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Abstract

In this paper, we propose and analyze an HIV dynamics model. The model can be seen as a generalization

of many HIV dynamics models presented in the literature since it incorporates (i) two classes of target cells,

CD4+ T cells and macrophages, (ii) two types of infected cells, short-lived infected cells and the long-lived

chronically infected cells, (iii) intracellular discrete delays, (iv) reverse transcriptase inhibitors (RTIs) drugs

with different drug efficacies on CD4+T cells and macrophages. The incidence rate of infection is represented

by a general function. A bifurcation parameter, known as the basic reproduction number, R0 is derived. We

established a set of conditions on the general function which are sufficient to determine the global dynamics

of the model. Using Lyapunov functionals and LaSalle’s invariance principle, the global asymptotic stability

of the two equilibria of the model is obtained. An example is presented and some numerical simulations are

conducted in order to illustrate the dynamical behavior.

Keywords: Delayed-HIV models; Chronically infected cells; Cocirculating target cells; Immune re-

sponses; Lyapunov method.

1 Introduction

Human immunodeficiency virus (HIV) is one of the most dangerous human viruses that destroys the immune

system and causes acquired immunodeficiency syndrome (AIDS). During the past decades, several HIV math-

ematical models have been presented and analyzed (see e.g. [1]-[25]). Global stability of equilibria has become

one of the most important features which help us to better understanding of the HIV dynamics. Thus, several

researchers have devoted extensive efforts to study the global stability of HIV infection models (see e.g. [7], [8],

[9], [11], [25], [14], [15], [16], [17], [22], [23], [19] and [24]). Some of these works assume that HIV infects only the

CD4+ T cells ([7], [8], [9], [11], [25], [22], [23], [19] and [24]), while, others assume that HIV infects two types of

immune cells, CD4+ T cells and macrophages ([14], [15], [18], [16] and [17]). Callaway and Perelson [3] pointed

out that there are two types of infected cells, short-lived infected cells (which produce the most amounts of

viruses) and the long-lived chronically infected cells. Moreover, the model presented in [3] incroporates reverse

transcriptase inhibitors (RTIs) drugs with different drug efficacies on CD4+T cells and macrophages.

Actually, there exists a time lag between the time the HIV contacts CD4+ T cells or macrophages and the

time the production of new infectious HIV particles. Intracellular time delay was first introduced into viral

infection model by Herz et al. [5]. Since then, several delayed HIV models have been investigated (see e.g.

[6], [7], [8], [9], [11], [25], [14], [17], [18], [22] and [19]). In a very recent work, Elaiw and Almualem [17] have
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presented the following delayed HIV model:

ẋ1(t) = λ1 − d1x1 − (1− ε)β̄1x1v, (1)

ẋ2(t) = λ2 − d2x2 − (1− χε)β̄2x2v,

ẏ1(t) = (1− q1)(1− ε)β̄1x1(t− τ1)v(t− τ1)− δ1y1,

ẏ2(t) = (1− q2)(1− χε)β̄2x2(t− τ2)v(t− τ2)− δ2y2,

ż1(t) = q1(1− ε)β̄1x1(t− τ1)v(t− τ1)− a1z1,

ż2(t) = q2(1− χε)β̄2x1(t− τ1)v(t− τ1)− a2z2,

v̇(t) =
2∑
i=1

(
Niδie

−niκiyi(t− κi) +Miaie
−hiωizi(t− ωi)

)
− uv(t) (2)

where xi, yi, zi, and v represent the concentrations of uninfected cells, short-lived infected cells, long-lived

chronically infected cells and free HIV particles, respectively, where i = 1, for the CD4+ T cells and i = 2,

for the macrophages. The birth and death rates of uninfected cells are given by λi and dixi, respectively.

Parameter β̄i denotes the infection rate constant. Parameters δi and ai are the death rate constants of the

two types of infected cells, and u is the clearance rate of HIV. The uninfected target cells become short-lived

infected and long-lived chronically infected cells with fractions (1 − qi) and qi, respectively, where qi.∈ (0, 1).

The average number of free viruses produced in the lifetime of the two types of infected cells are given by Ni

and Mi, respectively. Parameter τi represents for the time between viral contact with an uninfected cell of class

i, until it becomes infected but not yet producer cells. The loss of the cells during the delay period [t− τi, t] is

given by e−miτi , where mi > 0. The parameters κi and ωi represent the time necessary for producing new

infectious viruses from the short-lived and long-lived chronically infected cells, respectively. The factors e−niκi

and e−hiωi represent the loss of the two types of infected cells during the delay periods [t− κi, t] and [t− ωi, t],
where ni > 0 and hi > 0.

The immune system has two main responses to viral infections. The first is based on the Cytotoxic T

Lymphocyte (CTL) cells which are responsible to attack and kill the infected cells. The second immune response

is based on the antibodies that are produced by the B cells. The function of the antibodies is to attack the

viruses [1]. In some infections such as in malaria, the CTL immune response is less effective than the antibody

immune response [26]. Several mathematical models have been proposed to consider the antibody immune

response into the viral infection models (see [27]-[33])).

All the models presented in [27]-[33] are based on the assumption that, the virus attacks one class of target

cells. Moreover, model (1)-(2) did not consider the immune response. Therefore, our aim in this paper is to

propose an HIV dynamics model with humoral immunity. Our model generalize model (1)-(2) by taking into

account the humoral immune response. We use Lyapunov functionals and LaSalle’s invariance principle to prove

the global stability of all the equilibria of the models.

2 The model

In this section, we propose and analyze the following HIV model:

ẋi(t) = λi − dixi(t)− φi(xi(t), v(t)), i = 1, 2, (3)

ẏi(t) = (1− qi)e−miτiφi((t− τi), v(t− τi))− δiyi(t), i = 1, 2, (4)

żi(t) = qie
−miτiφi((t− τi), v(t− τi))− aizi(t), i = 1, 2, (5)

v̇(t) =
2∑
i=1

(
Nyiδie

−niκiyi(t− κi) +Mziaie
−riωizi(t− ωi)

)
− uv(t)− bv(t)f(w(t)), (6)

ẇ(t) = cv(t)− pw(t). (7)
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The incidence rate of infection is given by a general function φi(xi, v), where φ1(x1, v) = (1− ε)φ̄1(x1, v), and

φ2(x2, v) = (1−χε)φ̄2(x2, v). In addition, the neutralize rate of viruses is given by a general nonlinear function

f(w). Parameter b is the B cells neutralize rate, the antibody response is induced at a rate proportional to the

concentration of free viruses. Parameters c and p are the recruited rate and death rate constants of B cells,

respectively. All the parameters and variables of the model have the same meanings as given in (1)-(2).

2.1 Initial conditions

The initial conditions for system (3)-(7) take the form

x1(θ) = ϕ1(θ), y1(θ) = ϕ3(θ), z1(θ) = ϕ5(θ),

x2(θ) = ϕ2(θ), y2(θ) = ϕ4(θ), z2(θ) = ϕ6(θ),

v(θ) = ϕ7(θ), w(θ) = ϕ8(θ)

ϕj(θ) ≥ 0, θ ∈ [−%, 0), ϕj(0) > 0, j = 1, ..., 8, (8)

where % = max{τ1, τ2, κ1, κ2, ω1, ω2} and (ϕ1(θ), ϕ2(θ), ..., ϕ8(θ)) ∈ C([−%, 0],R8
≥0), where C is the Banach

space of continuous functions mapping the interval [−%, 0] into R8
≥0. By the fundamental theory of functional

differential equations [35], system (3)-(7) has a unique solution satisfying the initial conditions (8).

Assumption A1 Function φi, is continuously differentiable and satisfies the following:

(i) φi(xi, v) > 0, φi(xi, 0) = φi(0, v) = 0, for all xi > 0, v > 0, i = 1, 2,

(ii) ∂φi(xi,v)
∂v > 0, ∂φi(xi,v)

∂xi
> 0, for any xi > 0, v > 0. Furthermore, ∂φi(xi,0)∂v > 0 for any xi > 0, i = 1, 2.

Assumption A2 The function f(θ) is locally Lipschitz on [0,∞), and satisfies f(θ) > 0 for all θ > 0 and

f(0) = 0, and f(θ) is strictly increasing in [0,∞).

2.2 Non-negativity and boundedness of solutions

In the following, we establish the non-negativity and boundedness of solutions of system (3)-(7) with initial

conditions (8).

Proposition 1. Let (x1(t), x2(t), y1(t), y2(t), z1(t), z2(t), v(t), w(t)) be any solution of (3)-(7) satisfying the

initial conditions (8), then xi(t), yi(t), zi(t), i = 1, 2, v(t) and w(t) are all non-negative for t ≥ 0 and ultimately

bounded.

Proof. First, we prove that xi(t) > 0, i = 1, 2, for all t ≥ 0. Assume that xi(t) lose its positivity on some local

existence interval [0, l] for some constant l and let t∗i ∈ [0, l] be such that xi(t
∗
i ) = 0. From Eq. (3) we have

ẋi(t
∗
i ) = λi > 0. Hence xi(t) > 0 for some t ∈ (t∗i , t

∗
i + ε) , where ε > 0 is sufficiently small. This leads to a

contradiction and hence xi(t) > 0, for all t ≥ 0. Furthermore, from Eqs. (4)-(7) we have

yi (t) = yi (0) e−δit + (1− qi)e−miτi
t∫

0

e−δi(t−θ)φ(xi (θ − τi) , v (θ − τi))dθ, i = 1, 2,

zi (t) = zi (0) e−ait + qie
−miτi

t∫
0

e−ai(t−θ)φ(xi (θ − τi) , v (θ − τi))dθ, i = 1, 2,

v (t) = v (0) e
−

t∫
0

(u+bf(w(ζ)))dζ
+

t∫
0

e
−

t∫
θ

(u+bf(w(ζ)))dζ
2∑
i=1

(Nyiδie
−niκiyi(θ − κi) +Mziaie

−riωizi(θ − ωi))dθ,

w (t) = w(0)e−pt + c

t∫
0

e−p(t−θ)v(θ)dθ,

then yi(t) ≥ 0, zi(t) ≥ 0, i = 1, 2, v(t) ≥ 0 and w(t) ≥ 0, for all t ∈ [0, %]. By a recursive argument, we obtain

yi (t) ≥ 0, zi(t) ≥ 0, v(t) ≥ 0 and w(t) ≥ 0, i = 1, 2, for all t ≥ 0.
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Next we show the boundedness of the solutions. From Eq. (3) we have ẋi(t) ≤ λi − dixi(t), i = 1, 2. This

implies that lim supt→∞ xi(t) ≤ λi
di
, i = 1, 2. Let Ti(t) = e−miτixi(t− τi) + yi(t) + zi(t), i = 1, 2 then

Ṫi(t) = e−miτiλi − e−miτidixi(t− τi)− δiyi(t)− aizi(t)

≤ e−miτiλi − σi
(
e−miτixi(t− τi) + yi(t) + zi(t)

)
≤ λi − σiTi(t),

where σi = min{di, δi, ai}. Hence, lim supt→∞ Ti(t) ≤ Li, where Li =
λi
σi
. Since xi(t), yi(t) and zi(t) are all

non-negative, then lim supt→∞ yi(t) ≤ Li, and lim supt→∞ zi(t) ≤ Li for all t ≥ 0. Moreover,

v̇ =
2∑
i=1

(
Nyiδie

−niκiyi(t− κi) +Mziaie
−riωizi(t− ωi)

)
− uv − bv(t)f(w(t))

≤
2∑
i=1

(
Nyiδie

−niκi +Mziaie
−riωi

)
Li − uv.

Then lim supt→∞ v(t) ≤ L3, for all t ≥ 0, where L3 =
2∑
i=1

(Nyiδie
−niκi+Mzi

aie
−riωi)Li

u . Furthermore, ẇ =

cv − pw ≤ cL3 − pw, then lim supt→∞ w(t) ≤ L4, for all t ≥ 0, where L4 = cL3

p .Therefore, xi(t), yi(t), zi(t), v(t)

and w(t) are ultimately bounded.

2.3 Equilibria

Let Assumptions A1 (i) and A2 be satisfied, then system (3)-(7) has a disease-free equilibrium E0 =

(x01, x
0
2, 0, 0, 0, 0, 0, 0), where x0i = λi

di
, i = 1, 2. The system can also has another positive equilibrium

E1 = (x̃1, x̃2, ỹ1, ỹ2, z̃1, z̃2, ṽ, w̃) which is called endemic equilibrium. The coordinates of the endemic equi-

librium, if it exists satisfy the equalities:

λi = dix̃i + φi(x̃i, ṽ), δiỹi = (1− qi)e−miτiφi(x̃i, ṽ), aiz̃i = qie
−miτiφi(x̃i, ṽ),

uṽ =
2∑
i=1

(
Nyiδie

−niκi ỹi +Mziaie
−riωi z̃i

)
− bṽf(w̃), w̃ =

c

p
ṽ.

Then the basic infection reproduction number for system (3)-(7) is

R0 =

2∑
i=1

R0i =

2∑
i=1

((1− qi)Nyie−niκi + qiMzie
−riωi)e−miτi

u

∂φi(x
0
i , 0)

∂v
.

The term ∂φi(x
0
i , 0)/∂v represents the maximal average number of target cells of class i that infects by viruses,

and R01 denotes the basic infection reproduction number of the HIV dynamics with CD4+ T cells (in the

absence of macrophages) and R02 denotes the basic infection reproduction number of the HIV dynamics with

macrophages (in the absence of CD4+T cells), respectively. The parameter R0 determines whether the infection

can be established.

2.4 Global stability analysis

In this subsection, we establish a set of conditions which are sufficient for the global stability of the two equilibria

of system (3)-(7) employing Lyapunov method and LaSalle’s invariance principle. The following function will

be used throughout the paper H(s) = s− 1− ln s.

Assumption A3 The function φi, i = 1, 2 satisfies:

(i)
(
∂φi(xi,0)

∂v − ∂φi(x
0
i ,0)

∂v

) (
x0i − xi

)
≤ 0, for xi > 0,

(ii) φi(xi, v) ≤ v ∂φi(xi,0)∂v , for all xi, v > 0.

Theorem 1. Let Assumptions A1-A3 be satisfied and R0 ≤ 1, then the disease-free equilibrium E0 of

system (3)-(7) is GAS.
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Proof. Define a Lyapunov functional W0 as follows:

W0 =
2∑
i=1

γi

xi − x0i − xi∫
x0
i

lim
v→0+

φi(x
0
i , v)

φi(s, v)
ds+

Nyie
−niκi

γi
yi +

Mzie
−riωi

γi
zi

+

τi∫
0

φi(xi(t− θ), v(t− θ))dθ +
e−niκiNyiδi

γi

κi∫
0

yi(t− θ)dθ +
e−riωiMziai

γi

ωi∫
0

zi(t− θ)dθ


+ v +

b

c

w∫
0

f(θ)dθ,

where γi = e−miτi((1− qi)e−niκiNyi + qie
−riωiMzi), i = 1, 2. We calculate dW0

dt along the trajectories of system

(3)-(7) as:

dW0

dt
=

2∑
i=1

γi

[(
1− lim

v→0+

φi(x
0
i , v)

φi(xi, v)

)
(λi − dixi − φi(xi, v))

+
Nyie

−niκi

γi
((1− qi)e−miτiφi(xi(t− τi), v(t− τi))− δiy)

+
Mzie

−riωi

γi
(qie

−miτiφi(xi(t− τi), v(t− τi))− aizi)

+ φi(xi, v)− φi(xi(t− τi), v(t− τi))

+
e−niκiNyiδi

γi
(yi − yi(t− κi)) +

e−riωiMziai
γi

(zi − zi(t− ωi))
]

+
2∑
i=1

(
Nyiδie

−niκiyi(t− κi) +Mziaie
−riωizi(t− ωi)

)
− uv − bvf(w) +

b

c
f(w)(cv − pw). (9)

Collecting terms of Eq. (9) we get

dW0

dt
=

2∑
i=1

γi

[(
1− ∂φi(x

0
i , 0)/∂v

∂φi(xi, 0)/∂v

)
(λi − dixi) + φi(xi, v)

∂φi(x
0
i , 0)/∂v

∂φi(xi, 0)/∂v

]
− uv − bp

c
wf(w)

=
2∑
i=1

γi

[
λi

(
1− xi

x0i

)(
1− ∂φi(x

0
i , 0)/∂v

∂φi(xi, 0)/∂v

)
+ φi(xi, v)

∂φi(x
0
i , 0)/∂v

∂φi(xi, 0)/∂v

]
− uv − bp

c
wf(w)

=
2∑
i=1

γiλi

(
1− xi

x0i

)(
1− ∂φi(x

0
i , 0)/∂v

∂φi(xi, 0)/∂v

)
+

2∑
i=1

γiφi(xi, v)
∂φi(x

0
i , 0)/∂v

∂φi(xi, 0)/∂v
− uv − bp

c
wf(w). (10)

Using A3 we get

dW0

dt
≤

2∑
i=1

γiλi

(
1− xi

x0i

)(
1− ∂φi(x

0
i , 0)/∂v

∂φi(xi, 0)/∂v

)
+

2∑
i=1

γiv
∂φi(x

0
i , 0)

∂v
− uv − bp

c
wf(w)

=
2∑
i=1

γiλi

(
1− xi

x0i

)(
1− ∂φi(x

0
i , 0)/∂v

∂φi(xi, 0)/∂v

)
+ (R0 − 1)uv − bp

c
wf(w). (11)

By using Assumption A2, the last term is less than or equal zero. Therefore, If R0 ≤ 1 then dW0

dt ≤ 0 for all

x1, x2, v, w > 0. We note that, the solutions of the system (3)-(7) converge to Γ, the largest invariant subset of{
dW0

dt = 0
}

. From Eq. (11) we have dW0

dt = 0 iff xi = x0i , i = 1, 2, v = 0 and w = 0. The set Γ is invariant and

for any element belongs to Γ satisfies w = 0, v = 0 then v̇ = 0. We can see from Eq. (19) that

2∑
i=1

(
Nyiδie

−niκiyi(t− κi) +Mziaie
−riωizi(t− ωi)

)
= 0.

Since yi and zi are non-negative for i = 1, 2, then y1 = y2 = 0 and z1 = z2 = 0. It follows that, dW0

dt = 0 iff

xi = x0i , yi = zi = v = w = 0, i = 1,2. From LaSalle’s invariance principle, E0 is GAS.
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To establish the global stability of the endemic equilibrium, we need the following condition.

Assumption A4 Function φi(xi, v) satisfies the following:(
φi(xi, v)

φi(xi, ṽ)
− v

ṽ

)(
1− φi(xi, ṽ)

φi(xi, v)

)
≤ 0, xi, v > 0

Theorem 2. Let Assumptions A1, A2 and A4 hold true and the endemic equilibrium E1 of system (3)-(7)

exists, then E1 is GAS.

Proof. We consider the Lyapunov functional W1 as:

W1 =
2∑
i=1

γi

xi − x̃i − xi∫
x̃i

φi(x̃i, ṽ)

φi(s, ṽ)
ds+

Nyie
−niκi

γi
ỹiH

(
yi
ỹi

)

+
Mzie

−riωi

γi
z̃iH

(
zi
z̃i

)
+ φi(x̃i, ṽ)

τi∫
0

H

(
φi(xi(t− θ), v(t− θ))

φi(x̃i, ṽ)

)
dθ

+
e−niκiNyiδiỹi

γi

κi∫
0

H

(
yi(t− θ)

ỹi

)
dθ +

e−riωiMziaiz̃i
γi

ωi∫
0

H

(
zi(t− θ)

z̃i

)
dθ

+ ṽH
(v
ṽ

)

+
b

c

w∫
w̃

(f(θ)− f(w̃))dθ.

Calculating dW1

dt along the solutions of system (3)-(7) we obtain

dW1

dt
=

2∑
i=1

γi

[(
1− φi(x̃i, ṽ)

φi(xi, ṽ)

)
(λi − dixi − φi(xi, v))

+
Nyie

−niκi

γi

(
1− ỹi

yi

)
((1− qi)e−miτiφi(xi(t− τi), v(t− τi))− δiyi)

+
Mzie

−riωi

γi

(
1− z̃i

zi

)
(qie

−miτiφi(xi(t− τi), v(t− τi))− aizi)

+ φi(xi, v)− φi(xi(t− τi), v(t− τi)) + φi(x̃i, ṽ) ln

(
φi(xi(t− τi), v(t− τi))

φi(xi, v)

)
+
e−niκiNyiδiỹi

γi

(
yi
ỹi
− yi(t− κi)

ỹi
+ ln

(
yi(t− κi)

yi

))
+
e−riωiMziaiz̃i

γi

(
zi
z̃i
− zi(t− ωi)

z̃i
+ ln

(
zi(t− ωi)

zi

))]
+

(
1− ṽ

v

)( 2∑
i=1

(
Nyiδie

−niκiyi(t− κi) +Mziaie
−riωizi(t− ωi)

)
− uv − bvf(w)

)

+
b

c
(f(w)− f(w̃))(cv − pw). (12)
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Collecting terms of Eq. (12) we get

dW1

dt
=

2∑
i=1

γi

[(
1− φi(x̃i, ṽ)

φi(xi, ṽ)

)
(λi − dixi) + φi(xi, v)

φi(x̃i, ṽ)

φi(xi, ṽ)
+
Nyie

−niκiδi
γi

ỹi +
Mzie

−riωiai
γi

z̃i

− (1− qi)e−miτiNyie−niκi
γi

ỹiφi(xi(t− τi), v(t− τi))
yi

− qie
−miτiMzie

−riωi

γi

z̃iφi(xi(t− τi), v(t− τi))
zi

+ φi(x̃i, ṽ) ln

(
φi(xi(t− τi), v(t− τi))

φi(xi, v)

)
+
e−niκiNyiδiỹi

γi
ln

(
yi(t− κi)

yi

)
+
e−riωiMziaiz̃i

γi
ln

(
zi(t− ωi)

zi

)]
−

2∑
i=1

Nyiδie
−niκi ṽyi(t− κi)

v
−

2∑
i=1

Mziaie
−riωi ṽzi(t− ωi)

v
− uv + uṽ

+ bṽf(w)− bp

c
wf(w)− bvf(w̃) +

bp

c
wf(w̃).

Using the equilibrium conditions for E1:

λi = dix̃i + φi(x̃i, ṽ), (1− qi)e−miτiφi(x̃i, ṽ) = δiỹi, qie
−miτiφi(x̃i, ṽ) = aiz̃i,

uṽ =
2∑
i=1

(
Nyiδie

−niκi ỹi +Mziaie
−riωi z̃i

)
− bṽf(w̃), w̃ =

c

p
ṽ

and the following equality

uv = uṽ
v

ṽ
=
v

ṽ

(
2∑
i=1

(Nyiδie
−niκi ỹi +Mziaie

−riωi z̃i)− bṽf(w̃)

)
=
v

ṽ

2∑
i=1

γiφi(x̃i, ṽ)− bvf(w̃),

we obtain

dW1

dt
=

2∑
i=1

γi

[
dix̃i

(
1− xi

x̃i

)(
1− φi(x̃i, ṽ)

φi(xi, ṽ)

)
+ φi(x̃i, ṽ)

(
1− φi(x̃i, ṽ)

φi(xi, ṽ)

)
+ φi(x̃i, ṽ)

(
φi(xi, v)

φi(xi, ṽ)
− v

ṽ

)
+

2Nyie
−niκiδi
γi

ỹi +
2Mzie

−riωiai
γi

z̃i

− Nyie
−niκiδiỹi
γi

(
ỹiφi(xi(t− τi), v(t− τi))

yiφi(x̃i, ṽ)
+
ṽyi(t− κi)

vỹi

)
− Mzie

−riωiaiz̃i
γi

(
z̃iφi(xi(t− τi), v(t− τi))

ziφi(x̃i, ṽ)
+
ṽzi(t− ωi)

vz̃i

)
+
Nyie

−niκiδiỹi
γi

(
ln

(
φi(xi(t− τi), v(t− τi))

φi(xi, v)

)
+ ln

(
yi(t− κi)

yi

))
+
Mzie

−riωiaiz̃i
γi

(
ln

(
φi(xi(t− τi), v(t− τi))

φi(xi, v)

)
+ ln

(
zi(t− ωi)

zi

))]
− bṽf(w̃) + bṽf(w)− bp

c
wf(w) +

bp

c
wf(w̃). (13)

Using the following equalities
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ln

(
φi(xi(t− τi), v(t− τi))

φi(xi, v)

)
= ln

(
φi(x̃i, ṽ)

φi(xi, ṽ)

)
+ ln

(
ỹiφi(xi(t− τi), v(t− τi))

yiφi(x̃i, ṽ)

)
+ ln

(
vφi(xi, ṽ)

ṽφi(xi, v)

)
+ ln

(
ṽyi
vỹi

)
,

ln

(
yi(t− κi)

yi

)
= ln

(
ṽyi(t− κi)

vỹi

)
+ ln

(
vỹi
ṽyi

)
,

ln

(
φi(xi(t− τi), v(t− τi))

φi(xi, v)

)
= ln

(
φi(x̃i, ṽ)

φi(xi, ṽ)

)
+ ln

(
z̃iφi(xi(t− τi), v(t− τi))

ziφi(x̃i, ṽ)

)
+ ln

(
vφi(xi, ṽ)

ṽφi(xi, v)

)
+ ln

(
ṽzi
vz̃i

)
,

ln

(
zi(t− ωi)

zi

)
= ln

(
ṽzi(t− ωi)

vz̃i

)
+ ln

(
vz̃i
ṽzi

)
.

Eq. (13) can be rewritten as

dW1

dt
=

2∑
i=1

[
γidix̃i

(
1− xi

x̃i

)(
1− φi(x̃i, ṽ)

φi(xi, ṽ)

)
+ γiφi(x̃i, ṽ)

(
φi(xi, v)

φi(xi, ṽ)
− v

ṽ
− 1 +

vφi(xi, ṽ)

ṽφi(xi, v)

)
− γiφi(x̃i, ṽ)

(
φi(x̃i, ṽ)

φi(xi, ṽ)
− 1− ln

(
φi(x̃i, ṽ)

φi(xi, ṽ)

))
− γiφi(x̃i, ṽ)

(
vφi(xi, ṽ)

ṽφi(xi, v)
− 1− ln

(
vφi(xi, ṽ)

ṽφi(xi, v)

))
−Nyie−niκiδiỹi

(
ỹiφi(xi(t− τi), v(t− τi))

yiφi(x̃i, ṽ)
− 1− ln

(
ỹiφi(xi(t− τi), v(t− τi))

yiφi(x̃i, ṽ)

))
−Nyie−niκiδiỹi

(
ṽyi(t− κi)

vỹi
− 1− ln

(
ṽyi(t− κi)

vỹi

))
−Mzie

−riωiaiz̃i

(
z̃iφi(xi(t− τi), v(t− τi))

ziφi(x̃i, ṽ)
− 1− ln

(
z̃iφi(xi(t− τi), v(t− τi))

ziφi(x̃i, ṽ)

))
−Mzie

−riωiaiz̃i

(
ṽzi(t− ωi)

vz̃i
− 1− ln

(
ṽzi(t− ωi)

vz̃i

))]
− bp

c
(w − w̃)(f(w)− f(w̃)). (14)

Then Eq. (14) becomes,

dW1

dt
=

2∑
i=1

[
γidix̃i

(
1− xi

x̃i

)(
1− φi(x̃i, ṽ)

φi(xi, ṽ)

)
+ γiφi(x̃i, ṽ)

(
φi(xi, v)

φi(xi, ṽ)
− v

ṽ

)(
1− φi(xi, ṽ)

φi(xi, v)

)
− γiφi(x̃i, ṽ)

{
H

(
φi(x̃i, ṽ)

φi(xi, ṽ)

)
+H

(
vφi(xi, ṽ)

ṽφi(xi, v)

)}
−Nyie−niκiδiỹi

{
H

(
ỹiφi(xi(t− τi), v(t− τi))

yiφi(x̃i, ṽ)

)
+H

(
ṽyi(t− κi)

vỹi

)}
−Mzie

−riωiaiz̃i

{
H

(
z̃iφi(xi(t− τi), v(t− τi))

ziφi(x̃i, ṽ)

)
+H

(
ṽzi(t− ωi)

vz̃i

)}]
− bp

c
(w − w̃)(f(w)− f(w̃)).

By using Assumption A2, the last term is less than or equal zero. It is easy to see that, if x̃1, x̃2, ỹ1, ỹ2, z̃1, z̃2, ṽ

and w̃ > 0, then dW1

dt ≤ 0 for all x1, x2, y1, y2, z1, z2, v and w > 0. The solutions of the system limit to Γ, the

largest invariant subset of {dW1

dt = 0}. It can be seen that dW1

dt = 0 if and only if xi = x̃i, v = ṽ, w = w̃ and

H = 0 i.e.
ṽyi(t− κi)

vỹi
=
ṽzi(t− ωi)

vz̃i
= 1 (15)

From Eq. (15), we have yi = ỹi and zi = z̃i . It follows that dW1

dt equal to zero at E1. LaSalle’s invariance

principle implies the global stability of E1.
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3 Example and numerical simulations

We introduce the following example:

ẋi(t) = λi − dixi(t)−
β
i
xkii (t)v(t)

(xkii (t) + ρi)(v(t) + ςi)
, i = 1, 2, (16)

ẏi(t) = (1− qi)e−miτi
β
i
xkii (t− τi)v(t− τi)

(xkii (t− τi) + ρ
i
)(v(t− τi) + ςi)

− δiyi(t), i = 1, 2, (17)

żi(t) = qie
−miτi βix

ki
i (t− τi)v(t− τi)

(xkii (t− τi) + ρ
i
)(v(t− τi) + ςi)

− aizi(t), i = 1, 2, (18)

v̇(t) =
2∑
i=1

(
Nyiδie

−niκiyi(t− κi) +Mziaie
−riωizi(t− ωi)

)
− uv(t)− bv(t)w(t), (19)

ẇ(t) = cv(t)− pw(t). (20)

For this example we have

φi(xi, v) =
β
i
xkii v

(xkii + ρ
i
)(v + ςi)

, f(w) = w (21)

where ki, ρi , ςi > 0, i = 1, 2. Function φi satisfies the following:

∂φi(xi, v)

∂xi
=

kiρiβix
ki−1
i v

(xkii + ρ
i
)2(v + ςi)

> 0, for all xi > 0, v > 0,

∂φi(xi, v)

∂v
=

ςiβix
ki
i

(xkii + ρi)(v + ςi)2
> 0, for all xi > 0,

∂φi(xi, 0)

∂v
=

β
i
xkii

ςi(x
ki
i + ρ

i
)
> 0, for all xi > 0, v > 0,

φi(xi, v) =
βix

ki
i v

(xkii + ρ
i
)(v + ςi)

≤ β
i
xkii v

ςi(x
ki
i + ρ

i
)

= v
∂φi(xi, 0)

∂v
, for all xi > 0, v > 0,(

φi(xi, v)

φi(xi, ṽ)
− v

ṽ

)(
1− φi(xi, ṽ)

φi(xi, v)

)
=

−ςi(v − ṽ)2

ṽ(ṽ + ςi)(v + ςi)
≤ 0, for all xi, v > 0.

Thus Assumption A1-A4 hold true and Theorems 1 and 2 are applicable. The basic reproduction number in

this case is given by

R0 =
2∑
i=1

R0i =
2∑
i=1

((1− qi)e−niκiNyi + qie
−riωiMzi)e

−miτi

u

β
i
(x0i )

ki

ςi((x0i )
ki + ρ

i
)
.

Without loss of generality we let, τe = τ1 = τ2 = κ1 = κ2 = ω1 = ω2. In Table 1, we present the values of some

parameters of model (16)-(20). The effect of the drug efficacy ε and time delay τe on the qualitative behavior

of the system will be studied below in details. All computations are carried out by MATLAB.

3.1 Evolution of the system state with different initial conditions

We have chosen three different initial conditions as follows:

IC1: ϕ1(θ) = 600, ϕ2(θ) = 200, ϕ3(θ) = 1, ϕ4(θ) = 0.5, ϕ5(θ) = 1, ϕ6(θ) = 2, ϕ7(θ) = 1, ϕ8(θ) = 0.02,

IC2: ϕ1(θ) = 700, ϕ2(θ) = 350, ϕ3(θ) = 2, ϕ4(θ) = 2, ϕ5(θ) = 3, ϕ6(θ) = 5, ϕ7(θ) = 6, ϕ8(θ) = 1

IC3: ϕ1(θ) = 800, ϕ2(θ) = 500, ϕ3(θ) = 3.5, ϕ4(θ) = 3.5, ϕ5(θ) = 6, ϕ6(θ) = 8, ϕ7(θ) = 10, ϕ8(θ) = 1.4,

where θ ∈ [−%, 0). We will fix the delay parameter τe = 0.01 day−1, and using two sets of the parameter ε to

get the following two cases.

Case (I): In this case, we choose ε = 0.8 then we get R0 = 0.79 < 1. Figure 1 shows that, the state of the

system eventually approach to the infection-free equilibrium E0 = (1000, 600, 0, 0, 0, 0, 0, 0) for the three initial

conditions IC1-IC3. This supports the results of Theorem 1 that the infection-free equilibrium E0 is GAS. In
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Table 1: The values of the parameters of model (16)-(20).

Parameter Value Parameter Value

λ1 10 cells mm−3day−1 λ2 6 cells mm−3day−1

β̄1 8 cells mm−3day−1 β̄2 5 cells mm−3day−1

d1 0.01 day−1 d2 0.01 day−1

δ1 0.5 day−1 δ2 0.3 day−1

a1 0.3 day−1 a2 0.1 day−1

q1 0.5 q2 0.5

ς1 10 virus mm−3 ς2 10 virus mm−3

k1 2 k2 2

Ny1 9 virus cells−1 Ny2 4 virus cells−1

Mz1 4 virus cells−1 Mz2 1 virus cells−1

ρ1 0.1 cellsk1 mm−3k1 ρ2 0.1 cellsk1 mm−3k1

m1 1 day−1 m2 1 day−1

n1 1 day−1 n2 1 day−1

r1 1 day−1 r2 1 day−1

χ 0.5 u 1 day−1

b 1 cells mm−3day−1 p 6 day−1

c 1 day−1 ε Varied

τe Varied

this case, the virus particles will be cleared from the body.

Case (II): In this case, we choose ε = 0 then we calculate R0 = 2.13 > 1. Consequently, the system has two

equilibria E0 and E1, and based on Theorem 2, E1 is GAS. From Figure 1 we can see that, our simulation results

are consistent with the theoretical results of Theorem 2. We observe that, the state of the system converge

the endemic equilibrium E1 = (571.06, 332.13, 4.25, 4.43, 7.08, 13.28, 11.58, 1.93). for the three initial conditions

IC1-IC3. In this case, the infection becomes chronic.

3.2 Effect of the drug efficacy on the dynamical behavior of the system

In this case, we will fix the delay parameter τe = 0.01 day−1. Figures 2 shows the effect of the parameter ε on

the evolution of the uninfected CD4+T cells and macrophages, short-lived infected cells, long-lived chronically

infected cells, free virus particles and B cells. When there is no treatment i.e. ε = 0, the trajectory of the system

tends to the endemic equilibrium E1 = (571.06, 332.13, 4.25, 4.43, 7.08, 13.28, 11.58, 1.93). Since E1 exists, then

according to Theorem 2, E1 is GAS. We can see from the figures that, our simulation results are consistent with

the theoretical results of Theorem 2. We observe that, as the drug efficacy is increased from ε = 0 to ε = 0.8,

E1 is still exists and is GAS, moreover, the concentrations of the uninfected CD4+T cells and macrophages

are increasing, while the concentrations of the short-lived infected cells, long-lived chronically infected cells,

free virus particles and B cells are decreasing. When ε = 0.98, the basic reproduction number is given by

R0 = 0.73 < 1, then according to Theorem 1, the disease-free equilibrium E0 is GAS. We can see that, the

concentrations of uninfected CD4+T cells and macrophages are increasing and converge to their normal values
λ1

d1
= 1000 cells mm−3, λ2

d2
= 600 cells mm−3, respectively, while the concentrations of short-lived infected cells,

long-lived chronically infected cells, free viruses and B cells are decaying and tend to zero. It means that, the

numerical results are also compatible with the results of Theorem 1. In this case, the treatment with such drug
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Figure 1: The evolution of the system state in different initial conditions for model (16) -(20).
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efficacy succeeded to eliminate the viruses from the blood.

3.3 Effect of the time delay on the dynamical behavior of the system

In this case, we will fix the drug efficacy ε = 0.2. Figure 3 shows the effect of the parameter τe on the evolution of

the state variables of the system. When τe = 0.01, the trajectory of the system tends to the endemic equilibrium

E1 = (684.2, 378.23, 3.13, 3.66, 5.2, 10.9, 9.75, 1.62). Then E1 exists and according to Theorem 2 E1 is GAS. It

means that, both the numerical and theoretical results of Theorem 2 are consistent. One can see that, as the

time delay is increased from τe = 0.01 to τe = 0.7, E1 is still exists and is GAS, in addition, the concentrations of

the uninfected CD4+T cells and macrophages are increased, while the concentrations of the short-lived infected

cells, long-lived chronically infected cells, free virus particles and B cells are decreased. When τe = 1, the basic

reproduction number is given by R0 = 0.71 < 1, then according to Theorem 1, E0 is GAS. We can see that, the

concentrations of uninfected CD4+T cells and macrophages are increasing and converge to their normal values
λ1

d1
= 1000 cells mm−3, λ2

d2
= 600 cells mm−3, respectively, while the concentrations of short-lived infected cells,

long-lived chronically infected cells, free viruses and B cells are decaying and tend to zero. Figure 3 shows that

the numerical results are also compatible with the results of Theorem 1. This shows the effect of time delay on

preventing the disease from development.

3.4 Effects of the drug efficacy and the delay on the basic reproduction number:

Figure 4 shows the effect of the parameters ε and τe on the basic reproduction number R0. We note that, R0 > 1

for small values of ε or τe, and the endemic equilibrium exists and is GAS, while the disease-free equilibrium is

unstable. When R0 = 1 (which is a bifurcation point), both disease-free equilibrium and endemic equilibrium

coincide and it is GAS. Moreover, as ε or τe is increasing, R0 is decreasing until it becomes less than one, which

makes the endemic equilibrium does not exists and the disease-free equilibrium is GAS. From a biological point

of view, the intracellular delay plays a similar role as antiviral treatment in eliminating the virus. We observe

that, even if there is no treatment i.e. ε = 0, sufficiently large delay suppress viral replication and clear the

virus. This give us some suggestions on new drugs to prolong the increase the intracellular delay period.

3.5 Effects of two types of target cells on the dynamics and controls of HIV

infection

In this subsection, we show the effects of two types of target cells on the dynamics and controls of HIV

infection. We note that if R0 < 1, then it is sure that R01 < 1 and R02 < 1. But if one neglect the presence of

the macrophages in the HIV dynamics model, then the HIV model system (16) -(20) will become

ẋ1(t) = λ1 − d1x1(t)− (1− ε)β̄1xk11 (t)v(t)

(xk11 (t) + ρ
1
)(v(t) + ς1)

, (22)

ẏ1(t) = (1− q1)e−m1τ1
(1− ε)β̄1xk11 (t− τ1)v(t− τ1)

(xk11 (t− τ1) + ρ
1
)(v(t− τ1) + ς1)

− δ1y1(t), (23)

ż1(t) = q1e
−m1τ1

(1− ε)β̄1xk11 (t− τ1)v(t− τ1)

(xk11 (t− τ1) + ρ
1
)(v(t− τ1) + ς1)

− a1z1(t), (24)

v̇(t) = Ny1δ1e
−n1κ1y1(t− κ1) +Mz1a1e

−r1ω1z1(t− ω1)− uv(t)− bv(t)w(t), (25)

ẇ(t) = cv(t)− pw(t). (26)

The basic reproduction number of model (22)-(26) is given by

R01 =
((1− q1)e−n1κ1Ny1 + q1e

−r1ω1Mz1)

u

e−m1τ1(1− ε)β̄1(x01)k1

ς1((x01)k1 + ρ1)
.
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(b) Uninfected macrophages
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(c) Short-lived infected CD4+T cells
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(d) Short-lived infected macrophages
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(e) Chronically infected CD4+T cells
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(f) Chronically infected macrophages
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(g) Free virus
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Figure 2: The evolution of the system state with different values of drug efficacy for model (16) -(20).
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(d) Short-lived infected macrophages
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(f) Chronically infected macrophages
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Figure 3: The evolution of the system state with different values of delayed for model (16) -(20).
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Figure 4: Effects of the drug efficacy and delays on the basis reproduction number of model (3)-(7)

Now we show that there is a number of parameter values for which R01 ≤ 1, but R0 > 1, and in such cases the

solutions of system (22)-(26) tend to E0 (in R5
≥0) as t → ∞, while those of (16) -(20) tend to E1 (in R8

≥0) as

t→∞. We calculate the critical drug efficacy for system (16) -(20), E0 is GAS when R0 ≤ 1 i.e.

εcrit1 ≤ ε < 1, εcrit1 = max

{
0,

R0 − 1

R01 + χR02

}
,

where R0 = R0 |ε=0 and R0i = R0i |ε=0, i = 1, 2.

For system (22)-(26), E0 is GAS when R01 ≤ 1 i.e.

εcrit2 ≤ ε < 1, εcrit2 = max

{
0,
R01 − 1

R01

}
.

Clearly, εcrit1 > εcrit2 . Then, if one design treatment with drug efficacy εcrit2 ≤ ε ≤ εcrit1 , then E0 is GAS

for system (22)-(26) but unstable for system (16) -(20). Using the data in Table 1 and τe = 0.01, we have

εcrit1 = 0.93 and εcrit2 = 0.80. Let us choose ε = 0.88, then R01 |ε=0.88= 0.62 < 1, but R0 |ε=0.88= 1.31 > 1.

Therefore, more accurate treatment can be designed using the model (16) -(20) than those designed using

model (22)-(26). Figure 5 shows the effect of two target cells on dynamics and control of HIV infection.

We observe that, if we choose ε = 0.88, then the trajectory of model (16) -(20 tends to the infection-free

equilibrium E0 = (1000, 0, 0, 0, 0, 0), while the trajectory of model (16) -(20) tends to the endemic equilibrium

E1 = (990.54, 573.24, 0.1, 0.4, 0.15, 1.31, 1.04, 0.17).

3.6 Effect of long-lived chronically infected cells on the dynamics and controls of

HIV infection

To show the effect of the presence of long-lived chronically infected cells on the dynamics and controls of

HIV infection, we write the HIV model without long-lived chronically infected cells as:

ẋi(t) = λi − dixi(t)−
βix

ki
i (t)v(t)

(xkii (t) + ρi)(v(t) + ςi)
, (27)

ẏi(t) =
e−miτiβix

ki
i (t− τi)v(t− τi)

(xkii (t− τi) + ρi)(v(t− τi) + ςi)
− δiyi(t), (28)

v̇(t) =
2∑
i=1

Nyiδie
−niκiyi(t− κi)− uv(t)− bv(t)w(t), (29)

ẇ(t) = cv(t)− pw(t). (30)
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(a) Uninfected CD4+T cells for model (16)-(20) and model (22)-

(26).
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(b) Short-lived CD4+T cells for model (16) -(20) and ((22)-(26).
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(c) Chronically infected CD4+T cells for model (16) -(20) and

(22)-(26).
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(d) Free virus for model (16) -(20)) and (22)-(26).
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(e) B cells for model (16) -(20) and (22)-(26).

Figure 5: Effect of two types of target cells on the dynamics and controls of HIV infection
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The basic reproduction number for system (27)-(30) is given by

R̃0 =
2∑
i=1

R̃0i =
2∑
i=1

e−niκie−miτiNyiβi(x
0
i )
ki

uςi((x0i )
ki + ρ

i
)

,

where R̃0 = R0 |q1=q2=0. Since e−niκiNyi > e−riωiMzi , i = 1, 2, then we have

R0 =
2∑
i=1

((1− qi)e−niκiNyi + qie
−riωiMzi)

u

e−miτiβi(x
0
i )
ki

ςi((x0i )
ki + ρi)

=
2∑
i=1

e−niκie−miτiNyiβi(x
0
i )
ki

uςi((x0i )
ki + ρ

i
)

−
2∑
i=1

(e−niκiNyi − e−riωiMzi)qie
−miτiβ

i
(x0i )

ki

uςi((x0i )
ki + ρ

i
)

= R̃0 −
2∑
i=1

(e−niκiNyi − e−riωiMzi)qie
−miτiβ

i
(x0i )

ki

uςi((x0i )
ki + ρ

i
)

< R̃0.

Therefore even without the incorporation of treatment, the long-lived infected cell population decreases the

basic reproduction number of the system. Now, we calculate the critical drug efficacy needed in order stabilize

the system around the infection-free equilibrium. The critical drug efficacy for systems (16) -(20) and (27)-(30)

is given by εcrit1 and εcrit3 , respectively, where,

εcrit3 = max

{
0,
R̂0 − 1

R̂0

}

where R̂0 = R̃0 |ε=0= R0 |ε=q1=q2=0. Using the data given in Table 1 with τe = 0.01, we have εcrit1 = 0.93

and εcrit3 = 0.99. Therefore the drug efficacy necessary to drive the system to the infection-free equilibrium

is actually less for system (16) -(20) than that for system (27)-(30). Figure 6 shows the effect of chronically

infected cells on dynamic and control of HIV infection. We observed that, if we choose ε = 0.93, then the

trajectory of model (16)-(20) tends to infection-free equilibrium E0 = (1000, 600, 0, 0, 0, 0, 0, 0), while in the

model (27)-(30), R̃0 = 1.54 > 1 and the trajectory tends to the endemic equilibrium with humoral immunity

E1 = (990.99, 558.53, 0.17, 1.36, 1.83, 0.3).
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(a) Uninfected CD4+T cells for model (16)-(20) and (27)-(30).

0 50 100 150 200 250 300 350 400 450 500
500

520

540

560

580

600

Time (days)

U
ni

nf
ec

te
d 

m
ac

ro
ph

ag
es

 (
ce

ll/
m

m
3 ) 

 

 

absence of chronically, E
0
 is unstable

presence of chronically, E
0
 is GAS

(b) Uninfected macrophages for model (16) -(20) and (27)-(30).
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(c) Short-lived CD4+T cells for model (16) -(20) and (27)-(30).
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(d) Short-lived macrophages for model (16) -(20) and (27)-(30).
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(e) Free virus for model (16) -(20) and (27)-(30).
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(f) B cells for model (16) -(20) and (27)-(30).

Figure 6: Effect of long-lived chronically infected cells on the dynamics and controls of HIV infection
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COMPOSITION OPERATORS ON DIRICHLET-TYPE SPACES

LIU YANG, YECHENG SHI∗

ABSTRACT. In this note, motivated by [8], under the conditions of weighted
function in [10], we characterize bounded and compact composition op-
erator on Dirichlet-type spaces DK . We also give an equavalent chara-
terization of composition operator on DK , if the composition operator
on DK spaces is Hilbert-Schmidt.

Keywords: DK spaces; composition operators; Hilbert-Schmidt

1. INTRODUCTION

Let D be the unit disk in the complex plane C and H(D) be the class of
functions analytic in D. Let K : [0,∞)→ [0,∞) be a right-continuous and
nondecreasing function. The Dirichlet-type spaces DK , consists of those
functions f ∈ H(D), such that

‖f‖2DK
= |f(0)|2 +

∫
D
|f ′(z)|2K(1− |z|2)dA(z) <∞.

When K(t) = tα, 0 < α < 1, it give the classical Dirichlet-type space
Dα. For more informations on Dα and DK spaces, we refer to [1], [3], [12],
[19], [25].

Let ϕ be a holomorphic self-map of D. The composition operator Cϕ on
DK is defined by

Cϕ(f) = f ◦ ϕ, f ∈ DK .

There are many papers study composition operator, we refer to [4], [13],
[14], [15], [17], [20], [21], [22], [24], [26]. Recently, Kellay and Lefèvre us-
ing Nevanlinna counting function, characterize bounded and compact com-
position operator on Dirichlet-type space DK under certain conditions in
[13]. Later, Pau and Pèrez studied the essential norm and closed ranged of
composition operator on Dα in [17].
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2 LIU YANG, YECHENG SHI∗

In this paper, motivated by [8], we generalize Theorem 2.2 of [8] to DK

spaces. We also give a characterizations of boundedness and compactness
of composition operator Cϕ on DK spaces by ϕn. Furthermore, equavalent
characterizations of composition operator on DK spaces belong to Hilbert-
Schmidt was gave.

Throughout this paper, suppose that K : [0,∞) → [0,∞) is a right-
continuous and nondecreasing function. Satisfying∫ 1

0

ϕK(s)

s
ds <∞ (1.1)

and ∫ ∞
1

ϕK(s)

s2
ds <∞, (1.2)

where

ϕK(s) = sup
0≤t≤1

K(st)/K(t), 0 < s <∞.

To learn more about weight function K, we refer to [2], [3], [9], [10] and
[16].

Throughout this paper, for two functions f and g, f � g means that
g . f . g, that is, there are positive constants C1 and C2 depend on K and
index s, α, such that C1g ≤ f ≤ C2g.

2. AUXILIARY RESULTS

Before to proof, we need to know some results. The following lemma
can be found in Lemma 2.1 of [2].

Lemma 1. Let (1.1) and (1.2) hold for K. If 2− α
2
< s < 1 + c, then∫

D

K (1− |σa(w)|2)
(1− |w|2)s|1− wz|α

dA(w) .
K (1− |σa(z)|2)
(1− |z|2)s+α−2

for all a, z ∈ D, where σa(z) = z−a
1−az .

Lemma 2. Suppose that K satisfies (1.1) and (1.2). Then

1 +
∞∑
n=1

n+ 1

K( 1
n+1

)
tn � 1

(1− t)2K(1− t)

for all 0 ≤ t < 1.
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Proof. Without loss of generality, we can assume 1/3 < t < 1, otherwise,
it obvious. Make change of variables y = 1

x
, an easy computation gives

∞∑
n=1

n+ 1

K( 1
n+1

)
tn �

∞∑
n=1

∫ 1
n

1
n+1

t
1
x

x3K(x)
dx

�
∫ 1

0

t
1
x

x3K(x)
dx �

∫ ∞
1

yty

K( 1
y
)
dy.

Let y = γ
− ln t

. We can deduce that

∞∑
n=1

n+ 1

K( 1
n+1

)
tn � 1

(ln 1
t
)2

∫ ∞
− ln t

γe−γ

K( 1
γ

ln 1
t
)
dγ

=
1

(ln 1
t
)2K(ln 1

t
)

∫ ∞
− ln t

γe−γK(ln 1
t
)

K( 1
γ

ln 1
t
)
dγ

.
1

(1− t)2K(1− t)

∫ ∞
− ln t

γe−γϕK(γ)dγ.

By [10], under conditions (1.1) and (1.2), there exists an enough small c > 0
only depending on K such that

ϕK(s) . sc, 0 < s ≤ 1

and

ϕK(s) . s1−c, s ≥ 1.

Therefore,

∞∑
n=1

n+ 1

K( 1
n+1

)
tn .

1

(1− t)2K(1− t)

∫ ∞
− ln t

γe−γϕK(γ)dγ

.
1

(1− t)2K(1− t)

(∫ ∞
0

e−γγ2−cdγ +

∫ ∞
0

e−γγ1+cdγ

)
� 1

(1− t)2K(1− t)
(Γ(3− c) + Γ(2 + c)) ,

where Γ(.) is the Gamma function. It follows that

1 +
∞∑
n=1

n+ 1

K( 1
n+1

)
tn .

1

(1− t)2K(1− t)
.
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Conversely, since K is nondecreasing, we deduce that
∞∑
n=1

n+ 1

K( 1
n+1

)
tn � 1

(ln 1
t
)2K(ln 1

t
)

∫ ∞
− ln t

γe−γK(ln 1
t
)

K( 1
γ

ln 1
t
)
dγ

&
1

(1− t)2K(1− t)

∫ ∞
ln 2

γe−γK(ln 1
t
)

K( 1
γ

ln 1
t
)
dγ

&
1

(1− t)2K(1− t)

∫ ∞
ln 2

γe−γdγ

� 1

(1− t)2K(1− t)
.

The proof is completed. �

The next lemma can be found in Theorem 5 of [23].

Lemma 3. Let (1.2) hold for K. Then for any α > 0 and 0 ≤ β < 1, we
have ∫ 1

0

rα−1(log
1

r
)−βK(log

1

r
)dr �

(
1− β
α

)1−β

K

(
1− β
α

)
.

3. BOUNDEDNESS AND COMPACTNESS

In this section, motivated by [8], we discuss the boundedness and com-
pactness of compostion operators by a general computation.

Theorem 1. Suppose that (1.1) and (1.2) hold for K, s ≥ 0. Suppose
ϕ(D) ⊂ D and ϕ ∈ DK . Then Cϕ is bounded on DK if and only if

sup
a∈D

(1− |a|2)2+2s

K(1− |a|2)

∫
D

|ϕ′(z)|2

|1− aϕ(z)|4+2s
K(1− |z|2)dA(z) <∞.

Proof. Let

Fa(z) =
(1− |a|2)1+s√
K(1− |a|2)

1

(1− az)1+s
, s ≥ 0.

Using Lemma 1, it is easy to check that Fa ∈ DK . If Cϕ is bounded on DK ,
then ‖Cϕ(Fa)‖DK

<∞, that is,

sup
a∈D

(1− |a|2)2+2s

K(1− |a|2)

∫
D

|ϕ′(z)|2

|1− aϕ(z)|4+2s
K(1− |z|2)dA(z) <∞.
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On the other hand, we know that for any pseudohyperbolic discs D(z, r),
we have 1− |w| � 1− |z| � |1− wz|, for any w ∈ D(z, r) (see [27, page
69]). Let f ∈ DK . Applying sub-mean-property to |f ′|2, we have

|f ′(z)|2 ≤
∫
D(z,r)

|f ′(w)|2

|1− wz|2
dA(w)

�
∫
D(z,r)

|f ′(w)|2(1− |w|2)2+2s

|1− wz|4+2s
dA(w)

.
∫
D

|f ′(w)|2(1− |w|2)2+2s

|1− wz|4+2s
dA(w).

Therefore, we get∫
D
|f ′(ϕ(z))|2|ϕ′(z)|2K(1− |z|2)dA(z)

≤
∫
D

(∫
D

|f ′(w)|2

|1− wϕ(z)|4+2s
(1− |w|2)2+2sdA(w)

)
|ϕ′(z)|2K(1− |z|2)dA(z)

≤
(

sup
w∈D

(1− |w|2)2+2s

K(1− |w|2)

∫
D

|ϕ′(z)|2

|1− wϕ(z)|4+2s
K(1− |z|2)dA(z)

)
×
∫
D
|f ′(w)|2K(1− |w|2)dA(w) <∞.

The proof is completed. �

Theorem 2. Suppose that (1.1) and (1.2) hold for K, s ≥ 0. Suppose
ϕ(D) ⊂ D and ϕ ∈ DK . Then Cϕ is compact on DK if and only if

lim
|a|→1

(1− |a|2)2+2s

K(1− |a|2)

∫
D

|ϕ′(z)|2

|1− aϕ(z)|4+2s
K(1− |z|2)dA(z) = 0.

Proof. Let

G(w) =
(1− |w|2)2+2s

K(1− |w|2)

∫
D

|ϕ′(z)|2

|1− wϕ(z)|4+2s
K(1− |z|2)dA(z).

Let {fk}∞k=1 be a bounded sequence ofDK such that fk → 0 weakly. There-
fore, f ′k → 0 uniformly on compact sets. From the proof of Theorem 1 and
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dominated convergence theorem, when k →∞, and r → 1, it follows that

‖Cϕ(fk)‖2DK
− |fk(ϕ(0))|2

≤
∫
D
|f ′k(w)|2G(w)K(1− |w|2)dA(w)

≤
∫
rD
|f ′k(w)|2G(w)K(1− |w|2)dA(w)

+

∫
D\rD
|f ′k(w)|2G(w)K(1− |w|2)dA(w)→ 0.

Thus, Cϕ is compact.
Conversely, if Cϕ is compact, let {ak}∞k=1 ⊆ D, |ak| → 1,

Fak(z) =
(1− |ak|2)1+s√
K(1− |ak|2)

1

(1− akz)1+s
.

Then, it is easy to verify that Fak → 0 uniformly on compact sets. Thus,
‖Cϕ(Fak)‖DK

→ 0 as k →∞. The proof is completed. �

4. ϕn-TYPE CHARACTERIZATIONS

In [24], Wulan, Zheng and Zhu gave an interesting characterizations of
compostion operators Cϕ by ϕn. In this section, we are going to give an
analogy results on DK spaces.

Theorem 3. Let (1.1) and (1.2) hold for K. Suppose ϕ ∈ DK satisfies
ϕ(D) ⊂ D and Cϕ : DK → DK . Then

(1) If

sup
n

1

K( 1
n
)
‖ϕn‖2DK

<∞,

then Cϕ is bounded;
(2) If Cϕ is bounded, then

sup
n

1

nK( 1
n
)
‖ϕn‖2DK

<∞.

Proof. (1). Let a, z ∈ D and s > 0. Since

|1− āϕ(z)| ≥ 1− |a||ϕ(z)|
and

1

(|1− |a||ϕ(z)|)4+2s
� 1

(|1− |a|2|ϕ(z)|2)4+2s
.
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Note that

1

(|1− |a|2|ϕ(z)|2)4+2s
�

∞∑
n=0

Γ(n+ 4 + 2s)

n!Γ(4 + 2s)
|a|2n|ϕ(z)|2n,

it follows that
(1− |a|2)2+2s

K(1− |a|2)

∫
D

|ϕ′(z)|2

|1− aϕ(z)|4+2s
K(1− |z|2)dA(z)

.
(1− |a|2)2+2s

K(1− |a|2)

∫
D

|ϕ′(z)|2

(1− |a||ϕ(z)|)4+2s
K(1− |z|2)dA(z)

�(1− |a|2)2+2s

K(1− |a|2)

∫
D

∞∑
n=0

Γ(n+ 4 + 2s)

n!Γ(4 + 2s)
|a|2n|ϕ(z)|2n|ϕ′(z)|2K(1− |z|2)dA(z).

By Stirling formula, we get

Γ(n+ 4 + 2s)

n!Γ(4 + 2s)
∼ n3+2s, n→∞.

Therefore,

(1− |a|2)2+2s

K(1− |a|2)

∫
D

|ϕ′(z)|2

|1− aϕ(z)|4+2s
K(1− |z|2)dA(z)

.
(1− |a|2)2+2s

K(1− |a|2)

∞∑
n=0

n3+2s|a|2n
∫
D
|ϕ(z)|2n|ϕ′(z)|2K(1− |z|2)dA(z)

≤(1− |a|2)2+2s

K(1− |a|2)

∞∑
n=0

(n+ 1)3+2s|a|2n
∫
D
|ϕ(z)|2n|ϕ′(z)|2K(1− |z|2)dA(z)

≤(1− |a|2)2+2s

K(1− |a|2)

∞∑
n=0

(n+ 1)1+2s|a|2n‖ϕn‖2DK

. sup
n

1

K( 1
n
)
‖ϕn‖2DK

(1− |a|2)2+2s

K(1− |a|2)

∞∑
n=0

(n+ 1)1+2sK(
1

n
)|a|2n.

Following the proof of Lemma 2, we have
∞∑
n=0

(n+ 1)1+2sK(
1

n
)|a|2n � K(1− |a|2)

(1− |a|2)2+2s
.

Thus,

(1− |a|2)2+2s

K(1− |a|2)

∫
D

|ϕ′(z)|2

|1− aϕ(z)|4+2s
K(1− |z|2)dA(z)

. sup
n

1

K( 1
n
)
‖ϕn‖2DK

.
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Hence, by Theorem 1, we prove (1).
(2). Suppose that Cϕ is bounded on DK . Let fn(z) = zn/‖zn‖2DK

. Then,
we have ‖fn‖2DK

= 1. An easy computation gives,

∞ > ‖Cϕfn‖2DK
=
‖ϕn‖2DK

‖zn‖2DK

&
1

nK( 1
n
)
‖ϕn‖2DK

.

The last inequality is deduced by Lemma 3. The proof is completed. �

Theorem 4. Let (1.1) and (1.2) hold for K. Suppose ϕ ∈ DK satisfies
ϕ(D) ⊂ D and Cϕ : DK → DK . Then

(1) If

lim
n→∞

1

K( 1
n
)
‖ϕn‖2DK

= 0,

then Cϕ is compact;
(2) If Cϕ is compact, then

lim
n→∞

1

nK( 1
n
)
‖ϕn‖2DK

= 0.

Proof. (1). The proof is similar to (1) of Theorem 3.
(2). Let {fn} be a bounded sequence inDK that convergence to 0 weakly.

If Cϕ is compact on DK , then ‖Cϕfn‖DK
→ 0, as n → ∞. Thus, for any

z ∈ D, we have
fn(ϕ(z))→ 0, n→∞.

Since {zn/‖zn‖DK
, n ≥ 1} is bounded in DK and it converges to 0 point-

wise, the compactness of Cϕ on DK implies that

lim
n→∞

‖ϕn‖2DK

‖zn‖2DK

=
1

nK( 1
n
)
‖ϕn‖2DK

= 0.

The proof is completed. �

5. HILBERT-SCHMIDT CLASS

Let Hilbert-Schmidt class be the space of all compact operators on Hilbert
space with its singular value sequence {λn} ∈ l2, the 2-summable se-
quence space (see [27, page 18]). The following theorem give an equavalent
charaterizations of composition operator on DK spaces, when it belong to
Hilbert-Schmidt class.
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Theorem 5. Let (1.1) and (1.2) hold for K. Suppose ϕ(D) ⊂ D, ϕ ∈ DK

and Cϕ is compact. Then Cϕ is Hilbert-Schmidt on DK if and only if∫
D

|ϕ′(z)|2

(1− |ϕ(z)|2)2
K(1− |z|2)

K(1− |ϕ(z)|2)
dA(z) <∞.

Proof. Without loss of generality, we can assume {1} ∪ { zn
√
n
√
K( 1

n
)
}∞n=1 is

an orthonormal basis in DK and ϕ(0) = 0. From Theorem 1.22 of [27], Cϕ
is Hilbert-Schmidt on DK if and only if

∞∑
n=1

DK(ϕn)

nK( 1
n
)
<∞.

Applying Lemma 2, we have
∞∑
n=1

DK(ϕn)

nK( 1
n
)

=
∞∑
n=1

n

K( 1
n
)

∫
D
|ϕ2(z)|n−1|ϕ′(z)|2K(1− |z|2)dA(z)

=
∞∑
n=0

n+ 1

K( 1
n+1

)

∫
D
|ϕ2(z)|n|ϕ′(z)|2K(1− |z|2)dA(z)

�
∫
D

|ϕ′(z)|2

(1− |ϕ(z)|2)2
K(1− |z|2)

K(1− |ϕ(z)|2)
dA(z).

The proof is completed. �
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Abstract

Here we study some important properties of left multidimensional
Riemann-Liouville fractional integral operator, such as of continuity and
boundedness.
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ity, boundedness.

1 Motivation

From [1], p. 388 we have

Theorem 1 Let r > 0, F 2 L1 (a; b), and

G (s) =

Z s

a

(s� t)r�1 F (t) dt;

all s 2 [a; b]. Then G 2 AC ([a; b]) (absolutely continuous functions) for r � 1,
and G 2 C ([a; b]), only for r 2 (0; 1) :

2 Main Results

We give

Theorem 2 Let f 2 L1 ([a; b]� [c; d]), �1; �2 > 0. Consider the function

F (x1; x2) =

Z x1

a1

Z x2

a2

(x1 � t1)�1�1 (x2 � t2)�2�1 f (t1; t2) dt1dt2; (1)

1
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where a1; x1 2 [a; b], a2; x2 2 [c; d] : a1 � x1, a2 � x2:
Then F is continuous on [a1; b]� [a2; d] :

Proof. (I) Let a1; b1; b�1 2 [a; b] with b1 > b�1 > a1, and a2; b2; b�2 2 [c; d] with
b2 > b

�
2 > a2:

We observe that
F (b1; b2)� F (b�1; b�2) =Z b1

a1

Z b2

a2

(b1 � t1)�1�1 (b2 � t2)�2�1 f (t1; t2) dt1dt2�Z b�1

a1

Z b�2

a2

(b�1 � t1)
�1�1 (b�2 � t2)

�2�1 f (t1; t2) dt1dt2 = (2)

Z b�1

a1

Z b�2

a2

(b1 � t1)�1�1 (b2 � t2)�2�1 f (t1; t2) dt1dt2�Z b�1

a1

Z b�2

a2

(b�1 � t1)
�1�1 (b�2 � t2)

�2�1 f (t1; t2) dt1dt2+Z b1

b�1

Z b�2

a2

(b1 � t1)�1�1 (b2 � t2)�2�1 f (t1; t2) dt1dt2+Z b�1

a1

Z b2

b�2

(b1 � t1)�1�1 (b2 � t2)�2�1 f (t1; t2) dt1dt2+Z b1

b�1

Z b2

b�2

(b1 � t1)�1�1 (b2 � t2)�2�1 f (t1; t2) dt1dt2:

Call

I (b�1; b
�
2) =

Z b�1

a1

Z b�2

a2

���(b1 � t1)�1�1 (b2 � t2)�2�1 � (b�1 � t1)�1�1 (b�2 � t2)�2�1��� dt1dt2:
(3)

Thus
jF (b1; b2)� F (b�1; b�2)j ��

I (b�1; b
�
2) +

(b1 � b�1)
�1

�1

�
(b2 � a2)�2 � (b2 � b�2)

�2

�2

�
+�

(b1 � a1)�1 � (b1 � b�1)
�1

�1

�
(b2 � b�2)

�2

�2
+
(b1 � b�1)

�1

�1

(b2 � b�2)
�2

�2

�
kfk1 :

(4)
Hence, by (4), it holds

� := lim
(b�1 ;b�2)!(b1;b2)

or
(b1;b2)!(b�1 ;b�2)

jF (b1; b2)� F (b�1; b�2)j � (lim
(b�1 ;b�2)!(b1;b2)

or
(b1;b2)!(b�1 ;b�2)

I (b�1; b
�
2)) kfk1 =: �:

(5)

2
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If �1 = �2 = 1, then � = 0, proving � = 0:
If �1 = 1, �2 > 0 we get

I (b�1; b
�
2) = (b

�
1 � a1)

 Z b�2

a2

���(b2 � t2)�2�1 � (b�2 � t2)�2�1��� dt2
!
: (6)

Assume �2 > 1, then �2 � 1 > 0. Hence by b2 > b�2, then b2 � t2 > b�2 � t2 � 0,
and (b2 � t2)�2�1 > (b�2 � t2)

�2�1 and (b2 � t2)�2�1 � (b�2 � t2)
�2�1 > 0:

That is

I (b�1; b
�
2) = (b

�
1 � a1)

"
(b2 � t2)�2

�2

����a2
b�2

� (b
�
2 � a2)

�2

�2

#

= (b�1 � a1)
�
(b2 � a2)�2 � (b2 � b�2)

�2 � (b�2 � a2)
�2

�2

�
: (7)

Clearly, then
lim
b�2!b2
or

b2!b�2

I (b�1; b
�
2) = 0: (8)

Similarly and symmetrically, we obtain that

lim
b�1!b1
or

b1!b�1

I (b�1; b
�
2) = 0; (9)

for the case of �2 = 1, �1 > 1.
If �1 = 1, and 0 < �2 < 1, then �2 � 1 < 0. Hence

I (b�1; b
�
2) = (b

�
1 � a1)

 Z b�2

a2

�
(b�2 � t2)

�2�1 � (b2 � t2)�2�1
�
dt2

!
=

(b�1 � a1)
�
(b�2 � a2)

�2 � (b2 � a2)�2 + (b2 � b�2)
�2

�2

�
: (10)

Clearly, then
lim
b�2!b2
or

b2!b�2

I (b�1; b
�
2) = 0: (11)

Similarly and symmetrically, we derive that

lim
b�1!b1
or

b1!b�1

I (b�1; b
�
2) = 0; (12)

for the case of �2 = 1, 0 < �1 < 1.

3
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Case now of �1; �2 > 1, then

I (b�1; b
�
2) =

Z b�1

a1

Z b�2

a2

h
(b1 � t1)�1�1 (b2 � t2)�2�1 � (b�1 � t1)

�1�1 (b�2 � t2)
�2�1

i
dt1dt2 =

(13)�
(b1 � a1)�1 � (b1 � b�1)

�1

�1

��
(b2 � a2)�2 � (b2 � b�2)

�2

�2

�
� (b

�
1 � a1)

�1

�1

(b�2 � a2)
�2

�2
:

That is
lim

(b1;b2)!(b�1 ;b�2)
or

(b�1 ;b�2)!(b1;b2)

I (b�1; b
�
2) = 0: (14)

Case now of 0 < �1; �2 < 1, then

I (b�1; b
�
2) =

Z b�1

a1

Z b�2

a2

h
(b�1 � t1)

�1�1 (b�2 � t2)
�2�1 � (b1 � t1)�1�1 (b2 � t2)�2�1

i
dt1dt2 =

(b�1 � a1)
�1

�1

(b�2 � a2)
�2

�2
�
�
(b1 � a1)�1 � (b1 � b�1)

�1

�1

��
(b2 � a2)�2 � (b2 � b�2)

�2

�2

�
:

(15)
That is again, when 0 < �1; �2 < 1;

lim
(b1;b2)!(b�1 ;b�2)

or

(b�1 ;b�2)!(b1;b2)

I (b�1; b
�
2) = 0: (16)

Next we treat the case of �1 > 1, 0 < �2 < 1.
We observe that

I (b�1; b
�
2) � I� (b�1; b�2) :=

Z b�1

a1

Z b�2

a2

(b1 � t1)�1�1
���(b2 � t2)�2�1 � (b�2 � t2)�2�1��� dt1dt2

+

Z b�1

a1

Z b�2

a2

(b�2 � t2)
�2�1

���(b1 � t1)�1�1 � (b�1 � t1)�1�1��� dt1dt2: (17)

Therefore it holds

I� (b�1; b
�
2) =

Z b�1

a1

Z b�2

a2

(b1 � t1)�1�1
�
(b�2 � t2)

�2�1 � (b2 � t2)�2�1
�
dt1dt2

(18)

+

Z b�1

a1

Z b�2

a2

(b�2 � t2)
�2�1

�
(b1 � t1)�1�1 � (b�1 � t1)

�1�1
�
dt1dt2 =�

(b1 � a1)�1 � (b1 � b�1)
�1

�1

��
(b�2 � a2)

�2 � (b2 � a2)�2 + (b2 � b�2)
�2

�2

�
+

(b�2 � a2)
�2

�2

�
(b1 � a1)�1 � (b1 � b�1)

�1 � (b�1 � a1)
�1

�1

�
: (19)

4

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

242 George Anastassiou 239-248



So, in case of �1 > 1, 0 < �2 < 1, we proved that

lim
(b1;b2)!(b�1 ;b�2)

or

(b�1 ;b�2)!(b1;b2)

I (b�1; b
�
2) = 0: (20)

Finally, we prove the case of �2 > 1 and 0 < �1 < 1. We have that

I� (b�1; b
�
2)

(17)
=

Z b�1

a1

Z b�2

a2

(b1 � t1)�1�1
h
(b2 � t2)�2�1 � (b�2 � t2)

�2�1
i
dt1dt2

+

Z b�1

a1

Z b�2

a2

(b�2 � t2)
�2�1

�
(b�1 � t1)

�1�1 � (b1 � t1)�1�1
�
dt1dt2 = (21)�

(b1 � a1)�1 � (b1 � b�1)
�1

�1

��
(b2 � a2)�2 � (b2 � b�2)

�2 � (b�2 � a2)
�2

�2

�
+

(b�2 � a2)
�2

�2

�
(b�1 � a1)

�1 � (b1 � a1)�1 + (b1 � b�1)
�1

�1

�
: (22)

Hence again it holds
lim

(b1;b2)!(b�1 ;b�2)
or

(b�1 ;b�2)!(b1;b2)

I (b�1; b
�
2) = 0: (23)

We proved � = 0, and � = 0 in all cases of this section.
The case of b�1 > b1 and b�2 > b2, as symmetric to b1 > b�1 and b2 > b�2 we

treated, it is omitted, a totally similar treatment.
(II) The remaining cases are: let a1; b1; b�1 2 [a; b]; a2; b2; b�2 2 [c; d], we can

have
(II1) b1 > b�1 and b2 < b

�
2;

or
(II2) b1 < b�1 and b2 > b

�
2:

Notice that (II1) and (II2) cases are symmetric, and treated the same way.
As such we treat only the case (II1).
We observe again that

F (b1; b2)� F (b�1; b�2) =Z b1

a1

Z b2

a2

(b1 � t1)�1�1 (b2 � t2)�2�1 f (t1; t2) dt1dt2�Z b�1

a1

Z b�2

a2

(b�1 � t1)
�1�1 (b�2 � t2)

�2�1 f (t1; t2) dt1dt2 = (24)

Z b�1

a1

Z b2

a2

(b1 � t1)�1�1 (b2 � t2)�2�1 f (t1; t2) dt1dt2+

5
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Z b1

b�1

Z b2

a2

(b1 � t1)�1�1 (b2 � t2)�2�1 f (t1; t2) dt1dt2�

Z b�1

a1

Z b2

a2

(b�1 � t1)
�1�1 (b�2 � t2)

�2�1 f (t1; t2) dt1dt2�Z b�1

a1

Z b�2

b2

(b�1 � t1)
�1�1 (b�2 � t2)

�2�1 f (t1; t2) dt1dt2 =Z b�1

a1

Z b2

a2

�
(b1 � t1)�1�1 (b2 � t2)�2�1 � (b�1 � t1)

�1�1 (b�2 � t2)
�2�1

�
f (t1; t2) dt1dt2

+

Z b1

b�1

Z b2

a2

(b1 � t1)�1�1 (b2 � t2)�2�1 f (t1; t2) dt1dt2�

Z b�1

a1

Z b�2

b2

(b�1 � t1)
�1�1 (b�2 � t2)

�2�1 f (t1; t2) dt1dt2: (25)

We call

I (b�1; b2) :=

Z b�1

a1

Z b2

a2

���(b1 � t1)�1�1 (b2 � t2)�2�1 � (b�1 � t1)�1�1 (b�2 � t2)�2�1��� dt1dt2:
(26)

Hence, we have
jF (b1; b2)� F (b�1; b�2)j ��

I (b�1; b2) +
(b1 � b�1)

�1

�1

(b2 � a2)�2

�2
+
(b�1 � a1)

�1

�1

(b�2 � b2)
�2

�2

�
kfk1 : (27)

Therefore it holds

� := lim
jb1�b�1j!0;

jb2�b�2j!0

jF (b1; b2)� F (b�1; b�2)j � (lim
jb1�b�1j!0;

jb2�b�2j!0

I (b�1; b2)) kfk1 =: �: (28)

We will prove that � = 0, hence � = 0, in all possible cases.
If �1 = �2 = 1, then I (b�1; b2) = 0, hence � = 0:
If �1 = 1, �2 > 0 we get

I (b�1; b2) = (b
�
1 � a1)

 Z b2

a2

���(b2 � t2)�2�1 � (b�2 � t2)�2�1��� dt2
!
: (29)

Assume �2 > 1, then �2 � 1 > 0. Hence

I (b�1; b2) = (b
�
1 � a1)

 Z b2

a2

�
(b�2 � t2)

�2�1 � (b2 � t2)�2�1
�
dt2

!

= (b�1 � a1)
"
(b�2 � t2)

�2 ja2b2 � (b2 � a2)
�2

�2

#

6
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= (b�1 � a1)
�
(b�2 � a2)

�2 � (b�2 � b2)
�2 � (b2 � a2)�2

�2

�
: (30)

Clearly, then
lim

jb1�b�1j!0;

jb2�b�2j!0

I (b�1; b2) = 0; (31)

hence � = 0:
Let the case now of �2 = 1, �1 > 1: Then

I (b�1; b2) = (b2 � a2)
 Z b�1

a1

���(b1 � t1)�1�1 � (b�1 � t1)�1�1��� dt1
!

= (b2 � a2)
�
(b1 � a1)�1 � (b1 � b�1)

�1 � (b�1 � a1)
�1

�1

�
: (32)

Then � = 0:
If �1 = 1, and 0 < �2 < 1, then �2 � 1 < 0. Hence

I (b�1; b2) = (b
�
1 � a1)

Z b2

a2

���(b2 � t2)�2�1 � (b�2 � t2)�2�1��� dt2 =
(b�1 � a1)

Z b2

a2

�
(b2 � t2)�2�1 � (b�2 � t2)

�2�1
�
dt2 =

(b�1 � a1)
�
(b2 � a2)�2 � (b�2 � a2)

�2 + (b�2 � b2)
�2

�2

�
: (33)

Hence � = 0:
Let now �2 = 1, 0 < �1 < 1. Then

I (b�1; b2) = (b2 � a2)
Z b�1

a1

���(b1 � t1)�1�1 � (b�1 � t1)�1�1��� dt1
= (b2 � a2)

Z b�1

a1

�
(b�1 � t1)

�1�1 � (b1 � t1)�1�1
�
dt1

= (b2 � a2)
�
(b�1 � a1)

�1 � (b1 � a1)�1 + (b1 � b�1)
�1

�1

�
: (34)

Hence � = 0:
We observe that:

I (b�1; b2) �
Z b�1

a1

Z b2

a2

���(b1 � t1)�1�1 (b2 � t2)�2�1 � (b1 � t1)�1�1 (b�2 � t2)�2�1��� dt1dt2
+

Z b�1

a1

Z b2

a2

���(b1 � t1)�1�1 (b�2 � t2)�2�1 � (b�1 � t1)�1�1 (b�2 � t2)�2�1��� dt1dt2 =: J (b�1; b2) ;
(35)

7
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i.e.
I (b�1; b2) � J (b�1; b2) :

Hence it holds

J (b�1; b2) =

Z b�1

a1

Z b2

a2

(b1 � t1)�1�1
���(b2 � t2)�2�1 � (b�2 � t2)�2�1��� dt1dt2 (36)

+

Z b�1

a1

Z b2

a2

(b�2 � t2)
�2�1

���(b1 � t1)�1�1 � (b�1 � t1)�1�1��� dt1dt2:
Case of �1; �2 > 1. Then

J (b�1; b2) =

Z b�1

a1

Z b2

a2

(b1 � t1)�1�1
�
(b�2 � t2)

�2�1 � (b2 � t2)�2�1
�
dt1dt2

+

Z b�1

a1

Z b2

a2

(b�2 � t2)
�2�1

�
(b1 � t1)�1�1 � (b�1 � t1)

�1�1
�
dt1dt2 =�

(b1 � a1)�1 � (b1 � b�1)
�1

�1

���
(b�2 � a2)

�2 � (b�2 � b2)
�2

�2

�
� (b2 � a2)

�2

�2

�
+

�
(b�2 � a2)

�2 � (b�2 � b2)
�2

�2

���
(b1 � a1)�1 � (b1 � b�1)

�1

�1

�
� (b

�
1 � a1)

�1

�1

�
:

(37)
So that � = 0:
Case of 0 < �1; �2 < 1, then

J (b�1; b2) =

Z b�1

a1

Z b2

a2

(b1 � t1)�1�1
�
(b2 � t2)�2�1 � (b�2 � t2)

�2�1
�
dt1dt2

+

Z b�1

a1

Z b2

a2

(b�2 � t2)
�2�1

�
(b�1 � t1)

�1�1 � (b1 � t1)�1�1
�
dt1dt2 =�

(b1 � a1)�1 � (b1 � b�1)
�1

�1

��
(b2 � a2)�2

�2
�
�
(b�2 � a2)

�2 � (b�2 � b2)
�2

�2

��
(38)

+

�
(b�2 � a2)

�2 � (b�2 � b2)
�2

�2

��
(b�1 � a1)

�1

�1
�
�
(b1 � a1)�1 � (b1 � b�1)

�1

�1

��
:

One more time � = 0:
Next case of �1 > 1, 0 < �2 < 1. We observe that

J (b�1; b2) =

Z b�1

a1

Z b2

a2

(b1 � t1)�1�1
�
(b2 � t2)�2�1 � (b�2 � t2)

�2�1
�
dt1dt2 (39)

+

Z b�1

a1

Z b2

a2

(b�2 � t2)
�2�1

�
(b1 � t1)�1�1 � (b�1 � t1)

�1�1
�
dt1dt2 =

8
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�
(b1 � a1)�1 � (b1 � b�1)

�1

�1

��
(b2 � a2)�2

�2
�
�
(b�2 � a2)

�2 � (b�2 � b2)
�2

�2

��
+

�
(b�2 � a2)

�2 � (b�2 � b2)
�2

�2

���
(b1 � a1)�1 � (b1 � b�1)

�1

�1

�
� (b

�
1 � a1)

�1

�1

�
:

(40)
Hence � = 0:
Finally, we prove the case of �2 > 1 and 0 < �1 < 1. In that case it holds

J (b�1; b2) =

Z b�1

a1

Z b2

a2

(b1 � t1)�1�1
�
(b�2 � t2)

�2�1 � (b2 � t2)�2�1
�
dt1dt2 (41)

+

Z b�1

a1

Z b2

a2

(b�2 � t2)
�2�1

�
(b�1 � t1)

�1�1 � (b1 � t1)�1�1
�
dt1dt2 =�

(b1 � a1)�1 � (b1 � b�1)
�1

�1

��
� (b2 � a2)

�2

�2
+

�
(b�2 � a2)

�2 � (b�2 � b2)
�2

�2

��
+

�
(b�2 � a2)

�2 � (b�2 � b2)
�2

�2

��
�
�
(b1 � a1)�1 � (b1 � b�1)

�1

�1

�
+
(b�1 � a1)

�1

�1

�
:

(42)
Hence again � = 0:
We have proved that � = 0, in all possible subcases of (II1).
We have proved that F is a continuous function over [a1; b]� [a2; d] :
Now we can state:

Theorem 3 Let f 2 L1
�Qk

i=1 [ai; bi]
�
, �i > 0, i = 1; :::; k 2 N. Consider the

function

F (x1; :::; xk) =

Z x1

a�1

:::

Z xk

a�k

kY
i=1

(xi � ti)�i�1 f (t1; :::; tk) dt1:::dtk; (43)

where a�i ; xi 2 [ai; bi], a�i � xi, i = 1; :::; k:
Then F is continuous on

Qk
i=1 [a

�
i ; bi] :

Remark 4 In the setting of Theorem 3: Consider the left multidimensional
Riemann-Liouville fractional integral of order � = (�1; :::; �k) :

�
I�a�+f

�
(x) =

1Qk
i=1 � (�i)

Z x1

a�1

:::

Z xk

a�k

kY
i=1

(xi � ti)�i�1 f (t1; :::; tk) dt1:::dtk;

(44)
where a� = (a�1; :::; a

�
k), x = (x1; :::; xk), a

�
i � xi, i = 1; :::; k: Here � denotes the gamma function:

By Theorem 3 we get that
�
I�a�+f

�
(x) is a continuous function for every

x 2
Qk
i=1 [a

�
i ; bi] :

9
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We notice that����I�a�+f� (x)��� � 1Qk
i=1 � (�i)

 Z x1

a�1

:::

Z xk

a�k

kY
i=1

(xi � ti)�i�1 dt1:::dtk

!
kfk1

=
kfk1Qk
i=1 � (�i)

kY
i=1

 Z xi

a�i

(xi � ti)�i�1 dti

!
=

kfk1Qk
i=1 � (�i)

kY
i=1

(xi � a�i )
�i

�i
(45)

= kfk1

 
kY
i=1

(xi � a�i )
�i

� (�i + 1)

!
:

That is ����I�a�+f� (x)��� �
 

kY
i=1

(xi � a�i )
�i

� (�i + 1)

!
kfk1 : (46)

In particular we get that �
I�a�+f

�
(a�) = 0; (47)

and 


I�a�+f


1 �
 

kY
i=1

(bi � a�i )
�i

� (�i + 1)

!
kfk1 : (48)

That is I�a�+f is a bounded linear operator, which here is also a positive operator.
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Abstract. Weak closure operation, which is more general form than closure operation, on ideals of BCK-

algebras is introduced, and related properties are investigated. Regarding weak closure operation, finite type

and (strong) quasi-primeness are considered. Also positive implicative (resp., commutative and implicative) weak

closure operations are discussed.

1. Introduction

Semi-prime closure operations on ideals of BCK-algebras are introduced in the paper [1], and

a finite type of closure operations on ideals of BCK-algebras are discussed in [2].

In this paper, we consider more general form than closure operations on ideals ofBCK-algebras.

We introduce the notion of weak closure operations on ideals of BCK-algebras. Regarding weak

closure operation, we define finite type and (strong) quasi-primeness, and investigate related

properties. We also discuss positive implicative (resp., commutative and implicative) weak closure

operations, and provide several examples to illustrate notions and properties.

2. Preliminaries

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki and was

extensively investigated by several researchers.

An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following conditions:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),
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(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following axioms:

(a1) (∀x ∈ X) (x ∗ 0 = x),

(a2) (∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x),
(a3) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y),
(a4) (∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y)

where x ≤ y if and only if x ∗ y = 0.

A subset A of a BCK/BCI-algebra X is called an ideal of X (see [4]) if it satisfies:

0 ∈ A, (2.1)

(∀x ∈ X) (∀y ∈ A) (x ∗ y ∈ A ⇒ x ∈ A) . (2.2)

For any subset A of X, the ideal generated by A is defined to be the intersection of all ideals of

X containing A, and it is denoted by ⟨A⟩. If A is finite, then we say that ⟨A⟩ is finitely generated

ideal of X (see [4]).

A subset A of a BCK-algebra X is called a commutative ideal of X (see [4]) if it satisfies (2.1)

and

(∀x, y ∈ X)(∀z ∈ A) ((x ∗ y) ∗ z ∈ A ⇒ x ∗ (y ∗ (y ∗ x)) ∈ A) . (2.3)

A subset A of a BCK-algebra X is called a positive implicative ideal of X (see [4]) if it satisfies

(2.1) and

(∀x, y, z ∈ X) ((x ∗ y) ∗ z ∈ A, y ∗ z ∈ A ⇒ x ∗ z ∈ A) . (2.4)

A subset A of a BCK-algebra X is called an implicative ideal of X (see [4]) if it satisfies (2.1)

and

(∀x, y ∈ X)(∀z ∈ A) ((x ∗ (y ∗ y)) ∗ z ∈ A ⇒ x ∈ A) . (2.5)

Denote by Ipi(X) (resp., Ic(X) and Im(X)) the set of all positive implicative (resp., commu-

tative and implicative) ideals of X.

We refer the reader to the books [3, 4] for further information regarding BCK/BCI-algebras.

3. Weak Closure operations

In what follows, let X and I(X) be a BCK-algebra and a set of all ideals of X, respectively,

unless otherwise specified .
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Definition 3.1. A mapping c : I(X) → I(X) is called a weak closure operation on I(X) if the

following conditions are valid.

(∀A ∈ I(X)) (A ⊆ c(A)) , (3.1)

(∀A,B ∈ I(X)) (A ⊆ B ⇒ c(A) ⊆ c(B)) . (3.2)

If a weak closure operation c : I(X) → I(X) satisfies the condition

(∀A ∈ I(X)) (c(c(A)) = c(A)) , (3.3)

then we say that c is a closure operation on I(X) (see [2]). In what follows, we use Acl instead

of c(A).

Example 3.2. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the following Cayley table.

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 1

2 2 2 0 0 2

3 3 2 1 0 3

4 4 4 4 4 0

We have 8 ideals of X, and they are A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 4}, A4 =

{0, 1, 4}, A5 = {0, 1, 2, 3}, A6 = {0, 2, 4}, and A7 = X. Define a mapping c : I(X) → I(X)

by Acl
0 = A0, A

cl
1 = A4, A

cl
2 = A5, c(A3) = A6, and c(A4) = c(A5) = c(A6) = c(A7) = A7.

Then c is a weak closure operation on I(X). But it is not a closure operation on I(X) since

c(Acl
2 ) = c(A5) = A7.

In a BCK-algebra X, let x∧y denote the greatest lower bound of x and y. Note that 0∧x = 0

for all x ∈ X. For any element x of X, consider the following condition

(∃ y ∈ X \ {0}) (x ∧ y = 0) . (3.4)

In the following example, we know that there are two kinds of element. One is an element x

satisfying the condition (3.4). The other is an element x which does not satisfy the condition

(3.4).

Example 3.3. Let X = {0, 1, 2, 3, 4} be a set with the following Cayley table.

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 2 1 0 0

4 4 4 4 4 0
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Then X is a BCK-algebra. We know that 1 and 2 satisfy the condition (3.4), but 3 and 4 do

not satisfy the condition (3.4).

On the basis of this consideration, we define the zeromeet element in a BCK-algebra.

Definition 3.4. An element x of X is called a zeromeet element of X if the condition (3.4) is

valid. Otherwise, x is called a non-zeromeet element of X.

Denote by Z(X) the set of all zeromeet elements of X, that is,

Z(X) = {x ∈ X | x ∧ y = 0 for some nonzero element y ∈ X}.
Obviously, 0 ∈ Z(X). We know that 0, 1, 2 ∈ Z(X) and 3, 4 /∈ Z(X) in Example 3.3.

Lemma 3.5. For any x, y ∈ X, if x, y /∈ Z(X), then x ∧ y /∈ Z(X), that is, the set X \ Z(X) is

closed under the operation ∧.

Proof. Let x, y ∈ X \ Z(X) and assume that x ∧ y ∈ Z(X). Then x ∧ (y ∧ a) = (x ∧ y) ∧ a = 0

for some nonzero element a ∈ X. Since x /∈ Z(X), it follows that y ∧ a = 0 and so that a = 0

since y /∈ Z(X). This is a contradiction, and thus x ∧ y /∈ Z(X). □

For any subsets A and B of X, we define

A ∧B := ⟨{a ∧ b | a ∈ A, b ∈ B⟩.
We use x ∧ A instead of {x} ∧ A, that is, x ∧ A := ⟨{x ∧ a | a ∈ A}⟩.

Definition 3.6. A weak closure operation cl : I(X) → I(X) is said to be quasi-prime if it

satisfies:

(∀a ∈ X \ Z(X)) (∀A ∈ I(X))
(
a ∧ Acl ⊆ (a ∧ A)cl

)
. (3.5)

Example 3.7. Consider a BCK-algebra X = {0, 1, 2, 3} with the following Cayley table.

∗ 0 1 2 3

0 0 0 0 0

1 1 0 0 0

2 2 2 0 0

3 3 3 3 0

We know that Z(X) = {0} and there are four ideals in X, that is, A0 = {0}, A1 = {0, 1},
A2 = {0, 1, 2} and A3 = X. Define a mapping cl : I(X) → I(X) by Acl

0 = A0, A
cl
1 = A2, A

cl
2 =

A3 and Acl
3 = A3. Then “cl” is a weak closure operation on I(X). For 1, 2, 3 ∈ X \ Z(X), we

have

1 ∧ Acl
0 = 1 ∧ A0 = ⟨{0}⟩ = A0 = Acl

0 = (1 ∧ A0)
cl,

1 ∧ Acl
1 = 1 ∧ A2 = ⟨{0, 1}⟩ = A1 ⊆ A2 = Acl

1 = (1 ∧ A1)
cl,

1 ∧ Acl
2 = 1 ∧ A3 = ⟨{0, 1}⟩ = A1 ⊆ A2 = Acl

1 = (1 ∧ A2)
cl,

1 ∧ Acl
3 = 1 ∧ A3 = ⟨{0, 1}⟩ = A1 ⊆ A2 = Acl

1 = (1 ∧ A3)
cl,
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2 ∧ Acl
0 = 2 ∧ A0 = ⟨{0}⟩ = A0 = Acl

0 = (2 ∧ A0)
cl,

2 ∧ Acl
1 = 2 ∧ A2 = ⟨{0, 1, 2}⟩ = A2 = Acl

1 = (2 ∧ A1)
cl,

2 ∧ Acl
2 = 2 ∧ A3 = ⟨{0, 1, 2}⟩ = A2 ⊆ A3 = Acl

2 = (2 ∧ A2)
cl,

2 ∧ Acl
3 = 2 ∧ A3 = ⟨{0, 1, 2}⟩ = A2 ⊆ A3 = Acl

2 = (2 ∧ A3)
cl,

3 ∧ Acl
0 = 3 ∧ A0 = ⟨{0}⟩ = A0 = Acl

0 = (3 ∧ A0)
cl,

3 ∧ Acl
1 = 3 ∧ A2 = ⟨{0, 1, 2}⟩ = A2 = Acl

1 = (3 ∧ A1)
cl,

3 ∧ Acl
2 = 3 ∧ A3 = ⟨{0, 1, 2, 3}⟩ = A3 = Acl

2 = (3 ∧ A2)
cl,

3 ∧ Acl
3 = 3 ∧ A3 = ⟨{0, 1, 2, 3}⟩ = A3 = Acl

3 = (3 ∧ A3)
cl,

Therefore ”cl” is a quasi-prime weak closure operation on I(X).

Definition 3.8. A weak closure operation cl : I(X) → I(X) is said to be strong quasi-prime if

it satisfies:

(∀a ∈ X \ Z(X)) (∀A ∈ I(X))
(
a ∧ Acl = (a ∧ A)cl

)
. (3.6)

Example 3.9. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the following Cayley table.

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 3 3 0 0

4 4 4 4 4 0

We know that Z(X) = {0, 1, 2} and there are six ideals in X, that is, A0 = {0}, A1 = {0, 1},
A2 = {0, 2}, A3 = {0, 1, 2}, A4 = {0, 1, 2, 3} and A5 = X. Define a mapping cl : I(X) → I(X)

as follows: Acl
0 = A1, A

cl
1 = Acl

2 = A3, A
cl
3 = Acl

4 = A4 and Acl
5 = A5. Then “cl” is a weak closure

operation on I(X). For 3, 4 ∈ X \ Z(X), we have

3 ∧ Acl
0 = 3 ∧ A1 = ⟨{0, 1}⟩ = A1 = Acl

0 = (3 ∧ A0)
cl,

3 ∧ Acl
1 = 3 ∧ A3 = ⟨{0, 1, 2}⟩ = A3 = Acl

1 = (3 ∧ A1)
cl,

3 ∧ Acl
2 = 3 ∧ A3 = ⟨{0, 1, 2}⟩ = A3 = Acl

2 = (3 ∧ A2)
cl,

3 ∧ Acl
3 = 3 ∧ A4 = ⟨{0, 1, 2, 3}⟩ = A4 = Acl

3 = (3 ∧ A3)
cl,

3 ∧ Acl
4 = 3 ∧ A4 = ⟨{0, 1, 2, 3}⟩ = A4 = Acl

4 = (3 ∧ A4)
cl,

3 ∧ Acl
5 = 3 ∧ A5 = ⟨{0, 1, 2, 3}⟩ = A4 = Acl

4 = (3 ∧ A5)
cl,

4 ∧ Acl
0 = 4 ∧ A1 = ⟨{0, 1}⟩ = A1 = Acl

0 = (4 ∧ A0)
cl,

4 ∧ Acl
1 = 4 ∧ A3 = ⟨{0, 1, 2}⟩ = A3 = Acl

1 = (4 ∧ A1)
cl,

4 ∧ Acl
2 = 4 ∧ A3 = ⟨{0, 1, 2}⟩ = A3 = Acl

2 = (4 ∧ A2)
cl,

4 ∧ Acl
3 = 4 ∧ A4 = ⟨{0, 1, 2, 3}⟩ = A4 = Acl

3 = (4 ∧ A3)
cl,

4 ∧ Acl
4 = 4 ∧ A4 = ⟨{0, 1, 2, 3}⟩ = A4 = Acl

4 = (4 ∧ A4)
cl,

4 ∧ Acl
5 = 4 ∧ A5 = ⟨{0, 1, 2, 3}⟩ = A4 = Acl

4 = (4 ∧ A5)
cl.

Therefore “cl” is a strong quasi-prime weak closure operation on I(X).
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Given an ideal A of X and an operation cl : I(X) → I(X) on I(X), we consider the following

set:

K := ∪{Bcl | B ⊆ A, B ∈ If (X)} (3.7)

where If (X) is the set of all finitely generated ideals of X. The following example shows that

the set K in (3.7) may not be an ideal of X in general.

Example 3.10. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the following Cayley table.

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 0 0

2 2 2 0 2 0

3 3 3 3 0 0

4 4 4 3 2 0

There are five ideals in X, that is, A0 = {0}, A1 = {0, 1}, A2 = {0, 1, 2}, A3 = {0, 1, 3} and

A4 = X. Define a mapping cl : I(X) → I(X) as follows: Acl
0 = A3, A

cl
1 = A2, A

cl
2 = A0, A

cl
3 = A4

and Acl
4 = A3. For the ideal A2 of X, we have

∪{Bcl | B ⊆ A, B ∈ If (X)} = Acl
0 ∪ Acl

1 ∪ Acl
2 = {0, 1, 2, 3}

which is not an ideal of X.

We provide a condition for the set K in (3.7) to be an ideal of X.

Theorem 3.11. If cl : I(X) → I(X) is a weak closure operation on I(X), then the set K in

(3.7) is an ideal of X for any ideal A of X.

Proof. Obviously, 0 ∈ K. Let x, y ∈ X such that x ∗ y ∈ K and y ∈ K. Then there exist Bx,

By ∈ If (X) such that Bx ⊆ A, By ⊆ A, x ∗ y ∈ Bcl
x and y ∈ Bcl

y . Since Bx, By ⊆ Bx + By =

⟨Bx ∪ By⟩, we have x ∗ y ∈ Bcl
x ⊆ (Bx + By)

cl and y ∈ Bcl
y ⊆ (Bx + By)

cl, which imply that

x ∈ (Bx + By)
cl. Since Bx, By ∈ If (X), we get Bx + By ∈ If (X) and Bx + By ⊆ A. Therefore

x ∈ K, and K is an ideal of X. □

Corollary 3.12. If cl : I(X) → I(X) is a closure operation on I(X), then the set K in (3.7) is

an ideal of X for any ideal A of X.

Lemma 3.13 ([4]). (Extension property) Let A and B be ideals of X such that A ⊆ B. If A is

a positive implicative (resp., commutative and implicative) ideal, then so is B.

Using Lemma 3.13 and (3.1), we have the following theorem.

Theorem 3.14. Let “cl” be a weak closure operation on I(X). If A is a positive implicative

(resp., commutative and implicative) ideal of X, then so is Acl.

The following example shows that the converse of Theorem 3.14 is not true in general.
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Example 3.15. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the following Cayley table.

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 3 3 0 0

4 4 3 4 1 0

There are five ideals in X, that is, A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 1, 2} and

A4 = X. Define a mapping cl : I(X) → I(X) as follows: (A0)
cl = A0, (A1)

cl = (A2)
cl = A3, and

(A3)
cl = (A4)

cl = A4. Then “cl”” is a weak closure operation on I(X). The ideal A2 = {0, 2} is

not positive implicative (resp., commutative and implicative) ideal, but (A2)
cl = A3 = {0, 1, 2}

is a positive implicative (resp., commutative and implicative) ideal of X.

Theorem 3.16. An operation cl : I(X) → I(X) on I(X) defined by

(∀A ∈ I(X))
(
Acl = ∩{Iλ | Iλ ∈ IΓ(X), A ⊆ Iλ, λ ∈ Λ}

)
(3.8)

is a weak closure operation on I(X) where IΓ(X) ∈ {Ipi(X), Ic(X), Im(X)} and Λ is any index

set.

Proof. Obviously, A ⊆ Acl for every A ∈ I(X). Let A,B ∈ I(X) be such that A ⊆ B. Then

Bcl = ∩{Iλ | Iλ ∈ IΓ(X), B ⊆ Iλ, λ ∈ Λ}
⊇ ∩{Iλ | Iλ ∈ IΓ(X), A ⊆ Iλ, λ ∈ Λ}
= Acl,

and so “cl” is a weak closure operation on I(X). □

The following example illustrates Theorem 3.16.

Example 3.17. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the following Cayley table.

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 1

2 2 2 0 2 0

3 3 1 3 0 3

4 4 4 4 4 0

There are six ideals in X, that is, A0 = {0}, A1 = {0, 1, 3}, A2 = {0, 2}, A3 = {0, 1, 2, 3},
A4 = {0, 2, 4} and A5 = X.

(1) Define a mapping cl1 : I(X) → I(X) by

Acl1 = ∩{B | A ⊆ B and B ∈ Ipi(X)}.
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Then we have

Acl1
0 = A1 ∩ A3 ∩ A5 = A1, A

cl1
1 = A1 ∩ A3 ∩ A5 = A1,

Acl1
2 = A3 ∩ A5 = A3, A

cl1
3 = A3 ∩ A5 = A3, A

cl1
4 = A5 = Acl1

5 .

We can check that “cl1” is a weak closure operation on I(X).

(2) We define an operation “cl2” on I(X) by

Acl2 = ∩{B | A ⊆ B and B ∈ Ic(X)}.
Then we have

Acl2
0 = A2 ∩ A3 ∩ A4 ∩ A5 = A2, A

cl2
1 = A3 ∩ A5 = A3,

Acl2
2 = A2 ∩ A3 ∩ A4 ∩ A5 = A2, A

cl2
3 = A3 ∩ A5 = A3,

Acl2
4 = A4 ∩ A5 = A4, A

cl2
5 = A5.

It is routine to verify that “cl2” is a weak closure operation on I(X).

(3) We define an operation “cl3” on I(X) by

Acl3 = ∩{B | A ⊆ B and B ∈ Im(X)}.
Then we have

Acl3
0 = A3 ∩ A5 = A3, A

cl3
1 = A3 ∩ A5 = A3,

Acl3
2 = A3 ∩ A5 = A3, A

cl3
3 = A3 ∩ A5 = A3,

Acl3
4 = A5, A

cl3
5 = A5.

It is easy to show that “cl3” is weak closure operation on I(X).

Let {clλ | λ ∈ Λ} be a collection of operations on I(X). We define the intersection of clλ’s,

denoted by ∩
λ∈Λ

clλ, as follows:

∩
λ∈Λ

clλ : I(X) → I(X), A 7→ ∩
λ∈Λ

Aclλ .

Note that if clλ is a weak closure operation on I(X) for all λ ∈ Λ, then ∩
λ∈Λ

clλ is a weak closure

operation on I(X) (see [2]). But the following example shows that the union of weak closure

operations may not be a weak closure operation.

Example 3.18. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the following Cayley table.

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 2

3 3 2 1 0 2

4 4 1 4 1 0

There are four ideals in X, that is, A0 = {0}, A1 = {0, 1, 4}, A2 = {0, 2} and A3 = X. Define

a mapping cl1 : I(X) → I(X) as follows: Acl1
0 = A1, A

cl1
1 = A3, A

cl1
2 = A3, A

cl1
3 = A3. Then

“cl1” is a weak closure operation on I(X). Also, define a mapping cl2 : I(X) → I(X) as follows:

Acl2
0 = A2, A

cl2
1 = A3, A

cl2
2 = A3, A

cl2
3 = A3. Then “cl2” is a weak closure operation on I(X).
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Now if we define “cl3” by Acl3 = Acl1 ∪ Acl2 , then “cl3” is not a weak closure operation on I(X)

because for an ideal A0 of X, we have

Acl3
0 = Acl1

0 ∪ Acl2
0 = A1 ∪ A2 = {0, 1, 2, 4}

which is not an ideal of X. Thus “cl3” is not a weak closure operation on I(X).

Definition 3.19. Given a (weak) closure operation cl : I(X) → I(X) on I(X), we define a new

operation clf : I(X) → I(X) by

(∀A ∈ I(X))
(
Aclf = ∪{Bcl | B ⊆ A, B ∈ If (X)}

)
, (3.9)

where If (X) is the set of all finitely generated ideals of X.

Definition 3.20. A (weak) closure operation cl on I(X) is said to be of finite type if the following

assertion is valid.

(∀A ∈ I(X))
(
Acl = Aclf

)
. (3.10)

Note that every weak closure operation on a finite BCK-algebra is of finite type.

Example 3.21. Let X be a BCK-algebra of infinite order. Define an operation “cl′′ on I(X)

as follows:

Acl =

{
X if A is a maximal ideal or A = X,

M otherwise,
(3.11)

where M is a maximal ideal of X containing A. We can easily check that “cl” is a weak closure

operation. Now let A be a maximal ideal of X which is not finitely generated. Then

Aclf = ∪{Bcl | B ⊆ A and B ∈ If (X)} ⊆ M ⊊ X = Acl,

and thus “cl” is a weak closure operation which is not of finite type.

For two operations “cl1” and “cl2” on I(X), we say that “cl1” is weaker than “cl2”, denoted

by cl1 ≤ cl2, if A
cl1 ⊆ Acl2 for every A ∈ I(X).

Theorem 3.22. Given an operation “cl” on I(X), we have

(i) If “cl” is a weak closure operation of finite type, then so is “clf”, and it is largest in the

set of weak closure operations which are weaker than “cl”.

(ii) If “cl” is a (strong) quasi-prime weak closure operation, then so is “clf”.

Proof. (i) Let “cl” be a weak closure operation of finite type. Then “clf” is a weak closure

operation on I(X) (see [2]). To prove that ”clf” is of finite type, we should prove that Aclf =

A(clf )f for every ideal A of X. Clearly, we have Aclf ⊆ A(clf )f . Suppose that x ∈ A(clf )f . Then

there exists a finitely generated ideal B such that B ⊆ A and x ∈ Bclf . Since “cl” is a weak

closure operation of finite type, we have Bcl = Bclf . Thus x ∈ Bcl, B ⊆ A and B is finitely

generated ideal. Therefore x ∈ Aclf and Aclf = A(clf )f which means that “clf” is a weak closure
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operation on I(X) of finite type. Now let c be a weak closure operation on I(X) of finite type

which is weaker than “cl”. Let A be an ideal of X and a ∈ Ac. Then there exists a finitely

generated ideal B of X such that B ⊆ A and a ∈ Bc. It follows from c ≤ cl that a ∈ Bcl.

Therefore a ∈ Aclf , and so c ≤ clf .

(ii) Suppose that “cl” be a quasi prime weak closure operation on I(X). To prove that “clf”

is a quasi prime weak closure operation, it is enough to show that a ∧Aclf ⊆ (a ∧A)clf . Now let

x ∈ a ∧ Aclf = ⟨{a ∧ α | α ∈ Aclf}⟩. Then there exist α1, α2, · · · , αn ∈ Aclf such that

(· · · ((x ∧ (a ∧ α1)) ∗ (a ∧ α2)) ∗ · · · ) ∗ (a ∧ αn) = 0.

Since αi ∈ Aclf = ∪{Bcl | B ⊆ A and B ∈ If (X)} for each 1 ≤ i ≤ n, we have αi ∈ Aclf =

∪{Bcl | B ⊆ A and B ∈ If (X)}, and so there exists a finitely generated ideal B such that

αi ∈ Bcl and B ⊆ A. Since αi ∈ Bcl, we have

a ∧ αi ∈ {a ∧ β | β ∈ B} ⊆ ⟨{a ∧ β | β ∈ B}⟩ = a ∧Bcl,

which implies that a ∧ αi ∈ a ∧B and

(· · · ((x ∧ (a ∧ α1)) ∗ (a ∧ α2)) ∗ · · · ) ∗ (a ∧ αn) = 0.

This means that x ∈ a ∧ Bcl. Since “cl” is a quasi prime weak closure operation on I(X), it

follows that

x ∈ a ∧Bcl ⊆ (a ∧B)cl ⊆ (a ∧ A)cl ⊆ (a ∧ A)clf .

Therefore x ∈ (a ∧ A)clf and “clf” is a quasi-prime weak closure operation on I(X). Similarly,

we can check that if “cl” is a strong quasi-prime weak closure operation on I(X), then “clf” is

a strong quasi-prime weak closure operation on I(X). □

Definition 3.23. An operation α : I(X) → I(X) is called a positive implicative (resp. commu-

tative and implicative) weak closure operation if the following conditions are valid.

(i) For any A,B ∈ Ipi(X) (resp. Ic(X) and Im(X)),

A ⊆ Aα, (3.12)

A ⊆ B ⇒ Aα ⊆ Bα. (3.13)

(ii) (∀A /∈ Ipi(X)(resp., Ic(X) and Im(X))) (Aα = A) .

Obviously, every positive implicative (resp., commutative and implicative) weak closure oper-

ation is a weak closure operation, but the converse is not true in general as seen in the following

example.

Example 3.24. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the following Cayley table.
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∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 1

2 2 2 0 2 0

3 3 1 3 0 3

4 4 4 4 4 0

There are six ideals in X, that is, A0 = {0}, A1 = {0, 1, 3}, A2 = {0, 2}, A3 = {0, 1, 2, 3},
A4 = {0, 2, 4} and A5 = X. Note that A1, A3 and A5 are positive implicative ideals and A0,

A2 and A4 are not positive implicative ideals. Define a mapping cl : I(X) → I(X) as follows:

Acl
0 = A0 A

cl
1 = A3, A

cl
2 = A2, A

cl
3 = A5, A

cl
4 = A4 and Acl

5 = X. Then “cl” is a positive implicative

weak closure operation on I(X). Now we define an operation “cl1” on I(X) as follows:

Acl1
0 = A1, A

cl1
1 = A3, A

cl1
2 = A4, A

cl1
3 = A5, A

cl1
4 = A5 and Acl1

5 = X.

Then “cl1” is a weak closure operation on I(X), but it is not positive implicative because the

ideal A2 is not a positive implicative ideal and Acl1
2 = A4 ̸= A2.

Example 3.25. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the following Cayley table.

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 0 0

2 2 2 0 0 0

3 3 3 3 0 0

4 4 4 4 4 0

There are five ideals in X, that is, A0 = {0}, A1 = {0, 1}, A2 = {0, 1, 2}, A3 = {0, 1, 2, 3} and

A4 = X where A3 and A4 are commutative ideals and A0, A1 and A2 are not commutative ideals.

Now define “cl” as follows:

Acl
0 = A1, A

cl
1 = A2, A

cl
2 = A3, A

cl
3 = A4 and Acl

4 = X

Then “cl” is a weak closure operation on I(X), but it is not commutative since the ideal A2 is

not a commutative ideal and Acl
2 = A3 ̸= A2.

Example 3.26. Let X = {0, 1, 2, 3, 4} with the following Cayley table.

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 0 0

2 2 2 0 0 0

3 3 3 3 0 0

4 4 4 4 4 0

Then X is a BCK-algebra with seven ideals A0 = {0}, A1 = {0, 1}, A2 = {0, 1, 2}, A3 = {0, 1, 4}
A4 = {0, 1, 2, 3}, A5 = {0, 1, 2, 4} and A6 = X. Note that A2, A4, A5 and A6 are implicative
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ideals and A0, A1 and A3 are not implicative ideals. Now we define an operation define “cl” on

I(X) by

Acl
0 = A1, A

cl
1 = A2, A

cl
2 = A5, A

cl
3 = A5, A

cl
4 = A6, A

cl
5 = A6 and Acl

6 = X.

Then “cl” is a weak closure operation on I(X), but it is not implicative since the ideal A3 is not

an implicative ideal and Acl
3 = A5 ̸= A3.

Given a weak closure operation, we kame a positive implicative weak closure operation.

Theorem 3.27. Given A ∈ I(X), let “cl” be a weak closure operation on I(X) and “clpi” be an

operation on I(X) such that cl ≤ clpi and

(i) (∀C ∈ I(X))
(
A ⊆ C ⇒ Cclpi = Ccl

)
.

(ii) (∀C ∈ I(X))
(
C ⊊ A ⇒ Cclpi = C

)
.

(iii) For any C ∈ I(X), if A and C have no inclusion relation, then Cclpi = C.

If A is positive implicative (resp., commutative and implicative) ideals of X, then “clpi” is a

positive implicative (resp., commutative and implicative) weak closure operation on I(X).

Proof. Let A and C be ideals of X such that A ⊆ C. Suppose that A is a positive implicative

(resp., commutative and implicative) ideal of X. Then C is a positive implicative (resp., commu-

tative and implicative) ideal of X by Lemma 3.13. Let A and C be ideals of X such that C ⊆ A.

If A is not a positive implicative (resp., commutative and implicative) ideal of X, then C is not a

positive implicative (resp., commutative and implicative) ideal of X. Therefore “cl” is a positive

implicative (resp., commutative and implicative) weak closure operation on I(X). □

The following examples illustrate Theorem 3.27.

Example 3.28. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the following Cayley table,

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 0 1

2 2 2 0 0 2

3 3 2 1 0 3

4 4 4 4 4 0

There are six ideals in X, that is, A0 = {0}, A1 = {0, 1}, A2 = {0, 4}, A3 = {0, 1, 2, 3},
A4 = {0, 1, 4} and A5 = X in which A1, A3, A4 and A5 are positive implicative ideals and A0

and A2 are not positive implicative ideals. Now define “cl” as follows:

Acl
0 = A0, A

cl
1 = A3, A

cl
2 = A4, A

cl
3 = A3, A

cl
4 = A5 and Acl

5 = X.

Then “cl” is a weak closure operation. Now let A = {0, 4} = A2 which is not a positive implicative

ideal. By using Theorem 3.27 we have ”clpi as follows:

A
clpi
0 = A0, A

clpi
1 = A1, A

clpi
2 = A4, A

clpi
3 = A3, A

clpi
4 = A5 and A

clpi
5 = X.
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Clearly, cl ≤ clpi. But, “clpi” is not a positive implicative weak closure operation because A
clpi
2 =

A4 ̸= A2. Now let A = {0, 1} = A1 which is a positive implicative ideal. By using Theorem 3.27

we have “clpi” as follows:

A
clpi
0 = A0, A

clpi
1 = A3, A

clpi
2 = A2, A

clpi
3 = A3, A

clpi
4 = A5 and A

clpi
5 = X.

Clearly, cl ≤ clpi and “clpi” is a positive implicative weak closure operation.

Example 3.29. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the following Cayley table.

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 2 1 0 0

4 4 4 4 4 0

There are five ideals in X, that is, A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 1, 2, 3}, and
A4 = X in which A3 and A4 are commutative ideals and A0, A1 and A2 are not commutative

ideals. Now define “cl” as follows:

Acl
0 = A1, A

cl
1 = A3, A

cl
2 = A3, A

cl
3 = A4 and Acl

4 = X.

Then “cl” is a weak closure operation. Now let A = {0, 1} = A1 which is not a commutative

ideal. By using Theorem 3.27 we have ”clc as follows:

Aclc
0 = A0, A

clc
1 = A3, A

clc
2 = A2, A

clc
3 = A4 and Aclc

4 = X.

Clearly, cl ≤ clc. But, “clc” is not a commutative weak closure operation because Aclc
1 = A3 ̸= A1.

Now let A = {0, 1, 2, 3} = A3 which is a commutative ideal. By using Theorem 3.27 we have

“clc” as follows:

Aclc
0 = A0, A

clc
1 = A1, A

clc
2 = A2, A

clc
3 = A4 and Aclc

4 = X.

Clearly, cl ≤ clc and “clc” is a commutative weak closure operation.

Example 3.30. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the following Cayley table.

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 2

3 3 2 1 0 2

4 4 4 4 4 0

There are six ideals in X, that is, A0 = {0}, A1 = {0, 2}, A2 = {0, 1}, A3 = {0, 1, 2, 3},
A4 = {0, 1, 4} and A5 = X in which A2, A3, A4 and A5 are implicative ideals and A0 and A1 are

not implicative ideals. Now define “cl” as follows:

Acl
0 = A1, A

cl
1 = A3, A

cl
2 = A4, A

cl
3 = A5, A

cl
4 = A4 and Acl

5 = X.
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Then “cl” is a weak closure operation. Now let A = {0, 2} = A1 which is not an implicative

ideal. By using Theorem 3.27 we have “clm” as follows:

Aclm
0 = A0, A

clm
1 = A3, A

clm
2 = A2, A

clm
3 = A5, A

clm
4 = A4 and Aclm

5 = X.

Clearly, cl ≤ clm. But, “clm” is not an implicative weak closure operation because Aclm
1 = A3 ̸=

A1. Now let A = {0, 1} = A2 which is an implicative ideal. By using Theorem 3.27 we have

“clm” as follows:

Aclm
0 = A0, A

clm
1 = A1, A

clm
2 = A4, A

clm
3 = A5, A

clm
4 = A4 and Aclm

5 = X.

Clearly, cl ≤ clm and “clm” is an implicative weak closure operation.
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Communication between relation information

systems∗
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Abstract: Communication between information systems is considered as
an important issue in granular computing. A relation information system is the
generalization of an information system. This paper investigates communication
between relation information systems and obtain some invariant characteriza-
tions of relation information systems under homomorphism.
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1 Introduction

Rough set theory, proposed by Pawlak [17], is an important tool for dealing
with fuzzyness and uncertainty of knowledge and has become an active branch
of information science. With more than thirty years development, rough set
theory has been successfully applied to machine learning, intelligent systems,
inductive reasoning, pattern recognition, mereology, image processing, signal
analysis, knowledge discovery, decision analysis, expert systems and many other
fields [13, 14, 15, 16].

Communication between information systems is a very important topic in
the field of artificial intelligence. In mathematics, it can be explained as a map-
ping between information systems. The approximations and reductions in the
original system can be regarded as encoding while the image system is seen as an
interpretive system. The concept of homomorphisms as a kind of tool to study
relationships between information systems with rough sets was introduced by
Grzymala-Busse [1, 2]. A homomorphism can be viewed as a special communi-
cation between two information systems. As explained in [23], homomorphisms
allow one to translate the information contained in one granular world into the
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granularity of another granular world and thus provide a communication mecha-
nism for exchanging information with other granular worlds. Li et al. [5] studied
invariant characters of information systems under some homomorphism. Wang
et al. [20, 21] introduced the notions of consistent functions, relation mappings
and relation information systems which are the generalization of information
systems. By using these notions, they proposed the homomorphisms as a mech-
anism for communicating between relation information systems. Zhu et al. [26]
obtained some improved results on communication between relation information
systems. Li et al. [12] investigated communication between knowledge bases.
It should be pointed out that some other related works investigating informa-
tion systems through homomorphisms [1, 2, 3, 5, 25] are based on equivalence
relations or other particular relations and are quite different from [20, 21, 26].

The purpose of this paper is to investigate some invariant characterizations
of relation information systems under homomorphisms.

2 Preliminaries

In this section, we recall some basic concepts on consistent functions, rela-
tion mappings and relation information systems.

Throughout this paper, U denotes a non-empty finite set called the universe,
2U denotes the family of all subsets of U , 2U×U denotes the family of all binary
relations on U , All mappings are assumed to be surjective.

For R ∈ 2U×U , the successor neighborhood of x ∈ U with respect to R will
be denoted by Rs(x), that is, Rs(x) = {y ∈ U : xRy} ([22]). Denote

U/R = {Rs(x) : x ∈ U}.
If R is an equivalence relation on U , then ∀ x ∈ U , Rs(x) = [x]R.

For R ⊆ 2U×U , denote ind(R) =
⋂

R∈R
R.

2.1 Consistent functions

Definition 2.1 ([20, 21]). Let U and V be two finite nonempty universes,
f : U → V a mapping and R ∈ 2U×U . Define

[x]f = {u ∈ U : f(u) = f(x)},
(x)R = {u ∈ U : Rs(u) = Rs(x)}.

Then {[x]f : x ∈ U} and {(x)R : x ∈ U} are two partitions on U . If [x]f ⊆ Rs(u)
or [x]f∩Rs(u) 6= ∅ for any x, u ∈ U , then f is called a type-1 consistent function
with respect to R on U . If [x]f ⊆ (x)R for any x ∈ U , then f is called a type-2
consistent function with respect to R on U .

Remark 2.2. (1) ∀ x ∈ U , [x]f = f−1(f(x)).
(2) If R is an equivalence relation on U , then ∀ x ∈ U , (x)R = [x]R.
(3) If f is type-2 consistent with respect to R on U and f(u) = f(x), then

Rs(u) = Rs(x).

2
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Obviously,
f is type-1 ⇐⇒ If [x]f ∩Rs(y) 6= ∅, then [x]f ⊆ Rs(y)

⇐⇒ If [x]f * Rs(y), then [x]f ∩Rs(y) = ∅,
f is type-2 ⇐⇒ If f(x1) = f(x2), then Rs(x1) = Rs(x2).

2.2 Relation mappings

Definition 2.3 ([20, 21]). Let f : U → V be a mapping. Define

f̂ : 2U×U → 2V×V , R| → f̂(R) =
⋃

x∈U

({f(x)} × f(Rs(x)));

f̂−1 : 2V×V → 2U×U , T | → f̂−1(T ) =
⋃

y∈V

({f−1(y)} × f−1(Ts(y))).

Then f̂ and f̂−1 are called the relation mapping and inverse relation mapping
induced by f , respectively.

Obviously,

y1f̂(R)y2 ⇐⇒ ∃ x1, x2 ∈ U, y1 = f(x1), y2 = f(x1) and x1Rx2,

x1f̂
−1(T )x2 ⇐⇒ ∃ y1, y2 ∈ V, y1 = f(x1), y2 = f(x1) and y1Ty2.

For R ⊆ 2U×U , denote

f̂(R) = {f̂(R) | R ∈ R}.
Proposition 2.4 ([20]). If f : U → V is both type-1 and type-2 consistent with
respect to R ∈ 2U×U , then

f̂−1(f̂(R)) = R.

2.3 Relation information systems

Definition 2.5 ([13]). An information system is a pair (U,A) of non-empty
finite sets U and A, where U is a set of objects and A is a set of attributes; each
attribute a ∈ A is a function a : U → Va, where Va is the set of values (called
domain) of attribute a.

If (U,A) is an information system and B ⊆ A, then an equivalence relation
(or indiscernibility relation) RB can be defined by

(x, y) ∈ RB ⇐⇒ a(x) = a(y), ∀ a ∈ B.

Definition 2.6 ([20]). A pair (U,R) is called a relation information system, if
R ⊆ 2U×U .

Definition 2.7. Let (U,A) be an information system. Put

R = {R{a} : a ∈ A}.
Then the pair (U,R) is called the relation information system induced by (U,A).

3
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Definition 2.8 ([20]). Let f : U → V be a mapping and R ⊆ 2U×U . If f is
type-1 (resp. type-2) consistent with respect to R on U for every R ∈ R, then f
is called type-1 (resp. type-2) consistent with respect to R on U .

Proposition 2.9 ([20]). Let f : U → V be a mapping and R ⊆ 2U×U . If
f is both type-1 and type-2 consistent with respect to R, then f̂(ind(R)) =
ind(f̂(R)).

Proposition 2.10 ([20]). Let f : U → V be a mapping and R ⊆ 2U×U . If f

is both type-1 and type-2 consistent with respect to R, then f̂−1(f̂(ind(R)) =
ind(R).

Definition 2.11 ([20]). Let f : U → V be a mapping and R ⊆ 2U×U . Then
the pair (V, f̂(R)) is called an f-induced relation information system of (U,R).

Definition 2.12 ([20]). Let (U,R) be a relation information system and (V, f̂(R))
an f-induced relation information system of (U,R). If f is both type-1 and type-
2 consistent with respect to R on U , then f is called a homomorphism from
(U,R) to (V, f̂(R)). We write

(U,R) ∼f (V, f̂(R)).

We often consider reductions in a relation information system by deleting
unrelated or unimportant elements with the requirement of keeping the ability
of classification.

Definition 2.13 ([20]). Let (U,R) be a relation information system and P ⊆ R.
(1) P is called a coordination subfamily of R, if ind(P) = ind(R).
(2) R ∈ P is called independent in P, if ind(P −{R}) 6= ind(P); P is called

a independent subfamily of R, if ∀ R ∈ P, R is independent in P.
(3) P is called a reductions of R, if P is both coordination and independent.

In this paper, the set of all coordination subfamilies (resp., all reductions)
of R is denoted by co(R) (resp., red(R)).

Obviously,
P ∈ red(R) ⇔ P ∈ co(R) and ∀ Q ⊂ P, Q 6∈ co(R).

3 Some results on reductions in relation infor-
mation systems

Proposition 3.1. Let (U,R) be a relation information system. Then red(R) 6=
∅.
Proof. Suppose ∀ R ∈ R, R− {R} 6∈ co(R). Then R ∈ red(R).

Suppose ∃ R1 ∈ R, R−{R1} ∈ co(R). Then, we consider R−{R1}. Again
suppose ∀ R ∈ R−{R1}, (R−{R1})−{R} 6∈ co(R). Then R−{R1} ∈ red(R).
Again suppose ∃ R2 ∈ R−{R1}, (R−{R1})−{R2} ∈ co(R). Then, we consider

4
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R− {R1, R2}. Repeat this process. Since R is finite, we can find a reductions
of R.

Thus red(R) 6= ∅.
Definition 3.2. Let (U,R) be a relation information system. Put

D(x, y) = {R ∈ R|(x, y) 6∈ R} (x, y ∈ U).

Then
(1) D(x, y) is called is called the discernibility subfamily of R on x and y.
(2) D(R) = (dij)n×n is called the discernibility matrix of R where U =

{x1, x2, · · ·, xn} and dij = D(xi, xj) (1 ≤ i, j ≤ n).

Example 3.3. Let U = {x1, x2, x3, x4, x5, x6}. We consider the relation infor-
mation system (U,R) where R = {R1, R2, R3, R4} and

U/R1 = {{x1, x2, x5}, {x3, x4, x6}},
U/R2 = {{x1, x6}, {x2, x3, x4, x5}},
U/R3 = {{x1, x2, x5, x6}, {x3, x4}},
U/R4={{x1, x2, x5}, {x3, x4, x6}}.

We can obtain the discernibility matrix D(R) as follows:



∅ {R2} R R {R2} {R1, R4}
{R2} ∅ {R1, R3, R4} {R1, R3, R4} ∅ {R1, R2, R4}
R {R1, R3, R4} ∅ ∅ {R1, R3, R4} {R2, R3}
R {R1, R3, R4} ∅ ∅ {R1, R3, R4} {R2, R3}
{R2} ∅ {R1, R3, R4} {R1, R3, R4} ∅ {R1, R2, R4}

{R1, R4} {R1, R2, R4} {R2, R3} {R2, R3} {R1, R2, R4} ∅




Discernibility family can expediently judge coordination families and reduc-
tions.

Proposition 3.4. Let (U,R) be a relation information system. Then

P ∈ co(R) ⇐⇒ If (x, y) 6∈ ind(R), then P ∩ D(x, y) 6= ∅.

Proof. (1) “=⇒”. Let (x, y) 6∈ ind(R). Since P ∈ co(R), we have ind(P) =
ind(R). Then (x, y) 6∈ ind(P). It follows (x, y) 6∈ P for some P ∈ P.

(x, y) 6∈ P implies P ∈ D(x, y). Then P ∈ P ∩ D(x, y).
Thus P ∩ D(x, y) 6= ∅.
“⇐=”. Suppose P 6∈ co(R). Then ind(P) 6= ind(R). It follows ind(P) −

ind(R) 6= ∅. Pick
(x, y) ∈ ind(P)− ind(R).

Since (x, y) 6∈ ind(R), we have P ∩ D(x, y) 6= ∅.
Note that (x, y) ∈ ind(P). Then ∀ P ∈ P, (x, y) ∈ P . So P 6∈ D(x, y). Thus

P ∩ D(x, y) = ∅. This is a contradiction.
Thus P ∈ co(R).
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Theorem 3.5. Let (U,R) be a relation information system. Then P ∈ red(R)
⇐⇒ (1) If (x, y) 6∈ ind(R), then P ∩ D(x, y) 6= ∅;

(2) ∀ R ∈ P, ∃ (xR, yR) ∈ ind(R), (P − {R}) ∩ D(xR, yR) = ∅.
Proof. This holds by Proposition 3.4.

Definition 3.6. Let (U,R) be a relation information system. Put

core(R) =
⋂

P∈red(R)

P.

Then core(R) is called the core of R. Moreover,
(1) R ∈ R is called necessary, if R ∈ core(R).
(2) R ∈ R is called relatively necessary, if R ∈ ⋃

P∈red(R)

P − core(R).

(3) R ∈ R is called unnecessary, if R ∈ R− ⋃
P∈red(R)

P.

Discernibility family can easily determine the core.

Proposition 3.7. Let (U,R) be a relation information system. The following
are equivalent:

(1) R is necessary;
(2) R is independent in R;
(3) ∃ x, y ∈ U , D(x, y) = {R}.

Proof. (1) =⇒ (2). Suppose that R is not independent in R. Then

ind(R− {R}) = ind(R).

It follows R − {R} ∈ co(R). Consider R − {R}. By Proposition 3.1, ∃ P ⊆
R− {R}, P ∈ red(R).

P ⊆ R− {R} implies R 6∈ P. Then R is not necessary. This is a contradic-
tion.

(2) =⇒ (1). Suppose that R is not necessary. Then ∃ P ∈ red(R), R 6∈ P.
So P ⊆ R− {R} ⊆ R. It follows

ind(P) ⊇ ind(R− {R}) ⊇ ind(R).

By P ∈ red(R), ind(P) = ind(R). Then ind(R − {R}) = ind(R). So R is
not independent in R. This is a contradiction.

(2) =⇒ (3). Since R is independent in R, we have ind(R− {R}) 6= ind(R).
Then ind(R− {R})− ind(R) 6= ∅. Pick

(x, y) ∈ ind(R− {R})− ind(R).

Denote R = {R1, R2, . . . , Rn}. Then R = Rj for some j ≤ n. So

(x, y) ∈
⋂

1≤i≤n,i 6=j

Ri −
⋂

1≤i≤n

Ri.

6

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

268 Funing Lin et al 263-275



It follows (x, y) 6∈ Rj and (x, y) ∈ Ri (i 6= j).
Thus D(x, y) = {R}.
(3) =⇒ (2). Since ∃ x, y ∈ U , D(x, y) = {R}, we have

(x, y) 6∈ R, (x, y) ∈ R
′
(R

′ 6= R).

Then (x, y) ∈ ind(R− {R}). But (x, y) 6∈ ind(R).
Thus ind(R− {R}) 6= ind(R).
Hence R is independent in R.

Proposition 3.8. Let (U,R) be a relation information system. Denote

R? =
⋃

P∈co(R)

ind(P − {R}).

Then the following are equivalent.
(1) R is unnecessary;
(2) ∀ P ∈ co(R), P − {R} ∈ co(R);
(3) R? = ind(R);
(4) R? ⊆ R.

Proof. (1) =⇒ (2). By Proposition 3.1, ∃ Q ⊆ P, Q ∈ red(R). Since R is
unnecessary, we have R 6∈ Q. It follows Q ⊆ R− {R}. Then

Q ⊆ P ∩ (R− {R}) = P − {R} ⊆ P.

We have
ind(Q) ⊇ ind(R− {R}) ⊇ ind(P).

Note that P ∈ co(R) and Q ∈ red(R). Then ind(P) = ind(R) = ind(Q).
Thus ind(P − {R}) = ind(R). This shows P − {R} ∈ co(R).
(2) =⇒ (3) =⇒ (4) are obvious.
(4) =⇒ (1). Suppose ∃ P ∈ red(R), R ∈ P. Then P − {R} ⊂ P. Since

P ∈ red(R), we have P − {R} 6∈ co(R). Then ind(P − {R}) − ind(R) 6= ∅.
P ∈ red(R) implies ind(P) = ind(R). Then

ind(P − {R})− ind(P) 6= ∅.

Pick (x, y) ∈ ind(P−{R})− ind(P). Note that ind(P) = ind(P−{R})∩R.
Then (x, y) 6∈ R.

Since P ∈ co(R) and R? ⊆ R, we have ind(P − {R}) ⊆ R. Then (x, y) ∈ R.
This is a contradiction.

Thus R is unnecessary.

Theorem 3.9. Let (U,R) be a relation information system. Then
(1) R is necessary ⇔ R− {R} 6∈ co(R).
(2) R is relatively necessary ⇔ R− {R} ∈ co(R) and R? 6⊆ R.
(3) R is unnecessary ⇔ R? ⊆ R.
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Proof. This holds by Proposition 3.7 and Proposition 3.8.

Example 3.10. In Example 3.3, we have
(1) R2 is necessary.
(2) R1 and R4 are relatively necessary.
(3) R3 is unnecessary.
(4) red(R) = {{R1, R2}, {R2, R4}}, core(R) = {R2}.

4 Communication between relation information
systems

Proposition 4.1. Let (U,R) ∼f (V, f̂(R)). Then
(1) P ∈ co(R) ⇐⇒ f̂(P) ∈ co(f̂(R)).
(2) co(f̂(R)) = f̂(co(R)).

Proof. (1) “=⇒”. Since P ∈ co(R), we have ind(P) = ind(R). Then

f̂(ind(P)) = f̂(ind(R)).

By Proposition 2.6,
ind(f̂(P)) = ind(f̂(R)).

Thus f̂(P) ∈ co(f̂(R)).
“⇐=”. Since f̂(P) ∈ co(f̂(R)), we have

ind(f̂(P)) = ind(f̂(R)).

By Proposition 2.6,
f̂(ind(P)) = f̂(ind(R)).

Then
f̂−1(f̂(ind(P))) = f̂−1(f̂(ind(R))).

By Proposition 2.7, ind(P) = ind(R).
Thus P ∈ co(R).
(2) By (1),

f̂(co(R)) = {f̂(P)|P ∈ co(R)}
= {f̂(P)|f̂(P) ∈ co(f̂(R))}

= co(f̂(R)).

Theorem 4.2. Let (U,R) ∼f (V, f̂(R)). Then
(1) P ∈ red(R) ⇐⇒ f̂(P) ∈ red(f̂(R)).
(2) red(f̂(R)) = f̂(red(R)).
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Proof. (1) “=⇒”. Since P ∈ red(R), we have P ∈ co(R). By Proposition 4.1,
f̂(P) ∈ co(f̂(R)).

∀ T ⊂ f̂(P). Pick Q ⊆ R, T = f̂(Q). Then f̂(Q) ⊂ f̂(P). By Proposition
2.4,

Q = f̂−1(f̂(Q)) ⊆ f̂−1(f̂(P)) = P.

Suppose Q = P. Then T = f̂(Q) = f̂(P). This is a contradiction.
Thus Q ⊂ P.
Since P ∈ red(R), we have Q 6∈ co(R). By Proposition 4.1, T = f̂(Q) 6∈

co(f̂(R)).
Hence f̂(P) ∈ red(f̂(R)).
“⇐=”. Since f̂(P) ∈ red(f̂(R)), we have f̂(P) ∈ co(f̂(R)). By Proposition

4.1, P ∈ co(R).
∀ Q ⊂ P, f̂(Q) ⊆ f̂(P). Suppose f̂(Q) = f̂(P). By Proposition 2.4,

Q = f̂−1(f̂(Q)) = f̂−1(f̂(P)) = P.

This is a contradiction. Thus f̂(Q) ⊂ f̂(P).
Since f̂(P) ∈ red(f̂(R)), we have f̂(Q) 6∈ co(f̂(R)). By Proposition 4.1,

Q 6∈ co(R).
Hence P ∈ red(R).
(2) By (1),

f̂(red(R)) = {f̂(P)|P ∈ red(R)}
= {f̂(P)|f̂(P) ∈ red(f̂(R))}
= red(f̂(R)).

Remark 4.3. Theorem 3.20(1) is Theorem 4.4 in [20]. We just prove this
result from another angle.

Lemma 4.4. Let (U,R) ∼f (V, f̂(R)). Then

f̂(R− {R}) = f̂(R)− {f̂(R)}.

Proof. ∀ S ∈ R − {R}, S 6= R. By Proposition 2.4, f̂(S) 6= f̂(R). It follows
f̂(S) ∈ f̂(R)− {f̂(R)}. Thus

f̂(R− {R}) ⊆ f̂(R)− {f̂(R)}.

On the other hand, ∀ T ∈ f̂(R) − {f̂(R)}, T = f̂(S) for some S ∈ R.
T 6∈ {f̂(R)} implies f̂(S) 6= f̂(R). Then S 6= R. So S ∈ R − {R}. It follows
T ∈ f̂(R− {R}). Thus

f̂(R− {R}) ⊇ f̂(R)− {f̂(R)}.

Hence f̂(R− {R}) = f̂(R)− {f̂(R)}.

9
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Theorem 4.5. Let (U,R) ∼f (V, f̂(R)). Then

R ∈ core(R) ⇐⇒ f̂(R) ∈ core(f̂(R)).

Proof. This holds by Theorem 3.9(1), Proposition 4.1(1) and Lemma 4.4.

Theorem 4.6. Let (U,R) ∼f (V, f̂(R)). Then

f̂(core(R)) = core(f̂(R)).

Proof. By Theorem 3.23,

f̂(core(R)) = {f̂(R)|R ∈ core(R)}
= {f̂(R)|f̂(R) ∈ core(f̂(R))}
= core(f̂(R)).

Theorem 4.7. Let (U,R) ∼f (V, f̂(R)). Then

R is unnecessary ⇔ f̂(R) is unnecessary.

Proof. “=⇒”. ∀ T ∈ co(f̂(R)), pick P ⊆ R, T = f̂(P). Then f̂(P) ∈ co(f̂(R)).
By Proposition 3.19(1), P ∈ co(R).

Since R is unnecessary, by Proposition 3.8, we have P −{R} ∈ co(R). Then
ind(P − {R}) = ind(R). By Proposition 2.6 and Lemma 4.4,

ind(f̂(P)− {f̂(R)}) = ind(f̂(P − {R}) = f̂(ind(P − {R})),
ind(f̂(R)) = f̂(ind(R)).

Then ind(T − {f̂(R)}) = ind(f̂(R)). This implies T − {f̂(R)} ∈ co(f̂(R)).
By Proposition 3.8, f̂(R) is unnecessary.
“⇐=”. ∀ P ∈ co(R), by Proposition 4.1(1), f̂(P) ∈ co(f̂(R)).
Since f̂(R) is unnecessary, by Proposition 3.8, we have

f̂(P)− {f̂(R)} ∈ co(f̂(R)).

Then
ind(f̂(P)− {f̂(R)}) = ind(f̂(R)).

By Proposition 2.6 and Lemma 4.4,

f̂(ind(P − {R})) = ind(f̂(P − {R}) = ind(f̂(P)− {f̂(R)}),
f̂(ind(R)) = ind(f̂(R)).

Then f̂(ind(P − {R})) = f̂(ind(R)).
By Proposition 2.7,

ind(P − {R}) = f̂−1(f̂(ind(P − {R}))) = f̂−1(f̂(ind(R))) = ind(R).

Then P − {R} ∈ co(R).
By Proposition 3.8, R is unnecessary.

10
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Corollary 4.8. Let (U,R) ∼f (V, f̂(R)). Then

R is relatively necessary ⇐⇒ f̂(R) is relatively necessary.

Proof. This hods by Theorem 4.5 and Theorem 4.7.

Example 4.9. Let U = {xi|1 ≤ i ≤ 15}. We consider the relation information
system (U,R) where R = {R1, R2, R3, R4},

U/R1 = {{x1, x2, x4, x7, x8, x9, x10, x11}, {x3, x5, x6, x12, x13, x14, x15}},
U/R2 = {{x1, x4, x11, x12, x13, x14, x15}, {x2, x3, x5, x6, x7, x8, x9, x10}},
U/R3 = {{x1, x2, x4, x7, x8, x9, x10, x11, x12, x13, x14, x15}, {x3, x5, x6}},
U/R4 = {{x1, x2, x4, x7, x8, x9, x10, x11}, {x3, x5, x6, x12, x13, x14, x15}}.

Let V = {y1, y2, y3, y4, y5, y6}. Define a mapping as follows:

x1, x4, x11 x2, x8 x3, x6 x5 x7, x9, x10 x12, x13, x14, x15

y1 y2 y3 y4 y5 y6
.

Let (V, f̂(R)) be the f-induced relation information system of (U,R). It is very
easy to verify that f is a homomorphism from (U,R) to (V, f̂(R)).

We have f̂(R) = {f̂(R1), f̂(R3), f̂(R3), f̂(R4)} where
V/f̂(R1) = {{y1, y2, y5}, {y3, y4, y6}},
V/f̂(R2) = {{y1, y6}, {y2, y3, y4, y5}},
V/f̂(R3) = {{y1, y2, y5, y6}, {y3, y4}},
V/f̂(R4) = {{y1, y2, y5}, {y3, y4, y6}}.

By Example 3.10,

red(f̂(R)) = {{f̂(R1), f̂(R2)}, {f̂(R2), f̂(R4)}}, core(f̂(R)) = {f̂(R2)}.

By Proposition 2.4, Theorem 4.2(2) and Theorem 4.6,

red(R) = {{R1, R2}, {R2, R4}}, core(R) = {R2}.

5 Conclusions

In this paper, we have investigated the original relation information system
and image relation information system, and obtained some invariant character-
izations of relation information systems under homomorphism. These results
will be significant for establishing a framework of granular computing in knowl-
edge bases and may have potential applications to knowledge discovery, decision
making and reasoning about data. In the future, we will consider concrete ap-
plications of our results.

11

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

273 Funing Lin et al 263-275



References

[1] J.W.Graymala-Busse, Algebraic properties of knowledge representation
systems, in: Proceedings of the ACM SIGART International Symposium
on Methodologies for Intelligent Systems, Knoxville, 1986, pp. 432-440.

[2] J.W.Graymala-Busse Jr., W.A.Sedelow, On rough sets and information sys-
tem homomorphism, Bulletin of the Polish Academy of Technology Science
36(3-4)(1988) 233-239.

[3] Z.Gong, Z.Xiao, Communicating between information systems based on
including degrees, International Journal of General Systems 39(2)(2010)
189-206.

[4] M.Kryszkiewicz, Comparative study of alternative types of knowledge re-
ductions in inconsistent systems, International Journal of Intelligent Sys-
tems 16(2001) 105-120.

[5] D.Li, Y.Ma, Invariant characters of information systems under some ho-
momorphisms, Information Sciences 129(2000) 211-220.

[6] Z.Li, R.Cui, T -similarity of fuzzy relations and related algebraic structures,
Fuzzy Sets and Systems 275(2015) 130-143.

[7] Z.Li, R.Cui, Similarity of fuzzy relations based on fuzzy topologies induced
by fuzzy rough approximation operators, Information Sciences 305(2015)
219-233.

[8] Z.Li, T.Xie, The relationship among soft sets, soft rough sets and topolo-
gies, Soft Computing 18(2014) 717-728.

[9] Z.Li, T.Xie, Roughness of fuzzy soft sets and related results, International
Journal of Computational Intelligence Systems 8(2015) 278-296.

[10] Z.Li, T.Xie, Q.Li, Topological structure of generalized rough sets, Comput-
ers and Mathematics with Applications 63(2012) 1066-1071.

[11] Z.Li, N.Xie, G.Wen, Soft coverings and their parameter reductions, Applied
Soft Computing 31(2015) 48-60.

[12] Z.Li, Y.Liu, Q.Li, B.Qin, Relationships between knowledge bases and re-
lated results, Knowledge and Information Systems, First online: 26 Novem-
ber 2015, DOI 10.1007/s10115-015-0902-z.

[13] Z.Pawlak, Rough sets: Theoretical aspects of reasoning about data, Kluwer
Academic Publishers, Dordrecht, 1991.

[14] Z.Pawlak, A.Skowron, Rudiments of rough sets, Information Sciences
177(2007) 3-27.

12

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

274 Funing Lin et al 263-275



[15] Z.Pawlak, A.Skowron, Rough sets: some extensions, Information Sciences
177(2007) 28-40.

[16] Z.Pawlak, A.Skowron, Rough sets and Boolean reasoning, Information Sci-
ences 177(2007) 41-73.

[17] Z.Pawlak, Rough sets, International Journal of Computer and Information
Sciences 11(1982) 341-356.

[18] A.Skwwron, C.Rauszer, The discernibility matrices and mappings in in-
formation systems, in: R. Slowinski (Ed.), Intelligent decision support,
Handbook of applications and advances of the rough sets theory, Kluwer
Academic, Dordrecht, 1992, pp. 331-362.

[19] W.Wu, M.Zhang, H.Li, J.Mi, Knowledge reductionsion in random informa-
tion systems via Dempster-Shafer theory of evidence, Information Sciences
174(2005) 143-164.

[20] C.Wang, C.Wu, D.Chen, W.Du, Some properties of relation information
systems under homomorphisms, Applied Mathematics Letters 21(2008)
940-945.

[21] C.Wang, C.Wu, D.Chen, Q.Hu, C.Wu, Communicating between informa-
tion systems, Information Sciences 178(2008) 3228-3239.

[22] Y.Y.Yao, Constructive and algebraic methods of the theory of rough sets,
Information Sciences 109(1998) 21-47.

[23] W.Pedrycz, G.Vukovich, Granular worlds: representation and communi-
cation problems, International Journal of Intelligent Systems 15(11)(2000)
1015-1026.

[24] W.Zhang, J.Mi, W.Wu, Knowledge reductionsions in inconsistent informa-
tion systems, International Journal of Intelligent Systems 18(2003) 989-
1000.

[25] Y.Zhai, K.Qu, On characteristics of information system homomorphisms,
Theory of Computing Systems 44(3)(2009) 414-431.

[26] P.Zhu, Q.Wen, Some improved results on communication between informa-
tion systems, Information Sciences 180(2010) 3521-3531.

13

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

275 Funing Lin et al 263-275



Global stability in a discrete Lotka-Volterra competition model
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Abstract

We consider the Euler difference scheme for two-dimensional Lotka-Volterra competition
equations and show that the difference scheme has positive and bounded solutions. In
addition, we present sufficient conditions that the solutions of the scheme converge to the
equilibrium points of the scheme. The convergence is shown based on the two approaches:
first, partition of the domain used for the boundedness of the solutions and second, cal-
culation of the movement of the species started in each partitioned region. Numerical
examples are presented to verify the results.

Key words: Euler difference scheme, positivity, global stability, competition model

1. Introduction

The competition model in the two-dimensional case represents two species which are
competing for a common resource; an additional term is included within the logistic
prey growth Lotka-Volterra model to incorporate this interspecific competition for some
limiting resource. This limiting resource can be anything for which supply is smaller than
demand. The classic two-dimensional competition model is given by

dx

dt
= x(t)(r1 − a11x(t)− a12y(t)),

dy

dt
= y(t)(r2 − a21x(t)− a22y(t)), (1)

where ri > 0 and aij > 0. Here x(t) and y(t) denote the population sizes or population
density in the species x and y at time t; the parameters ri’s are the intrinsic growth rates
for the two species x and y; aii’s measure the inhibiting effect on the two species; a12 and
a21 are the interspecific acting coefficients.

The species x in the model (1) acts on y with functional response of type a12x(t)y(t).
However other types of functional responses including Holling types [1–5], Beddington-
DeAngelis type [6–8], Crowley-Martin type [9–11], and Ivlev-type of functional responses
[12–14] have been applied to many population models

The dynamics of the model (1) is well-known [15–17] ; the solutions of (1) are positive
and bounded, and the stability of the system (1) has been studied. There are a number
of works on investigating continuous time Lokta-Volterra models, but relatively few the-
oretical papers are published on their discretized models [18–21]. The author in [22] has
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introduced a method to present global stability in discrete Lokta-Volterra predator-prey
models for the case that all species coexist at a unique equilibrium. In [23], the authors
have shown the global stability of the Euler difference scheme for a three-dimensional
predator-prey model using a new approach.

As far as we know, there is no theoretical research on the global stability of the
discrete-time competition model of (1), so that we consider the Euler difference scheme

xn+1 = Fyn(xn), yn+1 = Gxn(yn), n ≥ 0 (2)

with

Fy(x) = x {1 + (r1 − a11x− a12y)∆t} , (3)

Gx(y) = y {1 + (r2 − a21x− a22y)∆t} , (4)

where ∆t is a time step size, xn = x0 +n∆t and yn = y0 +n∆t with (x0, y0) = (x(0), y(0)).
The paper is organized as follows. Section 2 gives the positivity and boundedness

of solutions of (2). In Section 3, we partition the domain used for the boundedness of
the discrete solutions and find the geometric properties of the movement of the solutions
starting in the partitioned regions. Using the properties, we present sufficient conditions
that the solutions converge to equilibrium points of (2). In Section 4, some numerical
examples are presented to verify our results.

2. Positivity of the discrete solutions

In this section, we consider the positivity and boundedness of the solutions of (2).
Note that if τ1 and τ2 are positive constants satisfying

U1(τ2) =
1 + r1∆t− a12τ2∆t

2a11∆t
> 0, U2(τ1) =

1 + r2∆t− a21τ1∆t

2a22∆t
> 0, (5)

then
Fτ2(x), Gτ1(y) are increasing on 0 ≤ x ≤ U1(τ2), 0 ≤ y ≤ U2(τ1). (6)

For the positivity and boundedness of the solutions (xn, yn) we assume

max{r1, r2} < 1/∆t (7)

and consider constants x∗ and y∗ such that

r1a
−1
11 ≤ x∗ ≤ U1(y∗), r2a

−1
22 ≤ y∗ ≤ U2(x∗). (8)

Remark 1. For every point (x∗, y∗) satisfying

r1

a11

≤ x∗ ≤ min

{
1 + r1∆t

4a11∆t
,

1 + r2∆t

2a21∆t

}
,

r2

a22

≤ y∗ ≤ min

{
1 + r1∆t

2a12∆t
,

1 + r2∆t

4a22∆t

}
, (9)

2
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the two conditions in (8) hold since

U1(y∗) =
1 + r1∆t− a12y

∗∆t

2a11∆t
≥

1 + r1∆t− a12 min
{

1+r1∆t
2a12∆t

, 1+r2∆t
4a22∆t

}
∆t

2a11∆t

=
1 + r1∆t

2a11∆t
− a12

2a11

min

{
1 + r1∆t

2a12∆t
,

1 + r2∆t

4a22∆t

}
= max

{
1 + r1∆t

4a11∆t
,

1 + r1∆t

2a11∆t
− a12

2a11

1 + r2∆t

4a22∆t

}
≥ 1 + r1∆t

4a11∆t

≥ min

{
1 + r1∆t

4a11∆t
,

1 + r2∆t

2a21∆t

}
≥ x∗

and

U2(x∗) =
1 + r2∆t− a21x

∗∆t

2a22∆t
≥

1 + r2∆t− a21 min
{

1+r1∆t
4a11∆t

, 1+r2∆t
2a21∆t

}
∆t

2a22∆t

=
1 + r2∆t

2a22∆t
− a21

2a22

min

{
1 + r1∆t

4a11∆t
,

1 + r2∆t

2a21∆t

}
= max

{
1 + r2∆t

2a22∆t
− a21

2a22

1 + r1∆t

4a11∆t
,

1 + r2∆t

4a22∆t

}
≥ 1 + r2∆t

4a22∆t

≥ min

{
1 + r1∆t

2a12∆t
,

1 + r2∆t

4a22∆t

}
≥ y∗.

Using x∗ and y∗ in (8), we can obtain the positivity and boundedness of (xn, yn).

Theorem 1. Let (xn, yn) be the solution of (2). Assume that (7) and (8) hold.

If (x0, y0) ∈ (0, x∗)× (0, y∗), then (xn, yn) ∈ (0, x∗)× (0, y∗) for all n.

Proof. Using the condition in this theorem and (5), we have

0 < x0 < x∗ ≤ U1(y∗) < U1(y0), 0 < y0 < y∗ ≤ U2(x∗) < U2(x0), (10)

and then the increasing property (6) gives the positivity of x1 and y1:

x1 = Fy0(x0) > Fy0(0) = 0, y1 = Gx0(y0) > Gx0(0) = 0. (11)

Now, we claim that x1 < x∗ and y1 < y∗. If r1 − a11x0 − a12y0 ≤ 0, then

x1 = Fy0(x0) ≤ x0 < x∗.

Otherwise, we get

0 < x0 < (r1 − a12y0)a−1
11 < (1 + r1∆t− a12y0∆t)(2a11∆t)−1 = U1(y0),

where the last inequality is obtained from r1∆t < 1 in (7). Hence (6) and (8) imply the
boundedness of x1:

x1 = Fy0(x0) < Fy0
(
(r1 − a12y0)a−1

11

)
= (r1 − a12y0)a−1

11 < r1a
−1
11 ≤ x∗. (12)

3
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Similarly if r2 − a21x0 − a22y0 ≤ 0, then y1 = Gx0(y0) ≤ y0 < y∗. Otherwise, we have

0 < y0 < (r2 − a21x0)a−1
22 < (1 + r2∆t− a21x0∆t)(2a22∆t)−1 = U2(x0),

where the last inequality is obtained from r2∆t < 1 in (7). Thus (6) and (8) imply the
boundedness of y1 that

y1 = Gx0(y0) < Gx0

(
(r2 − a21x0)a−1

22

)
= (r2 − a21x0)a−1

22 < r2a
−1
22 ≤ y∗. (13)

Hence using (11), (12) and (13), we have that

if (x0, y0) ∈ (0, x∗)× (0, y∗), then (x1, y1) ∈ (0, x∗)× (0, y∗).

Therefore, using the mathematical induction, we can obtain the desired result.

Remark 2. Due to (9), we can choose sufficiently large values of x∗ and y∗ when letting
∆t be sufficiently small, so that the area of (0, x∗)× (0, y∗) for the initial state (x0, y0) in
Theorem 1 can be taken large.

3. Stability of the discrete solutions

Let D = (0, x∗)× (0, y∗) for x∗ and y∗ defined in (8). In order to discuss the stability
of the Euler scheme (2) for each initial position (x0, y0) contained in D, we partition D
into the four regions

I = {x ∈ D | f(x) ≥ 0, g(x) > 0}, II = {x ∈ D | f(x) < 0, g(x) ≥ 0},
III = {x ∈ D | f(x) ≤ 0, g(x) < 0}, IV = {x ∈ D | f(x) > 0, g(x) ≤ 0},

(14)

where x = (x, y) and

f(x, y) = r1 − a11x− a12y, g(x, y) = r2 − a21x− a22y. (15)

Since the location of the regions depends on the x and y-intercepts of the two lines
f(x, y) = 0 and g(x, y) = 0, we partition D by using the four categories Ci(1 ≤ i ≤ 4) as in
Figure 1; we use the symbol C1 for the two conditions r1a

−1
11 < r2a

−1
21 and r1a

−1
12 < r2a

−1
22 ,

the symbol C2 for r1a
−1
11 > r2a

−1
21 and r1a

−1
12 > r2a

−1
22 , the symbol C3 for r1a

−1
11 < r2a

−1
21

and r1a
−1
12 > r2a

−1
22 , and finally the symbol C4 for r1a

−1
11 > r2a

−1
21 and r1a

−1
12 < r2a

−1
22 . The

magenta circles in Figure 1 denote the stable points of the difference model (2) in the
categories, which will be proved.

Remark 3. In the case of C1

r1a
−1
11 < r2a

−1
21 , r1a

−1
12 < r2a

−1
22 , (16)

the region IV is empty. In order to prove this emptiness, suppose, on the contrary, that
there exists (x, y) ∈ IV, which means, from (14), that

r1 − a11x− a12y > 0, r2 − a21x− a22y ≤ 0. (17)

Eliminating x and y from (17), we have the two inequalities, respectively:

−r1a21 + r2a11 < (a11a22 − a12a21)y, (18)

−r1a22 + r2a12 < (a12a21 − a11a22)x. (19)

4
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Figure 1: Two lines f = 0 and g = 0 and regions with stable points. (a) r2 = 3.5, a21 = 3.0, a22 = 2 (b)
r2 = 1.5, a21 = 3, a22 = 5 (c) r2 = 1.7, a21 = 3, a22 = 1 (d) r2 = 3.5, a21 = 2.5, a22 = 5

We find a contradiction by using the following three cases:
Case 1. Let a11a22 − a12a21 = 0.
In this case, (18) becomes −r1a21 + r2a11 < 0, which contradicts (16).
Case 2. Let a11a22 − a12a21 < 0.
Using the positivity of y, (18) becomes −r1a21 + r2a11 < 0, which contradicts (16).
Case 3. Let a11a22 − a12a21 > 0.
Using the positivity of x, (19) becomes −r1a22 + r2a12 < 0, which contradicts (16).
Therefore it follows from Cases 1, 2 and 3 that the region IV is empty and then

D = I ∪ II ∪ III for C1 (20)

as in Figure 1-(a). Similarly we can obtain

D = I ∪ III ∪ IV for C2 (21)

as in Figure 1-(b).

For convenience, we use the difference equations

xn+1 = xn{1 + f(xn, yn)∆t}, (22)

yn+1 = yn{1 + g(xn, yn)∆t} (23)

as well as (2), where f(x, y) and g(x, y) are defined in (15).
For the stability we need to assume

1 > ∆t (a11x
∗ + a22y

∗ + x∗y∗|a12a21 − a11a22|∆t) . (24)

Lemma 1. Let (xn, yn) be the solution of (2). Assume that (7), (8) and (24) hold.

If (xk, yk) ∈ I for some k, then (xk+1, yk+1) is not contained in III.

5
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Proof. The condition (xk, yk) ∈ I gives

g(xk, yk) > 0. (25)

Suppose, on the contrary, that (xk+1, yk+1) is contained in III, which means

f(xk+1, yk+1) ≤ 0 and g(xk+1, yk+1) < 0.

Then (22) and (23) give

0 ≥ f(xk+1, yk+1) = f (xk + xkf(xk, yk)∆t, yk + ykg(xk, yk)∆t)

= f(xk, yk) + (−a11)xkf(xk, yk)∆t+ (−a12)ykg(xk, yk)∆t
(26)

and

0 > g(xk+1, yk+1) = g(xk + xkf(xk, yk)∆t, yk + ykg(xk, yk)∆t)

= g(xk, yk) + (−a21)xkf(xk, yk)∆t+ (−a22)ykg(xk, yk)∆t.
(27)

We write (26) and (27) as

f(xk, yk)(1− a11xk∆t) ≤ a12ykg(xk, yk)∆t,

g(xk, yk)(1− a22yk∆t) < a21xkf(xk, yk)∆t.
(28)

Combining (24) and Theorem 1 gives

0 < 1− a11x
∗∆t < 1− a11xk∆t

and so (28) implies

g(xk, yk)(1− a22yk∆t) < a21xk∆t
a12ykg(xk, yk)∆t

(1− a11xk∆t)
. (29)

Using (24) and (25), we can simplify (29) as follows.

1 < ∆t{a11xk(1− a22yk∆t) + a22yk + a12yka21xk∆t}
≤ ∆t{a11xk + a22yk + xkyk|a12a21 − a11a22|∆t}, (30)

where the last inequality contradicts (24). Hence (xk+1, yk+1) is not contained in III.

Remark 4. Similarly to Lemma 1 under the same assumption, we can obtain that

if (xk, yk) ∈ III for some k, then (xk+1, yk+1) is not contained in I (31)

as follows. The condition (xk, yk) ∈ III gives

g(xk, yk) < 0. (32)

Suppose, on the contrary, that

f(xk+1, yk+1) ≥ 0 and g(xk+1, yk+1) > 0. (33)

Using (33) instead of f(xk+1, yk+1) ≤ 0 and g(xk+1, yk+1) < 0 in the proof of Lemma 1
and following the proof of Lemma 1 with (32), we have

g(xk, yk)(1− a22yk∆t) > a21xk∆t
a12ykg(xk, yk)∆t

(1− a11xk∆t)

and then obtain the contradiction (30) due to (32). Therefore we obtain (31).

6
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Lemma 2. Let (xn, yn) be the solution of (2). Assume that (7), (8) and (24) hold.

If (xk, yk) ∈ II for some k, then (xn, yn) ∈ II for all n ≥ k.

Proof. Let (xk, yk) ∈ II, which implies f(xk, yk) < 0 ≤ g(xk, yk) and then

xk+1 < xk, yk+1 ≥ yk. (34)

It follows from Theorem 1, (34) and (10) that

0 < xk+1 < xk < U1(yk), 0 < yk ≤ yk+1 < y∗ < U2(xk). (35)

Using the decreasing function Fy(x) of y and combining (6) with (35), we have

xk+2 = Fyk+1
(xk+1) ≤ Fyk(xk+1) < Fyk(xk) = xk+1 (36)

and then (22) gives
f(xk+1, yk+1) < 0. (37)

Similarly, the strictly decreasing function Gx(y) of x with (6) and (35) gives

yk+2 = Gxk+1
(yk+1) > Gxk(yk+1) ≥ Gxk(yk) = yk+1. (38)

Substituting (23) into (38) yields

g(xk+1, yk+1) > 0,

with which (37) gives

f(xk+1, yk+1) < 0 < g(xk+1, yk+1).

This implies
(xk+1, yk+1) ∈ II.

Hence

if (xk, yk) ∈ II, then (xk+1, yk+1) ∈ II.

Therefore using mathematical induction, we can obtain the desired result.

Remark 5. Similarly to Lemma 2 under the same assumption, we can obtain that

if (xk, yk) ∈ IV for some k, then (xn, yn) ∈ IV for all n ≥ k (39)

as follows. Let (xk, yk) ∈ IV, which implies

f(xk, yk) > 0 ≥ g(xk, yk). (40)

Then replacing f(xk, yk) < 0 ≤ g(xk, yk) in the proof of Lemma 2 with (40) and following
the proof of Lemma 2, we have

f(xk+1, yk+1) > 0 > g(xk+1, yk+1),

which implies
(xk+1, yk+1) ∈ IV.

Hence mathematical induction gives (39).
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In the following theorem, we show the global stability of the solutions of (2) for the
category C1 as in Figure 1-(a); we present the condition that the species y always out-
competes the species x.

Theorem 2. Assume that (7), (8) and (24) hold.

If r1a
−1
11 < r2a

−1
21 and r1a

−1
12 < r2a

−1
22 , then

(
0, r2a

−1
22

)
is globally stable.

Proof. The condition in this theorem is corresponding to C1, so that D is partitioned into
the three regions I, II and III due to (20). We claim the global stability for (x0, y0) ∈
I ∪ II ∪ III by using mathematical induction as follows.
Case 2-1. Let (x0, y0) ∈ II.
Using Lemma 2 and Theorem 1, we have that

0 < xn+1 < xn, 0 < yn ≤ yn+1 < y∗, (41)

which give the convergence of {xn} and {yn} with limits ω1 and ω2, respectively.
Note that the increasing property of {yn} gives ω2 > 0.
In addition, the limit ω1 is zero, which can be obtained by indirect proof. Suppose, on
the contrary, that ω1 is nonzero. Taking the limit of (2) and using ωi > 0 (i = 1, 2), we
have

(a11a22 − a12a21) (ω1, ω2) = (r1a22 − r2a12,−r1a21 + r2a11) . (42)

Since r1a22 − r2a12 < 0 and −r1a21 + r2a11 > 0 from the conditions in this theorem, the
equality (42) with ωi > 0 gives

0 > a11a22 − a12a21 > 0, (43)

which is a contradiction. Consequently, ω1 is zero.
Taking the limit of the second equation in (2) with ω1 = 0 and ω2 > 0, we have ω2 = r2a

−1
22 ,

which completes the proof for Case 2-1.
Case 2-2. Let (x0, y0) ∈ I.
This case implies that f(x0, y0) ≥ 0 and g(x0, y0) > 0. We use the following three steps
to prove this theorem in this case.

Step 1. There exists a positive integer m1 such that (xm1 , ym1) /∈ I.
Suppose, on the contrary, that (xn, yn) ∈ I for all n, which means f(xn, yn) ≥ 0 and
g(xn, yn) > 0 for all n. Then

xn+1 = xn{1 + f(xn, yn)∆t} ≥ xn > 0, yn+1 = yn{1 + g(xn, yn)∆t} > yn > 0

and hence the boundedness of (xn, yn) in Theorem 1 gives the convergence of the increasing
sequences {xn} and {yn}, which have positive limits ω1 and ω2, respectively. Therefore
we have a contradiction by using (42)–(43).

Step 2. There exists a positive integer m such that (xm, ym) ∈ II.
Using (x0, y0) ∈ I and Step 1, there exists a positive integer m1 such that (xm1−1, ym1−1) ∈
I and (xm1 , ym1) ∈ D−I. Since D−I = II ∪ III, we have

(xm1 , ym1) ∈ II or (xm1 , ym1) ∈ III. (44)

Applying Lemma 1 with (xm1−1, ym1−1) ∈ I, it is not true that (xm1 , ym1) ∈ III and then
(xm1 , ym1) ∈ II. Taking m = m1 gives the desired result.
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Step 3. If (x0, y0) ∈ I, then (xm, ym) ∈ II for some positive integer m due to Step 2.
Therefore the proof for Case 2-1 completes the proof for Case 2-2.
Case 2-3. Let (x0, y0) ∈ III.
This case implies that f(x0, y0) ≤ 0 and g(x0, y0) < 0. We use the following two steps to
prove this theorem in this case.

Step 1. If (xn, yn) ∈ III for all n, then limn→∞(xn, yn) = (0, r2a
−1
22 ).

Assume that (xn, yn) ∈ III for all n, which implies

f(xn, yn) ≤ 0, g(xn, yn) < 0 (45)

for all n. The assumption gives the decreasing property

0 < xn+1 = xn{1 + f(xn, yn)∆t} ≤ xn, 0 < yn+1 = yn{1 + g(xn, yn)∆t} < yn

and then Theorem 1 gives the convergence of {xn} and {yn} with the nonnegative limits
ω1 and ω2, respectively. It is only possible that ω1 = 0 and ω2 > 0 as follows.
If ω1 > 0 and ω2 > 0, then (42)–(43) give a contradiction.
If ω1 > 0 and ω2 = 0, then ω1 = r1a

−1
11 . This is impossible due to the unstability of

(r1a
−1
11 , 0) since the linearized system of (2) at (r1a

−1
11 , 0) has the eigenvalue

1 + ∆ta−1
11 (r2a11 − r1a21) > 1

under the condition a21a
−1
11 < r2r1

−1. Therefore {(xn, yn)} cannot have the limit (r1a
−1
11 , 0).

If ω1 = 0 and ω2 = 0, then

limn→∞ f (xn, yn) = r1 > 0, limn→∞ g (xn, yn) = r2 > 0,

which are contradictory to (45).
Therefore it remains that ω1 = 0 and ω2 > 0, which gives (ω1, ω2) = (0, r2a

−1
22 ).

Step 2. If (xm, ym) /∈ III for some m, then limn→∞(xn, yn) = (0, r2a
−1
22 ).

Since (xm, ym) ∈ D−III and D−III = I ∪ II, we have

(xm, ym) ∈ I or (xm, ym) ∈ II.

However it is not true that (xm, ym) ∈ I due to Remark 4 and so we have (xm, ym) ∈ II.
Therefore, following the proof for Case 2-1, we obtain limn→∞(xn, yn) = (0, r2a

−1
22 ).

Finally, we obtain the desired result from the proofs for Cases 2-1, 2-2 and 2-3.

In the following theorem, we show the global stability of (2) for C2 as in Figure 1-(b)
and present the condition that the species x always outcompetes the species y.

Theorem 3. Assume that (7), (8) and (24) hold.

If r1a
−1
11 > r2a

−1
21 and r1a

−1
12 > r2a

−1
22 , then

(
r1a
−1
11 , 0

)
is globally stable.

Proof. The condition in this theorem is corresponding to C1 and so D is partitioned into
the three regions I, III and IV due to (21). We claim the global stability for (x0, y0) ∈
I ∪ III ∪ IV by using mathematical induction as follows.
Case 3-1. Let (x0, y0) ∈ IV.
In this case, (39) gives (xn, yn) ∈ IV for all n, with which (22) and (23) give xn < xn+1

and yn+1 ≤ yn. Then Theorem 1 gives

0 < xn < xn+1 < x∗, 0 < yn+1 ≤ yn, (46)
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which imply the convergence of {xn} and {yn} with limits ω1 and ω2, respectively. The
increasing property of {xn} gives ω1 > 0.
In addition, the limit ω2 is zero, which can be obtained by indirect proof as in Case
2-1. Suppose, on the contrary, that ω2 is nonzero. Taking the limit of (2) and using
the positivity of ω1 and ω2, we have (42). Applying the conditions r1a

−1
11 > r2a

−1
21 and

r1a
−1
12 > r2a

−1
22 to (42) yields the contradiction (43) Consequently, ω2 is zero.

Taking the limit of the first equation in (2) with ω1 > 0 and ω2 = 0, we have ω1 = r1a
−1
11 ,

which completes the proof for Case 3-1.
Case 3-2. Let (x0, y0) ∈ I.
In this case we have f(x0, y0) ≥ 0 and g(x0, y0) > 0, and use the following three steps.

Step 1. There exists a positive integer m1 such that (xm1 , ym1) /∈ I.
Suppose, on the contrary, that (xn, yn) ∈ I for all n, which means f(xn, yn) ≥ 0 and
g(xn, yn) > 0 for all n. Then

xn+1 = xn{1 + f(xn, yn)∆t} ≥ xn > 0, yn+1 = yn{1 + g(xn, yn)∆t} > yn > 0,

and hence the boundedness of (xn, yn) in Theorem 1 gives the convergence of the increasing
sequences {xn} and {yn}, which have positive limits ω1 and ω2, respectively. Therefore
we have the contradiction (43) as in Case 3-1.

Step 2. There exists a positive integer m such that (xm, ym) ∈ IV.
Using (x0, y0) ∈ I and Step 1, there exists a positive integer m1 such that (xm1−1, ym1−1) ∈
I and (xm1 , ym1) ∈ D−I for some m1. Since D−I = III ∪ IV, we have

(xm1 , ym1) ∈ III or (xm1 , ym1) ∈ IV.

Applying Lemma 1 with (xm1−1, ym1−1) ∈ I, it is not true that (xm1 , ym1) ∈ III and then
(xm1 , ym1) ∈ IV. Taking m = m1 gives (xm, ym) ∈ IV.

Step 3. If (x0, y0) ∈ I, then (xm, ym) ∈ IV for some positive integer m due to Step 2.
Therefore the proof used in Case 3-1 completes the proof for Case 3-2.
Case 3-3. Let (x0, y0) ∈ III.
In this case we have f(x0, y0) ≤ 0 and g(x0, y0) < 0,and use the following two steps.

Step 1. If (xn, yn) ∈ III for all n, then limn→∞(xn, yn) = (r1a
−1
11 , 0).

As in Step 1 of Case 2-3 in Theorem 2, {(xn, yn)} has the limit (ω1, ω2). It is only possible
that ω1 > 0 and ω2 = 0 as follows.
If ω1 > 0 and ω2 > 0, then (46)–(??) give a contradiction.
If ω1 = 0 and ω2 > 0, then ω2 = r2a

−1
22 . This is impossible due to the unstability of

(0, r2a
−1
22 ) since the linearized system of (2) at (0, r2a

−1
22 ) has the eigenvalue

1 + ∆ta−1
22 (r1a22 − r2a12) > 1

under the condition a22a
−1
12 > r2r1

−1. Therefore {(xn, yn)} cannot have the limit (r1a
−1
11 , 0).

If ω1 = 0 and ω2 = 0, then

limn→∞ f (xn, yn) = r1 > 0, limn→∞ g (xn, yn) = r2 > 0,

which are contradictory to (45).
It remains that ω1 > 0 and ω2 = 0, which yields the desired result (ω1, ω2) = (r1a

−1
11 , 0).

Step 2. If (xm, ym) /∈ III for some m, then limn→∞(xn, yn) = (r1a
−1
11 , 0).

Since (xm, ym) ∈ D−III = I ∪ IV, we have
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(xm, ym) ∈ I or (xm, ym) ∈ IV.

However it is not true that (xm, ym) ∈ I due to Remark 4. Therefore, we have (xm, ym) ∈
IV and then limn→∞(xn, yn) = (r1a

−1
11 , 0) by following the proof for Case 3-1.

Finally, we obtain the desired result from the proofs for Cases 3-1 and 3-2.

In the following theorem, we show the convergence of the solutions of (2) for the
category C3 as in Figure 1-(c) and the dependence of the limit on the region in which the
initial state is located.
From now on, in the case that a11a22 − a12a21 6= 0, we use the symbol (θ1, θ2) to mean

(θ1, θ2) = (a11a22 − a12a21)−1 (r1a22 − r2a12,−r1a21 + r2a11) , (47)

where (θ1, θ2) satisfies
f(θ1, θ2) = g(θ1, θ2) = 0. (48)

Theorem 4. Let the conditions (7), (8) and (24) hold. Assume that

r1a
−1
11 > r2a

−1
21 and r1a

−1
12 < r2a

−1
22 .

(a) If (x0, y0) ∈ II, then limn→∞(xn, yn) = (0, r2a
−1
22 ).

(b) If (x0, y0) ∈ IV, then limn→∞(xn, yn) = (r1a
−1
11 , 0).

(c) If (x0, y0) ∈ I ∪ III, then {(xn, yn)} converges with the limit (r1a
−1
11 , 0) or (0, r2a

−1
22 ).

Proof. For the proof of (a), let (x0, y0) ∈ II. We have from Lemma 2 and Theorem 1 that

0 < xn+1 < xn, 0 < yn ≤ yn+1 < y∗, (49)

which gives the convergence of {xn} and {yn} with limits ω1 and ω2, respectively. The
increasing property of {yn} gives ω2 > 0.
In addition, the limit ω1 is zero, which can be obtained by indirect proof. Suppose, on
the contrary, that ω1 is nonzero. Taking the limit of (2) and using the positivity of ω1

and ω2, we have
(a11a22 − a12a21)ω1 = r1a22 − r2a12. (50)

Since (x0, y0) ∈ II, the definition of the region II gives

f(x0, y0) < 0 ≤ g(x0, y0). (51)

Solving (51) for x0, we obtain

(r1a22 − r2a12)− (a11a22 − a12a21)x0 < 0. (52)

The conditions a21a
−1
11 > r2r1

−1 > a22a
−1
12 in this theorem give

a11a22 − a12a21 < 0. (53)

Applying (53) into both (52) and (50) yields

ω1 > x0. (54)

Combining (54) with (49), we have that for all n
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ω1 > x0 > xn,

which is contradictory to limn→∞ xn = ω1. Consequently, ω1 is zero.
Taking the limit of the second equation in (2) with ω1 = 0 and ω2 > 0, we have ω2 = r2a

−1
22 ,

which completes the proof of (a).
For the proof of (b), let (x0, y0) ∈ IV. Using (46), we have the convergence of {xn} and

{yn} with limits ω1 and ω2, respectively. The increasing property of {xn} gives ω1 > 0.
In addition, the limit ω2 is zero, which can be obtained by indirect proof. Suppose, on
the contrary, that ω2 is nonzero. Taking the limit of (2) and using the positivity of ω1

and ω2, we have
(a11a22 − a12a21)ω2 = −r1a21 + r2a11. (55)

Since (x0, y0) ∈ IV, the definition of the region IV gives

f(x0, y0) > 0 ≥ g(x0, y0). (56)

Solving (56) for y0, we obtain

(r1a21 − r2a11) + (a11a22 − a12a21)y0 > 0. (57)

Applying (53) into (57) yields
ω2 > y0. (58)

Combining (58) with (46), we have that for all n

ω2 > y0 > yn,

which is contradictory to limn→∞ yn = ω2. Consequently, ω2 is zero.
Taking the limit of the first equation in (2) with ω1 > 0 and ω2 = 0, we have ω1 = r1a

−1
11 ,

which completes the proof of (b).
For the proof of (c), we consider the following two cases.

Case 4-1. Let (x0, y0) ∈ I.
We use the following three steps to obtain the desired result in this case.

Step 1. There exists a positive constant m such that (xm, ym) /∈ I.
Suppose, on the contrary, that (xn, yn) ∈ I for all n. Then {xn} and {yn} have the
positive limits (θ1, θ2) defined in (47) by applying (53) and the approach used in Step1
of Case 2-2 in Theorem 2. However the system (2) under the condition r1a

−1
11 < r2a

−1
21

is unstable at the point (θ1, θ2) since the linearized system at (θ1, θ2) has the eigenvalue
1+∆ta−1

11 (r2a11 − r1a21) greater than 1. Therefore {xn} and {yn} cannot have the positive
limits θ1 and θ2, respectively, which is contradictory.

Step 2. There exists a positive constant m such that (xm, ym) ∈ II ∪ IV.
Since (x0, y0) ∈ I, Step 1 gives the existence of a positive integer m such that

(xm−1, ym−1) ∈ I and (xm, ym) /∈ I,

which implies (xm, ym) ∈ II ∪ IV due to Lemma 1 and D = I ∪ II ∪ III ∪ IV.
Step 3. It follows from (a), (b) and Step 2 in this theorem that (xn, yn) converges and

has the limit (r1a
−1
11 , 0) or (0, r2a

−1
22 ).

Case 4-2. Let (x0, y0) ∈ III.
We use the following two steps to obtain the desired result in this case.
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Step 1. If (xn, yn) ∈ III for all n, then {(xn, yn)} converges with the limit (r1a
−1
11 , 0) or

(0, r2a
−1
22 ). To prove this, note that we have the convergence of {(xn, yn)} with the limit

(ω1, ω2) by following the proof of Step 1 of Case 2-3 in Theorem 2.
If ω1 > 0 and ω2 > 0, then (ω1, ω2) = (θ1, θ2). This is impossible due to the unstability of
(θ1, θ2) since the linearized system of (2) at (θ1, θ2) has the eigenvalue greater than 1:

1 + 0.5∆t

{
− (a11θ1 + a22θ2) +

√
(a11θ1 + a22θ2)2 + α

}
> 1

since α = 4 (a12a21 − a11a22) θ1θ2 > 0 under the condition a21a
−1
11 > r2r1

−1 > a22a
−1
12 .

Therefore it is not possible that ω1 > 0 and ω2 > 0.
If ω1 = 0 and ω2 = 0, then we have the contradictions to to (45):

limn→∞ f (xn, yn) = r1 > 0, limn→∞ g (xn, yn) = r2 > 0.

Therefore the remaining signs of ω1 and ω2 are

(+, 0) and (0,+),

which give the desired result

(ω1, ω2) = (r1a
−1
11 , 0) and (0, r2a

−1
22 ),

respectively, by taking the limit of (2) and using the signs of ω1 and ω2.
Step 2. If (xm, ym) /∈ III for some m, then {(xn, yn)} converges with the limit (r1a

−1
11 , 0)

or (0, r2a
−1
22 ). To prove this, we follow the proof used in Step 2 of Case 4-1.

Since (x0, y0) ∈ III, using the condition (xm, ym) /∈ III for some m, we can assume that
there exists a positive constant m1 such that

(xm1−1, ym1−1) ∈ III and (xm1 , ym1) /∈ III,

which implies
(xm1 , ym1) ∈ II ∪ IV (59)

due to D = I ∪ II ∪ III ∪ IV and Lemma 1. Therefore, using (59) and (a) and (b) in this
theorem, we have that (xn, yn) converges and has the limit (r1a

−1
11 , 0) or (0, r2a

−1
22 ).

Finally, we obtain the desired result from the proofs for Cases 4-1 and 4-2.

In the following theorem, we show the global stability of the solutions of (2) for the
category C4 as in Figure 1-(d) where each component of the equilibrium point is positive.

Theorem 5. Let the conditions (7), (8) and (24) hold. Assume that

r1a
−1
11 < r2a

−1
21 and r1a

−1
12 > r2a

−1
22 .

Then for (θ1, θ2) defined in (47)

(θ1, θ2) is globally stable.

Proof. Note that the conditions r1a
−1
11 < r2a

−1
21 and r1a

−1
12 > r2a

−1
22 in this theorem give

a11a22 − a12a21 > 0. (60)

We prove this theorem by using the four cases and mathematical induction.
Case 5-1. Let (x0, y0) ∈ II.
Lemma 2 and Theorem 1 give (49). Then we have
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limn→∞(xn, yn) = (ω1, ω2), ω2 > 0

and
f(xn, yn) < 0 ≤ g(xn, yn). (61)

Solving (61) for xn as in (51) and (52) and using (60), we have that for all n

0 < θ1 < xn

and then ω1 ≥ θ1 > 0. Since ω1 and ω2 are positive, we have

(ω1, ω2) = (θ1, θ2).

Case 5-2. Let (x0, y0) ∈ IV.
Using Remark 5 and Theorem 1, we have

0 < xn < xn+1 < x∗, 0 < yn+1 ≤ yn (62)

and

limn→∞(xn, yn) = (ω1, ω2), ω1 > 0.

The inequalities (62) implies

f(xn, yn) > 0 ≥ g(xn, yn). (63)

Solving (63) for yn as in (56) and (57), we have that for all n

0 < θ2 < yn

and then ω2 ≥ θ2 > 0. Since ω1 and ω2 are positive, we have

(ω1, ω2) = (θ1, θ2).

Case 5-3. Let (x0, y0) ∈ I.
If (xm, ym) /∈ I for some m, then

(xm, ym) ∈ D − I = II ∪ III ∪ IV

and further

(xm, ym) ∈ II ∪ IV

due to Lemma 1. By Case 5-1 and 5-2, we have

limn→∞(xn, yn) = (θ1, θ2).

On the other hand, if (xn, yn) ∈ I for all n, then we have the positive limits ω1 and ω2 of
{xn} and {yn}, respectively, due to the definition of I and Theorem 1. Taking the limit
of (2) and using ωi (i = 1, 2), we have

(ω1, ω2) = (θ1, θ2).

Case 5-4. Let (x0, y0) ∈ III.
Replacing I in the proof of Case 5-3 with III, we can obtain

(ω1, ω2) = (θ1, θ2).

Finally, we obtain the desired result from the proofs for Cases 5-1 to 5-4.
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4. Numerical examples

In this section, we provide simulations that illustrate our results in Theorem 2 to
Theorem 5 for the difference scheme (2) with ∆t = 0.001 and (x∗, y∗) = (r1a

−1
11 +50, r2a

−1
22 +

50). The values of parameters used in the following four examples satisfy the three
conditions (7), (8) and (24).

Example 1. Let (r1, a11, a12, r2, a21, a22) = (1, 1, 2, 3.5, 3, 2), which satisfies the two
conditions r1a

−1
11 < r2a

−1
21 and r1a

−1
12 < r2a

−1
22 in Theorem 2. Then the solutions (xn, yn) of

(2) converge to (0, r2a
−1
22 = 1.75) as displayed in Figure 2-(a).

Example 2. Let (r1, a11, a12, r2, a21, a22) = (1, 1, 1, 1.5, 3, 5), which satisfies the two
conditions r1a

−1
11 > r2a

−1
21 and r1a

−1
12 > r2a

−1
22 in Theorem 3. Then the solutions (xn, yn) of

(2) converge to (r1a
−1
11 = 1, 0) as displayed in Figure 2-(b).
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Figure 2: (a) Trajectories for different initial points in the regions I, II, III with r1 = 1, a11 = 1, a12 =
2, r2 = 3.5, a21 = 3, a22 = 2 in the category C1. (b) Trajectories for different initial points in the regions
I, III, IV with r1 = 1, a11 = 1, a12 = 1, r2 = 1.5, a21 = 3, a22 = 5 in the category C2. The box and circle
symbols denote initial and equilibrium points, respectively.

Example 3. Let (r1, a11, a12, r2, a21, a22) = (1, 1, 1, 1.7, 3, 1), which satisfies the two
conditions r1a

−1
11 > r2a

−1
21 and r1a

−1
12 < r2a

−1
22 in Theorem 4. Then as displayed in Figure

3-(a), we obtain the results in Theorem 4. If (x0, y0) ∈ II, then the solutions (xn, yn) of
(2) converge to (0, r2a

−1
22 ) = (0, 1.7). If (x0, y0) ∈ IV, then limn→∞(xn, yn) = (r1a

−1
11 , 0) =

(1, 0). If (x0, y0) ∈ I ∪ III, then {(xn, yn)} converges with the limit (r1a
−1
11 , 0) = (1, 0)

or (0, r2a
−1
22 ) = (0, 1.7). Especially, Figure 3-(a) shows that there exist at least two

initial points contained in I converging to (r1a
−1
11 , 0) = (1, 0) and (0, r2a

−1
22 ) = (0, 1.7),

respectively. In the region III, the same phenomenon happens. The outcome depends on
the initial abundances of the two species.

Example 4. Let (r1, a11, a12, r2, a21, a22) = (1, 1, 1, 3.5, 2.5, 5), which satisfies the two
conditions r1a

−1
11 < r2a

−1
21 and r1a

−1
12 > r2a

−1
22 in Theorem 5. Then the solutions xn and yn

of (2) converge to

(r1a22 − r2a12)(a11a22 − a12a21)−1 = 0.6

and
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(−r1a21 + r2a11)(a11a22 − a12a21)−1 = 0.4,

respectively, as displayed in Figure 3-(b). Although the outcome in Example 3 depends
on the initial abundances of the two species, the outcome in Example 4 is independent of
the initial abundances.
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Figure 3: Trajectories for different initial points in the regions I, II, III and IV. The values of the
parameters are (a) r1 = 1, a11 = 1, a12 = 1, r2 = 1.7, a21 = 3, a22 = 1 in the category C3. (b) r1 = 1, a11 =
1, a12 = 1, r2 = 3.5, a21 = 2.5, a22 = 5 in the category C4. The box and circle symbols denote initial and
equilibrium points, respectively.

5. Conclusions and future work

In this paper, we have studied the Euler difference scheme for a two-dimensional Lotka-
Volterra competition model and presented sufficient conditions for the global stability
of the fixed points of a discrete competition model with two species. The main idea
of our approach is to divide the domain used for the boundedness of solutions of the
discrete model and to describe how to trace the trajectories with respect to each partition.
Although we have applied our method for the two-dimensional discrete model, this method
can be utilized to two-dimensional and other higher dimensional discrete models.

Acknowledgments

The present research has been conducted by the Research Grant of Kwangwoon University
in 2015.

References

[1] J. Huang, S. Ruan, and J. Song. Bifurcations in a predator-prey system of Leslie
type with generalized Holling type III functional response. J. Differential Equations,
257(6):1721–1752, 2014.

[2] J. Alebraheem and Y. Abu-Hasan. Persistence of predators in a two predators-one
prey model with non-periodic solution. Appl. Math. Sci., 6(19):943–956, 2012.

16

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

291 Sangmok Choo et al 276-293



[3] Y. Li and D. Xiao. Bifurcations of a predator-prey system of Holling and Leslie types.
Chaos Solitons Fractals, 34(2):606–620, 2007.

[4] S. Ruan and D. Xiao. Global analysis in a predator-prey system with nonmonotonic
functional response. SIAM J. Appl. Math., 61(4):1445–1472, 2000.

[5] S.B. Hsu and T.W. Huang. Global stability for a class of predator-prey systems.
SIAM J. Appl. Math., 55(3):763–783, 1995.

[6] H.K. Baek and D.S. Kim. Dynamics of a predator-prey system with mixed functional
responses. J. Appl. Math., pages Art. ID 536019, 10, 2014.

[7] S. Shulin and G. Cuihua. Dynamics of a Beddington-DeAngelis type predator-prey
model with impulsive effect. J. Math., pages Art. ID 826857, 11, 2013.

[8] S. Liu and E. Beretta. A stage-structured predator-prey model of Beddington-
DeAngelis type. SIAM J. Appl. Math., 66(4):1101–1129, 2006.

[9] H. Xiang X.Y. Meng, H.F. Huo and Q.Y. Yin. Stability in a predator-prey model
with Crowley-Martin function and stage structure for prey. Appl. Math. Comput.,
232:810–819, 2014.

[10] X.Y. Zhou and J.G. Cui. Global stability of the viral dynamics with Crowley-Martin
functional response. Bull. Korean Math. Soc., 48(3):555–574, 2011.

[11] P.H. Crowley and E.K. Martin. Functional responses and interference within and
between year classes of a dragonfly population. J. North. Am. Benth. Soc., 8:211–
221, 1989.

[12] X. Wang and H. Ma. A Lyapunov function and global stability for a class of predator-
prey models. Discrete Dyn. Nat. Soc., pages Art. ID 218785, 8, 2012.

[13] H.B. Xiao. Global analysis of ivlevs type predator-prey dynamic systems. Applied
Mathematics and Mechanics, 28(4):461–470, 2007.

[14] J. Sugie. Two-parameter bifurcation in a predator-prey system of Ivlev type. J.
Math. Anal. Appl., 217(2):349–371, 1998.

[15] L.J.S. Allen. Introduction to mathematical biology. Pearson/Prentice Hall, 2007.

[16] M. Townsend, C.R. Begon and J.D. Harper. Ecology: individuals, populations and
communities, 1996.

[17] C.E. Gordon. The coexistence of species la coexistencia de especies. Revista chilena
de historia natural, 73(1):175–198, 2000.

[18] Q. Din. Dynamics of a discrete Lotka-Volterra model. Adv. Difference Equ., pages
2013:95, 13, 2013.

[19] D. Blackmore, J. Chen, J. Perez, and M. Savescu. Dynamical properties of discrete
lotka–volterra equations. Chaos, Solitons & Fractals, 12(13):2553–2568, 2001.

17

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

292 Sangmok Choo et al 276-293



[20] L.-I. Roeger and R. Gelca. Dynamical consistent discrete-time lokta-volterra compe-
tition models. Discrete Cont. Dyn. Sys., (Supplement 2009):650–658, 2009.

[21] T. Wu. Dynamic behaviors of a discrete two species predator-prey system incorpo-
rating harvesting. Discrete Dyn. Nat. Soc., pages Art. ID 429076, 12, 2012.

[22] S.M. Choo. Global stability in n-dimensional discrete lotka-volterra predator-prey
models. Adv. Difference Equ., pages 2014:11, 17, 2014.

[23] Y.-H. Kim and S.M. Choo. A new approach to global stability in discrete lotka-
volterra predator-prey models. Discrete Dyn. Nat. Soc., pages Art. ID 674027, 11,
2015.

18

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

293 Sangmok Choo et al 276-293



Weighted Composition Operators from Bloch spaces into

Zygmund spaces∗

Shanli Ye†

(School of Sciences, Zhejiang University of Science and Technology, Hangzhou 310023, China)

(Department of Mathematics, Fujian Normal University, Fuzhou 350007, China)

Abstract

In this paper we characterize the boundedness and compactness of the weighted composi-

tion operator from the classical Bloch space β to the Zygmund space Z, and from the little

Bloch space β0 to the little Zygmund space Z0, respectively.
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1 Introduction

Let D = {z : |z| < 1} be the open unit disk in the complex plane and H(D) denote the set of

all analytic functions on D. Let u, φ ∈ H(D), where φ is an analytic self-map of D. Then the

well-known weighted composition operator uCφ on H(D) is defined by uCφ(f)(z) = u(z) ·(f ◦φ(z))
for f ∈ H(D) and z ∈ D. Weighted composition operators can be regarded as a generalization of

multiplication operators and composition operators. In 2001, Ohno and Zhao studied the weight-

ed composition operators on the classical Bloch space β in [14], which has led many researchers

to study this operator on other Banach spaces of analytic functions. The boundedness and com-

pactness of it have been studied on various Banach spaces of analytic functions, such as Hardy,

Bergman, BMOA, Bloch-type spaces, see, e.g. [2, 4, 8, 18, 27].

In 2006, the boundedness of composition operators on the Zygmund space Z was first studied

by Choe, Koo, and Smith in [1]. Later, many researchers have studied composition operators and

weighted composition operators acting on the Zygmund space Z. Li and Stević in [9] studied the

boundedness and compactness of the generalized composition operators on Zygmund spaces and

Bloch type spaces. They in [11] considered the boundedness and compactness of the weighted

composition operators from Zygmund spaces to Bloch spaces. Ye and Hu in [22] characterized

boundedness and compactness of weighted composition operators on the Zygmund space Z. Es-

maeili and Lindström in [7] studied weighted composition operators from Zygmund type spaces

to Bloch type spaces and their essential norms. Sanatpour and Hassanlou in [17] gave the es-

sential norms of this operators between Zygmund-type spaces and Bloch-type spaces. See also
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[5, 15, 16, 19, 20, 21, 23, 24, 25, 26] for corresponding results for weighted composition operators

from one Banach space of analytic functions to another. It is well-known that Z ⊂ β. It is more

interesting to characterize u, φ such that this operator uCφ has the pull-back properly, that is,

uCφf ∈ Z whenever f ∈ β. In this paper we consider this question.

Now we give a detailed definition of these spaces. A function f analytic on the unit disk is

said to belong to the Bloch space β if

b(f) = sup
z∈D

{(1− |z|2)|f ′(z)|} <∞,

and to the little Bloch space β0 if f ∈ β and

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.

It is well known that β is a Banach space under the norm

∥f∥β = |f(0)|+ b(f),

and β0 is a closed subspace of β.

The Zygmund space Z consists of all analytic functions f defined on D such that

z(f) = sup{(1− |z|2)|f ′′(z)| : z ∈ D}, 0 < α < +∞.

From a theorem of Zygmund (see [29, vol. I, p. 263] or [6, Theorem 5.3]), we see that f ∈ Z if

and only if f is continuous in the close unit disk D = {z : |z| ≤ 1} and the boundary function

f(eiθ) such that

sup
h>0,θ

|f(ei(θ+h)) + f(ei(θ−h))− 2f(eiθ)|
h

<∞.

An analytic function f ∈ H(D) is said to belong to the little Zymund space Z0 consists of all

f ∈ Z satisfying lim|z|→1−(1 − |z|2)|f ′′(z)| = 0. It can easily proved that Z is a Banach space

under the norm

∥f∥Z = |f(0)|+ |f ′(0)|+ z(f)

and the polynomials are norm-dense in closed subspace Z0 of Z. For some other information on

this space and some operators on it, see, for example, [9, 10, 11].

Throughout this paper, constants are denoted by C, they are positive and only depending on

p, and may differ from one occurrence to the other.

2 Auxiliary results

In order to prove the main results of this paper. we need some auxiliary results. The first part of

the following lemma is a well known.

Lemma 2.1 Suppose that f ∈ β, then

(i) |f(z)| ≤ log
e

(1− |z|2)
∥f∥β for every z ∈ D;

(ii) |f ′′(z)| ≤ 8

(1− |z|2)2
b(f) for every z ∈ D.
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Proof For any f ∈ β. Fix z ∈ D and let ρ =
1 + |z|

2
, by the Cauchy integral formula, we obtain

that

|f ′′(z)| = | 1

2πi

∫
|ξ|=ρ

f ′(ξ)

(ξ − z)2
dξ| ≤ b(f)

1− ρ2
1

2π

∫ 2π

0

ρ dθ

|ρeiθ − z|2
=

∥f∥∞
1− ρ2

ρ

ρ2 − |z|2
≤ 8

(1− |z|2)2
.

Hence (ii) holds.

Lemma 2.2 [28] Suppose that f ∈ β0, then

(i) lim
|z|→1−

|f(z)|
log(e/(1− |z|2))

= 0;

(ii) lim
|z|→1−

(1− |z|2)2|f ′′(z)| = 0.

Lemma 2.3 Suppose uCφ : β0 → Z0 is a bounded operator, then uCφ : β → Z is a bounded

operator.

The proof is similar to that of Lemma 2.3 in [21]. The details are omitted.

Lemma 2.4 Suppose that uCφ be a bounded operator from β to Z, then uCφ is compact if

and only if for any bounded sequence {fn} in β which converges to 0 uniformly on compact

subsets of D. We have ∥uCφ(fn)∥Z → 0 , as n→ ∞ .

The proof is similar to that of Proposition 3.11 in [3] . The details are omitted.

Lemma 2.5 Let U ⊂ Z0. Then U is compact if and only if it is closed, bounded and satisfies

lim
|z|→1

sup
f∈U

(1− |z|2)|f ′′(z)| = 0.

The proof is similar to that of Lemma 1 in [12], we omit it.

3 Main results

Theorem 3.1 Let u be an analytic function on the unit disc D, and φ an analytic self-map of D.

Then uCφ is a bounded operator from the classical space β to the Zygmund space Z if and only if

the following are satisfied:

sup
z∈D

(1− |z|2)|u′′(z)| log e

1− |φ(z)|2
<∞; (3.1)

sup
z∈D

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
1− |φ(z)|2

<∞; (3.2)

sup
z∈D

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2)2

<∞. (3.3)

3

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

296 Shanli Ye 294-305



Proof Suppose uCφ is bounded from the Bloch space β to the Zygmund space Z. Then we can

easily obtain the following results by taking f(z) = 1 and f(z) = z in β respectively:

u ∈ Z; (3.4)

sup
z∈D

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z) + φ(z)u′′(z)| < +∞. (3.5)

By (3.4), (3.5) and the boundedness of the function φ(z), we get

K1 = sup
z∈D

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)| < +∞. (3.6)

Let f(z) = z2 in β again, in the same way we have

sup
z∈D

(1− |z|2)|4φ(z)φ′(z)u′(z) + φ2(z)u′′(z) + 2u(z)(φ(z)φ′′(z) + (φ′(z))2)| <∞.

Using these facts and the boundedness of the function φ(z) again, we get

K2 = sup
z∈D

(1− |z|2)|(φ′(z))2u(z)| < +∞. (3.7)

Fix a ∈ D, we take the test functions

fa(z) = 3 log
e

1− āz
+

3

log e
1−|a|2

(log
e

1− āz
)2 − 1

log2 e
1−|a|2

(log
e

1− āz
)3 (3.8)

for z ∈ D. By a directly calculation we obtain that fa ∈ β and supa ∥fa∥β ≤ C < ∞, where C is

not depended on a. Since fa(a) = 5 log e
1−|a|2 , f

′
a(a) = 0, f ′′a (a) = 0, we have

C∥fa∥β ≥ ∥uCφfa∥Z ≥ sup
z∈D

(1− |z|2)|(uCφfa)
′′(z)|

= sup
z∈D

(1− |z|2)|
(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′a(φ(z))

+ f ′′a (φ(z))(φ
′(z))2u(z) + u′′(z)fa(φ(z))|.

Let a = φ(λ), it follows that

C∥fa∥β ≥ (1− |λ|2)α|
(
2φ′(λ)u′(λ) + φ′′(λ)u(λ)

)
f ′φ(λ)(φ(λ))

+ f ′′φ(λ)(φ(λ))(φ
′(λ))2u(λ) + u′′(λ)fφ(λ)(φ(λ))|

= 5(1− |λ|2)α|u′′(λ) log e

1− |φ(λ)|2
|.

Hence (3.1) holds.

Next, we will show that (3.2) holds. Fix a ∈ D with |a| > 1
2 , we take another test functions:

ga(z) =
8(1− |a|2)2

(1− āz)2
− 14(1− |a|2)3

(1− āz)3
+

6(1− |a|2)4

(1− āz)4
(3.9)

for z ∈ D. By a directly calculation we obtain that ga ∈ β and supa ∥ga∥β ≤ C < ∞, where C is

not depended on a. Since ga(a) = 0, g′a(a) =
−2ā

1− |a|2
, g′′a(a) = 0, it follows that for all λ ∈ D

with |φ(λ)| > 1
2 , we have

C∥ga∥β ≥ ∥uCφga∥Z ≥ sup
z∈D

(1− |z|2)|(uCφga)
′′(z)|

= sup
z∈D

(1− |z|2)|
(
2φ′(z)u′(z) + φ′′(z)u(z)

)
g′a(φ(z))

+ g′′a(φ(z))(φ
′(z))2u(z) + u′′(z)ga(φ(z))|.
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Let a = φ(λ), it follows that

C∥ga∥β ≥ (1− |λ|2)|
(
2φ′(λ)u′(λ) + φ′′(λ)u(λ)

)
g′φ(λ)(φ(λ))

+ g′′φ(λ)(φ(λ))(φ
′(λ))2u(λ) + u′′(λ)gφ(λ)(φ(λ))|

= (1− |λ|2)|
(
2φ′(λ)u′(λ) + φ′′(λ)u(λ)

) −2φ(λ)2

1− |φ(λ)|2
|

≥ 1

2

(1− |λ|2)|
(
2φ′(λ)u′(λ) + φ′′(λ)u(λ)

)
|

1− |φ(λ)|2
.

For ∀λ ∈ D with |φ(λ)| ≤ 1
2 , by (3.6), we have

sup
λ∈D

(1− |λ|2)|
(
2φ′(λ)u′(λ) + φ′′(λ)u(λ)

)
|

1− |φ(λ)|2
≤ 4

3
sup
λ∈D

(1− |λ|2)|
(
2φ′(λ)u′(λ) + φ′′(λ)u(λ)

)
| < +∞.

Hence (3.2) holds.

Finally we will show (3.3) holds. Fix a ∈ D with |a| > 1
2 , we take the test functions:

ha(z) = −3(1− |a|2)2

(1− āz)2
+

6(1− |a|2)3

(1− āz)3
− 3(1− |a|2)4

(1− āz)4
(3.10)

for z ∈ D. It is easily proved that sup 1
2<|a|<1 ∥ha∥β ≤ C < ∞, where C is not depended on a.

For w ∈ D, let a = φ(w), since

hφ(w)(φ(w)) = 0, h′φ(w)(φ(w)) = 0, h′′φ(w)(φ(w)) =
−6(φ(w))2

(1− |φ(w)|2)2
,

then, for all w ∈ D with |φ(w)| > 1
2 , we obtain that

C∥ha∥β ≥ ∥uCφga∥Z ≥ (1− |w|2) |6u(w)(φ
′(w))2(φ(w))2|

(1− |φ(w)|2)2
.

Then, by (3.7), we have

sup
w∈D

(1− |w|2)|u(w)(φ′(w))2|
(1− |φ(w)|2)2

≤ sup
|φ(w)|> 1

2

(1− |w|2)|u(w)(φ′(w))2|
(1− |φ(w)|2)2

+ sup
|φ(w)|≤ 1

2

(1− |w|2)|u(w)(φ′(w))2|
(1− |φ(w)|2)2

≤ 4 sup
|φ(w)|> 1

2

(1− |w|2)| |u(w)(φ
′(w))2(φ(w))2|

(1− |φ(w)|2)2
+

16

9
sup

|φ(w)|≤ 1
2

(1− |w|2)|u(w)(φ′(w))2|

<∞.

Hence (3.3) holds.

Conversely, suppose that (3.1), (3.2), and (3.2) hold. For f ∈ β, by Lemma 2.1, we have the
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following inequality:

(1− |z|2)|(uCφf)
′′(z)| = (1− |z|2)|

(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′(φ(z))

+ f ′′(φ(z))(φ′(z))2u(z) + u′′(z)f(φ(z))|

≤ (1− |z|2)|
(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′(φ(z))|

+ (1− |z|2)|f ′′(φ(z))(φ′(z))2u(z)|+ (1− |z|2)|u′′(z)f(φ(z))|

≤ (1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
1− |φ(z)|2

b(f)

+ 8
(1− |z|2)|(φ′(z))2u(z)|

(1− |φ(z)|2)2
b(f) + (1− |z|2)|u′′(z)| log( e

1− |φ(z)|2
)∥f∥β

≤ C∥f∥β ,

and

|u(0)f(φ(0))|+ |u′(0)f(φ(0))|+ |u(0)f ′(φ(0))φ′(0)|

≤
(
(|u(0)|+ |u′(0)|) log( e

1− |φ(0)|2
) +

|u(0)φ′(0)|
1− |φ(0)|2

)
∥f∥β .

This shows that uCφ is bounded. This completes the proof of Theorem 3.1.

Corollary 3.1 Let φ be an analytic self-map of D. Then Cφ is a bounded operator from the Bloch

space β to the Zygmund space Z if and only if

sup
z∈D

(1− |z|2)|(φ′(z))2|
(1− |φ(z)|2)2

<∞ and sup
z∈D

(1− |z|2)|φ′′(z)|
1− |φ(z)|2

<∞.

In the formulation of lemma, we use the notationMu onH(D) defined byMuf = uf for f ∈ H(D).

Corollary 3.2 The pointwise multiplier Mu : β → Z is a bounded operator if and only if u = 0.

Theorem 3.2 Let u be an analytic function on the unit disc D and φ an analytic self-map of D.

Then uCφ is a compact operator from β to Z if and only if uCφ is a bounded operator and the

following are satisfied:

lim
|φ(z)|→1−

(1− |z|2)|u′′(z)| log e

1− |φ(z)|2
= 0; (3.11)

lim
|φ(z)|→1−

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
1− |φ(z)|2

= 0; (3.12)

lim
|φ(z)|→1−

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2)2

= 0. (3.13)
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Proof Suppose that uCφ is compact from β to the Zygmund space Z. Let {zn} be a sequence

in D such that |φ(zn)| → 1 as n → ∞. If such a sequence does not exist then (3.11), (3.12) and

(3.13) are automatically satisfied. Without loss of generality we may suppose that |φ(zn)| > 1
2 for

all n. We take the test functions

fn(z) =
6

an
log2

e

1− φ(zn)z
− 8

a2n
log3

e

1− φ(zn)z
+

3

a3n
log4

e

1− |φ(zn)|2
. (3.14)

where an = log
e

1− |φ(zn)|2
. By a directly calculation, we may easily prove that {fn} converges to

0 uniformly on compact subsets of D and supn ∥fn∥β ≤ C <∞. Then {fn} is a bounded sequence

in β which converges to 0 uniformly on compact subsets of D. Then limn→∞ ∥uCφ(fn)∥Z = 0 by

Lemma 2.4. Note that

fn(φ(zn)) = an, f ′n(φ(zn)) = 0, f ′′n (φ(zn)) = 0.

It follows that

∥uCφfn∥Z ≥ (1− |zn|2)|(2u′(zn)φ′(zn) + φ′′(zn)u(zn))f
′
n(φ(zn))

+u(zn)f
′′
n (φ(zn))(φ

′(zn))
2 + u′′(zn)fn(φ(zn))|

= (1− |zn|2)|u′′(zn)| log
e

1− |φ(zn)|2
.

Then

lim
n→∞

(1− |zn|2)|u′′(zn)| log
e

1− |φ(zn)|2
= 0.

Next, let

gn(z) =
8(1− |φ(zn)|2)2

(1− φ(zn)z)2
− 14(1− |φ(zn)|2)3

(1− φ(zn)z)3
+

6(1− |φ(zn)|2)4

(1− φ(zn)z)4
.

By a directly calculation we obtain that gn ⇒ 0 (n → ∞) on compact subsets of D and

supn ∥gn∥β ≤ C < ∞. Consequently, {gn} is a bounded sequence in β which converges to 0

uniformly on compact subsets of D. Then limn→∞ ∥uCφ(gn)∥Z = 0 by Lemma 2.4. Note that

gn(φ(zn)) ≡ 0, g′′n(φ(zn)) ≡ 0 and g′n(φ(zn)) =
−2φ(zn)

1− |φ(zn)|2
.

It follows that

∥uCφgn∥Z ≥ (1− |zn|2)|(2u′(zn)φ′(zn) + φ′′(zn)u(zn))g
′
n(φ(zn))

+u(zn)g
′′
n(φ(zn))(φ

′(zn))
2 + u′′(zn)gn(φ(zn))|

= 2(1− |zn|2)|(2u′(zn)φ′(zn) + φ′′(zn)u(zn))
φ(zn)

1− |φ(zn)|2
|.

Then lim
n→∞

(1− |zn|2)|2u′(zn)φ′(zn) + φ′′(zn)u(zn)|
1− |φ(zn)|2

= 0.

Finally, let

hn(z) = −3(1− |φ(zn)|2)2

(1− φ(zn)z)2
+

6(1− |φ(zn)|2)3

(1− φ(zn)z)3
− 3(1− |φ(zn)|2)4

(1− φ(zn)z)4
.
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By a directly calculation we obtain that hn ⇒ 0 (n → ∞) on compact subsets of D and

supn ∥hn∥Z ≤ C < ∞. Consequently, {hn} is a bounded sequence in Z which converges to 0

uniformly on compact subsets of D. Then limn→∞ ∥uCφ(hn)∥Z = 0 by Lemma 2.4. Note that

hn(φ(zn)) ≡ 0, h′n(φ(zn)) ≡ 0 and h′′n(φ(zn)) =
−6(φ(zn))

2

(1− |φ(zn)|2)2
. It follows that

∥uCφhn∥Z ≥ (1− |zn|2)|(2u′(zn)φ′(zn) + φ′′(zn)u(zn))h
′
n(φ(zn))

+u(zn)h
′′
n(φ(zn))(φ

′(zn))
2 + u′′(zn)hn(φ(zn))|

= 6(1− |zn|2)|u(zn)(φ′(zn))
2| |φ(zn)|2

(1− |φ(zn)|2)2
.

Then lim
n→∞

(1− |zn|2)
|u(zn)(φ′(zn))

2|
(1− |φ(zn)|2)2

= 0. The proof of the necessary is completed.

Conversely, suppose that (3.11), (3.12), and (3.13) hold. Since uCφ is a bounded operator, by

Theorem 3.1, we have

M1 , sup
z∈D

(1− |z|2)|u′′(z)| log 1

1− |φ(z)|2
<∞, M3 , sup

z∈D

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2)2

<∞,

and

M2 , sup
z∈D

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
1− |φ(z)|2

<∞.

Let {fn} be a bounded sequence in β with ∥fn∥β ≤ 1 and fn → 0 uniformly on compact

subsets of D. We only prove lim
n→∞

∥uCφ(fn)∥Z = 0 by Lemma 2.4. By the assumption, for any

ϵ > 0, there is a constant δ, 0 < δ < 1, such that δ < |φ(z)| < 1 implies

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2)2

< ϵ, (1− |z|2)|u′′(z)| log e

1− |φ(z)|2
< ϵ,

and
(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|

1− |φ(z)|2
< ϵ.

Let K = {w ∈ D : |w| ≤ δ}. Noting that K is a compact subset of D, we get that

z(uCφfn) = sup
z∈D

(1− |z|2)|(uCφfn)
′′(z)|

≤ sup
z∈D

(1− |z|2)|
(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′n(φ(z))|

+ sup
z∈D

(1− |z|2)|f ′′n (φ(z))(φ′(z))2u(z)|+ sup
z∈D

(1− |z|2)|u′′(z)fn(φ(z))|

≤ 10ϵ+ sup
|φ(z)|≤δ

(1− |z|2)|
(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′n(φ(z))|

+ sup
|φ(z)|≤δ

(1− |z|2)|f ′′n (φ(z))(φ′(z))2u(z)|+ sup
|φ(z)|≤δ

(1− |z|2)|u′′(z)fn(φ(z))|

≤ 10ϵ+M2 sup
w∈K

|f ′n(w)|+M3 sup
w∈K

|f ′′n (w)|+M1 sup
w∈K

|fn(w)|.

As n→ ∞, ∥uCφfn∥Z → 0. Hence uCφ is compact. This completes the proof of Theorem 3.2.
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Corollary 3.3 Let φ be an analytic self-map of D. Then Cφ is a compact operator from the

Bloch space β to the Zygmund space Z if and only if Cφ is bounded,

lim
|φ(z)|→1−

(1− |z|2)|(φ′(z))2|
(1− |φ(z)|2)2

= 0 and lim
|φ(z)|→1−

(1− |z|2)|φ′′(z)|
1− |φ(z)|2

= 0.

Theorem 3.3 Let u be an analytic function on the unit disc D, and φ an analytic self-map of

D. Then uCφ : β0 → Z0 is a bounded operator if and only if u ∈ Z0, (3.1), (3.2), and (3.3) hold,

and the following are satisfied:

lim
|z|→1−

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)| = 0. (3.15)

lim
|z|→1−

(1− |z|2)|u(z)(φ′(z))2| = 0; (3.16)

Proof Suppose that uCφ is bounded from the little Bloch space β0 to the little Zygmund type

spaces Z0. Then u = uCφ1 ∈ Z0. Also uφ = uCφz ∈ Z0, thus

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z) + φ(z)u′′(z)| −→ 0 (|z| → 1−).

Since |φ| ≤ 1 and u ∈ Z0, we have lim
|z|→1−

(1 − |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)| = 0. Hence (3.15)

holds.

Similarly, uCφz
2 ∈ Z0, then

(1− |z|2)|4φ(z)φ′(z)u′(z) + φ2(z)u′′(z) + 2u(z)(φ(z)φ′′(z) + (φ′(z))2)| −→ 0 (|z| → 1−).

By (3.15), |φ| ≤ 1 and u ∈ Z0, we get that lim
|z|→1−

(1 − |z|2)|u(z)(φ′(z))2| = 0, i. e. that (3.16)

holds. On the other hand, from Lemma 2.3 and Theorem 3.1, we obtain that (3.1), (3.2), and

(3.3) hold.

Conversely, for ∀f ∈ β0, we have both (1− |z|2)2|f ′′(z)| → 0 and
|f(z)|

ln e
1−|z|2

→ 0 as |z| → 1− by

Lemma 2.2. Given ϵ > 0 there is a 0 < δ < 1 such that (1−|z|2)|f ′(z)| < ϵ

3M2
, (1−|z|2)2|f ′′(z)| <

ϵ

3M3
and

|f(z)|
log e

1−|z|2
<

ϵ

3M1
for all z with δ < |z| < 1, where M1, M2, M3 are defined in above.

If |φ(z)| > δ, it follows that

(1− |z|2)|(uCφf)
′′(z)| = (1− |z|2)|[2φ′(z)u′(z) + φ′′(z)u(z)]f ′(φ(z))

+ f ′′(φ(z))(φ′(z))2u(z) + u′′(z)f(φ(z))|

≤ (1− |z|2)|[2φ′(z)u′(z) + φ′′(z)u(z)]f ′(φ(z))|

+ (1− |z|2)|f ′′(φ(z))(φ′(z))2u(z)|+ (1− |z|2)|u′′(z)f(φ(z))|

≤ M2(1− |φ(z)|2)|f ′(φ(z))|+M3(1− |φ(z)|2)2|f ′′(φ(z))|+M1
|f(φ(z))|

log e
1−|φ(z)|2

<
ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ.
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We know that there exists a constantM4 such that |f(z)| ≤M3, |f ′(z)| ≤M4 and |f ′′(z)| ≤M4

for all |z| ≤ δ.

If |φ(z)| ≤ δ, it follows that

(1− |z|2)|(uCφf)
′′(z)| = (1− |z|2)|[2φ′(z)u′(z) + φ′′(z)u(z)]f ′(φ(z))

+ f ′′(φ(z))(φ′(z))2u(z) + u′′(z)f(φ(z))|

≤ M4(1− |z|2)||2φ′(z)u′(z) + φ′′(z)u(z)|

+ M4(1− |z|2)|(φ′(z))2u(z)|+M4(1− |z|2)|u′′(z)|.

Thus we conclude that (1 − |z|2)|(uCφ(f))
′′(z)| → 0 as |z| → 1−. Hence uCφf ∈ Z0 for all

f ∈ β0. On the other hand, uCφ is a bounded operator from β to Z by Theorem 3.1. Hence uCφ

is a bounded operator from the little Bloch space β0 to the little Zygmund space Z0.

Corollary 3.4 Let φ be an analytic self-map of D. Then Cφ is a bounded operator from β0 to

Z0 if and only if Cφ is a bounded operator from β to Z and φ ∈ Z0.

Proof By Theorem 3.3 we have that Cφ is a bounded operator from β0 to Z0 if and only Cφ :

β → Z is bounded, φ ∈ Z0, and

lim
|z|→1−

(1− |z|2)|(φ′(z))2| = 0.

However, That φ ∈ Z0 means φ′ ∈ β0. Then we have that |φ′(z)| ≤ log e
1−|z|2 ∥φ

′∥β by Lemma

2.1. It follows that

(1− |z|2)|(φ′(z))2| ≤ (1− |z|2) log2 e

1− |z|2
∥φ′∥2β → 0,

as |z| → 1−.

Theorem 3.4 Let u be an analytic function on the unit disc D, and φ an analytic self-map of

D. Then uCφ is compact from β0 to Z0 if and only if the following are satisfied:

lim
|z|→1−

(1− |z|2)|u′′(z)| log e

1− |φ(z)|2
= 0; (3.17)

lim
|z|→1−

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
1− |φ(z)|2

= 0; (3.18)

lim
|z|→1−

(1− |z|2)|u(z)(φ′(z))2|
(1− |φ(z)|2)2

= 0. (3.19)

Proof Assume (3.17), (3.18), and (3.19) hold. From Theorem 3.3, we know that uCφ is bounded

from β0 to Z0. Suppose that f ∈ β0 with ∥f∥β ≤ 1. We obtain that

(1− |z|2)|(uCφf)
′′(z)| ≤ (1− |z|2)|

(
2φ′(z)u′(z) + φ′′(z)u(z)

)
f ′(φ(z))|

+(1− |z|2)|f ′′(φ(z))(φ′(z))2u(z)|+ (1− |z|2)|u′′(z)f(φ(z))|

≤ (1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)| 1

1− |φ(z)|2
b(f)

+8
(1− |z|2)|(φ′(z))2u(z)|

(1− |φ(z)|2)2
b(f) + (1− |z|2)|u′′(z)| log e

1− |φ(z)|2
∥f∥β ,

10
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thus
sup{|(1− |z|2)(uCφf)

′′(z)| : f ∈ β0, ∥f∥β ≤ 1}

≤ (1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)| 1

1− |φ(z)|2

+
8(1− |z|2)|(φ′(z))2u(z)|

(1− |φ(z)|2)2
+ (1− |z|2)|u′′(z)| log e

1− |φ(z)|2
,

and it follows that

lim
|z|→1−

sup{|(1− |z|2)(uCφf)
′′(z)| : f ∈ β0, ∥f∥β ≤ 1} = 0,

hence uCφ : β0 → Z0 is compact by Lemma 2.5.

Conversely, suppose that uCφ : β0 → Z0 is compact.

First, it is obvious uCφ : β0 → Z0 is bounded, then by Theorem 3.3, we have u ∈ Z0 and that

(3.15) and (3.16) hold. On the other hand, by Lemma 2.5 we have

lim
|z|→1−

sup{|(1− |z|2)(uCφf)
′′(z)| : f ∈ β0, ∥f∥β ≤M} = 0,

for some M > 0.

Next, noting that the proof of Theorem 3.1 and the fact that the functions given in (3.8) are

in β0 and have norms bounded independently of a, we obtain that

lim
|z|→1−

(1− |z|2)|u′′(z)| log e

1− |φ(z)|2
= 0.

Similarly, noting that the functions given in (3.9) are in β0 and have norms bounded indepen-

dently of a, we obtain that

lim
|z|→1−

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
1− |φ(z)|2

= 0 (3.20)

for |φ(z)| > 1
2 . However, if |φ(z)| ≤

1
2 , by (3.15), we easily have

lim
|z|→1−

(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)|
1− |φ(z)|2

≤ 4

3
lim

|z|→1−
(1− |z|2)|2φ′(z)u′(z) + φ′′(z)u(z)| = 0.

Thus (3.18) holds.

Also, the third statement, that (3.19), is proved similarly. We omitted it here. This completes

the proof of Theorem 4.2.

Corollary 3.5 Let φ be an analytic self-map of D. Then Cφ is a compact operator from β0 to

Z0 if and only if

lim
|z|→1−

(1− |z|2)|(φ′(z))2|
(1− |φ(z)|2)2

= 0

and

lim
|z|→1−

(1− |z|2)|φ′′(z)|
1− |φ(z)|2

= 0.
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Approximate homomorphisms and derivations
on non-Archimedean Lie JC∗-algebras

Javad Shokri1 and Dong Yun Shin2∗
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Abstract. In this paper, by using the fixed point method, we prove the Hyers-Ulam stability of homomorphisms

in non-Archimedean Lie JC∗-algebras and derivations on non-Archimedean Lie JC∗-algebras associated with

the following additive mapping:

n∑
k=2

( k∑
i1=2

k+1∑
i2=i1+1

· · ·
n∑

in−k+1=in−k+1

)
f
( n∑

i=1,i6=i1,··· ,in−k+1

xi −
n−k+1∑
r=1

xir

)

+ f
( n∑

i=1

xi

)
= 2n−1f(x1)

for a fixed positive integer n with n > 2.

1. Introduction

In 1896, Hensel [4] introduced a field with a valuation in which does not have the Archimedean

property. Let K be a field. A non-Archimedean absolute value onK is a function | · | : K →
[0,+∞) such that, for any a, b ∈ K, the following conditions are satisfying

(i) |a| > 0 and equality holds if and only if a = 0,

(ii) |ab| = |a||b|,
(iii) |a+ b| 6 max{|a|, |b|} (the strict triangle inequality).

Note that |1| = | − 1| = 1 and |n| 6 1 for each integer n. We always assume, in addition,

that | · | is non-trival, i.e., there exists an a0 6= 0, 1. A function ‖.‖ : X → [0,∞) is called a

non-Archimedean norm if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;

(ii) for any r ∈ K,x ∈ X, ‖rx‖ = |r|‖x‖;
(iii) the strong triangle inequality holds, namely,

‖x+ y‖ 6 max{‖x‖, ‖y‖} (x, y ∈ X).

Then (X, ‖ · ‖) is called a non-Archimedean normed space. From the fact that

‖xn − xm‖ 6 max{‖nn − xm‖ : m 6 j 6 n− 1} (n > m),

02010 Mathematics Subject Classification: 39B52, 39B72, 46L05, 47H10, 46B03.
0Keywords: Hyers-Ulam stability; additive functional equation; fixed point; non-Archimedean space; homo-

morphisms in a non-Archimedean Lie JC∗-algebras; derivations in a non-Archimedean Lie JC∗-algebras.
∗Corresponding author.

0E-mail:1j.shokri@urmia.ac.ir, 2dyshin@uos.ac.kr
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holds, a sequence {xn} is Cauchy if and only if {xn−xm} converges to zero in a non-Archimedean

normed space. By a complete non-Archimedean normed space we mean one in which every

Cauchy sequence is convergent.

A non-Archimedean Banach algebra is a complete non-Archimedean algebra A which satisfies

‖ab‖ 6 ‖a‖ · ‖b‖ for all a, b ∈ A. For more detailed definitions of non-Archimedean Banach

algebras, we refer the reader to [15].

If U is a non-Archimedean Banach algebra, then an involution on U is mapping t→ t∗ from

U into U which satisfies

(i) t∗∗ = t for t ∈ U ;

(ii) (αs+ βt)∗ = ᾱs∗ + β̄t∗;

(iii) (st)∗ = t∗s∗ for all s, t ∈ U .

If, in addition, ‖t∗t‖ = ‖t‖2 for t ∈ U , then U is a non-Archimedean C∗-algebra.

The stability problem of functional equations originated from a question of Ulam [16] con-

cerning the stability of group homomorphisms: Let (G1, ∗) be a group and let (G2, �) be a

metric group (a metric is defined on a set with group property) with the metric d(., .). Given

ε > 0, does there exist a δ(ε) > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε for all x ∈ G1? If the answer is affirmative, we would say that the equation

of homomorphism h(x ∗ y) = h(x) ∗ h(y) is stable (see also [3, 5, 9, 10, 12, 13, 14]).

For explicitly later use, we recall a fundamental result in fixed point theory.

Theorem 1.1. (The fixed point alternative theorem [2]) Let (Ω, d) be a complete generalized

metric space and J : Ω→ Ω be a strictly contractive mapping with Lipschitz constant 0 < L < 1,

that is,

d(Jx, Jy) 6 Ld(x, y), x, y ∈ Ω.

Then, for each given x ∈ Ω, either

d(Jnx, Jn+1x) =∞, ∀n > 0,

or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n > n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set ∆ = {y ∈ Ω : d(Jn0x, y) <∞};
(4) d(y, y∗) 6 1

1−Ld(y, Jy) for all y ∈ ∆.

A non-Archimedean C∗-algebra C, endowed with the Lie product [x, y] := xy−yx
2 and endowed

with anticommutator product (Jordan product) x◦y := xy+yx
2 on C, is called a non-Archimedean

Lie JC∗-algebra (see [6, 7, 8]).

Jordan algebras as coordinates for Lie algebras were created to illuminate a particular aspect

of physics, quantum-mechanical observables, but turned out to have illuminating connections

with many areas of mathematics.

In this paper, we prove the Hyers-Ulam stability of homomorphisms and derivations in non-

Archimedean Lie JC∗-algebras associated with the following additive functional equation:
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Homomorphisms in non-Archimedean Lie JC∗-algebras

n∑
k=2

( k∑
i1=2

k+1∑
i2=i1+1

· · ·
n∑

in−k+1=in−k+1

)
f
( n∑
i=1,i6=i1,··· ,in−k+1

xi −
n−k+1∑
r=1

xir

)

+f
( n∑
i=1

xi

)
= 2n−1f(x1) (1.1)

for a fixed positive integer n with n > 2.

2. Stability of homomorphisms in non-Archimedean Lie JC∗-algebras

Definition 2.1. [7] Let A and B be non-Archimedean Lie JC∗-algebras. A C-linear mapping

H : A → B is called a (non-Archimedean Lie JC∗-algebra) homomorphism if H satisfies

H([x, y]) = [H(x), H(y)],

H(x ◦ y) = H(x) ◦ h(y),

H(x∗) = H(x)∗

for all x, y ∈ A.

Throughout this section, assume that A and B are two non-Archimedean Lie JC∗-algebras,

respectively, with norm ‖ · ‖A and ‖ · ‖B.

For a given mapping f : A → B, we define

Dµf(x1, · · · , xn) :=
n∑
k=2

( k∑
i1=2

k+1∑
i2=i1+1

· · ·
n∑

in−k+1=in−k+1

)
f
( n∑
i=1,i6=i1,··· ,in−k+1

µxi −
n−k+1∑
r=1

µxir

)

+ f
( n∑
i=1

µxi

)
− 2n−1f(µx1)

for all µ ∈ T1 := {λ ∈ C : |λ| = 1} and all x1, · · · , xn ∈ A.

We recall the following needed lemmas in this paper.

Lemma 2.2. [11] Let V and W be linear spaces and f : V → W be an additive mapping such

that f(µx) = µf(x) for all x ∈ V and µ ∈ T1. Then the mapping f is C-linear.

Lemma 2.3. [7] A mapping f :→ A→ B with f(0) = 0 satisfies the functional equation (1.1)

if and only if f : A → B is additive.

We prove the Hyers-Ulam stability of homomorphisms in non-Archimedean Lie JC∗-algebras

for the functional equation Dµf(x1, · · · , xn) = 0.

Theorem 2.4. Let f : A → B be a mapping for which there are functions ϕ : An → [0,∞), ψ :

A2 → [0,∞), and η : A → [0,∞) such that |2| < 1 is far from zero and

lim
m→∞

1

|2|m
ϕ(2mx1, 2

mx2, · · · , 2mxn) = 0, (2.1)

lim
m→∞

1

|2|2m
ψ(2mx, 2my) = 0, (2.2)
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lim
m→∞

1

|2|m
η(2mx) = 0, (2.3)

‖Dµf(x1, · · · , xn)‖B 6 ϕ(x1, · · · , xn), (2.4)

‖f([x, y])− [f(x), f(y)]‖B 6 ψ(x, y), (2.5)

‖f(x ◦ y)− f(x) ◦ f(y)‖B 6 ψ(x, y), (2.6)

‖f(x∗)− f(x)∗‖B 6 η(x), (2.7)

for all x, y, x1, · · · , xn ∈ A and µ ∈ T1. If there exists a constant 0 < L < 1 such that

ϕ(x1, x2, · · · , xn) 6 αLϕ(x12 ,
x2
2 , · · · ,

xn
2 ) for all x1, x2, · · · , xn ∈ A, where α = |2|n−1, then

there exists a unique homomorphism H : A → B such that

‖f(x)−H(x)‖6
L

1− L
ϕ(
x

2
,
x

2
, 0, · · · , 0) (2.8)

for all x ∈ A.

Proof. Let µ = 1. Using the following relation

1 +
n−k∑
k=1

(
n− k
k

)
=

n−k∑
k=0

(
n− k
k

)
= 2n−k (2.9)

for all n > k and putting x1 = x2 = x and x3 = x4 = · · · = xn = 0 in (2.4), we obtain

‖α
2
f(2x)− αf(x)‖B 6 ϕ(x, x, 0, · · · , 0)

for all x ∈ A. So

‖1

2
f(2x)− f(x)‖B 6

1

α
ϕ(x, x, 0, · · · , 0) 6 Lϕ

(x
2
,
x

2
, 0, · · · , 0

)
(2.10)

for all x ∈ A. Let define Ω := {g : A → B} and introduce a generalized metric on Ω as follows

d(g, h) = inf{k ∈ (0,∞) : ‖g(x)− h(x)‖B < kϕ
(x

2
,
x

2
, 0, · · · , 0

)
, ∀x ∈ A}.

It is easy to show that (Ω, d) is a generalized complete metric space (see [1]).

Now we consider the function J : Ω→ Ω define by Jg(x) = 1
|2|g(2x) for all x ∈ A and g ∈ Ω.

Let for all g, h ∈ Ω and an arbitrary constant k ∈ [0,∞) with d(x, y) 6 k, we have

‖g(x)− h(x)‖B 6 kϕ
(x

2
,
x

2
, 0, · · · , 0

)
for all x ∈ A. Then we can write

‖Jg(x)− Jh(x)‖B =
1

|2|
‖g(2x)− h(2x)‖B 6

k

|2|
ϕ(x, x, 0, · · · , 0) 6

αkL

|2|
ϕ
(x

2
,
x

2
, 0, · · · , 0

)
for all x ∈ A. So we conclude that d(Jg, Jh) 6 α

|2|Ld(g, h) for all g, h ∈ Ω. It follows from (2.9)

that d(Jf, f) 6 L, that is, J is a self-function of Ω with the Lipchitz constant L. Therefore,

from Theorem 1.1, there eists a fixed point H of J set Ω1 = {h ∈ X : d(f, h) <∞} such that

H(x) = lim
m→∞

1

|2|m
f(2mx) (2.11)
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for all x ∈ A, since limm→∞ d(Jnf,H) = 0. Also 2H(x2 ) = H(x) for all x ∈ A. Thus H : A → B
is the unique fixed point of J in Ω1 such that

d(H, f) 6
1

1− L
d(Jf, f) 6

L

1− L
,

i.e., H satisfies (2.8) for all x ∈ A. It follows from the definition of H, (2.1) and (2.4) that

n∑
k=2

( k∑
i1=2

k+1∑
i2=i1+1

· · ·
n∑

in−k+1=in−k+1

)
H
( n∑
i=1,i6=i1,··· ,in−k+1

xi −
n−k+1∑
r=1

xir

)

+H
( n∑
i=1

xi

)
= 2n−1H(x1)

for all x1, x2, · · · , xn ∈ A. Since H(0) = 0, by Lemma 2.3, the mapping H is additive.

Put x1 = x and x2 = x3 = · · · = 0 in (2.4). It follows from (2.9) that

‖f(µx)− µf(x)‖ 6 1

α
ϕ(x, 0, · · · , 0) (2.12)

for all x ∈ A and all µ ∈ T1. Also we conclude

‖ 1

2m
(f(µ2mx)− µf(2mx))‖B 6

1

α|2|m
ϕ(2mx, 0, · · · , 0)

for all x ∈ A and all µ ∈ T1. The right hand side of the above inequality tends to zero as

m→∞, and so we obtain

H(µx) = lim
m→∞

1

|2|m
f(µ2mx) = lim

m→∞

1

|2|m
µf(2mx) = µH(x)

for all x ∈ A and all µ ∈ T1. Hence by Lemma 2.2, the mapping H : A → B is C-linear.

It follows from (2.2), (2.5), (2.6) and (2.11) that

‖H([x, y])− [H(x), H(y)]‖B = lim
m→∞

1

|2|2m
‖f([2mx, 2my])− [f(2mx), f(2my)]‖B

6 lim
m→∞

1

|2|2m
ψ(2mx, 2my) = 0

and

‖H(x ◦ y)−H(x) ◦H(y)‖B = lim
m→∞

1

|2|2m
‖f(2mx ◦ 2my)− f(2mx) ◦ f(2my)‖B

6 lim
m→∞

1

|2|2m
ψ(2mx, 2my) = 0

for all x, y ∈ A. So

H([x, y]) = [H(x), H(y) and H(x ◦ y) = H(x) ◦H(y)

for all x, y ∈ A.

Similarly, by (2.3), (2.7) and (2.11), we have

‖H(x∗)−H(x)∗‖B = lim
m→∞

1

|2|m
‖f(2mx∗)− f(2mx)∗‖B 6 lim

m→∞

1

|2|m
η(2mx) = 0
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and so H(x∗) = H(x)∗ for all x, y ∈ A. Thus H : A → B is the desired homomorphism

satisfying (2.8). �

Corollary 2.5. Let r > 1 and θ be nonnegative real number, and let f : A → B be a mapping

such that

‖Dµf(x1, x2, · · · , xn)‖B 6 θ(‖|x1‖rA + ‖|x2‖rA + · · ·+ ‖|xn‖rA),

‖f([x, y])− [f(x), f(y)]‖B 6 θ · ‖|x‖rA · ‖|y‖rA,
‖f(x ◦ y)− f(x) ◦ f(y)‖B 6 θ · ‖|x‖rA · ‖|y‖rA,

‖f(x∗)− f(x)∗‖B 6 θ · ‖|x‖rA,

for all µ ∈ T1 and x, y, x1, · · · , xn ∈ A. Then there exists a unique homomorphism H : A → B
such that

‖f(x)−H(x)‖B 6
|2|θ

|2| − |2|r
‖x‖rA

for all x ∈ A.

Proof. The proof follows from Theorem 2.4 by taking

ϕ(x1, x2, · · · , xn) := θ(‖|x1‖rA + ‖|x2‖rA + · · ·+ ‖|xn‖rA),

ψ(x, y) := θ · ‖|x‖rA · ‖|y‖rA,
η(x) := θ · ‖|x‖rA

for all x, y, x1, · · · , xn ∈ A and L = |2|r−1. �

3. Stability of derivations on non-Archimedean Lie JC∗-algebras

Definition 3.1. [7] Let A be a non-Archimedean Lie JC∗-algebra. A C-linear mapping δ :

A → A is called a (non-Archimedean Lie JC∗-algebra) derivation if δ satisfies

δ([x, y]) = [δ(x), y] + [x, δ(y)],

δ(x ◦ y) = δ(x) ◦ y + x ◦ δ(y),

δ(x∗) = δ(x)∗

for all x ∈ A.

Throughout this section, assume that A is a non-Archimedean Lie JC∗-algebra with norm

‖ · ‖A.

We prove the Hyers-Ulam stability of derivation on non-Archimedean Lie JC∗-algebras for

the functional equation Dµf(x1, · · · , xn) = 0.

Theorem 3.2. Let f : A → A be a mapping for which there are function ϕ : An → [0,∞), ψ :

A2 → [0,∞) and η : A → [0,∞) such that (2.1), (2.2), (2.3). (2.4) and (2.7) hold and

‖f([x, y])− [f(x), y]0[x, f(y)]‖A 6 ψ(x, y), (3.1)

‖f(x ◦ y)− f(x) ◦ y − x ◦ f(y)‖A 6 ψ(x, y) (3.2)
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for all x, y ∈ A. If there exists a constant 0 < L < 1 such that ϕ(x1, x2, · · · , xn) 6 αLϕ(x12 ,
x2
2 , · · · ,

xn
2 )

for all x1, x2, · · · , xn ∈ A, where α = |2|n−1, then there exists a unique derivation δ : A → A
such that

‖f(x)− δ(x)‖6
L

1− L
ϕ
(x

2
,
x

2
, 0, · · · , 0

)
(3.3)

for all x ∈ A.

Proof. By the same reasoning as in the proof of Theorem 2.4, there exists a unique C-linear

mapping δ : A → A satisfying in the desired inequality (3.3) and the mapping δ : A → A is

defined by

δ(x) = lim
m→∞

1

|2|m
f(2mx) (3.4)

for all x ∈ A.

It follows from (2.2), (3.1), (3.3) and (3.4) that

‖δ([x, y])− [δ(x), y]− [x, δ(y)]‖A

= lim
m→∞

1

|2|2m
‖f([2mx, 2my])− [f(2mx), 2my]− [2mx, f(2my)]‖A

6 lim
m→∞

1

|2|2m
ψ(2mx, 2my) = 0

and

‖δ(x ◦ y)− δ(x) ◦ y − x ◦ δ(y)‖A

= lim
m→∞

1

|2|2m
‖f(2mx ◦ 2my)− f(2mx) ◦ 2my − 2mx ◦ f(2my)‖A

6 lim
m→∞

1

|2|2m
ψ(2mx, 2my) = 0

for all x, y ∈ A. So

δ([x, y]) = [δ(x), y] + [x, δ(y)],

δ(x ◦ y) = δ(x) ◦ y + x ◦ δ(y)

for all x, y ∈ A.

Similarly, as in the proof of Theorem 2.4, one can show δ(x∗) = δ(x)∗ for all x ∈ A. Therefore,

δ : A → A is a non-Archimedean Lie JC∗-algebra derivation satisfying (3.4). �

Corollary 3.3. Let r > 1 and θ be nonnegative and real number, and let f : A → A be a

mapping such that

‖Dµf(x1, x2, · · · , xn)‖B 6 θ(‖x1‖rA + ‖x2‖rA + · · · , ‖xn‖rA),

‖f([x, y])− [f(x), y]− [x, f(y)]‖B 6 θ · ‖x‖rA · ‖y‖rA,
‖f(x ◦ y)− f(x) ◦ y − x ◦ f(y)‖B 6 θ · ‖x‖rA · ‖y‖rA,

‖f(x∗)− f(x)∗‖B 6 θ · ‖x‖rA
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for all µ ∈ T1 and x, y, x1, · · · , xn ∈ A. Then there exists a unique homomorphism H : A → A
such that

‖f(x)− δ(x)‖B 6
|2|θ

|2| − |2|r
‖x‖rA

for all x ∈ A.

Proof. The proof follows from Theorem 3.2 by taking

ϕ(x1, x2, · · · , xn) := θ.(‖x1‖rA + ‖x2‖rA + · · ·+ ‖xn‖rA),

ψ(x, y) := θ.(‖x‖rA.‖y‖rA),

η(x) := θ.‖x‖rA
for all x, y, x1, · · · , xn ∈ A and L = |2|r−1. �
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[1] Cǎdariu and V. Radu, Fixed points and stability Jensen’s functional equation, J. Inequal. Pure Appl. Math.

4 (2003), Art. No. 1.

[2] J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete

metric space, Bull. Amer. Math. Soc. 74 (1968), 305–309.

[3] M. Eshaghi Gordji, A. Rahimi, C. Park and D. Shin, Ternary Jordan bi-homomorphisms in Banach Lie

triple systems, J. Comput. Anal. Appl. 21 (2016), 1040–1045.

[4] K. Hensel, Uber eine neue Begrundung der Theorie der algebraischen Zahlen. Jahres, Deutsch. Math. Verein

6 (1897), 83–88.

[5] E. Movahednia, S. M. S. M. Mosadegh, C. Park and D. Shin, Stability of a lattice preserving functional

equation on Riesz space: fixed point alternative, J. Comput. Anal. Appl. 21 (2016), 83–89.

[6] C. Park, Lie *-homomorphisms between Lie C∗-algebras and Lie ∗-derivations on Lie C∗-algebras, J.

Math.Anal. Appl., 293 (2004), 419–434.

[7] C. Park, Homomorphisms between Lie JC∗-algebras and Cauchy-Rassias stability of Lie JC∗-algebra deriva-

tions, J. Lie Theory 15 (2005), 393–414.

[8] C. Park, Homomorphisms between Poisson JC∗-algebras, Bull. Braz. Math. Soc. 36 (2005), 79–97.

[9] C. Park, Stability of ternary quadratic derivation on ternary Banach algebras: revisited, J. Comput. Anal.

Appl. 20 (2016), 21–23.

[10] W. Park and J. Bae, Approximate quadratic forms on restricted domains, J. Comput. Anal. Appl. 20 (2016),

388–410.

[11] H. Khodaei and Th. M. Rassias, Approximately generalized additive functional in several variables, Int. J.

Nonlinear Anal. Appl. 1 (2010), 22–41.

[12] J. M. Rassias, On approximation of approximately linear mapping by linear mappings, J. Func. Anal. 46

(1982), 126–130.

[13] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978),

297–300.

[14] S. Schin, D. Ki, J. Chang and M. Kim, Random stability of quadratic functional equations: a fixed point

approach, J. Nonlinear Sci. Appl. 4 (2011), 37–49.

[15] N. Shilkret, Non-Archimedean Banach Algebras, Ph.D. thesis, Polytechnic University, 1968, ProQuest LLC.

[16] S. M. Ulam, Problems in Modern Mathematics, Science ed., John Wiley & Sons, New York, 1940.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

313 Javad Shokri et al 306-313



ON DISTRIBUTION AND PROBABILITY DENSITY FUNCTIONS OF ORDER 

STATISTICS ARISING FROM INDEPENDENT BUT NOT NECESSARILY 

IDENTICALLY DISTRIBUTED RANDOM VECTORS 

 
 

M. GÜNGÖR1 and Y. BULUT2 

1,2 Department of Econometrics, Inonu University, 44280, Malatya, TURKEY. 
1mgungor44@gmail.com and 2ybulut79@gmail.com 

 
ABSTRACT 

 
In this study, joint probability density and distribution functions of any d order statistics of innid continuous 

random vectors are expressed. Then, some results connecting distributions of order statistics of innid random 
vectors to that of order statistics of iid random vectors are given. 
 
Keywords: Order Statistics, Distribution Function, Probability Density Function, Continuous Random Variable. 
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1.  Introduction 

 

Several identities and recurrence relations for probability density function (pdf) and 

distribution function (df) of order statistics of independent and identically distributed (iid) 

random variables were established by numerous authors including (Arnold et al., 1992; 

Balasubramanian, Beg, 2003; David, 1981; Reiss, 1989). Furthermore, (Arnold et al., 1992; 

David, 1981; Gan, Bain, 1995; Khatri, 1962) obtained the probability function (pf) and df of 

order statistics of iid random variables from a discrete parent. (Corley, 1984) defined a 

multivariate generalization of classical order statistics for random samples from a continuous 

multivariate distribution. (Goldie, Maller, 1999) derived expressions for generalized joint 

densities of order statistics of iid random variables in terms of Radon-Nikodym derivatives 

with respect to product measures based on df. (Guilbaud, 1982) expressed the probability of 

the functions of independent but not necessarily identically distributed (innid) random vectors 

as a linear combination of probabilities of the functions of  iid  random vectors and thus also 

for order statistics of random variables. 

 (Cao, West, 1997) obtained recurrence relationships among the distribution functions of 

order statistics arising from innid random variables. (Vaughan, Venables, 1972) derived the 

joint pdf  and marginal pdf  of order statistics of innid random variables by means of 

permanents. (Balakrishnan, 2007; Bapat, Beg, 1989) obtained the joint pdf and df of order 

statistics of innid random variables by means of permanents. (Childs, Balakrishnan, 2006) 

obtained, using multinomial arguments, the pdf of  1: +nrX  (1 ≤ r ≤ n+1) by adding another 

independent random variable to the original n variables nXXX ,...,, 21 . Also, 
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(Balasubramanian et al.,1994) established the identities satisfied by distributions of order 

statistics from non-independent non-identical variables through operator methods based on 

the difference and differential operators.  

In this paper, joint df and pdf of order statistics from innid continuous random vectors are 

obtained.  

As far as we know, these approaches have not been considered in the framework of order 

statistics from innid continuous random vectors. 

From now on, subscripts and superscripts are defined in first place in which they are used 

and these definitions will be valid unless they are redefined. 

Consider x ),...,,( )()2()1( b
xxx= and y ),...,,( )()2()1( b

yyy= , then it can be written as; 

 x ≤ y if )()( vv
yx ≤ ( v=1, 2, …, b )  and   x + y ),...,,( )()()2()2()1()1( bb

yxyxyx +++= . 

Let iξ ),...,,( )()2()1( b

iii ξξξ=  (i=1,2,…,n) be n innid continuous random vectors which 

components of  iξ  are independent.  

(:
)(

: nr

v

nr ZX = ),...,, )()(
2

)(
1

v

n

vv ξξξ                                                                                                  (1.1) 

is stated as rth order statistic of vth components of  1ξ , 2ξ , …, nξ .  

From (1.1), ordered values of vth components of 1ξ , 2ξ , …, nξ  are expressed as  

.... )(
:

)(
:2

)(
:1

v

nn

v

n

v

n XXX ≤≤≤                                                                                                          (1.2) 

       From (1.2), we can write ),...,,(X )(
:

)2(
:

)1(
::

b

nrnrnrnr XXX=     ( nr ≤≤1 ). 

Also, ), ... , ,(x )()2()1( b

wwww xxx= , Rx
v

w ∈)(  ( 1,2,...,d;    1,2,...,nw d= = ). 

Let iF  and if  be df and pdf  of )(v

iξ , respectively.  

Moreover, sv

nn

sv

n

sv

n XXX
),(

:
),(

:2
),(

:1 ,...,,   are  order  statistics  of  iid  continuous random  variables  

with  df  sF  and  pdf s
f , respectively, defined by  

 

∑
∈

=
si

i

s

s
F

n
F

1
                                                                                                                        (1.3) 

 
and 

∑
∈

=
si

i

s

s
f

n
f

1
.                                                                                                                       (1.4) 

 

Here, s is a subset of integers {1, 2,…, n} with ≥sn 1 elements.  
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In follows, df and pdf of nrnrnr d ::: X,...,X,X
21

 ( 1 nrrr d ≤<<<≤ ...21 ) are given. Let 

),...,,(X )(
:

)(
:

)(
:

)(

21

v

nr

v

nr

v

nr

v

d
XXX=  and ),...,,(x )()(

2
)(

1
)( v

d

vvv
xxx= . For notational convenience we write 

∑∑ and ∑
23

12

,,...,

,,...,

mmn

mmmd

instead of ∑∑
==

−−
κκ

κ κ

sn

n n
n

n1 !
)1(  and ∑ ∑ ∑

= = =

n

rm

m

rm

m

rmdd

3

22

2

11

...  in the expressions 

below, respectively.  

 

2.  Distribution function of order statistics from innid random vectors 

 

In this section, df  of  nrnrnr d ::: X,...,X,X
21

  and its results  are given. The results connect df 

of order statistics of  innid random vectors to that of order statistics of  iid random vectors 

using (1.3).  

Now, we give the following theorem for establish joint df of d order statistics of innid 

continuous random vectors. 

 
Theorem 2.1.  

∏ ∑ ∑∏ ∏
=

+

= +=

−

−

−=
b

v

mmn

mmm P

d

w

m

ml

v

wj

v

wjdnrrr

d

w

w

lld
xFxFCF

1

,,...,

,,...,

1

1 1

)(
1

)(
21:,...,,

23

12 1

21
})]()([{)x,...,x,x( ,                         (2.1)  

dx...xx 21 <<< , where ∏
+

=

−
−−=

1

1

1
1 ])!([

d

w

ww mmC , 00 =m , nmd =+1 , ∑
P

denotes sum over all 

!n  permutations ),...,,( 21 njjj  of  (1,2,…,n), 0)( )(
0 =v

j xF
l

 and 1)( )(

1
=

+

v

j dl
xF . 

  

Proof. It can be written 

}xX,...,xX,xX{  )x,...,x,x( :2:1:21:,...,, 2121 dnrnrnrdnrrr dd
PF ≤≤≤=  

                                     }xX,...,xX,xX{ )()()2()2()1()1( bb
P ≤≤≤=    

                                     ∏
=

≤=
b

v

vv
P

1

)()( }xX{                   

                                     },...,,{
1

)()(
:

)(
2

)(
:

)(
1

)(
: 21∏

=

≤≤≤=
b

v

v

d

v

nr

vv

nr

vv

nr xXxXxXP
d

 .                                (2.2) 

(2.2) can be expressed as  
 

=)x,...,x,x( 21:,...,, 21 dnrrr d
F    

                      ∏ ∑ ∏∏∑ ∏
= +=+==

−













−












b

v

mmn

mmm

v
dj

n

ml

v
j

m

ml

v
j

P

m

l

v
j

d

l

d

lll
xFxFxFxFC

1

,,...,

,,...,

)(

1

)(
1

1

)(
2

1

)(
1

23

12

2

1

1

)]}(1[...)]()([)({ . 

                                                 

Thus, (2.1) is obtained.   

  The approach in Theorem 2.1 can also be adapted to Theorem 2.2 for iid case.  
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Theorem 2.2.   

=)x,...,x,x( 21:,...,, 21 dnrrr d
F }.)]()([!{

1

1

1

)(
1

)(
,,...,

,,...,

1

23

12

∏ ∑∑ ∏∑
=

+

=

−
−

−−
b

v

d

w

mmv

w

sv

w

s
mmn

mmm

ww

d

xFxFCn                  (2.3) 

Proof. (2.2) can be expressed as  
 

=)x,...,x,x( 21:,...,, 21 dnrrr d
F }],...,,{[

1

)(),(
:

)(
2

),(
:

)(
1

),(
: 21∏ ∑∑

=

≤≤≤
b

v

v

d

sv

nr

vsv

nr

vsv

nr xXxXxXP
d

.              (2.4) 

 
(2.3) is obtained from (2.1) and (2.4).  

We now obtain the following three results for df of order statistics of innid continuous 

random vectors from the above theorems. 

 

Result 2.1.  

( )∑ ∏∏∑
+===

−








−
=

P

n

ml

j

m

l

j

n

rm

nr xFxF
mnm

xF
ll

1

)1(
1

1

)1(
1

11

)1(
1:

1

1

11

1
)](1[)(

)!(!

1
)(  

               ∑∑ ∑ −

=

−







= 11

11

)](1[)]([ )1(
1

)1(
1

1

mnsms
n

rm

xFxF
m

n
.                                                          (2.5) 

Proof. In (2.1) and (2.3), if  1=b ,  1=d , (2.5) is obtained.  
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−= tnnτ
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Result 2.2.  
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Proof. In (2.5),  if  11 =r , (2.6) is obtained.    
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Result 2.3.  
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1
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            ∑∑= ns xF )]([ )1(
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Proof. In (2.5), if  nr =1 , (2.7) is obtained. 
 
 

3.  Probability density function of order statistics from innid random vectors 

 

In this section, pdf  of  nrnrnr d ::: X,...,X,X
21

  and its results are given. The results connect 

pdf of order statistics of innid random vectors to that of order statistics of iid random vectors 

using (1.3) and (1.4).  

Joint pdf of d order statistics of innid continuous random vectors is expressed in the 

following theorem. 

 

Theorem 3.1. 
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Thus, (3.1) is obtained. 

Next theorem shows that pdf of d order statistics of innid continuous random vectors can 

be expressed in terms of pdf  of d order statistics of iid continuous random vectors. 

 

Theorem 3.2.  
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The following five results of which first three are belong to pdf of single order statistic 

and last two are belong to joint pdf of d order statistics of innid continuous random vectors 

can be written from last two theorems.   
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Proof. In (3.1) and (3.5), if  1=b ,  1=d , (3.7) is obtained. 
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Proof. In (3.7), if  11 =r , (3.8) is obtained. 
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Proof. In (3.7), if nr =1 , (3.9) is obtained. 
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Proof. In (3.1) and (3.5), if  1=b ,  2=d   and  11 =r , nr =2 , (3.10) is obtained. 
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Proof. In (3.1) and (3.5), if  kd =  and 11 =r , 22 =r ,…, krk = , (3.11) is obtained. 
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Abstract. In this paper, using the fixed point method, we investigate the Hyers-Ulam stability of homomor-

phisms in non-Archimedean random C∗-algebras and non-Archimedean random Lie JC∗-algebras and of deriva-

tions on non-Archimedean random C∗-algebras and non-Archimedean random Lie JC∗-algebras related to the

generalized Cauchy-Jensen additive functional equation.

1. Introduction

A non-Archimedean field is a field like K equipped is a function | · | : K → [0,+∞) such

that |a| = 0 if and only if a = 0, |ab| = |a||b| and |a + b| 6 max{|a|, |b|} for all a, b ∈ K.

Note that |1| = | − 1| = 1 and |n| 6 1 for each integer n. By the trivial valuation we mean

the mapping | · | taking everything but 0 into 1 and |0| = 0. We always assume, in addition,

that | · | is non-trivial, i.e., there exists an a0 6= 0, 1. A function ‖.‖ : X → [0,∞) is called a

non-Archimedean norm if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;

(ii) for any r ∈ K,x ∈ X, ‖rx‖ = |r|‖x‖;
(iii) the strong triangle inequality holds; namely,

‖x+ y‖ 6 max{‖x‖, ‖y‖} (x, y ∈ X).

Then (X, ‖.‖) is called a non-Archimedean normed space. From the fact that

‖xn − xm‖ 6 max{‖nn − xm‖ : m 6 j 6 n− 1} (n > m)

holds, a sequence {xn} is Cauchy if and only if {xn−xm} converges to zero in a non-Archimedean

normed space. By a complete non-Archimedean normed space we mean one in which every

Cauchy sequence is convergent.

For any nonzero rational number x, there exists a unique integer nx ∈ Z such that x = a
bp
nx ,

where a and b are integers not divisible by p. Then |x|p := p−nx defines a non-Archimedean

norm on Q. The completion of Q with respect to the metric d(x, y) = |x − y|p is denoted by

Qp, which is called the p-adic number field.

02000 Mathematics Subject Classification: Primary 39B52; 39B72; 46L05; 47H10; 46B03.
0Keywords: Hyers-Ulam stability; additive functional equation; fixed point; non-Archimedean random space;
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derivations on random C∗-algebras and non-Archimedean random Lie JC∗-algebras.
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A non-Archimedean Banach algebra is a complete non-Archimedean algebra A which satisfies

‖ab‖ 6 ‖a‖ · ‖b‖ for all a, b ∈ A. For more detailed definitions of non-Archimedean Banach

algebras, we refer the reader to [25].

If U is a non-Archimedean Banach algebra, then an involution on U is mapping t→ t∗ from

U into U which satisfies

(i) t∗∗ = t for t ∈ U ;

(ii) (αs+ βt)∗ = ᾱs∗ + β̄t∗;

(iii) (st)∗ = t∗s∗ for all s, t ∈ U .

If, in addition, ‖t∗t‖ = ‖t‖2 for t ∈ U , then U is a non-Archimedean C∗-algebra.

The stability problem of functional equations originated from a question of Ulam [26] con-

cerning the stability of group homomorphisms: Let (G1, ∗) be a group and let (G2, �) be a

metric group (a metric is defined on a set with group property) with the metric d(., .). Given

ε > 0, does there exist a δ(ε) > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε for all x ∈ G1? If the answer is affirmative, we we would say that the equation

of homomorphism h(x ∗ y) = h(x) ∗ h(y) is stable (see also [10, 11, 14, 18, 19, 20, 21, 22]).

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d

satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, y) 6 d(x, z) + d(z, y) for all x, y, z ∈ X.

For explicitly later use, we recall a fundamental result in fixed point theory.

Theorem 1.1. [9] Let (Ω, d) be a complete generalized metric space and J : Ω→ Ω be a strictly

contractive mapping with Lipschitz constant 0 < L < 1. Then for each given x ∈ Ω, either

d(Jnx, Jn+1x) =∞ for all nonnegative n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n > n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set ∆ = {y ∈ Ω : d(Jn0x, y) <∞};
(4) d(y, y∗) 6 1

1−Ld(y, Jy) for all y ∈ ∆.

A C∗-algebra C, endowed with the Lie product [x, y] := xy−yx
2 and endowed with anticommu-

tator product (Jordan product) x◦y := xy+yx
2 on C, is called a Lie JC∗-algebra (see [15, 16, 17]).

Jordan algebras as coordinates for Lie algebras were created to illuminate a particular aspect

of physics, quantum-mechanical observables, but turned out to have illuminating connections

with many areas of mathematics.

In this paper, using the fixed point method, we prove the Hyers-Ulam stability of homomor-

phisms and derivations in non-Archimedean random C∗-algebras and non-Archimedean random

Lie JC∗-algebras associated with f : X → Y satisfying the following functional equation (see

[1]) ∑
1 6 i1 < · · · < im 6 n

1 6 kl(6= ij ,∀j ∈ {1, · · · ,m}) 6 n

f

(∑m
j=1 xij

m
+

n−m∑
l=1

xkl

)
=

(n−m+ 1)

n

(
n

m

) n∑
i=1

f(xi) (1.1)
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for all x1, · · · , xn ∈ X, where m,n ∈ N are fixed integer with n > 2, 1 6 m 6 n. In particular,

it is shown that in the case m = 1, (1.1) yields the Cauchy additive equation f(
∑n

l=1 xkl) =∑n
l=1 f(xi) and also in the case m = n, (1.1) yields the Jensen additive equation f(

∑n
j=1 xj
n ) =

1
n

∑n
l=1 f(xi). Then (1.1) is a generalized form of the Cauchy-Jensen additive equation, and

thus every solution of the equation (1.1) may be analogously called general (m,n)-Cauchy-

Jensen additive. For each m with 1 6 m 6 n, a mapping f : X → Y satisfies (1.1) for all n > 2

if and only if f(x) − f(0) = A(x) is Cauchy additive, where f(0) = 0 if m < n. In particular,

we have f((n−m+ 1)x) = (n−m+ 1)f(x) and f(mx) = mf(x) for all x ∈ X.

2. Random spaces

In this section, we adopt the usual terminology, notations, and conventions of the theory

of random normed spaces as in [2, 3, 6, 7, 8]. Throughout this paper, ∆+ is the space of

distribution functions, that is the space of all mapping F : R ∪ {−∞,∞} → [0, 1] such that F

is left-continuous and non-decreasing on R, F (0) = 0 and F (+∞) = 1. And D+ is a subset of

∆+ consisting of all functions F ∈ ∆+ for which l−F (+∞) = 1, where l−f(x) denotes the left

limit of the function f at the point x, that is, l−f(x) = limt→x− f(t). The space ∆+ is partially

ordered by the usual point-wise ordering of functions, i.e., F 6 G if and only if F (t) 6 G(t) for

all t in R. The maximal element for ∆+ in this order is distribution function ε0 given by

ε0(t) =

{
0 if t 6 0,

1 if t > 0.

Definition 2.1. [23] A mapping T : [0, 1]× [0, 1]→ [0, 1] is a continuous triangular norm norm

(briefly, a continuous t-norm) if T satisfies the following conditions:

(a)T is commutative and associative;

(b)T is continuous;

(c)T (a, 1) = a for all a ∈ [0, 1];

(d)T (a, b) 6 T (c, d) whenever a 6 c and b 6 d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP (a, b) = ab, TM (a, b) = min(a, b) and TL(a, b) =

max(a+ b− 1, 0) (the Lukasiewicz t-norm).

Definition 2.2. [24] A non-Archimedean random normed space (briefly, NA-RN-space) is a

triple (X,µ, T ), where X is a vector space, T is a continuous t-norm, and µ is a mapping from

X into D+ such that the following conditions hold:

(RN1)µx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RN2)µαx(t) = µx( t
|α|) for all x ∈ X,α 6= 0.

(RN3)µx+y(t) > T (µx(t), µy(t)) for all x, y ∈ X and all t > 0.

Every normed space (X, ‖ · ‖) defines a non-Archimedean random normed space (X,µ, TM ),

where

µx(t) =
t

t+ ‖x‖
for all t > 0, and TM is the minimum t-norm. This space is called the induced random normed

space.
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Definition 2.3. [12] A non-Archimedean random normed algebra (X,µ, T, T ′) is a non-Archimedean

random normed space (X,µ, T ) with an algebraic structure such that

(RN4)µxy(t) > T ′(µx(t), µy(t)) for all x, y ∈ X and all t > 0, in which T ′ is a continuous

t-norm.

Every non-Archimedean normed algebra (X, ‖·‖) defines a non-Archimedean random normed

algebra (X,µ, TM ), where

µx(t) =
t

t+ ‖x‖

for all t > 0 if and only if

‖xy‖ 6 ‖x‖ ‖y‖+ t‖x‖+ t‖y‖ (x, y ∈ X; t > 0).

This space is called an induced non-Archimedean random normed algebra.

Definition 2.4. Let (X,µ, TM ) and (Y, µ, TM ) be non-Archimedean random normed algebras.

(1) An R-linear mapping f : X → Y is called a homomorphism if f(xy) = f(x)f(y) for all

x, y ∈ X.

(2) An R-linear mapping f : X → Y is called a derivation if f(xy) = f(x)y+ xf(y) for all

x, y ∈ X.

Definition 2.5. Let (U , µ, T ) be a non-Archimedean random Banach algebra. Then an invo-

lution on U is mapping u→ u∗ from U into U which satisfies

(i)u∗∗ = u for u ∈ U ;

(ii) (αu+ βv)∗ = ᾱu∗ + β̄v∗;

(iii) (uv)∗ = v∗u∗ for all u, v ∈ U .

If, in addition, µu∗u(t) = T ′(µu(t), µu(t)) for u ∈ U , then U is a non-Archimedean random

C∗-algebra.

Definition 2.6. Let (X,µ, T ) be an NA-RN -space.

(1) A sequence {xn} in X is said be convergent to x in X if, for every ε > 0 and λ > 0,

there exists a positive integer N such that µxn−x(ε) > 1− λ whenever n > N .

(2) A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0 and λ > 0, there

exists a positive integer N such that µxn−xn+1(ε) > 1− λ whenever n > m > N .

(3) An RN -space (X,µ, T ) is said to be complete if and only if every Cauchy sequence in

X is convergent to a point in X.

3. Stability of homomorphisms and derivations in non-Archimedean random

C∗-algebras

Throughout this section, we suppose thatA and B are non-Archimedean random C∗-algebras,

respectively, with norms µA. and µB. .
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We use the following abbreviation for a given mapping f : A → B:

Dλf(x1, · · · , xn)

:=
∑

1 6 i1 < · · · < im 6 n
1 6 kl(6= ij , ∀j ∈ {1, · · · ,m}) 6 n

f

(∑m
j=1 λxij

m
+
n−m∑
l=1

λxkl

)
−

(n−m+ 1)
(
n
m

)∑n
i=1 λf(xi)

n

for all λ ∈ T1 := {µ ∈ C : |µ| = 1} and all x1, · · · , xn ∈ A.

It is well-known that a C-linear mapping H : A → B is called a random homomorphism in

non-Archimedean random C∗-algebras if H satisfies H(xy) = H(x)H(y) and H(x∗) = H(x)∗

for all x, y ∈ A.

We prove the Hyers-Ulam stability oh homomorphisms in non-Archimedean random C∗-

algebras for the functional equation Dλf(x1, · · · , xn) = 0.

Theorem 3.1. Let f : A → B be a mapping for which there are functions ϕ : An → D+, ψ :

A2 → D+, and η : A → D+ such that |M| = |n−m+ 1| < 1 and |N | = |(n−m+ 1)
(
n
m

)
| < 1

are far from zero and

µBDλf(x1,··· ,xn)(t) > ϕx1,··· ,xn(t), (3.1)

µBf(xy)−f(x)f(y)(t) > ψx,y(t), (3.2)

µBf(x∗)−f(x)∗(t) > ηx(t), (3.3)

for all λ ∈ T1 := {µ ∈ C : |µ| = 1} and all x1, · · · , xn, x, y ∈ A and t > 0. If there exists an

L < 1 such that

ϕMx1,··· ,Mxn(|M|Lt) > ϕx1,··· ,xn(t), (3.4)

ψMx,My(|M|2Lt) > ψx,y(t), (3.5)

ηMx(|M|Lt) > ηx(t), (3.6)

for all x1, · · · , xn, x, y ∈ A and t > 0, then there exists a unique random homomorphism

H : A → B such that

µBf(x)−H(x)(t) > ϕx,··· ,x((|N | − |N |L)t) (3.7)

for all x ∈ A and t > 0.

Proof. It follows from (3.4), (3.5), (3.6), and L < 1 that

lim
m→∞

ϕMmx1,··· ,Mmxn(|M|mt) = 1, (3.8)

lim
m→∞

ψMmx,Mmy(|M|2mt) = 1, (3.9)

lim
m→∞

ηMmx(|M|mt) = 1, (3.10)

for all x1, · · · , xn, x, y ∈ A and t > 0.

Now we define Ω := {g : A → B; g(0) = 0} and introduce a generalized metric on Ω as

following:

d(g, h) = inf{k ∈ (0,∞) : µBg(x)−h(x)(kt) > ϕx,x,··· ,x(t), ∀x ∈ A, t > 0}
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where inf ∅ = +∞. By the same technique as in the proof of [13, Theorem 3.2], we can show

that (Ω, d) is a complete generalized metric space. We define J : Ω→ Ω by Jg(x) = 1
Mg(Mx)

for all x ∈ A and g ∈ Ω. Note that for all g, h ∈ Ω, from (3.4), we have

d(g, h) 6 k ⇒ µBg(x)−h(x)(kt) > ϕx,··· ,x(t)

⇒ µB1
Mg(Mx)− 1

Mh(Mx)
(kt) > ϕMx,··· ,Mx(|M|t)

⇒ µB1
Mg(Mx)− 1

Mh(Mx)
(kLt) > ϕx,··· ,x(t)

⇒ d(Jg, Jh) < kL.

Then one can show that d(Jg, Jh) 6 Ld(g, h) for all g, h ∈ Ω and so J is self-function of Ω with

the the Lipschitz constant L.

Letting λ = 1 and putting x1 = x2 = · · · = xn = x in (3.1), we obtain

µB(nm)f((n−m+1)x)−(nm)(n−m+1)f(x)
(t) > ϕx,x,··· ,x(t)

for all x ∈ A and t > 0. Then

µB
f(x)− 1

Mf(Mx)
(t) > ϕx,x,··· ,x(|N |t)

for all x ∈ A and t > 0. This implies that d(Jf, f) 6 1
|N | <∞. By The fixed point alternative

theorem, Theorem 1.1, J has a unique fixed point H : A → B in Ω0 := {h ∈ Ω : d(h, f) <∞}
such that

H(x) = lim
m→∞

1

|M|m
f(Mmx) (3.11)

for all x ∈ A, since limm→∞ d(Jmf,H) = 0.

On the other hand, it follows from (3.1), (3.8) and (3.11) that

µBDλH(x1,··· ,xn)(t) = lim
m→∞

µ 1
MmDλf(Mmx1,··· ,Mmxn)

(t)

> lim
m→∞

ϕMmx1,··· ,Mmxn(|M|mt) = 1.

By a similar method to the above, we can get λH(Mx) = H(λMx) for all λ ∈ T and all

x ∈ A. Then by using the same technique as in the proof of [10, Theorem 2.1], we can show

that H is C-linear.

It follows from (3.2), (3.9) and (3.11) that

µBH(xy)−H(x)H(y)(t) = lim
m→∞

µBf(M2mxy)−f(Mmx)f(Mmy)

(
|M|2mt

)
> lim

m→∞
ψMmx,Mmy

(
|M|2mt

)
= 1

for all x, y ∈ A. Therefore, we conclude that H(xy) = H(x)H(y) for all x, y ∈ A. Thus

H : A → B is a homomorphism satisfying (3.7).

By same method as above, from (3.3),(3.10) and (3.11), we can write

µBH(x∗)−H(x)∗(t) = lim
m→∞

µB 1
Mm (f(Mmx∗)−f(Mmx)∗)

(t)

> lim
m→∞

ηMmx (|M|mt) = 1
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for all x ∈ A and all t > 0. Then we conclude that H(x∗) = H(x)∗ and the proof is complete,

as desired. �

Corollary 3.2. Let r > 1 and θ be nonnegative real numbers, and let f : A → B be a mapping

such that

µBDλf(x1,··· ,xn)(t) >
t

t+ θ(‖x1‖rA + ‖x2‖rA + · · ·+ ‖xn‖rA)
,

µBf(xy)−f(x)f(y)(t) >
t

t+ θ(‖x‖rA.‖y‖rA)
,

µBf(x∗)−f(x)∗(t) >
t

t+ θ‖x‖rA
for all λ ∈ T1, all x1, · · · , xn, x, y ∈ A and t > 0. Then there exists a unique random homo-

morphism H : A → B such that

µBf(x)−H(x)(t) >
(|N | − |N |r)t

(|N | − |N |r)t+ nθ‖x‖rA
for all x ∈ A and t > 0.

Proof. Letting

ϕx1,··· ,xn(t)
t

t+ θ(‖x1‖rA + ‖x2‖rA + · · ·+ ‖xn‖rA)
,

ψx,y(t) =
t

t+ θ(‖x‖rA.‖y‖rA)
,

ηx(t) =
t

t+ θ‖x‖rA
for all x1, · · · , xn, x, y ∈ A, L = |N |r−1 and t > 0 in Theorem 3.1, we get the desired result. �

In the following theorem, we investigate the Hyers-Ulam stability of derivations on non-

Archimedean random C∗-algebras for the functional equation Dλf(x1, · · · , xn) = 0.

Theorem 3.3. Let f : A → A be a mapping for which there are functions ϕ : An → D+, ψ :

A2 → D+, satisfying (3.1), (3.3), and η : A → D+ such that |M| < 1 and |N | < 1 are far

from zero and

µAf(xy)−f(x)y−xf(y)(t) > ψx,y(t), (3.12)

for all λ ∈ T1 and all x1, · · · , xn, x, y ∈ A and t > 0. If there exists an L < 1 such that (3.4),

(3.5) and (3.6) hold, then there exists a unique random derivation δ : A → A such that

µAf(x)−δ(x)(t) > ϕx,··· ,x ((|N | − |N |L)) (3.13)

for all x ∈A and t > 0.

Proof. By the same argument as in the proof of Theorem 3.1, there exists a unique C-linear

mapping δ : A×A → A satisfying (3.13). The mapping δ is given by

δ(x) = lim
m→∞

1

|M|m
f(Mmx) (3.14)
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for all x ∈ A.

It follows from (3.12), (3.9) and (3.14) that

µBδ(xy)−δ(x)y−xδ(y)(t) = lim
m→∞

µBf(M2mxy)−f(Mmx)Mmy−Mmxf(Mmy)

(
|M|2mt

)
> lim

m→∞
ψMmx,Mmy

(
|M|2mt

)
= 1

for all x, y ∈ A. Therefore, we conclude that δ(xy) = δ(x)y + xδ(y) for all x, y ∈ A. The

remainder of the proof is similar to the proof of Theorem 3.1. �

4. Stability of homomorphisms and derivations in non-Archimedean random Lie

JC∗-algebras

A non-Archimedean random C∗-algebra C, endowed with the Lie product [x, y] := xy−yx
2 and

endowed with anticommutator product (Jordan product) x ◦ y := xy+yx
2 on C, is called a non-

Archimedean random Lie JC∗-algebra.

Definition 4.1. Let A and B be non-Archimedean random Lie JC∗-algebras. A C-linear

mapping H : A → B is called a random Lie JC∗-algebra homomorphism if H satisfies

H([x, y]) = [H(x), H(y)],

H(x ◦ y) = H(x) ◦H(y),

H(x∗) = H(x)∗

for all x, y ∈ A.

Throughout this section, assume that A and B are two non-Archimedean random Lie JC∗-

algebras respectively with norm µA. and µB. .

In the following theorem, we prove the Hyers-Ulam stability of homomorphisms in non-

Archimedean random Lie JC∗-algebra for the functional equation Dλf(x1, · · · , xn) = 0.

Theorem 4.2. Let f : A → B be a mapping for which there are functions ϕ : An → D+ and

ψ : A2 → D+ satisfying (3.1), (3.3) and

µBf([x,y])−[f(x),f(y)](t) > ψx,y(t), (4.1)

µBH(x◦y)−H(x)◦H(y)(t) > φx,y(t) (4.2)

for all λ ∈ T1, all x, y ∈ A and t > 0. If there exists an L < 1 such that (3.4), (3.5) and (3.6)

hold, and also

φMx,My(|M|2Lt) > φx,y(t), (4.3)

for all x, y ∈ A and t > 0, then there exists a unique random Lie JC∗-algebra homomorphism

H : A → B satisfying (3.7).

Proof. It follows from (4.3) and L < 1 that

lim
m→∞

φMmx,Mmy(|M|2mt) = 1, (4.4)

for all x, y ∈ A and t > 0.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.2, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

329 Javad Shokri et al 322-332



Approximate homomorphisms and derivations on ...

By the same argument as in the proof of Theorem 3.1, there exists a unique C-linear mapping

H : A → B satisfying (3.7). The mapping H is given by

H(x) = lim
m→∞

f(Mmx)

|M|m
(4.5)

for all x ∈ A. It follows from (3.9), (4.4) and (4.5) that

µBH([x,y])−[H(x),H(y)](t) = lim
m→∞

µBf(M2m[x,y])−[f(Mmx),f(Mmy)]

(
|M|2mt

)
> lim

m→∞
ψMmx,Mmy

(
|M|2mt

)
= 1

and

µBH(x◦y)−H(x)◦H(y) = lim
m→∞

µBf(M2m(x◦y))−f(Mx)◦f(My)

(
|M|2mt

)
> lim

m→∞
φMmx,Mmy

(
|M|2mt

)
= 1

for all x, y ∈ A and t > 0, then it is concluded that

H([x, y]) = [H(x), H(y)] ; H(x ◦ y) = H(x) ◦H(y)

for all x, y ∈ A. Therefore, H : A → B is the unique random Lie JC∗-algebra homomorphism

satisfying (3.7). �

Corollary 4.3. Let r > 1 and θ be nonnegative real numbers, and f : A → B be a mapping

such that

µBDλf(x1,··· ,xn)(t) >
t

t+ θ(‖x1‖rA + · · ·+ ‖xn‖rA)
,

µBf([x,y])−[f(x),f(y)] >
t

t+ θ(‖x‖rA.‖y‖rA)
,

µBf(x8)−f(x)∗(t) >
t

t+ θ.‖x‖rA
for all λ ∈ T1, all x1, · · · , xn, x, y ∈ A and t > 0. Then there exists a unique random Lie

JC∗-algebra homomorphism H : A → B such that

µBf(x)−H(x) >
(|N | − |N |r)t

(|N | − |N |r)t+ nθ‖x‖rA
for all x ∈ A and t > 0.

Proof. By the same reasoning as in the proof of Theorem 4.2 and a technique similar to Corollary

3.2, by putting L = |N |r−1, the proof will be completed. �

Definition 4.4. Let A be a non-Archimedean random Lie JC∗-algebra. A C-linear mapping

δ : A → A is called a random Lie JC∗-algebra derivation if δ satisfies

δ([x, y]) = [δ(x), y] + [x, δ(y)],

δ(x ◦ y) = δ(x) ◦ y + x ◦ δ(y),

δ(x∗) = δ(x)∗

for all x, y ∈ A.
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In the following theorem, we prove the Hyers-Ulam stability of derivation on non-Archimedean

random Lie JC∗-algebras for the functional equation Dλf(x1, · · · , xn) = 0.

Theorem 4.5. Let f : A → A be a mapping for which there are functions ϕ : An → D+ and

ψ : A2 → D+ such that (3.1) and (3.3) hold and

µAf([x,y])−[f(x),y]−[x,f(y)](t) > ψx,y(t), (4.6)

µAf(x◦y)−f(x)◦y−x◦f(y)(t) > φx,y(t) (4.7)

for all x, y ∈ A. If there exists an L < 1 and (3.4), (3.5), (3.6) and (4.3) hold, then there

exists a unique random Lie JC∗-algebra derivation δ : A → A such that (3.13) holds.

Proof. By the same argument as in the proof of Theorem 4.2, there exists a unique C-linear

mapping δ : A → A satisfying (3.13), and is given by

δ(x) = lim
m→∞

f(Mmx)

|M|m
(4.8)

for all x ∈ A.

It follows from (3.9), (4.4) and (4.8) that

µδ([x,y])−[δ(x),y]−[x,δ(y)](t) = lim
m→∞

µAf(M2m[x,y])−[f(Mmx),Mmy]−[Mmx,f(Mmy)]

(
|M|2mt

)
> lim

m→∞
ψMmx,Mmy

(
|M|2mt

)
= 1

and

µAδ(x◦y)−δ(x)◦y−x◦δ(y)(t) = lim
m→∞

µAf(M2m(x◦y))−f(Mmx)◦y−x◦f(Mmy)

(
|M|2mt

)
> lim

m→∞
φMmx,Mmy

(
|M|2mt

)
= 1

for all x, y ∈ A and t > 0, and so we conclude that

δ([x, y]) = [δ(x), y] + [x, δ(y)], δ(x ◦ y) = δ(x) ◦ y + x ◦ δ(y)

for all x, y ∈ A. Therefore, δ : A → A is the unique desired random Lie JC∗-algebra derivation

satisfying (3.13). �

References

[1] H. Azadi Kenary, Non-Archimedean stability of Cauchy-Jensen type functional equation, J. Nonlinear Anal.

Appl. 1 (2011), no. 2, 1–10.

[2] H. Azadi Kenary, S. Jang and C. Park, A fixed point approach to the Hyers-Ulam stability of a functional

equation in various normed spaces, Fixed Point Theory Appl. 2011 (2011), 2011:67.

[3] H. Azadi Kenary, S. Rezaei, S. Talebzadeh and C. Park, Stability for the Jensen equation in C∗-algebras: a

fixed point alternative approach, Adv. Difference Equ. 2012 (2012), 2012:17.
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ON THE FUZZY STABILITY PROBLEMS OF GENERALIZED

SEXTIC MAPPINGS

HEEJEONG KOH AND DONGSEUNG KANG∗

Abstract. We introduce a fuzzy anti-β-norm and generalized sextic mapping
and then investigate the Hyers-Ulam-Rassias stability in quasi β-Banach space

and the fuzzy stability by using a fixed point in fuzzy anti-β Banach space for

the generalized sextic function.

1. Introduction

The concept of stability problem of a functional equation was first posed by
Ulam [33] concerning the stability of group homomorphisms. In the next year,
Hyers [14] gave a partial answer to the question of Ulam. Hyers’ theorem was
generalized in various directions. The very first author who generalized Hyers’
theorem to the case of unbounded control functions was Aoki [1]. Rassias [28]
succeeded in extending the result of Hyers’ theorem by weakening the condition
for the Cauchy difference operator CDf(x, y) = f(x + y) − [f(x) + f(y)] to be
controlled by ε(||x||p + ||y||p) . Rassias’ paper [28] has provided a lot of influence in
the development of Hyers-Ulam stability or Hyers-Ulam-Rassias stability of func-
tional equations. In 1996, Isac and Rassias [16] were first to provide applications of
new fixed point theorems for the proof of stability theory of functional equations.
By using fixed point methods the stability problems of several functional equations
have been extensively investigated by a number of authors; see [6], [7], [25] and [26].
Recently, the stability problem of functional equations was investigated by using
shadowing properties; see [20] and [31].

During the last three decades, several stability problems of a large variety of
functional equations have been extensively studied and generalized by a number of
authors [9], [12], [15], [28], and [2]. In particular, Xu and et al. [37] introduced the
sextic functional equation

(1.1) f(x+ 3y) + f(x− 3y)− 6[f(x+ 2y) + f(x− 2y)] + 15[f(x+ y) + f(x− y)]

= 20f(x) + 720f(y) .

In fact, Xu and et al. [37] and Gordji and et al. [13] introduced a quintic mapping
and sextic mapping.

In this paper, we deal with the following functional equation

(1.2) f(ax+ y) + f(ax− y) + f(x+ ay) + f(x− ay)

= a2(a2 + 1)[f(x+ y) + f(x− y)] + 2(a2 − 1)(a4 − 1)[f(x) + f(y)]

2000 Mathematics Subject Classification. 39B52.
Key words and phrases. Hyers-Ulam-Rassias stability, sextic mapping, quasi-β-mormed space,

fixed point, fuzzy anti-normed space, fuzzy anti-β-normed space.
* Corresponding author.
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holds for all x, y ∈ X and all a ∈ Z (a 6= 0,±1) .
We will use the following definition to prove Hyers-Ulam-Rassias stability for the

generalized sextic functional equation in the quasi β-normed space. Let β be a real
number with 0 < β ≤ 1 and K be either R or C .
Definition 1.1. Let X be a linear space over a field K . A quasi β-norm || · || is a
real-valued function on X satisfying the following statements:

(1) ||x|| ≥ 0 for all x ∈ X and ||x|| = 0 if and only if x = 0 .
(2) ||λx|| = |λ|β · ||x|| for all λ ∈ K and all x ∈ X .
(3) There is a constant K ≥ 1 such that ||x+y|| ≤ K(||x||+||y||) for all x, y ∈ X .

The pair (X, || · ||) is called a quasi β-normed space if || · || is a quasi β-norm
on X . The smallest possible K is called the modulus of concavity of || · || . A quasi
β-Banach space is a complete quasi-β-normed space.

A quasi β-norm || · || is called a (β, p)-norm (0 < p ≤ 1) if (3) takes the form
||x + y||p ≤ ||x||p + ||y||p for all x, y ∈ X . In this case, a quasi β-Banach space is
called a (β, p)-Banach space; see [5], [29] and [27].

In 1984, Katsaras [18] and Wu and Fang [35] independently introduced a notion
of a fuzzy norm. Since then some mathematicians have defined fuzzy metrics and
norms on a linear space from various points of view; see [3], [11], [19], [36] and [23].
In 2003, Bag and Samanta [3] modified the definition of Cheng and Mordeson [8].
Bag and Samanta [3] introduced the following definition of fuzzy normed spaces.
The notion of fuzzy stability of functional equations was given in the paper [24].
Jebril and Samanta [17] introduced a fuzzy anti-norm linear space depending on the
idea of fuzzy anti-norm was introduced by Bag and Samanta [4] and investigated
their important properties.

We will use the definition of fuzzy anti-normed spaces to investigate a fuzzy
version of Hyers-Ulam-Rassias stability in the fuzzy anti-normed algebra setting.

Definition 1.2. [17] Let X be a real vector space. A function N : X × R→ [0, 1]
is called a fuzzy anti-norm on X if for all x, y ∈ X and all s, t ∈ R ,
(aN1) N(x, t) = 1 for t ≤ 0
(aN2) N(x, t) = 0 if and only if x = 0 for all t > 0
(aN3) N(cx, t) = N(x, t

|c| ) for c 6= 0

(aN4) N(x+ y, s+ t) ≤ max{N(x, s) , N(y, t)}
(aN5) N(x, t) is a non-increasing function of t ∈ R and limt→∞N(x, t) = 0 ,
(aN6) for x 6= 0 , N(x, ·) is continuous on R .

The pair (X,N) is called a fuzzy anti-normed space.

The property (aN3) implies that N(−x, t) = N(x, t) for all x ∈ X and t > 0 . It
is easy to show that (aN4) is equivalent the following condition:

N(x+ y, t) ≤ max{N(x, t) , N(y, t)} , for all x, y ∈ X and t ∈ R .
Definition 1.3. Let X be a real vector space. A fuzzy anti-norm N : X×R→ [0, 1]
is called a fuzzy anti-β-norm on X if (aN3) in Definition 1.2 takes the form

(aN ′3) N(cx, t) = N(x,
t

|c|β
) (c 6= 0, 0 < β ≤ 1) .

Example 1.4. Let (X, || · ||) be a β-normed space. Define

N(x, t) =

{
||x||
t+||x|| when t > 0, t ∈ R
1 when t ≤ 0 ,
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where x ∈ X . We note that

N(cx, t) =
||cx||

t+ ||cx||
=

||x||
t
|c|β + ||x||

= N(x,
t

|c|β
) ,

for all x ∈ X and c ∈ R (c 6= 0 , 0 < β ≤ 1) . Then (X,N) is a fuzzy anti-β-normed
space induced by the β-norm || · || .

Definition 1.5. Let (X, N) be a fuzzy anti-β-normed vector space. A sequence
{xn} in X is said to be convergent or converge if there exists an x ∈ X such that
limn→∞ N(xn − x, t) = 0 for all t > 0 . In this case, x is called the limit of the
sequence {xn} and we denote it by N- limn→∞ xn = x .

Definition 1.6. Let (X, N) be a fuzzy anti-β-normed vector space. A sequence
{xn} in X is called Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N
such that for all n ≥ n0 and all integer d > 0 , we have N(xn+d − xn, t) < ε .

It is well-known that every convergent sequence in a fuzzy anti-β-normed vector
space is Cauchy. If each Cauchy sequaence is convergent, then the fuzzy anti-β-
normed space is said to be fuzzy anti-β complete and the fuzzy anti-β-normed vector
space is called a fuzzy anti-β Banach space.

Now, we will state the theorem, the alternative of fixed point in a generalized
metric space.

Definition 1.7. Let X be a set. A function d : X × X → [0, ∞] is called a
generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y ;
(2) d(x, y) = d(y, x) for all x, y ∈ X ;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Theorem 1.8 ( The alternative of fixed point [21], [30] ). Suppose that we are
given a complete generalized metric space (X, d) and a strictly contractive mapping
J : X → X with Lipschitz constant 0 < L < 1 . Then for each given x ∈ X , either

d(Jnx, Jn+1x) =∞ for all n ≥ 0 ,

or there exists a natural number n0 such that

(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0 ;
(2) The sequence {Jnx} is convergent to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set

Y = {y ∈ X|d(Jn0x, y) <∞} ;

(4) d(y, y∗) ≤ 1
1−L d(y, Jy) for all y ∈ Y .

In this paper, we investigate the Hyers-Ulam-Rassias stability in quasi β-normed
space and then the fuzzy stability by using a fixed point in fuzzy anti-β Banach space
for the generalized sextic function f : X → Y satisfying the equation (1.2). Let us
fix some notations which will be used throughout this paper. Let a ∈ Z (a 6= 0 ,±1) .

2. A sextic functional equation

In this section let X and Y be real vector spaces and we investigate the general
solution of the functional equation (1.2). Before we proceed, we would like to
introduce some basic definitions concerning n-additive symmetric mappings and
key concepts which are found in [32] and [34]. A function A : X → Y is said to be
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additive if A(x+ y) = A(x) +A(y) for all x , y ∈ X . Let n be a positive integer. A
function An : Xn → Y is called n-additive if it is additive in each of its variables. A
function An is said to be symmetric if An(x1 , · · · , xn) = An(xσ(1) , · · · , xσ(n)) for
every permutation {σ(1) , · · · , σ(n)} of {1 , 2 , · · · , n} . If An(x1 , x2 , · · · , xn) is an n-
additive symmetric map, then An(x) will denote the diagonal An(x , x , · · · , x) and
An(rx) = rnAn(x) for all x ∈ X and all r ∈ Q . such a function An(x) will be called
a monomial function of degree n (assuming An 6≡ 0). Furthermore the resulting
function after substitution x1 = x2 = · · · = xs = x and xs+1 = xs+2 = · · · = xn = y
in An(x1 , x2 , · · · , xn) will be denoted by As,n−s(x , y) .

Theorem 2.1. A function f : X → Y is a solution of the functional equation
(1.2) if and only if f is of the form f(x) = A6(x) for all x ∈ X , where A6(x) is
the diagonal of the 6-additive symmetric mapping A6 : X6 → Y .

Proof. Assume that f satisfies the functional equation (1.2). Letting x = y = 0 in
the equation (1.2), we have

2a2(2a2 + 1)(a2 − 1)f(0) = 0 ,

that is, f(0) = 0 . Let y = 0 in the equation (1.2). Then we get

(2.1) f(ax) = a6f(x)

for all x ∈ X . Putting x = 0 in the equation (1.2), we get

(2.2) (a4 − 1)(a2 − 1)
(
f(y)− f(−y)

)
= 0

for all y ∈ X . Hence we have f(y) = f(−y) , for all y ∈ X . That is, f is even. We
can rewrite the functional equation (1.2) in the form

f(x)− 1

2(a2 − 1)(a4 − 1)
f(ax+ y)− 1

2(a2 − 1)(a4 − 1)
f(ax− y)

− 1

2(a2 − 1)(a4 − 1)
f(x+ ay)− 1

2(a2 − 1)(a4 − 1)
f(x− ay)

+
a2(a2 + 1)

2(a2 − 1)(a4 − 1)
f(x+ y) +

a2(a2 + 1)

2(a2 − 1)(a4 − 1)
f(x− y) + f(y) = 0

for all x , y ∈ X and an integer a(a 6= 0 ,±1) . By Theorem 3.5 and 3.6 in [34], f is
a generalized polynomial function of degree at most 6, that is, f is of the form

(2.3) f(x) = A6(x) +A5(x) +A4(x) +A3(x) +A2(x) +A1(x) +A0(x)

for all x ∈ X , where A0(x) = A0 is an arbitrary element of Y , and Ai(x) is the
diagonal of the i-additive symmetric mapping Ai : Xi → Y for i = 1, 2, 3, 4, 5, 6 .
By f(0) = 0 and f(−x) = f(x) for all x ∈ X , we get A0(x) = A0 = 0 , A5(x) =
0 , A3(x) = 0 and A1(x) = 0 . It follows that

f(x) = A6(x) +A4(x) +A2(x)

for all x ∈ X . By (2.1) and An(rx) = rnAn(x) for all x ∈ X and r ∈ Q , we obtain

that A2(x) = − a2

a2+1A
4(x) for all x ∈ X and an integer a (a 6= 0,±1) . Hence we

get A4(x) = A2(x) = 0 , for all x ∈ X . Thus we have f(x) = A6(x) for all x ∈ X .
Conversely, assume that f(x) = A6(x) for all x ∈ X , where A6(x) is the diagonal

of a 6-additive symmetric mapping A6 : X6 → Y . Note that

A6(qx+ ry) = q6A6(x) + 6q5rA5,1(x, y) + 15q4r2A4,2(x, y) + 20q3r3A3,3(x, y)

+ 15q2r4A2,4(x, y) + 6qr5A1,5(x, y) + r6A6(y)
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csAs,t(x, y) = As,t(cx, y) , ctAs,t(x, y) = As,t(x, cy)

where 1 ≤ s, t ≤ 5 and c ∈ Q . Thus we may conclude that f satisfies the equation
(1.2). �

We note that a mapping f : X → Y is called generalized sextic if f satisfies the
functional equation (1.2).

3. Hyers-Ulam-Rassias stability over a quasi β-Banach space

Throughout this section, let X be a real linear space and let Y be a quasi β-
Banach space with a quasi β-norm || · ||Y . Let K be the modulus of concavity
of || · ||Y . We will investigate the Hyers-Ulam-Rassias stability for the functional
equation (1.2); see also the paper [10].

For a given mapping f : X → Y and all fixed integer a ( a 6= 0, ±1) , let

(3.1) Daf(x, y) := f(ax+ y) + f(ax− y) + f(x+ ay) + f(x− ay)

−a2(a2+1)
(
f(x+y)+f(x−y)

)
−2(a2−1)(a4−1)

(
f(x)+f(y)

)
for all x, y ∈ X .

Theorem 3.1. Suppose that there exists a mapping φ : X2 → [0,∞) for which a
mapping f : X → Y satisfies f(0) = 0 ,

(3.2) ||Daf(x, y)||Y ≤ φ(x, y)

and the series
∑∞
j=0

(
K
|a|6β

)j
φ(ajx, ajy) converges for all x, y ∈ X . Then there

exists a unique generalized sextic mapping S : X → Y satisfying the equation (1.2)
and the inequality

(3.3) ||f(x)− S(x)||Y ≤
K

2β |a|6β
∞∑
j=0

( K

|a|6β
)j
φ(ajx, 0) ,

for all x ∈ X .

Proof. By letting y = 0 in inequality (3.2), since f(0) = 0 we have

||Daf(x, 0)||Y = ||2f(ax) + 2f(x)− 2a2(a2 + 1)f(x)− 2(a2 − 1)(a4 − 1)f(x)||Y

= 2β |a|6β ||f(x)− 1

a6
f(ax)||Y ≤ φ(x, 0) ,

that is,

(3.4) ||f(x)− 1

a6
f(ax)||Y ≤

1

2β |a|6β
φ(x, 0) ,

for all x ∈ X .
We note that putting x = ax and multiplying 1

|a|6β in the inequality (3.4), we
get

(3.5)
1

|a|6β
||f(ax)− 1

a6
f(a2x)||Y ≤

1

2β |a|6β
1

|a|6β
φ(ax, 0) ,

for all x ∈ X .
Combining two inequalities (3.4) and (3.5), we have

||f(x)−
( 1

a6

)2
f(a2x)||Y ≤

K

2β |a|6β
(
φ(x, 0) +

1

|a|6β
φ(ax, 0)

)
,(3.6)
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for all x ∈ X .
Since K ≥ 1 , inductively using the previous note we have the following inequal-

ities

||f(x)−
( 1

a6

)k
f(akx)||Y ≤

K

2β |a|6β
k−1∑
j=0

( K

|a|6β
)j
φ(ajx, 0) ,(3.7)

for all x ∈ X , k ∈ N and also

||
( 1

a6

)k
f(akx)−

( 1

a6

)t
f(atx)||Y ≤

K

2β |a|6β
t−1∑
j=k

( K

|a|6β
)j
φ(ajx, 0) ,(3.8)

for all x ∈ X and k , t ∈ N (k < t) .
Since the right-hand side of the previous inequality (3.8) tends to 0 as t → ∞ ,

hence {
(

1
a6

)n
f(anx)} is a Cauchy sequence in the quasi β-Banach space Y . Thus

we may define

S(x) = lim
n→∞

( 1

a6

)n
f(anx) ,

for all x ∈ X . Since K ≥ 1 , replacing x and y by anx and any respectively and
dividing by |a|6βn in the inequality (3.2) , we have

( 1

|a|6β
)n
||Daf(anx, any)||Y

=
( 1

|a|6β
)n
||f(an(ax+ y)) + f(an(ax− y)) + f(an(x+ ay)) + f(an(x− ay))

−a2(a2 + 1)
(
f(an(x+ y)) + f(an(x− y))

)
−2(a2 − 1)(a4 − 1)

(
f(anx) + f(any)

)
||Y

≤
( K

|a|6β
)n
φ(anx, any)

for all x, y ∈ X .
By taking n → ∞ , the definition of S implies that S satisfies (1.2) for all

x, y ∈ X , that is, S is the generalized sextic mapping. Also, the inequality (3.7)
implies the inequality (3.3).

Now, it remains to show the uniqueness. Assume that there exists T : X → Y
satisfying (1.2) and (3.3). Then

||T (x)− S(x)||Y =
( 1

|a|6β
)n
||T (anx)− S(anx)||Y

≤
( 1

|a|6β
)n
K
(
||T (anx)− f(anx)||Y + ||f(anx)− S(anx)||Y

)
≤ 2K2

2β |a|6βKn

∞∑
j=n

( K

|a|6β
)j
φ(ajx, 0)

for all x ∈ X . By letting n→∞ , we immediately have the uniqueness of S . �

Corollary 3.2. Let θ ≥ 0 , p < 6 be a real number and X be a normed linear space
with norm || · || . Suppose f : X → Y is a mapping satisfying f(0) = 0 and

(3.9) ||Daf(x, y)||Y ≤ θ(||x||p + ||y||p)
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for all x, y ∈ X and all t > 0 . Then S(x) := N- limn→∞
1
a6n f(an x) exists for each

x ∈ X and defines a generalized sextic mapping S : X → Y such that

||f(x)− S(x)||Y ≤
θK ||x||p

2β(|a|6β −K|a|pβ)

for all x ∈ X and all t > 0 .

Proof. The proof follows from Theorem 3.1 by taking φ(x, y) = θ(||x||p + ||y||p) for
all x , y ∈ X . �

4. Fuzzy fixed point stability over a Fuzzy Banach space

Let us fix some notations which will be used throughout this section. We assume
X is a vector space and (Y, N) is a fuzzy anti-β Banach space. Using fixed point
method, we will prove the Hyers-Ulam stability of the functional equation satisfying
equation (1.2) in fuzzy anti-β Banach space.

Theorem 4.1. Let φ : X2 → [0,∞) be a function such that there exists an 0 <
L < 1 with

(4.1) φ(x, y) ≤ L

|a|6β
φ(ax, ay)

for all x, y ∈ X . Let f : X → Y be a mapping satisfying f(0) = 0 and

(4.2) N(Daf(x, y), t) ≤ φ(x, y)

t+ φ(x, y)

for all x, y ∈ X and all t > 0 . Then S(x) := N- limn→∞ a6nf
(
x
an

)
exists for each

x ∈ X and defines a generalized sextic mapping S : X → Y such that

(4.3) N(f(x)− S(x), t) ≤ Lφ(x, 0)

2β |a|6β(1− L) t+ Lφ(x, 0)

for all x ∈ X and all t > 0 .

Proof. By letting y = 0 in the inequality (4.2), we have

(4.4) N
(

2f(ax)− 2a6f(x), t
)
≤ φ(x, 0)

t+ φ(x, 0)

for all x ∈ X and all t > 0 .
We note that by letting x = x

a in the inequality (4.4) we have

N
(

2f(x)− 2a6f
(x
a

)
, t
)
≤

φ(xa , 0)

t+ φ(xa , 0)
.

The inequality (4.1) implies that

N
(
f(x)− a6f

(x
a

)
,
t

2β

)
≤

L
|a|6β φ(x, 0)

t+ L
|a|6β φ(x, 0)

.

By putting t = L
|a|6β t , we have

N
(
f(x)− a6f

(x
a

)
,

L

2β |a|6β
t
)
≤

L
|a|6β φ(x, 0)

L
|a|6β t+ L

|a|6β φ(x, 0)
,
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that is,

(4.5) N
(
f(x)− a6f

(x
a

)
,

L

2β |a|6β
t
)
≤ φ(x, 0)

t+ φ(x, 0)
,

for all x ∈ X and all t > 0 .
We consider the set

F := {g : X → X}
and the mapping d defined on F × F by

d(g, h) = inf{µ ∈ R+ |N
(
g(x)− h(x), µt

)
≤ φ(x, 0)

t+ φ(x, 0)
,∀x ∈ X and t > 0}

where inf ∅ = +∞ , as usual. Then (F, d) is a complete generalized metric space;
see [22, Lemma 2.1]. Now let’s consider the linear mapping J : F → F such that

Jg(x) := a6g
(x
a

)
for all x ∈ X . Let g , h ∈ F be given such that d(g , h) = ε . Then

N
(
g(x)− h(x), εt

)
≤ φ(x, 0)

t+ φ(x, 0)

for all x ∈ X and all t > 0 .

N
(
Jg(x)− Jh(x), Lεt

)
= N

(
a6g
(x
a

)
− a6h

(x
a

)
, Lεt

)
= N

(
g
(x
a

)
− h
(x
a

)
,

L

|a|6β
εt
)
≤

φ(xa , 0)
L
|a|6β t+ φ(xa , 0)

≤
L
|a|6β φ(x, 0)

L
|a|6β t+ L

|a|6β φ(x, 0)
=

φ(x, 0)

t+ φ(x, 0)

for all x ∈ X and all t > 0 . d(g, h) = ε implies that d(Jg, Jh) ≤ Lε . Hence we get

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ F . The inequality (4.5) implies that d(f, Jf) ≤ L
2β |a|6β . By Theo-

rem 1.8, there exists a mapping S : X → Y such that

(1) S is a fixed point of J , that is,

(4.6) S
(x
a

)
=

1

a6
S(x)

for all x ∈ X . The mapping S is a unique fixed point of J in the set
M = {g ∈ F | d(f, g) < ∞} . This means that S is a unique mapping
satisfying the equation (4.6) such that there exists a µ ∈ (0, ∞) satisfying

N
(
f(x)− S(x), µt

)
≤ φ(x, 0)

t+ φ(x, 0)

for all x ∈ X and all t > 0 ;
(2) d(Jnf, S)→ 0 as n→∞ . This implies the following equality

N- lim
n→∞

a6nf
( x
an

)
= S(x)

for all x ∈ X ;
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(3) d(f, S) ≤ 1
1−L d(f, Jf) , which implies the inequality

d(f, S) ≤ 1

1− L
· L

2β |a|6β
=

L

2β |a|6β(1− L)
.

It implies that

N
(
f(x)− S(x),

L

2β |a|6β(1− L)
t
)
≤ φ(x, 0)

t+ φ(x, 0)

for all x ∈ X and all t > 0 . By replacing t by 2β |a|6β(1−L)
L t , we have

N
(
f(x)− S(x), t

)
≤ Lφ(x, 0)

2β |a|6β(1− L) t+ Lφ(x, 0)

for all x ∈ X and all t > 0 . That is, the inequality (4.3) holds. By letting x = x
an

and y = y
an in the inequality (4.2), we have

N
(
a6nDaf

( x
an
,
y

an

)
, |a|6βn t

)
≤

φ( x
an ,

y
an )

t+ φ( x
an ,

y
an )

for all x, y ∈ X , all t > 0 and all n ∈ N . Replacing t by t
|a|6βn ,

N
(
a6nDaf

( x
an
,
y

an

)
, t
)
≤

φ( x
an ,

y
an )

t
|a|6βn + φ( x

an ,
y
an )
≤ Ln φ(x, y)

t+ Ln φ(x, y)

for all x, y ∈ X , all t > 0 and all n ∈ N . Since limn→∞
Ln φ(x, y)
t+Ln φ(x, y) = 0 for all

x, y ∈ X and all t > 0 , we may conclude that

N
(
DaS(x, y), t

)
= 0

for all x, y ∈ X and all t > 0 . Thus the mapping S : X → Y is the generalized
sextic mapping. �

Corollary 4.2. Let θ ≥ 0 , p > 6 be a real number and X be a normed linear space
with norm || · || . Suppose f : X → Y is a mapping satisfying f(0) = 0 and

(4.7) N(Daf(x, y), t) ≤ θ(||x||p + ||y||p)
t+ θ(||x||p + ||y||p)

for all x, y ∈ X and all t > 0 . Then S(x) := N- limn→∞ a6nf
(
x
an

)
exists for each

x ∈ X and defines a generalized sextic mapping S : X → Y such that

N(f(x)− S(x), t) ≤ θ ||x||p

2β(|a|pβ − |a|6β) t+ θ ||x||p

for all x ∈ X and all t > 0 .

Proof. The proof follows from Theorem 4.1 by taking φ(x, y) = θ(||x||p + ||y||p) for
all x , y ∈ X and L = |a|(6−p)β . �
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Abstract

The main aim of this paper is to study the existence, uniqueness and stability of solution for
stochastic functional differential equations driven by G-Brownian motion (in short G-SFDEs).
The existence-and-uniqueness theorem is established for G-SFDEs under non-Lipschitz condi-
tion and weakened linear growth condition. We have used the Picard approximation scheme,
Gronwall’s inequality, Bihari’s inequality and Burkholder-Davis-Gundy (in short BDG) inequal-
ities to develop the existence theory for the above mentioned stochastic dynamical systems. In
addition, the mean square stability of solutions for these systems has been obtained.

Key words: Existence, uniqueness, stability, G-Brownian motion, stochastic functional
differential equations.

1 Introduction

Responding to the contemporary developments in the fields of physics, control engineering, eco-
nomics, and social sciences, a growing concern has recently been witnessed in both stochastic dif-
ferential and deterministic models. The applications of functional differential equations have been
applied in a number of cases in physical phenomena, such as in the relocation of soil moisture, where
the fluid flows through the crack of rocks, and the problem of conduction of heat as well as its share
in order fluids is investigated. The idea of G-Brownian motion as well as the associated stochastic
differential equations were introduced by Peng [8, 10]. These equations were extended to stochastic
functional differential equations, which are driven by G-Brownian motion (in short G-SFDEs) by
Ren, Bi and Sakthivel [12]. While Faizullah, developed the existence-and-uniqueness theorem for G-
SFDEs with Cauchy-Maruyama approximation scheme [3], they used the strong Lipschitz and linear
growth conditions to develop the mentioned theory. In this article, we have generalized the existence
theory for functional stochastic dynamical systems, driven by G-Brownian motion. We have used
non-Lipschitz condition and weak linear growth condition to study the existence, uniqueness and
stability theory for G-SFDEs. We have considered the following stochastic dynamical system that

∗Corresponding author, E-mail: faiz
¯
math@yahoo.com
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is driven by G-Brownian motion. Let 0 ≤ t ≤ T <∞. Suppose g : [0, T ]×BC([−θ, 0];Rn) → Rn,
h : [0, T ] × BC([−θ, 0];Rn) → Rn and w : [0, T ] × BC([−θ, 0];Rn) → Rn are Borel measurable.
Consider stochastic functional differential equation driven by G-Brownian motion of the type

dX(t) = g(t,Xt)dt+ h(t,Xt)d⟨B,B⟩(t) + w(t,Xt)dB(t), (1.1)

where X(t) is the value of stochastic process at time t and Xt = {X(t + δ) : −θ ≤ δ ≤ 0, θ > 0}
is a BC([−θ, 0];Rn)-valued stochastic process, which presents the family of bounded continuous
Rn-valued functions φ defined on [−θ, 0] having norm ∥φ∥ = sup

−θ≤δ≤0
| φ(δ) | . {⟨B,B⟩(t), t ≥ 0} is

the quadratic variation process of G-Brownian motion {B(t), t ≥ 0} and g, h, w ∈M2
G([−τ, T ];Rn).

Denote the space of all Ft-adapted process X(t), 0 ≤ t ≤ T , such that ∥ X ∥L2= sup
−θ≤t≤T

|X(t)| <∞

by L2. The initial data of equation (1.1) is given as follows

Xt0 =ζ = {ζ(δ) : −θ < δ ≤ 0} is F0 −measurable, BC([−θ, 0];Rn)− valued

random variable such that ζ ∈M2
G ([−θ, 0];Rn) .

(1.2)

The integral form of G-SFDE (1.1) with initial data (1.2) is given by

X(t) = ζ(0) +

∫ t

0
g(s,Xs)ds+

∫ t

0
h(s,Xs)d⟨B,B⟩(s) +

∫ t

0
w(s,Xs)dB(s).

The solution of G-SFDE (1.1) with initial data (1.2) is an Rn valued stochastic processes X(t),
t ∈ [−θ, T ] such that

(i) X(t) is Ft-adapted and continuous for all t ∈ [0, T ];

(ii) g(t,Xt) ∈ L1([o, T ];Rn) and h(t,Xt), w(t,Xt) ∈ L2([0, T ];Rn);

(iii) X0 = ζ and for each t ∈ [0, T ], dX(t) = g(t,Xt)dt+ h(t,Xt)d⟨B,B⟩(t) + w(t,Xt)dB(t) q.s.

X(t) is called a unique solution if it is indistinguishable from any other solution Y (t), that is,

E[ sup
−θ≤q≤t

|X(q)− Y (q)|2] = 0.

Throughout this paper we assume the following two conditions, known as non-uniform Lipschitz
condition and weakened linear growth condition respectively.

(Ai) For all φ,ψ ∈ BC([−θ, 0];Rd) and t ∈ [0, T ],

|g(t, φ)− g(t, ψ)|2 + |h(t, φ)− |h(t, ψ)|2 + |w(t, φ)− w(t, ψ)|2 ≤ λ(|φ− ψ|2), (1.3)

where λ(.) : R+ → R+ is a non-decreasing and concave function such that λ(0) = 0, λ(v) > 0
for v > 0 and ∫

0+

dv

λ(v)
= ∞. (1.4)

As λ is concave and λ(0) = 0, there exists two positive constants c and d such that

λ(v) ≤ c+ dv, (1.5)

for all v ≥ 0.

2
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(Aii) For all t ∈ [0, T ], g(t, 0), h(t, 0), w(t, 0) ∈ L2 and

|g(t, 0)|2 + |h(t, 0)|2 + |w(t, 0)|2 ≤ K, (1.6)

where K is a positive constant.

We have organized the rest of the paper as follows. In section 2, some well-known basic notions
and results are included. In section 3, several important lemmas are developed. In section 4, the
existence-and-uniqueness theorem is proved. In section 5, the mean square stability for the solution
of G-SFDEs is given.

2 Preliminaries

The main purpose of this section is to give some basic concepts and results, which are used in
the subsequent sections of this paper. For more detailed literature of G-expectation, we refer the
readers to book [9] and papers [1, 2, 4, 5, 13].

Definition 2.1. Let H be a linear space of real valued functions defined on a nonempty basic space
Ω. Then a sub-linear expectation E is a real valued functional on H with the following properties:

(i) For all X,Y ∈ H, if X ≤ Y then E[X] ≤ E[Y ].

(ii) For any real constant α, E[α] = α.

(iii) For all X,Y ∈ H, E[X + Y ] ≤ E[X] + E[Y ].

(iv) For any θ > 0 E[θX] = θE[X].

Let Cb.Lip(Rl×d) denotes the set of bounded Lipschitz functions on Rl×d and

Lp
G(ΩT ) = {ϕ(Bt1 , Bt2 , ..., Btl/l ≥ 1, t1, t2, ..., tl ∈ [0, T ], ϕ ∈ Cb.Lip(Rl×d))}.

Let ξi ∈ Lp
G(Ωti), i = 0, 1, ..., N−1 thenM0

G(0, T ) denotes the collection of processes of the following
type: For a given partition πT = {t0, t1, ..., tN} of [0, T ],

ηt(w) =

N−1∑
i=0

ξi(w)I[ti,ti+1](t).

Under the norm ∥η∥ = {
∫ T
0 E[|ηu|p]du}1/p, Mp

G(0, T ), p ≥ 1, is the completion of M0
G(0, T ). For

every ηt ∈ M2,0
G (0, T ), the G-Itô’s integral I(η) and G-quadratic variation process {⟨B⟩t}t≥0 are

respectively given by

I(η) =

∫ T

0
ηudBu =

N−1∑
i=0

ξi(Bti+1 −Bti),

⟨B⟩t = B2
t − 2

∫ t

0
BudBu.

The following definition and lemmas are borrowed from [7, 11].

3
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Definition 2.2. A solution X(t) of dynamical system (1.1) with initial data (1.2) is said to be
stable in mean square if for all ϵ > 0 there exists δ(ϵ) > 0 such that E|ζ − ξ|2 ≤ δ(ϵ) follows that
E|X(t)−Y (t)|2 < ϵ for all t ≥ 0, where Y (t) is an other solution of system (1.1) having initial data
ξ ∈M2([−θ, 0] : Rl).

Lemma 2.3. (Hölder’s inequality) If 1
q +

1
r = 1 for any q, r > 1, g ∈ L2 and h ∈ L2 then gh ∈ L1

and ∫ d

c
gh ≤ (

∫ d

c
|g|q)

1
q (

∫ d

c
|h|r)

1
r .

Lemma 2.4. (Gronwall’s inequality) Let C ≥ 0, h(t) ≥ 0 and w(t) be a real valued continuous

function on [c, d]. If for all c ≤ t ≤ d, w(t) ≤ C +
∫ d
c h(s)w(s)ds, then

w(t) ≤ Ce
∫ t
c h(s)ds,

for all c ≤ t ≤ d.

Lemma 2.5. (Bihari’s inequality) Suppose T ≥ 0 and h0 ≥ 0. Assume h(t) and w(t) be continuous
functions on [0, T ]. Let λ(.) : R+ → R+ be non-decreasing and concave continuous function such

that λ(v) > 0 for v > 0. If for all 0 ≤ t ≤ T, h(t) ≤ h(0)+
∫ T
0 w(s)λ(h(s))ds, then for all 0 ≤ t ≤ T ,

h(t) ≤ H−1(H(h0) +

∫ T

t
w(s)ds),

such that H(h0) +
∫ T
t w(s)ds ∈ Dom(H−1) where H(q) =

∫ q
t

1
λ(s)ds, q ≥ 0 and H−1 is the inverse

function of H.

Lemma 2.6. Assume the assumptions of lemma 2.5 are satisfied and for 0 ≤ t ≤ T , w(t) ≥ 0. If

for all ϵ > 0, there exists t1 ≥ 0 such that for 0 ≤ h0 ≤ ϵ,
∫ T
t1
w(s)ds ≤

∫ T
h0

1
λ(s)ds holds, then for

each t1 ≤ t ≤ T
h(t) ≤ ϵ,

holds.

3 Important results

In this section, we show some important lemmas. They will be used in the forth coming existence-
and-uniqueness theorem. Let X0(t) = ζ(0) for t ∈ [0, T ]. Set X l(0) = ζ for each l = 1, 2, ..., and
define the following Picard iterations sequence,

X l(t) = ζ(0) +

∫ t

0
g(s,X l−1

s )ds+

∫ t

0
h(s,X l−1

s )d⟨B,B⟩(s)

+

∫ t

0
w(s,X l−1

s )dB(s), t ∈ [0, T ].

(3.1)

First, we show that X l(.) ∈M2
G([−θ, T ];Rn).

4
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Lemma 3.1. Let assumptions Ai and Aii hold. Then for all l ≥ 1,

sup
−θ≤t≤T

E|X l(t)|2 ≤ C,

where C is a positive constant.

Proof. Obviously, X0(.) ∈ M2
G([−θ, T ];Rn). Using the basic inequality |a + b + c + d|2 ≤ 4|a|2 +

4|b|2 + 4|c|2 + 4|d|2, equation (3.1) yields

|X l(t)|2 ≤ 4|ζ(0)|2 + 4|
∫ t

0
g(s,X l−1

s )ds|2 + 4|
∫ t

0
h(s,X l−1

s )d⟨B,B⟩(s)|2

+ 4|
∫ t

0
w(s,X l−1

s )dB(s)|2.

Taking G-expectation on both sides, using the Burkholder-Davis-Gundy (BDG) inequalities [6] and
Hölder inequality (lemma 2.3) we have

E|X l(t)|2 ≤ 4E|ζ(0)|2 + 4C1E

∫ t

0
|g(s,X l−1

s )|2ds

+ 4C2E

∫ t

0
|h(s,X l−1

s )|2ds+ 4C3

∫ t

0
|w(s,X l−1

s )|2ds

≤ 4E|ζ(0)|2 + 8C1E

∫ t

0
(|g(s,X l−1

s )− g(s, 0)|2 + |g(s, 0)|2)ds

+ 8C2E

∫ t

0
(|h(s,X l−1

s )− h(s, 0)|2 + |h(s, 0)|2)ds

+ 8C3

∫ t

0
(|w(s,X l−1

s )− w(s, 0)|2 + |w(s, 0)|2)d(s)

≤ 4E|ζ(0)|2 + 8C1E

∫ t

0
|g(s, 0)|2ds+ 8C1E

∫ t

0
|g(s,X l−1

s )− g(s, 0)|2ds

+ 8C2E

∫ t

0
|h(s, 0)|2d(s) + 8C2E

∫ t

0
|h(s,X l−1

s )− h(s, 0)|2ds

+ 8C3

∫ t

0
|w(s, 0)|2ds+ 8C3

∫ t

0
|w(s,X l−1

s )− w(s, 0)|2ds

By assumptions Ai and Aii, the above inequality yields

E|X l(t)|2 ≤ 4E|ζ(0)|2 + 8C1KT + 8C2KT + 8C3KT

+ 8C1E

∫ t

0
λ(|X l−1

s )|2)ds+ 8C2E

∫ t

0
λ(|X l−1

s )|2)d(s) + 8C3

∫ t

0
λ(|X l−1

s )|2)d(s)

= 4E|ζ(0)|2 + 8KT (C1 + C2 + C3) + 8(C1 + C2 + C3)E

∫ t

0
λ(|X l−1

s )|2)ds

≤ 4E|ζ(0)|2 + 8KT (C1 + C2 + C3) + 8a(C1 + C2 + C3)T

+ 8b(C1 + C2 + C3)E

∫ t

0
|X l−1

s )|2ds

= K1 + 8b(C1 + C2 + C3)E

∫ t

0
|X l−1

s )|2ds,

5
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where K1 = 4E|ζ(0)|2 + 8C0KT + 8aC0T. and C0 = C1 + C2 + C3. Noting that

sup
0≤s≤t

|X l
s|2 ≤ sup

0≤s≤t
sup

−θ≤u≤0
|X l(s+ u)|2 ≤ sup

−θ≤q≤t
|X l(q)|2 ≤ |ζ|2 + sup

0≤q≤t
|X l(q)|2,

we have

sup
−θ≤q≤t

E|X l(q)|2 ≤ E|ζ|2 +K1 + 8b(C1 + C2 + C3)E

∫ t

0
sup

−θ≤q≤t
|X l−1(q)|2ds.

Again noting that for any j ≥ 1

max
1≤l≤j

E|X l−1
s |2 ≤ E|ζ|2 + max

1≤l≤j
E|X l(q)|2,

we obtain

max
1≤l≤j

sup
−θ≤q≤t

E|X l(q)|2 ≤ E|ζ|2 +K1 + 8b(C1 + C2 + C3)

∫ t

0
[E|ζ|2 + max

1≤l≤j
sup

−θ≤q≤t
E|X l(q)|2]ds

≤ E|ζ|2 +K1 + 8b(C1 + C2 + C3)TE|ζ|2 +
∫ t

0
max
1≤l≤j

sup
−θ≤q≤t

E|X l(q)|2ds

= K2 + 8b(C1 + C2 + C3)

∫ t

0
max
1≤l≤j

sup
−θ≤q≤t

E|X l(q)|2ds,

where K2 = K1 + (1 + 8bC0T )E|ζ|2. Now the Gronwall inequality (lemma 2.4) yields

max
1≤l≤j

sup
−θ≤q≤t

E|X l(t)|2 ≤ C,

where C = K2e
8bC0T , but j is arbitrary, so

sup
−θ≤t≤T

E|X l(t)|2 ≤ C.

The proof is complete.

Lemma 3.2. Under the assumptions Ai and Aii there exists a positive constant C∗ such that for
all l, d ≥ 1,

E sup
−θ≤s≤t

|X l+d(s)−X l(s)|2 ≤ Ĉ

∫ t

0
λ(E sup

−θ≤q≤s
|X l+d−1(q)−X l−1(q)|2)ds

≤ C∗t.

Proof. Using the basic inequality |a+ b+ c|2 ≤ 3|a|2 + 3|b|2 + 3|c|2, equation (3.1) yields

|X l+d(t)−X l(t)|2 ≤ 3|
∫ t

0
[g(s,X l+d−1

s )− g(s,X l−1
s )]ds|2 + 3|

∫ t

0
[h(s,X l+d−1

s )− h(s,X l−1
s )]d⟨B,B⟩(s)|2

+ 3|
∫ t

t0

[w(s,X l+d−1
s )− w(s,X l−1

s )]dB(s)|2
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Taking G-expectation on both sides, using the BDG inequalities [6], Jensen inequality E(λ(x)) ≤
λ(E(x)), Holder inequality and assumptions Ai, Ai it gives

E[ sup
−θ≤s≤t

|X l+d(s)−X l(s)|2] ≤ 3C1

∫ t

0
λ(E[ sup

−θ≤q≤s
|X l+d−1(q)−X l−1(q)|2])ds

+ 3C2

∫ t

0
λ(E[ sup

−θ≤q≤s
|X l+d−1(q)−X l−1(q)|2])ds

+ 3C3

∫ t

0
λ(E[ sup

−θ≤q≤s
|X l+d−1(q)−X l−1(q)|2])ds

≤ 3(C1 + C2 + C3)

∫ t

0
λ(E[ sup

−θ≤q≤s
|X l+d−1(q)−X l−1(q)|2])ds.

E[ sup
−θ≤s≤t

|X l+d(s)−X l(s)|2] ≤ Ĉ

∫ t

0
λ(E[ sup

−θ≤q≤s
|X l+d−1(q)−X l−1(q)|2])ds,

where Ĉ = 3C0. Finally, using lemma 3.1 it yields

E[ sup
−θ≤s≤t

|X l+d(s)−X l(s)|2] ≤ Ĉλ(4C)t = C∗t,

where C∗ = Ĉλ(4C). The proof is complete.

4 Existence and uniqueness results for G-SFDEs

We introduce the following new notations to prepare a key lemma. Choose T1 ∈ [0, T ] such that
for all t ∈ [0, T1]

Ĉλ(C∗t) ≤ C∗. (4.1)

For all l, d ≥ 1, define the following recursive function

ϕ1(t) = C∗t. (4.2)

ϕl+1(t) = Ĉ

∫ t

0
λ(ϕl(s))ds,

ϕl,d(t) = E[ sup
−θ≤q≤t

|X l+d(q)−X l(q)|2].
(4.3)

Lemma 4.1. Under the hypothesis Ai and Aii for any d ≥ 1 and all l ≥ 1 there exists a positive
T1 ∈ [0, T ] such that

0 ≤ ϕl,d(t) ≤ ϕl(t) ≤ ϕl−1(t) ≤ ... ≤ ϕ1(t), (4.4)

for all t ∈ [0, T1].
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Proof. We use mathematical induction to prove the inequality (4.4). Using the definition of function
ϕ(.) and lemma 3.2, we have

ϕ1,d(t) = E[ sup
−θ≤q≤t

|X1+d(q)−X1(q)|2] ≤ C∗t = ϕ1(t).

ϕ2,d(t) = E[ sup
−θ≤q≤t

|X2+d(q)−X2(q)|2]

≤ Ĉ

∫ t

0
λ(E[ sup

−θ≤q≤t
|X1+d(q)−X1(q)|2])ds

≤ Ĉ

∫ t

0
λ(ϕ1(s))ds = ϕ2(t).

Using (4.1), we have

ϕ2(t) = Ĉ

∫ t

0
λ(ϕ1(s))ds =

∫ t

0
Ĉλ(C∗t)ds ≤ C∗t = ϕ1(t).

Hence for all t ∈ [0, T1], we derive that ϕ2,d(t) ≤ ϕ2(t) ≤ ϕ1(t). Next, suppose that the inequality
(4.4) holds for some l ≥ 1. We now show that lemma 4.1 is valid for l + 1, as follows

ϕl+1,d(t) = E[ sup
−θ≤q≤t

|X l+d+1(q)−X l+1(q)|2]

≤ Ĉ

∫ t

0
λ(E[ sup

−θ≤q≤s
|X l+d(q)−X l(q)|2])ds

= Ĉ

∫ t

0
λ(ϕl,d(s))ds

≤ Ĉ

∫ t

0
λ(ϕl(s))ds

= ϕl+1(t).

Also

ϕl+1(t) = Ĉ

∫ t

0
λ(ϕl(s))ds ≤ Ĉ

∫ t

0
λ(ϕl−1(s))ds = ϕl(s).

Hence for all t ∈ [0, T1], we derive that ϕl+1,d(t) ≤ ϕl+1(t) ≤ ϕl(s), that is, lemma 4.1 holds for
l + 1. The proof is complete.

Theorem 4.2. Let assumptions Ai and Aii hold. Then the stochastic system (1.1) with initial data
(1.2) has a unique solution.

Proof. We split the whole proof in two steps. First, we show uniqueness and then existence. Let
system (1.1) with initial data (1.2) has two solutions X(t) and Y (t). Then we have

|X(t)− Y (t)| ≤
∫ t

0
|g(s,Xs)− g(s, Ys)|ds+

∫ t

0
|h(s,Xs)− h(s, Ys)|d⟨B,B⟩(s)

+

∫ t

0
|w(s,Xs)− w(s, Ys)|dB(s).

8
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Taking G-expectation on both sides and using the basic inequality (a + b + c)2 ≤ 3(a2 + b2 + c2),
Hölder inequality and BDG inequalities [6], it follows

E|X(t)− Y (t)|2 ≤ 3C1

∫ t

0
E|g(s,Xs)− g(s, Ys)|2ds+ 3C2

∫ t

0
E|h(s,Xs)− h(s, Ys)|2ds

+ 3C3

∫ t

0
E|w(s,Xs)− w(s, Ys)|ds.

Using assumptions Ai and Aii we have

E[ sup
−θ≤q≤t

|X(q)− Y (q)|2] ≤ 3(C1 + C2 + C3)

∫ t

0
λ(E[ sup

−θ≤q≤s
|X(q)− Y (q)|2])ds,

Then lemma 2.5 and lemma 2.6 gives E[sup−θ≤q≤t |X(q) − Y (q)|2] = 0, t ∈ [0, T ]. The proof of
uniqueness is complete.

Next we show existence. We note that on t ∈ [0, T1], ϕl(t) is continuous. For l ≥ 1, it is
decreasing on t ∈ [0, T1]. By dominated convergence theorem, we define the function ϕ(t) as follows

ϕ(t) = lim
l→∞

ϕl(t) = lim
l→∞

Ĉ

∫ t

0
λ(ϕl−1(s))ds = Ĉ

∫ t

0
λ(ϕ(s))ds, 0 ≤ t ≤ T1.

So,

ϕ(t) ≤ ϕ(0) + Ĉ

∫ t

0
λ(ϕ(s))ds.

Thus for all 0 ≤ t ≤ T1, lemma 2.5 and lemma 2.6 follow that ϕ(t) = 0. From lemma 4.1 for all
t ∈ [0, T1] we get ϕl,d(s) ≤ ϕl(s) → 0 as l → ∞, which yields E|X l+d(t) −X l(t)|2 → 0 as l → ∞.
By the property of function λ(.), assumptions Ai, Aii and completeness of L2, it follows that for
all t ∈ [0, T1],

g(t,X l
t) → g(t,Xt), h(t,X

l
t) → h(t,Xt), w(t,X

l
t) → w(t,Xt) in L

2 as l → ∞.

Hence for all t ∈ [0, T1],

lim
l→∞

X l(t) = ζ(0) + lim
l→∞

∫ t

0
g(s,X l−1

s )ds

+ lim
l→∞

∫ t

0
h(s,X l−1

s )d⟨B,B⟩(s) + lim
l→∞

∫ t

0
w(s,X l−1

s )dB(s),

that is,

X(t) = ζ(0) +

∫ t

0
g(s,Xs)ds+

∫ t

0
h(s,Xs)d⟨B,B⟩(s) +

∫ t

0
w(s,Xs)dB(s).

Thus X(t) is a unique solution of stochastic system (1.1) with initial data (1.2) on t ∈ [0, T1]. Thus
by iteration, one can obtain that the system (1.1) has a unique solution on t ∈ [0, T ]. The proof is
complete.
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5 Dependence of solutions

In this section, we use lemma 2.5 and lemma 2.6 to give continuous dependence of solutions for
stochastic system (1.1) with initial data (1.2).

Theorem 5.1. Let assumptions Ai and Aii hold. Assume X(t) and Y (t) be two solutions of
dynamical system (1.1) with initial data ζ and ξ respectively. If for all ϵ > 0 and t ∈ [0, T ] there
exists δ(ϵ) > 0 such that E|ζ − ξ|2 < δ(ϵ), then

E|X(t)− Y (t)|2 ≤ ϵ.

Proof. Since X(t) and Y (t) are any two solutions of system (1.1). It follows that for any t ∈ [0, T ],

X(t) = ζ(0) +

∫ t

0
g(s,Xs)ds+

∫ t

0
h(s,Xs)d⟨B,B⟩(s) +

∫ t

0
w(s,Xs)dB(s) q.s.

Y (t) = ξ(0) +

∫ t

0
g(s, Ys)ds+

∫ t

0
h(s, Ys)d⟨B,B⟩(s) +

∫ t

0
w(s, Ys)dB(s) q.s.

Then

X(t)− Y (t) = ζ(0)− ξ(0) +

∫ t

0
[g(s,Xs)− g(s, Ys)]ds+

∫ t

0
[h(s,Xs)− h(s, Ys)]d⟨B,B⟩(s)

+

∫ t

0
[w(s,Xs)− w(s, Ys)]dB(s) q.s.

Taking G-expectation on both sides, using the fundamental inequality (a + b + c + d)2 ≤ 4(a2 +
b2 + c2 + d2), BDG inequalities [6] and Hölder inequality, it follows

E[ sup
−θ≤r≤t

|X(r)− Y (r)|2] ≤ 4E|ζ(0)− ξ(0)|2 + 4(C1 + C2 + C3)

∫ t

0
λ(E[ sup

−θ≤r≤t
|X(r)− Y (r)|2])ds.

Thus from lemma 2.5 and 2.6 we have

E[|X(t)− Y (t)|2] ≤ ϵ,

for t ∈ [0, T ]. The proof is complete.
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Abstract. In this paper, a kind of new Bernstein-Bézier type operators is
introduced. The Korovkin type approximation theorem of these operators is
investigated. The rates of convergence of these operators are studied by means of
modulus of continuity. Then, by using the Ditzian-Totik modulus of smoothness,
a direct theorem concerned with an approximation for these operators is also
obtained.

Keywords: Bernstein-Bézier type operators; Korovich type approximation the-
orem; rate of convergence; direct theorem; modulus of smoothness

Mathematical subject classification: 41A10, 41A25, 41A36

1. Introduction

In view of the Bézier basis function, which was introduced by Bézier [1], in
1983, Chang [2] defined the generalized Bernstein-Bézier polynomials for any
α > 0, and a function f defined on [0, 1] as follows:

Bn,α(f ;x) =
n∑

k=0

f(
k

n
)[Jα

n,k(x)− Jα
n,k+1(x)], (1)

where Jn,n+1(x) = 0, and Jn,k(x) =
n∑

i=k

Pn,i(x), k = 0, 1, ..., n, Pn,i(x) =
(

n
i

)
xi(1− x)n−i. Jn,k(x) is the Bézier basis function of degree n.

Obviously, when α = 1, Bn,α(f ;x) become the well-known Bernstein poly-
nomials Bn(f ;x), and for any x ∈ [0, 1], we have 1 = Jn,0(x) > Jn,1(x) > ... >
Jn,n(x) = xn, Jn,k(x)− Jn,k+1(x) = Pn,k(x).

During the last ten years, the Bézier basis function was extensively used for
constructing various generalizations of many classical approximation processes.
Some Bézier type operators, which are based on the Bézier basis function, have
been introduced and studied (e.g., see [3-9]).

In 2013, Ren [10] introduced generalized Bernstein operators as follows:

En,β(f ;x) = f(0)Pn,0(x) +
n−1∑

k=1

Pn,k(x)F (β)
n,k (f) + f(1)Pn,n(x), (2)

∗Corresponding authors: Mei-Ying Ren and Xiao-Ming Zeng
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where f ∈ C[0, 1], x ∈ [0, 1], Pn,k(x) =
(

n
k

)
xk(1− x)n−k, k = 0, 1, ..., n, and

F
(β)
n,k (f) =

1
B(nk, n(n− k))

∫ 1

0

tnk−1(1− t)n(n−k)−1f(βt + (1− β)
k

n
)dt, (3)

where k = 1, ..., n− 1, β ∈ [0, 1], B(., .) is the beta function.

The moments of the operators En,β(f ;x) were obtained as follows (see [10]).

Remark For En,β(tj ;x), j = 0, 1, 2, we have

(i) En,β(1;x) = 1;
(ii) En,β(t;x) = x;

(iii) En,β(t2;x) = x2 +
[

1
n

+
(n− 1)β2

(n2 + 1)n

]
x(1− x).

In the present paper, we will study the Bézier variant of the generalized
Bernstein operators En,β(f ;x) given by (2). We introduce Bernstein-Bézier
type operators as follows:

E
(α)
n,β(f ;x) = f(0)Q(α)

n,0(x) +
n−1∑

k=1

Q
(α)
n,k(x)F (β)

n,k (f) + f(1)Q(α)
n,n(x), (4)

where f ∈ C[0, 1], x ∈ [0, 1], β ∈ [0, 1], α > 0, Q
(α)
n,k(x) = Jα

n,k(x) − Jα
n,k+1(x),

Jn,n+1(x) = 0, Jn,k(x) =
n∑

i=k

Pn,i(x), k = 0, 1, ..., n, Pn,i(x) =
(

n
i

)
xi(1 −

x)n−i, and F
(β)
n,k (f) is defined as above (3).

It is clear that E
(α)
n,β(f ;x) are bounded and positive on C[0,1]. When α = 1,

E
(α)
n,β(f ;x) become the operators En,β(f ;x). When β = 0, E

(α)
n,β(f ;x) become

the generalized Bernstein-Bézier operators Bn,α(f ;x).
The goal of this paper is to study the approximation properties of these

operators with the help of the Korovkin type approximation theorem. We also
estimate the rates of convergence of these operators by using a modulus of
continuity. Then we obtain the direct theorem concerned with an approximation
for these operators by means of the Ditzian-Totik modulus of smoothness.

In the paper, for f ∈ C[0, 1], we denote ‖f‖ = max{|f(x)| : x ∈ [0, 1]}.
ω(f, δ) (δ > 0) denotes the usual modulus of continuity of f ∈ C[0, 1].

2. Auxiliary results

In the sequel, we shall need the following auxiliary results.

Lemma 1 (see [2]) Let α > 0. We have

(i) lim
n→∞

1
n

n∑

k=1

Jα
n,k(x) = x uniformly on [0, 1];

(ii) lim
n→∞

1
n2

n∑

k=1

kJα
n,k(x) =

x2

2
uniformly on [0, 1].
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Lemma 2 Let α > 0. We have

(i) E
(α)
n,β(1;x) = 1;

(ii) lim
n→∞

E
(α)
n,β(t;x) = x uniformly on [0, 1];

(iii) lim
n→∞

E
(α)
n,β(t2;x) = x2 uniformly on [0, 1].

Proof By simple calculation, we obtain F
(β)
n,k (1) = 1, F

(β)
n,k (t) = k

n , F
(β)
n,k (t2) =

β2

n2+1 · k
n + (1− β2

n2+1 ) k2

n2 .

(i) Since
n∑

k=0

Q
(α)
n,k(x) = 1, by (4) we can get E

(α)
n,β(1;x) = 1.

(ii) By (4), we have

E
(α)
n,β(t;x)

=
n−1∑

k=1

Q
(α)
n,k(x)

k

n
+ Q(α)

n,n(x)

= [Jα
n,1(x)− Jα

n,2(x)]
1
n

+ ... + [Jα
n,n−1(x)− Jα

n,n(x)]
n− 1

n
+ Jα

n,n(x)
n

n

=
1
n

n∑

k=1

Jα
n,k(x),

thus, by Lemma 1 (i), we have lim
n→∞

E
(α)
n,β(t;x) = x uniformly on [0, 1].

(iii) By (4), we have

E
(α)
n,β(t2;x)

=
n−1∑

k=1

Q
(α)
n,k(x)

[
β2

n2 + 1
· k

n
+ (1− β2

n2 + 1
)
k2

n2

]
+ Q(α)

n,n(x)

=
β2

n2 + 1
· 1
n

n∑

k=1

kQ
(α)
n,k(x) + (1− β2

n2 + 1
) · 1

n2

n∑

k=1

k2Q
(α)
n,k(x)

=
β2

n2 + 1
· 1
n

n∑

k=1

Jα
n,k(x) + (1− β2

n2 + 1
) · 1

n2

n∑

k=1

(2k − 1)Jα
n,k(x),

thus, by Lemma 1, we have lim
n→∞

E
(α)
n,β(t2;x) = x2 uniformly on [0, 1].

Lemma 3 (see [11]) For x ∈ [0, 1], k = 0, 1, ..., n, we have

0 ≤ Q
(α)
n,k(x) ≤

{
αPn,k(x), α ≥ 1;
Pα

n,k(x), 0 < α < 1.

Lemma 4 (see [12]) For 0 < α < 1, γ > 0, we have

n∑

k=0

|k − nx|γPα
n,k(x) ≤ (n + 1)1−α(A γ

α
)αn

γ
2 ,

where the constant As only depends on s.
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Lemma 5 For α ≥ 1, we have

(i) E
(α)
n,β((t− x)2;x) ≤ α

4
(1 +

β2

5
) · 1

n
;

(ii) E
(α)
n,β(|t− x|;x) ≤

√
α

4
(1 +

β2

5
) ·

√
1
n

.

Proof Let α ≥ 1.
(i) By (4), Lemma 3 and Remark 1, we obtain

E
(α)
n,β((t− x)2;x)

= x2Q
(α)
n,0(x) +

n−1∑

k=1

Q
(α)
n,k(x)F (β)

n,k ((t− x)2) + (1− x)2Q(α)
n,n(x)

≤ α[x2Pn,0(x) +
n−1∑

k=1

Pn,k(x)F (β)
n,k ((t− x)2) + (1− x)2Pn,n(x)]

= αEn,β((t− x)2;x)

=
α

n

(
1 +

n− 1
n2 + 1

β2

)
x(1− x). (5)

Since max
0≤x≤1

x(1− x) = 1
4 , and for any n ∈ N , one can get n−1

n2+1 ≤ 1
5 , so we

have

E
(α)
n,β((t− x)2;x) ≤ α

4
(1 +

β2

5
) · 1

n
.

(ii) In view of E
(α)
n,β(1;x) = 1, by the Cauchy-Schwarz inequality, we have

E
(α)
n,β(|t− x|;x) ≤

√
E

(α)
n,β(1;x)

√
E

(α)
n,β((t− x)2;x),

thus, we get E
(α)
n,β(|t− x|;x) ≤

√
α
4 (1 + β2

5 ) ·
√

1
n .

Lemma 6 For 0 < α < 1, we have

(i) E
(α)
n,β((t− x)2;x) ≤ M (β)

α n−α;

(ii) E
(α)
n,β(|t− x|;x) ≤

√
M

(β)
α · n−α

2 .

Where the constant M
(β)
α only depends on α, β.

Proof Let 0 < α < 1.
(i) In view of (4), Lemma 3 and F

(β)
n,k ((t − x)2) = (k−nx)2

n2 + β2

n2+1 ( k
n − k2

n2 ),

4
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we obtain

E
(α)
n,β((t− x)2;x)

= x2Q
(α)
n,0(x) +

n−1∑

k=1

Q
(α)
n,k(x)F (β)

n,k ((t− x)2) + (1− x)2Q(α)
n,n(x)

≤ x2Pα
n,0(x) +

n−1∑

k=1

Pα
n,k(x)F (β)

n,k ((t− x)2) + (1− x)2Pα
n,n(x)

=
n∑

k=0

Pα
n,k(x)

[
(k − nx)2

n2
+

β2

n2 + 1
(
k

n
− k2

n2
)
]

=
1
n2

n∑

k=0

(k − nx)2Pα
n,k(x) +

β2

n2 + 1

n∑

k=0

Pα
n,k(x)(

k

n
− k2

n2
)

:= I1 + I2.

By Lemma 4, we have I1 ≤ n+1
n (n + 1)−α(A 2

α
)α ≤ 2(A 2

α
)αn−α, where the

constant A 2
α

only depends on α.

Using the Hölder inequality, we have
n∑

k=0

Pα
n,k(x) ≤ (n+1)1−α[

n∑
k=0

Pn,k(x)]α,

and ( k
n − k2

n2 ) ≤ 1, so we have

I2 ≤ β2

n2 + 1
(n + 1)1−α[

n∑

k=0

Pn,k(x)]α =
β2

n2 + 1
(n + 1)1−α ≤ β2n−α.

Denote M
(β)
α = 2(A 2

α
)α + β2, then we can get E

(α)
n,β((t− x)2;x) ≤ M

(β)
α n−α.

(ii) Since

E
(α)
n,β(|t− x|;x) ≤

√
E

(α)
n,β(1;x)

√
E

(α)
n,β((t− x)2;x),

thus, we get

E
(α)
n,β(|t− x|;x) ≤

√
M

(β)
α · n−α

2 .

Lemma 7 For f ∈ C[0, 1], x ∈ [0, 1] and α > 0, we have

| E(α)
n,β(f ;x) |≤‖ f ‖ .

Proof By (4) and Lemma 2 (i), we have

| E(α)
n,β(f ;x) |≤ ‖f‖E(α)

n,β(1;x) = ‖f‖.

3. Main results

First of all we give the following convergence theorem for the sequence {E(α)
n,β(f ;x)}.

Theorem 1 Let α > 0. Then the sequence {E(α)
n,β(f ;x)} converges to f

uniformly on [0, 1] for any f ∈ C[0, 1].

5
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Proof Since E
(α)
n,β(f ;x) is bounded and positive on C[0, 1], and by Lemma

2, we have lim
n→∞

‖E(α)
n,β(ej ; ·)− ej‖ = 0 for ej(t) = tj , j = 0, 1, 2. So, according

to the well-known Bohman-korovkin theorem ([13, P.40, Theorem 1.9]), we
see that the sequence {E(α)

n,β(f ;x)} converges to f uniformly on [0,1] for any
f ∈ C[0, 1].

Next we estimate the rates of convergence of the sequence {E(α)
n,β} by means

of the modulus of continuity.

Theorem 2 Let f ∈ C[0, 1], x ∈ [0, 1]. Then

(i) when α ≥ 1, we have ‖E(α)
n,β(f ; ·)− f‖ ≤

[
1 +

√
α

4
(1 +

β2

5
)

]
ω(f,

1√
n

);

(ii) when 0 < α < 1, we have ‖E(α)
n,β(f ; ·)− f‖ ≤ (1 +

√
M

(β)
α )ω(f, n−

α
2 ).

Where the constant M
(β)
α only depends on α, β.

Proof (i) When α ≥ 1, by Lemma 2 (i), we have

|E(α)
n,β(f ;x)− f(x)|

≤ |f(0)− f(x)|Q(α)
n,0(x) +

n−1∑

k=1

Q
(α)
n,k(x)F (β)

n,k (|f(t)− f(x)|) + |f(1)− f(x)|Q(α)
n,n(x)

≤ ω(f, |0− x|)Q(α)
n,0(x) +

n−1∑

k=1

Q
(α)
n,k(x)F (β)

n,k (ω(f, |t− x|)) + ω(f, |1− x|)Q(α)
n,n(x)

≤ (1 +
√

n|0− x|)ω(f,
1√
n

)Q(α)
n,0(x) +

n−1∑

k=1

Q
(α)
n,k(x)F (β)

n,k ((1 +
√

n|t− x|)ω(f,
1√
n

))

+(1 +
√

n|1− x|)ω(f,
1√
n

)Q(α)
n,n(x)

≤ ω(f,
1√
n

) +
√

nω(f,
1√
n

)E(α)
n,β(|t− x|;x),

so, by Lemma 5 (ii), we obtain

|E(α)
n,β(f ;x)− f(x)| ≤

[
1 +

√
α

4
(1 +

β2

5
)

]
ω(f,

1√
n

).

The desired result follows immediately.
(ii) When 0 < α < 1, by Lemma 2 (i), we have

|E(α)
n,β(f ;x)− f(x)|

≤ ω(f, |0− x|)Q(α)
n,0(x) +

n−1∑

k=1

Q
(α)
n,k(x)F (β)

n,k (ω(f, |t− x|)) + ω(f, |1− x|)Q(α)
n,n(x)

≤ (1 + n
α
2 |0− x|)ω(f, n−

α
2 )Q(α)

n,0(x) +
n−1∑

k=1

Q
(α)
n,k(x)F (β)

n,k (1 + n
α
2 |t− x|)ω(f, n−

α
2 )

+(1 + n
α
2 |1− x|)ω(f, n−

α
2 )Q(α)

n,n(x)

= ω(f, n−
α
2 ) + n

α
2 ω(f, n−

α
2 )E(α)

n,β(|t− x|;x),

6
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so, by Lemma 6 (ii), we obtain

|E(α)
n,β(f ;x)− f(x)| ≤ (1 +

√
M

(β)
α )ω(f, n−

α
2 ).

The desired result follows immediately.

Theorem 3 Let f ∈ C1[0, 1], x ∈ [0, 1]. Then
(i) when α ≥ 1, we have

|E(α)
n,β(f ;x)− f(x)| ≤ ‖f ′‖

√
α

4
(1 +

β2

5
) ·

√
1
n

+ ω(f ′,
1√
n

)

[
1 +

√
α

4
(1 +

β2

5
)

]
·
√

α

4
(1 +

β2

5
) ·

√
1
n

;

(ii) when 0 < α < 1, we have

|E(α)
n,β(f ;x)− f(x)| ≤ ‖f ′‖

√
M

(β)
α n−α + ω(f ′, n−

α
2 )(1 +

√
M

(β)
α )

√
M

(β)
α n−α.

Where the constant M
(β)
α only depends on α, β.

Proof Let f ∈ C1[0, 1]. For any t, x ∈ [0, 1], δ > 0, we have

|f(t)− f(x)− f ′(x)(t− x)| ≤ |
∫ t

x

|f ′(u)− f ′(x)|du|
≤ ω(f ′, |t− x|)|t− x|
≤ ω(f ′, δ)(|t− x|+ δ−1(t− x)2),

hence, by the Cauchy-Schwarz inequality, we have

|E(α)
n,β(f(t)− f(x)− f ′(x)(t− x);x)|

≤ ω(f ′, δ)
(
E

(α)
n,β(|t− x|;x) + δ−1E

(α)
n,β((t− x)2;x)

)

≤ ω(f ′, δ)
[√

E
(α)
n,β(1;x)

+δ−1
√

E
(α)
n,β((t− x)2;x)

]√
E

(α)
n,β((t− x)2;x).

So, we get

|E(α)
n,β(f ;x)− f(x)|

≤ ‖f ′‖E(α)
n,β(|t− x|;x)

+ω(f ′, δ)
[
1 + δ−1

√
E

(α)
n,β((t− x)2;x)

]√
E

(α)
n,β((t− x)2;x). (6)

(i) When α ≥ 1, taking δ = 1√
n

in (6), by Lemma 5 and inequality (6), we
obtain the desired result.

(ii)When 0 < α < 1, taking δ = n−
α
2 in (6), by Lemma 6 and inequality (6),

we obtain the desired result.

Finally we study the direct theorem concerned with an approximation for
the sequence {E(α)

n,β} by means of the Ditzian-Totik modulus of smoothness. For
the following theorem we shall use some notations.

7
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For f ∈ C[0, 1], ϕ(x) =
√

x(1− x), 0 ≤ λ ≤ 1, x ∈ [0, 1], let

ωϕλ(f, t) = sup
0<h≤t

sup
x±hϕλ(x)

2 ∈[0,1]

|f(x +
hϕλ(x)

2
)− f(x− hϕλ(x)

2
)|

be the Ditzian-Totik modulus of first order, and let

Kϕλ(f, t) = inf
g∈Wλ

{‖ f − g ‖ +t‖ϕλg′‖} (7)

be the corresponding K-functional, where Wλ = {f |f ∈ ACloc[0, 1], ‖ϕλf ′‖ <
∞, ‖f ′‖ < ∞}.

It is well known that (see [14])

Kϕλ(f, t) ≤ Cωϕλ(f, t), (8)

for some absolute constant C > 0.

Now we state our following main result.

Theorem 4 Let f ∈ C[0, 1], α ≥ 1, ϕ(x) =
√

x(1− x), x ∈ [0, 1], 0 ≤ β, λ ≤ 1.
Then there exists an absolute constant C > 0 such that

|E(α)
n,β(f ;x)− f(x)| ≤ Cωϕλ(f,

ϕ1−λ(x)√
n

).

Proof Let g ∈ Wλ, by Lemma 2 (i) and Lemma 7, we have

|E(α)
n,β(f ;x)− f(x)|

≤ |E(α)
n,β(f − g;x)|+ |f(x)− g(x)|+ |E(α)

n,β(g;x)− g(x)|
≤ 2‖f − g‖+ |E(α)

n,β(g;x)− g(x)|. (9)

Since g(t) =
∫ t

x
g′(u)du + g(x), E

(α)
n,β(1;x) = 1, so, we have

|E(α)
n,β(g;x)− g(x)| ≤ |E(α)

n,β(
∫ t

x

|g′(u)|du;x)|

≤ ‖ϕλg′‖E(α)
n,β(|

∫ t

x

ϕ−λ(u)du|;x). (10)

By the Hölder inequality, we get

|
∫ t

x

ϕ−λ(u)du| ≤ |
∫ t

x

1√
u(1− u)

du|λ|t− x|1−λ, (11)

also, in view of 1 ≤ √
u +

√
1− u < 2, 0 ≤ u ≤ 1, we have

|
∫ t

x

1√
u(1− u)

du| ≤ |
∫ t

x

(
1√
u

+
1√

1− u
)du|

≤ 2(|
√

t−√x|+ |√1− x−√1− t|)
≤ 2(

|t− x|√
t +

√
x

+
|t− x|√

1− t +
√

1− x
)

≤ 2|t− x|( 1√
x

+
1√

1− x
)

≤ 4|t− x|ϕ−1(x), (12)

8
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thus, by (11) and (12), we obtain

|
∫ t

x

ϕ−λ(u)du| ≤ Cϕ−λ(x)|t− x|. (13)

Also, by (10) and (13), we have

|E(α)
n,β(g;x)− g(x)| ≤ C‖ϕλg′‖E(α)

n,β(ϕ−λ(x)|t− x|;x)

= C‖ϕλg′‖ϕ−λ(x)E(α)
n,β(|t− x|;x). (14)

In view of (5) and Lemma 2 (i), by the Cauchy-Schwarz inequality, we have

E
(α)
n,β(|t− x|;x) ≤

√
E

(α)
n,β(1;x)

√
E

(α)
n,β((t− x)2;x)

≤
√

α

n

(
1 +

n− 1
n2 + 1

β2

)
x(1− x)

≤ C
ϕ(x)√

n
, (15)

so, by (14) and (15), we obtain

|E(α)
n,β(g;x)− g(x)| ≤ C‖ϕλg′‖ϕ1−λ(x)√

n
, (16)

thus, by (9) and (16), we have

|E(α)
n,β(f ;x)− f(x)| ≤ 2‖f − g‖+ C‖ϕλg′‖ϕ1−λ(x)√

n
.

Then, in view of (17), (7) and (8), we obtain

|E(α)
n,β(f ;x)− f(x)| ≤ CKϕλ(f,

ϕ1−λ(x)√
n

) ≤ Cωϕλ(f,
ϕ1−λ(x)√

n
),

where C is a positive constant, in different places, the value of C may be differ-
ent.
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ators in Orlicz spaces. pure. Appl. Math. 31 (3), 307-317 (2015)

10. Ren MY: Approximation for a Kind of generalized Bernstein Operators.
J. Wuyi Univ. 31 (2), 1-4 (2012)

11. Li P., Huang Y: Approximation order generalized Bernstein-Bézier Poly-
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summation-integral operators in compact disks
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Abstract. In this paper we introduce a class of complex Stancu type summation-
integral operators and study the approximation properties of these operators.
We obtain a Voronovskaja-type result with quantitative estimate for these oper-
ators attached to analytic functions on compact disks. We also study the exact
order of approximation. More important, our results show the overconvergence
phenomenon for these complex operators.

Keywords: complex Stancu type summation-integral operators; Voronovskaja-
type result; Exact order of approximation; Simultaneous approximation; Over-
convergence

Mathematical subject classification: 30E10, 41A25 , 41A36

1. Introduction

In 1986, some approximation properties of complex Bernstein polynomials in
compact disks were initially studied by Lorentz [11]. Very recently, the prob-
lem of the approximation of complex operators has been causing great con-
cern, which is becoming a hot topic of research. A Voronovskaja-type re-
sult with quantitative estimate for complex Bernstein polynomials in com-
pact disks was obtained by Gal [3]. Also, in [1-2, 4-10, 12-15] similar results
for complex Bernstein-Kantorovich polynomials, Bernstein-Stancu polynomi-
als, Kantorovich-Schurer polynomials, Kantorovich-Stancu polynomials, com-
plex Favard-Szász-Mirakjan operators, complex Beta operators of first kind,
complex Baskajov-Stancu operators, complex Bernstein-Durrmeyer operators
based on Jacobi weights, complex genuine Durrmeyer Stancu polynomials, com-
plex Schurer-Stancu operators, complex q-Szász-Mirakjan operators, complex
q-Gamma operators, and complex q-Durrmeyer type operators were obtained.

The aim of the present article is to obtain approximation results for complex
Stancu type summation-integral operators which are defined for f : [0, 1] → C
continuous on [0, 1] by

M (α,β)
n (f ; z) := pn,0(z)f(

α

n + β
)+

n−1∑

k=1

pn,k(z)L(α,β)
n,k (f)+pn,n(z)f(

n + α

n + β
), (1)

∗Corresponding authors: Mei-Ying Ren and Xiao-Ming Zeng
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where α, β are two given real parameters satisfying the condition 0 ≤ α ≤ β,
z ∈ C, n ∈ N, L

(α,β)
n,k (f) = 1

B(n(n−k),nk)

∫ 1

0
tnk−1(1 − t)n(n−k)−1f(nt+α

n+β )dt with

B(x, y) is Beta function, and pn,k(z) =
(

n
k

)
zk(1− z)n−k.

Note that, for α = β = 0, these operators become the complex summation-
integral type operators Mn(f ; z) = M

(0,0)
n (f ; z), this case has been investigated

in [16].

2. Auxiliary results

In the sequel, we shall need the following auxiliary results.

Lemma 1 Let em(z) = zm, m ∈ N ∪ {0}, z ∈ C, n ∈ N, 0 ≤ α ≤ β, we
have M

(α,β)
n (em; z) is a polynomial of degree less than or equal to min (m,n)

and

M (α,β)
n (em; z) =

m∑

j=0

(
m
j

)
njαm−j

(n + β)m
Mn(ej ; z).

Proof By the definition given by (1) , the proof is easy, here the proof is
omitted.

Let m = 0, 1, 2, according to [16, Lemma 1] , by simple computation, we
have

M (α,β)
n (e0; z) = 1;

M (α,β)
n (e1; z) =

nz

n + β
+

α

n + β
;

M (α,β)
n (e2; z) =

n2

(n + β)2

[
n(n− 1)
n2 + 1

z2 +
n + 1
n2 + 1

z

]

+
2nαz

(n + β)2
+

α2

(n + β)2
.

Lemma 2 Let em(z) = zm, m ∈ N ∪ {0}, z ∈ C, n ∈ N, 0 ≤ α ≤ β, for all
|z| ≤ r, r ≥ 1, we have |M (α,β)

n (em; z)| ≤ rm.

Proof The proof follows directly Lemma 1 and [16, Corollary 1].

Lemma 3 Let em(z) = zm, m, n ∈ N, z ∈ C and 0 ≤ α ≤ β, we have

M (α,β)
n (em+1; z) =

z(1− z)n2

(n + β)(n2 + m)
(M (α,β)

n (em; z))′

+
(m + n2z)n + α(n2 + 2m)

(n + β)(n2 + m)
M (α,β)

n (em; z)

− αm(n + α)
(n + β)2(n2 + m)

M (α,β)
n (em−1; z). (2)

Proof Let

L̃
(α,β)
n,k (f) :=

1
B(n(n− k), nk)

∫ 1

0

tnk−1(1− t)n(n−k)−1tf(
nt + α

n + β
)dt,

2
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L̂
(α,β)
n,k (f) :=

1
B(n(n− k), nk)

∫ 1

0

tnk−1(1− t)n(n−k)−1t2f(
nt + α

n + β
)dt,

E(α,β)
n (f ; z) :=

n−1∑

k=1

pn,k(z)L(α,β)
n,k (f),

we have

M (α,β)
n (f ; z) = pn,0(z)f(

α

n + β
) + E(α,β)

n (f ; z) + pn,n(z)f(
n + α

n + β
),

L̃
(α,β)
n,k (em) =

n + β

n
L

(α,β)
n,k (em+1)− α

n
L

(α,β)
n,k (em),

L̂
(α,β)
n,k (em) = (

n + β

n
)2L(α,β)

n,k (em+2)− 2α(n + β)
n2

L
(α,β)
n,k (em+1) + (

α

n
)2L(α,β)

n,k (em).

By simple calculation, we obtain

z(1− z)p′n,k(z) = (k − nz)pn,k(z),

t(1− t)[tnk−1(1− t)n(n−k)−1]′ = [nk − 1− (n2 − 2)t]tnk−1(1− t)n(n−k)−1,

it follows that

z(1− z)(E(α,β)
n (em; z))′

=
n−1∑

k=1

(k − nz) pn,k(z)L(α,β)
n,k (em)

=
n−1∑

k=1

kpn,k(z)
1

B(n(n− k), nk)

∫ 1

0

tnk−1(1− t)n(n−k)−1(
nt + α

n + β
)mdt− nzE(α,β)

n (em; z)

=
1
n

n−1∑

k=1

pn,k(z)
1

B(n(n− k), nk)

∫ 1

0

[nk − 1− (n2 − 2)t]tnk−1(1− t)n(n−k)−1(
nt + α

n + β
)mdt

+
1
n

E(α,β)
n (em; z) +

n2 − 2
n

n−1∑

k=1

pn,k(z)L̃(α,β)
n,k (em)− nzE(α,β)

n (em; z),

where

1
n

n−1∑

k=1

pn,k(z)
1

B(n(n− k), nk)

∫ 1

0

[nk − 1− (n2 − 2)t]tnk−1(1− t)n(n−k)−1(
nt + α

n + β
)mdt

=
1
n

n−1∑

k=1

pn,k(z)
1

B(n(n− k), nk)

∫ 1

0

(t− t2)[tnk−1(1− t)n(n−k)−1]′(
nt + α

n + β
)mdt

= − 1
n

E(α,β)
n (em; z) +

2
n

n−1∑

k=1

pn,k(z)L̃(α,β)
n,k (em)− m

n + β

n−1∑

k=1

pn,k(z)L̃(α,β)
n,k (em−1)

+
m

n + β

n−1∑

k=1

pn,k(z)L̂(α,β)
n,k (em−1).

So, in conclusion, we have

z(1− z)(E(α,β)
n (em; z))′ =

(n + β)(n2 + m)
n2

E(α,β)
n (em+1; z)

− (
αn2 + mn + 2αm

n2
+ nz)E(α,β)

n (em; z)

+
αmn + α2m

n2(n + β)
E(α,β)

n (em−1; z),

3
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which implies the recurrence in the statement.

Lemma 4 Let n ∈ N, m = 2, 3, · · ·, em(z) = zm, S
(α,β)
n,m (z) := M

(α,β)
n (em; z)−

zm , z ∈ C and 0 ≤ α ≤ β, we have

S(α,β)
n,m (z) =

z(1− z)n2

(n + β)(n2 + m− 1)
(M (α,β)

n (em−1; z))′

+
(m− 1 + n2z)n + α(n2 + m− 1)

(n + β)(n2 + m− 1)
S

(α,β)
n,m−1(z)

+
α(m− 1)

(n + β)(n2 + m− 1)
M (α,β)

n (em−1; z)

− α(m− 1)(n + α)
(n + β)2(n2 + m− 1)

M (α,β)
n (em−2; z)

+
(m− 1 + n2z)n + α(n2 + m− 1)

(n + β)(n2 + m− 1)
zm−1 − zm. (3)

Proof Using the recurrence formula (2), by simple calculation, we can eas-
ily get the recurrence (3), the proof is omitted.

3. Main results

The first main result is expressed by the following upper estimates.

Theorem 1 Let 0 ≤ α ≤ β, 1 ≤ r ≤ R, DR = {z ∈ C : |z| < R}. Sup-

pose that f : DR → C is analytic in DR, i.e. f(z) =
∞∑

m=0
cmzm for all z ∈ DR.

(i) for all |z| ≤ r and n ∈ N, we have

|M (α,β)
n (f ; z)− f(z)| ≤ K

(α,β)
r (f)
n + β

,

where K
(α,β)
r (f) = (1 + r)

∞∑
m=1

|cm|m(m + 1 + α + β)rm−1 < +∞.

(ii) (Simultaneous approximation) If 1 ≤ r < r1 < R are arbitrary fired,
then for all |z| ≤ r and n, p ∈ N we have

|(M (α,β)
n (f ; z))(p) − f (p)(z)| ≤ K

(α,β)
r1 (f)p!r1

(n + β)(r1 − r)p+1
,

where K
(α,β)
r1 (f) is defined as at the above point (i).

Proof Taking em(z) = zm, by hypothesis that f(z) is analytic in DR, i.e.

f(z) =
∞∑

m=0
cmzm for all z ∈ DR, it is easy for us to obtain

M (α,β)
n (f ; z) =

∞∑
m=0

cmM (α,β)
n (em; z),

4
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therefore, we get

|M (α,β)
n (f ; z)− f(z)| ≤

∞∑
m=0

|cm| · |M (α,β)
n (em; z)− em(z)|

=
∞∑

m=1

|cm| · |M (α,β)
n (em; z)− em(z)|,

as M
(α,β)
n (e0; z) = e0(z) = 1.

(i) For m ∈ N, taking into account that M
(α,β)
n (em−1; z) is a polynomial

degree ≤ min(m− 1, n), by the well-known Bernstein inequality and Lemma 2
we get

|(M (α,β)
n (em−1; z))′| ≤ m− 1

r
max{|M (α,β)

n (em−1; z)| : |z| ≤ r} ≤ (m− 1)rm−2.

On the one hand, when m = 1, for |z| ≤ r, by Lemma 1, we have

|M (α,β)
n (e1; z)− e1(z)| = | nz

n + β
+

α

n + β
− z| ≤ 1 + r

n + β
(2 + α + β).

When m ≥ 2, for n ∈ N, |z| ≤ r, 0 ≤ α ≤ β, in view of |(m − 1 + n2z)n +
α(n2 + m − 1)| ≤ (n + β)(n2 + m − 1)r, using the recurrence formula (3) and
the above inequality, we have

|M (α,β)
n (em; z)− em(z)| = |S(α,β)

n,m (z)|

≤ r(1 + r)
n + β

· (m− 1)rm−2 + r|S(α,β)
n,m−1(z)|

+
α

n + β
rm−1 +

α

n + β
rm−2 +

m + 1 + β

n + β
(1 + r)rm−1

≤ m− 1
n + β

(1 + r)rm−1 + r|S(α,β)
n,m−1(z)|

+
α

n + β
(1 + r)rm−1 +

m + 1 + β

n + β
(1 + r)rm−1

= r|S(α,β)
n,m−1(z)|+ 2m + α + β

n + β
(1 + r)rm−1.

By writing the last inequality, for m = 2, · · · , we easily obtain step by step
the following

|M (α,β)
n (em; z)− em(z)| ≤ r

(
r|S(α,β)

n,m−2(z)|+ 2(m− 1) + α + β

n + β
(1 + r)rm−2

)

+
2m + α + β

n + β
(1 + r)rm−1

= r2|S(α,β)
n,m−2(z))|+ 2(m− 1 + m) + 2(α + β)

n + β
(1 + r)rm−1

≤ . . . ≤ 1 + r

n + β
m(m + 1 + α + β)rm−1.

In conclusion, for any m,n ∈ N, |z| ≤ r, 0 ≤ α ≤ β, we have

|M (α,β)
n+β (em; z)− em(z)| ≤ 1 + r

n + β
m(m + 1 + α + β)rm−1,

5
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it follows that

|M (α,β)
n (f ; z)− f(z)| ≤ 1 + r

n + β

∞∑
m=1

|cm|m(m + 1 + α + β)rm−1.

By assuming that f(z) is analytic in DR, we have f (2)(z) =
∞∑

m=2
cmm(m −

1)zm−2 and the series is absolutely convergent in |z| ≤ r, so we get
∞∑

m=2
|cm|m(m−

1)rm−2 < +∞, which implies K
(α,β)
r (f) = (1 + r)

∞∑
m=1

|cm|m(m + 1 + α +

β)rm−1 < +∞.
(ii) For the simultaneous approximation, denoting by Γ the circle of radius

r1 > r and center 0, since for any |z| ≤ r and υ ∈ Γ, we have |υ − z| ≥ r1 − r,
by Cauchy’s formulas it follows that for all |z| ≤ r and n ∈ N, we have

|(M (α,β)
n (f ; z))(p) − f (p)(z)| = p!

2π

∣∣∣∣∣
∫

Γ

M
(α,β)
n (f ; υ)− f(υ)

(υ − z)p+1
dυ

∣∣∣∣∣

≤ K
(α,β)
r1 (f)
n + β

p!
2π

2πr1

(r1 − r)p+1

=
K

(α,β)
r1 (f)
n + β

· p!r1

(r1 − r)p+1
,

which proves the theorem.

Theorem 2 Let 0 ≤ α ≤ β, R > 1, DR = {z ∈ C : |z| < R}. Suppose

that f : DR → C is analytic in DR, i.e. f(z) =
∞∑

k=0

ckzk for all z ∈ DR. For

any fixed r ∈ [1, R] and all n ∈ N, |z| ≤ r, we have
∣∣∣∣M (α,β)

n (f ; z)− f(z)− α− βz

n + β
f ′(z)− z(1− z)

2(n + β)
f ′′(z)

∣∣∣∣

≤ M
(α,β)
r,1 (f)

n(n + β)
+

M
(α,β)
r,2 (f)

(n + β)2
+

Mr,2(f)
n2

, (4)

where Mr,2(f) = Mr(f) + Mr,1(f), Mr(f) =
∞∑

k=2

|ck|(k − 1)Fk,rr
k with Fk,r =

10k3− 30k2 +39k− 16+4(k− 2)(k− 1)2(1+ r), Mr,1(f) =
∞∑

k=2

|ck|(β +1)k(k−

1)(1 + r)rk−1, M
(α,β)
r,1 (f) =

∞∑
k=2

|ck|[2k(k − 1)2α + 2k3βr]rk−1, M
(α,β)
r,2 (f) =

∞∑
k=2

|ck|[k(k−1)(α2+β2r2)
2 + k2αβr + k2β2r2]rk−2.

Proof For all z ∈ DR, we have

M (α,β)
n (f ; z)− f(z)− α− βz

n + β
f ′(z)− z(1− z)

2(n + β)
f ′′(z)

=
[
Mn(f ; z)− f(z)− (n + 1)z(1− z)

2(n2 + 1)
f ′′(z)

]

+
[
M (α,β)

n (f ; z)−Mn(f ; z)− α− βz

n + β
f ′(z) +

(β + 1)n + (β − 1)
2(n + β)(n2 + 1)

z(1− z)f ′′(z)
]

:= I1 + I2.

6
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By [16, Theorem 2 ], we have |I1| ≤ Mr(f)
n2 , where Mr(f) =

∞∑
k=2

|ck|(k −
1)Fk,rr

k and Fk,r = 10k3 − 30k2 + 39k − 16 + 4(k − 2)(k − 1)2(1 + r).
Next let us to estimate |I2|.
Denote Q

(β)
n,k(z) = k(k−1)((β+1)n+(β−1))

2(n+β)(n2+1) zk−1(1− z). By f is analytic in DR,

i.e. f(z) =
∞∑

k=0

ckzk for all z ∈ DR, and M
(α,β)
n (e1; z) = Mn(e1; z) + α−βz

n+β , we

have

|I2| =
∣∣∣∣∣
∞∑

k=2

ck

[
M (α,β)

n (ek; z)−Mn(ek; z)− α− βz

n + β
kzk−1 + Q

(β)
n,k(z)

]∣∣∣∣∣

≤
∞∑

k=2

|ck|
∣∣∣∣M (α,β)

n (ek; z)−Mn(ek; z)− α− βz

n + β
kzk−1 + Q

(β)
n,k(z)

∣∣∣∣ .

When k ≥ 2, since nk

(n+β)k −1 = −
k−1∑
j=0

(
k
j

)
njβk−j

(n+β)k , by Lemma 1, we obtain

M (α,β)
n (ek; z)−Mn(ek; z)− α− βz

n + β
kzk−1 + Q

(β)
n,k(z)

=
k−1∑

j=0

(
k
j

)
njαk−j

(n + β)k
Mn(ej ; z) +

[
nk

(n + β)k
− 1

]
Mn(ek; z)− α− βz

n + β
kzk−1

+ Q
(β)
n,k(z)

=
k−2∑

j=0

(
k
j

)
njαk−j

(n + β)k
Mn(ej ; z) +

knk−1α

(n + β)k
Mn(ek−1; z)

−
k−1∑

j=0

(
k
j

)
njβk−j

(n + β)k
Mn(ek; z)− α− βz

n + β
kzk−1 + Q

(β)
n,k(z)

=
k−2∑

j=0

(
k
j

)
njαk−j

(n + β)k
Mn(ej ; z) +

knk−1α

(n + β)k
[Mn(ek−1; z)− ek−1(z)]

+
knk−1α

(n + β)k
zk−1 −

k−2∑

j=0

(
k
j

)
njβk−j

(n + β)k
Mn(ek; z)

− knk−1β

(n + β)k
[Mn(ek; z)− ek(z)]− knk−1β

(n + β)k
zk − α− βz

n + β
kzk−1 + Q

(β)
n,k(z)

=
k−2∑

j=0

(
k
j

)
njαk−j

(n + β)k
Mn(ej ; z) +

knk−1α

(n + β)k
[Mn(ek−1; z)− ek−1(z)]

−
k−2∑

j=0

(
k
j

)
njβk−j

(n + β)k
Mn(ek; z)− knk−1β

(n + β)k
[Mn(ek; z)− ek(z)]

−
[

1
n + β

− nk−1

(n + β)k

]
kαzk−1 +

[
1

n + β
− nk−1

(n + β)k

]
kβzk + Q

(β)
n,k(z).

By the proof of the [16, Theorem 1 ], for any k ∈ N, |z| ≤ r, r ≥ 1, we have

|Mn(ek; z)| ≤ rk, |Mn(ek; z)− ek| ≤ 2k2

n
rk,

7
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hence, for any k ≥ 2, |z| ≤ r, r ≥ 1, we can get
∣∣∣∣∣∣

k−2∑

j=0

(
k
j

)
njαk−j

(n + β)k
Mn(ej ; z)

∣∣∣∣∣∣

≤
k−2∑

j=0

(
k
j

)
njαk−j

(n + β)k
rk−2

=
k−2∑

j=0

k(k − 1)
(k − j)(k − j − 1)

(
k − 2

j

)
njαk−2−j

(n + β)k−2
· α2

(n + β)2
rk−2

≤ k(k − 1)
2

· α2

(n + β)2

k−2∑

j=0

(
k − 2

j

)
njαk−2−j

(n + β)k−2
rk−2

≤ k(k − 1)
2

· α2

(n + β)2
rk−2

and ∣∣∣∣
knk−1α

(n + β)k
[Mn(ek−1; z)− ek−1(z)]

∣∣∣∣ ≤
2k(k − 1)2α

n(n + β)
rk−1.

Also, using

1
n + β

− nk−1

(n + β)k
=

k−2∑
j=0

(
k − 1

j

)
njβk−1−j

(n + β)k
≤ (k − 1)β

(n + β)2
,

thus, for any k ≥ 2, |z| ≤ r, r ≥ 1, we get

|M (α,β)
n (ek; z)−Mn(ek; z)− α− βz

n + β
kzk−1 + Q

(β)
n,k(z)|

≤ k(k − 1)
2

· α2

(n + β)2
rk−2 +

2k(k − 1)2α
n(n + β)

rk−1 +
k(k − 1)

2
· β2

(n + β)2
rk

+
2k3β

n(n + β)
rk +

k2αβ

(n + β)2
rk−1 +

k2β2

(n + β)2
rk +

(β + 1)k(k − 1)(1 + r)rk−1

n2

=
rk−1

n(n + β)
[
2k(k − 1)2α + 2k3βr

]
+

(β + 1)k(k − 1)(1 + r)rk−1

n2

+
rk−2

(n + β)2
[
k(k − 1)(α2 + β2r2)

2
+ k2αβr + k2β2r2].

Hence, we have

|I2| ≤
M

(α,β)
r,1 (f)

n(n + β)
+

M
(α,β)
r,2 (f)

(n + β)2
+

Mr,1(f)
n2

,

where

Mr,1(f) =
∞∑

k=2

|ck|(β + 1)k(k − 1)(1 + r)rk−1,

M
(α,β)
r,1 (f) =

∞∑

k=2

|ck|[2k(k − 1)2α + 2k3βr]rk−1,

M
(α,β)
r,2 (f) =

∞∑

k=2

|ck|[k(k − 1)(α2 + β2r2)
2

+ k2αβr + k2β2r2]rk−2.

8
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In conclusion, we obtain
∣∣∣∣M (α,β)

n (f ; z)− f(z)− α− βz

n + β
f ′(z)− z(1− z)

2(n + β)
f ′′(z)

∣∣∣∣

≤ |I1|+ |I2| ≤
M

(α,β)
r,1 (f)

n(n + β)
+

M
(α,β)
r,2 (f)

(n + β)2
+

Mr,2(f)
n2

,

where Mr,2(f) = Mr(f) + Mr,1(f).

In the following theorem, we will obtain the exact order in approximation.

Theorem 3 Let 0 < α ≤ β, R > 1, DR = {z ∈ C : |z| < R}. Suppose
that f : DR → C is analytic in DR. If f is not a polynomial of degree 0 , then
for any r ∈ [1, R) we have

‖M (α,β)
n (f ; ·)− f‖r ≥ C

(α,β)
r (f)
n + β

, n ∈ N,

where ‖f‖r = max{|f(z)|; |z| ≤ r} and the constant C
(α,β)
r (f) > 0 depends on

f , r and α, β but it is independent of n.

Proof Denote e1(z) = z and

H(α,β)
n (f ; z) = M (α,β)

n (f ; z)− f(z)− α− βz

n + β
f ′(z)− z(1− z)

2(n + β)
f ′′(z).

For all z ∈ DR and n ∈ N we have

M (α,β)
n (f ; z)− f(z)

=
1

n + β

{
(α− βz)f ′(z) +

z(1− z)
2

f ′′(z) + (n + β)H(α,β)
n (f ; z)

}
.

In view of the property: ‖F +G‖r ≥ |‖F‖r−‖G‖r| ≥ ‖F‖r−‖G‖r, it follows

‖M (α,β)
n (f ; ·)− f‖r

≥ 1
n + β

{
‖(α− βe1)f ′ +

e1(1− e1)
2

f ′′‖r − (n + β)||H(α,β)
n (f ; ·)||r

}
.

Considering the hypothesis that f is not a polynomial of degree 0 in DR, we
have ‖(α− βe1)f ′ +

e1(1−e1)
2 f ′′‖r > 0.

Indeed, supposing the contrary, it follows that

(α− βz)f ′(z) +
z(1− z)

2
f ′′(z) = 0, for all z ∈ Dr.

Denoting y(z) = f ′(z) and looking for the analytic function y(z) under

the form y(z) =
∞∑

k=0

akzk, after replacement in the differential equation, the

identification of the coefficients method immediately leads to ak = 0, for all
k ∈ N

⋃{0}. This implies that y(z) = 0 for all z ∈ Dr and therefore f is
constant on Dr, a contradiction with the hypothesis.

Using the inequality (4), we get

lim
n→∞

(n + β)‖H(α,β)
n (f ; ·)‖r = 0, (5)

9
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therefore, there exists an index n0 depending only on f , r and α, β, such that
for all n ≥ n0, we have

‖(α− βe1)f ′ +
e1(1− e1)

2
f ′′‖r − (n + β)||H(α,β)

n (f ; ·)||r

≥ 1
2

∥∥∥∥(α− βe1)f ′ +
e1(1− e1)

2
f ′′

∥∥∥∥
r

,

which implies

‖M (α,β)
n (f ; ·)− f‖r ≥ 1

2n

∥∥∥∥(α− βe1)f ′ +
e1(1− e1)

2
f ′′

∥∥∥∥
r

, for all n ≥ n0.

For n ∈ {1, 2, · · ·, n0 − 1}, we have ‖M (α,β)
n (f ; ·) − f‖r ≥ W (α,β)

r,n (f)

n+β , where

W
(α,β)
r,n (f) = (n + β)‖M (α,β)

n (f ; ·)− f‖r > 0.

As a conclusion, we have ‖M (α,β)
n (f ; ·) − f‖r ≥ C(α,β)

r (f)
n+β , for all n ∈ N,

where

C(α,β)
r (f) =min

{
W

(α,β)
r,1 (f),W (α,β)

r,2 (f), . . . , W (α,β)
r,n0−1(f),

1
2
‖(α− βe1)f ′ +

e1(1− e1)
2

f ′′‖r

}
,

this complete the proof.

Combining Theorem 3 with Theorem 1, we get the following result.

Corollary Let 0 ≤ α ≤ β, R > 1, DR = {z ∈ C : |z| < R}. Suppose that
f : DR → C is analytic in DR. If f is not a polynomial of degree 0 , then for
any r ∈ [1, R) we have

‖M (α,β)
n (f ; ·)− f‖r ³ 1

n + β
, n ∈ N,

where ‖f‖r = max{|f(z)|; |z| ≤ r} and the constants in the equivalence depend
on f , r and α, β but it is independent of n.

Theorem 4 Let 0 ≤ α ≤ β, R > 1, DR = {z ∈ C : |z| < R}. Suppose
that f : DR → C is analytic in DR. Also, let 1 ≤ r < r1 < R and p ∈ N be
fixed. If f is not a polynomial of degree ≤ p− 1, then we have

‖(M (α,β)
n (f ; ·))(p) − f (p)‖r ³ 1

n + β
, n ∈ N,

where ‖f‖r = max{|f(z)|; |z| ≤ r} and the constants in the equivalence depend
on f , r, r1, p, α and β, but it is independent of n.

Proof Taking into account that the upper estimate in Theorem 1 , it remains
to prove the lower estimate only. Denoting by Γ the circle of radius r1 > r and
center 0 , by the Cauchy’s formula, it follows that for all |z| ≤ r and n ∈ N, we
have

(M (α,β)
n (f ; z))(p) − f (p)(z) =

p!
2πi

∫

Γ

M
(α,β)
n (f ; v)− f(v)

(v − z)p+1
dv.

10
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Keeping the notation there for H
(α,β)
n (f ; z), for all n ∈ N, we have

M (α,β)
n (f ; z)− f(z)

=
1

n + β

{
(α− βz)f ′(z) +

z(1− z)
2

f ′′(z) + (n + β)H(α,β)
n (f ; z)

}
.

by using Cauchy’s formula, for all v ∈ Γ we get

(M (α,β)
n (f ; z))(p) − f (p)(z) =

1
n + β

{[
(α− βz)f ′(z) +

z(1− z)
2

f ′′(z)
](p)

+
p!

2πi

∫

Γ

(n + β)H(α,β)
n (f ; v)

(v − z)p+1
dv

}
,

passing now to ‖ · ‖r and denoting e1(z) = z, it follows

∥∥∥(M (α,β)
n (f ; ·))(p) − f (p)

∥∥∥
r
≥ 1

n + β

[∥∥∥∥∥
[
(α− βe1)f ′ +

e1(1− e1)
2

f ′′
](p)

∥∥∥∥∥
r

−
∥∥∥∥∥

p!
2πi

∫

Γ

(n + β)H(α,β)
n (f ; v)

(v − ·)p+1
dv

∥∥∥∥∥
r

]
.

Since for any |z| ≤ r and υ ∈ Γ, we have |υ − z| ≥ r1 − r, so,
∥∥∥∥∥

p!
2πi

∫

Γ

(n + β)H(α,β)
n (f ; v)

(v − ·)p+1
dv

∥∥∥∥∥
r

≤ p!
2π

· 2πr1(n + β)‖H(α,β)
n (f ; ·)‖r1

(r1 − r)p+1
,

thus, by the inequality (5), we can get limn→∞
∥∥∥ p!

2πi

∫
Γ

(n+β)H(α,β)
n (f ;v)

(v−·)p+1 dv
∥∥∥

r
= 0.

Taking into account the function f is analytic in DR, by following ex-
actly the lines in Gal [5], seeing also the book Gal [6, pp. 77-78 ], we have∥∥∥[(α− βe1)f ′ +

e1(1−e1)
2 f ′′](p)

∥∥∥
r

> 0,
In continuation, reasoning exactly as in the proof of Theorem 3, we can get

the desired conclusion.
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Abstract

Here we study some important properties of right multidimensional
Riemann-Liouville fractional integral operator, such as of continuity and
boundedness.
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1 Motivation

From [1] we have

Theorem 1 Let r > 0, F 2 L1 (a; b), and

G (s) =

Z b

s

(t� s)r�1 F (t) dt;

all s 2 [a; b]. Then G 2 AC ([a; b]) (absolutely continuous functions) for r � 1,
and G 2 C ([a; b]), only for r 2 (0; 1) :

2 Main Results

We give

Theorem 2 Let f 2 L1 ([a; b]� [c; d]), �1; �2 > 0. Consider the function

F (x1; x2) =

Z b1

x1

Z b2

x2

(t1 � x1)�1�1 (t2 � x2)�2�1 f (t1; t2) dt1dt2; (1)

1
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where x1; b1 2 [a; b], x2; b2 2 [c; d] : x1 � b1, x2 � b2:
Then F is continuous on [a; b1]� [c; b2] :

Proof. (I) Let a1; a�1; b1 2 [a; b] with a1 < a�1 < b1, and a2; a�2; b2 2 [c; d]
with a2 < a�2 < b2:
We observe that

F (a1; a2)� F (a�1; a�2) =Z b1

a1

Z b2

a2

(t1 � a1)�1�1 (t2 � a2)�2�1 f (t1; t2) dt1dt2�Z b1

a�1

Z b2

a�2

(t1 � a�1)
�1�1 (t2 � a�2)

�2�1 f (t1; t2) dt1dt2 = (2)

Z b1

a�1

Z b2

a�2

(t1 � a1)�1�1 (t2 � a2)�2�1 f (t1; t2) dt1dt2+

Z b1

a�1

Z a�2

a2

(t1 � a1)�1�1 (t2 � a2)�2�1 f (t1; t2) dt1dt2+

Z a�1

a1

Z a�2

a2

(t1 � a1)�1�1 (t2 � a2)�2�1 f (t1; t2) dt1dt2+Z a�1

a1

Z b2

a�2

(t1 � a1)�1�1 (t2 � a2)�2�1 f (t1; t2) dt1dt2� (3)

Z b1

a�1

Z b2

a�2

(t1 � a�1)
�1�1 (t2 � a�2)

�2�1 f (t1; t2) dt1dt2 =

Z b1

a�1

Z b2

a�2

h
(t1 � a1)�1�1 (t2 � a2)�2�1 � (t1 � a�1)

�1�1 (t2 � a�2)
�2�1

i
f (t1; t2) dt1dt2

+

Z b1

a�1

Z a�2

a2

(t1 � a1)�1�1 (t2 � a2)�2�1 f (t1; t2) dt1dt2+ (4)

Z a�1

a1

Z a�2

a2

(t1 � a1)�1�1 (t2 � a2)�2�1 f (t1; t2) dt1dt2+Z a�1

a1

Z b2

a�2

(t1 � a1)�1�1 (t2 � a2)�2�1 f (t1; t2) dt1dt2:

Call
I (a�1; a

�
2) =Z b1

a�1

Z b2

a�2

���(t1 � a1)�1�1 (t2 � a2)�2�1 � (t1 � a�1)�1�1 (t2 � a�2)�2�1��� dt1dt2:
(5)
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Thus
jF (a1; a2)� F (a�1; a�2)j ��

I (a�1; a
�
2) +

�
(b1 � a1)�1 � (a�1 � a1)

�1

�1

�
(a�2 � a2)

�2

�2
+

(a�1 � a1)
�1

�1

(a�2 � a2)
�2

�2
+
(a�1 � a1)

�1

�1

�
(b2 � a2)�2 � (a�2 � a2)

�2

�2

��
kfk1 :

Hence, by the last inequality, it holds

� := lim
(a�1 ;a�2)!(a1;a2)

or
(a1;a2)!(a�1 ;a�2)

jF (a1; a2)� F (a�1; a�2)j �

0BBBBB@ lim
(a�1 ;a�2)!(a1;a2)

or
(a1;a2)!(a�1 ;a�2)

I (a�1; a
�
2)

1CCCCCA kfk1 =: �: (6)

If �1 = �2 = 1, then � = 0, proving � = 0:
If �1 = 1, �2 > 0 we get

I (a�1; a
�
2) = (b1 � a�1)

Z b2

a�2

���(t2 � a2)�2�1 � (t2 � a�2)�2�1��� dt2: (7)

Assume �2 > 1, then �2 � 1 > 0. Hence

I (a�1; a
�
2) = (b1 � a�1)

Z b2

a�2

�
(t2 � a2)�2�1 � (t2 � a�2)

�2�1
�
dt2

= (b1 � a�1)
��

(b2 � a2)�2 � (a�2 � a2)
�2

�2

�
� (b2 � a

�
2)
�2

�2

�
: (8)

Clearly, then
lim

(a1;a2)!(a�1 ;a�2)
or

(a�1 ;a�2)!(a1;a2)

I (a�1; a
�
2) = 0: (9)

Similarly and symmetrically, we obtain that

lim
(a1;a2)!(a�1 ;a�2)

or

(a�1 ;a�2)!(a1;a2)

I (a�1; a
�
2) = 0 (10)

for the case of �2 = 1, �1 > 1.

3
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If �1 = 1, and 0 < �2 < 1, then �2 � 1 < 0. Hence

I (a�1; a
�
2) = (b1 � a�1)

Z b2

a�2

h
(t2 � a�2)

�2�1 � (t2 � a2)�2�1
i
dt2 =

(b1 � a�1)
�
(b2 � a�2)

�2

�2
�
�
(b2 � a2)�2 � (a�2 � a2)

�2

�2

��
: (11)

Clearly, then
lim

a�2!a2
or

a2!a�2

I (a�1; a
�
2) = 0: (12)

Similarly and symmetrically, we derive that

lim
a�1!a1
or

a1!a�1

I (a�1; a
�
2) = 0; (13)

for the case of �2 = 1, 0 < �1 < 1.
Case now of �1; �2 > 1, then

I (a�1; a
�
2) =Z b1

a�1

Z b2

a�2

�
(t1 � a1)�1�1 (t2 � a2)�2�1 � (t1 � a�1)

�1�1 (t2 � a�2)
�2�1

�
dt1dt2 =�

(b1 � a1)�1 � (a�1 � a1)
�1

�1

��
(b2 � a2)�2 � (a�2 � a2)

�2

�2

�
� (b1 � a

�
1)
�1

�1

(b2 � a�2)
�2

�2
: (14)

That is
lim

(a�1 ;a�2)!(a1;a2)

or
(a1;a2)!(a�1 ;a�2)

I (a�1; a
�
2) = 0: (15)

Case now of 0 < �1; �2 < 1, then

I (a�1; a
�
2) =Z b1

a�1

Z b2

a�2

�
(t1 � a�1)

�1�1 (t2 � a�2)
�2�1 � (t1 � a1)�1�1 (t2 � a2)�2�1

�
dt1dt2 =

(b1 � a�1)
�1

�1

(b2 � a�2)
�2

�2
��

(b1 � a1)�1 � (a�1 � a1)
�1

�1

��
(b2 � a2)�2 � (a�2 � a2)

�2

�2

�
: (16)
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Hence, when 0 < �1; �2 < 1; we get

lim
(a�1 ;a�2)!(a1;a2)

(a1;a2)!(a�1 ;a�2)

I (a�1; a
�
2) = 0: (17)

We observe that
I (a�1; a

�
2) � I� (a�1; a�2) :=Z b1

a�1

Z b2

a�2

(t1 � a1)�1�1
���(t2 � a2)�2�1 � (t2 � a�2)�2�1��� dt1dt2

+

Z b1

a�1

Z b2

a�2

(t2 � a�2)
�2�1

���(t1 � a1)�1�1 � (t1 � a�1)�1�1��� dt1dt2: (18)

Next we treat the case of �1 > 1, 0 < �2 < 1.
Therefore it holds

I� (a�1; a
�
2) =

Z b1

a�1

Z b2

a�2

(t1 � a1)�1�1
�
(t2 � a�2)

�2�1 � (t2 � a2)�2�1
�
dt1dt2

(19)

+

Z b1

a�1

Z b2

a�2

(t2 � a�2)
�2�1

�
(t1 � a1)�1�1 � (t1 � a�1)

�1�1
�
dt1dt2 =�

(b1 � a1)�1 � (a�1 � a1)
�1

�1

��
(b2 � a�2)

�2

�2
� (b2 � a2)

�2

�2
+
(a�2 � a2)

�2

�2

�
+

(b2 � a�2)
�2

�2

�
(b1 � a1)�1

�1
� (a

�
1 � a1)

�1

�1
� (b1 � a

�
1)
�1

�1

�
:

Clearly then (�1 > 1, 0 < �2 < 1)

lim
(a1;a2)!(a�1 ;a�2)

or

(a�1 ;a�2)!(a1;a2)

I (a�1; a
�
2) = 0: (20)

Finally, we prove the case of �2 > 1 and 0 < �1 < 1. We have that

I� (a�1; a
�
2) =

Z b1

a�1

Z b2

a�2

(t1 � a1)�1�1
�
(t2 � a2)�2�1 � (t2 � a�2)

�2�1
�
dt1dt2

+

Z b1

a�1

Z b2

a�2

(t2 � a�2)
�2�1

�
(t1 � a�1)

�1�1 � (t1 � a1)�1�1
�
dt1dt2 = (21)

�
(b1 � a1)�1 � (a�1 � a1)

�1

�1

��
� (b2 � a

�
2)
�2

�2
+
(b2 � a2)�2

�2
� (a

�
2 � a2)

�2

�2

�
+

(b2 � a�2)
�2

�2

�
� (b1 � a1)

�1

�1
+
(a�1 � a1)

�1

�1
+
(b1 � a�1)

�1

�1

�
:

5
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Clearly then (�2 > 1; 0 < �1 < 1)

lim
(a1;a2)!(a�1 ;a�2)

or

(a�1 ;a�2)!(a1;a2)

I (a�1; a
�
2) = 0: (22)

We proved � = 0, and � = 0 in all cases of this section.
The case of a1 > a�1 and a2 > a

�
2, as symmetric to the already treated one

of a1 < a�1 and a2 < a
�
2, is omitted.

(II) The remaining cases are: let a1; a�1; b1 2 [a; b]; a2; a�2; b2 2 [c; d], we can
have

(II1) a1 > a
�
1 and a2 < a

�
2,

or
(II2) a1 < a

�
1 and a2 > a

�
2:

(23)

Notice that the subcases (II1) and (II2) are symmetric, and treated the same
way. As such we treat only the case (II2).
We observe again that

F (a1; a2)� F (a�1; a�2) = (24)Z b1

a1

Z b2

a2

(t1 � a1)�1�1 (t2 � a2)�2�1 f (t1; t2) dt1dt2�Z b1

a�1

Z b2

a�2

(t1 � a�1)
�1�1 (t2 � a�2)

�2�1 f (t1; t2) dt1dt2 =

Z a�1

a1

Z b2

a2

(t1 � a1)�1�1 (t2 � a2)�2�1 f (t1; t2) dt1dt2+Z b1

a�1

Z b2

a2

(t1 � a1)�1�1 (t2 � a2)�2�1 f (t1; t2) dt1dt2�

Z b1

a�1

Z a2

a�2

(t1 � a�1)
�1�1 (t2 � a�2)

�2�1 f (t1; t2) dt1dt2� (25)

Z b1

a�1

Z b2

a2

(t1 � a�1)
�1�1 (t2 � a�2)

�2�1 f (t1; t2) dt1dt2 =

Z b1

a�1

Z b2

a2

�
(t1 � a1)�1�1 (t2 � a2)�2�1 � (t1 � a�1)

�1�1 (t2 � a�2)
�2�1

�
f (t1; t2) dt1dt2

+

Z a�1

a1

Z b2

a2

(t1 � a1)�1�1 (t2 � a2)�2�1 f (t1; t2) dt1dt2� (26)

Z b1

a�1

Z a2

a�2

(t1 � a�1)
�1�1 (t2 � a�2)

�2�1 f (t1; t2) dt1dt2:

6
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Call
I (a�1; a2) :=Z b1

a�1

Z b2

a2

���(t1 � a1)�1�1 (t2 � a2)�2�1 � (t1 � a�1)�1�1 (t2 � a�2)�2�1��� dt1dt2:
(27)

Hence, we have
jF (a1; a2)� F (a�1; a�2)j ��

I (a�1; a2) +
(a�1 � a1)

�1

�1

(b2 � a2)�2

�2
+
(b1 � a�1)

�1

�1

(a2 � a�2)
�2

�2

�
kfk1 : (28)

Therefore it holds

� := lim
ja1�a�1j!0;

ja2�a�2j!0

jF (a1; a2)� F (a�1; a�2)j �

0BBB@ lim
ja1�a�1j!0;

ja2�a�2j!0

I (a�1; a2)

1CCCA kfk1 =: �:

(29)
We will prove that � = 0, hence � = 0, in all possible cases.
If �1 = �2 = 1, then I (a�1; a2) = 0, hence � = 0:
If �1 = 1, �2 > 0 we get

I (a�1; a2) = (b1 � a�1)
Z b2

a2

���(t2 � a2)�2�1 � (t2 � a�2)�2�1��� dt2: (30)

Assume �2 > 1, then �2 � 1 > 0. Hence

I (a�1; a2) = (b1 � a�1)
Z b2

a2

�
(t2 � a�2)

�2�1 � (t2 � a2)�2�1
�
dt2

= (b1 � a�1)
�
(b2 � a�2)

�2

�2
� (a2 � a

�
2)
�2

�2
� (b2 � a2)

�2

�2

�
: (31)

Clearly, then
lim

ja2�a�2j!0;
I (a�1; a2) = 0; (32)

hence � = 0:
Let the case now of �2 = 1, �1 > 1: Then

I (a�1; a2) = (b2 � a2)
Z b1

a�1

���(t1 � a1)�1�1 � (t1 � a�1)�1�1��� dt1
= (b2 � a2)

Z b1

a�1

�
(t1 � a1)�1�1 � (t1 � a�1)

�1�1
�
dt1 (33)

= (b2 � a2)
�
(b1 � a1)�1

�1
� (a

�
1 � a1)

�1

�1
� (b1 � a

�
1)
�1

�1

�
:

7
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Then � = 0:
If �1 = 1, and 0 < �2 < 1, then �2 � 1 < 0. Hence

I (a�1; a2) = (b1 � a�1)
Z b2

a2

�
(t2 � a2)�2�1 � (t2 � a�2)

�2�1
�
dt2 =

(b1 � a�1)
�
(b2 � a2)�2

�2
� (b2 � a

�
2)
�2

�2
+
(a2 � a�2)

�2

�2

�
; (34)

hence � = 0:
Let now �2 = 1, 0 < �1 < 1. Then

I (a�1; a2) = (b2 � a2)
Z b1

a�1

�
(t1 � a�1)

�1�1 � (t1 � a1)�1�1
�
dt1

= (b2 � a2)
�
(b1 � a�1)

�1

�1
� (b1 � a1)

�1

�1
+
(a�1 � a1)

�1

�1

�
; (35)

hence � = 0:
We observe that:

I (a�1; a2) �
Z b1

a�1

Z b2

a2

(t1 � a1)�1�1
���(t2 � a2)�2�1 � (t2 � a�2)�2�1��� dt1dt2

+

Z b1

a�1

Z b2

a2

(t2 � a�2)
�2�1

���(t1 � a1)�1�1 � (t1 � a�1)�1�1��� dt1dt2 =: J (a�1; a2) :
(36)

I.e.
I (a�1; a2) � J (a�1; a2) : (37)

Case of �1; �2 > 1. Then

J (a�1; a2) =

Z b1

a�1

Z b2

a2

(t1 � a1)�1�1
�
(t2 � a�2)

�2�1 � (t2 � a2)�2�1
�
dt1dt2

+

Z b1

a�1

Z b2

a2

(t2 � a�2)
�2�1

�
(t1 � a1)�1�1 � (t1 � a�1)

�1�1
�
dt1dt2 = (38)�

(b1 � a1)�1

�1
� (a

�
1 � a1)

�1

�1

��
(b2 � a�2)

�2

�2
� (a2 � a

�
2)
�2

�2
� (b2 � a2)

�2

�2

�
+

�
(b2 � a�2)

�2

�2
� (a2 � a

�
2)
�2

�2

��
(b1 � a1)�1

�1
� (a

�
1 � a1)

�1

�1
� (b1 � a

�
1)
�1

�1

�
;

(39)
hence � = 0:
Case of 0 < �1; �2 < 1, then

J (a�1; a2) =

Z b1

a�1

Z b2

a2

(t1 � a1)�1�1
�
(t2 � a2)�2�1 � (t2 � a�2)

�2�1
�
dt1dt2

8
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+

Z b1

a�1

Z b2

a2

(t2 � a�2)
�2�1

�
(t1 � a�1)

�1�1 � (t1 � a1)�1�1
�
dt1dt2 = (40)

�
(b1 � a1)�1

�1
� (a

�
1 � a1)

�1

�1

��
(b2 � a2)�2

�2
� (b2 � a

�
2)
�2

�2
+
(a2 � a�2)

�2

�2

�
+

�
(b2 � a�2)

�2

�2
� (a2 � a

�
2)
�2

�2

��
(b1 � a�1)

�1

�1
� (b1 � a1)

�1

�1
+
(a�1 � a1)

�1

�1

�
;

(41)
hence � = 0:
Next case of �1 > 1, 0 < �2 < 1. We observe that

J (a�1; a2) =

Z b1

a�1

Z b2

a2

(t1 � a1)�1�1
�
(t2 � a2)�2�1 � (t2 � a�2)

�2�1
�
dt1dt2

(42)

+

Z b1

a�1

Z b2

a2

(t2 � a�2)
�2�1

�
(t1 � a1)�1�1 � (t1 � a�1)

�1�1
�
dt1dt2 =�

(b1 � a1)�1

�1
� (a

�
1 � a1)

�1

�1

��
(b2 � a2)�2

�2
� (b2 � a

�
2)
�2

�2
+
(a2 � a�2)

�2

�2

�
(43)

+

�
(b2 � a�2)

�2

�2
� (a2 � a

�
2)
�2

�2

��
(b1 � a1)�1

�1
� (a

�
1 � a1)

�1

�1
� (b1 � a

�
1)
�1

�1

�
;

hence � = 0:
Finally, we prove the case of �2 > 1 and 0 < �1 < 1. In that case it holds

J (a�1; a2) =

Z b1

a�1

Z b2

a2

(t1 � a1)�1�1
�
(t2 � a�2)

�2�1 � (t2 � a2)�2�1
�
dt1dt2

+

Z b1

a�1

Z b2

a2

(t2 � a�2)
�2�1

�
(t1 � a�1)

�1�1 � (t1 � a1)�1�1
�
dt1dt2 = (44)

�
(b1 � a1)�1 � (a�1 � a1)

�1

�1

��
(b2 � a�2)

�2

�2
� (a2 � a

�
2)
�2

�2
� (b2 � a2)

�2

�2

�
+

�
(b2 � a�2)

�2 � (a2 � a�2)
�2

�2

��
(b1 � a�1)

�1

�1
� (b1 � a1)

�1

�1
+
(a�1 � a1)

�1

�1

�
;

(45)
hence � = 0:
We have proved that � = 0, in all possible subcases of (II2).
We have proved that F is a continuous function over [a; b1]� [c; b2] :
Now we can state:
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Theorem 3 Let f 2 L1
�Qk

i=1 [ai; bi]
�
, �i > 0, i = 1; :::; k 2 N. Consider the

function

F (x1; :::; xk) =

Z b�1

x1

:::

Z b�k

xk

kY
i=1

(ti � xi)�i�1 f (t1; :::; tk) dt1:::dtk; (46)

where ai � xi � b�i � bi, i = 1; :::; k:
Then F is continuous on

Qk
i=1 [ai; b

�
i ] :

Remark 4 In the setting of Theorem 3: Consider the right multidimensional
Riemann-Liouville fractional integral of order � = (�1; :::; �k) ; �i > 0, i =
1; :::; k :

�
I�b��f

�
(x) =

1Qk
i=1 � (�i)

Z b�1

x1

:::

Z b�k

xk

kY
i=1

(ti � xi)�i�1 f (t1; :::; tk) dt1:::dtk;

(47)
where ai � xi � b�i � bi, i = 1; :::; k; where b� = (b�1; :::; b�k), x = (x1; :::; xk), �
is the gamma function.

By Theorem 3 we get that
�
I�b��
f
�
is a continuous function for every x 2Qk

i=1 [ai; b
�
i ] :

We notice that����I�b��f� (x)��� � 1Qk
i=1 � (�i)

 Z b�1

x1

:::

Z b�k

xk

kY
i=1

(ti � xi)�i�1 dt1:::dtk

!
kfk1

(48)

=
1Qk

i=1 � (�i)

kY
i=1

 Z b�i

xi

(ti � xi)�i�1 dti

!
kfk1 =

1Qk
i=1 � (�i)

kY
i=1

(b�i � xi)
�i

�i
kfk1 =

 
kY
i=1

(b�i � xi)
�i

� (�i + 1)

!
kfk1 : (49)

That is ����I�b��f� (x)��� �
 

kY
i=1

(b�i � xi)
�i

� (�i + 1)

!
kfk1 : (50)

In particular we get �
I�b��f

�
(b�) = 0; (51)

and 


I�b��f


1;
Qk

i=1[ai;b�i ]
�
 

kY
i=1

(b�i � ai)
�i

� (�i + 1)

!
kfk1 : (52)

That is I�b��f is a bounded linear operator, which here is also a positive operator.

10
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