kµ,b given by

=m,kµ,b f(z) = z +
∞∑
n=2

Cmn (b, µ, k)anz
n (6)

where

Ψn = Cmn (b, µ, k) =

∣∣∣∣( 1 + b

n+ b

)µ∣∣∣∣ m!(n+ k − 2)!

(k − 2)!(n+m− 1)!
(7)

and (throughout this paper unless otherwise mentioned) the parameters µ, b are
constrained as b ∈ C\Z−0 ;µ ∈ C, k ≥ 2 and m > −1. It is of interest to note that

=1,2
µ,b is the Srivastava-Attiya operator and =m,k0,b is the well-known Choi-Saigo-

Srivastava operator (see [15]). Suitably specializing the parameters m, k, µ and

b in =m,kµ,b f(z) we can get various integral operators introduced by Alexander
[1] and Bernardi [5], Libera and Livingston [13], [14].

2
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2 Preliminaries

Conformal maps of the unit disk onto convex domains are a classical topic. Re-
cently Avkhadiev and Wirths [2] discovered that conformal maps onto concave
domains (the complements of convex closed sets) have some novel properties.

A function f : U → C is said to belong to the family C0(α) if f satisfies the
following conditions:

• f is analytic in U with the standard normalization f(0) = f ′(0)− 1 = 0.
In addition it satisfies f(1) =∞.

• f maps U conformally onto a set whose complement with respect to C is
convex.

• The opening angle of f(U) at ∞ is less than or equal to πα, α ∈ (1, 2].

The class C0(α) is referred to as the class of concave univalent functions and
for a detailed discussion about concave functions, we refer to Avkhadiev et al.
[3], Cruz and Pommerenke [7] and references there in.

In particular, the inequality

Re

(
1 +

zf ′′(z)

f ′(z)

)
< 0 (z ∈ U)

is used - sometimes also as a definition - for concave functions f ∈ C0O (see e.g.
[18] and others).

Bhowmik et al. [6] showed that an analytic function f maps U onto a concave
domain of angle πα, if and only if RePf (z) > 0, where

Pf (z) =
2

α− 1

[
α+ 1

2

1 + z

1− z
− 1− z f

′′(z)

f ′(z)

]
.

Definition 1 Let f(z) ∈ A and α ∈ (1, 2] . Then f(z) ∈ =m,kµ,b C0(α) if and only
if

Re
2

α− 1

α+ 1

2

1 + z

1− z
− 1− z

[
=m,kµ,b f(z)

]′′
[
=m,kµ,b f(z)

]′
 > 0 (z ∈ U).

3 Main results

Theorem 2 If f(z) ∈ A satisfies the inequality

∞∑
n=2

[
(α− 1)n+ 2n2

]
|Cmn (b, µ, k)||an| < 3− α,

for some α ∈ (1, 2], n ∈ N, then f(z) ∈ =m,kµ,b C0(α).

3
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Proof. We want to prove that

Re
2

α− 1

α+ 1

2

1 + z

1− z
− z

[
=m,kµ,b f(z)

]′′
[
=m,kµ,b f(z)

]′
 > 0.

By using the fact that

Re
1

w
>

1

2
⇔ |w − 1| < 1,

it is enough to show that |w| < 1.

1

w
=

2

α− 1

[
α+ 1

2

1 + z

1− z
− z g

′(z)

g(z)

]
(8)

where

g(z) = z
(
=m,kµ,b f(z)

)′
= z

{
1 +

∞∑
n=2

Cmn (b, µ, k)nanz
n−1

}
(9)

and

g′(z) = 1 +
∞∑
n=2

Cmn (b, µ, k)n2anz
n−1. (10)

Using (9) and (10), in (8) we obtain

|w| ≤ α−1
2

∣∣∣∣∣∣
2(1−z)z

[
1+
∞∑

n=2
Cm

n (b,µ,k)nanz
n−1

]
(α+1)(1+z)z

(
1+
∞∑

n=2
Cm

n (b,µ,k)nanzn−1

)
−2(1−z)z

(
1+
∞∑

n=2
Cm

n (b,µ,k)n2anzn−1

)
∣∣∣∣∣∣ .

Using triangle inequality and letting z → −1, then

|w| < α− 1

2

 1 +
∞∑
n=2

Cmn (b, µ, k)|an|n

1−
∞∑
n=2

Cmn (b, µ, k)|an|n2

 .

The last expression is bounded by 1, if

1 +
∞∑
n=2

Cmn (b, µ, k)|an|n

1−
∞∑
n=2

Cmn (b, µ, k)|an|n2
<

2

α− 1
.

Finally, we can easily see that

∞∑
n=2

[
(α− 1)n+ 2n2

]
Cmn (b, µ, k)|an| < 3− α. (11)

4
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4 Distortion Bounds

Theorem 3 If f(z) ∈ =m,kµ,b C0(α), then

|z| − 3− α
2(3 + α)

|z|2 ≤
∣∣∣=m,kµ,b f(z)

∣∣∣ ≤ |z|+ 3− α
2(3 + α)

|z|2.

Proof. From the Theorem 2, we have

2(3 + α)
∞∑
n=2

Cmn (b, µ, k)|an| ≤
∞∑
n=2

[
(α− 1)n+ 2n2

]
Cmn (b, µ, k)|an| < 3− α,

That is
∞∑
n=2

Cmn (b, µ, k)|an| ≤
3− α

2(3 + α)
.

According to (11) we obtain

|=m,kµ,b f(z)| ≤ |z|+
∞∑
n=2

Cmn (b, µ, k)|an||z|n

≤ |z|+
∞∑
n=2

Cmn (b, µ, k)|an||z|2

≤ |z|+ 3− α
2(3 + α)

|z|2.

On the other hand, we have

|=m,kµ,b f(z)| ≥ |z| −
∞∑
n=2

Cmn (b, µ, k)|an||z|n

≥ |z| −
∞∑
n=2

Cmn (b, µ, k)|an||z|2

≥ |z| − 3− α
2(3 + α)

|z|2.

This completes the proof.

Theorem 4 If f(z) ∈ =m,kµ,b C0(α), then

|z|− (3− α)

2(3 + α)

m+ 1

k(k − 1)

∣∣∣∣(2 + b

1 + b

)µ∣∣∣∣ |z|2 ≤ |f(z)| ≤ |z|+ (3− α)

2(3 + α)

m+ 1

k(k − 1)

∣∣∣∣(2 + b

1 + b

)µ∣∣∣∣ |z|2.
Proof. According to the Theorem 2 we get that

2(3+α)

∣∣∣∣(1 + b

2 + b

)µ∣∣∣∣ k(k − 1)

m+ 1

∞∑
n=2

|an| ≤
∞∑
n=2

[
(α− 1)n+ 2n2

]
Cmn (b, µ, k)|an| < 3−α.

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.3, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

412 Hasan BAYRAM et al 408-416



Thus we get
∞∑
n=2

|an| ≤
(3− α)

2(3 + α)

m+ 1

k(k − 1)

∣∣∣∣(2 + b

1 + b

)µ∣∣∣∣ .
Next from (1), we have

|f(z)| ≤ |z|+
∞∑
n=2

|an||z|n

≤ |z|+
∞∑
n=2

|an||z|2

≤ |z|+ (3− α)

2(3 + α)

m+ 1

k(k − 1)

∣∣∣∣(2 + b

1 + b

)µ∣∣∣∣ |z|2.
The other assertion can be proved as follows

|f(z)| ≥ |z| −
∞∑
n=2

|an||z|n

≥ |z| −
∞∑
n=2

|an||z|2

≥ |z| − (3− α)

2(3 + α)

m+ 1

k(k − 1)

∣∣∣∣(2 + b

1 + b

)µ∣∣∣∣ |z|2
This completes the proof.

Theorem 5 If f(z) ∈ =1,2
µ,bC0(α), then

|z| − (3− α)

2(3 + α)

∣∣∣∣(2 + b

1 + b

)µ∣∣∣∣ |z|2 ≤ |f(z)| ≤ |z|+ (3− α)

2(3 + α)

∣∣∣∣(2 + b

1 + b

)µ∣∣∣∣ |z|2.
Proof. According to the Theorem 2 we get that

2(3 + α)
∞∑
n=2

C1
n(b, µ, 2)|an| ≤

∞∑
n=2

[
(α− 1)n+ 2n2

]
Cmn (b, µ, k)|an| < 3− α,

or, equivalently

2(3 + α)

∣∣∣∣(1 + b

2 + b

)µ∣∣∣∣ ∞∑
n=2

|an| ≤
∞∑
n=2

[
(α− 1)n+ 2n2

]
Cmn (b, µ, k)|an| < 3− α.

Thus we get
∞∑
n=2

|an| ≤
(3− α)

2(3 + α)

∣∣∣∣(2 + b

1 + b

)µ∣∣∣∣ .

6
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Next from (1), we have

|f(z)| ≤ |z|+
∞∑
n=2

|an||z|n

≤ |z|+
∞∑
n=2

|an||z|2

≤ |z|+ (3− α)

2(3 + α)

∣∣∣∣(2 + b

1 + b

)µ∣∣∣∣ |z|2.
The other assertion can be proved as follows

|f(z)| ≥ |z| −
∞∑
n=2

|an||z|n

≥ |z| −
∞∑
n=2

|an||z|2

≥ |z| − (3− α)

2(3 + α)

∣∣∣∣(2 + b

1 + b

)µ∣∣∣∣ |z|2.

Theorem 6 If f(z) ∈ =m,k0,b C0(α), then

|z|− (3− α)

2(3 + α)

∣∣∣∣ (k − 2)!(n+m− 1)!

m!(n+ k − 2)!

∣∣∣∣ |z|2 ≤ |f(z)| ≤ |z|+ (3− α)

2(3 + α)

∣∣∣∣ (k − 2)!(n+m− 1)!

m!(n+ k − 2)!

∣∣∣∣ |z|2.
Proof. According to the Theorem 2 we get that

2(3+α)

∣∣∣∣ m!(n+ k − 2)!

(k − 2)!(n+m− 1)!

∣∣∣∣ ∞∑
n=2

|an| ≤
∞∑
n=2

[
(α− 1)n+ 2n2

]
Cmn (b, µ, k)|an| ≤ 3−α.

Thus we get
∞∑
n=2

|an| ≤
(3− α)

2(3 + α)

∣∣∣∣ (k − 2)!(n+m− 1)!

m!(n+ k − 2)!

∣∣∣∣ .
Next from (1), we have

|f(z)| ≤ |z|+
∞∑
n=2

|an||z|n

≤ |z|+
∞∑
n=2

|an||z|2

≤ |z|+ (3− α)

2(3 + α)

∣∣∣∣ (k − 2)!(n+m− 1)!

m!(n+ k − 2)!

∣∣∣∣ |z|2.

7
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The other assertion can be proved as follows

|f(z)| ≥ |z| −
∞∑
n=2

|an||z|n

≥ |z| −
∞∑
n=2

|an||z|2

≥ |z| − (3− α)

2(3 + α)

∣∣∣∣ (k − 2)!(n+m− 1)!

m!(n+ k − 2)!

∣∣∣∣ |z|2.
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On the zeros of eigenfunctions of discontinuous
Sturm-Liouville problems
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Abstract : In this paper, we prove analogues of the classical Sturm comparison and oscillation
theorems for Sturm-Liouville problem together with boundary -transmission conditions on two
disjoint intervals. We present a new version for Sturm’s comparison and oscillation theorems.
The obtained results generalizes the recently obtained oscillation and comparison theorems for
regular Sturm-Liouville problem which contained transmission conditions.

Keywords : Sturm-Liouville problems, transmission conditions, Sturm comparison and oscil-
lation theorems.

1 Introduction

The oscillation theory for the solutions of differential equations is one of the traditional trends
in the qualitative theory of differential equations. Its essence is to establish conditions for the
existence of oscillating (nonoscillating) solutions, to study the laws of distribution of the zeros,
to obtain estimates of the distance between the consecutive zeros and of the number of zeros
in a given interval. The relationship between the oscillatory and other fundamental properties
of the solutions of Sturm-Liouville type differential equations are of central importance in the
theory of boundary value problems There are substantial literature on this subject. Many
authors have expounded on various aspects of this theory, see [1, 9, 10] and the references cited
therein. A considerable number of studies have been made on the oscillation and nonoscillation
for a long time. Those results can be found in [14, 15] and the references contained therein.
While the extensions and generalizations have much intrinsic interest, we believe their continued
relevance is due in no small part to their important connection with problems of physical origin.
Particularly the connections with the minimization problems of the calculus of variations and
optimal control as well as the spectral theory of differential operators are important. Since the
second order equations have applications in various problems in physics, biology, and economics
(see for example [1, 5, 13], and the references cited therein) there is a permanent interest in
obtaining new sufficient conditions for the oscillation or nonoscillation of solutions of various
types of second order equations. In this study we investigated same aspects of comparison and
oscillation properties for one discontinuous eigenvalue problem which consists of Sturm-Liouville
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equation,
Ly := −y′′(x) + q(x)y(x) = λy(x) (1.1)

to hold on two disjoint intervals (−1, 0) and (0, 1) , where discontinuity in y and y′ at the
interior singular point x = 0 are prescribed by transmission conditions

y(0−) = δy(0+), y′(0−) =
1
δ
y′(0+), (1.2)

together with the boundary conditions

y(−1) = y(1) = 0 (1.3)

where the potential q(x) is real-valued, continuous on [−1, 0)∪ ∈ (0, 1] and has a finite limits
q(c∓) = lim

x→0∓
q(x) ; λ is a complex eigenparameter; δ 6= 0 any real number. Since var-

ious type transmission problems appear frequently in various fields of physics and technics,
Sturm-Liouville problems with transmission conditions have been an important research topic
in mathematical physics [2, 8, 11]. For the earlier developments about Sturm comparison and
oscillation theory, we refer to [4, 5, 6, 9, 14, 15] and for recent developments, we refer to
[1, 3, 7, 13, 16, 17].

2 Comparison Theorem for discontinuous Sturm-Liouville
problems

At first we shall extend and generalize the classical Sturm-liouville comparison theorem.

Theorem 2.1. Let y = y1(x) be solution of the equation

L1y := −y′′ + q1(x)y = 0 (2.1)

satisfying transmission conditions at the point of interaction x = 0 given by

y(0−) = δy(0+), y′(0−) =
1
δ
y′(0+) (2.2)

and let y = y2(x) be the solution of the equation

L2y := −y′′ + q2(x)y = 0 (2.3)

satisfying the same transmission conditions (2.2) where δ 6= 0 any real number if q1(x) > q2(x)
on [−1, 0)∪ ∈ (0, 1], then between any two consecutive zeros of y1(x) there is at least one zero
of y2(x).

Proof. Let x1 and x2 with x1 < x2 be consecutive zeroes of y1. Suppose, it possible,that y2

does not have a zero on (x1, x2). Lagrange’s identity (see, [12]) gives

y2L1y1 − y1L2y2 =
d

dx
{y′2y1 − y′1y2}+ {q1(x)− q2(x)}y1y2 (2.4)

2
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Hence

d

dx
{y′1y2 − y′2y1} = {q1(x)− q2(x)}y1y2 (2.5)

Case 1. Let x1 ∈ [−1, 0), x2 ∈ (0, 1] and δ > 0. Integrating on both sides of the equation (2.9)
over [x1, 0) and (0, x2] and then adding we get

lim
ε1 → 0
ε1 > 0

(y′1y2 − y′2y1)|0−ε1
x1

+ lim
ε2 → 0
ε2 > 0

(y′1y2 − y′2y1)|x2
0+ε2

= lim
ε1 → 0
ε1 > 0

0−ε1∫

x1

{q1(x)− q2(x)}y1y2dx + lim
ε2 → 0
ε2 > 0

x2∫

0+ε2

{q1(x)− q2(x)}y1y2dx (2.6)

Since y1(x1) = y1(x2) = 0 we get

lim
ε1 → 0
ε1 > 0

W (y1, y2; 0− ε1)− lim
ε2 → 0
ε2 > 0

W (y1, y2; 0 + ε2)− y′1(x1)y2(x1) + y′1(x2)y2(x2)

= lim
ε1 → 0
ε1 > 0

0−ε1∫

x1

{q1(x)− q2(x)}y1y2dx + lim
ε2 → 0
ε2 > 0

x2∫

0+ε2

{q1(x)− q2(x)}y1y2dx (2.7)

Using the transmission conditions we obtain

−y′1(x1)y2(x1) + y′1(x2)y2(x2) = lim
ε1 → 0
ε1 > 0

0−ε1∫

x1

{q1(x)− q2(x)}y1y2dx

+ lim
ε2 → 0
ε2 > 0

x2∫

0+ε2

{q1(x)− q2(x)}y1y2dx (2.8)

In this case with no restriction we can assume that y1(x) > 0 and y2(x) > 0 over (x1, 0)∪(0, x2).
These conditions ensure that the integral on the right in (2.8) is positive. On the left, since
y1(x) > 0 by assumption, the function is increasing at the point x1. Hence y′1(x1) > 0(it cannot
vanish, because then it would follow from the uniqueness theorem for the solutions of (2.1) that
y1(x) ≡ 0, which is impossible). Similarly, y′1(x2) < 0. Thus, the left-hand side of the equation
(2.8) is less or equal to zero, which is a contradiction.
Case 2. Let x1 ∈ [−1, 0), x2 ∈ (0, 1] and δ < 0. In this case with no restriction it can be
assumed that, y1(x) > 0 over (x1, 0), y1(x) < 0 over (0, x2), y2(x) > 0 over (x1, 0) and y2(x) < 0
over (0, x2). Since y1(x1) = 0 and y1(x1) > 0 over (x1, 0) y′1(x1) > 0. Further, since y2(x2) = 0
and y2(x2) < 0 immediately to left of x2, y′2(x) < 0. Hence, the left-hand side of (2.8) is is less

3
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or equal zero, but the right-hand side is positive which shows that (2.8) is impossible.
Case 3. Let (x1, x2) ⊂ [−1, 0). Integrating on both sides of the equation (2.5) from x1 to x2,
we get

(y′1y2 − y′2y1)|x2
x1

=

x2∫

x1

{q1(x)− q2(x)}y1y2dx (2.9)

Then with no restriction it can be assumed that y1(x) > 0 and y2(x) > 0 over (x1, x2). These
conditions ensure that the integral on the right in (2.9) is positive. However, on the left, we
have y1(x1) = y1(x2) = 0 with y′1(x1) > 0 and y′1(x2) < 0. The left-hand side therefore becomes

y′1(x2)y2(x2)− y′1(x1)y2(x1) ≤ 0

which presents us with a contradiction: right-hand side > 0 and left-hand side < 0. Thus
y2(x) = 0 (at least once) between the zeros of y1(x). Since the conditions describing y1(x) are
given, we conclude that y2(x) must change sign between x = x1 and x = x2.
Case 4. Let (x1, x2) ⊂ (0, 1]. This case is totaly similar to the previous case.

3 On the zeros of eigenfunctions

In this section we examine the number of zeros of eigenfunctions.

Lemma 3.1. There is an unique solution y(x, λ) of the equation (1.1) satisfying the initial
conditions

y(x0, λ) = α(λ), y′(x0, λ) = β(λ) (3.1)

and the transmission conditions (1.2) where α(λ), β(λ) are given entire functions of λ ∈ C and
x0 ∈ [−1, 0)∪(0, 1]. Moreover, y(x, λ) is entire function of λ ∈ C for each fixed x ∈ [−1, 0)∪(0, 1].

Proof. The proof is totally similar to [?] and therefore is omitted.

Theorem 3.2. Let φ(x, λ1) =
{

φ1(x, λ1), x ∈ [−1, 0)
φ2(x, λ1), x ∈ (0, 1] be solution of the equation (1.1), for

λ = λ1 satisfying the initial conditions

φ1(−1, λ1) = α, φ′1(−1, λ1) = β (3.2)

and the transmission conditions

φ2(0+, λ1) =
1
δ
φ1(0−, λ1), φ′2(0

+, λ1) = δφ′1(0
−, λ1) (3.3)

and ϕ(x, λ2) =
{

ϕ1(x, λ2), x ∈ [−1, 0)
ϕ2(x, λ2), x ∈ (0, 1] be solution of the equation (1.1), for λ = λ2 satis-

fying the initial conditions

ϕ1(−1, λ2) = α, ϕ′1(−1, λ2) = β (3.4)

4
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and the transmission conditions

ϕ2(0+, λ2) =
1
δ
φ2(0−, λ2), ϕ′2(0

+, λ21) = δφ′1(0
−, λ1). (3.5)

where δ, β, δ any real numbers with α2 + β2 6= 0, δ 6= 0. Suppose that φ(x, λ1) has a zeros in
[−1, 0) ∪ (0, 1] and let x1(x1 6= −1) be zero of the function φ(x, λ1), nearest to x = −1. If
λ2 > λ1 then ϕ(x2, λ2) has at least one zero in [−1, x1).

Proof. From the well-known Lagrange’s identity (see,for example, [12]) we have

d

dx
{φ′1ϕ1 − ϕ′1φ1} = {λ2 − λ1}φ1ϕ1 (3.6)

in the interval (0, 1).

d

dx
{φ′2ϕ2 − ϕ′2φ2} = {λ2 − λ1}φ2ϕ2 (3.7)

Case 1. Let x1 > 0 and δ > 0. Integrating on both sides of the equation (3.11) from −1 to x1,
we get

lim
ε1 → 0
ε1 > 0

(φ′1ϕ1 − ϕ′1φ1)|0−ε1
−1 + lim

ε2 → 0
ε2 > 0

(φ′2ϕ2 − ϕ′2φ2)|x1
0+ε2

= lim
ε1 → 0
ε1 > 0

{λ2 − λ1}
0−ε1∫

−1

φ1ϕ1dx + lim
ε2 → 0
ε2 > 0

{λ2 − λ1}
x1∫

0+ε2

φ2ϕ2dx (3.8)

Since W (φ1, ϕ1;−1) = 0 by (3.2) and (3.4) we get

lim
ε1 → 0
ε1 > 0

W (φ1, ϕ1; 0− ε1)− lim
ε2 → 0
ε2 > 0

W (φ2, ϕ2; 0 + ε2) + φ′2(x1, λ1)ϕ2(x1, λ2)

= lim
ε1 → 0
ε1 > 0

{λ2 − λ1}
0−ε1∫

−1

φ1ϕ1dx + lim
ε2 → 0
ε2 > 0

{λ2 − λ1}
x1∫

0+ε2

φ2ϕ2dx (3.9)

Using the transmission conditions we obtain

φ′2(x1, λ1)ϕ2(x1, λ2) = lim
ε1 → 0
ε1 > 0

{λ2 − λ1}
0−ε1∫

−1

φ1ϕ1dx

+ lim
ε2 → 0
ε2 > 0

{λ2 − λ1}
x1∫

0+ε2

φ2ϕ2dx (3.10)

5
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With no restriction it can be assumed that φ(x, λ1) < 0 and ϕ(x, λ2) < 0 in [−1, x1). These
conditions ensure that the integral on the right in (3.10) is positive. Since φ2(x1, λ1) = 0 and
φ2(x, λ1) > 0 immediately to the left of x1 by assumption, the function is increasing at the point
x1. Hence φ′2(x1, λ1) > 0(it cannot vanish, because then it would follow from the uniqueness
theorem for the solutions of (2.1) that φ2(x, λ1) ≡ 0, which is impossible). Thus, the left-hand
side of the equation (3.10) is less or equal to zero, but the right-hand side is positive, which is
a contradiction.
Case 2. Let x1 > 0 and δ < 0. In this case with no restriction it can be assumed that
φ(x, λ1) > 0 and ϕ(x, λ2) < 0 in [−1, 0) but φ(x, λ1) < 0 and ϕ(x, λ2) > 0 in (0, x1]. As in the
previous case, these conditions ensure that the integral on the right of (3.10) is negative, but
left hand side of (3.10) is positive or is equal to zero, i.e. the equality (3.10)is impossible.
Case 3. Let x1 ∈ [−1, 0). Integrating on both sides of the equation (2.5) from a to x1, we get

(φ′1ϕ1 − ϕ′1φ1)|x1
−1 =

x1∫

−1

{λ2 − λ1}φ1ϕ1dx (3.11)

Since φ1(x, λ1) = 0 by using the initial conditions φ1(−1, λ1) = 0, φ′1(−1, λ1) = 0 we get

φ′1(x1)ϕ1(x1) =

x1∫

−1

{λ2 − λ1}φ1ϕ1dx (3.12)

Let x1 < 0. Without loss of generality, we can put φ(x, λ1) > 0 and ϕ(x, λ2) > 0 in [−1, x1).
Since, by assumption, φ1(x, λ1) > 0 and ϕ1(x, λ2) > 0 in [−1, x1) and λ2 > λ1, the right-hand
side of the equality (3.12) is positive. However, on the left-hand side, since φ1(x1, λ1) = 0 and
φ1(x, λ1) > 0 immediately to the left of x1, the function φ1(x, λ1) is decreasing in the vicinity
of the point x1. Therefore, φ′1(x1, λ1) ≤ 0(it cannot vanish, because then it would follow from
the uniqueness theorem for the solutions of (1.1) that φ1(x, λ1) ≡ 0, which is impossible). The
left-hand side therefore becomes

φ′1(x1, λ1)ϕ1(x1, λ1) ≤ 0

which presents us with a contradiction: right-hand side > 0 and left-hand side ≤ 0. The proof
is complete.

Now we are ready to establish the main result.

Theorem 3.3. Let ψ1(x) and ψ2(x) be two eigenfunction corresponding to the eigenvalues λ1

and λ2 of the problem (1.1)-(1.3) and let λ2 > λ1. Then if ψ1(x) has m zeros in [−1, 0)∪ (0, 1],
ψ2(x) has not fewer than m zeros in the same two-interval [−1, 0) ∪ (0, 1]. Moreover, n − th
zero of ψ2(x) is less than the n− th zero of ψ1(x).

Proof. Let x′1, x
′
2, ..., x

′
m with x′1 < x2 <, ... < x′m be zeros of the eigenfunctions ψ1(x). By

virtue of the Theorem 3.2 ψ2(x) has at least one zero in [−1, x′1). Moreover, by applying the
Theorem 2.1 to the solutions ψ1 and ψ2 we see that ψ2(x) has at least one zero in each of
the intervals (x′1, x

′
2), (x

′
2, x

′
3), ..., (x

′
m−1, x

′
m). Consequently the number of zeros of ψ2(x) is not

fewer than the number of zeros ψ1(x) and n− th zero of ψ2(x) is less than n− th zero of ψ1(x).
The proof is complete.

6
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Fuzzy stability of an additive-quadratic functional equation
in matrix fuzzy normed spaces

Javad Shokri1 and Choonkil Park2∗
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Abstract. A mapping f : X ×X → Y is called additive-quadratic if f satisfies the system of equations{
f(x + y, z) = f(x, z) + f(y, z),

f(x, y + z) + f(x, y − z) = 2f(x, y) + 2f(x, z).

In this paper, using the fixed point method, we prove the Hyers-Ulam stability in matrix fuzzy normed spaces

associated to the following additive-quadratic functional equation

f(x + y, z + w) + f(x + y, z − w) = 2f(x, z) + 2f(x,w) + 2f(y, z) + 2f(y, w)

for all x, y, z, w ∈ X.

1. Introduction and preliminaries

A definition of fuzzy norm on a vector space, to construct a fuzzy vector topological structure,

introduced by Katsaras [15]. During the last four decades some mathematicians have defined

fuzzy norms on a vector space from various points of view [13, 16, 32]. In particular, Bag and

Samanta [1], following Cheng and Mordeson [6], presented an idea of a fuzzy norm in such a

manner the corresponding fuzzy metric is of Kramosil and Michalek type [6]. They established

a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some

properties of fuzzy normed spaces [2].

We use the definition of fuzzy normed spaces given in [1, 19, 21] to investigate a fuzzy version

of the Hyers-Ulam stability of an additive-quadratic additive functional equation in the fuzzy

normed vector space setting.

Definition 1.1. Let X be a real vector space. A function N : X ×R→ [0, 1] is called a fuzzy

norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t 6 0;

(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;

(N3) N(cx, t) = N(x, t
|c|) if c 6= 0

(N4) N(x+ y, s+ t > min{N(x, s), N(y, t)};
02010 Mathematics Subject Classification: 47H10; 47L25; 46S40; 39B52; 39B72.
0Keywords: additive-quadratic functional equation; matrix fuzzy normed space; fixed point; Hyers-Ulam

stability.
∗Corresponding author.
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J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.3, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

424 Javad Shokri et al 424-432



J. Shokri, C. Park

(N5) N(x, .) is a non-decreasing function of R and limt→∞N(x, t) = 1;

(N6) for x 6= 0, N(x, .) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space. To see more properties and examples

of fuzzy normed vector spaces, we refer to [19, 20].

Definition 1.2. Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is said

to be convergent or converge if there exists an x ∈ X such that limn→∞N(xn − x, t) = 1

for all t > 0. In this case, x is called the limit of the sequence {xn} and we denote it by

N − limn→∞ xn = x.

Definition 1.3. Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is called

a Cauchy sequence if for each ε > 0 and each t > 0, there exists an n0 ∈ N such that for all

n > n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It is well known that every convergent sequence in a fuzzy normed vector space is a Cauchy

sequence. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete

and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is

continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X, the sequence

{f(xn)} converges f(x0). If f : X → Y continuous at each x ∈ X, then f : X → Y is said to

be continuous on X (see [2]).

We will use the following notations:

Mn(X) is the set of all n× n-matrices in X;

ej ∈M1,n(C) is that the jth component is 1 and the other components are zero;

Eij ∈Mn(C) is that the (i, j)-component is 1 and the other components are zero;

Eij ⊗ x ∈Mn(X) is that the (i, j)-component is x and the other components are zero.

For x ∈Mn(X), y ∈Mk(X),

x⊗ y =

(
x 0

0 y

)
.

Let (X, ‖·‖) be a normed space. Note that (X, {‖·‖n}) is a matrix normed space if and only

if (Mn(X), ‖ · ‖n) is a normed space for each positive integer n and ‖AxB‖k 6 ‖A‖‖B‖‖x‖n
holds for A ∈Mk,n(C), x = (xij) ∈Mn(X) and B ∈Mn,k(C), and that (X, {‖.‖n}) is a matrix

Banach space if and only if X is a Banach space and (X, {‖ · ‖n}) is a matrix normed space.

A matrix normed space (X, {‖ · ‖n}) is called an L∞-matrix normed space if ‖x⊕ y‖n+k =

max{‖x‖n, ‖y‖k} holds for all x ∈Mn(X) and all y ∈Mk(X).

Let E,F be vector spaces. For a given mapping h : E → F and a given positive integer n,

define hn : Mn(E)→Mn(F ) by

hn([xij ]) = [h(xij)]

for all [xij ] ∈Mn(E).

Throughout this paper, let (X, {‖ · ‖n}) be a matrix normed space and (Y, {‖ · ‖n}) be a

matrix Banach space.

We introduce the concept of a matrix fuzzy normed space.
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Definition 1.4. Let (X,N) be a fuzzy normed space.

(1) (X,N) is called a matrix fuzzy normed space if for each positive integer n, (Mn(X), Nn)

is a fuzzy normed space and Nk(AxB, t) > Nn

(
x, t
‖A‖·‖B‖

)
for all t > 0, A ∈Mk,n(R), x =

[xij ] ∈Mn(X) and B ∈Mn,k(R) with ‖A‖ 6= 0.‖B‖ 6= 0.

(2) (X, {Nn}) is called a matrix fuzzy Banach space if (X,N) is a fuzzy Banach space and

(X, {Nn}) is a matrix fuzzy normed space.

Example 1.5. Let (X, {‖ · ‖n}) be a matrix normed space. Let Nn(x, t) := t
t+‖x‖n for all t > 0

and x = [xij ] ∈Mn(X). Then

Nk(AxB, t) =
t

t+ ‖AxB‖k
>

t

t+ ‖A‖.‖x‖n.‖B‖
=

t
‖A‖.‖B‖
t

‖A‖.‖B‖ + ‖x‖n

for all t > 0, A ∈ Mk,n(R), x = [xij ] ∈ Mn(X) and B ∈ Mn,k(R) with ‖A‖.‖B‖ 6= 0. So,

(X, {Nn}) is a matrix fuzzy normed space.

The abstract characterization given for linear spaces of bounded Hilbert space operators in

terms of matricially normed spaces [29] implies that quotients, mapping spaces, and various

tensor product of operator spaces may again be regarded as operator spaces. Owing in part

to this result, the theory of operator spaces have an increasingly significant effect on operator

algebra theory(see [10]).

The proof given in [29] appealed to the theory of ordered operator spaces [7]. Effros and

Ruan [11] showed that one can give a purely metric proof of this important theorem by using

a technique of Pisier [26] and Effors [9].

The study of stability problems have been formulated by Ulam [31] in 1940: Under what

condition does there exist a homomorphism near an approximate homomorphism? In the

following year, Hyers [14] answered affirmatively the question of Ulam for Banach spaces,

which was stated that if ε > 0 and f : X → Y is a mapping with X a normed space and Y is

a Banach space such that

‖f(x+ y)− f(x)− f(y)‖ 6 ε (1.1)

for all x, y ∈ X, then there exists a unique additive map T : X → Y such that

‖f(x+ y)− f(x)− f(y)‖ 6 ε

for all x ∈ X. A generalized version of the theorem of Hyers for approximately linear mappings

presented by Rassias [27] in 1978 by considering the case when (1.1) is unbounded.

In 2003, Cǎdariu and Radu applied the fixed point method to the investigation of the Jensen

functional equation [3]. They could present a short and a simple proof (different of the “direct

method”, initiated by Hyers in 1941) for the Hyers-Ulam stability of the Jensen functional

equation [3] and forthe quadratic functional equation [4]. See [12, 22, 23, 24, 28, 30] for more

information on functional equations.

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d

satisfies
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(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, y) 6 d(x, z) + d(z, y) for all x, y, z ∈ X.

We recall a fundamental result in fixed point theory.

Theorem 1.6. [8] Let (Ω, d) be a complete generalized metric space and J : Ω→ Ω be a strictly

contractive mapping with Lipschitz constant 0 < L < 1. Then for each given x ∈ Ω, either

d(Jnx, Jn+1x) =∞

for all nonnegative n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n > n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Λ = {y ∈ Ω : d(Jn0x, y) <∞};
(4) d(y, y∗) 6 1

1−Ld(y, Jy) for all y ∈ Λ.

Definition 1.7. A mapping f : X × X → Y is called additive-quadratic if f satisfies the

system of equations {
f(x+ y, z) = f(x, z) + f(y, z),

f(x, y + z) + f(x, y − z) = 2f(x, y) + 2f(x, z).
(1.2)

When X = Y = R, the function f : R×R→ R given by f(x, y) := cxy2 is a solution of (1.2).

In particular, letting x = y, we get a cubic function g : R→ R given by g(x) := f(x, x) = cx3.

For a mapping f : X ×X → Y , consider the functional equation:

f(x+ y, z + w) + f(x+ y, z − w) = 2f(x, z) + 2f(x,w) + 2f(y, z) + 2f(y, w). (1.3)

for all x, y, z, w ∈ X. The solution of (1.3) was discussed in [25].

In this paper, by using the fixed point method, we prove the Hyers-Ulam stability of the

additive-quadratic functional equation (1.3) in matrix fuzzy normed spaces.

2. Fuzzy stability of the additive-quadratic functional equation (1.3)

In this section, using the fixed point method, we prove the Hyers-Ulam stability of the

additive-quadratic functional equation (1.3) in matrix fuzzy normed space.

We need the following lemma.

Lemma 2.1. [17, Lemma 2.1] Let (X, {Nn}) be a matrix fuzzy normed space.

(1) Nn(Ekl ⊗ x, t) = N(x, t) for all t > 0 and x ∈ X.

(2) for all [xij ] ∈Mn(X) and t =
∑n

i,j=1 tij ,

N(xkl, t) > N([xij ], t) > min{N(xij , tij) : i, j = 1, 2, · · · , n},

N(xkl, t) > N([xij ], t) > min

{
N
(
xij ,

t

n2

)
: i, j = 1, 2, · · · , n

}
(3) limn→∞ xn = x if and only if limn→∞ xijn = xij for xn = [xijn], x = [xij ] ∈Mk(X)
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Proof. (1) Since Ekl ⊗ x = e∗kxel and ‖e∗k‖ = ‖el‖ = 1, Nn(Ekl ⊗ x, t) > N(x, t). Since

ek(Ekl ⊗ x)e∗l = x,Nn(Ekl ⊗ x, t) 6 N(x, t). So N(Ekl ⊗ x, t)=N(x,t).

(2) N(xkl, t) = N(ek[xij ]e
∗
l , t) > Nn

(
[xij ],

t
‖ek‖.‖el‖

)
= Nn([xij ], t).

Nn([xij ], t) = Nn

( n∑
i,j=1

Eij ⊗ xij , t
)
> min{Nn(Eij ⊗ xij , tij) : i, j = 1, 2, · · · , n}

= min{N(xij , tij) : i, j = 1, 2, · · · , n},

where t =
∑n

i,j=1 tij . So, Nn([xij ], t) > min{N(xij ,
t
n2 ) : i, j = 1, 2, · · · , n}.

(3) By N(xkl, t) > Nn([xij ], t) > min{N(xij ,
t
n2 ) : i, j = 1, 2, · · · , n}, we obtain the result.

This completes the proof. �

For a mapping f : X → Y , define Df : Xm → Y and Dfn : Mn(X4)→Mn(Y ) by

Df(a, b, c, d) := f(a+ b, c+ d) + f(a+ b, c− d)

− 2f(a, c)− 2f(a, d)− 2f(b, c)− 2f(b, d),

Dfn

(
[xij ], [yij ], [zij ],[wij ]

)
:= fn

(
[xij ] + [yij ], [zij ] + [wij ]

)
+ fn

(
[xij ] + [yij ], [zij ]− [wij ]

)
− 2fn

(
[xij ], [zij ]

)
− 2fn

(
[xij ], [wij ]

)
− 2fn

(
[yij ], [zij ]

)
− 2fn

(
[yij ], [wij ]

)
for all a, b, c, d ∈ X and all x = [xij ], y = [yij ], z = [zij ], w = [wij ] ∈Mn(X).

Theorem 2.2. Let f : X → Y , with f(x, 0) = 0, be a mapping for which there exists a function

ϕ : X4 → [0,∞) such that

Nn

(
fn([xij ], [yij ], [zij ], [wij ]), t

)
>

t

t+
∑n

i,j=1 ϕ(xij , yij , zij , wij)
(2.1)

for all t > 0 and all x = [xij ], y = [yij ], z = [zij ], w = [wij ] ∈ Mn(X). If there exists an α < 1

such that

ϕ(a, b, c, d) 6 8αϕ

(
a

2
,
b

2
,
c

2
,
d

2

)
(2.2)

for all a, b, c, d ∈ X, then there exists a unique additive-quadratic mapping T : X × X → Y

such that

Nn (fn ([xij ], [yij ])− Tn ([xij ], [yij ]) , t) >
8(1− α)t

8(1− α)t+ n2
∑n

i,j=1 ϕ(xij , xij , yij , yij)
(2.3)

for all t > 0 and x = [xij ], y = [yij ] ∈Mn(X).

Proof. Putting n = 1 in (2.1), we have

N(Df(x, y, z, w), t) >
t

t+ ϕ(x, y, z, w)
(2.4)

for all t > 0 and x, y, z, w ∈ X.
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Letting x = y and z = w in (2.4), we obtain

N(f(2x, 2z)− 8f(x, z), t) >
t

t+ ϕ(x, x, z, z)
(2.5)

and also

N

(
1

8
f(2x, 2z)− f(x, z),

t

8

)
>

t

t+ ϕ(x, x, z, z)

for all t > 0 and x, z ∈ X. Also it can be written as

N

(
1

8
f(2x, 2y)− f(x, y),

t

8

)
>

t

t+ ϕ(x, x, y, y)
(2.6)

for all t > 0 and x, y ∈ X.

By considering the set of

Ω := {g : X → Y },
we introduce the generalized metric on Ω as following:

d(g, h) = inf

{
k ∈ R+ : N(g(x, y)− h(x, y), kt) >

t

t+ ϕ(x, x, y, y)
, ∀x, y ∈ X,∀t > 0

}
where, as usual inf ∅ = +∞. It is easy to show that (Ω, d) is complete (see [5, 18]).

Now we define J : Ω→ Ω by

Jg(x, y) :=
1

8
h(2x, 2y)

for all x, y ∈ X.

Let g, h ∈ Ω be given such that d(g, h) = c. Then

N(g(x, y)− h(x, y), ct) >
t

t+ ϕ(2x, 2x, 2y, 2y)

⇒ N

(
1

8
g(2x, 2y)− 1

8
h(2x, 2y),

c

8
t

)
>

t

t+ ϕ(2x, 2x, 2y, 2y)

⇒ N

(
1

8
g(2x, 2y)− 1

8
h(2x, 2y),

c

8
t

)
>

t

t+ 8αϕ(x, x, y, y)

⇒ N

(
1

8
g(2x, 2y)− 1

8
h(2x, 2y), αct

)
>

t

t+ ϕ(x, x, y, y)

⇒ d(Jg, Jh) 6 αc

for all x, y ∈ X. Hence we get that

d(Jg, Jh) 6 αd(g, h)

for all g, h ∈ Ω. It follows from (2.6) that d(f, Jf) 6 1
8 .

By Theorem 1.6, there exists a mapping T : X → Y satisfying the following:

(1) T is a fixed point of J , i.e., T (2x, 2y) = 8T (x, y) for all x ∈ X. The mapping T is a

unique fixed point of J in the set X = {g ∈ Ω : d(f, g) <∞}.
(2) d(Jkf, T ) → 0 as k → ∞. This implies the inequality N − limk→∞

1
8k
f(2kx, 2ky) =

T (x, y) for all x, y ∈ X.
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(3) d(f, T ) 6 1
1−αd(f, Jf), which implies the inequality

(f, T ) 6
1

8(1− α)
. (2.7)

By (2.2) and (2.4),

N

(
1

8k
Df(2kx, 2ky, 2kz, 2kw)

)
>

t

t+ ϕ(2kx, 2ky, 2kz, 2kw)

>
8kt

8kt+ 8kαkϕ(x, y, z, w)

for all x, y, z, w ∈ X and t > 0. Since limk→∞
8kt

8kt+8kαkϕ(x,y,z,w)
= 1 for all x, y, z, w ∈ X and

t > 0,

N(DT (x, y, z, w), t) = 1

for all x, y, z, w ∈ X and t > 0. Therefore

T (x+ y, z + w) + T (x+ y, z − w) = 2T (x, z) + 2T (x,w) + 2T (y, z) + 2T (y, w).

for all x, y, z, w ∈ X. Then, the mapping T : X ×X → Y is additive-quadratic.

It follows from Lemma 2.1 and (2.7) that

Nn

(
fn([xij ], [yij ])− Tn([xij ],[yij ]), t

)
>

{
N

(
f(xij , yij)− T (xij , yij),

t

n2

)
: i, j = 1, 2, · · · , n

}
> min

{
8(1− α)t

8(1− α)t+ n2ϕ(xij , xij , yij , yij)
: i, j = 1, 2, · · · , n

}
>

8(1− α)t

8(1− α)t+ n2
∑n

i,j=1 ϕ(xij , xij , yij , yij)

for all x = [xij ] ∈Mn(X). Therefore, we conclude that T : X ×X → Y is the unique mapping

satisfying (2.3). �

Corollary 2.3. Let p, θ be positive real numbers p < 1. Let f : X ×X → Y , with f(x, 0) = 0,

be a mapping satisfying

Nn(Dfn([xij ], [yij ], [zij ], [wij ]), t) >
t

t+
∑n

i,j=1 θ(‖xij‖p + ‖yij‖p + ‖zij‖p + ‖wij‖p)
(2.8)

for all x = [xij ], y = [yij ], z = [zij ], w = [wij ] ∈ Mn(X) and t > 0. Then T (x, y) := N −
limk→∞

1
8k
f(2kx, 2ky) exists for each x, y ∈ X and defines an additive-quadratic mapping T :

X ×X → Y such that

Nn

(
fn ([xij ], [yij ])− Tn ([xij ], [yij ]) , t

)
>

2(2− 2p)t

2(2− 2p)t+ n2
∑n

i,j=1 θ (‖xij‖p + ‖yij‖p)

for all x = [xij ], y = [yij ] ∈Mn(X) and t > 0.

Proof. Putting ϕ(a, b, c, z) := θ
∑m

i=1(‖a‖p+‖b‖p+‖c‖p+‖d‖p) for all a, b, c, d ∈ X and letting

α = 2p−1 in Theorem 2.2, we obtain the desired result. �
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Theorem 2.4. Let f : X ×X → Y , with f(x, 0) = 0, be a mapping for which there exists a

function ϕ : X4 → [0,∞) satisfying (2.1). If there exists an α < 1 such that

ϕ

(
a

2
,
b

2
,
c

2
,
d

2

)
6
α

8
ϕ(a, b, c, d)

for all a, b, c, d ∈ X, then there exists a unique additive-quadratic mapping T : X × X → Y

such that

N
(
fn ([xij ], [yij ])− Tn ([xij ], [yij ]) , t

)
>

8(1− α)t

8(1− α)t+ n2α
∑n

i,j=1 ϕ(xij , xij , yij , yij)

for all t > 0 and x = [xij ], y = [yij ] ∈Mn(X).

Proof. Let (Ω, d) be the generalized metric space defined in the proof of Theorem 2.2. Here,

we define the linear mapping J : Ω→ Ω such that

Jg(x, y) := 8g(
x

2
,
y

2
)

for all x, y ∈ X.

It follows from (2.5) that d(f, Jf) 6 α
8 . Thus

d(f, T ) 6
α

8(1− α)
.

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let p, θ be positive real numbers with p > 1. Let f : X × X → Y , with

f(x, 0) = 0, be a mapping satisfying (2.8). Then T (x, y) := N − limk→∞ 8kf( x
2k
, y
2k

) exists for

all x ∈ X and defines an additive-quadratic mapping T : X ×X → Y such that

Nn

(
fn ([xij ], [yij ])− Tn ([xij ], [yij ]) , t

)
>

4(2p − 2)t

4(2p − 2)t+ n2 · 2p
∑n

i,j=1 θ (‖xij‖p + ‖yij‖p)

for all x = [xij ], y = [yij ] ∈Mn(X) and t > 0.

Proof. Putting ϕ(a, b, c, d) := θ(‖a‖p + ‖b‖p + ‖c‖p + ‖d‖p) for all a, b, c, d ∈ X and letting

α = 21−p in Theorem 2.4, we get the desired result. �

References

[1] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (2003),

687-705.

[2] T. Bag and S. K. Samanta, Finite fuzzy bounded linear operators, Fuzzy Sets Syst. 151 (2005), 513-547.
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Abstract
In this paper we give the closed form expressions of some two di-

mensional systems of nonlinear rational partial difference equations of
second order.We shall use a new method to prove the results by using
(odd-even) double mathematical induction. As a direct consequences ,
we investigate and drive the explicit solutions of some partial difference
equations and some (systems of) ordinary difference equations .
AMS Subject Classification: 39A10, 39A14.
Key Words and Phrases: (partial)difference equations, solutions ,
double mathematical induction.

1 Introduction

While the study of (ordinary)difference equations has been widely treated in
the past , partial difference equations (P∆Es) have not received the same
full attention .Both of ordinary and partial difference equations may be found
in the study of probability ,dynamics and other branches of mathematical
physics .Moreover,partial difference equations arise in applications involving
population dynamics with spatial migrations , chemical reactions and finite
difference schemes . Indeed Laplace and Lagrange considered the solution of
partial difference equations in their studies of dynamics and probability.
An example of a partial difference equation is the following well known relation

C(n)
m = C

(n−1)
m−1 + C(n−1)

m , 1 ≤ m < n.

The solution of this equation is the celebrated binomial coefficient function

C
(n)
m defined by

C(n)
m =

n!

m!(n−m)!
, 0 ≤ m < n.
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An another example , the following P∆Es :

s
(n+1)
k = s

(n)
k−1 − ns

(n)
k , 1 ≤ k < n.

S
(n+1)
k = S

(n)
k−1 + kS

(n)
k , 1 ≤ k < n.

The solutions of these P∆Es are the stirling numbers of the first kind s
(n)
k

and the stirling numbers of the second kind S
(n)
k respectively .

Some authors investigate the closed form solutions for certain Partial dif-
ference equations .
For instance , Heins [[9] ] considered the solution of the partial difference equa-
tion

Xn+1,m +Xn−1,m = 2Xn,m+1

under some conditions .
In [[3]] Carlitz has studied a solution of the partial difference equation

Xn,m −Xn,m−1 −Xn−1,m −Xn,m−2 + 3Xn−1,m−1 −Xn−2,m = 0

He used a power series expansion related to the Fibonacci numbers .
For more results about partial difference equations we refer to ([1],[2],

[4]-[8],[10],[11]-[15]).
In this paper , we studied the closed form solutions of the following systems

of partial difference equations
αXn,m + βXn,mXn−2,m−2Yn−1,m−1 −Xn−2,m−2 = 0 (1)

γYn,m + δYn,mYn−2,m−2Xn−1,m−1 − Yn−2,m−2 = 0 (2)

where n,m ∈ N0 , N0 = N
⋃
{0} ,α, β, γ, δ ∈ {1,−1} and the initial values

Xn,0,Xn,−1,X0,m,X−1,m, Yn,0,Yn,−1,Y0,m,and Y−1,m are real numbers .
As a direct consequence , we can drive the explicit solutions of a family of

partial difference equations in the following form

αXn,m + βXn,mXn−2,m−2Xn−1,m−1 −Xn−2,m−2 = 0

where n,m ∈ N0 , N0 = N
⋃
{0} ,α, β ∈ {1,−1} and the initial values

Xn,0,Xn,−1,X0,m, ,and X−1,m are real numbers .
Moreover , we can derive the exact solution for the following systems of ordi-
nary difference equations

αXn + βXnXn−2Yn−1 −Xn−2 = 0

γYn + δYnYn−2Xn−1 − Yn−2 = 0

where n ∈ N0 , N0 = N
⋃
{0} ,α, β, γ, δ ∈ {1,−1} and the initial values

X0,X−1,Y0,and Y−1 are real numbers .

2 Forms of Solutions

In this section we shall give explicit forms of solutions of the system (1)-(2)
for particular values of α, β, γ, δ ∈ {1,−1} . We can rewrite system (1)-(2) in
the following form

Xn,m =
Xn−2,m−2

α + βXn−2,m−2Yn−1,m−1
, Yn,m =

Yn−2,m−2
γ + δYn−2,m−2Xn−1,m−1

(3)
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2.1 Form of Solutions when (α, β) = (γ, δ) = (1,−1)

In this case we have the system

Xn,m =
Xn−2,m−2

1−Xn−2,m−2Yn−1,m−1
, Yn,m =

Yn−2,m−2
1− Yn−2,m−2Xn−1,m−1

(4)

Theorem 1. Let {Xn,m, Yn,m}∞n,m=−k be a solution of system (4) with
initial conditions

Xn,0, Xn,−1, X0,m, X−1,m, Yn,0, Yn,−1, Y0,m, Y−1,m

where n,m ∈ N0 , N0 = N
⋃
{0} . SupposeX−1,m−2Y0,m−1 6= 1 ,Xn−2,−1Yn−1,0 6=

1 ,Y−1,m−2X0,m−1 6= 1 ,Yn−2,−1Xn−1,0 6= 1 . Then, the form of solutions of sys-
tem (4) ,for n,m ≥ 1 and n ≥ m , are as follows:

Xn,m =


Xn−m,0

m−2
2∏

k=0

−1+(2k+1)Xn−m,0Yn−m−1,−1

−1+(2k+2)Xn−m,0Yn−m−1,−1
, m even;

Xn−m−1,−1

m−1
2∏

k=0

1−(2k)Xn−m−1,−1Yn−m,0

1−(2k+1)Xn−m−1,−1Yn−m,0
, m odd;

(5)

Yn,m =


Yn−m,0

m−2
2∏

k=0

−1+(2k+1)Yn−m,0Xn−m−1,−1

−1+(2k+2)Yn−m,0Xn−m−1,−1
, m even;

Yn−m−1,−1

m−1
2∏

k=0

1−(2k)Yn−m−1,−1Xn−m,0

1−(2k+1)Yn−m−1,−1Xn−m,0
, m odd;

(6)

Xm,n =


X−1,n−m−1

m−1
2∏

k=0

1−(2k)X−1,n−m−1Y0,n−m

1−(2k+1)X−1,n−m−1Y0,n−m
, m odd;

X0,n−m

m−2
2∏

k=0

−1+(2k+1)X0,n−mY−1,n−m−1

−1+(2k+2)X0,n−mY−1,n−m−1
, m even;

(7)

Ym,n =


Y−1,n−m−1

m−1
2∏

k=0

1−(2k)Y−1,n−m−1X0,n−m

1−(2k+1)Y−1,n−m−1X0,n−m
, m odd;

Y0,n−m

m−2
2∏

k=0

−1+(2k+1)Y0,n−mX−1,n−m−1

−1+(2k+2)Y0,n−mX−1,n−m−1
, m even;

(8)

Proof. We shall use the principle of (odd-even)double mathematical induc-
tion . Firstly , we shall prove that the relations (5)-(8) hold for (n,m) = (1, 1).
From equations in system (4)we can see

X1,1 =
X−1,−1

1−X−1,−1Y0,0
= X−1,−1

1−1
2∏

k=0

1− (2k)X−1,−1Y0,0
1− (2k + 1)X−1,−1Y0,0

Y1,1 =
Y−1,−1

1− Y−1,−1X0,0

= Y−1,−1

1−1
2∏

k=0

1− (2k)Y−1,−1X0,0

1− (2k + 1)Y−1,−1X0,0
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Now , we shall prove that the relations (5)-(8)hold for (n,m) = (2, 2).

X2,2 =
X0,0

1−X0,0Y1,1
=

X0,0

1−X0,0(
Y−1,−1

1−Y−1,−1X0,0
)

= X0,0(
1−X0,0Y−1,−1
1− 2X0,0Y−1,−1

)

= X0,0

2−2
2∏

k=0

−1 + (2k + 1)X0,0Y−1,−1
−1 + (2k + 2)X0,0Y−1,−1

Y2,2 =
Y0,0

1− Y0,0X1,1

=
Y0,0

1− Y0,0( X−1,−1

1−X−1,−1Y0,0
)

= Y0,0(
1− Y0,0X−1,−1
1− 2Y0,0X−1,−1

)

= Y0,0

2−2
2∏

k=0

−1 + (2k + 1)Y0,0X−1,−1
−1 + (2k + 2)Y0,0X−1,−1

Moreover ,We shall prove that the relations (5)-(8) hold for (n,m) = (1, 2)
and (n,m) = (2, 1).

X1,2 =
X−1,0

1−X−1,0Y0,1
= X−1,0

1−1
2∏

k=0

1− (2k)X−1,0Y0,1
1− (2k + 1)X−1,0Y0,1

Y1,2 =
Y−1,0

1− Y−1,0X0,1

= Y−1,0

1−1
2∏

k=0

1− (2k)Y−1,0X0,1

1− (2k + 1)Y−1,0X0,1

X2,1 =
X0,−1

1−X0,−1Y1,0
= X0,−1

1−1
2∏

k=0

1− (2k)X0,−1Y1,0
1− (2k + 1)X0,−1Y1,0

Y2,1 =
Y0,−1

1− Y0,−1X1,0

Now suppose that the relations (5)-(8) hold for m = 1 and m = 2 with
n ∈ N . So we have ,

Xn,1 = Xn−2,−1

0∏
k=0

1− (2k)Xn−2,−1Yn−1,0
1− (2k + 1)Xn−2,−1Yn−1,0

=
Xn−2,−1

1−Xn−2,−1Yn−1,0

Yn,1 =
Yn−2,−1

1− Yn−2,−1Xn−1,0

Xn,2 = Xn−2,0(
1−Xn−2,0Yn−3,−1
1− 2Xn−2,0Yn−3,−1

)

Yn,2 = Yn−2,0(
1− Yn−2,0Xn−3,−1

1− 2Yn−2,0Xn−3,−1
)
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Now we try to prove that relations (5)-(8) hold for m = 1 with n+ 2.

Xn+2,1 =
Xn,−1

1−Xn,−1Yn+1,0

= Xn,−1

0
2∏

k=0

1− (2k)Xn,−1Yn+1,0

1− (2k + 1)Xn,−1Yn+1,0

Yn+2,1 =
Yn,−1

1− Yn,−1Xn+1,0

= Yn,−1

1−1
2∏

k=0

1− (2k)Yn,−1Xn+1,0

1− (2k + 1)Yn,−1Xn+1,0

Now we try to prove that relations (5)-(8) hold for m = 2 with n+ 2.

Xn+2,2 =
Xn,0

1−Xn,0Yn+1,1

=
Xn,0

1−Xn,0(
Yn−1,−1

1−Yn−1,−1Xn,0
)

=
Xn,0(1− Yn−1,−1Xn,0)

1− 2Yn−1,−1Xn,0

= Xn,0

2−2
2∏

k=0

1− (2k + 1)Xn,0Yn−1,−1
1− (2k + 2)Xn,0Yn−1,−1

Yn+2,2 =
Yn,0

1− Yn,0Xn+1,1

= Yn,0

2−2
2∏

k=0

1− (2k + 1)Yn,0Xn−1,−1

1− (2k + 2)Yn,0Xn−1,−1

Finally , we suppose that relations (5)-(8) hold for n,m ∈ N . We shall
prove that relations (5)-(8) hold for n,m+ 2 ∈ N .
From (4)we have

Xn,m+2 =
Xn−2,m

1−Xn−2,mYn−1,m+1

(9)

There are four cases :

(1) If n > m+ 2 and m even .

Xn,m+2 =
Xn−2,m

1−Xn−2,mYn−1,m+1

=

Xn−m−2,0

m−2
2∏

k=0

1−(2k+1)Xn−m−2,0Yn−m−3,−1

1−(2k+2)Xn−m−2,0Yn−m−3,−1

1− (Xn−m−2,0

m−2
2∏

k=0

1−(2k+1)Xn−m−2,0Yn−m−3,−1

1−(2k+2)Xn−m−2,0Yn−m−3,−1
)(Yn−m−3,−1

m
2∏

k=0

1−(2k)Yn−m−3,−1Xn−m−2,0

1−(2k+1)Yn−m−3,−1Xn−m−2,0
)

=

Xn−m−2,0

m−2
2∏

k=0

1−(2k+1)Xn−m−2,0Yn−m−3,−1

1−(2k+2)Xn−m−2,0Yn−m−3,−1

1− Xn−m−2,0Yn−m−3,−1

1−(m+1)Xn−m−2,0Yn−m−3,−1

= Xn−m−2,0

m
2∏

k=0

1− (2k + 1)Xn−m−2,0Yn−m−3,−1
1− (2k + 2)Xn−m−2,0Yn−m−3,−1
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(2) If n > m+ 2 and m odd

Xn,m+2 =
Xn−2,m

1−Xn−2,mYn−1,m+1

=

Xn−m−3,−1

m−1
2∏

k=0

1−(2k)Xn−m−3,−1Yn−m−2,0

1−(2k+1)Xn−m−3,−1Yn−m−2,0

1− (Xn−m−3,−1

m−1
2∏

k=0

1−(2k)Xn−m−3,−1Yn−m−2,0

1−(2k+1)Xn−m−3,−1Yn−m−2,0
)(Yn−m−2,0

m−1
2∏

k=0

1−(2k+1)Yn−m−2,0Xn−m−3,−1

1−(2k+2)Yn−m−2,0Xn−m−3,−1
)

=

Xn−m−3,−1

m−1
2∏

k=0

1−(2k)Xn−m−3,−1Yn−m−2,0

1−(2k+1)Xn−m−3,−1Yn−m−2,0

1− Xn−m−3,−1Yn−m−2,0

1−(m+1)Xn−m−3,−1Yn−m−2,0

= Xn−m−3,−1

m+1
2∏

k=0

1− (2k)Xn−m−3,−1Yn−m−2,0
1− (2k + 1)Xn−m−3,−1Yn−m−2,0

(3) If n < m+ 2 and m even
By symmetry ,using (7) and (8), we can prove it like part (1) .

(4) If n < m+ 2 and m odd
By symmetry ,using (7) and (8), we can prove it like part (2) ..

Yn,m+2 =
Yn−2,m

1− Yn−2,mXn−1,m+1

We can do that by the same way in proving equation (9)

Proposition 1. We have the following properties for the solutions of
system (4) :

(1) If m even and Xn−m,0 = 0 , then Xn,m = 0 .

(2) If m odd and Xn−m,0 = 0 , then Yn,m = Yn−m−1,−1 .

(3) If m even and Yn−m,0 = 0 , then Yn,m = 0 .

(4) If m odd and Yn−m,0 = 0 , then Xn,m = Xn−m−1,−1 .

(5) If m even and Xn−m−1,−1 = 0 , then Yn,m = Yn−m,0 .

(6) If m odd and Xn−m−1,−1 = 0, then Xn,m = 0 .

(7) If m even and Yn−m−1,−1 = 0 , then Xn,m = Xn−m,0 .

(8) If m odd and Yn−m−1,−1 = 0, then Yn,m = 0 .
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Proposition 2. We have the following properties for the solutions of
system (4) :

(1) If m even and X0,n−m = 0 , then Xm,n = 0 .

(2) If m odd and X0,n−m = 0 , then Ym,n = Y−1,n−m−1 .

(3) If m even and Y0,n−m = 0 , then Ym,n = 0 .

(4) If m odd and Y0,n−m = 0 , then Xm,n = X−1,n−m−1 .

(5) If m even and X−1,n−m−1 = 0 , then Ym,n = Y0,n−m .

(6) If m odd and X−1,n−m−1 = 0, then Xm,n = 0 .

(7) If m even and Y−1,n−m−1 = 0 , then Xm,n = X0,n−m .

(8) If m odd and Y−1,n−m−1 = 0, then Ym,n = 0 .

Remark 1. If we take into account the one dimensional case of system
(4) we have a partial difference equation in the form

Xn,m =
Xn−2,m−2

1−Xn−2,m−2Xn−1,m−1
(10)

We can see that the closed form solution of equation(10) is given ,from theo-
rem(1) , by the following corollary .

Corollary 2. Let {Xn,m}∞n,m=−k be a solution of equation (10) with initial
conditions Xn,0, Xn,−1, X0,m, X−1,m, where n,m ∈ N0 , N0 = N

⋃
{0} . Suppose

X−1,m−2X0,m−1 6= 1 ,Xn−2,−1Xn−1,0 6= 1 . Then, the form of solutions of
equation (10) ,for n,m ≥ 1 and n ≥ m , are as follows:

Xn,m =


Xn−m,0

m−2
2∏

k=0

−1+(2k+1)Xn−m,0Xn−m−1,−1

−1+(2k+2)Xn−m,0Xn−m−1,−1
, m even;

Xn−m−1,−1

m−1
2∏

k=0

1−(2k)Xn−m−1,−1Xn−m,0

1−(2k+1)Xn−m−1,−1Xn−m,0
, m odd;

Xm,n =


X−1,n−m−1

m−1
2∏

k=0

1−(2k)X−1,n−m−1X0,n−m

1−(2k+1)X−1,n−m−1X0,n−m
, m odd;

X0,n−m

m−2
2∏

k=0

−1+(2k+1)X0,n−mX−1,n−m−1

−1+(2k+2)X0,n−mX−1,n−m−1
, m even;

Proposition 3. We have the following properties for the solutions of
equation (4):

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.3, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

439 Ibrahim 433-445



8

(1) If m even and Xn−m,0 = 0 , then Xn,m = 0 .

(2) If m odd and Xn−m,0 = 0 , then Xn,m = Xn−m−1,−1 .

(3) If m even and Xn−m−1,−1 = 0 , then Xn,m = Xn−m,0 .

(4) If m odd and Xn−m−1,−1 = 0, then Xn,m = 0 .

(5) If m even and X0,n−m = 0 , then Xm,n = 0 .

(6) If m odd and X0,n−m = 0 , then Xm,n = X−1,n−m−1 .

(7) If m even and X−1,n−m−1 = 0 , then Xm,n = X0,n−m .

(8) If m odd and X−1,n−m−1 = 0, then Xm,n = 0 .

Remark 2. If we put n = m in system (4) we have a system of ordinary
difference equations in the following form

Xn =
Xn−2

1−Xn−2Yn−1
, Yn =

Yn−2
1− Yn−2Xn−1

(11)

Corollary 3. Let {Xn, Yn}∞n=−k be a solution of system (11) with initial
conditions X0, X−1, Y0, Y−1 . Suppose X−1Y0 6= 1 ,and Y−1X0 6= 1 ,. Then, the
form of solutions of system (11) ,for n ≥ 1 are as follows:

Xn =


X0

n−2
2∏

k=0

−1+(2k+1)X0Y−1

−1+(2k+2)X0Y−1
, n, even

X−1

n−1
2∏

k=0

1−(2k)X−1Y0

1−(2k+1)X−1Y0
, n, odd

Yn =


Y0

n−2
2∏

k=0

−1+(2k+1)Y0X−1

−1+(2k+2)Y0X−1
, n, even

Y−1

n−1
2∏

k=0

1−(2k)Y−1X0

1−(2k+1)Y−1X0
, n, odd

Remark 3. If we put X = Y in system(11) we get an ordinary difference
equation in the form

Xn =
Xn−2

1−Xn−2Xn−1
(12)

We can see that the closed form solution of equation(12) is given ,from corol-
lary(3) , by the following

Xn =


X0

n−2
2∏

k=0

−1+(2k+1)X0X−1

−1+(2k+2)X0X−1
, n even;

X−1

n−1
2∏

k=0

1−(2k)X−1X0

1−(2k+1)X−1X0
, n odd;

where n ∈ N , and X−1X0 6= −1 .We can easy see that if n even (or odd) and
X0 = 0 then Xn = 0(Xn = X−1). Also if n even (or odd) and X−1 = 0 then
Xn = X0(Xn = 0).
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2.2 Form of Solutions when (α, β) = (1, 1)&(γ, δ) = (1,−1)

In this case we have the system

Xn,m =
Xn−2,m−2

1 +Xn−2,m−2Yn−1,m−1
, Yn,m =

Yn−2,m−2
1− Yn−2,m−2Xn−1,m−1

(13)

Theorem 4. Let {Xn,m, Yn,m}∞n,m=−k be a solution of system (13) with
initial conditions Xn,0, Xn,−1, X0,m, X−1,m, Yn,0, Yn,−1, Y0,m, Y−1,m where n,m ∈
N0 , N0 = N

⋃
{0} . Suppose X−1,m−2Y0,m−1 6= −1 ,Xn−2,−1Yn−1,0 6= −1 ,

Y−1,m−2X0,m−1 6= 1 ,Yn−2,−1Xn−1,0 6= 1 . Then, the form of solutions of system
(13) ,for n,m ≥ 1 and n ≥ m , are as follows:

Xn,m =

{
Xn−m−1,−1

(1+Xn−m−1,−1Yn−m,0)
m+1

2
, m odd;

(−1)
m
2 Xn−m,0(−1 +Xn−m,0Yn−m−1,−1)

m
2 , m even;

Yn,m =

 (−1)
m+1

2 Yn−m−1,−1

(−1+Yn−m−1,−1Xn−m,0)
m+1

2
, m odd;

Yn−m,0(1 + Yn−m,0Xn−m−1,−1)
m
2 , m even;

Xm,n =

{
X−1,n−m−1

(1+X−1,n−m−1Y0,n−m)
m+1

2
, m odd;

(−1)
m
2 X0,n−m(−1 +X0,n−mY−1,n−m−1)

m
2 , m even;

Ym,n =

 (−1)
m+1

2 Y−1,n−m−1

(−1+Y−1,n−m−1X0,n−m)
m+1

2
, m odd;

Y0,n−m(1 + Y0,n−mX−1,n−m−1)
m
2 , m even;

Proof. We can prove the theorem by odd-even double mathematical induc-
tion as in theorem (1).

Remark 4. We can see that both of proposition (1) and proposition (2)
hold for the solutions of system (13) included in theorem(4) .

Remark 5. If we put n = m in system (13) we have a system of ordinary
difference equations in the following form

Xn =
Xn−2

1 +Xn−2Yn−1
, Yn =

Yn−2
1− Yn−2Xn−1

(14)

We can drive the formulas for solutions from theorem(4) in the following corol-
lary .

Corollary 5. Let {Xn, Yn}∞n=−k be a solution of system (14) with initial
conditions X0, X−1, Y0, Y−1 . Suppose X−1Y0 6= −1 ,and Y−1X0 6= 1 ,. Then,
the form of solutions of system (14) ,for n ≥ 1 are as follows:

Xn =

{
X−1

(1+X−1Y0)
n+1
2

;n, odd

(−1)
n
2X0(−1 +X0Y−1)

n
2 ;n, even

Yn =

{
(−1)

n+1
2 Y−1

(−1+Y−1X0)
n+1
2

;n, odd

Y0(1 + Y0X−1)
n
2 ;n, even

.
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2.3 Form of Solutions when (α, β) = (1, 1)&(γ, δ) = (−1, 1)

In this case we have the system

Xn,m =
Xn−2,m−2

1 +Xn−2,m−2Yn−1,m−1
, Yn,m =

Yn−2,m−2
−1 + Yn−2,m−2Xn−1,m−1

(15)

Theorem 6. Let {Xn,m, Yn,m}∞n,m=−k be a solution of system (15) with
initial conditions Xn,0, Xn,−1, X0,m, X−1,m, Yn,0, Yn,−1, Y0,m, Y−1,m where n,m ∈
N0 , N0 = N

⋃
{0} . Suppose X−1,m−2Y0,m−1 6= −1 ,Xn−2,−1Yn−1,0 6= −1 ,

Y−1,m−2X0,m−1 6= 1 ,Yn−2,−1Xn−1,0 6= 1 . Then, the form of solutions of system
(15) ,for n,m ≥ 1 and n ≥ m , are as follows:

Xn,m =



(−1)
m−1

4 Xn−m−1,−1

(1+Xn−m−1,−1Yn−m,0)
m+3

4 (−1+Xn−m−1,−1Yn−m,0)
m−1

4
, m = 4K + 1;

(−1)
m−2

4 Xn−m,0(−1+Xn−m,0Yn−m−1,−1)
m
2

(−1+2Xn−m,0Yn−m−1,−1)
m+2

4
, m = 4K + 2;

(−1)
m+1

4 Xn−m−1,−1

(−1+Xn−m−1,−1Yn−m,0)
m+1

4 (1+Xn−m−1,−1Yn−m,0)
m+1

4
, m = 4K + 3;

(−1)
m
4 Xn−m,0(−1+Xn−m,0Yn−m−1,−1)

m
2

(−1+2Xn−m,0Yn−m−1,−1)
m
4

, m = 4K + 4;

Yn,m =



(−1)
m−1

4 Yn−m−1,−1(−1+2Yn−m−1,−1Xn−m,0)
m−1

4

(−1+Yn−m−1,−1Xn−m,0)
m+1

2
, m = 4K + 1;

(−1)
m+2

4 Yn−m,0(−1 + Yn−m,0Xn−m−1,−1)
m−2

4

.(1 + Yn−m,0Xn−m−1,−1)
m+2

4 , m = 4K + 2;
(−1)

m+1
4 Yn−m−1,−1(−1+2Yn−m−1,−1Xn−m,0)

m+1
4

(−1+Yn−m−1,−1Xn−m,0)
m+1

2
, m = 4K + 3;

(−1)
m
4 Yn−m,0(−1 + Yn−m,0Xn−m−1,−1)

m
4

.(1 + Yn−m,0Xn−m−1,−1)
m
4 , m = 4K + 4;

Xm,n =



(−1)
m−1

4 X−1,n−m−1

(1+X−1,n−m−1Y0,n−m)
m+3

4 (−1+X−1,n−m−1Y0,n−m)
m−1

4
, m = 4K + 1;

(−1)
m−2

4 X0,n−m(−1+X0,n−mY−1,n−m−1)
m
2

(−1+2X0,n−mY−1,n−m−1)
m+2

4
, m = 4K + 2;

(−1)
m+1

4 X−1,n−m−1

(−1+X−1,n−m−1Y0,n−m)
m+1

4 (1+X−1,n−m−1Y0,n−m)
m+1

4
, m = 4K + 3;

(−1)
m
4 X0,n−m(−1+X0,n−mY−1,n−m−1)

m
2

(−1+2X0,n−mY−1,n−m−1)
m
4

, m = 4K + 4;

Ym,n =



(−1)
m−1

4 Y−1,n−m−1(−1+2Y−1,n−m−1X0,n−m)
m−1

4

(−1+Y−1,n−m−1X0,n−m)
m+1

2
, m = 4K + 1;

(−1)
m+2

4 Y0,n−m(−1 + Y0,n−mX−1,n−m−1)
m−2

4

.(1 + Y0,n−mX−1,n−m−1)
m+2

4 , m = 4K + 2;
(−1)

m+1
4 Y−1,n−m−1(−1+2Y−1,n−m−1X0,n−m)

m+1
4

(−1+Y−1,n−m−1X0,n−m)
m+1

2
, m = 4K + 3;

(−1)
m
4 Y0,n−m(−1 + Y0,n−mX−1,n−m−1)

m
4

.(1 + Y0,n−mX−1,n−m−1)
m
4 , m = 4K + 4;
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where k = 0, 1, 2, 3...... .

Proof. We can prove the theorem by piecewise double mathematical induc-
tion as in theorem (1).

Proposition 4. We have the following properties for the solutions of
system (15) :

(1) If m even and Xn−m,0 = 0 , then Xn,m = 0 .

(2) If m odd and Xn−m,0 = 0 , then Yn,m = ±Yn−m−1,−1 .

(3) If m even and Yn−m,0 = 0 , then Yn,m = 0 .

(4) If m odd and Yn−m,0 = 0 , then Xn,m = Xn−m−1,−1 .

(5) If m even and Xn−m−1,−1 = 0 , then Yn,m = ±Yn−m,0 .

(6) If m odd and Xn−m−1,−1 = 0, then Xn,m = 0 .

(7) If m even and Yn−m−1,−1 = 0 , then Xn,m = ±Xn−m,0 .

(8) If m odd and Yn−m−1,−1 = 0, then Yn,m = 0 .

Proposition 5. We have the following properties for the solutions of
system (15) :

(1) If m even and X0,n−m = 0 , then Xm,n = 0 .

(2) If m odd and X0,n−m = 0 , then Ym,n = ±Y−1,n−m−1 .

(3) If m even and Y0,n−m = 0 , then Ym,n = 0 .

(4) If m odd and Y0,n−m = 0 , then Xm,n = X−1,n−m−1 .

(5) If m even and X−1,n−m−1 = 0 , then Ym,n = ±Y0,n−m .

(6) If m odd and X−1,n−m−1 = 0, then Xm,n = 0 .

(7) If m even and Y−1,n−m−1 = 0 , then Xm,n = ±X0,n−m .

(8) If m odd and Y−1,n−m−1 = 0, then Ym,n = 0 .

Remark 6. If we put n = m in system (15) we have a system of ordinary
difference equations in the following form

Xn =
Xn−2

1 +Xn−2Yn−1
, Yn =

Yn−2
−1 + Yn−2Xn−1

(16)

We can drive the formulas for solutions from theorem(6) in the following corol-
lary .
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Corollary 7. Let {Xn, Yn}∞n=−k be a solution of system (16) with initial
conditions X0, X−1, Y0, Y−1 . Suppose X−1Y0 6= −1 ,and Y−1X0 6= 1 ,. Then,
the form of solutions of system (16) ,for n ≥ 1 are as follows:

Xn =



(−1)
n−1
4 X−1

(1+X−1Y0)
n+3
4 (−1+X−1Y0)

n−1
4
, n = 4K + 1;

(−1)
n−2
4 X0(−1+X0Y−1)

n
2

(−1+2X0Y−1)
n+2
4

, n = 4K + 2;

(−1)
n+1
4 X−1

(−1+X−1Y0)
n+1
4 (1+X−1Y0)

n+1
4
, n = 4K + 3;

(−1)
n
4 X0(−1+X0Y−1)

n
2

(−1+2X0Y−1)
n
4

, n = 4K + 4;

Yn =



(−1)
n−1
4 Y−1(−1+2Y−1X0)

n−1
4

(−1+Y−1X0)
n+1
2

, n = 4K + 1;

(−1)
n+2
4 Y0(−1 + Y0X−1)

n−2
4 (1 + Y0X−1)

n+2
4 , n = 4K + 2;

(−1)
n+1
4 Y−1(−1+2Y−1X0)

n+1
4

(−1+Y−1X0)
n+1
2

, n = 4K + 3;

(−1)
n
4 Y0(−1 + Y0X−1)

n
4 (1 + Y0X−1)

n
4 , n = 4K + 4;

where k = 0, 1, 2, 3...... .
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TWO-DIMENSIONAL CHLODOWSKY VARIANT OF
q-BERNSTEIN-SCHURER-STANCU OPERATORS

MEHMET ALI ÖZARSLAN AND TUBA VEDI

Abstract. In this paper, two-dimensional Chlodowsky variant q-based Bernstein-
Schurer-Stancu operators are introduced. Korovkin-type approximation theo-
rems in di¤erent function spaces are studied. The error of approximation by
using full modulus of continuity and partial modulus of continuities are given.
Moreover, we introduce a generalization of our operators and investigate its
approximation in more general weighted space.

1. Introduction

It was Chlodowsky [3] who introduced the classical Bernstein-Chlodowsky oper-
ators as

Cn (f ;x) =

nX
r=0

f
� r
n
bn

��n
r

��
x

bn

�r �
1� x

bn

�n�r
;

where the function f is de�ned on [0;1) and fbng is a positive increasing sequence
with bn !1 and

bn
n
! 0 as n!1.

In 2008, the q-analogue of Chlodowsky operators were introduced and investigated
by Karsl¬and Gupta [8] as

Cn (f ; q;x) =

n+pX
k=0

f

�
[k]

[n]
bn

��
n+ p

k

��
x

bn

�k n+p�k�1Y
s=0

�
1� qs x

bn

�
; 0 � x � bn

where fbng has the same property of Bernstein-Chlodowsky operators.
On the other hand, the q-Bernstein-Schurer operators were de�ned by Muraru [9],
for �xed p 2 N0 and for all x 2 [0; 1], by

(1.1) Bpn (f ; q;x) =

n+pX
k=0

f

�
[k]

[n]

��
n+ p

k

�
xk

n+p�k�1Y
s=0

(1� qsx) .

Note that the case q ! 1� in (1.1) reduces to the operators considered by Schurer
[12]. Then, some properties of the q-Bernstein-Schurer operators were given in [13].
In 2013, the q-analogue of Bernstein-Schurer-Stancu operators S�;�n;p : C [0; 1 + p]!
C [0; 1] were introduced by Agrawal, et al in [4] by

(1.2) S(�;�)n;p (f ; q;x) =

n+pX
k=0

f

�
[k] + �

[n] + �

��
n+ p

k

�
xk

n+p�k�1Y
s=0

(1� qsx) ;

Key words and phrases. q-Bernstein operators, Chlodowsky operators, Chlodowsky variant of
q-Bernstein-Schurer-Stancu operators, weighted space, modulus of continuity.
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2 M. A. ÖZARSLAN AND T. VEDI

where � and � are non-negative numbers which satisfy 0 � � � � and also p is a
non-negative integer. Notice that, if we choose � = � = 0 in (1.2), S(�;�)n;p (f ; q;x)
reduces to the classical q-Bernstein operator [10].
Recently, Chlodowsky variant of q-Bernstein-Schurer-Stancu operators were intro-
duced by the authors in [14] as

(1.3) C(�;�)n;p (f ; q;x) :=

n+pX
k=0

f

�
[k] + �

[n] + �
bn

��
n+ p

k

��
x

bn

�k n+p�k�1Y
s=0

�
1� qs x

bn

�
;

where n 2 N, p 2 N0 := f0g [ N, 0 � � � �; 0 � x � bn and 0 < q < 1. If
� = � = p = 0 in (1.3), we get the operators Cn (f ; q;x) and if q ! 1� and
� = � = p = 0 in (1.3), we get the operators Cn (f ;x).
In 2009, Büyükyaz¬c¬[1] de�ned the two-dimensional q-Bernstein-Chlodowsky poly-
nomials as

eBqn;qmn;m (f ;x; y) =

nX
k=0

mX
j=0

f

 
[k]qn
[n]qn

�n;
[j]qm
[m]qm

�m

!

k;n;qn

�
x

�n

�

k;m;qm

�
y

�m

�

where 
k;n;qn(u) =
�
n

k

�
uk

n�k�1Y
s=0

(1� qsn) and investigated its approximation prop-

erties on the rectangular unbounded domain.
On the other hand, Büyükyaz¬c¬ and Sharma [2] de�ned the two-dimensional q-
Bernstein-Chlodowsky-Durrmeyer operators on the rectangular unbounded domain
and derived the Korovkin type approximation properties. They also computed the
order of convergence by means of the modulus of continuity and then examined the
weighted approximation properties for these operators.
In the present paper we consider the two dimensional Chlodowsky variant of q-
Bernstein-Schurer-Stancu operators. Some of the results about the operators C(�;�)n;p (f ; q;x)
de�ned in (1.3) will be useful in our investigations. For instance, the �rst three mo-
ments �rst three moments of the operator C(�;�)n;p (f ; q;x) are as follows [14]:

Lemma 1.1. Let C(�;�)n;p (f ; q;x) de�ned. Then the �rst few moments of the oper-
ators are,

(i) C
(�;�)
n;p (1; q;x) = 1;

(ii) C
(�;�)
n;p (t; q;x) =

[n+ p]x+ �bn
[n] + �

;

(iii) C
(�;�)
n;p (t2; q;x)=

1

([n] + �)
2

�
[n+ p� 1] [n+ p] qx2

+(2�+ 1) [n+ p] bnx+ �
2b2n
	
.

Before proceeding further let us recall that the some basic de�nitions of q-calculus.
The q-integer of k 2 R is [7]

[k]q =

� �
1� qk

�
= (1� q) ; q 6= 1

k ; q = 1;
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the q-factorial is de�ned by

[k]q! =

�
[k]q [k � 1]q ::: [1]q ; k = 1; 2; 3; :::;

1 ; k = 0

and q-binomial coe¢ cients are de�ned by�
n

k

�
q

=
[n]q!

[n� k]q! [k]q!

The organization of the paper as follows:
In section two, the two dimensional Chlodowsky variant of q-Bernstein-Schurer-
Stancu operators is established and the �rst few moments of the operator is given.
In section three, some Korovkin-type theorems in di¤erent function spaces are stud-
ied. In section four, we obtain the order of convergence of the Chlodowsky variant
of q-Bernstein-Schurer-Stancu operators by means of the �rst modulus of continuity
and partial modulus of continuity. In section �ve, we study the generalization of
the two-dimensional Chlodowsky variant of q-Bernstein-Schurer-Stancu operators
and seek its approximation properties in more general weighted space.

2. Construction of the operators

Let fang and fbmg be increasing sequences of real numbers satisfying
lim
n!1

an = lim
m!1

bm =1:

Let, Dan;bm denotes

(2.1) Dan;bm = f(x; y) : 0 � x � an, 0 � y � bmg :
For (x; y) 2 Dan;bm , we construct the two dimensional Chlodowsky variant of q-
Bernstein-Schurer-Stancu operators as

C(�;�)n;m;p (f ; qn; qm;x; y)

:=

n+pX
k=0

m+pX
j=0

f

 
[k]qn + �

[n]qn + �
an;

[j]qm + �

[m]qm + �
bm

!
�k;n;qn

�
x

an

�
�j;m;qm

�
y

bm

�
(2.2)

where n 2 N, p 2 N0 := f0g[N, 0 � � � �. �k;n;qn(z) =
�
n+ p

k

�
qn

zk
n+p�k�1Y

s=0

(1� qsnz).

We also let 0 < qn < 1 (n 2 N) for the positivity of the operators. It is easy to
show that C(�;�)n;p (f ; qn; qm;x; y) is a linear and positive operator.
Now, we start by giving the following lemma which will be used throughout the
paper.

Lemma 2.1. Let C(�;�)n;m;p (f ; qn; qm;x; y) be given in (2.2). Then the �rst few mo-
ments of the operators are,

(i) C
(�;�)
n;m;p (1; qn; qm;x; y) = 1;

(ii) C
(�;�)
n;m;p (t1; qn; qm;x; y) =

[n+ p]qn x+ �an

[n]qn + �
;
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(iii) C
(�;�)
n;m;p (t2; qn; qm;x; y) =

[m+ p]qm y + �bm

[m]qm + �

(iv) C
(�;�)
n;m;p

�
t21 + t

2
2; qn; qm;x; y

�

=
1�

[n]qn + �
�2n[n+ p� 1]qn [n+ p]qn qnx2 + (2�+ 1) [n+ p]qn anx+ �2a2no

+
1�

[m]qm + �
�2 n[m+ p� 1]qm [m+ p]qm qmy2 + (2�+ 1) [m+ p]qm bmy + �

2b2m

o
:

Proof. Using Lemma 1.1 and the linearity of the operators, the proof is easily
obtained. �

3. Korovkin-type approximation theorems

In this section, Korovkin-type approximation theorems are given for the two
dimensional Chlodowsky variant of q-Bernstein-Schurer-Stancu operators. For �xed
� � 0 consider the space C�� which consists of all continuous functions f , satisfying
the condition

jf (x; y)j �Mf�
� (x; y) ; (x; y) 2 [0;1)� [0;1) := R2+ and � (x; y) = 1+x2+y2.

Clearly, C�� is a linear normed space with the following norm

kfk�� = sup
0�x;y<1

jf (x; y)j
�� (x; y)

:

The following theorem will be used in the investigation of approximation properties
of C(�;�)n;p (f ; qn; qm;x; y) in the weighted spaces.

Theorem 3.1. Let the numbers A and B be any �xed positive real numbers. Let
DA;B = f(x; y) : 0 � x � A, 0 � y � Bg, q := fqng with 0 < qn < 1; lim

n!1
qn = 1

and fang and fbmg be increasing sequences of positive real numbers that satisfy
the following properties:

lim
n!1

an = lim
m!1

bm =1 and lim
n!1

an
[n]qn

= lim
m!1

bm
[m]qm

= 0:

For all f 2 C(DA;B); we have

lim
n;m!1

max
(x;y)2DA;B

���C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)
��� = 0:
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Proof. Using Lemma 2.1, we get


C(�;�)n;m;p (1; qn; qm; �; �)� 1




C(DA;B)

= 0




C(�;�)n;m;p (t1; qn; qm; �; �)� x




C(DA;B)

� A

����� [n+ p]qn[n]qn + �
� 1
�����+ �an

[n]qn + �


C(�;�)n;m;p (t2; qn; qm; �; �)� y




C(DA;B)

� B

����� [m+ p]qm[m]qm + �
� 1
�����+ �bm

[m]qm + �
:

And again using Lemma 2.1 we have

C(�;�)n;m;p

�
t21 + t

2
2; qn; qm; �; �

�
�
�
x2 + y2

�
=

1�
[n]qn + �

�2
�
��
[n+ p+ 1]qn [n+ p]qn qn �

�
[n]qn + �

�2�
x2 + (2�+ 1) [n+ p]qn anx+ �

2a2n

�
+

1�
[m]qm + �

�2
�
��
[m+ p+ 1]qm [m+ p]qm qm �

�
[m]qm + �

�2�
y2 + (2�+ 1) [m+ p]qm bmy + �

2b2m

�
:

Finally, from the above equality we obtain


C(�;�)n;m;p

�
t21 + t

2
2; qn; qm; �; �

�
�
�
x2 + y2

�



C(DA;B)

� 1�
[n]qn + �

�2
�
�����[n+ p+ 1]qn [n+ p]qn qn � �[n]qn + ��2����A2 + (2�+ 1) [n+ p]qn anA+ �2a2n�

+
1�

[m]qm + �
�2

�
�����[m+ p+ 1]qm [m+ p]qm qm � �[m]qm + ��2����B2 + (2�+ 1) [m+ p]qm bmB + �

2b2m

�
:

Therefore, from the hypothesis of the theorem, we have


C(�;�)n;m;p (t1; qn; qm; �; �)� x




C(DA;B)

! 0


C(�;�)n;m;p (t2; qn; qm; �; �)� y




C(DA;B)

! 0


C(�;�)n;m;p

�
t21 + t

2
2; qn; qm; �; �

�
�
�
x2 + y2

�



C(DA;B)

! 0

when n and m!1.
Hence, the proof is completed by the two dimensional Korovkin theorem. �

In studying Korovkin-type weighted approximation, the following theorem plays
an important role.
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Theorem 3.2. (See [6] ) There exists a sequence of positive operators Tn;m, acting
from C�

�
R2+
�
to C�

�
R2+
�
; satisfying the conditions

lim
n;m!1

kTn;m (1; �; �)� 1k� = 0

lim
n;m!1

kTn;m (t1; �; �)� xk� = 0

lim
n;m!1

kTn;m (t2; �; �)� yk� = 0

lim
n;m!1



Tn;m �t21 + t22; �; ��� �x2 + y2�

� = 0
and there exists a function f� 2 C� for which

lim
n;m!1

kTn;mf� � f�k� �
1

4

where � = 1 + x2 + y2:

Now, consider the following operator

Tn;m (f ; qn; qm;x; y) =

�
C
(�;�)
n;m;p (f ; qn; qm;x; y) ; (x; y) 2 Dan;bn

f (x; y) ; R2+nDan;bn

:

Theorem 3.3. Let f 2 C�
�
R2+
�
. Then for any 
 > 0

lim
n;m!1

kTn;m (f ; qn; qm; �; �)� f (�)kC�1+
 = 0

where fang, fbmg, fqng and fqmghave the same conditions as in Theorem 3.1.

Proof. For all " > 0, there exist su¢ ciently large positive real numbers A and B
such that

(3.1)
�
1 + x2 + y2

��

< "

when x > A and y > B.
Let n; m be su¢ ciently large so that DA;B � Dan;bm

kTn;m (f ; qn; qm; �; �)� f (�)kC�1+


� sup
(x;y)2DA;B

���C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)
���

(1 + x2 + y2)
1+


+ sup
(x;y)2Dan;bnnDA;B

���C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)
���

(1 + x2 + y2)
1+


= y
0

n;m + y
00

n;m:

By Theorem 3.1, lim
n;m!1

y
0

n;m = 0 and for the proof of the second term we have

y
00

n;m �
�
1 + x2 + y2

��
0@
���C(�;�)n;m;p (f ; qn; qm;x; y)

���
1 + x2 + y2

+
jf(x; y)j
1 + x2 + y2

1A :

Finally, since f 2 C�
�
R2+
�
, the term jf(x;y)j

1+x2+y2 is bounded. Furthermore, because
of the fact that���C(�;�)n;m;p (f ; qn; qm;x; y)

��� � ���C(�;�)n;m;p

�
1 + t21 + t

2
2; qn; qm;x; y

���� ;
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using Lemma 2.1, the term jC(�;�)
n;m;p(f ;qn;qm;x;y)j

1+x2+y2 is bounded for su¢ ciently large n
and m. Hence, we get by (3.1) that

y
00

n;m � "(1 +M)

Since " > 0 is arbitrary, then lim
n;m!1

y
00

n;m = 0. This completes the proof. �

Now, consider the subspace C0� of C� which is de�ned by

C0� :=

�
f 2 C� : lim

x;y!0

jf (x; y)j
1 + x2 + y2

= 0

�
.

Theorem 3.4. Let the sequences fqng ; fang and fbmg satisfy the same properties
as in Theorem 3.1. Then for all f 2 C0�

�
R2+
�
, we obtain

lim
n;m!1

kTn;m (f ; qn; qm; �; �)� f (�)kC� = 0:

Proof. For all f 2 C0�
�
R2+
�
, observe that

lim
x;y!1

jf (x; y)j
1 + x2 + y2

= 0, lim
n;m!1

���f � [k]qn+�[n]qn+�
an;

[j]qm+�

[m]qm+�
bm

����
1 +

�
[k]qn+�

[n]qn+�
an

�2
+
�
[j]qm+�

[m]qm+�
bm

�2 = 0:
Therefore, for all " > 0, we can �nd su¢ ciently large numbers A and B such that

(3.2) jf (x; y)j < "
�
1 + x2 + y2

�
for x > A and y > B and there exists natural numbers n0 and m0 such that
(3.3)�����f
 
[k]qn + �

[n]qn + �
an;

[j]qm + �

[m]qm + �
bm

!����� < "

0@1 + [k]qn + �
[n]qn + �

an

!2
+

 
[j]qm + �

[m]qm + �
bm

!21A
for all n > n0 and m > m0.
Hence, for large n and m, we have

kTn;m (f ; qn; qm; �; �)� f (�)kC�

� sup
(x;y)2DA;B

��C�;�n;m (f ; qn; qm;x; y)� f(x; y)
��

1 + x2 + y2

+ sup
(x;y)2Dan;bmnDA;B

��C�;�n;m (f ; qn; qm;x; y)� f(x; y)
��

1 + x2 + y2
= z

0

n;m + z
00
n;m:

By Theorem 3.1 it is su¢ cient to show that z00n;m ! 0 as n!1.
Using (3.2) and (3.3), we get

z00n;m � "+ sup
(x;y)2Dan;bmnDA;B

��C�;�n;m (f ; qn; qm;x; y))
��

1 + x2 + y2

� "+ " sup
(x;y)2Dan;bmnDA;B

tn;m(qn; qm;x; y)

= "

 
1 + sup

(x;y)2Dan;bm=DA;B

tn;m(qn; qm;x; y)

!
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where tn;m(qn; qm;x; y) :=
C�;�
n;m(1;qn;qm;x;y))+C

�;�
n;m(t

2
1;qn;qm;x;y))+C

�;�
n;m(t

2
2;qn;qm;x;y))

1+x2+y2 :

By Lemma 2.1, it is clear that there exist K independent of n and m such that

sup
(x;y)2Dan;bm=DA;B

tn;m(qn; qm;x; y) � K.

Therefore, for n > n0 and m > m0 we have

z00n;m < (1 +K)":

This completes the proof. �

4. Order of convergence

In this section, we compute the rate of convergence of the operators in terms of
the the full modulus of continuity and partial modulus of continuities.
Let f 2 DA;B and x � 0. Then the de�nition of the modulus of continuity of f

is given by

(4.1) !(f ; �) = maxp
(x1�x2)2+(y1�y2)2��

x;y2C(DA;B)

jf(x1; y1)� f(x2; y2)j:

It is known that for any � > 0 we know that

(4.2) jf(x1; y1)� f(x2; y2)j � ! (f; �)

0@
q
(x1 � x2)2 + (y1 � y2)2

�
+ 1

1A
and its partial modulus of continuies are de�ned by

!(1) (f ; �) = max
0�y�A

max
jx1�x2j��

jf (x1; y)� f (x2; y)j

!(2) (f ; �) = max
0�x�B

max
jy1�y2j��

jf (x; y1)� f (x; y2)j :

Also, for any � > 0 we have

jf(x1; y1)� f(x2; y2)j � !(1) (f; �)

�
jx1 � x2j

�
+ 1

�
;

jf(x1; y1)� f(x2; y2)j � !(2) (f; �)

�
jy1 � y2j

�
+ 1

�
:

Theorem 4.1. For any f 2 C(DA;B), the following inequalities

(4.3)
���C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)

��� � 2 h!(1) (f ; �m) + !(2) (f ; �n)i
(4.4)

���C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)
��� � 2!�f ;q�2m + �2n�

are satis�ed where

�2n :=
1�

[n]qn + �
�2

(4.5)

�
�����[n+ p+ 1]qn [n+ p]qn qn � �[n]qn + ��2����A2 + (2�+ 1) [n+ p]qn anA+ �2a2n�
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and

�2m :=
1�

[m]qm + �
�2

(4.6)

�
�����[m+ p+ 1]qm [m+ p]qm qm � �[m]qm + ��2

����B2 + (2�+ 1) [m+ p]qm bmB + �
2b2m

�
:

Proof. We directly have,

C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)

=

n+pX
k=0

m+pX
j=0

"
f

 
[k]qn + �

[n]qn + �
an;

[j]qm + �

[m]qm + �
bm

!
� f(x; y)

#

� �k;n;qn
�
x

an

�
�j;m;qm

�
y

bm

�
=

n+pX
k=0

m+pX
j=0

"
f

 
[k]qn + �

[n]qn + �
an;

[j]qm + �

[m]qm + �
bm

!
� f(

[k]qn + �

[n]qn + �
an; y)

+f(
[k]qn + �

[n]qn + �
an; y)� f(x; y)

#
�k;n;qn

�
x

an

�
�j;m;qm

�
y

bm

�
:

By linearity and positivity of the operators, we get

���C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)
���

�
n+pX
k=0

m+pX
j=0

�����f
 
[k]qn + �

[n]qn + �
an;

[j]qm + �

[m]qm + �
bm

!
� f(

[k]qn + �

[n]qn + �
an; y)

�����
� �k;n;qn

�
x

an

�
�j;m;qm

�
y

bm

�
+

n+pX
k=0

m+pX
j=0

�����f( [k]qn + �[n]qn + �
an; y)� f(x; y)

������k;n;qn
�
x

an

�
�j;m;qm

�
y

bm

�

�
n+pX
k=0

m+pX
j=0

!(2)

 
f ;

����� [j]qm + �[m]qm + �
bm � y

�����
!
�k;n;qn

�
x

an

�
�j;m;qm

�
y

bm

�

+

n+pX
k=0

m+pX
j=0

!(1)

 
f ;

����� [k]qn + �[n]qn + �
an � x

�����
!
�k;n;qn

�
x

an

�
�j;m;qm

�
y

bm

�
= 
1 (x; y) + 
2 (x; y) :
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Using Lemma 1.1 and Cauchy-Schwartz inequality, we have


1 (x; y)

=

n+pX
k=0

m+pX
j=0

!(2)

 
f ;

����� [j]qm + �[m]qm + �
bm � y

�����
!
�k;n;qn

�
x

an

�
�j;m;qm

�
y

bm

�

=

m+pX
j=0

!(2)

 
f ;

����� [j]qm + �[m]qm + �
bm � y

�����
!
�j;m;qm

�
y

bm

�

� !(2) (f ; �m)

8><>:1 + 1

�m

24m+pX
j=0

 
[j]qm + �

[m]qm + �
bm � y

!2
�j;m;qm

�
y

bm

�351=2
9>=>; :

Finally, using Lemma 2.1, we get

(4.7) 
1 (x; y) � 2!(2) (f ; �m)

where we choose �m as in (4.6).
In the same way, we obtain

(4.8) 
2 (x; y) � 2!(1) (f ; �n)

where �n is given in (4.5). Combining (4.7) and (4.8), we obtain (4.3) .
Now, by using linearity and the monotonicity of the operators, and taking into
account (4.1), we have���C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)

���
�

n+pX
k=0

m+pX
j=0

!

0B@f ;
vuut [k]qn + �

[n]qn + �
an � x

!2
+

 
[j]qm + �

[m]qm + �
bm � y

!21CA�j;m;qm � y

bm

�

�
n+pX
k=0

m+pX
j=0

�����f( [k]qn + �[n]qn + �
an;

[j]qm + �

[m]qm + �
bm)� f(x; y)

������k;n;qn
�
x

an

�
�j;m;qm

�
y

bm

�

� 1 + 1
�

n+pX
k=0

m+pX
j=0

!(f ;

vuut [k]qn + �
[n]qn + �

an � x
!2
+

 
[j]qm + �

[m]qm + �
bm � y

!2
)

�k;n;qn

�
x

an

�
�j;m;qm

�
y

bm

�(4.9)

Using (4.2) and the Cauchy-Schwartz inequality, we get (4.4). �

Theorem 4.2. Let f(x; y) have continuous partial derivatives @f=@x and @f=@y,
let !1(fx; :) and !2(fy; :) denote the partial moduli of @f=@x and @f=@y, respectively
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on DA;B. Then the inequality

���C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)
���

� N

 ����� [n+ p]qn[n]qn + �
� 1
�����A+ �an

[n]qn + �

!
+ 2

�
�n!

(1)

�
@f

@x
; �n

��

+M

 ����� [m+ p]qm[m]qm + �
� 1
�����B + �bm

[m]qn + �

!
+ 2

�
�m!

(2)

�
@f

@y
; �m

��
:

where �n and �m are the same as in Theorem 4.1 and
���@f@x ��� � N ,

���@f@y ��� � M on

DA;B .

Proof. By the mean value theorem, we can write

f

 
[k]qn + �

[n]qn + �
an;

[j]qm + �

[m]qm + �
bm

!
� f(x; y)

= f

 
[k]qn + �

[n]qn + �
an; y

!
� f(x; y) + f

 
[k]qn + �

[n]qn + �
an;

[j] + �

[m] + �
bm

!

� f
 
[k]qn + �

[n]qn + �
an; y

!

=

 
[k]qn + �

[n]qn + �
an � x

!
@f(x; y)

@x
+

 
[k]qn + �

[n]qn + �
an � x

!�
@f( 1; y)

@x
� @f(x; y)

@x

�

+

 
[j]qm + �

[m]qm + �
bm � y

!
@f(x; y)

@y
+

 
[j]qm + �

[m]qm + �
bm � y

!

�
�
@f(x;  2)

@y
� @f(x; y)

@y

�(4.10)

for any �xed y 2 [0; B] and x 2 [0; A], where

x <  1 <
[k]qn + �

[n]qn + �
an

and

y <  2 <
[j]qm + �

[m]qm + �
bm:
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Applying the operator C(�;�)n;m;p (f ; qn; qm;x; y) to (4.10)

C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)

=
@f(x; y)

@x

n+pX
k=0

m+pX
j=0

 
[k]qn + �

[n]qn + �
an � x

!
�k;n;qn

�
x

an

�
�j;m;qm

�
y

bm

�

+

n+pX
k=0

m+pX
j=0

 
[k]qn + �

[n]qn + �
an � x

!�
@f( 1; y)

@x
� @f(x; y)

@x

�

� �k;n;qn
�
x

an

�
�j;m;qm

�
y

bm

�
+
@f(x; y)

@y

n+pX
k=0

m+pX
j=0

 
[j]qm + �

[m]qm + �
bm � y

!
�k;n;qn

�
x

an

�
�j;m;qm

�
y

bm

�

+

n+pX
k=0

m+pX
j=0

 
[j]qm + �

[m]qm + �
bm � y

!�
@f(x;  2)

@y
� @f(x; y)

@y

�

� �k;n;qn
�
x

an

�
�j;m;qm

�
y

bm

�
:

Hence, taking
���@f@x ��� � N and

���@f@y ��� �M , we get

���C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)
���

�
����@f(x; y)@x

���� ���C(�;�)n;m;p (t1 � x; qn; qm;x; y)
���

+

n+pX
k=0

m+pX
j=0

����� [k]qn + �[n]qn + �
an � x

�����
����@f( 1; y)@x

� @f(x; y)

@x

����

� �k;n;qn
�
x

an

�
�j;m;qm

�
y

bm

�
+

����@f(x; y)@y

���� n+pX
k=0

m+pX
j=0

����� [j]qm + �[m]qm + �
bm � y

������k;n;qn
�
x

an

�
�j;m;qm

�
y

bm

�

+

n+pX
k=0

m+pX
j=0

����� [j]qm + �[m]qm + �
bm � y

�����
����@f(x;  2)@y

� @f(x; y)

@y

����
� �k;n;qn

�
x

an

�
�j;m;qm

�
y

bm

�
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� N
���C(�;�)n;m;p (t1 � x; qn; qm;x; y)

���
+

n+pX
k=0

m+pX
j=0

����� [k]qn + �[n]qn + �
an � x

�����
����@f( 1; y)@x

� @f(x; y)

@x

����
� �k;n;qn

�
x

an

�
�j;m;qm

�
y

bm

�
+M

���C(�;�)n;m;p (t2 � x; qn; qm;x; y)
���

+

n+pX
k=0

m+pX
j=0

����� [j]qm + �[m]qm + �
bm � y

�����
����@f(x;  2)@y

� @f(x; y)

@y

����
� �k;n;qn

�
x

an

�
�j;m;qm

�
y

bm

�
:

Then using the properties of partial modulus of continuities, we have���C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)
���

� N

 ����� [n+ p]qn[n]qn + �
� 1
�����A+ �an

[n]qn + �

!

+ !(1) (fx; �n)

n+pX
k=0

m+pX
j=0

����� [k]qn + �[n]qn + �
an � x

�����
0@
��� [k]qn+�[n]qn+�

an � x
���

�n
+ 1

1A�k;n;qn � x

an

�

+M

 ����� [m+ p]qm[m]qm + �
� 1
�����B + �bm

[m]qn + �

!

+ !(2) (fy; �m)

n+pX
k=0

m+pX
j=0

����� [j]qm + �[m]qm + �
bm � y

�����
0@
��� [j]qm+�[m]qm+�

bm � y
���

�n
+ 1

1A�j;m;qm � y

bm

�
since

j 1 � xj �
����� [k]qn + �[n]qn + �

an � x
����� , j 2 � yj �

����� [j]qm + �[m]qm + �
bm � y

����� :
Applying the Cauchy-Schwarz inequality we have���C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)

���
� N

 ����� [n+ p]qn[n]qn + �
� 1
�����A+ �an

[n]qn + �

!

+ !(1) (fx; �n)

0@n+pX
k=0

 
[k]qn + �

[n]qn + �
an � x

!2
�k;n;qn

�
x

an

�1A1=2

+
!(1)(fx; �n)

�n

n+pX
k=0

 
[k]qn + �

[n]qn + �
an � x

!2
�k;n;qn

�
x

an

�
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+M

 ����� [m+ p]qm[m]qm + �
� 1
�����B + �bm

[m]qn + �

!

+ !(2)(fy; �m)

0@m+pX
j=0

 
[j]qm + �

[m]qm + �
bm � y

!2
�j;m;qm

�
y

bm

�1A1=2

+
!(2)(fy; �m)

�m

m+pX
j=0

 
[j]qm + �

[m]qm + �
bm � y

!2
�j;m;qm

�
y

bm

�
:

Therefore���C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)
��� � N

 ����� [n+ p]qn[n]qn + �
� 1
�����A+ �an

[n]qn + �

!

+ !(1) (fx; �n)

  r
C
(�;�)
n;m;p

�
(t1 � x)2 ; qn; qm;x; y

�!

+
!(1)(fx; �n)

�n

�
C(�;�)n;m;p

�
(t1 � x)2 ; qn; qm;x; y

���

+M

 ����� [m+ p]qm[m]qm + �
� 1
�����B + �bm

[m]qn + �

!

+ !(2)(fy; �m)

r
C
(�;�)
n;m;p

�
(t2 � y)2 ; qn; qm;x; y

�
+
!(2)(fy; �m)

�m
C(�;�)n;m;p

�
C(�;�)n;m;p

�
(t2 � y)2 ; qn; qm;x; y

��
:

Now using Lemma 2.1 and choosing �n and �m as in (4.5) and (4.6), respectively,
we get���C(�;�)n;m;p (f ; qn; qm;x; y)� f(x; y)

���
� N

 ����� [n+ p]qn[n]qn + �
� 1
�����A+ �an

[n]qn + �

!
+ 2

�
�n!

(1)

�
@f

@x
; �n

��

+M

 ����� [m+ p]qm[m]qm + �
� 1
�����B + �bm

[m]qn + �

!
+ 2

�
�m!

(2)

�
@f

@y
; �m

��
:

Whence the result. �

5. Generalization of the Two Dimensional of Chlodowsky Variant of
q-Bernstein-Schurer-Stancu Operators

In this section, we introduce generalization of Chlodowsky variant of q-Bernstein-
Schurer-Stancu operators. The generalized operators help us to approximate con-
tinuous functions de�ned on more general weighted spaces. Note that this kind of
generalization was considered earlier for the Chlodowsky-Bernstein polynomials [5].
For x � 0; consider any continuous function ! (x; y) � 1 and de�ne

Gf (t; s) = f (t; s)
1 + t2 + s2

w (t; s)
:
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Let us consider the generalization of the C�;�n;p (f ; qn; qm;x; y) as follows
(5.1)

L�;�n;p (f ; qn; qm;x; y) =

8>><>>:
w(x;y)
1+x2+y2

Pn+p
k=0

Pm+p
j=0 Gf

�
[k]qn+�

[n]qn+�
an;

[j]qm+�

[m]qm+�
bm

�
��k;n;qn

�
x
an

�
�k;n;qn

�
x
an

�
�j;m;qm

�
y
bm

� ; (x; y) 2 Dan;bn

f (x; y) ; R2+nDan;bn

where (x; y) 2 Danbm and fang and fbmg have the same properties of two dimen-
sional of Chlodowsky variant of q-Bernstein-Schurer-Stancu operators.

Theorem 5.1. For all continuous functions f satisfying jf(x; y)j � Mfw(x; y),
x; y � 0, and lim

x;y!1
f(x;y)
w(x;y) = 0, we have

lim
n;m!1



L�;�n;p (f ; qn; qm; �; �)� f (�; �)

w = 0
where �(x; y) = 1 + x2 + y2:

Proof. Clearly, ��L�;�n;p (f ; qn; qm;x; y)� f (x; y)��
=

w(x; y)

1 + x2 + y2

������
n+pX
k=0

m+pX
j=0

Gf

 
[k]qn + �

[n]qn + �
an;

[j]qm + �

[m]qm + �
bm

!

��k;n;qn
�
x

an

�
�k;n;qn

�
x

an

�
�j;m;qm

�
y

bm

�
�Gf (x; y)

���� ;
thus 

L�;�n;p (f ; qn; qm; �; �)� f (�; �)

w
= sup

x;y2R2+

��L�;�n;p (f ; qn; qm;x; y)� f (x; y)��
w(x; y)

= sup
x;y2R2+

jTn;p (Gf ; qn; qm;x; y)�Gf (x; y)j
1 + x2 + y2

:

Since jf(x; y)j �Mfw(x; y), then jGf (x; y)j �Mf�(x; y) for x; y � 0 and Gf (x; y)
is continuous function on R2+. Furthermore, from lim

x;y!1
f(x;y)
w(x;y) = 0, we have

lim
x;y!1

Gf (x; y)

�(x; y)
= 0:

Thus, from Theorem 3.4 we get the result. �

Finally, note that, taking w(x; y) = 1+x2+y2, then the operators L�;�n;p (f ; qn; qm;x; y)
reduces T�;�n;p (Gf ; qn; qm;x; y).
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Global stability in stochastic difference equations for

predator-prey models
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Abstract

There are many publications on theoretical analysis of deterministic difference equations
and stochastic differential equations. However, relatively few theoretical papers are pub-
lished to consider the positivity of solutions of discrete-time stochastic difference equations
(DSDEs), and no theoretical papers investigate the global stability of nontrivial solutions
of DSDEs with nonlinear terms. In this paper, we consider a DSDE model that is a
generalization of two-dimensional nonlinear models of stochastic predator-prey interac-
tions, and show the positivity and global stability of the nontrivial solutions by using our
new discretized version of the Itô formula. In addition, our results are compared with
those of continuous-time stochastic differential equations and discrete-time deterministic
difference equations. Numerical simulations are introduced to support the results.

Key words: Discrete-time stochastic difference equations, Positivity, Global stability.

1. Introduction

Many predator-prey models have been studied to describe the dynamics of biological
systems in which two species interact, one as a predator and the other as a prey. A classic
predator-prey model is given by

dx

dt
= x(r1 − a11x− a12y),

dy

dt
= y(r2 + a21x− a22y), (1)

where x(t) and y(t) denote the population density of the prey and predator at time t,
respectively. In the model (1), r1 is the intrinsic growth rate of the prey in the absence
of the predator, −r2 is the death rate of the predator in the absence of the prey, the
coefficients aij(i 6= j) give the strength of the interaction between the two species, and
aii(i = 1, 2) measure the inhibiting effect of environment on the two species.

In the model (1), the predator consumes the prey with functional response of type
a12x(t)y(t). However the rate of prey capture is saturated when the population of the
prey is relatively large. Such phenomena are described by nonlinear functions including
Holling types [1–5], Beddington-DeAngelis type [6–8], Crowley-Martin type [9–11], and

∗Corresponding author
Email addresses: smchoo@ulsan.ac.kr (Sangmok Choo), yhkim@kw.ac.kr (Young-Hee Kim)
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Ivlev-type of functional responses [12–14]. Other types of nonlinear functions have been
applied to express the Allee effect [15–19], which describes a positive relation between
the population density and the per capita growth rate of a species. There have been also
models to take into account of diffusion of species ([15] and [20–22]).

On the other hand, the population is inevitably affected by environmental noise in
nature, so that the reproduction rates can change randomly. In order to be more realistic,
stochastic models should be considered. Stochastic differential equation (SDE) models
have been increasingly used in a range of application areas, including biology, chemistry,
mechanics, economics, and finance. The SDE models have been studied to understand
extinction, stochastic permanence and stationary distributions of the stochastic systems.
In particular, many authors have taken stochastic perturbation into deterministic predator
prey models with Beddington-DeAngelis and Holling types of functional responses [23–33].
For example, putting noise into the deterministic model (1) gives the SDE model

dx(t) = x(t){r1 − a11x(t)− a12y(t)}dt+ σ1x(t)dW1(t),

dy(t) = y(t){r2 + a21x(t)− a22y(t)}dt+ σ2y(t)dW2(t),
(2)

which is a special model studied in [25] with zero-time delays. Here the positive coefficients
σ1 and σ2 measure the intensity of environmental perturbations on the underlying growth
rate of the prey and the death rate of the predator, respectively. The processes Wi are
independent and real valued Wiener processes on a complete probability space (Ω,F ,P).

In general, the exact solutions of SDEs are not known, so one has to numerically solve
these SDEs. This leads us to consider and analyze discrete-time stochastic difference
equations (DSDEs), which can be also viewed as stochastically perturbed versions of
deterministic difference equations (DDEs) (see [34], [35] and references therein). There are
many publications on estimations of the difference between solutions of SDEs and DSDEs.
The global asymptotic stability of the trivial solution of DSDEs has been also widely
addressed (see [36], [37], [38] and references therein). However, relatively few theoretical
studies consider the positivity of solutions of DSDEs that are scalar equations on a finite
time interval (see [39] references therein). In particular, to the best of our knowledge,
there is no paper that theoretically deals with the global stability of nontrivial solutions
of DSDEs. Therefore, to investigate the positivity and global stability, we consider the
DSDE model for (2)

xik+1 = xik

{
1 + h

(
ri +

∑i−1

j=1
aijx

j
k −

∑2

j=i
aijx

j
k

)
+ h0.5σiξ

i
k+1

}
, (3)

where 1 ≤ i ≤ 2, k ≥ 0, xi0 > 0 and 0 < h < 1. Although r1 > 0, r2 < 0 and aij > 0 in
the SDE model (2) and the DDE model (3) with σi = 0 (see [34] and [35]), we weaken the
conditions on the parameters and use the following conditions in the DSDE model (3):
for 1 ≤ i, j ≤ 2 and i 6= j

ri ∈ R, aii > 0, aij ≥ 0, σi > 0. (4)

The discrete Wiener processes Wi(tk+1)−Wi(tk) are h0.5ξik+1 with a mutually independent
and identically distributed sequence (ξ1k, ξ

2
k)
∞
k=1 of the standard normal random variables.

The solutions of (3) are defined with respect to a complete, filtered probability space
(Ωh,Fh, {Fk}∞k=1,Ph), where {Fk}∞k=1 is the natural filtration generated by the stochastic
sequence (ξ1k, ξ

2
k)
∞
k=1, i.e., Fk = σ(ξ11 , ξ

2
1 , · · · , ξ1k, ξ2k) for k ≥ 1. Therefore (x1k, x

2
k)
∞
k=1 is

2
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adapted to the filtration for any initial vector (x10, x
2
0), which is supposed to be non-

random.
The positivity of solutions of the SDEs (2) is obtained in the infinite time interval

[0,∞) without boundedness of the noises Wi(t) by using the concept of explosion time
(see [25] and [40]). However, to the best of our knowledge, there is no method for applying
the concept of explosion time to DSDEs. Then for obtaining the positivity of solutions of
the DSDE model (3) in the infinite time interval, we restrict the noises to bounded noises,
which means that ξik(1 ≤ i ≤ 2, k ≥ 1) are assumed to be doubly truncated standard
normal random variables with support [−ς, ς] for a positive constant ς

−ς ≤ ξik ≤ ς (5)

and the probability density function

ψ(x) =

{
q(x) {Φ(ς)− Φ(−ς)}−1 if x ∈ [−ς, ς],
0 if x /∈ [−ς, ς],

(6)

where q and Φ are the probability density and cumulative distribution functions of the
standard normal random variable, respectively. Denoting ης = 2ςq(ς) {Φ(ς)− Φ(−ς)}−1
gives that for 1 ≤ i ≤ 2 and k ≥ 1

E(ξik) = 0, E
(
(ξik)

2
)

= 1− ης , (7)

in which the positive value ης can be assumed to be sufficiently close to 0. For example,
when ς = 20, we have 0 < ης < 10−85. The truncation constant ς will be first used in (12)
for the positivity of the solutions xik of the DSDE model (3).

The paper is organized as follows. Section 2 gives the positivity and boundedness of
solutions of the model (3). In Section 3, we develop a new discrete Itô formula for (3) by
using a known discrete Itô formula for DSDEs (see [41], [42] and [43]). The new discrete
Itô formula is the main tool for finding conditions for the global stability of solutions of
(3). Section 4 introduces auxiliary equations, the solutions of which are used for the upper
bounds of solutions of (3). In Section 5, we present sufficient conditions for extinction
and non-extinction of solutions of (3). Our results are compared with those for the DDEs
in [35] and the SDEs in [25]. Section 6 gives simulation results to confirm the theoretical
analysis obtained in this paper.

2. Positivity and boundedness of solutions of DSDEs

In this section, we show the positivity and boundedness of solutions of the DSDE
model (3) by applying the approach used in the DDE model (3) with σ1 = σ2 = 0 (see
[34] and [35]).

Notation 1. For simplicity, we use the symbols ã and â for every constant a to denote

ã = a · h0.5, â = a · h

and the symbols x1k and x2k for a vector xk = (x1k, x
2
k) to denote

x1k = x2k, x2k = x1k.

3
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Write the model (3) as
xik+1 = F i

k,xik
(xik),

where

F 1
k,y(x) = x

(
1 + r̂1 − â11x− â12y + σ̃1ξ

1
k+1

)
,

F 2
k,x(y) = y

(
1 + r̂2 + â21x− â22y + σ̃2ξ

2
k+1

)
.

(8)

Note that for a vector ζk = (ζ1k , ζ
2
k) of real numbers ζ1k and ζ2k ,

F i
k,ζik

(τ) is strictly increasing on 0 ≤ τ < V i
k (ζk), (9)

in which

V i
k (ζk) = (2âii)

−1
(

1 + r̂i +
∑i−1

j=1
âijζ

j
k −

∑2

j=i+1
âijζ

j
k + σ̃iξ

i
k+1

)
. (10)

Denote that for 1 ≤ i ≤ 2

χi = â−1ii

(
r̂i +

∑i−1

j=1
âijχj + σ̃iς∗

)
, (11)

where ς∗ is a constant satisfying

ς∗ > ς, (12)

χi ≤ (2âii)
−1
(

1 + r̂i −
∑2

j=i+1
âijχj − σ̃iς∗

)
, (13)

r̂i +
∑i−1

j=1
âijχj + σ̃iς∗ < 1. (14)

The relation (12) will be first used in (69) to find upper solutions of the model (3). The
initial condition of the model (3) is assumed to satisfy

(x10, x
2
0) ∈ (0, χ1)× (0, χ2). (15)

Remark 1. The definition (11) gives that χ1 = r̂1+σ̃1ς∗
â11

and χ2 = â−122 (r̂2 + â21χ1 + σ̃2ς∗).
Letting h in (3) be small, we can choose ς∗ satisfying the two conditions (13) and (14).
For example, let h = 0.0001, ς∗ = 20, r1 = 2, r2 = aij = 1 and σi = 0.1 (1 ≤ i, j ≤ 2).
Denoting by Ri and Li the right and left-hand sides of (13) and (14), respectively, gives

(χ1, R1, L1) = (202, 4699.5, 0.3848), (χ2, R2, L2) = (403, 4900.5, 0.3518),

which show that the conditions (13) and (14) are satisfied.

Theorem 1. Let xik be the solutions of (3) and χi be defined in (11). Assume that (5),
(12), (13), (14) and (15) hold. Then

(x1k, x
2
k) ∈ (0, χ1)× (0, χ2), k ≥ 0.

Proof. The proof is divided into the following three steps.
Step 1. We prove the positivity: xi1 > 0 for 1 ≤ i ≤ 2.
Note that for x0 = (x10, x

2
0)

4
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0 < xi0 < χi ≤ (2âii)
−1
(

1 + r̂i −
∑2

j=i+1 âijχj − σ̃iς∗
)
< V i

0 (x0),

where the first two inequalities are obtained from (15), the third from (13) and the last
from (10), (15), (5) and (12). Then using (9) with ζ0 = x0 and (15), we have the positivity

xi1 = F i
0,xi0

(xi0) > F i
0,xi0

(0) = 0.

Step 2. We prove the upper-bound property: xi1 < χi for 1 ≤ i ≤ 2.
Let ω ∈ Ωh. If r̂i +

∑i−1
j=1 âijx

j
0 −

∑2
j=i+1 âijx

j
0 + σ̃iξ

i
1(ω) ≤ 0, then

xi1(ω) = F i
0,xi0

(xi0)(ω) ≤ xi0 < χi.

Otherwise, we have 0 < xi0 < f0,i(xi0)(ω) with

f0,i(x
i
0) = â−1ii

(
r̂i +

∑i−1

j=1
âijx

j
0 −

∑2

j=i+1
âijx

j
0 + σ̃iξ

i
1

)
.

Since 0 < f0,i(xi0) < V i
0 (x0) by (14), we get

0 < xi0 < f0,i(x
i
0)(ω) < V i

0 (x0)(ω)

and further

xi1(ω) = F i
0,xi0

(xi0)(ω) < F i
0,xi0

(f0,i(x
i
0))(ω) = f0,i(x

i
0)(ω) < χi,

where the first inequality is obtained from (9) with ζ0 = x0 and the last inequality from
(11) and (15).
Step 3. We prove the boundedness: (x1k, x

2
k) ∈ (0, χ1)× (0, χ2) for k ≥ 0.

Since Step1 and 2 give that

if (x10, x
2
0) ∈ (0, χ1)× (0, χ2), then (x11, x

2
1) ∈ (0, χ1)× (0, χ2),

we can obtain the desired result by both applying mathematical induction and replacing(
x0, ξ

i
1, x0, ζ0, V

i
0 , F

i
0,xi0

, f0,i

)
with

(
xk, ξ

i
k+1, xk, ζk, V

i
k , F

i
k,xik

, fk,i

)
in Step 1 and 2. Here the

function fk,i is defined as fk,i(xik) = â−1ii

(
r̂i +

∑i−1
j=1 âijx

j
k −

∑2
j=i+1 âijx

j
k + σ̃iξ

i
k+1

)
.

Remark 2. For simplicity, from now on we assume that the conditions (5), (12), (13),
(14) and (15) used in Theorem 1 hold. Then we will not write the conditions explicitly
in later sections when we need the positivity and boundedness of the solutions xik.

3. A new discretized version of the Itô formula

In order to find conditions for the stability of (3), we need a discretized form of the
Itô formula. Although there are discretized versions of the Itô formula (see [41], [42] and
[43]), we need to formulate a variant which is suitable for our model (3). The proof of
our new discrete Itô formula is almost the same as that of the discrete Itô formula in [42]
and [43]. For the completeness of this paper, we reproduce the proof in the Appendix.

We write q1(h) = O(q2(h)) (or q1(h) = O(q2(h)) for h→ 0 to be more precise) if there
exist positive constants C and h0 such that |q1(h)| ≤ C|q2(h)| for all h with 0 < h ≤ h0.

5
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We make the two assumptions about the noise ξ: First, the noise ξ satisfies that for some
constants M1 and µ with 0 < µ < 1

E(ξ) = 0, E
(
ξ2
)

= 1− µ, E
(
|ξ|`
)
≤M1 (` = 1, 3). (16)

Second, the probability density function p of the noise ξ exists with the property that for
some constant M2 and all sufficiently large |x|

|x|3p(x) ≤M2|x|−1. (17)

Using µ = ης in (7) and the probability density function p(x) = ψ(x) in (6), one can obtain
that the truncated standard normal random variables ξik satisfy the two assumptions (16)
and (17). Let the symbol R denote the set of all real numbers and C3(R) denote the set
of all functions defined on R that are continuously differentiable up to the order 3.

Lemma 1. Let G be a sub σ-algebra of Fh. Consider functions φ, ϕ : R → R satisfying
that for some δ > 0,

(i) ϕ = φ on [1− δ, 1 + δ]

(ii) ϕ ∈ C3(R) and |ϕ′′′(x)| ≤M3 for some constant M3 and all x ∈ R
(iii)

∫
R |ϕ(x)− φ(x)|dx < M4 for some constant M4

and φ is almost everywhere continuous. Let f and g be G-measurable random variables
satisfying that for some positive constants ε and M5,

max{h|f |, h0.5|g|} ≤M5h
ε. (18)

Let ξ be a G-independent random variable satisfying (16) and (17). Then the conditional
expectation of the random variable φ (1 + hf + h0.5gξ) with respect to the σ-algebra G
becomes

E
[
φ
(
1 + hf + h0.5gξ

) ∣∣G]
= φ(1) + φ′(1)hf + 2−1φ′′(1)hg2 · (1− µ) + hfO (hε) + hg2O (hε) ,

where the first big O denotes

2−1ϕ′′(1)M5h
ε + 6−1M3 (M5h

ε)2 {1 + 3(1− µ)}

and the last denotes
(M1M5 +M4M2M5δ1)h

ε

for some positive constant δ1 less than δ. Here M1 and M2 are defined in (16) and (17).

Proof. See the Appendix.

Remark 3. Differently from the discretized Itô formulas in [43], [41] and [42], our dis-
cretized Itô formula in Lemma 1 does not require that the upper bounds of f and g are
independent of h. Let G = Fk and

f = ri +
∑i−1

j=1
aijx

j
k −

∑2

j=i
aijx

j
k, g = σi, ξ = ξik+1 (19)

for the solutions xik of (3) with 1 ≤ i ≤ 2. Then f and g are Fk-measurable and satisfy
(18) with ε = 0.5 by applying the upper bound χi = O(h−0.5) of xik to the definition of f .
In addition, ξ = ξik+1 is an Fk-independent random variable satisfying (16) and (17).
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Remark 4. In order to construct ϕ in Lemma 1 corresponding to the function

φ (x) =

{
ln |x| (|x| > 0),

0 (x = 0),

we modify the function ϕ used in [37]. Define the function ϕ as follows.

ϕ (x) =

{
ln |x| (|x| ≥ e−1),

−4−1e4x4 + e2x2 − 4−17 + 6−1e6(x− e−1)3(x+ e−1)
3

(|x| ≤ e−1).

Then φ and ϕ satisfy all the conditions in Lemma 1 with δ = 1− e−1.
Notation 2. For simplicity, we use the notations

E(xik) = k−1
∑k−1

s=0
E
(
xis
)

(20)

and
å = a ·

{
1 +O(h0.5)

}
, aη = a · (1− ης), riσ = ri − 0.5σ2

iη

for k > 0, 1 ≤ i ≤ 2, constants a and ης in (7). Here σ2
iη is equal to {σi · (1− ης)}2.

Remark 5. Since the solutions xik of (3) are positive by Theorem 1, we can take logarithm
of (3), which gives

E
[
lnxik+1

∣∣Fk] = E
[
lnxik

∣∣Fk]+ E

[
ln
(
1 + hf + h0.5gξik+1

) ∣∣∣∣Fk] , (21)

where f and g are defined in (19). In order to simplify the equation (21), applying Fk-
independence of ξk+1, Fk-measurability of xik and Lemma 1 with Remarks 3 and 4 to the
three expectation terms in (21), respectively, we have

E(lnxik+1) = lnxik + hf − 1

2
hg2 · (1− ης) + hfO

(
h0.5
)

+ hg2O
(
h0.5
)

= ln xik + h̊

(
ri −

1

2
σ2
iη +

∑i−1

j=1
aijx

j
k −

∑2

j=i
aijx

j
k

)
. (22)

Taking expectation of (22) and adding the result, we obtain

E(lnxik) = E(lnxi0) + k̊h
{
riσ +

∑i−1

j=1
aijE(xjk)−

∑2

j=i
aijE(xjk)

}
. (23)

4. Auxiliary equations

In order to find upper bounds of xik, we consider the auxiliary equations

zik+1 = zik

(
1 + r̂i +

∑i−1

j=1
âijz

j
k − âiiz

i
k + σ̃iξ

i
k+1

)
, zi0 = xi0 (24)

for 1 ≤ i ≤ 2 and k ≥ 0. Since (24) is the system (3) with a12 = 0, Theorem 1 with (4)
gives that for k ≥ 0

(z1k, z
2
k) ∈ (0, χ1)× (0, χ2). (25)
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Let βi be the solutions of the equations

riσ +
∑i−1

j=1
aijβj − aiiβi = 0 (26)

for 1 ≤ i ≤ 2. Note that (22) and (23) with a12 = 0 become

E
(
ln z1k+1

)
= ln z1k + h̊

(
r1σ − a11z1k

)
, (27)

E
(
ln z1k

)
= E

(
ln z10

)
+ k̊h

{
r1σ − a11E

(
z1k
)}

= E
(
ln z10

)
+ k̊ha11

{
β1 − k−1

∑k−1

s=0
E
(
z1s
)}

(28)

due to (20) and β1 = a−111 r1σ in (26). Similarly, we have

E
(
ln z2k+1

)
= ln z2k + h̊

(
r2σ + a21z

1
k − a22z2k

)
, (29)

E
(
ln z2k

)
= E

(
ln z20

)
+ k̊h

{
r2σ + a21E(z1k)− a22E(z2k)

}
= E

(
ln z20

)
+ k̊ha22

{
r2σ
a22

+
a21
a22

E(z1k)− k−1
k−1∑
s=0

E
(
z2s
)}

. (30)

Lemma 2. Let z1k and β1 be the solutions of (24) and (26), respectively.
If β1 ≥ 0, then for ε > 0 and all sufficiently large k

k−1
∑k−1

s=0
E
(
z1s
)
≤ β1 + ε.

Proof. Suppose, on the contrary, that the theorem is false, which means that there exist
a constant ε0 > 0 and an infinite increasing sequence {km} satisfying both for all km

k−1m
∑km−1

s=0
E
(
z1s
)
>β1 + ε0 (31)

and for all k with k 6= km

k−1
∑k−1

s=0
E
(
z1s
)
≤β1 + ε0. (32)

Combining (31) and (28), we have

limm→∞E
(
ln z1km

)
= −∞. (33)

Substituting (33) and the boundedness of z1k into (27) gives

lim
m→∞

ln z1km−1 = −∞ a.s.

and then
limm→∞ z

1
km−1 = 0 a.s. (34)

Thus the dominated convergence theorem with (25) leads to

limm→∞E(z1km−1) = 0. (35)

In order to obtain a contraction we follow the two steps:
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Step 1. If there exists k = km−1 satisfying (32), then the system of (31) and (32) becomes∑km−1

s=0
E
(
z1s
)

> km (β1 + ε0) ,∑km−2

s=0
E
(
z1s
)
≤ (km − 1) (β1 + ε0) ,

which gives
E(z1km−1) > β1 + ε0, (36)

and hence there exist finitely many k satisfying (32) due to (35) and (36). Therefore for
all sufficiently large k

k−1
∑k−1

s=0
E
(
z1s
)
>β1 + ε0. (37)

Step 2. As (31) implies (35), the equation (37) implies

limk→∞E(z1k) = 0,

which is contradictory to (37) due to β1 + ε0 > 0 and so the proof is completed.

Lemma 3. Let (z1k, z
2
k) and (β1, β2) be the solutions of (24) and (26), respectively.

(a) Assume r1σ < 0. Then limk→∞ z
1
k = 0 a.s.

(i) If r1σ < 0 and r2σ < 0, then limk→∞ z
2
k = 0 a.s.

(ii) If r1σ < 0 and r2σ ≥ 0, then limk→∞ k
−1∑k−1

s=0 E (z2s) = a−122 r2σ.

(b) Assume r1σ ≥ 0. Then limk→∞ k
−1∑k−1

s=0 E (z1s) = β1.

(i) If r1σ ≥ 0 and r2σ + a21β1 < 0, then limk→∞ z
2
k = 0 a.s.

(ii) If r1σ ≥ 0 and r2σ + a21β1 ≥ 0, then limk→∞ k
−1∑k−1

s=0 E (z2s) = β2.

Proof. (a) Since r1σ < 0 is equivalent to β1 = a−111 r1σ < 0, it follows from (28) and the
positivity of z1k in (25) that if r1σ < 0, then limk→∞E (ln z1k) = −∞, and further

limk→∞ z
1
k = 0 a.s. (38)

as (33) implies (34).
(a)-(i) Assume that r1σ < 0 and r2σ < 0.
As (34) implies (35), the equation (38) yields limm→∞E(z1k) = 0 and then

limk→∞E(z1k) = 0. (39)

Combining (39) and (30) with r2σ < 0 and using z2k > 0, we have from (30) that

limk→∞E
(
ln z2k

)
= −∞. (40)

Therefore, as (33) implies (34), the equation (40) gives

limk→∞ z
2
k = 0 a.s.

(a)-(ii) Assume that r1σ < 0 and r2σ ≥ 0.
Using (z2k, a

−1
22 r2σ), (29) and (30) instead of (z1k, β1), (27) and (28) in the proof of Lemma

2, respectively, and applying (39) to (30), we can obtain that for ε > 0 and all sufficiently
large k

k−1
∑k−1

s=0
E
(
z2s
)
≤ a−122 r2σ + ε. (41)
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In order to show limk→∞ k
−1∑k−1

s=0 E (z2s) = a−122 r2σ, it is enough to prove that for ε > 0
and all sufficiently large k

a−122 r2σ − ε ≤ k−1
∑k−1

s=0
E
(
z2s
)
. (42)

Suppose that (42) is false, which means that there exist a constant ε0 > 0 and an infinite
increasing sequence {km} satisfying

a−122 r2σ − ε0 > k−1m
∑km−1

s=0
E
(
z2s
)
. (43)

Then the boundedness of z2k and (30) imply that for all km

∞ > E
(
ln z2km

)
> E

(
ln z20

)
+ kmh̊a22ε0, (44)

which is a contradiction. Therefore (42) is true and so the proof is completed due to (41)
and (42).
(b) Assume r1σ ≥ 0, which means β1 = a−111 r1σ ≥ 0.
In order to show limk→∞ k

−1∑k−1
s=0 E (z1s) = β1, it is enough to prove that for ε > 0 and

all sufficiently large k

β1 − ε ≤ k−1
∑k−1

s=0
E
(
z1s
)

(45)

due to Lemma 2. Suppose that (45) is false, so that there exist a constant ε0 > 0 and an
infinite increasing sequence {km} such that

β1 − ε0 > k−1m
∑km−1

s=0
E
(
z1s
)
. (46)

Then the boundedness of z1k and (28) imply that for all km

∞ > E
(
ln z1km

)
> E

(
ln z10

)
+ kmh̊a11ε0, (47)

which is a contradiction. Hence (45) is true and, therefore, Lemma 2 with (45) gives

limk→∞E(z1k) = β1. (48)

(b)-(i) Assume that r1σ ≥ 0 and r2σ + a21β1 < 0.
Applying (48) to (30) with both r2σ + a21β1 < 0 and z2k > 0, we have

limk→∞E(ln z2k) = −∞.

Therefore, as (33) implies (34), we can obtain limk→∞ z
2
k = 0 a.s.

(b)-(ii) Assume that r1σ ≥ 0 and r2σ + a21β1 ≥ 0.
Following the proof of Lemma 2, we can obtain that

k−1
∑k−1

s=0
E
(
z2s
)
≤ β2 + ε (49)

for ε > 0 and all sufficiently large k by using (z2k, β2), (29) and (30) instead of (z1k, β1),
(27) and (28), respectively, and applying (48) and β2 = a−122 (r2σ + a21β1) ≥ 0 to (30).
Similarly, following the proof of (45), we can obtain that

β2 − ε ≤ k−1
∑k−1

s=0
E
(
z2s
)

(50)

for ε > 0 and all sufficiently large k by replacing (z1k, β1) and (28) with (z2k, β2) and (30),
respectively, and applying (48) to (30). Therefore (49) and (50) give the desired result.
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Remark 6. The equations (28) and (30) can be written as

E(ln zik) = E(ln zi0) + k̊h
{
riσ +

∑i−1

j=1
aijE(zjk)− aiiE(zik)

}
. (51)

Substituting (26) to (51) yields

E(ln zik) = E(ln zi0) + k̊h
[∑i−1

j=1
aij
{
E(zjk)− βj

}
− aii

{
E(zik)− βi

}]
. (52)

Applying Lemma 3-(b) and (b)-(ii) to (52) with the notation (20), we have

limk→∞ k
−1E(ln zik) = 0 (53)

under the condition that min{r1σ, riσ +
∑i−1

j=1 aijβj} ≥ 0 for 1 ≤ i ≤ 2.

Lemma 4. Let xik and zik be the solutions of (3) and (24), respectively for i = 1, 2.
Then for k ≥ 0

0 < xik ≤ zik.

Proof. Theorem 1 with Remark 2 gives

0 < xik. (54)

Note that
F 1
k,y(x) is nonincreasing in y for x ≥ 0 and k ≥ 0 (55)

and
F 2
k,x(y) is nondecreasing in x for y ≥ 0 and k ≥ 0 (56)

by the definition (8). The proof of this lemma is divided into the following two cases.
Case 1. Let i = 1.
Using x10 = x20 > 0 and (55), we have

x11 = F 1
0,x10

(x10) ≤ F 1
0,0(x

1
0). (57)

It follows from Remark 2, (24), (25), (10) and (13) that

0 < x10 ≤ z10 < χ1 < V 1
0 (0, 0),

with which (9) yields
F 1
0,0(x

1
0) ≤ F 1

0,0(z
1
0) = z11 . (58)

Hence combining (54), (57) and (58) gives

0 < x11 ≤ z11 . (59)

Assume that for some positive integer k

0 < x1k ≤ z1k. (60)

Using (54), (60), (25), (10) and (13), we have

x1k > 0, 0 < x1k ≤ z1k < χ1 < V 1
k (0, 0)
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and so
x1k+1 = F 1

k,x1k
(x1k) ≤ F 1

k,0(x
1
k) ≤ F 1

k,0(z
1
k) = z1k+1,

where the first inequality is obtained from (55) and the second inequality from (9).
Case 2. Let i = 2.
Using x20 = x10 ≤ z10 and 0 < x20 ≤ z20 < χ2 < V 2

0 (0, 0), we have

x21 = F 2
0,x20

(x20) ≤ F 2
0,z10

(x20) ≤ F 2
0,z10

(z20) = z21 (61)

due to (56) and (9). Similarly as in Case 1, using mathematical induction and z2k ≤ χ2 <
V 2
k (0, 0) instead of z1k < χ1 < V 1

k (0, 0) in Case 1, we can obtain the desired result.

Remark 7. If min{r1σ, riσ +
∑i−1

j=1 aijβj} ≥ 0 for 1 ≤ i ≤ 2, then Lemma 4 and (53)
imply that for ε > 0 and all sufficiently large k

k−1E(lnxik) ≤ ε, (62)

which will be first used in Theorem 4.

5. Extinction and persistence of the discrete solutions

In this section, we present several conditions sufficient for the extinction and persis-
tence (non-extinction) of the solutions xik of (3).

Theorem 2. Let xik and βi be the solutions of (3) and (26), respectively for i = 1, 2.

(a) If r1σ < 0, then limk→∞ x
1
k = 0 a.s.

(b) If r1σ < 0 and r2σ < 0, then limk→∞ x
2
k = 0 a.s.

Proof. The proof is followed by combining Lemma 3-(a) and (a)-(i) with Lemma 4.

Remark 8. Since r1σ = 0 gives β1 = a−111 r1σ = 0, we obtain that

if r1σ = 0, then limk→∞ k
−1∑k−1

s=0 E (x1s) = 0

by combining Lemma 3-(b) with Lemma 4. Similarly, Lemma 3-(b)-(ii) gives

if r1σ = r2σ = 0, then limk→∞ k
−1∑k−1

s=0 E (x2s) = 0

since β2 = a−122 (r2σ + a21β1) = 0.

Remark 9. By Theorem 2-(a), we find that if r1 <
1
2
σ2
1η, then the prey population will be

extinct in the future, no matter whether the predator exists. It implies that environmental
noise plays a very important role in the biological system.

In order to establish the sufficient condition for the extinction of the predator and the
persistence of the prey, we will use the following Lemma 5 as well as Lemma 3-(b).
Using Lemmas 4 and 3-(b) with β1 = a−111 r1σ we obtain that

if r1σ > 0, then lim
k→∞

k−1
∑k−1

s=0
E
(
x1s
)
≤ a−111 r1σ. (63)
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For finding a lower function of x1k, we consider the solution uk,ε of the equation

uk+1,ε = uk,ε(1 + r̂1 − â11uk,ε − â12ε+ σ̃1ξ
1
Nε+k+1), u0,ε = x1Nε , (64)

in which ε satisfies that for some positive integer Nε and all k ≥ Nε

0 < x2k ≤ ε, (65)

r̂1 − â12ε+ σ̃1ς∗ < 1, (66)

â12ε+ σ̃1ς < σ̃1ς∗, (67)

where (65) is possible under the conditions r1σ > 0 and r2σ + a21β1 < 0 due to Lemmas 4
and 3-(b)-(i). The inequalities (66) and (67) are possible by (14) and (12), respectively.

Lemma 5. Assume that r1σ > 0 and r2σ + a21β1 < 0. Let ε and Nε satisfy (65)–(67).
Let x1k and uk,ε be the solutions of (3) and (64), respectively. Then

(a) 0 < uk,ε < χ1 for k ≥ 0.

(b) uk,ε ≤ x1Nε+k for k ≥ 0.

(c) If r1σ − a12ε > 0, then limk→∞ k
−1∑k−1

s=0 E (us,ε) = a−111 (r1σ − a12ε).

Proof. (a)We proceed by induction on k.
Since (64) and Theorem 1 with Remark 2 give

u0,ε = x1Nε , 0 < x1Nε < χ1,

the statement (a) is true for k = 0.
Assume that for a nonnegative integer k

0 < uk,ε < χ1. (68)

Now, in the case of k + 1, the proof of (a) is divided into the following two steps.
Step 1. We prove the positivity of uk+1,ε.
Denoting

Uk = (2â11)
−1 (1 + r̂1 − â12ε+ σ̃1ξ

1
Nε+k+1

)
gives that for k ≥ 0

0 < χ1 < (2â11)
−1 (1 + r̂1 − σ̃1ς∗) < Uk, (69)

where the second inequality is obtained from (13) and the last from (67), (12) and (5).
Letting

Gk(x) = x
(
1 + r̂1 − â11x− â12ε+ σ̃1ξ

1
Nε+k+1

)
,

we have
Gk(x) is strictly increasing on 0 ≤ x < Uk. (70)

Applying (68) and (69) to (70), we have the desired positivity.
Step 2. We prove that χ1 is an upper bound of uk+1,ε.
Let ω ∈ Ωh. If r̂1 − â11uk,ε(ω)− â12ε+ σ̃1ξ

1
Nε+k+1(ω) ≤ 0, then

uk+1,ε(ω) = Gk(uk,ε)(ω) ≤ uk,ε(ω) < χ1,
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in which (68) gives the last inequality. Otherwise, we have 0 < uk,ε(ω) < ∆k(ω) with

∆k = â−111

(
r̂1 − â12ε+ σ̃1ξ

1
Nε+k+1

)
.

Since ∆k < Uk by (66), we have 0 < uk,ε(ω) < ∆k(ω) < Uk(ω) and then (70) gives

uk+1,ε(ω) = Gk(uk,ε)(ω) < Gk(∆k)(ω) = ∆k(ω) < χ1,

where the last inequality is obtained from (11), (12) and (5).
(b)We proceed by induction on k.
The statement (b) is true for k = 0 due to (64).
Assume that for a nonnegative integer k

uk,ε ≤ x1Nε+k. (71)

It follows from (a) in this theorem, (71), Theorem 1, Remark 2 and (69) that

0 < uk,ε ≤ x1Nε+k < χ1 < Uk

and then
uk+1,ε = Gk(uk,ε) ≤ Gk(x

1
Nε+k) = F 1

Nε+k,ε(x
1
Nε+k) (72)

due to (70). Combining (55) and (65) also gives

F 1
Nε+k,ε(x

1
Nε+k) ≤ F 1

Nε+k,x2Nε+k
(x1Nε+k) = x1Nε+k+1. (73)

Therefore, (72) and (73) give the desired result.
(c) Let γ1 = a−111 (r1σ − a12ε). Note that

E (lnuk+1,ε) = lnuk,ε + h̊ (r1σ − a11uk,ε − a12ε) , (74)

E (lnuk,ε) = E (lnu0,ε) + k̊h
{
r1σ − a12ε− a11E (uk,ε)

}
= E (lnu0,ε) + k̊ha11

{
γ1 − k−1

∑k−1

s=0
E (us,ε)

}
(75)

as in (27) and (28). Following the proof of Lemma 2, we can obtain that

k−1
∑k−1

s=0
E (us,ε) ≤ γ1 + ε′ (76)

for ε′ > 0 and all sufficiently large k by replacing (27), (28) and (z1k, r1σ, β1) with (74),
(75) and (uk,ε, r1σ − a12ε, γ1), respectively.
Similarly, replacing (28) and (z1k, β1) in (45)–(47) with (75) and (uk,ε, γ1), respectively, we
can obtain that for ε′ > 0 and all sufficiently large k

γ1 − ε′ ≤ k−1
∑k−1

s=0 E (us,ε),

with which (76) gives the desired result.

Theorem 3. Let xik and β1 be the solutions of (3) and (26), respectively for i = 1, 2.

If r1σ ≥ 0 and r2σ + a21β1 < 0, then lim
k→∞

E(x1k) = β1 and lim
k→∞

x2k = 0 a.s.

Proof. It follows from Lemma 3-(b)-(i), Lemma 4, Theorem 1 and Remark 2 that
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limk→∞ x
2
k = 0 a.s.

Using Lemma 5-(a) and Lemma 4, we obtain that for ε > 0 and all sufficiently large k

0 < uk,ε ≤ x1Nε+k ≤ z1Nε+k. (77)

Lemma 5-(c) and Lemma 3-(b) give

limk→∞E (uk,ε) = a−111 (r1σ − a12ε) , limk→∞E
(
z1k
)

= a−111 r1σ, (78)

where the first and second equalities are valid under the conditions r1σ − a12ε > 0 and
r1σ ≥ 0, respectively. Therefore using (77), (78) and Remark 8, we obtain the desired
result.

Remark 10. By Theorems 2 and 3, we find that the value r1σ is the threshold between
the extinction and persistence for the prey population. In addition, although the prey
population converges to a non-extinction state in the mean when r1σ > 0 and r2σ+a21β1 <
0, the predators dies out when the diffusion coefficient σ2 is large enough and then

−r2σ = −r2 + 0.5 {σ2 · (1− ης)}2

becomes too large.

Remark 11. We can establish one condition for the extinction of the prey and the
persistence of the predator as follows. Lemmas 4 and 3-(a)-(ii) yield

if r1σ < 0 and r2σ ≥ 0, then lim
k→∞

k−1
∑k−1

s=0
E
(
x2s
)
≤ a−122 r2σ. (79)

For finding a lower function of x2k, we consider the solution vk,ε of the equation

vk+1,ε = vk,ε(1 + r̂2 − â21ε− â22vk,ε + σ̃2ξ
2
Nε+k+1), v0,ε = x2Nε , (80)

in which ε satisfies that for some positive integer Nε and all k ≥ Nε

0 < x1k ≤ ε, (81)

r̂2 − â21ε+ σ̃2ς∗ < 1, (82)

â21ε+ σ̃2ς < σ̃2ς∗. (83)

The inequality (81) is possible under the condition r1σ < 0 due to Lemma 3-(a).
Replacing (64)–(67), r1σ > 0, r2σ + a21β1 < 0 and (uk,ε, r1, a11, a12, ξ

1) in the proof of
Lemma 5 with (80)–(83), r1σ < 0, r2σ > 0 and (vk,ε, r2, a22, a21, ξ

2), we can obtain that

vk,ε ≤ x2Nε+k, lim
k→∞

k−1
∑k−1

s=0
E (vs,ε) = a−122 (r2σ − a21ε) , (84)

if r2σ − a21ε > 0. Therefore (79) and (84) give the desired result:

if r1σ < 0 and r2σ > 0, then limk→∞
(
x1k, E(x2k)

)
=
(
0, a−122 r2σ

)
a.s.
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Now, it remains to establish one condition for persistence of the prey and the predator.
Define the matrix A and the constants Di as

A =

(
a11 a12
−a21 a22

)
,

(
r1σ
r2σ

)
= A

(
D1

D2

)
, (85)

which give

|A| = a11a22 + a12a21 > 0,

(
D1

D2

)
= A−1

(
r1σ
r2σ

)
= |A|−1

(
a22r1σ − a12r2σ
a11 (r2σ + a21β1)

)
≥ 0 (86)

under the conditions r1σ ≥ a−122 a12r2σ and r2σ + a21β1 ≥ 0.
Using (85), the system (23) can be written as the matrix equation(

E (lnx1k)
E (lnx2k)

)
=

(
E (lnx10)
E (lnx20)

)
+ k̊hA

(
D1 − E (x1k)
D2 − E (x2k)

)
(87)

and multiplying the matrix |A|A−1 to (87), we have

a22E(lnx1k)− a12E(lnx2k) = C1 + k̊h|A|
{
D1 − E (x1k)

}
, (88)

a21E(lnx1k) + a11E(lnx2k) = C2 + k̊h|A|
{
D2 − E (x2k)

}
, (89)

where C1 = a22E(lnx10)− a12E(lnx20) and C2 = a21E(lnx10) + a11E(lnx20).

Lemma 6. Let x1k and β1 be the solutions of (3) and (26), respectively.
If r1σ ≥ a−122 a12r2σ and r2σ + a21β1 ≥ 0, then for ε > 0 and all sufficiently large k

E(x1k) ≤ D1 + ε, (90)

where D1 is defined in (85).

Proof. Suppose that (90) is false, which means that there exist a constant ε0 > 0 and an
infinite increasing sequence {km} satisfying both for all km

k−1m
∑km−1

s=0
E
(
x1s
)
>D1 + ε0, (91)

and for all k with k 6= km

k−1
∑k−1

s=0
E
(
x1s
)
≤D1 + ε0. (92)

Replace (z1k, β1), (31), (32), (28) and (27) in the proof of Lemma 2 with (x1k, D1), (91), (92),
(88) and (22), respectively, where we apply (22) with i = 1. Then using the boundedness
of x1k and following the proof for (37), we can obtain that for all sufficiently large k

k−1
∑k−1

s=0
E
(
x1s
)
>D1 + ε0. (93)

Combining (93) and (88) gives

a22E(lnx1k)− a12E(lnx2k) < C1 + k̊h|A|(−ε0). (94)
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Applying Theorem 1 to (22) with i = 2, we obtain

supk≥0E(lnx2k) <∞

and then (94) yields
limk→∞E

(
lnx1k

)
= −∞. (95)

Substituting (95) into (22) with i = 1 and using the boundedness of x1k, we obtain

limk→∞ lnx1k = −∞ a.s.,

which implies

limk→∞ x
1
k = 0 a.s.

Hence the dominated convergence theorem with Theorem 1 leads to

limk→∞E(x1k) = 0,

which is contradictory to (93) due to D1 + ε0 > 0. This completes the proof.

Remark 12. The equation (90) with (87) gives that for ε > 0 and all sufficiently large k

E(lnx2k) ≤ E(lnx20) + k̊ha22
{
a−122 a21ε+D2 − E(x2k)

}
. (96)

Following the proof of Lemma 6 with (96), we can obtain that

if r1σ ≥ a−122 a12r2σ and r2σ + a21β1 ≥ 0, then E(x2k) ≤ a−122 a21ε+D2 + ε′ (97)

for ε′ > 0 and all sufficiently large k by replacing (x1k, D1) and (88) in the proof of Lemma
6 with (x2k, a

−1
22 a21ε+D2) and (96), respectively.

Theorem 4. Let xik and βi be the solutions of (3) and (26), respectively for i = 1, 2.

If r1σ ≥ a−122 a12r2σ and r2σ + a21β1 ≥ 0, then limk→∞E(xik) = Di,

where Di are defined in (85).

Proof. Substituting (62) into (89) gives that for ε′ > 0 and all sufficiently large k

ε′ ≥ D2 − E(x2k). (98)

Combining (98) and (97), we have

limk→∞E(x2k) = D2. (99)

Applying (99) to (89) with (62) yields

limk→∞ k
−1E(lnx1k) = limk→∞ k

−1E(lnx2k) = 0,

with which (88) gives the desired result lim
k→∞

E(x1k) = D1.

Remark 13. Let (xk, yk) be the solutions of DDEs (3) with σ1 = σ2 = 0 in [35].

(i) If r1 > 0, r2 < 0 and r2 + a21a
−1
11 r1 ≤ 0, then limk→∞(xk, yk) = (a−111 r1, 0).
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(ii) If r1 > 0, r2 < 0 and r2 + a21a
−1
11 r1 > 0, then limk→∞(xk, yk) = (Dx, Dy),

where (Dx, Dy) is equal to (D1, D2) with σ1 = σ2 = 0.

Note that the sign of r2 in the DDE model is fixed to r2 < 0. Adding the noise to the
DDEs, we have from Theorems 3 and 4 that

(i)′ If r1σ ≥ 0 and r2σ + a21a
−1
11 r1σ < 0, then limk→∞

(
E(x1k), x

2
k

)
=
(
a−111 r1σ, 0

)
a.s.

(ii)′ If r1σ ≥ a−122 a12r2σ and r2σ+a21a
−1
11 r1σ ≥ 0, then limk→∞

(
E(x1k), E(x2k)

)
= (D1, D2).

Hence we demonstrate that the solutions of the DDEs and the DSDEs with small noise
have similar asymptotic behavior by comparing (i), (ii) and (i)′, (ii)′, respectively. In
addition, when comparing r2 + a21a

−1
11 r1 > 0 in (ii) and r2σ + a21a

−1
11 r1σ < 0 in (i)′,

we understand the effect of strong noise, which changes the behavior of the predator
population from non-extinction into extinction. Therefore the main difference between
the deterministic and stochastic models is that large stochastic perturbation may result
in the extinction of the predator population.

Remark 14. Let (x, y) be the solutions of the SDE model (2), which is a special model
in [25] with zero time delays. Note that the sign of r2 in the SDE model is also negative.

(i) If r1 − 0.5σ2
1 < 0 and r2 − 0.5σ2

2 < 0, then limt→∞(x(t), y(t)) = (0, 0) a.s.

(ii) If r1 − 0.5σ2
1 > 0, r2 − 0.5σ2

2 < 0 and (r2 − 0.5σ2
2) + a21a

−1
11 (r1 − 0.5σ2

1) < 0,
then x is stable in the mean and y goes to extinction:

limt→∞ t
−1 ∫ t

0
x(s)ds = a−111 r1σ, limt→∞ y(t) = 0 a.s.

(iii) If r2 − 0.5σ2
2 < 0 and (r2 − 0.5σ2

2) + a21a
−1
11 (r1 − 0.5σ2

1) > 0, then both x and y are
stable in the mean:

limt→∞

(
t−1
∫ t
0
x(s)ds, t−1

∫ t
0
y(s)ds

)
= (D1, D2) a.s.

Since r2 < 0 in the SDE model (2), the sign of r2 − 0.5σ2
2 in (2) is also negative, which is

the reason why the condition r2− 0.5σ2
2 < 0 is assumed in (i)–(iii). The three results, (i),

(ii) and (iii) in this remark, are corresponding to Theorem 2-(b), (i)′ and (ii)′ in Remark
13, respectively. Hence, when replacing the stability of (x(t), y(t)) in the mean with the
stability of

(
E(x1k), E(x2k)

)
, we demonstrate that the sufficient conditions for the almost

sure global stability of the SDE model (2) also suffice to give the same global stability of
the DSDE model (3). In this case, note that there is no constraint on the sign of r2 in
the DSDE model. Therefore we show that the DSDE model (3) is a good discrete model
for the corresponding SDE model (2).

6. Numerical examples

In this section, we provide some simulations that illustrate the results in Theorems
1, 2, 3 and 4 with truncation constants (ς, ς∗) = (19.9, 20) in (5) and (12). In this case,
we have 0 < ης < 10−85, so that we can ignore the effect of the term ης when using the
values of parameters in the following three examples, where the conditions (12)–(14) are
satisfied. In Figures 1, 2 and 3, the DSDE model (3) is simulated 1000 times at each time
kh for calculating the expectation values E (xk) and E (yk), where xk and yk denote the
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solutions x1k and x2k, respectively. We compare our results for the DSDE model (3) with
the results for the DDE model in [35], which is the model (3) with σ1 = σ2 = 0.

Example 1. Let h = 0.0001, r1 = 0.8, r2 = −0.1, a11 = 0.4, a12 = 0.001, a21 =
0.1, a22 = 0.3, σ2

1 = 2.5 and σ2
2 = 0.1. Since r1 > 0, r2 < 0 and r2 + a21a

−1
11 r1 > 0, the

solutions xk and yk of the DDE model converge to the positive numbers Dx and Dy in
Remark 13-(ii), respectively, as displayed in Figure 1-(a). However, since riσ < 0 (i = 1, 2),
the noises have a large effect on the convergence and, as a result, the solutions of the
stochastically perturbed model (3) go to extinction, which are shown in Figures 1-(b)
and (c), as in Theorem 2-(a) and (b), respectively. Therefore Figures 1 demonstrates the
important role of noise.

0 50 100

0.3

1

2.0

(a)

 

 
xk
yk

0 50 100
0

0.1

1,0

(b)

 

 
xk
yk

50 75 100

0

5

(c)

 

 
×10

−4

E(xk)

E(yk)

Figure 1: All the x-axes denote time kh. (a) Curves of the solutions of the DDE model. (b) Two
realizations of the solutions xk and yk of the DSDE model, which converge to zero. (c) Expectation
values of the solutions xk and yk of the DSDE model, which converge to zero in the mean.

Example 2. Let h = 0.001, r1 = 2, r2 = −2, a11 = 1.0, a12 = 0.4, a21 = a22 =
0.3, σ2

1 = 0.2 and σ2
2 = 4. Figure 2-(a) shows that the solutions xk and yk of the DDE

model converge to a−111 r1 and 0, respectively, as in Remark 13-(i) when r1 > 0, r2 < 0 and
r2 + a21a

−1
11 r1 ≤ 0. The noises satisfy both r1σ > 0 and r2σ + a21a

−1
11 r1σ < 0, which are the

conditions in Theorem 3. Then Figures 2-(b), (c) and (d) show that the stochastically
perturbed model (3) behaves similarly to the DDE model in the sense that k−1

∑k−1
i=0 E(xi)

and yk converge to a−111 r1σ and 0, respectively, which confirms Theorem 3.
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xk

0 2.5 5

0

0.5

(c)
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(d)

 

 
×10

−4

1

k

k−1∑

i=0

E(xi) −
r1−0.5σ

2

1

a1 1

E(yk)

Figure 2: All the x-axes denote time kh. (a) Curves of the solutions of the DDE model. Curves in (b)
and (c) are realizations of the solutions xk and yk of the DSDE model, respectively. (d) Convergence of
average of expectation values of xk to non-zero and convergence of yk to zero in the mean.

Example 3. Let h = 0.001, r1 = 2.0, r2 = −0.1, a11 = a12 = 0.4, a21 = 1, a22 = 0.3 and
σ2
1 = σ2

2 = 0.02, which give that r1 > 0, r2 < 0 and r2 + a21a
−1
11 r1 > 0. Thus Figure 3-(a)
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shows that the solutions xk and yk of the DDE model converge to Dx and Dy in Remark
13-(ii), respectively, as displayed in Figure 1-(a) in Example 1. However, the condition
r1σ > 0 is different from that in Example 1. Realizations of the solutions of the DSDE
model are given in Figures 3-(b) and (c). Since r1σ > a−122 a12r2σ and r2σ + a21a

−1
11 r1σ > 0,

Figure 3-(d) shows that the DSDE model behaves similarly to the DDE model in the sense
that k−1

∑k−1
i=0 E(xi) and k−1

∑k−1
i=0 E(yi) converge to positive D1 and D2, respectively,

which demonstrate Theorem 4.
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k

k−1∑

i=0

E(xi) −D1

2

1

k

k−1∑

i=0

E(yi) −D2

2

Figure 3: All the x-axes denote time kh. (a) Curves of the solutions of the DDE model. Curves in (b)
and (c) are realizations of the solutions xk and yk of the DSDE model, respectively. The symbols D1

2 and
D2

2 in (d) denote D1 and D2 defined in (85).

7. Conclusion

In this paper, we have considered a system of discrete-time stochastic difference equa-
tions for predator-prey interactions and established sufficient conditions for extinction
and non-extinction of the two species. Our results show that if the positive equilibrium
point of the deterministic difference system is globally stable, then the stochastic differ-
ence model will preserve the nice property in mean provided that the noise is sufficiently
small. It is shown, however, that large noise can change the behavior of the predator
population from non-extinction into extinction.

Our new discrete Itô formula has played an important role in the two-dimensional
DSDE model. In addition we can apply the new formula for the n-dimensional DSDE
model

xik+1 = xik

{
1 + h

(
ri +

∑i−1

j=1
aijx

j
k −

∑n

j=i
aijx

j
k

)
+ h0.5σiξ

i
k+1

}
for 1 ≤ i ≤ n and k ≥ 0. Therefore it is a further study to establish sufficient conditions
for the extinction and non-extinction of the n species.

Appendix

A.1. The proof of Lemma 1

By Taylor expansion,

ϕ(1 + x) = ϕ(1) + ϕ′(1)x+ 2−1ϕ′′(1)x2 + 6−1ϕ′′′(θ)x3 (100)
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with θ lying between 1 and x. Let x = hf + h0.5gξ. Since f, g are G-measurable and ξ is
G-independent with E(ξ) = 0, we have

E (x| G) = E (hf | G) + E
(
h0.5gξ

∣∣G) = hf + h0.5gE(ξ) = hf (101)

and further

E
(
x2
∣∣G) = E

(
(hf)2

∣∣G)+ E
(

2hfh0.5gξ
∣∣G)+ E

(
hg2ξ2

∣∣G)
= (hf)2 + hg2 · (1− µ)

≤ hfM5h
ε + hg2 · (1− µ) (102)

due to E(ξ2) = 1− µ and (18). Using Lemma 1-(ii) gives∣∣E (6−1ϕ′′′(θ)x3
∣∣G)∣∣ ≤ 6−1M3E

(∣∣x3∣∣ ∣∣G) (103)

and expanding x3 = (hf + h0.5gξ)3 yields

E
(∣∣x3∣∣ ∣∣G) ≤ hf

{
(hf)2 + 3hg2 · (1− µ)

}
+ hg2M1h

0.5g

≤ hf (M5h
ε)2 {1 + 3(1− µ)}+ hg2M1M4h

ε (104)

because of (18) and (16). Inserting (101)–(104) into (100), we have

E
(
ϕ(1 + x)

∣∣ G) (105)

= ϕ(1) + ϕ′(1)hf + 2−1ϕ′′(1)hg2 · (1− µ) + hfO1 (hε) + hg2O2 (hε) , (106)

in which the two big O notations denote

O1 (hε) = 2−1ϕ′′(1)M5h
ε + 6−1M3 (M5h

ε)2 {1 + 3(1− µ)} ,
O2 (hε) = M1M5h

ε.

Now it remains to show

E
(
φ
(
1 + hf + h0.5gξ

)
− ϕ

(
1 + hf + h0.5gξ

) ∣∣G) = hg2O (hε) .

Let c1 = 1 + hf and c2 = h0.5g. Then the disintegration formula for conditional expecta-
tions with respect to G gives

E
(
φ
(

1 + hf +
√
hgξ
)
− ϕ

(
1 + hf +

√
hgξ
) ∣∣∣G)

=

∫
R
{φ (c1 + c2x)− ϕ (c1 + c2x)} p(x) dx (107)

due to Lemma 1-(iii) and the fact that f, g are G-measurable, ξ is G -independent, φ is
almost everywhere continuous and ϕ is also continuous (see Theorem 5.4 in [44] for the
disintegration formula). Let Uδ = [1− δ, 1 + δ] and s = c1 + c2x. Then (107) becomes∫

R−Uδ
{φ (s)− ϕ (s)} p

(
s− c1
c2

)
ds

|c2|
(108)

because of Lemma 1-(i). Here p is the probabilty density function of ξ.

21

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.3, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

482 Sangmok Choo et al 462-486



Lemma 1-(iii) gives that∣∣∣∣∫
R−Uδ

{φ (s)− ϕ (s)} p
(
s− c1
c2

)
ds

|c2|

∣∣∣∣
≤
{∫

R−Uδ
|φ(s)− ϕ(s)| ds

|c2|

}
sup
s/∈Uδ

{
p

(
s− c1
c2

)
1

|c2|

}
≤M4|c2|2 sup

s/∈Uδ

{
p

(
s− c1
c2

)
1

|c2|3

}
= M4hg

2 sup
s/∈Uδ

{
p

(
s− 1− hf
h0.5g

)
1

|h0.5g|3

}
.

Since there exists some δ0 such that for s /∈ Uδ and all sufficiently small h > 0

|s− 1− hf | > |s− 1| − h|f | > δ −M5h
ε > δ0 > 0, (109)

letting y = (s− 1− hf)/(h0.5g) yields

|y| = |s− 1− hf |
h0.5 |g|

>
δ0

M5hε
(110)

and further

sup
s/∈Uδ

{
p

(
s− 1− hf
h0.5g

)
1

|h0.5g|3

}
= sup

s/∈Uδ

p (y) |y|3

|s− 1− hf |3
.

Hence it follows from (17), (109) and (110) that

sup
s/∈Uδ

p (y) |y|3

|s− 1− hf |3
< M2 sup

s/∈Uδ

|y|−1

|s− 1− hf |3
< M2

M5

δ20
hε,

which gives ∣∣∣∣∫
R−Uδ

{φ (s)− ϕ (s)} p
(
s− c1
c2

)
ds

|c2|

∣∣∣∣ < hg2 ·M4M2
M5

δ20
hε. (111)

Therefore using (105), (108) and (111), we obtain the desired result.
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[18] C. Çelik and O. Duman. Allee effect in a discrete-time predator-prey system. Chaos
Solitons Fractals, 40(4):1956–1962, 2009.

[19] S. R. J. Jang. Allee effects in a discrete-time host-parasitoid model. J. Difference
Equ. Appl., 12(2):165–181, 2006.

[20] G. Zhang and X. Wang. Effect of diffusion and cross-diffusion in a predator-prey
model with a transmissible disease in the predator species. Abstr. Appl. Anal., pages
Art. ID 167856, 12, 2014.

[21] Z. Xie. Cross-diffusion induced Turing instability for a three species food chain
model. J. Math. Anal. Appl., 388(1):539–547, 2012.

[22] K. Kawasaki N. Shigesada and E. Teramoto. Spatial segregation of interacting
species. J. Theoret. Biol., 79(1):83–99, 1979.

[23] S. Li and X. Wangb. Analysis of a stochastic predator-prey model with disease in
the predator and Beddington-DeAngelis functional response. Adv. Difference Equ.,
pages 2015:224, 21, 2015.

[24] L. Yang and S. Zhong. Global stability of a stage-structured predator-prey model
with stochastic perturbation. Discrete Dyn. Nat. Soc., pages Art. ID 512817, 8, 2014.

[25] H. Qiu M. Liu and K. Wang. A remark on a stochastic predator-prey system with
time delays. Appl. Math. Lett., 26(3):318–323, 2013.

[26] F. Rao. Dynamical analysis of a stochastic predator-prey model with an allee effect.
Abstr. Appl. Anal., pages Art. ID 340980, 10, 2013.

[27] M. Vasilova. Asymptotic behavior of a stochastic Gilpin-Ayala predator-prey system
with time-dependent delay. Math. Comput. Modelling, 57(3-4):764–781, 2013.

[28] Z. Liu, N. Shi, D. Jiang, and C. Ji. The asymptotic behavior of a stochastic predator-
prey system with Holling II functional response. Abstr. Appl. Anal., pages Art. ID
801812, 14, 2012.

[29] J. H. Nibert. Stability of a stochastic predator prey model. PhD thesis, University of
Southern California, 2012.

[30] T. V. Ton and A. Yagi. Dynamics of a stochastic predator-prey model with the
Beddington-DeAngelis functional response. Commun. Stoch. Anal., 5(2):371–386,
2011.
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WEIGHTED SUPERPOSITION OPERATORS FROM ZYGMUND
SPACES TO µ-BLOCH SPACES

ZHI JIE JIANG, TING WANG, JUAN LIU, TING LUO, TING SONG

Abstract. Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C
and H(D) the space of all analytic functions on D. Let ϕ be an entire function on C
and u ∈ H(D). The boundedness and compactness of the operators Su,ϕ : f 7→ u ·ϕ ◦ f
from Zygmund spaces to µ-Bloch spaces are characterized.

1. Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C, H(D) the
space of all analytic functions on D and H∞(D) the space of bounded analytic functions.
Let ϕ be a complex-valued function on C and u ∈ H(D). We introduce a class of nonlinear
operators by

Su,ϕf = u · ϕ ◦ f, f ∈ H(D).

This operator can be regarded as a generalization of the superposition operator Sϕf = ϕ◦f
and the multiplication operator Muf = u · f .

Suppose that X and Y are two metric spaces of analytic functions on D. Note that if X
contains the linear functions and Sϕ maps X into Y , then ϕ must be an entire function. In
recent years, the following natural questions of the superposition operators are considered.

(a) When does ϕ induce a superposition operator from X into Y ?
(b) When is a superposition operator from X into Y bounded?
(c) When is a superposition operator from X into Y compact?
Although analogous concepts also make sense in the context of real-valued functions and

their theory has a long history (see [2]), the study of such natural questions on analytic
function spaces has only begun fairly recently. The operators Sϕ that map Bergman
spaces into area Nevanlinna classes were characterized in [6], which have been extended
by other authors to some other analytic function spaces, where it is remarkable the works
of Vukotić et. al. in [1], [4] and [5]. It must be mentioned that the authors of [4] gave
a very interesting geometric construction of simple connected domain in several analytic
function spaces. This technique has been used by many authors; in particular, Xu used
it to study the superposition operators from α-Bloch spaces into β-Bloch spaces in [20]
and Xiong used it to characterize the superposition operators from Qp spaces into α-Bloch
spaces with 0 < α < 1 in [18]. It should be noted that quite recently, Castillo et.al.
and Ramos Fernández have studied the superposition operators from Bloch-Orlicz spaces
into α-Bloch spaces and between weighted Banach spaces of analytic functions in [7] and
[14], respectively. In this paper we characterize the boundedness and compactness of the
operators Su,ϕ from weighted Zygmund spaces to µ-Bloch spaces. We also consider the
superposition operators from weighted Zygmund spaces to weighted Bloch spaces.

Now we present the needed spaces and some facts. The Zygmund space Z consists of
all f ∈ H(D) such that

sup
z∈D

(1− |z|2)|f ′′(z)| <∞.

2000 Mathematics Subject Classification. Primary 47H38; Secondary 46E15, 47B38.
Key words and phrases. Weighted Zygmund spaces, µ-Bloch spaces, superposition operators.
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With the norm
‖f‖Z = |f(0)|+ |f ′(0)|+ sup

z∈D
(1− |z|2)|f ′′(z)|,

it is a Banach space. By Zygmund’s theorem (see Theorem 5.3 in [9]), we know that f ∈ Z
if and only if f is continuous on D and

sup
h>0,θ∈R

|f(ei(θ+h)) + f(ei(θ−h))− 2f(eiθ)|
h

<∞.

In closed subspaces of Z, the little Zygmund space Z0 is usually considered, which is defined
by

Z0 =
{
f ∈ Z : lim

|z|→1
(1− |z|2)|f ′′(z)| = 0

}
.

Let α ∈ (0,∞). The weighted Zygmund space Zα consists of all f ∈ H(D) such that

sup
z∈D

(1− |z|2)α|f ′′(z)| < +∞.

With the norm
‖f‖Zα = |f(0)|+ |f ′(0)|+ sup

z∈D
(1− |z|2)α|f ′′(z)|,

Zα is also a Banach space. For the weighted Zygmund spaces and the operators from them
into some other spaces, see, e.g., [10], [12] and [15].

Suppose that µ is a positive continuous radial function on D (that is, µ(z) = µ(|z|))
and decreasing on [0, 1) with limr→1 µ(r) = 0. Let µ be a weight. The µ-Bloch space Bµ
consists of all f ∈ H(D) such that supz∈D µ(z)|f ′(z)| <∞. With

‖f‖Bµ = |f(0)|+ sup
z∈D

µ(z)|f ′(z)|,

Bµ is a Banach space. When µ(z) = 1− |z|2, the space Bµ is just Bloch space and denoted
by B; while when µ(z) = (1 − |z|2)α with α > 0, the space Bµ becomes the weighted
Bloch space Bα. The µ-Bloch spaces appear in the literature in a natural way when one
considers properties of some operators in certain spaces of analytic functions; for example,
if µ(z) = (1 − |z|) log 2

1−|z| , Attele in [3] proved that the Hankel operator on Bergman
spaces induced by a function f is bounded if and only if f ∈ Bµ. The logarithmic Bloch
type space has been defined and studied in [16]. Recently, the Bloch-Orlicz spaces have
been introduced by Ramos-Fernandez in [13].

Throughout this paper, constants are denoted by C, they are positive and may differ
from one occurrence to the other. The notation a ' b means that there is a positive
constant C such that a/C ≤ b ≤ Ca.

2. The operator Su,ϕ : Z → Bµ
First we enumerate several useful lemmas. The first one below is well-known.

Lemma 2.1 There is a positive constant Cα depending only on α such that for any z ∈ D
and f ∈ Zα

(i)

∣∣f(z)
∣∣ ≤


Cα‖f‖Zα , 0 < α < 2,
Cα‖f‖Zα log 2

1−|z|2 , α = 2,

Cα‖f‖Zα(1− |z|2)2−α, α > 2.

(ii)

∣∣f ′(z)∣∣ ≤

Cα‖f‖Zα , 0 < α < 1,
Cα‖f‖Zα log 2

1−|z|2 , α = 1,

Cα‖f‖Zα(1− |z|2)1−α, α > 1.
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Let a ∈ D and 1/
√

2 < |a| < 1, define

f(z) = (z − 1)
((

1 + log
1

1− z

)2

+ 1
)

and

ga(z) =
f(āz)
ā

(
log

1
1− |a|2

)−1

.

The function ga is called the test function with the following property (see [11]).

Lemma 2.2 The function ga belongs to Z and ‖ga‖Z ' 1.

The following result can be found in [17].

Lemma 2.3 Let α ∈ (0, 1]. Then for every bounded sequence
{
fn
}

in Zα and fn → 0
uniformly on every compact subset of D as n→∞, we have

(i) if α = 1, then lim
n→∞

sup
z∈D

∣∣fn(z)
∣∣ = 0.

(ii) if 0 < α < 1, then lim
n→∞

sup
z∈D

∣∣f ′n(z)
∣∣ = 0.

The next result is often used in dealing with the compactness of operators on analytic
function spaces. Since the proof is standard (see Proposition 3.11 in [8]), it is omitted .

Lemma 2.4 Let u ∈ H(D) and ϕ an entire function. Then the bounded operator Su,ϕ :
Zα → Bµ is compact if and only if for any bounded sequence {fn} in Zα such that fn → 0
uniformly on every compact subset of D as n→∞, it follows that limn→∞ ‖Su,ϕfn‖Bµ = 0.

Now we characterize the boundedness of the operator Su,ϕ : Z → Bµ.

Theorem 2.1 Let u ∈ H(D) and ϕ an entire function with ϕ′(0) 6= 0. Then the operator
Su,ϕ : Z → Bµ is bounded if and only if u ∈ Bµ and

L := sup
z∈D

µ(z)|u(z)| log
2

1− |z|2
<∞.

Proof. Suppose that the operator Su,ϕ : Z → Bµ is bounded. By taking f1 the constant
function, we obtain u ∈ Bµ. Since operator Su,ϕ : Z → Bµ is bounded, for the function
f2 = ga there exists a positive constant C such that

∞ > C‖Su,ϕ‖ ≥ ‖Su,ϕf2‖Bµ ≥ µ(a)
∣∣(Su,ϕf2)′(a)

∣∣
= µ(a)

∣∣u′(a)ϕ(f2(a)) + u(a)ϕ′(f2(a))f ′2(a)
∣∣

≥ µ(a)
(∣∣u(a)

∣∣∣∣ϕ′(f2(a))
∣∣∣∣f ′2(a)

∣∣− ∣∣u′(a)
∣∣∣∣ϕ(f2(a))

∣∣).
From this, we get

µ(a)
∣∣u′(a)

∣∣∣∣ϕ(f2(a))
∣∣+ C‖Su,ϕ‖ ≥ µ(a)

∣∣u(a)
∣∣∣∣ϕ′(f2(a))

∣∣∣∣f ′2(a)
∣∣.

Set M = Cα‖f2‖Z and M1 = max
|z|=M

|ϕ(z)|. By Lemma 2.1 (i), we have

M1‖u‖Bµ + C‖Su,ϕ‖ ≥ µ(a)
∣∣u′(a)

∣∣∣∣ϕ(f2(a))
∣∣+ C‖Su,ϕ‖

≥ µ(a)
∣∣u(a)

∣∣∣∣ϕ′(f2(a))
∣∣∣∣f ′2(a)

∣∣
= µ(a)

∣∣u(a)
∣∣∣∣ϕ′(ga(a))

∣∣ log
1

1− |a|2

≥ 1
2
µ(a)

∣∣u(a)
∣∣∣∣ϕ′(ga(a))

∣∣ log
2

1− |a|2
,

where we have used that when |a| > 1/
√

2,

log
1

1− |a|2
≥ 1

2
log

2
1− |a|2

.
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It is easy to see that ga(a)→ 0 as |a| → 1. Therefore from this and the fact that

lim
|a|→1

∣∣ϕ′(ga(a))
∣∣ = |ϕ′(0)| 6= 0,

we obtain
sup

1/2<|z|<1

µ(z)
∣∣u(z)

∣∣ log
2

1− |z|2
<∞.

It is clear that
sup
|z|≤1/2

µ(z)
∣∣u(z)

∣∣ log
2

1− |z|2
<∞.

Consequently, we obtain L <∞.
Now let u ∈ Bµ and L < ∞. Let f ∈ Z and ‖f‖Z ≤ M . Set M1 = max

|z|=CαM
|ϕ(z)| and

M2 = max
|z|=CαM

|ϕ′(z)|. Then by Lemma 2.1, we have

‖Su,ϕf‖Bµ =
∣∣u(0)ϕ(f(0))

∣∣+ sup
z∈D

µ(z)
∣∣(Su,ϕf)′(z)

∣∣
=
∣∣u(0)ϕ(f(0))

∣∣+ sup
z∈D

µ(z)
∣∣u′(z)ϕ(f(z)) + u(z)ϕ′(f(z))f ′(z)

∣∣
≤ CαM‖u‖Bµ + sup

z∈D
µ(z)

∣∣u′(z)∣∣∣∣ϕ(f(z))
∣∣+ sup

z∈D
µ(z)

∣∣u(z)
∣∣∣∣ϕ′(f(z))

∣∣∣∣f ′(z)∣∣
≤ CαM‖u‖Bµ +M1‖u‖Bµ + CαMM2 sup

z∈D
µ(z)

∣∣u(z)
∣∣ log

2
1− |z|2

≤ (CαM +M1)‖u‖Bµ + CαLMM2

<∞.
This shows that the operator Su,ϕ : Z → Bµ is bounded. �

There are a lot of examples satisfying the conditions of Theorem 2.1. Here we take the
following two examples. Since the first is clear, its proof is omitted.

Example 2.1 Let u(z) = a0+a1z+a2z
2+···+anzn and ϕ(z) = b0+b1z+b2z2+···+bmzm,

where b1 6= 0. Then the operator Su,ϕ : Z → Bµ is bounded.

Example 2.2 Let u(z) = λ a−z
1−āz be the automorphism of D and ϕ(z) = ez. Then Su,ϕ :

Z → Bµ is bounded.

Proof. Since ‖u‖∞ ≤ 1 and it is easy to see that

|u′(z)| = 1− |a|2

|1− āz|2
≤ 2

1− |a|
,

we get u ∈ Bµ and L <∞. By Theorem 2.1, the operator Su,ϕ : Z → Bµ is bounded. �

From the proof of Theorem 2.1, we can obtain the following sufficient condition of
boundedness for the operator Su,ϕ : Z → Bµ.

Theorem 2.2 Let u ∈ H(D) and ϕ an entire function. If u ∈ Bµ and L < ∞, then
Su,ϕ : Z → Bµ is bounded.

We begin to study when the operator Su,ϕ : Z → Bµ is compact.

Theorem 2.3 Let u ∈ H(D) and ϕ an entire function with ϕ(0) = 0 and ϕ′(0) 6= 0. Then
the operator Su,ϕ : Z → Bµ is compact if and only if u ∈ Bµ and

lim
|z|→1

µ(z)
∣∣u(z)

∣∣ log
2

1− |z|2
= 0.

Proof. Suppose that the operator Su,ϕ : Z → Bµ is compact. Of course, it is bounded,
and then u ∈ Bµ. Now let us suppose, by the way of contradiction, that

lim
|z|→1

µ(z)
∣∣u(z)

∣∣ log
2

1− |z|2
6= 0.
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Then there exists some ε0 > 0 and a sequence {zn} ⊆ D such that |zn| → 1 as n→∞ and

µ(zn)
∣∣u(zn)

∣∣ log
2

1− |zn|2
≥ ε0.

For each n ∈ N, take the function fn = gzn . From Lemma 2.2 it follows that ‖fn‖Z ≤ C.
One can easily check that fn → 0 uniformly on every compact subset of D as n → ∞.
Thus it follows from Lemma 2.4 that

‖Su,ϕfn‖Bµ ≥ µ(zn)
∣∣(Su,ϕfn)′(zn)

∣∣
= µ(zn)

∣∣u′(zn)ϕ(fn(zn)) + u(zn)ϕ′(fn(zn))f ′n(zn)
∣∣

≥ µ(zn)
(∣∣u(zn)ϕ′(fn(zn))f ′n(zn)

∣∣− ∣∣u′(zn)ϕ(fn(zn))
∣∣)

= µ(zn)
∣∣u(zn)

∣∣∣∣ϕ′(fn(zn))
∣∣∣∣f ′n(zn)

∣∣− µ(zn)
∣∣u′(zn)

∣∣∣∣ϕ(fn(zn))
∣∣

≥ µ(zn)
∣∣u(zn)

∣∣∣∣ϕ′(fn(zn))
∣∣ log

1
1− |zn|2

− ‖u‖Bµ
∣∣ϕ(fn(zn))

∣∣
≥ 1

2
µ(zn)

∣∣u(zn)
∣∣∣∣ϕ′(fn(zn))

∣∣ log
2

1− |zn|2
− ‖u‖Bµ

∣∣ϕ(fn(zn))
∣∣

≥ 1
2

∣∣ϕ′(fn(zn))
∣∣ε0 − ‖u‖Bµ

∣∣ϕ(fn(zn))
∣∣.

From this and since Lemma 2.3 (i) implies that |ϕ(fn(zn))| = 0 as n→∞, we get

0 = lim
n→∞

‖Su,ϕfn‖Bµ ≥
1
2

∣∣ϕ′(0)
∣∣ε0,

which arrives at a contradiction.
Conversely, by the definition of limit we have that for any ε > 0, there is a δ > 0 such

that
µ(z)

∣∣u(z)
∣∣ log

2
1− |z|2

< ε

for all z ∈ {z ∈ D : δ < |z| < 1}. Let M0 > 0 and ‖fn‖Z ≤ M0 and fn → 0 uniformly
on every compact subset of D as n → ∞. By the Cauchy integral formula and an easy
calculation, it is clear that {f ′n} also uniformly converges to zero on every compact subset
of D as n→∞. Let M = max

|z|=CαM0

|ϕ′(z)|. By Lemma 2.1 and Lemma 2.3 (i), we have

‖Su,ϕfn‖Bµ =
∣∣u(0)ϕ(fn(0))

∣∣+ sup
z∈D

µ(z)
∣∣(Su,ϕfn)′(z)

∣∣
=
∣∣u(0)ϕ(fn(0))

∣∣+ sup
z∈D

µ(z)
∣∣u′(z)ϕ(fn(z)) + u(z)ϕ′(fn(z))f ′n(z)

∣∣
≤
∣∣u(0)ϕ(fn(0))

∣∣+ sup
z∈D

µ(z)
∣∣u′(z)∣∣∣∣ϕ(fn(z))

∣∣+ sup
z∈D

µ(z)
∣∣u(z)

∣∣∣∣ϕ′(fn(z))
∣∣∣∣f ′n(z)

∣∣
≤
∣∣u(0)ϕ(fn(0))

∣∣+ ‖u‖Bµ sup
z∈D

∣∣ϕ(fn(z))
∣∣+ sup
|z|≤δ

µ(z)
∣∣u(z)

∣∣∣∣ϕ′(fn(z))
∣∣∣∣f ′n(z)

∣∣
+ sup
δ<|z|<1

µ(z)
∣∣u(z)

∣∣∣∣ϕ′(fn(z))
∣∣∣∣f ′n(z)

∣∣
≤
∣∣u(0)ϕ(fn(0))

∣∣+ ‖u‖Bµ sup
z∈D

∣∣ϕ(fn(z))
∣∣+M max

|z|≤δ
µ(z)

∣∣u(z)
∣∣max
|z|≤δ

∣∣f ′n(z)
∣∣

+ CαM0M sup
δ<|z|<1

µ(z)
∣∣u(z)

∣∣ log
2

1− |z|2
.

Taking the limit as n → ∞ in this inequality, we obtain limn→∞ ‖Su,ϕfn‖Bµ = 0. By
Lemma 2.4, the operator Su,ϕ : Z → Bµ is compact. �

Remark 2.1 Considering Theorem 2.3, we have a reason to regard as the limit

lim
|z|→1−

µ(z) log
2

1− |z|2

as an important factor for the operator Su,ϕ : Z → Bµ to be compact.
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Theorem 2.4 Let u ∈ H(D) and ϕ an entire function with ϕ(0) = 0 and ϕ′(0) 6= 0. Then
Su,ϕ : Z → Bµ,0 is bounded if and only if u ∈ Bµ,0 and

lim
|z|→1

µ(z)
∣∣u(z)

∣∣ log
2

1− |z|2
= 0.

Proof. Suppose that the operator Su,ϕ : Z → Bµ,0 is bounded, then by taking f the
constant function we have u ∈ Bµ,0. Now let us suppose, by the way of contradiction, that

lim
|z|→1

µ(z)
∣∣u(z)

∣∣ log
2

1− |z|2
6= 0.

Then there exist some ε0 > 0 and a sequence {zn} ⊆ D with |zn| → 1 such that

µ(zn)
∣∣u(zn)

∣∣ log
2

1− |zn|2
≥ 2
|ϕ′(0)|

ε0.

Take the function f = gzn . Since Su,ϕ : Z → Bµ,0 is bounded, Su,ϕf ∈ Bµ,0, that is,

lim
|z|→1

µ(z)
∣∣(Su,ϕf)′(z)

∣∣ = 0;

in particular,
lim
n→∞

µ(zn)
∣∣(Su,ϕf)′(zn)

∣∣ = 0.

Letting n→∞ in

µ(zn)
∣∣(Su,ϕf)′(zn)

∣∣ = µ(zn)
∣∣u′(zn)ϕ(f(zn)) + u(zn)ϕ′(f(zn))f ′(zn)

∣∣
≥ µ(zn)

∣∣u(zn)
∣∣∣∣ϕ′(f(zn))

∣∣∣∣f ′(zn)
∣∣− µ(zn)

∣∣u′(zn)
∣∣∣∣ϕ(f(zn))

∣∣
≥ 1

2
µ(zn)

∣∣u(zn)
∣∣ log

2
1− |zn|2

∣∣ϕ′(f(zn)
∣∣− µ(zn)

∣∣u′(zn)
∣∣∣∣ϕ(f(zn))

∣∣
≥
∣∣ϕ′(f(zn))

∣∣
|ϕ′(0)|

ε0 − µ(zn)
∣∣u′(zn)

∣∣∣∣ϕ(f(zn))
∣∣

arrives at a contradiction.
Conversely, by Theorem 2.1, we know that Su,ϕ : Z → Bµ is bounded. It is enough to

prove that for any f ∈ Z, it holds Su,ϕf ∈ Bµ,0. Let f ∈ Z, M1 = max
|z|=‖f‖Z

|ϕ(z)| and

M2 = max
|z|=‖f‖Z

|ϕ′(z)|. Then for any ε > 0, there is a δ > 0 such that

µ(z)|u′(z)| < ε

2M1

and
µ(z)

∣∣u(z)
∣∣ log

2
1− |z|2

<
ε

2M2‖f‖Z
for all z ∈ {z ∈ D : δ < |z| < 1}. So for z ∈ {z ∈ D : δ < |z| < 1}, it follows that

µ(z)
∣∣(Su,ϕf)′(z)

∣∣ = µ(z)
∣∣(Su,ϕf)′(z)

∣∣ = µ(z)
∣∣u′(z)ϕ(f(z)) + u(z)ϕ′(f(z))f ′(z)

∣∣
≤M1µ(z)

∣∣u′(z)∣∣+M2‖f‖Zµ(z)
∣∣u(z)

∣∣ log
2

1− |z|2
< ε.

This shows that Su,ϕf ∈ Bµ,0. �

Theorem 2.5 Let u ∈ H(D) and ϕ an entire function with ϕ(0) = 0 and ϕ′(0) 6= 0. Then
the bounded operator Su,ϕ : Z → Bµ,0 is compact if and only if u ∈ Bµ,0 and

lim
|z|→1

µ(z)
∣∣u(z)

∣∣ log
2

1− |z|2
= 0.

Proof. Similarly as in the proof of Theorem 2.3, this result is true. �
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3. The operator Sϕ : Zα → Bβ
Although we can obtain some results of the operator Sϕ : Zα → Bβ from the preceding

discussions, we still will individually consider this operator.

Theorem 3.1 Let α ∈ (0, 1) and ϕ an entire function. Then the following assertions hold:

(i) The operator Sϕ : Zα → Bβ is bounded .

(ii) If ϕ(0) = 0, then the operator Sϕ : Zα → Bβ is compact.

Proof. We first prove (i). LetM > 0, f ∈ Zα and ‖f‖Zα ≤M . SetM1 = max
|z|=CαM

|ϕ′(z)|.

Then we have

(1− |z|2)β
∣∣(Sϕf)′(z)

∣∣ = (1− |z|2)β
∣∣ϕ′(f(z))

∣∣∣∣f ′(z)∣∣ ≤ CαMM1(1− |z|2)β <∞.

This means that the operator Sϕ : Zα → Bβ is bounded.
Now we prove (ii). Suppose that ‖fn‖Zα ≤M and {fn} uniformly converges to zero on

every compact subset of D as n→∞, then

‖Sϕfn‖Bβ = |ϕ(fn(0))|+ sup
z∈D

(1− |z|2)β
∣∣(Sϕfn)′(z)

∣∣
= |ϕ(fn(0))|+ sup

z∈D
(1− |z|2)β

∣∣ϕ′(fn(z))
∣∣∣∣f ′n(z)

∣∣
≤ |ϕ(fn(0))|+M1 sup

z∈D
|f ′n(z)|,

whereM1 = max
|z|=CαM

|ϕ′(z)|. By ϕ(0) = 0 and Lemma 2.3 (ii), we know that lim
n→∞

‖Sϕfn‖Bβ =

0. By Lemma 2.4, the operator Sϕ : Zα → Bβ is compact. �

When α = 1, from Theorem 2.1 and Theorem 2.2 we can obtain characterizations of the
boundedness and compactness of the operator Sϕ : Z → Bβ . It is unnecessary to go into
details here.

Theorem 3.2 Let α ∈ (1, 2) and ϕ an entire function. We have the following assertions:

(1) If α ≤ 1 + β, then (i) the operator Sϕ : Zα → Bβ is bounded, and
(ii) when ϕ(0) = 0, the operator Sϕ : Zα → Bβ is compact.
(2) If α > 1 + β, then the operator Sϕ : Zα → Bβ is bounded if and only if ϕ is a

constant function.

Proof. We first prove the assertion (i) of (1). Let M > 0, f ∈ Zα and ‖f‖Zα ≤M . Set
M1 = max

|z|=CαM
|ϕ′(z)|. Then we have

(1− |z|2)β
∣∣(Sϕf)′(z)

∣∣ = (1− |z|2)β
∣∣ϕ′(f(z))

∣∣∣∣f ′(z)∣∣ ≤ CMM1(1− |z|2)1−α+β <∞.

This shows that the operator Sϕ : Zα → Bβ is bounded. As the proof of Theorem 3.1 (ii),
the assertion (ii) follows.

Note that we have the relation Zα = Bα−1. By this and Theorem 4 in [5], the assertion
(2) is true. �

Theorem 3.3 Let α = 2 and ϕ an entire function.

(1) When β > 1, (i) the operator Sϕ : Zα → Bβ is bounded if and only if ϕ is a
polynomial of degree s ≤ 1, and

(ii) the operator Sϕ : Zα → Bβ is compact.
(2) When β = 1, (i) the operator Sϕ : Zα → Bβ is bounded if and only if ϕ is a linear

function, and
(ii) the operator Sϕ : Zα → Bβ is compact.
(3) When 0 < β < 1, the operator Sϕ : Zα → Bβ is bounded if and only ϕ is a constant

function.
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Proof. By Theorem 7 of [5], the assertions (i) of (1) and (i) of (2) hold. Also from
Theorem 4 of [5], the assertion (3) follows. Now we want to prove the assertion (ii) of (1).
Let the operator Sϕ : Zα → Bβ be compact. From the assertion (i) of (1), we know that,
if ϕ is not a constant function, then ϕ(z) = az + b with a 6= 0. Therefore, it is enough
to show that Sϕ : Zα → Bβ is compact when ϕ(z) = az. At this time, Sϕ is just the
multiplication operator Ma defined by Maf = a · f . Thus, by Theorem 3.1 of [19], we
know that Ma : Zα → Bβ is compact. Similar to the proof of the assertion (ii) of (1), the
assertion (ii) of (2) is right. �

Theorem 3.4 Let α > 2, β > 1 and ϕ an entire function.

(1) The operator Sϕ : Zα → Bβ is bounded if and only if
(i) when α > β, ϕ is a constant.
(ii) when α = β, ϕ is a linear function.
(iii) when α < β, ϕ is a polynomial of degree s ≤ β−1

α−2 .
(2) The operator Sϕ : Zα → Bβ is compact if and only if ϕ is a polynomial of degree

s < β−1
α−2 .

Proof. Note that when α > 2, it follows that Zα = Bα−1 = Hα−2, where Hα−2 is called
the weighted Banach space of analytic functions defined by

Hα−2 = {f ∈ H(D) : (1− |z|2)α−2|f(z)| <∞}.

Then (1) and (2) follow from Theorem 4.2 of [14] and Proposition 3.1 of [4]. �

Acknowledgments. This work is supported by the Key Fund Project of Sichuan Provin-
cial Department of Education (No.15ZA0221), the Cultivation Project of Sichuan Uni-
versity of Science and Engineering (No.2015PY04) and the innovation foundation for the
university students (No.cx20141202).

References
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[16] S. Stević, On new Bloch-type spaces, Appl. Math. Comput., 215 (2009), 841-849.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.3, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

494 ZHI JIE JIANG et al 487-495



WEIGHTED SUPERPOSITION OPERATORS 9
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ABSTRACT
This article is concerned with the following rational difference equation xn+1 =

αxn−3
A+Bxn−1xn−3

with the initial
conditions, x−3 = d, x−2 = c, x−1 = b, and x0 = a are arbitrary real numbers, α,A and B are arbitrary constants.
A detailed analytical study of the convergence of the solutions including their dependence on parameters and
initial conditions is investigated. The local stability and global attractivity of the difference equation’s equilibrium
points are discussed. The existence of periodic solutions in the proposed difference equation is also verified
analytically. Moreover, numerical simulations are carried out to verify the correctness of the analytical results.

Keywords: Difference equations, Recursive sequences, Analytical study, Infinite products, Convergence, Peri-
odic solution.

Mathematics Subject Classification: 39A10

––––––––––––––––––––––

1. INTRODUCTION
Difference equations arise from the study of the evolution of natural phenomena. The applications of difference
equations are rapidly increasing to various fields such as economics [1], [12]-[14], mathematical, biology [15]-[16]
physics and engineering [7]. Indeed, difference equations represent chief tools of investigating the qualitative be-
haviors of dynamical systems [33]. Consequently, studying the solutions of difference equations and its qualitative
behaviors have become focal topics for research [1]-[36].

In recent years, difference equations have been investigated by many authors. For some results: In [3], Aloqeili
found the solution of the difference equation xn+1 =

dxn−1xn−k
b−cxn−s . Cinar [5] obtained the solution of the difference

equation xn+1 =
axn−1

1+bxnxn−1
. In [9], Elabbasy et al. discussed the solution and the periodicity character of the

difference equations xn+1 = axn − bxn
cxn−dxn−1 .

In this paper, we study to the following sequence defined recursively by

xn+1 =
αxn−3

A+Bxn−1xn−3
, (1)

with the initial data: x−3 = d, x−2 = c, x−1 = b, and x0 = a.
Note first that, if α = 0, then for all n ∈ N, xn = 0. Then we will consider that α 6= 0. Although we can (by
dividing the numerator and denominator by α) obtain a more simply form of such sequences, we will keep them
in order to study of the behaviors with respect to α.
Note also that, if one or more of the initial data a, b, c and d is zero, then it will be seen that one or more of the
subsequences of (xn)n modulo 4 vanish, so that we will suppose that abcd 6= 0.
The cases A = 0 and B = 0 are a trivial, therefore we will assume that A 6= 0 and B 6= 0. Finally, we will
consider the convention: if (ap)p is a sequence of complex numbers, and n > m, in Z, then

Qm
p=n ap = 1.
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2. DEFINITIONS AND PRELIMINARIES.

A difference equation of order k is an equation of the form

xn+1 = F (xn, xn−1, ..., xn−(k−1)), n = 0, 1, ..., (2)

where F is a function that maps on some set Ik into I. A solution of Eq. (2) is a sequence xn that satisfies
Eq. (2) for all n ≥ 0. With each solution xn of the Eq. (1), we associate the vector of initial conditions
v0(x) = (x0, x−1, ..., x−k+1) ∈ Ik.

The norm of the vector u ∈ Ik will be defined as kuk =
P0

i=−k+1 |ui|.
Definition 1. (Equilibrium point)
A point x̄ ∈ R is called an equilibrium point of Eq. (2), if

x̄ = F (x̄, x̄, ..., x̄).

Let x̄ ∈ R be an equilibrium point of Eq. (2), and denote by v(x̄) ∈ Ik the vector v(x̄) = (x̄, x̄, ..., x̄).
Suppose that the function F is continuously differentiable in some open neighborhood of an equilibrium point x̄.
Consider the linearized equation of Eq. (2) about the equilibrium point x̄:

yn+1 = q0yn + q1yn−1 + ...+ qk−1yn−(k−1), (3)

where qi = ∂F
∂xi
(x̄, x̄, ..., x̄), i = 0, 1, ..., k − 1, and the characteristic equation of Eq. (3) about x̄:

λk − q0λ
k−1 − ...− qk−2λ− qk−1 = 0. (4)

Definition 2.

1. When all the roots of Eq. (4) have absolute value less than one, then the equilibrium point of Eq. (2) is
locally asymptotically stable.

2. If at least a root of Eq. (4) have absolute value greater than one, then the equilibrium point of Eq. (2) is
unstable.

Definition 3.

1. An equilibrium point x̄ of Eq. (2) is called hyperbolic if no root of Eq. (4) has absolute value equal one.

2. If there exists a root of Eq. (4) with absolute value equal to one, then the equilibrium point x̄ is called
nonhyperbolic.

3. An equilibrium point x̄ of Eq. (2) is called saddle if there exists a root of Eq. (4) has absolute value less
than one. and another root of Eq. (4) greater than one.

4. An equilibrium point x̄ of Eq. (2) is called a repeller if all roots of Eq. (4) has absolute value greater than
one.

5. A solution xn of Eq. (2) is called nonoscillatory about x̄ or simply nonoscillatory if there exists N ≥ −k
such that either xn ≥ x̄, ∀n ≥ N or xn ≤ x̄, ∀n ≥ N . Otherwise, the solution xn is called oscillatory about
x̄, or simply oscillatory.

6. A solution xn of Eq. (2) is called periodic with period p if there exists an integer p, such that

xn+p = xn, ∀n ≥ −k. (5)

A solution is called periodic with prime period p if p is the smallest positive integer for which Eq. (5)
holds.
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3. ANALYTICAL EXPRESSIONS OF (XN )N
The following Theorem gives an analytical expression of the sequence (xn)n.
Theorem 1. Let (xn)n be the sequence given by (1) and the initial data that follow, then For all n ≥ 2

x4n−3 =

dαn
n−2Y
p=0

³
A2p+2 +Bbd

2p+1X
i=0

Aiα2p+1−i
´

n−1Y
p=0

³
A2p+1 +Bbd

2pX
i=0

Aiα2p−i
´ , x4n−2 =

cαn
n−2Y
p=0

³
A2p+2 +Bac

2p+1X
i=0

Aiα2p+1−i
´

n−1Y
p=0

³
A2p+1 +Bac

2pX
i=0

Aiα2p−i
´ . (6)

x4n−1 =

bαn
n−1Y
p=0

³
A2p+1 +Bbd

2pX
i=0

Aiα2p−i
´

n−1Y
p=0

³
A2p+2 +Bbd

2p+1X
i=0

Aiα2p+1−i
´ , x4n =

aαn
n−1Y
p=0

³
A2p+1 +Bac

2pX
i=0

Aiα2p−i
´

n−1Y
p=0

³
A2p+2 +Bac

2p+1X
i=0

Aiα2p+1−i
´ . (7)

Proof. By induction, we prove the result for x4n−3. Take n ≥ 2, and assume that the results hold for the step
n, then prove the result for the step n+ 1, we get:

x4(n+1)−3 =
αx4n−3

A+Bx4n−1x4n−3

=

dαn+1

n−1Y
p=0

³
A2p+2 +Bbd

2p+1X
i=0

Aiα2p+1−i
´

n−1Y
p=0

³
A2p+1 +Bbd

2pX
i=0

Aiα2p−i
´h
A
³
A2n +Bbd

2n−1X
i=0

Aiα2n−1−i
´
+Bbdα2n

i

=

dαn+1

n−1Y
p=0

³
A2p+2 +Bbd

2p+1X
i=0

Aiα2p+1−i
´

n−1Y
p=0

³
A2p+1 +Bbd

2pX
i=0

Aiα2p−i
´³

A2n+1 +Bbd
³ 2nX
i=1

Aiα2n−i + α2n
´´ .

Hence, we obtain

x4(n+1)−3 =

dαn+1
n−1Y
p=0

³
A2p+2 +Bbd

2p+1X
i=0

Aiα2p+1−i
´

nY
p=0

³
A2p+1 +Bbd

2pX
i=0

Aiα2p−i
´ .

Similarly, the expression for x4n−2, x4n−1, x4n can be easily proved.

Notation. If we denote by (Pn)n the sequence of two variables polynomials defined for every n ∈ N, x and y as,

Pn(x, y) = (A− α+Bxy)An −Bxyαn.

The following Corollary gives a simplified analytic expression when A 6= α.
Corollary 1. Consider the sequence (xn)n defined by the Eq. (1) for A 6= α, the subsequences can be written
as:

x4n−3 =

dαn(A− α)
n−2Y
p=0

P2p+2(b, d)

n−1Y
p=0

P2p+1(b, d)

, x4n−2 =

cαn(A− α)
n−2Y
p=0

P2p+2(a, c)

n−1Y
p=0

P2p+1(a, c)

,
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x4n−1 =

bαn
n−1Y
p=0

P2p+1(b, d)

n−1Y
p=0

P2p+2(b, d)

, and x4n =

aαn
n−1Y
p=0

P2p+1(a, c)

n−1Y
p=0

P2p+2(a, c)

.

Proof. It is sufficient to use the binomial identity xp+1−yp+1 = (x−y)
Pp

k=0 x
kyp−k in the analytical expression

of the subsequences defined by Eq. (6) and (7).

Corollary 2. Consider the sequence (xn)n defined by the Eq. (1). For A = α 6= 0, the sequence can be expressed
in Gamma form as

x4n−3 =
A22n−2Γ2(

A

2Bbd
+ n)Γ(

A

Bbd
+ 1)

BbΓ2(
A

2Bbd
+ 1)Γ(

A

Bbd
+ 2n)

, x4n−2 =
A22n−2Γ2(

A

2Bac
+ n)Γ(

A

Bac
)

BaΓ2(
A

2Bac
+ 1)Γ(

A

Bac
+ 2n)

,

x4n−1 =
bΓ(

A

Bbd
+ 2n+ 1)Γ2(

A

2Bbd
+ 1)

22nΓ(
A

Bbd
+ 1)Γ2(

A

2Bbd
+ n+ 1)

, x4n =
aΓ(

A

Bac
+ 2n+ 1)Γ2(

A

2Bac
+ 1)

22nΓ(
A

Bac
+ 1)Γ2(

A

2Bac
+ n+ 1)

,

where Γ is the Euler’s Gamma function.

Proof. Using Eq. (6) we have:

x4n−3 =

dAn
n−2Y
p=0

³
A2p+2 +Bbd

2p+1X
i=0

A2p+1
´

n−1Y
p=0

³
A2p+1 +Bbd

2pX
i=0

A2p
´ ,

=

dA
n−2Y
p=0

Bbd
³ A

Bbd
+ 2p+ 2

´
n−1Y
p=0

Bbd
³ A

Bbd
+ 2p+ 1

´ =

A
h n−1Y
p=1

2
³ A

2Bbd
+ p
´i2

Bb
2n−1Y
p=1

³ A

Bbd
+ p
´

=
A22n−2Γ2

³ A

2Bbd
+ n

´
Γ(

A

Bbd
+ 1)

BbΓ
³ A

Bbd
+ 2n

´
Γ2
³ A

2Bbd
+ 1
´ .

Similarly, one can prove the other relations. This ended the proof.

Remark 1.

1. A common hypothesis in the study of rational difference equations is the choice of positive coefficients and
initial data. Therefore, all the solutions will be automatically well defined. It is, in general a problem of
great difficulty to determine the good set of initial conditions without finding the analytical expression of
the considered sequence.

2. According to the Corollaries 1 and 2, the good set G of the sequence (xn)n is given as

(a) When A 6= α,

G =

½
(a, b, c, d) ∈ R4 such that bd, ac ∈ R−

½
−(A− α)An

B(An − αn)
, n ∈ N

¾¾
.
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(b) When A = α, G = {(a, b, c, d) ∈ R4 such that A
Bbd ,

A
Bac /∈ 2Z−}.

3. If we choose for example α = A = B, we obtain the expression of the general term which can be written
and in gamma form as

x4n−3 =
22n−2Γ2( 1

2bd + n)Γ( 1bd )

bΓ2( 1
2bd + 1)Γ(

1
bd + 2n)

, x4n−2 =
22n−2Γ2( 1

2ac + n)Γ( 1ac)

aΓ2( 1
2ac + 1)Γ(

1
ac + 2n)

,

x4n−1 =
bΓ( 1bd + 2n+ 1)Γ

2( 1
2bd + 1)

22nΓ( 1bd + 1)Γ
2( 1
2bd + n+ 1)

, x4n =
aΓ( 1ac + 2n+ 1)Γ

2( 1
2ac + 1)

22nΓ( 1ac + 1)Γ
2( 1
2ac + n+ 1)

.

In the following section we will study the convergence of sequence (xn)n. This will depend evidently on the
parameters α, A, B and the initial data.

4. CONVERGENCE OF SOLUTIONS OF EQ. (1)

Consider the function F defined on R4 as: F (u0, u1, u2, u3) = αu3
A+Bu1u3

. Using the function F , Eq. (1) can be
written as xn+1 = F (xn, xn−1, xn−2, xn−3).

Theorem 2. The following statements are true:

(1) For B(A− α) ≥ 0, Eq.(1) has a unique equilibrium point x = 0, then

(a) If A = α, the equilibrium point is nonhyperbolic.

(b) If A
α > 1, the equilibrium point is locally asymptotically stable.

(2) For B(A− α) < 0, then

(a) The Eq. (1) has exactly three equilibrium points which are

x1 = 0, x2 =
q

α−A
B , x3 = −

q
α−A
B . (8)

(b) If 0 < A < α, then

(i) The equilibrium point x1 = 0 is a repeller.

(ii) The equilibrium points x2, x3 are hyperbolic.

Proof. (1) For B(A− α) ≥ 0, x̄ is an equilibrium point is equivalent to

x̄ =
αx̄

A+Bx̄2
⇒ Bx̄3 + (A− α)x̄ = 0 ⇒ x̄(Bx̄2 +A− α) = 0.

This shows clearly that if B(A− α) ≥ 0, x = 0 is the unique equilibrium point of Eq. (1).
qi =

∂F
∂ui
(0, 0, 0, 0), then q0 = q1 = q2 = 0 and q3 = − α

A , the characteristic equation of the linearized equation
associated with Eq. (1) is then all real roots have absolute value equal to one, so the equilibrium points is
nonhyperbolic.x̄ is an equilibrium point is equivalent to

λ4 − α

A
= 0. (9)

(a) Suppose that A = α, then all real roots have absolute value equal to one, so the equilibrium points is
nonhyperbolic.

(b) Suppose that A
α > 1, so all the roots of Eq. (9) have absolute value less than one, according the linearized

stability Theorem, the equilibrium point x = 0 is locally asymptotically stable.

(2) For B(A− α) < 0, the equation x̄(Bx̄2 + A− α) = 0 has exactly three solutions which are the equilibrium
points in Eqs. (8).
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(a) The characteristic equation about x1 = 0 is λ
4− α

A = 0, since 0 < A < α then all roots has absolute value
greater than one and x1 = 0 is repeller.

(b) The characteristic equation about x2 is λ
4 + α−A

A λ2 − A
α = 0. The real roots of this equation are

q
A
α

and −
q

A
α , they are less than one, so the equilibrium point x2 is hyperbolic. The proof for x3 can be similarly

obtained.

As it is expected, the convergence of (xn)n depends on the parameters α, A, B, and the initial data. We will
distinguish the following cases:
(i) Case |Aα | > 1.
Theorem 3. Assume that |Aα | > 1
(1) If (A− α+Bbd)(A− α+Bac) 6= 0, then every solution of Eq. (1) converges toward zero.

(2) If A− α+Bbd = A− α+Bac = 0, then the solution of Eq. (1) converges iff a = b = c = d = ±
q

α−A
B .

(3) If (A− α + Bbd)(A− α+ Bac) = 0 but not both terms of the product are zero, then every solution of Eq.
(1).

Proof. (1) Suppose that (A− α+Bbd)(A− α+Bac) 6= 0, then Corollary 1 implies that

x4n−3 =
dαn(A−α) n−2

p=0

³
A2p+2(A−α+Bbd)−Bbdα2p+2

´
n−1
p=0

³
A2p+1(A−α+Bbd)−Bbdα2p+1

´
=

dαn(A−α)An−1 n−2
p=0

³
1− Bbd

A−α+Bbd (
α
A )

2p+2

´
(A−α+Bbd)A2n−1 n−2

p=0

³
1− Bbd

A−α+Bbd (
α
A )

2p+1

´ .
Denote by β = Bbd

A−α+Bbd and by (Up)p the sequence defined as Up =
1−β( αA )

2p+2

1−β( αA )2p+1
, we get

x4n−3 =
d( αA )

n(A− α)

(A− α+Bbd)
³
1− β( αA )

2n−1
´ n−2Y

p=0

Up.

We have either: for p ∈ N big enough, Up > 1 or for p ∈ N big enough, 0 < Up < 1.
Using Taylor expansion of the Up, we obtain

Up = (1− β(
α

A
)2p+2)(1 + β(

α

A
)2p+1 + o(

α

A
)2p+1) = 1 + β(

α

A
)2p+1 + o(

α

A
)2p+1,

then Up is equivalent to 1 + β( αA )
2p+1 which is the general term of a convergent infinite product.

We can easily deduce that (x4n−3)n converges toward zero. same discussion can be obtained for the other
subsequences.

(2) If A− α + Bbd = A− α + Bac = 0, then by the proof of (1), the subsequences (x4n−3)n and (x4n−1)n are
constants: x4n−3 = d and x4n−1 = b, also the subsequences x4n−2 = c and x4n = a. Thus every solution of Eq.
(1) converges to a real number l if and only if a = b = c = d = l.

(3) Consider for instance the case A − α + Bbd = 0 and A − α + Bac 6= 0, by (2), the subsequences (x4n−3)n
and (x4n−1)n are constants x4n−3 = d and x4n−1 = b, in other hand and also by the proof of case (1), the
subsequences (x4n−2)n and (x4n)n converge to zero, then the sequence (xn)n diverges. The proof is completed.

(ii) Case |Aα | = 1.
Theorem 4. Assume that |Aα | = 1. We distinguish two subcases, A = α and A = −α.
(1) If A = α, and let sequence (xn)n be the sequence given by the formula (1), then the sequence (xn)n converges
toward zero.
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(2) If A = −α, and let sequence (xn)n be the sequence given by the formula (1), then we have x4n−1 =
b

dx4n−3
, x4n−2 =

c
ax4n

and the sequence (xn)n is divergent.

Proof. (1) For A = α, let δ the parameter δ = A
Bbd . In the proof of Corollary 2, we find that

x4n−3 =
A

Bb(δ+1)

n−1Y
p=1

³ δ
2p + 1
δ+1
2p + 1

´
.

Denote by (Wp)p the sequence defined as Wp =
δ
2p+1
δ+1
2p +1

, then we get:

For p big enough, we have 0 < Wp < 1. The Taylor expansion for Wp gives:
Wp = (1 +

δ
2p)(1−

δ+1
2p + o( 1p)) = 1−

1
2p + o( 1p),

which is a general term of divergent infinite product. Since for p big enough, 0 < Wp < 1, then limn→∞Π
n−1
p=1Wp =

0. So, we get limn→∞ x4n−3 = 0. Similarly, one can easily prove that the other subsequences converge to zero,
therefore the sequence (xn)n converges to zero.

(2) To prove the second part, we replace α by (−A) in the expression of x4n−3 of Eq. (6), we obtain

x4n−3 =
d(−A)n n−2

p=0 A
2p+1

³
A+Bbd 2p+1

k=0 (−1)
k

´
n−1
p=0 A

2p

³
A+Bbd 2p

k=0(−1)k
´ = d

(−1−δ−1)n , .

In other hand, If we replace α by (−A) in the first term of Eq. (7), we obtain

x4n−1 = b(−A)n
Qn−1

p=0

³
A2p(A+Bbd)

A2p+2

´
= b(−1− δ−1)n.

Thus x4n−1 = b
dx4n−3

, hence

(a) If |1 + δ−1| > 1, then the subsequence (x4n−3)n converges to zero, so (|x4n−1|)n goes to infinity.
(b) If |1 + δ−1| < 1, then the subsequence (|x4n−3|)n goes to infinity.
This completed the proof.

(iii) Case |Aα | < 1.
Theorem 5. Let (xn)n be the sequence given by the formula (1), then
For |Aα | < 1, then the subsequences (x4n−3)n, (x4n−1)n, (x4n−2)n and (x4n)n converge.
Proof. We need to prove that (x4n−3)n converges. Using Corollary (1), we obtain

x4n−3 =
dαn(A−α) n−2

p=0

³
A2p+2(A−α+Bbd)−Bbdα2p+2

´
n−1
p=0

³
A2p+1(A−α+Bbd)−Bbdα2p+1

´ = α−A
Bb(1− γλ2n−1)

Qn−2
p=0 Vp,

where γ = A−α+Bbd
Bbd , λ = A

α and (Vp)p is the sequence defined by Vp =
1−γλ2p+2
1−γλ2p+1 . For p ∈ N big enough, we

have two cases; either Vp > 1 or 0 < Vp < 1. Applying the transformation of infinite product of positive terms
to infinite series, and assuming p0 to be big enough, we get

x4n−3 =
α−A

Bb(1− γλ2n−1)

³ p0Y
p=0

Vp

´
exp

³ n−2X
p=p0+1

ln(Vp)
´
.

It is clear that the sequence
³

α−A
Bb(1−γλ2n−1)

´
n
converges toward α−A

Bb . The Taylor expansion of Vp to the first

order gives
Vp =

1−γλ2p+2
1−γλ2p+1 = 1 + γ(1− λ)λ2p+1 + o(λ2p+1).
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So ln(Vp) is equivalent to γ(1 − λ)λ2p+1, which is the general term of a convergent infinite series, then the
sequence (x4n−3)n is convergent. Similarly, one can prove that the other subsequences are convergent.

Remark 2. (Commentary on the convergence of (xn)n in the case |Aα | < 1).
Suppose that |Aα | < 1, according to Theorem 5, the subsequences (x4n−3)n, (x4n−1)n, (x4n−2)n and (x4n)n
converge, denote by: l3, l2, l1 and l0 their limits respectively.
The subsequences (x4n−3)n and (x4n−1)n are related by the equations:

x4(n+1)−3 =
αx4n−3

A+Bx4n−1x4n−3
, (10)

x4(n+1)−1 =
αx4n−1

A+Bx4(n+1)−3x4n−1
. (11)

Passing to the limit as n goes to infinity in Eq. (10), we obtain l3 = αl3
A+Bl3l1

, then (S1) :

⎧⎪⎨⎪⎩
l3 = 0,

or

l3 6= 0 and l1 =
α−A
Bl3

.

Passing to the limit as n goes to infinity in Eq. (11), we obtain l1 = αl1
A+Bl3l1

, then (S2) :

⎧⎪⎨⎪⎩
l1 = 0,

or

l1 6= 0 and l3 =
α−A
Bl1

.

Combining systems (S1) and (S2), since α 6= A, we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

l3 = l1 = 0

or

l1 6= 0, l3 6= 0 and (S) :

⎧⎪⎨⎪⎩
l3 =

α−A
Bl1

,

and

l1 =
α−A
Bl3

.

The proposition l3 = l1 = 0 contradicts the fact that the infinite product
Q

p≥0 Vp converges, in fact if
limn→∞

Qn
p=0 Vp = 0, then limn→∞

Pn
p=p0

ln(Vp) = −∞, and this is absurd. Hence the only possibility is
that

l1 6= 0, l3 6= 0 and (S) :

⎧⎪⎨⎪⎩
l3 =

α−A
Bl1

,

and

l1 =
α−A
Bl3

.

One can easily see that (S) is equivalent to l3 = α−A
Bl1

. Let f be the function defined on R∗ as f(x) = α−A
Bx , we

have fof = Id and, l1 and l3 are related by f(l1) = l3.

f(x) = x⇔ α−A

Bx
= x⇔ x = ∓

r
α−A

B
.

Hence: f has fixed points if and only if α−A
B > 0.

The numerical example (Figure 4) given in the end of this paper confirm that even we chose α−A
B > 0 and

|Aα | < 1, l1 and l3 may be different, which implies the sequence (xn)n may converge or diverge.
Finally based on the preview discussion of all preview cases, The following Theorem is now proved.
Theorem 6. (Boundedness of (xn)n). The Eq. (1) has an unbounded solutions if and only if A = −α.

5. PERIODICITY CHARACTER OF SOLUTIONS OF EQ. (1)

In the sequel, we need the following lemma, which describes sufficient conditions for Eq. (1) to have a periodic
solution.
Lemma 1. Let (xn)n≥−3 be a solution of Eq. (1) and the initial data that follow. Suppose that there are real
numbers l3, l2, l1, l0 such that limn→∞ x4n−j = lj for j = 0, ..., 3.
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Let (yn)n≥−3 be the period-4 sequence such that y−j = lj , for all j = 0, ..., 3, then the sequence (yn)n≥−3 is a
period-4 solution of Eq. (1). The periodicity results are given by the following Theorem
Theorem 7. Let (xn)n≥−3 be a solution of Eq. (1) and the initial data that follow, then

(1) For |Aα | > 1,
(a) If (A− α+Bbd)(A− α+Bac) 6= 0, then then Eq. (1) has no periodic solutions.
(b) If A− α+Bbd = A− α+Bac = 0, then the solution of Eq. (1) is a periodic-4 solution.

(c) If either A − α + Bbd or A − α + Bac equals zero but not both of them, then Eq. (1) has a periodic-4
solution.

(2) For |Aα | = 1, Eq. (1) has no periodic solutions.
(3) For |Aα | < 1, Eq. (1) has periodic-4 solutions.
Proof. (1) Suppose that |Aα | > 1,
(a) If (A − α + Bbd)(A − α + Bac) 6= 0, then by Theorem 3, every solution of Eq. (1) converges to zero,

hence, the solutions are not allowed to be periodic (since the solutions are not identically zero).

(b) If A− α+Bbd = A− α+ Bac = 0, then by Theorem 3, the subsequences of (xn)n (x4n−j)n, j = 0, .., 3
are constants: x4n−3 = d, x4n−2 = c, x4n−1 = b and x4n = a, and the sequence d, c, b, a, d, c, b, a... is a periodic-4
solution of Eq. (1).

(c) Consider for instance the case A − α + Bbd = 0 and A − α + Bac 6= 0, by the proof of Theorem 3,
the subsequences (x4n−3)n and (x4n−1)n are constants and equal d and b respectively. Also according to the
proof of Theorem 3, the subsequences (x4n−2)n and (x4n)n converge to zero. Applying Lemma 1, the sequence
d, 0, b, 0, d, 0, b, 0, ... is a periodic-4 solution of Eq. (1).

(2) The case A = α is similar to (1) (a).
If A = −α, then every solution of Eq. (1) is unbounded, so Eq. (1) has no periodic solutions.
(3) If |Aα | < 1, then by Theorem 5, there are real numbers l3, l2, l1 and l0, such that limn→∞ x4n−j = lj for all
j = 0, .., 3.
Applying Lemma 1, the sequence l3, l2, l1, l0, l3, l2, l1, l0... is a periodic-4 solution of Eq. (1).
This completes the proof.

Remark 3.

(1) Note that if |Aα | > 1, A − α + Bbd = A − α + Bac = 0, a = c, b = d, then Eq. (1) has periodic-2 solution
a, b, a, b, ....

(2) If |Aα | < 1, A− α+Bbd = A− α+Bac = 0, then, by the proof of Theorem 7, we deduce that the values of
the limits of the subsequences are l3 = d, l2 = c, l1 = b and l0 = a.

6. NUMERICAL SIMULATION

Example 1. Figure (1) illustrates the case |Aα | > 1, (A−α+Bbd)(A−α+Bac) 6= 0, we choose a = 2, b = −3,
c = 2, d = −2, B = 2, A = 1.1 and α = 1. We notice that the solution is oscillating about zero with a decreasing
amplitude. In fact, according to Theorem 3, the solution has to converge to zero.

Example 2. In order illustrate the case |Aα | > 1, A − α + Bbd = A − α + Bac = 0, we choose a = c = 2,
b = d = −2, B = −3, A = 13 and α = 1. Figure (2) depicts that the obtained solution is a 2-prime periodic
solution. This is coherent with Remark 3.

Example 3. The case |Aα | > 1, A− α +Bbd = 0 and A− α+Bac 6= 0 is illustrated in figure (3), in which we
set a = c = 1, b = d = −2, B = −2, A = 9 and α = 1. The subsequences (x4n−3)n and (x4n−1)n are constants
(x4n−3)n = d and (x4n−1)n = b, and the subsequences (x4n−2)n and (x4n)n converge to zero. by Lemma 1, the
sequence d, 0, b, 0, d, 0, b, 0, ... is a periodic-4 solution of Eq. (1).

Example 4. Figure (4) illustrates the case |Aα | < 1, we choose a = −1, b = 0.5, c = −0.2, d = 0.8, B = 1,
A = 0.5 and α = 1. the subsequences (x4n−3)n, (x4n−1)n, (x4n−2)n and (x4n)n converge.
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Example 5. To illustrate the case A = α, we choose a = 0.1, b = 0.2, c = 0.3, d = −0.4, B = 1, α = 0.5 and
A = 0.5. We notice in the figure (5), that the solution converges to zero (which is coherent to Theorem 4 part
(1)), and the Eq. (1) has no periodic solutions (which is coherent to Theorem 7 part (2)).

Example 6. In figure (6) (case A = −α), we choose a = 0.2, b = 0.3, c = 0.1, d = −0.3, B = 2, α = −0.4 and
A = 0.4. We notice that the solution is oscillating about zero with an increasing amplitude and the solution is
unbounded, which is coherent to Theorem 4 part (2).

Figure 1. Figure 2.

Figure 3. Figure 4.

Conclusion

In this work, some dynamical behaviors of the rational difference equation xn+1 =
αxn−3

A+Bxn−1xn−3
with the

initial conditions, x−3 = d, x−2 = c, x−1 = b, and x0 = a are arbitrary real numbers, A and B are arbitrary
constants, have been investigated. A detailed analytical study of the convergence of the solutions including their
dependence on parameters and initial conditions has been illustrated. The local stability and global attractivity
of the difference equation’s equilibrium points have been demonstrated. The existence of periodic solutions in the
proposed difference equation has also been shown analytically. Finally, numerical simulations have been carried
out to match the analytical results.
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Figure 5. Figure 6.
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QUADRATIC ρ-FUNCTIONAL EQUATIONS

JUNG RYE LEE1, CHOONKIL PARK2∗, AND DONG YUN SHIN3∗

Abstract. In this paper, we solve the quadratic ρ-functional equations

f(x+ y) + f(x− y)− 2f(x)− 2f(y) (0.1)

= ρ
(

2f
(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
,

where ρ is a fixed non-Archimedean number or a fixed real or complex number with ρ 6= −1, 2,
and

2f
(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y) (0.2)

= ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y)),

whereρ is a fixed non-Archimedean number or a fixed real or complex number with ρ 6= −1, 1
2
.

Using the direct method, we prove the Hyers-Ulam stability of the quadratic ρ-functional
equations (0.1) and (0.2) in non-Archimedean Banach spaces and in Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [25] con-
cerning the stability of group homomorphisms.

The functional equation f(x+ y) = f(x) + f(y) is called the Cauchy equation. In particular,
every solution of the Cauchy equation is said to be an additive mapping. Hyers [13] gave a
first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem
was generalized by Aoki [2] for additive mappings and by Rassias [22] for linear mappings by
considering an unbounded Cauchy difference. Gajda [11] following the same approach as in
Rassias [22], gave an affirmative solution to this question for p > 1. It was shown by Gajda
[11], as well as by Rassias and Šemrl [21] that one cannot prove a Rassias’ type theorem when
p = 1. The counterexamples of Gajda [11], as well as of Rassias and Šemrl [21] have stimulated
several mathematicians to invent new definitions of approximately additive or approximately
linear mappings, cf. Găvruta [12], who among others studied the Hyers-Ulam stability of
functional equations (cf. the books of Czerwik [8, 9], Hyers, Isac and Th.M. Rassias [14]). The
hyperstability of the Cauchy equation was proved by Brzdek [4].

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called the quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. The stability of quadratic functional
equation was proved by Skof [24] for mappings f : E1 → E2, where E1 is a normed space and
E2 is a Banach space. Cholewa [7] noticed that the theorem of Skof is still true if the relevant
domain E1 is replaced by an Abelian group. See [1, 5, 6, 10, 16, 17, 18, 19, 20, 23] for more

2010 Mathematics Subject Classification. Primary 46S10, 39B62, 39B52, 47S10, 12J25.
Key words and phrases. Hyers-Ulam stability; non-Archimedean normed space; quadratic ρ-functional equa-

tion.
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functional equations. The survey on the Hyers-Ulam stability of functional equations was given
by Brillouet-Bulluot, Brzdek and Cieplinski [3].

The functional equation

2f

(
x+ y

2

)
+ 2

(
x− y

2

)
= f(x) + f(y)

is called a Jensen type quadratic equation.
A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique element

having the 0 valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.
A field K is called a valued field if K carries a valuation. The usual absolute values of R and
C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality.
If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,
then the function | · | is called a non-Archimedean valuation, and the field is called a non-
Archimedean field. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. A trivial example of
a non-Archimedean valuation is the function | · | taking everything except for 0 into 1 and
|0| = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field, hence call
it simply a field.

Definition 1.1. ([15]) LetX be a vector space over a fieldK with a non-Archimedean valuation
| · |. A function ‖ · ‖ : X → [0,∞) is said to be a non-Archimedean norm if it satisfies the
following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖ (r ∈ K,x ∈ X);
(iii) the strong triangle inequality

‖x+ y‖ ≤ max{‖x‖, ‖y‖}, ∀x, y ∈ X
holds. Then (X, ‖ · ‖) is called a non-Archimedean normed space.

In Section 2, we solve the quadratic functional equation (0.1) in vector spaces and prove the
Hyers-Ulam stability of the quadratic functional equation (0.1) in non-Archimedean Banach
spaces.

In Section 3, we solve the quadratic functional equation (0.2) in vector spaces and prove the
Hyers-Ulam stability of the quadratic functional equation (0.2) in non-Archimedean Banach
spaces.

In Section 4, we prove the Hyers-Ulam stability of the quadratic functional equation (0.1)
in Banach spaces.

In Section 5, we prove the Hyers-Ulam stability of the quadratic functional equation (0.2)
in Banach spaces.

2. Quadratic ρ-functional equation (0.1) in non-Archimedean Banach spaces

Throughout Sections 2 and 3, assume that X is a non-Archimedean normed space and that
Y is a non-Archimedean Banach space. Let |2| 6= 1 and let ρ be a fixed non-Archimedean
number with ρ 6= −1, 2.

Lemma 2.1. Let X and Y be vector spaces. A mapping f : X → Y satisfies

f(x+ y) + f(x− y)− 2f(x)− 2f(y) = 0 (2.1)
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for all x, y ∈ X if and only if the mapping f : X → Y satisfies

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y) = 0 (2.2)

for all x, y ∈ X.

Proof. Assume that f : X → Y satisfies (2.1).
Letting x = y = 0 in (2.1), we get f(0) = 0.
Letting y = x in (2.1), we get f(2x)− 4f(x) = 0 and so f(2x) = 4f(x) for all x ∈ X. Thus

f
(
x
2

)
= 1

4f(x) for all x ∈ X. So f : X → Y satisfies (2.2).
Assume that f : X → Y satisfies (2.2).
Letting x = y = 0 in (2.2), we get f(0) = 0.
Letting y = 0 in (2.2), we get 4f

(
x
2

)
= f(x) for all x ∈ X. and so f(2x) = 4f(x) for all

x ∈ X. So f : X → Y satisfies (2.1). �

We solve the quadratic ρ-functional equation (0.1) in vector spaces.

Lemma 2.2. Let X and Y be vector spaces. If a mapping f : X → Y satisfies

f(x+ y) + f(x− y)− 2f(x)− 2f(y) (2.3)

= ρ

(
2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
for all x, y ∈ X, then f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (2.3).
Letting x = y = 0 in (2.3), we get −2f(0) = 2ρf(0). So f(0) = 0.
Letting y = x in (2.3), we get

f(2x)− 4f(x) = 0

and so f(2x) = 4f(x) for all x ∈ X. Thus

f

(
x

2

)
=

1

4
f(x) (2.4)

for all x ∈ X.
It follows from (2.3) and (2.4) that

f(x+ y) + f(x− y)− 2f(x)− 2f(y)

= ρ

(
2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
=
ρ

2
(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

and so

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X. �

We prove the Hyers-Ulam stability of the quadratic ρ-functional equation (2.3) in non-
Archimedean Banach spaces.

Theorem 2.3. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying
f(0) = 0 and

lim
j→∞

|4|jϕ
(
x

2j
,
y

2j

)
= 0, (2.5)
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‖f(x+ y) + f(x− y)− 2f(x)− 2f(y) (2.6)

−ρ
(

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
‖ ≤ ϕ(x, y)

for all x, y ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ sup
j∈N

{
|4|j−1ϕ

(
x

2j
,
x

2j

)}
(2.7)

for all x ∈ X.

Proof. Letting y = x in (2.6), we get

‖f(2x)− 4f(x)‖ ≤ ϕ(x, x) (2.8)

for all x ∈ X. So ∥∥∥∥f(x)− 4f

(
x

2

)∥∥∥∥ ≤ ϕ(x2 , x2
)

for all x ∈ X. Hence∥∥∥∥4lf ( x2l
)
− 4mf

(
x

2m

)∥∥∥∥ (2.9)

≤ max

{∥∥∥∥4lf ( x2l
)
− 4l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥4m−1f ( x

2m−1

)
− 4mf

(
x

2m

)∥∥∥∥}
≤ max

{
|4|l

∥∥∥∥f ( x2l
)
− 4f

(
x

2l+1

)∥∥∥∥ , · · · , |4|m−1 ∥∥∥∥f ( x

2m−1

)
− 4f

(
x

2m

)∥∥∥∥}
≤ sup

j∈{l,l+1,··· }

{
|4|jϕ

(
x

2j+1
,
x

2j+1

)}
for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.9) that the
sequence {4nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
{4nf( x

2n )} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.9), we get (2.7).
It follows from (2.5) and (2.6) that

‖h(x+ y) + h(x− y)− 2h(x)− 2h(y)

−ρ
(

2h

(
x+ y

2

)
+ 2h

(
x− y

2

)
− h(x)− h(y)

)
‖

= lim
n→∞

|4|n
∥∥∥∥f (x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)
− 2f

(
y

2n

)
−ρ

(
2f

(
x+ y

2n+1

)
+ 2f

(
x− y
2n+1

)
− f

(
x

2n

)
− f

(
y

2n

))∥∥∥∥
≤ lim

n→∞
|4|nϕ

(
x

2n
,
y

2n

)
= 0

for all x, y ∈ X. So

h(x+ y) + h(x− y)− 2h(x)− 2h(y) = ρ

(
2h

(
x+ y

2

)
+ 2h

(
x− y

2

)
− h(x)− h(y)

)
for all x, y ∈ X. By Lemma 2.2, the mapping h : X → Y is quadratic.
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Now, let T : X → Y be another quadratic mapping satisfying (2.7). Then we have

‖h(x)− T (x)‖ =

∥∥∥∥4qh( x2q
)
− 4qT

(
x

2q

)∥∥∥∥
≤ max

{∥∥∥∥4qh( x2q
)
− 4qf

(
x

2q

)∥∥∥∥ , ∥∥∥∥4qT ( x2q
)
− 4qf

(
x

2q

)∥∥∥∥}
≤ sup

j∈N

{
|4|q+j−1ϕ

(
x

2q+j
,
x

2q+j

)}
,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that h(x) = T (x) for all
x ∈ X. This proves the uniqueness of h. Thus the mapping h : X → Y is a unique quadratic
mapping satisfying (2.7). �

Corollary 2.4. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping
such that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y) (2.10)

−ρ
(

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
‖ ≤ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 2θ

|2|r
‖x‖r

for all x ∈ X.

Theorem 2.5. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying
f(0) = 0, (2.6) and

lim
j→∞

{
1

|4|j
ϕ(2j−1x, 2j−1y)

}
= 0

for all x, y ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ sup
j∈N

{
1

|4|j
ϕ(2j−1x, 2j−1x)

}
(2.11)

for all x ∈ X.

Proof. It follows from (2.8) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

|4|
ϕ(x, x)

for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ (2.12)

≤ max

{∥∥∥∥ 1

4l
f
(
2lx
)
− 1

4l+1
f
(
2l+1x

)∥∥∥∥ , · · · , ∥∥∥∥ 1

4m−1
f
(
2m−1x

)
− 1

4m
f (2mx)

∥∥∥∥}
≤ max

{
1

|4|l

∥∥∥∥f (2lx
)
− 1

4
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|4|m−1

∥∥∥∥f (2m−1x
)
− 1

4
f (2mx)

∥∥∥∥}
≤ sup

j∈{l,l+1,··· }

{
1

|4|j+1
ϕ(2jx, 2jx)

}
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.12) that the
sequence { 1

4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
4n f(2nx)} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.12), we get (2.11).
The rest of the proof is similar to the proof of Theorem 2.3. �

Corollary 2.6. Let r > 2 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying (2.10). Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 2θ

|4|
‖x‖r

for all x ∈ X.

3. Quadratic ρ-functional equation (0.2) in non-Archimedean Banach spaces

Let |2| 6= 1 and let ρ be a fixed non-Archimedean number with ρ 6= −1, 12 .
We solve the quadratic ρ-functional equation (0.2) in vector spaces.

Lemma 3.1. Let X and Y be vector spaces. If a mapping f : X → Y satisfies

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y) (3.1)

= ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

for all x, y ∈ X, then f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (3.1).
Letting x = y = 0 in (3.1), we get 2f(0) = −2ρf(0). So f(0) = 0.
Letting y = 0 in (3.1), we get

4f

(
x

2

)
− f(x) = 0 (3.2)

and so f
(
x
2

)
= 1

4f(x) for all x ∈ X.
It follows from (3.1) and (3.2) that

1

2
(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

= 2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

= ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

and so

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X. �

We prove the Hyers-Ulam stability of the quadratic ρ-functional equation (3.1) in non-
Archimedean Banach spaces.
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Theorem 3.2. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying
f(0) = 0 and

lim
j→∞

{
|4|jϕ

(
x

2j
,
y

2j

)}
= 0,

‖2f
(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y) (3.3)

−ρ (f(x+ y) + f(x− y)− 2f(x)− 2f(y)) ‖ ≤ ϕ(x, y)

for all x, y ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ sup
j∈N

{
|4|j−1ϕ

(
x

2j−1
, 0

)}
(3.4)

for all x ∈ X.

Proof. Letting y = 0 in (3.3), we get∥∥∥∥4f (x2
)
− f(x)

∥∥∥∥ ≤ ϕ(x, 0) (3.5)

for all x ∈ X. So∥∥∥∥4lf ( x2l
)
− 4mf

(
x

2m

)∥∥∥∥ (3.6)

≤ max

{∥∥∥∥4lf ( x2l
)
− 4l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥4m−1f ( x

2m−1

)
− 4mf

(
x

2m

)∥∥∥∥}
≤ max

{
|4|l

∥∥∥∥f ( x2l
)
− 4f

(
x

2l+1

)∥∥∥∥ , · · · , |4|m−1 ∥∥∥∥f ( x

2m−1

)
− 4f

(
x

2m

)∥∥∥∥}
≤ sup

j∈{l,l+1,··· }

{
|4|jϕ

(
x

2j
, 0

)}
for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.6) that the
sequence {4nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
{4nf( x

2n )} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.6), we get (3.4).
The rest of the proof is similar to the proof of Theorem 2.3. �

Corollary 3.3. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping
such that

‖2f
(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y) (3.7)

−ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖ ≤ θ(‖x‖r + ‖y‖r)
for all x, y ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ θ‖x‖r

for all x ∈ X.

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying
f(0) = 0, (3.3) and

lim
j→∞

{
1

|4|j
ϕ(2jx, 2jy)

}
= 0
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for all x, y ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ sup
j∈N

{
1

|4|j
ϕ(2jx, 0)

}
(3.8)

for all x ∈ X.

Proof. It follows from (3.5) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

|4|
ϕ(2x, 0)

for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ (3.9)

≤ max

{∥∥∥∥ 1

4l
f
(
2lx
)
− 1

4l+1
f
(
2l+1x

)∥∥∥∥ , · · · , ∥∥∥∥ 1

4m−1
f
(
2m−1x

)
− 1

4m
f (2mx)

∥∥∥∥}
≤ max

{
1

|4|l

∥∥∥∥f (2lx
)
− 1

4
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|4|m−1

∥∥∥∥f (2m−1x
)
− 1

4
f (2mx)

∥∥∥∥}
≤ sup

j∈{l+1,l+2,··· }

{
1

|4|j
ϕ(2jx, 0)

}
for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.9) that the
sequence { 1

4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
4n f(2nx)} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.9), we get (3.8).
The rest of the proof is similar to the proof of Theorems 2.3. �

Corollary 3.5. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping
satisfying (3.7). Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ |2|
rθ

|4|
‖x‖r

for all x ∈ X.

4. Quadratic ρ-functional equation (0.1) in Banach spaces

Throughout Sections 4 and 5, assume that X is a normed space and that Y is a Banach
space. Let ρ be a fixed real or complex number with ρ 6= −1, 2.

We prove the Hyers-Ulam stability of the quadratic ρ-functional equation (2.3) in Banach
spaces.

Theorem 4.1. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying
f(0) = 0 and

Ψ(x, y) :=
∞∑
j=1

4jϕ

(
x

2j
,
y

2j

)
<∞, (4.1)

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y) (4.2)

−ρ
(

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
‖ ≤ ϕ(x, y)
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for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

4
Ψ(x, x) (4.3)

for all x ∈ X.

Proof. Letting y = x in (4.2), we get

‖f(2x)− 4f(x)‖ ≤ ϕ(x, x) (4.4)

for all x ∈ X. So ∥∥∥∥f(x)− 4f

(
x

2

)∥∥∥∥ ≤ ϕ(x2 , y2
)

for all x ∈ X. Hence∥∥∥∥4lf ( x2l
)
− 4mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥4jf ( x2j
)
− 4j+1f

(
x

2j+1

)∥∥∥∥
≤

m−1∑
j=l

4jϕ

(
x

2j+1
,
x

2j+1

)
(4.5)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (4.5) that
the sequence {4kf( x

2k
)} is Cauchy for all x ∈ X. Since Y is a Banach space, the sequence

{4kf( x
2k

)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
k→∞

4kf

(
x

2k

)
for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (4.5), we get (4.3).

Now, let T : X → Y be another quadratic mapping satisfying (4.3). Then we have

‖Q(x)− T (x)‖ =

∥∥∥∥4qQ( x2q
)
− 4qT

(
x

2q

)∥∥∥∥
≤
∥∥∥∥4qQ( x2q

)
− 4qf

(
x

2q

)∥∥∥∥+

∥∥∥∥4qT ( x2q
)
− 4qf

(
x

2q

)∥∥∥∥
≤ 4q

2
Ψ

(
x

2q
,
x

2q

)
,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that Q(x) = T (x) for all
x ∈ X. This proves the uniqueness of Q.

It follows from (4.1) and (4.2) that

‖Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y)

−ρ
(

2Q

(
x+ y

2

)
+ 2Q

(
x− y

2

)
−Q(x)−Q(y)

)
‖

= lim
n→∞

4n
∥∥∥∥f (x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)
− 2f

(
y

2n

)
−ρ

(
2f

(
x+ y

2n+1

)
+ 2f

(
x− y
2n+1

)
− f

(
x

2n

)
− f

(
y

2n

))∥∥∥∥
≤ lim

n→∞
4nϕ

(
x

2n
,
y

2n

)
= 0
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for all x, y ∈ X. So

Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y) = ρ

(
2Q

(
x+ y

2

)
+ 2Q

(
x− y

2

)
−Q(x)−Q(y)

)
for all x, y ∈ X. By Lemma 2.2, the mapping Q : X → Y is quadratic. �

Corollary 4.2. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping
such that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y) (4.6)

−ρ
(

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
‖ ≤ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

2r − 4
‖x‖r

for all x ∈ X.

Theorem 4.3. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying
f(0) = 0, (4.2) and

Ψ(x, y) :=
∞∑
j=0

1

4j
ϕ(2jx, 2jy) <∞

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

4
Ψ(x, x) (4.7)

for all x ∈ X.

Proof. It follows from (4.4) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ(x, x)

for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

4j
f
(
2jx

)
− 1

4j+1
f
(
2j+1x

)∥∥∥∥
≤

m−1∑
j=l

1

4j+1
ϕ(2jx, 2jx) (4.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (4.8) that the
sequence { 1

4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
4n f(2nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (4.8), we get (4.7).
The rest of the proof is similar to the proof of Theorem 4.1. �
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Corollary 4.4. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping
satisfying (4.6). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

4− 2r
‖x‖r

for all x ∈ X.

5. Quadratic ρ-functional equation (0.2) in Banach spaces

Let ρ be a fixed real or complex number with ρ 6= −1, 12 .
In this section, we prove the Hyers-Ulam stability of the quadratic ρ-functional equation

(3.1) in Banach spaces.

Theorem 5.1. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying
f(0) = 0 and

Ψ(x, y) :=
∞∑
j=0

4jϕ

(
x

2j
,
y

2j

)
<∞,

‖2f
(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y) (5.1)

−ρ (f(x+ y) + f(x− y)− 2f(x)− 2f(y)) ‖ ≤ ϕ(x, y)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ Ψ(x, 0) (5.2)

for all x ∈ X.

Proof. Letting y = 0 in (5.1), we get∥∥∥∥f(x)− 4f

(
x

2

)∥∥∥∥ =

∥∥∥∥4f (x2
)
− f(x)

∥∥∥∥ ≤ ϕ(x, 0) (5.3)

for all x ∈ X. So∥∥∥∥4lf ( x2l
)
− 4mf

(
x

2m

)∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥4jf ( x2j
)
− 4j+1f

(
x

2j+1

)∥∥∥∥
≤

m−1∑
j=l

4jϕ

(
x

2j
, 0

)
(5.4)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (5.4) that
the sequence {4kf( x

2k
)} is Cauchy for all x ∈ X. Since Y is a Banach space, the sequence

{4kf( x
2k

)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
k→∞

4kf

(
x

2k

)
for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (5.4), we get (5.2).

The rest of the proof is similar to the proof of Theorem 4.1. �

Corollary 5.2. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and

‖2f
(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y) (5.5)

−ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖ ≤ θ(‖x‖r + ‖y‖r)
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for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2rθ

2r − 4
‖x‖r

for all x ∈ X.

Theorem 5.3. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying
f(0) = 0, (5.1) and

Ψ(x, y) :=
∞∑
j=1

1

4j
ϕ(2jx, 2jy) <∞

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ Ψ(x, 0) (5.6)

for all x ∈ X.

Proof. It follows from (5.3) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ(2x, 0)

for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ ≤ m∑
j=l+1

∥∥∥∥ 1

4j
f
(
2jx

)
− 1

4j+1
f
(
2j+1x

)∥∥∥∥
≤

m∑
j=l+1

1

4j
ϕ(2jx, 0) (5.7)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (5.7) that the
sequence { 1

4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
4n f(2nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (5.7), we get (5.6).
The rest of the proof is similar to the proof of Theorem 4.1. �

Corollary 5.4. Let r < 2 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying f(0) = 0 and (5.5). Then there exists a unique quadartic mapping Q : X → Y such
that

‖f(x)−Q(x)‖ ≤ 2rθ

4− 2r
‖x‖r

for all x ∈ X.
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Abstract. In this paper, we consider the modified partially degenerate Genocchi poly-

nomials and investigate some properties of these polynomials. From these properties, we

give some new and interesting identities of them.

1. Introduction

The Genocchi polynomials are defined by the generating function

2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
(see [2, 3, 7, 9, 12, 14, 17, 19, 27, 28]). (1)

When x = 0, Gn = Gn(0) are called the Genocchi numbers. From (1), we see that
∞∑
n=0

Gn(x)
tn

n!
=

(
2t

et + 1

)
ext

=

( ∞∑
l=0

Gl
tl

l!

)( ∞∑
m=0

xm
tm

m!

)

=
∞∑
n=0

(
n∑
l=0

(
n

l

)
Glx

n−l

)
tn

n!
. (2)

1991 Mathematics Subject Classification. 05A10, 11B68, 11S80, 05A19.
Key words and phrases. Euler polynomials, Genocchi polynomials, degenerate Genocchi polynomials, mod-

ified degenerate Genocchi polynomials.
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Thus, by comparing the coefficients on both sides of (2), we get

Gn(x) =
n∑
l=0

(
n

l

)
Glx

n−l. (3)

From (1), we can derive the following equation:
∞∑
n=0

Gn(x)
tn

n!
= − −2t

e−t + 1
e−(1−x)t

=
∞∑
n=0

(−1)n−1Gn(1− x)
tn

n!
.

(4)

By comparing the coefficients on both sides of (4), we get

Gn(x) = (−1)n−1Gn(1− x). (5)

The gamma and beta function are defined by the following definite integrals: for (α > 0, β >
0),

Γ(α) =

∫ ∞
0

e−ttα−1dt (6)

and

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt

=

∫ ∞
0

tα−1

(1 + t)α+β
dt

(7)

(see [15,23,24]).Thus by (6) and (7), we get

Γ(α+ 1) = αΓ(α), B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
. (8)

The classical Genocchi numbers, a sequence of integers introduced by Angelo Genocchi
(1817-1889), have been studied in various context in such diverse areas of mathematics and
physics as number theory, combinatorics, complex analysis, topology, and quantum physics.
In recent years, Genocchi polynomials and numbers have received considerable attention and
many researchers have worked on them, their extensions and their connections with some
combinatorial counting.

The degenerate Bernoulli polynomials, the rst degenerate version of well-known families
of polynomials, were introduced by Carlitz and rediscovered by Ustinov under the name
of Korobov polynomials of the second kind. On the other hand, Korobov polynomials (of
the rst kind) are the degenerate version of the Bernoulli polynomials of the second kind.
Recently, many researchers began to study various kinds of degenerate versions of the familiar
polynomials like Bernoulli, Euler, Genocchi, falling factorial and Bell polynomials by using
generating functions, umbral calculus, and p-adic integrals.

The goal of this paper is to introduce the modified degenerate Genocchi polynomials and
numbers, a degenerate version of the classical Genocchi polynomials and numbers, in order to
study their properties and obtain several new and interesting identities involving them. More
precisely, we give some properties, explicit formulas, several identities, a connection with
Genocchi polynomials, and some integral formulas. Here they were named as the modified
degenerate Genocchi polynomials, since there existed what are called the degenerate Genocchi
polynomials whose definition is slightly different from ours (see [1, 4-6, 8, 11-16, 18, 20, 21,
22-26, 28]).
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2. Modified degenerate Genocchi polynomials

First, we note that

et = lim
λ→0

(1 + λ)
t
λ , t = loget = lim

λ→0
log(1 + λ)

t
λ = lim

λ→0

t

λ
log(1 + λ). (9)

From (1) and (9), we define the modified degenerate Genocchi polynomials as

2t

(1 + λ)
t
λ + 1

(1 + λ)
tx
λ =

∞∑
n=0

gn,λ(x)
tn

n!
(10)

When x = 0, gn,λ = gn,λ(0) are called the modified degenerate Genocchi numbers. From
(10), we get

2t =
(

(1 + λ)
t
λ + 1

)( 2t

(1 + λ)
t
λ + 1

)
=

2t

(1 + λ)
t
λ + 1

(1 + λ)
t
λ +

2t

(1 + λ)
t
λ + 1

=
∞∑
n=0

gn,λ(1)
tn

n!
+
∞∑
n=0

gn,λ
tn

n!

=
∞∑
n=0

(gn,λ(1) + gn,λ)
tn

n!
. (11)

By comparing the coefficients on both sides of (11), we get{
g0,λ = 0
gn,λ(1) + gn,λ = 2δ1,n,

(12)

where δ1,n is the Kronecker delta. From (10), we note that

∞∑
n=0

gn,λ(x)
tn

n!
=

( ∞∑
m=0

gm,λ
tm

m!

)( ∞∑
m=0

(
log(1 + λ)

λ

)m
xm

tm

m!

)

=

∞∑
n=0

(
n∑

m=0

(
n

m

)
gn−m,λ

(
log(1 + λ)

λ

)m
xm

)
tn

n!
.

(13)

Thus, by comparing the coefficients on both sides of (13), we obtain the following theorem.

Theorem 2.1. Let n ∈ N ∪ {0}. Then we have

gn,λ(x) =
n∑

m=0

(
n

m

)
gn−m,λ

(
log(1 + λ)

λ

)m
xm. (14)

From (10), we derive the following equation:
∞∑
n=0

gn,λ(x)
tn

n!
= − −2t

(1 + λ)
−t
λ + 1

(1 + λ)
−(1−x)t

λ

=
∞∑
n=0

(−1)n−1gn,λ(1− x)
tn

n!
.

(15)

By comparing the coefficients on both sides of (15),

gn,λ(x) = (−1)n−1gn,λ(1− x) (n ≥ 0). (16)
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By (10), we see that

d

dx
gn,λ(x) = gn−1,λ(x)

(
log(1 + λ)

λ

)
n (n ≥ 1). (17)

From (17), we get

gn+1,λ(1)− gn+1,λ

n+ 1
=

∫ 1

0

d

dx

gn+1,λ(x)

n+ 1
dx

=

∫ 1

0

gn,λ(x)

(
log(1 + λ)

λ

)
dx. (n ≥ 1). (18)

By (18), we obtain the following theorem.

Theorem 2.2. Let n ∈ N ∪ {0}. Then we have

gn+1,λ(1)− gn+1,λ

n+ 1
=

∫ 1

0

gn,λ(x)

(
log(1 + λ)

λ

)
dx. (19)

We note that the Stirling numbers of the first kind are defined as

(x)n =
n∑
l=0

S1(n, l)xl, (n ≥ 0), (see [1, 4− 6, 8, 11− 16, 18, 20, 21, 22− 26, 28]). (20)

where (x)n = x(x− 1) · · · (x− n+ 1)(n ≥ 1), and (x)0 = 1. By (10), we see that

2t

(1 + λ)
t
λ + 1

(1 + λ)
tx
λ

=

( ∞∑
k=0

gk,λ
tk

k!

)( ∞∑
m=0

1

m!

(
tx

λ

)
m

λm

)

=

( ∞∑
k=0

gk,λ
tk

k!

)( ∞∑
m=0

m∑
l=0

S1(m, l)

(
tx

λ

)l)
λm

m!

=

( ∞∑
k=0

gk,λ
tk

k!

)( ∞∑
l=0

( ∞∑
m=l

S1(m, l)
(x
λ

)l λm
m!

l!

)
tl

l!

)

=

∞∑
n=0

(
n∑
l=0

∞∑
m=l

(
n

l

)
gn−l,λS1(m, l)

(x
λ

)l λm
m!

l!

)
tn

n!
(21)

From (21), we obtain the following theorem.

Theorem 2.3. Let n ∈ N ∪ {0}. Then we have

gn,λ(x) =
n∑
l=0

∞∑
m=l

(
n

l

)
gn−l,λS1(m, l)

(x
λ

)l λm
m!

l!. (22)

Let d be an odd integer. Then we see that

2t
d−1∑
l=0

(−1)l(1 + λ)
lt
λ

=
2t

1 + (1 + λ)
t
λ

(
1−

(
−(1 + λ)

t
λ

)d)
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=
2t

1 + (1 + λ)
t
λ

(
1 + (1 + λ)

dt
λ

)
=

2t

1 + (1 + λ)
t
λ

+
2t

1 + (1 + λ)
t
λ

(1 + λ)
dt
λ

=
∞∑
n=1

gn,λ
tn

n!
+
∞∑
n=1

gn,λ(d)
tn

n!

=
∞∑
n=1

(gn,λ + gn,λ(d))
tn

n!

= t
∞∑
n=0

(
gn+1,λ + gn+1,λ(d)

n+ 1

)
tn

n!
. (23)

Also, we see that

2
d−1∑
l=0

(−1)l(1 + λ)
lt
λ

= 2
d−1∑
l=0

( ∞∑
n=0

(−1)l
(
log(1 + λ)

λ

)n
ln

)
tn

n!

=
∞∑
n=0

(
2
d−1∑
l=0

(−1)l
(
log(1 + λ)

λ

)n
ln

)
tn

n!
. (24)

From (23) and (24), we obtain the following theorem.

Theorem 2.4. Let n ∈ N ∪ {0}. Then we have

2

d−1∑
l=0

(−1)l
(
log(1 + λ)

λ

)n
ln =

g+1n,λ + gn+1,λ(d)

n+ 1
. (25)

From (10) and (14), we note that∫ 1

0

yngn,λ(x+ y)dy =
n∑

m=0

(
n

m

)
gn−m,λ

(
log(1 + λ)

λ

)m ∫ 1

0

yn+mdy

=
n∑

m=0

(
n

m

)
gn−m,λ(x)

n+m+ 1

(
log(1 + λ)

λ

)m (26)

By (16), we get ∫ 1

0

yngn,λ(x+ y)dy = (−1)n−1
∫ 1

0

yngn,λ(1− (x+ y))dy

= (−1)n−1
n∑

m=0

(
n

m

)
gn−m(−x)

(
log(1 + λ)

λ

)m ∫ 1

0

yn(1− y)mdy

=
n∑

m=0

(
n

m

)
(−1)mgn−m,λ(1 + x)

(
log(1 + λ)

λ

)m
B(n+ 1,m+ 1)

=
n∑

m=0

(
n

m

)
(−1)m

gn−m,λ(1 + x)

n+m+ 1

(
log(1 + λ)

λ

)m(
n+m

m

)−1
(27)

By (26) and (27), we obtain the following theorem.
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Theorem 2.5. For n ∈ N, we have
n∑

m=0

(
n

m

)
gn−m,λ(x)

n+m+ 1

(
log(1 + λ)

λ

)m
=

n∑
m=0

(
n

m

)
(−1)m

gn−m,λ(1 + x)

n+m+ 1

(
log(1 + λ)

λ

)m(
n+m

m

)−1
(28)

From (17), we note that∫ 1

0

yngn,λ(x+ y)dy

=
gn,λ(x+ 1)

n+ 1
− n

n+ 1

log(1 + λ)

λ

∫ 1

0

yn+1gn−1,λ(x+ y)dy

=
gn,λ(x+ 1)

n+ 1
− gn−1,λ(x+ 1)

n+ 1

n

n+ 2

log(1 + λ)

λ

+(−1)2
n(n− 1)

(n+ 1)(n+ 2)

(
log(1 + λ)

λ

)2 ∫ 1

0

yn+2gn−2,λ(x+ y)dy

=
gn,λ(x+ 1)

n+ 1
− gn−1,λ(x+ 1)

n+ 1

n

n+ 2

log(1 + λ)

λ

+(−1)2
gn−2,λ(x+ 1)

n+ 1

n(n− 1)

(n+ 2)(n+ 3)

(
(log(1 + λ)

λ

)2

+(−1)3
n(n− 1)(n− 2)

(n+ 1)(n+ 2)(n+ 3)

(
(log(1 + λ)

λ

)3 ∫ 1

0

yn+3gn−3,λ(x+ y)dy (29)

By continuing this process, we have∫ 1

0

yngn,λ(x+ y)dy =
gn,λ(x+ 1)

n+ 1

+

n−1∑
m=1

(−1)m
n(n− 1) · · · (n−m+ 1)

(n+ 1)(n+ 2) · · · (n+m+ 1)

(
(log(1 + λ)

λ

)m
gn−m,λ(x+ 1)

(30)

Therefore by (26) and (30), we obtain the following theorem.

Theorem 2.6. For n ∈ N, we have

n∑
m=0

(
n

m

)
gn−m,λ(x)

n+m+ 1
=

n−1∑
m=0

(−1)m
(
n
m

)(
n+m
m

) gn−m,λ(x+ 1)

n+m+ 1

(
(log(1 + λ)

λ

)m
(31)

Taking x = 0, From (16) and (31), we obtain the following corollary.

Corollary 2.7. For n ∈ N, we have

n∑
m=0

(
n

m

)
gn−m,λ

n+m+ 1
=

n−1∑
m=0

(−1)m
(
n
m

)(
n+m
m

) gn−m,λ(1)

n+m+ 1

(
(log(1 + λ)

λ

)m
(32)

For n ∈ N, we observe that∫ 1

0

yngn,λ(x+ y)dy
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=
λ

log(1 + λ)

gn+1,λ(x+ 1)

n+ 1
− λ

log(1 + λ)

n

n+ 1

∫ 1

0

yn−1gn+1,λ(x+ y)dy

=
λ

log(1 + λ)

(
gn+1,λ(x+ 1)

n+ 1
− n

n+ 1

∫ 1

0

yn−1(−1)ngn+1,λ(1− (x+ y))dy

)
=

λ

log(1 + λ)

(
gn+1,λ(x+ 1)

n+ 1
− n

n+ 1

n+1∑
l=0

(
n+ 1

l

)
gn+1−l,λ(−x)(−1)n

∫ 1

0

yn−1(1− y)ldy

)

=
λ

log(1 + λ)

(
gn+1,λ(x+ 1)

n+ 1
− n

n+ 1

n+1∑
l=0

(
n+ 1

l

)
gn+1−l,λ(−x)(−1)nB(n, l + 1)

)

=
λ

log(1 + λ)

(
gn+1,λ(x+ 1)

n+ 1
− 1

n+ 1

n+1∑
l=0

(
n+1
l

)(
n+l
l

) (−1)ngn+1−l,λ(−x)

)

=
λ

log(1 + λ)

(
gn+1,λ(x+ 1)

n+ 1
− 1

n+ 1

n+1∑
l=0

(
n+1
l

)(
n+l
l

) (−1)lgn+1−l,λ(1 + x)

)
(33)

Therefore, by (30) and (33), we obtain the following theorem.

Theorem 2.8. For n ∈ N, we have

n−1∑
l=0

(−1)l
(
n
l

)(
n+l
l

) gn−l,λ(1 + x)

n+ l + 1

(
log(1 + λ)

λ

)l+1

=
gn+1,λ(x+ 1)

n+ 1
− 1

n+ 1

n+1∑
l=0

(−1)l
(
n+1
l

)(
n+l
l

) gn+1−l,λ(1 + x) (34)

Replacing λ by e− 1 and t by (e− 1)t in (10), we get

∞∑
n=0

Gn(x)
tn

n!
=

2t

et + 1
ext

=
∞∑
n=0

gn,e−1(x)(e− 1)n−1
tn

n!
, (35)

where Gn(x) are the Genocchi polynomials. By comparing both sides of (35), we obtain the
following theorem.

Theorem 2.9. For n ∈ N ∪ {0}, we have

Gn(x) = gn,e−1(x)(e− 1)n−1. (36)

By (12) and (18), we get∫ 1

0

gn,λ(x)dx =
λ

log(1 + λ)
(n+ 1)−1

∫ 1

0

d

dx
gn+1,λ(x)dx

=
λ

log(1 + λ)
(n+ 1)−1(gn+1,λ(1)− gn+1,λ(0))

=
(−2)λ

log(1 + λ)
(n+ 1)−1gn+1,λ (37)
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where n ∈ N. Also, we have∫ 1

0

gn,λ(x)gm,λ(x)dx

=
λ

log(1 + λ)

1

n+ 1
gn+1,λ(x)gm,λ(x) |10 −

λ

log(1 + λ)

1

n+ 1

∫ 1

0

gn+1,λ(x)
d

dx
gm,λ(x)dx

=
λ

log(1 + λ)

1

n+ 1
(gn+1,λ(1)gm,λ(1)− gn+1,λ(0)gm,λ(0)

− λ

log(1 + λ)

1

n+ 1

log(1 + λ)

λ
m

∫ 1

0

gn+1,λ(x)gm−1,λ(x)dx

= − m

n+ 1

∫ 1

0

gn+1,λ(x)gm−1,λ(x)dx

= (−1)2
m(m− 1)

(n+ 1)(n+ 2)

∫ 1

0

gn+2,λ(x)gm−2,λ(x)dx (38)

By continuing this process, we obtain the following theorem.

Theorem 2.10. For m,n ∈ N, we have∫ 1

0

gn,λ(x)gm,λ(x)dx

= (−1)m−2
m(m− 1) · · · 3

(n+ 1)(n+ 2) · · · (n+m− 2)

∫ 1

0

gn+m−2,λ(x)g2,λ(x)dx. (39)

Now, we have ∫ 1

0

gn+m−2,λ(x)g2,λ(x)dx

= − 2

n+m− 1

∫ 1

0

gn+m−1,λ(x)g1,λ(x)dx

= − 2

n+m− 1

gn+m,λ(x)

n+m

λ

log(1 + λ)
|10

= − 2

n+m− 1

λ

log(1 + λ)

−2gn+m,λ
n+m

. (40)

By (41), we obtain the following theorem.

Theorem 2.11. For m,n ∈ N, we have∫ 1

0

gn,λ(x)gm,λ(x)dx

= (−1)m2

(
n+m

m

)−1
λ

log(1 + λ)
gn+m,λ. (41)
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Hesitant fuzzy implicative filters in BE-algebras

Jeong Soon Han1, Sun Shin Ahn2,∗
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Abstract. The notion of hesitant fuzzy implicative filter of a BE-algebra is introduced and related properties

are investigated. We provide conditions for a hesitant fuzzy filter to be a hesitant fuzzy implicative filter. Also,

as a generalization of hesitant fuzzy implicative filter, we consider the hesitant fuzzy n-fold implicative filter.

Characterizations of hesitant fuzzy n-fold implicative filter are discussed.

1. Introduction

In 2007, Kim and Kim [5] introduced the notion of a BE-algebra, and investigated several

properties. In [1], Ahn and So introduced the notion of ideals in BE-algebras. They gave several

descriptions of ideals in BE-algebras. Song et al. [8] considered the fuzzification of ideals in BE-

algebras. They introduced the notion of fuzzy ideals in BE-algebras, and investigated related

properties. They gave characterizations of a fuzzy ideal in BE-algebras.

The notions of Atanassov’s intuitionistic fuzzy sets, type 2 fuzzy sets and fuzzy multisets etc.

are a generalization of fuzzy sets. As another generalization of fuzzy sets, Torra [9] introduced

the notion of hesitant fuzzy sets which are a very useful to express peoples hesitancy in daily life.

The hesitant fuzzy set is a very useful tool to deal with uncertainty, which can be accurately and

perfectly described in terms of the opinions of decision makers. Also, hesitant fuzzy set theory

is used in decision making problem etc. (see [11, 12, 13, 14, 15]), and is applied to residuated

lattices and MTL-algebras (see [4, 6]).

In this paper, we introduce the notion of hesitant fuzzy implicative filter of a BE-algebra,

and investigate some properties of it. We consider characterizations of hesitant fuzzy implicative

filter of a BE-algebra. We provide conditions for a hesitant fuzzy filter to be a hesitant fuzzy

implicative filter. Also, as a generalization of hesitant fuzzy implicative filter, we consider the

hesitant fuzzy n-fold implicative filter. We discuss characterizations of hesitant fuzzy n-fold

implicative filter.

2. Preliminaries
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By a BE-algebra ([5]) we mean a system (X; ∗, 1) of type (2, 0) which the following axioms

hold:

(2.1) (∀x ∈ X) (x ∗ x = 1),

(2.2) (∀x ∈ X) (x ∗ 1 = 1),

(2.3) (∀x ∈ X) (1 ∗ x = x),

(2.4) (∀x, y, z ∈ X) (x ∗ (y ∗ z) = y ∗ (x ∗ z) (exchange).
We introduce a relation “ ≤ ” on X by x ≤ y if and only if x ∗ y = 1.

A BE-algebra (X; ∗, 1) is said to be transitive ([5]) if it satisfies: for any x, y, z ∈ X, y ∗ z ≤
(x ∗ y) ∗ (x ∗ z). A BE-algebra (X; ∗, 1) is said to be self distributive ([5]) if it satisfies: for any

x, yz ∈ X, x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z). Note that every self distributive BE-algebra is transitive,

but the converse is not true in general ([5]).

Every self distributive BE-algebra (X; ∗, 1) satisfies the following properties:

(2.5) (∀x, y, z ∈ X) (x ≤ y ⇒ z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z),
(2.6) (∀x, y ∈ X) (x ∗ (x ∗ y) = x ∗ y),
(2.7) (∀x, y, z ∈ X) (x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)),

Definition 2.1.([5]) Let (X; ∗, 1) be a BE-algebra and let F be a non-empty subset of X. Then

F is a filter of X if

(F1) 1 ∈ F ;

(F2) (∀x, y ∈ X)(x ∗ y, x ∈ F ⇒ y ∈ F ).

F is an implicative filter of X if it satisfies (F1) and

(F3) (∀x, y, z ∈ X)(x ∗ (y ∗ z), x ∗ y ∈ F ⇒ x ∗ z ∈ F ).

Definition 2.2.([9]) Let E be a reference set. A hesitant fuzzy set on E is defined in terms of a

function that when applied to E returns a subset of [0, 1], which can be viewed as the following

mathematical representation:

HE := {(e, hE(e))|e ∈ E}
where hE : E → P([0, 1]).

Definition 2.3. Given a non-empty subset A of X, a hesitant fuzzy set

HX := {(x, hX(x))|x ∈ X}

on satisfying the following condition:

hX(x) = ∅ for all x /∈ A (2.8)

is called a hesitant fuzzy set related to A (briefly, A-hesitant fuzzy set) on X, and is represented

by HA := {(x, hA(x)) | x ∈ X}, where hA is a mapping from X to P([0, 1]) with hA(x) = ∅ for

all x /∈ A.
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For a hesitant set HX := {(x, hX(x)) | x ∈ X} of a BE-algebra X and a subset γ of [0, 1], the

hesitant fuzzy γ-inclusive set of HX , denoted by HX(γ), is defined to be the set

HX(γ) := {x ∈ X|γ ⊆ hX(x)}.

For any hesitant fuzzy set HX = {(x, hX(x)|x ∈ X} and GX = {(x, gX(x))|x ∈ X}, we call

HX a hesitant fuzzy subset of GX , denoted by HX⊆̃GX , if hX(x) ⊆ gX(x) for all x ∈ X. The

hesitant fuzzy union of HX and GX , denoted by HX∪̃GX , is defined to be the hesitant fuzzy

set (hX∪̃gX)(x) = hX(x) ∪ gX(x) for all x ∈ X. The hesitant fuzzy intersection of HX and GX ,

denoted by HX∩̃GX , is defined to be the hesitant fuzzy set (hX∩̃gX)(x) = hX(x) ∩ gX(x) for all

x ∈ X.

3. Hesitant fuzzy implicative filters

Definition 3.1.([3]) Given a non-empty subset (subalgebra as much as possible) A of X, let

HA := {(x, hA(x)) | x ∈ X} be an A-hesitant fuzzy set on X. Then HA := {(x, hA(x)) | x ∈ X}
is called a hesitant fuzzy filter of X related to A (briefly, A-hesitant fuzzy filter of X) if it satisfies

the following condition:

(∀x ∈ A) (hA(x) ⊆ hA(1)) , (3.1)

(∀x, y ∈ A) (hA(x ∗ y) ∩ hA(x) ⊆ hA(y)) . (3.2)

An A-hesitant fuzzy filter of X with A = X is called a hesitant fuzzy filter of X.

Proposition 3.2.([3]) Let HA := {(x, hA(x))|x ∈ X} be an A-hesitant fuzzy filter of X where A

is a subalgebra of X. Then the following assertions are valid.

(i) (∀x, y ∈ A)(x ≤ y ⇒ hA(x) ⊆ hA(y)),

(ii) (∀x, y, z ∈ A)(hA(x ∗ (y ∗ z)) ∩ hA(y) ⊆ hA(x ∗ z)),
(iii) (∀a, x ∈ A)(hA(a) ⊆ hA((a ∗ x) ∗ x).

Definition 3.3. Given a non-empty subset (subalgebra as much as possible) A of X, let HA :=

{(x, hA(x)) | x ∈ X} be an A-hesitant fuzzy set on X. Then HA := {(x, hA(x)) | x ∈ X} is called

a hesitant fuzzy implicative filter of X related to A (briefly, A-hesitant fuzzy implicative filter of

X) if it satisfies (3.1) and

(∀x, y, z ∈ A) (hA(x ∗ (y ∗ z)) ∩ hA(x ∗ y) ⊆ hA(x ∗ z)) . (3.3)

An A-hesitant fuzzy implicative filter of X with A = X is called a hesitant fuzzy implicative filter

of X.
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Example 3.4. Let X = {1, a, b, c, d, 0} be a BE-algebra with the following Cayley table:

∗ 1 a b c d 0

1 1 a b c d 0

a 1 1 a c c d

b 1 1 1 c c c

c 1 a b 1 1 a

d 1 1 a 1 1 a

0 1 1 1 1 1 1

For a subalgebra A = {1, a, b} of X, let HA := {(x, hA(x)) | x ∈ X} be an A-hesitant fuzzy set

on X defined by

HA =
{
(1, [0, 1]), (a, (0, 1

2
]), (b, (0, 1

2
)), (c, (0, 1

4
)), (d, ∅), (0, ∅)

}
It is easy to check that HA is an A-hesitant fuzzy implicative filter of X.

Proposition 3.5. Every A-hesitant fuzzy implicative filter of a BE-algebra X is an A-hesitant

fuzzy filter of X.

Proof. Let HA := {(x, hA(x)) | x ∈ X} be an A-hesitant fuzzy implicative filter of X. It follows

from (2.4) and (3.3) that

hA(y ∗ (x ∗ z)) ∩ hA(x ∗ y) =hA(x ∗ (y ∗ z)) ∩ hA(x ∗ y)
⊆hA(x ∗ z)

(3.4)

for any x, y, z ∈ X. Setting x := 1 in (3.4), we have hA(y ∗ z) ∩ hA(y) ⊆ hA(z). Therefore

HA := {(x, hA(x)) | x ∈ X} is an A-hesitant fuzzy filter of X. □
The converse of Proposition may not be true in general (see Example 3.6).

Example 3.6. Let X = {1, a, b, c, d, 0} be a BE-algebra as in Example 3.4. Let HX :=

{(x, hX(x)) | x ∈ X} be a hesitant fuzzy set on X defined as follows:

hX : X → P([0, 1]), x 7→
{

γ2 if x = 1

γ1 if x ∈ {a, b, c, d, 0},
where γ1 and γ2 are subsets of [0, 1] with γ1 ⊊ γ2. It is easy to check that HX is a hesitant fuzzy

filter of X. But it is not a hesitant fuzzy implicative filter of X, since hX(d∗ (a∗0))∩hX(d∗a) =
γ2 ⊈ γ1 = hX(d ∗ 0).

We provide conditions for a hesitant fuzzy filter to be a hesitant fuzzy implicative filter.

Proposition 3.7. Let X be a self distributive BE-algebra. Let HX := {(x, hX(x)) | x ∈ X} be

a hesitant fuzzy filter of X satisfying

(∀x, y, z ∈ X)(hX(x ∗ (y ∗ (y ∗ z))) ∩ hX(y ∗ x)) ⊆ hX(y ∗ z). (3.5)

Then HX := {(x, hX(x)) | x ∈ X} is a hesitant fuzzy implicative filter of X.
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Proof. Since x ∗ (y ∗ z) = y ∗ (x ∗ z) ≤ (x ∗ y) ∗ (x ∗ (x ∗ z)) = x ∗ (y ∗ (x ∗ z)) = y ∗ (x ∗ (x ∗ z))
for all x, y ∈ X, we have hX(x ∗ (y ∗ z)) ⊆ hX(y ∗ (x ∗ (x ∗ z))) by Proposition 3.2(i). It follows

from (3.5) that hX(x ∗ z) ⊇ hX(y ∗ (x ∗ (x ∗ z)) ∩ hX(x ∗ y) ⊇ hX(x ∗ (y ∗ z)) ∩ hX(x ∗ y). Thus
HX := {(x, hX(x)) | x ∈ X} is a hesitant fuzzy implicative filter of X. □

Theorem 3.8. LetX be a transitiveBE-algebra. For any hesitant fuzzy filterHX := {(x, hX(x)) |
x ∈ X} of X, the following are equivalent:

(i) HX := {(x, hX(x)) | x ∈ X} is a hesitant fuzzy implicative filter,

(ii) (∀x, y ∈ X) (hX(x ∗ (x ∗ y)) ⊆ hX(x ∗ y)) ,
(iii) (∀x, y, z ∈ X) (hX(x ∗ (y ∗ z)) ⊆ hX((x ∗ y) ∗ (x ∗ z))).

Proof. (i)⇒(ii) Assume that HX := {(x, hX(x)) | x ∈ X} is a hesitant fuzzy implicative filter of

X. Setting z := y, y := x in (3.3), we get

hX(x ∗ y) ⊇hX(x ∗ (x ∗ y)) ∩ hX(x ∗ x)
=hX(x ∗ (x ∗ y)) ∩ hX(1)

=hX(x ∗ (x ∗ y)).

Hence (ii) holds.

(ii)⇒(iii) Suppose that (ii) holds. Since x∗ (y ∗z) ≤ x∗ ((x∗y)∗ (x∗z)) = x∗ (x∗ ((x∗y)∗z)), by
Proposition 3.2(i) we have hX(x ∗ ((x ∗ y) ∗ (x ∗ z))) = hX(x ∗ (x ∗ ((x ∗ y) ∗ z))) ⊇ hX(x ∗ (y ∗ z)).
It follows from (ii) that

hX((x ∗ y) ∗ (x ∗ z)) =hX(x ∗ ((x ∗ y) ∗ z))
⊇hX(x ∗ (x ∗ ((x ∗ y) ∗ z)))
⊇hX(x ∗ (y ∗ z)).

Thus (iii) holds.

(iii)⇒(ii) Assume that (iii) holds. By (3.2) and (iii), we have

hX(x ∗ z) ⊇hX((x ∗ y) ∗ (x ∗ z)) ∩ hX(x ∗ y)
⊇hX(x ∗ (y ∗ z)) ∩ hX(x ∗ y).

Therefore HX := {(x, hX(x)) | x ∈ X} is a hesitant fuzzy implicative filter of X. □

Theorem 3.9. Let X be a self distributive BE-algebra. Then the hesitant fuzzy set HX :=

{(x, hX(x)) | x ∈ X} of X is a hesitant fuzzy implicative filter of X if and only if it is a hesitant

fuzzy filter of X.

Proof. By Proposition 3.5, every hesitant fuzzy implicative filter of X is a hesitant fuzzy filter of

X.
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Conversely, assume that HX := {(x, hX(x)) | x ∈ X} is a hesitant fuzzy filter of X. For any

x, y, z ∈ X, by (3.2) we have

hX(x ∗ z) ⊇hX((x ∗ y) ∗ (x ∗ z)) ∩ hX(x ∗ y)
=hX(x ∗ (y ∗ z)) ∩ hX(x ∗ y).

Hence HX := {(x, hX(x)) | x ∈ X} is a hesitant fuzzy implicative filter of X. □

For any element x and y of a BE-algebra X and positive integer n, let xn ∗ y denote x ∗ (· · · ∗
(x ∗ (x ∗ y)) · · · ) in which x occurs n times, and x0 ∗ y = 1.

Definition 3.10. Let X be a BE-algebra and let HX := {(x, hX(x)) | x ∈ X} be a hesitant

fuzzy set on X. Then HX := {(x, hX(x)) | x ∈ X} is called a hesitant fuzzy n-fold implicative

filter of X if it satisfies (3.1) and

(3.6) (∀x, y, z ∈ X) (hX(x
n ∗ (y ∗ z)) ∩ hX(x

n ∗ y)) ⊆ hX(x
n ∗ z)) .

Note that a hesitant fuzzy 1-fold implicative filter of X is a hesitant fuzzy implicative filter of

X.

Example 3.11. Let X := {1, a, b, c, d, 0} is a transitive BE-algebra ([11]) with the following

Cayley table:

∗ 1 a b c d 0

1 1 a b c d 0

a 1 1 b c b c

b 1 a 1 b a d

c 1 a 1 1 a a

d 1 1 1 b 1 b

0 1 1 1 1 1 1

Let HX := {(x, hX(x)) | x ∈ X} be a hesitant fuzzy set on X defined as follows:

hX : X → P([0, 1]), x 7→
{

γ2 if x ∈ {1, b, c}
γ1 if x ∈ {a, d, 0},

where γ1 and γ2 are subsets of U with γ1 ⊊ γ2. It is easy to check that HX := {(x, hX(x)) | x ∈ X}
is a hesitant fuzzy n-fold implicative filter of X.

Theorem 3.12. Every hesitant n-fold fuzzy implicative filter of X is a hesitant fuzzy filter of

X.

Proof. Taking x := 1 in (3.6) and (2.3), we have hX(z) ⊇ hX(y ∗ z) ∩ hX(y). Hence HX :=

{(x, hX(x)) | x ∈ X} is a hesitant fuzzy filter of X. □

The converse of Theorem 3.12 may not be not true in general (see Example 3.13).
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Example 3.13. Let X := {1, a, b, c, d, 0} be a BE-algebra as in Example 3.11. Let HX be a

hesitant fuzzy set on X defined as follows:

hX : X → P([0, 1]), x 7→
{

γ2 if x = 1

γ1 if x ∈ {a, b, c, d, 0},

where γ1 and γ2 are subsets of U with γ1 ⊊ γ2. It is easy to check that HX is a hesitant fuzzy

filter of X. But it is not a hesitant fuzzy 1-fold implicative filter of X, since hX(d ∗ c) = hX(b) =

γ1 ⊉ γ2 = hX(1) = hX(d ∗ (b ∗ c)) ∩ hX(d ∗ b).

Theorem 3.14. Let X be a transitive BE-algebra. For any hesitant fuzzy filter HX :=

{(x, hX(x)) | x ∈ X} of X, the following are equivalent:

(i) HX := {(x, hX(x)) | x ∈ X} is a hesitant fuzzy n-fold implicative filter,

(ii) (∀x, y ∈ X) (hX(x
n+1 ∗ y) ⊆ hX(x

n ∗ y)) ,
(iii) (∀x, y, z ∈ X) (hX(x

n ∗ (y ∗ z)) ⊆ hX((x
n ∗ y) ∗ (xn ∗ z))).

Proof. (i)⇒(ii) Assume that HX := {(x, hX(x)) | x ∈ X} is a hesitant fuzzy n-fold implicative

filter of X. Setting z := y, y := x in (3.6), we have

hX(x
n ∗ y) ⊇hX(x

n ∗ (x ∗ y)) ∩ hX(x
n ∗ x)

=hX(x
n+1 ∗ y) ∩ hX(1)

=hX(x
n+1 ∗ y).

Hence (ii) holds.

(ii)⇒(iii) Suppose that (ii) holds. Since xn ∗ (y ∗ z) ≤ xn ∗ ((xn ∗ y) ∗ (xn ∗ z)), we have hX(x
n ∗

((xn∗y)∗(xn∗z))) ⊇ hX(x
n∗(y∗z)). Since xn+1∗(xn−1∗((xn∗y)∗z)) = xn∗(xn∗((xn∗y)∗z))) =

xn ∗ ((xn ∗ y)) ∗ (xn ∗ z)) and using (ii), we have

hX(x
n+1 ∗ (xn−2 ∗ ((xn ∗ y) ∗ z)) =hX(x

n ∗ (xn−1 ∗ ((xn ∗ y) ∗ z))
⊇hX(x

n+1 ∗ (xn−1 ∗ ((xn ∗ y) ∗ z)))
=hX(x

n ∗ ((xn ∗ y) ∗ (xn ∗ z)))
⊇hX(x

n ∗ (y ∗ z)).

(3.7)

By (ii) and (3.7), we have

hX(x
n+1 ∗ (xn−3 ∗ ((xn ∗ y) ∗ z))) =hX(x

n ∗ (xn−2 ∗ ((xn ∗ y) ∗ z)))
⊇hX(x

n+1 ∗ (xn−2 ∗ ((xn ∗ y) ∗ z)))
⊇hX(x

n ∗ (y ∗ z)).

Continuing this process, we conclude that

hX((x
n ∗ y) ∗ (xn ∗ z)) =hX(x

n ∗ ((xn ∗ y) ∗ z))
⊇hX(x

n ∗ (y ∗ z)).
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(iii)⇒(i) Let x, y, z ∈ X. It follows from (iii) that

hX(x
n ∗ z) ⊇hX((x

n ∗ y) ∗ (xn ∗ z)) ∩ hX(x
n ∗ y)

⊇hX((x
n ∗ (y ∗ z)) ∩ hX(x

n ∗ y).

Hence HX := {(x, hX(x)) | x ∈ X} is a hesitant n-fold fuzzy implicative filter □
Definition 3.15. Let n be a positive integer. A BE-algebra X is said to be n-fold implicative

if it satisfies the equality xn+1 ∗ y = xn ∗ y for all x, y ∈ X.

Corollary 3.16. In an n-fold implicative BE-algebra, the notion of hesitant fuzzy filters and

hesitant fuzzy n-fold implicative filters coincide.

Proof. Straightforward. □
Theorem 3.17. A hesitant fuzzy set HX := {(x, hX(x)) | x ∈ X} of a BE-algebra X is a

hesitant fuzzy implicative filter of X if and only if the hesitant fuzzy γ-inclusive set HX(γ) is an

implicative filter of X for all γ ∈ P([0, 1]) with HX(γ) ̸= ∅.

The filter HX(γ) in Theorem 3.17 is called the γ-inclusive filter of X.

Proof. Assume that HX := {(x, hX(x)) | x ∈ X} is a hesitant fuzzy implicative filter of X.

Let x, y, z ∈ X and γ ∈ P([0, 1]) be such that x ∗ (y ∗ z) ∈ HX(γ) and x ∗ y ∈ HX(γ).

Then γ ⊆ hX(x ∗ (y ∗ z)) and γ ⊆ hX(x ∗ y). Using (3.1) and (3.3), we have γ ⊆ hX(1) and

γ ⊆ hX(x ∗ (y ∗ z) ∩ hX(x ∗ y) ⊆ hX(x ∗ z) for x, y, z ∈ X. Hence 1 ∈ HX(γ) and x ∗ z ∈ HX(γ).

Thus HX(γ) is an implicative filter of X.

Conversely, suppose that HX(γ) is an implicative filter of X for all γ ∈ P([0, 1]) with HX(γ) ̸=
∅. For any x ∈ X, let hX(x) = γ. Since HX(γ) is an implicative filter of X, we have 1 ∈ HX(γ)

and so hX(x) = γ ⊆ hX(1). For any x, y, z ∈ X, let hX(x∗(y∗z)) = γx∗(y∗z) and hX(x∗y) = γx∗y.

Take γ = γx∗(y∗z) ∩ γx∗y. Then x ∗ (y ∗ z) ∈ HX(γ) and x ∗ y ∈ HX(γ) which imply that

x ∗ z ∈ HX(γ). Hence

hX(x ∗ z) ⊇ γ = γx∗(y∗z) ∩ γx∗y = hX(x ∗ (y ∗ z)) ∩ hX(x ∗ y).

Thus HX := {(x, hX(x)) | x ∈ X} is a hesitant fuzzy implicative filter of X. □
Theorem 3.18. Every hesitant fuzzy implicative filter of a BE-algebra can be represented as a

hesitant fuzzy γ-inclusive set of a hesitant fuzzy implicative filter.

Proof. Let F be an implicative filter of a BE-algebra X. For a subset γ of [0, 1], define a hesitant

fuzzy set HX := {(x, hX(x)) | x ∈ X} of X by

hX : X → P([0, 1]), x 7→
{

γ if x ∈ F,

∅ if x /∈ F .

Obviously, F = HX(γ).We now prove thatHX is a hesitant fuzzy implicative filter ofX. Since 1 ∈
F = HX(γ), we have hX(1) = γ ⊇ hX(x) for all x ∈ X. Let x, y, z ∈ X. If x∗(y∗z), x∗y ∈ F, then
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x∗z ∈ F because F is an implicative filter of X. Hence hX(x∗(y∗z)) = hX(x∗y) = hX(x∗z) = γ,

and so hX(x∗(y∗z))∩hX(x∗y) ⊆ hX(x∗z). If x∗(y∗z) ∈ F and x∗y /∈ F, then hX(x∗(y∗z)) = γ

and hX(x ∗ y) = ∅ which imply that

hX(x ∗ (y ∗ z)) ∩ hX(x ∗ y) = γ ∩ ∅ = ∅ ⊆ hX(x ∗ z).

Similarly, if x ∗ (y ∗ z) /∈ F and x ∗ y ∈ F, then hX(x ∗ (y ∗ z))∩hX(x ∗ y) ⊆ hX(x ∗ z). Obviously,

if x ∗ (y ∗ z) /∈ F and x ∗ y /∈ F, then hX(x ∗ (y ∗ z)) ∩ hX(x ∗ y) ⊆ hX(x ∗ z). Therefore

HX := {(x, hX(x)) | x ∈ X} is a hesitant fuzzy implicative filter of X. □

For two elements a and b of X, consider a hesitant fuzzy set Ha,b
X := {(x, ha,b

X x)) | x ∈ X}
where

ha,b
X : X → P([0, 1]), x 7→

{
γ1 if a ∗ (b ∗ x) = 1,

γ2 otherwise,

where γ1 and γ2 are subsets of X with γ2 ⊊ γ1.

There exist a, b ∈ X such that Ha,b
X is not a hesitant fuzzy implicative filter of X (see Example

3.19).

Example 3.19. Consider the BE-algebra X = {1, a, b, c, d, 0} which is given in Example 3.4.

Then H1,a
X is not a hesitant fuzzy implicative filter of X since

h1,a
X (1 ∗ (a ∗ b)) ∩ h1,a

X (1 ∗ a) = γ1 ⊈ h1,a
X (1 ∗ b) = γ2.

Now we provide a condition for the hesitant fuzzy set Ha,b
X to be a hesitant fuzzy implicative

filter of X for all a, b ∈ X.

Theorem 3.20. If X is a self distributive BE-algebra, then the hesitant fuzzy set Ha,b
X is a

hesitant fuzzy implicative filter of X for all a, b ∈ X.

Proof. Let a, b ∈ X. Obviously, ha,b
X (1) ⊇ ha,b

X (x) for all x ∈ X. Let x, y, z ∈ X be such that

a ∗ (b ∗ (x ∗ (y ∗ z))) ̸= 1 or a ∗ (b ∗ (x ∗ y)) ̸= 1. Then ha,b
X (x ∗ (y ∗ z)) = γ2 or ha,b

X (x ∗ y) = γ2.

Hence

ha,b
X (x ∗ (y ∗ z)) ∩ ha,b

X (x ∗ y) = γ2 ⊆ ha,b
X (x ∗ z).
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Assume that a ∗ (b ∗ (x ∗ (y ∗ z))) = 1 and a ∗ (b ∗ (x ∗ y)) = 1. Then

1 = a ∗ (b ∗ (x ∗ (y ∗ z)))
= a ∗ (b ∗ ((x ∗ y) ∗ (x ∗ z)))
= a ∗ ((b ∗ (x ∗ y)) ∗ (b ∗ (x ∗ z)))
= (a ∗ (b ∗ (x ∗ y))) ∗ (a ∗ (b ∗ (x ∗ z)))
= 1 ∗ (a ∗ (b ∗ (x ∗ z)))
= a ∗ (b ∗ (x ∗ z)),

and so ha,b
X (x∗(y∗z))∩ha,b

X (x∗y) = γ1 = ha,b
X (x ∗ z). Therefore Ha,b

X is a hesitant fuzzy implicative

filter of X for all a, b ∈ X. □

Theorem 3.21. If HX and GX are hesitant fuzzy implicative filters of a BE-algebra X, then

the hesitant fuzzy intersection HX ∩̃GX of HX and GX is a hesitant fuzzy implicative filter of X.

Proof. For any x ∈ X, we have

(hX ∩̃ gX) (1) = hX(1) ∩ gX(1) ⊇ hX(x) ∩ gX(x) = (hX ∩̃ gX)(x).

Let x, y, z ∈ X. Then

(hX ∩̃ gX)(x ∗ z) = hX(x ∗ z) ∩ gX(x ∗ z)
⊇ (hX(x ∗ (y ∗ z)) ∩ hX(x ∗ y)) ∩ (gX(x ∗ (y ∗ z)) ∩ gX(x ∗ y))
= (hX(x ∗ (y ∗ z)) ∩ gX(x ∗ (y ∗ z))) ∩ (hX(x ∗ y) ∩ gX(x ∗ y))
= (hX ∩̃ gX) (x ∗ (y ∗ z)) ∩ (hX ∩̃ gX) (x ∗ y).

Hence HX ∩̃GX is a hesitant fuzzy implicative filter of X. □

The hesitant fuzzy union of hesitant fuzzy implicative filters of a BE-algebra X may not be a

hesitant fuzzy implicative filter of X as the following example.

Example 3.22. Let X = {1, a, b, c, d} is a BE-algebra with the following Cayley table ([5]):

∗ 1 a b c d

1 1 a b c d

a 1 1 b c d

b 1 a 1 c c

c 1 1 b 1 b

d 1 1 1 1 1

Let HX and GX be hesitant fuzzy sets of X defined, respectively, as follows:

hX : X → P([0, 1]), x 7→
{

γ3 if x ∈ {1, b}
γ1 if x ∈ {a, c, d}
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and

gX : X → P(U), x 7→
{

γ4 if x ∈ {1, a, c}
γ2 if x ∈ {b, d}

where γ1, γ2, γ3, and γ4 are subsets of [0, 1] with γ1 ⊊ γ2 ⊊ γ3 ⊊ γ4. It is easy to check that

HX and GX are hesitant fuzzy implicative filters of X. But HX ∪̃GX is not a hesitant fuzzy

implicative filter of X, since

(hX ∪̃ gX)(1 ∗ (c ∗ d))∩(hX ∪̃ gX)(1 ∗ c) = (hX ∪̃ gX)(b) ∩ (hX ∪̃ gX)(c)

= (hX(b) ∪ gX(b)) ∩ (hX(c) ∪ gX(c))

= γ3 ∩ γ4 = γ3 ⊈ γ2 = γ1 ∪ γ2

= hX(1 ∗ d) ∪ gX(1 ∗ d) = (hX ∪̃ gX)(1 ∗ d).

Let HX be a hesitant fuzzy set set of a BE-algebra X. For any a, b ∈ X and k ∈ N, consider
the set

hX [a
k; b] :=

{
x ∈ X | hX

(
ak ∗ (b ∗ x)

)
= hX(1)

}
where hX(a

k ∗ x) = hX(a ∗ (a ∗ (· · · ∗ (a ∗ (a ∗ x)) · · · ))) in which a appears k-times. Note that

a, b, 1 ∈ hX [a
k; b] for all a, b ∈ X and k ∈ N.

Proposition 3.23. Let HX be a hesitant fuzzy set of a BE-algebra X such that the condition

(3.1) and hX(x∗y) = hX(x)∪hX(y) for all x, y ∈ X. For any a, b ∈ X and k ∈ N, if x ∈ hX [a
k; b],

then y ∗ x ∈ hX [a
k; b] for all y ∈ X.

Proof. Assume that x ∈ hX [a
k; b]. Then hX(a

k ∗ (b ∗ x)) = hX(1), and so

hX(a
k ∗ (b ∗ (y ∗ x))) = hX(a

k ∗ (y ∗ (b ∗ x)))
= hX(y ∗ (ak ∗ (b ∗ x)))
= hX(y) ∪ hX(a

k ∗ (b ∗ x))
= hX(y) ∪ hX(1) = hX(1)

for all y ∈ X by the exchange property of the operation ∗. Hence y∗x ∈ hX [a
k; b] for all y ∈ X. □

Proposition 3.24. For any hesitant fuzzy set HX of a BE-algebra X, let a ∈ X satisfy the

following condition a ∗ x = 1 for all x ∈ X. Then hX [a
k; b] = X = hX [b

k; a] for all b ∈ X and

k ∈ N.
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Proof. For any x ∈ X, we have

hX(a
k ∗ (b ∗ x)) = hX(a

k−1 ∗ (a ∗ (b ∗ x)))
= hX(a

k−1 ∗ (b ∗ (a ∗ x)))
= hX(a

k−1 ∗ (b ∗ 1))
= hX(1),

and so x ∈ hX [a
k; b]. Similarly, x ∈ hX [b

k; a]. □

Proposition 3.25. Let X be a self distributive BE-algebra and let HX be an order-preserving

soft set of X with the property (3.1). If b ≤ c in X, then hX [a
k; c] ⊆ hX [a

k; b] for all a ∈ X and

k ∈ N.

Proof. Let a, b, c,∈ X be such that b ≤ c. For any k ∈ N, if x ∈ hX [a
k; c], then

hX(1) = hX(a
k ∗ (c ∗ x)) = hX(c ∗ (ak ∗ x))

⊆ hX(b ∗ (ak ∗ x)) = hX(a
k ∗ (b ∗ x))

by (2.5), Proposition 3.2(i) and (2.4), and so hX(a
k ∗ (b ∗ x)) = hX(1). Thus x ∈ hX [a

k; b], which

completes the proof. □

The following example shows that there exists a hesitant fuzzy set HX of X, a, b ∈ X and

k ∈ N such that hX [a
k; b] is not a filter of X.

Example 3.26. Let X = {1, a, b, c} is a BE-algebra with the following Cayley table:

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 a

c 1 a a 1

Let HX be a hesitant fuzzy set of X U defined as follows:

hX : X → P([0, 1]), x 7→
{

γ2 if x = 1

γ1 if x ∈ {a, b, c},

where γ1 and γ2 are subsets of U with γ1 ⊊ γ2. Then it is a hesitant fuzzy set of X. But

hX [c; b] = {x ∈ X|hX(c∗ (b∗x)) = hX(1)} = {1, a, b} is not an implicative filter, since 1∗ (a∗c) =
a ∈ hX [c; b], 1 ∗ a = a ∈ hX [c; b] and 1 ∗ c = c /∈ hX [c; b].

We provide conditions for a set hX [a
k; b] to be an implicative filter.

Theorem 3.27. Let HX be a hesitant fuzzy set of a self distributive BE-algebra X. If hX is

injective, then hX [a
k; b] is an implicative filter of X for all a, b ∈ X and k ∈ N.
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Proof. Assume that X is a self distributive BE-algebra and hX is injective. Obviously, 1 ∈
hX [a

k; b]. Let a, b, x, y, z ∈ X and k ∈ N be such that x ∗ (y ∗ z) ∈ hX [a
k; b] and x ∗ y ∈ hX [a

k; b].

Then hX(a
k ∗ (b ∗ (x ∗ (y ∗ z)))) = hX(1) which implies that ak ∗ (b ∗ (x ∗ (y ∗ z))) = 1 since hX is

injective. Since X is a self distributive BE-algebra, we have

hX(1) = hX(a
k ∗ (b ∗ (x ∗ (y ∗ z))))

= hX(a
k−1 ∗ (a ∗ (b ∗ (x ∗ (y ∗ z)))))

= hX(a
k−1 ∗ (a ∗ ((b ∗ (x ∗ y)) ∗ (b ∗ (x ∗ z)))))

= · · ·
= hX((a

k ∗ (b ∗ (x ∗ y))) ∗ (ak ∗ (b ∗ (x ∗ z))))
= hX(1 ∗ (ak ∗ (b ∗ (x ∗ z))))
= hX(a

k ∗ (b ∗ (x ∗ z))),

which implies that x∗z ∈ hX [a
k; b]. Therefore hX [a

k; b] is an implicative filter of X for all a, b ∈ X

and k ∈ N. □

Theorem 3.28. Let HX be a hesitant fuzzy set of a self distributive B-algebra X satisfying the

condition (3.1) and

(∀x, y ∈ X) (hX(x ∗ y) = hX(x) ∩ hX(y)) . (3.8)

Then hX [a
k; b] is an implicative filter of X for all a, b ∈ X and k ∈ N.

Proof. Let a, b ∈ X and k ∈ N. Obviously, 1 ∈ hX [a
k; b]. Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈

hX [a
k; b] and x ∗ y ∈ hX [a

k; b]. Then hX

(
ak ∗ (b ∗ (x ∗ (y ∗ z)))

)
= hX(1), which implies from

(3.8) and (3.1) that

hX(1) = hX(a
k ∗ (b ∗ (x ∗ (y ∗ z))))

= hX(a
k−1 ∗ (a ∗ (b ∗ (x ∗ (y ∗ z)))))

= hX(a
k−1 ∗ (a ∗ ((b ∗ (x ∗ y)) ∗ (b ∗ (x ∗ z)))))

= · · ·
= hX((a

k ∗ (b ∗ (x ∗ y))) ∗ (ak ∗ (b ∗ (x ∗ z))))
= hX(a

k ∗ (b ∗ (x ∗ y))) ∩ hX(a
k ∗ (b ∗ (x ∗ z)))

= hX(1) ∩ hX(a
k ∗ (b ∗ (x ∗ z)))

= hX(a
k ∗ (b ∗ (x ∗ z))).

Hence x ∗ z ∈ hX [a
k; b] and therefore hX [a

k; b] is an implicative filter of X for all a, b ∈ X and

k ∈ N. □

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.3, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

542 Jeong Soon Han et al 530-543



Jeong Soon Han and Sun Shin Ahn

References

[1] S. S. Ahn and K. S. So, On ideals and upper sets in BE-algerbas, Sci. Math. Jpn. 68 (2008), 279–285 .

[2] Y. B. Jun and S. S. Ahn, Hesitant fuzzy soft theory applied to BCK/BCI-algebras, J. Comput. Anal. Appl.

20 (2016), no.4, 635–646.

[3] Y. B. Jun and S. S. Ahn, On hesitant fuzzy filters in BE-algebras, J. Comput. Anal. Appl. (to appear).

[4] Y. B. Jun and S. Z. Song, Hesitant fuzzy set theory applied to filters in MTL-algebras, Honam Math. J. 36

(2014), no.4, 813–830.

[5] H. S. Kim and Y. H. Kim, On BE-algerbas, Sci. Math. Jpn. 66 (2007), no. 1, 113–116.

[6] G. Muhiuddin and Y. B. Jun, Hesitant fuzzy filters and hesitant fuzzy G-filters in residuated lattices, J. Appl.

Math. (submitted).

[7] Rosa M. Rodriguez, Luis Martinez and Francisco Herrera, Hesitant fuzzy linguistic term sets for decision

making, IEEE Trans. Fuzzy Syst. 20(1) (2012), 109–119.

[8] S. Z. Song, Y. B. Jun and K. J. Lee, Fuzzy ideals in BE-algebras, Bull. Malays. Math. Sci. Soc. 33 (2010),

147-153.

[9] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst. 25 (2010), 529–539.

[10] V. Torra and Y. Narukawa, On hesitant fuzzy sets and decision, in: The 18th IEEE International Conference

on Fuzzy Systems, Jeju Island, Korea, 2009, 1378-1382.

[11] F. Q. Wang, X. Li and X. H. Chen, Hesitant fuzzy soft set and its applications in multicriteria decision

making, J. Appl. Math. Volume 2014, Article ID 643785, 10 pages.

[12] G. Wei, Hesitant fuzzy prioritized operators and their application to multiple attribute decision making,

Knowledge-Based Systems 31 (2012), 176–182.

[13] M. Xia and Z. S. Xu, Hesitant fuzzy information aggregation in decision making, Internat. J. Approx. Reason.

52(3) (2011), 395–407.

[14] Z. S. Xu and M. Xia, Distance and similarity measures for hesitant fuzzy sets, Inform. Sci. 181(11) (2011),

2128–2138.

[15] Z. S. Xu and M. Xia, On distance and correlation measures of hesitant fuzzy information, Int. J. Intell. Syst.

26(5) (2011), 410–425.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.3, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

543 Jeong Soon Han et al 530-543



A new quadratic functional equation version and its stability
and superstability

Shahrokh Farhadabadi1, Jung Rye Lee2∗ and Choonkil Park3∗

1Young Researchers and Elite Club, Parand Brunch, Islamic Azad University, Parand, Iran
Javad Shokri1 and Jung Rye Lee2∗

1Department of Mathematics, Urmia University, P. O. Box 165, Urmia, Iran
2Department of Mathematics, Daejin University, Kyunggi 11159, Korea

3Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea

e-mail: shahrokh math@yahoo.com; jrlee@daejin.ac.kr; baak@hanyang.ac.kr

Abstract. Let X and Y be vector spaces. It is shown that a mapping f : X → Y satisfies the functional
equation

f
(
x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
= f(x) + f(y) + f(z) (0.1)

if and only if f : X → Y is a quadratic mapping.
Furthermore, we prove the superstability and the Hyers-Ulam stability for the quadratic functional equation

(0.1) by using a direct method.

Keywords: Hyers-Ulam stability; quadratic functional equation; fixed point method; quadratic functional
inequality; orthogonality space.

1. Introduction and preliminaries

Studying functional equations focusing on their approximate and exact solutions, conduces to one of the

most substantial significant study brunches in functional equations, what we would call “the theory of stability of

functional equations”. This theory specifically analyzes relationships between approximate and exact solutions

of functional equations. Actually a functional equation is considered to be stable, if one can find an exact

solution for any approximate solution of that certain functional equation. Another related and close term in

this area is superstability, which has a similar nature and concept to the stability problem. As a matter of fact,

superstability for a given functional equation occurs when any approximate solution is an exact solution too.

In such this situation the functional equation is called superstable.

In 1940, the most preliminary form of stability problems was proposed by Ulam [40]. He gave a talk and

asked the following: “when and under what conditions does an exact solution of a functional equation near an

approximately solution of that exist?”

In 1941, this question that today is considered as the source of the stability theory, was formulated and solved

by Hyers [14] for the Cauchy’s functional equation in Banach spaces. Then the result of Hyers was generalized

by Aoki [1] for additive mappings and by Rassias [32] for linear mappings by considering an unbounded Cauchy

difference. In 1994, Găvruţa [13] provided a further generalization of Rassias’ theorem in which he replaced the

unbounded Cauchy difference by a general control function for the existence of a unique linear mapping. For

more epochal information and various aspects about the stability of functional equations theory, we refer the

02010 Mathematics Subject Classification: 39B52.
∗Corresponding authors.
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reader to the monographs [15, 28, 33, 35], which also include many interesting results concerning the stability

of different functional equations in many various spaces.

Consider the quadratic functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y). (1.1)

The function f(x) = cx2 is a solution for the quadratic functional equation and obviously every satisfied

function in this equation is said to be a quadratic function. A stability problem for this equation was first

proved by Skof [39] and then was generalized by Cholewa [9], Czerwik [7, 8] and others [2, 4, 30, 31, 33, 34].

Moreover, there are some other different types of quadratic functional equations that their stability problems

have been investigated by many authors. We refer the readers to the papers [3, 5, 6, 10, 11, 12, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 29, 36, 37, 38, 41].

This paper is organized as follows: In Section 2, we consider the superstability of the quadratic functional

equation (0.1) and in Sections 3 and 4, we prove two types of stability problems for the quadratic functional

equation (0.1).

2. Superstability of the functional equation (0.1)

To commence proving the superstability of the quadratic functional equation (0.1), we first solve it and then

will give a superstability theorem.

Proposition 2.1. Let X and Y be vector spaces. A mapping f : X → Y satisfies (0.1) if and only if the

mapping f : X → Y is a quadratic mapping.

Proof. Sufficiency. Assume that f : X → Y satisfies (0.1).

Letting x = y = z = 0 in (0.1), we have 4f(0) = 3f(0). So f(0) = 0.

Letting y = z = 0 in (0.1), we get

2f
(
x

2

)
+ 2f

(
−x

2

)
= f(x), (2.1)

2f
(
−x

2

)
+ 2f

(
x

2

)
= f(−x)

for all x ∈ X , which imply that f(x) = f(−x) for all x ∈ X .

It follows from (2.1) that 4f
(
x
2

)
= f(x) and so f(2x) = 4f(x) for all x ∈ X .

Putting z = 0 in (0.1), we see that

1

2
f(x+ y) +

1

2
f(x− y) = f(x) + f(y)

for all x, y ∈ X , which means that f : X → Y is a quadratic mapping.

Necessity. Assume that f : X → Y is quadratic.

By (1.1), one can easily get f(0) = 0, f(x) = f(−x) and f(2x) = 4f(x) for all x ∈ X . So by applying (1.1),

we obtain

f
(
x+ y + z

2

)
+ f
(
x− y − z

2

)
+ f
(
y − x− z

2

)
+ f
(
z − x− y

2

)
=
[
2f
(
x

2

)
+ 2f

(
y + z

2

)]
+
[
2f
(
− x

2

)
+ 2f

(
y − z

2

)]
= 4f

(
x

2

)
+ f
(
y + z + y − z

2

)
+ f
(
y + z − y + z

2

)
= f(x) + f(y) + f(z)

for all x, y, z ∈ X , which is the functional equation (0.1) and the proof is complete. �
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Theorem 2.2. Let X ,Y be normed spaces with norms ‖ · ‖X and ‖ · ‖Y , respectively. Let δ be a nonnegative

real number and ϕ : X 3 → [0,∞) be a function with

ϕ(0, 0, 0) = 0, ϕ(x, y, 3x+ y) = 0

for all x, y ∈ X . Suppose that f : X → Y is a mapping such that∥∥∥f(x+ y + z

2

)
+ f
(
x− y − z

2

)
+ f
(
y − x− z

2

)
− f(y)− f(z)

∥∥∥
Y

≤
∥∥∥f(x)− f

(
z − x− y

2

)∥∥∥
Y

+ δ · ϕ(x, y, z) (2.2)

for all x, y, z ∈ X . Then f is a quadratic mapping.

Proof. Putting x = y = z = 0 in (2.2), we get∥∥f(0)
∥∥
Y
≤
∥∥0
∥∥
Y

+ δ · ϕ(0, 0, 0) = 0.

So f(0) = 0.

Replacing x, y, z by 0, x, x in (2.2), respectively, we obtain∥∥f(−x)− f(x)
∥∥
Y
≤
∥∥0
∥∥
Y

+ δ · ϕ(0, x, x) = 0.

So f(x) = f(−x) for all x ∈ X .

Replacing x, y and z by x,−3x and 0, and then by 2x,−3x and 3x in (2.2), respectively, we have

[f(x)− f(3x)] + 2f(2x) = 0,

2[f(x)− f(3x)] + f(4x) = 0,

which result that f(2x) = 4f(x) and f(3x) = 9f(x) for all x ∈ X .

Letting x = v− u, y = 2u− v and z = 2v− u and then x = u+ v, y = −3v and z = 3u in (2.2), respectively,

we get the equalities

f(2u− v) + f(2v − u) = f(u) + f(v) + f(2u− 2v),

f(2u− v) + f(2v − u) = f(3u) + f(3v)− f(2u+ 2v).

Thus

f(u) + f(v) + 4f(u− v) = 9f(u) + 9f(v)− 4f(u+ v),

which is simplified to

f(u+ v) + f(u− v) = 2f(u) + 2f(v)

for all u, v ∈ X . So f is quadratic. �

Theorem 2.2 covers several other cases for ϕ : X 3 → [0,∞). For example, we can define ϕ satisfying the

mentioned conditions with ϕ(x, y, z) := ‖y‖X −‖3x− z‖X or ϕ(x, y, z) := ‖3x+ y− z‖X . In addition, to make

a simpler result, one can put δ = 0.

3. Hyers-Ulam stability of the functional equation (0.1): Type A

In this section, we prove the Hyers-Ulam stability of the quadratic functional equation (0.1). We will suppose

that X is a normed space and Y is a complete normed space with norms ‖ · ‖X and ‖ · ‖Y , respectively.
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Theorem 3.1. Let ϕ : X 3 → [0,∞) be a function with ϕ(0, 0, 0) = 0 and the following condition holds:

if

{ ‖x‖X ≤ ‖x′‖X , or
‖y‖X ≤ ‖y′‖X , or =⇒ ϕ(x, y, z) ≤ ϕ(x′, y′, z′)
‖z‖X ≤ ‖z′‖X ,

(3.1)

for all x, y, z, x′, y′, z′ ∈ X . Denote by φ a function such that

φ(x, y, z) :=

∞∑
n=0

22nϕ
(
x

2n
,
y

2n
,
z

2n

)
<∞ (3.2)

for all x, y, z ∈ X . Suppose that f : X → Y is an even mapping satisfying∥∥∥f(x+ y + z

2

)
+ f
(
x− y − z

2

)
+ f
(
y − x− z

2

)
− f(y)− f(z)

∥∥∥
Y
≤

∥∥∥f(x)− f
(
z − x− y

2

)∥∥∥
Y

+ ϕ(x, y, z) (3.3)

for all x, y, z ∈ X . Then there exists a unique quadratic mapping Q : X → Y such that∥∥f(x)−Q(x)
∥∥
Y
≤ 2φ(x, x, x) (3.4)

for all x ∈ X .

Proof. Letting x = y = z = 0 in (3.3), we get∥∥f(0)
∥∥
Y
≤
∥∥0
∥∥
Y

+ ϕ(0, 0, 0) = 0.

So f(0) = 0.

Replacing x, y, z by x, x, 4x and x, 0, 3x in (3.3), respectively, and then using (3.1), we obtain∥∥f(3x) + 2f(2x)− f(x)− f(4x)
∥∥
Y
≤ ϕ(x, x, 4x) ≤ ϕ(4x, 4x, 4x),∥∥2f(2x) + f(x)− f(3x)

∥∥
Y
≤ ϕ(x, 0, 3x) ≤ ϕ(4x, 4x, 4x)

for all x ∈ X . These inequalities give∥∥4f(2x)− f(4x)
∥∥
Y
≤
∥∥f(3x) + 2f(2x)− f(x)− f(4x)

∥∥
Y

+
∥∥2f(2x) + f(x)− f(3x)

∥∥
Y
≤ 2ϕ(4x, 4x, 4x).

Thus ∥∥∥4f
(
x

2

)
− f(x)

∥∥∥
Y
≤ 2ϕ(x, x, x) (3.5)

for all x ∈ X . Using the induction method, we show that∥∥∥4nf
(
x

2n

)
− f(x)

∥∥∥
Y
≤

n−1∑
s=0

22s+1ϕ
(
x

2s
,
x

2s
,
x

2s

)
(3.6)

for all n ≥ 1 and all x ∈ X . The case n = 1 is the inequality (3.5). For the case n+ 1, by (3.5) and (3.6), we

have∥∥∥4n+1f
(

x

2n+1

)
− f(x)

∥∥∥
Y
≤ 4n

∥∥∥4f
(

1

2

(
x

2n

))
− f

(
x

2n

)∥∥∥
Y

+

∥∥∥4nf
(
x

2n

)
− f(x)

∥∥∥
Y

≤ 4n · 2ϕ
(
x

2n
,
x

2n
,
x

2n

)
+

n−1∑
s=0

22s+1ϕ
(
x

2s
,
x

2s
,
x

2s

)
=

n∑
s=0

22s+1ϕ
(
x

2s
,
x

2s
,
x

2s

)
for all x ∈ X , which ends the induction method.

Assume that m, l are positive integers with m > l. From (3.6), it follows that∥∥∥4mf
(
x

2m

)
− 4lf

(
x

2l

)∥∥∥
Y

= 4l
∥∥∥4m−lf

(
1

2m−l

(
x

2l

))
− f

(
x

2l

)∥∥∥
Y
≤

m−1∑
s=l

22s+1ϕ
(
x

2s
,
x

2s
,
x

2s

)
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for all x ∈ X , in which by (3.2) the right-hand side tends to zero as m, l→∞. This clarifies that the sequence{
4nf

(
x
2n

)}
is Cauchy in the complete space Y and therefore convergent in it. So we can define for all x ∈ X ,

the mapping Q : X → Y by

Q(x) := lim
n→∞

4nf
(
x

2n

)
.

Now passing the limit n→∞ in (3.6) and then using (3.2), we obtain (3.4).

To end the proof, we show that Q is a unique quadratic mapping. It follows from (3.3) that∥∥∥Q(x+ y + z

2

)
+Q

(
x− y − z

2

)
+Q

(
y − x− z

2

)
−Q(y)−Q(z)

∥∥∥
Y

= lim
n→∞

4n
∥∥∥f(x+ y + z

2n+1

)
+ f
(
x− y − z

2n+1

)
+ f
(
y − x− z

2n+1

)
− f

(
y

2n

)
− f

(
z

2n

)∥∥∥
Y

≤ lim
n→∞

∥∥∥4nf
(
x

2n

)
− 4nf

(
z − x− y

2n+1

)∥∥∥
Y

+ lim
n→∞

4nϕ
(
x

2n
,
y

2n
,
z

2n

)
for all x, y, z ∈ X , in which by (3.2), the second term of the right-hand side tends to zero as n → ∞, and

therefore we obtain∥∥∥Q(x+ y + z

2

)
+Q

(
x− y − z

2

)
+Q

(
y − x− z

2

)
−Q(y)−Q(z)

∥∥∥
Y
≤
∥∥∥Q(x)−Q

(
z − x− y

2

)∥∥∥
Y

for all x, y, z ∈ X . Now by applying Theorem 2.2 (with δ = 0), we conclude that Q is a quadratic mapping.

Let Q′ : X → Y be another quadratic mapping satisfying (3.4). Then we have∥∥Q(x)−Q′(x)
∥∥
Y
≤ 4n

∥∥∥Q( x
2n

)
− f

(
x

2n

)∥∥∥
Y

+ 4n
∥∥∥Q′ ( x

2n

)
− f

(
x

2n

)∥∥∥
Y

≤ 2 · 4n · 2φ
(
x

2n
,
x

2n
,
x

2n

)
= 4

∞∑
s=n

22s+1ϕ
(
x

2n
,
x

2n
,
x

2n

)
for all x ∈ X . By (3.2), the right-hand side tends to zero as n → ∞, and thus Q(x) = Q′(x) for all x ∈ X .

This means the uniqueness of Q : X → Y and so the proof is complete. �

Theorem 3.2. Let ϕ : X 3 → [0,∞) be a function satisfying ϕ(0, 0, 0) = 0 and (3.1). Denote by φ a function

such that

φ(x, y, z) :=

∞∑
n=1

1

22n
ϕ
(
2nx, 2ny, 2nz

)
<∞ (3.7)

for all x, y, z ∈ X . Suppose that f : X → Y is an even mapping satisfying (3.3). Then there exists a unique

quadratic mapping Q : X → Y satisfying (3.4).

Proof. As in the proof of Theorem 3.1, we can first get the inequality (3.5), and then by replacing x by 2x in

(3.5), we obtain ∥∥∥1

4
f (2x)− f(x)

∥∥∥
Y
≤ 1

2
ϕ (2x, 2x, 2x)

for all x ∈ X .

Using the induction method, we get∥∥∥ 1

4n
f(2nx)− f(x)

∥∥∥
Y
≤

n∑
s=1

1

22s−1
ϕ (2sx, 2sx, 2sx) (3.8)

for all n ≥ 1 and all x ∈ X .

Now by the same method which was done in the proof of Theorem 3.1, we have the Cauchy sequence{
1
4n
f(2nx)

}
, and then the mapping Q : X → Y defined by

Q(x) := lim
n→∞

1

4n
f (2nx)

for all x ∈ X .
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And finally we can conclude the inequality (3.4) by (3.7) and (3.8).

The rest of the proof is similar to the proof of Theorem 3.1. �

Corollary 3.3. Let δ be a nonnegative real number and p1, p2, p3 be positive real numbers such that p1, p2, p3 > 2

or p1, p2, p3 < 2. Let f : X → Y be an even mapping satisfying∥∥∥f(x+ y + z

2

)
+ f
(
x− y − z

2

)
+ f
(
y − x− z

2

)
− f(y)− f(z)

∥∥∥
Y

≤
∥∥∥f(x)− f

(
z − x− y

2

)∥∥∥
Y

+ δ
(
‖x‖p1X + ‖y‖p2X + ‖z‖p3X

)
for all x, y, z ∈ X . Then there exists a unique quadratic mapping Q : X → Y such that∥∥f(x)−Q(x)

∥∥
Y
≤

3∑
i=1

2pi+1∣∣2pi − 4
∣∣δ‖x‖piX

for all x ∈ X .

Proof. Defining ϕ(x, y, z) = δ
(
‖x‖p1X + ‖y‖p2X + ‖z‖p3X

)
and applying Theorem 3.1 for the case p1, p2, p3 > 2,

and Theorem 3.2 for the case p1, p2, p3 < 2, we get the desired results. �

Corollary 3.4. Let δ be a nonnegative real number and p1, p2, p3 be positive real numbers such that p1+p2+p3 6=
2. Let f : X → Y be an even mapping satisfying∥∥∥f(x+ y + z

2

)
+ f
(
x− y − z

2

)
+ f
(
y − x− z

2

)
− f(y)− f(z)

∥∥∥
Y

≤
∥∥∥f(x)− f

(
z − x− y

2

)∥∥∥
Y

+ δ
(
‖x‖p1X · ‖y‖

p2
X · ‖z‖

p3
X

)
for all x, y, z ∈ X . Then there exists a unique quadratic mapping Q : X → Y such that∥∥f(x)−Q(x)

∥∥
Y
≤ 2p1+p2+p3+1∣∣2p1+p2+p3 − 4

∣∣δ‖x‖p1+p2+p3
X

for all x ∈ X .

Proof. Defining ϕ(x, y, z) = δ
(
‖x‖p1X · ‖y‖

p2
X · ‖z‖

p3
X

)
and applying Theorem 3.1 for the case p1 + p2 + p3 > 2,

and Theorem 3.2 for the case p1 + p2 + p3 < 2, we get the desired results. �

4. Hyers-Ulam stability of the functional equation (0.1): Type B

In this section, we bring another type of stability theorems for the quadratic functional equation (0.1) which

is more prevalent in considering stability problems rather than the given type in the previous section.

First of all, for convenience, we define for a given mapping f : X → Y, the difference operator:

Df(x, y, z) =: f
(
x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

for all x, y, z ∈ X .

Theorem 4.1. Let ϕ : X 3 → [0,∞) be a function satisfying ϕ(0, 0, 0) = 0 and (3.1). Denote by φ a function

such that

φ(x, y, z) :=

∞∑
n=0

9n

4n
ϕ
(

2n

3n
x,

2n

3n
y,

2n

3n
z
)
<∞ (4.1)

for all x, y, z ∈ X . Suppose that f : X → Y is an even mapping satisfying∥∥Df(x, y, z)
∥∥
Y
≤ ϕ(x, y, z) (4.2)
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for all x, y, z ∈ X . Then there exists a unique quadratic mapping Q : X → Y such that∥∥f(x)−Q(x)
∥∥
Y
≤ φ(x, x, x) (4.3)

for all x ∈ X .

Proof. Letting x = y = z = 0 in (4.2), we get f(0) = 0.

Replacing x, y, z by 0, x, 3x and then by 2x, 2x, 2x in (4.2), respectively, we obtain∥∥2f(2x) + f(x)− f(3x)
∥∥
Y
≤ ϕ(0, x, 3x) ≤ ϕ(3x, 3x, 3x),∥∥∥f(2x)− f(x)− 1

3
f(3x)

∥∥∥
Y
≤ 1

3
ϕ(2x, 2x, 2x) ≤ 1

3
ϕ(3x, 3x, 3x).

Adding the above inequalities, we conclude that
∥∥3f(2x)− 4

3
f(3x)

∥∥
Y
≤ 4

3
ϕ(3x, 3x, 3x) and therefore∥∥∥9

4
f
(

2

3
x
)
− f(x)

∥∥∥
Y
≤ ϕ(x, x, x)

for all x ∈ X .

By the induction method, we can show that∥∥∥9n

4n
f
(

2n

3n
x
)
− f(x)

∥∥∥
Y
≤

n−1∑
s=0

9s

4s
ϕ
(

2s

3s
x,

2s

3s
x,

2s

3s
x
)

(4.4)

for all x ∈ X .

Now similar to the method in the proof of Theorem 3.1, we have the Cauchy sequence
{

9n

4n
f
(
2n

3n
x
)}

, and

then the mapping Q : X → Y defined by

Q(x) := lim
n→∞

9n

4n
f
(

2n

3n
x
)

for all x ∈ X . This definition and the inequality (4.4) lead us to the inequality (4.3).

It follows from (4.1) and (4.2) that∥∥DQ(x, y, z)
∥∥
Y
≤ lim

n→∞

9n

4n

∥∥∥Df (2n

3n
x,

2n

3n
y,

2n

3n
z
)∥∥∥
Y
≤ lim

n→∞

9n

4n
ϕ
(

2n

3n
x,

2n

3n
y,

2n

3n
z
)

= 0.

Hence DQ(x, y, z) = 0 for all x, y, z ∈ X . Now Proposition 2.1 signifies that Q is a quadratic mapping.

The proof of the uniqueness of Q is similar to the proof of Theorem 3.1. �

Theorem 4.2. Let ϕ : X 3 → [0,∞) be a function satisfying ϕ(0, 0, 0) = 0 and (3.1). Denote by φ a function

such that

φ(x, y, z) :=

∞∑
n=0

4n

9n
ϕ
(

3n

2n
x,

3n

2n
y,

3n

2n
z
)
<∞

for all x, y, z ∈ X . Suppose that f : X → Y is an even mapping satisfying (4.2). Then there exists a unique

quadratic mapping Q : X → Y satisfying (4.3).

Proof. The proof is similar to the proof of the previous theorem and thus we omit it. �

Corollary 4.3. Let δ be a nonnegative real number and p1, p2, p3 be positive real numbers such that p1, p2, p3 > 2

or p1, p2, p3 < 2. Let f : X → Y be an even mapping satisfying∥∥Df(x, y, z)
∥∥
Y
≤ δ(‖x‖p1X + ‖y‖p2X + ‖z‖p3X )

for all x, y, z ∈ X . Then there exists a unique quadratic mapping Q : X → Y such that∥∥f(x)−Q(x)
∥∥
Y
≤

3∑
i=1

2pi−2∣∣ 2pi
9
− 3pi

4

∣∣δ‖x‖piX
for all x ∈ X .
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Proof. Defining ϕ(x, y, z) = δ
(
‖x‖p1X + ‖y‖p2X + ‖z‖p3X

)
and applying Theorem 4.1 for the case p1, p2, p3 > 2,

and Theorem 4.2 for the case p1, p2, p3 < 2, we get the desired results. �

Corollary 4.4. Let δ be a nonnegative real number and p1, p2, p3 be positive real numbers such that p1+p2+p3 6=
2. Let f : X → Y be an even mapping satisfying∥∥Df(x, y, z)

∥∥
Y
≤ δ(‖x‖p1X · ‖y‖

p2
X · ‖z‖

p3
X )

for all x, y, z ∈ X . Then there exists a unique quadratic mapping Q : X → Y such that∥∥f(x)−Q(x)
∥∥
Y
≤ 2p1+p2+p3−2∣∣∣ 2p1+p2+p3

9
− 3p1+p2+p3

4

∣∣∣θ‖x‖p1+p2+p3
X

for all x ∈ X .

Proof. Defining ϕ(x, y, z) = δ
(
‖x‖p1X · ‖y‖

p2
X · ‖z‖

p3
X

)
and applying Theorem 4.1 for the case p1 + p2 + p3 > 2,

and Theorem 4.2 for the case p1 + p2 + p3 < 2, we get the desired results. �

This paper is just a start for the quadratic functional equation (0.1). Actually this functional equation and

its stability problems can be studied more in various mathematical structures and spaces. Such this studied

approach can cause to have a deeper description of this equation’s unknown properties which will probably be

more interesting and remarkable.
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Some New Results on Preconditioned Generalized
Mixed-Type Splitting Iterative Methods

Guangbin Wang∗†, Fuping Tan‡ and Yuncui Zhang§

Abstract

In this paper, we present three preconditioned generalized mixed-type
splitting (GMTS) methods for solving the weighted linear least square
problem. We compare the spectral radii of the iteration matrices of
the preconditioned and the original methods. The comparison results
show that the preconditioned GMTS methods converge faster than the
GMTS method whenever the GMTS method is convergent. Finally, we
give two numerical examples to confirm our theoretical results.

Keywords: Preconditioning, GMTS method, linear system, convergence, com-
parison.
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1. Introduction

We consider the following weighted least squares problem

(1.1) min
x∈Rn

(Ax− b)
T
W−1 (Ax− b) ,

where A ∈ Rn×n is nonsigular, b ∈ Rn, W ∈ Rn×n is a symmetric positive definite
matrix, see [1,4,9].

In order to solve it, one has to solve a nonsingular linear system as

(1.2) Hy = f,

where

(1.3) H = ATW−1A =

(
I −B U
L I − C

)
∈ Rn×n

is an invertible matrix with

B = (bij)p×p , C = (cij)q×q , L = (lij)q×p , U = (uij)p×q ,

p+ q = n and f = ATW−1b ∈ Rn, see [1,4].
Throughout the paper, we consider the following decomposition for the matrix
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H = D̂ − L̂− Û , in which

(1.4) D̂ =

(
I 0
0 I

)
, L̂ =

(
0 0
−L 0

)
, Û =

(
B −U
0 C

)
.

In [1], authors established a generalized AOR(GAOR) method to solve systems of
linear equations (1.2). In paper [2, 3] , authors studied the preconditioned GAOR
methods. In [4], authors presented a generalized mixed-type splitting (GMTS)
iterative method which is generalized GAOR method. And they studied the pre-
conditioned generalized mixed-type splitting iterative methods to solve (1.2). They
showed that the preconditioned GMTS methods converge faster than the GMTS
method, whenever the GMTS method is convergent.

In this paper, we propose three new preconditioners and give the comparison
theorems between the preconditioned and original methods. These results show
that the preconditioned GMTS methods converge faster than the GMTS method
whenever the GMTS method is convergent. And we prove that in the case that the
GMTS method is convergent, using the third preconditioned GMTS method leads
to the better convergence rate than the first and the second preconditioned GMTS
methods. In Section 4, we give two examples to confirm our theoretical results.
And we know that the preconditioned GMTS methods with preconditioners in this
paper have the better converge rate than the preconditioned GMTS method with
preconditioner P ∗.

2. Preliminaries

2.1 Definition [5] A ∈ Rn×n is called a Z-matrix if aij ≤ 0 for i, j =
1, 2, ..., n (i ̸= j).

2.2 Definition [5] Let A be a Z-matrix with positive diagonal elements. Then
the matrix A is called an M-matrix if A is nonsingular and A−1 ≥ 0.

2.3 Definition [6] The splitting A =M −N is called

(1) a regular splitting of A if M−1 ≥ 0 and N ≥ 0;
(2) a nonnegative splitting of A if M−1 ≥ 0, M−1N ≥ 0 and NM−1 ≥ 0;
(3) a weak nonnegative splitting of A if M−1 ≥ 0 and either M−1N ≥ 0 (the

first type) or NM−1 ≥ 0 (the second type);
(4) a convergent splitting of A if ρ(M−1N) < 1.

2.1. Lemma. [4] Let A be a Z-matrix. Moreover, suppose that A = M −N is a
weak nonnegative splitting of the first type. Then ρ(M−1N) < 1 if and only if A
is an M-matrix.

2.2. Lemma. [7] Let A =M −N be a regular splitting of A. Then ρ(M−1N) < 1
if and only if A is nonsingular and A−1 is nonnegative.

2.3. Lemma. [8] Let matrix A = (aij)n×n be given such that

(1) aij ≤ 0 for i, j = 1, 2, ..., n (i ̸= j),
(2) A is nonsingular,
(3) A−1 ≥ 0.

Then,

(1) aii > 0 for i = 1, 2, ..., n, i.e., A is an M-matrix,
(2) ρ(B) < 1 where B = I −D−1A, where D = diag{a11, ..., ann}.
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2.4. Lemma. [6] Let A =M1−N1 =M2−N2 be two convergent weak nonnegative
splittings of A, where A−1 ≥ 0, if M−1

1 ≥M−1
2 then ρ(M−1

1 N1) ≤ ρ(M−1
2 N2).

3. Comparison results

Consider the linear system (1.2), the generalized mixed-type splitting (GMTS)
iterative method is given as follows:

(3.1) (D̂ +D1 + L1 − L̂)y(k+1) = (D1 + L1 + Û)y(k) + f

where D̂, L̂ and Û are defined by (1.4), and D1 is an auxiliary nonnegative block
diagonal matrix, L1 is an auxiliary strictly nonnegative block lower triangular
matrix such that 0 ≤ D1 ≤ D̂ and 0 ≤ L1 ≤ L̂. Evidently, the iteration matrix of
the GMTS iterative method is given as follow:

T = (D̂ +D1 + L1 − L̂)−1(D1 + L1 + Û).

In this paper, we propose the new preconditioners as follows,

(3.2) P ∗
i =

(
I + Si 0
0 I + Vi

)
, i = 1, 2, 3

where

S1 =


0 0 · · · 0 0
b21 0 · · · 0 0
...

...
. . .

...
...

bp−1,1 0 · · · 0 0
bp1 0 · · · 0 0

 , S2 =


0 b12 · · · b1,p−1 b1p
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

 ,

S3 =


0 b12 · · · b1,p−1 b1p
b21 0 · · · 0 0
...

...
. . .

...
...

bp−1,1 0 · · · 0 0
bp1 0 · · · 0 0

 ,

V1 =


0 0 · · · 0 0
c21 0 · · · 0 0
...

...
. . .

...
...

cq−1,1 0 · · · 0 0
cq1 0 · · · 0 0

 , V2 =


0 c12 · · · c1,q−1 c1q
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

 ,

V3 =


0 c12 · · · c1,q−1 c1q
c21 0 · · · 0 0
...

...
. . .

...
...

cq−1,1 0 · · · 0 0
cq1 0 · · · 0 0

 .

Then P ∗
i H can be expressed by

P ∗
i H =

(
I −B∗

i U∗
i

L∗
i I − C∗

i

)
,

where B∗
i = B−Si(I −B), C∗

i = C − Vi(I −C), L∗
i = (I + Vi)L, U

∗
i = (I +Si)U .
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Let us consider the corresponding splitting for the preconditioned GMTSmethod,
that is the generalized mixed-type splitting for the H̄i = P ∗

i H = M̄i − N̄i, where

M̄i = D̂∗
i + D̄1 + L̄1 − L̂∗

i , N̄i = D̄1 + L̄1 + Û∗
i

and

D̂∗
i =

(
I 0
0 I

)
, L̂∗

i =

(
0 0
−L∗

i 0

)
, Û∗

i =

(
B∗

i −U∗
i

0 C∗
i

)
, i = 1, 2, 3,

D̄1 is an auxiliary nonnegative block diagonal matrix with 0 ≤ D̄1 ≤ D̂∗
i , L̄1 is an

auxiliary strictly nonnegative block lower triangular matrix with 0 ≤ L̄1 ≤ L̂∗
i .

The iteration matrix of the preconditioned GMTS method is

T ∗
i = (D̂∗

i + D̄1 + L̄1 − L̂∗
i )

−1(D̄1 + L̄1 + Û∗
i ).

3.1. Lemma. [4] Assume that L ≤ 0, U ≤ 0, B ≥ 0, C ≥ 0 and H in (1.2) is
irreducible. If D1 is nonsingular, then the iteration matrix of the GMTS method
is irreducible.

3.2. Lemma. [4] Assume that L ≤ 0, U ≤ 0, B ≥ 0, C ≥ 0, then the corresponding
splitting of GMTS method is a regular splitting for the matrix H.

Similar to the proof of Lemma 3.2, we can prove the following lemma.

3.3. Lemma. Assume that L ≤ 0, U ≤ 0, B ≥ 0, C ≥ 0, then the corresponding
splitting of PGMTS method is a regular splitting for the matrix P ∗

i H (i = 1, 2, 3).

3.4. Theorem. Let H be an M-matrix, then P ∗
i H (i = 1, 2, 3) is an M-matrix.

Proof. Consider the following splitting for H, H =M1 −N1,
where M1 = (P ∗

1 )
−1 , N1 = (P ∗

1 )
−1(L̂∗ + Û∗),

and L̂∗ =

(
0 0
−L∗

1 0

)
, Û∗ =

(
B∗

1 −U∗
1

0 C∗
1

)
.

We can see thatM−1
1 N1 = L̂∗+Û∗ andM−1

1 ≥ 0. ThenH =M1−N1 is a weak
nonnegative splitting of the first type. By the assumption H is an M-matrix, hence
Lemma 2.1 implies that ρ(M−1

1 N1) < 1. Let us assume that P ∗
1H = I − L̂∗ − Û∗,

using the fact that ρ(L̂∗ + Û∗) = ρ(M−1
1 N1) < 1, by Lemma 2.2 and Lemma 2.3,

it is easy to know that P ∗
1H is an M-matrix. The similar results can be gotten

when i = 2, 3. �

Now, we will show that in the case that the GMTS method converges, the
preconditioned GMTS methods converge faster.

3.5. Theorem. Let T and T ∗
1 be the iteration matrices of the GMTS and the

preconditioned GMTS methods, respectively, assume that the matrix H is irre-
ducible, L ≤ 0, U ≤ 0, B ≥ 0, C ≥ 0, 0 ≤ D1 ≤ D̂, 0 ≤ D̄1 ≤ D̂∗

1 , 0 ≤ L1 ≤ L̂,

0 ≤ L̄1 ≤ L̂∗
1, bi,1 > 0, cj,1 > 0, for some i ∈ {2, 3, ..., p}, j ∈ {2, 3, ..., q}. If

ρ(T ) < 1, D̄1 ≤ D1 and L̄1 ≤ L1, then ρ(T
∗
1 ) ≤ ρ(T ).

Proof. As the matrix H is irreducible, so the P ∗
1H is irreducible. And by Lemma

3.1, we know that T and T ∗
1 are irreducible. Consider the GMTS splitting for the

matrix H =M −N , where M = D̂ +D1 + L1 − L̂, N = D1 + L1 + Û .
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Obviously,H =M−N is a regular splitting, and by the assumption ρ(M−1N) <
1, we can get that H is an M-matrix. From Theorem 3.4, we know that P ∗

1H is
also an M-matrix. Thus, from Lemma 3.3, we know that H̄1 = M̄1−N̄1 is a regular
splitting. Therefore, as H is an M-matrix, we can get ρ(T ∗

1 ) = ρ(M̄−1
1 N̄1) < 1.

Now, we define the following splitting for the matrix H, H = M∗
1 − N∗

1 , in
which M∗

1 = (I + S̄1)
−1M̄1, N

∗
1 = (I + S̄1)

−1N̄1 and

S̄1 =

(
S1 0
0 V1

)
.

Consider the iteration matrix of the GMTS method T = M−1N , it is easy to see
that

M − M̄1 =

(
D11 −D∗

11 0
L21 + L− L∗

21 − L∗
1 D22 −D∗

22

)
,

where

D1 =

(
D11 0
0 D22

)
≤ D̂, D̄1 =

(
D∗

11 0
0 D∗

22

)
≤ D̂∗

1 ,

L1 =

(
0 0
L21 0

)
≤ L̂ and L̄1 =

(
0 0
L∗
21 0

)
≤ L̂1.

It is known that L∗
1 = (I + V1)L, hence L

∗
1 − L = V1L ≤ 0.

By computations, we know that M̄1 ≤M , so M̄−1
1 ≥M−1. Consequently,

M−1 ≤ M̄−1
1 ≤ M̄−1

1 (I + S̄1) = (M∗
1 )

−1.

From Lemma 2.4, we deduce that

ρ(M̄−1
1 N̄1) = ρ((M∗

1 )
−1N∗

1 ) ≤ ρ(M−1N),

so ρ(T ∗
1 ) ≤ ρ(T ). �

Similar to the proof of Theorem 3.5, we can get the following two theorems.

3.6. Theorem. Let T and T ∗
2 be the iteration matrices of the GMTS and the

preconditioned GMTS methods, respectively. Assume that the matrix H is irre-
ducible, L ≤ 0, U ≤ 0, B ≥ 0, C ≥ 0, 0 ≤ D2 ≤ D̂, 0 ≤ D̄2 ≤ D̂∗

2 , 0 ≤ L2 ≤ L̂,

0 ≤ L̄2 ≤ L̂∗
2, b1,i > 0, c1,j > 0, for some i ∈ {2, 3, ..., p}, j ∈ {2, 3, ..., q}. If

ρ(T ) < 1, D̄2 ≤ D2 and L̄2 ≤ L2, then ρ(T
∗
2 ) ≤ ρ(T ).

3.7. Theorem. Let T and T ∗
3 be the iteration matrices of the GMTS and the pre-

conditioned GMTS methods, respectively. Assume that the matrix H is irreducible,
L ≤ 0, U ≤ 0, B ≥ 0, C ≥ 0, 0 ≤ D3 ≤ D̂, 0 ≤ D̄3 ≤ D̂∗

3, 0 ≤ L3 ≤ L̂, 0 ≤ L̄3 ≤
L̂∗
3, bi,1 > 0, cj,1 > 0, b1,i > 0, c1,j > 0, for some i ∈ {2, 3, ..., p}, j ∈ {2, 3, ..., q}. If

ρ(T ) < 1, D̄3 ≤ D3 and L̄3 ≤ L3, then ρ(T
∗
3 ) ≤ ρ(T ).

Now, we prove that in the case that the GMTS method is convergent, using the
third preconditioned GMTS method leads to the better convergence rate than the
first and the second preconditioned GMTS methods.

3.8. Theorem. Suppose that the matrix H is irreducible, L ≤ 0, U ≤ 0, B ≥
0, C ≥ 0, bi,1 > 0, cj,1 > 0, b1,i > 0, c1,j > 0, for some i ∈ {2, 3, ..., p}, j ∈
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{2, 3, ..., q}, the auxiliary block diagonal matrices are chosen as αiI and the aux-
iliary block lower triangular matrices as βiL

∗
i for i = 1, 3, 0 ≤ α3 ≤ α1 ≤ 1, 0 ≤

β1 ≤ β3 ≤ 1. Then ρ(T ∗
3 ) ≤ ρ(T ∗

1 ) if ρ(T ) < 1.

Proof. By the assumption ρ(T ) < 1, and according the Lemma 2.1, H is an M-

matrix. Assume that P ∗
i H = M̃i − Ñi, i = 1, 3 where

M̃i =

(
I +Di

11 0
Li
21 + L∗

i I +Di
22

)
, Ñi =

(
B∗

i +Di
11 −U∗

i

Li
21 C∗

i +Di
22

)
,

and Li
21 = −βiL∗

i , D
i
11 = αiIp, D

i
22 = αiIq for i = 1, 3.

Now, we define the following splitting for the matrix H, i.e. H =Mi −Ni(i =

1, 3) such that Mi = (I + S̃i)
−1M̃i and Ni = (I + S̃i)

−1Ñi,

where S̃i =

(
Si 0
0 Vi

)
.

Since

L1
21 − L3

21 = −β1L∗
1 + β3L

∗
3 ≥ β1L

∗
3 − β1L

∗
1 = −β1(L∗

1 − L∗
3),

so

L1
21 − L3

21 + L∗
1 − L∗

3 ≥ (1− β1)(L
∗
1 − L∗

3),

then

M̃1 − M̃3 =

(
D1

11 −D3
11 0

L1
21 − L3

21 + L∗
1 − L∗

3 D1
22 −D3

22

)
≥

(
(α1 − α3)Ip 0
(1− β1)(L

∗
1 − L∗

3) (α1 − α3)Iq

)
,

as L∗
1 − L∗

3 = (V1 − V3)L ≥ 0, then M̃1 ≥ M̃3.

Notice that M̃−1
1 ≥ 0, M̃−1

3 ≥ 0, hence M̃−1
1 ≤ M̃−1

3 and

M−1
1 = M̃−1

1 (I + S̃1)

= M̃−1
1 + M̃−1

1 S̃1

≤ M̃−1
3 + M̃−1

1 (S̃1 − S̃3) + M̃−1
1 S̃3

≤ M̃−1
3 + M̃−1

3 S̃3

= M̃−1
3 (I + S̃3) =M−1

3 .

Since H is an M-matrix, Lemma 2.4 implies that

ρ(M−1
3 N3) ≤ ρ(M−1

1 N1).

According M−1
i Ni = M̃−1

i Ñi for i = 1, 3, we can conclude that

ρ(T ∗
3 ) ≤ ρ(T ∗

1 ).

�

Similar to the proof of Theorem 3.8, we can get the following theorem.

3.9. Theorem. Suppose that the matrix H is irreducible, L ≤ 0, U ≤ 0, B ≥
0, C ≥ 0, bi,1 > 0, cj,1 > 0, b1,i > 0, c1,j > 0, for some i ∈ {2, 3, ..., p}, j ∈
{2, 3, ..., q}, the auxiliary block diagonal matrices are chosen as αiI and the aux-
iliary block lower triangular matrices as βiL

∗
i for i = 2, 3, 0 ≤ α3 ≤ α2 ≤ 1, 0 ≤

β2 ≤ β3 ≤ 1. Then ρ(T ∗
3 ) ≤ ρ(T ∗

2 ) if ρ(T ) < 1.
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4. Examples

4.1 Example Consider

H =

(
I −B U
L I − C

)
,

where B = (bij)p×p , C = (cij)(n−p)×(n−p) , L = (lij)(n−p)×p and U = (uij)p×(n−p)

with

bii =
1

10× (i+ 1)
, i = 1, 2, · · · , p,

bij =
1

30
− 1

30× j + i
, i < j, i = 1, 2, · · · , p− 1, j = 2, · · · , p,

bij =
1

30
− 1

30× (i− j + 1) + i
, i > j, i = 2, · · · , p, j = 1, 2, · · · , p−1,

cii =
1

10× (p+ i+ 1)
, i = 1, 2, · · · , n− p,

cij =
1

30
− 1

30× (p+ j) + p+ i
, i < j, i = 1, 2, · · · , n−p−1, j = 2, · · · , n−p,

cij =
1

30
− 1

30× (i− j + 1) + p+ i
, i > j, i = 2, · · · , n−p, j = 1, 2, · · · , n−p−1,

lij =
1

30× (p+ i− j + 1) + p+ i
− 1

30
, i = 1, 2, · · · , n−p, j = 1, 2, · · · , p,

uij =
1

30× (p+ j) + i
− 1

30
, i = 1, 2, · · · , p, j = 1, 2, · · · , n− p.

In the experiments, the auxiliary matrices are chosen such that

D1 = 0.5(
1

ω
−1)I, D1 = 0.5(

1

ω
−1)I, L1 = 0.5(1− γ

ω
)L̂i, L1 = 0.5(1− γ

ω
)L̂∗

i .

From Table 1, we see that these results accord with Theorems 3.5 - 3.9.

Table 1. The spectral radii of the GMTS and preconditioned GMTS
iteration matrices

n ω r p ρ(T ) ρ(T ∗
1 ) ρ(T ∗

2 ) ρ(T ∗
3 )

10 0.9 0.8 5 0.2352 0.2156 0.2140 0.2048
20 0.8 0.6 5 0.5736 0.5609 0.5605 0.5568
20 0.8 0.6 10 0.5551 0.5413 0.5404 0.5334
25 0.8 0.6 8 0.7164 0.7074 0.7070 0.7033
30 0.9 0.7 10 0.8680 0.8635 0.8633 0.8613
30 0.9 0.7 20 0.8676 0.8630 0.8627 0.8605

In [4], the authors considered the following preconditioner

(4.1) P ∗ =

(
I + S 0
0 I + V

)
,
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where

S =


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
bp1
α 0 · · · 0 0

 ,

V =


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
cq1
β 0 · · · 0 0

 .

Table 2. The spectral radii of the preconditioned GMTS iteration matrices

n ω r p α = β ρ(T ∗) ρ(T ∗
1 ) ρ(T ∗

2 ) ρ(T ∗
3 )

10 0.9 0.8 5 3 0.2335 0.2156 0.2140 0.2048
20 0.8 0.6 5 2 0.5729 0.5609 0.5605 0.5568
20 0.8 0.6 10 2 0.5542 0.5413 0.5404 0.5334
25 0.8 0.6 8 3 0.7161 0.7074 0.7070 0.7033
30 0.9 0.7 10 2 0.8678 0.8635 0.8633 0.8613
30 0.9 0.7 20 2 0.8673 0.8630 0.8627 0.8605

Here, T ∗ is the GMTS iteration matrix for solving P ∗Hy = P ∗f .
From Table 2, we see that the preconditioned GMTS methods with precondi-

tioners in this paper have better converge rates than the preconditioned GMTS
method with preconditioner P ∗.

4.2 Example The coefficient matrix H in Equation (1.2) is given by

H =

(
I −B U
L I − C

)
,

where

B =


b11

1
4 0 0

1
4 0 1

4 0
0 1

4 0 1
4

1
4 0 1

4 0

 , C =

 c11
1
4 0

1
4 0 1

4
1
4

1
4 0

 ,

L =

 − 1
4 0 0 − 1

4
0 0 −1

4 0
0 −1

4 0 0

 , U =


− 1

4 0 0
0 −1

4 0
0 0 − 1

4
− 1

4 0 0

 .

Table 3 displays the spectral radii of the corresponding iteration matrices with
ω = 0.9, γ = 0.8 and different values of b11 and c11.

From Table 3, we can see that ρ(T ∗
i ) ≤ ρ(T ) for i = 1, 2, 3 and ρ(T ∗

3 ) ≤ ρ(T ∗
i )

for i = 1, 2 when ρ(T ) < 1. These numerical results are in accordance with the
theoretical results given in Theorems 3.5- 3.9.
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Table 3. The spectral radii of the GMTS and preconditioned GMTS
iteration matrices

b11 c11 ρ(T ) ρ(T ∗
1 ) ρ(T ∗

2 ) ρ(T ∗
3 )

0 0 0.6804 0.6303 0.6381 0.6140
0 0.3 0.7657 0.7253 0.7323 0.7071
0.2 0.2 0.7614 0.7186 0.7265 0.6987
0.2 0.5 0.8860 0.8677 0.8713 0.8596
0.5 0.5 0.9553 0.9483 0.9499 0.9453

5. Conclusion

In this paper, we propose three new preconditioners and give comparison the-
orems between the preconditioned and original methods. These results show that
the preconditioned GMTS methods converge faster than the GMTS method when-
ever the GMTS method is convergent. Finally, we give two examples to confirm
our theoretical results.
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A Linear Adaptive time-stepping Method for Solving Vibration
Problems with Damping Terms
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Abstract

A linear adaptive time-stepping method is devised for linear or nonlinear damping
vibration analysis, which has wide applications in civil engineering. In the time di-
rection, the underlying problem is discretized by a linear C0-continuous discontinuous
Galerkin method combined with the technique of linearization. By means of the energy
method, some optimal a posteriori error estimates are established for linear vibration
problems. Motivated by these estimates, we design an adaptive time-stepping strategy
for actual computation. Numerical results are performed to illustrate the efficiency of
the adaptive method.
Keywords. Time-stepping method, Vibration, Damping, A posteriori error analysis,
Adaptive algorithm

1 Introduction

This paper aims to design and analyze an adaptive time-stepping method for solving
the following problem:

For any real number T > 0, find u : [0, T ] → Rd (with d the spatial dimension) such
that {

Mu′′(t) + F
(
t,u(t),u′(t)

)
= 0, 0 < t < T,

u(0) = u0, u′(0) = v0,
(1.1)

where (·)′ and (·)′′ denote respectively the first and second order derivatives in time; M is
a given (d × d) matrix and F is a given vector-valued function from [0, T ] × Rd × Rd into
Rd; u0 and v0 are two given vectors in Rd.

The above problem is frequently encountered in structure analysis of dynamical transient
response (cf. [5]). Concretely speaking, the mathematical models for structure analysis are
described by a system of second-order linear/nonlinear evolution equations, which give rise
to the problem (1.1), after spatial discretization by finite element methods, finite difference
methods or spectral methods (cf. [2, 9, 11,16,17,21,22]).

When the vector-valued function F is linear with respect to u and u′, there are various
numerical methods for solving the problem (1.1). The most widely used may be classified as
modal superposition (cf. [6, 14]) and direct-time integration methods including the Runge-
Kutta, central difference, Houbolt, Newmark-β and Wilson-θ methods (see [11] and the
references therein for details). The space-time finite element method (cf. [7, 12, 13]) is
another widely developed approach for solving second order time evolution equations. One
typical way is using the time-discontinuous Galerkin (TDG) method (cf. [7,15]) in the time
direction for the displacement and velocity fields together, but it has the disadvantage that
an ill-conditioned (4 × 4) block system must be solved at each time step, which is time
consuming. To overcome this difficulty, some linear C0-continuous time-stepping methods
were used in [18], where only the primal variables are involved and only a (1×1) block system

1Corresponding author. E-mail address: jghuang@sjtu.edu.cn. The work of this author was partly
supported by NSFC (Grant no. 11571237).
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should be solved at each time step. Moreover, an adaptive method was proposed in [18]
for solving second order abstract evolution equations, where the optimal a posteriori error
estimates are established, which, in conjunction with the error equidistribution strategy and
some ideas implied in the Runge-Kutta-Felberg method, leads to an adaptive time-stepping
method.

In this paper, we intend to use some ideas in [18] to develop an adaptive time-stepping
method for solving the problem (1.1). In the time direction, the problem (1.1) is discretized
by a linear C0-continuous discontinuous Galerkin method combined with the technique of
linearization (including three linearization methods). Then, by means of the energy method,
some optimal a posteriori error estimates are established for linear vibration problems via
some ideas in [18]. It deserves to emphasize that the mathematical argument developed
here is greatly simplified by using the Lagrange basis functions instead of the Legendre
polynomials. Motivated by these estimates, we construct a posteriori error estimates for
nonlinear problems, based on which we design an adaptive time-stepping strategy for actual
computation. Numerical results are performed to illustrate the efficiency of the adaptive
method.

The rest of this paper is organized as follows. In Section 2, we present a time-stepping
finite element method for the problem (1.1), and the detailed implementation of the previous
method is also developed for actual computation. In Section 3, a posteriori error analysis
is established in detail for linear vibration problems. In Section 4, we propose an adaptive
algorithm based on some a posteriori error estimates. A series of numerical results are
performed in the final section.

2 A linear time-stepping finite element method

2.1 The formulation of a linear time-stepping finite element method

Throughout this paper, we assume that Problem (1.1) has a unique solution and the
matrix M is symmetric positive definite. We use a standard time-stepping method to
discretize Problem (1.1) (cf. [10, 18, 19]). To this end, we first partition the time interval
I := (0, T ) with the nodes

0 = t0 < t1 < · · · < tN = T,

to get the following subintervals:

Jn = (tn−1, tn], kn = tn − tn−1, 1 ≤ n ≤ N.

Define

V1 =

{
v : Ī → Rd; v ∈ C(Ī), v|Jn(t) =

1∑
j=0

tjwj , wj ∈ Rd, 1 ≤ n ≤ N

}
,

W2 =

{
v : Ī → Rd; v ∈ C1(Ī), v|Jn(t) =

2∑
j=0

tjwj , wj ∈ Rd, 1 ≤ n ≤ N

}
,

Hq =

{
v : Ī → L2(I); v|Jn(t) =

q∑
j=0

tjwj , wj ∈ Rd, 1 ≤ n ≤ N

}
, q = 0, 1.

Let V1(Jn) and W2(Jn) be the restrictions of V1 and W2 to Jn, respectively. Similarly,
denote by Hq(Jn) the restriction of Hq to Jn. Thus, our time-stepping method for (1.1) is

2
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to find U ∈ V1 such that
∫
Jn

(⟨
U′′, w′⟩

M
+

⟨
F
(
t,U,U′), w′⟩) dt+ ⟨

U̇n−1
+ − U̇n−1

− , ẇn−1
+

⟩
M

= 0,

U0 = u0, U̇0
− = v0, w ∈ V1(Jn), 1 ≤ n ≤ N,

(2.1)

where

⟨a,b⟩ := bTa, ⟨a,b⟩A := bTAa, a,b ∈ Rd, A ∈ Rd×d, (2.2)

ẇn−1
± := lim

s→0+
w′(tn−1 ± s), wn−1 := w(tn−1).

2.2 Implementation of the time-stepping method

Since U ∈ V1, we have by a direct manipulation that, for any t ∈ Jn,

U(t) = Un−1 + (t− tn−1)U̇
n
−, U′(t) = U̇n

−, U′′(t) = 0. (2.3)

To implement the method (2.1) in actual computation, we require to linearize the nonlinear
function F(t,U,U′) with respect to U. As shown in Figure 1, for a given function g(t), its
linearization over Jn are usually the interpolants given by

ILg(t) = g(tn−1) + (t− tn−1)g
′(tn−1) or IRg(t) = g(tn−1) + (t− tn−1)g

′(tn), t ∈ Jn.

)(tgg

I
L

g

t

n
J

1nt n
t

(a) IL

)(tg

I
R
 g

1nt

g

t

n
J

n
t

(b) IR

Figure 1: Diagrams of the (local) interpolate operators IL and IR.

Note that the function F = F(t,U,U′) is discontinuous at the interior node tn. Re-
calling the expression (2.3), we have by the direct computation that the right limit of F at
t = tn−1 can be expressed as

Fn−1
+ = F(tn−1,U

n−1, U̇n−1
+ ) = F(tn−1,U

n−1, U̇n
−). (2.4)

Using the chain rule for differentiation and (2.3), we find that, at t = tn, the left limit of
the full derivative of F(t,U,U′) with respect to t is given as follows:

Ḟn
− =

∂F

∂t
(tn,U

n, U̇n
−) +

∂F

∂U
(tn,U

n, U̇n
−)U̇

n
−+

∂F

∂U′ (tn,U
n, U̇n

−)0

=
∂F

∂t
(tn,U

n, U̇n
−) +

∂F

∂U
(tn,U

n, U̇n
−)U̇

n
−

= :
∂F

∂t

∣∣∣∣
tn−

+
∂F

∂U

∣∣∣∣
tn−

U̇n
−.

Similarly, we have

Ḟn−1
+ :=

∂F

∂t

∣∣∣∣
tn−1
+

+
∂F

∂U

∣∣∣∣
tn−1
+

U̇n
−.

3
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With these results in mind, we have by the definitions of the interpolation operators IL
and IR that

Left side Scheme : F
(
t,U(t),U′(t)) ≈ ILF = Fn−1

+ + (t− tn−1)Ḟ
n−1
+ , (2.5)

Right side Scheme : F
(
t,U(t),U′(t)) ≈ IRF = Fn−1

+ + (t− tn−1)Ḟ
n
−. (2.6)

Now, inserting (2.3) and (2.6) into the first equation of (2.1) and taking ẇ to be w∗

or (t − tn−1)w
∗, where w∗ is any constant vector in Rd, we find that the method (2.1) is

equivalent to finding {U̇n
−}Nn=0 such that(

M+
k2n
2

∂F

∂U

∣∣∣∣
tn−

)
U̇n

− +
1

2
k2n
∂F

∂t

∣∣∣∣
tn−

+ knF
n−1
+ = MU̇n−1

− , 1 ≤ n ≤ N. (2.7)

Note that the quantities ∂F
∂t

∣∣
tn−
, ∂F
∂U

∣∣
tn−

and Fn−1
+ are all the functions of the unknown vector

U̇n
−, so the above scheme is implicit. However, if we use the linearization formulation (2.5)

instead of (2.6), then the system (2.1) reduces to(
M+

k2n
2

∂F

∂U

∣∣∣∣
tn−1
+

)
U̇n

− +
1

2
k2n
∂F

∂t

∣∣∣∣
tn−1
+

+ knF
n−1
+ = MU̇n−1

− , 1 ≤ n ≤ N. (2.8)

It is noted that in most vibration problems, it suffices for us to deal with the linear damping
case, indicating that the function F is linear with respect to the independent variable u′.
In this case, since the quantities ∂F

∂t

∣∣
tn−1
+

and ∂F
∂U

∣∣
tn−1
+

in (2.8) do not depend on U̇n
−, the

system (2.8) is essentially a linear system of the unknown vector U̇n
−. Hence, we can work

out U̇n
− with much less computational cost, compared to the method (2.7).

In order to balance the efficiency and stability of the time-stepping method, it is very
natural to split the nonlinear term F into two parts FL and FR, which correspond to the
non-stiff and the stiff terms of the original system (1.1), respectively. Then, it is better for
us to use ILFL + IRFR to approximate F in (2.1). In other words, we have

Semi− side Scheme : F ≈ ILFL + IRFR = Fn−1
+ + (t− tn−1)

(
Ḟn−1
L+ + Ḟn

R−
)
. (2.9)

It is noted that for the linear damping system, the semi-side scheme also yields a linear
system for getting the unknown vector U̇n

−.
Now, let us present the solution process of the method (1.1) in detail. Once we obtain

U in Jn−1, we can get U̇n
− by solving the system (2.7) or (2.8). Then the function U over Jn

is completely determined using the formulation U(t) = Un−1 +(t− tn−1)U̇
n
− for all t ∈ Jn.

On implementing this computation recursively, we can thereby determine the function U
completely.

In the last part of this subsection, we give the solution process explicitly for the vibration
analysis related to linear transient dynamic response. At this moment, we can reformulate
the problem (1.1) as follows.

For any real number T > 0, find u : [0, T ] → Rd such that
Mu′′ +Cu′ +Ku = f , 0 < t < T,

u(0) = u0,

u′(0) = v0,

(2.10)

where C and K are the (d × d) damping and stiffness matrices of the dynamic system,
respectively. We assume that C and K are symmetric and semi-definite. Observing that

F
(
t,u(t),u′(t)

)
= Cu′ +Ku− f ,

4
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we have from the variational formulation (2.1) that(
k2n
2
K+ knC+M

)
U̇n

− = MU̇n−1
− − knKUn−1 + fn, 1 ≤ n ≤ N, (2.11)

where fn :=
∫
Jn

fdt.

3 A posteriori error analysis for linear problems

For the numerical method (2.1) for the linear vibration problem (2.10), following the
similar arguments leading to Theorem 2.5 in [18], we can derive some stability estimates to
the numerical solution U and then establish the required a priori error estimates. Another
way to derive such estimates is to use the mathematical argument due to [24]. Since the
objective of this article is to develop efficient adaptive time stepping method for the linear
vibration problem (2.10) and the generalized problem (1.1), we will focus on in this section
a posteriori error analysis for the problem (2.10) discretized by the method (2.1). Motivated
by such an analysis, we will heuristically mention in the next section some error estimators
for the nonlinear problem (1.1) and then devise the corresponding adaptive time stepping
method.

3.1 Reconstruction

As shown in [18], in order to get efficient a posteriori error estimates for the method
(2.1), we require to construct a higher order reconstruction Ũ from the approximate solution
U. So let us first recall such a reconstruction given in [18]. Introduce an invertible linear
operator Ĩ2 : V1 → W2 as follows. With any w ∈ V1 we associate an element w̃ := Ĩ2w ∈
W2 defined by locally interpolating w in each subinterval Jn(1 ≤ n ≤ N), i.e., w̃|Jn ∈
W2(Jn) is uniquely determined by

w̃(t) = w̃(tn−1) + knẇ
n−1
− Φ0(

t− tn−1

kn
) + knẇ

n
−Φ1(

t− tn−1

kn
), 1 ≤ n ≤ N, (3.1)

and the initial values w̃(0) = w(0), w̃′(0) = w′(0). In (3.1), the definition of Φ0, Φ1 are
given as

Φ0(ξ) = −1

2
ξ2 + ξ, Φ1(ξ) =

1

2
ξ2. (3.2)

We call w̃ a time reconstruction of w, as shown in Figure 2. It is easy to check by the

t

w
(t
)

 

 

w(t)

w̃(t)

Figure 2: Diagram of Ĩ2w.

above construction that
w̃′(tn) = ẇn

−, 1 ≤ n ≤ N. (3.3)

5
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Thus, for an approximate solution U , the reconstructed function we hope to find is
Ũ ∈ W2, defined by

Ũ(t) = Ũ(tn−1) + knU̇
n−1
− Φ0(

t− tn−1

kn
) + knU̇

n
−Φ1(

t− tn−1

kn
), 1 ≤ n ≤ N. (3.4)

By a direct computation we have

Ũ′′(t) =
1

kn
(U̇n

− − U̇n−1
− ), 1 ≤ n ≤ N. (3.5)

Observing that the function U(t) can be rewritten as

U(t) = U(tn−1) + knU̇
n−1
+ Φ0(

t− tn−1

kn
) + knU̇

n
−Φ1(

t− tn−1

kn
), t ∈ Jn,

subtracting which from (3.4) we know

U(t)− Ũ(t) = Un−1 − Ũn−1 + kn(U̇
n−1
+ − U̇n−1

− )Φ0(
t− tn−1

kn
), t ∈ Jn. (3.6)

Hence,

Un − Ũn = Un−1 − Ũn−1 +
1

2
k2nŨ

′′, t ∈ Jn,

i.e.,

Un − Ũn =
1

2

n∑
m=1

k2mŨ′′|Jm , t ∈ Jn. (3.7)

Moreover, by integration by parts and (3.3), it follows that∫
Jn

⟨Ũ′′, w′⟩Mdt =

∫
Jn

⟨U′′, w′⟩Mdt+ ⟨U̇n−1
+ − U̇n−1

− , ẇn−1
+ ⟩M, w ∈ V1(Jn),

and use the variational equation in (2.1) we further have∫
Jn

(⟨Ũ′′, w′⟩M + ⟨CU′ +KU− f , w′⟩) dt = 0, w ∈ V1 1 ≤ n ≤ N,

i.e.,
MŨ′′ + P0(CU′ +KU− f) = 0, t ∈ Jn, (3.8)

where Pq (q = 0, 1) stands for the (local) L2 orthogonal projection operator on to Hq(Jn)
(cf. [1]), defined by ∫

Jn

⟨Pqv − v, w⟩dt = 0, w ∈ Hq(Jn). (3.9)

3.2 Error estimates

Let ∥ · ∥, ∥ · ∥M, ∥ · ∥C and ∥ · ∥K be the norms (or seminorms) over Rd, defined by the
inner products (2.2), respectively. We further define

∥v∥L∞
M(G) = ess sup

t∈G
∥v(t)∥M, ∥v∥L∞

M−1 (G) = ess sup
t∈G

∥v(t)∥M−1 , (3.10)

where M−1 is the inverse of the matrix M. We assume that for the given function f , the
linear problem (2.10) has a unique solution satisfying that

u ∈ C([0, T ]; Rd) ∩ C1([0, T ]; Rd).

Let ẽ := u− Ũ and R̃ be the residual of Ũ given by

R̃(t) := M−1(MŨ′′(t) +CŨ′(t) +KŨ(t)− f(t)), t ∈ Jn, 1 ≤ n ≤ N. (3.11)

6
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Theorem 3.1 Let u and U be the solution of (2.10) and (2.1), respectively. Let Ũ be the
reconstruction of U by (3.1). Then for any t ∈ [0, T ], there holds

max
0≤τ≤t

∥(u− Ũ)′(τ)∥M ≤ 2

∫ t

0
∥R̃(s)∥M ds, (3.12)

where R̃ is given by (3.11).

Proof. Subtracting (3.11) from (2.10) gives

Mẽ′′(t) +Cẽ′(t) +Kẽ(t) = −MR̃(t). (3.13)

Then, we test (3.13) by ẽ′ and integrate over t ∈ [0, τ ] to get∫ τ

0

(
⟨ẽ′′(s), ẽ′(s)⟩M + ⟨ẽ′(s), ẽ′(s)⟩C + ⟨ẽ(s), ẽ′(s)⟩K

)
ds

=

∫ τ

0
⟨−R̃(s), ẽ′(s)⟩M ds. (3.14)

Moreover, using integration by parts and noting that ẽ(0) = ẽ′(0) = 0, we arrive at

1

2
∥ẽ′(τ)∥2M +

∫ τ

0
∥ẽ′(s)∥2C ds+

1

2
∥ẽ(τ)∥2K =

∫ τ

0
⟨−R̃(s), ẽ′(s)⟩M ds, τ ∈ [0, t]. (3.15)

Hence, it follows from (3.15) and the Cauchy-Schwarz inequality that

1

2
( max
0≤τ≤t

∥ẽ′(τ)∥M)2 ≤ max
0≤τ≤t

∫ τ

0
|⟨R̃(s), ẽ′(s)⟩M| ds

≤
∫ t

0
|⟨R̃(s), ẽ′(s)⟩M| ds ≤ max

0≤τ≤t
∥ẽ′(τ)∥M

∫ t

0
∥R̃(s)∥M ds,

which readily yields

max
0≤τ≤t

∥ẽ′(τ)∥M ≤ 2

∫ t

0
∥R̃(s)∥M ds, (3.16)

as required.

Now, we proceed with the efficiency of the above a posteriori error estimates.

Lemma 3.1 For t ∈ Jn, 1 ≤ n ≤ N ,

U(t)− P0U(t) = (t− tn−1 −
1

2
kn)U̇

n
−. (3.17)

Moreover, for 1 ≤ n ≤ N ,

∥(U− Ũ)′∥L∞
M(Jn) = kn∥Ũ′′∥L∞

M(Jn). (3.18)

Furthermore, there holds

2

∫ t

0
∥R̃(s)∥M ds ≤

n∑
m−1

(
2

3
k3m∥KŨ(3)∥L∞

M−1(Jm) + tk2m∥KŨ′′∥L∞
M−1 (Jm)

+
1

2
k2m∥KU′∥L∞

M−1 (Jm) + k2m∥CŨ′′∥L∞
M−1 (Jm)

+ 2

∫
Jm

∥f(s)− P0f(s)∥M−1 ds

)
. (3.19)

7

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.3, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

568 Jianguo Huang et al 562-575



Proof. First of all, recalling the definition of (Local) L2 projection (3.9), we can deduce
that

P0U(t) =
1

kn

∫
Jn

U(s)ds =
1

kn

∫
Jn

(
Un−1 + (s− tn−1)U̇

n
−
)
ds

= Un−1 +
1

2
knU̇

n
−, t ∈ Jn,

so

U(t)− P0U(t) = (t− tn−1 −
1

2
kn)U̇

n
−, t ∈ Jn. (3.20)

On the other hand, differentiating (3.6) with respect to the variable t directly yields

(U− Ũ)′(t) = −(t− tn−1)Ũ
′′, t ∈ Jn, (3.21)

which implies (3.18).
Moreover, we have by (3.8) and (3.11) that

MR̃ = K(Ũ− P0U) +C
(
Ũ′ − P0(U

′)
)
− (f − P0f). (3.22)

Write
K(Ũ− P0U) = K(Ũ−U) +K(U− P0U),

and owing to the fact thatP0(U
′) = U′ we know

C
(
Ũ′ − P0(U

′)
)
= C(Ũ−U)′.

Hence, the equation (3.22) can be reformulated as

MR̃(s) = K(Ũ−U)(s) +K(U− P0U)(s) +C(Ũ−U)′(s)− (f − P0f)(s),

which, in conjunction with (3.6), (3.20) and (3.21), yields the estimate (3.19).

Now, let us continue to discuss the lower and upper a posteriori error bound for the
method (2.1).

Theorem 3.2 (lower and upper bounds) Let u and U be the solution of (2.10) and
(2.1), respectively. Let Ũ be the reconstruction of U by (3.1). Then for t ∈ [0, T ], 1 ≤ n ≤
N ,

max
1≤m≤n

k2m∥Ũ′′∥L∞
M(Jm) ≤ ∥(u−U)′∥L∞

M(0,t) + max
0≤τ≤t

∥(u− Ũ)′(τ)∥M

≤ max
1≤m≤n

km∥Ũ′′∥L∞
M(Jm) + 4

∫ t

0
∥R̃(s)∥M ds, (3.23)

where the a posteriori term R̃ is given by (3.11).

Proof. Using the triangle inequality and (3.18), we obtain

max
1≤m≤n

k2m∥Ũ′′∥L∞
M(Jm) = ∥(U− Ũ)′∥L∞

M(0,t)

≤ ∥(u−U)′∥L∞
M(0,t) + max

0≤τ≤t
∥(u− Ũ)′(τ)∥M, (3.24)
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which implies the left side estimate of (3.23). Again, by the triangle inequality, (3.18) and
(3.16), we have

∥(u−U)′∥L∞
M(0,t) ≤ max

0≤τ≤t
∥(u− Ũ)′(τ)∥M + ∥(U− Ũ)′(τ)∥L∞

M(0,t)

≤ max
1≤m≤n

km∥Ũ′′∥L∞
M(Jm) + 2

∫ t

0
∥R̃(s)∥M ds. (3.25)

This together with (3.16) and (3.24) yields

max
0≤τ≤t

∥(u− Ũ)′(τ)∥M + ∥(u−U)′(τ)∥L∞
M(0,t)

≤ max
1≤m≤n

km∥Ũ′′∥L∞
M(Jm) + 4

∫ t

0
∥R̃(s)∥M ds,

which leads to the right side estimate of (3.23).

4 An adaptive algorithm

Motivated by Theorem 3.2 (cf. the estimate (3.25)), we are tempted to introduce a
posteriori error estimator of the time-stepping method (2.1) for solving even a nonlinear
problem (1.1) heuristically. That means, let

η := max
1≤n≤N

kn∥Ũ′′∥L∞
M(Jn) + 2

∫ T

0
∥R̃(s)∥Mds, (4.1)

where R̃ is the residual of a nonlinear problem, defined by

R̃(t) = M−1

(
MŨ′′(t) + F

(
t, Ũ(t), Ũ′(t)

))
, t ∈ Jn, 1 ≤ n ≤ N.

Then the quantity η may be viewed as a posteriori error estimator for the method (2.1).
Until now, it is beyond our power to develop reliability and efficiency estimates for such an
estimator.

Based on the above error estimator, using the error equidistribution strategy as used
in [4, 20], we can construct the error indicator corresponding to the subinterval Jn as

Θ := 2 max { Θ1, Θ2 } , (4.2)

where

Θ1 := kn∥Ũ′′∥L∞
M(Jn), Θ2 := 2

T

kn

∫
Jn

∥R̃(s)∥Mds.

The magnitude of Θ affects the choice of kn, the length of the subinterval Jn.
Next, let us study how to compute the quantities Θ1 and Θ2 after we get U̇n

− at each
time step by (2.1). First of all, from (3.5) and the definition of Θ1, we have

Θ1 = ∥U̇n
− − U̇n−1

− ∥M . (4.3)

For deriving Θ2, we should obtain R̃(t) in advance. It follows from (3.4) that

Ũ(t) = Ũ(tn−1) + knU̇
n−1
− Φ0(ξ) + knU̇

n
−Φ1(ξ),

Ũ′(t) = U̇n−1
− (1− ξ) + U̇n

−ξ, Ũ′′(t) =
1

kn
(−U̇n−1

− + U̇n
−),

(4.4)

9
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where ξ = (t− tn−1)/kn and Φ0, Φ1 are defined as in (3.2).
Furthermore, in actual computation, we will use the Gaussian quadrature formula (cf.

[23]) to evaluate Θ2 numerically. In other words, for t ∈ Jn, 1 ≤ n ≤ N ,∫
Jn

∥R̃(t)∥Mdt ≈
Ng∑
j=1

knωj∥R̃(tn−1 + knζj)∥M, (4.5)

where ζj and ωj (1 ≤ j ≤ Ng) are the Gaussian quadrature points and weights on reference
interval [0, 1], respectively.

Remark 4.1 Let us discuss the cost of computing Θ2 briefly. It is evident that the cost is
taken in numerical integration by Gaussian quadrature formula (4.5). Since the quadrature
method is highly accurate, very few nodes are enough for actual computation (with the
number ≤ 10). Next, we have to evaluate ∥R̃(·)∥M at the quadrature nodes, the main cost of
which corresponds to numerical solution of a linear system with M as a coefficient matrix.
Generally speaking, the mass matrix M is a well-conditioned symmetric positive definite
matrix, so the linear system can be solved by the conjugate gradient method very efficiently.
According to the above analysis, we find that the cost for computing Θ2 is inexpensive.

With the help of the previous preparations and using some ideas implied in the Runge-
Kutta-Felberg method (cf. [23]), we are ready to present the following Algorithm 1 to
compute the numerical solution of the problem (1.1) by using the adaptive time-stepping
strategy.

Algorithm 1 Adaptive Time Stepping Method

Given a tolerance ϵ, a parameter δ ∈ (0, 1), and the max (min) time step size kmax (kmin)
by user
· Step 0: Initialize n = 1, t0 = 0, k1 = kmax, U

0 = u0, U̇
0
− = v0

· WHILE tn−1 < T
· Step 1: Given tn−1, kn, U

n−1, U̇n−1
−

· 1(a): Get the numerical solution Un, U̇n
− by (2.7)

· 1(b): Get the approximation Ũn by (3.4)
· 1(c): Evaluate Θ1 by (4.3)
· 1(d): Get R̃(t) at Gaussian quadrature points by (4.4) and (3.11)
· 1(e): Summation to get the value of Θ2 by (4.5)
· 1(f): Get Θ by (4.2)
· Step 2: If δϵ ≤ Θ ≤ ϵ, kn+1 = kn, go to Step 5
· Step 3: If Θ < δϵ, kn+1 = min{2kn, kmax}, go to Step 5
· Step 4: If Θ > ϵ, kn = max{kn/2, kmin}, go to Step 1
· Step 5: Let tn = tn−1 + kn, n = n+ 1, go to loop condition judgment
· END WHILE

Remark 4.2 Similar to the Runge-Kutta-Felberg method (cf. [23]), the parameter δ ∈ (0, 1)
in Algorithm 1 is used to determine how to enlarge the step size during the computation
process (see Step 3 in Algorithm 1). The choice of δ is very technical. If δ is chosen too
small, the over-refined meshes would be used in time, deteriorating the efficiency of Algo-
rithm 1. If it is chosen too large, the algorithm would enlarge the step size more frequently,
increasing the extra computational cost remarkably. From our numerical experience, it’s
better to choose δ such that 1/32 ≤ δ ≤ 1/2.

10
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5 Numerical experiments

5.1 Efficiency of the estimators

Example 5.1 (Nonlinear lumped mass system) For illustrating the effectiveness of
the a posteriori error estimates developed in the previous sections, we first study the vi-
bration of a multi-structure model, a similar one as given in [3]. As shown in Figure 3, the
structure consists of two rigid elements (vehicles) with lumped masses equal to m1 and m2,
respectively; these elements are connected with each other by soften, classical and harden
springs with linear damping. And the restoring force of these springs are given as follows:

1m 2m

1c 2c

h
k

Harden Spring Soften Spring 

s
k

Damping Damping

Classical

Spring

c
k

1u 2u

Figure 3: Example: 5.1: The nonlinear dynamic system.

Classical Spring (kc) : fc = −κ1u, (5.1)

Softening Spring (ks) : fs = −κ2 tanh(u), (5.2)

Hardening Spring (kh) : fh = −κ3u(1 + κ4u
2). (5.3)

In our actual computation, we choose m1 = m2 = 1, and choose the spring stiffness as
κ1 = κ2 = κ3 = 1. The damping coefficients are taken as c1 = c2 = 1. Hence by d
Alembert’s principle, we can get the following system of nonlinear dynamic equations,(

u1(t)
u2(t)

)′′
=

(
c1u

′
1(t) + fs

(
u1(t)

)
+ fc

(
u1(t)

)
− fc

(
u2(t)

)
− f1(t)

c2u
′
2(t) + fh

(
u2(t)

)
+ fc

(
u2(t)

)
− fc

(
u1(t)

)
− f2(t)

)
, (5.4)

where f1 and f2 are the external forces. We choose T = 1 and the exact solution to be
u(t) = (u1, u2)

T = (sin(πt), sin(2πt))T , so the force term f can be computed by the equations
(5.4). We solve the solution of the dynamical system by the method (2.1) combined with
the right side scheme (2.7).

In our numerical computation, for a given natural number N , we adopt the uniform
partition in time with the mesh size k = T/N , 1 ≤ n ≤ N . To show the computational
performance of our method, define

Ed = max
0≤τ≤T

∥(u−U)′(τ)∥M , Et = max
0≤τ≤T

∥(u− Ũ)(τ)∥M ,

Etd = max
0≤τ≤T

∥(u− Ũ)′(τ)∥M , ε1 = 2

∫ T

0
∥R̃(s)∥M ds ,

ε2 = max
0≤n≤N

kn∥Ũ′′∥L∞
M(Jn) , ε3 = η = 2ε1 + ε2 .

Effld =
ε2

Ed + Etd
, Effud =

ε3
Ed + Etd

.

In Figure 4(a) we present the values of Et and ε1 as well as their orders (which are 1).
In Figure 4(b) we give the estimates of the reconstruction solution Et and Etd as well as

11
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Figure 4: Example 5.1. Numerical results corresponding to estimators in Theorem 3.12 and
Theorem 3.2.

their orders. Moreover, we present the values of these effectivity indices in Figure 4(c), from
which we can observe that 0.77 ≈ Effld < 1 < Effud ≈ 3.98. Therefore, our a posteriori
error estimator (4.1) is rather efficient.

5.2 Efficiency of the adaptive algorithm

Example 5.2 (Nonlinear Klein-Gordon equation) In order to test the effectiveness
of our adaptive Algorithm 1, we consider the nonlinear Klein-Gordon equations (cf. [8]),

utt(x, t)−∆u(x, t) + βut(x, t) + u2(x, t) = f(x, t),

equipped with the homogeneous Dirichlet boundary condition and the initial conditions. Af-
ter the discretization by P1 conforming element in the space direction, we obtain the follow-
ing system of nonlinear ODEs,{

Mu′′(t) +Cu′(t) +Ku(t) +Mu2(t) = f(t), 0 < t < T,

u(0) = u0, u′(0) = v0,
(5.5)

where u is the vector representation of the finite element solution uh in terms of the shape
basis functions {φi}, i.e., uh(x, t) =

∑M
i=1{u(t)}iφi(x). The mass matrix M, the stiff ma-

trix K, the damping matrix C and the force F are defined respectively by [M]ij =
∫
Ω φjφidΩ,

[K]ij =
∫
Ω∇φj · ∇φidΩ, [C]ij = β

∫
Ω φjφidΩ and {f}i =

∫
Ω f(t)φidΩ. In the numerical

computation, we choose the damping coefficient β = 0.05 and the terminal time T = 1.0.
Consider the 1-dim case of the above problem with the force f given such that the exact
solution is

u(x, t) = e−t/2x(1− x) sin((1.5π + actan(500(2t− 1))x), 0 < x < 1,

which varies rapidly around t = 0.5. After the discretization in space direction with a
fine uniform mesh h = 1/5000, we solve the semi-discrete problem by using Algorithm
1 combined with the semi-side scheme (2.9) with F split into FR := Cu′ + Ku − f and
FL := Mu2, so that we only require to solve a linear system at each time subinterval. When
implementing Algorithm 1 in this example, we set the related parameters by ϵ = 2.5e − 1,
δ = 1/2, kmax = 1e− 1 and kmin = 2e− 4.

To show the efficiency of Algorithm 1, we also carry out the numerical simulation using
the uniform time stepping method with the same number of subintervals as for the adaptive
method. The numerical solution obtained by the uniform time stepping method with k =
kmin/100 is used as a reference solution.
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Figure 5: Example 5.2. Comparison of numerical results.

From Figure 5(a) we can see the time step size becomes extremely small around t = 0.5
in order to capture the rapid change of the solution, and the step size will become large
automatically when the solution varies slowly, which illustrates the efficiency of Algorithm
1. The numerical results with Algorithm 1 and the uniform time stepping method, and the
reference solution are shown in Figures 5(b), 5(c) and 5(d), respectively, from which we
may find that the adaptive method can approximate the exact solution very well even if it
varies rapidly, but the uniform time stepping method fails. We mention further that for the
adaptive method in this example, the total CPU time used is approximately 147.1 s, while
the one for computing Θ is only 7.4 s, only covers a very small amount of the total time.
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Abstract

Here we produce an interesting fractional means scalar inequality.

2010 AMS Subject Classi�cation: 26A33, 26D10, 26D15, 26D20.
Key Words and Phrases: Means inequality, fractional derivative.
We make

Remark 1 Let � > 0, n := d�e (d�e ceiling of the number), f (�; y) 2 ACn ([a; b]),
8 y 2 [c; d] (it means @n�1f(�;y)

@xn�1 2 AC ([a; b]), 8 y 2 [c; d]). Then the left Caputo
partial fractional derivative with respect to x, is given by (see [1], p. 270)

@��af (x; y)

@x�
=

1

� (n� �)

Z x

a

(x� t)n���1 @
nf (t; y)

@xn
dt; (1)

8 y 2 [c; d], and it exists almost everywhere for x in [a; b], � denotes the gamma
function.
Then, we get the left Caputo fractional Taylor formula ([2], p. 54)

f (x; y) =
n�1X
k=0

@kf (a; y)

@xk
(x� a)k + 1

� (�)

Z x

a

(x� t)��1 @
�
�af (t; y)

@x�
dt; (2)

8 x 2 [a; b], for each y 2 [c; d] :
Above

�R x
a
(x� t)��1 @

�
�af(t;y)
@x� dt

�
2 ACn ([a; b]), 8 y 2 [c; d] :

Let now f (x; �) 2 ACn ([c; d]), 8 x 2 [a; b] (it means @n�1f(x;�)
@yn�1 2 AC ([c; d]),

8 x 2 [a; b]). Then the left Caputo partial fractional derivative with respect to
y, is given by

@��cf (x; y)

@y�
=

1

� (n� �)

Z y

c

(y � s)n���1 @
nf (x; s)

@yn
ds; (3)

8 x 2 [a; b], and it exists almost everywhere for y in [c; d].
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Then, we get the left Caputo fractional Taylor formula

f (x; y) =
n�1X
k=0

@kf (x; c)

@yk
(y � c)k + 1

� (�)

Z y

c

(y � s)��1 @
�
�cf (x; s)

@y�
ds; (4)

8 y 2 [c; d], for each x 2 [a; b] :
Above

�R y
c
(y � s)��1 @

�
�cf(x;s)
@y� ds

�
2 ACn ([c; d]), 8 x 2 [a; b] :

Assume

@kf (a; y)

@xk
= 0, for k = 1; :::; n� 1; 8 y 2 [c; d] ; (5)

we get

f (x; y)� f (a; y) = 1

� (�)

Z x

a

(x� t)��1 @
�
�af (t; y)

@x�
dt: (6)

Additionally assume f (a; y) = 0, 8 y 2 [c; d], then

f (x; y) =
1

� (�)

Z x

a

(x� t)��1 @
�
�af (t; y)

@x�
dt; (7)

8 y 2 [c; d] ; 8 x 2 [a; b] :
Assume

@kf (x; c)

@yk
= 0, for k = 1; :::; n� 1; 8 x 2 [a; b] ; (8)

we get

f (x; y)� f (x; c) = 1

� (�)

Z y

c

(y � s)��1 @
�
�cf (x; s)

@y�
ds; (9)

8 y 2 [c; d] ; 8 x 2 [a; b] :
Additionally assume that f (x; c) = 0, 8 x 2 [a; b], then

f (x; y) =
1

� (�)

Z y

c

(y � s)��1 @
�
�cf (x; s)

@y�
ds; (10)

8 y 2 [c; d] ; 8 x 2 [a; b] :
Assuming (5) and (8), we get

2f (x; y)� f (a; y)� f (x; c) =

1

� (�)

�Z x

a

(x� t)��1 @
�
�af (t; y)

@x�
dt+

Z y

c

(y � s)��1 @
�
�cf (x; s)

@y�
ds

�
; (11)

8 x 2 [a; b] ; 8 y 2 [c; d] :
Additionally assume that f (a; y) = 0, 8 y 2 [c; d], and f (x; c) = 0, 8

x 2 [a; b], we obtain

f (x; y) =
1

2� (�)

�Z x

a

(x� t)��1 @
�
�af (t; y)

@x�
dt+

Z y

c

(y � s)��1 @
�
�cf (x; s)

@y�
ds

�
;

(12)
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8 x 2 [a; b] ; 8 y 2 [c; d] :
We can rewrite (11) as follows:

f (x; y)�
�
f (a; y) + f (x; c)

2

�
=

1

2� (�)

�Z x

a

(x� t)��1 @
�
�af (t; y)

@x�
dt+

Z y

c

(y � s)��1 @
�
�cf (x; s)

@y�
ds

�
; (13)

8 x 2 [a; b] ; 8 y 2 [c; d] :
If 0 < � < 1, then n = 1, and (13) is valid without (5) and (8), which in

this case are void conditions.
Call

�f (x; y) := f (x; y)�
�
f (a; y) + f (x; c)

2

�
: (14)

Assume f 2 C ([a; b]� [c; d]), thenZ b

a

Z d

c

�f (x; y) dxdy =

Z b

a

Z d

c

f (x; y) dxdy�

 
(b� a)

R d
c
f (a; y) dy + (d� c)

R b
a
f (x; c) dx

2

!
: (15)

Hence it holds

1

(b� a) (d� c)

Z b

a

Z d

c

�f (x; y) dxdy =
1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dxdy�

0@ 1
(d�c)

R d
c
f (a; y) dy + 1

(b�a)
R b
a
f (x; c) dx

2

1A : (16)

Assume now that

@��af (x; y)

@x�
;
@��cf (x; y)

@y�
2 C ([a; b]� [c; d]) (17)

Clearly, it holds
j�f (x; y)j �

1

2� (�)

�Z x

a

(x� t)��1
����@��af (t; y)@x�

���� dt+ Z y

c

(y � s)��1
����@��cf (x; s)@y�

���� ds� �
1

2� (�)

�
(x� a)�

�





@��af@x�






1
+
(y � c)�

�





@��cf@y�






1

�
� (18)

1

2� (� + 1)

�
(b� a)�





@��af@x�






1
+ (d� c)�





@��cf@y�






1

�
:
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That is

j�f (x; y)j � 1

2� (� + 1)

�
(b� a)�





@��af@x�






1
+ (d� c)�





@��cf@y�






1

�
=: �: (19)

Hence
1

(b� a) (d� c)

�����
Z b

a

Z d

c

�f (x; y) dxdy

����� �
1

(b� a) (d� c)

Z b

a

Z d

c

j�f (x; y)j dxdy � �:

We have derived:

Theorem 2 Let � > 0, n := d�e, f (�; y) 2 ACn ([a; b]), 8 y 2 [c; d]; and

f (x; �) 2 ACn ([c; d]), 8 x 2 [a; b]. Assume @kf(a;y)
@xk

= 0, for k = 1; :::; n � 1;
8 y 2 [c; d] ; and @kf(x;c)

@yk
= 0, for k = 1; :::; n � 1; 8 x 2 [a; b] : Furthermore,

assume f 2 C ([a; b]� [c; d]) and @��af(x;y)
@x� ;

@��cf(x;y)
@y� 2 C ([a; b]� [c; d]) : Then������ 1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dxdy �

0@ 1
(b�a)

R b
a
f (x; c) dx+ 1

(d�c)
R d
c
f (a; y) dy

2

1A������
� 1

2� (� + 1)

�
(b� a)�





@��af@x�






1
+ (d� c)�





@��cf@y�






1

�
: (20)
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