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Golub-Kahan-Lanczos based preconditioner for
least squares problems in overdetermined and

underdetermined cases
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a. School of Mathematical Sciences,

University of Electronic Science and Technology of China,

Chengdu, Sichuan, 611731, P. R. China

b. Department of Mathematical Sciences,

Clemson University, Clemson, South Carolina, 29634, U.S.A.

Abstract

We present an effective preconditioner for solving least squares problems
in full ranked overdetermined and underdetermined cases. The precondi-
tioner, generated from Golub-Kahan-Lanczos method, can approximately
replace a few largest singular values by one without altering the rest. This
property accelerates the convergence, thereby improves the efficiency of
the algorithm for solving the least squares problems with ill-conditioned
system matrix which is caused by large singular values. In this paper we
focus on the overdetermined and the underdetermined cases.

Key words: Least squares problems; Preconditioner; Lanczos bidiago-
nalization process; Krylov subspace method; Golub-Kahan-Lanczos method

AMSC : 65K05; 65F08; 65F10

1 Introduction

In this paper, we assume that the least squares problems are in the form as

min ∥b− Ax∥2, (1)

∗E-mail: lzhao2@clemson.edu (L. Zhao)
†Corresponding author. E-mail: tingzhuhuang@126.com (T.-Z. Huang)
‡E-mail: liuz@clemson.com (L. Zhu)
§E-mail: liangjian1987112@126.com (L.-J. Deng)
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where Am×n is a full-ranked coefficient matrix which is large and sparse.
In the situation that m = n, we can obtain an approximate solution by solving

the linear system Ax = b and minimize the residual in the sense of 2-norm.
The minimal norm residual method, based on the iterative Krylov methods, is a
suitable algorithm to obtain the optimal approximation, and full details can be
found in [2]. We have superscript T denoted the transposition of a matrix, and
use subscript to indicate the size of matrix. The overdetermined cases

min ∥b− Ax∥2, A ∈ Rm×n,m > n (2)

and the underdetermined cases

min ∥b− Ax∥2, A ∈ Rm×n,m < n (3)

are taken into consideration in the following.
In this paper, we take the preconditioner as a left preconditioner in both

overdetermined and underdetermined cases. To the overdetermined system (2)
in least squares problems, we generally translate the corresponding linear system

Ax = b, A ∈ Rm×n,m > n, (4)

into a normal equation by premultipling AT on both sides. R is the set of real
number here and in the following. Similarly, we translate the underdetermined
system (3) into a normal equation in the same way in the corresponding linear
system

Ax = b, A ∈ Rm×n,m < n. (5)

Thereby we have the normal equation in the following form

ATAx = AT b. (6)

We notice that the coefficient matrix in (6) is symmetric positive definite,
so the normal equation can be solved by the CG method[16]. Thanks to previ-
ous researchers, many classic methods, such as CGNE [4] and CGLS[3], can be
regarded as an extensions of the CG method and solve least squares problems
efficiently. Similarly, the LSQR method[7] is an effective method for solving the
least squares problems, so does the LSMR method[15].

For the symmetric positive definition (SPD) matrix, we know the convergence
of iterative Krylov methods depends on the condition number κ of the coefficien-
t matrix, in other word, the spectral distribution, where κ(A) = λmax(A)

λmin(A)
with

λmax(A) and λmin(A) denoting the largest and the smallest eigenvalues of A, re-
spectively. To discuss the spectral distribution of ATA in (6), we give the singular
value decomposition of the original coefficient matrix A as follow. Notice that all
the matrixes in this paper are full ranked.
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We have the singular value decomposition of A in this form

A = Ûm×nDV̂ T
n×n, D =


σ1

σ2

. . .

σn

 , (7)

where Ûm×n and V̂n×n are both unitary matrices, σi denotes the singular value
that σ1 > σ2 > · · · > σn. From (7), we have

ATA = V̂n×nD
2V̂ T

n×n, (8)

which can be regarded as the eigenvalue decomposition of the coefficient matrix
in the normal equation (6).

If we denote Σ = diag{σ2
1, σ

2
2, · · · , σ2

r}, where r = min(m,n), it could be
easily concluded that the spectral distribution of the coefficient matrix in (6)
is Σ. Therefore, the condition numbers of linear systems can be presented as

κ(ATA) =
σ2
1

σ2
r
. To accelerate the convergence, thereby improve the algorithm, we

expect the condition number to be as small as possible. Therefore, removing the
smallest eigenvalue from the spectrum of the coefficient matrix is purpose of the
preconditioner. Also, we leave the rest unchanged. Such kind of preconditioners
and relevant applications can be located in [8], [9] and [10].

Also, when the property of ill-condition is caused by a few largest eigenval-
ues, we expect a preconditioner, from the similar point of view, to eliminate the
largest eigenvalues from the spectrum in order to accelerate the convergence. A
preconditioner formed by Lanczos bidiagonalization is formulated to change the
largest singular values to one approximately without altering the others, so that
the preconditioner change the corresponding eigenvalues in normal equations. In
the ill-conditioned overdetermined case and the ill-conditioned underdetermined
case, we utilize the preconditioner to speed up the convergence. To illustrate
the effects of the preconditioners proposed in this paper, we utilize two meth-
ods to solve a series of the least squares problems. Of course, we divide every
experiments into two parts, using preconditioner and not using it.

In the following sections, the process of Lanczos bidiagonalization will be
stated in section 2; the preconditioners for solving overdetermined and underde-
termined least squares problems (2) (3) will be defined in section 3; numerical
examples are demonstrated in section 4; conclusions are presented in section 5
finally.

3
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2 The process of Lanczos bidiagonalization

2.1 Standard Lanczos bidiagonalization

Lanczos biorthogonalization, which can be located in [6] [4], is an important
process in methods like LSQR[7], BiCG[11] and BiCGSTAB[12]. A variation of
Lanczos biorthogonalization, formed as

AVn = Un+1B,B =


α1

β2 α2

. . . . . .

βn αn

βn+1

 , (9)

is denoted as Golub-Kahan-Lanczos method [5] , where Vn and Un+1 are both
unitary matrices and we assume A is a matrix of size n×n. One characteristic of
decomposition (9) is that the lower bidiagonal matrix B shares the same singu-
lar values as A’s. Furthermore, we have analyzed and concluded in the previous
section that the singular values distribution of A directly reflects the spectral
distribution of ATA in problems (6). Hence we expect a preconditioner based on
Lanczos bidiagonalization to optimize spectral distributions of system matrices in
least squares problems. Some similar preconditioner based on the Golub-Kahan-
Lanczos bidiagonalization for square coefficient matrixes has been proposed and
applied. For example, inreference[13], the author optimized the spectral distri-
bution of a ill-posed coefficient matrix by a Lanczos-based preconditioner.

However, limited by the dimension of the coefficient matrix in overdetermined
and underdetermined cases, the algorithm will break down when maximal number
of iteration is greater than both row dimension and column dimension. There-
fore, in order to be applied to overdetermined and underdetermined cases, the
standard form of Golub-Kahan-Lanczos method requires modification. To extend
applications of the Lanczos-based preconditioner, we define variants of the pre-
conditioner which can be utilized in overdetermined cases and underdetermined
cases, thereby it is available for least squares problems. At first, we give the
standard algorithm for Golub-Kahan-Lanczos method as stated in [5].

Algorithm 1 Standard Golub-Kahan-Lanczos bidiagonalization
1. β1 = ∥b∥2, u1 =

b
β1
, v0 = 0

2. for i = 1, 2, ..., n
3. pk = ATuk − βkvk−1

4. αk = ∥pk∥2
5. vk =

pk
αk

6. qk = Avk − αkuk

7. βk+1 = ∥qk∥2
8. uk+1 =

qk
βk+1

4
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The α′s and β′s generated in the above algorithm are equal to the ones in
(9), also rows of V and U in (9) are obtained through Algorithm 1 as vk and uk

respectively. Therefore, we could establish the Lanczos bidiagonalization form by
a series of iterations performed according to Algorithm 1, when the coefficient
matrix A is of size n× n.

To define the Lanczos-based preconditioners in overdetermined cases and un-
derdetermined cases, we have to modify algorithm 1, the standard Lanczos bidi-
agonalization process, in order to accommodate the situations that the coefficient
matrices are m-by-n and m ̸= n.

2.2 Modified Lanczos bidiagonalization

The main distinction between the overdetermined, or underdetermined, deter-
mined and square cases is the dimension of the coefficient matrix A. As stated
before, the matrix B, generated by Lanczos bidiagonalization, and A in (9) share
the same singular value distribution. We limit the steps of Lanczos bidiagonal-
izaion process under the minimal number between m and n where A is m-by-n.
We utilize iterative Krylov subspace methods to solve the linear systems (6), with
symmetric positive definite coefficient matrices. Therefore we conclude easily that
the rank of B can not exceed the minimum of m and n. Then, a restrictive con-
dition should be added to the corresponding Lanczos bidiagonalization process
to terminate it in appropriate number of steps.

Different from (9), We set a termination rule that the maximal iteration in
Golub-Kahan-Lanczos bidiagonalization is less or equal to the minimum between
the row dimension and the column dimension toensure that the algorithm will
terminate in appropriate number of steps. Following this rule, we have the bidi-
agonalization decomposition of A in overdetermined situation as

AVn×n = Um×(n+1)Bn, Bn =


α1

β2 α2

. . . . . .

βn αn

βn+1

 , (10)

and the bidiagonalization decomposition of A in underdetermined situation as

AVn×m = Um×(m+1)Bm, Bm =


α1

β2 α2

. . . . . .

βm αm

βm+1

 . (11)

Considering the computational cost of the Lanczos bidiagonalization process,
we try to avoid bidiagonalizing A completely. The preconditioner, mentioned in

5
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the previous section and defined in the next section, is structured for the purpose
of changing the largest singular values to one, in order to optimize the condition
numbers of normal equation (6). Hence, we stop the Lanczos dibiagonalization
process when the current smallest singular value σk, generated in the kth step of
Lanczos dibiagonalization process, is much smaller than the largest one σ1. We set
a scalar number δ to be the threshold of termination, i.e, terminates when σk <
δσ1. If the bidiagonalization process stops at the kth step, the bidiagonalization
composition is of the form below

AVn×k = Um×(k+1)Bk, Bk =


α1

β2 α2

. . . . . .

βk αk

βk+1

 . (12)

M Rezghi set the scalar number δ as the square root of machine precision
in [13] while applying it in ill-conditioned systems derived from blurring images.
Since δ is a scalar to judge whether we should terminate the Lanczos bidiago-
nalization process and the Lanczos bidiagonalization process aims to remove the
largest singular values, the choice of δ has different effects in different numerical
examples. We will present the influence caused the change of δ under differen-
t numerical examples and iterative methods in the section of experiments. In
general ill-conditioned systems, we need not to set δ so small and some cases
will be presented in the 4th section. Here we add the above two restrictive con-
ditions to standard Lanczos bidiagonalization, then we have modified Lanczos
bidiagonalization as following.

Algorithm 2 Modified Lanczos bidiagonalization
1. β1 = ∥b∥2, u1 =

b
β1
, v0 = 0, r = min{m,n}, δ

2. for i = 1, 2, ..., r
3. pk = ATuk − βkvk−1

4. αk = ∥pk∥2
5. vk =

pk
αk

6. qk = Avk − αkuk

7. βk+1 = ∥qk∥2
8. uk+1 =

qk
βk+1

9. get singular values of B: σ1, σ2, · · · , σi

10. if σi < δσ1, break down.
11.end

In this section, we introduced the standard Lanczos bidiagonalization process
in Algorithm 1, and defined the modified Lanczos bidiagonalization process in

6
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Algorithm 2, which is adapted to the overdetermined and the underdetermined
situations. A preconditioner based on modified Lanczos bidiagonalization process
will be introduced and defined in the next section.

3 Lanczos-based preconditioner for least squares

problems

To solve the least squares problems formed as (2) and (3), we solve the cor-
responding linear systems (4) and (5) instead by translating them into normal
equations (6) respectively. If we have the singular value decompositions of A
which are structured as (7), and the singular value distributions are scattered
and wide, that is the largest singular value is much greater than the smallest
one, thereby the condition number of the normal equation (6) will be terribly
greater according to analysis of (8). For the purpose of speeding up the conver-
gence, we expect to optimize, or reduce, the condition number of ATA. Since the

condition number of normal equations (6) could be presented as κ(ATA) =
σ2
1

σ2
r

where σ1 and σr denote the largest and the smallest singular value of A, enlarge-
ment or elimination of the smallest singular values, and decrease or elimination
of the largest singular values are both effective methods to reduce the condition
number. Deflation-based preconditioners, like the deflation preconditioner and
the balancing preconditioner[8, 9, 10], have such characteristics and properties to
eliminate smallest eigenvalues of system matrix. We do not pay much attention
to the preconditioners based on deflation, but the preconditioners functioned for
decreasing, or eliminating, the largest ones are what we concern. In the follow-
ing, all the preconditioners based on Lanczos bidiagonalization are defined for
the overdetermined cases (2) and the underdetermined cases (3).

First we shall discuss the situation of the underdetermined case. In linear sys-
tem (5), the coefficient matrix A has the singular value decomposition illustrated
as (7). We assume a diagonal matrix

Dk = diag{σ1, σ2, · · · , σk},

where σi with i = 1, 2, · · · , k, denotes the first k largest singular values of A. The
Lanczos bidiagonalization process for underdetermined cases within k steps have
been proposed as (12).

On the premise that B, which is structured by Lanczos bidiagonalization,
shares the same singular values with A, we have the following conclusion that:
the Bm derived from (11) has singular value decomposition form as

Bm = Ũ(m+1)×(m+1)

(
D
0

)
(m+1)×m

Ṽ T
m×m,

7
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where D in the above equation is equal to the one in (7), with Ũm+1 and Ṽm×m

both unitary matrices. Similarly, the Bk derived from (12) has singular value
decomposition form as

Bk = Ũk

(
Dk

0

)
Ṽ T
k , (13)

where Dk has been defined at the beginning in this section, with Ũk and Ṽk both
unitary matrices.

When we consider the underdetermined case (11), some deductions are stated
as follow. We use singular value decomposition of B replacing the one in (11)
and we have

AVn×m = Um×(m+1)Ũ(m+1)×(m+1)

(
D
0

)
(m+1)×m

Ṽ T
m×m.

The dimension of matrices are denoted as subscripts in previous sections, and
now the subscripts will be omitted for simplification. Then we postmultiply Ṽ
on both sides and we have

AV Ṽ = UŨ

(
D
0

)
,

Here we set V̄ = V Ṽ = {v̄1, v̄2, · · · , v̄m} and Ū = UŨ = {ū1, ū2, · · · , ūm+1}.
As for equation

AV̄ = Ū

(
D
0

)
,

we regard it as a singular value decomposition of A, similar to (7), approximately.
If we set Ūm = {ū1, ū2, · · · , ūm}, the first m columns of UŨ , we assume that

Ūm = Û

V̄ = V̂

where Û and V̂ are obtained from (7).
Now we focus on the formulation (8). If a matrix is structured as

P = V̄ D−2V̄ T ,

then combining with the previous assumption(V̄ = V̂ ), it gives that

PATA = V̄ D−2V̄ T V̂ D2V̂ T

= V̄ IV̄ T

= I.

It seems that we could have obtained solution directly through the application
of such a preconditioner P . In view of computation, however, it is inadvisable for

8
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the following reasons: 1. the preconditioner P is based on a complete Lanczos
bidiagonalization, so this process has expensive computational cost even no less
than direct methods.; 2. the V̄ is approximately equal to V̂ in practical imple-
ment, but we give the above deduction just in theory, without the consideration of
computational errors. Although we can not utilize the preconditioner P in prac-
tical computation, a variant of P based on incomplete Lanczos bidiagonalization
is defined as follow to solve underdetermined least squares problems.

Here we construct a preconditioner P which is similar with the one mentioned
above with merely replacing Bm(from (11)) by Bk(from (12)). After simple de-
duction, we have

P = V̄

(
D−2

k 0
0 Im−k

)
V̄ T ,

where Dk is from (13). We set V̄k = V Ṽk is the first k columns of V̄ , where Ṽk is
obviously the first k columns of Ṽ . Hence we set V̄ = [V̄k, V̄m−k]. Based on the
definition of V̄ , we have

I = V̄ V̄ T = V̄kV̄
T
k + V̄m−kV̄

T
m−k.

Analyzing the above information, it gives that

P = V̄kD
−2
k V̄ T

k + V̄m−kV̄
T
m−k

= V ṼkD
−2
k Ṽ T

k V T + (Im×m − V̄kV̄
T
k )

= V (BT
k Bk)

−1V T + (Im×m − V V T ).

where V and Bk can both be obtained through Algorithm 2. If we utilize P as a
left preconditioner in normal equation (6) for underdetermined cases (5), we have

PATA = V̂

(
Ik 0
0 D2

m−k

)
V̂ T ,

where Dm−k = diag{σk+1, σk+2, · · · , σm} with σi’s denoting the m − k smallest
singular values.

According to the statement above, we can conclude that the Laczos-based
preconditioner has the property to change k largest singular values of coefficient
matrix A, or k largest eigenvalues of the system matrix in normal equation (6)
in other word, to one without touching the others. The preconditioner is able to
optimize the condition number of normal equation (6) when the ill condition is
caused by these large singular values. Since k ≪ m, the computational cost is
greatly reduced, so is the computational error. The conclusion, furthermore, is
under the premise that the linear system corresponding to least squares problems
is underdetermined, so that

Punder = V (BT
k Bk)

−1V T + (In×n − V V T ) (14)

9
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could be used as a left-preconditioner in underdetermined least squares problems.
Next we consider the overdetermined cases.

In the overdetermined cases, we construct a Lanczos-based preconditioner
that follows the same strategy as stated in the previous subsection. To solve the
overdetermined system (4), we solve the normal equation (6) instead to obtain
approximate solution. Considering the decomposition form (8) of ATA, we expect
to construct a preconditioner, similar to the underdetermined cases, presented as

P = V̂

(
D−2

k 0
0 In−k

)
V̂ T .

Through an analogical deduction to underdetermined cases, a preconditioner
formed as

Pover = V (BT
k Bk)

−1V T + (In×n − V V T ) (15)

can be used as a left-preconditioner in overdetermined least squares problems.
Bk and Vn×k can be obtained from Algorithm 2. Furthermore it is not computa-
tionally costly because of k ≪ n.

From the above discussion, we can see that the forms of the Lanczos-based
preconditioners in over- and under- determined cases are the same, although we
deduced them in separate ways. Also, such a preconditioner for the linear system
with a square coeffcient matrix has the same form. Therefore, we can conclude
that we deduce the preconditioners, proposed in this paper, from the point of
overdetermined and underdetermined cases and ultimately get a result similar
to the one in square problems, which has been proposed in [13]. Of course, the
result of this paper can also be regarded as the expansion of the application of
the Lanczos-based preconditioner into the overdetermined and underdetermined
least squares problems. Now we unify the preconditioner as follow

P = V (BT
k Bk)

−1V T + (I − V V T ), (16)

which can be used as a left preconditioner in ordinary linear systems, overdeter-
mined least squares problems and underdetermined least squares problems. The
relevant numerical experiments are presented in the following section, from which
we can see the effects of Lanczos-based preconditioners.

4 Numerical experiments

In this section, we will take a series of numerical examples to present the effect
of the Lanczos-based preconditioner in the least squares problems. At first, we
introduce two iterative methods as the basic algorithm for solving these under-
determined and overdetermined problems. Here, we choose an old and classic
method as the first one for solving the least squares problems. It is the CGLS

10
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method[3]. In this method, we first transform the least squares problems into
symmetric positive definite(SPD) problems by the normal equations then solve it
by the CG method[16]. Integrating the above ideas, we have the CGLS method.
Now we present the preconditioned CGLS method algorithm 3, where we just
consider the situation of left precondition.

Algorithm 3 Preconditioned CGLS method
1. select x0 as the initial guess, r0 = b− Ax0 and P as the preconditioner
2. initialization: we set r̄0 = AT r0, r̂0 = P r̄0, f0 = z0
2. for i = 0, 1, 2, ...
3. gi = Afi
4. αi = (r̂i, r̄i)/∥gi∥22
5. xi+1 = xi + αifi
6. ri+1 = ri − αigi
8. r̄i+1 = AT ri+1

9. r̂i+1 = P r̄i+1

10. βi = (r̂i+1, r̄i+1)/(r̂i, r̄i)
11. fi+1 = r̂i+1 + βifi
12. endfor

The second method to solve the least squares problems is the BAGMRES
method[14], a variant of the GMRES method[1]. In this method, the least squares
problems will be post-multiplied by a matrix B, an arbitrary nonsingular matrix.
Now we give the BAGMRES method as Algorithm4.

11
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Ex. Group and name id #rows #cols Nonzeros Problem kind
1 JGD Forest/TF10 1944 99 107 622 Combinatorial
2 JGD Forest/TF11 1945 216 236 1607 Combinatorial
3 HB/wm3 277 207 260 2948 Economic
4 Pajek/Sandi sandi 1520 314 360 613 Bipartite graph
5 Meszaros/refine 1759 29 62 153 Linear programming
6 JGD margulies/flower 4 1 2155 121 129 386 Combinatorial

Table 1: The structures of six test underdetermined problems

Algorithm 4 BA-GMRES with k restart
1. select x0 as the initial guess, r0 = B(b− Ax0) and ν1 = r0/∥r0∥2
2. for i = 1, 2, ...,m
3. ωi = BAνi
4. for j = 1, 2, ..., i
5. hj,i = (ωi, νj)
6. ωi = ωi − hj,iνj
7. endfor
8. hi+1,i = ∥ωi∥2
9. νi+1 = ωi/hi+1,i

10. Compute ym to minimize ∥r̂i∥2 = ∥∥r̂0∥2e1 −H iy∥2
11. if ∥ri∥2 < τ
12. xi = x0 + [ν1, ..., νi]yi
13. stop
14. endif
15. endfor
16. set x0 = xk and return to line 2 until convergence

In the following numerical experiments, the examples all come from practical
applications from [17].

All the required information about the underdetermined and overdetermined
cases is contained in Table 1 and Table 2 respectively. They both consist of group,
number of rows, columns and nonzero elements and the type of problem of each
example.

In the next two subsections, we solve the above 12 problems by the PCGLS
method and the BAGMRES method combined with the Lanczos-based precon-
ditioners. Then we change the scalar δ, involving the termination rule of the
modified Lanczos bidiagonalization, and show its influence on the iterative pro-
cess. Because the preconditioner is designed to modify the singular values, the
distributions of singular values under different scalar δ’s will be presented as well.

12
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Ex. Group and name id #rows #cols Nonzeros Problem kind
7 HB/abb313 5 313 176 1557 Least squares
8 JGD margulies/cat ears 3 1 2151 204 181 542 Combinatorial
9 JGD margulies/cat ears 4 1 2153 377 313 938 Combinatorial
10 JGD margulies/flower 5 1 2157 211 201 602 Combinatorial
11 JGD margulies/flower 7 1 2159 463 393 1178 Combinatorial
12 Pajek/Cities 1457 55 46 1342 Weighted bipartite graph

Table 2: The structures of six test overdetermined problems

4.1 The acceleration of iterative processes

To discuss the acceleration of iterative processes, we refer to the PCGLS method
and the BAGMRES method in [14, 4]. For the BAGMRES method, we have the
following relation between the initial residual and the one from the kth iteration
in underdetermined cases,

∥Brk∥2 = ∥CAT rk∥ ≤ 2(
σ1 − σm

σ1 + σm

)k∥Br0∥2, (17)

where C is a nonsingular matrix, κ(C) is the condition number of matrix C and
σ’s denote the singular values of BA. And we have the relation between r0 and
rk as

∥Brk∥2 = ∥CAT rk∥ ≤ 2
√

κ(C)(
σ1 − σn

σ1 + σn

)k∥Br0∥2, (18)

where C is a nonsingular matrix, κ(C) is the condition number of matrix C and
σ’s denote the singular values of BA. More information of the above conclusion
can be found in [14]. Now we give the convergence analysis of the PCGLS method,
that is

∥ek∥A ≤ 2(
σ1 − σr

σ1 + σr

)k∥e0∥A, (19)

where r = min(m,n) and σ’s denoting the singular values of PATA.
Based on equation (17), (18) and (19), it is obvious that we can accelerate the

convergence if the gap between the largest singular value of normal equations and
the smallest one is narrowed. In this paper, the Lanczos-based preconditioner is
just for resetting the largest singular values to one, which can be regarded as
shrink of the singular value distribution. Now, the effect of the Lanczos-based
preconditioner in underdetermined cases is shown from Figure 1 to Figure 6.

In the numerical experiments, we set the tolerance tol = 10−12, the maximal
number of iteration maxit = 1000 and the restarted number in the BAGMRES
method restart = 600. Furthermore, the scalar δ upon which to terminates the

13
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uals vs iterations in
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uals vs iterations in
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uals vs iterations in
flower 4 1
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Figure 7: Relative resid-
uals vs iterations in
abb313
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Figure 8: Relative resid-
uals vs iterations in
itercat ears 4 1
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Figure 9: Relative resid-
uals vs iterations in
itercat ears 3 1
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Figure 10: Relative
residuals vs iterations in
iterflower 5 1
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Figure 11: Relative
residuals vs iterations in
iterflower 7 1
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Figure 12: Relative
residuals vs iterations in
itercities

Lanczos bidiagonalization process is 0.05 in the test. We set B = PAT in the pre-
conditioned BAGMRES method and B = AT in the nonpreconditioned BAGM-
RES method. From Figure 1 to Figure 6, we can see that both the BAGMRES
method and the PCGLS method are accelerated by the Lanczos-based precon-
ditioner as we expected. Next we show the iterative process while solving the
overdetermined problems.

Figure 7 to Figure 12 present the results of experiments with the tolerance
tol = 10−12, the maximal number of iteration max it = 1000 and the restarted
number in the BAGMRES method restart = 600. The scalar δ upon which to
terminate the Lanczos bidiagonalization process is 0.05 in the test. Similarly,
we set B = PAT in the preconditioned BAGMRES method and B = AT in the
nonpreconditioned BAGMRES method. In Figure 7 to Figure 12, it is obvious
that Lanczos-based preconditioners also accelerate the iterative processes in these
overdetermined problems, so we think the proconditioner proposed in this paper
is helpful to optimize the structure of coefficient matrix thereby accelerate the
convergence. Moreover, all the numerical examples here are derived from practical
applications. We believe, therefore, the Lanczos preconditioner has the result as
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Figure 13: The distribu-
tion of singular values in
TF10
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Figure 14: The iterative
process of BAGMRE in
TF10
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Figure 15: The itera-
tive process of PCGLS
in TF10
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Figure 16: The distribu-
tion of singular values in
TF11
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Figure 17: The iterative
process of BAGMRE in
TF11
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Figure 18: The itera-
tive process of PCGLS
in TF11

we expected.

4.2 The influence of the scalar δ

Referring to the illustration above, we have known that the scalar δ is used as
a termination rule during the implementation of the Lanczos bidiagonalization
process. By the definition of scalar δ, the smaller the δ is, the more large singular
values will be replaced by one. It means that we can narrow the distribution
of singular values. In the following experiments, we set the scalar δ to three
different values and take TF10 and TF11 as the underdetermined examples. We
test the distributions of the coefficient matrix of corresponding normal equations,
the iterative process of the BAGMRES method and the PCGLS method. The
results of TF10 and TF11 with varying scalar δ are presented in Figure13-15 and
Figure 16-18 respectively.

As for the overdetermined cases, we take abb313 as the first numerical exam-
ples. The singular values distribution and iterative processes of this example are
illustrated by Figure 19-21.
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Figure 19: The distribu-
tion of singular values in
abb313

0 20 40 60 80 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration
re

la
tiv

e 
re

si
du

al

bagmres

 

 

Large Delta
Middle Delta
Small Delta
Original

Figure 20: The iterative
process of BAGMRE in
abb313
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Figure 21: The itera-
tive process of PCGLS
in abb313
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Figure 22: The distribu-
tion of singular values in
cat ears 4 1
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Figure 23: The iterative
process of BAGMRE in
cat ears 4 1
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Figure 24: The itera-
tive process of PCGLS
in cat ears 4 1

Similarly, the singular value distribution and iterative process regarding to
different δ of the example cat ears 4 1 are presented in Figure 22-24.

In the above twelve figures, we classify the δ into three classes: the large delta,
the middle delta and the small delta. The different δ stand for different precondi-
tioners, upon which we denote the corresponding singular value distribution and
iterative process by colorful points and lines. Theoretically, the small delta is
able to reset most largest singular values while the large delta reset least largest
singular values. Furthermore, required data of the experiments is presented in
Table 3 and Table 4, in which k stands for the step of the Lanczos bidiagonaliza-
tion process, iterBAGMRES and iterPCGLS represent the number of iterations of
the BAGMRES method and the PCGLS method, respectively.

From Figure 13, Figure 16, Figure 19 and Figure 22, we can observe that the
preconditioner with smaller δ indeed narrows the singular value distribution bet-
ter than the ones led by larger δ. However, we fail to replace the largest singular
values by one, although the improvement has brought us better convergence that
is shown in Figure 14-15, Figure 17-18, Figure 20-21 and Figure 23-24. Through
Table 3 and Table 4, we can also find that the number of iterations decreases

17
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Example TF10

k iterBAGMRES iterPCGLS

Nonprec 99 333
δ = 0.8 2 99 340
δ = 0.3 6 97 314
δ = 0.05 22 83 250
Example TF11

k iterBAGMRES iterPCGLS

Nonprec 216 1000
δ = 0.8 2 216 995
δ = 0.3 5 216 972
δ = 0.05 24 200 872

Table 3: The information along with the change of scalar δ in underdetermined
cases TF10 and TF11

Example abb313

k iterBAGMRES iterPCGLS

Nonprec 101 165
δ = 0.8 2 101 159
δ = 0.3 5 98 152
δ = 0.05 24 80 112
Example cat ears 4 1

k iterBAGMRES iterPCGLS

Nonprec 125 136
δ = 0.8 2 124 135
δ = 0.3 5 121 130
δ = 0.05 40 86 90

Table 4: The information along with the change of scalar δ in underdetermined
cases abb313 and cat ears 4 1

obviously while the δ decreasing. In small-scale problem, the Lanczos-based pre-
conditioner can reset the largest singular values closer to one than in large-scale
problems, which is easy to testify by a simple numerical deduction. We suppose
that the reason why the preconditioner fails to reset the largest singular values to
one, just decreasing them instead, is the accumulation of calculation errors and
the assumption

Ūm = Û

V̄ = V̂ .

From another experiment, the matrix B constructed in Lanczos bidiagonalization

18
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process has approximately equal singular values with coefficient matrix A. Merely
focusing on the numerical value, the gap between the singular values of B and A
may be underestimated and even ignored. Nevertheless, the gap will be enlarged
when we assume the above equalities without considering the calculation errors.
In the above experiments, we can also notice that the different δ influence the
iterative process distinctly in different method so the perturbation analysis of
the Lanczos-based preconditioner may give us a theoretical explanation of the
difference between the theory and the numerical experiment. This supposition is
remained to be testified in the future work.

5 Conclusions

To the overdetermined and the underdetermined least squares problems, we
choose the BA-GMRES method and the PCGLS method to solve them respec-
tively. Variants of the Lanczos bidiagonalization process are defined in the sit-
uation that coefficient matrices are not square, and the algorithm of modified
Lanczos bidiagonalization is illustrated as conclusion. When we suffer from the
ill-conditioned system matrices, the preconditioners based on modified Lanczos
bidiagonalization, P structured for the overdetermined cases and the underdeter-
mined cases respectively, are imposed on iterative Krylov subspace methods to
accelerate convergence. Finally we prove our statements with numerical experi-
ments and conclude that the preconditioner defined in this paper is effective to
solve least squares problems in overdetermined and underdetermined cases.

Acknowledgements. This research is supported by NSFC (61370147, 61170309),
973 Program (2013CB329404).
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Abstract

In this paper, the exact closed-form solutions of the Prandtl’s boundary layer

equation for radial flow models with uniform or vanishing mainstream velocity

are derived by using the (G′/G)−expansion method. Many new exact solu-

tions are found for the boundary layer equation, which are expressed by the

hyperbolic, trigonometric and rational functions. The solutions are valid for

all values of the parameter β. It is shown that the (G′/G)−expansion method

is effective and can be used for many other nonlinear differential equations of

mathematical physics.

Keywords : (G′/G)−Expansion method; Prandtl’s boundary layer equation; Exact

solutions
1Corresponding author: E-mail : Masood.Khalique@nwu.ac.za (C.M. Khalique); Tel : +27 18

389 2009; Fax : +27 18 389 2052

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

31 Taha Aziz et al 31-41



1 Introduction

Many real world problems in nonlinear science associated with mechanical, struc-

tural, aeronautical, ocean, electrical, and control systems can be summarized as

solving nonlinear differential equations which arise from mathematically modelling

such problems. Therefore, the study of nonlinear differential equations has been

an active area of research for the past few years. Investigating integrability and

finding exact solutions to such nonlinear differential equations have extensive ap-

plications in many scientific fields such as hydrodynamics, fluid dynamics, general

relativity, condensed matter physics, solid-state physics, nonlinear optics, neurody-

namics, fibre-optic communication and so on. These exact solutions, if reported are

helpful for the numerical analyst to verify the complex numerical codes and are also

useful in stability analysis for solving special nonlinear models.

In recent years, much attention has been devoted to the development of several

powerful and useful methods for finding exact and approximate solutions of non-

linear differential equations. These research methods for solving nonlinear differen-

tial equations include the bilinear method and multilinear method [1], classical Lie

symmetry method [2], nonclassical Lie group approach [3], Clarkson-Kruskal’s di-

rect method [4], deformation mapping method [5], homogenous balance method [6],

Weierstrass elliptic function expansion method [7], F -expansion method [8], trans-

formed rational function method [9], auxiliary equation method [10], sine–cosine

method [11], tanh-function method [12], Backlund transformation method [13], sim-

plest equation method [14, 15], exponential function rational expansion method [16]

and so forth.

Prandtl [17] initiated the concept of a boundary layer in large Reynolds number

flows in 1904 and he also showed how the Navier-Stokes equation could be sim-

plified to yield approximate solutions. Prandtl introduced boundary layer theory

to understand the flow behavior of a viscous Newtonian fluid near a solid bound-

ary. Prandtl’s boundary layer equations arise in various physical models of fluid

mechanics. The equations of the boundary layer theory have been the subject of

considerable interest, since they represent an important simplification of the original

Navier-Stokes equations. These equations arise in the study of steady flows produced

by wall jets, free jets and liquid jets, the flow past a stretching plate/surface, flow
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induced due to a shrinking sheet and so on. These boundary layer equations are

usually solved subject to specific boundary conditions depending upon the physical

model investigation. Blasius [18] solved the Prandtl’s boundary layer equations for

a flat moving plate problem and found a power series solution of the model. Falkner

and Skan [19] generalized the Blasius problem by considering the boundary layer

flow over an wedge inclined at certain angle. Sakiadis [20] studied the boundary

layer flow over a continuously moving rigid surface with a constant speed. Crane

[21] was the first one who investigated the boundary layer flow due to a stretching

surface and developed the exact solutions of boundary layer equations. Gupta and

Gupta [22] extended the Crane’s work and for the first time introduced the concept

of heat transfer with the stretching sheet boundary layer flow. Schlichting [23] was

the first to apply the boundary layer theory to the steady flow produced by a free

two-dimensional jet emerging into a fluid at rest and solved the resulting ordinary

differential equation numerically. Later, Bickley [24] solved the differential equation

analytically. The concept of the boundary layer to laminar jets is discussed fully in

standard texts on boundary layer theory such as by Schlichting [25] and Rosenhead

[26]. More recently, the similarity solution of axisymmetric non-Newtonian wall jet

with swirl effects was obtained by Kolar [27]. Naz et al. [28] and Mason [29] stud-

ied the general boundary layer equations for two-dimensional and radial flows by

using the classical Lie group approach and recently Naz et al. [30] provided the

similarity solutions of the Prandtl’s boundary layer equations by implementing the

non-classical symmetry method.

The (G′/G)−expansion method is a powerful mathematical tool for finding exact so-

lutions of certain nonlinear ordinary differential equations. The (G′/G)−expansion

method was introduced by Wang in [31] for constructing the exact solutions of some

nonlinear evolution equations. To express the applicability and effectiveness of the

(G′/G)−expansion method, further research has been accomplished by a diverse

group of researchers (see, for example, papers [32 − 34] ). The importance of our

present work is to find some new class of exact closed-form solutions of Prandtl’s

boundary layer equation for radial flow models with constant or uniform main stream

velocity by employing the (G′/G)−expansion method.
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2 Mathematical model

The Prandtl’s boundary layer equation, for the stream function φ(r, θ), for radial

flow with uniform or vanishing mainstream velocity is [26]

1

r

∂φ

∂θ

∂2φ

∂r∂θ
− 1

r2

(
∂φ

∂θ

)2

− 1

r

∂φ

∂r

∂2φ

∂θ2
− ν ∂

3φ

∂θ3
= 0, (1)

where (r, θ) denote the cylindrical polar coordinates and ν is the kinematic viscosity.

The velocity components u(r, θ) and v(r, θ), in the r and θ directions, are related to

stream function φ(r, θ) as

u(r, θ) =
1

r

∂φ

∂θ
, v(r, θ) = −1

r

∂φ

∂r
. (2)

By the use of Lie group theoretic method of infinitesimal transformations [2], the

general form of similarity solution for equation (1) is

φ(r, θ) = r2−βH(ξ), ξ =
θ

rβ
, (3)

where β is the constant determined from further conditions and ξ = θ/rβ is the

similarity variable. By the substitution of Eq. (3) into Eq. (1), we obtain the

third-order nonlinear ordinary differential equation in H(ξ), viz.,

ν
d3H

dξ3
+ (2− β)H

d2H

dξ2
+ (2β − 1)

(
dH

dξ

)2

= 0. (4)

Equation (4) is the general form of Prandtl’s boundary layer equation for radial flow

of a viscous incompressible fluid. The boundary layer equation is usually solved sub-

ject to certain boundary conditions depending upon the particular physical model

under investigation. Here, we find the exact closed-form solutions of Eq. (4) using

the (G′/G)−expansion method. The paper is organised as follows. In Section 3, we

provide a brief summary of the (G′/G)−expansion method. In Sections 4, we apply

this method to solve nonlinear Prandtl’s boundary layer equation for radial flow.

Finally, some concluding remarks are presented in Section 5.
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3 A description of the (G′/G)−expansion method

In this section, we present a brief summary of the (G′/G)−expansion method for

solving nonlinear ordinary differential equations. The essence of the (G′/G)−expansion

method is given in the following steps:

Step 1: We consider a general form of a nonlinear ordinary differential equation

P

[
U(z),

dU

dz
,
d2U

dz2
,
d3U

dz3
, ...

]
= 0, (5)

where U is an unknown function of z and P is a polynomial in U and its various

derivatives.

Step 2: According to the (G′/G)−expansion method, one assumes that the solution

of ODE (5) can be written as a polynomial in (G′/G) as follows:

U(z) =
M∑
i=0

βi

(
G′

G

)i
, (6)

where G = G(z) satisfies the second-order linear ODE with constant coefficients,

namely
d2G

dz2
+ λ

dG

dz
+ µG = 0, (7)

with βi (i = 0, 1, 2, ...,M), λ and µ being constants to be determined. The inte-

ger M is found by considering the homogenous balance between the highest order

derivatives and nonlinear terms appearing in ODE (5).

Step 3: The positive integer M can be accomplished by considering the homoge-

neous balance between the highest order derivatives and nonlinear terms appearing

in Eq. (5) as follows:

If we define the degree of U(z) as D[U(z)] = M , then the degree of other expressions

is defined by

D

[
dqU(z)

dzq

]
= M + q,

D

[
U r

(
dqU(z)

dzq

)s]
= Mr + s(q +M). (8)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

35 Taha Aziz et al 31-41



Therefore, we can get the value of M in Eq. (6).

Step 4: We substitute Eq. (6) into Eq. (5) and then use ODE (7) to collect all terms

with same order of (G′/G) together. The left-hand side of (5) is then converted into

polynomial in (G′/G). Now by equating each coefficient of this polynomial to zero,

we obtain a system of algebraic equations for βi, λ and µ.

Step 5: Since the three types of general solutions of Eq. (7) are well known, we

substitute the values of βi and the general solutions of Eq. (7) into Eq. (6) and

obtain three types of solutions of the ODE (5).

4 Application of the (G′/G)−expansion method

In this section, we employ the (G′/G)−expansion method to obtain solutions of

Prandtl’s boundary layer Eq. (4).

We assume that the solutions of Eq. (4) are of the form

H(ξ) =
M∑
i=0

Ai

(
G′(ξ)

G(ξ)

)i
, (9)

where G(ξ) satisfies the second-order linear ODE with constant coefficients, viz.,

d2G

dξ2
+ λ

dG

dξ
+ µG = 0 (10)

with λ and µ being constants.

The balancing procedure yields M = 1, so the solution of the ODE (4) is of the form

H(ξ) = A0 + A1

(
G′(ξ)

G(ξ)

)
. (11)

Now substituting Eq. (11) into Eq. (4), making use of the ODE (10), collecting all

terms with same powers of (G′/G) and equating each coefficient to zero, yields the
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following system of algebraic equations:

2βA2
1µ

2 − βA0A1λµ− A1λ
2µν + 2A0A1λµ− 2A1µ

2ν − A2
1µ

2 = 0,

3βA2
1λµ− βA0A1λ

2 − 2βA0A1µ− A1λ
3ν + 2A0A1λ

2 − 8A1λµν + 4A0A1µ = 0,

βA2
1λ

2 − 3βA0A1λ+ 2βA2
1µ− 7A1λ

2ν + A2
1λ

2 + 6A0A1λ− 8A1µν + 2A2
1µ = 0,

βA2
1λ− 2βA0A1 − 12A1λν + 4A2

1λ+ 4A0A1 = 0,

3A2
1 − 6A1ν = 0.

Solving this system of algebraic equations, with the aid of Mathematica, we obtain

λ = 2
√
µ, A0 = λν, A1 = 2ν. (12)

Substituting these values of A0, A1 and the corresponding solution of ODE (4) into

Eq. (11), we obtain the following three types of solutions of Eq. (1):

Case 1: When λ2 − 4µ > 0

For this case we obtain the hyperbolic function solution given by

H(ξ) = λν + 2ν

(
−λ

2
+ δ

C1 sinh(δξ) + C2 cosh(δξ)

C1 cosh(δξ) + C2 sinh(δξ)

)
, (13)

where δ = 1
2

√
λ2 − 4µ, C1 and C2 are arbitrary constants.

Reverting back to the original variables (r, θ), the corresponding stream function is

given by

φ(r, θ) = r2−β

[
λν + 2ν

(
−λ

2
+ δ

C1 sinh
(
δ θ
rβ

)
+ C2 cosh

(
δ θ
rβ

)
C1 cosh

(
δ θ
rβ

)
+ C2 sinh

(
δ θ
rβ

))] . (14)

Case 2: When λ2 − 4µ < 0

Here we obtain the trigonometric function solution

H(ξ) = λν + 2ν

(
−λ

2
+ ε
−C1 sin(εξ) + C2 cos(δξ)

C1 cos(εξ) + C2 sin(εξ)

)
, (15)
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where ε = 1
2

√
4µ− λ2, C1 and C2 are arbitrary constants. The corresponding stream

function is given as

φ(r, θ) = r2−β

[
λν + 2ν

(
−λ

2
+ ε
−C1 sin

(
ε θ
rβ

)
+ C2 cos

(
ε θ
rβ

)
C1 cos

(
ε θ
rβ

)
+ C2 sin

(
ε θ
rβ

) )] . (16)

Case 3: When λ2 − 4µ = 0

For this case we obtain the rational function solution

H(ξ) = λν + 2ν

(
−λ

2
+

C2

C1 + C2ξ

)
. (17)

In the form of stream function, the solution is expressed as

φ(r, θ) = r2−β

[
λν + 2ν

(
−λ

2
+

C2

C1 + C2
θ
rβ

)]
, (18)

where C1 and C2 are arbitrary constants.

5 Concluding remarks

We have employed the (G′/G)-expansion method for obtaining exact closed-form

solutions of the well-known Prandtl’s boundary layer equation for radial flow models

with uniform main stream velocity. The advantage of this method is that in this

method, there is no need to apply the initial and boundary conditions at the outset.

This method yields a general solution with free parameters which can be identified

by the specific conditions. Also the general solutions obtained by (G′/G)-expansion

method are not approximate solutions. Prandtl’s boundary layer equations arise

in various physical models of fluid dynamics and thus the exact solutions obtained

maybe very useful and significant for the explanation of some practical physical

models dealing with Prandtl’s boundary layer theory.
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On properties of meromorphic solutions for a certain

q-difference Painlevé equation

Xiu-Min Zheng1∗, Hong-Yan Xu2 and Hua Wang3

Abstract

The main purpose of this paper is to investigate some properties on transcen-
dental meromorphic solutions of a certain q-difference Painevé equation

f(qz) + f(z) + f(
z

q
) =

az + b

f(z)
+ c,

where a, b and c are complex constants such that |a| + |b| 6= 0. We obtain some
results on the value distribution of f(z) and ∆qf(z) := f(qz)− f(z) , and the non-
existence of rational solutions, which extend some earlier results by Qi and Yang,
Chen et al.
Key words: q-difference equation; solution; zero order.
Mathematical Subject Classification (2010): 39A 50, 30D 35.

1 Introduction and Main Results

In this paper, we shall assume that readers are familiar with the basic theorems and the
standard notations of the Nevanlinna value distribution theory of meromorphic functions
such as m(r, f), N(r, f), T (r, f), · · · , (see Hayman [12], Yang [19] and Yi and Yang [20]).
We also use S(r, f) to denote any quantity satisfying S(r, f) = o(T (r, f)) for all r on
a set F ⊂ [1,+∞ of logarithmic density 1, where the logarithmic density of a set F is
defined by

lim sup
r→∞

1
log r

∫

[1,r]∩F

1
t
dt.

Throughout this paper, the set F of logarithmic density 1 can be not necessarily the
same at each occurrence.

A century ago, Painlevé and his colleagues [15] classified all equations of Painlevé
type of the form

w′′(z) = F (z;w;w′),

where F is rational in w and w′ and (locally) analytic in z. They singled out a list of
50 equations, six of which could not be integrated in terms of known functions. These
equations are now known as the differential Painlevé equations. The first two of these
equations are PI and PII :

w′′ = 6w2 + z, w′′ = 2w2 + zw + α,

where α is a complex constant.
∗Corresponding author. E-mail: zhengxiumin2008@sina.com.
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Differential Painlevé equations have been an important research subject in the field
of the Mathematics and the Physics since the beginning of last century. They occur in
many physical situations—-plasma physics, statistical mechanics, nonlinear waves, and
so on. Therefore, Painlevé equations have attracted much interest as the reduction of
solution equations which are solvable by inverse scattering transformations, and so on.

In the past 22 years, the discrete Painlevé equations have become important research
problems (see [7]). For example, the discrete PI equation can be expressed by

yn+1 + yn−1 =
an + b

yn
+ c,

and the discrete PII equation can be expressed by

yn+1 + yn−1 =
(an + b)yn + c

1− y2
n

,

where a, b, c are real constants, n ∈ N.
In 2006-2007, Halburd and Korhonen used the analogues of Nevanlinna value distri-

bution theory to single out the difference Painlevé I and II equations from the following
form

w(z + 1) + w(z − 1) = R(z, w), (1)

where R(z, w) is rational in w and meromorphic in z (see [9, 10, 11]). They obtained
that if (1) has an admissible meromorphic solution of finite order, then either w satisfies
a difference Riccati equation, or (1) can be transformed by a linear change in w to some
difference equations, which include the difference Painlevé I equation

w(z + 1) + w(z − 1) =
az + b

w(z)
+ c, (2)

and the difference Painlevé II equation

w(z + 1) + w(z − 1) =
(az + b)w(z) + c

1− w(z)2
, (3)

where a, b, c are complex constants.
Chen et al [4, 5, 16] studied some properties of finite order transcendental meromor-

phic solutions of (2)-(3), and obtained a lot of interesting results.
Recently, there were lots of results about q-difference operators, q-difference equations,

and so on (see [2, 6, 8, 18, 21, 22]), by applying the analogue of Logarithmic Derivative
Lemma on q-difference operators, which was firstly established by Barnett, Halburd,
Korhonen and Morgan [1] in 2007. By comparing these results of differences and q-
differences, we find that the usual shift f(z + c) of a meromorphic function are replaced
by the q-difference f(qz), and the difference ∆cf = f(z + c) − f(z) are replaced by
∆qf(z) = f(qz)− f(z), q ∈ C\{0, 1}.

In 2015, Qi and Yang [17] investigated the following equations

f(qz) + f(
z

q
) =

az + b

f(z)
+ c, (4)

f(qz) + f(
z

q
) =

(az + b)f(z) + c

1− f(z)2
, (5)

which can be seen as q-difference analogues of (2) and (3), and obtained some theorems
as follows.
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Theorem 1.1 [17, Theorem 1.1]. Let f(z) be a transcendental meromorphic solution
with zero order of equation (4), and a, b, c be three constants such that a, b cannot vanish
simultaneously. Then,

(i) f(z) has infinitely many poles.
(ii) If a 6= 0, then f(z) has infinitely many finite values.
(iii) If a = 0 and f(z) takes a finite value A finitely often, then A is a solution of

2z2 − cz − b = 0.

Theorem 1.2 [17, Theorem 1.2]. Let a, b, c and |q| 6= 1 be four constants, (i) if a 6= 0,
then equation (4) has no rational solution;

(ii) if a = 0, then the rational solutions of the equation (4) must satisfy f(z) =
B+ P (z)

Q(z) , where P (z) and Q(z) are relatively prime polynomials and satisfy deg P < deg Q

and 2z2 − cz − b = 0.

Theorem 1.3 [17, Theorem 1.3]. Let a, b, c be constants with ac 6= 0, and f(z) be a
transcendental meromorphic solution with zero order of equation (5). Then f(z) has
infinitely many poles and infinitely many finite values.

Inspired by the above results, we further investigate some properties of transcendental
meromorphic solutions of the q-difference Painlevé equation

f(qz) + f(z) + f(
z

q
) =

az + b

f(z)
+ c, (6)

which is different from (4) and (5) to some extent, and obtain the following theorems.

Theorem 1.4 Let a, b, c be complex constants such that |a|+ |b| 6= 0, and f(z) be a zero-
order transcendental meromorphic solution of the q-difference Painlevé equation (6).

(i) If a 6= 0, p(z) is a polynomial of degree k(≥ 0) and |q| 6= 1, then f(z) − p(z) has
infinitely many zeros; if a = 0, then the Borel exceptional values of f(z) can only come
from the set E = {z| 3z2 − cz − b = 0};

(ii) f(z) and ∆qf(z) have infinitely many poles, where ∆qf(z) = f(qz)− f(z).

Theorem 1.5 Let a, b, c be complex constants such that |a|+ |b| 6= 0.
(i) If a 6= 0, then (6) has no rational solution.
(ii) If a = 0, then (6) has a nonzero constant solution f(z) = B, where B satisfies

3B2 − cB − b = 0. Furthermore, if c2 + 12b = 0, then (6) has no nonconstant rational
solution.

2 Some Lemmas

To prove our results, we require some lemmas as follows.

Lemma 2.1 [14, Theorem 2.5] Let f(z) be a transcendental meromorphic solution of
order zero of a q-difference equation of the form

Uq(z, f)Pq(z, f) = Qq(z, f),

where Uq(z, f), Pq(z, f) and Qq(z, f) are q-difference polynomials such that the total de-
gree deg Uq(z, f) = n in f(z) and its q-shifts, whereas deg Qq(z, f) ≤ n. Moreover,
we assume that Uq(z, f) contains just one term of maximal total degree in f(z) and its
q-shifts. Then

m(r, Pq(z, f)) = o(T (r, f)),

on a set of logarithmic density 1.
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Remark 2.1 The above lemma can be called see as a type of a q-difference analogue of
Clunie lemma, recently proved by Barnett et al.; see [1, Theorem 2.1].

Remark 2.2 Here, a q-difference polynomial of f(z) for q ∈ C\{0, 1} is a polynomial
in f(z) and finitely many of its q-shifts f(qz), . . . , f(qnz) with meromorphic coefficients
in the sense that their Nevanlinna characteristic functions are o(T (r, f)) on a set of
logarithmic density 1.

Lemma 2.2 [1, Theorem 2.5] Let f(z) be a nonconstant zero-order meromorphic solu-
tion of Pq(z, f) = 0, where Pq(z, f) is a q-difference polynomial in f(z). If Pq(z, a) 6≡ 0
for slowly moving target a(z), then

m(r,
1

f − a
) = o(T (r, f))

on a set of logarithmic density 1.

Lemma 2.3 [21, Theorem 1.1 and 1.3] Let f(z) be a nonconstant zero-order meromor-
phic function and q ∈ C \ {0}. Then

T (r, f(qz)) = (1 + o(1))T (r, f), N(r, f(qz)) = (1 + o(1))N(r, f),

on a set of lower logarithmic density 1.

Lemma 2.4 (Valiron-Mohon’ko) ([13]). Let f(z) be a meromorphic function. Then for
all irreducible rational functions in f(z),

R(z, f(z)) =
∑m

i=0 ai(z)f(z)i

∑n
j=0 bj(z)f(z)j

,

with meromorphic coefficients ai(z), bj(z), the characteristic function of R(z, f(z)) sat-
isfies that

T (r,R(z, f(z))) = dT (r, f) + O(Ψ(r)),

where d = max{m,n} and Ψ(r) = maxi,j{T (r, ai), T (r, bj)}.

3 Proof of Theorem 1.4

Suppose that f(z) is a zero-order transcendental meromorphic solution of (6).
(i) Ifa 6= 0, and p(z) is a polynomial of degree k(≥ 0). Let p(z) = akzk +· · ·+a1z+a0.

Let g(z) = f(z)− p(z). Substituting f(z) = g(z) + p(z) into equation (6), we have

g(qz) + p(qz) + g(z) + p(z) + g(
z

q
) + p(

z

q
) =

az + b

g(z) + p(z)
+ c.

It follows that

Pq(z, g) :=
[
g(qz) + p(qz) + g(z) + p(z) + g(

z

q
) + p(

z

q
)
]

[g(z) + p(z)]

− (az + b)− c [g(z) + p(z)] = 0. (7)

From (7), we have

Pq(z, 0) =
[
p(qz) + p(z) + p(

z

q
)
]

p(z)− (az + b)− cp(z). (8)
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If p(z) ≡ 0, then Pq(z, 0) = −(az + b) 6≡ 0. If k = 0 and p(z) = a0 ≡ α ∈ C \ {0},
then Pq(z, 0) = 3α2 − (az + b)− cα 6≡ 0. If k ≥ 1 and ak is a nonzero constant, then, we
have from (8) that

Pq(z, 0) =
[
p(qz) + p(z) + p(

z

q
)
]

p(z)− (az + b)− cp(z) = (qk +1+
1
qk

)a2
kz2k + · · · . (9)

Since |q| 6= 1, we have qk + 1 + 1
qk 6= 0, then Pq(z, 0) 6≡ 0. Thus, we have by Lemma 2.2

that
m(r,

1
g
) = S(r, g).

Then, we get

N

(
r,

1
f − p

)
= N

(
r,

1
g

)
= T (r, g) + S(r, g) = T (r, f) + S(r, f). (10)

Since f(z) is transcendental, f(z)− p(z) has infinitely many zeros.
If a = 0 and p(z) = β 6∈ E, then we have

Pq(z, 0) = 3β2 − cβ − b 6≡ 0.

Set g(z) = f(z) − β, by using the same argument as above, we can obtain N(r, 1
f−β ) =

T (r, f)+S(r, f).. Therefore, we can obtain that the Borel exceptional values of f(z) can
only come from the set E = {z|3z2 − cz − b = 0}.

(ii) From (6), we have

f(z)
[
f(qz) + f(z) + f(

z

q
)
]

= az + b + cf(z). (11)

It follows from Lemma 2.1 and (11) that

m

(
r, f(qz) + f(z) + f(

z

q
)
)

= S(r, f). (12)

By applying Lemma 2.4 for (6), we have

T

(
r, f(qz) + f(z) + f(

z

q
)
)

= T (r, f) + S(r, f). (13)

And by Lemma 2.3 we get

N

(
r, f(qz) + f(z) + f(

z

q
)
)
≤ N(r, f(qz)) + N(r, f(z)) + N

(
r, f(

z

q
)
)

= 3(1 + o(1))N(r, f) (14)

on a set of lower logarithmic density 1. Thus, by combining (12)-(14), we have

T (r, f) ≤ 3(1 + o(1))N(r, f) + S(r, f). (15)

Since f(z) is transcendental, f(z) has infinitely many poles.
Next, we prove that ∆qf(z) has infinitely many poles. Set z = qw, then we can

rewrite (6) as the form

f(q2w) + f(qw) + f(w) =
aqw + b

f(qw)
+ c. (16)
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Then it follows from (16) that

f(qw)
[
f(q2w) + f(qw) + f(w)

]
= aqw + b + cf(qw). (17)

Since ∆qf(w) = f(qw)−f(w), we have f(qw) = ∆qf(w)+f(w) and f(q2w) = ∆qf(qw)+
∆qf(w) + f(w). Substituting them into (17), we get

[∆qf(w) + f(w)] [∆qf(qw) + 2∆qf(w) + 3f(w)] = (aqw + b) + c [∆qf(w) + f(w)] ,

i.e.,

−3f(w)2 = [∆qf(qw) + 5∆qf(w)− c] f(w)− (aqw + b)
+ [∆qf(qw) + 2∆qf(w)− c]∆qf(w). (18)

Since f(z) is a zero-order transcendental meromorphic function and z = qw, by Lemma
2.3, we get that f(w) is of zero order. Thus, by Lemma 2.3 again, we have that
f(w),∆qf(w),∆qf(qw) are of zero-order. Then by Lemma 2.3 again, we have

N(r,∆qf(qw)) ≤ N(r,∆qf(w)) + S(r, f). (19)

Thus, from (18) and (19) we have

2N(r, f(w)) =N (r, [∆qf(qw) + 3∆qf(w)− c] f(w)− (aqw + b)
+ [∆qf(qw) + ∆qf(w)− c]∆qf(w)

≤N(r, f(w)) + 5N(r,∆qf(w)) + O(log r) + S(r, f).

That is,
N(r, f(w)) ≤ 5N(r,∆qf(w)) + S(r, f). (20)

Then, it follows from (15) and (20) that

T (r, f(w)) ≤ 15N(r,∆qf(w)) + S(r, f). (21)

Since f(z) is transcendental, that is, f(w) is transcendental, we have from (21) that
∆qf(w) has infinitely many poles, that is, ∆qf(z) has infinitely many poles.

Therefore, we complete the proof of Theorem 1.4.

4 Proof of Theorem 1.5

Sppose that f(z) is a nonzero rational solution of (6), and has poles z1, z2, . . . , zk. Then,
we let

αisi

(z − zi)si
+ · · ·+ αis1

(z − zi)
, i = 1, 2, . . . , k

be the principal parts of f(z) at zi respectively, where αisi
6= 0, . . . , αis1 are constants,

Thus, we can write f(z) as the following form

f(z) =
k∑

i=1

(
αisi

(z − zi)si
+ · · ·+ αis1

(z − zi)

)
+ β0 + β1z + · · ·+ βmzm, (22)

where β0, β1, . . . , βm are constants.
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Next, we affirm that βm = · · · = β1 = 0. Suppose that βm 6= 0(m ≥ 1). For
sufficiently large z, by (22), we have

f(z) = βmzm(1 + o(1)), (23)
f(qz) = βmqmzm(1 + o(1)), (24)

f(
z

q
) = βmq−mzm(1 + o(1)). (25)

By (6), we have [
f(qz) + f(z) + f(

z

q
)
]

f(z) = az + b + cf(z). (26)

Substituting (23)-(25) into (26), we have

(1 + qm + q−m)β2
mz2m(1 + o(1)) = az + b + cβmzm(1 + o(1)).

Since |q| 6= 1, we have 1 + qm + q−m 6= 0. And since βm 6= 0, we can see the above
equation is a contradiction for sufficiently large z. Hence we have β1 = · · · = βm = 0.

(i) Suppose that a 6= 0. If β0 6= 0, then for sufficiently large z, by (23)-(25), we have

f(qz) = f(z) = f(
z

q
) = β0 + o(1). (27)

Substituting (27) into (26), we conclude that

(3β0 + o(1))(β0 + o(1)) = az + b + c(β0 + o(1)),

which is a contradiction to the assumption that a 6= 0. Thus, β0 = 0. Then we have
β0 = β1 = · · · = βm = 0. Thus, f(z) can be rewritten by (22) as

f(z) =
P (z)
R(z)

, (28)

where

P (z) = pzk + pk−1z
k−1 + · · ·+ p0, R(z) = rzt + rt−1z

t−1 + · · ·+ r0, (29)

where p, pk−1, . . . , p0 and r, rt−1, . . . , r0 are constants such that pr 6= 0 and k < t. Then
substituting (28) into (6), we have

P (qz)P (z)R(z)R(
z

q
) + P (z)2R(qz)R(

z

q
) + P (

z

q
)P (z)R(qz)R(z)

= (az + b)R(qz)R(z)2R(
z

q
) + cP (z)R(qz)R(z)R(

z

q
). (30)

Then since k < t, we can see that the degree of the left side of (30) does not exceed
2k +2t, and the degree of the right side of (30) is equal to 1 +4t by a 6= 0. Thus, we can
get a contradiction. Therefore, we have that (6) has no nonzero rational solution when
a 6= 0.

(ii) Suppose that a = 0. If f(z) = B is a nonzero constant solution of (6), we can
easily get from (6) that B satisfies 3B2 − cB − b = 0. Now, we prove that (6) has no
rational solution if a = 0 and c2 + 12b = 0. Suppose that f(z) is a nonconstant rational
solution of (6). Since βm = 0(m ≥ 1), f(z) can be rewritten as the form (28), where
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P (z) and R(z) satisfy (29) with k ≤ t. Suppose that k < t. Substituting (28) into (6),
we have

P (qz)P (z)R(z)R(
z

q
) + P (z)2R(qz)R(

z

q
) + P (

z

q
)P (z)R(qz)R(z)

= bR(qz)R(z)2R(
z

q
) + cP (z)R(qz)R(z)R(

z

q
). (31)

If k < t, then it follows from (31) that there exists only one term bR(qz)R(z)2R( z
q ) with

maximal degree, which is a contradiction. Thus, we have k = t. Then, it follows by (29)
and (30) that

pqkzk + pk−1q
k−1zk−1 + · · ·+ p0

rqtzt + rt−1qt−1zt−1 + · · ·+ r0
+

pzz + pk−1z
k−1 + · · ·+ p0

rzt + rt−1zt−1 + · · ·+ r0

+
pq−kzk + pk−1q

−(k−1)zk−1 + · · ·+ p0

rq−tzt + rt−1q−(t−1)zt−1 + · · ·+ r0

=
b(rzt + rt−1z

t−1 + · · ·+ r0)
pzk + pk−1zk−1 + · · ·+ p0

+ c. (32)

Then it follows from (32) that
3B2 − cB − b = 0,

as z →∞, where B = p
r 6= 0. Therefore, f(z) can be rewritten as

f(z) = B +
G(z)
H(z)

, (33)

where G(z) and H(z) are relatively prime polynomials and satisfy deg G(z) = µ <
deg H(z) = ν, B is a constant satisfying 3B2 − cB − b = 0. Denote

G(z) = ξzµ + ξµ−1z
µ−1 + · · ·+ ξ0, H(z) = ηzν + ην−1z

ν−1 + · · ·+ η0, (34)

where ξ, ξµ−1, . . . , p0 and η, ην−1, . . . , η0 are constants such that ξη 6= 0. Substituting
(34) into (6) and noting 3B2 − cB − b = 0, we have

(4B − c)G(z)H(qz)H(z)H(
z

q
) + BG(qz)H(z)2H(

z

q
) + BG(

z

q
)H(z)2H(qz)

=−G(qz)G(z)H(z)H(
z

q
)−G(z)2H(qz)H(

z

q
)−G(

z

q
)G(z)H(z)H(qz). (35)

By observing the coefficients and degrees of all terms of the above equation, and com-
bining with ν > µ, we have that the term with maximal degree of (35) is

[
(4B − c) + Bqµ−ν + Bqν−µ

]
ξη3zµ+3ν .

Since 3B2 − cB − b = 0 and c2 + 12b = 0, we have B = c
6 . And by |q| 6= 1, we can get

that (4B − c) + Bqµ−ν + Bqν−µ 6= 0. In fact, if (4B − c) + Bqµ−ν + Bqν−µ = 0, i.e.

B =
c

4 + qµ−ν + qν−µ
.

Then, we have
c

4 + qµ−ν + qν−µ
=

c

6
.

By solving the above equation, we get |q| = 1, a contradiction. Thus, (35) is a contra-
diction for sufficiently large z. Therefore, if a = 0 and c2 + 12b = 0, then (6) has no
nonconstant rational solution.
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ified two-step iteration process to the fixed point of asymptotically demicontractive
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1 Introduction

Let K be a nonempty subset of a real Banach space X and X∗ be its dual space. We

denote by J the normalized duality mapping from X into 2X∗

defined by

J(x) = {f∗ ∈ X∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2},

where 〈·, ·〉 denotes the generalized duality pairing. If X is strictly convex, then J is

single-valued. In the sequel, we shall denote the single-valued duality mapping by j.

Let T : K → K be a mapping.

∗Corresponding author
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Definition 1.1. T is called a k-strictly asymptotically pseudo-contractive mapping with

sequence {kn} ⊂ [1,∞), limn→∞ kn = 1 if for all x, y ∈ K there exists j(x− y) ∈ J(x− y)

and a constant k ∈ [0, 1) such that

〈(I − T n)x − (I − T n)y, j(x− y)〉

≥
1

2
(1 − k) ‖(I − T n)x − (I − T n)y‖2 −

1

2
(k2

n − 1) ‖x − y‖2
(1.1)

for all n ∈ N.

Definition 1.2. T is called an asymptotically demicontractive mapping with sequence

{kn} ⊂ [0,∞), limn→∞ kn = 1 if F (T ) = {x ∈ K : Tx = x} 6= ∅ and for all x ∈ K and

x∗ ∈ F (T ), there exists k ∈ [0, 1) and j(x− x∗) ∈ J(x − x∗) such that

〈x − T nx, j(x− x∗)〉 ≥
1

2
(1− k) ‖x − T nx‖2 −

1

2
(k2

n − 1) ‖x − x∗‖2 (1.2)

for all n ∈ N.

Definition 1.3. T : K → K is called uniformly L-Lipschitizian if there exists a constant

L > 0 such that

‖T nx − T ny‖ ≤ L ‖x − y‖ , (1.3)

for all x, y ∈ K and n ∈ N.

The classes of k-strictly asymptotically pseudo-contractive and asymptotically demi-

contractive mappings are introduced by Liu [3]. It is easy to see that a k-strictly asymptot-

ically pseudo-contrative mapping with a non-empty fixed point set F (T ) is asymptotically

demicontractive.

In Hilbert spaces, it is shown in [3] that (1.1) and (1.2) are equivalent to the following

inequalities:

‖T nx − T ny‖ ≤ k2
n ‖x − y‖2 + k ‖(I − T n)x − (I − T n)y‖2

and

‖T nx − T ny‖2 ≤ k2
n ‖x − y‖2 + ‖x − T nx‖2

,

respectively.

By using the modified Mann iteration method [4] introduced by Schu [7], Liu [3] proved

a convergence theorem for the iterative approximation of fixed points of k-strictly asymp-

totically pseudo-contractive mappings and asymptotically demicontractive mappings in

Hilbert spaces.

Osilike [6] extended the results of Liu [3] about the iterative approximation of fixed

points of k-strictly asymptotically demicontractive mappings from Hilbert spaces to much

more general real q-uniformly smooth Banach spaces, 1 < q < ∞ and specifically proved

the following results.

2
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Theorem 1.4. Let q > 1 and X be a real q-uniformly smooth Banach space. Let K

be a closed convex and bounded subset of X and T : K → K a completely continuous

uniformly L-Lipschitizian asymptotically demicontractive mapping with a sequence kn ⊂

[1,∞) satisfying
∑∞

n=1(k
2
n − 1) < ∞. Let {αn} and {βn} be real sequences satisfying the

conditions

(i) 0 ≤ αn, βn ≤ 1, n ≥ 1;

(ii) 0 < ε ≤ cqα
q−1
n (1+ Lβn)q ≤ 1

2q(1− k)(1 + L)−(q−2) − ε for all n ≥ 1 and for some

ε > 0; and

(iii)
∑∞

n=1 βn < ∞.

Then the sequence {xn} generated from an arbitrary x1 ∈ K by

{

yn = (1 − βn)xn + βnT nxn,

xn+1 = (1 − αn)xn + αnT nyn, n ≥ 1

converges strongly to a fixed point of T .

Remark 1.5. For Hilbert spaces, in Theorem 1.4, if we put q = 2, cq = 1 and βn = 0,

then Theorems 1 and 2 of Liu [3] follow.

Recently Chidume and Mǎruşter [1] made a comprehensive and very useful survey on

the main convergence properties of the modified Mann iteration method for the demicon-

tractive mappings.

The purpose of this work is to prove necessary and sufficient conditions for the strong

convergence of the modified two-step iteration process to the fixed point of asymptotically

demicontractive mappings in real Banach spaces. Our results extend and improve the

results of Igbokwe [2], Liu [3], Moore and Nnoli [5].

2 Main results

The following results are useful:

Lemma 2.1. ([8]) For all %, ς ∈ X and j(% + ς) ∈ J(% + ς),

‖% + ς‖2 ≤ ‖%‖2 + 2Re 〈ς, j(% + ς)〉 .

Lemma 2.2. ([2]) Let X be a normed space and K be a nonempty convex subset of X . Let

T : K → K be uniformly L-Lipschitzian mapping and let {tn} and {βn} be the sequences

in [0, 1]. For arbitrary %1 ∈ K, generate the sequence {%n} by

{

%n+1 = (1− tn)%n + tnT nςn,

ςn = (1− βn)%n + βnT n%n, n ≥ 1.

Then

‖%n − T%n‖ ≤ ‖%n − T n%n‖+ L(1 + L)2
∥

∥%n−1 − T n−1%n−1

∥

∥ . (2.1)

We now prove our main results.

3
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Lemma 2.3. Let X be a real Banach space and K be a nonempty convex subset of X .

Let T : K → K be an uniformly L−Lipschitzian asymptotically demicontractive mapping

with a sequence {kn} ⊂ [1,∞) such that limn→∞ kn = 1. For arbitrary %1 ∈ K, generate

the sequence {%n} by

{

%n+1 = (1− tn)%n + tnT nςn,

ςn = (1− βn)%n + βnT n%n, n ≥ 1,
(2.2)

where {tn} and {βn} are the sequences in [0, 1] satisfying

(i)
∑∞

n=1 tn = ∞,

(ii) limn→∞ tn = 0 = limn→∞ βn.

Then (a) the sequence {%n} is bounded,

(b) lim infn→∞ ‖%n+1 − T n%n+1‖ = 0,

(c) lim infn→∞ ‖%n − T n%n‖ = 0,

(d) lim infn→∞ ‖%n − T%n‖ = 0.

Proof. Since T is asymptotically demicontractive, then

〈% − T n%, j(%− %∗)〉 ≥
1

2
(1− k) ‖% − T n%‖2 −

1

2
(k2

n − 1) ‖% − %∗‖2

and hence

‖% − T n%‖ ≤

√

(2 ‖% − T n%‖+ (k2
n − 1) ‖% − %∗‖) ‖% − %∗‖

1 − k
.

Therefore, by the triangle inequality,

‖% − %∗‖ 6 ‖T n% − %∗‖ +

√

(2 ‖% − T n%‖+ (k2
n − 1) ‖% − %∗‖) ‖% − %∗‖

1− k
. (2.3)

Now we shall prove that

lim inf
n→∞

‖%n+1 − T n%n+1‖ = 0.

If %n = T%n for all n > m for some m ∈ N, then (2.3) trivially holds, as we have

‖%n+1 − T n%n+1‖ = ‖%n+1 − T nT%n+1‖ =
∥

∥%n+1 − T n+1%n+1

∥

∥

= 0

for all n ≥ m.

Suppose now that there exists the smallest positive integer n0 such that %n0
6= T%n0

.

Put
a0 := ‖T n0%n0

− %∗‖

+

√

(

2 ‖%n0
− T n0%n0

‖ + (k2
n0

− 1) ‖%n0
− %∗‖

)

‖%n0
− %∗‖

1 − k
+ 1.

Then clearly

‖%n0
− %∗‖ ≤ a0. (2.4)

4
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To prove that lim infn→∞ ‖%n+1 − T n%n+1‖ = 0, we shall assume, to the contrary, that

lim infn→∞ ‖%n+1 − T n%n+1‖ = 2δ > 0. Then there exists n′
0 ∈ N such that ‖%n+1 − T n%n+1‖ >

δ for all n ≥ n′
0.

Also, by limn→∞ kn = 1 and (ii), we may suppose that

tn ≤ min

{

1

1 + 2L
,

(1− k)δ2

24(1 + L)(1 + 2L)a2
0

}

,

βn ≤ min

{

1

1 + L
,

(1− k)δ2

24L(1 + L)a2
0

}

,

k2
n − 1 ≤

(1− k)δ2

24a2
0

(2.5)

for all n ≥ n′
0.

We now show that the sequence {%n} is bounded. By induction we shall show that

‖%n − %∗‖ 6 a0 (2.6)

for all n ≥ n′
0.

It is clear that (2.6) holds for n = n0. Assume it is true for some n > N := max{n0, n
′
0},

that is, ‖%n − %∗‖ ≤ a0 for some n ≥ N . Then

‖%n − T n%n‖ ≤ ‖%n − %∗‖ + ‖T n%n − %∗‖

≤ (1 + L) ‖%n − %∗‖

≤ (1 + L)a0,

‖ςn − %∗‖ = ‖(1 − βn)%n + βnT n%n − %∗‖

= ‖%n − %∗ − βn(%n − T n%n)‖

≤ ‖%n − %∗‖ + βn ‖%n − T n%n‖

≤ a0 + (1 + L)a0βn

≤ 2a0,

‖%n − T nςn‖ ≤ ‖%n − %∗‖ + ‖T nςn − %∗‖

≤ ‖%n − %∗‖ + L ‖ςn − %∗‖

≤ (1 + 2L)a0,

and

‖%n+1 − %∗‖ = ‖(1 − tn)%n + tnT nςn − %∗‖

= ‖%n − %∗ − tn(%n − T nςn)‖

≤ ‖%n − %∗‖ + tn ‖%n − T nςn‖

≤ a0 + (1 + 2L)a0tn

≤ 2a0.

(2.7)

5
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On the other hand, by Lemma 2.1,

‖%n+1 − %∗‖2 = ‖(1− tn)%n + tnT nςn − %∗‖2

= ‖%n − %∗ − tn(%n − T nςn)‖2

≤ ‖%n − %∗‖2 − 2tn 〈%n − T nςn, j(%n+1 − %∗)〉

= ‖%n − %∗‖2 − 2tn 〈%n+1 − T n%n+1, j(%n+1 − %∗)〉

+ 2tn 〈T
nςn − T n%n+1, j(%n+1 − %∗)〉+ 2tn 〈%n+1 − %n, j(%n+1 − %∗)〉 .

Since T is asymptotically demicontractive mapping, we obtain

‖%n+1 − %∗‖2 ≤ ‖%n − %∗‖2 − (1 − k)tn ‖%n+1 − T n%n+1‖
2

+
(

k2
n − 1

)

tn ‖%n+1 − %∗‖2

+ 2(1 + L)tn ‖%n+1 − %n‖ ‖%n+1 − %∗‖

+ 2Ltn ‖ςn − %n‖ ‖%n+1 − %∗‖ .

(2.8)

Consider the following estimates,

‖ςn − %n‖ = ‖(1 − βn)%n + βnT n%n − %n‖

= βn ‖%n − T n%n‖

≤ (1 + L)a0tn,

and
‖%n+1 − %n‖ = ‖(1 − tn)%n + tnT nςn − %n‖

= tn ‖%n − T nςn‖

≤ (1 + 2L)a0tn,

so that (2.8), takes the form

‖%n+1 − %∗‖2 ≤ ‖%n − %∗‖2 − (1 − k)tn ‖%n+1 − T n%n+1‖
2

+
(

k2
n − 1

)

tn ‖%n+1 − %∗‖2

+ 2(1 + L)(1 + 2L)a0t
2
n ‖%n+1 − %∗‖

+ 2L(1 + L)a0tnβn ‖%n+1 − %∗‖ .

Then, by (2.5),

‖%n+1 − %∗‖2 ≤ ‖%n − %∗‖2 − (1− k)δ2tn

+ 4a2
0

[(

k2
n − 1

)

+ (1 + L)(1 + 2L)tn + L(1 + L)βn

]

tn

≤ ‖%n − %∗‖2 − (1− k)δ2tn +
1

2
(1 − k)δ2tn

and hence

‖%n+1 − %∗‖2
6 ‖%n − %∗‖2 −

1

2
(1 − k)δ2tn. (2.9)

Thus ‖%n+1 − %∗‖ ≤ ‖%n − %∗‖ ≤ a0 and so we proved (2.6). Therefore, we proved (a).

6
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From (2.9) we have that for every r > N ,

1

2
(1 − k)δ2

r
∑

n=N

tn ≤
r

∑

n=N

(‖%n − %∗‖2 − ‖%n+1 − %∗‖2)

≤ ‖%N − %∗‖2
.

Hence we have
∑∞

n=1 tn < ∞, a contradiction with the condition (i). Therefore, our

assumption δ > 0 was wrong. Thus

lim inf
n→∞

‖%n+1 − T n%n+1‖ = 0. (2.10)

Therefore, we proved (b).

Now according to Lemma 2.1, substituting % = u + v and ς = −v, we obtain

‖u + v‖2 ≥ ‖u‖2 + 2 〈v, j(u)〉 ,

which is mainly due to Igbokwe [2].

By (2.2) we have

‖%n+1 − T n%n+1‖
2 = ‖(1− tn)%n + tnT nςn − T n%n+1‖

2

= ‖%n − T n%n − tn (%n − T nςn) − (T n%n+1 − T n%n)‖2
.

(2.11)

Then by (2.11) we get

‖%n+1 − T n%n+1‖
2 ≥ ‖%n − T n%n‖

2

− 2 〈tn (%n − T nςn) + (T n%n+1 − T n%n) , j(%n − T n%n)〉 .

Thus

‖%n − T n%n‖
2 ≤ ‖%n+1 − T n%n+1‖

2

+ 2 〈tn (%n − T nςn) + (T n%n+1 − T n%n) , j(%n − T n%n)〉

≤ ‖%n+1 − T n%n+1‖
2

+ 2 ‖tn (%n − T nςn) + (T n%n+1 − T n%n)‖ ‖%n − T n%n‖ .

(2.12)

Further,

‖tn (%n − T nςn) + (T n%n+1 − T n%n)‖ ≤ tn ‖%n − T nςn‖ + ‖T n%n+1 − T n%n‖

≤ (1 + 2L)a0tn + L ‖%n+1 − %n‖

≤ (1 + 2L)a0tn + L(1 + 2L)a0tn

= (1 + L) (1 + 2L) a0tn.

Therefore, from (2.12), we get

‖%n − T n%n‖
2 ≤ ‖%n+1 − T n%n+1‖

2 + 2 (1 + L)2 (1 + 2L)a2
0tn. (2.13)

From (2.13), (ii) and (b),

lim inf
n→∞

‖%n − T n%n‖ = 0. (2.14)

Thus we proved (c).

At last, from (2.14) and Lemma 2.2, we obtain (d). This completes the proof.

7
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Theorem 2.4. Let X be a real Banach space and K be a nonempty convex subset of X .

Let T : K → K be an uniformly L-Lipschitzian asymptotically demicontractive mapping

with a sequence {kn} ⊂ [1,∞) such that limn→∞ kn = 1. For arbitrary %1 ∈ K, generate

the sequence {%n} by

{

%n+1 = (1− tn)%n + tnT nςn,

ςn = (1− βn)%n + βnT n%n, n ≥ 1,

where {tn} and {βn} are the sequences in [0, 1] satisfying

(i)
∑∞

n=1 tn = ∞,

(ii) limn→∞ tn = 0 = limn→∞ βn.

If T is completely continuos, then {%n} converges strongly to some fixed point of T in

K.

Proof. From Lemma 2.3, lim infn→∞ ‖%n − T%n‖ = 0. Therefore, there exists a subse-

quence {%nj
} of {%n} such that limj→∞

∥

∥%nj
− T%nj

∥

∥ = 0. Since {%nj
} is bounded and T is

completely continuous, then {T%nj
} has a subsequence {T%njk

}, which converges strongly.

Hence {%njk
} converges strongly. Let limk→∞ %njk

= p. Then limk→∞ T%njk
= Tp. Thus

we have limk→∞
∥

∥%njk
−T%njk

∥

∥ = ‖p − Tp‖ = 0. Hence p ∈ F (T ). From (2.9) and Lemma

2.3 it follows that limn→∞ ‖%n − p‖ = 0. This completes the proof.

Remark 2.5. 1. We generalize the results of Liu [3] from Hilbert spaces to more general

Banach spaces. Moreover the boundedness assumption on the subset K is removed.

2. One can see that, with
∑∞

n=1 tn = ∞, the condition
∑∞

n=1 t2n < ∞ is not always

true. Let us take tn = 1√
n
. Then obviously

∑∞
n=1 tn = ∞, but

∑∞
n=1 t2n = ∞. Hence the

results of Igbokwe [2] are need to be improve.

3. We improve the results of Moore and Nnoli [5] by removing the conditions like

lim infn→∞ d(%n, F (T )) = 0.
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projections in the framework of Hilbert spaces.
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1. Introduction

A very common problem in diverse areas of mathematics and physical sciences consist
of finding a solution which satisfies certain constraints. This problem is referred to as the
convex feasibility problem. It can be described as follows: Suppose C1, C2, · · · , Cr, where
r is some positive integer, are finitely many nonempty convex closed subset of a Hilbert
space H with C = ∩ri=1 6= ∅. The convex feasibility problem is to find a point in C. In
the real world, many important problems have reformulations which require finding fixed
points of some nonlinear operators, for instance, evolution equations, complementarity
problems, mini-max problems, variational inequalities and zero point problems; see [1-13]
and the references therein.

In this paper, we are concerned with the problem of finding a common solution of fixed
point and inclusion problems. Many nonlinear problems arising in applied areas such as
image recovery, signal processing, and machine learning are mathematically modeled as
this problem. One of the most popular methods for solving inclusion problems goes back
to the work of Browder [14]. The basic ideas is to reduce inclusion problems to fixed
point problems of nonlinear operators. In this paper, we study a regularization method
for two monotone and a nonexpansive mappings. The organization of this paper is as
follows. In Section 2, we provide some necessary preliminaries. In Section 3, a viscosity
approximation method is introduced. A strong convergence theorem of common solutions
is established. In Section 4, applications of the main results are discussed.

2. Preliminaries

In what follows, we always assume that H is a real Hilbert space with inner product 〈·, ·〉
and norm ‖ ·‖. Let C be a nonempty, convex and closed subset of H. Let S : C → C be a
mapping. Fix(S) stands for the fixed point set of S; that is, Fix(S) := {x ∈ C : x = Sx}.
Recall that S is said to be κ-contractive iff there exists a constant κ ∈ (0, 1) such that

∗Corresponding author.
E-mail address: qxlxajh@163.com
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2 B. A. BIN DEHAISH, H. O. BAKODAH, A. LATIF, X. QIN

‖Sx− Sy‖ ≤ κ‖x− y‖, ∀x, y ∈ C. It is well known that every contractive mapping has a
unique fixed point in metric spaces. The Picard iterative algorithm xn+1 = Sxn converge
to the fixed point of S. S is said to be nonexpansive iff ‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.
If C is a bounded, closed, and convex subset of H, then F (S) is not empty; see [15] and
the references therein. Since the nonexpansivity of S, the Picard iterative algorithm may
not converge to fixed points of S. The Mann iterative algorithm is powerful and efficient
to study fixed points of nonexpansive mappings. However, in infinite dimensional spaces,
the Mann iterative algorithm is only weak convergence. To obtain strong convergence
of the Mann iterative algorithm, different regularization methods have been investigated
recently; see [16]-[29] and the references therein.

Let A : C → H be a mapping. Recall that A is said to be monotone iff 〈Ax−Ay, x−y〉 ≥
0, ∀x, y ∈ C. Recall that A is said to be inverse-strongly monotone iff there exists a
constant α > 0 such that 〈Ax − Ay, x − y〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ C. For such a
case, A is also said to be α-inverse-strongly monotone. It is not hard to see that every
inverse-strongly monotone mapping is monotone and continuous. Recall that a set-valued
mapping B : H ⇒ H is said to be monotone iff, for all x, y ∈ H, f ∈ Bx and g ∈ By
imply 〈x− y, f − g〉 ≥ 0. In this paper, we use B−1(0) to stand for the zero point of B. A
monotone mapping B : H ⇒ H is maximal iff the graph Graph(B) of B is not properly
contained in the graph of any other monotone mapping. It is known that a monotone
mapping B is maximal if and only if, for any (x, f) ∈ H ×H, 〈x− y, f − g〉 ≥ 0, for all
(y, g) ∈ Graph(B) implies f ∈ Bx. For a maximal monotone operator B on H, and r > 0,
we may define the single-valued resolvent Jr : H → Dom(B), where Dom(B) denote the
domain of B. It is known that Jr is firmly nonexpansive, and B−1(0) = F (Jr).

In this paper, we study fixed points of nonexpansive mappings and zero points of two
monotone mappings based on a viscosity approximation method. Strong convergence
theorems are established in the framework of Hilbert spaces. The results obtained in this
paper mainly improve the corresponding results in [23]-[29]. In order to prove our main
results, we also need the following lemmas.

Lemma 2.1 [30] Let {an} be a sequence of nonnegative numbers satisfying the condition
an+1 ≤ (1− tn)an + tnbn + cn, ∀n ≥ 0, where {tn} is a number sequence in (0, 1) such that
limn→∞ tn = 0 and

∑∞
n=0 tn =∞, {bn} is a number sequence such that lim supn→∞ bn ≤ 0,

and {cn} is a positive number sequence such that
∑∞

n=0 cn <∞. Then limn→∞ an = 0.

Lemma 2.2. [31] Let C be a nonempty convex closed subset of a real Hilbert space H.
Let A : C → H be an α-inverse-strongly monotone mapping and let B be a maximal
monotone operator on H. Then (A+B)−1(0) = F (Jr(I − rA)).

Lemma 2.3. [32] Let H be a Hilbert space, and A an maximal monotone operator. For

λ > 0, µ > 0, and x ∈ E, we have Jλx = Jµ

((
1− µ

λ

)
Jλx+ µ

λ
x
)
, where Jλ = (I + λA)−1

and Jµ = (I + µA)−1.

Lemma 2.4. [14] Let C be a nonempty convex closed subset of a real Hilbert space H.
Let T be a nonexpansive mapping on C. Then I − T is demiclosed at origin.

3. Main results

Theorem 3.1. Let C be a nonempty convex closed subset of a real Hilbert space H.
Let A : C → H be an α-inverse-strongly monotone mapping and let B be a maximal
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monotone operator on H. Let S be a fixed κ-contraction and let T be a nonexpansive
mapping on C. Assume Dom(B) ⊂ C and (A + B)−1(0) ∩ Fix(T ) 6= ∅. Let {αn} be a
real number sequence in (0, 1) and let {rn} be a positive real number sequence in (0, 2α).
Let {xn} be a sequence in C in the following process: x0 ∈ C, yn = αnSxn + (1−αn)Txn,
xn+1 ≈ (I+rnB)−1(yn−rnAyn), ∀n ≥ 0. Let the criterion for the approximate computation
of xn+1 be ‖xn+1− (I+ rnB)−1(yn− rnAyn)‖ ≤ en, where

∑∞
n=1 en <∞. Assume that the

control sequences {αn} and {rn} satisfy the following restrictions:
∑∞

n=1 |rn− rn−1| <∞,
limn→∞ αn = 0,

∑∞
n=0 αn = ∞,

∑∞
n=1 |αn − αn−1| < ∞, and 0 < r ≤ rn ≤ r′ < 2α,

where r and r′ are two real numbers. Then {xn} converges strongly to a point x̄ ∈
(A+B)−1(0) ∩ Fix(T ), where x̄ = Proj(A+B)−1(0)∩Fix(T )Sx̄.

Proof. First, we show that {xn} and {yn} are bounded sequences. Using the restrictions
imposed on {rn}, one see that I − rnA is nonexpansive. Indeed, we have

‖(I − rnA)x− (I − rnA)y‖2

≤ ‖x− y‖2 − rn(2α− rn)‖Ax− Ay‖2

≤ ‖x− y‖2.

That is, ‖(I − rnA)x − (I − rnA)y‖ ≤ ‖x − y‖. Fixing p ∈ (A + B)−1(0) ∩ Fix(T ), we
find that

‖yn − p‖ ≤ αn‖Sxn − p‖+ (1− αn)‖Txn − p‖
≤ αn‖Sxn − p‖+ (1− αn)‖xn − p‖
≤
(
1− αn(1− κ)

)
‖xn − p‖+ αn‖Sp− p‖.

Hence, we have

‖xn+1 − p‖ ≤ ‖en‖+ ‖(I + rnB)−1(yn − rnAyn)− p‖
≤ en + ‖(yn − rnAyn)− (I − rnA)p‖

≤ en +
(
1− αn(1− κ)

)
‖xn − p‖+ αn(1− κ)

‖Sp− p‖
1− κ

≤ max{‖xn − p‖,
‖Sp− p‖

1− κ
}+ en

...

≤ max{‖x0 − p‖,
‖Sp− p‖

1− κ
}+

∞∑
i=0

ei <∞.

This proves that the sequence {xn} is bounded, so is {yn}. Notice that

‖yn − yn−1‖ ≤
(
1− αn(1− κ)

)
‖xn − xn−1‖+ |αn − αn−1|‖Sxn−1 − xn−1‖.

Setting zn = yn − rnAyn, one further has

‖zn − zn−1‖ ≤ ‖yn − yn−1‖+ ‖rn − rn−1‖‖Ayn−1‖
≤
(
1− αn(1− κ)

)
‖xn − xn−1‖+ |rn − rn−1|‖Ayn−1‖

+ |αn − αn−1|‖Sxn−1 − xn−1‖.
(3.1)
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Putting Jrn = (I + rnB)−1, it follows from Lemma 2.3 that

‖xn+1 − xn‖

≤ en + en−1 + ‖Jrn−1zn−1 − Jrn−1

(rn−1
rn

zn + (1− rn−1
rn

)Jrnzn
)
‖

≤ en + en−1 + ‖(1− rn−1
rn

)(Jrnzn − zn−1) +
rn−1
rn

(zn − zn−1)‖

≤ en + en−1 +
|rn − rn−1|

rn
‖zn − Jrnzn‖+ ‖zn − zn−1‖,

which implies from (3.1) that

‖xn+1 − xn‖

≤ en + en−1 +
|rn − rn−1|

rn
‖zn − Jrnzn‖+

(
1− αn(1− κ)

)
‖xn − xn−1‖

+ |rn − rn−1|‖Ayn−1‖+ |αn − αn−1|‖Sxn−1 − xn−1‖
≤
(
1− αn(1− κ)

)
‖xn − xn−1‖+ en + en−1

+ |rn − rn−1|
(
‖Ayn−1‖+

‖Jrnzn − zn‖
rn

)
+ |αn − αn−1|‖Sxn−1 − xn−1‖.

From the restrictions imposed on the control sequences, we have
∞∑
n=1

(
en+en−1 + |rn−rn−1|

(
‖Ayn−1‖+

‖Jrnzn − zn‖
rn

)
+ |αn−αn−1|‖Sxn−1−xn−1‖

)
<∞.

Using Lemma 2.1, we find limn→∞ ‖xn+1 − xn‖ = 0. Since ‖ · ‖2 is convex, we have
‖yn − p‖2 ≤ αn‖Sxn − p‖2 + (1− αn)‖xn − p‖2, from which it follows that

‖xn+1 − p‖2

≤ ‖(yn − rnAyn)− (p− rnAp)‖2 + 2en‖(I + rnB)−1(yn − rnAyn)− p‖+ e2n

≤ ‖yn − p‖2 − rn(2α− rn)‖Ayn − Ap‖2 + 2en‖(I + rnB)−1(yn − rnAyn)− p‖+ e2n

≤ αn‖Sxn − p‖2 + (1− αn)‖xn − p‖2 − rn(2α− rn)‖Ayn − Ap‖2

+ 2en‖(I + rnB)−1(yn − rnAyn)− p‖+ e2n.

This implies that

rn(2α− rn)‖Ayn − Ap‖2 ≤ αn‖Sxn − p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2en‖(I + rnB)−1(yn − rnAyn)− p‖+ e2n.

Hence, we have

lim
n→∞

‖Ayn − Ap‖ = 0. (3.2)

Put λn = (I + rnB)−1(yn − rnAyn). Since (I + rnB)−1 is firmly nonexpansive, one has

‖λn − p‖2 ≤ 〈(yn − rnAxn)− (p− rnAp), λn − p〉

≤ 1

2

(
‖yn − p‖2 + ‖λn − p‖2 − ‖yn − λn − rn(Ayn − Ap)‖2

)
≤ 1

2

(
‖yn − p‖2 + ‖λn − p‖2 − ‖yn − λn‖2 + 2rn‖λn − yn‖‖Ayn − Ap‖

)
.
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It follows that

‖xn+1 − p‖2 ≤ e2n + αn‖Sxn − p‖2 + ‖xn − p‖2 − ‖yn − λn‖2

+ 2rn‖λn − yn‖‖Ayn − Ap‖+ 2en‖λn − p‖.
Hence, we have

‖yn − λn‖2 ≤ e2n + αn‖Sxn − p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2rn‖λn − yn‖‖Ayn − Ap‖+ 2en‖λn − p‖.
Using the restrictions imposed on the control sequences and (3.2), we arrive at

lim
n→∞

‖yn − λn‖ = 0. (3.3)

Note that ‖xn−Txn‖ ≤ ‖xn−xn+1‖+‖λn− yn‖+‖yn−Txn‖+ en. This finds from (3.3)
limn→∞ ‖xn − Txn‖ = 0.

Next, we show that
lim sup
n→∞

〈Sx̄− x̄, yn − x̄〉 ≤ 0, (3.4)

where x̄ is the unique fixed point of the mapping Proj(A+B)−1(0)∩Fix(T )S. To show this
inequality, we choose a subsequence {yni

} of {yn} such that lim supn→∞〈Sx̄− x̄, yn− x̄〉 =
limi→∞〈Sx̄− x̄, yni

− x̄〉 ≤ 0, Since {yni
} is bounded, there exists a subsequence {ynij

} of

{yni
} which converges weakly to x̂. Without loss of generality, we assume that yni

⇀ x̂.
Since ‖xn − yn‖ ≤ ‖xn − xn+1‖ + ‖λn − yn‖ + en, one has xni

⇀ x̂. Using Lemma 2.4,
one has x̂ ∈ Fix(T ). Since yn − rnAyn ∈ λn + rnBλn, that is, yn−λn−rnAyn

rn
∈ Bλn. Let

µ ∈ Bν. Since B is monotone, we find that 〈yn−λn
rn
− µ − Ayn, λn − ν〉 ≥ 0. Hence, one

has 0 ≤ 〈−Ax̂− µ, x̂− ν〉. This implies that −Ax̂ ∈ Bx̂, that is, x̂ ∈ (A+B)−1(0). This
shows (3.4) holds. Notice that

‖yn − x̄‖2 ≤ αn〈Sxn − Sx̄, yn − x̄〉+ αn〈Sx̄− x̄, yn − x̄〉+ (1− αn)‖Txn − p‖‖yn − x̄‖
≤
(
1− αn(1− κ)

)
‖xn − x̄‖‖yn − x̄‖+ αn〈Sx̄− x̄, yn − x̄〉.

It follows that ‖yn − x̄‖2 ≤ (1− αn(1− κ))‖xn − x̄‖2 + 2αn〈Sx̄− x̄, yn − x̄〉.
Hence, we have

‖xn+1 − x̄‖2 ≤ ‖(yn − rnAyn)− (I − rnA)x̄‖2 + 2en‖λn − x̄‖+ e2n

≤ (1− αn(1− κ))‖xn − x̄‖2 + 2αn〈Sx̄− x̄, yn − x̄〉+ 2en‖λn − x̄‖+ e2n.

An application of Lemma 2.1 to the above inequality yields that limn→∞ ‖xn − x̄‖ = 0.
This completes the proof.

4. Applications

Let C be a nonempty closed and convex subset of a Hilbert space H. Let iC be the
indicator function of C, that is, iC(x) =∞, x /∈ C, iC(x) = 0, x ∈ C. Since iC is a proper
lower and semicontinuous convex function on H, the subdifferential ∂iC of iC is maximal
monotone. So, we can define the resolvent Jr of ∂iC for r > 0, i.e., Jr := (I + r∂iC)−1.
Letting x = Jry, we find that

y ∈ x+ r∂iCx⇐⇒ y ∈ x+ rNCx⇐⇒ x = ProjCy,

where ProjC is the metric projection from H onto C and NCx := {e ∈ H : 〈e, v−x〉,∀v ∈
C}.
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Theorem 4.1. Let C be a nonempty convex closed subset of a real Hilbert space H.
Let A : C → H be an α-inverse-strongly monotone mapping and let T : C → C be a
nonexpansive mapping. Assume that V I(C,A) ∩ Fix(T ) is not empty. Let S : C → C
be a fixed κ-contraction. Let {xn} be a sequence in C in the following process: x0 ∈ C,
yn = αnSxn + (1− αn)Txn, xn+1 ≈ ProjC(yn − rnAyn), ∀n ≥ 0. Let the criterion for the
approximate computation of xn+1 be ‖xn+1−ProjC(yn− rnAyn)‖ ≤ en, where

∑∞
n=1 en <

∞. Assume that the control sequences {αn} and {rn} satisfy the following restrictions:
limn→∞ αn = 0,

∑∞
n=0 αn = ∞,

∑∞
n=1 |αn − αn−1| < ∞,

∑∞
n=1 |rn − rn−1| < ∞, and

0 < r ≤ rn ≤ r′ < 2α, where r and r′ are two real numbers. Then {xn} converges strongly
to a point x̄ ∈ V I(C,A) ∩ Fix(T ), where x̄ = ProjV I(C,A)∩Fix(T )Sx̄.

Proof. Putting B = ∂iC in Theorem 3.1, we find that Jrn = ProjC . This finds from
Theorem 3.1 the desired conclusion immediately.

Next, we consider the problem of finding a solution of a Ky Fan inequality [7], which
is known as an equilibrium problem in the terminology of Blum and Oettli; see [33] and
the references therein.

Let B be a bifunction of C×C into R, where R denotes the set of real numbers. Recall
the following equilibrium problem:

Find x ∈ C such that B(x, y) ≥ 0, ∀y ∈ C. (4.1)

To study equilibrium problem (4.1), we may assume that B satisfies the following
restrictions:

(R-a) B(y, x) +B(x, y) ≤ 0, ∀x, y ∈ C;
(R-b) B(x, x) = 0, ∀x ∈ C;
(R-c) B(x, y) ≥ lim supt↓0B(tz + (1− t)x, y), ∀x, y, z ∈ C,
(R-d) y 7→ B(x, y), ∀x ∈ C, is lower semi-continuous and convex.

The following lemmas can be found in [22] and [33].

Lemma 4.2. Let C be a nonempty convex closed subset of a real Hilbert space H. Let
B : C × C → R be a bifunction with (R-a), (R-b), (R-c) and (R-d). Then, for any r > 0
and x ∈ H, there exists z ∈ C such that rB(z, y) + 〈y − z, z − x〉 ≥ 0, ∀y ∈ C. Further,
define

Trx =
{
z ∈ C : rB(z, y) + 〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
(4.2)

for all r > 0 and x ∈ H. Then Tr is single-valued and firmly nonexpansive and F (Tr) =
EP (F ) is closed convex.

Lemma 4.3. Let C be a nonempty convex closed subset of a real Hilbert space H. Let
B be a bifunction from C × C to R with (R-a), (R-b), (R-c) and (R-d). Let AB be a
multivalued mapping of H into itself defined by

ABx =

{
{z ∈ H : 〈y − x, z〉 ≤ B(x, y), ∀y ∈ C}, x ∈ C,
∅, x /∈ C.

(4.3)

Then AB is a maximal monotone operator with domain D(AB) ⊂ C, EP (B) = A−1B (0),
where FP (B) stands for the solution set of (4.1), and Trx = (I+rAB)−1x, ∀x ∈ H, r > 0,
where Tr is defined as in (4.2).
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Theorem 4.4. Let C be a nonempty convex closed subset of a real Hilbert space H. Let
B : C × C → R be a bifunction with (R-a), (R-b), (R-c) and (R-d). Let T : C → C be a
nonexpansive mapping. Assume that EP (B) ∩ Fix(T ) is not empty. Let S : C → C be a
fixed κ-contraction and let Trn = (I+rnAB)−1. Let {xn} be a sequence in C in the following
process: x0 ∈ C and xn+1 ≈ Trn(αnSxn + (1 − αn)Txn), ∀n ≥ 0, Let the criterion for
the approximate computation of xn+1 be ‖xn+1− Trn(αnSxn + (1−αn)Txn)‖ ≤ en, where∑∞

n=1 en < ∞. Assume that the control sequences {αn} and {rn} satisfy the following
restrictions: limn→∞ αn = 0,

∑∞
n=0 αn =∞,

∑∞
n=1 |αn − αn−1| <∞,

∑∞
n=1 |rn − rn−1| <

∞, and 0 < r ≤ rn ≤ r′ < 2α, where r and r′ are two real numbers. Then {xn} converges
strongly to a point x̄ ∈ EP (B) ∩ Fix(T ), where x̄ = ProjEP (B)∩Fix(T )Sx̄.

Proof. Putting A = 0 in Theorem 3.1, we find that Jrn = Trn . From Theorem 3.1, we
draw the desired conclusion immediately.

Recall that a mapping T : C → T is said to be α-strictly pseudocontractive iff there
exits a constant α ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ α‖(I − T )x− (I − T )y‖2 + ‖x− y‖2, ∀x, y ∈ C.

The class of strictly pseudocontractive mappings was first introduced by Browder and
Petryshyn [28]. It is known if T is α-strictly pseudocontractive, then I − T is 1−α

2
-inverse

strongly monotone.

Finally, we consider the problem of common fixed point problems of nonlinear mappings.

Theorem 4.5. Let C be a nonempty convex closed subset of a real Hilbert space H. Let T1
be a nonexpansive mapping and let T2 be a α-strictly pseudocontractive mapping on C. Let
S be a fixed κ-contraction on C. Let {xn} be a sequence generated in the following manner:
x0 ∈ C, yn = αnSxn+(1−αn)T1xn, xn+1 ≈ (1−rn)yn+rnT2yn, ∀n ≥ 0, Let the criterion
for the approximate computation of xn+1 be ‖xn+1 − (1 − rn)yn − rnT2yn‖ ≤ en, where∑∞

n=1 en < ∞. Assume that the control sequences {αn} and {rn} satisfy the following
restrictions: limn→∞ αn = 0,

∑∞
n=0 αn =∞,

∑∞
n=1 |αn − αn−1| <∞,

∑∞
n=1 |rn − rn−1| <

∞, and 0 < r ≤ rn ≤ r′ < 1 − α, where r and r′ are two real numbers. Then {xn}
converges strongly to a point x̄ ∈ Fix(T1) ∩ Fix(T2), where x̄ = ProjFix(T1)∩Fix(T2)Sx̄.

Proof. Putting A = I − T2, we find A is 1−α
2

-inverse strongly monotone. We also have
V I(C,A) = Fix(T2) and rnT2yn + (1− rn)yn = ProjC(yn − rnAyn). In view of Theorem
3.1, we obtain the desired result immediately.
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ON THE STABILITY OF ADDITIVE ρ-FUNCTIONAL INEQUALITIES IN

FUZZY NORMED SPACES

CHOONKIL PARK

Abstract. In this paper, we solve the following additive ρ-functional inequalities

N
(
f(x+ y)− f(x)− f(y)− ρ

(
2f
(
x+ y

2

)
− f(x)− f(y)

)
, t
)
≥ t

t+ ϕ(x, y)
(0.1)

and

N
(

2f
(
x+ y

2

)
− f(x)− f(y)− ρ (f(x+ y)− f(x)− f(y)) , t

)
≥ t

t+ ϕ(x, y)
(0.2)

in fuzzy normed spaces, where ρ is a fixed real number with ρ 6= 1.
Using the direct method, we prove the Hyers-Ulam stability of the additive ρ-functional

inequalities (0.1) and (0.2) in fuzzy Banach spaces.

1. Introduction and preliminaries

Katsaras [10] defined a fuzzy norm on a vector space to construct a fuzzy vector topological
structure on the space. Some mathematicians have defined fuzzy norms on a vector space from
various points of view [6, 12, 27]. In particular, Bag and Samanta [2], following Cheng and
Mordeson [5], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric
is of Kramosil and Michalek type [11]. They established a decomposition theorem of a fuzzy
norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [3].

We use the definition of fuzzy normed spaces given in [2, 16, 17] to investigate the Hyers-Ulam
stability of additive ρ-functional inequalities in fuzzy Banach spaces.

Definition 1.1. [2, 16, 17, 18] Let X be a real vector space. A function N : X ×R→ [0, 1] is
called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c|) if c 6= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1.
(N6) for x 6= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are given in

[15, 16].

Definition 1.2. [2, 16, 17, 18] Let (X,N) be a fuzzy normed vector space. A sequence {xn} in
X is said to be convergent or converge if there exists an x ∈ X such that limn→∞N(xn−x, t) = 1
for all t > 0. In this case, x is called the limit of the sequence {xn} and we denote it by N -
limn→∞ xn = x.

2010 Mathematics Subject Classification. Primary 46S40, 39B52, 39B62, 26E50, 47S40.
Key words and phrases. fuzzy Banach space; additive ρ-functional inequality; Hyers-Ulam stability.
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Definition 1.3. [2, 16, 17, 18] Let (X,N) be a fuzzy normed vector space. A sequence {xn}
in X is called Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such that for all
n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It is well-known that every convergent sequence in a fuzzy normed vector space is Cauchy. If
each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy
normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is
continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X, then the
sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X, then
f : X → Y is said to be continuous on X (see [3]).

The stability problem of functional equations originated from a question of Ulam [26]
concerning the stability of group homomorphisms.

The functional equation f(x+ y) = f(x) + f(y) is called the Cauchy equation. In particular,
every solution of the Cauchy equation is said to be an additive mapping. Hyers [8] gave a first
affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was
generalized by Aoki [1] for additive mappings and by Th.M. Rassias [24] for linear mappings
by considering an unbounded Cauchy difference. A generalization of the Th.M. Rassias theorem
was obtained by Găvruta [7] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Th.M. Rassias’ approach.

The functional equation f
(
x+y
2

)
= 1

2f(x)+ 1
2f(y) is called the Jensen equation. The stability

problems of several functional equations have been extensively investigated by a number of
authors and there are many interesting results concerning this problem (see [4, 9, 13, 14, 19,
22, 23, 25]).

Park [20, 21] defined additive ρ-functional inequalities and proved the Hyers-Ulam stability
of the additive ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces.

In Section 2, we solve the additive ρ-functional inequality (0.1) and prove the Hyers-Ulam
stability of the additive ρ-functional inequality (0.1) in fuzzy Banach spaces by using the direct
method.

In Section 3, we solve the additive ρ-functional inequality (0.2) and prove the Hyers-Ulam
stability of the additive ρ-functional inequality (0.2) in fuzzy Banach spaces by using the direct
method.

Throughout this paper, assume that X is a real vector space and (Y,N) is a fuzzy Banach
space.

2. Additive ρ-functional inequality (0.1)

In this section, we prove the Hyers-Ulam stability of the additive ρ-functional inequality
(0.1) in fuzzy Banach spaces. Let ρ be a real number with ρ 6= 1. We need the following lemma
to prove the main results.

Lemma 2.1. Let f : X → Y be a mapping satisfying

f(x+ y)− f(x)− f(y) = ρ

(
2f

(
x+ y

2

)
− f(x)− f(y)

)
(2.1)

for all x, y ∈ X. Then f : X → Y is additive.

Proof. Letting x = y = 0 in (2.1), we get −f(0) = 0 and so f(0) = 0.
Replacing y by x in (2.1), we get f(2x) − 2f(x) = 0 and so f(2x) = 2f(x) for all x ∈ X.

Thus

f(x+ y)− f(x)− f(y) = ρ

(
2f

(
x+ y

2

)
− f(x)− f(y)

)
= ρ(f(x+ y)− f(x)− f(y))

and so f(x+ y) = f(x) + f(y) for all x, y ∈ X. �
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Theorem 2.2. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑
j=1

2jϕ

(
x

2j
,
y

2j

)
<∞ (2.2)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying

N

(
f(x+ y)− f(x)− f(y)− ρ

(
2f

(
x+ y

2

)
− f(x)− f(y)

)
, t

)
≥ t

t+ ϕ(x, y)
(2.3)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf
(
x
2n
)

exists for each x ∈ X and
defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ t

t+ 1
2Φ(x, x)

(2.4)

for all x ∈ X and all t > 0.

Proof. Letting y = x in (2.3), we get

N (f (2x)− 2f(x), t) ≥ t

t+ ϕ(x, x)
(2.5)

and so

N

(
f (x)− 2f

(
x

2

)
, t

)
≥ t

t+ ϕ
(
x
2 ,

x
2

)
for all x ∈ X. Hence

N

(
2lf

(
x

2l

)
− 2mf

(
x

2m

)
, t

)
(2.6)

≥ min

{
N

(
2lf

(
x

2l

)
− 2l+1f

(
x

2l+1

)
, t

)
, · · · , N

(
2m−1f

(
x

2m−1

)
− 2mf

(
x

2m

)
, t

)}
= min

{
N

(
f

(
x

2l

)
− 2f

(
x

2l+1

)
,
t

2l

)
, · · · , N

(
f

(
x

2m−1

)
− 2f

(
x

2m

)
,

t

2m−1

)}

≥ min


t
2l

t
2l

+ ϕ
(

x
2l+1 ,

x
2l+1

) , · · · , t
2m−1

t
2m−1 + ϕ

(
x
2m ,

x
2m
)


= min

 t

t+ 2lϕ
(

x
2l+1 ,

x
2l+1

) , · · · , t

t+ 2m−1ϕ
(
x
2m ,

x
2m
)


≥ t

t+ 1
2

∑m
j=l+1 2jϕ

(
x
2j
, x
2j

)
for all nonnegative integers m and l with m > l and all x ∈ X and all t > 0. It follows from
(2.2) and (2.6) that the sequence {2nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is
complete, the sequence {2nf( x

2n )} converges. So one can define the mapping A : X → Y by

A(x) := N - lim
n→∞

2nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.6), we get (2.4).
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By (2.3),

N

(
2n
(
f

(
x+ y

2n

)
− f

(
x

2n

)
− f

(
y

2n

))
−ρ

(
2n+1f

(
x+ y

2n+1

)
− 2nf

(
x

2n

)
− 2nf

(
y

2n

))
, 2nt

)
≥ t

t+ ϕ
(
x
2n ,

y
2n
)

for all x, y ∈ X, all t > 0 and all n ∈ N. So

N

(
2n
(
f

(
x+ y

2n

)
− f

(
x

2n

)
− f

(
y

2n

))
−ρ

(
2n+1f

(
x+ y

2n+1

)
− 2nf

(
x

2n

)
− 2nf

(
y

2n

))
, t

)
≥

t
2n

t
2n + ϕ

(
x
2n ,

y
2n
) =

t

t+ 2nϕ
(
x
2n ,

y
2n
)

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t

t+2nϕ( x
2n
, y
2n )

= 1 for all x, y ∈ X and

all t > 0,

A(x+ y)−A(x)−A(y) = ρ

(
2A

(
x+ y

2

)
−A(x)−A(y)

)
for all x, y ∈ X. By Lemma 2.1, the mapping A : X → Y is Cauchy additive, as desired. �

Corollary 2.3. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be a mapping satisfying

N

(
f(x+ y)− f(x)− f(y)− ρ

(
2f

(
x+ y

2

)
− f(x)− f(y)

)
, t

)
≥ t

t+ θ(‖x‖p + ‖y‖p)
(2.7)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf( x
2n ) exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2p − 2)t

(2p − 2)t+ 2θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y) := θ(‖x‖p+‖y‖p) for all x, y ∈ X,
as desired. �

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑
j=0

1

2j
ϕ
(
2jx, 2jy

)
<∞

for all x, y ∈ X. Let f : X → Y be a mapping satisfying (2.3). Then A(x) := N -limn→∞
1
2n f (2nx)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ 1

t+ 1
2Φ(x, x)

for all x ∈ X and all t > 0.

Proof. It follows from (2.5) that

N

(
f(x)− 1

2
f(2x),

1

2
t

)
≥ t

t+ ϕ(x, x)
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and so

N

(
f(x)− 1

2
f(2x), t

)
≥ 2t

2t+ ϕ(x, x)
=

t

t+ 1
2ϕ(x, x)

for all x ∈ X and all t > 0.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed
vector space with norm ‖ · ‖. Let f : X → Y be a mapping satisfying (2.7). Then A(x) := N -
limn→∞

1
2n f(2nx) exists for each x ∈ X and defines an additive mapping A : X → Y such

that

N (f(x)−A(x), t) ≥ (2− 2p)t

(2− 2p)t+ 2θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.4 by taking ϕ(x, y) := θ(‖x‖p+‖y‖p) for all x, y ∈ X,
as desired. �

3. Additive ρ-functional inequality (0.2)

In this section, we prove the Hyers-Ulam stability of the additive ρ-functional inequality
(0.2) in fuzzy Banach spaces. Let ρ be a fuzzy number with ρ 6= 1.

Lemma 3.1. Let f : X → Y be a mapping satisfying f(0) = 0 and

2f

(
x+ y

2

)
− f(x)− f(y) = ρ (f(x+ y)− f(x)− f(y)) (3.1)

for all x, y ∈ X. Then f : X → Y is additive.

Proof. Letting y = 0 in (3.1), we get 2f
(
x
2

)
− f(x) = 0 and so f(2x) = 2f(x) for all x ∈ X.

Thus

f(x+ y)− f(x)− f(y) = 2f

(
x+ y

2

)
− f(x)− f(y) = ρ(f(x+ y)− f(x)− f(y))

and so f(x+ y) = f(x) + f(y) for all x, y ∈ X. �

Theorem 3.2. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑
j=0

2jϕ

(
x

2j
,
y

2j

)
<∞ (3.2)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

N

(
2f

(
x+ y

2

)
− f(x)− f(y)− ρ (f(x+ y)− f(x)− f(y)) , t

)
≥ t

t+ ϕ(x, y)
(3.3)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf
(
x
2n
)

exists for each x ∈ X and
defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ t

t+ Φ(x, 0)
(3.4)

for all x ∈ X and all t > 0.
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Proof. Letting y = 0 in (3.3), we get

N

(
f(x)− 2f

(
x

2

)
, t

)
= N

(
2f

(
x

2

)
− f(x), t

)
≥ t

t+ ϕ(x, 0)
(3.5)

for all x ∈ X. Hence

N

(
2lf

(
x

2l

)
− 2mf

(
x

2m

)
, t

)
(3.6)

≥ min

{
N

(
2lf

(
x

2l

)
− 2l+1f

(
x

2l+1

)
, t

)
, · · · , N

(
2m−1f

(
x

2m−1

)
− 2mf

(
x

2m

)
, t

)}
= min

{
N

(
f

(
x

2l

)
− 2f

(
x

2l+1

)
,
t

2l

)
, · · · , N

(
f

(
x

2m−1

)
− 2f

(
x

2m

)
,

t

2m−1

)}

≥ min


t
2l

t
2l

+ ϕ
(
x
2l
, 0
) , · · · , t

2m−1

t
2m−1 + ϕ

(
x

2m−1 , 0
)


= min

 t

t+ 2lϕ
(
x
2l
, 0
) , · · · , t

t+ 2m−1ϕ
(

x
2m−1 , 0

)


≥ t

t+
∑m−1
j=l 2jϕ

(
x
2j
, 0
)

for all nonnegative integers m and l with m > l and all x ∈ X and all t > 0. It follows from
(3.2) and (3.6) that the sequence {2nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is
complete, the sequence {2nf( x

2n )} converges. So one can define the mapping A : X → Y by

A(x) := N - lim
n→∞

2nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.6), we get (3.4).
By (3.3),

N

(
2n+1f

(
x+ y

2n+1

)
− 2nf

(
x

2n

)
− 2nf

(
y

2n

)
− ρ

(
2n
(
f

(
x+ y

2n

)
− f

(
x

2n

)
− f

(
y

2n

)))
, 2nt

)
≥ t

t+ ϕ
(
x
2n ,

y
2n
)

for all x, y ∈ X, all t > 0 and all n ∈ N. So

N

(
2n+1f

(
x+ y

2n+1

)
− 2nf

(
x

2n

)
− 2nf

(
y

2n

)
− ρ

(
2n
(
f

(
x+ y

2n

)
− f

(
x

2n

)
− f

(
y

2n

)))
, t

)
≥

t
2n

t
2n + ϕ

(
x
2n ,

y
2n
) =

t

t+ 2nϕ
(
x
2n ,

y
2n
)

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t

t+2nϕ( x
2n
, y
2n )

= 1 for all x, y ∈ X and

all t > 0,

2A

(
x+ y

2

)
−A(x)−A(y) = ρ (A(x+ y)−A(x)−A(y))

for all x, y ∈ X. By Lemma 3.1, the mapping A : X → Y is Cauchy additive, as desired. �
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Corollary 3.3. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be a mapping satisfying f(0) = 0 and

N

(
2f

(
x+ y

2

)
− f(x)− f(y)− ρ (f(x+ y)− f(x)− f(y)) , t

)
≥ t

t+ θ(‖x‖p + ‖y‖p)
(3.7)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf( x
2n ) exists for each x ∈ X and

defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2p − 2)t

(2p − 2)t+ 2pθ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.2 by taking ϕ(x, y) := θ(‖x‖p+‖y‖p) for all x, y ∈ X,
as desired. �

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑
j=1

1

2j
ϕ
(
2jx, 2jy

)
<∞

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (3.3). Then A(x) := N -
limn→∞

1
2n f (2nx) exists for each x ∈ X and defines an additive mapping A : X → Y such

that

N (f(x)−A(x), t) ≥ t

t+ Φ(x, 0)

for all x ∈ X and all t > 0.

Proof. It follows from (3.5) that

N

(
f(x)− 1

2
f(2x),

t

2

)
≥ t

t+ ϕ(2x, 0)

and so

N

(
f(x)− 1

2
f(2x), t

)
≥ 2t

2t+ ϕ(2x, 0)
=

t

t+ 1
2ϕ(2x, 0)

for all x ∈ X and all t > 0.
The rest of the proof is similar to the proof of Theorem 3.2. �

Corollary 3.5. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed
vector space with the norm ‖ · ‖. Let f : X → Y be a mapping satisfying f(0) = 0 and (3.7).
Then A(x) := N -limn→∞

1
2n f(2nx) exists for each x ∈ X and defines an additive mapping

A : X → Y such that

N (f(x)−A(x), t) ≥ (2− 2p)t

(2− 2p)t+ 2pθ‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.4 by taking ϕ(x, y) := θ(‖x‖p+‖y‖p) for all x, y ∈ X,
as desired. �
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On the Di¤erence equation

+1 =  +


P
=0

¡

+
Q
=0

¡

M. M. El-Dessoky12 and E. O. Alzahrani1
1King Abdulaziz University, Faculty of Science,
Mathematics Department, P. O. Box 80203,

Jeddah 21589, Saudi Arabia.
2Department of Mathematics, Faculty of Science,
Mansoura University, Mansoura 35516, Egypt.

E-mail: dessokym@mans.edu.eg

Abstract

The main objective of this paper is to study the global stability of the
positive solutions and the periodic character of the di¤erence equation

+1 =


P

=0
¡

 + 
Q

=0
¡

  = 0 1 

where the parameters   and  are positive real numbers and the initial
conditions ¡ ¡+1  ¡, 0 are nonnegative real numbers.

Keywords: di¤erence equations, stability, global stability, periodic solutions.
Mathematics Subject Classi…cation: 39A10
—————————————————

1 Introduction

Di¤erence equations have always played an important role in the construction and
analysis of mathematical models of biology, ecology, probability theory, genetics,
number theory, physics, economic process, and so forth.

1
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The study of nonlinear rational di¤erence equations of higher order is of para-
mount importance, since we still know so little about such equations.

Ahmed [1] investigated the global asymptotic stability and the periodic character
for the rational di¤erence equation,

+1 =
¡

+

=



¡2

  = 0 1 

where the parameters    1 2   are nonnegative real numbers, and
  are nonnegative integers such that  ·  and the initial conditions ¡2, ¡2+1,
, ¡1, 0 are arbitrary nonnegative real numbers.

Wang et al. [2] studied the asymptotic behavior of the solutions of the nonlinear
di¤erence equation

+1 =


=0

 ¡

+


=0
¡

  = 0 1 

where the initial conditions ¡ ¡+1  ¡1 0 are positive real numbers,
 =  f1   1  g  1   1   are nonnegative integers, and
, ,  are arbitrary positive real numbers.

Zayed et al. [3] investigated the boundedness character, the periodic character,
the convergence and the global stability of positive solutions of the di¤erence equation

+1 =
+


=0

 ¡


=0

 ¡

  = 0 1 

where the coe¢cients   , and the initial conditions ¡ ¡+1  ¡1 0
are positive real numbers, while  is a positive integer number.

In [4] Ibrahim et al. studied the global behavior of the di¤erence equation

+1 =
¡

+


=0
¡

  = 0 1 

where the parameters    and initial conditions are non-negative real numbers,
f0  1    g is a set of nonnegative even integers and  is an odd positive
integer

Hamza et al. [5] studied the global asymptotic stability of the di¤erence equation

+1 =



=

¡2¡1

+
¡1
=0

¡2

  = 0 1 

where    are nonnegative parameters and   are nonnegative integers for
  . They discussed the existence of unbounded solutions under certain conditions
for  = 0

2
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In [6] El-Metwally investigated the global stability character and the oscillatory
of the solutions of the following di¤erence equation

+1 =



=

¡2¡1

+

=0

¡2¡1

=0

¡2¡1

  = 0 1 

where     2 (0 1) with the initial conditions 0 ¡1  ¡2 ¡2¡1 2
(0 1). For more results in the direction of this study, see, for example, [1–27] and
the papers therein.

The aim of this paper to study some qualitative behavior of the positive solutions
of a higher order di¤erence equation

+1 =  +



=0

¡

+

=0

¡

  = 0 1  (1)

where the parameters    and  are positive real numbers and the initial
conditions ¡ ¡+1  ¡, 0 are nonnegative real numbers.

2 Preliminaries

Let  be some interval of real numbers and let

 : +1 ! 

be a continuously di¤erentiable function. Then for every set of initial conditions
¡ ¡+1  0 2  the di¤erence equation

+1 =  ( ¡1  ¡)  = 0 1  (2)

has a unique solution fg1=¡.

De…nition 1 (Equilibrium Point)
A point  2  is called an equilibrium point of the di¤erence equation (2) if

 =  (   ).

That is,  =  for  ¸ 0 is a solution of the di¤erence equation (2), or equivalently,
 is a …xed point of 

De…nition 2 (Stability)
Let  2 (0 1) be an equilibrium point of the di¤erence equation (2). Then, we have

3
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(i) The equilibrium point  of the di¤erence equation (2) is called locally stable if for
every   0 there exists   0 such that for all ¡  ¡1 0 2  with

j¡ ¡ j+ + j¡1 ¡ j+ j0 ¡ j  

we have
j ¡ j   for all  ¸ ¡

(ii) The equilibrium point  of the di¤erence equation (2) is called locally asymptot-
ically stable if  is locally stable solution of Eq.(2) and there exists   0 such that
for all ¡  ¡1 0 2  with

j¡ ¡ j+ + j¡1 ¡ j+ j0 ¡ j  

we have
lim
!1

 = 

(iii) The equilibrium point  of the di¤erence equation (2) is called global attractor
if for all ¡  ¡1 0 2  we have

lim
!1

 = 

(iv) The equilibrium point  of the di¤erence equation (2) is called globally asymp-
totically stable if  is locally stable, and  is also a global attractor of the di¤erence
equation (2).
(v) The equilibrium point  of the di¤erence equation (2) is called unstable if  is not
locally stable.

De…nition 3 (Periodicity)
A sequence fg1=¡ is said to be periodic with period  if + =  for all  ¸ ¡
A sequence fg1=¡ is said to be periodic with prime period  if  is the smallest
positive integer having this property.

De…nition 4 The linearized equation of the di¤erence equation (2) about the equi-
librium  is the linear di¤erence equation

+1 =

X

=0

 (   )

¡
¡ (3)

Now, assume that the characteristic equation associated with (3) is

() = 0
 + 1

¡1 + + ¡1 +  = 0 (4)

where

 =
 (   )

¡


4
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Theorem 1 [1]: Assume that  2   = 1 2   and  is non-negative integer.
Then

X

=1

jj  1

is a su¢cient condition for the asymptotic stability of the di¤erence equation

+ + 1+¡1 +  +  = 0  = 0 1  

3 Change of variables

By using the change of variables  =
¡



¢ 1
+1 , the equation (1) reduces to the

following di¤erence equation

+1 =  +



=0

¡

1+

=0

¡

  = 0 1  (5)

where  = 

and the initial conditions  ¡1  ¡+1, ¡ are positive real

numbers.

4 Local Stability of the Equilibrium Point
In this section, we study the local stability character of the equilibrium point of
Eq.(5).

Eq.(5) has equilibrium point and is given by

 =  +



=0

¡

1+

=0

¡



or
 (1¡ )

¡
1 + +1

¢
= ( + 1)

Thus 1 = 0 is always an equilibrium point of Eq. (5). If   1 and (+1)
1¡  1; then

the only positive equilibrium point 2 of Eq. (5) is given by

2 =

µ
( + 1)

1¡ 
¡ 1

¶ 1
+1



Theorem 2 The equilibrium 1 of Eq. (5) is locally asymptotically stable if

+ ( + 1)  1

5
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Proof: Let  : (0 1)+1 ¡! (0 1) be a continuous function de…ned by

 ( ¡1 ¡2  ¡) =  +



=0

¡

1+

=0

¡

 (7)

Therefore, it follows that

( ¡1 ¡2  ¡)


= +



1+


=0

¡


¡



=0

¡



=1

¡




1+


=0

¡

2 

( ¡1 ¡2  ¡)
¡1

=



1+


=0

¡


¡



=0

¡



=2

¡




1+


=0

¡

2 

( ¡1 ¡2  ¡)
¡2

=



1+


=0

¡


¡¡1



=0

¡



=3

¡




1+


=0

¡

2 





( ¡1 ¡2  ¡)
¡

=



1+


=0

¡


¡



=0

¡


¡1
=0

¡




1+


=0

¡

2 

At 1 = 0 we have

( ¡1 ¡2  ¡)


= + 

( ¡1 ¡2  ¡)

¡1
=  =

( ¡1 ¡2  ¡)

¡
= 

and the linearized equation of Eq. (5) about 1 = 0 is the equation

+1 ¡ (+ )  ¡ ¡ ¡ ¡ ¡ = 0

It follows by Theorem 1 that, Eq. (5) is asymptotically stable if and only if

j+ j+ jj+  + jj  1

and so
+  ( + 1)  1

The proof is complete.

6
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Theorem 3 The equilibrium 1 of Eq. (5) is unstable if + ( + 1)  1

Theorem 4 The equilibrium 2 of Eq. (5) is stable if

 + (1¡ ) (1¡  ¡ )  

Proof: At 2 =
³
(+1)
1¡ ¡ 1

´ 1
+1

 we have




= +

(1+ (+1)
1¡ ¡1)¡(+1)( (+1)1¡ ¡1)

(1+ (+1)
1¡ ¡1)

2

= +
( (+1)1¡ )¡(+1)( (+1)¡1+1¡ )

((+1)1¡ )
2 = +

( (+1)1¡ )(¡(+1)+1¡)

( (+1)1¡ )
2

= + (¡¡+1¡)
( (+1)1¡ )

= + (1¡)(1¡¡)
(+1)



¡1
=  =



¡
=

(1¡) (1¡  ¡ )

 ( + 1)


and the linearized equation of Eq. (5) about 2 =
³
(+1)
1¡ ¡ 1

´ 1
+1

 is the equation

+1 ¡
³
+ (1¡)(1¡¡)

(+1)

´
 ¡ (1¡)(1¡¡)

(+1)
¡ ¡ ¡ (1¡)(1¡¡)

(+1)
¡ = 0

It follows by Theorem A that, Eq.(5) is stable if and only if
¯̄
¯̄+

(1¡ ) (1¡  ¡ )

 ( + 1)

¯̄
¯̄+
¯̄
¯̄(1¡) (1¡  ¡ )

 ( + 1)

¯̄
¯̄++

¯̄
¯̄(1¡ ) (1¡  ¡ )

 ( + 1)

¯̄
¯̄  1

for  +   1 we get

+
(1¡ ) (1¡  ¡ )


 1

The proof is complete.

5 Existence of Boundedness Solutions

Here we look at the boundedness nature of solutions of Eq.(5).

Theorem 5 Every solution of Eq.(5) is bounded if +  ( + 1)  1

Proof: Let fg1=0 be a solution of Eq.(5). It follows from Eq.(5) that

0 · +1 =  +



=0

¡

1+

=0

¡

  + 
X

=0

¡  (+  ( + 1)) 

7
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this equation is locally asymptotically stable if  +  ( + 1)  1 and converges to
the equilibrium point . Therefore

lim sup
!1

 · (+  ( + 1)) .

Hence, the solution is bounded.

Theorem 6 Every solution of Eq.(5) is unbounded if   1

Proof: Let fg1=0 be a solution of Eq.(5). Then from Eq.(5) we see that

+1 =  +



=0

¡

1+

=0

¡

  + 

X

=0

¡  .

This equation is unbounded because   1 and lim
!1

 = 1. Then by using ratio

test fg1=0 is unbounded from above.

6 Global Stability of the Equilibrium Point

In this section we study the global stability of the positive solutions of Equation (1).

Theorem 7 The following statements are true
(a) If + ( + 1)  1 then the equilibrium point 1 = 0 is a global attractor of

equation (1).

(b) If  +   1 then the equilibrium point 2 =
³
(+1)
1¡ ¡ 1

´ 1
+1

is a global

attractor of equation (1).

Proof. (a) From Eq. (7) we can see that the function is increasing of all ar-
guments. Now, we can see that the function  ( ¡1  ¡) increasing in
 ¡1  ¡+1 and ¡ Then

·
 +

( + 1)

1 + +1
¡ 

¸
( ¡ 1)

· [ + ( + 1) ¡ ] ( ¡ 0)

· ¡ (1¡ ¡ ( + 1)) 2  0

If + ( + 1)  1 then  (   ) satis…es the inequality

[ (   )¡ ] ( ¡ 1)  0 for 1 = 0

According to Theorem 1.10 page 15 in [1], then 1 is a global attractor of Eq. (1).
This completes the proof.

8
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(b) If +  1 then we can see that the function ( ¡1 ¡2  ¡)
de…ned by Eq. (7) increasing of all arguments. Suppose that () is a solution of
the system

 = (   ) and  = (   )

Then from Equation (1), we see that

 =  +
( + 1)

1 + +1
, and  = +

( + 1)

1 ++1


then

(1¡ ) + (1¡ )+1 = ( + 1)

(1¡) + (1¡ )+1 = ( + 1)

Subtracting this two equations, we obtain

(1¡)
¡
+1 ¡+1

¢
= 0

under the condition  6= 1we see that  =  According to Theorem 1.15 page 18
in [1], we see that 2 is a global attractor of Equation (1).

7 Existence of Periodic Solutions

In this section we investigate the existence of periodic solutions of Eq.(5).

Theorem 8 If  is even, then equation (5) has not prime period two solution.

Proof: Equation (5) can be expressed that

+1 =  +
 ( + ¡1 + ¡2 +  + ¡)

1 + ¡1¡2¡


For  = 2 is even, then  ¡2 ¡4  ¡¡2 ¡ are even and ¡1 ¡3
¡5  ¡¡3 ¡¡1 are odd. Suppose that exists there distinct positive solutions

    

of Equation (5). Then

 =  +
 ((+ 1)  +)

1 + +1
and  = +

 ((+ 1)  +)

1 + +1


Therefore,

¡  + +1+1 ¡+1+1 =  (+ 1)  +  (7)

 ¡  + +1+1 ¡+1+1 =  (+ 1) +  (8)
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By subtracting (8) from (7), we have

(1 + + )(¡ ) = 0

Since  +  + 1 6= 0, then  = . This is a contradiction. Thus, the proof is
completed.

Theorem 9 If  is odd, then equation (5) has not prime period two solution.

Proof: When  = 2 + 1 is odd, then  ¡2 ¡4  ¡¡3 ¡¡1 are even
and ¡1 ¡3 ¡5  ¡¡2 ¡ are odd.

First suppose that there exists distinct positive solutions

    

of Equation (5). Then

 =  +
 ((+ 1)  + (+ 1) )

1 + +1+1


and

 =  +
 ((+ 1) + (+ 1) )

1 + +1+1


Therefore,

¡  + +1+2 ¡ +2+1 =  (+ 1)  +  (+ 1)  (9)

 ¡ + +1+2 ¡ +2+1 =  (+ 1) +  (+ 1)  (10)

Subtracting (10) from (9), we get

(¡ )
¡
(+ 1)+1+1 + 1 + 

¢
= 0

Since +1 6= 0, then  = . This is a contradiction. Thus, the proof is completed.

8 Numerical Examples
For con…rming the results of this paper, we consider numerical examples which rep-
resent di¤erent types of solutions to Eq. (5).

Example 1. The zero solution of the di¤erence equation (5) is local stability if
 = 3  = 02  = 01 and the initial conditions ¡3 = 08 ¡2 = 02 ¡1 = 04
and 0 = 07 (See Fig. 1).
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Figure 1. Plot the behavior of the zero solution of equation (5).

Example 2. The positive solution of the di¤erence equation (5) is local stability
if  = 3  = 06  = 02 and the initial conditions ¡3 = 08 ¡2 = 02 ¡1 = 04
and 0 = 07 (See Fig. 2).
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Figure 2. Plot the behavior of the positive solution of equation (5).

Example 3. The solution of the di¤erence equation (5) is global stability if
 = 3  = 002  = 033 and the initial conditions ¡3 = 08 ¡2 = 02 ¡1 = 04
and 0 = 07 (See Fig. 3).
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Figure 3. Plot the behavior of the positive solution of equation (5).

Example 4. Figure (4) shows the equation (5) is unbounded when  = 3  = 11
 = 01 and the initial conditions ¡3 = 08 ¡2 = 02 ¡1 = 04 and 0 = 07.
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Figure 4. Plot the behavior of the solution of equation (5).
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Abstract

In this paper, we prove the existence theorem of solutions for a kind of
discontinuous fuzzy integro-differential equation of mixed type by using
the definition of the ω − ACG∗ for a fuzzy-number-valued function and
a generalized controlled convergence theorem of strong fuzzy Henstock
integrals.
Keywords: Fuzzy number; ω − ACG∗; Discontinuous fuzzy Integro-
differential equation; Controlled convergence theorem; Strong fuzzy Hen-
stock integrals.

1 INTRODUCTION

The Cauchy problems for fuzzy differential equations have been studied by sev-
eral authors [11, 9, 12, 16, 17, 18] on the metric space (En, D) of normal fuzzy
convex set with the distance D given by the maximum of the Hausdorff distance
between the corresponding level sets. In [16], the author has been proved the
Cauchy problem has a uniqueness result if f̃ was continuous and bounded. In
[11, 12], the authors presented a uniqueness result when f satisfies a Lipschitz
condition. For a general reference to fuzzy differential equations, see a recent
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(No.11161041, 61472056, 61262022) and the PhD Research Startup Foundation of Chongqing
University of Posts and Telecommunications (No. A2014-90) and Basic and Advanced Re-
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book by Lakshmikantham and Mohapatra [13] and references therein. In 2002,
Xue and Fu [26] established solutions to fuzzy differential equations with right-
hand side functions satisfying Caratheodory conditions on a class of Lipschitz
fuzzy sets.

However, there are discontinuous systems in which the right-hand side func-
tions f̃ : [a, b]×En → En are not integrable in the sense of Kaleva [11] on certain
intervals and their solutions are not absolute continuous functions. Recently, Wu
and Gong [24, 25] have combined the fuzzy set theory [27] and nonabsolute inte-
gration theory [10], and discussed the fuzzy Henstock integrals of fuzzy-number-
valued functions which extended Kaleva[11] integration. In order to complete
the theory of fuzzy calculus and to meet the solving need of transferring a fuzzy
differential equation into a fuzzy integral equation, Gong and Shao [7, 8] have
defined the strong fuzzy Henstock integrals and discussed some of their prop-
erties and the controlled convergence theorem. So, in [19, 20, 21, 22, 23], the
authors used the strong fuzzy Henstock integrals [8], and deal with the Cauchy
problem of discontinuous fuzzy systems. In this paper, according to the idea of
[4] and using the concept of generalized differentiability [2], the operator j which
is the isometric embedding from (En, D) onto its range in the Banach space X
and the generalized controlled convergence theorems for the strong fuzzy Hen-
stock integrals, we will deal with the Cauchy problem of discontinuous fuzzy
integro-differential equations of mixed type as following:

{
x′(t) = f̃(t, x(t),

∫ t

0
k1(t, s)g̃(s, x(s))ds,

∫ a

0
k2(t, s)h̃(s, x(s))ds),

x(0) = x0, x0 ∈ En, t ∈ Ia = [0, a], a ∈ R+ (1)

where f̃ , g̃, h̃, x will be assumed strong fuzzy Henstock integrable and k1, k2 are
real-valued functions.

To make our analysis possible, in section 2, we will first recall some basic
results of fuzzy numbers. In section 3, we give some definitions of ω − ACG∗

of fuzzy-number-valued function. In addition, we present the concept of strong
fuzzy Henstock integral and a generalized controlled convergence theorem for
the strong fuzzy Henstock integrals. In section 4, we deal with the Cauchy
problem of discontinuous fuzzy integro-differential equation of mixed type. And
in section 5, we present some concluding remarks.

2 PRELIMINARIES

Let Pk(R
n) denote the family of all nonempty compact convex subset of Rn

and define the addition and scalar multiplication in Pk(R
n) as usual. Let A and

B be two nonempty bounded subset of Rn. The distance between A and B is
defined by the Hausdorff metric [6]:

dH(A,B) = max{sup
a∈A

inf
b∈B

∥ a− b ∥, sup
b∈B

inf
a∈A

∥ b− a ∥}.

2
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Denote En = {u : Rn → [0, 1]|u satisfies (1)-(4) below} is a fuzzy number
space. where

(1)u is normal, i.e. there exists an x0 ∈ Rn such that u(x0) = 1,
(2)u is fuzzy convex, i.e. u(λx+(1−λ)y) ≥ min{u(x), u(y)} for any x, y ∈ Rn

and 0 ≤ λ ≤ 1,
(3)u is upper semi-continuous,
(4)[u]0 = cl{x ∈ Rn|u(x) > 0} is compact.
For 0 < α ≤ 1, denote [u]α = {x ∈ Rn|u(x) ≥ α}. Then from above (1)-(4),

it follows that the α-level set [u]α ∈ Pk(R
n) for all 0 ≤ α < 1.

According to Zadeh’s extension principle, we have addition and scalar mul-
tiplication in fuzzy number space En as follows [6]:

[u+ v]α = [u]α + [v]α, [ku]α = k[u]α,

where u, v ∈ En and 0 ≤ α ≤ 1.
Define D : En × En → [0,∞)

D(u, v) = sup{dH([u]α, [v]α) : α ∈ [0, 1]},

where d is the Hausdorff metric defined in Pk(R
n). Then it is easy see that D

is a metric in En. Using the results [5], we know that
(1) (En, D) is a complete metric space,
(2) D(u+ w, v + w) = D(u, v) for all u, v, w ∈ En,
(3)D(λu, λv) = |λ|D(u, v) for all u, v, w ∈ En and λ ∈ R.
The metric space (En, D) has a linear structure, it can be imbedded isomor-

phically as a cone in a Banach space of function u∗ : I × Sn−1 −→ R, where
Sn−1 is the unit sphere in Rn, with an imbedding function u∗ = j(u) defined
by

u∗(r, x) = sup
α∈[u]α

< α, x >

for all < r, x >∈ I × Sn−1. (see [5])

Theorem 1 There exist a real Banach space X such that En can be imbedding
as a convex cone C with vertex 0 into X. Furthermore the following conclusions
hold:

(1) the imbedding j is isometric,
(2) addition in X induces addition in En,
(3) multiplication by nonnegative real number in X induces the corresponding

operation in En,
(4) C − C is dense in X,
(5) C is closed.

A fuzzy-number-valued function f : [a, b] → En is said to satisfy the con-
dition (H) on [a, b], if for any x1 < x2 ∈ [a, b] there exists u ∈ En such that
f(x2) = f(x1) + u. We call u is the H-difference of f(x2) and f(x1), denoted
f(x2)−H f(x1) ([11]).

3
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For brevity, we always assume that it satisfies the condition (H) when dealing
with the operation of subtraction of fuzzy numbers throughout this paper.

It is well-known that the H-derivative for fuzzy-number-functions was ini-
tially introduced by Puri and Ralescu [17] and it is based in the condition (H)
of sets. We note that this definition is fairly strong, because the family of
fuzzy-number-valued functions H-differentiable is very restrictive. For example,
the fuzzy-number-valued function f : [a, b] → En defined by f(x) = C · g(x),
where C is a fuzzy number, · is the scalar multiplication (in the fuzzy context)
and g : [a, b] → R+, with g′(t0) < 0, is not H-differentiable in t0 (see [2]). To
avoid the above difficulty, in this paper we consider a more general definition
of a derivative for fuzzy-number-valued functions enlarging the class of differ-
entiable fuzzy-number-valued functions, which has been introduced in [2] and
[3].

Definition 1 ([2]) Let f̃ : (a, b) → En and x0 ∈ (a, b). We say that f̃ is
differentiable at x0, if there exists an element f̃ ′(t0) ∈ En, such that

(1) for all h > 0 sufficiently small, there exists f̃(x0+h)−H f̃(x0), f̃(x0)−H

f̃(x0 − h) and the limits (in the metric D)

lim
h→0

f̃(x0 + h)−H f̃(x0)

h
= lim

h→0

f̃(x0)−H f̃(x0 − h)

h
= f̃ ′(x0)

or
(2) for all h > 0 sufficiently small, there exists f̃(x0) −H f̃(x0 + h), f̃(x0 −

h)−H f̃(x0) and the limits

lim
h→0

f̃(x0)−H f̃(x0 + h)

−h
= lim

h→0

f̃(x0 − h)−H f̃(x0)

−h
= f̃ ′(x0)

or
(3) for all h > 0 sufficiently small, there exists f̃(x0 + h) −H f̃(x0), f̃(x0 −

h)−H f̃(x0) and the limits

lim
h→0

f̃(x0 + h)−H f̃(x0)

h
= lim

h→0

f̃(x0 − h)−H f̃(x0)

−h
= f̃ ′(x0)

or
(4) for all h > 0 sufficiently small, there exists f̃(x0)−H f̃(x0+h), f̃(x0)−H

f̃(x0 − h) and the limits

lim
h→0

f̃(x0)−H f̃(x0 + h)

−h
= lim

h→0

f̃(x0)−H f̃(x0 − h)

h
= f̃ ′(x0)

(h and −h at denominators mean 1
h · and − 1

h ·, respectively).
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3 THE STRONG FUZZY HENSTOCK INTE-
GRAL AND ITS CONTROLLED CONVER-
GENCE THEOREM

In this section we shall give the definition of the strong Henstock integral for
fuzzy-number-valued functions [7, 8] on a finite interval, which is an extension
of the usual fuzzy Kaleva integral in [11]. In addition, we define the properties
of ω − AC∗ and ω − ACG∗ for fuzzy-number-valued functions. In particular,
we shall prove a controlled convergence theorems for the strong fuzzy Henstock
integrals.

Definition 2 ([10, 14]) Let δ(x) be a positive function defined on the interval
[a, b]. A division P = {[xi−1, xi] : ξi} is said to be δ−fine if the following
conditions are satisfied:

(1) a− x0 < x1 < · · · < xn = b;
(2) ξi ∈ [xi−1, xi] ⊂ (ξi − δ(ξi), ξi + δ(ξi)).

For brevity, we write P = {[u, v]; ξ}

Definition 3 ([7, 8]) A fuzzy-number-valued function f̃ is said to be strong
Henstock integrable on [a, b] if there exists a additive fuzzy-number-valued func-
tion F̃ on [a, b] such that for every ε > 0 there is a function δ(ξ) > 0 and for
any δ-fine division P = {([u, v], ξ)} of [a, b], we have∑

i∈Kn

D(f̃(ξi)(vi − ui), F̃ ([ui, vi]))

+
∑
j∈In

D(f̃(ξj)(vj − uj), (−1) · F̃ ([uj , vj−1]))

< ε.

where Kn = {i ∈ {1, 2, ··, n} such that F̃ ([xi−1, xi]) is a fuzzy number and
In = {j ∈ {1, 2, ··, n} such that F̃ ([xj , xj−1]) is a fuzzy number. We write

f̃ ∈ SFH[a, b].

Definition 4 ([10, 14]) A real-valued function F is strong absolute continuous
(F ∈ AC∗) on [a, b] if and only if for every ε > 0 there is a η > 0 such that for
every finite or infinite sequence of non-overlapping interval {[ai, bi]}, satisfying∑

i |bi − ai| < η, we have
∑

i O(F ; [ai, bi]) < ε, where where O denotes the
oscillation of f over [ai, bi], i.e.,

O(f, [ai, bi]) = sup{|F (x)− F (y)|;x, y ∈ [ai, bi]}.

A real-valued function F is said to be ACG∗ on X if X is the union of a
sequence of sets {Xi} such that on each Xi the function F is AC∗(Xi).

Definition 5 A fuzzy-number-valued function f defined on X ⊂ [a, b] is said
to be weak generalized absolute continuous (f̃ ∈ ω − ACG∗(X)) if for every
λ ∈ [0, 1], the real-valued function f−λ (x) and f+λ (x) are ACG∗.

5
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Theorem 2 If f̃ is strong fuzzy Henstock integrable on [a, b], then its primitive
F is ω −ACG∗ on [a, b].

Proof. For every ε > 0, there is a function δ(ξ) > 0 such that for any δ-fine
partial division P = {[u, v], ξ} in [a, b], we have∑

D(F ([u, v]), f(ξ)(v − u)) < ε.

We assume that δ(ξ) ≤ 1. Let

Xn,i = {x ∈ [a, b] : D(f(x), 0̃) ≤ n,
1

n
< δ(x) ≤ 1

n− 1
, x ∈ [a+

i− 1

n
, a+

i

n
)}

for n = 2, 3, · · ·, i = 1, 2, · · ·. Fixed Xn,i and let {[ak, bk]} be any finite sequence
of non-overlapping intervals with ak, bk ∈ Xn,i for all k. Then {([ak, bk], ak)}
is a δ-fine partial division of [a, b]. Furthermore, if ak ≤ uk ≤ vk ≤ bk, then
{([ak, uk], ak)}, {([ak, vk], ak)} are δ-fine partial division of [a, b]. Thus∑

D(F (uk), F (vk)) ≤
∑

D(F (ak), F (uk)) +
∑

D(F (bk), F (vk))

+
∑

D(F (ak), F (bk))

≤ 3ε+
∑

D(f(ak)(uk − ak), 0̃) +
∑

D(f(bk)(bk − vk), 0̃)

+
∑

D(f(ak)(bk − ak), 0̃) ≤ 3ε+ 3n
∑

(bk − ak).

Choose η ≤ ε
3n and

∑
(bk − ak) < η. Then∑

O(F, [ak, bk]) ≤ 3ε+ ε.

Therefore, F is ω −AC∗(Xn,i). Consequently, F is ω −ACG∗ on [a, b].

Theorem 3 If there exists a fuzzy-number-valued function F is continuous and
ω −ACG∗ on [a, b] such that F ′(x) = f(x) a.e. in [a, b], then f is strong fuzzy
Henstock integrable on [a, b] with primitive F .

Proof. Let F be the primitive of f and F ′(x) = f(x) for x ∈ [a, b]\S where
S is of measure zero. For ξ ∈ [a, b] \S, given ε > 0 there is a δ(ξ) > 0 such that
whenever ξ ∈ [u, v] ⊂ (ξ − δ(ξ), ξ + δ(ξ)) we have

D(F ([u, v]), f(ξ)(v − u)) ≤ ε|v − u|.

Since F is continuous and ω −ACG∗ on [a, b], there is a sequence of closed
sets {Xi} such that ∪iXi = [a, b] and F is ω − AC∗(Xi) for each i. Let Y1 =
X1, Yi = Xi \ (X1 ∪ X2 · · · ∪Xi−1) for i = 1, 2, · · · and Sij denote the set of
points x ∈ S ∩ Yi such that j − 1 ≤ D(f, 0̃) < j. Obviously, Sij are pairwise
disjointed and their union is the set S. Since F is also ω − AC∗(Sij), there is
a ηij < ε2−i−jj−1 such that for any sequence of non-overlapping intervals {Ik}
with at least one endpoint of Ik belonging to Sij and satisfying

∑
k |Ik| < ηij

6
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we have
∑

kD(F (Ik), 0̃) < ε2−i−j . Again, F (I) denotes F (v) −H F (u) where
I = [u, v]. Choose Gij to be the union of a sequence of open intervals such that
|Gij | < ηij and Gij ⊃ Sij where |Gij | denotes the total length of Gij . Now for
ξ ∈ Sij , put (ξ−δ(ξ), ξ+δ(ξ)) ⊂ Gij . Hence we have defined a positive function
δ(ξ).

Take any δ−fine division P = {[u, v]; ξ}. Split the
∑

over P into partial
sums

∑
1 and

∑
2 in which ξ∈̄S and ξ ∈ S respectively and we obtain

D(f(ξ)(v − u), F ([a, b])) ≤
∑
1

D(f(ξ)(v − u), F ([a, b]))

+
∑
2

D(F ([a, b]), 0̃) +
∑
2

D(f(ξ)(v − u), 0̃)

< ε(b− a) +
∑
i,j

ε2−i−j +
∑
2

jηij

< ε(b− a) + 2ε.

That is to say, f is strong fuzzy Henstock integrable to F on [a, b].

Definition 6 A sequence of fuzzy-number-valued functions {Gn(x)} is said to
be weak uniformly ACG∗(Uω − ACG∗) if for every λ ∈ [0, 1], the real-valued
functions {Gn(x)}−λ and {Gn(x)}+λ are UACG∗.

Theorem 4 (Controlled Convergence theorem) If a sequence of strong fuzzy
Henstock integrable {fn} satisfies the following conditions:

(1) fn(x) → f(x) almost everywhere in [a, b] as n→ ∞;
(2) the primitives Fn(x) = (SFH)

∫ x

a
fn(s)dx of fn are ω−ACG∗ uniformly

in n;
(3) the primitives Fn(x) are equicontinuous on [a, b],

then f(x) is strong fuzzy Henstock integrable on [a, b] and we have

lim
n→∞

(SFH)

∫ b

a

fn(x)dx = (SFH)

∫ b

a

f(x)dx.

If condition (1) and (2) are replaced by condition (4):
(4) g(x) ≤ f(x) ≤ h(x) almost everywhere on [a, b], where g(x) and h(x) are

steong fuzzy Henstock integrable.

Proof. In view of condition (3), F (x) exist as the limit of Fn(x) and is
continuous. In fact, for ∀λ ∈ [0, 1], (Fn(x))

−
λ and (Fn(x))

+
λ is uniformly ACG∗

on [a, b]. By the Controlled Convergence theorem of real valued strong Henstock
integral([14] Theorem 7.6), F (x) is continuous. Because F−

λ (x) and F+
λ (x) is

Henstock integrable on [a, b], it follows condition (2) that F is ω−ACG∗. From
theorem 3.2, it remains to show that F ′(x) = f(x) almost everywhere. Hence
we obtain f(x) is strong fuzzy Henstock integrable on [a, b].

Next, we put G(x) = (SFH)
∫ x

a
F (t)dt, in view of condition (3), for ∀λ ∈

[0, 1], we have
lim

n→∞
(Fn(x))

−
λ = G−

λ (x) = F−
λ (x)

7
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and
lim
n→∞

(Fn(x))
+
λ = G+

λ (x) = F+
λ (x).

So, let x = b, we have

lim
n→∞

(SFH)

∫ b

a

fn(x)dx = (SFH)

∫ b

a

f(x)dx.

This completes the proof.

4 AN EXISTENCE RESULT OF GENERAL-
IZED FUZZY INTEGRO-DIFFERENTIAL
EQUATIONS

By using the Controlled Convergence theorem of strong fuzzy Henstock integral,
in this section, we prove a theorem for the existence of solution to the Cauchy
problem (1). For any bounded subset A of the Banach space X we denote α(A)
the Kuratowski measure of non-compactness of A, i.e the infimum of all ε > 0
such that there exist a finite covering of A by sets of diameter less than ε. For
the properties of α we refer to [1] for example.

Lemma 1 ([1]) Let H ⊂ C(Iγ , X) be a family of strong equicontinuous func-
tions. Then

α(H) = sup
t∈Iγ

α(H(t)) = α(H(Iγ))

where α(H) denote the Kuratowski measure of non-compactness in C(Iγ , X)
and the function t→ α(H(t)) is continuous.

Theorem 5 ([1]) Let D be a closed convex subset of X, and let F be a contin-
uous function from D into itself. If for x ∈ D the implication

V̄ = ¯con({x} ∪ F (V )) ⇒ V

is relatively compact, then F has a fixed point.

Theorem 6 If the fuzzy-number-valued function f̃ : Ia −→ En is (SFH) inte-
grable, then ∫

I

f̃(t)dt ∈ |I| · convf̃(I),

where convf̃(I) is the closure of the convex of f̃(I), I is an arbitrary subinterval
of Ia, and |I| is the length of I..

Proof. Because of j ◦ f̃ is abstract (SH) integrable in a Banach Space, by
using the mean valued theorem of (SH) integrals, we have

(SH)

∫
I

j ◦ f̃(t)dt ∈ |I| · convj ◦ f̃(I) = |I| · j ◦ convf̃(t).

8
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In additional, there exists (SH)
∫
I
j ◦ f̃(t)dt = j ◦

∫
I
f̃(t)dt.

So, we have j ◦
∫
I
f̃(t)dt ∈ |I| · convj ◦ f̃(I). And the set {|I| · convf̃(I)} is

a closed convex set, we have∫
I

f̃(t)dt ∈ |I| · convf̃(I).

Definition 7 A fuzzy-number-valued function f̃ : Ia×En −→ En is L1−Carathéodory
if the following conditions hold:

(1) the fuzzy mapping (x, y) ∈ En×En is measurable for all t −→ f̃(t, x, y);
(2) the fuzzy mapping t ∈ Ia is continuous for all (x, y) −→ f̃(t, x, y).

We observer that the problem (1) is equivalent to the integral eqution:

x(t) = x0 +

∫ t

0

f̃(z, x(z),

∫ z

0

k1(z, s)g̃(s, x(s))ds,

∫ a

0

k2(z, s)h̃(s, x(s))ds)dz

or

x(t) = x0+(−1)·
∫ t

0

f̃(z, x(z),

∫ z

0

k1(z, s)g̃(s, x(s))ds,

∫ a

0

k2(z, s)h̃(s, x(s))ds)dz.

(2)
Now, we define a notion of a solution.

Definition 8 A ω − ACG∗ function x : Ia → En is said to be the generalized
solutions of the problem (1) if it satisfies the following conditions:

(1) x(0) = x0;
(2)

x′(t) = f̃(t, x(t),

∫ t

0

k1(t, s)g̃(s, x(s))ds,

∫ a

0

k2(t, s)h̃(s, x(s))ds).

for a. e. t ∈ Ia.

Definition 9 A continuous function x : Ia → En is said to be the solutions of
problem (2) if

x(t) = x0 +

∫ t

0

f̃(z, x(z),

∫ z

0

k1(z, s)g̃(s, x(s))ds,

∫ a

0

k2(z, s)h̃(s, x(s))ds)dz

or

x(t) = x0+(−1)·
∫ t

0

f̃(z, x(z),

∫ z

0

k1(z, s)g̃(s, x(s))ds,

∫ a

0

k2(z, s)h̃(s, x(s))ds)dz.

for every t ∈ Ia

For every fuzzy number x ∈ C(Ia, E
n), we define the norm of x by:

H(x, 0̃) = sup
t∈Ia

D(x, 0̃).

9
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Let
B(p) = {x ∈ C(Ia, E

n)|H(x, 0̃) ≤ H(x, 0̃) + p, p > 0}.
Obviously, B(p) is closed and convex in En. Define the operator F : C(Ia, E

n) →
C(Ia, E

n) by:

F (x)(t) = x0 +

∫ t

0

f̃(z, x(z),

∫ z

0

k1(z, s)g̃(s, x(s))ds,

∫ a

0

k2(z, s)h̃(s, x(s))ds)dz

where integrals are in the sense of strong fuzzy Henstock integral.
Let

Γ(p) = {F (x) ∈ C(Ia, E
n)|x ∈ B(p)}

for each p > 0. Let r(K) be the spectral radius of the integral operator K
defined by

K(u)(t) =

∫ c

0

k(t, s)u(s)ds,

where the kernel k ∈ C(Ia×Ia, R), u ∈ C(Ia, E
n) and c denotes any fixed valued

in Ia.
Next, we give the main result in this section.

Theorem 7 Suppose that for each ω − ACG∗ function x : Ia → En, the func-
tions
g̃(·, x(·)), f̃(·, x(·)),

∫ (·)
0
k1(·, s)g̃(s, x(s))ds, and

∫ a

0
k2(z, s)h̃(s, x(s))ds are (SFH)

integrable, g̃, f̃ , and h̃ are fuzzy L1−Caratheodory functions. Let k1, k2 : Ia ×
Ia → R+ be measurable functions such that k1(t, ·), k2(t, ·) are continuous.

Assume that there exists p0 > 0 and positive constants L,L1 and d1, such
that

α(j ◦ g̃(I,X)) ≤ Lα(j ◦X), I ⊂ Ia, X ⊂ B(p0),

α(j ◦ h̃(I,X)) ≤ L1α(j ◦X), I ⊂ Ia, X ⊂ B(p0),

α(j ◦ f̃(t, A,C,D)) ≤ d1 ·max{α(j ◦A), α(j ◦ C), α(j ◦D)} A,C,D ⊂ B(p0),

where g̃(I,X) = {g̃(t, x(t))|t ∈ I, x ∈ X}, h̃(I,X) = {h̃(t, x(t))|t ∈ I, x ∈ X}
and

f̃(t, A,C,D) = {f̃(t, x1, x2, x3)|(x1, x2, x3) ∈ A× C ×D}
where α denotes the Kuratowski measure of non-compactness.

Moreover, let Γ(p0) be equicontinuous, equibounded, and uniformly ω−ACG∗

on Ia. Then, there exists at least on solution of problem (1) on Ic, for some
0 < c ≤ a, such that d1 · c < 1 and d1 · c · L · r(K).

Proof. By equicontinuity and equiboundedness of Γ(p0) there exists a num-
ber c, 0 < c ≤ a such that

H(

∫ t

0

f̃(z, x(z),

∫ z

0

k1(z, s)g̃(s, x(s))ds,

∫ a

0

k2(z, s)h̃(s, x(s))ds)dz, 0̃)

= sup
t∈Ic

D(

∫ t

0

f̃(z, x(z),

∫ z

0

k1(z, s)g̃(s, x(s))ds,

∫ a

0

k2(z, s)h̃(s, x(s))ds)dz, 0̃)

≤p0,

10
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where p0 > 0, x ∈ B(p0). By the definition of F , we have

H(F (x)(t), 0̃)

=H(x0 +

∫ t

0

f̃(z, x(z),

∫ z

0

k1(z, s)g̃(s, x(s))ds,

∫ a

0

k2(z, s)h̃(s, x(s))ds)dz, 0̃)

≤H(x0, 0̃) +H(

∫ t

0

f̃(z, x(z),

∫ z

0

k1(z, s)g̃(s, x(s))ds,

∫ a

0

k2(z, s)h̃(s, x(s))ds)dz, 0̃)

≤H(x0, 0̃) + p0, t ∈ Ic, x0 ∈ En.

Using Theorem 4, we deduce that the fuzzy-number-valued function F is con-
tinuous.

Obviously, there exists V ⊂ B such that V = conv({x} ∪ F (V )) for every
x ∈ B(p0). Next, we will prove that V is relatively compact.

In fact, let V (t) = {v(t) ∈ En|v ∈ V } for t ∈ Ic. Since V ⊂ B(p0) and
F (V ) ⊂ Γ(p0), then V ⊂ V is equicontinuous. By Lemma 1, we get that t →
v(t) = α(j◦V (t)) is continuous on Ic. For fixed t ∈ Ic, we divide the interval [0, t]
into m parts: 0 = t0 < t1 < · · · < tm = t, where ti = it/m, i = 0, 1, 2 · · · ,m.
Let V ([ti, ti+1]) = {u(s) : u ∈ V, ti ≤ s ≤ ti+1, i = 1, 2, · · · ,m − 1} By Lemma
1 and the continuity of v, there exists si ∈ Ii = [ti, ti+1] such that

α(j ◦ V ([ti, ti+1])) = sup
t∈Ic

{α(j ◦ V (s))|ti ≤ s ≤ ti+1} := v(si).

For fixed z ∈ [0, t], we divide the interval [0, z] into m parts: 0 = z0 < z1 <
· · · < zm = z, where zj = jz/m, j = 0, 1, 2 · · · ,m. Let V ([zj , zj+1]) = {u(s)|u ∈
V, zj ≤ s ≤ zj+1}, j = 0, 1, 2, · · · ,m − 1. By Lemma 1 and the continuity of v,
there exists sj ∈ Ij = [zj , zj+1] such that

α(j ◦ V ([zj , zj+1])) = sup
t∈Ic

{α(j ◦ V (s))|zj ≤ s ≤ zj+1} := v(sj).

Furthermore, we divide the interval [0, c] into m parts: 0 = r0 < r1 < · · · <
rm = c, where rk = kc/m, k = 0, 1, 2 · · · ,m. Let V ([rk, rk+1]) = {u(s)|u ∈
V, rk ≤ s ≤ rk+1}, j = 0, 1, 2, · · · ,m − 1. By Lemma 1 and the continuity of v,
there exists sk ∈ Ik = [rk, rk+1] such that

α(j ◦ V ([rk, rk+1])) = sup
t∈Ic

{α(j ◦ V (s))|rk ≤ s ≤ rk+1} := v(sk).

11
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By Theorem 3 and Theorem 4, we have

F (x)(t) = x0 +
m−1∑
i=0

∫ ti+1

ti

f̃(z, x(z),
m−1∑
j=0

∫ zj+1

zj

k1(z, s)g̃(s, x(s))ds,

m−1∑
k=0

∫ rk+1

rk

k2(z, s)h̃(s, x(s))ds)dz ∈ x0

+
m−1∑
i=0

(ti+1 − ti)convf̃(Ii, V (Ii),
m−1∑
j=0

(zj+1 − zj)conv(k1(Ii, Ij)g̃(Ij , V (Ij))),

m−1∑
k=0

(rj+1 − rj)conv(k2(Ii, Ij)h̃(Ik, V (Ik))),

where k(I, J) = {k(t, s)|t ∈ I, s ∈ J} and g̃(I, V (I)) = {g̃(t, x(t))|t ∈ I, x ∈ V }.
Using the condition in assumption and the properties of noncompactness α

([1]), we have

α(j ◦ F (V )(t))

≤
m−1∑
i=0

(ti+1 − ti)convα(j ◦ f̃(Ii, V (Ii),

m−1∑
j=0

(zj+1 − zj)conv(k1(Ii, Ij)g̃(Ij , V (Ij))),

m−1∑
k=0

(rj+1 − rj)conv(k2(Ii, Ij)h̃(Ik, V (Ik))))

≤
m−1∑
i=0

(ti+1 − ti)d1 max{(α(j ◦ V (Ii)), αj ◦ (
m−1∑
j=0

(zj+1 − zj)conv(k1(Ii, Ij)g̃(Ij , V (Ij)))),

αj ◦ (
m−1∑
k=0

(rj+1 − rj)conv(k2(Ii, Ij)h̃(Ik, V (Ik)))).

We observe that if

α(j ◦ V (Ii)) = max{(α(j ◦ V (Ii)), αj ◦ (
m−1∑
j=0

(zj+1 − zj)conv(k1(Ii, Ij)g̃(Ij , V (Ij)))),

α(j ◦ (
m−1∑
k=0

(rj+1 − rj)conv(k2(Ii, Ij)h̃(Ik, V (Ik))))),

then

α(j ◦ V (t)) = αj ◦ (conv({x(t)} ∪ F (V (t))))α(j ◦ F (V (t))) ≤ d1 · c · α(j ◦ V (t))

for every t ∈ Ic. Because d1 · c < 1, we have α(j ◦ V ) < α(j ◦ V ). This is a
contradiction.
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If

α(j ◦ (
m−1∑
j=0

(zj+1 − zj)conv(k1(Ii, Ij)g̃(Ij , V (Ij)))))

= max{α(j ◦ V (Ii)), αj ◦ (
m−1∑
j=0

(zj+1 − zj)conv(k1(Ii, Ij)g̃(Ij , V (Ij)))),

α(j ◦ (
m−1∑
k=0

(rj+1 − rj)conv(k2(Ii, Ij)h̃(Ik, V (Ik)))))},

we have

α(j ◦ F (V )(t))

≤
m−1∑
i=0

(ti+1 − ti) · d1 ·
m−1∑
j=0

(zj+1 − zj)k1(Ii, Ij)α(j ◦ g̃(Ij , V (Ij)))

≤
m−1∑
i=0

(ti+1 − ti) · d1 · L ·
m−1∑
j=0

(zj+1 − zj)k1(Ii, Ij)α(j ◦ V (Ij))

≤ c

m
·
m−1∑
j=0

(zj+1 − zj)α(j ◦ V (Ij))
m−1∑
i=0

k1(Ii, Ij).

For j = 0, 1, 2, . . . ,m−1, there exists qj = 0, 1, 2, . . . ,m−1 such that k1(Ii, Ij) ≤
k1(Iqj , Ij). So,

α(j ◦ F (V )(t)) ≤ d1 · c · L ·
m−1∑
j=0

(zj+1 − zj)k1(Iqj , Ij)v(sj), sj ∈ Ij .

Hence
α(j ◦ F (V )(t))

≤ d1 · c · L ·
m−1∑
j=0

(zj+1 − zj)k1(Iqj , Ij)(v(sj)− v(pj))

+ d1 · c · L ·
m−1∑
j=0

(zj+1 − zj)k1(Iqj , Ij)v(pj).

By the continuity of v, we have j ◦ v(sj)− j ◦ v(pj) < ε. Therefore, we have

α(j ◦ F (V )(t)) ≤ d1 · c · L ·
∫ c

0

k1(t, s)v(s)ds

for t ∈ Ic. Since V = conv({x}∪F (V )), we have α(j◦V (t)) ≤ α(j◦F (V )(t)), so,
v(t) ≤ d1 ·c·L·

∫ c

0
k1(t, s)v(s)ds. By Gronwalls inequality, we have α(j◦V (t)) = 0

for t ∈ Ic. By Arzelá−Ascoli’s theorem, we have V is relatively. Consequently,
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by Theorem 5, F has a fixed point. That is to say that problem (1) have at
least solutions.

Similary, if

α(j ◦ (
m−1∑
k=0

(rj+1 − rj)conv(k2(Ii, Ij)h̃(Ik, V (Ik)))))

= max{α(j ◦ V (Ii)), αj ◦ (
m−1∑
j=0

(zj+1 − zj)conv(k1(Ii, Ij)g̃(Ij , V (Ij)))),

α(j ◦ (
m−1∑
k=0

(rj+1 − rj)conv(k2(Ii, Ij)h̃(Ik, V (Ik)))))},

then we have α(j ◦ V (t)) ≤ α(j ◦ F (V )(t)). By Arzelá−Ascoli’s theorem, the
set V is relatively. By Theorem 5, F has a fixed point which is a solution of the
problem (1).

5 CONCLUSIONS

In this paper, we give the definition of the ω−ACG∗ for a fuzzy-number-valued
function and a generalized controlled convergence theorem. In addition, we deal
with the Cauchy problem of discontinuous fuzzy integro-differential equations
of mixed type involving the strong fuzzy Henstock integral in fuzzy number
space. The function governing the equations is supposed to be discontinuous
with respect to some variables and satisfy nonabsolute fuzzy integrablility. Our
result improves the result given in Ref. [11, 2] and [26] (where uniform continuity
was required), as well as those referred therein.
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Abstract

In this paper, a Stieltjes transform enfolding some Fox�sH-function has been investigated
on certain class of generalized functions named as Boehmians. By developing two spaces
of Boehmians, the extended transform has been inspected and some general properties are
also obtained. An inverse problem is also discussed in some detail.

Keywords: Fox�s H-function; Stieltjes transform; Laplace transform; Boehmian space; Dis-
tribution space.

1 Introduction

The Fox�s H-function is a generalization of the Meijer G-function introduced by Charles Fox
[15]. It is de�ned by the compact notation adopted for

H
 (!) = H



"
!

����� (a ; �)=12�
b ; �

�
=12

#
and has an exempli�cation in terms of the Barnes-type integral [2]

H
 (!) =

1

2�i

Z
L
|
 (&)!

d&;

where L is a path in the complex plane, ! = exp f& (log j!j+ i arg!)g ; and

|
 (&) =

a (&) b (&)

c (&)d (&)
;

where

a (&) : =
Y
1

�
�
b � �&

�
; b (&) :=

Y
1

� (1� a + �&)

c (&) : =

Y
+1

�
�
1� b � �&

�
and d (&) :=

Y
+1

� (a + �&) ;
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2 S. K. Q. Al-Omari and D. Baleanu

with m; p; q 2 N; a ; b 2 C; � ; � 2 R+; n 2 N0 := N [ f0g satisfying 0 < n < p and
0 < m < q; and C;R+ and N denote, respectively, the sets of complex numbers, positive
real numbers and positive integers.
We refer to the survey article by Braaksma [2] and the book of Charles Fox [15] for

asymptotic behaviour of Fox�s H-functions:
Fox�s H-functions being an extreme generalization of the generalized hypergeometric func-
tions F are utilized for applications in a large variety of problems connected with statistical
distribution theory, structures of random variables, generalized distributions, Mathai�s path-
way models, versatile integrals, reaction, di¤usion, reaction di¤usion, engineering, commu-
nication, fractional di¤erential and integral equations and many areas of theoretical physics
and statistical distribution theory as well.
Recently, utility and importance of H-functions are realized due to their occurrence as
kernels of certain integral transforms.
The generalized Stieltjes transform of a function ' (t) of one variable with kernel involving

Fox�s H-function is de�ned by [5; (1:3)]

� (') (!) =

Z 1
0

!¬1H1222

"�
�

!

�� ���� (a1; �1) ; (1� b1 � �1; ��1)(e1; 
1) ; (e2; 
2)

#
' (�) d�; (1)

where H
 [!] is the usual notation of the Fox H-function.

An interesting fact that we �nd it worthwhile to be mentioned here is that the transform
under consideration is a modulation of the Laplace transform

�

(') (!) =

Z 1
0

H1222

�
(�!)

�

���� (a1; �1)(e1; 
1) ; (e2; 
2)

�
' (�) d� (2)

that recti�ed after some iterations and an appropriate choice on its parameter.
Denote by J the Fréchet space of smooth functions ' de�ned for all � (0 < � <1) by

the set f�g of seminorms where

� (') = sup
0<�1

���% (log �) (�D�)

p
�' (�)

��� <1 (3)

for every choice of k (k 2 N0) ;

% (log �) =

�
�; 1 � � <1
�; 0 < � < 1

;

c and d are being real numbers:
The strong dual of continuous linear forms on J is denoted by J

0

 :

Let p1 and q1 be real numbers de�ned by p1 = min
�
Re


�

�
(j = 1; 2; :::;m), q1 = max

�
Re

¬1
�

�
(j = 1; 2; :::; n) and related by the pair of inequalities c+

1

2
+ �q1 < 0 and d+

1

2
+ �p1 > 0:

Then, the extended transform of a distribution f 2 J 0 is de�ned as the application of
f (t) 2 J 0 to its kernel ( see [5; Theorem 3:1])

!¬1H1222

"�
�

!

�� ���� (a1; �1) ; (1� b1 � �1; ��1)(e1; 
1) ; (e2; 
2)

#
giving, by kernel method,

� (f) (!) =

*
f (�) ; !¬1H1222

"�
�

!

�� ���� (a1; �1) ; (1� b1 � �1; ��1)(e1; 
1) ; (e2; 
2)

#+
; (4)
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On the generalized Stieltjes transform of Fox�s kernel function ... 3

where ! is a complex number not lying on the negative real axis.
For our consecutive investigation, we denote by I the subset of those integrable func-

tions of J assigned by the set f�g and its strong dual I� of distributions. Then,
indeed, I � J and, hence, J

0

 � I�: Denote by D the standard notation of the space
of smooth functions whose supports are compact subset of (0;1) : Then, it is easy to check
that D � I and that topology of D is stronger than the topology induced on it by I.
Hence, the restriction to any f 2 I� to D is in D0 ; where D0 is the space of disributions.

We need to establish the following theorem.

Theorem 1 Given ' 2 I: Then, � (') 2 I:
Proof Let ' 2 I be given: For the convenience of the reader, we write

H1222

"�
y

�

��#
= H1222

"�
y

�

�� ���� (a1; �1) ; (1� b1 � �1; ��1)(e1; 
1) ; (e2; 
2)

#
:

By aid of (3) and (1) and simple computation we write

���% (log �) (�D�)p� ��� (') (�)��� �
Z 1
0

�����% (log �) (�D�)p��¬1H1222
"�

y

�

��#�����
� j' (y)j dy:

This can also be revised to give���% (log �) (�D�)p� ��� (') (�)��� �
Z 1
0

�����% (log �) (�D�) ��¬1� 12 H1222
"�

y

�

��#�����
� j' (y)j dy:

By utilizing the Property 2.8

D


(
zH



"
cz�

����� (a; �)1�
b ; �

�
1

#)
= z¬H+1

+1+1

"
cz�

����� (�w; �) ; (a; �)1�
b ; �

�
1
; (k � w; �)

#

of Kilbas and Saigo [1;p.33] we get���% (log �) (�D�)

p
�
�
�
�
(') (�)

��� � Z 1
0

�����% (log �) �¬ 12
z}|{
H1333

"�
y

�

��#����� j' (y)j dy;
where z}|{

H1333

"�
y

�

��#
= H1333

"�
y

�

�� ���� � 12 ; �� ; (a1; �1) ; (1� b1 � �1; ��1)(e1; 
1) ; (e2; 
2) ;
�
k � 1

2 ; �
� #

:

Therefore, the asymptotic properties of H-functions, for large �; imply

sup
0<�1

�����% (log �) �¬ 12
z}|{
H1333

"�
y

�

��#����� = sup
0<�1

�������¬ 12
z}|{
H1333

"�
y

�

��#����� < M1;

where M1 is some positive constant. Similarly, for small �; it implies

sup
0<�1

�����% (log �) �¬ 12
z}|{
H1333

"�
y

�

��#����� = sup
0<�1

�������¬ 12
z}|{
H1333

"�
y

�

��#����� < M2;
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where M2 is a postive constant.
Let M = max fM1;M2g : Then, by the preceding two formulas, we have

sup
0<�1

���% (log �) (�D�)p� ��� (') (�)��� �M

Z 1
0

j' (y)j dy <1;

since ' is integrable.

The proof of this theorem is �nished.

Definition 2 Let f 2 I�: Then, the Stieltjes transform � of f 2 I� is de�ned by the
inner product 


� (f) (!) ; ' (!)
�
=


f (!) ; � (') (!)

�
; (6)

where ' 2 I is aritrary.
The inner product on the left hand side of (6) is well-de�ned by Theorem 1. Hence, it may
be noted from Equation 6 that the Stieltjes transform of f 2 I� is a distribution in I�:

2 Generalized Distributions; Boehmian Spaces

We always assume that readers are aquainted with the concept of Boehmian spaces, if it
were otherwise, we would refer to [4]; [6� 14] and [16; 17].
Let us now prove the following Theorems that legitimate the existence of our Boehmian
spaces.

The following de�nition is important for our next investigation.

Definition 3 Given '; 2 I; then, for ' and  ; the product 
 is de�ned by

('
  ) (!) =
Z 1
0

'
�
�¬1!

�  (�)
�

d�; (7)

provided the integral exists.
Theorem 4 Given ' 2 I, then '
  2 I; for every  2 D:
Proof On account of (3) ; we write

���% (log �) (�D�)p� ('
  ) (�)��� �
Z 1
0

��y¬1 (y)��
�
���% (log �) (�D�)p�' �y¬1����� dy

� A�
1Z
0

��y¬1 (y)�� dy:
Let [a1; a2] be a closed interval containing the support of  : Since ' 2 I; it by considering
supremum over all � (0 < � <1) follows that

� ('
  ) � A�
Z 2

1

��y¬1 (y)�� dy <1;
for some constant A�:

Hence, the proof of this theorem is �nished.

Let g be the product of Mellin type given by

('g  ) (y) =
Z 1
0

�¬1'
�
�¬1y

�
 (�) d�: (8)
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We generate the space B ((I;
) ; (D;g)) where � is the subset of D of sequences (�)
such that

(i)
Z 1
0

� (�) d� = 1;

(ii) j� (�)j < A; A 2 R; A > 0;
(iii) supp � (�) � (a; b) ; a; b ! 0 as n!1;

9>>=>>; (9)

n 2 N; � 2 (0;1) :
In what follows we shall make a free use of the properties of the product g that we brie�y
describe them as follows :
(i) '1 g '2 = '2 g '1;
(ii) ('1 g '2)g '3 = '1 g ('2 g '3) ;
(iii) (�'1)g '2 = � ('1 g '2) ;
(iv) '1 g ('2 + '3) = '1 g '2 + '1 g '3:

Following theorem follows from elementary rules of integral calculus. Hence, its proof is
deleted.
Theorem 5 Given '; '; '1; '2 2 I; � 2 C, and  ; 1;  2 2 D such that ' ! ' as
n!1; then the following are true :
(i)' 
  ! '
  as n!1:
(ii)'1 
 ( 1 +  2) = '1 
  1 + '2 
  2:
(iii)� ('
  ) = �'
  = '
 (� ) :

Theorem 6 Given ' 2 I and  1;  2 2 D; then '
 ( 1 g  2) = ('
  1)
  2:
Proof Let ' 2 I and  1;  2 2 D: Then, by aid of the integrals (7) and (8) ; we write

('
 ( 1 g  2)) (!) =

Z 1
0

'
�
�¬1!

� ( 1 g  2) (�)
�

d�

=

Z 1
0

 2 (y) y
¬1
Z 1
0

'
�
�¬1!

�  1 ��y¬1�
�

dyd�

=

Z 1
0

 2 (y)

R1
0
'
�
y¬1z¬1!

�
z¬1 (z) dz

y
dy

=

Z 1
0

 2 (y)
('
  1)

�
y¬1!

�
y

dy:

The proof of this theorem is �nished.

Theorem 7 Given (�) 2 � and ' 2 I, then '
 � 2 I :
Proof Let ' 2 I and (�) 2 � be given: Then, by (3) and the Identity (i) of (9) we have

���% (log �) (�D�)p� ('
 � � ') (�)��� =

Z 1
0

���% (log �) (�D�)p�' (�)���
� j� (y)j dy; (10)

where ' (�) = '
�
�y¬1

�
y¬1 � ' (�) : Since ' (�) 2 I; we from (10) ; get that���% (log �) (�D�)p� ('
 � � ') (�)��� � A

Z 1
0

j� (y)j dy; (11)

where A is some positive constant.
Hence, by the identities (ii) and (iii) of (9) ; Equation (11) can be expressed as���% (log �) (�D�)p� ('
 � � ') (�)��� � AA1 (b � a)! 0 as n!1: (12)
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Hence, the proof of this theorem is �nished.

Theorem 8 Given ' 2 I, then, for every (�) 2 �; we have '
� ! ' in I as n!1:
Proof Let z be a compact subset of (0;1) containing supp �; for all n: Then, on account
of (i) of (9) ; we get

���% (log �) (�D�)p� ('
 � � ') (�)��� �
Z
z

���% (log �) (�D�)p�' �x¬1�����
�j� (x)j

x
dx

+

Z
z

���% (log �) (�D�)p�' (�)���
� j� (x)j dx: (13)

Therefore, (13) gives���% (log �) (�D�)p� ('
 � � ') (�)��� � A1

Z
z

j� (x)j
x

dx+A2

Z
z
j� (x)j dx:

Considering the supremum over all �; 0 < � <1; implies

� ('
 � � ') <1;

for any choice of the real numbers c; d and k 2 N0: Thus, we �nd that

'
 � ! ' in I as n!1:

The proof has been completed .

Corollary 9 Given (�) 2 � and '1 
 � = '2 
 �; then '1 = '2 for all '1; '2 2 I :

The space B ((I;
) ; (D;g)) is constructed.
Addition and multiplication by a scalar in B ((I;
) ; (D;g)) are de�ned by�

'
�

�
+

�
 
"

�
=:

�
' 
 � +   
 �

� g "

�
and �

�
'
�

�
=:

�
�'
�

�
(� 2 C) :

An extension of 
 and di¤erentiation to B ((I;
) ; (D;g)) is given as follows�
'
�

�


�
 
"

�
=:

�
' 
  
� g "

�
and D�

�
'
�

�
=:

�
D�'
�

�
(� 2 R) :

Given
�
'
�

�
2 B ((I;
) ; (D;g)) and$ 2 I: Then, 
 can be extended to B ((I;
) ; (D;g))�

I by �
'
�

�

$ =:

�
' 
$
�

�
:

�
�! � in B ((I;
) ; (D;g)) if there can be (�) in � satisfying (� 
 �) ; (� 
 �) 2 I

(k; n 2 N) and (� 
 �) ! (� 
 �) in I as n ! 1 (k 2 N) : This can be expressed to
mean :

�
�! � (n!1) in B ((I;
) ; (D;g)) if there are ' and ' 2 I; and (�) 2 �

where � =
�
'
�

�
; � =

�
'
�

�
and for each k 2 N we have f ! f as n!1 in I:
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�
�! � in B ((I;
) ; (D;g)) ; in a sense of�; if there can be (�) 2 � where (� � �)


� 2 I (8n 2 N) and that (� � �)
 � ! 0 as n!1 in I:

By techniques similar to above, the space B ((I;g) ; (D;g)) can similarly be generated.

In B ((I;g) ; (D;g)), addition and multiplication by a scalar has the following meanings�
'
�

�
+

�
 
"

�
=:

�
' g � +   g �

� g "

�
and �

�
'
�

�
=:

�
�'
�

�
(� 2 C) :

We extend g and the di¤erentiation to B ((I;g) ; (D;g)) as�
'
�

�
g
�
 
"

�
=

�
' g  
� g "

�
; D�

�
'
�

�
=

�
D�'
�

�
;

� being real number:

Given
�
'
�

�
2 B ((I;g) ; (D;g)) and $ 2 I:We de�ne g for B ((I;g) ; (D;g))�

I as �
'
�

�
g$ =:

�
' g$
�

�
:

Convergence in B ((I;g) ; (D;g)) is as follows :
�

�! � (n!1) in B ((I;g) ; (D;g)) if and only if there can be (�) in � such that
(� g �) ; (� g �) 2 I (8k; n 2 N) and (� g �)! (� g �) in I as n!1 (8k 2 N) :

Or, if there can be found '; ' 2 I; (�) 2 �, � =
�
'
�

�
; � =

�
'
�

�
and f ! f

as n!1 in I (k 2 N) :
�

�! � (n!1) ; in B ((I;g) ; (D;g)) ; if there can be (�) 2 � satisfying (� � �)g
� 2 I and (� � �)g � ! 0 as n!1 in I :

3 The Generalized �sg Transform of B ((Ic;d;g) ; (D;g))
We devote this section to the de�nition of the generalized Stieltjes transform and to derive
some desired properties. The following theorem speci�es the relation between g and 
.
Theorem 10 Given ' 2 I, then � ('g  ) (!) =

�
� (') 

�
(!) for every  2 D:

Proof Let ' 2 I and  2 D be given: Then, by (1) ; we have

� ('g  ) (!) =

Z 1
0

!¬1H1222

"�
�

!

�� ���� (a1; �1) ; (1� b1 � �1; ��1)(e1; 
1) ; (e2; 
2)

#
� ('g  ) (!) d�;

which can be expressed after setting the variables and using Fubini�s theorem as

� ('g  ) (!) =

Z 1
0

 (y)

Z 1
0

!¬1 (14)

�H1222

"�
z

y¬1!

�� ���� (a1; �1) ; (1� b1 � �1; ��1)(e1; 
1) ; (e2; 
2)

#
' (z) dzdy:
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Simple motivation on (14) yields

� ('g  ) (!) =

Z 1
0

 (y)

Z 1
0

�
y!¬1

�
�H1222

"�
z

y¬1!

�� ���� (a1; �1) ; (1� b1 � �1; ��1)(e1; 
1) ; (e2; 
2)

#
' (z) dzdy:

Hence, the above equation is interpreted to mean

� ('g  ) (!) =
Z 1
0

 (y) y¬1
�
�
�
(')

�
y!¬1

�
dy:

Hence, the proof of this theorem is �nished.

In view of the preceeding result we give the de�nition of � transform of
�
'
�

�
in the space

B ((I;g) ; (D;g)) as c� ��'�
��

=:

�
�'
�

�
(15)

which belongs to B ((I;
) ; (D;g)) by means of Theorem 10.
Theorem 11 The operatorc� is well - de�ned and linear, mapping from B ((I;g) ; (D;g))
into B ((I;
) ; (D;g)).

Proof Let
�
'
�

�
=

�
 
"

�
in the sense of B ((I;g) ; (D;g)) : Then, by the concept of

equivalent classes,
'
�

and
 
"

are equivalent in B ((I;g) ; (D;g)) : Thus, it has been
obtained ' g " =   g �:
Applying � to the sides of the above equation and employing Theorem 10 imply

�' 
 " = �  
 � (8n;m 2 N) :

That is, �
�'
�

�
=

�
� 
"

�
:

To show that the c� : B ((I;g) ; (D;g)) ! B ((I;
) ; (D;g)) is linear, let �1 =�
'
�

�
; �2 =

�
 
"

�
2 B ((I;g) ; (D;g)) : Then, addition of Boehmians of B ((I;g) ; (D;g))

and Equation 15, suggest to write

c� (�1 + �2) = �� (' g ") + � (  g �)� g "

�
:

By aid of Theorem 10, we obtain

c� (�1 + �2) = ��' 
 " + �  
 �r g "

�
:

Employing the product 
 that assigned to the B ((I;
) ; (D;g)) gives

c� (�1 + �2) = ��'�

�
+

�
� 
"

�
:
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Hence, we have obtained that

c� (�1 + �2) = c� ��'�
��
+c� �� "

��
:

Also, it is easy for readers to check that

�c� (�1) = c� (��1) (� 2 C) :
Hence, the proof of this theorem is �nished.

Theorem 12 The mapping c� : B ((I;g) ; (D;g)) ! B ((I;
) ; (D;g)) is an isomor-
phism.

Proof Given
�
�'
�

�
=

�
� 
"

�
2 B ((I;
) ; (D;g)) : Then, by virtue of Theorem 10,

we get
�' 
 " = �  
 � (m;n 2 N) :

Once again, Theorem 10 implies

� (' 
 ") = � (  
 �) :

Hence ' 
 " =   
 �: Therefore,�
'
�

�
=

�
 
"

�
2 B ((I;g) ; (D;g)) :

This proves that the above mapping is an injection. surjectivity of c� is obvious.
The proof is �nished.

Definition 13 Let �� 2 B ((I;
) ; (D;g)) ; �� =
�
�'
�

�
: Then, we the inverse mappingc� is de�ned as �c��¬1 (��) =

"�
�
�¬1 �

�'
�

�

#
=

�
'
�

�
;

for each (�) 2 �:

Theorem 14 Let �� =
�
�'
�

�
2 B ((I;
) ; (D;g)) for some

�
'
�

�
2 B ((I;
) ; (D;g))

and �;  2 D: Then we have

(i)
�c��¬1 (�� 
 �) = �'�

�
g �;

(ii) c� ��'�
�
g  

�
= �� 
  :

Proof Assume �� =
�
�'
�

�
2 B ((I;
) ; (D;g)) be given. Then, by Theorem 10, we

write

�c��¬1 (�� 
 �) = �c��¬1���' 
 ��

��
=

"�
�
�¬1 �

�' 
 �
�

�

#
:

Hence, �c��¬1 (�� 
 �) = �' g ��

�
:
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Therefore, �c��¬1 (�� 
 �) = �'�
�
g �:

To prove the second identity, we apply Theorem 10 to get

c� ��'�
�
g  

�
= c� ��' g  �

��
= �� 
  :

This �nishes the proof of the theorem.

Conclusion : This paper provides some integral products which were implemented to ex-
tend a new type of Stieltjes transforms enfolding Fox�s H-functions as kernels to generalized
functions. The generalized Sitieltjes transform was formed to satisfy the desired properties
of the classical transform. It may be concluded here that the employed Stieltjes transform
method is a very e¢ cient technique in extending integral transforms to generalized functions
and could lead to a promising approach for many integrals of special functions kernels .
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Decision making based on interval-valued

intuitionistic fuzzy soft sets and its algorithm ∗

Hongxiang Tang†

December 14, 2015

Abstract: This paper investigates an approach to interval-valued intuition-
istic fuzzy soft sets in decision making by means of grey relational analysis and
D-S theory of evidence. An algorithm based on this approach in decision making
is presented.

Keywords: Interval-valued intuitionistic fuzzy soft set; Decision making;
Grey relational analysis; D-S theory of evidence.

1 Introduction

In 1999, Molodtsov [18] initiated soft sets as a mathematical tool for dealing
with vagueness and uncertainties. Compared with some traditional tools for
dealing with uncertainties, such as probability theory, fuzzy set theory [32],
rough set theory [23], soft set theory has the advantage of freeing from the
inadequacy of the parametrization tools of those theories.

Recently, many efforts have been devoted to further generalizations and ex-
tensions of Molodtsov’s soft sets. Maji et al. [19, 20] defined fuzzy soft sets and
intuitionistic fuzzy soft sets by combining soft sets with fuzzy sets and and intu-
itionistic fuzzy sets, Yang et al. [31] defined the interval-valued fuzzy soft sets.
Jiang et al. [7] proposed a more general soft set model called interval-valued
intuitionistic fuzzy soft set, which is a substantial and important combination
of the soft set and the interval-valued intuitionistic fuzzy set. The intuitionistic
fuzzy soft set theory makes descriptions of the objective world more realistic,
practical and accurate in some cases, making it very promising.

With the rapid development of soft set theory, there has been some progress
on the practical applications, especially the use of soft sets in decision making.
Roy et al. [25] discussed score value as the evaluation basis to find an optimal
choice object in fuzzy soft sets. But Kong et al. [10] argued that the Roy’s
method was incorrect by using a counter example to discuss two evaluation bases

∗This work is supported by the National Social Science Foundation of China (No.
12BJL087).

†Corresponding Author, School of Finance and Insurance, Guangxi University of Finance
and Economics, Nanning 530003, P.R.China; Panyapiwat Institute of Management, Bangkok
10310, Thailand. hongxiangtang100@126.com
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of choice value and score value, and they proposed a revised algorithm. Later
Feng et al. [5] applied level soft sets to discuss fuzzy soft sets based decision
making and subsequently extended the approach to interval-valued fuzzy soft
set based decision making [6]. Jiang et al. [8] generalize the approach to solve
intuitionistic fuzzy soft sets. Based on Feng’ works, Basu et al. [2] further
investigated the previous methods to fuzzy soft sets in decision making and
introduced the mean potentiality approach, which was showed more efficient
and more accurate than the previous methods. Zhang [36] proposed a rough set
approach to intuitionistic fuzzy soft set based decision making. Li et al. [15]
investigated decision making based on intuitionistic fuzzy soft sets. Li et al.
[16] considered fuzzy soft set based decision making for applications in medical
diagnosis. Ma et al. [22] presented the algorithm to solve decision making
problems based on interval-valued intuitionistic fuzzy soft sets. Qin et al. [24]
present an adjustable approach to interval-valued intuitionistic fuzzy soft set
based decision making by using reduct intuitionistic fuzzy soft sets and level
soft sets of intuitionistic fuzzy soft sets.

All of the above methods for soft sets in decision making are mainly based
on the level soft set to obtain useful information such as choice values and score
values. However, the existing methods have their limitations. For example, it
is very difficult for decision maker to select a suitable level soft set to reduce
subjectivity and uncertainty (see [36]). Moreover, there has been rather little
work completed for interval-valued intuitionistic fuzzy soft set based decision
making. Then it is necessary to pay attention to this issue.

Grey relational analysis, initiated by Deng [4], is an important method to
reflect uncertainty in grey system theory, which is utilized for generalizing es-
timates under small samples and uncertain conditions. It has been successfully
applied in solving decision-making problems [9, 27, 28, 35]. D-S theory of ev-
idence, proposed by Dempster [3] and Shafer [26], is a powerful method for
combining accumulative evidence of changing prior opinions in the light of new
evidences [26]. Compared to probability theory, this theory captures more infor-
mation to support decision making by identifying the uncertain and unknown
evidence. It provides a mechanism to derive solutions from various vague ev-
idences without knowing much prior information. Therefore, combining both
theories enables the decision makers to take advantage of both methods’ merits
and make evaluation experts to deal with uncertainty and risk confidently. The
hybrid model is effective and practical under uncertainty [27, 29]. It is very
meaningful to extend the hybrid model to interval-valued fuzzy soft set based
decision making Thus, this not only allows us to avoid selecting a suitable level
soft set, but also helps reducing humanistic and subjective in nature to raise
the choices decision level.

The purpose of this paper is to investigate decision making based on the
interval-valued intuitionistic fuzzy soft sets.
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2 Preliminaries

Throughout this paper, U denotes an initial universe, E denotes the set of all
possible parameters, 2U denotes the family of all subsets of U . We only consider
the case where U and E are both nonempty finite sets. Int[0, 1] denotes a set of
all closed subintervals of [0, 1].

2.1 Interval-valued intuitionistic fuzzy soft sets

Definition 2.1 ([1]). An interval-valued intuitionistic fuzzy set X̃ over U is an
object having the form X̃ = {(x, µX̃(x), νX̃(x)) | x ∈ U} (e ∈ A), where µX̃ :
U → Int[0, 1] and νX̃ : U → Int [0, 1] satisfy 0 6 sup µX̃(x) + sup νX̃(x) 6 1
for all x ∈ U .

µX̃(x) and νX̃(x) are called the membership degree and non-membership
degree of the element x ∈ U to X̃.

The set of all interval-valued intuitionistic fuzzy subsets of U is denoted by
IV IF (U).

Definition 2.2 ([18]). Let A ⊆ E. A pair (F, A) is called a soft set over U ,
where F is a mapping given by F : A → 2U .

Definition 2.3 ([7]). Let A ⊆ E. A pair (F, A) is called an interval-valued
intuitionistic fuzzy soft set over U , where F is a mapping given by F : A →
IV IF (U).

In other words, an interval-valued intuitionistic fuzzy soft set over U is a
parameterized family of interval-valued intuitionistic fuzzy subsets of U . For
any e ∈ A, F (e) is referred as the set of e-approximate elements of (F, A) and
can be written as:

F (e) = {(x, µF (e)(x), νF (e)(x)) | x ∈ U} (e ∈ A),

where µF (e) : U → Int[0, 1] and νF (e) : U → Int[0, 1] satisfy 0 6 sup µF (e)(x) +
sup νF (e)(x) 6 1. µF (e)(x) and νF (e)(x) are called the membership degree and
non-membership degree that x holds e, respectively. πF (e)(x) = 1− µF (e)(x)−
νF (e)(x) is called the hesitating degree of x holds e.

The set of all interval-valued intuitionistic fuzzy soft subsets of U is denoted
by IV IFS(U).

Example 2.4. Let U = {h1, h2, h3, h4, h5} be a set of houses and let A =
{e1, e2, e3, e4, } ⊆ E be a set of status of houses where ej (j = 1, 2, 3, 4) stand for
the parameters “beautiful”, “modern”, “cheap” and “in the green surroundings”,
respectively.

Now, we consider an interval-valued intuitionistic fuzzy soft set (F, A) over
U , which describes “the attractiveness of the houses” to this decision maker and
its tabular representation is shown in Table 1.

3
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Obviously, we can see that the precise evaluation for each object on each
parameter is unknown while the lower and upper limits of such an evaluation
are given. For example, we cannot present the precise membership degree and
non-membership degree of how beautiful house h1 is, however, house h1 is at
least beautiful on the membership degree of 0.6 and it is at most beautiful on
the membership degree of 0.8; house h1 is not at least beautiful on the non-
membership degree of 0.1 and it is not at most beautiful on the non-membership
degree of 0.2.

Table 1: Tabular representation of the interval-valued intuitionistic soft set
(F, A)

e1 e2 e3 e4
h1 [0.6, 0.8],[0.1,0.2] [0.7, 0.8],[0.15,0.2] [0.75, 0.85],[0.1,0.15] [0.8, 0.9],[0.01,0.1]
h2 [0.8, 0.9],[0.05,0.1] [0.6, 0.7],[0.15,0.21] [0.5, 0.6],[0.2,0.35] [0.65, 0.75],[0.2,0.25]
h3 [0.6, 0.7],[0.2,0.25] [0.5, 0.7],[0.2,0.3] [0.6, 0.8],[0.1,0.18] [0.66, 0.77],[0.2,0.22]
h4 [0.65, 0.78],[0.15,0.21] [0.7, 0.75],[0.15,0.25] [0.68, 0.75],[0.1,0.2] [0.69, 0.78],[0.1,0.2]

2.2 Basic concepts of D-S theory of evidence

D-S theory of evidence is a new important reasoning method under uncer-
tainty. It has an advantage to deal with subjective judgments and to synthesize
the uncertainty knowledge [34].

A frame of discernment, denoted Θ, is a finite nonempty set of mutually
exclusive and exhaustive hypotheses, denoted {A1, A2, · · · , An} and Ai∩Aj = ∅.
2Θ denotes the set of all subsets of Θ.

Definition 2.5 ([26]). Let Θ be a frame of discernment. A basic probability
assignment function (or Mass function) on Θ is defined a mapping m : 2Θ →
[0, 1], m satisfies

m(∅) = 0 ,
∑

A⊆Θ

m(A) = 1 for A ∈ 2Θ.

For any A ⊆ Θ, A is called as focal elements if m(A) > 0, m(A) represents
the belief measuser that one is willing to commit exactly to A, given a certain
piece of evidence.

Definition 2.6 ([26]). Let Θ be the frame of discernment and m : 2Θ → [0, 1]
be a Mass function. Then a belief function on Θ is defined a mapping Bel :
2Θ → [0, 1], Bel satisfies

Bel(∅) = 0, Bel(Θ) = 1, Bel(A) =
∑

B⊆A

m(B) for A ⊆ Θ.

Bel(A) can be interpreted as a global belief measure that the hypothesis A
is true, and represents the imprecision and uncertainty in the decision-making
process. In the case of single hypothesis, Bel(A) = m(A).

4
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Definition 2.7 ([26]). Let Θ be the frame of discernment. Suppose there are
two Mass functions are m1 and m2 over Θ, induced by two independent items of
evidences A1, A2, · · · , As and B1, B2, · · · , Bt, respectively. D-S rule of evidence
combination is defined and denoted as follows:

m(A) = m1 ⊕m2(A) =

{ 1
1−K

∑
Ai∩Bj=A

m1(Ai)m2(Bj), ∀ A ⊆ Θ, A 6= ∅,
0, A = ∅,

where K =
∑

Ai∩Bj=∅
m1(Ai)m2(Bj) < 1.

K is called the conflict probability and reflects the extent of the conflict
between the evidences. Coefficient 1

1−K is called normalized factor, its role is
to avoid the probability of assigning non-0 to empty set ∅ in the combination.

D-S rule of evidence combination can be generalized to multiple Mass func-
tions, the belief measure resulting from the combination of multiply evidences
Ai is as follows:

m1 ⊕m2 · · · ⊕mn(A) =
1

1−K

∑
⋂n

i=1 Ai=A,Ai⊂Θ

m1(A1)m2(A2) · · ·mn(An),

where K =
∑

⋂n
i=1 Ai=∅,Ai⊂Θ

m1(A1)m2(A2) · · ·mn(An) < 1.

D-S rule of evidence combination can increase belief measure of hypotheses
and reduce the uncertain degree to improve reliability.

Example 2.8. Let Θ = {A1, A2} be the frame of discernment. Suppose there
are two Mass functions m1 and m2 over Θ, induced by the independent items
of evidences A1, A2, given by

m1(A1) = 0.3, m1(A2) = 0.4, m1(Θ) = 0.3,
m2(A1) = 0.4, m2(A2) = 0.3, m2(Θ) = 0.3.
Combining the two evidences by D-S rule of evidence combination leads to:
m(A1) = m1 ⊕m2(A1) = m1(A1)m2(A1)+m1(A1)m2(Θ)+m1(Θ)m2(A1)

1−K = 0.44,

m(A2) = m1 ⊕m2(A2) = m1(A2)m2(A2)+m1(A2)m2(Θ)+m1(Θ)m2(A2)
1−K = 0.44,

m(Θ) = m1 ⊕m2(Θ) = m1(Θ)m2(Θ)
1−K = 0.12,

where K = m1(A1)m2(A2) + m1(A2)m2(A1) = 0.25.

3 An approach to interval-valued intuitionistic
fuzzy soft sets in decision making

Recently, research on soft sets based decision making has attracted more and
more attention. The works of Roy et al. [10, 25, 5, 2, 11] are fundamental and
significant. Later other authors like Qin et al. further studied and proposed an
adjustable approach to interval-valued intuitionistic fuzzy soft set based decision
making using the level soft sets and reductions . Generally, there does not exist

5
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any unique or uniform criterion for the evaluation of decision alternatives under
uncertain condition. However, it is very difficult for decision makers to select
suitable level soft sets and discuss reduct intuitionistic fuzzy soft sets.

Now we investigate interval-valued intuitionistic fuzzy soft sets based deci-
sion making by means of grey relational analysis and D-S theory of evidence.
It is divided three phases: First, grey relational analysis is applied to calculate
the grey mean relational degree and the uncertain degree of each parameter is
obtained. Second, the corresponding Mass function with respect to each pa-
rameter is constructed by the uncertain degree of each parameter. Third, we
apply D-S rule of evidence combination to aggregate individual alternatives into
a collective alternative, by which the candidate alternatives are ranked and the
best alternative is obtained.

In the following, we consider the decision making problem with m mutu-
ally exclusive alternatives xi and n evaluation parameters (or indexes) ej . dij

denotes the degree that the alternative xi satisfies the parameter ej . Put

Θ = {x1, x2, · · · , xm} and A = {e1, e2, · · · , en}.

Define F : A → IV IF (Θ) by F (ej) = {(xi, µF (ej)(xi), νF (ej)(xi)) | xi ∈
Θ} (ej ∈ A) where µF (ej) : U → Int[0, 1] and νF (ej) : U → Int[0, 1] sat-
isfy 0 6 sup µF (ej)(xi) + sup νF (ej)(xi) 6 1. Then (F, A) is an interval-
valued intuitionistic fuzzy soft set over Θ. Denote µF (ej)(xi) = [µ−ij , µ

+
ij ],

νF (ej)(xi) = [ν−ij , ν
+
ij ], aij = (µF (ej)(xi), νF (ej)(xi)). D = (aij)m×n is called

an interval-valued intuitionistic fuzzy soft decision matrix induced by (F, A).
Here, we see the set of parameters as a item of evidences information.

The key to solve decision problems by using D-S theory of evidence is how
to obtain the uncertain degree of evidences (or parameters).

First, inspired by Xu [12], we define the score function of as follows.

Definition 3.1. Suppose that (F, A) is an interval-valued intuitionistic fuzzy
soft over Θ. Suppose that D = (aij)m×n is an interval-valued intuitionistic
fuzzy soft decision matrix induced by (F, A). Denote µF (ej)(xi) = [µ−ij , µ

+
ij ],

νF (ej)(xi) = [ν−ij , ν
+
ij ], aij = (µF (ej)(xi), νF (ej)(xi)). Then score function of dij

is defined and denoted as

s(aij) = (µ−ij + µ+
ij − ν−ij − ν+

ij)/2 + α(µ+
ij + ν+

ij − µ−ij − ν−ij )/2.

By Definition 4.1, we can convert dij into real numbers. s(aij) presents
the global degree that the alternative xi holds the parameter ej . Obviously,
0 6 s(aij) 6 1. α is called a risk factor. For α = 0, > 0, < 0, they imply
the attitude of decision makers for risk is neutral, positive, oppose, respectively.
Decision makers can select a α value according to their risk preference. In this
paper, we pick α = 0.

To obtain Mass functions of each alternative with respect to each parameter,
we consider score function values may be negative, so we should normalize the

6
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score function values by the following formula:

dij =
s(aij)−min16i6ms(aij)

max16i6ms(aij)−min16i6mS(aij)
, 1 6 i 6 m, 1 6 j 6 n.

Hence, we can get normalized matrix of score function values D = (dij)m×n.

Next, inspired by the paper [12], we define the grey mean relational degree
and the uncertain degree of the parameter as follows.

Definition 3.2. Let Θ = {x1, x2, · · · , xm}, A = {e1, e2, · · · , en} and let (F, A)
be an intuitionistic fuzzy soft set on Θ. Suppose that D = (dij)m×n is normalized
matrix of score function values. For any i, j, denote

d̃i =
1
n

n∑

j=1

dij , 4dij = |dij − d̃i|,

rij =
min16j6nmin16i6m 4dij + ρ max16j6nmax16i6m 4dij

4dij + ρ max16j6nmax16i6m 4dij
, ρ ∈ (0, 1),

DOI(ej) =
1
m

(
m∑

i=1

(rij)q)
1
q (j = 1, 2, · · · , n).

rij is called the grey mean relational degree between dij and d̃i. DOI(ej) is
called q order uncertain degree of the parameter ej.

ρ aims to expand or compress the range of the grey relational coefficient.
Decision makers can select q, ρ values according to different circumstance. To
obtain strong distinguishing effectiveness, we pick q = 2, ρ = 0.5 in this paper.
We call DOI(ej) the uncertain degree of ej for short.

It is worthy to notice that the method to obtain the uncertain degree varies
from different situation in Definition 4.2. General speaking, since a index (or
parameter) is specially more matching the mean of the index set than other
indexes, it contains more satisfying information for decision making and the
uncertain degree of the index information is lower. Then, in this paper we just
consider grey mean relational degree between dij and d̃i.

Definition 3.3 ([36]). Let X = (x1, x2, · · · , xm) be a finite difference informa-
tion sequence, where there exists xik

6= 0 for k = 1, 2, · · · ,m and 1 6 ik 6 m.
Then the information structure image sequence Y = (y1, y2, · · · , ym) is given by
yi = xi

m∑
i=1

xi

.

In the normalized matrix of score function values D = (dij)m×n, the infor-
mation structure image sequence with respect to a parameter ej is denoted by
dj = {d̃1j , d̃2j , d̃3j , · · · , d̃mj}, where d̃ij = dij

m∑
i=1

dij

. Then we obtain an informa-

tion structure image matric D̃ = (d̃ij)m×n induced by dj (j = 1, 2, · · · , n).

7
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D-S theory of evidence is a powerful method for combining accumulative
evidence of changing prior opinions in the light of new evidences [26]. The
primary procedure of combining the known evidences or information with other
evidences is to construct suitable Mass functions of evidences.

Now, by the uncertain degree of each parameter, we can obtain Mass function
of each alternative with respect to each parameter.

Theorem 3.4. Let Θ = {x1, x2, · · · , xm}, A = {e1, e2, · · · , en} and let (F, A)
be an intuitionistic fuzzy soft set on Θ. Suppose that D = (dij)m×n is the
normalized matrix of score function values and DOI(ej) is the uncertain degree
of ej. Denote d̃ij = dij

m∑
i=1

dij

. For any i, j, we define functions mej (j = 1, 2, · · · , n)

with respect to the parameter ej, it satisfies:

mej
(xi) = d̃ij (1−DOI(ej)), mej

(Θ) = 1−
m∑

i=1

mj(i).

Then mej
(j = 1, 2, · · · , n) are Mass functions.

In a normalized matrix of score function values D = (dij)m×n, denote
mej

(xi), mej
(Θ) by mj(i) and mj(m+1), respectively. mj(i) implies the belief

measure that holds the alternative xi with the parameter ej and mj(m + 1)
implies the belief measure of the whole uncertainty with parameter ej .

Next, using D-S rule of evidence combination to compose mj (j = 1, 2, · · · , n),
we get the belief measure of each alternative with all the parameters, by which
the candidate alternatives are ranked and thus the best alternative is obtained.

4 Algorithm

4.1 Algorithm

Based on the above analysis, the detailed step-wise procedure as an algorithm
is given as follows:

Input: An interval-value intuitionistic fuzzy soft set (F, A).
Output: The optimal decision-making results.
Step 1. Input an interval-value intuitionistic fuzzy soft set (F, A) and con-

struct an interval-value intuitionistic fuzzy soft decision matrix induced by
(F, A).

Step 2. Compute the normalized matrix of score function values (D =
(dij)m×n).

Step 3. Compute the mean of all the score function values (d̃i) with respect
to each alternative.

Step 4. Compute the difference information between dij and d̃i.
Step 5. Compute the gray mean relational degree between dij and d̃i.
Step 6. Compute the uncertain degree DOI(ej) of each parameter ej .
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Step 7. Compute the information structure image sequence d̃ij with respect
to each parameter ej by Definition 3.3.

Step 8. Compute Mass function values of the alternative xi and Θ with
respect to the parameter ej by Theorem 3.4.

Step 9. Compute belief measure of each alternative xi by combining these
Mass functions mej

(j = 1, 2, · · · , n) respectively by Definition 2.8.
Step 10. The optimal decision is to select xk if ck = maxi {Bel(xi)}. k has

more than one value then any one of xk may be optimal choices .

4.2 An illustrative example

Suppose that a fund manager in a wealth management wants to invest
a company. Suppose that the set of four potential investment companies U =
{x1, x2, x3, x4} which are characterized by a set of parameters A = {e1, e2, e3, e4}.
For i = 1, 2, 3, 4, the parameters ei stand for “risk”, “growth ,“socio-political
issues” ,and “environmental impacts”, respectively. The fund manager pro-
vide his/her assessment of each investment company on each parameter as an
interval-valued intuitionistic fuzzy soft set (F, A). Its tabular representation is
shown in Table 2.

Table 2: Tabular representation of the interval-valued intuitionistic soft set
(F, A)

e1 e2 e3 e4
x1 [0.4, 0.5],[0.3,0.4] [0.4, 0.6],[0.2,0.4] [0.1, 0.3],[0.5,0.6] [0.5, 0.7],[0.2,0.3]
x2 [0.4, 0.5],[0.4,0.5] [0.5, 0.8],[0.1,0.2] [0.3, 0.6],[0.3,0.4] [0.6, 0.7],[0.1,0.3]
x3 [0.3, 0.5],[0.4,0.5] [0.1, 0.3],[0.2,0.4] [0.7, 0.8],[0.1,0.2] [0.5, 0.7],[0.1,0.2]
x4 [0.2, 0.4],[0.4,0.5] [0.6, 0.7],[0.2,0.3] [0.5, 0.6],[0.2,0.3] [0.7, 0.8],[0.1,0.2]

Now, we suppose that the four mutually exclusive and exhaustive investment
companies consist a frame of discernment, denoted Θ = {x1, x2, x3, x4}. And
we consider the set of parameters A = {e1, e2, e3, e4} as a set of evidences.

Step 1. Construct an interval-valued intuitionistic fuzzy soft decision matrix
induced by (F, A) as follows:




([0.4, 0.5], [0.3, 0.4]) ([0.4, 0.6], [0.2, 0.4]) ([0.1, 0.3], [0.5, 0.6]) ([0.5, 0.7], [0.2, 0.3])
([0.4, 0.5], [0.4, 0.5]) ([0.5, 0.8], [0.1, 0.2]) ([0.3, 0.6], [0.3, 0.4]) ([0.6, 0.7], [0.1, 0.3])
([0.3, 0.5], [0.4, 0.5]) ([0.1, 0.3], [0.2, 0.4]) ([0.7, 0.8], [0.1, 0.2]) ([0.5, 0.7], [0.1, 0.2])
([0.2, 0.4], [0.4, 0.5]) ([0.6, 0.7], [0.2, 0.3]) ([0.5, 0.6], [0.2, 0.3]) ([0.7, 0.8], [0.1, 0.2])




Step 2. Compute the normalized matrix of score function values as follows:

D = (dij)4×4 =




1.0000 0.5000 0 0
0.6000 1.0000 0.4737 0.4000
0.4000 0 1.0000 0.4000

0 0.8333 0.6842 1.0000




Step 3. Compute the mean of all parameters with respect to each investment
company xi as follows:

d̃1 = 0.3750, d̃2 = 0.6184, d̃3 = 0.4500, d̃4 = 0.6294
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Step 4. Compute the difference information between dij and d̃i, and con-
struct the difference matrix as follows:

4D =




0.6250 0.1250 0.3750 0.3750
0.0184 0.3816 0.1447 0.2184
0.0500 0.4500 0.5500 0.0500
0.6294 0.2039 0.0548 0.3706




Step 5. Compute the gray mean relational degree between dij and d̃i based
on 4D as follows:

(rij)4×4 =




0.3545 0.7576 0.4830 0.4830
1.0000 0.4784 0.7251 0.6248
0.9134 0.4356 0.3852 0.9134
0.3528 0.6423 0.9015 0.4861




Step 6. Compute the uncertain degree of each parameter ej by Definition
3.2 as follows:

DOI(e1) = 0.3609, DOI(e2) = 0.2963, DOI(e3) = 0.3279, DOI(e4) = 0.3254.

Step 7. Compute the information structure image sequence with respect to
each parameter and construct the matrix as follows:

D̃ = (d̃ij)4×4 =




0.5000 0.2143 0 0
0.3000 0.4286 0.2195 0.2222
0.2000 0 0.4634 0.2222

0 0.3571 0.3171 0.5556




Step 8. Let 2Θ = {{x1}, {x2}, {x3}, {x4},Θ}. Compute Mass function values
of xi and Θ with respect to the parameter ej by Theorem 3.4:

(mj(i))4×4 =




0.3195 0.1508 0 0
0.1917 0.3016 0.1475 0.1499
0.1278 0 0.3115 0.1499

0 0.2513 0.2131 0.3748




and

m1(5) = 0.3609, m2(5) = 0.2963, m3(5) = 0.3279, m4(5) = 0.3254,

1
4

4∑

j=1

mj(5) = 0.3276.

Step 9. We combine these Mass functions and compute each belief measure of
each candidate xi respectively as follows:

Bel({x1}) = m1 ⊕m2 ⊕m3 ⊕m4({x1}) = 0.1098,

Bel({x2}) = m1 ⊕m2 ⊕m3 ⊕m4({x2}) = 0.3298,

Bel({x3}) = m1 ⊕m2 ⊕m3 ⊕m4({x3}) = 0.1700,

Bel({x4}) = m1 ⊕m2 ⊕m3 ⊕m4({x4}) = 0.3309,

Bel({x5}) = m1 ⊕m2 ⊕m3 ⊕m4(Θ) = 0.0595.

10
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Then the final rang order is x4 Â x2 Â x3 Â x1.
Step 10. x4 is the optimal investment company for maxi {Bel(xi)} = 0.3309.
From the above results, the belief measure of the uncertainty with respect

to the whole candidates Θ is declined from 0.3276 to 0.0595, after applying grey
relational analysis to construct the corresponding Mass functions for different
evidences and then using the rule of evidence combination to compose these
information. This implies the above algorithm is effective and practical under
uncertainties. It not only allows us to avoid selecting the suitable level soft set,
but also helps reducing humanistic and subjective in nature to raise the choices
decision level. Moreover, it broadens the application field of the grey system
theory and D-S theory of evidence.
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PRODUCT-TYPE OPERATORS FROM WEIGHTED ZYGMUND
SPACES TO BLOCH-ORLICZ SPACES

YONG YANG AND ZHI-JIE JIANG

Abstract. Let D be the open unit disk in the complex plane C and H(D) the class

of all analytic functions on D. Let ϕ be an analytic self-map of D and u ∈ H(D). The
boundedness and compactness of the product-type operators DnMuCϕ, DnCϕMu,

MuDnCϕ, CϕDnMu, MuCϕDn and CϕMuDn from weighted Zygmund spaces to

Bloch-Orlicz spaces are characterized by constructing some test functions in weighted
Zygmund spaces.

1. Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C and H(D) the
class of all analytic functions on D. For α > 0, the weighted Zygmund space Zα consists
of all f ∈ H(D) such that

bZα(f) = sup
z∈D

(1− |z|2)α|f ′′(z)| <∞.

It is a Banach space with the norm

‖f‖Zα = |f(0)|+ |f ′(0)|+ bZα(f).

If α = 1, then it becomes the famous Zygmund space, usually denoted by Z. For some
results of weighted Zygmund spaces and some concrete operators on them, see, for example,
[9, 22,24,43,56] and the references therein.

Next we introduce the Bloch-Orlicz space which was defined by Ramos Fernández in [32].
Let Ψ be a Young’s function, i.e., Ψ is a strictly increasing convex function on [0,+∞)
such that Ψ(0) = 0 and limt→+∞Ψ(t) = +∞. The Bloch-Orlicz space BΨ consists of all
f ∈ H(D) such that

sup
z∈D

(1− |z|2)Ψ(λ|f ′(z)|) <∞

for some λ > 0 depending on f . The Minkowski’s functional

‖f‖Ψ = inf
{
k > 0 : SΨ

(f ′
k

)
≤ 1
}

defines a seminorm for BΨ, where

SΨ(f) = sup
z∈D

(1− |z|2)Ψ(|f(z)|).

2000 Mathematics Subject Classification. Primary 47B38; Secondary 47B33, 47B37.
Key words and phrases. Weighted Zygmund space, Bloch-Orlicz space, Product-type operator, Test

function, Boundedness, Compactness.
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2 YONG YANG AND ZHI-JIE JIANG

BΨ becomes a Banach space with the norm ‖f‖BΨ = |f(0)| + ‖f‖Ψ. Ramos Fernández
in [32] proved that it is isometrically equal to a special µΨ-Bloch space, where

µΨ(z) =
1

Ψ−1( 1
1−|z|2 )

, z ∈ D.

Consequently, a equivalent norm on BΨ is given by ‖f‖BΨ = |f(0)|+ bBΨ(f), where

bBΨ(f) = sup
z∈D

µΨ(z)|f ′(z)|.

Clearly, the quantity bBΨ(f) is a seminorm on the space BΨ and a norm on the quotient
space BΨ/P0, where P0 is the set of all constant functions. The Bloch-Orlicz space gen-
eralizes some spaces. For example, if Ψ(t) = tp with p > 0, then BΨ coincides with the
weighted Bloch space Bα, where α = 1/p; if Ψ(t) = t log(1 + t), then BΨ coincides with
the Log-Bloch space (see [2]).

Let ϕ be an analytic self-map of D and u ∈ H(D). The weighted composition operator
Wϕ,u on H(D) is defined by

Wϕ,uf(z) = u(z)f(ϕ(z)), z ∈ D.
If u ≡ 1, it becomes the composition operator, usually denoted by Cϕ. If ϕ(z) = z, it
becomes the multiplication operator, usually denoted by Mu. Since Wϕ,u = MuCϕ, it is
a product-type operator. For some studies on weighted composition operators, see, for
example, [1, 4, 7, 10,19,22,29,42,49,50] and the references therein.

Let n ∈ N0 = N ∪ {0}. The nth differentiation operator Dn on H(D) is defined by

Dnf(z) = f (n)(z), z ∈ D,

where f (0) = f . If n = 1, it is the well-known differentiation operator D. Zhu in [57]
introduced the following, so-called, generalized weighted composition operator:

Dn
ϕ,uf(z) = u(z)f (n)(ϕ(z)), z ∈ D.

If n = 0, it becomes the weighted composition operator. Since Dn
ϕ,u = MuCϕD

n, it is
also a product-type operator. For generalized weighted composition operators, see, for
example, [3, 28, 47, 53, 54, 59, 60] and the references therein. Before the operator Dn

ϕ,u

some other product-type operators were introduced and studied. For example, the next
product-type operators

MuCϕD, CϕMuD, MuDCϕ, CϕDMu, DCϕMu, DMuCϕ

were studied by Sharma in [34]. They were also studied on weighted Bergman spaces
by Stević et al. in [51] and [52]. However, a normally systematic study of product-type
operators started by Stević et al. since the publication of papers [21] and [25]. Before that
there were a few papers in the topic, e.g., [8]. The publication of paper [21] first attracted
some attention in product-type operators DCϕ and CϕD (see, e.g., [23,30,39,41] and the
references therein). The publication of paper [25] attracted some attention in product-
type operators involving integral-type ones (see, e.g., [16, 26, 37, 43, 48] and the references
therein). Recently there is a great interest in various product-type operators between two
given spaces of holomorphic functions (see, e.g., [11,12,17,31,33,36,38,40,45,57] and the
references therein).

Before this paper some product-type operators from Zygmund spaces or weighted Zyg-
mund spaces to some other spaces were studied, for example, in [3, 13, 14, 18, 27]. In this
paper we consider the following product-type operators:

DnMuCϕ, D
nCϕMu, MuD

nCϕ, CϕD
nMu, MuCϕD

n, CϕMuD
n. (1)
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The boundedness and compactness of operators in (1) from Zygmund spaces to Bloch-
Orlicz spaces were characterized in [14]. As a continuation and completeness of our work,
we consider the same problems for operators in (1) from weighted Zygmund spaces with
α 6= 1 to Bloch-Orlicz spaces. Because these operators are more complicated than those
above mentioned, we need seek some other test functions in weighted Zygmund spaces to
achieve our objective.

Let X and Y be Banach spaces. A linear operator L : X → Y is bounded if there exists
a positive constant K such that ‖Lf‖Y ≤ K‖f‖X for all f ∈ X. The operator L : X → Y
is compact if it maps bounded sets into relatively compact sets. The norm of the operator
L : X → Y is defined by

‖L‖X→Y = sup
‖f‖X≤1

‖Lf‖Y .

In this paper, the letter C denotes a positive constant which may differ from one
occurrence to the other. The notation a . b means that there exists a positive constant
C such that a ≤ Cb. When a . b and b . a, we write a � b.

2. Preliminaries and test functions

We first state the following result which was essentially proved in [35] and [46].

Lemma 2.1. For α > 0 and f ∈ Zα. Then

(a) For 0 < α < 1, |f(z)| ≤ 2
1−α‖f‖Z and |f ′(z)| ≤ 2

1−α‖f‖Z .
(b) For α = 1, |f(z)| ≤ ‖f‖Z and |f ′(z)| ≤ ‖f‖Z log e

1−|z|2 .

(c) For 1 < α < 2, |f(z)| ≤ 1
(α−1)(2−α)‖f‖Zα and |f ′(z)| ≤ 2

α−1
‖f‖Zα

(1−|z|2)α−1 .
(d) For α = 2, |f(z)| ≤ 2‖f‖Z2 log e

1−|z|2 and |f ′(z)| ≤ e
1−|z|2 ‖f‖Z2 .

(e) For α > 2, |f(z)| ≤ 1
(α−1)(α−2)

‖f‖Zα
(1−|z|2)α−2 and |f ′(z)| ≤ 2

α−1
‖f‖Zα

(1−|z|2)α−1 .

The following result directly follows from the corresponding result for the Bloch type
spaces when a function f is replaced by f ′ (see, e.g., [55]).

Lemma 2.2. For each k ∈ N and k ≥ 2, there exists a positive constant Ck independent
of f ∈ Zα and z ∈ D such that

|f (k)(z)| ≤ Ck‖f‖Zα
(1− |z|2)α+k−2

.

Let w ∈ D and i ∈ N0. It is easily shown that the next function is in the space Zα

rw,i(z) =
(1− |w|2)2+i

(1− wz)α+i
, z ∈ D.

The following result provides the needed test functions for the cases 0 < α < 1, 1 < α < 2,
α = 2 and α > 2.

Lemma 2.3. (a) If 0 < α < 1, then for each fixed k ∈ {2, 3, . . . , n + 1}, there exist
constants a0,k, a1,k, . . . , an+1,k such that the function

fw,k(z) =
n+1∑
i=0

ai,krw,i(z)
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satisfies

f
(k)
w,k(w) =

wk

(1− |w|2)α+k−2
and f

(j)
w,k(w) = 0 (2)

for each j ∈ {0, 1, . . . , n+ 1} \ {k}.

(b) If 1 < α ≤ 2, then for each fixed k ∈ {1, 2, . . . , n + 1}, there exist constants b0,k,
b1,k, . . . , bn+1,k such that the function

gw,k(z) =
n+1∑
i=0

bi,krw,i(z)

satisfies

g
(k)
w,k(w) =

wk

(1− |w|2)α+k−2
and g

(j)
w,k(w) = 0 (3)

for each j ∈ {0, 1, . . . , n+ 1} \ {k}.

(c) If α > 2, then for each fixed k ∈ {0, 1, . . . , n + 1}, there exist constants c0,k, c1,k,
. . . , cn+1,k such that the function

hw,k(z) =
n+1∑
i=0

ci,krw,i(z)

satisfies

h
(k)
w,k(w) =

wk

(1− |w|2)α+k−2
and h

(j)
w,k(w) = 0 (4)

for each j ∈ {0, 1, . . . , n+ 1} \ {k}.

Proof. (a). From a calculation, it follows that (2) is equivalent to the following system

n+1∑
i=0

(α+ i)ai,k = 0

n+1∑
i=0

(α+ i)(α+ i+ 1)ai,k = 0

· · · · · · ·
n+1∑
i=0

k−1∏
j=0

(α+ i+ j)ai,k = 1

· · · · · · ·
n+1∑
i=0

n∏
j=0

(α+ i+ j)ai,k = 0.

(5)

Hence, we only need to prove that there exist constants a0,k, a1,k, . . . , an+1,k such that
the system (5) holds. By Lemma 3 in [47], the determinant of the system (5) equals to∏n+1
j=1 j!, which is different from zero. So there exist constants a0,k, a1,k, . . . , an+1,k such

that the system (5) holds. Results (b) and (c) can be proved similarly, so we omit. �

Let w ∈ D and
qw(z) =

(
1 + log2 e

1− wz

)
log−1 e

1− |w|2
.
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Lemma 2.4. For the function qw, it follows that

q(k)
w (w) = ck

wk

(1− |w|2)k
+ dk

wk

(1− |w|2)k
log−1 e

1− |w|2
, (6)

where ck > 0 for each k ≥ 1, d1 = 0 and dk > 0 for each k ≥ 2.

Proof. By a direct computation, we have

q′w(z) = 2
w

1− wz
log

e

1− wz
log−1 e

1− |w|2
, (7)

and

q′′w(z) = 2
w2

(1− wz)2
log

e

1− wz
log−1 e

1− |w|2
+ 2

w2

(1− wz)2
log−1 e

1− |w|2
. (8)

Also, from a direct computation, we see that for k ≥ 2

q(k)
w (z) = 2(k − 1)!

wk

(1− wz)k
log

e

1− wz
log−1 e

1− |w|2

+
[
k − 1 + 2(k − 1)!

] wk

(1− wz)k
log−1 e

1− |w|2
. (9)

Set ck = 2(k − 1)!, d1 = 0 and dk = k − 1 + 2(k − 1)! for k ≥ 2. Then (6) follows from
(7)-(9). �

Remark 2.1. Let Xw be the functions in Lemmas 2.3 and 2.4. Then

sup
w∈D
‖Xw‖Zα . 1, (10)

and Xw → 0 uniformly on compact subsets of D as |w| → 1. In fact, if Xw are the
functions in Lemma 2.3, then this remark follows from the facts that supw∈D ‖rw,i‖Zα . 1
and rw,i → 0 uniformly on compact subsets of D as |w| → 1; if Xw is the function in
Lemma 2.4, then it follows from [44].

Stević in [47] used Faà di Bruno’s formula of the following version

(f ◦ ϕ)(n)(z) =
n∑
k=0

f (k)(ϕ(z))Bn,k(ϕ′(z), . . . , ϕ(n−k+1)(z)), (11)

where Bn,k(x1, ..., xn−k+1) is the Bell polynomial. See [15] for the Faà di Bruno’s formula.
For n ∈ N the sum can go from k = 1 since Bn,0(ϕ′(z), ..., ϕ(n−k+1)(z)) = 0, however we
will keep the summation since for n = 0 the only existing term B0,0 is equal to 1. From
(11) and the Leibniz formula the next lemma follows.

Lemma 2.5. Let f , u ∈ H(D) and ϕ be an analytic self-map of D. Then

(
u(z)f(ϕ(z))

)(n+1) =
n+1∑
k=0

f (k)(ϕ(z))
n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)
.
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3. Boundedness the product-type operators

We first characterize the boundedness of the operator DnMuCϕ : Zα → BΨ.

Theorem 3.1. Let ϕ be an analytic self-map of D, u ∈ H(D), Cjn+1 the binomial coeffi-
cient and 0 < α < 1. Then the following statements are equivalent.

(a) The operator DnMuCϕ : Zα → BΨ is bounded.
(b) The functions u and ϕ satisfy the following conditions:

I0 := sup
z∈D

µΨ(z)
∣∣∣ n+1∑
j=0

Cjn+1u
(n+1−j)(z)Bj,0

(
ϕ′(z), . . . , ϕ(j+1)(z)

)∣∣∣ <∞,
I1 := sup

z∈D
µΨ(z)

∣∣∣ n+1∑
j=1

Cjn+1u
(n+1−j)(z)Bj,1

(
ϕ′(z), . . . , ϕ(j)(z)

)∣∣∣ <∞,
and

Ik := sup
z∈D

µΨ(z)
∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
(1− |ϕ(z)|2)α+k−2

<∞

for each k ∈ {2, 3, . . . , n+ 1}.
Moreover, if the operator DnMuCϕ : Zα → BΨ is bounded, then∥∥DnMuCϕ

∥∥
Zα→BΨ/P0

�
n+1∑
k=0

Ik.

Proof. (a) ⇒ (b). Let hk(z) = zk ∈ Z, k = 0, 1, . . . , n + 1. Then applying the operator
DnMuCϕ : Zα → BΨ to the function h0, we have

I0 = sup
z∈D

µΨ(z)
∣∣∣ n+1∑
j=0

Cjn+1u
(n+1−j)(z)Bj,0(ϕ′(z), . . . , ϕ(j+1)(z))

∣∣∣ ≤ C∥∥DnMuCϕ
∥∥. (12)

By the fact ‖ϕ‖∞ ≤ 1, the boundedness of DnMuCϕ : Zα → BΨ, the triangle inequality
and (12), we have

I1 ≤ I0 + C‖DnMuCϕ‖. (13)

Assume now that we have proved the following inequalities

sup
z∈D

µΨ(z)
∣∣∣ n+1∑
j=l

Cjn+1u
(n+1−j)(z)Bj,l(ϕ′(z), . . . , ϕ(j−l+1)(z))

∣∣∣ ≤ C‖DnMuCϕ‖ (14)

for each l ∈ {0, 1, ..., k− 1} and a k ≤ n+ 1. Applying Lemma 2.5 to the function hk, and
noticing that h(s)

k (z) ≡ 0 for s > k, we get

(
DnMuCϕhk

)′(z) =
k∑
j=0

h
(j)
k (ϕ(z))

n+1∑
i=j

Cin+1u
(n+1−i)(z)Bi,j(ϕ′(z), . . . , ϕ(i−j+1)(z))

=
k∑
j=0

k · · · (k − j + 1)(ϕ(z))k−j
n+1∑
i=j

Cin+1u
(n+1−i)(z)Bi,j(ϕ′(z), . . . , ϕ(i−j+1)(z)). (15)
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From (15), the boundedness of function ϕ and the triangle inequality, by noticing that the
coefficient at

n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k(ϕ′(z), . . . , ϕ(j−k+1)(z))

is independent of z and finally using hypothesis (14) we easily obtain

Lk := sup
z∈D

µΨ(z)
∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k(ϕ′(z), . . . , ϕ(j−k+1)(z))

∣∣∣ ≤ C‖DnMuCϕ‖.

(16)

By induction we see that (16) holds for each k ∈ {0, 1, . . . , n+ 1}.
For a fixed w ∈ D and a fixed k ∈ {2, 3, . . . , n + 1}, by Lemma 2.3 (a) there exists a

function

fw,k(z) =
n+1∑
i=0

ai,krϕ(w),i(z)

such that

f
(k)
w,k(ϕ(w)) =

ϕ(w)
k

(1− |ϕ(w)|2)α+k−2
and f

(j)
w,k(ϕ(w)) = 0 (17)

for each j ∈ {0, 1, . . . , n+ 1} \ {k}, and

sup
w∈D
‖fw,k‖Zα ≤ C. (18)

Then by (17), (18) and the boundedness of DnMuCϕ : Zα → BΨ, we have

Ik(w) :=

µΨ(w)|ϕ(w)|k
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(w)Bj,k

(
ϕ′(w), . . . , ϕ(j−k+1)(w)

)∣∣
(1− |ϕ(w)|2)α+k−2

≤ ‖DnMuCϕfw,k‖BΨ ≤ C‖DnMuCϕ‖. (19)

From (19) we see that

sup
z∈D

Ik(z) ≤ C
∥∥DnMuCϕ

∥∥,
which leads to

sup
|ϕ(z)|>1/2

µΨ(z)
∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k(ϕ′(z), . . . , ϕ(j−k+1)(z))

∣∣∣
(1− |ϕ(z)|2)α+k−2

≤ C‖DnMuCϕ‖.

(20)

On the other hand, by (16) we have

sup
|ϕ(z)|≤1/2

µΨ(z)
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k(ϕ′(z), . . . , ϕ(j−k+1)(z))

∣∣
(1− |ϕ(z)|2)α+k−2

≤ C‖DnMuCϕ‖.

(21)

Hence from (20) and (21) we obtain

Ik ≤ C‖DnMuCϕ‖ <∞. (22)
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(b)⇒ (a). By Lemmas 2.1, 2.2 and 2.5, for all f ∈ Zα we have

sup
z∈D

µΨ(z)
∣∣(DnMuCϕf

)′(z)∣∣
= sup

z∈D
µΨ(z)

∣∣∣ n+1∑
k=0

f (k)(ϕ(z))
n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤ sup

z∈D
µΨ(z)

n+1∑
k=0

∣∣f (k)(ϕ(z))
∣∣∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤
( 1

1− α
(I0 + I1) +

n+1∑
k=2

CkIk

)
‖f‖Zα . (23)

It is clear that

|(DnMuCϕf)(0)| ≤ C‖f‖Zα . (24)

Hence, from (23) and (24) it follows that the operator DnMuCϕ : Zα → BΨ is bounded.
Clearly, if the operator DnMuCϕ : Zα → BΨ is bounded, then the operator DnMuCϕ :

Zα → BΨ/P0 is also bounded. By the definition of the norm in the quotient spaces, and
using the same functions in the proofs of (12), (13) and (22), we obtain

Ik ≤ C‖DnMuCϕ‖Zα→BΨ/P0 ,

for each k ∈ {0, 1, 2, . . . , n+ 1}, and then
n+1∑
k=0

Ik ≤ C‖DnMuCϕ‖Zα→BΨ/P0 . (25)

By (23) we have

‖DnMuCϕ‖Zα→BΨ/P0 ≤ C
n+1∑
k=0

Ik. (26)

The asymptotic expression of ‖DnMuCϕ‖Zα→BΨ/P0 follows from (25) and (26). �

Remark 3.1. In fact, from the fact zk ∈ Zα, in the proof of Theorem 3.1 we have seen
that if the operator DnMuCϕ : Zα → BΨ is bounded, then Lk <∞ for all α > 0.

Theorem 3.2. Let ϕ be an analytic self-map of D, u ∈ H(D), Cjn+1 the binomial coeffi-
cient and 1 < α < 2. Then the following statements are equivalent.

(a) The operator DnMuCϕ : Zα → BΨ is bounded.
(b) The functions u and ϕ are such that I0 <∞ and for each k ∈ {1, 2, . . . , n+ 1}

Mk := sup
z∈D

µΨ(z)
∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
(1− |ϕ(z)|2)α+k−2

<∞.

Moreover, if the operator DnMuCϕ : Zα → BΨ is bounded, then

∥∥DnMuCϕ
∥∥
Zα→BΨ/P0

� I0 +
n+1∑
k=1

Mk.
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Proof. (a) ⇒ (b). Let h0(z) ≡ 1 ∈ Zα. Then I0 < ∞. For a fixed w ∈ D and each fixed
k ∈ {1, 2, . . . , n+ 1}, by Lemma 2.3 (b) there exists a function

gw,k(z) =
n+1∑
i=0

bi,krϕ(w),i(z)

such that

g
(k)
w,k(ϕ(w)) =

ϕ(w)
k

(1− |ϕ(w)|2)α+k−2
and g

(j)
w,k(ϕ(w)) = 0 (27)

for each j ∈ {0, 1, . . . , n+ 1} \ {k}. Moreover,

sup
w∈D
‖gw,k‖Zα ≤ C. (28)

Then from (27), (28) and the boundedness of DnMuCϕ : Zα → BΨ, we have

Mk(w) :=

µΨ(w)|ϕ(w)|k
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(w)Bj,k

(
ϕ′(w), . . . , ϕ(j−k+1)(w)

)∣∣
(1− |ϕ(w)|2)α+k−2

≤ ‖DnMuCϕgϕ(w),k‖BΨ ≤ C‖DnMuCϕ‖. (29)

From (29) we see

sup
z∈D

Mk(z) ≤ C
∥∥DnMuCϕ

∥∥, (30)

and then

sup
|ϕ(z)|>1/2

µΨ(z)
∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k(ϕ′(z), . . . , ϕ(j−k+1)(z))

∣∣∣
(1− |ϕ(z)|2)α+k−2

≤ C‖DnMuCϕ‖.

(31)

On the other hand, by using the fact Lk <∞ for each k ∈ {0, 1, . . . , n+ 1}, we get

sup
|ϕ(z)|≤1/2

µΨ(z)
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k(ϕ′(z), . . . , ϕ(j−k+1)(z))

∣∣
(1− |ϕ(z)|2)α+k−2

≤ C‖DnMuCϕ‖.

(32)

Hence from (31) and (32) we see that Mk <∞ for each k ∈ {1, 2, ..., n+ 1}.
(b)⇒ (a). By Lemmas 2.1, 2.2 and 2.5, for all f ∈ Zα we have

sup
z∈D

µΨ(z)
∣∣(DnMuCϕf

)′(z)∣∣
= sup

z∈D
µΨ(z)

∣∣∣ n+1∑
k=0

f (k)(ϕ(z))
n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤ sup

z∈D
µΨ(z)

n+1∑
k=0

∣∣f (k)(ϕ(z))
∣∣∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤
( I0

(α− 1)(2− α)
+

2M1

α− 1
+
n+1∑
k=2

CkMk

)
‖f‖Zα . (33)
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It is clear that

|(DnMuCϕf)(0)| ≤ C‖f‖Zα . (34)

Hence from (33) and (34) it follows that the operator DnMuCϕ : Zα → BΨ is bounded.
Similarly is obtained the asymptotic formula of ‖DnMuCϕ‖Zα→BΨ/P0 , hence we omit. �

Theorem 3.3. Let ϕ be an analytic self-map of D, u ∈ H(D), Cjn+1 the binomial coeffi-
cient and α = 2. Then the following statements are equivalent.

(a) The operator DnMuCϕ : Z2 → BΨ is bounded.
(b) The functions u and ϕ satisfy the following conditions:

R0 := sup
z∈D

µΨ(z)
∣∣∣ n+1∑
j=0

Cjn+1u
(n+1−j)(z)Bj,0

(
ϕ′(z), . . . , ϕ(j+1)(z)

)∣∣∣ log
e

1− |ϕ(z)|2
<∞.

and for each k ∈ {1, 2, . . . , n+ 1}

Rk := sup
z∈D

µΨ(z)
∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
(1− |ϕ(z)|2)k

<∞.

Moreover, if the operator DnMuCϕ : Z2 → BΨ is bounded, then

∥∥DnMuCϕ
∥∥
Zα→BΨ/P0

�
n+1∑
k=0

Rk.

Proof. (a) ⇒ (b). By using Lemma 2.3 (b), we can prove that Rk < ∞ for each k ∈
{1, 2, . . . , n + 1}, so we do not give the proof again. For a fixed w ∈ D, by Lemma 2.4
there exists a function

sϕ(w)(z) = pϕ(w)(z) +
n+1∑
i=0

dirϕ(w),i(z)

such that

sϕ(w)(ϕ(w)) = log
e

1− |ϕ(w)|2
and s

(j)
ϕ(w)(ϕ(w)) = 0 (35)

for each j ∈ {1, 2, . . . , n+ 2}, moreover, supw∈D ‖sϕ(w)‖Z2 ≤ C. Then from these and the
boundedness of DnMuCϕ : Z2 → BΨ, we have

R0(w) := µΨ(w)
∣∣ n+1∑
j=0

Cjn+1u
(n+1−j)(w)Bj,0

(
ϕ′(w), . . . , ϕ(j+1)(w)

)∣∣ log
e

1− |ϕ(w)|2

≤ ‖DnMuCϕsϕ(w)‖BΨ ≤ C
∥∥DnMuCϕ

∥∥. (36)

Then from (36) it follows that R0 <∞.
(b)⇒ (a). From Lemmas 2.1, 2.2 and 2.5, for all f ∈ Z2 we have

sup
z∈D

µΨ(z)
∣∣(DnMuCϕf

)′(z)∣∣
= sup

z∈D
µΨ(z)

∣∣∣ n+1∑
k=0

f (k)(ϕ(z))
n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
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≤ sup
z∈D

µΨ(z)
n+1∑
k=0

∣∣f (k)(ϕ(z))
∣∣∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤
(

2R0 + eR1 +
n+1∑
k=2

CkRk

)
‖f‖Z2 . (37)

It is clear that

|(DnMuCϕf)(0)| ≤ C‖f‖Z2 . (38)

Hence from (37) and (38) it follows that the operator DnMuCϕ : Z2 → BΨ is bounded.
The asymptotic expression of ‖DnMuCϕ‖Zα→BΨ/P0 can be similarly obtained. �

Theorem 3.4. Let ϕ be an analytic self-map of D, u ∈ H(D) and α > 2. Then the
following statements are equivalent.

(a) The operator DnMuCϕ : Zα → BΨ is bounded.
(b) The functions u and ϕ satisfy

Sk := sup
z∈D

µΨ(z)
∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
(1− |ϕ(z)|2)α+k−2

<∞, k = 0, . . . , n+ 1.

Moreover, if the operator DnMuCϕ : Zα → BΨ is bounded, then∥∥DnMuCϕ
∥∥
Zα→BΨ/P0

�
n+1∑
k=0

Sk.

Proof. Similarly to the proofs of Theorems 3.1-3.3, this result can be proved. �

Remark 3.2. By using the similar methods and techniques, the boundedness of the oper-
ators DnCϕMu, CϕDnMu, MuD

nCϕ, MuCϕD
n and CϕMuD

n from weighted Zygmund
spaces to Bloch-Orlicz spaces can be characterized, so we omit.

4. Compactness of the product-type operators

The first result is an alternative to Proposition 3.11 in [5], which characterizes the
compactness in terms of sequential convergence. So the proof is omitted.

Lemma 4.1. Let T ∈ {DnMuCϕ, D
nCϕMu,MuD

nCϕ, CϕD
nMu,MuCϕD

n, CϕMuD
n}.

Then the bounded operator T : Zα → BΨ is compact if and only if for every bounded
sequence {fj} in Zα such that fj → 0 uniformly on compact subsets of D as j → ∞, it
follows that limj→∞ ‖Tfj‖BΨ = 0.

The following lemma was proved in [46].

Lemma 4.2. (a) If 0 < α < 2 and {fj} is a bounded sequence in Zα which uniformly
converges to zero on compact subsets of D as j →∞, then

lim
j→∞

sup
z∈D
|fj(z)| = 0.

(b) If 0 < α < 1 and {fj} is a bounded sequence in Zα which uniformly converges to
zero on compact subsets of D as j →∞, then

lim
j→∞

sup
z∈D
|f ′j(z)| = 0.
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Now we characterize the compactness of the operator DnMuCϕ : Zα → BΨ.

Theorem 4.1. Let ϕ be an analytic self-map of D, u ∈ H(D) and 0 < α < 1. Then the
following statements are equivalent.

(a) The operator DnMuCϕ : Zα → BΨ is compact.
(b) The functions u and ϕ satisfy Lk <∞ for each k ∈ {0, 1, . . . , n+ 1}, and for each

k ∈ {2, 3, . . . , n+ 1}

lim
|ϕ(z)|→1

µΨ(z)
∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
(1− |ϕ(z)|2)α+k−2

= 0.

Proof. (a) ⇒ (b). Suppose that the operator DnMuCϕ : Zα → BΨ is compact. Clearly
the operator DnMuCϕ : Zα → BΨ is bounded. By Remark 2.1, Lk < ∞ for each
k ∈ {0, 1, . . . , n + 1}. Consider a sequence {ϕ(zi)} in D such that |ϕ(zi)| → 1 as i →
∞. If such a sequence does not exist, then the last condition in (b) obviously holds.
Without loss of generality, we may suppose that |ϕ(zi)| > 1/2 for all i ∈ N. For each
fixed k ∈ {2, 3, . . . , n + 1}, using this sequence we define the function sequence fi,k(z) =
fϕ(zi),k(z), i ∈ N. Then by Lemma 2.3 (a) we have that supi∈N ‖fi,k‖Zα ≤ C and fi,k → 0
uniformly on every compact subset of D as i→∞, moreover

f
(k)
i,k (ϕ(zi)) =

ϕ(zi)
k

(1− |ϕ(zi)|2)α+k−2
and f

(j)
i,k (ϕ(zi)) = 0 (39)

for each j ∈ {0, 1, . . . , n+ 1} \ {k}. By Lemma 4.1 and (39), we have

lim
i→∞

µΨ(zi)
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(zi)Bj,k(ϕ′(zi), . . . , ϕ(j−k+1)(zi))

∣∣
(1− |ϕ(zi)|2)α+k−2

= 0. (40)

(b) ⇒ (a). We first check that DnMuCϕ : Zα → BΨ is bounded. We observe that the
last condition in (b) implies that for every ε > 0, there is an η ∈ (0, 1) such that for all
z ∈ K = {z ∈ D : |ϕ(z)| > η} and for each k ∈ {2, 3, . . . , n+ 1}

µΨ(z)
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k(ϕ′(z), . . . , ϕ(j−k+1)(z))

∣∣
(1− |ϕ(z)|2)α+k−2

< ε. (41)

From the fact Lk <∞ for each k ∈ {2, 3, . . . , n+ 1}, and (41), we have

Ik ≤ ε+
Lk

(1− η2)α+k−2
. (42)

From (42) and the fact Lk <∞, it follows that DnMuCϕ : Zα → BΨ is bounded.
To prove that DnMuCϕ : Zα → BΨ is compact, by Lemma 4.1 we just need to prove

that, if {fi} is a sequence in Zα such that supi∈N ‖fi‖Zα ≤ M and fi → 0 uniformly on
any compact subset of D as i→∞, then

lim
i→∞

‖DnMuCϕfi‖BΨ = 0.

For such chosen ε and η, by using (39), Lemma 2.1 and Lemma 2.2, we have
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sup
z∈D

µΨ(z)
∣∣(DnMuCϕfi

)′(z)∣∣
= sup

z∈D
µΨ(z)

∣∣∣ n+1∑
k=0

f
(k)
i (ϕ(z))

n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤ sup

z∈D
µΨ(z)

n+1∑
k=0

∣∣f (k)
i (ϕ(z))

∣∣∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤ sup

z∈D
µΨ(z)

∣∣∣ n+1∑
j=0

Cjn+1u
(n+1−j)(z)Bj,0

(
ϕ′(z), . . . , ϕ(j+1)(z)

)∣∣∣∣∣fi(ϕ(z))
∣∣

+ sup
z∈D

µΨ(z)
∣∣∣ n+1∑
j=1

Cjn+1u
(n+1−j)(z)Bj,1

(
ϕ′(z), . . . , ϕ(j)(z)

)∣∣∣∣∣f ′i(ϕ(z))
∣∣

+
(

sup
z∈K

+ sup
z∈D\K

)
µΨ(z)

n+1∑
k=2

∣∣f (k)
i (ϕ(z))

∣∣∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤ L0 sup

z∈D

∣∣fi(ϕ(z))
∣∣+ L1 sup

z∈D

∣∣f ′i(ϕ(z))
∣∣+

n+1∑
k=2

Lk sup
|z|≤η

∣∣f (k)
i (z)

∣∣+ Cε. (43)

From (43), Lemma 4.2 and the fact fi → 0 uniformly on compact subsets of D as i→∞
implies that for each k ∈ N, f (k)

i → 0 uniformly on compact subsets of D as i → ∞, we
finally get

lim
i→∞

sup
z∈D

µΨ(z)
∣∣(DnMuCϕfi)′(z)

∣∣ = 0. (44)

It is clear that

lim
i→∞

∣∣(DnMuCϕfi)(0)
∣∣ = 0. (45)

From (44) and (45) we obtain

lim
i→∞

‖DnMuCϕfi‖BΨ = 0.

This shows that the operator DnMuCϕ : Zα → BΨ is compact. �

Theorem 4.2. Let ϕ be an analytic self-map of D, u ∈ H(D) and 1 < α < 2. Then the
following statements are equivalent.

(a) The operator DnMuCϕ : Zα → BΨ is compact.
(b) The functions u and ϕ are such that Lk <∞ for each k ∈ {0, 1, . . . , n+ 1}, and for

each k ∈ {1, 2, . . . , n+ 1}

lim
|ϕ(z)|→1

µΨ(z)
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣
(1− |ϕ(z)|2)α+k−2

= 0.

Proof. (a)⇒ (b). Suppose that the operator DnMuCϕ : Zα → BΨ is compact. Obviously
the operator DnMuCϕ : Zα → BΨ is bounded. Then Lk <∞ for each k ∈ {0, 1, . . . , n+1}.
Consider a sequence {ϕ(zi)}i∈N in D such that |ϕ(zi)| → 1 as i → ∞. If such a sequence
does not exist, then the last condition in (b) obviously holds. Without loss of generality,
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we may suppose that |ϕ(zi)| > 1/2 for all i ∈ N. For each fixed k ∈ {1, 2, . . . , n + 1},
by using this sequence we define the function sequence gi,k(z) = gϕ(zi),k(z), i ∈ N. Then
from Lemma 2.3 (b) we see that supi∈N ‖gi,k‖Zα ≤ C and gi,k → 0 uniformly on every
compact subset of D as i→∞, moreover

g
(k)
i,k (ϕ(zi)) =

ϕ(zi)
k

(1− |ϕ(zi)|2)α+k−2
and g

(j)
i,k (ϕ(zi)) = 0 (46)

for each j ∈ {0, 1, . . . , n + 1} \ {k}. From Lemma 4.1 and (46), for each fixed k ∈
{1, 2, . . . , n+ 1} we have

lim
i→∞

µΨ(zi)
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(zi)Bj,k(ϕ′(zi), . . . , ϕ(j−k+1)(zi))

∣∣
(1− |ϕ(zi)|2)α+k−2

= 0. (47)

(b) ⇒ (a). We first check that DnMuCϕ : Zα → BΨ is bounded. We observe that the
last condition in (b) implies that for every ε > 0, there is an η ∈ (0, 1) such that for all
z ∈ K = {z ∈ D : |ϕ(z)| > η} and for each k ∈ {1, 2, . . . , n+ 1}

µΨ(z)
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k(ϕ′(z), . . . , ϕ(j−k+1)(z))

∣∣
(1− |ϕ(z)|2)α+k−2

< ε. (48)

From the fact Lk <∞ for each k ∈ {0, 1, . . . , n+ 1}, and (48), we have

Mk ≤ ε+
Lk

(1− η2)α+k−2
. (49)

From (49) and the fact I0 = L0 <∞, it follows that DnMuCϕ : Zα → BΨ is bounded.
In order to prove that DnMuCϕ : Zα → BΨ is compact, by Lemma 4.1 we just need to

prove that, if {fi} is a sequence in Zα such that supi∈N ‖fi‖Zα ≤M and fi → 0 uniformly
on any compact subset of D as i→∞, then limi→∞ ‖DnMuCϕfi‖BΨ = 0. For such chosen
ε and η, by using (46), Lemma 2.1 and Lemma 2.2, we have

sup
z∈D

µΨ(z)
∣∣(DnMuCϕfi

)′(z)∣∣
= sup

z∈D
µΨ(z)

∣∣∣ n+1∑
k=0

f
(k)
i (ϕ(z))

n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤ sup

z∈D
µΨ(z)

n+1∑
k=0

∣∣f (k)
i (ϕ(z))

∣∣∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤ sup

z∈D
µΨ(z)

∣∣∣ n+1∑
j=0

Cjn+1u
(n+1−j)(z)Bj,0

(
ϕ′(z), . . . , ϕ(j+1)(z)

)∣∣∣∣∣fi(ϕ(z))
∣∣

+
(

sup
z∈K

+ sup
z∈D\K

)
µΨ(z)

n+1∑
k=1

∣∣f (k)
i (ϕ(z))

∣∣∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤ L0 sup

z∈D

∣∣fi(ϕ(z))
∣∣+

n+1∑
k=1

Lk sup
|z|≤η

∣∣f (k)
i (z)

∣∣+ Cε. (50)

From (50), Lemma 4.2 and the fact fi → 0 uniformly on compact subsets of D as i→∞
implies that for each k ∈ N, f (k)

i → 0 uniformly on compact subsets of D as i → ∞, we
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get

lim
i→∞

sup
z∈D

µΨ(z)
∣∣(DnMuCϕfi)′(z)

∣∣ = 0. (51)

It is clear that

lim
i→∞

∣∣(DnMuCϕfi)(0)
∣∣ = 0. (52)

From (51) and (52) we obtain

lim
i→∞

‖DnMuCϕfi‖BΨ = 0.

This shows that the operator DnMuCϕ : Zα → BΨ is compact. �

Theorem 4.3. Let ϕ be an analytic self-map of D, u ∈ H(D) and α = 2. Then the
following statements are equivalent.

(a) The operator DnMuCϕ : Z2 → BΨ is compact.
(b) The functions u and ϕ are such that Lk <∞ for each k ∈ {0, 1, . . . , n+ 1},

lim
|ϕ(z)|→1

µΨ(z)
∣∣∣ n+1∑
j=0

Cjn+1u
(n+1−j)(z)Bj,0

(
ϕ′(z), . . . , ϕ(j+1)(z)

)∣∣∣ log
e

1− |ϕ(z)|2
= 0,

and for each k ∈ {1, 2, . . . , n+ 1}

lim
|ϕ(z)|→1

µΨ(z)
∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
(1− |ϕ(z)|2)k

= 0.

Proof. (a)⇒ (b). Suppose that the operator DnMuCϕ : Z2 → BΨ is compact. Clearly the
operator DnMuCϕ : Z2 → BΨ is bounded. Then Lk < ∞ for each k ∈ {0, 1, . . . , n + 1}.
Consider a sequence {ϕ(zi)}i∈N in D such that |ϕ(zi)| → 1 as i → ∞. If such a sequence
does not exist, then the last two conditions in (b) obviously hold. Without loss of generality,
we may suppose that |ϕ(zi)| > 1/2 for all i ∈ N. For each fixed k ∈ {1, 2, . . . , n + 1}, by
using this sequence we define the function sequence gi,k(z) = gϕ(zi),k(z), i ∈ N. Then
from Lemma 2.3 (b) we see that supi∈N ‖gi,k‖Z2 ≤ C and gi,k → 0 uniformly on every
compact subset of D as i→∞, moreover

g
(k)
i,k (ϕ(zi)) =

ϕ(zi)
k

(1− |ϕ(zi)|2)k
and g

(j)
i,k (ϕ(zi)) = 0 (53)

for each j ∈ {0, 1, . . . , n + 1} \ {k}. From Lemma 4.1 and (53), for each fixed k ∈
{1, 2, . . . , n+ 1} we have

lim
i→∞

µΨ(zi)
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(zi)Bj,k(ϕ′(zi), . . . , ϕ(j−k+1)(zi))

∣∣
(1− |ϕ(zi)|2)k

= 0. (54)

Now consider another function sequence qi(z) = qϕ(zi)(z). Then by Lemma 2.4 we have

q
(k)
i (ϕ(zi)) = ck

ϕ(zi)
k

(1− |ϕ(zi)|2)k
+ dk

ϕ(zi)
k

(1− |ϕ(zi)|2)k
log−1 e

1− |ϕ(zi)|2
, (55)
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where ck > 0 for each k ≥ 1, d1 = 0 and dk > 0 for each k ≥ 2. Moreover, supi∈N ‖qi‖Z2 ≤
C, and qi → 0 uniformly on every compact subset of D as i → ∞. From Lemma 4.1, we
get

lim
i→∞

‖DnMuCϕqi‖BΨ = 0. (56)

By (55) and the triangle inequality, we have

µΨ(zi)
∣∣∣ n+1∑
j=0

Cjn+1u
(n+1−j)(zi)Bj,0

(
ϕ′(zi), . . . , ϕ(j+1)(zi)

)∣∣∣( log
e

1− |ϕ(zi)|2
+ log−1 e

1− |ϕ(zi)|2
)

≤ ‖DnMuCϕqi‖BΨ +
n+1∑
k=1

ckµΨ(zi)|ϕ(zi)|k
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(zi)Bj,k(ϕ′(zi), . . . , ϕ(j−k+1)(zi))

∣∣
(1− |ϕ(zi)|2)k

+
n+1∑
k=1

dkµΨ(zi)|ϕ(zi)|k
∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(zi)Bj,k(ϕ′(zi), . . . , ϕ(j−k+1)(zi))

∣∣
(1− |ϕ(zi)|2)k

log−1 e

1− |ϕ(zi)|2
.

(57)

Therefore, taking the limit in (57) as i→∞, from (54), (56) and the fact

log−1 e

1− |ϕ(zi)|2
→ 0 as i→∞,

we get

lim
i→∞

µΨ(zi)
∣∣∣ n+1∑
j=0

Cjn+1u
(n+1−j)(zi)Bj,0

(
ϕ′(z), . . . , ϕ(j+1)(zi)

)∣∣∣ log
e

1− |ϕ(zi)|2
= 0.

(b) ⇒ (a). We first check that DnMuCϕ : Z2 → BΨ is bounded. We observe that
the conditions in (b) imply that for every ε > 0, there is an η ∈ (0, 1), such that for any
z ∈ K = {z ∈ D : |ϕ(z)| > η}

µΨ(z)
∣∣∣ n+1∑
j=0

Cjn+1u
(n+1−j)(z)Bj,0

(
ϕ′(z), . . . , ϕ(j+1)(z)

)∣∣∣ log
e

1− |ϕ(z)|2
< ε (58)

and

µΨ(z)
∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k(ϕ′(z), . . . , ϕ(j−k+1)(z))

∣∣∣
(1− |ϕ(z)|2)k

< ε (59)

for each k ∈ {1, 2, . . . , n+ 1}. From the fact L0 <∞ and (58), we see

R0 ≤ ε+ L0 log
e

1− η2
. (60)

From (59) and the fact Lk <∞ for each k ∈ {1, 2, . . . , n+ 1}, we see

Rk ≤ ε+
Lk

(1− η2)k
. (61)

Then from (60), (61) and Theorem 3.3, it follows that DnMuCϕ : Z2 → BΨ is bounded.
In order to prove that DnMuCϕ : Z2 → BΨ is compact, by Lemma 4.1 we just need to

prove that, if {fi} is a sequence in Z2 such that supi∈N ‖fi‖Z2 ≤M and fi → 0 uniformly
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on any compact subset of D as i→∞, then limi→∞ ‖DnMuCϕfi‖BΨ = 0. For such chosen
ε and η, by using (58), (59), Lemma 2.1 and Lemma 2.2, we have

sup
z∈D

µΨ(z)
∣∣(DnMuCϕfi

)′(z)∣∣
= sup

z∈D
µΨ(z)

∣∣∣ n+1∑
k=0

f
(k)
i (ϕ(z))

n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤ sup

z∈D
µΨ(z)

n+1∑
k=0

∣∣f (k)
i (ϕ(z))

∣∣∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤
(

sup
z∈K

+ sup
z∈D\K

)
µΨ(z)

∣∣∣ n+1∑
j=0

Cjn+1u
(n+1−j)(z)Bj,0

(
ϕ′(z), . . . , ϕ(j+1)(z)

)∣∣∣∣∣fi(ϕ(z))
∣∣

+
(

sup
z∈K

+ sup
z∈D\K

)
µΨ(z)

n+1∑
k=1

∣∣f (k)
i (ϕ(z))

∣∣∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
≤
n+1∑
k=0

Lk sup
|z|≤η

∣∣f (k)
i (z)

∣∣+ Cε. (62)

From (62) and the fact fi → 0 uniformly on compact subsets of D as i→∞ implies that
for each k ∈ N, f (k)

i → 0 uniformly on compact subsets of D as i→∞, we get

lim
i→∞

sup
z∈D

µΨ(z)
∣∣(DnMuCϕfi)′(z)

∣∣ = 0. (63)

It is clear that

lim
i→∞

∣∣(DnMuCϕfi)(0)
∣∣ = 0. (64)

From (63) and (64) we obtain

lim
i→∞

‖DnMuCϕfi‖BΨ = 0.

Hence this shows that the operator DnMuCϕ : Z2 → BΨ is compact. �

Theorem 4.4. Let ϕ be an analytic self-map of D, u ∈ H(D) and α > 2. Then the
following statements are equivalent.

(a) The operator DnMuCϕ : Zα → BΨ is compact.
(b) The functions u and ϕ are such that Lk <∞ and for each k ∈ {0, 1, . . . , n+ 1}

lim
|ϕ(z)|→1

µΨ(z)
∣∣∣ n+1∑
j=k

Cjn+1u
(n+1−j)(z)Bj,k

(
ϕ′(z), . . . , ϕ(j−k+1)(z)

)∣∣∣
(1− |ϕ(z)|2)α+k−2

= 0.

Proof. Similarly to the proofs of Theorems 4.1-4.3, this result can be proved. �

Remark 4.1. By using the similar methods and techniques, the compactness of the oper-
ators DnCϕMu, CϕDnMu, MuD

nCϕ, MuCϕD
n and CϕMuD

n from weighted Zygmund
spaces to Bloch-Orlicz spaces can be characterized, so we omit.
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[20] S. Li, S. Stević, Volterra type operators on Zygmund spaces, J. Inequal. Appl. 2007 (2007), 10 pages.

Article ID 32124.
[21] S. Li, S. Stević, Composition followed by differentiation between Bloch type spaces, J. Comput. Anal.

Appl. 9 (2) (2007), 195-205.
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Union soft p-ideals and union soft sub-implicative ideals in

BCI-algebras

Sun Shin Ahn, Jung Mi Ko and Keum Sook So∗

Abstract. The aim of this article is to lay a foundation for providing a soft algebraic tool in considering many

problems that contain uncertainties. In order to provide these soft algebraic structures, the notion of union soft

p-ideals(sub-implicative ideals) are introduced, and related properties are investigated. Conditions for a union

soft ideal to be a union soft p-ideal(sub-implicative ideal) are established. Characterizations of a union soft p-

ideal(sub-implicative ideal) are considered, and a new union soft p-ideal(sub-implicative ideal) from an old one is

constructed.

1. Introduction

The real world is inherently uncertain, imprecise and vague. Various problems in system

identification involve characteristics which are essentially non-probabilistic in nature [16]. In

response to this situation Zadeh [17] introduced fuzzy set theory as an alternative to probability

theory. Uncertainty is an attribute of information. In order to suggest a more general framework,

the approach to uncertainty is outlined by Zadeh [18]. To solve complicated problem in economics,

engineering, and environment, we can’t successfully use classical methods because of various

uncertainties typical for those problems. There are three theories: theory of probability, theory

of fuzzy sets, and the interval mathematics which we can consider as mathematical tools for

dealing with uncertainties. But all these theories have their own difficulties. Uncertainties can’t

be handled using traditional mathematical tools but may be dealt with using a wide range of

existing theories such as probability theory, theory of (intuitionistic) fuzzy sets, theory of vague

sets, theory of interval mathematics, and theory of rough sets. However, all of these theories have

their own difficulties which are pointed out in [14]. Maji et al. [13] and Molodtsov [14] suggested

that one reason for these difficulties may be due to the inadequacy of the parametrization tool

of the theory. To overcome these difficulties, Molodtsov [14] introduced the concept of soft set

as a new mathematical tool for dealing with uncertainties that is free from the difficulties that

have troubled the usual theoretical approaches. Molodtsov pointed out several directions for the

applications of soft sets. Worldwide, there has been a rapid growth in interest in soft set theory

and its applications in recent years. Evidence of this can be found in the increasing number

of high-quality articles on soft sets and related topics that have been published in a variety of

international journals, symposia, workshops, and international conferences in recent years. Maji

et al. [13] described the application of soft set theory to a decision making problem. Maji et

02010 Mathematics Subject Classification: 06F35; 03G25; 06D72.
0Keywords: Exclusive set, Union soft ideal, Union soft p-ideal, Union soft sub-implicative ideal.
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al. [12] also studied several operations on the theory of soft sets. Aktaş and Çağman [2] studied

the basic concepts of soft set theory, and compared soft sets to fuzzy and rough sets, providing

examples to clarify their differences. They also discussed the notion of soft groups. Jun [9]

discussed the union soft sets with applications in BCK/BCI-algebras. We refer the reader to

the papers [1, 3, 6, 8, 10] for further information regarding algebraic structures/properties of soft

set theory.

In this paper, we discuss applications of the union soft sets in p-ideals of BCI-algebras. We

introduce the notion of union soft p-ideals, and investigated related properties. We provide

conditions for a union soft ideal to be a union soft p-ideal, and establish characterizations of a

union soft p-ideal. We construct a new union soft p-ideal from an old one.

Secondly, we define the notion of union soft sub-implicative ideals, and investigated related

properties. We provide conditions for a union soft ideal to be a union soft sub-implicative ideal,

and study characterizations of a union soft sub-implicative ideal. We find a new union soft

sub-implicative ideal from an old one.

2. Preliminaries

We review some definitions and properties that will be useful in our results.

By a BCI-algebra we mean an algebra (X, ∗, 0) of type (2,0) satisfying the following conditions:

(a1) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(a2) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(a3) (∀x ∈ X) (x ∗ x = 0),

(a4) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(a5) (∀x ∈ X)(0 ∗ x = 0),

then X is called a BCK-algebra. A BCI-algebra X is said to be p-semisimple if 0 ∗ (0 ∗ x) = x

for all x ∈ X. A BCI-algebra X is said to be implicative if (x ∗ (x ∗ y)) ∗ (y ∗ x) = y ∗ (y ∗ x) for

all x, y ∈ X.

In any BCI-algebra X one can define a partial order “≤” by putting x ≤ y if and only if

x ∗ y = 0.

A BCI-algebra X has the following properties:

(b1) (∀x ∈ X) (x ∗ 0 = x),

(b2) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y),

(b3) (∀x, y ∈ X) (0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)),

(b4) (∀x, y ∈ X) (x ∗ (x ∗ (x ∗ y)) = x ∗ y).

(b5) (∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x),

(b6) (∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y),

(b7) (∀x, y, z ∈ X) (0 ∗ (0 ∗ ((x ∗ z) ∗ (y ∗ z))) = (0 ∗ y) ∗ (0 ∗ x)),
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(b8) (∀x, y ∈ X) (0 ∗ (0 ∗ (x ∗ y)) = (0 ∗ y) ∗ (0 ∗ x)).

A non-empty subset S of a BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S whenever

x, y ∈ S. A non-empty subset A of a BCI-algebra X is called an ideal of X if it satisfies:

(c1) 0 ∈ A,
(c2) (∀x ∈ X) (∀y ∈ A) (x ∗ y ∈ A ⇒ x ∈ A).

Note that every ideal A of a BCI-algebra X satisfies:

(∀x ∈ X) (∀y ∈ A) (x ≤ y ⇒ x ∈ A).

A non-empty subset A of a BCI-algebra X is called a p-ideal ([15]) of X if it satisfies (c1) and

(c3) (∀x, y, z ∈ X)((x ∗ z) ∗ (y ∗ z) ∈ A and y ∈ A⇒ x ∈ A).

Note that any p-ideal is an ideal, but the converse is not true in general.

Theorem 2.1. ([15]) An ideal I of a BCI-algebra X is a p-ideal if and only if 0 ∗ (0 ∗ x) ∈ I
implies x ∈ I for any x ∈ X.

For any elements x and y of a BCI-algebra X, xn ∗ y denotes x ∗ (x ∗ · · · ∗ (x ∗ (x ∗ y · · · ) in

which x occurs n times. A non-empty subset A of a BCI-algebra X is called a sub-implicative

ideal ([11]) of X if it satisfies (c1) and

(c4) (∀x, y, z ∈ X)((x2 ∗ y) ∗ (y ∗ x)) ∗ z ∈ A and z ∈ A⇒ y2 ∗ x ∈ A).

Note that any sub-implicative ideal is an ideal, but the converse is not true in general.

Theorem 2.2. ([11]) An ideal I of a BCI-algebra X is a sub-implicative ideal if and only if

(x2 ∗ y) ∗ (y ∗ x) ∈ I implies y2 ∗ x ∈ I for any x, y ∈ X.

We refer the reader to the book [7] for further information regarding BCI-algebras. A soft set

theory is introduced by Molodtsov [14].

In what follows, let U be an initial universe set and E be a set of parameters. We say that the

pair (U,E) is a soft universe. Let P(U) denotes the power set of U and A,B,C, · · · ⊆ E.

Definition 2.3. ([14]) A soft set FA over U is defined to be the set of ordered pairs

FA := {(x, fA(x)) : x ∈ E, fA(x) ∈P(U)} ,

where fA : E →P(U) such that fA(x) = ∅ if x /∈ A.

The function fA is called the approximate function of the soft set FA. The subscript A in the

notation fA indicates that fA is the approximate function of FA.

In what follows, denote by S(U) the set of all soft sets over U.

Definition 2.4. ([12]) For two soft sets FA and GB over a common universe U , we say that FA

is a soft subset of GB, denoted by FA⊂̃GB, if it satisfies:

(i) A ⊂ B,

(ii) For every ε ∈ A, F (ε) and G (ε) are identical approximations.
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Let FA ∈ S(U) and let τ ⊆ U. Then the τ -exclusive set of FA is defined to be the set

e(FA; τ) := {x ∈ A | fA(x) ⊆ τ} .

Obviously, we have the following properties:

(1) e(FA;U) = A,

(2) fA(x) = ∩{τ ⊆ U | x ∈ e(FA; τ)} ,
(3) (∀τ1, τ2 ⊆ U) (τ1 ⊆ τ2 ⇒ e(FA; τ1) ⊆ e(FA; τ2)) .

3. Union soft p-ideals

Definition 3.1. ([9]) Let (U,E) = (U,X) where X is a BCI-algebra. Given a subalgebra A of

E, we let FA ∈ S(U). Then FA is called a union soft deal over U (briefly, U-soft ideal) if the

approximate function fA of FA satisfies:

(∀x ∈ A) (fA(0) ⊆ fA(x)) , (3.1)

(∀x, y ∈ A) (fA(x) ⊆ fA(x ∗ y) ∪ fA(y)) . (3.2)

Definition 3.2. Let (U,E) = (U,X) where X is a BCI-algebra. Given a subalgebra A of E,

let FA ∈ S(U). Then FA is called a union soft p-ideal over U (briefly, U-soft p-ideal) if the

approximate function fA of FA satisfies (3.1) and

(∀x, y, z ∈ A) (fA(x) ⊆ fA((x ∗ z) ∗ (y ∗ z)) ∪ fA(y)) . (3.3)

Example 3.3. Let (U,E) = (U,X) where X = {0, 1, a, b, c} is a BCI-algebra ([10]) with the

following Cayley table:

∗ 0 1 a b c

0 0 0 a b c

1 1 0 a b c

a a a 0 c b

b b b c 0 a

c c c b a 0

Let τ1, τ2 and τ3 be subsets of U such that τ1 ( τ2 ( τ3. Define a soft set FE over U as follows:

FE = {(0, τ1), (1, τ2), (a, τ3), (b, τ3), (c, τ2)} .

Routine calculations show that FE is a U-soft p-ideal over U.

Theorem 3.4. Let (U,E) = (U,X) where X is a BCI-algebra. Then every U-soft p-ideal is a

U-soft ideal.
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Proof. Let FA be a U-soft p-ideal over U where A is a subalgebra of E. Taking z := 0 in (3.3)

and using (b1) we obtain

fA(x) ⊆fA((x ∗ 0) ∗ (y ∗ 0)) ∪ fA(y)

=fA(x ∗ y)) ∪ fA(y)

for all x, y ∈ A. Therefore FA is a U-soft ideal over U. �

The following example shows that the converse of Theorem 3.4 is not true.

Example 3.5. Let (U,E) = (U,X) where X = {0, 1, 2, 3, 4} is a BCI-algebra ([9]) with the

following Cayley table:
∗ 0 1 2 a b

0 0 0 0 a b

1 1 0 1 b a

2 2 2 0 a a

a a a a 0 0

b b a b 1 0

Let τ1, τ2, τ3, τ4 and τ5 be subsets of U such that τ1 ( τ3 ( τ4 ( τ5 and τ1 ( τ2 ( τ5. Define a

soft set FE over U as follows:

FE = {(0, τ1), (1, τ2), (2, τ3), (a, τ4), (b, τ5)} .

Routine calculations show that FE is a U-soft ideal over U. But it is not a U-soft p-ideal over U ,

since

fE(b) = τ5 * τ4 = τ1 ∪ τ4 = fE((b ∗ b) ∗ (a ∗ b)) ∪ fE(a).

We provide some conditions for a U-soft ideal to be a U-soft p-ideal over U .

Theorem 3.6. Let (U,E) = (U,X) where X is a BCI-algebra. For a subalgebra A of E, let

FA ∈ S(U). Then the following are equivalent:

(1) FA is a U-soft p-ideal over U ,

(2) FA is a U-soft ideal over U and its approximate function fA satisfies

(∀x, y, z ∈ A) (fA(x ∗ y) ⊆ fA((x ∗ z) ∗ (y ∗ z))) . (3.4)

Proof. Assume that FA is a U-soft p-ideal over U. By Theorem 3.4, FA is a U-soft deal over U.

Using (a1) and (b2), we have 0 = ((x ∗ z) ∗ (x ∗ y)) ∗ (y ∗ z) = ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) for any

x, y, z ∈ A. Hence ((x ∗ y) ∗ (x ∗ y)) ∗ [((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y)] = 0 ∗ 0 = 0. It follows from (3.3)

and (3.1) that

fA(x ∗ y) ⊆fA((x ∗ y) ∗ (x ∗ y)) ∗ [((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y)]) ∪ fA((x ∗ z) ∗ (y ∗ z))

=fA(0) ∪ fA((x ∗ z) ∗ (y ∗ z))

=fA((x ∗ z) ∗ (y ∗ z)).

Hence (3.4) holds.
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Conversely, suppose that FA is a U-soft ideal over U satisfying (3.4). Using (3.2) and (3.4),

we have fA(x) ⊆ fA(x ∗ y) ∪ fA(y) ⊆ fA((x ∗ z) ∗ (y ∗ z)) ∪ fA(y) for any x, y, z ∈ A. Hence FA

is a U-soft p-ideal over U . This completes the proof. �

Lemma 3.7. Let (U,E) = (U,X) where X is a BCI-algebra. For a subalgebra A of E, let

FA ∈ S(U). If FA is a U-soft ideal over U , then the approximate function fA of FA satisfies the

following condition:

(∀x ∈ A)(fA(0 ∗ (0 ∗ x)) ⊆ fA(x)).

Proof. Assume that FA is a U-soft ideal over U . Note that 0 = (0 ∗ x) ∗ (0 ∗ x) = (0 ∗ (0 ∗ x)) ∗ x.

Using (3.2) and (3.1), we have

fA(0 ∗ (0 ∗ x)) ⊆fA((0 ∗ (0 ∗ x) ∗ x)) ∪ fA(x)

=fA(0) ∪ fA(x)

=fA(x)

for any x ∈ A. This completes the proof. �

Theorem 3.8. Let (U,E) = (U,X) where X is a BCI-algebra. For a subalgebra A of E, let

FA ∈ S(U). Then the following are equivalent:

(i) FA is a U-soft p-ideal over U ,

(ii) FA is a U-soft ideal over U and its approximate function fA satisfies

(∀x ∈ A) (fA(x) ⊆ fA(0 ∗ (0 ∗ x))) . (3.5)

Proof. Assume that FA is a U-soft p-ideal over U. By Theorem 3.4, FA is a U-soft deal over U.

It follows from (3.3) and (3.1) that

fA(x) ⊆fA((x ∗ x) ∗ (0 ∗ x)) ∪ fA(0)

=fA(0 ∗ (0 ∗ x))

for any x ∈ A. Hence (3.5) holds.

Conversely, suppose that FA is a U-soft ideal over U satisfying (3.5). By Lemma 3.7, we

obtain fA(0 ∗ (0 ∗ ((x ∗ z) ∗ (y ∗ z)))) ⊆ fA((x ∗ z) ∗ (y ∗ z)). It follows from (b7) and (b8)

that 0 ∗ (0 ∗ (x ∗ y)) = (0 ∗ y) ∗ (0 ∗ x) = 0 ∗ (0 ∗ (x ∗ z) ∗ (y ∗ z))). Using (3.5), we have

fA(x ∗ y) ⊆ fA(0 ∗ (0 ∗ (x ∗ y))) ⊆ fA((x ∗ z) ∗ (y ∗ z)). By Theorem 3.6, FA is a U-soft p-ideal

over U. �

Lemma 3.9. ([9]) Let (U,E) = (U,X) where X is a BCI-algebra, Given a subalgebra A of E,

let FA ∈ S(U). Then the following are equivalent:

(i) FA is an U-soft ideal over U ,

(ii) The nonempty τ -exclusive set of FA is a ideal of A for any τ ⊆ U.
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Theorem 3.10. Let (U,E) = (U,X) where X is a BCI-algebra, Given a subalgebra A of E. let

FA ∈ S(U). Then the following are equivalent:

(i) FA is a U-soft p-ideal over U ,

(ii) The nonempty τ -exclusive set of FA is a p-ideal of A for any τ ⊆ U.

Proof. Assume that FA is a U-soft p-ideal over U. Then FA is a U-soft ideal over U by Theorem

3.4. Hence e(FA; τ) is an ideal of A for all τ ⊆ U by Lemma 3.9. Let τ ⊆ U and let x, y, z ∈ A be

such that (x ∗ z) ∗ (y ∗ z) ∈ e(FA; τ) and y ∈ e(FA; τ). Then fA((x ∗ z) ∗ (y ∗ z)) ⊆ τ, fA(y) ⊆ τ ,

and so

fA(x) ⊆ fA((x ∗ z) ∗ (y ∗ z)) ∪ fA(y) ⊆ τ.

Hence x ∈ e(FA; τ). Thus e(FA; τ) is a p-ideal of A.

Conversely, suppose that the nonempty τ -exclusive set of FA is a p-ideal of A for any τ ⊆ U.

Then e(FA; τ) is an ideal of A for all τ ⊆ U. Hence FA is a U-soft ideal over U by Lemma 3.9.

Let x ∈ A be such that fA(0 ∗ (0 ∗ x)) = τ. Then 0 ∗ (0 ∗ x) ∈ e(FA; τ), and so x ∈ e(FA; τ) by

Theorem 2.1. Hence fA(x) ⊆ fA(0 ∗ (0 ∗ x)). It follows from Theorem 3.8 that FA is a U-soft

p-ideal over U. �

The p-ideals e(FA; τ) in Theorem 3.10 are called the exclusive p-ideals of FA.

Theorem 3.11. Let (U,E) = (U,X) and FA ∈ S(U) where X is a BCI-algebra and A is a

subalgebra of E. For a subset τ of U, define a soft set F ∗
A over U by

f ∗
A : E →P(U), x 7→

{
fA(x) if x ∈ e(FA; τ),

U otherwise.

If FA is a U-soft p-ideal over U, then so is F ∗
A.

Proof. If FA is a U-soft p-ideal over U, then e(FA; τ) is a p-ideal of A for any τ ⊆ U. Hence

0 ∈ e(FA; τ), and so f ∗
A(0) = fA(0) ⊆ fA(x) ⊆ f ∗

A(x) for all x ∈ A. Let x, y, z ∈ A. If (x ∗ z) ∗
(y ∗ z) ∈ e(FA; τ) and y ∈ e(FA; τ), then x ∈ e(FA; τ) and so

f ∗
A(x) =fA(x)

⊆fA((x ∗ z) ∗ (y ∗ z)) ∪ fA(y)

=f ∗
A((x ∗ z) ∗ (y ∗ z)) ∪ f ∗

A(y).

If (x ∗ y) ∗ (y ∗ z) /∈ e(FA; τ) or y /∈ e(FA; τ), then f ∗
A((x ∗ z) ∗ (y ∗ z)) = U or f ∗

A(y) = U. Hence

f ∗
A(x) ⊆ U = f ∗

A((x ∗ z) ∗ (y ∗ z)) ∪ f ∗
A(y).

This shows that F ∗
A is a U-soft p-ideal over U. �

Theorem 3.12. Let (U,E) = (U,X) where X is a BCI-algebra. Then any p-ideal of E can be

realized as an exclusive p-ideal of some U-soft p-ideal over U.
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Proof. Let A be a p-ideal of E. For any subset τ ( U, let FA be a soft set over U defined by

fA : E →P(U), x 7→
{
τ if x ∈ A,
U if x /∈ A.

Obviously, fA(0) ⊆ fA(x) for all x ∈ E. For any x, y, z ∈ E, if (x ∗ z) ∗ (y ∗ z) ∈ A and y ∈ A
then x ∈ A. Hence

fA((x ∗ z) ∗ (y ∗ z)) ∪ fA(y) = τ = fA(x).

If (x ∗ z) ∗ (y ∗ z) /∈ A or y /∈ A then fA((x ∗ z) ∗ (y ∗ z)) = U or fA(y) = U. It follows from (3.3)

that

fA(x) ⊆ U = fA((x ∗ z) ∗ (y ∗ z)) ∪ fA(y).

Therefore FA is a U-soft p-ideal over U, and clearly e(FA; τ) = A. This completes the proof. �

Example 3.13. Let (U,E) = (U,X) where X is a BCI-algebra.

(1) B(X) := {x ∈ X|0 ∗ x = 0}. Then B(X) is a p-ideal ([15]) of X. For any subset τ ( U, let

FB(X) be a soft set over U defined by

fB(X) : E →P(U), x 7→
{
τ if x ∈ B(X),

U if x /∈ B(X).

Then FB(X) is a U-soft p-ideal over U.

(2) Tn(X) := {x ∈ X|0∗xn = 0}, where 0∗xn = (· · · (0∗x)∗ · · · )∗x in which x appears n-times.

Then Tn(X) is a p-ideal ([15]) of X. For any subset τ ( U, let GTn(X) be a soft set over U defined

by

gTn(X) : E →P(U), x 7→
{
τ if x ∈ Tn(X),

U if x /∈ Tn(X).

Then GTn(X) is a U-soft p-ideal over U.

Theorem 3.14. [Extension property] Let (U,E) = (U,X) where X is a p-semisimple BCI-

algebra. Given subalgebras A and B of E, let FA,FB ∈ S(U) such that

(i) FA⊂̃FB,

(ii) FB a U-soft ideal over U .

If FA is a U-soft p-ideal over U , then so is FB.

Proof. Let τ ⊆ U be such that e(FB; τ) 6= ∅. It follows from the condition (ii) and Lemma 3.9

that e(FB; τ) is an ideal. Assume that FA is a U-soft p-ideal over U . Then e(FA; τ) is a p-ideal

for every τ ⊆ U by Theorem 3.10. Let x ∈ E and τ ⊆ U be such that 0 ∗ (0 ∗ x) ∈ e(FB; τ).

Since X is a p-semisimple BCI-algebra, 0 ∗ (0 ∗ x) = x. Hence x ∈ e(FB; τ). Thus e(FB; τ) is a

p-ideal by Theorem 2.1. By Theorem 3.10, FB is a U-soft p-ideal over U . �
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4. Union soft sub-implicative ideals

Definition 4.1. Let (U,E) = (U,X) where X is a BCI-algebra. Given a subalgebra A of

E, let FA ∈ S(U). Then FA is called a union soft sub-implicative ideal over U (briefly, U-soft

sub-implicative ideal) if the approximate function fA of FA satisfies (3.1) and

(∀x, y, z ∈ A)
(
fA(y2 ∗ x) ⊆ fA(((x2 ∗ y) ∗ (y ∗ x)) ∗ z) ∪ fA(z)

)
. (4.1)

Example 4.2. Let (U,E) = (U,X) where X = {0, 1, 2} is a BCI-algebra ([11]) with the

following Cayley table:

∗ 0 1 2

0 0 0 2

1 1 0 2

2 2 2 0

Let τ1 and τ2 be subsets of U such that τ1 ( τ2. Define a soft set FE over U as follows:

FE = {(0, τ1), (1, τ1), (2, τ2)} .

Routine calculations show that FE is a U-soft sub-implicative ideal over U.

Theorem 4.3. Let (U,E) = (U,X) where X is a BCI-algebra. Then every U-soft sub-

implicative ideal is a U-soft ideal.

Proof. Let FA be a U-soft sub-implicative ideal over U where A is a subalgebra of E. Taking

y := x in (4.1) we obtain

fA(x) = fA(x2 ∗ x)

⊆ fA(((x2 ∗ x) ∗ (x ∗ x)) ∗ z) ∪ fA(z)

= fA(x ∗ z)) ∪ fA(z)

for all x, z ∈ A. Therefore FA is a U-soft ideal over U. �

The following example shows that the converse of Theorem 4.3 is not true.

Example 4.4. Let (U,E) = (U,X) where X = {0, 1, 2, 3, 4} is a BCI-algebra ([11]) with the

following Cayley table:

∗ 0 a b c

0 0 0 0 c

a a 0 0 c

b b b 0 c

c c c c 0

Let τ1 and τ2 be subsets of U such that τ1 ( τ2. Define a soft set FE over U as follows:

FE = {(0, τ1), (a, τ2), (b, τ2), (c, τ2)} .
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Routine calculations show that FE is a U-soft ideal over U. But it is not a U-soft sub-implicative

ideal over U , since

fE(a2 ∗ b) = fE(a) = τ2 * τ1 = fE(((b2 ∗ a) ∗ (a ∗ b)) ∗ 0) ∪ fE(0).

Proposition 4.5. Let (U,E) = (U,X) where X is a BCI-algebra. For a subalgebra A of E, let

FA ∈ S(U). If FA is a U-soft sub-implicative ideal over U , then the approximate function fA of

FA satisfies the following condition:

(∀x, y ∈ A)
(
fA(y2 ∗ x) ⊆ fA((x2 ∗ y) ∗ (y ∗ x))

)
. (4.2)

.

Proof. Assume that FA is a U-soft sub-implicative ideal over U . For any x, y ∈ A, we have

fA(y2 ∗ x) ⊆fA(((x2 ∗ y) ∗ (y ∗ x)) ∗ 0) ∪ fA(0)

=fA((x2 ∗ y) ∗ (y ∗ x)).

This completes the proof. �

We provide conditions for a U-soft BCI-ideal to be a U-soft sub-implicative ideal over U .

Theorem 4.6. Let (U,E) = (U,X) where X is a BCI-algebra. For a subalgebra A of E, let

FA ∈ S(U). If FA is a U-soft ideal over U satisfying the condition (4.2), then FA is a U-soft

sub-implicative ideal over U .

Proof. Assume that FA is a U-soft ideal over U satisfying the condition (4.2). For any x, y ∈ A,

we have

fA(y2 ∗ x) ⊆fA((x2 ∗ y) ∗ (y ∗ x))

⊆fA((x2 ∗ y) ∗ (y ∗ x)) ∗ z) ∪ fA(z)

which proves the condition (4.1). This completes the proof. �

Corollary 4.7. Let (U,E) = (U,X) where X is an implicative BCI-algebra. Then every U-soft

sub-implicative ideal is a U-soft ideal.

Theorem 4.8. Let (U,E) = (U,X) where X is a p-semisimple BCI-algebra. For a subalgebra

A of E, let FA ∈ S(U). The notions of a U-soft ideal over U and a U-soft sub-implicative ideal

over U coincide.

Proof. Note that x2 ∗ y = y for all x, y ∈ X, since X is a p-semsimple BCI-algebra. Assume that

FA is a U-soft ideal over U . For any x, y, z ∈ A, we have

fA(y2 ∗ x) =fA(x)

⊆fA(x ∗ z) ∪ fA(z)

=fA((y2 ∗ x) ∗ z)) ∪ fA(z)

=fA(((x2 ∗ y) ∗ (y ∗ x)) ∗ z) ∪ fA(z).

Therefore FA ia a U-soft sub-implicative ideal over U . �
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Theorem 4.9. Let (U,E) = (U,X) where X is a BCI-algebra. Then every U-soft p-ideal is a

U-soft sub-implicative ideal.

Proof. Let FA be a U-soft p-ideal over U , where A is a subalgebra of E. Then FA is a U-soft

ideal over U . Then FA is a U-soft ideal over U by Theorem 3.4. Note that

(02 ∗ (y2 ∗ x))∗((x2 ∗ y) ∗ (y ∗ x)) = 0 ∗ ((x2 ∗ y) ∗ (y ∗ x)) ∗ (0 ∗ (y2 ∗ x))

= [(0 ∗ (x2 ∗ y)) ∗ (0 ∗ (y ∗ x))] ∗ (0 ∗ (y2 ∗ x))

= [((0 ∗ x) ∗ (0 ∗ (x ∗ y))) ∗ (0 ∗ (y ∗ x))] ∗ [(0 ∗ y) ∗ (0 ∗ (y ∗ x))]

≤ ((0 ∗ x) ∗ (0 ∗ (x ∗ y))) ∗ (0 ∗ y)

= ((0 ∗ x) ∗ (0 ∗ y)) ∗ (0 ∗ (x ∗ y))

= 0.

For any x, y ∈ A, we have

fA(y2 ∗ x) ⊆ fA(02 ∗ (y2 ∗ x))

⊆ fA((02 ∗ (y2 ∗ x)) ∗ ((x2 ∗ y) ∗ (y ∗ x))) ∪ fA((x2 ∗ y) ∗ (y ∗ x))

⊆ fA(0) ∪ ((x2 ∗ y) ∗ (y ∗ x))

= fA((x2 ∗ y) ∗ (y ∗ x)).

It follows from Theorem 4.6 that FA is a U-soft sub-implicaticve ideal over U . �

The converse of Theorem 4.9 may not be true in general as seen in the following example.

Example 4.10. Let (U,E) = (U,X) where X = {0, a, 1, 2, 3} is a BCI-algebra with the following

Cayley table:
∗ 0 a 1 2 3

0 0 0 3 2 1

a a 0 3 2 1

1 1 1 0 3 2

2 2 2 1 0 3

3 3 3 2 1 0

Let τ1, τ2 and τ3 be subsets of U such that τ1 ( τ2 ( τ3. Define a soft set FE over U as follows:

FE = {(0, τ1), (a, τ2), (1, τ3), (2, τ3), (3, τ3)} .

Routine calculations show that FE is a U-soft sub-implicative ideal over U. But it is not a U-soft

p-ideal over U , since

fE(a) = τ2 * τ1 = fE((a ∗ 1) ∗ (0 ∗ 1)) ∪ fE(0).

Theorem 4.11. Let (U,E) = (U,X) where X is a BCI-algebra, Given a subalgebra A of E. let

FA ∈ S(U). Then the following are equivalent:

(i) FA is a U-soft sub-implicative ideal over U ,

(ii) The nonempty τ -exclusive set of FA is a sub-implicative ideal of A for any τ ⊆ U.
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Proof. Assume that FA is a U-soft sub-implicative ideal over U. Then FA is a U-soft ideal over

U by Theorem 4.3. Hence e(FA; τ) is an ideal of A for all τ ⊆ U by Lemma 3.9. Let τ ⊆ U

and let x, y, z ∈ A be such that ((x2 ∗ y) ∗ (y ∗ x)) ∗ z ∈ e(FA; τ) and z ∈ e(FA; τ). Then

fA(((x2 ∗ y) ∗ (y ∗ x)) ∗ z) ⊆ τ, fA(z) ⊆ τ , and so

fA(y2 ∗ x) ⊆ fA(((x2 ∗ y) ∗ (y ∗ x)) ∗ z) ∪ fA(z) ⊆ τ.

Hence y2 ∗ x ∈ e(FA; τ). Thus e(FA; τ) is a sub-implicative ideal of A.

Conversely, suppose that the nonempty τ -exclusive set of FA is a sub-implicative ideal of A

for any τ ⊆ U. Then e(FA; τ) is an ideal of A for all τ ⊆ U. Hence FA is a U-soft ideal over U by

Lemma 3.9. Let x, y ∈ A be such that fA((x2 ∗ y)∗ (y ∗x)) = τ. Then (x2 ∗ y)∗ (y ∗x) ∈ e(FA; τ),

and so y2 ∗ x ∈ e(FA; τ) by Theorem 2.2. Hence fA(y2 ∗ x) ⊆ fA((x2 ∗ y) ∗ (y ∗ x)). It follows

from Theorem 4.6 that FA is a U-soft sub-implicative ideal over U. �

The sub-implicative ideals e(FA; τ) in Theorem 4.11 are called the exclusive sub-implicative

ideals of FA.

Theorem 4.12. Let (U,E) = (U,X) and FA ∈ S(U) where X is a BCI-algebra and A is a

subalgebra of E. For a subset τ of U, define a soft set F ∗
A over U by

f ∗
A : E →P(U), x 7→

{
fA(x) if x ∈ e(FA; τ),

U otherwise.

If FA is a U-soft sub-implicative ideal over U, then so is F ∗
A.

Proof. If FA is a U-soft sub-implicative ideal over U, then e(FA; τ) is a sub-implicative ideal of

A for any τ ⊆ U. Hence 0 ∈ e(FA; τ), and so f ∗
A(0) = fA(0) ⊆ fA(x) ⊆ f ∗

A(x) for all x ∈ A. Let

x, y, z ∈ A. If ((x2 ∗ y) ∗ (y ∗ x) ∗ z) ∈ e(FA; τ) and z ∈ e(FA; τ), then y2 ∗ x ∈ e(FA; τ) and so

f ∗
A(y2 ∗ x) =fA(y2 ∗ x)

⊆fA(((x2 ∗ y) ∗ (y ∗ x)) ∗ z) ∪ fA(z)

=f ∗
A(((x2 ∗ y) ∗ (y ∗ x)) ∗ z) ∪ f ∗

A(z).

If ((x2 ∗ y) ∗ (y ∗ x)) ∗ z /∈ e(FA; τ) or z /∈ e(FA; τ), then f ∗
A((x2 ∗ y) ∗ (y ∗ x)) ∗ z)) = U or

f ∗
A(z) = U. Hence

f ∗
A(x) ⊆ U = f ∗

A(((x2 ∗ y) ∗ (y ∗ x)) ∗ z) ∪ f ∗
A(z).

This shows that F ∗
A is a U-soft sub-implicative ideal over U. �

Theorem 4.13. Let (U,E) = (U,X) where X is a BCI-algebra. Then any sub-implicative ideal

of E can be realized as an exclusive sub-implicative ideal of some U-soft sub-implicative ideal

over U.

Proof. Let A be a sub-implicative ideal of E. For any subset τ ( U, let FA be a soft set over U

defined by

fA : E →P(U), x 7→
{
τ if x ∈ A,
U if x /∈ A.
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Obviously, fA(0) ⊆ fA(x) for all x ∈ E. For any x, y, z ∈ E, if ((x2∗y)∗(y∗x))∗z ∈ A and z ∈ A,

then y2∗x ∈ A. Hence fA(y2∗x) = τ = fA(((x2∗y)∗(y∗x))∗z)∪fA(z). If ((x2∗y)∗(y∗x))∗z /∈ A
or z /∈ A, then fA(((x2 ∗ y) ∗ (y ∗ x)) ∗ z) = U or fA(z) = U. It follows from (4.1) that

fA(y2 ∗ x) ⊆ U = fA(((x2 ∗ y) ∗ (y ∗ x)) ∗ z) ∪ fA(z).

Therefore FA is a U-soft sub-implicative ideal over U, and clearly e(FA; τ) = A. This completes

the proof. �

Example 4.14. Let (U,E) = (U,X) where X is a BCI-algebra and let B(X) := {x ∈ X|0∗x =

0}. Then B(X) is a sub-implicative ideal ([11]) of X. For any subset τ ( U, let FB(X) be a soft

set over U defined by

fB(X) : E →P(U), x 7→
{
τ if x ∈ B(X),

U if x /∈ B(X).

Then it is easy to see that FB(X) is a U-soft sub-implicative ideal over U.
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[2] H. Aktaş and N. Çağman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726-2735.

[3] A. O. Atagün and A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl. 61 (2011)

592-601.

[4] S. A. Bhatti and Z. Xiaohong, Strong ideals, associative ideals and p-ideals in BCI-algebras, Punjab Univ.

J. Math. 27 (1994) 113-120.

[5] F. Feng, Soft rough sets applied to multicriteria group decision making, Ann. Fuzzy Math. Inform. 2 (2011)

69-80.

[6] F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008) 2621-2628.

[7] Y. Huang, BCI-algebra, Science Press, Beijing 2006.

[8] Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl. 56 (2008) 1408-1413.

[9] Y. B. Jun, Union soft sets with applications in BCK/BCI-algebras, Bull. Korean Math. Soc. 50 (2013),

1937-1956.

[10] Y. B. Jun, K. J. Lee and J. Zhan, Soft p-ideals of soft BCI-algebras, Comput. Math. Appl. 58 (2009)

2060-2068.

[11] Y. L. Liu and J. Meng, Sub-implicative and sub-commutative ideals of BCI-algebras, Soochow J. Math. 26

(2000) 441-453.

[12] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562.

[13] P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a decision making problem, Comput.

Math. Appl. 44 (2002) 1077-1083.

[14] D. Molodtsov, Soft set theory - First results, Comput. Math. Appl. 37 (1999) 19-31.

[15] Z. Xiaohong, J. Hao and S. A. Bhatti, On p-ideals of a BCI-algebras, Punjab Univ. J. Math. 27 (1994),

121-128.

[16] L. A. Zadeh, From circuit theory to system theory, Proc. Inst. Radio Eng. 50 (1962) 856-865.

[17] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353.

[18] L. A. Zadeh, Toward a generalized theory of uncertainty (GTU) - an outline, Inform. Sci. 172 (2005) 1-40.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

164 Sun Shin Ahn et al 152-165



14 Sun Shin Ahn, Jung Mi Ko and Keum Sook So

Sun Shin Ahn, Department of Mathematics Education, Dongguk University, Seoul, 100-715,

Korea

E-mail address: sunshine@dongguk.edu

Jung Mi Ko, Department of Mathematics, Gangneung-Wonju National University, Gangne-

ung, 210-702, Korea

E-mail address: jmko@gwnu.ac.kr

Keum Sook So, Department of Mathematics, Hallym University, Chuncheon, 200-702, Korea

E-mail address: ksso@hallym.ac.kr

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

165 Sun Shin Ahn et al 152-165



On interval-valued fuzzy rough approximation

operators ∗

Weidong Tang† Jinzhao Wu‡ Meiling Liu§

March 5, 2016

Abstract: Rough approximation operators based on approximation spaces
are a key concept of rough set theory. This paper investigates rough approxi-
mation operators in interval-valued fuzzy (for short, IVF) environment by using
constructive and axiomatic approaches. Moreover, IVF pseudo-closure opera-
tors are considered.

Keywords: IVF set; IVF relation; IVF approximate space; IVF rough set;
IVF rough approximation operators.

1 Introduction

Rough set theory was proposed by Pawlak [16] as a mathematical tool for
data reasoning. It may be seen as an extension of classical set theory, has been
proved to be an effective approach to deal with intelligent systems characterized
by insufficient and incomplete information, and has been successfully applied to
machine learning, intelligent systems, inductive reasoning, pattern recognition,
mereology, image processing, signal analysis, knowledge discovery, decision anal-
ysis, expert systems and many other fields [17, 18, 19, 20]. The foundation of its
object classification is an equivalence relation. The upper and lower approxima-
tion operations are two core notions of this theory. They can also be seen as the
closure operator and the interior operator of the topology induced by an equiv-
alence relation on the universe, respectively. In the real world, the equivalence
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relation is, however, too restrictive for many practical applications. To address
this issue, many interesting and meaningful extensions of Pawlak’s rough sets
have been presented in the literature. Equivalence relations can be replaced by
tolerance relations [23], similarity relations [24], binary relations [7, 27].

Various fuzzy generalizations of rough approximations have been proposed
in the literature [1, 2, 6, 10, 11, 15, 21, 26, 29]. The most common fuzzy rough
set is obtained by replacing the crisp binary relations with fuzzy relations on
the universe and the crisp subsets with the fuzzy sets.

There are mainly two approaches to the development of rough set theory.
One is the constructive approach in which rough approximation operators are
constructed by means of relations, partitions, coverings, neighborhood systems
and so on. The constructive approach is suitable for practical applications of
rough sets. The other one is the axiomatic approach. In this approach, a set of
axioms is used to characterize rough approximation operators that guarantee the
existence of certain types of relations which produce the same operators. This
approach is appropriate for studying algebra structures of rough sets. Under
this point of view, rough set theory may be interpreted as an extension of set
theory with two additional unary operators.

As a generalization of Zadeh’s fuzzy set, interval-valued fuzzy (IVF, for
short) sets were introduced by Gorzalczany [4] and Turksen [25], and they were
applied to the fields of approximate inference, signal transmission and controller,
etc. Mondal et al. [14] defined topology of IVF sets and studied their properties.

By integrating Pawlak rough set theory with IVF set theory, Sun et al. [22]
introduced IVF rough sets based on an IVF approximation space, defined IVF
information systems and discussed their attribute reduction. Gong et al. [5]
studied the knowledge discovery in IVF information systems. Zhang et al. [30]
discussed (I, T )-IVF rough sets based on an IVF approximation space on two
universes of discourse.

The purpose of this paper is to investigate IVF rough approximation oper-
ators by using constructive and axiomatic approaches.

2 Preliminaries

Throughout this paper, “ interval-valued fuzzy ” denote briefly by “ IVF ”.
U denotes a nonempty finite set called the universe of discourse. I denotes [0, 1]
and [I] denotes {[a, b] : a, b ∈ I and a ≤ b}. P(U) denotes the family of all
subsets of U . F (i)(U) denotes the family of all IVF sets in U . ā denotes [a, a]
for each a ∈ [0, 1].

2.1 IVF sets

For any [aj , bj ] ∈ [I]( j = 1, 2), we define

[a1, b1] = [a2, b2] ⇐⇒ a1 = a2, b1 = b2;

[a1, b1] ≤ [a2, b2] ⇐⇒ a1 ≤ a2, b1 ≤ b2;

2
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[a1, b1] < [a2, b2] ⇐⇒ [a1, b1] ≤ [a2, b2] and [a1, b1] 6= [a2, b2];

1̄− [a1, b1] or [a1, b1]c = [1− b1, 1− a1].

Obviously, ([a, b]c)c = [a, b] for each [a, b] ∈ [I].

Definition 2.1 ([4, 25]). For each {[aj , bj ] : j ∈ J} ⊆ [I], we define
∨

j∈J

[aj , bj ] = [
∨

j∈J

aj ,
∨

j∈J

bj ] and
∧

j∈J

[aj , bj ] = [
∧

j∈J

aj ,
∧

j∈J

bj ],

where
∨

j∈J

aj = sup {aj : j ∈ J} and
∧

j∈J

aj = inf {aj : j ∈ J}.

Definition 2.2 ([4, 25]). An IVF set A in U is defined by a mapping A : U →
[I]. Denote

A(x) = [A−(x), A+(x)] (x ∈ U).

Then A−(x) (resp. A+(x) ) is called the lower (resp. upper) degree to which x
belongs to A. A− (resp. A+ ) is called the lower (resp. upper) IVF set of A.

The set of all IVF sets in U is denoted by F (i)(U).
Let a, b ∈ I. ˜[a, b] represents the IVF set which satisfies ˜[a, b](x) = [a, b] for

each x ∈ U . We denoted [̃a, a] by ã.
We recall some basic operations on F (i)(U) as follows ([4, 25]): for any

A,B ∈ F (i)(U) and [a, b] ∈ [I],
(1) A = B ⇐⇒ A(x) = B(x) for each x ∈ U .
(2) A ⊆ B ⇐⇒ A(x) ≤ B(x) for each x ∈ U .
(3) A = Bc ⇐⇒ A(x) = B(x)c for each x ∈ U .
(4) (A ∩B)(x)=A(x) ∧B(x) for each x ∈ U .
(5) (A ∪B)(x)=A(x) ∨B(x) for each x ∈ U .
Moreover,

(
⋃

j∈J

A)(x) =
∨

j∈J

A(x) and (
⋂

j∈J

A)(x) =
∧

j∈J

A(x),

where {Aj : j ∈ J} ⊆ F (i)(U).
(6) ([a, b]A)(x) = [a, b] ∧ [A−(x), A+(x)] for each x ∈ U .
Obviously,

A = B ⇐⇒ A− = B− and A+ = B+ ; ( ˜[a, b])c = [̃a, b]c ([a, b] ∈ [I]).

Definition 2.3 ([14]). A ∈ F (i)(U) is called an IVF point in U , if there exist
[a, b] ∈ [I]− {0̄} and x ∈ U such that

A(y) =

{
[a, b], y = x,

0̄, y 6= x.

We denote A by x[a,b].

3
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If [a, b] = 1̄, then

x1̄(y) =

{
1̄, y = x,

0̄, y 6= x.

Remark 2.4. A =
⋃

x∈U

(A(x)x1̄).

2.2 Definition of IVF rough approximation operators

Recall that R is called an IVF relation on U if R ∈ F (i)(U × U).

Definition 2.5 ([7, 22]). Let R be an IVF relation on U . Then R is called
(1) reflexive, if R(x, x) = 1̄ for each x ∈ U .
(2) transitive, if R(x, z) ≥ R(x, y) ∧R(y, z) for any x, y, z ∈ U .
(3) preorder, if R is reflexive and transitive.

Definition 2.6 ([22]). Let R be an IVF relation on U . The pair (U,R) is called
an IVF approximation space. For each A ∈ F (i)(U), the IVF lower and the IVF
upper approximation of A with respect to (U,R), denoted by R(A) and R(A),
are two IVF sets and are respectively defined as follows:

R(A)(x) =
∧

y∈U

(A(y) ∨ (1̄−R(x, y))) (x ∈ U)

and
R(A)(x) =

∨

y∈U

(A(y) ∧R(x, y)) (x ∈ U).

The the pair (R(A), R(A)) is called the IVF rough set of A with respect to (U,R).
R : F (i)(U) → F (i)(U) and R : F (i)(U) → F (i)(U) are called the IVF lower

approximation operator and the IVF upper approximation operator, respectively.
In general, we refer to R and R as the IVF rough approximation operators.

Remark 2.7. Let (U,R) be an IVF approximation space. Then
(1) for each x, y ∈ U ,

R(x1̄)(y) = R(y, x) and R((x1̄)
c)(y) = 1̄−R(y, x).

(2) for each [a, b] ∈ [I], R( ˜[a, b]) ⊇ ˜[a, b] ⊇ R( ˜[a, b]).

Proposition 2.8 ([22]). Let (U,R) be an IVF approximation space. Then for
each A ∈ F (i)(U),

(R(A))− = R+(A−), (R(A))+ = R−(A+),

(R(A))− = R−(A−) and (R(A))+ = R+(A+).

3 IVF rough approximation operators

In this section, we deeply investigate IVF rough approximation operators.

4
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3.1 Construction of IVF rough approximation operators

Theorem 3.1 ([28]). Let (U,R) be an IVF approximation space. Then for any
A,B ∈ F (i)(U), {Aj : j ∈ J} ⊆ F (i)(U) and [a, b] ∈ [I],

(1) R(1̃) = 1̃, R(0̃) = 0̃.
(2) A ⊆ B =⇒ R(A) ⊆ R(B), R(A) ⊆ R(B).
(3) R(Ac) = (R(A))c, R(Ac) = (R(A))c.
(4) R(

⋂
j∈J

Aj) =
⋂

j∈J

R(Aj), R(
⋃

j∈J

Aj) =
⋃

j∈J

R(Aj).

(5) R( ˜[a, b] ∪A) = ˜[a, b] ∪R(A), R([a, b]A) = [a, b]R(A).

Theorem 3.2 ([28]). Let (U,R) be an IVF approximation space. Then

(1) R is reflexive ⇐⇒ (ALR) ∀A ∈ F (i)(U), R(A) ⊆ A.

⇐⇒ (AUR) ∀A ∈ F (i)(U), A ⊆ R(A).
(2) R is transitive ⇐⇒ (ALT ) ∀A ∈ F (i)(U), R(A) ⊆ R(R(A)).

⇐⇒ (AUT ) ∀A ∈ F (i)(U), R(R(A)) ⊆ R(A).

Corollary 3.3 ([28]). Let (U,R) be an IVF approximation space. If R is pre-
order, then

R(R(A)) = R(A) and R(R(A)) = R(A) (A ∈ F (i)(U)).

Let A ∈ F (i)(U). Denote

Aλ = {(x) ∈ U : A−(x) ≥ λ} (λ ∈ I),
Aλ = {(x) ∈ U : A+(x) ≥ λ]} (λ ∈ I),

Aλ+ = {(x) ∈ U : A−(x) > λ} (λ ∈ [0, 1)),

Aλ+
= {(x) ∈ U : A+(x) > λ]} (λ ∈ [0, 1)).

Definition 3.4 ([4, 25]). Let A ∈ F (i)(U) and [α, β] ∈ [I]. Denote

A[α,β] = {x ∈ U : A−(x) ≥ α, A+(x) ≥ β]},

A[α,β]+ = {x ∈ U : A(x) > [α, β]},
A(α,β) = {x ∈ U : A−(x) > α, A+(x) > β]}.

Then A[α,β] (resp.A[α,β]+ , A(α,β)) is called the [α, β]-level (resp. strong [α, β]-
level, (α, β)-level) set of A.

Obviously, A(α,β) ⊆ A[α,β]+ ⊆ A[α,β].

Proposition 3.5 ([4, 25]). Let A,B ∈ F (i)(U) and [α, β] ∈ [I]. Then
(1) A ⊆ B =⇒ A[α,β]+ ⊆ B[α,β]+ ;
(2) (A ∪B)[α,β]+ ⊇ A[α,β]+ ∪B[α,β]+ ;
(2) (A ∩B)[α,β]+ = A[α,β]+ ∩B[α,β]+ .

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

170 Weidong Tang et al 166-180



Let R ∈ F (i)(U × U). Denote

Rλ = {(x, y) ∈ U × U : R−(x, y) ≥ λ} (λ ∈ I),
Rλ = {(x, y) ∈ U × U : R+(x, y) ≥ λ]} (λ ∈ I),

Rλ+ = {(x, y) ∈ U × U : R−(x, y) > λ} (λ ∈ [0, 1)),

Rλ+
= {(x, y) ∈ U × U : R+(x, y) > λ]} (λ ∈ [0, 1)),

R[α,β] = {(x, y) ∈ U × U : R(x, y) ≥ [α, β]} ([α, β] ∈ [I]),
R[α,β]+ = {(x, y) ∈ U × U : R(x, y) > [α, β]} (α < 1, [α, β] ∈ [I]).

Proposition 3.6. Let R be an IVF relation on U .
(1) If R is reflexive, then Rλ, Rλ, Rλ+ , Rλ+

and R[α,β]+ are reflexive.
(2) If R is transitive, then Rλ, Rλ, Rλ+ , Rλ+

and R[α,β]+ are transitive.

Proof. (1) are obvious.
(2) For any x, y, z ∈ U , if (x, y), (y, z) ∈ Rλ, we have R−(x, y) ≥ λ and

R−(y, z) ≥ λ. Note that R is transitive. Then R(x, z) ≥ R(x, y) ∧ R(y, z) and
so

R−(x, z) ≥ R−(x, y) ∧R−(y, z) ≥ λ.

Thus (x, z) ∈ Rλ. Hence Rλ is transitive.
Similarly, We can prove that Rλ, Rλ+ and Rλ+

are transitive.
For any x, y, z ∈ U , if (x, y), (y, z) ∈ R[α,β]+ , we have R(x, y) > [α, β] and

R(y, z) > [α, β]. Note that R is transitive. Then

R(x, z) ≥ R(x, y) ∧R(y, z) > [α, β].

and so (x, z) ∈ R[α,β]+ . Hence R[α,β]+ is transitive.

Theorem 3.7. Let (U,R) be an IVF approximation space. Then IVF rough
approximation operator can be represented as follows: for each A ∈ F (i)(U),

(1) (R(A))− =
⋃

λ∈I

λR1−λ(Aλ) =
⋃

λ∈I

λR1−λ(Aλ+),

=
⋃

λ∈I

λR(1−λ)+(Aλ) =
⋃

λ∈I

λR(1−λ)+(Aλ+);

(2) (R(A))+ =
⋃

λ∈I

λR1−λ(Aλ) =
⋃

λ∈I)

λR1−λ(Aλ+
),

=
⋃

λ∈I

λR(1−λ)+(Aλ) =
⋃

λ∈I

λR(1−λ)+(Aλ+
);

(3) (R(A))− =
⋃

λ∈I

λRλ(Aλ) =
⋃

λ∈I

λRλ+(Aλ),

=
⋃

λ∈I

λRλ(Aλ+) =
⋃

λ∈I

λRλ+(Aλ+);

(4) (R(A))+ =
⋃

λ∈I

λRλ(Aλ) =
⋃

λ∈I

λRλ+(Aλ),

=
⋃

λ∈I

λRλ(Aλ+
) =

⋃
λ∈I

λRλ+(Aλ+
);
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Proof. (1) For each x ∈ U , by Proposition 2.10,

(
⋃

λ∈I

λR1−λ(Aλ))(x) =
∨
{λ ∈ I : x ∈ R1−λ(Aλ)}

=
∨
{λ ∈ I : (R1−λ)s(x) ⊆ Aλ}

=
∨
{λ ∈ I : R+(x, y) ≥ 1− λ implies A−(y) ≥ λ}

=
∨
{λ ∈ I : 1−R+(x, y) ≤ λ implies A−(y) ≥ λ}

=
∨
{λ ∈ I :

∧

y∈U

(A−(x) ∨ (1−R+(x, y))) ≥ λ}

=
∨
{λ ∈ I : (R(A))−(x) ≥ λ}

= (R(A))−(x).

Then (R(A))− =
⋃

λ∈I

λR1−λ(Aλ).

Similarly, we can prove that

(R(A))− =
⋃

λ∈[0,1)

λR1−λ(Aλ+) =
⋃

λ∈(0,1]

λR(1−λ)+(Aλ) =
⋃

λ∈(0,1)

λR(1−λ)+(Aλ+).

(2) The proof is similar to (1).
(3) For each x ∈ U , by Proposition 2.10,

(
⋃

λ∈I

λ(Rλ(Aλ)))(x) =
∨
{λ ∈ I : x ∈ Rλ(Aλ)}

=
∨
{λ ∈ I : (Rλ)s(x) ∩Aλ 6= ∅}

=
∨
{λ ∈ I : ∃y ∈ U, y ∈ Aλ ∩ (Rλ)s(x)}

=
∨
{λ ∈ I : ∃y ∈ U,A−(y) ∧R−(x, y) ≥ λ}

=
∨
{λ ∈ I :

∨

y∈U

(A−(y) ∧R−(x, y)) ≥ λ}

=
∨
{λ ∈ I : (R(A))−(x) ≥ λ}

= (R(A))−(x).

Then
⋃

λ∈I

λ(Rλ(Aλ)) = (R(A))−.

Similarly, we can prove that

(R(A))− =
⋃

λ∈[0,1)

λ(Rλ+(Aλ)) =
⋃

λ∈[0,1)

λ(Rλ(Aλ+)) =
⋃

λ∈[0,1)

λ(Rλ+(Aλ+)).

(4) The proof is similar to (3).

7
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Theorem 3.8. Let (U,R) be an IVF approximation space. Then IVF rough
approximation operator can be represented as follows: for each A ∈ F (i)(U),

R(A) =
⋃

[α,β]∈[I]

([α, β]R[α,β]+(A[α,β]+)) =
⋃

[α,β]∈[I]

([α, β]R[α,β]+(A[α,β]))

=
⋃

[α,β]∈[I]

([α, β]R[α,β](A[α,β]+)).

Proof. Denote B =
⋃

[α,β]∈[I]

([α, β]R[α,β]+(A[α,β]+)). By Proposition 2.10,

B−(x) =
∨

α∈I

(α ∧R[α,β]+(A[α,β]+)(x))

=
∨
{α ∈ I : x ∈ (R[α,β]+(A[α,β]+))}

=
∨
{α ∈ I : (R[α,β]+)s(x) ∩A[α,β]+ 6= ∅}

=
∨
{α ∈ I : ∃y ∈ U,R(x, y) > [α, β] and A(y) > [α, β]}

=
∨
{α ∈ I : ∃y ∈ U,A−(y) ∧R−(x, y) > α and A+(y) ∧R+(x, y)

≥ β or A−(y) ∧R−(x, y) ≥ α and A+(y) ∧R+(x, y) > β}
=

∨

y∈U

(A−(y) ∧R−(x, y)) = (R(A))−(x).

Then (R(A))− = B−. Similarly, we can prove that (R(A))+ = B+. Hence

R(A) = B =
⋃

[α,β]∈[I]

([α, β]R[α,β]+(A[α,β]+)).

Similarly, we can prove that

R(A) =
⋃

[α,β]∈[I]

([α, β]R[α,β]+(A[α,β])) =
⋃

[α,β]∈[I]

([α, β]R[α,β](A[α,β]+)).

3.2 Axiomatic characterizations of IVF rough approxima-
tion operators

In an axiomatic approach, rough sets are axiomatized by abstract oper-
ators. For the case of IVF rough sets, the primitive notion is the system
(F (i)(U),

⋂
,
⋃

, c, L,H), where L,H : F (i)(U) → F (i)(U) be two IVF set opera-
tors. In this subsection, rough approximation operators in the IVF environment
are characterized by some axioms.

Definition 3.9. Let L,H : F (i)(U) → F (i)(U) be two IVF set operators. If

(L(A))c = H(Ac) (A ∈ F (i)(U)),

then L,H are called two dual operators.

8
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Remark 3.10. L,H : F (i)(U) → F (i)(U) are two dual operators iff (H(A))c =
L(Ac) for each A ∈ F (i)(U).

Theorem 3.11. Let L,H : F (i)(U) → F (i)(U) be two dual operators. Then
there exists an IVF relation R on U such that L = R and H = R iff L
satisfies axioms (AL1) and (AL2), or equivalently, H satisfies axioms (AU1)
and (AU2):

(AL1) L( ˜[a, b] ∪A) = ˜[a, b] ∪ L(A) (A ∈ F (i)(U), [a, b] ∈ [I]),

(AL2) L(A ∩B) = R(A) ∩ L(B) (A,B ∈ F (i)(U);

(AU1) H([a, b]A) = [a, b]H(A) (A ∈ F (i)(U), [a, b] ∈ [I]),

(AU2) H(A ∪B) = H(A) ∪H(B) (A,B ∈ F (i)(U)).

Proof. Note that L,H : F (i)(U) → F (i)(U) are two dual operators. Then (AL1)
and (AL2) are equivalent to (AU1) and (AU2). We only need to prove that
L = R and H = R iff H satisfies axioms (AU1) and (AU2).

Necessity. This is obvious.
Sufficiency. Assume that the operator H satisfies axioms (AU1) and (AU2).

Define an IVF relation R on U by

R(x, y) = H(y1̄)(x) (x, y ∈ U).

Let A ∈ F (i)(U). Note that

H(A)(x) = H(
⋃

y∈U

(A(y)y1̄))(x) = (
⋃

y∈U

H(A(y)y1̄))(x) = (
⋃

y∈U

(A(y)H(y1̄)))(x)

=
∨

y∈U

(A(y) ∧H(y1̄)(x)) =
∨

y∈U

(A(y) ∧R(x, y)) = R(A)(x)

for each x ∈ U . Then H(A) = R(A). By Theorem 3.1(3),

L(A) = (H(Ac))c = (R(Ac))c = R(A).

Thus L = R, H = R.

Theorem 3.12. Let L,H : F (i)(U) → F (i)(U) be two dual operators. Then
there exists a reflexive IVF relation R on U such that L = R and H = R iff
L satisfies axiom (AL1), (AL2) and (ALR), or equivalently, H satisfies axiom
(AU1), (AU2) and (AUR):

(ALR) L(A) ⊆ A (A ∈ F (i)(U));

(AUR) A ⊆ H(A) (A ∈ F (i)(U)).

Proof. This holds by Theorems 3.2(1) and 3.11.
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Theorem 3.13. Let L,H : F (i)(U) → F (i)(U) be two dual operators. Then
there exists a symmetric IVF relation R on U such that L = R and H = R iff
L satisfies axiom (AL1), (AL2) and (ALS), or equivalently, H satisfies axiom
(AU1), (AU2) and (AUS):

(ALS) L((x1̄)
c)(y) = L((y1̄)

c)(x) (x, y ∈ U);

(ALS) H(x1̄)(y) = H(y1̄)(x) (x, y ∈ U).

Proof. This hold by Remark 2.9(1) and Theorem 3.11.

Theorem 3.14. Let L,H : F (i)(U) → F (i)(U) be two dual operators. Then
there exists a transitive IVF relation R on U such that L = R and H = R iff
L satisfies axiom (AL1), (AL2) and (ALT ), or equivalently, H satisfies axiom
(AU1), (AU2) and (AUT ):

(ALT ) L(A) ⊆ L(L(A)) (A ∈ F (i)(U));

(AUT ) H(H(A)) ⊆ H(A) (A ∈ F (i)(U)).

Proof. This holds by Theorems 3.2(2) and 3.11.

4 IVF pseudo-closure operators in IVF approx-
imation spaces

In this section, we investigate IVF pseudo-closure operators in IVF approxi-
mation spaces.

For each [a, b] ∈ [I], X ∈ P(U), we define

([a, b]X)(x) =

{
[a, b], x ∈ X,

0̄, x ∈ U −X.

Denote
E (U) = {[a, b]X : [a, b] ∈ [I], X ∈ P(U)}.

Then E (U) ⊆ F (i)(U).

Definition 4.1. Let τ be an IVF topology on U . Define

Sτ (A) =
⋃

[α,β]∈[I]

clτ ([α, β]A[α,β]} (A ∈ F (i)(U)).

Then Sτ : F (i)(U) → F (i)(U) is called the IVF pseudo-closure operator induced
by τ on U .

Theorem 4.2 ([25]). Let A ∈ F (i)(U). Then

A =
⋃

[α,β]∈[I]

[α, β]A[α,β] =
⋃

[α,β]∈[I]

[α, β]A(α,β).

10
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Theorems 4.3(5) and 4.4 below illustrate the meaning on IVF pseudo-closure
operators.

Theorem 4.3. Let τ be an IVF topology on U and let Sτ be the IVF pseudo-
closure operator induced by τ on U . Then for any A,B ∈ F (i)(U),

(1) Sτ (0̃) = 0̃.
(2) A ⊆ Sτ (A) ⊆ clτ (A).
(3) Sτ (A ∪B) ⊇ Sτ (A) ∪ Sτ (B). Sτ (A ∩B) ⊆ Sτ (A) ∩ Sτ (B).
(4) A ∈ τ c =⇒ Sτ (A) = A.
(5) Sτ coincides with clτ as operators from E (U) to F (i)(U).

Proof. (1) For any [α, β] ∈ [I] and x ∈ U , since

([α, β]0̃[α,β])(x) = [α, β] ∧ 0̃[α,β](x) =

{
[0, 0] ∧ 1̄ = 0̄, [α, β] = 0̄,

[α, β] ∧ 0̄ = 0̄, [α, β] ∈ [I]− {0̄}.

we have [α, β]0̃[α,β] = 0̃. Thus

Sτ (0̃) =
⋃

[α,β]∈[I]

clτ ([α, β]0̃[α,β]) =
⋃

[α,β]∈[I]

clτ (0̃) = 0̃.

(2) By Theorem 4.2,

A =
⋃

[α,β]∈[I]

[α, β]A[α,β] ⊆
⋃

[α,β]∈[I]

clτ ([α, β]A[α,β]) = Sτ (A) and

Sτ (A) =
⋃

[α,β]∈[I]

clτ ([α, β]A[α,β]) ⊆ clτ (
⋃

[α,β]∈[I]

[α, β]A[α,β]) = clτ (A).

(3) For any A,B ∈ F (i)(U), [α, β] ∈ [I] and x ∈ U put

C(x) =

{
1̄, x ∈ A[α,β],

0̄, x ∈ U −A[α,β]

, D(x) =

{
1̄, x ∈ B[α,β],

0̄, x ∈ U −B[α,β].

Obviously,

[α, β]A[α,β] = [̃α, β] ∩ C, [α, β]B[α,β] = [̃α, β] ∩D,

[α, β](A[α,β] ∪B[α,β]) = [̃α, β] ∩ (C ∪D)

and
[α, β](A[α,β] ∩B[α,β]) = [̃α, β] ∩ (C ∩D).

We can easily prove that

(A ∪B)[α,β] ⊇ A[α,β] ∪B[α,β] and (A ∩B)[α,β] = A[α,β] ∩B[α,β].

By Proposition 2.6(5),
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Sτ (A ∪B)

=
⋃

[α,β]∈[I]

clτ ([α, β](A ∪B)[α,β]) ⊇
⋃

[α,β]∈[I]

clτ ([α, β](A[α,β] ∪B[α,β]))

=
⋃

[α,β]∈[I]

clτ ([̃α, β] ∩ (C ∪D)) =
⋃

[α,β]∈[I]

clτ (([̃α, β] ∩ C) ∪ ([̃α, β] ∩D))

=
⋃

[α,β]∈[I]

(clτ ([̃α, β] ∩ C) ∪ clτ ([̃α, β] ∩D))

= (
⋃

[α,β]∈[I]

clτ ([̃α, β] ∩ C) ) ∪ (
⋃

[α,β]∈[I]

clτ ([̃α, β] ∩D) )

= (
⋃

[α,β]∈[I]

clτ ([α, β]A[α,β]) ) ∪ (
⋃

[α,β]∈[I]

clτ ([α, β]B[α,β]) )

= Sτ (A) ∪ Sτ (B).

By Proposition 2.6(3),
Sτ (A ∩B)

=
⋂

[α,β]∈[I]

clτ ([α, β](A ∩B)[α,β]) =
⋃

[α,β]∈[I]

clτ ([α, β](A[α,β] ∩B[α,β]))

=
⋃

[α,β]∈[I]

clτ ([̃α, β] ∩ (C ∩D)) =
⋃

[α,β]∈[I]

clτ (([̃α, β] ∩ C) ∩ ([̃α, β] ∩D))

⊆
⋃

[α,β]∈[I]

(clτ ([̃α, β] ∩ C) ∩ clτ ([̃α, β] ∩D))

⊆ (
⋃

[α,β]∈[I]

clτ ([̃α, β] ∩ C) ) ∩ (
⋃

[α,β]∈[I]

clτ ([̃α, β] ∩D) )

= (
⋃

[α,β]∈[I]

clτ ([α, β]A[α,β]) ) ∩ (
⋃

[α,β]∈[I]

clτ ([α, β]B[α,β]) )

= Sτ (A) ∩ Sτ (B).

(4) By (2) and Proposition 2.6(6),

clτ (A) ⊆ S(clτ (A)) ⊆ clτ (clτ (A)) = clτ (A),

Note that A ∈ τ c. Then

Sτ (A) = Sτ (clτ (A)) = clτ (A) = A.

(5) Let A ∈ E (U). Then there exist [a, b] ∈ [I] and X ∈ P(U) such that
A = [a, b]X.

(i) If [a, b] 6= 0̄, then for each x ∈ U ,

A[a,b](x) = ([a, b]X)[a,b](x) =

{
1̄, ([a, b]X)(x) ≥ [a, b]
0̄, ([a, b]X)(x) 6≥ [a, b]

=

{
1̄, x ∈ X,

0̄, x ∈ U −X.
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Thus A[a,b] = X. So

Sτ (A) =
⋃

[α,β]∈[I]

clτ ([α, β]A[α,β])

⊇ clτ ([a, b]A[a,b]) = clτ ([a, b]X) = clτ (A).

By (2), Sτ (A) ⊆ cl(A). Thus Sτ (A) = clτ (A).
(ii) If [a, b] = 0̄, then A = 0̃. By (1), Sτ (0̃) = 0̃. Thus Sτ (A) = clτ (A).
By (i) and (ii),

Sτ coincides with clτ as operators from E (U) to F (i)(U).

Theorem 4.4. Let (U,R) be an IVF approximation space. If R is preorder,
then

R(A) = SτR
(A) (A ∈ E (U)).

Proof. For each A ∈ E (U), by Theorems 3.11(3) and 4.3(5),

R(A) = clτR
(A) = SτR

(A).
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SOME WEIGHTED HERMITE-HADAMARD TYPE
INEQUALITIES FOR GEOMETRICALLY—ARITHMETICALLY

CONVEX FUNCTIONS ON THE CO-ORDINATES

WAJEEHA IRSHAD 1, M.A.LATIF 2, AND M. IQBAL BHATTI 3

Abstract. In this paper, the concept of GA-convex functions on the co-
ordinates is introduced. By using a concept of GA-convex functions on the
co-ordinates, Hermite-Hadamard type inequalities for this class of functions
are settled.

1. Introduction

A function f : I ⊆ R→ R forenamed as convex in the classical touch [24], if the
inequality

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds for all x, y ∈ I and λ ∈ [0, 1].
Indeed, a vast literature has been written on inequalities using classical convexity

but one of the most celebrated is the Hermite-Hadamard inequelity. This double
inequality is stated as follows:
Let f : I ⊆ R → R be a function and a, b ∈ I with a < b. Then f is convex on

[a, b] iff

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
. (1.1)

This also reveals that (1.1) can be compulsary as a adequate and suffi cient con-
dition to function f to be convex on [a, b].
Hermite-Hadmard inequality (1.1) has recieved considerable attention of many

reserchers because of its various applications and usefulness in the field of mathe-
matical inequalities itself as well as in other areas of mathematics. The inequality
(1.1) has been extended to various forms by using various generalizations of the
definition of classical convex functions and it has also been refined under different
hypotheses, see for instance [6, 9, 10, 11, 15, 24, 32] and the references therein.
As stated above the classical convexity has been generalized to different forms

and we mention below one of the generalizations of the classical convexity which is
known as GA-convexity.

Definition 1. [18, 19] A function f : I ⊆ R0 = [0,∞)→ R is said to be GA-convex
function on I if

f
(
xλy1−λ

)
≤ λf(x) + (1− λ)f(y)

holds for all x, y ∈ I and λ ∈ [0, 1], where xλy1−λ and λf(x) + (1 − λ)f(y) are
respectively the weighted geometric mean of two positive numbers x and y and the
weighted arithmetic mean of f(x) and f(y).

For results on Hermite-Hadamard type inequalities on GA-convex functions and
their applications we refere to a recent articles of Latif [15] and Zhang et al. [32].
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The definition of classical convexity for functions of of one variables was extended
to functions two variables as follows.

Definition 2. [5, 6] Let ∆ =: [a, b] × [c, d] ⊆ R2 with a < b and c < d be a
bidimensional interval. A mapping f : ∆ → R is said to be convex on ∆ if the
inequality

f(λx+ (1− λ)z, λy + (1− λ)w) ≤ λf(x, y) + (1− λ)f(z, w)

holds for all (x, y), (z, w) ∈ ∆ and λ ∈ [0, 1].

The Definition 2 of convex functions on ∆ was modified as co-ordinated convex
functions by Dragomir in [5].

Definition 3. [5] A function f : ∆ → R is said to be convex on the co-ordinates
on ∆ if the partial mappings fy : [a, b] → R, fy(u) = f(u, y) and fx : [c, d] → R,
fx(v) = f(x, v) are convex where defined for all x ∈ [a, b], y ∈ [c, d].

Remark 1. [12] It is clear that if a function f : ∆ → R is convex on the co-
ordinates on ∆. Then

f(tx+ (1− t)z, sy + (1− s)w)

≤ tsf(x, y) + t(1− s)f(x,w) + s(1− t)f(z, y) + (1− t)(1− s)f(z, w),

holds for all (t, s) ∈ [0, 1]× [0, 1] and x, z ∈ [a, b], y, w ∈ [c, d].

It is well-known that every convex mapping f : ∆ → R is convex on the co-
ordinates but converse may not be true (see [5]).
The following inequalities of Hermite-Hadamard type for co-ordinated convex

functions on the rectangle from the plane R2 were established in [5, Theorem 1,
page 778]:
Most recently, the notion of co-ordinated convexity has also been generalized in a

diverse manner and as a result, the author [14] extended the defintion of GA-convex
functions of one variable to GA-convex functions of two variables.

Definition 4. [14]A function f : ∆ ⊆ (0,∞)× (0,∞)→ R is GA-convex on ∆ if

f
(
xλz1−λ, yλw1−λ

)
≤ λf(x, y) + (1− λ) f(z, w)

holds for all (x, y) , (z, w) ∈ ∆ and λ ∈ [0, 1].

A modification in Definition 4 resulted in the notion of GA-convex functions on
the co-ordinates on ∆.

Definition 5. [14] A function f : ∆ ⊆ (0,∞) × (0,∞) → R is said to be GA-
convex on the co-ordinates on ∆ if the partial mappings fy : [a, b] ⊆ (0,∞) → R,
fy(u) = f(u, y) and fx : [c, d] ⊆ (0,∞)→ R, fx(v) = f(x, v) are GA-convex where
defined for all x ∈ [a, b], y ∈ [c, d].

The following result holds as a consequence of the defintion of GA-convex fuctions
on the co-ordinates on ∆.

Remark 2. If a function f : ∆ ⊆ (0,∞) × (0,∞) → R is GA-convex on the
co-ordinates on ∆. Then

f
(
xtz1−t, ysw1−s

)
≤ tf

(
x, ysw1−s

)
+ (1− t) f

(
z, ysw1−s

)
≤ t [sf (x, y) + (1− s) f (x,w)] + (1− t) [sf (z, y) + (1− s) f (z, w)]

≤ tsf(x, y) + t(1− s)f(x,w) + s(1− t)f(z, y) + (1− t)(1− s)f(z, w)

holds for all (t, s) ∈ [0, 1]× [0, 1] and x, z ∈ [a, b], y, w ∈ [c, d].

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 23, NO.1, 2017, COPYRIGHT 2017 EUDOXUS PRESS, LLC

182 WAJEEHA IRSHAD et al 181-195



INEQUALITIES FOR GA-CO-ORDINATED FUNCTIONS 3

In [13], some H-H type inequalities for GA-convex functions on the co-ordinates
on ∆ were also proved for GA-convex functions on the co-ordinates on ∆. For more
results on H-H type inequalities for different generilazations of the defintion of of
co-ordinated convex functions we refer the reader to [1], [2], [7]-[12], [16], [20]-[23],
[27], [28] and closely related articles mentioned therein.
The main objective of the present paper is to establish some new weighted H-

H type inequalities for the class of GA-convex functions on the co-ordinates on a
rectangle from the plane in Section 2.

2. Weighted Inequalities for co-ordinated GA-convex functions

For the sake of convenience to the reader, we will use the following notations

L1 (t) = a
1+t
2 b

1−t
2 , L2 (s) = c

1+s
2 d

1−s
2 , U1 (t) = a

1−t
2 b

1+t
2 , U2 (s) = c

1−s
2 d

1+s
2 .

To obtain our main results, we first establish the following weighted identity.

Lemma 1. Suppose that f : ∆ ⊆ (0,∞) × (0,∞) → R has second order partial
derivatives on ∆◦ and [a, b]× [c, d] ⊆ ∆◦ with a < b and c < d. If h : [a, b]× [c, d]→
[0,∞) is twice partially differentiable mapping and fts ∈ L ([a, b]× [c, d]), then we
have

Φ (a, b, c, d; f, h)

= h (a, c) f (a, c)− h (a, d) f (a, d)− h (b, c) f (b, c) + h (b, d) f (b, d)

+

∫ d

c

hy (a, y) f (a, y) dy −
∫ d

c

hy (b, y) f (b, y) dy −
∫ b

a

hx (x, d) f (x, d) dx

+

∫ b

a

hx (x, c) f (x, c) dx+

∫ b

a

∫ d

c

hxy (x, y) f (x, y) dydx

=
(ln b− ln a) (ln d− ln c)

4

[∫ 1

0

∫ 1

0

L1 (t)L2 (s)h (L1 (t) , L2 (s)) fts (L1 (t) , L2 (s)) dsdt

+

∫ 1

0

∫ 1

0

U1 (t)L2 (s)h (U1 (t) , L2 (s)) fts (U1 (t) , L2 (s)) dsdt

+

∫ 1

0

∫ 1

0

L1 (t)U2 (s)h (L1 (t) , U2 (s)) fts (L1 (t) , U2 (s)) dsdt

+

∫ 1

0

∫ 1

0

U1 (t)U2 (s)h (U1 (t) , U2 (s)) fts (U1 (t) , U2 (s)) dsdt

]
. (2.1)

Proof. By letting x = a
1+t
2 b

1−t
2 , y = c

1+s
2 d

1−s
2 and by integration by parts with

respect to y and then with respect to x, we have

(ln b− ln a) (ln d− ln c)

4

∫ 1

0

∫ 1

0

L1 (t)L2 (s)h (L1 (t) , L2 (s)) fts (L1 (t) , L2 (s)) dsdt

=

∫ √ab
a

∫ √cd
c

h (x, y) fxy (x, y) dydx = h
(√

ab,
√
cd
)
f
(√

ab,
√
cd
)

−h
(
a,
√
cd
)
f
(
a,
√
cd
)
−h
(√

ab, c
)
f
(√

ab, c
)

+h (a, c) f (a, c)+

∫ √cd
c

hy (a, y) f (a, y) dy

−
∫ √cd
c

hy

(√
ab, y

)
f
(√

ab, y
)
dy −

∫ √ab
a

hx

(
x,
√
cd
)
f
(
x,
√
cd
)
dx

+

∫ √ab
a

hx (x, c) f (x, c) dx+

∫ √ab
a

∫ √cd
c

hxy (x, y) f (x, y) dydx. (2.2)
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Similarly, we obtain

(ln b− ln a) (ln d− ln c)

4

∫ 1

0

∫ 1

0

U1 (t)L2 (s)h (U1 (t) , L2 (s)) fts (U1 (t) , L2 (s)) dsdt

= h
(
b,
√
cd
)
f
(
b,
√
cd
)
− h (b, c) f (b, c)− h

(√
ab,
√
cd
)
f
(√

ab,
√
cd
)

+ h
(√

ab, c
)
f
(√

ab, c
)
−
∫ √cd
c

hy (b, y) f (b, y) dy

+

∫ √cd
c

hy

(√
ab, y

)
f
(√

ab, y
)
dy −

∫ b

√
ab

hx

(
x,
√
cd
)
f
(
x,
√
cd
)
dx

+

∫ b

√
ab

hx (x, c) f (x, c) dx+

∫ b

√
ab

∫ √cd
c

hxy (x, y) f (x, y) dydx, (2.3)

(ln b− ln a) (ln d− ln c)

4

∫ 1

0

∫ 1

0

L1 (t)U2 (s)h (L1 (t) , U2 (s)) fts (L1 (t) , U2 (s)) dsdt

= h
(√

ab, d
)
f
(√

ab, d
)
− h (a, d) f (a, d)− h

(√
ab,
√
cd
)
f
(√

ab,
√
cd
)

+ h
(
a,
√
cd
)
f
(
a,
√
cd
)
−
∫ √cd
c

hy

(√
ab, y

)
f
(√

ab, y
)
dy

+

∫ √cd
c

hy (a, y) f (a, y) dy −
∫ √ab
a

hx (x, d) f (x, d) dx

+

∫ √ab
a

hx

(
x,
√
cd
)
f
(
x,
√
cd
)
dx+

∫ √ab
a

∫ d

√
cd

hxy (x, y) f (x, y) dydx (2.4)

and

(ln b− ln a) (ln d− ln c)

4

∫ 1

0

∫ 1

0

U1 (t)U2 (s)h (U1 (t) , U2 (s)) fts (U1 (t) , U2 (s)) dsdt

= h (b, d) f (b, d)− h
(
b,
√
cd
)
f
(
b,
√
cd
)
− h

(√
ab, d

)
f
(√

ab, d
)

+ h
(√

ab,
√
cd
)
f
(√

ab,
√
cd
)
−
∫ d

√
cd

hy (b, y) f (b, y) dy

+

∫ d

√
cd

hy

(√
ab, y

)
f
(√

ab, y
)
dy −

∫ b

√
ab

hx (x, d) f (x, d) dx

+

∫ b

√
ab

hx

(
x,
√
cd
)
f
(
x,
√
cd
)
dx+

∫ b

√
ab

∫ d

√
cd

hxy (x, y) f (x, y) dydx. (2.5)

Adding (2.2)-(2.5), we get the desired identity. This completes the proof of the
lemma. �

Lemma 2. Let u, v > 0, η, k ∈ R and η 6= 0. Then

ζ (u, v; k, η) =

∫ 1

0

(1− kt)u 1
2+ηtv

1
2−ηtdt

=


kv

1
2
−ηu

1
2 [L(uη,vη)−uη ]

η(lnu−ln v) + v
1
2−ηu

1
2L (uη, vη) , u 6= v,

u[1−(1−k)2]
2k , u = v,
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where L (u, v) is the logarithmic mean

L (u, v) =


v−u

ln v−lnu , u 6= v,

u, u = v.

Proof. The proof follows by integration by parts. �

Now we present some new weighted H-H type inequality for GA-convex functions
on a rectangle from R2.
In what follows, we will use the following notation to make our presentation

compact.

σ1 (u, v, z, w; q) =

[
ζ

(
u, v;−1,

1

2

)
ζ

(
z, w;−1,

1

2

)
|fts (a, c)|q

+ ζ

(
u, v;−1,

1

2

)
ζ

(
z, w; 1,

1

2

)
|fts (a, d)|q + ζ

(
u, v; 1,

1

2

)
×ζ
(
z, w;−1,

1

2

)
|fts (b, c)|q + ζ

(
u, v; 1,

1

2

)
ζ

(
z, w; 1,

1

2

)
|fts (b, d)|q

] 1
q

,

σ2 (u, v, z, w; q) =

[
ζ

(
u, v; 1,−1

2

)
ζ

(
z, w;−1,

1

2

)
|fts (a, c)|q

+ ζ

(
u, v; 1,−1

2

)
ζ

(
z, w; 1,

1

2

)
|fts (a, d)|q + ζ

(
u, v;−1,−1

2

)
×ζ
(
z, w;−1,

1

2

)
|fts (b, c)|q + ζ

(
u, v;−1,−1

2

)
ζ

(
z, w; 1,

1

2

)
|fts (b, d)|q

] 1
q

,

σ3 (u, v, z, w; q) =

[
ζ

(
u, v;−1,

1

2

)
ζ

(
z, w; 1,−1

2

)
|fts (a, c)|q

+ ζ

(
u, v;−1,

1

2

)
ζ

(
z, w;−1,−1

2

)
|fts (a, d)|q + ζ

(
u, v; 1,

1

2

)
×ζ
(
z, w; 1,−1

2

)
|fts (b, c)|q + ζ

(
u, v; 1,

1

2

)
ζ

(
z, w;−1,−1

2

)
|fts (b, d)|q

] 1
q

and

σ4 (u, v, z, w; q) =

[
ζ

(
u, v;−1,

1

2

)
ζ

(
z, w;−1,

1

2

)
|fts (a, c)|q

+ ζ

(
u, v;−1,

1

2

)
ζ

(
z, w; 1,

1

2

)
|fts (a, d)|q + ζ (u, v;−1)

×ζ (z, w; 1) |fts (b, c)|q + ζ

(
u, v;−1,−1

2

)
ζ

(
z, w;−1,−1

2

)
|fts (b, d)|q

] 1
q

.

It is easy to observe that when u = v = z = w = 1, then

σ1 (1, 1, 1, 1; q) =

[
9

4
|fts (a, c)|q +

3

4
|fts (a, d)|q +

3

4
|fts (b, c)|q +

1

4
|fts (b, d)|q

] 1
q

,

σ2 (1, 1, 1, 1; q) =

[
3

4
|fts (a, c)|q +

1

4
|fts (a, d)|q

∣∣∣∣+9

4
fts (b, c)

∣∣∣∣q +
3

4
|fts (b, d)|q

] 1
q

,

σ3 (1, 1, 1, 1; q) =

[
3

4
|fts (a, c)|q +

9

4
|fts (a, d)|q +

1

4
|fts (b, c)|q +

3

4
|fts (b, d)|q

] 1
q
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and

σ4 (1, 1, 1, 1; q) =

[
1

4
|fts (a, c)|q +

3

4
|fts (a, d)|q +

3

4
|fts (b, c)|q +

9

4
|fts (b, d)|q

] 1
q

.

Theorem 1. Let f : ∆ ⊆ (0,∞) × (0,∞) → R be a twice partially differentiable
mapping on ∆◦ and [a, b]× [c, d] ⊆ ∆◦ with a < b and c < d. If h : [a, b]× [c, d]→
[0,∞) is a twice partially differentiable mapping such that fts ∈ L ([a, b]× [c, d])
and |fts|q is GA-convex on the co-ordinates on [a, b]× [c, d] for q ≥ 1, then we get
hands on:

|Φ (a, b, c, d; f, h)| ≤
(

1

4

) 1
q+1

(ln b− ln a) (ln d− ln c) ‖h‖∞

×
{[

ζ

(
a, b; 0,

1

2

)
ζ

(
c, d; 0,

1

2

)]1− 1
q

σ1 (a, b, c, d; q)

+

[
ζ

(
a, b; 0,−1

2

)
ζ

(
c, d; 0,

1

2

)]1− 1
q

σ2 (a, b, c, d; q)

+

[
ζ

(
a, b; 0,

1

2

)
ζ

(
c, d; 0,−1

2

)]1− 1
q

σ3 (a, b, c, d; q)

+

[
ζ

(
a, b; 0,−1

2

)
ζ

(
c, d; 0,−1

2

)]1− 1
q

σ4 (a, b, c, d; q)

}
, (2.6)

where ‖h‖∞ = sup
(x,y)∈[a,b]×[c,d]

h (x, y) and ζ (u, v; k, η) is defined in Lemma 2.

Proof. By virtue of Lemma 1, we have

|Φ (a, b, c, d; f, h)|

≤ (ln b− ln a) (ln d− ln c) ‖h‖∞
4

[∫ 1

0

∫ 1

0

L1 (t)L2 (s) |fts (L1 (t) , L2 (s))| dsdt

+

∫ 1

0

∫ 1

0

U1 (t)L2 (s) |fts (U1 (t) , L2 (s))| dsdt

+

∫ 1

0

∫ 1

0

L1 (t)U2 (s) |fts (L1 (t) , U2 (s))| dsdt

+

∫ 1

0

∫ 1

0

U1 (t)U2 (s) |fts (U1 (t) , U2 (s))| dsdt
]
. (2.7)

Now by using Hölder’s inequality for double integrals and by the GA-convexity of
|fts|q on the co-ordinates on [a, b]× [c, d] for q ≥ 1, we acquire∫ 1

0

∫ 1

0

L1 (t)L2 (s) |fts (L1 (t) , L2 (s))| dsdt

≤
(∫ 1

0

∫ 1

0

L1 (t)L2 (s) dsdt

)1− 1
q
(∫ 1

0

∫ 1

0

L1 (t)L2 (s) |fts (L1 (t) , L2 (s))|q dsdt
) 1
q

≤
(

1

4

) 1
q
[
ζ

(
a, b; 0,

1

2

)
ζ

(
c, d; 0,

1

2

)]1− 1
q
[
ζ

(
a, b;−1,

1

2

)
ζ

(
c, d;−1,

1

2

)
× |fts (a, c)|q + ζ

(
a, b;−1,

1

2

)
ζ

(
c, d; 1,

1

2

)
|fts (a, d)|q + ζ

(
a, b; 1,

1

2

)
×ζ
(
c, d;−1,

1

2

)
|fts (b, c)|q + ζ

(
a, b; 1,

1

2

)
ζ

(
c, d; 1,

1

2

)
|fts (b, d)|q

] 1
q

.
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Correspondingly

∫ 1

0

∫ 1

0

U1 (t)L2 (s) |fts (U1 (t) , L2 (s))| dsdt

≤
(

1

4

) 1
q
[
ζ

(
a, b; 0,−1

2

)
ζ

(
c, d; 0,

1

2

)]1− 1
q
[
ζ

(
a, b; 1,−1

2

)
ζ

(
c, d;−1,

1

2

)
× |fts (a, c)|q + ζ

(
a, b; 1,−1

2

)
ζ

(
c, d; 1,

1

2

)
|fts (a, d)|q + ζ

(
a, b;−1,−1

2

)
×ζ
(
c, d;−1,

1

2

)
|fts (b, c)|q + ζ

(
a, b;−1,−1

2

)
ζ

(
c, d; 1,

1

2

)
|fts (b, d)|q

] 1
q

,

∫ 1

0

∫ 1

0

L1 (t)U2 (s) |fts (L1 (t) , U2 (s))| dsdt

≤
(

1

4

) 1
q
[
ζ

(
a, b; 0,

1

2

)
ζ

(
c, d; 0,−1

2

)]1− 1
q
[
ζ

(
a, b;−1,

1

2

)
ζ

(
c, d; 1,−1

2

)
× |fts (a, c)|q + ζ

(
a, b;−1,

1

2

)
ζ

(
c, d;−1,−1

2

)
|fts (a, d)|q + ζ

(
a, b; 1,

1

2

)
×ζ
(
c, d; 1,−1

2

)
|fts (b, c)|q + ζ

(
a, b; 1,

1

2

)
ζ

(
c, d;−1,−1

2

)
|fts (b, d)|q

] 1
q

,

by similar argument

∫ 1

0

∫ 1

0

U1 (t)U2 (s) |fts (U1 (t) , U2 (s))| dsdt

≤
(

1

4

) 1
q
[
ζ

(
a, b; 0,−1

2

)
ζ

(
c, d; 0,−1

2

)]1− 1
q
[
ζ

(
a, b; 1,−1

2

)
ζ

(
c, d; 1,−1

2

)
× |fts (a, c)|q + ζ

(
a, b; 1,−1

2

)
ζ

(
c, d;−1,−1

2

)
|fts (a, d)|q + ζ

(
a, b;−1,−1

2

)
×ζ
(
c, d; 1,−1

2

)
|fts (b, c)|q + ζ

(
a, b;−1,−1

2

)
ζ

(
c, d;−1,−1

2

)
|fts (b, d)|q

] 1
q

.

Using the above four inequalities in (2.7) and by resolution, it reveals (2.6) and
proof is completed. �

Corollary 1. Suppose the assumptions of Theorem 1 are met and if q = 1,then

|Φ (a, b, c, d; f, h)| ≤ (ln b− ln a) (ln d− ln c)

16
‖h‖∞

× {σ1 (a, b, c, d; 1) + σ2 (a, b, c, d; 1) + σ3 (a, b, c, d; 1) + σ4 (a, b, c, d; 1)} . (2.8)
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Corollary 2. If we consider h (x, y) = 1
(ln b−ln a)(ln d−ln c) , (x, y) ∈ [a, b] × [c, d] in

Theorem 1, then∣∣∣∣Φ(a, b, c, d; f,
1

(ln b− ln a) (ln d− ln c)

)∣∣∣∣
≤
(

1

4

) 1
q+1

{[
ζ

(
a, b; 0,

1

2

)
ζ

(
c, d; 0,

1

2

)]1− 1
q

σ1 (a, b, c, d; q)

+

[
ζ

(
a, b; 0,−1

2

)
ζ

(
c, d; 0,

1

2

)]1− 1
q

σ2 (a, b, c, d; q)

+

[
ζ

(
a, b; 0,

1

2

)
ζ

(
c, d; 0,−1

2

)]1− 1
q

σ3 (a, b, c, d; q)

+

[
ζ

(
a, b; 0,−1

2

)
ζ

(
c, d; 0,−1

2

)]1− 1
q

σ4 (a, b, c, d; q)

}
. (2.9)

Theorem 2. Suppose f : ∆ ⊆ (0,∞)×(0,∞)→ R be a twice partially differentiable
mapping on ∆◦ and [a, b]× [c, d] ⊆ ∆◦ with a < b and c < d. Further let h : [a, b]×
[c, d] → [0,∞) be a twice partially differentiable mapping. If fts ∈ L ([a, b]× [c, d])
and |fts|q is GA-convex on the co-ordinates on [a, b]× [c, d] for q > 1, then we have
inequality of the form:

|Φ (a, b, c, d; f, h)| ≤
(

1

4

)1+ 1
q

(ln b− ln a) (ln d− ln c) ‖h‖∞

×
{[

ζ

(
a

q
q−1 , b

q
q−1 ; 0,

1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,

1

2

)]1− 1
q

σ1 (1, 1, 1, 1; q)

+

[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,−1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,

1

2

)]1− 1
q

σ2 (1, 1, 1, 1; q)

+

[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,

1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,−1

2

)]1− 1
q

σ3 (1, 1, 1, 1; q)

+

[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,−1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,−1

2

)]1− 1
q

σ4 (1, 1, 1, 1; q)

}
, (2.10)

where ‖h‖∞ = sup
(x,y)∈[a,b]×[c,d]

h (x, y) and ζ (u, v; k, η) is defined in Lemma 2.

Proof. From Lemma 1, we may write

|Φ (a, b, c, d; f, h)|

≤ (ln b− ln a) (ln d− ln c) ‖h‖∞
4

[∫ 1

0

∫ 1

0

L1 (t)L2 (s) |fts (L1 (t) , L2 (s))| dsdt

+

∫ 1

0

∫ 1

0

U1 (t)L2 (s) |fts (U1 (t) , L2 (s))| dsdt

+

∫ 1

0

∫ 1

0

L1 (t)U2 (s) |fts (L1 (t) , U2 (s))| dsdt

+

∫ 1

0

∫ 1

0

U1 (t)U2 (s) |fts (U1 (t) , U2 (s))| dsdt
]
. (2.11)

Now by using Hölder’s inequality for double integrals, Lemma 2 and by the GA-
convexity of |fts|q on the co-ordinates on [a, b] × [c, d] for q > 1, consequently we
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have∫ 1

0

∫ 1

0

L1 (t)L2 (s) |fts (L1 (t) , L2 (s))| dsdt

≤
[∫ 1

0

∫ 1

0

(L1 (t)L2 (s))
q
q−1 dsdt

]1− 1
q
[∫ 1

0

∫ 1

0

|fts (L1 (t) , L2 (s))|q dsdt
] 1
q

≤
[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,

1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,

1

2

)]1− 1
q

×
[

9

16
|fts (a, c)|q +

3

16
|fts (a, d)|q +

3

16
|fts (b, c)|q +

1

16
|fts (b, d)|q

] 1
q

.

In addition∫ 1

0

∫ 1

0

U1 (t)L2 (s) |fts (U1 (t) , L2 (s))| dsdt

≤
[∫ 1

0

∫ 1

0

(U1 (t)L2 (s))
q
q−1 dsdt

]1− 1
q
[∫ 1

0

∫ 1

0

|fts (U1 (t) , L2 (s))|q dsdt
] 1
q

≤
[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,−1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,

1

2

)]1− 1
q

×
[

3

16
|fts (a, c)|q +

1

16
|fts (a, d)|q +

9

16
|fts (b, c)|q +

3

16
|fts (b, d)|q

] 1
q

,

∫ 1

0

∫ 1

0

L1 (t)U2 (s) |fts (L1 (t) , U2 (s))| dsdt

≤
[∫ 1

0

∫ 1

0

(L1 (t)U2 (s))
q
q−1 dsdt

]1− 1
q
[∫ 1

0

∫ 1

0

|fts (L1 (t) , U2 (s))|q dsdt
] 1
q

≤
[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,

1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,−1

2

)]1− 1
q

×
[

3

16
|fts (a, c)|q +

9

16
|fts (a, d)|q +

1

16
|fts (b, c)|q +

3

16
|fts (b, d)|q

] 1
q

,

equivalently∫ 1

0

∫ 1

0

U1 (t)U2 (s) |fts (U1 (t) , U2 (s))| dsdt

≤
[∫ 1

0

∫ 1

0

(U1 (t)U2 (s))
q
q−1 dsdt

]1− 1
q
[∫ 1

0

∫ 1

0

|fts (U1 (t) , U2 (s))|q dsdt
] 1
q

≤
[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,−1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,−1

2

)]1− 1
q

×
[

1

16
|fts (a, c)|q +

3

16
|fts (a, d)|q +

3

16
|fts (b, c)|q +

9

16
|fts (b, d)|q

] 1
q

.

Using the above four inequalities in (2.11) and simplifying, we get the required
inequality (2.10). �
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10 WAJEEHA IRSHAD 1, M.A.LATIF 2, AND M. IQBAL BHATTI 3

Corollary 3. If we take h (x, y) = 1
(ln b−ln a)(ln d−ln c) , (x, y) ∈ [a, b] × [c, d] in

Theorem 2, then∣∣∣∣Φ(a, b, c, d; f,
1

(ln b− ln a) (ln d− ln c)

)∣∣∣∣
≤
(

1

4

)1+ 1
q

{[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,

1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,

1

2

)]1− 1
q

σ1 (1, 1, 1, 1; q)

+

[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,−1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,

1

2

)]1− 1
q

σ2 (1, 1, 1, 1; q)

+

[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,

1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,−1

2

)]1− 1
q

σ3 (1, 1, 1, 1; q)

+

[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,−1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,−1

2

)]1− 1
q

σ4 (1, 1, 1, 1; q)

}
. (2.12)

We shall use the following notation for the next theorem and its related corollary.

∆1 (a, b, c, d; q) = (θ (q))
2
q |fts (a, c)|q + (θ (q))

1
q |fts (a, d)|q

+ (θ (q))
1
q |fts (b, c)|q + |fts (b, d)|q ,

∆2 (a, b, c, d; q) = (θ (q))
1
q |fts (a, c)|q + |fts (a, d)|q

+ (θ (q))
2
q |fts (b, c)|q + (θ (q))

1
q |fts (b, d)|q ,

∆3 (a, b, c, d; q) = (θ (q))
1
q |fts (a, c)|q + (θ (q))

2
q |fts (a, d)|q

+ |fts (b, c)|q + (θ (q))
1
q |fts (b, d)|q

and

∆4 (a, b, c, d; q) = |fts (a, c)|q + (θ (q))
1
q |fts (a, d)|q

+ (θ (q))
1
q |fts (b, c)|q + (θ (q))

2
q |fts (b, d)|q ,

where θ (q) = 2q+1 − 1.

Theorem 3. Let f : ∆ ⊆ (0,∞) × (0,∞) → R be a twice partially differentiable
mapping on ∆◦ and [a, b]× [c, d] ⊆ ∆◦ with a < b and c < d. Further let h : [a, b]×
[c, d] → [0,∞) is a twice partially differentiable mapping. If fts ∈ L ([a, b]× [c, d])
and |fts|q is GA-convex on the co-ordinates on [a, b] × [c, d] for q > 1, then the
following inequality holds:

|Φ (a, b, c, d; f, h)| ≤ (ln b− ln a) (ln d− ln c) ‖h‖∞
16

(
1

q + 1

)2/q
×
{[

ζ

(
a

q
q−1 , b

q
q−1 ; 0,

1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,

1

2

)]1− 1
q

∆1 (a, b, c, d; q)

+

[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,−1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,

1

2

)]1− 1
q

∆2 (a, b, c, d; q)

+

[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,

1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,−1

2

)]1− 1
q

∆3 (a, b, c, d; q)

+

[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,−1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,−1

2

)]1− 1
q

∆4 (a, b, c, d; q)

}
, (2.13)
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where ‖h‖∞ = sup
(x,y)∈[a,b]×[c,d]

h (x, y), ζ (u, v; k, η) is defined in Lemma 2.

Proof. From Lemma 1, we have

|Φ (a, b, c, d; f, h)| ≤ (ln b− ln a) (ln d− ln c) ‖h‖∞
4[∫ 1

0

∫ 1

0

L1 (t)L2 (s) |fts (L1 (t) , L2 (s))| dsdt

+

∫ 1

0

∫ 1

0

U1 (t)L2 (s) |fts (U1 (t) , L2 (s))| dsdt

+

∫ 1

0

∫ 1

0

L1 (t)U2 (s) |fts (L1 (t) , U2 (s))| dsdt

+

∫ 1

0

∫ 1

0

U1 (t)U2 (s) |fts (U1 (t) , U2 (s))| dsdt
]
. (2.14)

Now by using the GA-convexity of |fts|q on the co-ordinates on [a, b] × [c, d] for
q > 1, Lemma 2 together with the Hölder’s inequality for double integrals, we have

∫ 1

0

∫ 1

0

L1 (t)L2 (s) |fts (L1 (t) , L2 (s))| dsdt

≤
∫ 1

0

∫ 1

0

(L1 (t)L2 (s))

[(
1 + t

2

)(
1 + s

2

)
|fts (a, c)|+

(
1 + t

2

)
(

1− s
2

)
|fts (a, d)|+

(
1− t

2

)(
1 + s

2

)
|fts (b, c)|+

(
1− t

2

)(
1− s

2

)
|fts (b, d)|

]

≤
[∫ 1

0

∫ 1

0

(L1 (t)L2 (s))
q
q−1 dsdt

]1− 1
q

{[∫ 1

0

∫ 1

0

(
1 + t

2

)q (
1 + s

2

)q
dsdt

] 1
q

|fts (a, c)|

+

[∫ 1

0

∫ 1

0

(
1 + t

2

)q (
1− s

2

)q
dsdt

] 1
q

|fts (a, d)|+
[∫ 1

0

∫ 1

0

(
1− t

2

)q (
1 + s

2

)q
dsdt

] 1
q

× |fts (b, c)|+
[∫ 1

0

∫ 1

0

(
1− t

2

)q (
1− s

2

)q
dsdt

] 1
q

|fts (b, d)|
}

=

[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,

1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,

1

2

)]1− 1
q
[

1

2q(q + 1)

]2/q [(
2q+1 − 1

)2/q
× |fts (a, c)|q +

(
2q+1 − 1

)1/q |fts (a, d)|q +
(
2q+1 − 1

)1/q |fts (b, c)|q + |fts (b, d)|q
]
.

Likewise, we have

∫ 1

0

∫ 1

0

U1 (t)L2 (s) |fts (U1 (t) , L2 (s))| dsdt

≤
[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,−1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,

1

2

)]1− 1
q

×
[

1

2q(q + 1)

]2/q [(
2q+1 − 1

)1/q |fts (a, c)|q + |fts (a, d)|q

+
(
2q+1 − 1

)2/q |fts (b, c)|q +
(
2q+1 − 1

)1/q |fts (b, d)|q
]
,
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12 WAJEEHA IRSHAD 1, M.A.LATIF 2, AND M. IQBAL BHATTI 3∫ 1

0

∫ 1

0

L1 (t)U2 (s) |fts (L1 (t) , U2 (s))| dsdt

≤
[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,

1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,−1

2

)]1− 1
q

×
[

1

2q(q + 1)

]2/q [(
2q+1 − 1

)1/q |fts (a, c)|q +
(
2q+1 − 1

)1/q |fts (a, d)|q

+ |fts (b, c)|q +
(
2q+1 − 1

)1/q |fts (b, d)|q
]
,

and

∫ 1

0

∫ 1

0

U1 (t)U2 (s) |fts (U1 (t) , U2 (s))| dsdt

≤
[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,−1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,−1

2

)]1− 1
q

×
[

1

2q(q + 1)

]2/q [(
2q+1 − 1

)1/q |fts (a, c)|q +
(
2q+1 − 1

)1/q |fts (a, d)|q

+ |fts (b, c)|q +
(
2q+1 − 1

)1/q |fts (b, d)|q
]
.

Further employing the above four inequalities in (2.14) and after simplification, we
built up the required inequality (2.13). �

Corollary 4. If we take h (x, y) = 1
(ln b−ln a)(ln d−ln c) , (x, y) ∈ [a, b] × [c, d] in

Theorem 3,then

∣∣∣∣Φ(a, b, c, d; f,
1

(ln b− ln a) (ln d− ln c)

)∣∣∣∣ ≤ 1

16

(
1

q + 1

)2/q
{[

ζ

(
a

q
q−1 , b

q
q−1 ; 0,

1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,

1

2

)]1− 1
q

∆1 (a, b, c, d; q)

+

[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,−1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,

1

2

)]1− 1
q

∆2 (a, b, c, d; q)

+

[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,

1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,−1

2

)]1− 1
q

∆3 (a, b, c, d; q)

+

[
ζ

(
a

q
q−1 , b

q
q−1 ; 0,−1

2

)
ζ

(
c

q
q−1 , d

q
q−1 ; 0,−1

2

)]1− 1
q

∆3 (a, b, c, d; q)

}
, (2.15)

where ζ (u, v; k, η) is defined in Lemma 2 and θ (q) = 2q+1 − 1.

Theorem 4. Let f : ∆ ⊆ (0,∞) × (0,∞) → R be a twice partially differentiable
mapping on ∆◦ and [a, b]× [c, d] ⊆ ∆◦ with a < b and c < d. Further let h : [a, b]×
[c, d] → [0,∞) is a twice partially differentiable mapping. If fts ∈ L ([a, b]× [c, d])
and |fts|q is GA-convex on the co-ordinates on [a, b]× [c, d] for q > 1 and q ≥ r ≥ 0,
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then we attain the following inequality:

|Φ (a, b, c, d; f, h)| ≤
(

1

4

) 1
q+1

(ln b− ln a) (ln d− ln c) ‖h‖∞

×
{[

ζ

(
a
q−r
q−1 , b

q−r
q−1 ; 0,

1

2

)
ζ

(
c
q−r
q−1 , d

q−r
q−1 ; 0,

1

2

)]1− 1
q

σ1 (ar, br, cr, dr; q)

+

[
ζ

(
a
q−r
q−1 , b

q−r
q−1 ; 0,−1

2

)
ζ

(
c
q−r
q−1 , d

q−r
q−1 ; 0,

1

2

)]1− 1
q

σ2 (ar, br, cr, dr; q)

+

[
ζ

(
a
q−r
q−1 , b

q−r
q−1 ; 0,

1

2

)
ζ

(
c
q−r
q−1 , d

q−r
q−1 ; 0,−1

2

)]1− 1
q

σ3 (ar, br, cr, dr; q)

+

[
ζ

(
a
q−r
q−1 , b

q−r
q−1 ; 0,−1

2

)
ζ

(
c
q−r
q−1 , d

q−r
q−1 ; 0,−1

2

)]1− 1
q

σ4 (ar, br, cr, dr; q)

}
,

(2.16)

where ‖h‖∞ = sup
(x,y)∈[a,b]×[c,d]

h (x, y) and ζ (u, v; k, η) is defined in Lemma 2.

Proof. From Lemma 1, it follows that

|Φ (a, b, c, d; f, h)|

≤ (ln b− ln a) (ln d− ln c) ‖h‖∞
4

[∫ 1

0

∫ 1

0

L1 (t)L2 (s) |fts (L1 (t) , L2 (s))| dsdt

+

∫ 1

0

∫ 1

0

U1 (t)L2 (s) |fts (U1 (t) , L2 (s))| dsdt

+

∫ 1

0

∫ 1

0

L1 (t)U2 (s) |fts (L1 (t) , U2 (s))| dsdt

+

∫ 1

0

∫ 1

0

U1 (t)U2 (s) |fts (U1 (t) , U2 (s))| dsdt
]
. (2.17)

Now by virtue of GA-convexity of |fts|q on the co-ordinates on [a, b] × [c, d] for
q > 1, Lemma 2 and by the Hölder’s inequality for double integrals, we have in
hand∫ 1

0

∫ 1

0

L1 (t)L2 (s) |fts (L1 (t) , L2 (s))| dsdt ≤
(∫ 1

0

∫ 1

0

(L1 (t)L2 (s))
q−r
q−1 dsdt

)1− 1
q

×
(∫ 1

0

∫ 1

0

(L1 (t)L2 (s))
r |fts (L1 (t) , L2 (s))|q dsdt

) 1
q

≤
(

1

4

) 1
q
[
ζ

(
a
q−r
q−1 , b

q−r
q−1 ; 0,

1

2

)
ζ

(
c
q−r
q−1 , d

q−r
q−1 ; 0,

1

2

)]1− 1
q

σ1 (ar, br, cr, dr; q)

Similarly∫ 1

0

∫ 1

0

U1 (t)L2 (s) |fts (U1 (t) , L2 (s))| dsdt ≤
(∫ 1

0

∫ 1

0

(U1 (t)L2 (s))
q−r
q−1 dsdt

)1− 1
q

×
(∫ 1

0

∫ 1

0

(U1 (t)L2 (s))
r |fts (U1 (t) , L2 (s))|q dsdt

) 1
q

≤
(

1

4

) 1
q
[
ζ

(
a
q−r
q−1 , b

q−r
q−1 ; 0,−1

2

)
ζ

(
c
q−r
q−1 , d

q−r
q−1 ; 0,

1

2

)]1− 1
q

σ2 (ar, br, cr, dr; q)
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∫ 1

0

∫ 1

0

L1 (t)U2 (s) |fts (L1 (t) , U2 (s))| dsdt ≤
(∫ 1

0

∫ 1

0

(L1 (t)U2 (s))
q−r
q−q dsdt

)1− 1
q

×
(∫ 1

0

∫ 1

0

(L1 (t)U2 (s))
r |fts (L1 (t) , U2 (s))|q dsdt

) 1
q

≤
(

1

4

) 1
q
[
ζ

(
a
q−r
q−1 , b

q−r
q−1 ; 0,

1

2

)
ζ

(
c
q−r
q−1 , d

q−r
q−1 ; 0,−1

2

)]1− 1
q

σ3 (ar, br, cr, dr; q)

and∫ 1

0

∫ 1

0

U1 (t)U2 (s) |fts (U1 (t) , U2 (s))| dsdt ≤
(∫ 1

0

∫ 1

0

(U1 (t)U2 (s))
q−r
q−1 dsdt

)1− 1
q

×
(∫ 1

0

∫ 1

0

(U1 (t)U2 (s))
r |fts (U1 (t) , U2 (s))|q dsdt

) 1
q

≤
(

1

4

) 1
q
[
ζ

(
a
q−r
q−1 , b

q−r
q−1 ; 0,−1

2

)
ζ

(
c
q−r
q−1 , d

q−r
q−1 ; 0,−1

2

)]1− 1
q

σ4 (ar, br, cr, dr; q)

Using the above four inequalities in (2.17) and simplifying, we obtained the
required inequality (2.16). �
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