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OSCILLATION CRITERIA FOR FORCED AND DAMPED

NABLA FRACTIONAL DIFFERENCE EQUATIONS

JEHAD ALZABUT, THABET ABDELJAWAD, HUSSAM ALRABAIAH

Abstract. Based on the properties of Riemann–Liouville difference and sum

operators, sufficient conditions are established to guarantee the oscillation of
solutions for forced and damped nabla fractional difference equations. Numer-

ical examples are presented to show the applicability of the proposed results.

We finish the paper by a concluding remark.

1. Introduction and preliminaries

The study of oscillation of solutions for various type of equations including dif-
ferential, difference and dynamic equations on time scales has been the object of
many researchers in the last five decades. Indeed, great efforts have been put in
the direction of establishing new oscillation criteria for these type of equations; see
the monographs [1, 2, 3, 4].

Due to their widespread applications in science and technology, the fractional
differential equations have started to attract more attention among physicists and
mathematicians. Indeed, it was found that various interdisciplinary applications
can be elegantly modeled by the help of these equations. For instance, the nonlinear
oscillation of earthquake and heart beats and the stability of brain tumor growth can
be modeled by using fractional derivatives; the reader can consult the paper [5, 6]
for more details. In parallel to the recent developments in research, the investigation
of oscillation property for fractional differential equations has continued and thus
many significant results have lately appeared [7, 8, 9, 10, 11, 12, 13]. On the
other hand, difference equations have shown tremendous applications in numerical
and computational simulations [14, 15]. However, the oscillation of damped or
forced difference equations have comparably gained less attention among researchers
[16, 17, 18, 19]. For fractional difference equations, fairly few papers have recently
published on the oscillation of their solutions [20, 21, 22].

Following this trend in this paper, we consider the following forced and damped
nabla fractional difference equation

(1.1)

(
1− p(n)

)
∇∇α

0 y(n) + p(n)∇α
0 y(n) + q(n)f(y(n)) = g(n), n ∈ N1,

∇−(1−α)
0 y(1) = y(1) = c,

where ∇α
0 y and ∇−α

0 y are the Riemann–Liouville fractional difference and sum
operators of y of order α, respectively, α ∈ (0, 1) is a real number, c is a constant,
N1 = {1, 2, . . .} and

2000 Mathematics Subject Classification. Primary 26A33, 39A10; Secondary 34K11.
Key words and phrases. Oscillation; Forced and damped difference equations; Fractional dif-

ference equations.
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2 JEHAD ALZABUT, THABET ABDELJAWAD, HUSSAM ALRABAIAH

(H) p, g are real sequences from N1 → R, p(n) < 1, q is a positive real sequence

from N1 → R+ and f : R → R such that f(s)
s > 0 for all s ̸= 0.

To the best of their observations, the authors claim that there is no paper in the
literature concerning with the oscillation of solutions of nabla fractional difference
equation involving forcing and damping terms. Therefore, the equation under con-
sideration and the obtained results are essentially new and have their own merits.

Definition 1. A solution x of (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative, otherwise, it is called non–oscillatory.

Throughout this paper, we will make use of the following notations, definitions
and some known results of ∇–fractional operators [23]. For any α, t ∈ R, the α
rising function is defined by

(1.2) tα =
Γ(t+ α)

Γ(t)
, t ∈ R\{. . . ,−2,−1, 0},

with the convention that 0α = 0. Γ is the well known Gamma function satisfying
the property Γ(α+ 1) = αΓ(α).

Definition 2. [23] For α ∈ (0, 1) and ρ(s) = s− 1, we have

I. The nabla operator is defined by ∇y(n) = y(n)− y(n− 1), n ∈ N1.
II. The Riemann–Liouville fractional sum ∇−α

0 of order α is defined by

(1.3) ∇−α
0 y(n) =

1

Γ(α)

n∑
s=1

(n− ρ(s))α−1y(s), n ∈ N1.

III. The Riemann–Liouville fractional difference ∇α
0 of order α is defined by

(1.4) ∇α
0 y(n) = ∇∇−(1−α)

0 y(n), n ∈ N1

and hence

(1.5) ∇α
0 y(n) =

∇
Γ(1− α)

n∑
s=1

(n− ρ(s))−αy(s), n ∈ N1.

Lemma 1. [23] For α ∈ (0, 1) and n ∈ N0, we have

1. The relation

(1.6) ∇−α
1 ∇α

0 y(n) = y(n)− nα−1

Γ(α)
y(1).

2. The power rule is defined by

(1.7) ∇−α
0 nµ =

Γ(µ+ 1)

Γ(µ+ α+ 1)
nα+µ, µ > −1.

Lemma 2. [24] For ε > 0, we have

(1.8) lim
n→∞

Γ(n)nε

Γ(n+ ε)
= 1.
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2. The main results

In this section, we establish the main results of this paper. Indeed, sufficient
conditions are established for the oscillation of the solutions of equation (1.1).

Theorem 1. Let the assumption (H) and the following conditions hold

(2.1) lim inf
n→∞

n∑
s=1

(n− ρ(s))α−1

P (s)

[
M +

s∑
r=n0+1

g(r)P (r)
]
< 0,

and

(2.2) lim sup
n→∞

n∑
s=1

(n− ρ(s))α−1

P (s)

[
M +

s∑
r=n0+1

g(r)P (r)
]
> 0,

where M is a constant and P (n) =
∏n

s=n0

(
1

1−p(s)

)
for n0 ∈ N1. Then every

solution of (1.1) is oscillatory.

Proof. For the sake of contradiction, assume that y(n) is a non–oscillatory solution
of (1.1). Then, the solution y is either y(n) > 0 or y(n) < 0 for n ∈ N1. Let
y(n) > 0, n ∈ N1. From equation (1.1), we obtain(

1− p(n)
)
∇∇α

0 y(n) + p(n)(∇α
0 y)(n) = −q(n)f(y(n)) + g(n) < g(n)

Multiplying both sides of the above inequality by P (n), we get

(2.3) ∇∇α
0 y(n)P (n− 1) +∇α

0 y(n)∇P (n) < g(n)P (n),

where P (n−1) =
(
1−p(n)

)
P (n) and ∇P (n) = p(n)P (n) have been used. However,

the left side of (2.3) can be written in the form

(2.4) ∇
(
∇α

0 y(n)P (n)
)
< g(n)P (n).

Taking the sum of both sides from n0 + 1 to n, we have

∇α
0 y(n)P (n) < ∇α

0 y(n0)P (n0) +
n∑

s=n0+1

g(s)P (s),

or

(2.5) ∇α
0 y(n) <

M

P (n)
+

1

P (n)

n∑
s=n0+1

g(s)P (s),

where M = ∇α
0 y(n0)P (n0). Applying the operator ∇−α

1 on both sides of the above
inequality, we get

(2.6) ∇−α
1 ∇α

0 y(n) < ∇−α
1

[ M

P (n)
+

1

P (n)

n∑
s=n0+1

g(s)P (s)
]
.

In view of (1.3) and (1.6), we observe that

(2.7) ∇−α
1 ∇α

0 y(n) = y(n)− nα−1

Γ(α)
y(1).
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and

∇−α
[ M

P (n)
+

1

P (n)

n∑
s=n0+1

g(s)P (s)
]

=
1

Γ(α)

n∑
s=1

(n− ρ(s))α−1
[ M

P (s)
+

1

P (s)

s∑
r=n0+1

g(r)P (r)
]
.(2.8)

Combining (2.7) and (2.8), the inequality (2.6) becomes

y(n) <
nα−1

Γ(α)
y(1) +

1

Γ(α)

n∑
s=1

(n− ρ(s))α−1

P (s)

[
M +

s∑
r=n0+1

g(r)P (r)
]
.

Multiplying the above inequality by n1−α, we get

n1−αy(n) < n1−αnα−1 y(1)

Γ(α)
+

n1−α

Γ(α)

n∑
s=1

(n− ρ(s))α−1

P (s)

[
M +

s∑
r=n0+1

g(r)P (r)
]
.

However, we note that n1−αnα−1 = nΓ(n+α−1)
nαΓ(n) . By the help of Stirling formula

(1.8), we observe that

lim
n→∞

n1−αnα−1 = lim
n→∞

nΓ(n+ α− 1)

nαΓ(n)

Γ(n+ α)

Γ(n+ α)

= lim
n→∞

nΓ(n+ α− 1)

Γ(n+ α)
= lim

n→∞

nΓ(n+ α− 1)

Γ(n+ α− 1 + 1)

= lim
n→∞

nΓ(n+ α− 1)

(n+ α− 1)Γ(n+ α− 1)
= 1.(2.9)

By virtue of (2.9) and condition (2.1), we conclude that

lim inf
n→∞

n1−αy(n) ≤ −∞,

which contradicts the assumption that y(n) > 0.
In case y(n) < 0, n ∈ N1, nevertheless, we get

∇
(
∇α

0 y(n)P (n)
)
> g(n)P (n)

or

∇α
0 y(n) >

M

P (n)
+

1

P (n)

n∑
s=n0+1

g(s)P (s),

where M = ∇α
0 y(n0)P (n0). Following similar steps, we end up with

n1−αy(n) > n1−αnα−1 y(1)

Γ(α)
+

n1−α

Γ(α)

n∑
s=1

(n− ρ(s))α−1

P (s)

[
M +

s∑
r=n0+1

g(r)P (r)
]
.

The analysis in (2.9) and condition (2.2) implies that lim supn→∞ n1−αy(n) ≥ ∞,
which contradicts the assumption that y(n) < 0. The proof is finished. �

Let z(n) =
∑n

s=1(n − ρ(s))−αy(s) where y(t) is a solution of equation (1.1).
Then, by relations (1.3) and (1.4) we get

(2.10) ∇z(n) = Γ(1− α)∇α
0 y(n).

It is clear that z and y have the same dynamical character. We will use relation
(2.10) to prove the following theorem.
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Theorem 2. Let the assumption (H) and the following conditions hold

(2.11) lim inf
n→∞

n∑
s=1

1

P (s)

[
M +

s∑
r=n0+1

g(r)P (r)
]
= −∞,

and

(2.12) lim sup
n→∞

n∑
s=1

1

P (s)

[
M +

s∑
r=n0+1

g(r)P (r)
]
= ∞,

where M is a constant and P (n) =
∏n

s=n0

(
1

1−p(s)

)
for n0 ∈ N0. Then every

solution of (1.1) is oscillatory.

Proof. For the sake of contradiction, assume that y(n) is a non–oscillatory solution
of (1.1). Then, the solution y is either y(n) > 0 or y(n) < 0 for n ∈ N1. Let
y(n) > 0, n ∈ N1. Following similar steps as in the proof of Theorem 1, we reach
to

∇α
0 y(n) <

M

P (n)
+

1

P (n)

n∑
s=n0+1

g(s)P (s),

It follows from (2.10) that

∇z(n) <
Γ(1− α)

P (n)

[
M +

n∑
s=n0+1

g(s)P (s)
]
.

Taking the sum of both sides from n0 + 1 to n, we have

z(n) < z(n0) + Γ(1− α)

n∑
s=n0+1

1

P (s)

[
M +

s∑
r=n0+1

g(r)P (r)
]
.

In view of condition (2.11), one can easily see that the right hand side of the above
inequality tends to −∞ as n → ∞ which contradicts with the fact that z(n) > 0.

In case y(n) < 0, n ∈ N1, then in the same manner we obtain

z(n) > z(n0) + Γ(1− α)
n∑

s=n0+1

1

P (s)

[
M +

s∑
r=n0+1

g(r)P (r)
]
.

In view of condition (2.12), the right hand side of the above inequality tends to ∞
as n → ∞ which contradicts the fact that z(n) < 0. �

3. Examples

In this section, we present two examples to demonstrate the validity of the results
in Theorem 1 and Theorem 2. By finding a non–oscillatory solution, the first
example shows that the assumptions of Theorem 1 cannot be ignored whereas in
the second example we verify that the assumptions of Theorem 2 are satisfied thus
we conclude that all solutions are oscillatory.
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Example 1. Consider the following forced and damped nabla fractional difference
equation

(3.1)

3

2
∇∇

3
4
0 y(n)−

1

2
∇

3
4
0 y(n) +

3Γ(n)

4Γ(n+ 3
4 )

y(n) =
6− 3Γ( 34 )

8
, n ∈ N1,

∇− 1
4

0 y(1) = y(1) =
3

4
Γ
(3
4

)
,

where α = 3
4 , p(n) = − 1

2 , q(n) =
3Γ(n)

4Γ(n+ 3
4 )
, f(y) = y and g(n) =

6−3Γ( 3
4 )

8 . There-

fore, P (n) =
∏n

s=1

(
2
3

)
= ( 23 )

n. By simple calculations, we get

(3.2)
n∑

s=1

(n− s+ 1)−
1
4

(2
3

)s[
M +

s∑
r=2

6− 3Γ( 34 )

8

(3
2

)r]
> 0.

Inequality (3.2) implies that condition (2.1) of Theorem 1 is not satisfied. On the

other hand, one can easily figure out that y(n) = n
3
4 is a non–oscillatory solution

for equation (3.1).

Example 2. Consider the following forced and damped nabla fractional difference
equation

(3.3)

2

3
∇∇

1
4
0 y(n)−

1

3
∇

1
4
0 y(n) + q(n)f(y(n)) = n2Γ(n), n ∈ N1,

∇− 3
4

0 y(1) = y(1) = c,

where α = 1
4 , p(n) = − 1

3 and g(n) = n2Γ(n). Therefore, P (n) =
∏n

s=1

(
3
4

)
=
(
3
4

)n
.

Furthermore, we get

lim sup
n→∞

n∑
s=1

(4
3

)s[
M +

s∑
r=2

r2Γ(r)
(3
4

)r]
= ∞,

which implies that condition (2.11) of Theorem 2 holds. Therefore, every solution
of (3.3) is oscillatory.

4. A concluding remarks

The oscillation of solutions of fractional differential equations is considered to
be one of the hottest topics among researchers nowdays. For fractional difference
equations, however, the oscillation of solutions is still at its first stages of progress.
We consider here this problem for a general form of equations involving forcing and
damping terms which make the equation under consideration adequately represents
real phenomena. Two main results are established to guarantee the oscillation of
solutions. For numerical treatment, we examined our results by presenting two
examples which show that the proposed assumptions are sufficient.

There are some points that feature the results of this paper and make them inno-
vative. Equation (1.1) is considered in general form which covers many particular
cases. No restriction is imposed on the forced term g in equation (1.1). The results
of this paper can be extended to equation involving delay argument(

1− p(n)
)
∇∇α

0 y(n) + p(n)(∇α
0 y)(n) + q(n)f(y(n− τ)) = g(n), n ∈ N1,

where τ > 0. It is worthy to mention that every solution of the above equation is
also oscillatory under assumption (H). That is, the delay argument has no influence
on the oscillatory behavior. The results of this paper can be also carried out upon
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employing the right fractional difference operator, we recommend the reader to
consult the paper [23] for more details. The above equation with delay argument
is then converted to an equation with advanced argument. Unlike most of the
papers appeared in the literature which studied oscillation property for difference
equations involving delta operator, we consider here an equation involving nabla
operator which is more appropriate upon calculations.
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Abstract

In this paper, we present a novel C2 surface modeling method only based on the values of
the original function. There are two schemes to generate a family of the interpolation surfaces.
Identified uniquely by the values of the tension parameters αi,j and βi,j , each interpolant of
the family is C2 continuous in the whole interpolating region, and which can be represented
by using basis functions clearly. More important, since there are free positive parameters in
the interpolants, the shape of the interpolating surfaces can be modified by selecting suitable
parameters for the unchanged interpolating data. Also, the interpolants are stable for any pos-
itive parameters, and the error estimate formula of the interpolators are derived. Numerical
examples show that the interpolators give a good approximation to the interpolated function
and the shape of the interpolating surfaces can be modified.

Keywords: C2-spline; bivariate rational interpolation; surface modeling; shape control

1 Introduction

In various applications such as industrial design and manufacture, atmospheric analysis, geology
and medical imaging, etc., it is often necessary to generate a smooth surface that interpolates a
prescribed set of data. For most applications, C1 smoothness is generally sufficient. However,
curvature continuity sometimes is needed and this leads to the need for C2 smoothness.

For generating a C1 smooth surface, there are many ways to tackle this problem [3, 9, 10, 16,
22]. But, generating a C2 bivariate interpolation is a more difficult task. In [9], a bicubic spline
interpolation scheme was proposed as a extension of the theory of cubic splines to two dimension,
this type of interpolation scheme has become the standard scheme for rectangular regions, and which
has studied in many literatures [4, 7, 17]. In recent years, some of the literatures have contributed to
the C2 bivariate interpolation also. For example, in [5], Brou and Méhauté proposed a construction
of Cr bivariate rational splines over a triangulation, via a finite element approach; In [6], a novel
surface modeling scheme was presented based on an envelope template, and G2 or C2 composite
surfaces can be obtained utilizing the envelope template sweeping over the data points; In [8], a
rationally corrected quintic Bézier triangular patch scheme of degree 9 over degree 4 and controlled
by 27 Bézier points was used to define a smooth surface through scattered data, and a convex
combination technique was employed to enable C2 continuity conditions on the boundaries of the

∗Corresponding author: sunqh@sdu.edu.cn
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triangle to be satisfied; In [11], a refinable function vector of C2-quartic splines was introduced for
generating approximation quadrilateral subdivisions, and that of C2-quintic splines was constructed
for generating a second order Hermite interpolatory quadrilateral subdivision; In [12], two families
of solutions provided by two Hermite subdivision schemes HD2 and HR2 were investigate, and a
C2 interpolant on any semiregular rectangular mesh was generated with Hermite data of degree 2;
In [18], two C2 shape-preserving bivariate interpolant on rectangular grids were developed by using
polynomial splines; In [20], C1- and C2-continuous spline-interpolation surfaces were constructed
in a regular triangular net with the help of polynomial basic functions; In [21], author proved that
there exists a C3 piecewise polynomial of degree 7 on the twice CT type split of a triangle, which
interpolate arbitrarily given values and derivatives of orders up to 3 at the vertices and on the
edges of the triangle.

Most of above C2 bivariate spline interpolations are in fact polynomial interpolations. However,
one of the disadvantages of the polynomial spline method is that the local shape can not be modi-
fied for the interpolating surfaces while interpolating data is unchanged. Further, generating a C2

bivariate interpolation usually requires up to second-order partial derivative values of the interpo-
lated function, or to solve a system of consistency equations for second-order partial derivatives at
the data sites. Unfortunately, in many practical problems, the partial derivatives are difficult to
get. Thus, in order to generate the C2 surfaces required for CAGD, the following conditions must
be satisfied: (a) the surfaces are constructed based only on function values; (b) the parameters of
constructed surfaces can be modified without changing the given data.

In fact, in recent years, motivated by the univariate rational spline interpolation, the C1 bivari-
ate rational spline, which has a simple and explicit mathematical representation with parameters,
has been studied [1, 13, 14, 15]. Since the parameters in the interpolation function are selective
according to the control constrains, the constrained control of the shape becomes possible.

In this paper, motivated by C2 rational spline curve [2], a C2 piecewise bivariate rational
spline interpolation which can be modified by using new parameters, will be concerned based only
on function values. To solve the problem, a new approach is proposed by using a constructed
interpolation function comprising a simple and explicit mathematical representation with the new
parameters αi,j and βi,j . This paper is arranged as follows. In Section 2, a piecewise bivariate
rational spline interpolation with parameters is constructed over rectangular mesh. Section 3
discusses the C2 continuity of the interpolant. In Section 4, the basis of this interpolator is derived,
and the bounded property is obtained. Sections 5 deals with the error estimates of the interpolator.
Some numerical examples are given in Section 6, which show that this interpolator gives a good
approximation to the interpolated function and the shape of the interpolating surfaces can be
modified by selecting suitable parameters.

2 Construction of bivariate rational spline interpolant

Let Ω : [a, b; c, d] be the plane region, and {(xi, yi, fi,j), i = 1, 2, · · · , n; j = 1, 2, · · · ,m} be a given
set of data points, where a = x1 < x2 < · · · < xn = b and c = y1 < y2 < · · · < ym = d are
the knot spacings, fi,j = f(xi, yj). di,j and ei,j are chosen partial derivative values ∂f(x,y)

∂x
and

∂f(x,y)
∂y

at the knots (xi, yj), respectively. Let hi = xi+1 − xi, and lj = yj+1 − yj, and for any point
(x, y) ∈ [xi, xi+1; yj , yj+1] in the xy-plane, let θ = (x− xi)/hi and η = (y − yj)/lj . Denoting

∆
(x)
i,j =

fi+1,j − fi,j

hi

, ∆
(y)
i,j =

fi,j+1 − fi,j

lj
.

First, for each y = yj, j = 1, 2, · · · ,m, construct the x-direction interpolating curve, this is given
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by

P ∗
i,j(x) =

p∗i,j(x)

q∗i,j(x)
, i = 1, 2, · · · , n− 1, (1)

where

p∗i,j(x) = (1 − θ)3fi,j + θ(1 − θ)2V ∗
i,j(x) + θ2(1 − θ)W ∗

i,j(x) + θ3fi+1,j,

q∗i,j(x) = (1 − θ)2 + θ(1 − θ)αi,j + θ2,

with

V ∗
i,j(x) = (αi,j + 1)fi,j + hidi,j + θ(1 − (1 − θ)αi,j)(fi+1,j − fi,j − hidi,j),

W ∗
i,j(x) = (αi,j + 1)fi+1,j − hidi+1,j − (1 − θ)(1 − θαi,j)(fi+1,j − fi,j − hidi+1,j),

and αi,j > 0. This interpolation P ∗
i,j(x) defined by (1) is called the rational quintic interpolator

which satisfies

P ∗
i,j(xi) = fi,j, P

∗
i,j(xi+1) = fi+1,j, P

∗
i,j

′(xi) = di,j , P
∗
i,j

′(xi+1) = di+1,j .

Further, when αi,j → +∞, the interpolant is the well-known standard cubic Hermite interpolation.
That is to say, in this special case, the interpolant P ∗

i,j(x) defined by (1) will give approximately
the Hermite interpolation.

If the partial derivative values di,j at the data sites are estimated using the arithmetic mean
method:

di,j =
hi−1∆

(x)
i,j + hi∆

(x)
i−1,j

hi−1 + hi

, i = 2, 3, · · · , n− 1, (2)

then the interpolation function P ∗
i,j(x) defined by (1) is C2 continuous in [a, b], and which satisfies

P ′′(xi) =
2

hi−1 + hi
(∆

(x)
i,j − ∆

(x)
i−1,j), i = 2, 3, · · · , n− 1.

Remark 1. At the end knots x1, xn, the derivative values are given as

d1,j = ∆
(x)
1,j −

h1

h1 + h2
(∆

(x)
2,j − ∆

(x)
1,j ),

dn,j = ∆
(x)
n−1,j +

hn−1

hn−1 + hn−2
(∆

(x)
n−1,j − ∆

(x)
n−2,j),

(3)

For each pair of (i, j), i = 1, 2, · · · , n − 1 and j = 1, 2, · · · ,m− 1, using the x-direction interpo-
lation P ∗

i,j(x), define the interpolation function Pi,j(x, y) on [xi, xi+1; yj , yj+1] as follows:

Pi,j(x, y) =
pi,j(x, y)

qi,j(y)
, i = 1, 2, · · · , n− 1; j = 1, 2, · · · ,m− 1, (4)

where

pi,j(x, y) = (1 − η)3P ∗
i,j(x) + η(1 − η)2Vi,j + η2(1 − η)Wi,j + η3P ∗

i,j+1(x),

qi,j(y) = (1 − η)2 + η(1 − η)βi,j + η2,
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with

Vi,j = (βi,j + 1)P ∗
i,j(x) + ljφi,j(x) + ϕi,j(x, y),

Wi,j = (βi,j + 1)P ∗
i,j+1(x) − ljφi,j+1(x) + ψi,j(x, y),

and

φi,s(x) = (1 − θ)3(1 + 4θ + 9θ2)ei,s + θ3(6 − 8θ + 3θ2)ei+1,s, s = j, j + 1,

ϕi,j(x, y) = (η − η(1 − η)(βi,j + 1))(P ∗
i,j+1(x) − P ∗

i,j(x) − ljφi,j(x)),

ψi,j(x, y) = (1 − η − η(1 − η)(βi,j + 1))(P ∗
i,j(x) − P ∗

i,j+1(x) + ljφi,j+1(x)),

and βi,j > 0. The interpolation function Pi,j(x, y) defined by (4) is called a bivariate piecewise
rational interpolator, which satisfies

Pi,j(xr, ys) = f(xr, ys),
∂Pi,j(xr, ys)

∂x
= dr,s,

∂Pi,j(xr, ys)

∂y
= er,s, r = i, i+ 1, s = j, j + 1.

The interpolating scheme above begins in x-direction first. Now, let the interpolation begins
with y-direction first. For each x = xi, i = 1, 2, · · · , n, denote the y-direction interpolation in
[yj, yj+1] by

Q∗
i,j(y) =

(1 − η)3fi,j + η(1 − η)2V
∗
i,j(y) + η2(1 − η)W

∗
i,j(y) + η3fi,j+1

(1 − η)2 + η(1 − η)βi,j + η2
, j = 1, 2, · · · ,m− 1, (5)

where

V
∗
i,j(y) = (βi,j + 1)fi,j + ljei,j + η(1 − (1 − η)βi,j)(fi,j+1 − fi,j − ljei,j),

W
∗
i,j(y) = (βi,j + 1)fi,j+1 − ljdi,j+1 − (1 − η)(1 − ηβi,j)(fi,j+1 − fi,j − ljei,j+1),

with βi,j > 0. This interpolant Q∗
i,j(y) defined by (5) is C1-continuous in [c, d], and which satisfies

Q∗
i,j(yj) = fi,j, Q

∗
i,j(yj+1) = fi,j+1, Q

∗
i,j

′(yj) = ei,j, Q
∗
i,j

′(yj+1) = ei,j+1.

If the partial derivative values ei,j at the data sites are estimated using the arithmetic mean
method:

ei,j =
lj−1∆

(y)
i,j + lj∆

(y)
i,j−1

lj−1 + lj
, j = 2, 3, · · · ,m− 1,

ei,1 = ∆
(y)
i,1 −

l1
l1 + l2

(∆
(y)
i,2 − ∆

(y)
i,1 ),

ei,m = ∆
(y)
i,m−1 +

lm−1

lm−1 + lm−2
(∆

(y)
i,m−1 − ∆

(y)
i,m−2),

(6)

then the interpolation function Q∗
i,j(y) defined by (5) is C2-continuous in [c, d], and which satisfies

Q′′(yj) =
2

lj−1 + lj
(∆

(y)
i,j − ∆

(y)
i,j−1), j = 2, 3, · · · ,m− 1.

For each pair (i, j), i = 1, 2, · · · , n − 1 and j = 1, 2, · · · ,m − 1, using the y-direction interpo-
lation function Q∗

i,j(y), define the bivariate rational Hermite interpolating function Qi,j(x, y) on
[xi, xi+1; yj , yj+1] as follows:

Qi,j(x, y) =
(1 − θ)3Q∗

i,j(y) + θ(1 − θ)2V i,j + θ2(1 − θ)W i,j + θ3Q∗
i+1,j(y)

(1 − θ)2 + θ(1 − θ)αi,j + θ2
, (7)
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where

V i,j = (αi,j + 1)Q∗
i,j(y) + hiφi,j(y) + ϕi,j(x, y),

W i,j = (αi,j + 1)Q∗
i+1,j(y) − hiφi+1,j(y) + ψi,j(x, y),

with

φi,s(y) = (1 − η)3(1 + 4η + 9η2)dr,j + η3(6 − 8η + 3η2)dr,j+1, r = i, i+ 1,

ϕi,j(x, y) = (θ − θ(1 − θ)(αi,j + 1))(Q∗
i+1,j(y) −Q∗

i,j(y) − hiφi,j(y)),

ψi,j(x, y) = (1 − θ − θ(1 − θ)(αi,j + 1))(Q∗
i,j(y) −Q∗

i+1,j(y) + hiφi+1,j(y)),

and αi,j > 0. The interpolation function Qi,j(x, y) defined by (7) satisfies

Qi,j(xr, ys) = f(xr, ys),
∂Qi,j(xr, ys)

∂x
= dr,s,

∂Qi,j(xr, ys)

∂y
= er,s, r = i, i+ 1, s = j, j + 1.

The interpolating functions Pi,j(x, y) defined by (4) and Qi,j(x, y) defined by (7) satisfy the
same interpolating data, but they are not the same interpolation functions. In the following, unless
pointed out specifically, the bivariate rational interpolation based on function values means they
are defined by (4).

3 C2 continuity of the interpolant

For the C2 continuity of the interpolation function Pi,j(x, y) defined by (4), we have the following
theorem.

Theorem 1. If the knots are equally spaced for variable x, namely, hi = (b − a)/n, a sufficient
condition for the interpolation function Pi,j(x, y), i = 1, 2, · · · , n − 1; j = 1, 2, · · · ,m − 1, to be
C2 in the whole interpolating region [x1, xn; y1, ym] is that the parameters βi,j =constant for each
j ∈ {1, 2, · · · ,m− 1} and all i = 1, 2, · · · , n− 1, no matter what the parameters αi,j might be.

Proof. When the conditions of the theorem are satisfied, we can easily obtain that the interpolation
function Pi,j(x, y) is C1 continuous in the interpolating region [x1, xn; y1, ym] (see [13]).

Furthermore, since the rational interpolation function P ∗
i,j(x) defined by (1) is C2 continuous in

[x1, xn], it is easy to show that the bivariate interpolation function Pi,j(x, y) has continuous second-

order partial derivatives
∂P 2

i,j
(x,y)

∂x2 ,
∂P 2

i,j
(x,y)

∂x∂y
and

∂P 2

i,j
(x,y)

∂y2 in the interpolating region [x1, xn; y1, ym]

except
∂P 2

i,j
(x,y)

∂x2 for every y ∈ [yj, yj+1], j = 1, 2, · · · ,m− 1, at the points (xi, y), i = 2, 3, · · · , n− 1,

and
∂P 2

i,j
(x,y)

∂y2 for every x ∈ [xi, xi+1], i = 1, 2, · · · , n − 1, at the points (x, yj), j = 2, 3, · · · ,m −

1. Thus, it is sufficient for Pi,j(x, y) ∈ C2 in the whole interpolating region [x1, xn; y1, ym] if
∂P 2

i,j
(x+

i
,y)

∂x2 =
∂P 2

i,j
(x−

i
,y)

∂x2 and
∂P 2

i,j
(x,y+

j
)

∂y2 =
∂P 2

i,j
(x,y−

j
)

∂y2 hold.

From (4), it can be derived

∂P 2
i,j(x, y)

∂x2
=

1

qi,j(y)
[(1 − η)3(1 + η + 2η2 + η(1 + 2η)βi,j)

d2P ∗
i,j(x)

dx2

+η3(4 − 5η + 2η2 + (3 − 5η + 2η2)βi,j)
d2P ∗

i,j+1(x)

dx2

+ljη(1 − η)3(1 + η + ηβi,j)
d2φi,j(x)

dx2

−ljη
3(1 − η)(2 − η + (1 − η)βi,j)

d2φi,j+1(x)

dx2
].

(8)
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Since

d2φi,s(x
+
i )

dx2
= 0,

d2φi,s(x
−
i+1)

dx2
= 0, s = j, j + 1,

and the interpolation function P ∗
i,j(x) is C2 continuous, it is easy to see from (8) that

∂P 2

i,j
(x,y)

∂x2 is
continuous at the points (xi, y), i = 2, 3, · · · , n− 1 for every y ∈ [yj, yj+1], j = 1, 2, · · · ,m− 1, when

βi−1,j = βi,j and hi−1 = hi. The proof of the case which
∂P 2

i,j
(x,y)

∂y2 is continuous at the points (x, yj)
is similar. This completes the proof. 2

Similarly, for the interpolation function Qi,j(x, y) defined by (7), the following theorem can be
derived.

Theorem 2. If the knots are equally spaced for variable y, namely, lj = (b − a)/m, a sufficient
condition for the interpolating function Qi,j(x, y), i = 1, 2, · · · , n − 1; j = 1, 2, · · · ,m − 1, to be
C2 in the whole interpolating region [x1, xn; y1, ym] is that the parameters αi,j =constant for each
i ∈ {1, 2, · · · , n− 1} and all j = 1, 2, · · · ,m− 1, no matter what the parameters βi,j might be.

4 Basis of the interpolant

From (1) and (4), the interpolation function Pi,j(x, y) can be written as follows:

Pi,j(x, y) =
i+1
∑

r=i

j+1
∑

s=j

[ar,s(θ, η)fr,s + br,s(θ, η)hidr,s + cr,s(θ, η)ljer,s], (9)

where

ai,j(θ, η) =
(1 − θ)2(1 − η)3(1 + θ(1 + θ − 2θ2)αi,j)(1 + η + 2η2 + η(1 + 2η)βi,j)

((1 − θ)2 + θ(1 − θ)αi,j + θ2)((1 − η)2 + η(1 − η)βi,j + η2)
,

ai,j+1(θ, η) =
(1 − θ)2η3(1 + θ(1 + θ − 2θ2)αi,j+1)(4 − 5η + 2η2 + (3 − 5η + 2η2)βi,j)

((1 − θ)2 + θ(1 − θ)αi,j+1 + θ2)((1 − η)2 + η(1 − η)βi,j + η2)
,

ai+1,j(θ, η) =
θ2(1 − η)3(1 + θ(3 − 5θ + 2θ2)αi,j)(1 + η + 2η2 + η(1 + 2η)βi,j)

((1 − θ)2 + θ(1 − θ)αi,j + θ2)((1 − η)2 + η(1 − η)βi,j + η2)
,

ai+1,j+1(θ, η) =
θ2η3(1 + θ(3 − 5θ + 2θ2)αi,j+1)(4 − 5η + 2η2 + (3 − 5η + 2η2)βi,j)

((1 − θ)2 + θ(1 − θ)αi,j+1 + θ2)((1 − η)2 + η(1 − η)βi,j + η2)
,

bi,j(θ, η) =
θ(1 − θ)3(1 − η)3(1 + θαi,j)(1 + η + 2η2 + η(1 + 2η)βi,j)

((1 − θ)2 + θ(1 − θ)αi,j + θ2)((1 − η)2 + η(1 − η)βi,j + η2)
,

bi,j+1(θ, η) =
θ(1 − θ)3η3(1 + θαi,j+1)(4 − 5η + 2η2 + (3 − 5η + 2η2)βi,j)

((1 − θ)2 + θ(1 − θ)αi,j+1 + θ2)((1 − η)2 + η(1 − η)βi,j + η2)
,

bi+1,j(θ, η) = −
θ3(1 − θ)(1 − η)3(1 + (1 − θ)αi,j)(1 + η + 2η2 + η(1 + 2η)βi,j)

((1 − θ)2 + θ(1 − θ)αi,j + θ2)((1 − η)2 + η(1 − η)βi,j + η2)
,

bi+1,j+1(θ, η) = −
θ3(1 − θ)η3(1 + (1 − θ)αi,j+1)(4 − 5η + 2η2 + (3 − 5η + 2η2)βi,j)

((1 − θ)2 + θ(1 − θ)αi,j+1 + θ2)((1 − η)2 + η(1 − η)βi,j + η2)
,

ci,j(θ, η) =
(1 − θ)3η(1 − η)3(1 + 4θ + 9θ2)(1 + η + ηβi,j)

(1 − η)2 + η(1 − η)βi,j + η2
,

ci,j+1(θ, η) = −
(1 − θ)3η3(1 − η)(1 + 4θ + 9θ2)(2 − η + (1 − η)βi,j)

(1 − η)2 + η(1 − η)βi,j + η2
,
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ci+1,j(θ, η) =
θ3η(1 − η)3(6 − 8θ + 3θ2)(1 + η + ηβi,j)

(1 − η)2 + η(1 − η)βi,j + η2
,

ci+1,j+1(θ, η) = −
θ3η3(1 − η)(6 − 8θ + 3θ2)(2 − η + (1 − η)βi,j)

(1 − η)2 + η(1 − η)βi,j + η2
.

The teams ar,s(θ, η), br,s(θ, η), cr,s(θ, η), r = i, i+1, s = j, j+1 are called the basis of the interpolant
defined by (4), which satisfy

ai,j(θ, η) + ai,j+1(θ, η) + ai+1,j(θ, η) + ai+1,j+1s(θ, η) = 1,

bi,j(θ, η) + bi,j+1(θ, η) − bi+1,j(θ, η) − bi+1,j+1s(θ, η) = θ(1 − θ),

ci,j(θ, η) − ci,j+1(θ, η) + ci+1,j(θ, η) − ci+1,j+1s(θ, η)

=
η(1 − η)(1 − η + η2 + η(1 − η)βi,j)(1 + θ − 10θ3 + 15θ4 − 6θ5)

(1 − η)2 + η(1 − η)βi,j + η2
.

(10)

Denote

M = max{|fr,s|, r = i, i+ 1; s = j, j + 1},

Q1 = max{hi|dr,s|, r = i, i + 1; s = j, j + 1},

Q2 = max{lj |er,s|, r = i, i+ 1; s = j, j + 1}.

For the given data, the values of the piecewise bivariate interpolation function Pi,j(x, y) defined
by (4) are bounded in the interpolating interval as described by the following theorem.

Theorem 3. Let Pi,j(x, y) is the interpolation function over [xi, xi+1; yj , yj+1] defined by (4). No
matter what positive number the parameters αi,s (s = j, j + 1) and βi,j take, the values of Pi,j(x, y)
in [xi, xi+1; yj, yj+1] satisfy

|Pi,j(x, y)| ≤M +
1

4
Q1 + 0.430029Q2 .

Proof. From (9) and (10), it is easy to derive that

|Pi,j(x, y)| ≤M
i+1
∑

r=i

j+1
∑

s=j

|ar,s(θ, η)| +Q1

i+1
∑

r=i

j+1
∑

s=j

|br,s(θ, η)| +Q2

i+1
∑

r=i

j+1
∑

s=j

|cr,s(θ, η)|

≤M + θ(1 − θ)Q1 +Q2

i+1
∑

r=i

j+1
∑

s=j

|cr,s(θ, η)| ≤M +
1

4
Q1 +Q2

i+1
∑

r=i

j+1
∑

s=j

|cr,s(θ, η)|.

Since

i+1
∑

r=i

j+1
∑

s=j

|cr,s(θ, η)| =
η(1 − η)(1 − η + η2 + η(1 − η)βi,j)(1 + θ − 10θ3 + 15θ4 − 6θ5)

(1 − η)2 + η(1 − η)βi,j + η2

≤ (1 + θ − 10θ3 + 15θ4 − 6θ5)
η(1 − η)(1 − η + η2)

1 − 2η + 2η2
,

and

max
θ∈[0,1]

(1 + θ − 10θ3 + 15θ4 − 6θ5) = 1.14675,

max
η∈[0,1]

η(1 − η)(1 − η + η2)

1 − 2η + 2η2
=

3

8
,

thus, the proof is completed. 2
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5 Error estimates of the interpolant

Note that the interpolant defined by (4) is local, without loss of generality, it is only necessary
to consider the interpolating region [xi, xi+1; yj , yj+1] in order to process its error estimates. Let
f(x, y) ∈ C2 be the interpolated function, and Pi,j(x, y) be the interpolation function defined by
(4) over [xi, xi+1; yj , yj+1].

Denoting

‖
∂f

∂y
‖ = max

(x,y)∈D
|
∂f(x, y)

∂y
|, ‖

∂P

∂y
‖ = max

(x,y)∈D
|
∂Pi,j(x, y)

∂y
|,

where D = [xi, xi+1; yj , yj+1]. By the Taylor expansion and the Peano-Kernel Theorem [19] gives
the following:

|f(x, y) − Pi,j(x, y)| ≤ |f(x, y) − f(x, yj)| + |Pi,j(x, yj) − Pi,j(x, y)| + |f(x, yj) − Pi,j(x, yj)|

≤ lj(‖
∂f

∂y
‖ + ‖

∂P

∂y
‖) + |

∫ xi+1

xi

∂2f(τ, yj)

∂x2
Rx[(x− τ)+]dτ |

≤ lj(‖
∂f

∂y
‖ + ‖

∂P

∂y
‖) + ‖

∂2f(x, yj)

∂x2
‖

∫ xi+1

xi

|Rx[(x− τ)+]|dτ,

(11)

where ‖
∂2f(x,yj)

∂x2 ‖ = maxx∈[xi,xi+1] |
∂2f(x,yj)

∂x2 |, and

Rx[(x− τ)+] =

{

(x− τ) − ai+1,j(θ, 0)(xi+1 − τ) − bi+1,j(θ, 0)hi, xi < τ < x;

−ai+1,j(θ, 0)(xi+1 − τ) − bi+1,j(θ, 0)hi, x < τ < xi+1,

=

{

r(τ), xi < τ < x;

s(τ), x < τ < xi+1.

Thus, by simple integral calculation, it can be derived that

∫ xi+1

xi

|Rx[(x− τ)+]|dτ == h2
iB(θ, αi,j), (12)

where

B(θ, αi,j) =
θ2(1 − θ)2(1 + 2θ(1 − θ)αi,j)

2

(1 + θ(3 − 5θ + 2θ2)αi,j)(1 + θ(1 + θ − 2θ2)αi,j)
. (13)

For the fixed αi,j, let

B
(x)
i,j = max

θ∈[0,1]
B(θ, αi,j). (14)

This leads to the following theorem.

Theorem 4. Let f(x, y) ∈ C2 be the interpolated function, and Pi,j(x, y) be its interpolator defined
by (4) in [xi, xi+1; yj , yj+1]. Whatever the positive values of the parameters αi,s, βr,j might be, the
error of the interpolation satisfies

|f(x, y) − Pi,j(x, y)| ≤ lj(‖
∂f

∂y
‖ + ‖

∂P

∂y
‖) + h2

i ‖
∂2f(x, yj)

∂x2
‖B

(x)
i,j ,

where B
(x)
i,j defined by (14).
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Similarly, denoting ‖
∂2f(x,yj+1)

∂x2 ‖ = maxx∈[xi,xi+1] |
∂2f(x,yj+1)

∂x2 |, then the following theorem holds.

Theorem 5. Let f(x, y) ∈ C2 be the interpolated function, and Pi,j(x, y) be its interpolation
function defined by (4) in [xi, xi+1; yj, yj+1]. Whatever the positive values of the parameters αi,s, βr,j

might be, the error of the interpolation satisfies

|f(x, y) − Pi,j(x, y)| ≤ lj(‖
∂f

∂y
‖ + ‖

∂P

∂y
‖) + h2

i ‖
∂2f(x, yj+1)

∂x2
‖B

(x)
i,j+1,

where B
(x)
i,j+1 = maxθ∈[0,1]B(θ, αi,j+1), and B(θ, αi,j) defined by (13).

Furthermore, for B
(x)
i,s , we can conclude the following theorem.

Theorem 6. For any positive parameters αi,s, s = j, j + 1, B
(x)
i,s are bounded, and

1

16
≤ B

(x)
i,s ≤

3

16
.

6 Numerical examples

For the bivariate rational spline interpolant defined by (4) , since there are three shape parameters
in the interpolation function, when the parameters vary, the interpolation function can be changed
for the unchanged interpolating data. Thus, the shape of the interpolating surface can be modified
by selecting suitable shape parameters according to the control need. Also, the interpolator can
give a good approximation to the interpolated function. In this section, in order to show the
effectiveness which the interpolator defined by (4) approximate a function, and to describe that the
shape of the interpolating surface can be modified by free shape parameters, some examples will
be given.

Example 1. Let the interpolated function be f(x, y) = sin(x2 + y), (x, y) ∈ [0, 0.8; 0, 0.8], and let
hi = lj = 0.2, then xi = 0.2(i−1), yj = 0.2(j−1), i, j = 1, 2, 3, 4, 5. Also let αi,j = 0.3+0.2i+0.1j,
βi,j = 0.6 + 0.1j. The partial derivative values di,j at the knots (xi, yj) (i, j = 1, 2, 3, 4, 5) are
conducted by using (2) and (3). The partial derivative values ei,j at the knots (xi, yj) (i, j =
1, 2, 3, 4, 5) are given by (6).

Figure 1 shows the graph of the interpolated function f(x, y). Figure 2 shows the graph of the
interpolation function P (x, y) defined by (4). Figure 3 shows the surface of the error f(x, y) −
P (x, y). From Figure 3, it is evident that the error of the interpolation is smaller than ±8× 10−3,
this means the interpolator defined by (4) gives a good approximation to the interpolated function.

Example 2. Let Ω : [0, 1.5; 0, 1.5] be the plane region, and the interpolation data are given in Table
1. The interpolation function Pi,j(x, y) defined by (4) can be constructed in [0, 1.5; 0, 1.5] for the
given positive parameters αi,j, αi,j+1 and βi,j. In order to show that the shape of the interpolating
surface can be modified by selecting suitable parameters according to control need, we consider
the value control of the interpolating surface. Assume αi,j = αi,j+1 and βi,j =constant for each
j ∈ {1, 2, 3} and all i = 1, 2, 3, then the interpolant Pi,j(x, y) defined by (4) is C2 in interpolating
region [0, 1.5; 0, 1.5]. Without loss of generality, we only consider a subinterval [0.5, 1; 0.5, 1].

Let αi,j = 0.5, βi,j = 0.8. The partial derivative values di,j and ei,j at the knots (xi, yj)
are conducted by using (2) and (6), respectively. For the given interpolation data, denote the
interpolation function by P1(x, y) which is defined over [0.5, 1; 0.5, 1]. Figure 4 shows the graph of
the bivariate rational interpolating surface P1(x, y) with the parameters αi,j = 0.5, βi,j = 0.8. It is
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Figure 1: Graph of surface f(x, y).
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Figure 2: Graph of surface P (x, y).
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Figure 3: Graph of surface f(x, y) − P (x, y).
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Figure 4: Graph of surface P1(x, y) with αi,j =
0.5, βi,j = 0.8.

easy to compute that P1(0.875, 0.875) = 2.84818. If the practical design requires P (0.875, 0.875) =
2.8, then αi,j = 5 and βi,j = 11.2921 can be obtained. Denote the interpolation by P2(x, y). Figure
5 shows the graph of the surface P2(x, y) with the parameters αi,j = 5, βi,j = 11.2921, and in this
case P2(0.875, 0.875) = 2.8.

Furthermore, if the practical design requires P (0.875, 0.875) = 2.86, then αi,j = 0.112391 and
βi,j = 0.2 can be derived. Denote the interpolation by P3(x, y). Figure 6 shows the graph of the
surface P3(x, y) with the parameters αi,j = 0.112391, βi,j = 0.2, and in this case P3(0.875, 0.875) =
2.86.

Remark 2. Each interpolant of the family of the C2 bivariate rational spline interpolation defined
by (4) is identified uniquely by the values of the shape parameters αi,j and βi,j . For different shape

Table 1: Set of the interpolating data.
(xi, yj) (0,0) (0,0.5) (0,1) (0,1.5) (0.5,0) (0.5,0.5) (0.5,1) (0.5,1.5)

fi,j 3 3 2 4 3 4 2 3

(xi, yj) (1,0) (1,0.5) (1,1) (1,1.5) (1.5,0) (1.5,0.5) (1.5,1) (1.5,1.5)

fi,j 4 2 3 2 3 3 2 4
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Figure 5: Graph of surface P2(x, y) with αi,j =
5, βi,j = 11.2921.
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Figure 6: Graph of surface P3(x, y) with αi,j =
0.112391, βi,j = 0.2.

parameters, from Figures 4 to 6, we can catch sight of some minor changes of the surfaces in shape.
It means that the shape modification of interpolating surface can be achieved by selecting suitable
shape parameters according to needs of practical design.

7 Concluding remarks

Generally speaking, generating a C2 bivariate interpolation is a very difficult task, it requires up
to second-order partial derivatives values of the interpolated function. Usual NURBS method is
the most popular technology in modern surface modeling, however, preset weights are needed to
generate a C2 rational surface, the given points play the role of the control points.

This paper develops a new interpolating approach for construction of C2 bivariate rational
spline interpolants only based on the values of a function. There are two schemes to generate this
type of interpolation function, one is interpolating from the x-direction first, another is from the
y-direction first. In the interpolant beginning from the x-direction first, there are three positive
shape parameters: αi,j, αi,j+1 and βi,j ; In the interpolant beginning from the y-direction first, there
are also three positive shape parameters: βi,j, βi+1,j and αi,j. Generally, when the interpolating
data are given, because of the uniqueness of the interpolation function, the shape of interpolating
surface is fixed. However, note that there are some free shape parameters in (4) and (7), the
shape of the interpolating surfaces can be modified by selecting suitable shape parameters for the
unchanged interpolating data according to the control need, and numerical examples illustrate this
case. It means that the uniqueness of the interpolating surfaces for the given interpolating data
becomes that of for the given interpolating data and the shape parameters.

For each pitch of the interpolating surface, the value of the interpolation function depends on
the interpolating data. Theorem 3 shows that the values of the interpolant is bounded in whole
interpolating region, it means that the interpolant is stable for the positive shape parameters.
Also, numerical example shows that the interpolator can give a good approximation to the original
function.
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Abstract

In this paper, we investigate Brunn-Minkowski type inequalities for width-
integrals of index i related to the Blaschke Minkowski homomorphism. Some
inequalities similar to Lutwak’s inequality are established.
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1 Introduction and Main Results

Let Kn be the set of convex bodies, which is a compact, convex subsets with
nonempty interiors in Euclidean space Rn. Sn−1 denotes the unit sphere in Rn.
We denote by V (K) the n-dimensional volume of a body K. For the standard
unit ball B in Rn, we denote its volume by ωn = V (B).

The support function, hK = h(K, ·) : Rn → (−∞,∞), of a convex body
K ∈ Kn is defined by (see [5, 14])

h(K, x) = max{x · y : y ∈ K}, x ∈ Rn,

where x · y denotes the standard inner product of x and y.

1
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The study of width-integral has a long history, and has received considerable
attention. It was first considered by Blaschke [2], and a book by Hadwiger [6]
detailed this problem. In 1975, width-integral was extended to width-integrals
of index i by Lutwak in the reference [10]. For the more results associated with
width-integrals of index i, we refer the interested reader to [8, 11-13].

Define by Bi(K), i ∈ R, the width-integrals of index i of K ∈ Kn (see [10])

Bi(K) =
1
n

∫
Sn−1

b̄(K, u)n−idS(u), (1.1)

where dS(u) and b̄(K, u) denote the (n−1)-dimensional volume element on Sn−1

and the half width, b̄(K, u) = 1
2 (h(K, u) + h(K,−u)), of K in the direction u,

respectively. If we take i = 0 in (1.1), Bi(K) is just width-integral B(K).
The map, Bi : Kn → R, is continuous, positive, invariant under motion

and homogeneous of degree n − i. If there exists a constant λ > 0 such that
b̄(K, u) = λb̄(L, u) for all u ∈ Sn−1, then we call K and L with similar width.

Lutwak [10] showed that if K, L ∈ Kn, then for u ∈ Sn−1

b̄(K + L, u) = b̄(K, u) + b̄(L, u). (1.2)

From the above formula (1.2), Lutwak [10] established the following Brunn-
Minkowski inequality for width-integrals of index i.
Theorem 1.A If K, L ∈ Kn and i ≤ n− 1, then

Bi(K + L)
1

n−i ≤ Bi(K)
1

n−i + Bi(L)
1

n−i ,

with equality if and only if K and L have similar width.
The main results of the present paper are the following:
We first establish a Brunn-Minkowski type inequality for width-integrals of

index i similar to Theorem 1.A.
Theorem 1.1 If K, L ∈ Kn, then for i ≤ n− 1

Bi(Φ(K+̂L))
1

n−i ≤ Bi(ΦK)
1

n−i + Bi(ΦL)
1

n−i , (1.3)

with equality if and only if ΦK and ΦL are homothetic.
Here K+̂L is the Blaschke sum of K, L ∈ Kn (see (2.7)) and Φ denotes

Blaschke Minkowski homomorphism (see Section 2.2). In fact, the more general
result than Theorem 1.1 will be obtained at the beginning of Section 3.

Moreover, we get the following Brunn-Minkowski type inequality of width-
integrals of index i based on the Blaschke Minkowski homomorphism.

2
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Theorem 1.2 If K1,K2, · · · ,Kn−2, L1, L2 ∈ Kn, and let C = (K1,K2, · · · ,Kn−2),
then for i ≤ n− 1

Bi(Φ(C,L1 + L2))
1

n−i ≤ Bi(Φ(C,L1))
1

n−i + Bi(Φ(C,L2))
1

n−i ; (1.4)

for i > n

Bi(Φ(C,L1 + L2))
1

n−i ≥ Bi(Φ(C,L1))
1

n−i + Bi(Φ(C,L2))
1

n−i , (1.5)

with equality in every inequality if and only if Φ(C,L1) and Φ(C,L2) are homo-
thetic.

Here, we should note that Φ denotes mixed Blaschke-Minkowski homomor-
phism (see Section 2.2 for precise definition), and L1 +L2 is the Minkowski sum
of L1, L2 ∈ Kn (see (2.5)).

Finally, we show the following result which is the more general form of the
Brunn-Minkowski type inequality of width-integrals of index i.
Theorem 1.3 If K1,K2, · · · ,Kn−2,K, L ∈ Kn, let C = (K1,K2, · · · ,Kn−2)
and i, j ∈ R, then for i ≤ n− 1 ≤ j ≤ n and i 6= j

(
Bi(Φ(C, (K +−1 L)∗))
Bj(Φ(C, (K +−1 L)∗))

) 1
j−i

≤
(

Bi(Φ(C,K∗))
Bj(Φ(C,K∗))

) 1
j−i

+
(

Bi(Φ(C,L∗))
Bj(Φ(C,L∗))

) 1
j−i

;

(1.6)
for n− 1 ≤ i ≤ n ≤ j and i 6= j

(
Bi(Φ(C, (K +−1 L)∗))
Bj(Φ(C, (K +−1 L)∗))

) 1
j−i

≥
(

Bi(Φ(C,K∗))
Bj(Φ(C,K∗))

) 1
j−i

+
(

Bi(Φ(C,L∗))
Bj(Φ(C,L∗))

) 1
j−i

,

(1.7)
with equality in every inequality if and only if Φ(C,K∗) and Φ(C,L∗) are ho-
mothetic.

Here K +−1 L denotes the harmonic radial sum of K, L ∈ Sn (see (2.4)) and
K∗ denotes the polar of K (see (2.2)).

2 Preliminaries

2.1 Radial function and polar of convex bodies
For a compact star-shaped set K in Rn, let ρK = ρ(K, ·) : Rn \{0} → [0,∞)

denote the radial function of K (see[5, 14]), that is

ρ(K, u) = max{λ ≥ 0 : λ · u ∈ K}, u ∈ Sn−1. (2.1)

3
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If ρK is positive and continuous, then K is said to be a star body, and Sn

denotes the set of star bodies in Euclidean space Rn.
For K ∈ Kn, its polar body is defined by (see[5, 14])

K∗ = {x ∈ Rn : x · y ≤ 1, y ∈ K}. (2.2)

Obviously, it follows from (2.2) that (K∗)∗ = K and

hK∗ = ρ−1
K , ρK∗ = h−1

K . (2.3)

For λ, µ ≥ 0 (not both zero), define by λ ? K +−1 µ ? L the harmonic radial
combination of K, L ∈ Sn (see [4]). Namely,

ρ−1(λ ? K +−1 µ ? L, ·) = λρ−1(K, ·) + µρ−1(L, ·). (2.4)

For λ, µ ≥ 0 (not both zero), define by λ · K + µ · L the Minkowski linear
combination of K, L ∈ Kn (see [5, 14]), Namely,

h(λ ·K + µ · L, ·) = λh(K, ·) + µh(L, ·). (2.5)

Combining (2.3), (2.4) with (2.5), we obtain that for K, L ∈ Kn and λ, µ ≥ 0
(not both zero)

(λ ? K +−1 µ ? L)∗ = λ ·K∗ + µ · L∗. (2.6)

2.2 Blaschke Minkowski homomorphism
For λ, µ ≥ 0 (not both zero), define by λ ◦K+̂µ ◦ L the Blaschke addition

of K, L ∈ Kn such that (see [5, 14])

S(λ ◦K+̂µ ◦ L, ·) = λS(K, ·) + µS(L, ·), (2.7)

where S(K, ·) denotes the surface area measure of K.
Schuster [15] introduced the definition of Blaschke Minkowski homomor-

phism as follows: A map Φ : Kn → Kn is called Blaschke Minkowski homomor-
phism if it satisfies the following conditions

(a) Φ is continuous.
(b) Φ is Blaschke Minkowski additive, i.e., for all K, L ∈ Kn

Φ(K+̂L) = ΦK + ΦL. (2.8)

4
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(c) Φ intertwines rotation, i.e., for all K ∈ Kn and ϑ ∈ SO(n)

Φ(ϑK) = ϑΦK.

Here SO(n) is the group of rotation in n dimensions.
The following result is a direct extension for the Blaschke Minkowski homo-

morphism which is said to be the mixed Blaschke Minkowski homomorphism.
Theorem 2.A([15]) There is a continuous operator

Φ : Kn × · · · × Kn︸ ︷︷ ︸
n−1

→ Kn,

symmetric in its arguments such that for K1, · · · ,Km ∈ Kn and λ1, · · · , λm ≥ 0,

Φ(λ1K1 + · · ·+ λmKm) =
∑

i1,··· ,in−1

λi1 · · ·λin−1Φ(Ki1 , · · · ,Kin−1),

where the operator Φ : Kn × · · · × Kn︸ ︷︷ ︸
n−1

→ Kn is called mixed Blaschke Minkowski

homomorphism.
Further, the author of [15] established the following properties for the mixed

Blaschke Minkowski homomorphism.
(i) Φ : Kn × · · · × Kn → Kn is continuous and symmetric with respect to

origin.
(ii) If K, L, K1,K2, · · · ,Kn−2 ∈ Kn, λ, µ ≥ 0, and let C = (K1,K2, · · · ,Kn−2),

then
Φ(C, λ ·K + µ · L) = λΦ(C,K) + µΦ(C,L). (2.9)

3 The Proofs of Main Results

Here, we first establish Theorem 3.1 which is the more general version of
Theorem 1.1. Next, we will prove Theorems 1.2 and 1.3.
Theorem 3.1 If K, L ∈ Kn and i, j ∈ R, then for i ≤ n− 1 ≤ j ≤ n and i 6= j

(
Bi(Φ(K+̂L))
Bj(Φ(K+̂L))

) 1
j−i

≤
(

Bi(ΦK)
Bj(ΦK)

) 1
j−i

+
(

Bi(ΦL)
Bj(ΦL)

) 1
j−i

; (3.1)

for n− 1 ≤ i ≤ n ≤ j and i 6= j

(
Bi(Φ(K+̂L))
Bj(Φ(K+̂L))

) 1
j−i

≥
(

Bi(ΦK)
Bj(ΦK)

) 1
j−i

+
(

Bi(ΦL)
Bj(ΦL)

) 1
j−i

, (3.2)

5
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with equality in every inequality if and only if ΦK and ΦL are homothetic.
The proof of Theorem 3.1 requires the following lemmas.

Lemma 3.1([10]) If K is a convex body in Rn, then

B2n(K) ≤ V (K∗), (3.3)

with equality if and only if K is origin-symmetric.
Beckenbach-Dresher inequality [3] is an extension of Beckenbach’s inequality

[1] which is proved by Dresher through the method of moment-space techniques.
Lemma 3.2(The Beckenbach-Dresher inequality) If p ≥ 1 ≥ r ≥ 0, p 6= r,
f, g ≥ 0, and φ is a distribution function, then

(∫
E(f + g)pdφ∫
E(f + g)rdφ

) 1
p−r

≤
(∫

E fpdφ∫
E frdφ

) 1
p−r

+
(∫

E gpdφ∫
E grdφ

) 1
p−r

, (3.4)

with equality if and only if the functions f and g are positively proportional.
Here E is a bounded measurable subset in Rn.

The inverse Beckenbach-Dresher inequality was established in [9].
Lemma 3.3(The inverse Beckenbach-Dresher inequality) If 1 ≥ p ≥ 0 ≥ r,
p 6= r, f, g ≥ 0, and φ is a distribution function, then

(∫
E(f + g)pdφ∫
E(f + g)rdφ

) 1
p−r

≥
(∫

E fpdφ∫
E frdφ

) 1
p−r

+
(∫

E gpdφ∫
E grdφ

) 1
p−r

, (3.5)

with equality if and only if the functions f and g are positively proportional.
Proof of Theorem 3.1. According to (1.1) and (2.8), we obtain that for

p ≥ 1 ≥ r ≥ 0

Bn−p(Φ(K+̂L)) =
1
n

∫
Sn−1

b̄(Φ(K+̂L), u)pdS(u)

=
1
n

∫
Sn−1

(b(ΦK, u) + b(ΦL, u))pdS(u). (3.6)

Similarly,

Bn−r(Φ(K+̂L)) =
1
n

∫
Sn−1

(b̄(ΦK, u) + b̄(ΦL, u))rdS(u). (3.7)

6
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From Lemma 3.2, (3.6) and (3.7), this implies

(
Bn−p(Φ(K+̂L))
Bn−r(Φ(K+̂L))

) 1
p−r

=
(∫

Sn−1(b̄(ΦK, u) + b̄(ΦL, u))pdS(u)∫
Sn−1(b̄(ΦK, u) + b̄(ΦL, u))rdS(u)

) 1
p−r

≤
(∫

Sn−1 b̄(ΦK, u)pdS(u)∫
Sn−1 b̄(ΦK, u)rdS(u)

) 1
p−r

+
(∫

Sn−1 b̄(ΦL, u)pdS(u)∫
Sn−1 b̄(ΦL, u)rdS(u)

) 1
p−r

=
(

Bn−p(ΦK)
Bn−r(ΦK)

) 1
p−r

+
(

Bn−p(ΦL)
Bn−r(ΦL)

) 1
p−r

. (3.8)

Let p = n − i and r = n − j. By 0 ≤ r ≤ 1 ≤ p and p 6= r, we obtain that
i ≤ n − 1 ≤ j ≤ n and i 6= j. Suppose p = n − i and r = n − j in (3.8), this
gives inequality (3.1). Similar to the above method, it follows from Lemma 3.3
that inequality (3.2).

The equality conditions of Lemmas 3.2 and 3.3 imply that equality holds in
inequalities (3.1) and (3.2) if and only if b̄(ΦK, u) and b̄(ΦL, u) are positively
proportional, namely, ΦK and ΦL have similar width. Since ΦK and ΦL are
origin-symmetric, we have ΦK and ΦL are homothetic. Therefore, equality
holds in every inequality if and only if ΦK and ΦL are homothetic.�

If j = n in (3.1), then Bn(K) = 1
n

∫
Sn−1 dS(u) = ωn is a constant. thus we

get Theorem 1.1.
Let i = 2n and j = n in (3.2). Note that ΦK, ΦL and Φ(K+̂L) are origin-

symmetric. Thus Lemma 3.1 implies that inequality (3.2) has the following
result.
Corollary 3.1 If K, L ∈ Kn, then

V (Φ∗(K+̂L))−
1
n ≥ V (Φ∗K)−

1
n + V (Φ∗L)−

1
n ,

with equality if and only if ΦK and ΦL are homothetic.
Proof of Theorem 1.2. We first prove inequality (1.4). From (1.1), (1.2), (2.9)

and the Minkowski’s integral inequality (see [7]), we obtain that for i ≤ n− 1

Bi(Φ(C,L1+L2))
1

n−i =
(

1
n

∫
Sn−1

b̄(Φ(C,L1 + L2), u)n−idS(u)
) 1

n−i

7
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=
(

1
n

∫
Sn−1

(b̄(Φ(C,L1), u) + b̄(Φ(C,L2), u))n−idS(u)
) 1

n−i

≤
(

1
n

∫
Sn−1

b̄(Φ(C,L1), u)n−idS(u)
) 1

n−i

+
(

1
n

∫
Sn−1

b̄(Φ(C,L2), u)n−idS(u)
) 1

n−i

= Bi(Φ(C,L1))
1

n−i + Bi(Φ(C,L2))
1

n−i .

This implies inequality (1.4). Similarly, it follows from the inverse Minkowski’s
integral inequality that inequality (1.5).

From the equality condition of Minkowski’s integrals inequalities, it follows
that equality holds in inequalities (1.4) and (1.5) if and only if Φ(C,L1) and
Φ(C,L2) have similar width. Since Φ(C,L1) and Φ(C,L2) are origin-symmetric,
we obtain that equality holds in every inequality if and only if Φ(C,L1) and
Φ(C,L2) are homothetic.�

If i = 0 in (1.4), then inequality (1.4) implies the following result.
Corollary 3.2 If K1,K2, · · · ,Kn−2, L1, L2 ∈ Kn, and let C = (K1,K2, · · · ,Kn−2),
then

B(Φ(C,L1 + L2))
1
n ≤ B(Φ(C,L1))

1
n + B(Φ(C,L2))

1
n ,

with equality if and only if Φ(C,L1) and Φ(C,L2) are homothetic.
If we let i = 2n in (1.5), and note that Φ(C,L1), Φ(C,L2) and Φ(C,L1 +L2)

are origin-symmetric, then Lemma 3.1 implies that inequality (1.5) has the
following result.
Corollary 3.3 If K1,K2, · · · ,Kn−2, L1, L2 ∈ Kn, and let C = (K1,K2, · · · ,Kn−2),
then

V (Φ∗(C,L1 + L2))−
1
n ≥ V (Φ∗(C,L1))−

1
n + V (Φ∗(C,L2))−

1
n ,

with equality if and only if Φ(C,L1) and Φ(C,L2) are homothetic.
Proof of Theorem 1.3. Combining (1.1) with (2.6), we obtain that for p ≥

1 ≥ r ≥ 0
Bn−p(Φ(C, (K +−1 L)∗))

=
1
n

∫
Sn−1

b̄(Φ(C, (K +−1 L)∗), u)pdS(u)

=
1
n

∫
Sn−1

b̄(Φ(C,K∗ + L∗), u)pdS(u)

8
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=
1
n

∫
Sn−1

(b̄(Φ(C,K∗), u) + b̄(Φ(C,L∗), u))pdS(u). (3.9)

Similarly,
Bn−r(Φ(C, (K +−1 L)∗))

=
1
n

∫
Sn−1

(b̄(Φ(C,K∗), u) + b̄(Φ(C,L∗), u))rdS(u). (3.10)

By Lemma 3.2, (3.9) and (3.10), it follows that

(
Bn−p(Φ(C, (K +−1 L)∗))
Bn−r(Φ(C, (K +−1 L)∗))

) 1
p−r

=
(∫

Sn−1(b̄(Φ(C,K∗), u) + b̄(Φ(C,L∗), u))pdS(u)∫
Sn−1(b̄(Φ(C,K∗), u) + b̄(Φ(C,L∗), u))rdS(u)

) 1
p−r

≤
(∫

Sn−1 b̄(Φ(C,K∗), u)pdS(u)∫
Sn−1 b̄(Φ(C,K∗), u)rdS(u)

) 1
p−r

+
(∫

Sn−1 b̄(Φ(C,L∗), u)pdS(u)∫
Sn−1 b̄(Φ(C,L∗), u)rdS(u)

) 1
p−r

=
(

Bn−p(Φ(C,K∗))
Bn−r(Φ(C,K∗))

) 1
p−r

+
(

Bn−p(Φ(C,L∗))
Bn−r(Φ(C,L∗))

) 1
p−r

. (3.11)

If p = n− i and r = n− j in (3.11), then 0 ≤ r ≤ 1 ≤ p and p 6= r ⇒ i ≤ n−1 ≤
j ≤ n and i 6= j.

This implies that inequality (1.6) is given. Similar to the above method,
Lemma 3.3 implies that inequality (1.7) holds.

The equality conditions of Lemmas 3.2 and 3.3 see that with equality in
inequalities (1.6) and (1.7) if and only if b̄(Φ(C,K∗), u) and b̄(Φ(C,L∗), u) are
positively proportional. Since Φ(C,K∗) and Φ(C,L∗) are origin-symmetric,
Φ(C,K∗) and Φ(C,L∗) are homothetic. Therefore, equality holds in every in-
equality if and only if Φ(C,K∗) and Φ(C,L∗) are homothetic. �

Analogue to the proofs of Theorem 1.1 and Corollary 3.1, Theorem 1.3 has
the following facts.
Corollary 3.4 If K1,K2, · · · ,Kn−2,K, L ∈ Kn, and let C = (K1,K2, · · · ,Kn−2),
then for i ≤ n− 1

Bi(Φ(C, (K +−1 L)∗))
1

n−i ≤ Bi(Φ(C,K∗))
1

n−i + Bi(Φ(C,L∗))
1

n−i ,

with equality if and only if Φ(C,K∗) and Φ(C,L∗) are homothetic.
Corollary 3.5 If K1,K2, · · · ,Kn−2,K, L ∈ Kn, and let C = (K1,K2, · · · ,Kn−2),

9
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then

V (Φ∗(C, (K +−1 L)∗))−
1
n ≥ V (Φ∗(C,K∗))−

1
n + V (Φ∗(C,L∗))−

1
n ,

with equality if and only if Φ(C,K∗) and Φ(C,L∗) are homothetic.

4 Conclusions

We first establish some Brunn-Minkowski type inequalities of width-integrals
of index i which are related to the Blaschke Minkowski homomorphism. Then
together with the Blaschke Minkowski homomorphism, we use the Beckenbach-
Dresher inequalities to give more general Brunn-Minkowski type inequalities
of width-integrals of index i, in which some inequalities similar to Lutwak’s
inequality are established.
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On fuzzy mighty filters in BE-algebras
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Abstract. In this paper, we study several degrees in defining a fuzzy mighty filter, which is a generalization of a

fuzzy filter in BE-algebras.

1. Introduction

In [6], H. S. Kim and Y. H. Kim introduced the notion of a BE-algebra. S. S. Ahn and K. S.

So [3, 4] introduced the notion of ideals in BE-algebras. S. S. Ahn et al. [2] fuzzified the concept

of BE-algebras, and investigated some of their properties. H. R. Lee and S. S. Ahn [7] defined

the notions of a mighty filter and an n-fold mighty filter, and considered some related properties

of them.

In this paper, we study several degrees in defining a fuzzy mighty filter, which is a generalization

of a fuzzy filter in BE-algebras.

2. Prelimiaries

We recall some definitions and results discussed in [3, 6].

An algebra (X; ∗, 1) of type (2, 0) is called a BE-algebra if

(BE1) x ∗ x = 1 for all x ∈ X,

(BE2) x ∗ 1 = 1 for all x ∈ X,

(BE3) 1 ∗ x = x for all x ∈ X,

(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X (exchange).

We introduce a relation “≤” on a BE-algebra X by x ≤ y if and only if x ∗ y = 1. A non-empty

subset S of a BE-algebra X is said to be a subalgebra of X if it is closed under the operation

“ ∗ ”. Noticing that x ∗ x = 1 for all x ∈ X, it is clear that 1 ∈ S. A BE-algebra (X; ∗, 1) is said
to be self distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X.
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0Keywords: BE-algebra; enlarged (mighty) filter; fuzzy enlarged (mighty) filter with degree (λ, κ).
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Let X be a BE-algebra and n denote a positive integer. For any elements x, y ∈ X, let xn ∗ y
denote x ∗ (· · · (x ∗ (x ∗ y)) · · · ), in which x occurs n times, and x0 ∗ y = y.

Definition 2.1. Let (X; ∗, 1) be a BE-algebra and let F be a non-empty subset of X. Then F

is called a filter ([6]) of X if

(F1) 1 ∈ F ,

(F2) x ∗ y ∈ F and x ∈ F imply y ∈ F

for all x, y ∈ X. A non-empty subset F of a BE-algebra X is called a mighty filter ([7]) of X if

it satisfies (F1) and

(F3) x ∗ (y ∗ z) ∈ F and x ∈ F imply ((z ∗ y) ∗ y) ∗ z ∈ F

for all x, y, z ∈ X. A non-empty subset F of a BE-algebra X is called an n-fold mighty filter

([7]) of X if it satisfies (F1) and

(F4) x ∗ (y ∗ z) ∈ F and x ∈ F imply ((zn ∗ y) ∗ y) ∗ z ∈ F

for all x, y, z ∈ X.

Note that every mighty filter of a BE-algebra X is a filter of X.

Proposition 2.2. Let (X; ∗, 1) be a BE-algebra and let F be a filter of X. If x ≤ y and x ∈ F

for any y ∈ X, then y ∈ F .

Proposition 2.3 Let (X; ∗, 1) be a self distributive BE-algebra. Then the following hold, for

any x, y, z ∈ X:

(i) if x ≤ y, then z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z,
(ii) y ∗ z ≤ (z ∗ x) ∗ (y ∗ x),
(iii) y ∗ z ≤ (x ∗ y) ∗ (x ∗ z).

A BE-algebra (X; ∗, 1) is said to be transitive if it satisfies Proposition 2.3 (iii). If a BE-algebra

X is transitive, then y ≤ z imply x ∗ y ≤ x ∗ z and z ∗ x ≤ y ∗ x for all x, y, z ∈ X.

Definition 2.4. ([5]) A fuzzy subset µ of a BE-algebra X is called a fuzzy filter of X if it satisfies

for all x, y ∈ X

(d1) µ(1) ≥ µ(x),

(d2) µ(x) ≥ min{µ(y ∗ x), µ(y)}.

Proposition 2.5. Every fuzzy filter of a BE-algebra X satisfies the following assertions:

(i) (∀x, y ∈ X)(y ≤ x⇒ µ(y) ≤ µ(x)),

(ii) (∀x, y, z ∈ X)(x ≤ y ∗ z ⇒ µ(z) ≥ min{µ(y), µ(x)}).

Definition 2.6. ([5]) Let F be a non-empty subset of a BE-algebra X which is not necessary a

filter of X. One says that a subset G of X is an enlarged filter of X related to F if it satisfies:

(1) F is a subset of G,
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(2) 1 ∈ G,

(3) (∀x, y ∈ X)(∀x ∈ F )(x ∗ y ∈ F ⇒ y ∈ G).

Definition 2.7. ([5]) A fuzzy subset µ of a BE-algebra X is called a fuzzy filter of X with degree

(λ, κ) if it satisfies:

(e1) (∀x ∈ X)(µ(1) ≥ λµ(x)),

(e2) (∀x, y ∈ X)(µ(x) ≥ κmin{µ(y ∗ x), µ(y)}).

Proposition 2.8. ([5]) Every fuzzy filter of a BE-algebra X with degree (λ, κ) satisfies the

following assertions:

(i) (∀x, y ∈ X)(µ(x ∗ y) ≥ λκµ(y)),

(ii) (∀x, y ∈ X)(y ≤ x⇒ µ(x) ≥ λκµ(y)),

(iii) (∀x, y, z ∈ X)(x ≤ y ∗ z ⇒ µ(z) ≥ min{κµ(y), λκ2µ(x)}.

3. Fuzzy mighty filters of BE-algebras

In what follows, let X denote a BE-algebra unless specified otherwise.

Definition 3.1. A fuzzy subset µ of a BE-algebra X is called a fuzzy mighty filter of X if it

satisfies (d1) and

(d3) µ(((x ∗ y) ∗ y) ∗ x) ≥ min{µ(z ∗ (y ∗ x)), µ(z)},
for all x, y, z ∈ X.

Example 3.2. Let X := {1, a, b, c, d, 0} be a BE-algebra ([7]) with the following table:

∗ 1 a b c d 0

1 1 a b c d 0

a 1 1 b c b c

b 1 a 1 b a d

c 1 a 1 1 a a

d 1 1 1 b 1 b

0 1 1 1 1 1 1

Define a fuzzy subset µ : X → [0, 1] by

µ =

(
1 a b c d 0

0.7 0.4 0.7 0.7 0.4 0.4

)
Then µ is a fuzzy mighty filter of X.

Proposition 3.3. Every fuzzy mighty filter of a BE-algebra X is a fuzzy filter of X.

Proof. Let y := 1 in (d3). Then µ(x) = µ(((x ∗ 1) ∗ 1) ∗ x) ≥ min{µ(z ∗ (1 ∗ x)), µ(z)} =

min{µ(z ∗ x), µ(z)}. Hence (d2) holds. □
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The converse of Proposition 3.3 may not be true in general (see Example 3.4).

Example 3.4. Let X := {1, a, b, c, d} be a BE-algebra ([6]) with the following table:

∗ 1 a b c d

1 1 a b c d

a 1 1 b c d

b 1 a 1 c c

c 1 1 b 1 b

d 1 1 1 1 1

Define a fuzzy subset ν : X → [0, 1] by

ν =

(
1 a b c d

0.7 0.3 0.3 0.3 0.3

)
Then ν is a fuzzy filter of X, but not a fuzzy mighty filter of X, since µ(((a ∗ c) ∗ c) ∗ a) = µ(a) =

0.3 ≱ 0.7 = µ(1) = min{µ(1 ∗ (c ∗ a)), µ(1)}.

Theorem 3.5. A fuzzy filter µ of a BE-algebra X is mighty if and only if it satisfies the following

inequality:

(3.1) µ(((x ∗ y) ∗ y) ∗ x) ≥ µ(y ∗ x) for all x, y ∈ X.

Proof. Suppose that a fuzzy filter µ of a BE-algebra X is mighty. Putting z := 1 in (d3), we

have µ(((x ∗ y) ∗ y) ∗ x) ≥ min{µ(1 ∗ (y ∗ x)), µ(1)} = µ(y ∗ x) for all x, y ∈ X.

Conversely, assume that µ is a fuzzy filter of X satisfying (3.1). It follows from (d2) and (3.1)

that µ(((x ∗ y) ∗ y) ∗ x) ≥ µ(y ∗ x) ≥ min{µ(z ∗ (y ∗ x)), µ(z)}. Hence µ is mighty. □

Theorem 3.6. Let µ, ν be fuzzy filters of a transitive BE-algebra X such that µ ⊆ ν and

µ(1) = ν(1). If µ is mighty, then so is ν.

Proof. Let x, y ∈ X. Since µ is a fuzzy mighty filter of a BE-algebra X, by (3.1) and µ ⊆ ν

we have µ(1) = µ(y ∗ ((y ∗ x) ∗ x)) ≤ µ(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ ((y ∗ x) ∗ x)) ≤ ν(((((y ∗ x) ∗
x) ∗ y) ∗ y) ∗ ((y ∗ x) ∗ x)). Since µ(1) = ν(1), we get ν((y ∗ x) ∗ ((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x)) =
ν(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ ((y ∗ x) ∗ x)) = ν(1). It follows from (d1) and (d2) that

ν(y ∗ x) =min{ν(1), ν(y ∗ x)}
=min{ν((y ∗ x) ∗ (((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x)), ν(y ∗ x)}
≤ ν(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x).

(3.2)
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Since X is transitive, we get

[((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x]∗[((x ∗ y) ∗ y) ∗ x]
≥ ((x ∗ y) ∗ y) ∗ ((((y ∗ x) ∗ x) ∗ y) ∗ y)
≥ (((y ∗ x) ∗ x) ∗ y) ∗ (x ∗ y)
≥ x ∗ ((y ∗ x) ∗ x)
= (y ∗ x) ∗ (x ∗ x)
= (y ∗ x) ∗ 1 = 1.

It follows from Proposition 2.5 that min{ν(((((y∗x)∗x)∗y)∗y)∗x), ν(1)} = ν(((((y∗x)∗x)∗y)∗y)∗
x) ≤ ν(((x∗y)∗y)∗x). Using (3.2), we have ν(y∗x) ≤ ν(((((y∗x)∗x)∗y)∗y)∗x) ≤ ν(((x∗y)∗y)∗x).
Therefore ν(y ∗ x) ≤ ν(((x ∗ y) ∗ y) ∗ x). By Theorem 3.5, ν is a fuzzy mighty filter of X.

Proposition 3.7. Let µ be a fuzzy mighty filter of a BE-algebra. Then Xµ := {x ∈ X|µ(x) =
µ(1)} is a mighty filter.

Proof. Clearly, 1 ∈ Xµ. Let x ∗ (y ∗ z), x ∈ Xµ. Then µ(x ∗ (y ∗ z)) = µ(1) and µ(x) = µ(1).

It follows from (d3) that µ(1) = min{µ(x ∗ (y ∗ z)), µ(x)} ≤ µ((((z ∗ y) ∗ y) ∗ z). By (d1),

µ((((z ∗ y) ∗ y) ∗ z) = µ(1). Hence ((z ∗ y) ∗ y) ∗ z ∈ Xµ, Therefore Xµ is a mighty filter of X. □

Definition 3.8. A fuzzy subset µ of a BE-algebra X is called a fuzzy n-fold mighty filter of X

if it satisfies (d1) and

(d4) µ(((xn ∗ y) ∗ y) ∗ x) ≥ min{µ(z ∗ (y ∗ x)), µ(z)},
for all x, y, z ∈ X.

Putting n := 1 in (d4), every fuzzy 1-fold mighty filter of a BE-algebra X is a fuzzy mighty

filter of X.

Theorem 3.9. A fuzzy filter µ of a BE-algebra X is a fuzzy n-fold mighty if and only if it

satisfies the following inequality

(3.3) µ(((xn ∗ y) ∗ y) ∗ x) ≥ µ(y ∗ x) for all x, y ∈ X.

Proof. Suppose that a fuzzy filter µ is a fuzzy n-fold mighty. Letting z := 1 in (d4), we have

µ(((xn ∗ y) ∗ y) ∗ x) ≥ min{µ(1 ∗ (y ∗ x)), µ(1)} = µ(y ∗ x) for all x, y ∈ X.

Conversely, assume that µ is a fuzzy filter of X satisfying (3.3). It follows from (d2) and (3.3)

that µ(((xn ∗ y) ∗ y) ∗ x) ≥ µ(y ∗ x) ≥ min{µ(z ∗ (y ∗ x)), µ(z)}. Hence µ is a fuzzy n-fold mighty

filter of X. □

Theorem 3.10. Let µ and ν be fuzzy filters of a transitive BE-algebra X with µ ⊆ ν and

µ(1) = ν(1). If µ is a fuzzy n-fold mighty filter of X, then so is ν.
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Proof. Let x, y ∈ X. Setting w := (y ∗ x) ∗ x, we have y ∗w = y ∗ ((y ∗ x) ∗ x) = (y ∗ x) ∗ (y ∗ x) =
1. Since µ is a fuzzy n-fold mighty filter of a BE-algebra X, by (3.3) and µ ⊆ ν we have

µ(1) = µ(y ∗ w)) ≤ µ(((wn ∗ y) ∗ y) ∗ w) ≤ ν(((wn ∗ y) ∗ y) ∗ w). Since µ(1) = ν(1), we get

ν(((wn ∗ y) ∗ y) ∗ w) = ν(1). It follows from (d1) and (d2) that

ν(y ∗ x) =min{ν(1), ν(y ∗ x)}
=min{ν(((wn ∗ y) ∗ y) ∗ w), ν(y ∗ x)}
=min{ν(((wn ∗ y) ∗ y) ∗ ((y ∗ x) ∗ x)), ν(y ∗ x)}
=min{ν((y ∗ x) ∗ (((wn ∗ y) ∗ y) ∗ ∗x)), ν(y ∗ x)}
≤ ν(((wn ∗ y) ∗ y) ∗ x).

(3.4)

Since y ≤ w, we have wn ∗ y ≤ xn ∗ y, and so ((wn ∗ y) ∗ y) ∗ x ≤ ((xn ∗ y) ∗ y) ∗ x. Using (3.4)

and Proposition 2.5(i), we have ν(y ∗ x) ≤ ν((wn ∗ y) ∗ y) ∗ x) ≤ ν(((xn ∗ y) ∗ y) ∗ x). Therefore
ν(y ∗ x) ≤ ν(((xn ∗ y) ∗ y) ∗ x). By Theorem 3.9, ν is a fuzzy n-fold mighty filter of X. □

4. Fuzzy mighty filters of BE-algebras with degrees in the interval (0, 1]

.

Definition 4.1. Let F be a non-empty subset of a BE-algebra X, which is not necessary a

mighty filter of X. One says that a subset G of X is an enlarged mighty filter of X related to F

if it satisfies:

(1) F is a subset of G,

(2) 1 ∈ G,

(3) (∀x, y ∈ X)(∀z ∈ F )(z ∗ (y ∗ x) ∈ F ⇒ ((x ∗ y) ∗ y) ∗ x ∈ G).

Obviously, every mighty filter is an enlarged mighty filter of X related to itself. Note that

there exists an enlarged mighty filter of X related to any non-empty subset F of X.

Example 4.2. Consider a BE-algebra X = {1, a, b, c, d} as in Example 3.4. Then F := {1}
is not a mighty filter of X, since 1 ∗ (c ∗ a) = 1 ∈ F and ((a ∗ c) ∗ c) ∗ a = a /∈ F . But

G := {1, a, b, c} is an enlarged mighty filter of X related to F and G is not a mighty filter of X,

since c ∗ (1 ∗ d) = b ∈ G, c ∈ G and ((d ∗ 1) ∗ 1) ∗ d = d /∈ G.

Proposition 4.3. Let F be a non-empty subset of a BE-algebra X. Every enlarged mighty

filter of X related to F is an enlarged filter of X related to F.

Proof. Let G be an enlarged mighty filter of X related to F . Putting y := 1 in Definition 4.1 (3),

we have for all x ∈ X, all z ∈ F z ∗ (1 ∗ x) = z ∗ x ∈ F imply ((x ∗ 1) ∗ 1) ∗ x = x ∈ G. Hence G

is an enlarged filter of X related to F . □

The converse of Proposition 4.3 is not true in general as seen in the following example.
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Example 4.4. Consider a BE-algebra X = {1, a, b, c, d} as in Example 3.4. Let H := {1, b}.
Then H is an enlarged filter of X related to F := {1}, but it is not an enlarged mighty filter of

X related to F since 1 ∗ (c ∗ a) = 1 ∈ F and ((a ∗ c) ∗ c) ∗ a = a /∈ H.

In what follows let λ and κ be members of (0, 1], and let n and k denote a natural number and

a real number, respectively, such that k < n unless otherwise specified.

Definition 4.5. A fuzzy subset µ of a BE-algebra X is called a fuzzy mighty filter of X with

degree (λ, κ) if it satisfies (e1) and

(e3) (∀x, y, z ∈ X)(µ(((x ∗ y) ∗ y) ∗ x) ≥ κmin{µ(z ∗ (y ∗ x)), µ(z)}).

Example 4.6. Consider a BE-algebra X = {1, a, b, c, d, 0} which is given in Example 3.2. Define

a fuzzy subset ν : X → [0, 1] by

ν =

(
1 a b c d 0

0.6 0.4 0.7 0.7 0.4 0.4

)
Then ν is a fuzzy filter of X with degree (3

5
, 2
5
), but it not a fuzzy mighty filter of X, since

µ(1) = 0.6 ≱ µ(b) = 0.7.

Note that a fuzzy mighty filter with degree (λ, κ) is a fuzzy mighty filter if and only if (λ, κ) =

(1, 1).

Proposition 4.7. If µ is a fuzzy mighty filter of a BE-algebra X with degree (λ, κ), then µ is a

fuzzy filter of X with degree (λ, κ).

Proof. Putting y := 1 in (e3), we have

µ(x) = µ(((x ∗ 1) ∗ 1) ∗ x) ≥κmin{µ(z ∗ (1 ∗ x)), µ(z)}
=κmin{µ(z ∗ x), µ(z)}

for any x, y ∈ X. Thus µ is a fuzzy filter of X with degree (λ, κ). □

The converse of Proposition 4.7 is not true in general (see Example 4.8).

Example 4.8. Consider a BE-algebra X = {1, a, b, c, d} which is given in Example 3.4. Define

a fuzzy subset ν : X → [0, 1] by

ν =

(
1 a b c d

0.6 0.4 0.7 0.4 0.4

)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1425 Sun Shin Ahn et al 1419-1430



Sun Shin Ahn and Jeong Soon Han

Then ν is a fuzzy filter of X with degree (4
5
, 4
5
), but it is not a fuzzy mighty filter of X with

degree (4
5
, 4
5
), since

ν(((a ∗ c) ∗ c) ∗ a) = ν(a) = 0.4 ≱ 0.48 =
4

5
× 0.6

=
4

5
× ν(1)

=
4

5
×min{ν(1 ∗ (c ∗ a)) = ν(1), ν(1)}.

Proposition 4.9. Let µ be a fuzzy mighty filter of a BE-algebra X with degree (λ, κ). Then

the following holds:

(∀x, y ∈ X)(µ(((x ∗ y) ∗ y) ∗ x) ≥ κλµ(y ∗ x)).

Proof. Assume that µ is a fuzzy mighty filter of a BE-algebra X with degree (λ, κ) and let

x, y ∈ X. Let z := 1 in (e3). Then we have

µ(((x ∗ y) ∗ y) ∗ x) ≥κmin{µ(1 ∗ (y ∗ x)), µ(1)}
≥κmin{µ(y ∗ x), λµ(y ∗ x)}
=κλµ(y ∗ x).

This completes the proof. □
Proposition 4.10. Let µ be a fuzzy filter of a BE-algebra X with degree (λ, κ) satisfying

(∀x, y ∈ X)(µ(((x ∗ y) ∗ y) ∗ x) ≥ µ(y ∗ x)).

Then µ is a fuzzy mighty filter of X with degree (λ, κ).

Proof. Let x, y, z ∈ X. Using (e2), we have

µ(((x ∗ y) ∗ y) ∗ x) ≥µ(y ∗ x)
≥κmin{µ(z ∗ (y ∗ x)), µ(z)}.

Thus µ is a fuzzy mighty filter of a BE-algebra X with degree (λ, κ). □
Corollary 4.11. Let µ be a fuzzy filter of X. Then µ is a fuzzy mighty filter of X if and only if

(∀x, y ∈ X)(µ(((x ∗ y) ∗ y) ∗ x) ≥ µ(y ∗ x)).

Proof. It follows from Proposition 4.9 and Proposition 4.10. □
Definition 4.12. A fuzzy subset µ of a BE-algebra X is called a fuzzy n-fold mighty filter of X

with degree (λ, κ) if it satisfies (e1) and

(e4) (∀x, y, z ∈ X)(µ(((xn ∗ y) ∗ y) ∗ x) ≥ κmin{µ(z ∗ (y ∗ x)), µ(z)}).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1426 Sun Shin Ahn et al 1419-1430



On fuzzy mighty filters in BE-algebras

A fuzzy subset µ of a BE-algebra X is called a fuzzy weak n-fold mighty filter of X with degree

(λ, κ) if it satisfies (e1) and

(e5) (∀x, y, z ∈ X)(µ((x ∗ y) ∗ y) ≥ κmin{µ(z ∗ ((yn ∗ x) ∗ x)), µ(z)}).

Putting y := 1 and x := y in (e4), and using (BE1), (BE2) and (BE3), we know that every

fuzzy n-fold mighty filter with degree (λ, κ) is a fuzzy mighty filter of X with degree (λ, κ).

Setting x := y in (e5) and using (BE1), (BE2) and (BE3), we know that every fuzzy weak n-fold

mighty filter with degree (λ, κ) is a fuzzy mighty filter of X with degree (λ, κ). Hence every fuzzy

(weak) n-fold mighty filter of X with degree (λ, κ) is a fuzzy filter of X with degree (λ, κ).

Example 4.13. Let X := {1, a, b, c, d, 0} be a BE-algebra ([6]) with the following table:

∗ 1 a b c d 0

1 1 a b c d 0

a 1 1 a c c d

b 1 1 1 c c c

c 1 a b 1 a b

d 1 1 a 1 1 a

0 1 1 1 1 1 1

Define a fuzzy subset µ : X → [0, 1] by

µ =

(
1 a b c d 0

0.6 0.7 0.3 0.3 0.3 0.3

)
Then µ is a fuzzy n(≥ 2)-fold mighty filter of X with degree (5

7
, 4
7
), but it is not a fuzzy mighty

filter of X with degree (5
7
, 4
7
), since µ(((b ∗ c) ∗ c) ∗ b) = µ(b) = 0.3 ≱ 0.399 = 4

7
× 0.7 = µ(a) =

min{µ(a ∗ (c ∗ b)), µ(a)}.

Proposition 4.14. Let µ be a fuzzy n-fold mighty filter of a BE-algebra X with degree (λ, κ).

Then the following holds:

(∀x, y ∈ X)(µ(((xn ∗ y) ∗ y) ∗ x) ≥ κλµ(y ∗ x)).

Proof. Assume that µ is a fuzzy n-fold mighty filter of a BE-algebra X with degree (λ, κ) and

let x, y ∈ X. Let z := 1 in (e4). Then we have

µ(((xn ∗ y) ∗ y) ∗ x) ≥κmin{µ(1 ∗ (y ∗ x)), µ(1)}
≥κmin{µ(y ∗ x), λµ(y ∗ x)}
=κλµ(y ∗ x).

This completes the proof. □
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Proposition 4.15. Let µ be a fuzzy filter of a BE-algebra X with degree (λ, κ) satisfying

(∀x, y ∈ X)(µ(((xn ∗ y) ∗ y) ∗ x) ≥ µ(y ∗ x)).

Then µ is a fuzzy n-fold mighty filter of X with degree (λ, κ).

Proof. Let x, y, z ∈ X. Using (e2), we have

µ(((xn ∗ y) ∗ y) ∗ x) ≥µ(y ∗ x)
≥κmin{µ(z ∗ (y ∗ x)), µ(z)}.

Thus µ is a fuzzy n-fold mighty filter of a BE-algebra X with degree (λ, κ). □

Proposition 4.16. If µ is a fuzzy weak n-fold filter of X, then the following holds:

(4.1) (∀x, y ∈ X)(µ((x ∗ y) ∗ y) ≥ κλµ((yn ∗ x) ∗ x)).

Proof. Let z := 1 in (e5). Then µ((x ∗ y) ∗ y) ≥ κmin{µ(1 ∗ ((yn ∗ x) ∗ x)), µ(1)} ≥ κmin{µ((yn ∗
x) ∗ x), λµ((yn ∗ x) ∗ x)} = κλµ((yn ∗ x) ∗ x). This completes the proof. □

Proposition 4.17. Let µ be a fuzzy filter of a BE-algebra X with degree (λ, κ) satisfying

(∀x, y ∈ X)(µ((yn ∗ x) ∗ x) ≤ µ((x ∗ y) ∗ y)).

Then µ is a fuzzy weak n-fold mighty filter of X with degree (λ, κ).

Proof. Let x, y, z ∈ X. Using (e2), we have

µ((x ∗ y) ∗ y) ≥µ((yn ∗ x) ∗ x)
≥κmin{µ(z ∗ ((yn ∗ x) ∗ x)), µ(z)}.

Thus µ is a fuzzy weak n-fold mighty filter of a BE-algebra X with degree (λ, κ). □

A BE-algebra X is said to be n-fold mighty if ((xn ∗ y) ∗ y) ∗ x = y ∗ x for all x, y ∈ X.

Lemma 4.18. Let X be an n-fold mighty BE-algebra. If µ is a fuzzy filter of X with degree

(λ, κ), then the following holds:

(4.2) (∀x, y ∈ X)(µ((y ∗ x) ∗ x) ≥ λκµ((xn ∗ y) ∗ y)).

Proof. SinceX is an n-fold mightyBE-algebra, ((xn∗y)∗y)∗((y∗x)∗x) = (y∗x)∗(((xn∗y)∗y)∗x) =
(y ∗ x) ∗ (y ∗ x) = 1, for all x, y ∈ X. Hence (xn ∗ y) ∗ y ≤ ((y ∗ x) ∗ x). Using Proposition 2.8(ii),

we have µ((y ∗ x) ∗ x) ≥ λκµ((xn ∗ y) ∗ y)). This completes the proof. □

Proposition 4.19. Let X be an n-fold mighty transitive BE-algebra. If µ is a fuzzy filter of X

with degree (λ, κ), then it is a fuzzy weak n-fold mighty filter of X with degree (λ, λκ2).

Proof. Let µ be a fuzzy filter of X with degree (λ, κ). Using Lemma 4.18 and (e2), we have

µ((y ∗ x) ∗ x) ≥ λκµ((xn ∗ y) ∗ y)) ≥ λκ2min{µ(z ∗ ((xn ∗ y) ∗ y), µ(z)}. Hence µ is a fuzzy weak

n-fold mighty filter of X with degree (λ, λκ2).
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Proposition 4.20. Let µ be a fuzzy filter with degree (λ, κ) of an n-fold mighty BE-algebra X.

Then µ is a fuzzy n-fold mighty filter of X with degree (λ, κ).

Proof. Let µ be a fuzzy filter with degree (λ, κ) of an n-fold mighty BE-algebra X. Since X is

an n-fold mighty BE-algebra, we have µ(((xn ∗ y) ∗ y) ∗ x) = µ(y ∗ x) ≥ µ(y ∗ x). By Proposition

4.15, µ is a fuzzy n-fold mighty filter of X with degree (λ, κ). □

Denote by FM(X) the set of all mighty filters of a BE-algebra X. Note that a fuzzy subset µ

of a BE-algebra X is a fuzzy mighty filter of X if and only if

(∀t ∈ [0, 1])(U(µ; t) := {x ∈ X|µ(x) ≥ t} ∈ FM(X) ∪ {∅}).

But we know that for any fuzzy subset µ of a BE-algebra X there exist λ, κ ∈ (0, 1) and t ∈ [0, 1]

such that

(1) µ is a fuzzy mighty filter of X with degree (λ, κ),

(2) U(µ; t) /∈ FM(X) ∪ {∅}.

Example 4.21. Consider a BE-algebra X = {1, a, b, c, d, 0} which is given Example 3.2. Define

a fuzzy subset µ : X → [0, 1] by

µ =

(
1 a b c d 0

0.8 0.3 0.9 0.3 0.3 0.3

)
If t ∈ (0.8, 1], then U(µ; t) = {1, b} is not a mighty filter of X, since b ∗ (a ∗ c) = b ∈ U(µ; t) and

((c ∗ a) ∗ a) ∗ c = c /∈ U(µ; t). But µ is a fuzzy mighty filter of X with degree (0.6, 0.3).

Theorem 4.22. Let µ be a fuzzy subset of a BE-algebra X. For any t ∈ [0, 1] with t ≤
max{λ, κ}, if U(µ; t) is an enlarged mighty filter of X related to U(µ; t

max{λ,κ}), then µ is a fuzzy

mighty filter of X with degree (λ, κ).

Proof. Assume that µ(1) < t ≤ λµ(x) for some x ∈ X and t ∈ (0, λ]. Then µ(x) ≥ t
λ
≥ t

max{λ,κ}
and so x ∈ U(µ; t

max{λ,κ}), i.e., U(µ;
t

max{λ,κ}) ̸= ∅. Since U(µ; t) is an enlarged filter ofX related to

U(µ; t
max{λ,κ}), we have 1 ∈ U(µ; t), i.e., µ(1) ≥ t. This is a contradiction, and thus µ(1) ≥ λµ(x)

for all x ∈ X.

Now suppose that there exist a, b, c ∈ X such that µ(((a∗b)∗b)∗a) < κmin{µ(c∗(b∗a)), µ(c)}.
If we take t := κmin{µ(c ∗ (b ∗ a)), µ(c)}, then t ∈ (0, κ] ⊆ (0,max{λ, κ}]. Hence c ∗ (b ∗ a) ∈
U(µ; t

κ
) ⊆ U(µ; t

max{λ,κ}) and c ∈ U(µ; t
κ
) ⊆ U(µ; t

max{λ,κ}). It follows from an enlarged mighty

filter that ((a ∗ b) ∗ b) ∗ a ∈ U(µ; t) so that µ(((a ∗ b) ∗ b) ∗ a) ≥ t, which is impossible. Therefore

µ(((x ∗ y) ∗ y) ∗ x) ≥ κmin{µ(z ∗ (y ∗ x)), µ(z)}

for all x, y, z ∈ X. Thus µ is a fuzzy mighty filter of X with degree (λ, κ). □
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Corollary 4.23. Let µ be a fuzzy subset of a BE-algebra X. For any t ∈ [0, 1] with t ≤ k
n
, if

U(µ; t) is an enlarged mighty filter of X related to U(µ; n
k
t), then µ is a fuzzy mighty filter of X

with degree ( k
n
, k
n
).

Theorem 4.24. Let t ∈ [0, 1] be such that U(µ; t)(̸= ∅) is not necessary a mighty filter of a

BE-algebra X. If µ is a fuzzy mighty filter of X with degree (λ, κ), then U(µ; tmin{λ, κ}) is an
enlarged mighty filter of X related to U(µ; t).

Proof. Since tmin{λ, κ} ≤ t, we have U(µ; t) ⊆ U(µ; tmin{λ, κ}). Since U(µ; t) ̸= ∅, there exists

x ∈ U(µ; t) and so µ(x) ≥ t. By (e1), we obtain µ(1) ≥ λµ(x) ≥ λt ≥ tmin{λ, κ}. Therefore

1 ∈ U(µ; tmin{λ, κ}).
Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ U(µ; t) and x ∈ U(µ; t). Then µ(x ∗ (y ∗ z)) ≥ t and

µ(x) ≥ t. It follows from (e3) that

µ(((z ∗ y) ∗ y) ∗ z) ≥κmin{µ(x ∗ (y ∗ z)), µ(x)}
≥κt ≥ tmin{λ, κ}.

so that ((z ∗ y) ∗ y) ∗ z ∈ U(µ; tmin{λ, κ}). Thus U(µ; tmin{λ, κ}) is an enlarged mighty filter of

X related to U(µ; t). □
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SYMMETRIC IDENTITIES FOR (h, q)-EXTENSIONS OF THE

GENERALIZED HIGHER ORDER MODIFIED q-EULER

POLYNOMIALS

JONGKYUM KWON1, GYOYONG SOHN2, AND JIN-WOO PARK3,∗

Abstract. In this paper, we introduce the (h, q)-extensions of the generalized
modified q-Euler polynomials. The main objective of this paper is to consider
symmetric identities of the (h, q)-extensions of the generalized modified q-Euler
polynomials attached to χ which are derived from the p-adic fermionic integral
on Zp.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp

will, respectively, denote the ring of p-adic rational integers, the field of p-adic
rational numbers and the completion of the algebraic closure of Qp. Let νp be

the normalized exponential valuation of Cp with |p|p = p−νp(p) = 1

p
. Let q be an

indeterminate in Cp such that |q − 1|p < p−
1

p−1 . The q-analogue of number x is

defined as [x]q = 1−qx

1−q
. Note that limq→1[x]q = x.

Let f(x) be a continuous function on Zp. Then the p-adic fermionic q-integral

on Zp is defined by

∫

Zp

f(x)dµ−q(x) = lim
N→∞

pN
−1
∑

x=0

f(x)µ−q

(

x+ pNZp

)

= lim
N→∞

1 + q

1 + qp
N

pN
−1
∑

x=0

f(x)(−q)x

=
[2]q
2

lim
N→∞

pN
−1
∑

x=0

f(x)(−1)xqx, (see [1, 3, 4, 6, 7, 9, 11, 12, 14]).

(1.1)

Thus, by (1.1), we get

q

∫

Zp

f(x+ 1)dµ−q(x) +

∫

Zp

f(x)dµ−q(x) = [2]qf(0), (1.2)

2010 Mathematics Subject Classification. 11B68, 11S40, 11S80.
Key words and phrases. the generalized higher order modified q-Euler polynomials, the p-adic

fermionic integral on Zp.
∗ corresponding author.

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1431 JONGKYUM KWON et al 1431-1438



2 JONGKYUM KWON
1
, GYOYONG SOHN

2
, AND JIN-WOO PARK

3,∗

and

qn
∫

Zp

f(x+n)dµ−q(x)+(−1)n−1

∫

Zp

f(x)dµ−q(x) = [2]q

n−1
∑

l=0

f(l)ql(−1)n−1−l, (1.3)

where n ∈ N (see [5, 10-13]).
The Euler polynomials are defined by the generating function to be

2

et + 1
ext =

∞
∑

n=0

En(x)
tn

n!
, (see [2, 8]), (1.4)

when x = 0, En = En(0), (n ≥ 0), are called Euler numbers.

It is known that the q-Euler polynomials are given by the generating function as
follows:

∫

Zp

e(x+y)tdµ−q(y) =
[2]q

qet + 1
ext =

∞
∑

n=0

En,q(x)
tn

n!
, (see [1, 3− 7, 9− 14]), (1.5)

when x = 0, En,q = En,q(0) are called q-Euler numbers.
It is known that

∫

X

f(x)dµ−1(x) =

∫

Zp

e(x+y)tdµ−1(x). (1.6)

Let χ be a primitive Dirichlet character with conductor d ∈ N with d ≡ 1 (mod 2).
Then, by (1.3), we get

∫

X

χ(y)e(x+y)tdµ−1(y) =

(

2

edt + 1

d−1
∑

a=0

χ(a)(−1)aeat

)

ext

=

∞
∑

n=0

En,χ(x)
tn

n!
, (see [4, 11])

(1.7)

where En,χ(x) are called the generalized Euler polynomials attached to χ and x = 0,
En,χ = En,χ(0) is called the n-th generalized Euler number attached to χ.

From (1.7), we can derive the generalized higher order Euler polynomials at-
tached to χ as follows:

∫

X

· · ·
∫

X

(

r
∏

l=1

χ(yl)

)

e(y1+y2+···+yr+x)tdµ−1(y1)dµ−1(y2) · · · dµ−1(yr)

=

(

2

edt + 1

d−1
∑

a=0

χ(a)(−1)aeat

)r

ext

=

∞
∑

n=0

E(r)
n,χ(x)

tn

n!
, (see [9, 11]).

(1.8)
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From (1.8), we consider the (h, q)-extensions of higher order modified Euler poly-
nomials attached to χ as follows:

∫

X

· · ·
∫

X

q
∑

r
l=1

(h−l)yl(

r
∏

l=1

χ(yl))e
[y1+y2+···+yr+x]qtdµ−1(y1)dµ−1(y2) · · · dµ−1(yr)

=

∞
∑

n=0

E(h,r)
n,χ,q(x)

tn

n!
, (see [9, 11]),

(1.9)

where r ∈ N, h ∈ Z.
Recently, T. Kim and D.Kim studied (h, q)-extensions of the generalized higher

order Euler polynomials (see [11]). So, we introduce (h, q)-extensions of the gen-
eralized higher order modified q-Euler polynomials. The purpose of this paper is to
investigate symmetric identities of (h, q)-extensions of the generalized higher order
modified q-Euler polynomials.

2. Symmetric identities for (h, q)-extensions of the generalized

higher order modified q-Euler polynomials

We introduce the (h, q)-extensions of the generalized higher order modified q-
Euler polynomials attached to χ as follows:

∫

X

· · ·
∫

X

q
∑

r
l=1

(h−l)yl(

r
∏

l=1

χ(yl))e
[y1+y2+···+yr+x]qtdµ−q(y1)dµ−q(y2) · · ·dµ−q(yr)

=

∞
∑

n=0

E(h,r)
n,χ,q(x)

tn

n!
.

(2.1)

Now, we consider the symmetric identities of (h, q)-extensions of the generalized
higher order modified q-Euler polynomials.
Let w1, w2 ∈ N such that w1 ≡ 1 (mod 2) , w2 ≡ 1 (mod 2). Then, we consider the
following identity.

∫

X

· · ·
∫

X

q
∑r

l=1
(h−l)yl(

r
∏

l=1

χ(yl))

×e[w1w2x+w2

∑r
l=1

jl+w1

∑r
l=1

yl]qtdµ−q(y1)dµ−q(y2) · · · dµ−q(yr)

= lim
N→∞

1

[pN ]−q

dw2−1
∑

i1,i2,··· ,ir=0

pN
−1
∑

y1,y2,··· ,yr=0

qw1

∑r
l=1

(h−l)yl(

r
∏

l=1

χ(yl))

×e[w1w2x+w2

∑
r
l=1

jl+w1

∑
r
l=1

(il+dw2yl)]qt(−q)
∑

r
l=1

(il+dw2yl).

(2.2)

From (1.9), we have
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dw1−1
∑

j1,j2,··· ,jr=0

(−q)
∑r

l=1
(il+dw2yl)qw2

∑r
l=1

(h−l)jl(

r
∏

l=1

χ(jl))

∫

X

· · ·
∫

X

qw1

∑r
l=1

(h−l)yl

×(

r
∏

l=1

χ(yl))e
[w1w2x+w2

∑r
l=1

jl+w1

∑r
l=1

yl]qtdµ−q(y1)dµ−q(y2) · · · dµ−q(yr)

= lim
N→∞

dw1−1
∑

j1,j2,··· ,jr=0

dw2−1
∑

i1,i2,··· ,ir=0

pN
−1
∑

y1,y2,··· ,yr=0

(−q)
∑

r
l=1

(il+jl+yl)q
∑

r
l=1

(h−l)(w2jl+w1il+w1w2yl)

×e[w1w2(x+d
∑

r
l=1

yl)+
∑

r
l=1

(w2jl+w1il)]qt(

r
∏

l=1

χ(iljl)).

(2.3)

By the similar method as (2.3), we get

dw2−1
∑

j1,j2,··· ,jr=0

(−q)
∑r

l=1
(il+dw2yl)qw1

∑r
l=1

(h−l)jl(

r
∏

l=1

χ(jl))

∫

X

· · ·
∫

X

qw2

∑r
l=1

(h−l)yl

×(

r
∏

l=1

χ(yl))e
[w1w2x+w1

∑r
l=1

jl+w2

∑r
l=1

yl]qtdµ−q(y1)dµ−q(y2) · · · dµ−q(yr)

= lim
N→∞

dw2−1
∑

j1,j2,··· ,jr=0

dw1−1
∑

i1,i2,··· ,ir=0

pN
−1
∑

y1,y2,··· ,yr=0

(−q)
∑

r
l=1

(il+jl+yl)q
∑

r
l=1

(h−l)(w1jl+w2il+w1w2yl)

×e[w1w2(x+d
∑

r
l=1

yl)+
∑

r
l=1

(w1jl+w2il)]qt(

r
∏

l=1

χ(iljl)).

(2.4)

Therefore, by (2.3) and (2.4), we obtain the following theorem.

Theorem 2.1. Let w1, w2 ∈ N such that w1 ≡ 1 (mod 2) , w2 ≡ 1 (mod 2). Then,
we have

dw1−1
∑

j1,j2,··· ,jr=0

(−q)
∑

r
l=1

(il+dw2yl)qw2

∑
r
l=1

(h−l)jl(

r
∏

l=1

χ(jl))

∫

X

· · ·
∫

X

qw1

∑
r
l=1

(h−l)yl

×(

r
∏

l=1

χ(yl))e
[w1w2x+w2

∑
r
l=1

jl+w1

∑
r
l=1

yl]qtdµ−q(y1)dµ−q(y2) · · · dµ−q(yr)

=

dw2−1
∑

j1,j2,··· ,jr=0

(−q)
∑r

l=1
(il+dw2yl)qw1

∑r
l=1

(h−l)jl(

r
∏

l=1

χ(jl))

∫

X

· · ·
∫

X

qw2

∑r
l=1

(h−l)yl

×(
r
∏

l=1

χ(yl))e
[w1w2x+w1

∑r
l=1

jl+w2

∑r
l=1

yl]qtdµ−q(y1)dµ−q(y2) · · · dµ−q(yr).

(2.5)

Now, we consider that
[

w1w2x+ w2

r
∑

l=1

jl + w1

r
∑

l=1

yl

]

q

= [w1]q

[

w2x+
w2

w1

r
∑

l=1

jl +

r
∑

l=1

yl

]w1

q

, (2.6)
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and

[

w1w2x+ w1

r
∑

l=1

jl + w2

r
∑

l=1

yl

]

q

= [w2]q

[

w1x+
w1

w2

r
∑

l=1

jl +
r
∑

l=1

yl

]w2

q

, (2.7)

Therefore, by Theorem 2.1 , (2.6) and (2.7), we obtain the following theorem.

Theorem 2.2. Let w1, w2 ∈ N such that w1 ≡ 1 (mod 2) , w2 ≡ 1 (mod 2) and

n ≥ 0. Then, we have

[w1]
n
q

dw1−1
∑

j1,j2,··· ,jr=0

(−q)
∑r

l=1
jlqw2

∑r
l=1

(h−l)jl(
r
∏

l=1

χ(jl))

∫

X

· · ·
∫

X

qw1

∑r
l=1

(h−l)yl

×(

r
∏

l=1

χ(yl))

[

w2x+
w2

w1

(j1 + j2 + · · ·+ jr)

r
∑

l=1

yl

]n

qw1

dµ−q(y1)dµ−q(y2) · · · dµ−q(yr)

=[w2]
n
q

dw2−1
∑

j1,j2,··· ,jr=0

(−q)
∑

r
l=1

jlqw1

∑
r
l=1

(h−l)jl(

r
∏

l=1

χ(jl))

∫

X

· · ·
∫

X

qw2

∑
r
l=1

(h−l)yl

×(

r
∏

l=1

χ(yl))

[

w1x+
w1

w2

(j1 + j2 + · · ·+ jr)

r
∑

l=1

yl

]n

qw2

dµ−q(y1)dµ−q(y2) · · · dµ−q(yr).

(2.8)

Thus, by (1.7) and Theorem 2.2, we obtain the following theorem.

Theorem 2.3. Let w1, w2 ∈ N such that w1 ≡ 1 (mod 2) , w2 ≡ 1 (mod 2) and

n ≥ 0. Then, we have

[w1]
n
q

dw1−1
∑

j1,j2,··· ,jr=0

(−q)
∑r

l=1
jlqw2

∑r
l=1

(h−l)jl(

r
∏

l=1

χ(jl))E
(h,r)
n,χ,qw1 (w2x+

w2

w1

r
∑

l=1

jl)

=[w2]
n
q

dw2−1
∑

j1,j2,··· ,jr=0

(−q)
∑r

l=1
jlqw2

∑r
l=1

(h−l)jl(

r
∏

l=1

χ(jl))E
(h,r)
n,χ,qw2 (w1x+

w1

w2

r
∑

l=1

jl).

(2.9)

Now, we consider that
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∫

X

· · ·
∫

X

qw1

∑
r
l=1

(h−l)yl(

r
∏

l=1

χ(yl))

×
[

w2x+
w2

w1

r
∑

l=1

jl +
r
∑

l=1

yl

]n

qw
1

dµ−q(y1)dµ−q(y2) · · · dµ−q(yr)

=

n
∑

i=0

(

n

i

)(

[w2]q
[w1]q

)i

[

r
∑

l=1

jl]
i
qw2 q

w2(n−i)
∑

r
l=1

jl

∫

X

· · ·
∫

X

[

w2x+

r
∑

l=1

yl

]n−i

qw
1

×(q)w1

∑r
l=1

(h−l)yl)(

r
∏

l=1

χ(yl))dµ−q(y1)dµ−q(y2) · · · dµ−q(yr)

=
n
∑

i=0

(

n

i

)(

[w2]q
[w1]q

)i
[

r
∑

l=1

jl

]i

qw2

qw2(n−i)
∑

r
l=1

jlE
(h,r)

n−i,χ,qw1
(w2x)

=
n
∑

i=0

(

n

i

)(

[w2]q
[w1]q

)n−i
[

r
∑

l=1

jl

]n−i

qw2

qw2i
∑r

l=1
jlE

(h,r)

i,χ,qw1
(w2x).

(2.10)

From (2.6), we have

[w1]
n
q

dw1−1
∑

j1,j2,··· ,jr=0

(−q)
∑r

l=1
jlqw2

∑r
l=1

(h−l)jl(
r
∏

l=1

χ(jl))

∫

X

· · ·
∫

X

qw1

∑r
l=1

(h−l)yl

×(

r
∏

l=1

χ(yl))

[

w2x+
w2

w1

(j1 + j2 + · · ·+ jr) +

r
∑

l=1

yl

]n

qw1

dµ−q(y1)dµ−q(y2) · · ·dµ−q(yr)

=

dw1−1
∑

j1,j2,··· ,jr=0

(−q)
∑

r
l=1

jlqw2

∑
r
l=1

(h−l)jl(

r
∏

l=1

χ(jl))

×
n
∑

i=0

(

n

i

)

[w1]
i
q[w2]

n−i
q

[

r
∑

l=1

jl

]n−i

qw2

qw2

∑
r
l=1

jlE
(h,r)

i,χ,qw1
(w2x)

=

(

n

i

)

[w1]
i
q[w2]

n−i
q E

(h,r)

i,χ,qw1
(w2x)

dw1−1
∑

j1,j2,··· ,jr=0

(−q)
∑

r
l=1

jlqw2

∑
r
l=1

(h−l)jl(
r
∏

l=1

χ(jl))

×
[

r
∑

l=1

jl

]n−i

qw2

qw2

∑
r
l=1

(h−l−i)jl

=

(

n

i

)

[w1]
i
q[w2]

n−i
q E

(h,r)

i,χ,qw1
(w2x)

w1−1
∑

j1,j2,··· ,jr=0

(−q)
∑r

l=1
jlq

∑r
l=1

(h−l)jl(

r
∏

l=1

χ(jl))

×
[

r
∑

l=1

jl

]n−i

qw2

.

(2.11)
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By the similar method as (2.6), we get

[w2]
n
q

dw2−1
∑

j1,j2,··· ,jr=0

(−q)
∑r

l=1
jlqw1

∑r
l=1

(h−l)jl(
r
∏

l=1

χ(jl))

∫

X

· · ·
∫

X

qw2

∑r
l=1

(h−l)yl

×(

r
∏

l=1

χ(yl))

[

w1x+
w1

w2

(j1 + j2 + · · ·+ jr) +

r
∑

l=1

yl

]n

qw2

dµ−q(y1)dµ−q(y2) · · ·dµ−q(yr)

=

(

n

i

)

[w2]
i
q[w1]

n−i
q E

(h,r)

i,χ,qw2
(w1x)

w2−1
∑

j1,j2,··· ,jr=0

(−q)
∑

r
l=1

jlq
∑

r
l=1

(h−l)jl(

r
∏

l=1

χ(jl))

×
[

r
∑

l=1

jl

]n−i

qw1

.

(2.12)

Therefore, by (2.6) and (2.7), we obtain the following theorem.

Theorem 2.4. Let w1, w2 ∈ N such that w1 ≡ 1 (mod 2) , w2 ≡ 1 (mod 2) and

n ≥ 0. Then, we have

(

n

i

)

[w1]
i
q[w2]

n−i
q E

(h,r)

i,χ,qw1
(w2x)

w1−1
∑

j1,j2,··· ,jr=0

(−q)
∑

r
l=1

jlq
∑

r
l=1

(h−l)jl

×(

r
∏

l=1

χ(jl))

[

r
∑

l=1

jl

]n−i

qw2

=

(

n

i

)

[w2]
i
q[w1]

n−i
q E

(h,r)

i,χ,qw2
(w1x)

w2−1
∑

j1,j2,··· ,jr=0

(−q)
∑

r
l=1

jlq
∑

r
l=1

(h−l)jl

×(

r
∏

l=1

χ(jl))

[

r
∑

l=1

jl

]n−i

qw1

.

(2.13)
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Some properties of (p, q)-tangent polynomials

R. P. Agarwal 1, J. Y. Kang2*, C. S. Ryoo3

Abstract We introduce (p, q)-tangent polynomials and their basic properties in-
cluding (p, q)-derivative and (p, q)-integral. By using Mathematica, we find roots of (p, q)-
tangent polynomials. We also investigate relations of zeros between (p, q)-tangent polyno-
mials and classical tangent polynomials.
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Key words- (p, q)-tangent polynomials, (p, q)-derivative, (p, q)-integral, roots of (p, q)-
tangent polynomials

1. Introduction

In [1, 2, 3], R. Chakrabarti and R. Jagannathan, G. Brodimas, et al. and M. Arik, et
al. introduced the (p, q)-number in order to unify various forms of q-oscillator algebras.

For any n ∈ C, the (p, q)-number is defined by

[n]p,q =
pn − qn

p− q
.

It is clear that (p, q)-number contains symmetric property, and this number reduces to
q-number when p = 1. In particular, we can see that limq→1[n]p,q = n with p = 1(see [9]).
By using the above numbers, many researchers have studied (p, q)-calculus(see [4, 5, 8]).

Definition 1.1. We define the (p, q)-derivative operator

Dp,qf(x) =
f(px)− f(qx)

(p− q)x
, x 6= 0,

and Dp,qf(0) = f ′(0). The following properties of (p, q)-derivative operator are immediate.

1, 2 Department of Mathematics, Texas A & M University, Kingsville, USA
3 Department of Mathematics, Hanman University, Daejeon, KOREA
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Theorem 1.2. For the operator Dp,q the following hold

(i) Derivative of a product Dp,q(f(x)g(x)) = f(px)Dp,qg(x) + g(qx)Dp,qf(x)

= g(px)Dp,qf(x) + f(qx)Dp,qg(x).

(ii) Derivative of a ratio Dp,q

(
f(x)

g(x)

)
=
g(qx)Dp,qf(x)− f(qx)Dp,qg(x)

g(px)g(qx)

=
g(px)Dp,qf(x)− f(px)Dp,qg(x)

g(px)g(qx)
.

In [4], R. B. Corcino found (p, q)-extension of binomials coefficients and used it to
establish various properties related to horizontal function, the triangular function, and
the vertical function.

Definition 1.3. The (p, q)-analogue of (x+ a)n is defined by

(i) (x+ a)np,q =

{
1 if n = 0

(x+ a)(px+ aq) · · · (pn−2x+ aqn−2)(pn−1x+ aqn−1) if n 6= 0
,

(ii) (x+ a)np,q =

n∑
k=0

[
n
k

]
p,q

p(
k
2)q(

n−k
2 )xkan−k,

where

[
n
k

]
p,q

is (p, q)-Gauss-Binomial coefficients.

Definition 1.4. Let z be any complex numbers with |z| < 1. Two forms of (p, q)-
exponential functions are defined by

ep,q(z) =
∞∑

n=0

p(
n
2) zn

[n]p,q!
,

Ep,q(z) =
∞∑

n=0

q(
n
2) zn

[n]p,q!
.

These forms are connected by the following interesting relations

ep,q(z)Ep,q(−z) = 1, Ep,q(z) = ep−1,q−1(z).

Bernoulli, Euler, and Genocchi polynomials have been studied extensively by many math-
ematicians(see [5-7, 10-13]). In 2013, C. S. Ryoo introduced tangent polynomials and
he developed several properties of these polynomials(see [10]). The tangent numbers are
closely related to Euler numbers.

Definition 1.5. Tangent numbers Tn and tangent polynomials Tn(x) are defined by

2
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means of the generating functions

∞∑
n=0

Tn
tn

n!
=

2

e2t + 1
= 2

∞∑
m=0

(−1)me2mt,

∞∑
n=0

Tn
tn

n!
=

2

e2t + 1
etx2

∞∑
m=0

(−1)me(2m+x)t.

Theorem 1.6. For any positive integer n, we have

Tn(x) = (−1)nTn(2− x).

Theorem 1.7. For any positive integer m(= odd), we have

Tn(x) = mn
m−1∑
i=0

(−1)iTn

(
2i+ x

m

)
, n ∈ Z+.

Theorem 1.8. For n ∈ Z+, we have

Tn(x+ y) =

n∑
k=0

(
n

k

)
Tk(x)yn−k.

The main aim of this paper is to extend tangent numbers and polynomials, and study
some of their properties. Our paper is organised as follows: In Section 2, we define
(p, q)-tangent polynomials and find some properties of these polynomials. In Section 3,
we consider (p, q)-tangent polynomials in two parameters and establish some relations
between (p, q)-tangent polynomials and (p, q)-Euler or Bernoulli polynomials. In Section
4, we observe roots distributions of (p, q)-tangent polynomials and demonstrate interesting
phenomenon.

2. Some properties of the (p, q)-tangent polynomials

In this section we define the (p, q)-tangent numbers and polynomials and establish
some of their basic properties. We also define (p, q)-derivative and (p, q)-integral of (p, q)-
tangent polynomials.

Definition 2.1. For x, p, q ∈ C, we define (p, q)-tangent polynomials as

∞∑
n=0

Tn,p,q(x)
tn

[n]p,q!
=

[2]p,q
ep,q(2t) + 1

ep,q(tx), |t| < π

2
.

From Definition 2.1, it follows that

∞∑
n=0

Tn,p,q(0)
tn

[n]p,q!
=
∞∑

n=0

Tn,p,q
tn

[n]p,q!
=

[2]p,q
ep,q(2t) + 1

,

where Tn,p,q is (p, q)-tangent number. If p = 1, q → 1, then it reduces to the classical
tangent polynomial(see [10]).

3
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Theorem 2.2. Let x, p, q ∈ C. Then, the following hold

(i) Tn,p,q +
n∑

k=0

[
n
k

]
p,q

2n−kp(
n−k

2 )Tk,p,q =

{
[2]p,q if n = 0
0 if n 6= 0

,

(ii) Tn,p,q(x) +
n∑

k=0

[
n
k

]
p,q

2n−kp(
n−k

2 )Tk,p,q(x) = [2]p,qp
(n
2)xn.

Proof. From the Definition 2.1, we have

[2]p,q = (1 + ep,q(2t))
∞∑

n=0

Tn,p,q
tn

n!

=
∞∑

n=0

(
Tn,p,q +

n∑
k=0

[
n
k

]
p,q

2n−kp(
n−k

2 )Tk,p,q

)
tn

n!
.

Now comparing the coefficients of tn we find (i). For (ii) we use the relation

[2]p,qep,q(tx) = (1 + ep,q(2t))
∞∑

n=0

Tn,p,q(x)
tn

[n]p,q!

=
∞∑

n=0

(
Tn,p,q(x) +

n∑
k=0

[
n
k

]
p,q

2n−kp(
n−k

2 )Tk,p,q(x)

)
tn

n!
,

and again compare the coefficients of tn.

�

Theorem 2.3. Let n be a non-negative integer. Then, the following holds

Tn,p,q(x) =
n∑

k=0

[
n
k

]
p,q

p(
k
2)Tn−k,p,qxk.

Proof. From the definition of the (p, q)-exponential function, we have

∞∑
n=0

Tn,p,q(x)
tn

[n]p,q!
=

[2]p,q
ep,q(2t) + 1

ep,q(tx) =

∞∑
n=0

Tn,p,q
tn

[n]p,q!

∞∑
n=0

p(
n
2)xn

tn

[n]p,q!

=
∞∑

n=0

(
n∑

k=0

[
n
k

]
p,q

p(
k
2)Tn−k,p,q(x)xk

)
tn

[n]p,q!
.

The required relation now follows on comparing the coefficients of tn on both sides.

�

4
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Theorem 2.4. Let n be a non-negative integer. Then, the following holds

Tn,p,q =
n∑

k=0

[
n
k

]
p,q

(−1)n−kq(
n−k

2 )Tk,p,q(x)xn−k.

Proof. From the property of (p, q)-exponential function, it follows that

∞∑
n=0

Tn,p,q
tn

[n]p,q!
=

[2]p,q
ep,q(2t) + 1

ep,q(tx)ep−1,q1(−tx)

=
∞∑

n=0

Tn,p,q(x)
tn

[n]p,q!

∞∑
n=0

q(
n
2)(−1)nxn

tn

[n]p,q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

(−1)n−kq(
n−k

2 )Tk,p,q(x)xn−k

)
tn

[n]p,q!
.

The required relation now follows immediately.

�

In what follows, we consider (p, q)-derivative of ep,q(tx). Using the Mathematical
Induction, we find

(i) k = 1 : D(1)
p,qep,q(tx) =

∞∑
n=1

p(
n
2)xn−1

tn

[n− 1]p,q!
.

(ii) k = i : D(i)
p,qep,q(tx) =

∞∑
n=i

p(
n
2)xn−i

tn

[n− i]p,q!
.

If (ii) is true, then it follows that

(iii) k = i+ 1 : D(i+1)
p,q ep,q(tx) = D(1)

p,q;x

( ∞∑
n=i

p(
n
2)xn−i

tn

[n− i]p,q!

)

=
∞∑

n=i+1

p(
n
2)xn−(i+1) tn

[n− (i+ 1)]p,q!

= ti+1p(
i+1
2 )ep,q(pi+1tx).

We are now in the position to prove the following theorem.

Theorem 2.5. For k ∈ N, the following holds

D(k)
p,qTn,p,q(x) =

[n]p,q!

[n− k]p,q!
p(

k
2)Tn−k,p,q(pkx).

5
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Proof. Considering (p, q)-derivative of ep,q(tx), we find

D(i+1)
p,q

∞∑
n=0

Tn,p,q(x)
tn

[n]p,q!
=
∞∑

n=0

D(i+1)
p,q Tn,p,q(x)

tn

[n]p,q!

=
[2]p,q

ep,q(2t) + 1
D(i+1)

p,q ep,q(tx)

= ti+1p(
i+1
2 ) [2]p,q
ep,q(2t) + 1

ep,q(pi+1tx)

= p(
i+1
2 )

∞∑
n=0

[n+ (i+ 1)]p,q · · · [n+ 2]p,q[n+ 1]p,q

× Tn,p,q(pi+1x)
tn+i+1

[n+ (i+ 1)]p,q!

= p(
i+1
2 )

∞∑
n=0

[n]p,q
[n+ (i+ 1)]p,q!

Tn−(i+1),p,q(pi+1x)
tn

[n]p,q!
,

which immediately gives the required result.

�

Theorem 2.6. Let a, b be any real numbers. Then, we have∫ b

a

Tn,p,q(x)dp,qx =
n+1∑
k=0

pk

pn[n+ 1]p,q
(Tn+1,p,q(b)− Tn+1,p,q(a)) .

Proof. From Theorem 2.3, we find∫ b

a

Tn,p,q(x)dp,qx =

∫ b

a

n∑
k=0

[
n
k

]
p,q

p(
n−k

2 )Tk,p,qxn−kdp,qx

=
n∑

k=0

[
n
k

]
p,q

p(
n−k

2 )Tk,p,q
1

[n− k + 1]p,q
xn−k+1

∣∣∣b
a

=
n+1∑
k=0

pk(Tn+1,p,q(b)− Tn+1,p,q(a))

pn[n+ 1]p,q
.

�

3. Some properties of the (p, q)-tangent polynomial in two parameters

In this section, we shall study the (p, q)-tangent polynomials involving two parame-
ters. We shall also find some important relations between these polynomials and other
polynomials.

6
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Definition 3.1. For x, y ∈ C, we define (p, q)-tangent polynomial with two parameters
as

∞∑
n=0

Tn,p,q(x, y)
tn

[n]p,q!
=

[2]p,q
ep,q(2t) + 1

ep,q(tx)ep,q(ty), |t| < π

2
.

From the Definition 3.1, it is clear that

∞∑
n=0

Tn,p,q(x, 0)
tn

[n]p,q!
=
∞∑

n=0

Tn,p,q(x)
tn

[n]p,q!
=

[2]p,q
ep,q(2t) + 1

ep,q(tx),

∞∑
n=0

Tn,p,q(0, 0)
tn

[n]p,q!
=
∞∑

n=0

Tn,p,q
tn

[n]p,q!
=

[2]p,q
ep,q(2t) + 1

,

where Tn,p,q is (p, q)-tangent number. We also note that the original tangent number, Tn,

lim
q→1

∞∑
n=0

Tn,1,q
tn

[n]1,q!
=
∞∑

n=0

Tn
tn

n!
=

2

e2t + 1
,

where p = 1 and q → 1.

Theorem 3.2. Let x, y be any complex numbers. Then, the following hold

(i) Tn,p,q(x, y) =
n∑

k=0

[
n
k

]
p,q

p(
k
2)Tn−k,p,q(x)yk,

(ii) Tn,p,q(x, y) =
n∑

l=0

[
n
k

]
p,q

Tn−l,p,q
l∑

k=0

[
l
k

]
p,q

p
(l+k)2−l

2 xl−kyk.

Proof. From the Definition 3.1, we have

∞∑
n=0

Tn,p,q(x, y)
tn

[n]p,q!
=

[2]p,q
ep,q(2t) + 1

ep,q(tx)ep,q(ty)

=
∞∑

n=0

Tn,p,q(x)
tn

[n]p,q!

∞∑
n=0

p(
n
2)yn

tn

[n]p,q!
.

Using Cauchy’s product and the method of coefficient comparison in the above relation,
we find (i). Next, we transform (p, q)-tangent polynomials in two parameters as

∞∑
n=0

Tn,p,q(x, y)
tn

[n]p,q!
=

[2]p,q
ep,q(2t) + 1

ep,q(tx)ep,q(ty)

=
∞∑

n=0

Tn,p,q
tn

[n]p,q!

∞∑
n=0

p(
n
2)xn

tn

[n]p,q!

∞∑
n=0

p(
n
2)yn

tn

[n]p,q!
.

Now following same procedure as in (i), we obtain (ii).

7
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�

Theorem 3.3. Setting y = 2 in (p, q)-tangent polynomials with two parameters, the
following relation holds

[2]p,qp
(n
2)xn = Tn,p,q(x, 2) + Tn,p,q(x).

Proof. Using (p, q)-tangent polynomials and its polynomials with two parameters, we have

∞∑
n=0

Tn,p,q(x, 2)
tn

[n]p,q!
+
∞∑

n=0

Tn,p,q(x)
tn

[n]p,q!
=

[2]p,qep,q(2t)

ep,q(2t) + 1
ep,q(tx) +

[2]p,q
ep,q(2t) + 1

ep,q(tx)

= [2]p,qep,q(tx)

Now from the definition of (p, q)-exponential function, the required relation follows.

�

Theorem 3.3 is interesting as it leads to the relation

xn =
Tn,p,q(x, 2) + Tn,p,q(x)

[2]p,qp
(n
2)

.

Theorem 3.4. Let
∣∣∣ qp ∣∣∣ < 1. Then, the following holds

Tn,p,q(x) =
n∑

k=0

[
n
k

]
p,q

(−1)kp(
k
2)Tk,1, pq (2)xn−k.

Proof. To prove the relation, we note that

e1, pq (−2t) = Ep,q(−2t),

where Ep,q(t) = ep−1,q−1(t). Using the above equation we can represent the (p, q)-tangent
polynomials as

∞∑
n=0

Tn,p,q(x)
tn

[n]p,q!
=

[2]p,q
ep,q(2t) + 1

ep,q(tx)

=
[2]p,q

1 + Ep,q(−2t)
Ep,q(−2t)ep,q(tx)

=
[2]p,q

e1, pq (−2t) + 1
e1, pq (−2t)ep,q(tx)

=
∞∑

n=0

Tn,1, pq (2)
(−t)n

[n]p,q!

∞∑
n=0

p(
n
2)xn

tn

[n]p,q!

=

∞∑
n=0

{
n∑

k=0

[
n
k

]
p,q

(−1)kp(
k
2)Tk,1, pq (2)xn−k

}
tn

[n]p,q!
,

which leads to the required relation immediately.

8
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�

Now we shall find relations between (p, q)-tangent polynomials and others polynomials.
For this, first we introduce well known polynomials by using (p, q)-numbers.

Definition 3.5. We define (p, q)-Euler polynomials, En,p,q(x), and (p, q)-Bernoulli
polynomials, Bn,p,q(x), as

∞∑
n=0

En,p,q(x)
tn

[n]p,q!
=

[2]p,q
ep,q(t) + 1

ep,q(tx), |t| < π,

∞∑
n=0

Bn,p,q(x)
tn

[n]p,q!
=

t

ep,q(t)− 1
ep,q(tx), |t| < 2π.

Theorem 3.6. For x, y ∈ C, the following relation holds

Tn,p,q(x, y)

=
1

[2]p,q

n∑
l=0

[
n
k

]
p,q

(
Tn−l,p,q(x)

ml
+

n−l∑
k=0

[
n− l
k

]
p,q

p(
n−l−k

2 )Tk,p,q(x)

mn−k

)
El,p,q(my).

Proof. Transforming (p, q)-tangent polynomials containing two parameters, we find

[2]p,q
ep,q(2t) + 1

ep,q(tx)ep,q(ty)

=

(
[2]p,q

ep,q( t
m ) + 1

ep,q(ty)

)(
ep,q( t

m ) + 1

[2]p,q

)(
[2]p,q

ep,q(2t) + 1
ep,q(tx)

)
.

Thus, for the relation between (p, q)-tangent polynomials of two parameters and (p, q)-
Euler polynomials, we have

∞∑
n=0

Tn,p,q(x, y)
tn

[n]p,q!

=
∞∑

n=0

En,p,q(my)
tn

mn[n]p,q!

∞∑
n=0

Tn,p,q(x)
tn

[n]p,q!

( ∞∑
n=0

1

[2]p,q
p(

n
2) tn

mn[n]p,q!
+

1

[2]p,q

)

=
1

[2]p,q

∞∑
n=0

n∑
l=0

[
n
l

]
p,q

El,p,q(my)
n−l∑
k=0

[
n− l
k

]
p,q

p(
n−l−k

2 ) Tk,p,q(x)

mn−k
tn

[n]p,q!

+
1

[2]p,q

∞∑
n=0

n∑
l=0

[
n
l

]
p,q

El,p,q(my)
Tn−l,p,q(x)

ml

tn

[n]p,q!
,

which on comparing the coefficients immediately gives the required relation.

�

9
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Corollary 3.7. From Theorem 3.6, the following hold

(i) Tn,q(x, y) =
1

[2]q

n∑
l=0

[
n
l

]
q

(
Tn−l,q(x)

ml
+

n−l∑
k=0

[
n− l
k

]
q

Tk,q(x)

mn−k

)
El,q(my).

(ii) Tn(x, y) =
1

2

n∑
l=0

(
n

l

)(
Tn−l(x)

ml
+

n−l∑
k=0

(
n− l
k

)
Tk(x)

mn−k

)
El(my).

Theorem 3.8. For x, y ∈ C, the following relation holds

Tn−1,p,q(x, y)

=
1

[n]p,q

n∑
l=0

[
n
k

]
p,q

(
n−l∑
k=0

[
n− l
k

]
p,q

p(
n−l−k

2 )Tk,p,q(x)

mn−k − Tn−l,p,q(x)

ml

)
Bl,p,q(my).

Proof. We note that

[2]p,q
ep,q(2t) + 1

ep,q(tx)ep,q(ty)

=

(
t

ep,q( t
m )− 1

ep,q(ty)

)(
ep,q( t

m )− 1

t

)(
[2]p,q

ep,q(2t) + 1
ep,q(tx)

)
.

Thus as in Theorem 3.6, we have

∞∑
n=0

Tn,p,q(x, y)
tn

[n]p,q!

=

( ∞∑
n=0

p(
n
2) tn−1

mn[n]p,q!
− 1

t

) ∞∑
n=0

Bn,p,q(my)
tn

mn[n]p,q!

∞∑
n=0

Tn,p,q(x)
tn

[n]p,q!

=
∞∑

n=0

(
n∑

l=0

[
n
l

]
p,q

n−l∑
k=0

[
n− l
k

]
p,q

p(
n−l−k

2 ) Tk,p,q(x)

mn−k Bl,p,q(my)

)
tn−1

[n]p,q!

−
∞∑

n=0

(
n∑

l=0

[
n
l

]
p,q

Tn−l,p,q(x)

ml
Bl,p,q(my)

)
tn−1

[n]p,q!
.

The required relation now follows on comparing the coefficients.

�

Corollary 3.9. From the Theorem 3.8, the following relations hold

(i) Tn−1,q(x, y) =
1

[n]q

n∑
l=0

[
n
l

]
q

(
n−l∑
k=0

[
n− l
k

]
q

Tk,q(x)

mn−k −
Tn−l,q(x)

ml

)
Bl,q(my).

(ii) Tn−1(x, y) =
1

n

n∑
l=0

(
n

l

)(n−l∑
k=0

(
n− l
k

)
Tk(x)

mn−k −
Tn−l(x)

ml

)
Bl(my).
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4. The observation of scattering zeros of the (p, q)-tangent polynomials

In this section, our aim is to find zeros of the (p, q)-tangent polynomials. From this
work, we can investigate relations between (p, q)-tangent polynomials and classical tan-
gent polynomials. In addition, we shall observe scattering of zeros of the (p, q)-tangent
polynomials in three dimension. For this, we use Theorem 2.2 to calculate some elements
of (p, q)-tangent numbers and polynomials. The first few (p, q)-tangent numbers are

T0,p,q =
[2]p,q

3
,

T1,p,q = −2[2]p,q
9

,

T2,p,q = −4[2]p,q
9

p+
4[2]2p,q

27
,

T3,p,q = −72[2]p,q
81

p3 +

(
24[2]2p,q

81
− 8[2]p,q[3]p,q

81

)
p− 8[2]p,q[3]p,q

81
,

· · · .

To compute (p, q)-tangent polynomials we employ Mathematica. The first few (p, q)-
tangent polynomials are

T0,p,q(x) =
p+ q

2
,

T1,p,q(x) =
1

2
(p+ q)(−1 + x),

T2,p,q(x) =
1

2
(−q2(−1 + x) + pq(−2 + x)x+ p2(−1− x+ x2)),

T3,p,q(x) =
1

2
(p+ q)(q3(−1 + x)− p2q(−2 + x2)− pq2(−2 + x2) + p3(−1− x− x2 + x3)),

· · · .

Figure 1: Zeros of Tn,p,q(x) for q = 0.19, 0.39, 0.59
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Using computer we can investigate the zeros of Tn,p,q(x). Here, our expectation is
that a plot of Tn,p,q(x) will approach to a plot of Tn(x) when p = 1 and q → 1. We let
n = 100. In Figure 1, for q = 0.19, 0.39, 0.59, we observe from left to the right that the
middle shape is similar to a sphere, but it seems like an ellipse because one of real roots
is exists near to 2.

Figure 2: Zeros of Tn,p,q(x) for q = 0.79, 0.89, 0.99

A similar pattern we see in Figure 2 for q = 0.79, 0.89, 0.99. From Figures 1 and
2, it is clear that zeros of Tn,p,q(x) are very similar to zeros of Tn(x) given in([11]) for
n = 100, p = 1, q = 0.99. We can also expect that Im(x) = 0 of (p, q)-tangent polynomials
have reflective and symmetric properties. An interesting point is the location of roots. We
can see the empty spot in the middle of Figure 1 and observe spread of empty space in
Figure 2.

For n = 100, p = 1, and q = 0.19, the approximate zeros of (p, q)-tangent polynomials
are listed in the following table.

degree Approximate roots of (p, q)-tangent polynomials for p = 1, q = 0.19

100 -1.36843, -1.36556-0.087566i, -1.36556+0.087566i, -1.35692-0.174899i,
-1.35692+0.174899i, -1.34243-0.261765i, -1.34243+0.261765i,
-1.32191-0.347931i, -1.32191+0.347931i, -1.29512-0.433163i,
-1.29512+0.433163i, -1.26178-0.517337i, -1.26178+0.517337i,

-1.2219-0.600756i, -1.2219+0.600756i, -1.17691-0.683948i,
-1.17691+0.683948i, -1.12913-0.764992i, -1.12913+0.764992,

-1.07803-0.84129i, -1.07803+0.84129i, -1.03576-0.587811i,
-1.03576+0.587811i, -1.02268-0.912499i-1.02268+0.912499i,

-0.963125-0.978877i, -0.963125+0.978877i, -0.899648-1.0407i,
-0.899648+1.0407i, -0.832427-1.09814i, -0.832427+1.09814i,
-0.761516-1.15116i,-0.761516+1.15116i, -0.68703-1.19947i,

-0.68703+1.19947i, -0.609252-1.24274i, -0.609252+1.24274i,
-0.528594-1.28064i, -0.528594+1.28064, -0.445526-1.31298i,
-0.445526+1.31298i, -0.36053-1.33962i, -0.36053+1.33962i,
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-0.274073-1.36053i, -0.274073+1.36053i, -0.186589-1.37571i,
-0.186589+1.37571i, -0.0984547-1.38522i-0.0984547+1.38522i,
-0.0099887-1.38914i, -0.0099887+1.38914i, 0.0785479-1.38753i,

0.0785479+1.38753i, 0.166936-1.38039i, 0.166936+1.38039i,
0.254936-1.36763i, 0.254936+1.36763i, 0.342202-1.34913i,
0.342202+1.34913i, 0.428262-1.32482i, 0.428262+1.32482i,
0.512581-1.29476i, 0.512581+1.29476i, 0.594658-1.25916i,
0.594658+1.25916i, 0.674095-1.21831i, 0.674095+1.21831i,

0.750625-1.17257i, 0.750625+1.17257i, 0.8241-1.1222i,
0.8241+1.1222i, 0.894413-1.06734i, 0.894413+1.06734i,

0.961386-1.00806i, 0.961386+1.00806i, 1.02471-0.944367i,
1.02471+0.944367i, 1.08399-0.876392i, 1.08399+0.876392i,
1.13879-0.804367i, 1.13879+0.804367i, 1.18869-0.728642i,
1.18869+0.728642i, 1.23339-0.649655i, 1.23339+0.649655i,
1.27264-0.567879i, 1.27264+0.567879i, 1.30629-0.48378i,
1.30629+0.48378i, 1.33425-0.397798i, 1.33425+0.397798i,
1.35643-0.310367i, 1.35643+0.310367i, 1.37275-0.221972i,
1.37275+0.221972i, 1.38331-0.133155i, 1.38331+0.133155i,

1.3884-0.0443556i, 1.3884+0.0443556i, 2

The above table for T100,1,0.19(x) shows that there are only two real roots, and the
shape is similar to a sphere.

Figure 3: Zeros of Tn,p,q(x) for p = 1, q = 0.19, 1 < n < 100
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From Figure 3 and the following table, we observe that (p, q)-tangent polynomials for
different values of n do not have a regular pattern of the number of zeros.

degree Approximate roots of (p, q)-tangent polynomials for p = 1, q = 0.19

100 -1.36843, 2
99 2
98 -1.37033, 0.141925, 1.39158, 2
97 -1.37233, 1.38851, 2
96 1.37639, 2
95 -1.16958, 1.36103, 2
94 1.32543, 2
93 1.32543, 2
92 0.362552, 1.33302, 2

In Figure 4, we stack the zeros of (p, q)-tangent polynomials for 1 ≤ n ≤ 100. We
put q = 0.19(the top-left), 0.39(the top-middle), 0.59(the top-right),0.79(the bottom-left),
0.89(the bottom-middle), 0.99(the bottom-right) and p = 1. We observe scattering of zeros
of (p, q)-tangent polynomials including a stick when q ≤ 0.59. We expect that this stick
exists for all values of q smaller than 0.59. From Figures 1-3, it appears that the shape of
zeros of (p, q)-tangent polynomials is similar to a sphere for all large values of n and small
values of q.

Figure 4: Stacks of zeros of Tn,p,q(x) for q = 0.19, 0.39, 0.59, 0.79, 0.89, 0.99
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Figure 5 shows the front view of Figure 4.

Figure 5: Zeros of Tn,p,q(x) for 1 ≤ n ≤ 100

Conclusion
Our first main contribution in the work is to show that the zeros of (p, q)-tangent

polynomials approach to zeros of classical tangent polynomials as q → 1. To support our
claim we obtain some specific results. Next, we show that the shape of the roots in (p, q)-
tangent polynomials is almost identical to a circle when q is small. We also observe that
as q is large the zeros are separated into two parts maintaining the symmetry.
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Abstract

In this note, the strong convergence theorems of a non-convex hybrid iteration

algorithm corresponding to Noor iterative scheme about common fixed points for a

uniformly closed asymptotically family of countable quasi-Lipschitz mappings in a

Hilbert space has been proved. Moreover some applications of developed algorithm is

presented.
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Key words and phrases: Hybrid algorithm, quasi-Lipschitz mapping, nonexpansive

mapping, quasi-nonexpansive mapping, asmptotically quasi-nonexpansive mapping

1 Introduction

Fixed points of special mappings like nonexpansive, asymptotically nonexpansive, con-

tractive and other mappings has become a field of interest on its on and has a various

applications in related fields like image recovery, signal processing and geometry of ob-

jects [13]. Almost in all branches of mathematics we see some versions of theorems relating

to fixed points of functions of special nature. As a result we apply them in industry, toy

making, finance, aircrafts and manufacturing of new model cars. A fixed-point iteration

∗Corresponding author
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scheme has been applied in intensity modulated radiation therapy optimization optimiza-

tion to pre-compute dose-deposition coefficient matrix, see [12]. Because of its vast range

of applications almost in all directions, the research in it is moving rapidly and an im-

mense literature is present now. Constructive fixed point theorems (for example, Banach

fixed point theorem) which not only claims the existence of a fixed point but yields an

algorithm, too (in the Banach case fixed point iteration xn+1 = f(xn)). Any equation that

can be written as x = f(x) for some mapping f that is contracting with respect to some

(complete) metric will provide such a fixed point iteration. Mann’s iteration method was

the stepping stone in this regard and is invariably used in most of the occasions see [6].

But it only ensures weak convergence, see [2] but more often then not, we require strong

convergence in many real world problems relating to Hilbert spaces, see [1]. So mathe-

matician are in search for the modifications of the Mann’s process to control and guarantee

the strong convergence (see [2–5, 7–9, 11] and references therein).

Most probably the first noticeable modification of Mann’s Iteration process was pro-

posed by Nakajo and Takahashi [9] in 2003. They introduced this modification for only

one nonexpansive mapping, where Kim and Xu [4] introduced a variant for asymptotically

nonexpansive mappings in a Hilbert space in 2006. In the same year Martinez-Yanes and

Xu [7] introduced a variation of the Ishikawa iteration process for a nonexpansive mapping

in a Hilbert space. They also gave a variant of the Halpern method. Su and Qin [11] gave a

hybrid iteration process for nonexpansive mappings which is monotone. Liu et al. [5] gave

a novel method for a finite family of quasi-asymptotically pseudo-contractive mappings.

Let H be a Hilbert space and C be a nonempty, closed and convex subset of H . Let

Pc(·) be the metric projection onto C. A mapping T : C → C is said to be nonexpensive if

‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ C. Denote by F (T ) the set of fixed points of T . It is well

known that F (T ) is closed and convex. A mapping T : C → C is said to be quasi-Lipschitz

if F (T ) 6= ∅ and ‖Tx − p‖ ≤ L‖x − p‖ for all x ∈ C, p ∈ F (T ), where 1 ≤ L < ∞ is a

constant. If L = 1, then T is known as quasi-nonexpansive. It is well-known that T is said

to be closed if xn → x and ‖Txn − xn‖ → 0 as n → ∞ implies Tx = x. T is said to be

weak closed if xn ⇀ x and ‖Txn − xn‖ → 0 as n → ∞ implies Tx = x. It is obvious that

a weak closed mapping should be closed, but converse is no longer true.

Let {Tn} be a sequence of mappings from C into itself with a nonempty common fixed

points set F . Then {Tn} is said to be uniformly closed if for any convergent sequences

{zn} ⊂ C with conditions ‖Tnzn − zn‖ → 0 as n → ∞, the limit of {zn} belongs to F.

In 1953 Mann [6] proposed an iterative scheme given as

xn+1 = (1− αn)xn + αnT (xn), n = 0, 1, 2, . . . .

Guan et al. [3] established the following non-convex hybrid iteration algorithm corre-

sponding to Mann iterative scheme:































x0 ∈ C = Q0, choosen arbitrarily,

yn = (1 − αn)xn + αnTnxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ (1 + (Ln − 1)αn)‖xn − z‖ ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0

2
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and proved some strong convergence results about common fixed points relating to a

family of countable uniformly closed asymptotically quasi-Lipschitz mappings in H . They

applied their results for the finite case to obtain fixed points.

The Noor iterative scheme [10] was defined in 2000 as










xn+1 = (1 − an)xn + anT (yn),

yn = (1− bn)xn + bnT (zn),

zn = (1 − cn)xn + cnT (xn), n ≥ 0.

In this article, we established a non-convex hybrid algorithm corresponding to Noor

iterative scheme. Then we also establish strong convergence theorems with proofs about

common fixed points related to a uniformly closed asymptotically family of countable

quasi-Lipschitz mappings in a Hilbert space. Some applications of presented algorithm

were also given.

2 Main results

In this section we formulate our main results.

Definition 2.1. Let C be a closed convex subset of a Hilbert space H, and let {Tn} be

a family of countable quasi-Ln-Lipschitz mappings from C into itself. {Tn} is said to be

asymptotically if limn→∞ Ln = 1.

The following lemmas are well known and useful for our conclusions

Proposition 2.2. Let C be a closed convex subset of a real Hilbert space H . Given x ∈ H

and z ∈ C. Then z = PCx if and only if we have the relation 〈x − z, z − y〉 ≥ 1 for all

y ∈ C.

Proposition 2.3. ([3]) Let C be a closed convex subset of a Hilbert space H and let {Tn}
be a uniformly closed asymptotically family of countable quasi-Ln-Lipschitz mappings from

C into itself. Then the common fixed point set F is closed and convex.

Proposition 2.4. Let C be a closed convex subset of a Hilbert space H . For any given

x0 ∈ H, we have p = PCx0 if and only if 〈p − z, x0 − p〉 ≥ 0 for all z ∈ C.

Theorem 2.5. Let C be a closed convex subset of a Hilbert space H, and let {Tn} : C → C

be a uniformly closed asymptotically family of countable quasi-Ln-Lipschitz mappings from

C into itself. Assume that an, bn, cn ∈ (a, 1] holds for some a ∈ (0, 1). Then {xn} generated

by






























































x0 ∈ C = Q0, chosen arbitrarily,

yn = (1− an)xn + anTnzn, n ≥ 0,

zn = (1− bn)xn + bnTntn, n ≥ 0,

tn = (1− cn)xn + cnTnxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ [1 + (Ln(1 − bn) + L2
n(1 − cn)bn

+bncnL3
n − 1)an]‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0,
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converges to PF x0, where coCn denotes the closed convex closure of Cn for all n ≥ 1 and

A = {z ∈ H : ‖z − PF x0‖ ≤ 1}.

Proof. We divide our proof in following seven steps.

Step 1. It is obvious that coCn and Qn are closed and convex for all n ≥ 0. Next, we

show that F ∩ A ⊂ coCn for all n ≥ 0. Indeed, for each p ∈ F ∩ A, we have

‖yn − p‖ = ‖(1− an)xn + anTnzn − p‖

= ‖(1− an)xn + anTn[(a− bn)xn + bnTntn] − p‖

= ‖(1− an)xn + anTn[(a− bn)xn + bnTn((1− cn)xn + cnTnxn)] − p‖

= ‖(1− an)(xn − p) + (an − anbn)(Tnxn − p)

+ (anbn − anbncn)(T 2
nxn − p) + anbncn)(T 3

nxn − p)‖

≤ (1 − an)‖xn − p‖ + (an − anbn)Ln‖xn − p‖

+ (anbn − anbncn)L2
n‖xn − p‖ + anbncn)L3

n‖xn − p‖

= [1 + (Ln(1 − bn) + L2
n(1− cn)bn + bncnL3

n − 1)an]‖xn − p‖,

and p ∈ A, so p ∈ Cn which implies that F ∩A ⊂ Cn for all n ≥ 0. therefore, F ∩A ⊂ coCn

for all n ≥ 0.

Step 2. We show that F ∩ A ⊂ coCn ∩ Qn for all n ≥ 0. it suffices to show that

F ∩ A ⊂ Qn, for all n ≥ 0. We prove this by mathematical induction. For n = 0 we have

F ∩ A ⊂ C = Q0. Assume that F ∩ A ⊂ Qn. Since xn+1 is the projection of x0 onto

coCn ∩ Qn, from Proposition 2.2, we have

〈xn+1 − z, xn+1 − x0〉 ≤ 0, ∀z ∈ coCn ∩ Qn

as F∩A ⊂ coCn∩Qn, the last inequality holds, in particular, for all z ∈ F∩A. This together

with the definition of Qn+1 implies that F ∩ A ⊂ Qn+1. Hence the F ∩ A ⊂ coCn ∩ Qn

holds for all n ≥ 0.

Step 3. We prove that {xn} is bounded. Using closeness and convexity properties

of F, we can say that we have a unique element z0 ∈ F such that z0 = PF x0. From

xn+1 = PcoCn∩Qn
x0, we have

‖xn+1 − x0‖ ≤ ‖z − x0‖

for every z ∈ coCn ∩ Qn. As z0 ∈ F ∩ A ⊂ coCn ∩ Qn, we get

‖xn+1 − x0‖ ≤ ‖z0 − x0‖

for each n ≥ 0. This shows that {xn} is bounded.

Step 4. We show that {xn} converges strongly to a point of C by showing that {xn}
is a Cauchy sequenc. As xn+1 = PcoCn∩Qn

x0 ⊂ Qn and xn = PQn
x0 (Proposition 2.4), we

have

‖xn+1 − x0‖ ≥ ‖xn − x0‖

for every n ≥ 0, which together with the boundedness of ‖xn−x0‖ implies that there exsists

the limit of ‖xn−x0‖. On the other hand, from xn+m ∈ Qn, we have 〈xn−xn+m, xn−x0〉 ≤

4
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0 and hence

‖xn+m − xn‖
2 = ‖(xn+m − x0) − (xn − x0)‖

2

≤ ‖xn+m − x0‖
2 − ‖xn − x0‖

2 − 2〈xn+m − xn, xn − x0〉

≤ ‖xn+m − x0‖
2 − ‖xn − x0‖

2 → 0, n → ∞

for any m ≥ 1. Therefore {xn} is a Cauchy sequence in C, then there exists a point q ∈ C

such that limn→∞ xn = q.

Step 5. We show that yn → q, as n → ∞. Let

Dn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + (L3
n − 1)(L3

n + 1)}.

From the definition of Dn, we have

Dn = {z ∈ C : 〈yn − z, yn − z〉 ≤ 〈xn − z, xn − z〉 + (L3
n − 1)(L3

n + 1)}

= {z ∈ C : ‖yn‖
2 − 2〈yn, z〉+ ‖z‖2 ≤ ‖xn‖

2 − 2〈xn, z〉+ ‖z‖2 + (L3
n − 1)(L3

n + 1)}

= {z ∈ C : 2〈xn − yn, z〉 ≤ ‖xn‖
2 − ‖yn‖

2 + (L3
n − 1)(L3

n + 1)}.

This shows that Dn is convex and closed, n ∈ Z
+ ∪ {0}. Next, we want to prove that

Cn ⊂ Dn, n ≥ 0.

In fact, for any z ∈ Cn, we have

‖yn − z‖2 ≤ [1 + (Ln(1 − bn) + L2
n(1− cn)bn + bncnL3

n − 1)an]2‖xn − z‖2

= ‖xn − z‖2 + [2(Ln(1− bn) + L2
n(1 − cn)bn + bncnL3

n − 1)an

+ (Ln(1− bn) + L2
n(1 − cn)bn + bncnL3

n − 1)2a2
n]‖xn − z‖2

≤ ‖xn − z‖2 + [2(L3
n − 1) + (L3

n − 1)2]‖xn − z‖2

= ‖xn − z‖2 + (L3
n − 1)(L3

n + 1)‖xn − z‖2.

From
Cn = {z ∈ C : ‖yn − z‖ ≤ [1 + (Ln(1− bn) + L2

n(1 − cn)bn

+ bncnL3
n − 1)an]‖xn − z‖} ∩ A, n ≥ 0,

we have Cn ⊂ A, n ≥ 0. Using convexity of A, we have coCn ⊂ A, n ≥ 0. Consider

xn ∈ coCn−1 , we know that

‖yn − z‖ ≤ ‖xn − z‖2 + (L3
n − 1)(L3

n + 1)‖xn − z‖2

≤ ‖xn − z‖2 + (L3
n − 1)(L3

n + 1).

This implies that z ∈ Dn and hence Cn ⊂ Dn, n ≥ 0. Since Dn is convex, we have

co(Cn) ⊂ Dn, n ≥ 0. Therefore

‖yn − xn+1‖
2 ≤ ‖xn − xn+1‖

2 + (L3
n − 1)(L3

n + 1) → 0

as n → ∞. That is, yn → q as n → ∞.

Step 6. To prove that q ∈ F, we use definition of yn. So we have

(an + anbnTn + anbncnT 2
n)‖Tnxn − xn‖ = ‖yn − xn‖ → 0

5
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as n → ∞. Since an ∈ (a, 1] ⊂ [0, 1], from the above limit we have

lim
n→∞

‖Tnxn − xn‖ = 0.

Since {Tn} is uniformly closed and xn → q, we have q ∈ F .

Step 7. We claim that q = z0 = PF x0, if not, we have that ‖x0−p‖ > ‖x0−z0‖. There

must exist a positive integer N, if n > N, then ‖x0 − xn‖ > ‖x0 − z0‖, which leads to

‖z0 − xn‖
2 = ‖z0 − xn + xn − x0‖

2

= ‖z0 − xn‖
2 + ‖xn − x0‖

2 + 2〈z0 − xn, xn − x0〉.

It follows that 〈z0 − xn, xn − x0〉 < 0, which implies that z0∈Qn, so that z0∈F, which is a

contradiction. This completes the proof.

In [3], we show an example of Cn which does not involve a convex subset.

Corollary 2.6. Let C be a closed convex subset of a Hilbert space H, and let T : C → C

be a closed quasi-nonexpansive mapping from C into itself. Assume that an, bn, cn ∈ (a, 1]

holds for some a ∈ (0, 1). Then {xn} generated by






























































x0 ∈ C = Q0, chosen arbitrarily,

yn = (1− an)xn + anTzn, ≥ 0,

zn = (1− bn)xn + bnT tn, n ≥ 0,

tn = (1− cn)xn + cnTxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ [1 + (Ln(1 − bn) + L2
n(1 − cn)bn

+bncnL3
n − 1)an]‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Qn
x0,

converges strongly to PF (T )x0, where A = {z ∈ H : ‖z − PF x0‖ ≤ 1}.

Proof. Take Tn ≡ T, Ln ≡ 1 in Theorem 2.5, in this case, Cn is convex and closed for all

n ≥ 0, by using Theorem 2.5, we obtain Corollary 2.6.

Corollary 2.7. Let C be a closed convex subset of a Hilbert space H, and let T be a

nonexpansive mapping from C into itself. Assume that an, bn, cn ∈ (a, 1] holds for some

a ∈ (0, 1). Then {xn} generated by






























































x0 ∈ C = Q0, chosen arbitrarily,

yn = (1− an)xn + anTzn, n ≥ 0,

zn = (1− bn)xn + bnT tn, n ≥ 0,

tn = (1− cn)xn + cnTxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ [1 + (Ln(1 − bn) + L2
n(1 − cn)bn

+bncnL3
n − 1)an]‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Qn
x0,

converges strongly to PF (T )x0, where A = {z ∈ H : ‖z − PF x0‖ ≤ 1}.
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3 Applications

Here, we give an application of our result for the following case of finite family of asymp-

totically quasi-nonexpansive mappings {Tn}
N−1
n=0 . Let

‖T j
i x − p‖ ≤ ki,j‖x − p‖, ∀x ∈ C, p ∈ F,

where F is the common fixed point set of {Tn}
N−1
n=0 and limj→∞ ki,j = 1 for all 0 ≤ i ≤

N − 1. The finite family of asymptotically quasi-nonexpansive mappings {Tn}
N−1
n=0 is said

to be uniformly L-Lipschitz if

‖T j
i x − T

j
i y‖ ≤ Li,j‖x − y‖, ∀x, y ∈ C

for all i ∈ {0, 1, 2, ...,N − 1}, j ≥ 1, where L ≥ 1.

Theorem 3.1. Let C be a closed convex subset of a Hilbert space H, and let {Tn}
N−1
n=0 :

C → C be a uniformly L-Lipschitz finite family of asymptotically quasi-nonexpansive

mappings with nonempty common fixed point set F . Assume that an, bn, cn ∈ (a, 1] holds

for some a ∈ (0, 1). Then {xn} generated by



































































x0 ∈ C = Q0, chosen arbitrarily,

yn = (1− an)xn + anT
j(n)
i(n) zn, n ≥ 0,

zn = (1− bn)xn + bnT
j(n)
i(n) tn, n ≥ 0,

tn = (1− cn)xn + cnT
j(n)
i(n)

xn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ [1 + (ki(n),j(n)(1 − bn) + k2
i(n),j(n)(1 − cn)bn

+bncnk3
i(n),j(n) − 1)an]‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0,

converges strongly to PF x0, where coCn denotes the closed convex closure of Cn for all

n ≥ 1, n = (j(n)− 1)N + i(n) for all n ≥ 0 and A = {z ∈ H : ‖z − PF x0‖ ≤ 1}.

Proof. We can acquire the prove from the conclusions:

Conclusion 1. {TN−1
n=0 }∞n=0 is asymptotically family of uniformly closed countable quasi-

Ln-Lipschitz mappings from C into itself.

Conclusion 2.F =
⋂N

n=0 F (Tn) =
⋂

∞

n=0 F (T
j(n)
i(n)

), where F (Tn) is the fixed point set of

Tn.

Corollary 3.2. Let C be a closed convex subset of a Hilbert space H, and let T : C → C be

a L-Lipschitz asymptotically quasi-nonexpansive mappings with nonempty common fixed

point set F . Assume that an, bn, cn ∈ (a, 1] holds for some a ∈ (0, 1). Then {xn} generated

7
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by






























































x0 ∈ C = Q0, chosen arbitrarily,

yn = (1− an)xn + anT nzn, n ≥ 0,

zn = (1− bn)xn + bnT ntn, n ≥ 0,

tn = (1 − cn)xn + cnT nxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ [1 + (kn(1 − bn) + k2
n(1− cn)bn

+bncnk3
n − 1)an]‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0,

converges strongly to PF x0, where coCn denotes the closed convex closure of Cn for all

n ≥ 1 and A = {z ∈ H : ‖z − PF x0‖ ≤ 1}.

Proof. Take Tn ≡ T in 3.1, we get the desired result.
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Nanjundan Magesh1, Şahsene Altınkaya2,∗, Sibel Yalçın2
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Abstract

In this paper, we have established the inclusion relations for k-uniformly
starlike functions under the (D̃qf)(z) operator. We define two new sub-
class of k-uniformly starlike functions of order α. Moreover, for functions
belonging to these function classes, we investigate necessary and sufficient
coefficient conditions, distortion bounds, extreme points.
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1 Introduction, Definitions and Notations

Let A denote the class of functions of the form:

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and
S be the subclass of A consisting of the form (1) which are also univalent in
U. A function f ∈ A is called starlike of order α, 0 ≤ α < 1, if and only if

<
(
zf ′(z)
f(z)

)
> α (z ∈ U). We denote by S(α) the subset of A consisting of all
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starlike functions of order α. For α = 0 we get the class S of functions f that
maps U onto a starlike domain with respect to the origin.

Also represent by T the subclass of A consisting of functions of the form:

f(z) = z −
∞∑
n=2

anz
n, (an ≥ 0). (2)

A function f ∈ A is said to be in US(k, α), the class of k -uniformly starlike
functions of order α, 0 ≤ α < 1, if f satisfies the condition

<
(
zf ′(z)

f(z)
− α

)
> k

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ (k ≥ 0),

(for details see [5]).
We remark here that the class of k -uniformly starlike functions is an exten-

sion of the relatively more familiar class of uniformly starlike functions investi-
gated earlier by (for example) Goodman [9], Rønning [18], (see also the more
recent contributions on this function class by Srivastava and Mishra [21] and
others [11, 12, 19]).

In the field of Geometric Function Theory, various subclasses of analytic
functions have been studied from different viewpoints. The fractional q-calculus
is the important tools that are used to investigate subclasses of analytic func-
tions. Historically speaking, a firm footing of the usage of the the q-calculus in
the context of Geometric Function Theory was actually provided and the basic
(or q-) hypergeometric functions were first used in Geometric Function The-
ory in a book chapter by Srivastava (see, for details, [20]). In fact, the theory
of univalent functions can be described by using the theory of the q-calculus.
Moreover, in recent years, such q-calculus operators as the fractional q-integral
and fractional q-derivative operators were used to construct several subclasses
of analytic functions (see, for example, [1, 2, 4, 14] and [16]). In particular,
Purohit and Raina [17] investigated applications of fractional q-calculus oper-
ators to define several classes of functions which are analytic in the open unit
disk U. On the other hand, Mohammed and Darus [13] studied approximation
and geometric properties of these q-operators in regard to some subclasses of
analytic functions in a compact disk.

For the convenience, we provide some basic definitions and concept details of
q-calculus which are used in this paper. We suppose throughout the paper that
0 < q < 1. We shall follow the notation and terminology as in [8]. We recall the
definitions of fractional q-calculus operators of complex valued function f(z).

Definition 1 Let q ∈ (0, 1) and define the q-number [λ]q by

[λ]q =


1− qλ

1− q
(λ ∈ C)

n−1∑
k=0

qk = 1 + q + q2 + · · ·+ qn−1 (λ = n ∈ N = {1, 2, . . .}).

(3)

2
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Definition 2 Let q ∈ (0, 1) and define the q-fractional [n]q! by

[n]q! =


n∏
k=1

[k]q , n ∈ N

1, n = 0

.

Definition 3 For α ∈ C, the q-shifted factorial is defined as a product of n ∈ N
factors by

(α; q)0 = 1, (α; q)n =
n−1∏
i=0

(1− αqi), (α; q)∞ =
∞∏
i=0

(1− αqi).

Definition 4 (see [10]) The q-derivative of a function f is defined on a subset
of C is given by

(Dqf)(z) =
f(z)− f(qz)

(1− q)z
, if z 6= 0, (4)

and (Dqf)(0) = f ′(0) provided f ′(0) exists.

Note that

lim
q→1−

(Dqf)(z) = lim
q→1−

f(z)− f(qz)

(1− q)z
=
df(z)

dz

if f is differentiable. From (4), we deduce that

(Dqf)(z) = 1 +
∞∑
n=2

[n]q anz
n−1. (5)

Definition 5 (see [6]) The symmetric q-derivative D̃qf of a function f given
by (1) is defined as follows:

(D̃qf)(z) =
f(qz)− f(q−1z)

(q − q−1)z
, if z 6= 0, (6)

and (D̃qf)(0) = f ′(0) provided f ′(0) exists.

From (6), we deduce that

(D̃qf)(z) = 1 +
∞∑
n=2

[̃n]qanz
n−1,

where the symbol [̃n]q denotes the number

[̃n]q =
qn − q−n

q − q−1

3
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frequently occurring in the study of q-deformed quantum mechanical simple
harmonic oscillator (see [7]).

The following properties hold

D̃q(f(z) + g(z)) = (D̃qf)(z) + (D̃qg)(z)

D̃q(f(z)g(z)) = g(q−1z)(D̃qf)(z) + f(qz)(D̃qg)(z)

= g(qz)(D̃qf)(z) + f(q−1z)(D̃qg)(z)

D̃qz
n = [̃n]qz

n−1.

Finally, we have the following relation

D̃qf(z) = Dq2f(q−1z).

Definition 6 Let 0 ≤ k < ∞ and 0 ≤ α < 1. By US(q; k, λ, α) we denote the
class of functions f ∈ A satisfying the condition

<

(
z(D̃qf)(z)

(1− λ)f(z) + λz(D̃qf)(z)
− α

)
> k

∣∣∣∣∣ z(D̃qf)(z)

(1− λ)f(z) + λz(D̃qf)(z)
− 1

∣∣∣∣∣ , (z ∈ U).

We also let UTS(q; k, λ, α) = US(q; k, λ, α) ∩ T.

We note that
lim
q→1−

US(q; k, λ, α) = US(k, λ, α)

where US(k, λ, α) is the class of defined by Murugusundaramoorthy and Magesh
[15].

Murugusundaramoorthy and Magesh [15] and Srivastava and Mishra [21]
defined the new subclasses of the families UCV and US making use of hy-
pergeometric functions and fractional calculus respectively and obtained vari-
ous interesting properties. In light of this in this paper, we study the classes
US(q; k, λ, α) and UTS(q; k, λ, α) defining by symmetric q-derivative operator.
We provide necessary and sufficent coefficient conditions, distortion bounds,
extreme points for functions in UTS(q; k, λ, α).

2 Main Results

Theorem 7 Let f ∈ A be given by (1). If the inequality

∞∑
n=2

[
[̃n]q(k + 1)− (k + α)(1− λ+ λ[̃n]q)

]
|an| ≤ 1− α (7)

holds true for some k (0 ≤ k <∞) and α (0 ≤ α < 1) , then f ∈ US(q; k, λ, α).

4
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From Definition 6, it suffices to prove that

k

∣∣∣∣∣ z(D̃qf)(z)

(1− λ)f(z) + λz(D̃qf)(z)
− 1

∣∣∣∣∣−<
(

z(D̃qf)(z)

(1− λ)f(z) + λz(D̃qf)(z)
− 1

)
≤ 1−α.

Observe that

k

∣∣∣∣∣ z(D̃qf)(z)

(1− λ)f(z) + λz(D̃qf)(z)
− 1

∣∣∣∣∣−<
(

z(D̃qf)(z)

(1− λ)f(z) + λz(D̃qf)(z)
− 1

)

≤ (k + 1)
∣∣∣ z(D̃qf)(z)

(1−λ)f(z)+λz(D̃qf)(z)
− 1
∣∣∣

= (k + 1)

∣∣∣∣∣∣
∞∑

n=2

(
[̃n]q−λ[̃n]q−1+λ

)
anz

n−1

1+
∞∑

n=2

(
1−λ+λ[̃n]q

)
anzn−1

∣∣∣∣∣∣ ; (|z| < 1)

≤ (k + 1)

∞∑
n=2

(
[̃n]q−λ[̃n]q−1+λ

)
|an|

1−
∞∑

n=2

(
1−λ+λ[̃n]q

)
|an|

.

The last expression is bounded by 1− α if the inequality (7) holds.
The next Corollary can be easily obtained from Theorem 7.

Corollary 8 Let f(z) = z + anz
n. If

|an| ≤
1− α

[̃n]q(k + 1)− (k + α)(1− λ+ λ[̃n]q)
, (n ≥ 2)

then f ∈ US(q; k, λ, α).

Theorem 9 A necessary and sufficient condition for f(z) of the form (2) to be
in the class UTS(q; k, λ, α), is that

∞∑
n=2

[
[̃n]q(k + 1)− (k + α)(1− λ+ λ[̃n]q)

]
an ≤ 1− α,

(0 ≤ k <∞; 0 ≤ α < 1; z ∈ U).

(8)

The result is sharp for the function f(z) given by

f(z) = z − 1− α
[̃n]q(k + 1)− (k + α)(1− λ+ λ[̃n]q)

zn.

Proof. In view of Theorem 7, we need only to prove the necessity. If f ∈
UTS(q; k, λ, α), using the fact that |<(z)| ≤ |z| for any z, then∣∣∣∣∣∣∣∣

1−
∞∑
n=2

[̃n]qanz
n−1

1−
∞∑
n=2

(1− λ+ λ[̃n]q)anz
n−1
− α

∣∣∣∣∣∣∣∣ ≥ k
∣∣∣∣∣∣∣∣
∞∑
n=2

(
[̃n]q − λ[̃n]q − 1 + λ

)
anz

n−1

1−
∞∑
n=2

(1− λ+ λ[̃n]q)anz
n−1

∣∣∣∣∣∣∣∣ .
(9)

5
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Choose values of z on the real axis so that D̃qf(z) is real. Upon clearing the
dominator in (9) and letting z → 1− through the real values, we obtain (8).

This completes the proof.
Letting q → 1− we get desired Corollary.

Corollary 10 As special cases of Theorem 9, for k = 0 and λ = 0, see [3].

3 Distortion Theorems

Theorem 11 Let the function f defined by (2) in the class UTS(q; k, λ, α).Then

r − q(1−α)
(q2+1)(k+1)−(k+α)((1−λ)q+λ(q2+1)r

2 ≤ |f(z)| ≤ r + q(1−α)
(q2+1)(k+1)−(k+α)((1−λ)q+λ(q2+1)r

2

(10)

(|z| = r < 1)

for z ∈ U.
Equality in (10) holds true for the function f(z) given by

|f(z)| = |z|+ q (1− α)

(q2 + 1)(k + 1)− (k + α)((1− λ)q + λ(q2 + 1)
|z|2 . (11)

Proof. Since f ∈ UTS(q; k, λ, α), in view of Theorem 9, we have[
[̃2]q(k + 1)− (k + α)(1− λ+ λ[̃2]q)

] ∞∑
n=2

|an| ≤
∞∑
n=2

[
[̃n]q(k + 1)− (k + α)(1− λ+ λ[̃n]q)

]
an

≤ 1− α,

which gives
∞∑
n=2

an ≤
1− α

[̃2]q(k + 1)− (k + α)(1− λ+ λ[̃2]q)
. (12)

Therefore

|f(z)| ≤ |z|+
∞∑
n=2

an |z|n

≤ r + q(1−α)
(q2+1)(k+1)−(k+α)((1−λ)q+λ(q2+1)r

2.

On the other hand,

|f(z)| ≥ |z| −
∞∑
n=2

an |z|n

≥ r − q(1−α)
(q2+1)(k+1)−(k+α)((1−λ)q+λ(q2+1)r

2.

6
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Theorem 12 Let the function f defined by (2) in the class UTS(q; k, λ, α).Then

1− 2q(1−α)
(q2+1)(k+1)−(k+α)((1−λ)q+λ(q2+1)r ≤ |f ′(z)| ≤ 1 + 2q(1−α)

(q2+1)(k+1)−(k+α)((1−λ)q+λ(q2+1)r

(13)

|z| = r < 1

for z ∈ U.

From (2),

|f ′(z)| ≤ 1 +
∞∑
n=2

nan |z|n−1 ≤ 1 + r
∞∑
n=2

nan, (14)

and

|f ′(z)| ≥ 1−
∞∑
n=2

nan |z|n−1 ≥ 1− r
∞∑
n=2

nan. (15)

The assertion (13) of Theorem 12 would now follow from (14) and (15) by means
of a rather simple consequence of (12) given by

∞∑
n=2

nan ≤
2 (1− α)

[̃2]q(k + 1)− (k + α)(1− λ+ λ[̃2]q)
.

This completes the proof of Theorem 12.

4 Extreme Points of the Function Class UTS(q; k, λ, α)

Theorem 13 Let
f1(z) = z

and

fn(z) = z − 1− α
[̃n]q(k + 1)− (k + α)(1− λ+ λ[̃n]q)

zn (n = 2, 3, . . .).

Then f ∈ UTS(q; k, λ, α) if and only if it can be expressed in the form

f(z) =
∞∑
n=1

λnfn(z),

where λn > 0 and
∞∑
n=1

λn = 1.

7
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Proof. Suppose that

f(z) =
∞∑
n=1

λnfn(z) = λ1f1(z) +
∞∑
n=2

λnfn(z)

= λ1f1(z) +
∞∑
n=2

λn

[
z − 1− α

[̃n]q(k + 1)− (k + α)(1− λ+ λ[̃n]q)
zn

]

= λ1z +
∞∑
n=2

λnz −
∞∑
n=2

λn
1− α

[̃n]q(k + 1)− (k + α)(1− λ+ λ[̃n]q)
zn

=

( ∞∑
n=1

λn

)
z −

∞∑
n=2

λn
1− α

[̃n]q(k + 1)− (k + α)(1− λ+ λ[̃n]q)
zn

= z −
∞∑
n=2

λn
1− α

[̃n]q(k + 1)− (k + α)(1− λ+ λ[̃n]q)
zn .

Then

∞∑
n=2

λn
1− α

[̃n]q(k + 1)− (k + α)
.
[̃n]q(k + 1)− (k + α)

1− α
=

∞∑
n=2

λn

=
∞∑
n=2

λn − λ1

= 1− λ1 ≤ 1.

Thus we have f ∈ UTS(q; k, λ, α).
Conversely, suppose that f ∈ UTS(q; k, λ, α). Since

|an| ≤
1− α

[̃n]q(k + 1)− (k + α)(1− λ+ λ[̃n]q)
,

we may set

λn =
[̃n]q(k + 1)− (k + α)(1− λ+ λ[̃n]q)

1− α
|an| and λ1 = 1−

∞∑
n=2

λn.

8
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Then

f(z) = z +
∞∑
n=2

anz
n = z +

∞∑
n=2

λn
1− α

[̃n]q(k + 1)− (k + α)(1− λ+ λ[̃n]q)
zn

= z +
∞∑
n=2

λn(z + fn(z)) = z +
∞∑
n=2

λnz +
∞∑
n=2

λnfn(z)

=

(
1−

∞∑
n=2

λn

)
z +

∞∑
n=2

λnfn(z) = λ1z +
∞∑
n=2

λnfn(z)

= λ1f1(z) +
∞∑
n=2

λnfn(z) =
∞∑
n=1

λnfn(z)

This completes the proof.
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[3] O. Altıntaş, On a subclass of certain starlike functions with negative coef-
ficients, Math. Japon. 36 (3) (1991), 489–495.

[4] M. Aydoğan, Y. Kahramaner and Y. Polatoğlu, Close-to-convex functions
defined by fractional operator, Appl. Math. Sci. (Ruse) 7 (2013), no. 53-56,
2769–2775.

[5] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly
convex functions and corresponding class of starlike functions, Tamkang J.
Math. 28 (1997), no. 1, 17–32.

[6] K. Brahim and Y. Sidomou, On some symmetric q-special functions,
Matematiche (Catania) 68 (2013), no. 2, 107–122.

[7] L. C. Biedenharn, The quantum group SUq(2) and a q-analogue of the
boson operators, J. Phys. A 22 (1989), no. 18, L873–L878.

[8] G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of
Mathematics and its Applications, 35, Cambridge Univ. Press, Cambridge,
1990.

[9] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl.
155 (1991), no. 2, 364–370.

9

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1472 Nanjundan Magesh et al 1464-1473



[10] F. H. Jackson, On q-functions and a certain difference operator, Transac-
tions of the Royal Society of Edinburgh, 46 (1908), 253-281.

[11] S. Kanas, Norm of pre-Schwarzian derivative for the class of k-uniformly
convex and k-starlike functions, Appl. Math. Comput. 215 (2009), no. 6,
2275–2282.
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ON SOLUTION OF SYSTEM OF INTEGRAL EQUATIONS VIA
FIXED POINT METHOD
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AND DONG YUN SHIN∗

Abstract. In this article, following the approach of F -contractions, we establish a
common fixed point theorem for a pair of self-mappings satisfying F -contraction of
rational type in complete metric spaces. An example is constructed to illustrate this
result. An application to system of integral equations is presented.

Keywords: metric space; fixed point; rational type F -contraction; integral equation.
AMS 2010 Subject Classification: 47H09; 47H10; 54H25.

1

1. Introduction and preliminaries

Banach Contraction Principle has been extended and generalized in many directions
(see [3, 7, 8, 9, 10]). One of the most interesting generalization of it was given by War-
dowski [22]. Later on, Abbas et al.[1] further generalized the concept of F -contraction
and proved certain fixed point results. Hussain and Salimi [13] introduced α-GF con-
traction with respect to a general family of functions G and established Wardowski
type fixed point results in ordered metric spaces. Batra et al. [5, 6] extended the con-
cept of F -contraction on graphs and altered distances. Batra also proved some fixed
point and coincidence point results. Recently, Cosentino and Vetro [11] followed the ap-
proach of F -contraction and obtained some fixed point theorems for Hardy-Rogers-type
self-mappings in complete metric spaces and complete ordered metric spaces.

In this article, following Cosentino and Vetro [11], we prove common fixed point
theorems for a pair of self-mappings satisfying F -contraction of rational type in complete
metric spaces. An example is constructed to illustrate this result. An application to
system of Volterra type integral equations is presented.

Throughout this paper, we denote (0,∞) by R+, [0,∞) by R+
0 , (−∞,+∞) by R and

the set of natural numbers by N. The following concepts and results will be required
for the proofs of main results.

Definition 1. A mapping T : X → X is said to be an F -contraction if it satisfies the
following condition:

d(T (x), T (y)) > 0⇒ t+ F (d(T (x), T (y))) ≤ F (d(x, y)) (1.1)

for all x, y ∈ X and some t > 0. Here F : R+ → R is a mapping satisfying the following
properties:

1∗Corresponding authors.
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(F1) F is strictly increasing.
(F2) For each sequence {an} of positive numbers limn→∞ an = 0 if and only if

limn→∞ F (an) = −∞.
(F3) There exists θ ∈ (0, 1) such that limα→0+(α)θF (α) = 0.

Wardowski [22] established the following result using F -contraction:

Theorem 1. [22] Let (X, d) be a complete metric space and T : X → X be an F -
contraction. Then T has a unique fixed point υ ∈ X and for every X0 ∈ X a sequence
{T n(X0)} is convergent to υ.

We denote by ∆F the set of all functions satisfying the conditions (F1)− (F3).

Example 1. [22] Let F : R+ → R be given by the formula F (α) = lnα. It is clear that
F satisfies (F1)− (F3) for any κ ∈ (0, 1). Each mapping T : X → X satisfying (1.1) is
an F -contraction such that

d(T (x), T (y)) ≤ e−τd(x, y) for all x, y ∈ X with T (x) 6= T (y).

Obviously, for all x, y ∈ X such that T (x) = T (y), the inequality d(T (x), T (y)) ≤
e−τd(x, y) holds, that is, T is a Banach contraction.

Remark 1. From (F1) and (1.1) it is easy to conclude that every F -contraction is
necessarily continuous.

2. Main result

We begin with the following definitions.

Definition 2. Let (X, d) be a metric space. A mapping T : X → X is called a rational
type F -contraction if, for all x, y ∈ X, we have

τ + F (d(T (x), T (y))) ≤ F (N(x, y)) , (2.1)

where F ∈ ∆F and τ > 0, and

N(x, y) = max

{
d(x, y),

d(x, T (x))d(y, T (y))

1 + d(x, y)
,
d(x, T (x))d(y, T (y))

1 + d(T (x), T (y))

}
.

Definition 3. Let (X, d) be a metric space. Mappings S, T : X → X are called a pair
of rational type F -contractions if for all x, y ∈ X, we have

τ + F (d(S(x), T (y))) ≤ F (M(x, y)) , (2.2)

where F ∈ ∆F and τ > 0, and

M(x, y) = max

{
d(x, y),

d(x, S(x))d(y, T (y))

1 + d(x, y)
,
d(x, S(x))d(y, T (y))

1 + d(S(x), T (y))

}
.

The following theorem is one of our main results.

Theorem 2. Let (X, d) be a complete metric space and S, T : X → X be a pair of
mappings such that

(1) (S, T ) is a pair of continuous mappings,
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(2) (S, T ) is a pair of rational type F -contractions.

Then there exists a common fixed point υ of a pair (S, T ) in X.

Proof. We begin with the following observation:

M(x, y) = 0 if and only if x = y is a common fixed point of (S, T ).

Indeed, if x = y is a common fixed point of (S, T ), then T (y) = T (x) = x = y = S(y) =
S(x) and

M(x, y) = max

{
d(x, x),

d(x, S(x))d(y, T (y))

1 + d(x, y)
,
d(x, S(x))d(y, T (y))

1 + d(S(x), T (y))

}
= 0.

Conversely, if M(x, y) = 0, it is easy to check that x = y is a fixed point of S and T .
In order to find common fixed points of S and T for the situation when M(x, y) > 0 for
all x, y ∈ X with x 6= y, we construct an iterative sequence {xn} of points in X such a
way that x2i+1 = S(x2i) and x2i+2 = T (x2i+1) where i = 0, 1, 2, . . . . If xn 6= xn+1 for all
n ≥ 0, then from contractive condition (2.2), we get

F (d(x2i+1, x2i+2)) = F (d(S(x2i), T (x2i+1))) ≤ F (M(x2i, x2i+1))− τ
for all i ∈ N ∪ {0}, where

M(x2i, x2i+1) = max


d(x2i, x2i+1),

d(x2i, S(x2i))d(x2i+1, T (x2i+1))

1 + d(x2i, x2i+1)
,

d(x2i, S(x2i))d(x2i+1, T (x2i+1))

1 + d(S(x2i), T (x2i+1))


= max

{
d(x2i, x2i+1),

d(x2i, x2i+1)d(x2i+1, x2i+2)

1 + d(x2i, x2i+1)
,
d(x2i, x2i+1)d(x2i+1, x2i+2)

1 + d(x2i+1, x2i+2)

}
≤ max {d(x2i, x2i+1), d(x2i+1, x2i+2)} .

If M(x2i, x2i+1) = d(x2i+1, x2i+2), then

F (d(x2i+1, x2i+2)) ≤ F (d(x2i+1, x2i+2))− τ,
which is a contradiction due to F1. Therefore,

F (d(x2i+1, x2i+2)) ≤ F (d(x2i, x2i+1))− τ,
for all i ∈ N ∪ {0}. Hence

F (d(xn+1, xn+2)) ≤ F (d(xn, xn+1))− τ, (2.3)

for all n ∈ N ∪ {0}. By (2.3), we obtain

F (d(xn, xn+1)) ≤ F (d(xn−2, xn−1))− 2τ.

Repeating these steps, we get

F (d(xn, xn+1)) ≤ F (d(x0, x1))− nτ. (2.4)

From (2.4), we obtain limn→∞ F (d(xn, xn+1)) = −∞. Since F ∈ ∆F ,

lim
n→∞

d(xn, xn+1) = 0. (2.5)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1476 MUHAMMAD NAZAM et al 1474-1481



M. NAZAM, M. ARSHAD, C. PARK, A. HUSSAIN, AND D. SHIN

From the property (F3) of F -contraction, there exists κ ∈ (0, 1) such that

lim
n→∞

((d(xn, xn+1))
κ F (d(xn, xn+1))) = 0. (2.6)

By (2.4), for all n ∈ N, we obtain

(d(xn, xn+1))
κ (F (d(xn, xn+1))− F (d(x0, x1))) ≤ − (d(xn, xn+1))

κ nτ ≤ 0. (2.7)

Considering (2.5), (2.6) and letting n→∞ in (2.7), we have

lim
n→∞

(n (d(xn, xn+1))
κ) = 0. (2.8)

Since (2.8) holds, there exists n1 ∈ N, such that n (d(xn, xn+1))
κ ≤ 1 for all n ≥ n1 or,

d(xn, xn+1) ≤
1

n
1
κ

for all n ≥ n1. (2.9)

Using (2.9), we get for m > n ≥ n1,

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·+ d(xm−1, xm);

=
m−1∑
i=n

d(xi, xi+1) ≤
∞∑
i=n

d(xi, xi+1)

≤
∞∑
i=n

1

i
1
k

.

The convergence of the series
∑∞

i=n

1

i
1
κ

entails limn,m→∞ d(xn, xm) = 0. Hence {xn} is a

Cauchy sequence in (X, d). Since (X, d) is a complete metric space, there exists υ ∈ X
such that xn → υ as n→∞, moreover, x2n+1 → υ and x2n+2 → υ.

Now the continuity of T implies

υ = lim
n→∞

xn = lim
n→∞

x2n+1 = lim
n→∞

x2n+2 = lim
n→∞

T (x2n+1) = T ( lim
n→∞

x2n+1) = T (υ).

Analogously, υ = S(υ). Thus we have S(υ) = T (υ) = υ. Hence (S, T ) has a common
fixed point. Now we show that υ is the unique common fixed point of S and T . Assume
the contrary, that is, there exists ω ∈ X such that ω = T (ω). From the contractive
condition (2.2), we have

τ + F (d(S(υ), T (ω))) ≤ F (M(υ, ω)) , (2.10)

where

M(υ, ω) = max

{
d(υ, ω),

d(υ, S(υ))d(ω, T (ω))

1 + d(υ, y)
,
d(υ, S(υ))d(ω, T (ω))

1 + d(S(υ), T (ω))

}
.

From (2.10), we have
τ + F (d(υ, ω)) ≤ F (d(υ, ω)) , , (2.11)

which implies
d(υ, ω) < d(υ, ω),

which is a contradiction. Hence υ = ω and υ is a unique common fixed point of a pair
(S, T ). �
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Let us consider an example to illustrate Theorem 2.

Example 2. Let X = [1,∞] and d (x, y) = |x− y| . Then (X, d) is a complete metric
space. Define the mappings S, T : X → X as follows:

S(x) = x2 and T (x) = x+ 3 for all x ∈ X.

Define the function F : R+ → R by F (x) = ln(x) for all x ∈ R+ > 0 and τ > 0.
Then the contractive condition (2.2) is satisfied. Indeed, for all x, y ∈ X, the following
inequality

τ + ln (d(S(x), T (y))) ≤ ln (M(x, y))

holds. Particularly, for x = 2 and y = 3, we have

M(2, 3) = max

{
d(2, 3),

d(2, S(2))d(3, T (3))

1 + d(2, 3)
,
d(2, S(2))d(3, T (3))

1 + d(S2, T3)

}
= max {1, 3, 2} = 3

and

d(S2, T3) = d(4, 6) = 2.

Thus

τ + ln (d(S(2), T (3))) = τ + ln 2 ≤ ln (M(2, 3)) = ln 3,

which implies

τ + F (d(S(x), T (y))) ≤ F (M(x, y)) .

Hence all the hypotheses of Theorem 2 are satisfied and so (S, T ) have a common fixed
point.

By setting S = T , we obtain the following result.

Corollary 1. Let (X, d) be a complete metric space and T : X → X be a mapping such
that

(1) T is a continuous mapping,
(2) T is a rational type F -contraction.

Then T has a unique fixed point υ in X.

Remark 2. If we set N(x, y) = max {d(x, y), d(x, T (x)), d(y, T (y))} in (2.1), then Corol-
lary 1 remains true. Similarly, if we set M(x, y) = max {d(x, y), d(x, T (x)), d(y, S(y))}
in (2.2), then Theorem 2 remains true.

3. Application to system of integral equations

Now we discuss an application of fixed point theorem, proved in the previous section,
in solving the system of Volterra type integral equations. Such a system is given by the
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following equations

u(t) = f(t) +

t∫
0

K1(t, s, u(s))ds. (3.1)

w(t) = f(t) +

t∫
0

K2(t, s, w(s))ds. (3.2)

for all t ∈ [0, a], and a > 0. We shall show, by using Theorem 2, that the solution of
integral equations (3.1) and (3.2) exists. Let C([0, a],R) be the space of all continuous
functions defined on [0, a]. For u ∈ C([0, a],R), define supremum norm as: ‖u‖τ =
sup
t∈[0,a]

{u(t)e−τt}, where τ > 0. Let C([0, a],R) be endowed with the metric

dτ (u, v) = sup
t∈[0,a]

‖ |u(t)− v(t)| e−τt‖τ (3.3)

for all u, v ∈ C([0, a],R). Obviously, C([0, a],R, ‖ · ‖τ ) is a Banach space.
Now we prove the following theorem to ensure the existence of solution of system of

integral equations.

Theorem 3. Assume the following conditions are satisfied:
(i) K1, K2 : [0, a]× [0, a]× R→ R and f, g : [0, a]→ R are continuous;
(ii) Define the operators

Su(t) = f(t) +

t∫
0

K1(t, s, u(s))ds,

Tu(t) = f(t) +

t∫
0

K2(t, s, u(s))ds,

and there exists τ ≥ 1 such that

|K1(t, s, u)−K2(t, s, v)| ≤ τe−τ [M(u, v)]

for all t, s ∈ [0, a] and u, v ∈ C([0, a],R), where

M(u, v) = max{|u(t)− v(t)| , |u(t)− Su(t)| |v(t)− Tv(t)|
1 + |u(t)− v(t)|

,
|u(t)− Su(t)| |v(t)− Tv(t)|

1 + |Su(t)− Tv(t)|
}.

Then the system of integral equations given in (3.1) and (3.2) has a unique solution.
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Proof. By assumption (ii), we have

|Tu(t)− Sv(t)| =

t∫
0

|K1(t, s, u(s)−K2(t, s, v(s)))| ds

≤
t∫

0

τe−τ ([M(u, v)]e−τs)eτsds

≤
t∫

0

τe−τ‖M(u, v)‖τeτsds

≤ τe−τ‖M(u, v)‖τ

t∫
0

eτsds

≤ τe−2τ‖M(u, v)‖τ
1

τ
eτt

≤ e−τ‖M(u, v)‖τeτt.
This implies

|Tu(t)− Sv(t)| e−τt ≤ e−τ‖M(u, v)‖τ ,
that is,

‖Tu(t)− Sv(t)‖τ ≤ e−τ‖M(u, v)‖τ .
So we have

τ + ln ‖Tu(t)− Sv(t)‖τ ≤ ln ‖M(u, v)‖τ .
Thus all the conditions of Theorem 2 are satisfied. Hence the system of integral equa-
tions given in (3.1) and (3.2) has a unique common solution. �
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On continuous Fibonacci functions
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Abstract. In this paper, we define and study a function F : [0,∞)→ R and extensions F : R→ C, F̃ : C→ C

which are continuous and such that if n ∈ Z, the set of all integers, then F (n) = Fn, the nth Fibonacci number

based on F0 = F1 = 1. If x is not an integer and x < 0, then F (x) may be a complex number, e.g., F (−1.5) = 1
2 +i.

If z = a+ bi, then F̃ (z) = F (a) + iF (b− 1) defines complex Fibonacci numbers. In connection with this function

(and in general) we define a Fibonacci derivative of f : R→ R as (4f)(x) = f(x+ 2)− f(x+ 1)− f(x) so that

if (4f)(x) ≡ 0 for all x ∈ R, then f is a (real) Fibonacci function. A complex Fibonacci derivative 4̃ is given as

4̃f(a+ bi) = 4f(a) + i4 f(b− 1) and its properties are discussed in same detail.

1. Introduction

Fibonacci-numbers have been studied in many different forms for centuries and the literature on the subject is

consequently incredibly vast. One of the amazing qualities of these numbers is the variety of mathematical models

where they play some sort of role and where their properties are of importance in elucidating the ability of the

model under discussion to explain whatever implications are inherent in it. The fact that the ratio of successive

Fibonacci numbers approaches the Golden ratio (section) rather quickly as they go to infinity probably has a

good deal to do with the observation made in the previous sentence. Surveys and connections of the type just

mentioned are provided in [1] and [2] for a very minimal set of examples of such texts, while in [7] Kim and Neggers

showed that there is a mapping D : M → DM on means such that if M is a Fibonacci mean so is DM , that if

M is the harmonic mean, then DM is the arithmetic mean, and if M is a Fibonacci mean, then limn→∞DnM is

the golden section mean. Hyers-Ulam stability of Fibonacci functional equation was studied in [6]. Surprisingly

novel perspectives are still available and will presumably continue to be so for the future as long as mathematical

investigations continue to be made. In the following the authors of the present paper are making another small

offering at the same spot many previous contributors have visited in both recent and more distant pasts.

Han et al. [4] considered several properties of Fibonacci sequences in arbitrary groupoids. They discussed

Fibonacci sequences in both several groupoids and groups. The present authors [8] introduced the notion of

generalized Fibonacci sequences over a groupoid and discussed these in particular for the case where the groupoid

contains idempotents and pre-idempotents. Using the notion of Smarandache-type P -algebras they obtained

several relations on groupoids which are derived from generalized Fibonacci sequences.

In [5] Han et al. discussed Fibonacci functions on the real numbers R, i.e., functions f : R → R such that

for all x ∈ R, f(x + 2) = f(x + 1) + f(x), and developed the notion of Fibonacci functions using the concept of

f -even and f -odd functions. Moreover, they showed that if f is a Fibonacci function then limx→∞
f(x+1)
f(x) = 1+

√
5

2 .

KNS[4445] discussed Fibonacci functions using the (ultimately) periodicity and we also discuss the exponential

0∗ Correspondence: Tel.: +82 33 248 2011, Fax: +82 33 256 2011 (K. S. So).
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Fibonacci functions. Especially, given a non-negative real-valued function, we obtain several exponential Fibonacci

functions.

In this paper we are interested in describing properties of a function F : R→ C, the complex numbers, where

F (x) := (Fbx−1c)
x−bxc+Fbxc+ (x−bxc− 1) and bxc is the greatest integer function. It follows that if x = n ∈ Z,

then bnc = n and F (n) = (Fn−1)0 + Fn + (n − n − 1), where (Fn−1)0 = 1 implies F (n) = Fn with F0 = F1 = 1

and F−n = (−1)nFn−2 so that F−1 = −F−1 = 0 for example. If one computes F1 directly, then F1 = F0 + F−1

and 1 = 1 + 0 yields F0 = 1 as well.

It also follows that F (x) is not itself a Fibonacci function in the sense that F (x + 2) 6= F (x + 1) + F (x) if

x − bxc 6= 0, i.e., if x 6∈ Z. Nevertheless it is a very interesting function which allows one to define continuous

Fibonacci numbers in an interesting manner. If one computes F (−1.5) for example, then one finds that F (−1.5) =
1
2 +i, which suggests that the function F (x) may deserve looking at in the context of the study of the zeta-function.

Given the fact that F : R→ C and that F (R)∩C 6= ∅, it also becomes a question of interest to study possible

complex extensions of F to F̃ : C → C where z = a + bi means F̃ (z) = F (a) + iF (b − 1), so that if z = a, then

F̃ (z) = F (a) + iF (−1), where F (−1) = 0 implies F̃ (a) = F (a), i.e., F̃ is an extension of F . According to this

construction we find that F̃ (1 + i) = F (1) + iF (0) = 1 + i as one would hope.

A second component of the paper is a study of properties of the Fibonacci derivative4f of a function f : R→ R,

given by the formula (4f)(x) = f(x+ 2)− f(x+ 1)− f(x), so that (4f)(x) ≡ 0 means that f is then a Fibonacci

function. If one notes that (4f) exists for any function f : R → R, then a variety of questions may be asked

about properties of this operator. For example (4f)(x) ≡ f(x) is a simple type of Fibonacci derivative equation

with many types of solutions. Other analogs of standard differential equations may also be addressed.

Given that F : R→ C is itself a function of interest in this context, 4F : R→ C is looked at below. Finally,

a complex version 4̃F : C → C defined by 4̃F (z) = 4̃F (a + bi) = 4F (a) + i4 F (b − 1), reduces for b = 0 to

4̃F (a) = 4F (a), i.e., 4̃ extends the operator 4, and thus again it is a matter of interest to study the behavior

of the function 4̃F̃ (z) for complex numbers.

Note that because of the very rich structure of relations among the coefficients Fn, we may expect there to

eventually be development of an equally rich structure of relations among the various values of F (x) (and F̃ (z))

extending the ones already known.

2. Preliminaries

A function f defined on the real numbers is said to be a Fibonacci function ([5]) if it satisfies the formula

f(x+ 2) = f(x+ 1) + f(x)

for any x ∈ R, where R (as usual) is the set of real numbers.

Example 2.1. ([5]) Let f(x) := ax be a Fibonacci function on R where a > 0. Then axa2 = f(x + 2) =

f(x+ 1) + f(x) = ax(a+ 1). Since a > 0, we have a2 = a+ 1 and a = 1+
√
5

2 . Hence f(x) = (1+
√
5

2 )x is a Fibonacci

function, and the unique Fibonacci function of this type on R.

If we let u0 = 0, u1 = 1, then we consider the full Fibonacci sequence: · · · , 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, · · · , i.e.,

u−n = (−1)nun for n > 0, and un = Fn, the nth Fibonacci number.
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Example 2.2. ([5]) Let {un}∞n=−∞ and {vn}∞n=−∞ be full Fibonacci sequences. We define a function f(x)

by f(x) := ubxc + vbxct, where t = x − bxc ∈ (0, 1). Then f(x + 2) = ubx+2c + vbx+2ct = u(bxc+2) + v(bxc+2)t =

(u(bxc+1) +ubxc) + (v(bxc+1) + vbxc)t = f(x+ 1) + f(x) for any x ∈ R. This proves that f is a Fibonacci function.

Note that if a Fibonacci function is differentiable on R, then its derivative is also a Fibonacci function.

Proposition 2.3. ([5]) Let f be a Fibonacci function. If we define g(x) := f(x+ t) where t ∈ R for any x ∈ R,

then g is also a Fibonacci function.

For example, since f(x) = (1+
√
5

2 )x is a Fibonacci function, g(x) = ( 1+
√
5

2 )x+t = ( 1+
√
5

2 )tf(x) is also a Fibonacci

function where t ∈ R.

Theorem 2.4. ([5]) If f(x) is a Fibonacci function, then the limit of the quotient f(x+1)
f(x) exists.

Corollary 2.5. ([5]) If f(x) is a Fibonacci function, then

lim
x→∞

f(x+ 1)

f(x)
=

1 +
√

5

2

3. Continuous Fibonacci functions

Given a real number x 6∈ Z, we define a map F (x) by

(1) F (x) := (Fbx−1c)
x−bxc + Fbxc + (x− bxc − 1)

where {Fn} is the sequence of Fibonacci numbers with F0 = F1 = 1.

Example 3.1. We compute some F (x) as follows: F (1.5) = (Fb1.5−1c)
1.5−b1.5c +Fb1.5c + (1.5 − b1.5c −

1) = (F0)0.5 + F1 + (1.5 − 1 − 1) = 1.5 and F (1.75) = (F0)0.75 + F1 + (1.75 − b1.75c − 1) = 1.75. Moreover,

F (3.25) = (Fb3.25−1c)
0.25 + Fb3.25c + (3.25− b3.25c − 1) = (F2)0.25 + F3 + (3.25− 3− 1) = 4

√
2 + 2.25.

Theorem 3.2. If we define F (n) := Fn, the nth Fibonacci function, then F (x) is continuous for all x ∈ R.

Proof. Let x := n + ε where n ∈ Z and 0 < ε < 1. Then F (x) = F εn−1 + Fn + (ε − 1). It follows that

limε→0+ F (x) = limε→0+(F εn−1 + Fn + (ε− 1)) = Fn. Let x := n− ε where n ∈ Z and 0 < ε < 1. Then

F (x) = (Fbn−ε−1c)
n−ε−bn−εc + Fbn−εc + (n− ε− bn− εc − 1)

= (Fn−2)n−ε−(n−1) + Fn−1 + (n− ε− (n− 1)− 1)

= (Fn−2)1−ε + Fn−1 − ε

It follows that limε→0+ F (x) = limε→0+ [(Fn−2)1−ε + Fn−1 − ε] = Fn−2 + Fn−1 = Fn. �

In Theorem 3.2, we call the real number F (x) the (continuous) Fibonacci function at x.

Let f : R→ R be a real-valued function. We shall consider the expression

(4f)(x) := f(x+ 2)− f(x+ 1)− f(x)

to be the Fibonacci derivative of f(x). For example, if Φ := 1+
√
5

2 , then f(x) = Φx yields (4f)(x) = Φx+2 −
Φx+1 − Φx = Φx(Φ2 − Φ− 1) = 0 and similarly, if f is any Fibonacci function, then (4f)(x) = 0 for all x ∈ R.
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We are next concerned with determining the Fibonacci derivative of F (x) as we have defined above.

Theorem 3.3. If F (x) is a continuous Fibonacci function, then its Fibonacci derivative is

(2) (4F )(x) = (Fn+1)ε − (Fn)ε − (Fn−1)ε − (ε− 1)

where x = n+ ε, n ∈ Z, 0 < ε < 1

Proof. Given x = n+ ε, n ∈ Z, 0 < ε < 1, by using the formula (1), we obtain

(4F )(x) = F (n+ 2 + ε)− F (n+ 1 + ε)− F (n+ ε)

= (Fbn+1+εc)
ε + Fn+2 + (ε− 1)

−(Fbn+εc)
ε − Fn+1 − (ε− 1)

−(Fbn−1+εc)
ε − Fn − (ε− 1)

= (Fn+1)ε − (Fn)ε − (Fn−1)ε − (ε− 1)

�

Note that the map F (x) in Theorem 3.3 is not necessarily a Fibonacci function.

The formula (2) is a function depending on ε, and so we need to know the value of d
dε [4F (x)].

d

dε
[(4F )(x)] =

d

dε
[(Fn+1)ε − (Fn)ε − (Fn−1)ε − (ε− 1)]

= ln(Fn+1)(Fn+1)ε − ln(Fn)(Fn)ε − ln(Fn−1)(Fn−1)ε − 1

We denote d
dε [4F (x)] by (4F )′(x).

Proposition 3.4. If F (x) is a continuous Fibonacci function, then

(3) (4(4F ))(x) = (Fn+3)ε − 2(Fn+2)ε − (Fn+1)ε + 2(Fn)ε + (Fn−1)ε + (ε− 1)

Proof. It follows from the formula (2) that

(4(4F ))(x) = 4F (x+ 2)−4F (x+ 1)−4F (x)

= (Fn+3)ε − (Fn+2)ε − (Fn+1)ε − (ε− 1)

−(Fn+2)ε + (Fn+1)ε − (Fn)ε + (ε− 1)

−(Fn+1)ε + (Fn)ε − (Fn−1)ε + (ε− 1)

= (Fn+3)ε − 2(Fn+2)ε − (Fn+1)ε + 2(Fn)ε + (Fn−1)ε + (ε− 1),

proving the proposition. �

Proposition 3.5. (4F )(x) is a continuous function and (4F )(n) = 0 for all n ∈ Z.

Proof. It follows from Theorem 3.3 that (4F )(x) is a continuous function. Since limε→0(4F )(x) = limε→0[(Fn+1)ε−
(Fn)ε−(Fn−1)ε−(ε−1)] = 0 and limε→1(4F )(x) = limε→1[(Fn+1)ε−(Fn)ε−(Fn−1)ε−(ε−1)] = Fn+1−Fn−Fn−1 =

0 for any n ∈ Z. �

Theorem 3.6. If F (x) is a continuous Fibonacci function, then there exists a γn ∈ (n, n + 1) such that

(4F )′(γn) = 0 for all n ∈ Z.
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Proof. Since (4F )(x) is a continuous function and (4F )(n) = (4F )(n + 1) = 0, by Rolle’s Theorem, there

exists a γn ∈ (n, n+ 1) such that (4F )′(γn) = d
dε (4F )(γn) = 0. �

Theorem 3.7. If F (x) is a continuous Fibonacci function, then (4F )(x) is concave down.

Proof. If we let T (x) := d2

dε2 [(4F )(x)], then

T (x) =
d

dε
[
d

dε
((4F )(x))]

=
d

dε
[ln(Fn+1)(Fn+1)ε − ln(Fn)(Fn)ε − ln(Fn−1)(Fn−1)ε − 1]

= {ln(Fn+1)}2(Fn+1)ε − {ln(Fn)}2(Fn)ε − {ln(Fn−1)}2(Fn−1)ε.

Let n be very large so that Fk+1

Fk
= Φ = 1+

√
5

2 . It follows that

T (x)

{ln(Fn−1)}2(Fn−1)ε
= { ln(Fn+1)

ln(Fn−1)
}2[

Fn+1

Fn−1
]ε − { ln(Fn)

ln(Fn−1)
}2[

Fn
Fn−1

]ε − 1

= {2 ln Φ + ln(Fn−1)

ln(Fn−1)
}2(Φ)2ε

−{ ln Φ + ln(Fn−1)

ln(Fn−1)
}2(Φ)ε − 1.

If we let n→∞, then

(4) lim
n→∞

T (x)

{ln(Fn−1)}2(Fn−1)ε
= Φ2ε − Φε − 1

If we let ε := 1
2 , then Φ2ε − Φε − 1 = Φ−

√
Φ − 1 and Φ − 1 =

√
5−1
2 ,
√

Φ =

√
1+
√
5

2 , so that (Φ − 1)2 − (
√

Φ)2 =

4−4
√
5

4 < 0, proving that T (x) < 0. This shows that (4F )(x) is concave down. �

We discuss a Fibonacci derivative of a function which is not a Fibonacci function as below.

Proposition 3.8. Let f(x) := ax+ b for some a, b ∈ R. Then

4k+1(f)(x) = (−1)k+1ax+ (−1)k[(k + 1)a− b]

Proof. The Fibonacci derivative (4f)(x) of f(x) = ax+ b is f(x+ 2)− f(x+ 1)− f(x) = [a(x+ 2) + b]− [a(x+

1) + b] − [ax + b] = −ax + a − b. Similarly, we obtain [42(f)](x) = ax − 2a + b, [43(f)](x) = −ax + 3a − b and

[44(f)](x) = ax− 4a+ b. Assume 4k(f)(x) = (−1)kax+ (−1)k−1(ka− b). Then

4k+1(f)(x) = 4[4k(f)(x)]

= 4k(f)(x+ 2)−4k(f)(x+ 1)−4k(f)(x)

= (−1)ka(x+ 2) + (−1)k−1(ka− b)

−[(−1)ka(x+ 1) + (−1)k−1(ka− b)]

−[(−1)kax+ (−1)k−1(ka− b)]

= (−1)k+1ax+ (−1)k[(k + 1)a− b].

�

Note that [(4k+3 +4k+2)− (4k+1 +4k)](f)(x) = (−1)k+22a− (−1)k2a = 0.
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We need to find some conditions for a map f : R→ R satisfying (4f)(x) = f(x).

Proposition 3.9. Let f : R→ R be a map. If it satisfies the condition either (i) 2f(x) = f(x+ 2)− f(x+ 1)

or (ii) f(x+ 1) = −f(x) for all x ∈ R, then (4f)(x) = f(x).

Proof. Straightforward. �

Example 3.10. If f(x) := 2x, then 1
2 (2x+2 − 2x+1) = 2x and hence 4(2x)(x) = 2x. If we let f(x) := sin(πx),

then f(x+ 1) = sinπ(x+ 1) = − sinπx = −f(x) and hence 4(sinπx)(x) = sinπx.

Now, we define a function f : R→ R satisfying the condition: 2f(x) = f(x+ 2)− f(x+ 1). If we make such a

function, then it satisfies the condition (4f)(x) = f(x).

Suppose that one defines f(x) for 0 ≤ x < 2 at will. Then for x ∈ [2, 3) one defines f(2 + θ) := 2f(θ) + f(1 + θ)

where 0 ≤ θ < 1. If f(x) has been defined for x ∈ [m−1,m), then we define f(m+θ) := 2f((m−2)+θ)+f(m−1+θ),

where 0 ≤ θ < 1. Then f(x) is uniquely determined on [0,∞). To define f(x) for [−1, 0), we have f(1 + θ) =

2f(−1 + θ) + f(θ) or f(−1 + θ) = (f(1 + θ)− f(θ))/2, and thus f(−m+ θ) = [f(−m+ 2 + θ)− f(−m+ 1 + θ)]/2

inductively as well to obtain f(x) defined on the entire real line.

Example 3.11. if f(x) := 1 on [0, 2), then f(2+θ) = 2f(θ)+f(1+θ) = 2+1 = 3, f(3+θ) = 2f(1+θ)+f(2+θ) =

5 and f(4 + θ) = 2f(2 + θ) + f(3 + θ) = 2 · 3 + 5 = 11. If we take F ∗1 = 1, F ∗2 = 3, F ∗3 = 5, F ∗4 = 11, · · · , then

{F ∗n} is a Fibonacci sequence type satisfying F ∗n+1 = 2F ∗n−1 + F ∗n . We have f(4 + θ) = 2f(2 + θ) + f(3 + θ) =

5f(1 + θ) + 6f(θ) = F ∗3 f(1 + θ) + 2F ∗2 f(θ). Assume that f(n+ θ) = F ∗n−1f(1 + θ) + 2F ∗n−2f(θ). Then

f(n+ 1 + θ) = 2f(n− 1 + θ) + 2f(n+ θ)

= 2[F ∗n−2f(1 + θ) + 2F ∗n−3f(θ)] + [F ∗n−1f(1 + θ) + 2F ∗n−2f(θ)]

= (2F ∗n−2 + F ∗n−1)f(1 + θ) + 2(2F ∗n−3 + F ∗n−2)f(θ)

= F ∗nf(1 + θ) + 2F ∗n−1f(θ)

4. Complex Fibonacci functions

Given the Fibonacci sequence F0 = 1, F1 = 1, F2 = 2, F3 = 3, · · · , we may compute F−n, n = 1, 2, · · · via the

equation

(5) F−n+2 = F−n+1 + F−n

so that F−1 = F1−F0 = 0, F−2 = F0−F−1 = 1−0 = 1, F−3 = F−1−F−2 = 0−1 = −1, F
4

= F−2−F−3 = 1−(−1) =

2, F−5 = F−3 − F−4 = −1− 2 = (−1)5F3 and F−6 = F−4 − F−5 = (−1)6F4. Assume F−n = (−1)nFn−2 (n ≥ 5).

Then F−(n+1) = F−(n+1)+2 − F−(n+1)+1 = (−1)n−1Fn−1 − (−1)nFn = (−1)n+1(Fn−3 + Fn−2) = (−1)nFn−1

so that F−2 = (−1)2F0 = 1, F−3 = (−1)1F1 = −1. For F−1, the formula would yield F−1 = (−1)1F−1, i.e.,

F−1 = −F−1 which would imply F−1 = 0 as well. Hence we have the result: for n ≥ 1,

(6) F−n = (−1)nFn−2

Thus, we may apply the formula (1) for x < 0 as well. For example, F (−1.5) = (Fb−1.5−1c)
(−1.5−b−1.5c)+Fb−1.5c+

(−1.5 − b−1.5c − 1) = (F−3)0.5 + F−2 + (−1.5 − (−2) − 1) =
√
−1 + 1 − 1

2 = 1
2 + i, i.e., F (−1.5) = 1

2 + i, the

complex number.
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On continuous Fibonacci functions

Example 4.1. We compute F (−4 + θ), (0 ≤ θ < 1) as follows:

F (−4 + θ) = (Fb−4+θ−1c)
−4+θ−b−4+θc + Fb−4+θc + (−4 + θ − b−4 + θc − 1)

= (F−5)θ + F−4 + (θ − 1)

= (−3)θ + 2 + (θ − 1)

= 3θ(−1)θ + θ + 1

where (−1)θ = expθ ln(−1), so that ln(−1) = Log(−1), where Log(−1) is a “suitable branch of the Log-function”.

Note that i2 = −1, so Log(−1) = Log(i2) = 2Log(i) = 2 ln(i). If we set ln i := a+bi, then expln i = i = expa expb i

and a = 0, b = π
2 yields ln i = π

2 i. Thus 2 ln i = πi = Log(−1) and (−1)θ = expπθi, e.g., θ = 1 yields

(−1)1 = expπi = −1 as required. Thus we set (−3)θ = 3θ expπθi = 3θ(cosπθ + i sinπθ). Hence

F (−4 + θ) = (3θ cosπθ + 1 + θ) + (3θ sinπθ)i

Hence the evaluation of F (x) for x < 0 may involve complex numbers.

Definition 4.2. Given a complex number z := a+ bi ∈ C, we define a map F̃ : C→ C by

F̃ (z) := F (a) + iF (b− 1)

where F (x) is the continuous Fibonacci function on R. We call such a map F̃ a complex Fibonacci function.

Given a real number a ∈ R, we have F̃ (a) = F̃ (a+ i0) = F (a)+ iF (−1) = F (a), so that F̃ extends the function

F already defined on R to the complex numbers C.

Proposition 4.3. Given a Gaussian integer z = m+ in (m,n ∈ Z), we have

F̃ ((m+ 2) + (n+ 3)i) = F̃ ((m+ 1) + (n+ 2)i) + F̃ (m+ (n+ 1)i))

Proof. Since F̃ (m+ni) = F (m) +F (n− 1)i = Fm +Fn−1i, we obtain F̃ ((m+ 2) + (n+ 3)i) = Fm+2 +Fn+2i =

(Fm+1 + Fn+1i) + (Fm + Fni) = F̃ ((m+ 1) + (n+ 2)i) + F̃ (m+ (n+ 1)i)). �

Using the fact that the Fibonacci derivative is a linear mapping, we define the Fibonacci derivative for complex

Fibonacci numbers as follows: Given z = a+ bi (a, b ∈ R),

4̃F (z) := 4F (a) + i4 F (b− 1)

Proposition 4.4. Given a complex Fibonacci function F̃ (z), we have

4̃F̃ (z) = F̃ (z + 2(1 + i))− F̃ (z + 1 + i)− F̃ (z)

Proof. Given z := a+ bi ∈ R, we have

4̃F̃ (z) = 4F (a) + i4 F (b− 1)

= [F (a+ 2)− F (a+ 1)− F (a)] + i[F (b+ 1)− F (b)− F (b− 1)]

= F̃ ((a+ 2) + i(b+ 2))− F̃ ((a+ 1) + i(b+ 1))− F̃ (a+ ib)

= F̃ (z + 2(1 + i))− F̃ (z + 1 + i)− F̃ (z),
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i.e., 4̃ is the complex Fibonacci derivative. �

5. Concluding remark

As was already been mentioned in the introduction and has been demonstrated in the paper, the extensions of

{Fn}n∈Z to F (x) and F̃ (z) show themselves to be rather remarkable functions. We should note that F (0) = F (1) =

1, only selects one among a family of functions of this type. Considering the usual property limx→∞
f(x+1)
f(x) = 1+

√
5

2

for Fibonacci function f : R → R, it is naturally of interest to check on a variety of limit problems of this type

and discover properties and solutions to these problems among others.

6. Future works

One area which needs further investigation is the adapting of the theory developed above to general groupoids.

In order to do this we will need to reduce formulas such as given above, which involve two (closely related) binary

operations to those using only one such binary operation. Thus, consider an arbitrary groupoid (X, ∗) and an

element a ∈ X. We consider functions f : X → X such that (5caf)(x) = (f(x)∗f(x∗a))∗f((x∗a)∗a) ≡ c and let

these be (a, c)-(X, ∗)-Fibonacci-functions. That this is a true generalization can be seen as follows. Let (X, ∗) =

(R,−) and let a = 1, c = 0. Then (50
1f)(x) = f(x)−f(x−1)−f(x−2) = 0 means f(x) = f(x−1)+f(x−2), i.e.,

an (1, 0)-(R,−)-Fibonacci-function as defined above. At the same time, if (4f)(x) = f(x+ 2)− f(x+ 1)− f(x),

then (4f)(x− 2) = f(x)− f(x− 1)− f(x− 2) = (50
1f)(x), so that 4f is a translation of 50

1f on (R,−). Using

these approach one hopes to develop very general Fibonacci properties which may be directly applied to a great

variety of situations and thus also with an improved chance for possible applications, due to a much larger range

of possible models which may be available. Therefore it is among our plans to follow through with this approach

as well as what has been mentioned in the concluding remark section also.
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Abstract. For a bivariate function on the unit square, if we extend it robustly into a periodic function

on the plane, then its Fourier coefficients decay very slowly due to the discontinuity on the boundary of the

unit square, therefore, we need a lot of Fourier coefficients to reconstruct this bivariate function. In order to

solve this problem, for any bivariate smooth function on the unit square, we introduce a Fourier expansion with

a polynomial term and several polynomial factors such that the corresponding Fourier coefficients decay fast.

Using this expansion, we can construct a good approximation tool for any bivariate function on the unit square.

1. Introduction

It is well-known that smooth period functions can be approximated well by Fourier series. But, for a

bivariate function f on the unit square [0, 1]2, if we extend it into a periodic function on the plane, then its

Fourier coefficients decay very slowly due to the discontinuity on the boundary of [0, 1]2. So we need a lot of

Fourier coefficients to reconstruct this bivariate function. In order to reconstruct f by fewest Fourier coefficients,

we will develop a new approximation tool in this paper. We first construct four simple univariate polynomial

ϕi (i = 1, ..., 4) of degree 3 which is independent of f . With the help of these polynomials, we express f into a

sum:

f = f1 + f2 + f3.

In this decomposition formula, f1 is a linear combination of ϕi(x)ϕj(y) (i, j = 1, ..., 4), f2 is a sum of products

of a polynomial ϕi and a univariate function, and f3 is a bivariate function whoes partial derivatives vanish

on the boundary of [0, 1]2. Then we expand these univariate functions and this bivariate function into Fourier

series, where the corresponding Fourier coefficients will decay fast. We call this process a Fourier expansion

of f with a polynomial term and several polynomial factors. Based on this expansion, we can develop a good

approximation tool of f by using the partial sums of these univariate Fourier series and the hyperbolic cross

truncation of bivariate Fourier series. Precisely say, for a function f satisfying ∂4f
∂x2∂y2 ∈ C([0, 1]2), if we use our

∗This research is supported by National Key Science Programme for Global Change Research 2015CB953602, Beijing Higher
Education Young Elite Teacher Project, and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State
Education Ministry.
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approximation tool, then the approximation error is equivalent to log4 Nd

N3
d

, however, if we directly expand f into

Fourier series, the approximation errors of its partial sums and hyperbolic cross truncation are equivalent to
1√
Nd

, log2 Nd

Nd
, respectively, where Nd is the number of Fourier coefficients used. It is clear that our approximation

tool is much better than traditional Fourier approximation. At the end of this paper, we will extend these results

to the case of random processes.

Throughout this paper we always assume bivariate functions on [0, 1]2 are real-valued. Denote by {0, 1}2
vertexes of the unit square [0, 1]2 and by ∂([0, 1]2) the boundary of [0, 1]2. We say f ∈ C(2,2)([0, 1]2) if ∂4f

∂x2∂y2

is a continuous function on [0, 1]2. Denote by sN (f ;x, y) the Fourier series partial sum of f on [0, 1]2, i.e.,

sN (f ;x, y) =
∑

|m|≤N

∑

|n|≤N

cmn(f) e2πimx e2πiny.

Denote by s
(h)
n (f ;x, y) the Fourier series hyperbolic cross truncation of f on [0, 1]2, i.e.,

s
(h)
N (f ;x, y) =

N∑
|m|=0

cm0(f) e2πimx

+
N∑

|n|=1

c0n e2πiny +
∑

1≤|mn|≤N

cmn(f) e2πi(mx+ny).

(1, 1)

For a random variable ξ, denote by E[ξ] and Var(ξ) its expectation and variance, respectively. For two

random variables ξ, η, denote by Cov(ξ, η) their covariance. We also always assume that ξ is real-valued. The

concept of the random calculus may refer the reference [2,6].

This paper is organized as follows: In section 2 we give a decomposition formula of a bivariate function on

[0, 1]2. In section 3 we discuss Fourier expansions with polynomial term and polynomial factors and estimate

Fourier coefficients. In Section 4 we present a new approximation tool and estimate the corresponding approx-

imation error. In Section 5 we generalize these results to random processes on [0, 1]2.

2. Decomposition of bivariate functions on the unit square

Suppose that f(x, y) is a real-valued function on [0, 1]2 and f ∈ C(2,2)([0, 1]2). First we introduce four

fundamental polynomials:
ϕ1(x) = (1 + 2x)(x− 1)2 = −(3− 2x)x2 + 1,

ϕ2(x) = (3− 2x)x2 = −ϕ1(x) + 1,

ϕ3(x) = x(x− 1)2,

ϕ4(x) = x2(x− 1)

(2.1)

2
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satisfying the following conditions

ϕ1(0) = 1, ϕ1(1) = ϕ′1(0) = ϕ′1(1) = 0,

ϕ2(1) = 1, ϕ2(0) = ϕ′2(0) = ϕ′2(1) = 0,

ϕ′3(0) = 1, ϕ3(0) = ϕ3(1) = ϕ′3(1) = 0,

ϕ′4(1) = 1, ϕ4(0) = ϕ4(1) = ϕ′4(0) = 0.

(2.2)

Define a bivariate polynomial:

f1(x, y) =
1∑

ν=0
(f(0, ν)ϕ1(x) + f(1, ν)ϕ2(x))ϕ1+ν(y)

+
1∑

ν=0

(
∂f
∂x (0, ν)ϕ3(x) + ∂f

∂x (1, ν)ϕ4(x)
)

ϕ1+ν(y)

+
1∑

ν=0

(
∂f
∂y (0, ν)ϕ1(x) + ∂f

∂y (1, ν)ϕ2(x)
)

ϕ3+ν(y).

(2.3)

This is a linear combination of {ϕi(x)ϕj(y)}i,j=1,...,4 whose coefficients depend only on values of f and partial

derivatives of f at vertexes {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Denote

g(x, y) = f(x, y)− f1(x, y).

We construct a bivariate function f2 which depends only on values of g and partial derivatives of g at the

boundary of [0, 1]2. Define

f2(x, y) = g(x, 0)ϕ1(y) + g(x, 1)ϕ2(y) + g(0, y)ϕ1(x) + g(1, y)ϕ2(x)

+ ∂g
∂x (0, y)ϕ3(x) + ∂g

∂x (1, y)ϕ4(x) + ∂g
∂y (x, 0)ϕ3(y) + ∂g

∂y (x, 1)ϕ4(y).
(2.4)

This is a sum of products of univariate functions and fundamental polynomials ϕi. Finally, we let

f3(x, y) = f(x, y)− f1(x, y)− f2(x, y).

Then the following decomposition formula holds.

Theorem 2.1. Let f ∈ C(2,2)([0, 1]2). Then

f(x, y) = f1(x, y) + f2(x, y) + f3(x, y), (2.5)

where f1, f2, and f3 are stated as above and satisfy

(i) f1(x, y) is a bivariate polynomial and for (x, y) ∈ {0, 1}2,

f1(x, y) = f(x, y), ∂f1
∂x (x, y) = ∂f

∂x (x, y),

∂f1
∂y (x, y) = ∂f

∂y (x, y), ∂2f1
∂x∂y (x, y) = ∂2f

∂x∂y (x, y),

3
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i.e., g = f − f1 satisfies

g(x, y) =
∂g

∂x
(x, y) =

∂g

∂y
(x, y) =

∂2g

∂x∂y
(x, y) = 0, (x, y) ∈ {0, 1}2;

(ii) the remainder f3 ∈ C(2,2)([0, 1]2) and for (x, y) ∈ ∂([0, 1]2),

f3(x, y) =
∂f3

∂x
(x, y) =

∂f3

∂y
(x, y) =

∂2f3

∂x∂y
(x, y) = 0.

From the definitions of f1, f2, f3, and (2.2), we can directly check (i) and (ii).

With the help of this decomposition formula, we give a Fourier expansion with polynomial factors and a

new approximation tool such that we can reconstruct functions on [0, 1]2 by fewest Fourier coefficients.

3. A kind of new Fourier expansions

In this section we give a Fourier expansion of the function on [0, 1]2 with a polynomial term and several

polynomial factors.

Suppose that f ∈ C(2,2)([0, 1]2). By Theorem 2.1,

f(x, y) = f1(x, y) + f2(x, y) + f3(x, y),

where f1 is a polynomial which is stated in (2.3) and f2 is stated in (2.4). We expand the first factor of each

term in (2.4) into univariate Fourier series, such as we expand g(x, ν) (ν = 0, 1) into the Fourier series:

g(x, ν) =
∑
m

a(ν)
m e2πimx,

where a
(ν)
m =

∫ 1

0
g(x, ν) e−2πimxdx and

∑
m =

∑∞
m=−∞. Using the integration by parts, by Theorem 2.1 (i) and

Riemann-Lebesgue lemma, the Fourier coefficients satisfy

a
(ν)
m =

∫ 1

0
g(x, ν) e−2πimxdx = 1

2πim

∫ 1

0
∂g
∂x (x, ν) e−2πimxdx

= − 1
4π2m2

∫ 1

0
∂2g
∂x2 (x, ν) e−2πimxdx = o

(
1

m2

)
.

Similarly, we expand g(ν, y), ∂g
∂x (ν, y), ∂g

∂y (x, ν) (ν = 0, 1) into Fourier series:

g(ν, y) =
∑
n

b
(ν)
n e2πiny,

∂g
∂x (ν, y) =

∑
n

α
(ν)
n e2πiny,

∂g
∂y (x, ν) =

∑
m

β
(ν)
m e2πimx.
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From this, we see that f2(x, y) can be expanded into the following Fourier series with polynomial factors ϕi:

f2(x, y) = ϕ1(y)
∑
m

a
(0)
m e2πimx + ϕ2(y)

∑
m

a
(1)
m e2πimx

+ ϕ1(x)
∑
n

b
(0)
n e2πiny + ϕ2(x)

∑
n

b
(1)
n e2πiny

+ ϕ3(x)
∑
n

α
(0)
n e2πiny + ϕ4(x)

∑
n

α
(1)
n e2πiny

+ ϕ3(y)
∑
m

β
(0)
m e2πimx + ϕ4(y)

∑
m

β
(1)
m e2πimx

(3.1)

and
a
(ν)
m = o

(
1

m2

)
, b

(ν)
n = o

(
1

n2

)
,

α
(ν)
n = o

(
1

n2

)
, β

(ν)
m = o

(
1

m2

)
.

Finally, expand f3 into a bivariate Fourier series:

f3(x, y) =
∑
m,n

cmn(f3) e2πi(mx+ny),

where cmn(f3) =
∫ 1

0

∫ 1

0
f3(x, y) e−2πi(mx+ny) dxdy and

∑
m,n =

∑∞
m=−∞

∑∞
n=−∞. By Theorem 2.1 (ii), the

interior integral is equal to
∫ 1

0

f3(x, y) e−2πi(mx+ny) dx =
1

(2πim)2

∫ 1

0

∂2f3

∂x2
(x, y) e−2πimx dx.

So the Fourier coefficients:

cmn(f3) =
1

(2πim)2

∫ 1

0

e−2πimx

(∫ 1

0

∂2f3

∂x2
(x, y) e−2πinydy

)
dx.

Again, by Theorem 2.1 (ii),

cmn(f3) = 1
(2πim)2

∫ 1

0
e−2πimx

(
1

2πin

∫ 1

0
∂3f3

∂x2∂y (x, y) e−2πinydy
)

dx

= 1
16π4m2n2

∫ 1

0

∫ 1

0
∂4f3

∂x2∂y2 (x, y) e−2πi(mx+ny)dxdy.

(3.2)

Summarizing up the above results, we get a Fourier expansion with polynomial term and polynomial factors,

where Fourier coefficients decay fast.

Theorem 3.1. Let f ∈ C(2,2)([0, 1]2) and f1, f2, f3 be stated as in (2.3)-(2.5), and ϕi(i = 1, ..., 4) be stated

as in (2.1). Then f can be expanded into Fourier series with a polynomial term and several polynomial factors

as follows:

f(x, y) = f1(x, y) +
1∑

ν=0

(
ϕ1+ν(y)

∑
m

a
(ν)
m e2πimx + ϕ1+ν(x)

∑
n

b
(ν)
n e2πiny

)

+
1∑

ν=0

(
ϕ3+ν(x)

∑
n

α
(ν)
n e2πiny + ϕ3+ν(y)

∑
m

β
(ν)
m e2πimx

)

+
∑
m,n

cmn(f3) e2πi(mx+ny),

(3.3)

5
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where f1(x, y) is a polynomial which is stated in (2.3), both the second term and the third term are a combination

of four univariate Fourier expansions and four fundamental polynomials, and for ν = 0, 1,

a
(ν)
m =

∫ 1

0
g(x, ν) e−2πimxdx = o

(
1

m2

)
,

b
(ν)
n =

∫ 1

0
g(ν, y) e−2πinydx = o

(
1

n2

)
,

α
(ν)
n =

∫ 1

0
∂g
∂x (ν, y) e−2πinydy = o

(
1

n2

)
,

β
(ν)
m =

∫ 1

0
∂g
∂y (x, ν) e−2πimxdx = o

(
1

m2

)

(3.4)

and g(x, y) = f(x, y)− f1(x, y), and the last term is a bivariate Fourier series of f3 whose coefficients satisfy

cmn(f3) = o
(

1
m2n2

)
(m →∞ or n →∞),

c0n(f3) = o
(

1
n2

)
(n →∞),

cm0(f3) = o
(

1
m2

)
(m →∞).

(3.5)

4. A new approximation tool

We want to reconstruct the bivariate function f(x, y) by the fewest Fourier coefficients. For this purpose, we

take partial sums of univariate Fourier series and hyperbolic cross truncation of the bivariate Fourier series of
∑
m,n

cmn(f3) e2πi(mx+ny) in (3.3), we get a hyperbolic cross truncation of Fourier expansion of f with a polynomial

term and several polynomial factors. For an appropriate N ∈ Z+, we define such a combination of polynomials

and trigonometric polynomials:

T
(h)
N (x, y) = f1(x, y) +

1∑
ν=0

(
ϕ1+ν(y)

∑
|n|≤N

a
(ν)
n e2πinx + ϕ1+ν(x)

∑
|n|≤N

b
(ν)
n e2πiny

)

+
1∑

ν=0

(
ϕ3+ν(x)

∑
|n|≤N

α
(ν)
n e2πiny + ϕ3+ν(y)

∑
|n|≤N

β
(ν)
n e2πinx

)
+ s

(h)
N (f3;x, y),

(4.1)

where the last term is the hyperbolic cross truncation of f3 which is stated in (1.1).

From this and (3.3), it follows that

f(x, y)− T
(h)
N (x, y) = s

(1)
N (x, y) + s

(2)
N (x, y), (4.2)

where

s
(1)
N (x, y) =

1∑
ν=0

(
ϕ1+ν(y)

∑
|n|>N

a
(ν)
n e2πinx + ϕ1+ν(x)

∑
|n|>N

b
(ν)
n e2πiny

)

+
1∑

ν=0

(
ϕ3+ν(x)

∑
|n|>N

α
(ν)
n e2πiny + ϕ3+ν(y)

∑
|n|>N

β
(ν)
n e2πinx

) (4.3)

s
(2)
N (x, y) = f3(x, y)− s

(h)
N (f3, x, y).

6
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Consider the square error:

‖ f − T
(h)
N ‖22=

∫ 1

0

∫ 1

0

|f(x, y)− T
(h)
N (f ;x, y)|2dxdy.

By (4.2), we have

‖ f − T
(h)
N ‖22≤ 2 ‖ s

(1)
N ‖22 +2 ‖ s

(2)
N ‖22 . (4.4)

By (4.3) and ‖ h1(x)h2(y) ‖22=‖ h1(x) ‖22‖ h2(y) ‖22, where ‖ h(t) ‖22=
∫ 1

0
|h(t)|2dt, we have

‖ s
(1)
N ‖22 ≤ 64

1∑
ν=0

(
‖ ϕ1+ν ‖22‖

∑
|n|>N

a
(ν)
n e2πinx ‖22 + ‖ ϕ1+ν ‖22‖

∑
|n|>N

b
(ν)
n e2πiny ‖22

)

+ 64
1∑

ν=0

(
‖ ϕ3+ν ‖22‖

∑
|n|>N

α
(ν)
n e2πiny ‖22 + ‖ ϕ3+ν ‖22‖

∑
|n|>N

β
(ν)
n e2πinx ‖22

)
.

By the Parseval identity of the univariate Fourier series, we get

‖ s
(1)
N ‖22≤ 64

1∑
ν=0


‖ ϕ1+ν ‖22

∑

|n|>N

(|a(ν)
n |2 + |b(ν)

n |2)+ ‖ ϕ3+ν ‖22
∑

|n>N |
(|α(ν)

n |+ |β(ν)
n |2)


 .

Again, by (3.4),

‖ s
(1)
N ‖22= o


 ∑

|n|>N

1
n4


 = o

(
1

N3

)
. (4.5)

For s
(2)
N , by (1.1), we have

s
(2)
N (f3;x, y) =

∑
|m|>N

cm0(f3) e2πimx +
∑

|n|>N

∞∑
|m|=0

cmn(f3) e2πi(mx+ny)

+
N∑

|n|=1

∑
|m|> N

|n|

cmn(f3) e2πi(mx+ny).

By the Parseval identity and (3.5), we have ‖ s
(2)
N ‖22= J

(1)
N + J

(2)
N + J

(3)
N , where

J
(1)
N =

∑
|m|>N

|cm0(f3)|2 = o
(

1
m4

)
= o

(
1

N3

)
,

J
(2)
N =

∑
|n|>N

∞∑
|m|=1

|cmn(f3)|2 = o

(
∑

|n|>N

1
n4

)(
∞∑

|m|=1

1
m4

)
= o

(
1

N3

)
,

J
(3)
N =

N∑
|n|=1

∑
|m|>[ N

|n| ]
|cmn(f3)|2 = O


 N∑
|n|=1

∑
|m|> N

|n|

1
m4n4




= O


 N∑
|n|=1

1
n4

∑
|m|> N

|n|

1
m4


 = O

(
∑

|n|>N

1
n4
|n|3
N3

)
= O

(
1

N3 log N
)
.
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Therefore,

‖ s
(2)
N ‖22= O

(
1

N3
log N

)
.

From this and (4.4), and (4.5), it follows that

‖ f − T
(h)
N ‖22= O

(
log N

N3

)
.

Since
∑

1≤|mn|≤N 1 ∼ N log N , by (4.1), we see that the number Nd of Fourier coefficients in the approximation

tool T
(h)
N (x, y) is equivalent to N log N , i.e.,

Nd ∼ N log N.

This implies the following:

Theorem 4.1. Let f ∈ C(2,2)([0, 1]2) and T
(h)
N be the hyperbolic cross truncation of its Fourier expansion

with a polynomial term and several polynomial factors which are stated in (4.1). Then

‖ f − T
(h)
N ‖22= O

(
log4 Nd

N3
d

)
, (4.6)

where Nd is the number of Fourier coefficients in T
(h)
N .

For f ∈ C(2,2)([0, 1]2), consider the partial sums of the Fourier series of f :

sN (x, y) =
∑

|m|≤N

∑

|n|≤N

cmn(f) e2πi(mx+ny).

By the Parseval identity,

‖ f − sN ‖22=
∑

|n|>N

∞∑

|m|=0

|cmn(f)|2 +
N∑

|n|=0

∑

|m|>N

|cmn(f)|2.

From this and cm0(f) = O
(

1
m

)
, c0n(f) = O

(
1
n

)
, cmn(f) = O

(
1

mn

)
, it follows that

‖ f − sN ‖22= O

(
1
N

)
.

Note that the number Nd of Fourier coefficients in the partial sum is equivalent to N2, i.e., Nd ∼ N2. So

‖ f − sN ‖22= O

(
1√
Nd

)
. (4.7)

Consider the hyperbolic cross truncation of the Fourier series of f . By (1.1) and the Parseval identity,

‖ f − s
(h)
N ‖22=

∑

|m|>N

|cm0(f)|2 +
∑

|n|>N

∞∑

|m|=1

|cmn(f)|2 +
N∑

|n|=1

∑

|m|> N
|n|

|cmn(f)|2 = o

(
log N

N

)
. (4.8)

From this and Nd ∼ N log N ,

‖ f − s
(h)
N ‖22= o

(
log2 Nd

Nd

)
.
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Comparing (4.7), (4.8) with (4.6), we see that the approximation tool T
(h)
N is such that we reconstruct f by the

fewest Fourier coefficients.

5. Uncertainty analysis

Now we extend the above results to the case of random processes. Suppose that f is a real-valued random

process on [0, 1]2 and f ∈ C(2,2)([0, 1]2) (Refer to [6] for random calculus). Then the decomposition formula

(2.5) is still valid:

f = f1 + f2 + f3,

where f1 and f2 are stated as in (2.3) and (2.4), respectively, and f3 is the residual. However, now f1 is a random

polynomial, f2 is a sum of products of univariate random processes and fundamental polynomials ϕi. Theorem

2.1 and the expansion (3.3) are still valid. However, Fourier coefficients in (3.3): a
(ν)
m , b

(ν)
n , α

(ν)
n , β

(ν)
m (ν = 0, 1),

and cmn(f3) are now all random variables. Consider their expectations and variances. Note that

a(ν)
m =

∫ 1

0

g(x, ν) e−2πimxdx (ν = 0, 1). (5.1)

Since the expectation and the integral can be exchanged,

E[a(ν)
m ] =

∫ 1

0

E[g(x, ν)] e−2πimxdx (ν = 0, 1). (5.2)

Since the random process g = f − f1 belongs to C(2,2)([0, 1]2) and the expectation and the partial derivatives

can be exchanged, the deterministic function E[g(x, y)] ∈ C(2,2)([0, 1]2). Noticing that Theorem 2.1 is still valid,

for (x, y) ∈ {0, 1}2,

E[g(x, y)] = E

[
∂g

∂x
(x, y)

]
= E

[
∂g

∂y
(x, y)

]
= E

[
∂2g

∂x∂y
(x, y)

]
= 0.

Exchanging the expectation and the partial derivatives, for (x, y) ∈ {0, 1}2, we get

E[g(x, y)] =
∂

∂x
E[g(x, y)] =

∂

∂y
E[g(x, y)] =

∂2

∂x∂y
E[g(x, y)] = 0.

Therefore,
E[a(ν)

m ] = − 1
2πim E[g(x, ν)]|1x=0 + 1

2πim

∫ 1

0
∂
∂x (E[g(x, ν)]) e−2πimxdx

= − 1
(2πim)2

∂
∂xE[g(x, ν)]

∣∣1
x=0

+ 1
(2πim)2

∫ 1

0
∂2

∂x2 (E[g(x, ν)]) e−2πimxdx

= 1
(2πim)2

∫ 1

0
∂2

∂x2 (E[g(x, ν)]) e−2πimxdx = o
(

1
m2

)
(ν = 0, 1).

This implies that

E[a(ν)
m ] ≤ 1

4π2m2
max

0≤x≤1
| ∂2

∂x2
E[g(x, ν)]| (ν = 0, 1).

Similarly, we compute E[b(ν)
n ], E[α(ν)

n ], E[β(ν)
m ], and E[cmn(f3)]. So we have the following:
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Theorem 5.1. Let f be a random process on [0, 1]2 and f ∈ C(2,2)([0, 1]2). Then, in the Fourier expansion

(3.3) with a random polynomial and several random polynomial factors, Fourier coefficients satisfy

E[a(ν)
m ] = o

(
1

m2

)
, E[a(ν)

m ] ≤ 1
4π2m2 max

0≤x≤1
| ∂2

∂x2 E[g(x, ν)]|,

E[b(ν)
n ] = o

(
1

n2

)
, E[b(ν)

n ] ≤ 1
4π2n2 max

0≤y≤1
| ∂2

∂y2 E[g(ν, y)]|,

E[α(ν)
n ] = o

(
1

n2

)
, E[α(ν)

n ] ≤ 1
4π2n2 max

0≤y≤1
| ∂3

∂x∂y2 E[g(ν, y)]|,

E[β(ν)
m ] = o

(
1

m2

)
, E[β(ν)

m ] ≤ 1
4π2m2 max

0≤x≤1
| ∂3

∂x2∂y E[g(x, ν)]| (ν = 0, 1),

E[cmn(f3)] = o
(

1
m2n2

)
, E[cmn(f3)] ≤ 1

16π4m2n2 max
0≤x,y≤1

| ∂4

∂x2∂y2 E[f3(x, y)]|,

where g = f − f1 and f1, f2 are stated as above.

Now we consider the variances of Fourier coefficients in (3.3).

Since g is a real-valued, by (5.1), we deduce that for ν = 0, 1,

|a(ν)
m |2 =

∫ 1

0

∫ 1

0
g(x, ν)g(t, ν) e−2πim(x−t)dxdt,

E[ |a(ν)
m |2 ] =

∫ 1

0

∫ 1

0
E[ g(x, ν)g(t, ν) ] e−2πim(x−t)dxdt,

Since E[g(x, ν)g(t, ν)] ∈ C(2,2)([0, 1]2), by Theorem 2.1 (i) and using integration by parts, it follows that

E[ |a(ν)
m |2 ] =

1
16π4m4

∫ 1

0

∫ 1

0

∂4

∂x2∂t2
E[g(x, ν)g(t, ν)] e−2πim(x−t)dxdt (ν = 0, 1), (5.3)

and so

E[ |a(ν)
m |2 ] = o

(
1

m4

)
(ν = 0, 1).

Noticing that Var(a(ν)
m ) = E[ |a(ν)

m |2 ]− ( E[a(ν)
m ] )2, we get

Var(a(ν)
m ) ≤ E[(a(ν)

m )2] = o

(
1

m4

)
(ν = 0, 1). (5.4)

From (5.2), it follows that

(E[ a(ν)
m ])2 =

1
16π4m4

∫ 1

0

∫ 1

0

∂4

∂x2∂t2
(E[g(x, ν)]E[g(t, ν)]) e−2πim(x−t)dxdt (ν = 0, 1). (5.5)

Again, by the covariance formula: Cov(g(x, ν), g(t, ν)) = E[g(x, ν)g(t, ν)]− E[g(x, ν)]E[g(t, ν)], we have

Var(a(ν)
m ) =

1
16π4m4

∫ 1

0

∫ 1

0

∂4

∂x2∂t2
Cov(g(x, ν), g(t, ν)) e−2πim(x−t)dxdt (ν = 0, 1).

Similarly, we compute Var(b(ν)
n ),Var(α(ν)

n ),Var(β(ν)
m ), and Var(cmn(f3)). So we have

10
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Theorem 5.2. Under conditions of Theorem 5.1, for ν = 0, 1, we have

Var(a(ν)
m ) ≤ 1

16π4m4 max
0≤x,t≤1

| ∂4

∂x2∂t2 Cov(g(x, ν), g(t, ν))|,

Var(b(ν)
n ) ≤ 1

16π4n4 max
0≤y,t≤1

| ∂4

∂y2∂t2 Cov(g(ν, y), g(ν, t))|,

Var(α(ν)
n ) ≤ 1

16π4n4 max
0≤y,t≤1

| ∂4

∂y2∂t2 Cov
(

∂g
∂x (ν, y), ∂g

∂x (ν, t)
)
|,

Var(β(ν)
m ) ≤ 1

16π4m4 max
0≤x,t≤1

| ∂4

∂x2∂t2 Cov
(

∂g
∂y (x, ν), ∂g

∂y (t, ν)
)
|,

Var(cmn(f3)) ≤ 1
256π8m4n4 max

0≤x,y,t,s≤1
|Cov

(
∂4f3

∂x2∂y2 (x, y), ∂4f3
∂t2∂s2 (t, s)

)
|,

Similar to (5.5), we can obtain that the second-order moments are as follows. For ν = 0, 1,

E[|a(ν)
m |2] = o

(
1

m4

)
, E[|b(ν)

n |2] = o
(

1
n4

)
,

E[|α(ν)
n |2] = o

(
1

n4

)
, E[|β(ν)

m |2] = o
(

1
m4

)
,

E[|cmn(f3)|2] = o
(

1
m4n4

)
.

(5.6)

Finally, for a random process, we still define an approximation tool T
(h)
N (x, y) as in (4.1). Now T

(h)
N (x, y) is

a combination of random polynomials of degree 3 and random trigonometric polynomials of degree N . Using

the Parseval identity, by (5.6), we have the following:

Theorem 5.3. Let f be a random process on [0, 1]2 and f ∈ C(2,2)([0, 1]2), and T
(h)
N be stated as above.

Then the mean square error of approximation by T
(h)
N satisfies

E[ ‖ f − T
(h)
N ‖22 ] = o

(
log4 Nd

N3
d

)
,

where Nd is the number of Fourier coefficients in T
(h)
N .
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1 Introduction

It is well-known that the Gronwall-Bellman inequality (also called the Gron-

wall’s lemma or the Gronwall’s inequality) has played a fundamental role in

the study of the qualitative behaviour of solutions of differential and integral

equations.

In 1919, T. H. Gronwall [1] firstly established the following integral in-

equality.

Lemma 1.1. Let f(t) be a continuous function defined on [a, a + δ] ⊂ R,

for which the inequality

0 ≤ f(t) ≤
∫ t

a
(αf(s) + β)ds, t ∈ [a, a + δ] (1.1)

∗Supported by the Program of High-end Foreign Experts of the SAFEA (No.

GDW20163200216).
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holds, where α, β, δ are nonnegative constants. Then

0 ≤ f(t) ≤ βδ exp(αδ), t ∈ [a, a + δ]. (1.2)

In 1943, R. Bellman [2] generalized Lemma 1.1 to the following result.

Lemma 1.2. Let f(t) and g(t) be nonnegative, continuous functions on

[a, b] ⊂ R, for which the inequality

0 ≤ f(t) ≤ η +
∫ t

a
g(s)f(s)ds, t ∈ [a, b] (1.3)

holds, where η is a nonnegative constant. Then

0 ≤ f(t) ≤ η exp
(∫ t

a
g(s)ds

)
, t ∈ [a, b]. (1.4)

Because of the importance of this inequality, over the years investigators

have discovered many useful generalizations in order to achieve a diversity of

desired goals in various branches of differential and integral equations [3–18].

However, almost all the generalizations are based on continuous func-

tions under Riemann and Lebesgue integrals, they are not applicable to

generalized ordinary differential equations [19, 20]. This did not really

change until Š. Schwabik [11] presented the Gronwall-Bellman inequality

for the Henstock-Kurzweil integral in 1985, while K. Ostaszewski and J.

Sochacki [12] gave a simpler and significant proof in 1987. As for the

Gronwall-Bellman type inequalities for the Stieltjes integrals, we refer the

reader to [14–18].

In this paper, we study the Gronwall-Bellman type inequalities for the

distributional Henstock-Kurzweil integral, which defined by using Schwartz

distributional derivative. It is a very wide integral form including the Rie-

mann integral, the Lebesgue integral, and the Henstock-Kurzweil integral

(see [19–22, 27–30] for details). The space of such integrable distributions,

denoted by DHK , is a completion of the space of Henstock-Kurzweil inte-

grable functions (shortly, HK).

This paper is organized as follows. Section 2 is devoted to the basic

notations of the distributional Henstock-Kurzweil integral. Section 3 con-

tains our main results on the Gronwall-Bellman type inequalities involving

the distributional Henstock-Kurzweil integral, while Section 4 sets forth an

application to an linear differential equation with distributional coefficients.
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2 The Distributional Henstock-Kurzweil Integral

Let (a, b) be an open interval in R, we define

D((a, b)) = {φ : (a, b) → R | φ ∈ C∞c and φ has a compact support in (a, b)}.

The distributions on (a, b) are defined to be the continuous linear functionals

on D((a, b)). The dual space of D((a, b)) is denoted by D′((a, b)).

For all f ∈ D′((a, b)), we define the distributional derivative f ′ of f to

be a distribution satisfying 〈f ′, φ〉 = −〈f, φ′〉, where φ ∈ D((a, b)) is a test

function. Further, we write distributional derivative as f ′ and its pointwise

derivative as f ′(t) where t ∈ R. From now on, all derivative in this paper

will be distributional derivatives unless stated otherwise.

Denote the space of continuous functions on [a, b] by C[a, b]. Let

C0 = {F ∈ C[a, b] : F (a) = 0}. (2.1)

Then C0 is an Banach space under the norm

‖F‖∞ = sup
t∈[a,b]

|F (t)| = max
t∈[a,b]

|F (t)|.

Definition 2.1 ( [29, Definition 1]). A distribution f ∈ D′((a, b)) is said to

be Henstock–Kurzweil integrable (shortly DHK) on an interval [a, b] if there

exists a continuous function F ∈ C0 such that F ′ = f , i.e., the distributional

derivative of F is f . The distributional Henstock–Kurzweil integral of f on

[a, b] is denoted by
∫ b
a f(t)dt = F (b) − F (a). The function F is called the

primitive of f .

For every f ∈ DHK , φ ∈ D((a, b)), we write

〈f, φ〉 =
∫ b

a
f(t)φ(t)dt = −

∫ b

a
F (t)φ′(t)dt.

The distributional Henstock–Kurzweil integral is very wide and it in-

cludes Riemann integral, Lebesgue integral, Henstock–Kurzweil integral, re-

stricted and wide Denjoy integral (see [21, 22, 27–29]). From now on, we

write “
∫ b
a f(t)dt ” as “

∫ b
a f ” for short.

For f ∈ DHK , define the Alexiewicz norm in DHK as

‖f‖ = ‖F‖∞ = sup
t∈[a,b]

|F (t)| = max
t∈[a,b]

|F (t)|.

3
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Under the Alexiewicz norm, DHK is a Banach space, see [28, Theorem 2].

For F ∈ C0, the positive part F+ = maxt∈[a,b]{F (t), 0}, the negative part

F− = maxt∈[a,b]{−F (t), 0}, and hence F = F+−F− and the absolute value

|F | = F+ + F−. Moreover, F+, F−, |F | all belong to C0. Let f ∈ DHK

with the primitive F ∈ C0, as in [28], define

f+ = (F+)′, f− = (F−)′, |f | = |F |′. (2.2)

Then,

f = f+ − f−, |f | = f+ + f−. (2.3)

In C0 there exists a pointwise order: for F,G ∈ C0, F ≤ G if and only

if F (t) ≤ G(t) for all t ∈ [a, b]. For f, g ∈ DHK with primitives F,G ∈ C0,

respectively, we say

f
(p)

� g (or g
(p)

� f) if and only if F (t) ≤ G(t), ∀t ∈ [a, b], (2.4)

and

f
(m)

� g (or g
(m)

� f) if and only if
∫

I
f ≤

∫
I
g, (2.5)

where I is arbitrary subinterval of [a, b]. Obviously,

f
(m)

� g ⇒ f
(p)

� g, (2.6)

but the converse is not true. Particularly, if f, g are functions, then

f(t) ≤ g(t) (∀t ∈ [a, b]) ⇔ f
(m)

� g ⇒ f
(p)

� g. (2.7)

Lemma 2.2. Let f, g ∈ DHK . Then

(I) |f | ∈ DHK and |
∫ t
a f | ≤

∫ t
a |f | for all t ∈ [a, b];

(II) ‖ |f | ‖ = ‖ |F ′| ‖ = ‖ |F | ‖∞ = ‖f‖;

(III) |f + g|
(p)

� |f |+ |g|.

Proof. (I) and (II) see [28, Theorem 24].

Since |F +G| ≤ |F |+ |G| in C0, (III) follows immediately from (2.3) and

(2.4).

If g : [a, b] → R, its variation is V g = sup
∑

n |g(tn) − g(sn)|, where

the supremum is taken over every sequence {(tn, sn)} of disjoint intervals in

[a, b]. If V g < ∞ then g is called a function with bounded variation. Denote

the set of functions with bounded variation by BV (see [21–23]).
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Lemma 2.3 ( [23, Theorem 2.2]). Let g, h ∈ BV. Then

(i) g ± h ∈ BV and V (g ± h) ≤ V g + V h;

(ii) gh ∈ BV;

(iii) gh−1 = g
h ∈ BV if there exists constant δ > 0 such that |h| ≥ δ.

Moreover, we have the following result.

Lemma 2.4 ( [25, Lemma 1.5]). Let F ∈ C[a, b] and g ∈ BV. Then

F ′g =
(∫ t

a
gdF

)′
, (2.8)

and

Fg′ =
(∫ t

a
Fdg

)′
. (2.9)

Lemma 2.5 ( [29, Lemma 2, Integration by parts]). Let f ∈ DHK , and

g ∈ BV. Then fg ∈ DHK and∫ b

a
fg = F (b)g(b)−

∫ b

a
Fdg.

By Lemmas 2.4 and 2.5, it is easy to see that

Lemma 2.6. Let f ∈ DHK be the distributional derivative of F ∈ C[a, b],

and g ∈ BV. Then

(Fg)′ = fg + Fg′.

From (2.5) and Lemma 2.5, the following lemma holds.

Lemma 2.7. Let f ∈ DHK and let g be a nonnegative function on [a, b].

(I) If f
(m)

� 0 and g is monotone on [a, b], then

fg
(m)

� 0.

(II) If f
(p)

� 0 and g is nonincreasing on [a, b], then

fg
(p)

� 0.

5
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Proof. (I) Let F (t) =
∫ t
a f, t ∈ [a, b]. Then, F ∈ C[a, b], and F ≥ 0 on [a, b],

because f
(m)

� 0. Since g ≥ 0 is monotone, then g ∈ BV. By the first mean

value theorem for Riemann integrals, there exists ξ ∈ [c, d] ⊂ [a, b] such that∫ d

c
Fdg = F (ξ)(g(d)− g(c)), ξ ∈ [c, d].

In view of Lemma 2.5 and (2.5), one has fg ∈ DHK , and∫ d

c
fg = Fg |dc −

∫ d

c
Fdg

= F (d)g(d)− F (c)g(c)− F (ξ)(g(d)− g(c))

= g(d)
∫ d

ξ
f + g(c)

∫ ξ

c
f ≥ 0, ∀ [c, d] ⊂ [a, b].

Hence, by (2.5), (I) follows.

(II) Let F (t) =
∫ t
a f, t ∈ [a, b]. Then, F ∈ C[a, b], and F ≥ 0 on [a, b],

because f
(p)

� 0. Since g ≥ 0 is nonincreasing on [a, b], then g ∈ BV and

fg ∈ DHK . Moreover,∫ t

a
fg = Fg|ta +

∫ t

a
Fd(−g)

≥ F (t)g(t)− F (a)g(a) + F (η)(g(a)− g(t)) ≥ 0, t ∈ [a, b],

where F (η) = mins∈[a,t] F (s). Thus, by(2.4), (II) holds. The proof is there-

fore complete.

Remark 2.8. In Lemma 2.7, (II) is not true if g is nondecreasing on [a, b].

For example, let

f = sin t, t ∈
[
0,

5π

4

]
, and g(t) =

{
0, t ∈ [0, π),

1, t ∈
[
π, 5π

4

]
.

It is easy to see that f
(p)

� 0 and g is nonnegative and nondecreasing on[
0, 5π

4

]
. However,

∫ 5π
4

0 fg =
∫ 5π

4
π sin t =

√
2

2 − 1 < 0. This implies by (2.4)

that (II) is not true.

3 Main Results

In this section, we shall prove that the Gronwall-Bellman type inequalities

involving the distributional Henstock-Kurzweil integral remain valid.

6
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Theorem 3.1. Let f ∈ DHK , g : [a, b] → R be a nonnegative nonincreasing

function. If there is a constant η such that

0
(p)

� f
(p)

� η +
∫ t

a
fg, t ∈ [a, b]. (3.1)

Then

0
(p)

� f
(p)

� η exp
(∫ t

a
g

)
, t ∈ [a, b]. (3.2)

Proof. Since g is a nonnegative nonincreasing function on [a, b], then

g exp
(
−

∫ t
a g

)
is also nonnegative and nonincreasing on [a, b]. This together

with Lemma 2.5 implies that

fg ∈ DHK , fg exp
(
−

∫ t

a
g

)
∈ DHK .

Let x(t) =
∫ t
a fg, then x(t) ∈ C0, x′ = fg, and (3.1) can be transformed

into

0
(p)

� f
(p)

� η + x, on [a, b]. (3.3)

Furthermore, by Lemma 2.7, 0 ≤ x(t), t ∈ [a, b]. Multiplying by

g exp
(
−

∫ t
a g

)
on both sides of (3.3), one has

(fg − xg) exp
(
−

∫ t

a
g

)
(p)

� ηg exp
(
−

∫ t

a
g

)
, t ∈ [a, b]. (3.4)

By Lemma 2.6,(
x exp

(
−

∫ t

a
g

))′
(p)

�

(
η − η exp

(
−

∫ t

a
g

))′

, t ∈ [a, b]. (3.5)

Taking in account (2.4), we get

0 ≤ x(t) ≤ η

(
exp

(∫ t

a
g

)
− 1

)
, ∀t ∈ [a, b]. (3.6)

It follows from (2.7), (3.3) and (3.6) that

0
(p)

� f
(p)

� η + η

(
exp

(∫ t

a
g

)
− 1

)
= η exp

(∫ t

a
g

)
, t ∈ [a, b].

This completes the proof.

As Lemma 1.1, we have the following consequence.

7

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1509 Wei Liu et al 1503-1516



Corollary 3.2. Let f ∈ DHK . If there exist positive constants K and η

such that

0
(p)

� f
(p)

�

∫ t

a
(Kf(s) + η)ds, t ∈ [a, b].

Then

0
(p)

� f
(p)

� η(b− a) exp (K(b− a)) .

Remark 3.3. If f(t) is nonnegative and Henstock-Kurzweil integrable on

[a, b], then Theorem 3.1 and Corollary 3.2 are still valid. Therefore, Lemma

1.1 and the corresponding result in [12] are only special cases of our results.

For the ordering (2.5), we have the following result.

Theorem 3.4. Let f ∈ DHK , g : [a, b] → R be a positive monotone function.

If there is a constant η such that

0
(m)

� f
(m)

� η +
∫ t

a
fg, t ∈ [a, b]. (3.7)

Then

0
(m)

� f
(m)

� η exp
(∫ t

a
g

)
, t ∈ [a, b]. (3.8)

Proof. The proof is similar to Theorem 3.1, so we omit it.

Remark 3.5. Assume that f, g are nonnegative continuous functions. Since

the ordering (2.5) equals to the pointwise ordering (see (2.7)), it is easy to

see that Theorem 3.4 is a generalization of Lemma 1.2.

Next we give a more general version of the Gronwall-Bellman type in-

equality due to H. E. Gollwitzer [13].

Theorem 3.6. Let f ∈ DHK , g : [a, b] → R be a nonnegative nonincreasing

function. If there exist l ∈ DHK , l
(p)

� 0 on [a, b], and h ∈ HK, h ≥ 0 on

[a, b], such that

0
(p)

� f
(p)

� l + h

∫ t

a
fg, t ∈ [a, b]. (3.9)

Then

0
(p)

� f
(p)

� l + h

∫ t

a
lg exp

(∫ t

a
gh

)
, t ∈ [a, b]. (3.10)

Proof. Since g(t) ∈ BV and f, l ∈ DHK . Then exp
(
−

∫ t
a g

)
∈ BV, fg ∈

DHK , and lg ∈ DHK . Suppose that x(t) =
∫ t
a fg, one has x(a) = 0 and

x′ = fg, on [a, b]. (3.11)

8
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According to (3.9),

0
(p)

� f
(p)

� l + hx, on [a, b]. (3.12)

It turns out from (3.11), (3.12) and Lemma 2.7 that

x′ − ghx
(p)

� lg, on [a, b]. (3.13)

Multiplying exp
(
−

∫ t
a gh

)
on both sides of (3.13), we have(

exp
(
−

∫ t

a
gh

)
x

)′
(p)

� lg exp
(
−

∫ t

a
gh

)
≤ lg, t ∈ [a, b]. (3.14)

Applying (2.5) yields that

0 ≤ x(t) ≤ exp
(∫ t

a
gh

) ∫ t

a
gl, t ∈ [a, b], (3.15)

and hence, by (2.7) and (3.12),

0
(p)

� f
(p)

� l + h exp
(∫ t

a
gh

) ∫ t

a
gl, t ∈ [a, b],

which completes the proof.

Corollary 3.7. Let f ∈ DHK , K be a positive constant. If there exist

l ∈ DHK , l
(p)

� 0 on [a, b], and h ∈ HK, h ≥ 0 on [a, b], such that

0
(p)

� f
(p)

� l + h

∫ t

a
fK, t ∈ [a, b]. (3.16)

Then

0
(p)

� f
(p)

� ‖l‖Kh exp
(∫ t

a
Kh

)
, t ∈ [a, b]. (3.17)

Proof. Let F (t) =
∫ t
a f and L(t) =

∫ t
a l. By Theorem 3.6 and Lemma 2.7,

we get

0
(p)

� f
(p)

� l + Kh exp
(∫ t

a
Kh

) ∫ t

a
l, t ∈ [a, b]. (3.18)

Moreover, in view of (2.4),

0 ≤ F (t) ≤ L(t) +
∫ t

a

(
Kh exp

(∫ s

a
Kh

) ∫ s

a
l

)
≤ ‖l‖

(
1 +

∫ t

a

(
Kh exp

(∫ s

a
Kh

)))
= ‖l‖ exp

(∫ t

a
Kh

)
, t ∈ [a, b].

(3.19)

Therefore, by (2.4) and Lemma 2.4, the assertion follows.

9
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Remark 3.8. In Corollary 3.7, without loss of generality, let h ∈ C[a, b].

Obviously, the inequality (3.16) implies by (2.5) that

0 ≤ F (t) ≤ L(t) +
∫ t

a
KhF ≤ ‖l‖+

∫ t

a
KhF, t ∈ [a, b]. (3.20)

Since F, h ∈ C[a, b] are nonnegative, K, ‖l‖ are positive constants, then by

Lemma 1.2,

0 ≤ F (t) ≤ ‖l‖ exp
(∫ t

a
Kh

)
, t ∈ [a, b],

which is the same result as in (3.19). Hence, our results are extensions of

Lemma 1.2.

Furthermore, we have another result for the ordering (2.5).

Theorem 3.9. Let f ∈ DHK , g : [a, b] → R be a nonnegative nonincreasing

function. If there exist l ∈ DHK , l
(m)

� 0 on [a, b], and h ∈ HK, h ≥ 0 on

[a, b], such that

0
(m)

� f
(m)

� l + h

∫ t

a
fg, t ∈ [a, b]. (3.21)

Then

0
(m)

� f
(m)

� l + h

∫ t

a
lg exp

(∫ t

a
gh

)
, t ∈ [a, b]. (3.22)

Remark 3.10. If f, g, h, l are nonnegative continuous functions, the inequal-

ities in Theorem 3.6 also hold for the pointwise order in C[a, b], because of

(2.7). Therefore, Theorem 3.6 extends the corresponding result in [13].

4 Application

In this section, we will give an application concerned about the Gronwall-

Bellman type inequalities.

We consider the system

A1(A0x)′ −A′2x = F ′, (4.1)

where the derivatives, products and equality are understood in the sense of

distributions, see [26].

Assumptions 4.1. The function A0 ∈ C[0, T ], A0 6= 0 on [0, T ], A−1
1 ∈ BV

with |A−1
1 | ≥ δ1 > 0, and A2 ∈ C[0, T ] ∩ BV. Furthermore, F ∈ C[0, T ].

10
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Let us notice that under Assumptions 4.1 the products A1(A0x)′ and

A′2x, by Lemma 2.4, are well defined for any x ∈ C[0, T ].

Definition 4.2. A function x(t) is called a solution to the equation (4.1)

on the interval [0, T ] if x ∈ C[0, T ] and A1(A0x)′ − A′2x − F ′ is the zero

distribution.

Firstly, we show the estimate of solutions to the equation (4.1).

Theorem 4.3. Let the assumptions 4.1 be satisfied. If x(t) ∈ C[0, T ] is a

solution to the equation (4.1) on [0, T ], then

|x(t)| ≤ |A−1
0 (t)|‖l‖ exp

(∫ t

0
h

)
, t ∈ [0, T ], (4.2)

where

l = |A−1
1 F ′|, h = |A−1

1 A′2A
−1
0 |. (4.3)

Proof. By Assumptions 4.1 and (4.1),

(A0x)′ = A−1
1 F ′ + A−1

1 A′2A
−1
0 (A0x). (4.4)

Hence, by Lemma 2.2,

|(A0x)′|
(p)

�
∣∣A−1

1 F ′
∣∣ + |A−1

1 A′2A
−1
0 |

∫ t

0
|(A0x)′|. (4.5)

Let

l =
∣∣A−1

1 F ′
∣∣ , g = 1, h = |A−1

1 A′2A
−1
0 |. (4.6)

It is easy to see that l ∈ DHK , h ∈ HK. Therefore, by Corollary 3.7,

|(A0x)′|
(p)

� ‖l‖h exp
(∫ t

0
h

)
, t ∈ [0, T ], (4.7)

which yields by (2.4) and Lemma 2.2 that

|x(t)| ≤ |A−1
0 (t)|‖l‖ exp

(∫ t

0
h

)
, t ∈ [0, T ]. (4.8)

The proof is therefore complete.

Finally, we give an existence and uniqueness result.
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Theorem 4.4. Let the Assumptions 4.1 be satisfied. Moreover, either

A−1
0 ∈ BV with |A−1

0 | ≥ δ0 > 0 or A2 ∈ AC holds. Then (4.1) has a

unique solution x(t) ∈ C[0, T ] satisfying

x(t) = A−1
0 (t)k−1(t)

∫ t

0
kA−1

1 dF, t ∈ [0, T ], (4.9)

where

k(t) = exp
(
−

∫ t

0
A−1

0 A−1
1 dA2

)
, t ∈ [0, T ]. (4.10)

Proof. We only prove the necessity, the sufficiency is easy to prove.

By Assumptions 4.1 and (4.1),

(A0x)′ −A−1
1 A′2A

−1
0 (A0x) = A−1

1 F ′. (4.11)

Let

k(t) = exp
(
−

∫ t

0
A−1

0 A−1
1 dA2

)
, t ∈ [0, T ]. (4.12)

It is easy to see that k(t) ∈ C[0, T ]∩BV. Multiplying both side of (4.11) by

k(t), we get

k(A0x)′ − kA−1
1 A′2A

−1
0 (A0x) = kA−1

1 F ′. (4.13)

By Lemma 2.6,

(kA0x)′ = kA−1
1 F ′. (4.14)

Therefore,

x(t) = A−1
0 (t)k−1(t)

∫ t

0
kA−1

1 dF, t ∈ [0, T ].

Let y(t) be another solution to (4.1). Then,

x(t)− y(t) = 0, t ∈ [0, T ].

Therefore, x(t) satisfying (4.9) is a unique solution of (4.1).
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ABSTRACT

We obtain the formulas of the solutions of the recursive sequences

xn+1 =
xnxn−5

xn−4(±1± xnxn−5)
, n = 0, 1, ...,

where the initial conditions are arbitrary non zero real numbers. Also, we discuss and illustrate the stability of
the solutions in the neighborhood of the critical points and the periodicity of the considered equations.

Keywords: equilibrium point, recursive sequences, periodicity.

Mathematics Subject Classification: 39A10.

––––––––––––––––––––––

1. INTRODUCTION

In recent years, the qualitative study of difference equations has become an active research area among a consid-
erable number of mathematicians. Some economical and biological examples can be seen in [9,36,40,47,48,54]. It
is commonly known that nonlinear difference equations are able to produce and present sophisticated behaviors
regardless their orders.

Some articles show that a great effort has been done to demonstrate and explore the dynamics of nonlinear
difference equations (see [40]-[61]). In fact, investigating these equations is a challenge and still new in the
mathematical world. It is strongly believed that the rational difference equations are significant in their own
right.

Abo-Zeid and Cinar [1] illustrated the global stability, cyclical behavior, oscillation of all acceptable solutions
of the equation

xn+1 =
Axn−1

B−Cxnxn−2 .

In [7], [8] Cinar considered the solutions of the equations

yn+1 =
yn−1

1+aynyn−1
, yn+1 =

yn−1
−1+aynyn−1 .

A. El-Moneam, and Alamoudy [16] examined the positive solutions of the equation in terms of its periodicity,
boundedness and the global stability. The considered difference equation is given by

xn+1 = axn +
bxn−1+cxn−2+fxn−3+rxn−4
dxn−1+exn−2+gxn−3+sxn−4

.

Khatibzadeh and Ibrahim [42] studied the boundedness, asymptotic stability, oscillatory behavior and discovered
the closed form of solutions of the equation
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xn+1 = axn +
bxnxn−1

cxn+dxn−1
.

Simsek et al. [49] has found and explored solutions for the recursive formula

yn+1 =
yn−3
1+yn−1

.

For other related papers, see [25—46].

We analyze and explore the solutions of the following nonlinear recursive equation

xn+1 =
xnxn−5

xn−4(±1± xnxn−5)
, n = 0, 1, ..., (1)

with conditions posed on the initial values are arbitrary non zero real numbers. Also, we will survey some
dynamic behaviors of its solutions.

The linearized equation of equation

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ..., (2)

about the equilibrium x is the linear difference equation

yn+1 =
kP
i=0

∂f(x,x,...,x)
∂xn−i

yn−i.

Theorem A [43]: Assume that pi ∈ R, i = 1, 2, ..., k and k ∈ {0, 1, 2, ...}. Then
Pk

i=1 |pi| < 1, is a sufficient
condition for the asymptotic stability of the difference equation

xn+k + p1xn+k−1 + ...+ pkxn = 0, n = 0, 1, ... .

2. THE FIRST EQUATION XN+1 =
XNXN−5

XN−4(1+XNXN−5)

This section is devoted to give a specific solution of the first difference equation which is

xn+1 =
xnxn−5

xn−4(1 + xnxn−5)
. (3)

Theorem 2.1. Let {xn}∞n=−5 be a solution of Eq.(3). Then

x10n−5 = f
n−1Y
i=0

µ
1 + (10i)af

1 + (10i+ 5)af

¶
, x10n−4 = e

n−1Y
i=0

µ
1 + (10i+ 1)af

1 + (10i+ 6)af

¶
,

x10n−3 = d
n−1Y
i=0

µ
1 + (10i+ 2)af

1 + (10i+ 7)af

¶
, x10n−2 = c

n−1Y
i=0

µ
1 + (10i+ 3)af

1 + (10i+ 8)af

¶
,

x10n−1 = b
n−1Y
i=0

µ
1 + (10i+ 4)af

1 + (10i+ 9)af

¶
, x10n = a

n−1Y
i=0

µ
1 + (10i+ 5)af

1 + (10i+ 10)af

¶
,

x10n+1 =
af

e(1 + af)

n−1Y
i=0

µ
1 + (10i+ 6)af

1 + (10i+ 11)af

¶
, x10n+2 =

af

d(1 + 2af)

n−1Y
i=0

µ
1 + (10i+ 7)af

1 + (10i+ 12)af

¶
,

x10n+3 =
af

c(1 + 3af)

n−1Y
i=0

µ
1 + (10i+ 8)af

1 + (10i+ 13)af

¶
, x10n+4 =

af

b(1 + 4af)

n−1Y
i=0

µ
1 + (10i+ 9)af

1 + (10i+ 14)af

¶
,

where we put x−5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a.
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Proof: The result holds for n = 0. Assume that n > 0 and our assumption true for n− 1. Then;

x10n−15 = f
n−2Y
i=0

µ
1 + (10i)af

1 + (10i+ 5)af

¶
, x10n−14 = e

n−2Y
i=0

µ
1 + (10i+ 1)af

1 + (10i+ 6)af

¶
,

x10n−13 = d
n−2Y
i=0

µ
1 + (10i+ 2)af

1 + (10i+ 7)af

¶
, x10n−12 = c

n−2Y
i=0

µ
1 + (10i+ 3)af

1 + (10i+ 8)af

¶
,

x10n−11 = b
n−2Y
i=0

µ
1 + (10i+ 4)af

1 + (10i+ 9)af

¶
, x10n−10 = a

n−2Y
i=0

µ
1 + (10i+ 5)af

1 + (10i+ 10)af

¶
,

x10n−9 =
af

e(1 + af)

n−2Y
i=0

µ
1 + (10i+ 6)af

1 + (10i+ 11)af

¶
, x10n−8 =

af

d(1 + 2af)

n−2Y
i=0

µ
1 + (10i+ 7)af

1 + (10i+ 12)af

¶
,

x10n−7 =
af

c(1 + 3af)

n−2Y
i=0

µ
1 + (10i+ 8)af

1 + (10i+ 13)af

¶
, x10n−6 =

af

b(1 + 4af)

n−2Y
i=0

µ
1 + (10i+ 9)af

1 + (10i+ 14)af

¶
.

Now, it follows from Eq.(3) that

x10n−5 =
x10n−6x10n−11

x10n−10(1 + x10n−6x10n−11)

=

af
b(1+4af)

n−2Y
i=0

³
1+(10i+9)af
1+(10i+14)af

´
b
n−2Y
i=0

³
1+(10i+4)af
1+(10i+9)af

´
"
a
n−2Y
i=0

³
1+(10i+5)af
1+(10i+10)af

´#"
1 + af

b(1+4af)

n−2Y
i=0

³
1+(10i+9)af
1+(10i+14)af

´
b
n−2Y
i=0

³
1+(10i+4)af
1+(10i+9)af

´#

=

f

(1 + 4af)

n−2Y
i=0

µ
1 + (10i+ 4)af

1 + (10i+ 14)af

¶
"
n−2Y
i=0

µ
1 + (10i+ 5)af

1 + (10i+ 10)af

¶#"
1 +

af

(1 + 4af)

n−2Y
i=0

µ
1 + (10i+ 4)af

1 + (10i+ 14)af

¶#

=

µ
f

1 + (10n− 6)af

¶
"
n−2Y
i=0

µ
1 + (10i+ 5)af

1 + (10i+ 10)af

¶# ∙
1 +

af

1 + (10n− 6)af

¸
=

f"
n−2Y
i=0

µ
1 + (10i+ 5)af

1 + (10i+ 10)af

¶#
[1 + (10n− 6)af + af ]

=
f

[1 + (10n− 5)af ]

n−2Y
i=0

µ
1 + (10i+ 10)af

1 + (10i+ 5)af

¶
= f

n−1Y
i=0

µ
1 + (10i)af

1 + (10i+ 5)f

¶
.

Also, we have
x10n−4 =

x10n−5x10n−10
x10n−9(1 + x10n−5x10n−10)
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=

f
n−1Y
i=0

³
1+(10i)af
1+(10i+5)af

´
a
n−2Y
i=0

³
1+(10i+5)af
1+(10i+10)af

´
"

af
e(1+af)

n−2Y
i=0

³
1+(10i+6)af
1+(10i+11)af

´#"
1 + f

n−1Y
i=0

³
1+(10i)af
1+(10i+5)af

´
a
n−2Y
i=0

³
1+(10i+5)af
1+(10i+10)af

´#

=

af

µ
1

1 + (10n− 5)af

¶
"

af
e(1+af)

n−2Y
i=0

³
1+(10i+6)af
1+(10i+11)af

´# ∙
1 +

af

1 + (10n− 5)af

¸
=

af"
af

e(1 + af)

n−2Y
i=0

µ
1 + (10i+ 6)af

1 + (10i+ 11)af

¶#
[1 + (10n− 5)af + af ]

=
e(1 + af)

[1 + (10n− 4)af ]

n−2Y
i=0

µ
1 + (10i+ 11)af

1 + (10i+ 6)af

¶
= e

n−1Y
i=0

µ
1 + (10i+ 1)af

1 + (10i+ 6)af

¶
.

Similarly
x10n−3 =

x10n−4x10n−9
x10n−8(1 + x10n−4x10n−9)

=

e
n−1Y
i=0

µ
1 + (10i+ 1)af

1 + (10i+ 6)af

¶
af

e(1+af)

n−2Y
i=0

µ
1 + (10i+ 6)af

1 + (10i+ 11)af

¶
"

af
d(1+2af)

n−2Y
i=0

³
1+(10i+7)af
1+(10i+12)af

´#"
1 + e

n−1Y
i=0

³
1+(10i+1)af
1+(10i+6)af

´
af

e(1+af)

n−2Y
i=0

³
1+(10i+6)af
1+(10i+11)af

´#

=

n−1Y
i=0

µ
af

1 + (10i+ 6)af

¶ n−2Y
i=0

(1 + (10i+ 6)af)"
af

d(1+2af)

n−2Y
i=0

³
1+(10i+7)af
1+(10i+12)af

´#"
1 +

n−1Y
i=0

µ
af

1 + (10i+ 6)af

¶ n−2Y
i=0

(1 + (10i+ 6)af)

#

=

µ
af

1 + (10n− 4)af

¶
"

af
d(1+2af)

n−2Y
i=0

³
1+(10i+7)af
1+(10i+12)af

´# ∙
1 +

µ
af

1 + (10n− 4)af

¶¸
=

d"
1

(1+2af)

n−2Y
i=0

³
1+(10i+7)af
1+(10i+12)af

´#
[1 + (10n− 4)af + af ]

=
d"

1
(1+2af)

n−2Y
i=0

³
1+(10i+7)af
1+(10i+12)af

´#
[1 + (10n− 3)af ]

= d
n−1Y
i=0

µ
1 + (10i+ 2)af

1 + (10i+ 7)af

¶
.

Similarly, one can simply find the other relations. Thus, the proof is done.

Theorem 2.2. The unique equilibrium point of Eq.(3) is the number zero which is not locally asymptotically
stable.
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Proof: The equilibrium points of Eq.(3) obtained by

x =
x2

x
¡
1 + x3

¢ .
Arranging the previous equation gives x4 = 0. Thus x = 0.

Let f : (0,∞)3 −→ (0,∞) be a function takes the form

f(u, v, w) =
uw

v (1 + uw)
.

Therefore
fu(u, v, w) =

w

v (1 + uw)
2 , fv(u, v,w) = −

uw

v2 (1 + uw)
, fw(u, v,w) =

u

v (1 + uw)
2 .

So
fu(x, x, x) = 1, fv(x, x, x) = 1, fw(x, x, x) = 1.

Then by using Theorem A the proof follows.

Example 1. We assume x−5 = 6, x−4 = 11, x−3 = 3, x−2 = 2, x−1 = 1.8, x0 = −7. See Fig. 1.

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

6

8

10

12

n

x(
n)

plot of x(n+1)=x(n)x(n−5)/(x(n−4)(1+x(n)x(n−5))

Figure 1.

Example 2. See Fig. 2, since x−5 = 1.6, x−4 = 1.2, x−3 = −3, x−2 = .7, x−1 = 1.8, x0 = 3.
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plot of x(n+1)=x(n)x(n−5)/(x(n−4)(1+x(n)x(n−5))

Figure 2.

3. THE SECOND EQUATION XN+1 =
XNXN−5

XN−4(−1+XNXN−5)

This section is devoted to obtain the solution of the difference equation which is

xn+1 =
xnxn−5

xn−4(−1 + xnxn−5)
, (4)

where x0x−5 6= 1.
Theorem 3.1. Let {xn}∞n=−5 be a solution of Eq.(4). Then for

x10n−5 =
f

(−1 + af)n
, x10n−4 = e(−1 + af)n,

x10n−3 =
d

(−1 + af)n
, x10n−2 = c(−1 + af)n,

x10−1 =
b

(−1 + af)n
, x10n = a(−1 + af)n,

x10n+1 =
af

e(−1 + af)n+1
, x10n+2 =

af(−1 + af)n

d
,

x10n+3 =
af

c(−1 + af)n+1
, x10n+4 =

af(−1 + af)n

b
.

Proof: The result holds for n = 0. Assume that n > 0 and that our assumption true for n− 1. Then;
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x10n−15 =
f

(−1 + af)n−1
, x10n−14 = e(−1 + af)n−1,

x10n−13 =
d

(−1 + af)n−1
, x10n−12 = c(−1 + af)n−1,

x10−11 =
b

(−1 + af)n−1
, x10n−10 = a(−1 + af)n−1,

x10n−9 =
af

e(−1 + af)n
, x10n−8 =

af(−1 + af)n−1

d
,

x10n−7 =
af

c(−1 + af)n
, x10n−6 =

af(−1 + af)n−1

b
.

It follows from (4) that

x10n−5 =
x10n−6x10n−11

x10n−10(−1 + x10n−6x10n−11)
=

af

a(−1 + af)n−1 [−1 + af ]
=

af

a(−1 + af)n
,

x10n−4 =
x10n−5x10n−10

x10n−9(−1 + x10n−5x10n−10)

=

af

a(−1 + af)n
a(−1 + af)n−1∙

af

e(−1 + af)n

¸ ∙
−1 + af

a(−1 + af)n
a(−1 + af)n−1

¸
=

e(−1 + af)n

(−1 + af)

∙
−1 + af

(−1 + af)

¸ = e(−1 + af)n

[1− af + af ]
= e(−1 + af)n.

Similarly one can simply prove the other relations.

Theorem 3.2. Eq.(4) has a period ten solution iff af = 2 and will be in the following form½
f, e, d, c, b, a,

af

e
,
af

d
,
af

c
,
af

b
, f, e, d, ...

¾
.

Proof: Firstly, assume that there exists a period ten solution½
f, e, d, c, b, a,

af

e
,
af

d
,
af

c
,
af

b
, f, e, d, ...

¾
,

of Eq.(4). Then, we can notice from the solution of Eq.(4) that

f =
f

(−1 + af)n
, e = e(−1 + af)n, d =

d

(−1 + af)n
, c = c(−1 + af)n,

b =
b

(−1 + af)n
, a = a(−1 + af)n,

af

e
=

af

e(−1 + af)n+1
,

af

d
=

af(−1 + af)n

d
,

af

c
=

af

c(−1 + af)n+1
,

af

b
=

af(−1 + af)n

b
.

or,
(−1 + af)n = 1.
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Then
af = 2.

Secondly, suppose that af = 2. Then, it is easily seen from the solution of Eq.(4) that

x10n−5 = f, x10n−4 = e, x10n−3 = d, x10n−2 = c, x10−1 = b,

x10n = a, x10n+1 =
af

e
, x10n+2 =

af

d
, x10n+3 =

af

c
, x10n+4 =

af

b
.

Thus, the periodic solution of period ten is obtained and this proves the theorem.

Theorem 3.3. Eq.(4) has two equilibrium points which are 0, 3
√
2 and these equilibrium points are not locally

asymptotically stable.

Proof: The equilibrium points of Eq.(4) can be written in the following form

x =
x2

x
¡
−1 + x2

¢ .
Arranging this gives

x2
¡
−1 + x2

¢
= x2

⇒ x2
¡
x2 − 2

¢
= 0.

Therefore, the fixed points are 0,±
√
2.

Let f : (0,∞)3 −→ (0,∞) be a function defined by

f(u, v,w) =
uw

v (−1 + uw)
.

Then it follows that

fu(u, v, w) = − w

v (−1 + uw)
2 ,

fv(u, v, w) = − uw

v2 (−1 + uw)
,

fw(u, v, w) = − u

v (−1 + uw)2
,

It can be seen that
fu(x, x, x) = −1, fv(x, x, x) = ±1, fw(x, x, x) = −1.

Then by using Theorem A the proof follows.

Example 3. We consider x−5 = .8, x−4 = 1.7, x−3 = .3, x−2 = 2, x−1 = 1.8, x0 = .7. See Fig. 3.
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plot of x(n+1)=x(n)x(n−5)/(x(n−4)(−1+x(n)x(n−5))

Figure 3.

Example 4. See Fig. 4, since x−5 = 8, x−4 = 1.7, x−3 = .3, x−2 = 2, x−1 = 1.8, x0 = 1/4.
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plot of x(n+1)=x(n)x(n−5)/(x(n−4)(−1+x(n)x(n−5))

Figure 4.

4. THE THIRD EQUATION XN+1 =
XNXN−5

XN−4(1−XNXN−5)

In this section we will obtain and present the solution of the third difference equation which is

xn+1 =
xnxn−5

xn−4(1− xnxn−5)
. (5)
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Theorem 4.1. Let {xn}∞n=−5 be a solution of Eq.(5). Then for n = 0, 1, ...

x10n−5 = f
n−1Y
i=0

µ
1− (10i)af

1− (10i+ 5)af

¶
, x10n−4 = e

n−1Y
i=0

µ
1− (10i+ 1)af
1− (10i+ 6)af

¶
,

x10n−3 = d
n−1Y
i=0

µ
1− (10i+ 2)af
1− (10i+ 7)af

¶
, x10n−2 = c

n−1Y
i=0

µ
1− (10i+ 3)af
1− (10i+ 8)af

¶
,

x10n−1 = b
n−1Y
i=0

µ
1− (10i+ 4)af
1− (10i+ 9)af

¶
, x10n = a

n−1Y
i=0

µ
1− (10i+ 5)af
1− (10i+ 10)af

¶
,

x10n+1 =
af

e(1− af)

n−1Y
i=0

µ
1− (10i+ 6)af
1− (10i+ 11)af

¶
,

x10n+2 =
af

d(1− 2af)

n−1Y
i=0

µ
1− (10i+ 7)af
1− (10i+ 12)af

¶
,

x10n+3 =
af

c(1− 3af)

n−1Y
i=0

µ
1− (10i+ 8)af
1− (10i+ 13)af

¶
,

x10n+4 =
af

b(1− 4af)

n−1Y
i=0

µ
1− (10i+ 9)af
1− (10i+ 14)af

¶
.

Theorem 4.2. The unique critical point of Eq.(5) is the number zero which is not locally asymptotically stable.

Example 5. Suppose that x−5 = 8, x−4 = 1.7, x−3 = .3, x−2 = 2, x−1 = 1.8, x0 = 1/4 see Fig. 5.
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plot of x(n+1)=x(n)x(n−5)/(x(n−4)(1−x(n)x(n−5))

Figure 5.

Example 6. See Fig. 6 since x−5 = −7, x−4 = 1.5, x−3 = −3, x−2 = 2, x−1 = 12, x0 = 4.
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Figure 6.

5. THE FOURTH EQUATION XN+1 =
XNXN−5

XN−4(−1−XNXN−5)

Now, we will explore and discover the solution of the following difference equation

xn+1 =
xnxn−5

xn−4(−1− xnxn−5)
, n = 0, 1, ..., (6)

where x−5x0 6= −1.
Theorem 5.1. Let {xn}∞n=−5 be a solution of Eq.(6). Then Eq.(6) has unboundedness solution (except in the
case if af = −2) and for n = 0, 1, ...

x10n−5 =
f

(−1− af)n
, x10n−4 = e(−1− af)n,

x10n−3 =
d

(−1− af)n
, x10n−2 = c(−1− af)n,

x10−1 =
b

(−1− af)n
, x10n = a(−1− af)n,

x10n+1 =
af

e(−1− af)n+1
, x10n+2 =

af(−1− af)n

d
,

x10n+3 =
af

c(−1− af)n+1
, x10n+4 =

af(−1− af)n

b
.

Theorem 5.2. Eq.(6) has a periodic solution of period ten iff af = −2 and written in the following form½
f, e, d, c, b, a,

af

e
,
af

d
,
af

c
, f, e, d, c, ...

¾
.

Theorem 5.3. The unique equilibrium of Eq.(6) is the number zero which is not locally asymptotically stable.

Example 7. Consider x−5 = −7, x−4 = 1.5, x−3 = −3, x−2 = 2, x−1 = 12, x0 = 4 see Fig. 7.
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Figure 7.

Example 8. Fig. 8 illustrates the solutions when x−5 = −7, x−4 = 1.5, x−3 = −3, x−2 = 2, x−1 = 12, x0 =
2/7.
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Figure 8.
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A rational bicubic spline for visualization of shaped data
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Abstract

The shaped data usually needs to be represented in such a way that its visual display looks
smooth and pleasant, its shape is preserved everywhere and the computation cost is economical.
This work contributes to the graphical display of positive or monotone data. For this purpose,
a new bicubic rational interpolating spline with biquadratic denominator is developed based on
function values and partial derivatives, and simple sufficient conditions are derived on the shape
parameters in the description of the rational function to visualize the positive or monotone data
in the view of positive or monotone surfaces.

Keywords: Rational bicubic spline, shape parameter, positivity, monotonicity.

1 Introduction

The construction method of curve and surface and the mathematical description of them is a im-
portant issue in Computer-Aided Geometry Design (CAGD). Generally speaking, the interpolating
data are often given as a set of values, in order to display these data, it is first necessary to construct
an interpolant through those data; and then this interpolant is used in the subsequent contouring
or curve and surface drawing. Thus, for the data obtained from some complex function or from
some scientific phenomena, smooth curve or surface expression becomes crucial to incorporate the
inherited features of the data. In many problems of industrial design and manufacturing, the given
data often have some special shape properties, such as positivity, monotonicity and convexity, it
is usually needed to generate a smooth function, which passes through the given set of data and
preserves those certain shape properties of the data.

In recent years, a good amount of work has been published that focuses on shape preserving
curves and surfaces. Goodman and Ong [7] presented a local convexity preserving interpolation
scheme using parametric C2 cubic splines with uniform knots produced by a vector subdivision
scheme. In [2, 4, 8, 9, 13, 14, 16, 18], several shape-preserving rational curves were shown for
shaped data, such as positive data, monotonic data and convex data. Beatson and Ziegler [1]
interpolated monotone data, given on a rectangular grid, with a C1 monotone quadratic spline,
and derived necessary and sufficient conditions to visualize monotone data. Floater and Pena [6]
defined three kinds of monotonicity preservation of systems of bivariate functions on a triangle,
and investigated some geometric applications. In [10], authors proposed a kind of monotonicity-
preserving interpolating schemes for 2D/3D monotone data by constraints on shape parameters in
the description of rational spline interpolants. In [12], Hussain et al. presented the C1 rational
bi-cubic local interpolation schemes for the shape preservation of convex, monotone and positive
surface data. In [11], A bi-quadratic trigonometric interpolation scheme with four free parameters
is developed for the positive and monotone 3D data. Piah et al. [15] discussed the problem of
positivity preserving for scattered data interpolation.
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FU: VISUALIZATION OF SHAPED DATA

In [5], Duan et al. developed a C1 bivariate rational spline interpolant based on function values
and partial derivatives under some suitable hypotheses. In [17], Sun et al. proposed a surface
modeling method by using C2 piecewise rational spline interpolation. This paper is concerned with
the preservation of 3D positive data and monotone data. To solve the problem, motivated by [5, 17],
we will first construct a new bicubic rational interpolating spline with biquadratic denominator
based function values and derivative values of an original function. Further more, a positivity-
preserving scheme and a monotonicity-preserving scheme are developed to visualize 3D positive
data and monotone data in the view of positive surfaces and monotone surfaces, respectively.

This paper is arranged as follows. Section 2 describes about the C1 bicubic rational spline
interpolant to be used in the surface schemes. In Section 3, the positivity problem is discussed for
the generation of a smooth surface which can preserve the shape of positive data. In Section 4, a
method is developed to preserve the shape of monotone data in the view of monotone surfaces by
making constraints on shape parameters in the description of bicubic rational interpolant. Finally,
Numerical examples are presented to discuss and demonstrate the performance of the method in
Section 5.

2 Bicubic rational interpolant

Let Ω = [a, b; c, d] be the plane region, and {(xi, yj , fi,j) : i = 1, 2, · · · , n; j = 1, 2, · · · ,m} be a
given set of data points, where a = x1 < x2 < ... < xn = b, c = y1 < y2 < · · · < ym = d are
the knot spacings, fi,j represents fi,j(x, y) at the point (xi, yj). Let d∗i,j and di,j be chosen partial

derivative values ∂f(x,y)
∂x and ∂f(x,y)

∂y at the knots (xi, yj), respectively. Denote hi = xi+1 − xi,
lj = yj+1 − yj , I = {1, 2, · · · , n}, J = {1, 2, · · · ,m}, and for any point (x, y) ∈ [xi, xi+1; yj , yj+1],
θ := x−xi

hi
, η := y−yj

lj
. Let α∗i,j , β

∗
i,j and γ∗i,j be the positive parameters. First, we construct the

x-direction interpolating curve P ∗
i,j(x) in [xi, xi+1], this is given by

P ∗
i,j(x) =

(1− θ)3α∗i,jfi,j + θ(1− θ)2V ∗
i,j + θ2(1− θ)W ∗

i,j + θ3β∗i,jfi+1,j

(1− θ)2α∗i,j + θ(1− θ)γ∗i,j + θ2β∗i,j
, (1)

where

V ∗
i,j = (α∗i,j + γ∗i,j)fi,j + hiα

∗
i,jd

∗
i,j ,

W ∗
i,j = (β∗i,j + γ∗i,j)fi+1,j − hiβ

∗
i,jd

∗
i+1,j ,

The interpolant P ∗
i,j(x) is called a rational cubic spline interpolation in [x1, xn], and which satisfies:

P ∗
i,j(xi) = fi,j , P ∗

i,j(xi+1) = fi+1,j , P ∗
i,j
′(xi) = d∗i,j , P ∗

i,j
′(xi+1) = d∗i+1,j .

Using the x-direction P ∗
i,j(x) defines the bivariate function on [xi, xi+1; yj , yj+1] as follow:

P (x, y) ≡ Pi,j(x, y) =
pi,j(x, y)
qi,j(y)

, (2)

where

pi,j(x, y) = (1− η)3αi,jP
∗
i,j(x) + η(1− η)2Vi,j + η2(1− η)Wi,j + η3βi,jP

∗
i,j+1(x),

qi,j(y) = (1− η)2αi,j + η(1− η)γi,j + η3βi,j ,

with

Vi,j = (αi,j + γi,j)P ∗
i,j(x) + ljαi,jDi,j(x),

Wi,j = (βi,j + γi,j)P ∗
i,j+1(x)− ljβi,jDi,j+1(x),
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and

Di,j(x) =
(1− θ)2(α∗i,j + θγ∗i,j)di,j

(1− θ)2α∗i,j + θ(1− θ)γ∗i,j + θ2β∗i,j
+

θ2((1− θ)γ∗i,j + β∗i,j)di+1,j

(1− θ)2α∗i,j + θ(1− θ)γ∗i,j + θ2β∗i,j
, (3)

and αi,j > 0, βi,j > 0, γi,j > 0. The interpolant P (x, y) defined by (2) is called a bicubic rational
interpolation in [x1, xn; y1, ym], and which satisfies

P (xr, ys) = f(xr, ys),
∂P (xr, ys)

∂x
= d∗r,s,

∂P (xr, ys)
∂y

= dr,s, r = i, i + 1; s = j, j + 1.

It is easy to test that the interpolant P (x, y) is C1 in the interpolating region [a, b; c, d] if the
shape parameters satisfy αi,j =constant, βi,j =constant and γi,j =constant, for each j ∈ J and all
i ∈ I, no matter what the shape parameters a∗i,j , β

∗
i,j and γ∗i,j might be.

3 Positivity-preserving surface interpolating scheme

In engineering, industrial, and scientific problems, the construction of shape preserving interpolants
is an everlasting demand and one of the major research areas of computer aided design. In this
section, we identify suitable values for the shape parameters involved in P (x, y) defined by (2),
which make the interpolating surface to preserve positive property of given data.

Let {(xi, yj , fi,j) : i = 1, 2, · · · , n; j = 1, 2, · · · ,m} be a monotone data set defined over the
rectangular grid [xi, xi+1; yj , yj+1] such that fi,j > 0 for all i, j. Here, the aim is to construct a
piecewise rational bivariate function P (x, y) on Ω = [x1, xn; y1, ym] such that

P (xi, yj) = fi,j , i = 1, 2, · · · , n; j = 1, 2, · · · ,m,

and P (x, y) > 0 for (x, y) ∈ Ω. From (2), qi,j(y) > 0 for the positive shape parameters, therefore,
P (x, y) is positive if the following constraints hold:

P ∗
i,j(x) > 0, Vi,j > 0, Wi,j > 0, P ∗

i,j+1(x) > 0.

From (1), it is easy to see that P ∗
i,j(x) > 0 holds if the following equalities are satisfied:

V ∗
i,j = (α∗i,j + γ∗i,j)fi,j + hiα

∗
i,jd

∗
i,j > 0,

W ∗
i,j = (β∗i,j + γ∗i,j)fi+1,j − hiβ

∗
i,jd

∗
i+1,j > 0.

Thus, P ∗
i,j(x) > 0 if

γ∗i,j
α∗i,j

> −hid
∗
i,j

fi,j
− 1,

γ∗i,j
β∗i,j

>
hid

∗
i+1,j

fi+1,j
− 1. (4)

Similarly, P ∗
i,j+1(x) > 0 if

γ∗i,j+1

α∗i,j+1

> −hid
∗
i,j+1

fi,j+1
− 1,

γ∗i,j+1

β∗i,j+1

>
hid

∗
i+1,j+1

fi+1,j+1
− 1. (5)

Consider Vi,j which, after simplification, leads to

Vi,j =
(1− θ)3κ1 + θ(1− θ)2κ2 + θ2(1− θ)κ3 + θ3κ4

(1− θ)2α∗i,j + θ(1− θ)γ∗i,j + θβ∗i,j
,

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1534 Xilian Fu 1532-1540



FU: VISUALIZATION OF SHAPED DATA

where

κ1 = α∗i,j((αi,j + γi,j)fi,j + ljdi,jαi,j),

κ2 = (αi,j + γi,j)((α∗i,j + γ∗i,j)fi,j + hid
∗
i,jα

∗
i,j) + ljdi,jαi,j(α∗i,j + γ∗i,j),

κ3 = (αi,j + γi,j)((β∗i,j + γ∗i,j)fi+1,j − hid
∗
i+1,jβ

∗
i,j) + ljdi+1,jαi,j(β∗i,j + γ∗i,j),

κ4 = β∗i,j((αi,j + γi,j)fi+1,j + ljdi+1,jαi,j).

Note that Vi,j > 0 if





γ∗i,j
α∗i,j

> −2hid
∗
i,j

fi,j
− 1,

γ∗i,j
β∗i,j

>
2hid

∗
i+1,j

fi+1,j
− 1,

γi,j

αi,j
> max{0,−2hidi,j

fi,j
− 1,−2hidi+1,j

fi+1,j
− 1}.

(6)

Moreover, Wi,j can be rewritten as

Wi,j =
(1− θ)3τ1 + θ(1− θ)2τ2 + θ2(1− θ)τ3 + θ3τ4

(1− θ)2α∗i,j + θ(1− θ)γ∗i,j + θβ∗i,j
,

where

τ1 = α∗i,j+1((βi,j + γi,j)fi,j+1 − ljdi,j+1βi,j),

τ2 = (βi,j + γi,j)((α∗i,j+1 + γ∗i,j+1)fi,j+1 + hid
∗
i,j+1α

∗
i,j+1)− ljdi,j+1βi,j(α∗i,j+1 + γ∗i,j+1),

τ3 = (βi,j + γi,j)((β∗i,j+1 + γ∗i,j+1)fi+1,j+1 − hid
∗
i+1,j+1β

∗
i,j+1)− ljdi+1,j+1βi,j(β∗i,j+1 + γ∗i,j+1),

τ4 = β∗i,j+1((βi,j + γi,j)fi+1,j+1 − ljdi+1,j+1βi,j).

Thus, it is easy to derive that Vi,j > 0 if





γ∗i,j+1

α∗i,j+1

> −2hid
∗
i,j+1

fi,j+1
− 1,

γ∗i,j+1

β∗i,j+1

>
2hid

∗
i+1,j+1

fi+1,j+1
− 1,

γi,j

βi,j
> max{0,

2ljdi,j+1

fi,j+1
− 1,

2ljdi+1,j+1

fi+1,j+1
− 1}.

(7)

Based on the analysis above, from (4)-(7), the following theorem can be obtained.
Theorem 1. Let {(xi, yj , fi,j) : i = 1, 2, · · · , n; j = 1, 2, · · · ,m} be a positive data set defined over
the plane region [x1, xn; y1, ym] such that fi,j > 0 for all i and j, where fi,j represents fi,j(x, y) at
the point (xi, yj). Let d∗i,j and di,j be the chosen partial derivatives. Then the bivariate rational
spline interpolant P (x, y) defined in (2) visualize positive data in the view of positive surface if the
positive shape parameters satisfy the following constraints:

γ∗i,j
α∗i,j

> max{0,−2hid
∗
i,j

fi,j
− 1},

γ∗i,j
β∗i,j

> max{0,
2hid

∗
i+1,j

fi+1,j
− 1},

γi,j

αi,j
> max{0,−2hidi,j

fi,j
− 1,−2hidi+1,j

fi+1,j
− 1},

γi,j

βi,j
> max{0,

2ljdi,j+1

fi,j+1
− 1,

2ljdi+1,j+1

fi+1,j+1
− 1}.
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4 Monotonicity-preserving surface interpolating scheme

In this section, we will develop a monotonicity preserving surface interpolating scheme for the given
monotone interpolating data.

Denote ∆(x)
i,j = (fi+1,j − fi,j)/hi, ∆(y)

i,j = (fi,j+1 − fi,j)/lj . Let {(xi, yj , fi,j) : i = 1, 2, · · · , n; j =
1, 2, · · · ,m} be a monotone data set defined over the rectangular grid [xi, xi+1; yj , yj+1] such that
fi+1,j > fi,j , fi,j+1 > fi,j for all i, j, or equivalently ∆(x)

i,j > 0, ∆(y)
i,j > 0. For a monotone surface

P (x, y), it is necessary that the corresponding first partial derivatives d∗i,j and di,j should meet:

d∗i,j > 0, di,j > 0, for all i = 1, 2, · · · , n; j = 1, 2, · · · ,m.

Using the result developed in [3]: Bicubic partially blended surface patch inherits all the properties
of network of boundary curves, we just need to consider the monotonicity of the boundary curves
in the interpolating surface.

The function P (x, yj) is monotonic increasing if and only if P ′(x, yj) > 0. From (2), we can
derive that

P ′(x, yj) =
(1− θ)4C1 + θ(1− θ)3C2 + θ2(1− θ)2C3 + θ3(1− θ)C4 + θ4C5

((1− θ)2α∗i,j + θ(1− θ)γ∗i,j + θ2β∗i,j)2
, (8)

with

C1 = α∗2i,jdi,j ,

C2 = 2α∗i,j [(β
∗
i,j + γ∗i,j)∆

(x)
i,j − β∗i,jdi+1,j ],

C3 = (γ∗2i,j + γ∗i,j(α
∗
i,j + β∗i,j) + 4α∗i,jβ

∗
i,j)∆

(x)
i,j − α∗i,j(β

∗
i,j + γ∗i,j)di,j − β∗i,j(α

∗
i,j + γ∗i,j)di+1,j ,

C4 = 2β∗i,j [(α
∗
i,j + γ∗i,j)∆

(x)
i,j − α∗i,jdi,j ],

C5 = β∗2i,jdi+1,j .

It is evident that C1 and C5 are positive, and C2 > 0 if
γ∗i,j
α∗i,j

>
d∗i,j
∆

(x)
i,j

− 1, C4 > 0 if
γ∗i,j
β∗i,j

>
d∗i+1,j

∆
(x)
i,j

− 1.

Further, since

C3 =
1
2
(C2 + C4) + (γ∗2i,j + 2α∗i,jβ

∗
i,j)∆

(x)
i,j − α∗i,jγ

∗
i,jdi,j − β∗i,jγ

∗
i,jdi+1,j

≥ 1
2
(C2 + C4) + γ∗i,j(

1
2
γ∗i,j∆

(x)
i,j − α∗i,jdi,j) + γ∗i,j(

1
2
γ∗i,j∆

(x)
i,j − β∗i,jdi+1,j),

it is easy to see that C3 > 0 if
γ∗i,j
α∗i,j

>
2d∗i,j
∆

(x)
i,j

and
γ∗i,j
β∗i,j

>
2d∗i+1,j

∆
(x)
i,j

.

Similarly, we have

P ′(xi, y) =
(1− η)4K1 + 2η(1− η)3K2 + η2(1− η)2K3 + η3(1− η)K4 + η4K5

((1− η)2αi,j + η(1− η)γi,j + η2βi,j)2
, (9)

where

K1 = α2
i,jdi,j ,

K2 = 2αi,j [(βi,j + γi,j)∆
(y)
i,j − βi,jdi,j+1],

K3 = (γ2
i,j + γi,j(αi,j + βi,j) + 4αi,jβi,j)∆

(y)
i,j − βi,j(αi,j + γi,j)di,j+1 − αi,j(βi,j + γi,j)di,j ,

K4 = 2βi,j [(αi,j + γi,j)∆
(y)
i,j − αi,jdi,j ],

K5 = β2
i,jdi,j+1.
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Hence, Ki > 0 (k = 1, 2, · · · , 5) hold if γi,j

αi,j
>

2di,j

∆
(y)
i,j

and γi,j

βi,j
>

2di,j+1

∆
(y)
i,j

.

Thus, the above discussion is epitomized in the form of following theorem.
Theorem 2. Let {(xi, yj , fi,j) : i = 1, 2, · · · , n; j = 1, 2, · · · ,m} be a monotone data set defined
over the plane region [x1, xn; y1, ym] such that fi+1,j > fi,j, fi,j+1 > fi,j for all i and j, where a =
x1 < x2 < ... < xn = b, c = y1 < y2 < · · · < ym = d are the knot spacings, fi,j represents fi,j(x, y)
at the point (xi, yj). Let d∗i,j and di,j be the chosen partial derivatives, so that d∗i,j > 0 and di,j > 0.
Then the bivariate rational spline interpolant P (x, y) defined in (2) visualize monotonic data in the
view of monotone surface if the positive shape parameters satisfy the following constraints:

γ∗i,j
α∗i,j

>
2d∗i,j
∆(x)

i,j

,
γ∗i,j
β∗i,j

>
2d∗i+1,j

∆(x)
i,j

,
γi,j

αi,j
>

2di,j

∆(y)
i,j

,
γi,j

βi,j
>

2di,j+1

∆(y)
i,j

.

5 Demonstration

In this section, we shall illustrate the positivity preserving scheme and the monotonicity preserving
scheme developed in Sections 3 and 4 with some examples, respectively.
Example 1. First of all, let us take the example of a positive data in Table 1. This data is generated
approximately from the following smooth positive function by taking the values truncated to four
decimal places:

f(x, y) = exp(−x2 − 2y) + 0.01, 0 ≤ x, y ≤ 8. (10)

The interpolant P (x, y) defined by (2) is identified uniquely by the given interpolating data and

Table 1: A positive data set taken from function (10).
y/x 0 2 4 6 8

0 1.0100 0.0283 0.0103 0.0100 0.0100
2 0.0283 0.0103 0.0100 0.0100 0.0100
4 0.0100 0.0100 0.0100 0.0100 0.0100
6 0.0100 0.0100 0.0100 0.0100 0.0100
8 0.0100 0.0100 0.0100 0.0100 0.0100

the values of shape parameters. We take α∗i,j = β∗i,j = αi,j = βi,j = 1 and γ∗i,j = γi,j = 2, the inter-
polant coincides with the bicubic Hermite interpolant. Figure 1 shows the graph of corresponding
interpolating surface P1(x, y), which loses the positivity.

For the same data set in table 1, we employ Theorem 1 to compute the values of shape param-
eters, which are taken as: α∗i,j = β∗i,j = αi,j = βi,j = 0.4 and γ∗i,j = γi,j = 3. Figure 2 provides the
graph of the corresponding bicubic rational interpolant P2(x, y). It is obvious to see from Figure 2
that the shape of the data has been preserved by the surface representation.
Example 2. Here, we consider the example of a monotonic data in Table 2. This data has been
generated approximately from the following smooth function:

f(x, y) = sin(x2 + y2 + xy), 0 ≤ x, y ≤ 0.6. (11)

This example will illustrate how visualization of 3D monotone data can be achieved in the view of
monotone surfaces only by selecting suitable shape parameters for unchanged interpolating data in
Table 2. For any values of the shape parameters, it cannot be guaranteed that the bicubic rational
surface generated by (2) is monotone. For example, we take α∗i,j = αi,j = 1, β∗i,j = βi,j = 8 and
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Figure 1: Non-positive Hermite surface P1.
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Figure 2: Positive rational surface P2.

Table 2: A monotone data set taken from function (11).
y/x 0 0.2 0.4 0.6

0 0 0.0400 0.1593 0.3523
0.2 0.0400 0.1197 0.2764 0.4969
0.4 0.1593 0.2764 0.4618 0.6889
0.6 0.3523 0.4969 0.6889 0.8820

γ∗i,j = γi,j = 0.1. Figure 3 shows the graph of the corresponding rational surface P3(x, y), which
loses the monotonicity in its display. Figure 4 is a different view of Figure 3 obtained after making
a rotation, it confirms quite clearly that the surface is not preserving monotonicity feature.

0
0.1

0.2
0.3

0.4
0.5

0.6

0

0.2

0.4

0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3: Non-monotonic rational surface P3.
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Figure 4: A different view of surface P3.

Now, we employ Theorem 2 to compute the values of shape parameters, which are taken as:
α∗i,j = β∗i,j = αi,j = βi,j = 0.6 and γ∗i,j = γi,j = 1.2. Figure 5 provides the graph of the corresponding
bicubic rational interpolant P4(x, y). It is obvious to see from Figure 5 that the shape of the
monotone data in Table 2 has been preserved by the surface representation. Figure 6 is produced
from this data set using a bicubic Hermite interpolant.
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Figure 5: Monotonic rational surface P4.
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Figure 6: Monotonic Hermite surface P5.

6 Concluding remarks

In engineering, industrial and scientific problems, the construction of shape preserving interpolants
is an everlasting demand and one of the major research areas of computer aided design. This work is
a contribution towards the graphical display of data when it is positive or monotone. To overcome
the problem, we present a new bicubic rational interpolating spline with the shape parameters
based on function values and partial derivatives. Further, a positivity-preserving scheme and a
monotonicity-preserving scheme are developed to visualize positive data and monotone data in the
view of positive surface and monotone surface, respectively, and the simple sufficient conditions are
derived on the shape parameters in the description of the rational function.
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Abstract

This article presents a new explicit viscosity rule for nonexpansive mappings in

Hilbert spaces. The strong convergence theorems of the rule is proved under certain

assumptions imposed on the sequence of parameters. Moreover, we give applications to

a more general system of variational inequalities, the constrained convex minimization

problem and K-mapping.
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1 Introduction

In this paper, we will take H as a real Hilbert space with inner product 〈·, ·〉 and the

induced norm ‖ · ‖, and C as a nonempty closed subset of the Hilbert space H . A mapping

T : H → H is called nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x − y‖, ∀x, y ∈ H.

A mapping f : H → H is called a contraction if there exists θ ∈ [0, 1) such that

‖f(x)− f(y)‖ ≤ θ‖x − y‖, ∀x, y ∈ H.

Note that F (T ) is the set of fixed points of T . The following strong convergence

theorem for nonexpansive mappings in real Hilbert spaces is given by Moudafi [8] in 2000.

∗Corresponding author
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Theorem 1.1. Let C be a noneempty closed convex subset of the a Hilbert space H . Let

T be a nonexpansive mapping of C into itself such that F (T ) is nonempty. Let f be a

contraction of C into itself with coefficient θ ∈ [0, 1). Pick any x0 ∈ C, let {xn} be a

sequence generated by

xn+1 =
εn

1 + εn
f(xn) +

1

1 + εn
T (xn), n ≥ 0,

where the sequence {εn} in (0, 1) satisfies

(i) limn→∞ εn = 0,

(2)
∑

∞

n=0 εn = ∞,

(3) limn→∞ | 1
εn+1

− 1
εn
| = 0.

Then {xn}converges strongly to a fixed point x∗ of the mapping T, which is also the

unique solution of the variational inequality

〈(I − f)x, y − x〉 ≤ 0, ∀ ∈ F (T ).

In other words, x∗ is the unique fixed point of the contraction PF (T )f, that is, PF (T )f(x∗)

= x∗.

This type of method for approximation of fixed points is called the viscosity approxi-

mation method.

In 2015, Xu et al. [11] applied the viscosity method on the midpoint rule for nonex-

pansive mappings and give the following generalized viscosity implicit rule:

xn+1 = αnf(xn) + (1− αn)T

(

xn + xn+1

2

)

, ∀n ≥ 0.

This use contraction to regularize the implicit midpoint rule for nonexpansive map-

pings. They also proved that the sequence generated by the generalized viscosity implicit

rule converges strongly to a fixed point of T, which can also solved variational inequality.

Ke and Ma [6] motivated and inspired by the idea of Xu et al. [11] and they proposed

two generalized viscosity implicit rules:

xn+1 = αnf(xn) + (1− αn)T (snxn + (1− sn)xn+1)

and

xn+1 = αnxn + βf(xn) + γnT (snxn + (1 − sn)xn+1)

for n ≥ 0.

In [3, 7], new viscosity rules and applications are developed. But they correspond to

one step viscosity rule.

In this paper, we give the following new two step explicit viscosity rule:

{

xn+1 = (1− αn)f(xn) + αnT (yn),

yn = (1 − βn)xn + βnT (xn).

We also give many applications of above rule.

2
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2 Preliminaries

Now, we recall the properties of the metric projection.

Definition 2.1. PC : H → C is called a metric projection if for every point x ∈ H, there

exist a unique nearest point in C, denoted by PCx, such that

‖x − PCx‖ ≤ ‖x − y‖, ∀y ∈ C.

The following lemma gives the condition for a projection mapping to be nonexpansive.

Lemma 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H and

PC : H → H be a metric projection. Then

(1) ‖PCx − PCy‖2 ≤ 〈x − y, PCx − PCy〉 for all x, y ∈ H.

(2) PC is a nonexpansive mapping, that is, ‖x − PCx‖ ≤ ‖x − y‖ for all y ∈ C.

(3) 〈x− PCx, y − PCx〉 ≤ 0 for all x ∈ H and y ∈ C.

In order to verify the weak convergence of an algorithm to a fixed point of a nonex-

pansive mapping we need the demiclosedness principle:

Lemma 2.3. (The demiclosedness principle) ([2]) Let C be a nonempty closed convex

subset of a real Hilbert space H and T : C → C such that

xn ⇀ x∗ ∈ C and (I − T )xn → 0.

Then x∗ = Tx∗, where → and ⇀ denote strong and weak convergence, respectively.

In addition, we also need the following convergence lemma.

Lemma 2.4. ([11]) Assume that {xn} is a sequence of non-negative real numbers such

that

an+1 ≤ (1 − γn)an + δn, ∀n ≥ 0,

where {γn} is a sequence in (0, 1) and{δn} is a sequence such that

(1)
∑

∞

n=0 γn = ∞,

(2) limn→∞ sup δn

γn
≤ 0or

∑

∞

n=0 |δn| < ∞.

Then limn→∞ an = 0 as n → ∞.

3 Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H . Let

T : C → C be a nonexpansive mapping with F (T ) 6= ∅ and f : C → C be a contraction

with coefficient θ ∈ [0, 1). Pick any x0 ∈ C, let {xn} be a sequence generated by

{

xn+1 = (1 − αn)f(xn) + αnT (yn),

yn = (1− βn)xn + βnT (xn),
(3.1)

where {αn} and {βn} are sequences in (0, 1) satisfying the following conditions:

3
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(1) limn→∞ αn = 1 and limn→∞ βn = 1,

(ii)
∑

∞

n=0 αn = ∞ and
∑

∞

n=0 βn = ∞,

(iii)
∑

∞

n=0 |αn+1 − αn| < ∞ and
∑

∞

n=0 |βn+1 − βn| < ∞, ∀n ≥ 0,

(iv) limn→∞ ‖xn − T (xn)‖ = 0.

Then {xn} converges strongly to a fixed point x∗ of the mapping T which is also the

unique solution of the variational inequality

〈(I − f)x, y − x〉 ≥ 0, ∀y ∈ F (T ).

In other words, x∗ is the unique fixed point of the contraction PF (T )f, that is, PF (T )f(x∗)

= x∗.

Proof. We divide the proof into the following five steps.

Step 1. Firstly, we show that xn is bounded.

Indeed, take p ∈ F (T ) arbitrarily, we have

‖xn+1 − p‖ = ‖(1− αn)f(xn) + αnT (yn)− p‖

= ‖(1− αn)f(xn) − (1− αn)p + αnT (yn) − αnp‖

≤ (1 − αn)‖f(xn) − p‖+ αn‖T (yn) − p‖

≤ (1 − αn)‖f(xn) − f(p)‖+ (1 − αn)‖f(p)− p‖

+ αn‖yn − p‖

≤ (1 − αn)θ‖xn − p‖+ (1− αn)‖f(p)− p‖

+ αn‖yn − p‖.

(3.2)

Now, consider

‖yn − p‖ = ‖(1− βn)xn + βnT (xn) − p‖

= ‖(1− βn)xn − (1− βn)p + βnT (xn) − βnp‖

≤ (1− βn)‖xn − p‖+ βn‖T (xn)− p‖

≤ (1− βn)‖xn − p‖+ βn‖xn − p‖

≤ ‖xn − p‖.

Using this in (3.2) we have

‖xn+1 − p‖ ≤ (1 − αn)θ‖xn − p‖ + (1 − αn)‖f(p)− p‖ + αn‖xn − p‖

= [(1− αn)θ + αn]‖xn − p‖ + (1 − αn)‖f(p)− p‖

= [1 − 1 + α + (1 − αn)θ]‖xn − p‖+ (1− αn)‖f(p)− p‖

= [1 − (1 − α) + (1− αn)θ]‖xn − p‖ + (1 − αn)‖f(p)− p‖

= [1 − (1 − αn)(1− θ)]‖xn − p‖

+ (1− αn)(1− θ)

(

1

1 − θ
‖f(p)− p‖

)

.

Thus, we have

‖xn+1 − p‖ ≤ max

{

‖xn − p‖,

(

1

1 − θ
‖f(p)− p‖

)}

.
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Similarly

‖xn − p‖ ≤ max

{

‖xn−1 − p‖,

(

1

1 − θ
‖f(p)− p‖

)}

.

From this

‖xn+1 − p‖ ≤ max

{

‖xn − p‖,

(

1

1 − θ
‖f(p)− p‖

)}

≤ max

{

‖xn−1 − p‖,

(

1

1 − θ
‖f(p)− p‖

)}

...

≤ max

{

‖x0 − p‖,

(

1

1 − θ
‖f(p)− p‖

)}

,

which shows that {xn} is bounded. From this we deduce immediately that {f(xn)},
{T (xn)} are bounded.

Step 2. Next, we want to prove that limn→∞ ‖xn+1 − xn‖ = 0.

For this consider

‖xn+1 − xn‖

= ‖(1− αn)f(xn) + αnT (yn) − (1 − αn−1)f(xn−1) − αn−1T (yn−1)‖

= ‖(1− αn)(f(xn)− f(xn−1)) − (αn − αn−1)f(xn−1)

+ αn(T (yn)− T (yn−1)) + (αn − αn−1)T (yn−1)‖

≤ (1− αn)θ‖xn − xn−1‖ + |αn − αn−1|‖T (yn−1) − f(xn−1)‖

+ αn‖yn − yn−1‖.

(3.3)

Now, consider

‖yn − yn−1‖

= ‖(1− βn)xn + βnT (xn)− (1− βn−1)xn−1 − βn−1T (xn−1)‖

= ‖(1− βn)(xn − xn−1)− (βn − βn−1)xn−1 + βn(T (xn) − T (xn−1))

+ (βn − βn−1)T (xn−1)‖

≤ (1− βn)‖xn − xn−1‖ + |βn − βn−1|‖T (xn−1) − xn−1‖ + βn‖xn − xn−1‖

≤ ‖xn − xn−1‖ + |βn − βn−1|‖T (xn−1) − xn−1‖.

Using this in (3.3) we get

‖xn+1 − xn‖

≤ (1 − αn)θ‖xn − xn−1‖ + |αn − αn−1|‖T (yn−1) − f(xn−1)‖

+ αn‖xn − xn−1‖ + αn|βn − βn−1|‖T (xn−1) − xn−1‖

= [(1− αn)θ + αn]‖xn − xn−1‖ + |αn − αn−1|‖T (yn−1) − f(xn−1)‖

+ αn|βn − βn−1|‖T (xn−1) − xn−1‖.

Let λn = (1−αn) so λn ∈ (0, 1) since αn ∈ (0, 1)
∑

∞

n=0 λn = ∞,
∑

∞

n=0 |αn−αn−1| < ∞
and

∑

∞

n=0 |βn − βn−1| < ∞. By using Lemma 2.4, we get limn→∞ ‖xn+1 − xn‖ = 0.

Step 3. Now we want to prove that limn→∞ ‖xn − T (yn)‖ = 0.

5
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Now, consider

‖xn − T (yn)‖ ≤ ‖xn − T (xn)‖ + ‖T (xn) − T (yn)‖

≤ ‖xn − T (xn)‖ + ‖xn − yn‖

= ‖xn − T (xn)‖ + ‖xn − (1− βn)xn − βnT (xn)‖

≤ ‖xn − T (xn)‖ + βn‖xn − T (xn)‖

≤ (1 + βn)‖xn − T (xn)‖

→ 0 as n → ∞.

Step 4. In this step, we claim that lim supn→∞〈x∗ − f(x∗), x∗ − xn〉 ≤ 0, where

x∗ = PF (T )f(x∗).

Indeed, we take a subsequence {xni
} of {xn} which converges weakly to a fixed point

p of T . Without loss of generality, we may assume that {xni
} ⇀ p. From limn→∞ ‖xn −

Txn‖ = 0 and Lemma 2.3 we have p = Tp. This together with the property of the metric

projection implies that

lim sup
n→∞

〈x∗ − f(x∗), x∗ − xn〉 = lim sup
n→∞

〈x∗ − f(x∗), x∗ − xni
〉

= 〈x∗ − f(x∗), x∗ − p〉

≤ 0.

Step 5. Finally, we show that xn → x∗ as n → ∞.

Here again x∗ ∈ F (T ) is the unique fixed point of the contraction PF (T )f . Consider

‖xn+1 − x∗‖2 = ‖(1 − αn)f(xn) + αnT (yn)− x∗‖2

= ‖(1 − αn)[f(xn) − x∗] + αn[T (yn) − x∗]‖2

= (1 − αn)2n‖f(xn) − x∗‖2 + (1− αn)2‖T (xn)− x∗‖2

+ 2αn(1 − αn)〈f(xn) − x∗, T (yn)− x∗〉

≤ α2
n‖yn − x∗‖2 + (1− αn)2‖f(xn)− x∗‖2

+ 2αn(1 − αn)〈f(xn) − f(x∗), T (yn) − x∗〉

+ 2αn(1 − αn)〈f(x∗) − x∗, T (yn) − x∗〉

≤ α2
n‖yn − x∗‖2 + (1− αn)2‖f(xn)− x∗‖2

+ 2αn(1 − αn)‖f(xn) − f(x∗)‖‖T (yn) − x∗‖

+ 2αn(1 − αn)〈f(x∗) − x∗, T (yn) − x∗〉

≤ α2
n‖yn − x∗‖2 + 2αn(1− αn)θ‖xn − x∗‖‖yn − x∗‖

+ (1− αn)2‖f(xn)− x∗‖2

+ 2αn(1 − αn)〈f(x∗) − x∗, T (yn) − x∗〉.

(3.4)

Now, consider

‖yn − x∗‖ = ‖(1− βn)xn + βnT (xn) − x∗‖

= ‖(1− βn)xn − (1 − βn)x∗ + βnT (xn) − βnx∗‖

≤ (1− βn)‖xn − x∗‖ + βn‖T (xn) − x∗‖

≤ (1− βn)‖xn − x∗‖ + βn‖xn − x∗‖

≤ ‖xn − x∗‖.
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Using (3.5) in (3.4) we get

‖xn+1 − x∗‖2

≤ α2
n‖xn − x∗‖2 + 2αn(1− αn)θ‖xn − x∗‖‖xn − x∗‖

+ (1 − αn)2‖f(xn) − x∗‖2 + 2αn(1 − αn)〈f(x∗)− x∗, T (yn) − x∗〉

≤ α2
n‖xn − x∗‖2 + 2αn(1− αn)θ‖xn − x∗‖‖xn − x∗‖

+ (1 − αn)2‖f(xn) − x∗‖2 + 2αn(1 − αn)〈f(x∗)− x∗, T (yn) − x∗〉

≤ [α2
n + 2αn(1− αn)θ]‖xn − x∗‖2 + (1− αn)2‖f(xn)− x∗‖2

+ 2αn(1 − αn)〈f(x∗) − x∗, T (yn) − x∗〉.

Note that αnθ < αn since αn ∈ (0, 1) and θ ∈ [0, 1).

2αnθ < 2αn

implies

2αnθ(1 − αn) < 2αn(1 − αn)

implies

α2
n + 2αnθ(1 − αn) < α2

n + 2αn(1 − αn).

So we have

‖xn+1 − x∗‖2 ≤ [α2
n + 2αn(1 − αn)]‖xn − x∗‖2 + (1 − αn)2‖f(xn) − x∗‖2

+ 2αn(1− αn)〈f(x∗) − x∗, T (yn)− x∗〉

≤ [2αn − α2
n)]‖xn − x∗‖2 + (1− αn)2‖f(xn) − x∗‖2

+ 2αn(1− αn)〈f(x∗) − x∗, T (yn)− x∗〉

≤ 2αn‖xn − x∗‖2 + (1− αn)2‖f(xn) − x∗‖2

+ 2αn(1− αn)〈f(x∗) − x∗, T (yn)− x∗〉

≤ 2[1− (1− αn)]‖xn − x∗‖2 + (1 − αn)2‖f(xn) − x∗‖2

+ 2αn(1− αn)〈f(x∗) − x∗, T (yn)− x∗〉.

(3.6)

By limn→∞ αn = 1 we have

lim sup
n→∞

(1 − αn)2‖f(xn) − x∗‖2 + 2αn(1 − αn)〈f(x∗)− x∗, T (yn) − x∗〉

(1− αn)

= lim sup
n→∞

[(1 − αn)‖f(xn) − x∗‖2 + 2αn〈f(x∗) − x∗, T (yn) − x∗〉] ≤ 0.

(3.7)

From (3.6), (3.7) and Lemma 2.4 we have

lim
n→∞

‖xn+1 − xn‖
2 = 0,

which implies that xn → x∗ as n → ∞. This completes the proof.
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4 Applications

4.1 A more general system of variational inequalities

Let Cbe a nonempty closed convex subset of a real Hilbert space H and {Ai}N
i=1 :

C → H be a family of mappings. In [1], Cai and Bu considered the problem of find-

ing x∗

1, x
∗

2, ..., x
∗

N ∈ C × C × · · · × C such that


































〈λNANx∗

N + x∗

1 − x∗

N , x− x∗

1〉 ≥ 0,

〈λN−1AN−1x
∗

N−1 + x∗

N − x∗

N−1, x− x∗

N〉 ≥ 0,
...

〈λ2A2x
∗

2 + x∗

3 − x∗

2, x− x∗

3〉 ≥ 0,

〈λ1A1x
∗

1 + x∗

2 − x∗

1, x− x∗

2〉 ≥ 0, ∀x ∈ C.

(4.1)

The equation (4.1) can be written as


































〈x∗

1 − (I − λNAN)x∗

N , x − x∗

1〉 ≥ 0,

〈x∗

N − (I − λN−1AN−1)x
∗

N−1, x− x∗

N 〉 ≥ 0,
...

〈x∗

3 − (I − λ2A2)x
∗

2, x− x∗

3〉 ≥ 0,

〈x∗

2 − (I − λ1A1)x
∗

1, x− x∗

2〉 ≥ 0, ∀x ∈ C,

which is a more general system of variational inequalities in a Hilbert space, where λi > 0

for all i ∈ {1, 2, 3, ...,N}. We also have following lemmas.

Lemma 4.1. ([6]) Let C be a nonempty closed convex subset of a real Hilbert spaces H.

For i ∈ {1, 2, 3, ...,N}, let Ai : C → H be δi-inverse-strongly monotone for some positive

real number δi, namely,

〈Aix − Aiy, x− y〉 ≥ δi‖Aix − Aiy‖
2, ∀x, y ∈ C

Let G : C → C be a mapping defined by

G(x) = PC(I − λNAN)PC(I − λN−1AN−1) · · ·

PC(I − λ2A2)PC(I − λ1A1)x, ∀x ∈ C.
(4.2)

If 0 < λi ≤ 2δi for all i ∈ {1, 2, ...,N}, then G is nonexpansive.

Lemma 4.2. ([5]) Let C be a nonempty closed convex subject of a real Hilbert space H.

Let Ai : C → H be a nonlinear mapping, where i ∈ {1, 2, 3, ...,N}. For given x∗

i ∈ C,

i ∈ {1, 2, 3, ..., N}, (x∗

1, x
∗

2, x
∗

3, ..., x
∗

N) is a solution of the problem (4.1) if and onli if

x∗

1 = PC(I − λNAN )x∗

N ,

x∗

i = PC(I − λi−1Ai−1)x
∗

i−1, i = 2, 3, 4, ...,N,
(4.3)

that is,

x∗

1 = PC(I − λNAN )PC(I − λN−1AN−1) · · ·

PC(I − λ2A2)PC(I − λ1A1)x
∗

1, ∀x ∈ C.
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From Lemma 4.2, we know that x∗

1 = G(x∗

1), that is, x∗

1 is a fixed point of the mapping

G, where G is defined by (4.2). Moreover, if we find the fixed point x∗

1, it is easy to get

the other points by (4.3). Applying Theorem 3.1 we get the result

Theorem 4.3. Let C be a nonempty closed convex subject of a real Hilbert space H. For

i ∈ {1, 2, 3, ......,N}, let Ai : C → H be δi-inverse-strongly monotone for some positive real

number δi with F (G) 6= ∅, where G : C → C is defined by

G(x) = PC(I − λNAN)PC(I − λN−1AN−1) · · ·

PC(I − λ2A2)PC(I − λ1A1)x, ∀x ∈ C.

Let f : C → C be a contraction with coefficient θ ∈ [0, 1). Pick any x0 ∈ C, let {xn}
be a sequence generated by

{

xn+1 = (1− αn)f(xn) + αnG(yn),

yn = (1 − βn)xn + βnG(xn),

where λi ∈ (0, 2δi), i = 1, 2, 3, ..., N, {αn} and {βn} are sequences in (0, 1) satisfying the

conditions (i)-(iv).

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping G, which

is also the unique solution of the variational inequality

〈(I − f)x, y − x〉 ≥ 0, ∀y ∈ F (T ).

In other words, x∗ is the unique fixed point of the contraction PF (G)f, that is, PF (G)f(x∗)

= x∗.

4.2 The constrained convex minimization problem

Now, we consider the following constrained convex minimization problem:

min
x∈C

φ(x), (4.4)

where φ : C → R is a real-valued convex function and assumes that the problem (4.4) is

consistent. Let Ω denote its solution set.

For the minimization problem (4.4), if φ is (Fréchet)differentiable, then we have the

following lemma.

Lemma 4.4. (Optimality Condition) ([5]) A necessary condition of optimality for a point

x∗ ∈ C to be a solution of the minimization problem (4.4) is that x∗ solves the variational

inequality

〈∇φ(x∗), x− x∗〉 ≥ 0, ∀x ∈ C. (4.4)

Equivalently, x∗ ∈ C solves the fixed point equation

x∗ = PC (x∗ − λ∇φ(x∗))

for every constant λ > 0. If, in a addition φ is convex, then the optimality condition (4.5)

is also sufficient.

9
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It is well known that the mapping PC(I − λA) is nonexpansive when the mapping A

is δ-inverse-strongly monotone and 0 < λ < 2δ. We therefore have the following result.

Theorem 4.5. Let C be a nonempty closed convex subset of the real Hilbert Space H.

For the minimization problem (4.4), assume that φ is (Fréchet) differentiable and the

gradient ∇φ is a δ-inverse-strongly monotone mapping for some positive real number δ.

Let f : C → C be a contraction with coefficient θ ∈ [0, 1). Pick any x0 ∈ C, let {xn} be a

sequence generated by

{

xn+1 = (1− αn)f(xn) + αnPC(1− λ∇φ)(yn),

yn = (1 − βn)xn + βnPC(1− λ∇φ)(xn),

where λi ∈ (0, 2δ), {αn} and {βn} are sequences in (0, 1) satisfying the conditions (i)-(iv).

Then {xn} converges strongly to a solution x∗ of the minimization problem (4.4), which

is also the unique solution of the variational inequality

〈(I − f)x, y − x〉 ≥ 0, ∀y ∈ Ω.

In other words, x∗ is the unique fixed point of the contraction PΩf, that is, PΩf(x∗) =

x∗.

4.3 The K-mapping

In 2009, Kangtunyakarn and Suantai [4] gave a K-mapping generated by T1, T2, T3, ..., TN

and λ1, λ2, λ3, ..., λN as follows.

Definition 4.6. Let C be a nonempty convex subset of a real Banach space. Let {Ti}
N
i=1

be a family of mappings of C into itself and let λ1, λ2, λ3, ..., λN be real numbers such that

0 ≤ λi ≤ 1 for every i = 1, 2, 3, ...,N . We define a mapping K : C → C as follows:



































U1 = λ1T1 + (1 − λ1)I,

U2 = λ2T2U1 + (1 − λ2)U1,
...

UN−1 = λN−1TN−1UN−2 + (1 − λN−1)UN−2,

K = UN = λNTNUN−1 + (1 − λN)UN−1.

Such a mapping is called a K-mapping generated by T1, T2, T3, ..., TN and λ1, λ2, λ3, ..., λN.

In 2014, Suwannaut and Kangtunyakarn [10] established the following result for K-

mapping generated by T1, T2, T3, ..., TN and λ1, λ2, λ3, ..., λN.

Lemma 4.7. Let C be a nonempty closed convex subset of a real Hilbert space H . For

i = 1, 2, 3, ..., N, let {Ti}
N
i=1 be a finite family of ki-strictly pseudo-contractive mapping of

C into itself with ki ≤ ω1 and
⋂N

i=1 F (Ti) 6= ∅, namely, there exist constants ki ∈ [0, 1)

such that

‖Tix − Tiy‖
2 ≤ ‖x − y‖2 + ki‖(I − Ti)x − (I − Ti)y‖

2, ∀x, y ∈ C.

10
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Let λ1, λ2, λ3, ..., λN be real numbers with 0 < λi < ω2 for all i = 1, 2, 3, ...,N and

ω1 +ω2 < 1. Let K be the K-mapping generated by T1, T2, T3, ..., TN and λ1, λ2, λ3, ..., λN.

Then the following properties hold:

(a) F (K) =
⋂N

i=1 F (Ti),

(b) K is a nonexpansive mapping.

On the bases of above lemma, we have the following results.

Theorem 4.8. Let C be a nonempty closed convex subset of a real Hilbert space H . For

i = 1, 2, 3, ..., N, let {Ti}
N
i=1 be a finite family of ki-strictly pseudo-contractive mapping of

C into itself with ki ≤ ω1 and
⋂N

i=1 F (Ti) 6= ∅. Let λ1, λ2, λ3, ..., λN be real numbers with

0 < λi < ω2 for all i = 1, 2, 3, ...,N and ω1 + ω2 < 1. Let K be the K-mapping generated

by T1, T2, T3, ..., TN and λ1, λ2, λ3, ..., λN.Let f : C → C be a contraction with coefficient

θ ∈ [0, 1). Pick any x0 ∈ C, let {xn} be sequence generated by
{

xn+1 = (1− αn)f(xn) + αnK(yn),

yn = (1− βn)xn + βnK(xn).
,

where {αn} and {βn} are sequences in (0, 1) satisfying the conditions (i)-(iv).

Then {xn} converges strongly to a fixed point x∗ of the mappings {Ti}
N
i=1, which is also

the unique solution of the variational inequality

〈(I − f)x, y − x〉, ∀y ∈ F (K) =

N
⋂

i=1

F (Ti).

In other words, x∗ is the unique fixed point of the contraction PT

N

i=1
F (Ti)

f, that is,

PT

N

i=1
F (Ti)

f(x∗) = x∗.
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Abstract

We give some strong convergence theorems about asymptotically nonexpansive

non-self mappings. In the end we give some applications of our results in the form of

examples. Our results extend the results already proved.
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1 Introduction

Fixed points of special mappings like asymptotically nonexpansive, nonexpansive, con-

tractive and other mappings has become a field of interest on its on and has a variety of

applications in related fields like image recovery, signal processing and geometry of ob-

jects. Almost in all branches of mathematics we see some versions of theorems relating

to fixed points of functions of special nature. As a result we apply them in industry, toy

making, finance, aircrafts and manufacturing of new model cars. Because of its vast range

of applications almost in all directions, the research in it is moving rapidly and an immense

literature is present now.

∗Corresponding author
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Let C be a nonempty subset of a real normed space E of A mapping T : C → C is

asymptotically nonexpansive if there exist a sequence {kn} ⊂ [0,∞) with limn→∞ kn = 1

such that ‖T nx− T ny‖ ≤ kn‖x− y‖ for all x, y ∈ C and n ≥ 1. This class was introduced

by Goebel and Kirk in 1972, see [4]. Ever since it has occupied a central place in fixed

point theory and other related fields concerning about special mappings.

Theorem 1.1. If C is a nonempty closed convex subset of a real uniformly convex Banach

space E and T : C → C is an asymptotically nonexpansive mapping, then T has a unique

fixed point in C.

However, in 1991, Schu [9] developed the modified Mann process for the approximation

of fixed points of an asymptotically nonexpansive self mapping which is defined on a

nonempty closed convex bounded subset of a Hilbert space given as follows:

Theorem 1.2. Let C be a nonempty closed convex bounded subset of a Hilbert space H

and T : C → C be a completely continuous and asymptotically nonexpansive mapping with

sequence {kn} ⊂ [1,∞] having limn→∞ kn = 1 and
∑

∞

n=1(k
2
n − 1) ≤ ∞. Let {αn} be a real

sequence in [0, 1] with condition ε ≤ αn ≤ 1 − ε for all n > 1 and for some ε > 0. Then

the sequence {xn} defined recursively by

{

x1 ∈ C (arbitrarily),

xn+1 = (1− αn)xn + αnT nxn, ∀n ≥ 1
(1.1)

converges strongly to some fixed point of T.

In the above theorem, T is a self mapping of C, where C is a nonempty closed convex

subset of H . If, however, the domain D(T ) of T is a proper subset of H and T : D(T ) → H

is a mapping the modified iteration {xn} may fail to be well defined.

To overcome this, in 2003, Chidume et al. [3] introduce the concept of asymptotically

nonexpansive non-self mappings.

Let E be a real Banach space. A subset C of E is called a retract of E if there exist

a continuous mapping P : E → E such that Px = x for all x ∈ C. Every closed convex

subset of a uniform convex Banach space is a retract. A mapping P : E → E is called a

retraction if P 2 = P. It is clear that if P is a retraction, then Py = y for all y in the the

range of P (see [3]).

Definition 1.3. Let C be a nonempty subset of a normed linear space E. Let P : E → C

be a nonexpansive retraction of E onto C. A non-self mapping T : C → E is said to be

asymptotically nonexpansive if there exist a sequence kn ⊂ [0, 1) with limn∞ kn = 1 such

that

‖T (PT )n−1(x) − T (PT )n−1(y)‖ ≤ kn‖x − y‖ (1.2)

for all x, y ∈ C and n ≥ 1.

Chidume et al. [3] introduced the following iterative scheme:

{

x1 ∈ C,

xn+1 = P ((1− αn)xn + αnT (PT )n−1xn)
(1.3)

2
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for all n ≥ 1, where {αn} ⊂ (0, 1) and proved some results of strong convergence and weak

convergence for asymptotic nonexpansive non-self mapping.

Throughout this paper, we denote Fix(T ) = {x ∈ C : Tx = x}.

Remark 1.4. If T : C → C is a self mapping, then P becomes identity and we have

1. The non-self mapping with (1.2) coincides with an asymptotically nonexpansive self

mapping in (1.1).

2. Both iterations (1.3) and (1.1) coincide.

After Chidume et al. many authors proved weak and strong convergence theorems

for asymptotically nonexpansive non-self mapping in Banach spaces [6–8, 10]. Guo and

Guo [7] introduced following new iterative scheme which is given as:

Let E be a real Banach space, C be a nonempty closed convex subset of E and

P : C → E be a nonexpansive retraction of E onto C. Let T : C → E be an asymptotically

nonexpansive non-self mapping defined by










x1 ∈ C,

yn = P ((1− βn)xn + βnT (PT )n−1xn),

xn+1 = P ((1 − αn)xn + αnT (PT )n−1yn)

(1.4)

for all n ≥ 1, where {αn} ⊂ (0, 1) and {βn} ⊂ [0, 1]. They proved some theorems of

strong convergence and weak convergence of the above iteration for an asymptotically

nonexpansive non-self mapping T : C → E.

In this paper, we first introduce a new iterative scheme {xn} defined as follows:






















x1 ∈ C,

yn = P ((1− βn)xn + βnT (PT )n−1xn),

zn = P ((1 − γn)yn + γnT (PT )n−1yn),

xn+1 = P
(

(1− αn)xn + αnT (PT )n−1
(

yn+zn

2

))

(1.5)

for all n ≥ 1, where {αn} ⊂ (0, 1) and {βn}, {γn} ⊂ [0, 1]. We first use the condition which

is weaker than the completely continuous mappings, given in [5] named as the condition

(BP). Secondly, we prove some strong convergence theorems for our iteration scheme for

an asymptotically nonexpansive non-self mapping. It is important to remark that our

results extend the results in [3, 5]. Finally, we give examples to explain the main results

of this paper.

2 Some lemmas

In this section we give some key lemmas which will be used to prove the main results of

this paper.

Lemma 2.1. ([11]) Let p > 1 and R > 0 and E be a Banach space. Then E is uniformly

convex if and only if there exist a continuous, strictly increasing and convex function

g : [0,∞) → [0,∞) with g(0) = 0 such that

‖λx + (1 − λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p − wp(λ)g(‖x− y‖)

3
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for all x, y ∈ B(0, R) = {x ∈ E : |x| ≤ R} with λ ∈ [0, 1], where wp(λ) = λ(1 − λ)p +

λp(1 − λ).

Lemma 2.2. Let E be a real uniformly convex Banach space and C be a nonempty convex

subset of E. Let T : C → E be an asymptotically nonexpansive non-self mapping with

{hn} ⊂ [1,∞) such that
∑

∞

n=1(hn − 1) < ∞ and Fix(T ) 6= ∅. Let {xn} be the sequence

defined by (1.5), where {αn} ⊂ [0, 1) and {βn}, {γn} ⊂ [0, 1]. Then

(a) ‖xn+1 − p‖ ≤ h2
n‖xn − p‖ for all p ∈ Fix(T ).

(b) limn→∞ ‖xn − p‖ exists for all p ∈ Fix(T ).

Proof. Take T2 = T1 = T and S2 = S1 = I in [6], we obtain the required result (see [5]).

Lemma 2.3. Let E be a real uniform convex Banach space and C be a nonempty closed

convex subset of E. Let T : C → E be an asmyptotically nonexpansive non-self mapping

with {hn}, {h′

n} ⊂ [1,∞) and h′

n ≤ hn such that
∑

∞

n=1(hn − 1) < ∞,
∑

∞

n=1(h
′

n − 1) < ∞
and Fix(T ) 6= ∅. Let {xn} a sequence defined in (1.5), where

0 < lim inf
n→∞

αn, lim sup
n→∞

αn < 1, lim sup
n→∞

βn < 1, lim sup
n→∞

γn < 1.

Then limn→∞ ‖xn − Txn‖ = 0.

Proof. By Lemma 2.2, we know that limn→∞ ‖xn − p‖ exists for all p ∈ Fix(T ). So

{xn−p}, {yn−p}, {zn−p}, {T (PT )n−1xn −p}, {T (PT )n−1yn −p} and {T (PT )n−1zn−p}
are all bounded so we have a real number R > 0 such that

{xn − p, yn − p, zn − p, T (PT )n−1xn − p, T (PT )n−1yn − p T (PT )n−1zn − p} ⊂ B(0, R),

for all n ≥ 1. It follows from (1.5) and Lemma 2.1 that

‖yn − p‖2 ≤ ‖(1− βn)(xn − p) + βn(T (PT )n−1xn − p)‖2

≤ (1 − βn)‖(xn − p)‖2 + βn‖(T (PT )n−1xn − p)‖2

− βn(1− βn)g(‖xn − T (PT )n−1xn‖)

≤ (1 − βn)h2
n‖(xn − p)‖2 + βnh2

n‖xn − p‖2

= h2
n‖(xn − p)‖2,

‖zn − p‖2 ≤ ‖(1 − γn)(yn − p) + γn(T (PT )n−1yn − p)‖2

≤ (1 − γn)‖(yn − p)‖2 + γn‖(T (PT )n−1yn − p)‖2

− γn(1− γn)g(‖yn − T (PT )n−1yn‖)

≤ (1 − γn)h′2
n‖(yn − p)‖2 + γnh′2

n‖yn − p‖2

= h′2
n|(yn − p)‖2

≤ h′2
nh2

n|(xn − p)‖2

≤ h4
n‖(xn − p)‖2.
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Also

‖xn+1 − p‖2 ≤

∥

∥

∥

∥

(1 − αn)(xn − p) + αn

(

T (PT )n−1

(

yn + zn

2

)

− p

)
∥

∥

∥

∥

2

≤ (1− αn)‖xn − p‖2 + αn

∥

∥

∥

∥

(

T (PT )n−1

(

yn + zn

2

)

− p

)
∥

∥

∥

∥

2

− αn(1− αn)g

(
∥

∥

∥

∥

xn − T (PT )n−1

(

yn + zn

2

)
∥

∥

∥

∥

)

≤ (1− αn)h8
n‖xn − p‖2 + αnh′2

nh2
n

∥

∥

∥

∥

yn + zn

2
− p

∥

∥

∥

∥

2

− αn(1− αn)g

(
∥

∥

∥

∥

xn − T (PT )n−1

(

yn + zn

2

)
∥

∥

∥

∥

)

≤ (1− αn)h8
n‖xn − p‖2 +

1

2
αnh′2

nh2
n(‖yn − p‖2 + ‖zn − p‖2)

− αn(1− αn)g

(
∥

∥

∥

∥

xn − T (PT )n−1

(

yn + zn

2

)
∥

∥

∥

∥

)

≤ (1− αn)h8
n‖xn − p‖2 + αnh8

n‖xn − p‖2

− αn(1− αn)g

(
∥

∥

∥

∥

xn − T (PT )n−1

(

yn + zn

2

)
∥

∥

∥

∥

)

= h8
n‖xn − p‖2 − αn(1− αn)g

(∥

∥

∥

∥

xn − T (PT )n−1

(

yn + zn

2

)∥

∥

∥

∥

)

,

where g : [0,∞) → [0,∞) is a continuous, strictly increasing and convex function with the

condition g(0) = 0. Since we have condition 0 < lim infn→∞ αn and lim supn→∞
αn < 1.

So there exist two real numbers a, b ∈ (0, 1) and a positive integer n0 such that a ≤ αn ≤ b

for all n ≥ n0, so

a(1− b)g(‖ xn − T (PT )n−1yn ‖) ≤ h4 ‖ xn − p ‖2 − ‖ xn+1 − p ‖2

and

a(1− b)g(‖ xn − T (PT )n−1zn ‖) ≤ h′4 ‖ xn − p ‖2 − ‖ xn+1 − p ‖2 .

Since limn→∞ hn = 1 and limn→∞ h′
n = 1, there exist positive integer m0, to and real

number s, s′ ∈ (0, 1) such that βnhn ≤ s and γnh′
n ≤ s′ for all n > m0 and

‖yn − xn‖ ≤ βn‖T (PT )n−1xn − xn‖

≤ βn‖T (PT )n−1xn − T (PT )n−1yn‖ + βn‖xn − T (PT )n−1yn‖

≤ βnhn‖xn − yn‖ + ‖xn − T (PT )n−1yn‖.

Similarly,

‖zn − xn‖ ≤ γnh′

n‖xn − zn‖ + ‖xn − T (PT )n−1zn‖.

Hence

(1 − s)‖yn − xn‖ ≤ (1 − βnhn)‖yn − xn‖ ≤ ‖xn − T (PT )n−1yn‖

and

(1 − s′)‖zn − xn‖ ≤ (1 − γnh′

n)‖zn − xn‖ ≤ ‖xn − T (PT )n−1zn‖.

5
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So we have

lim
n→∞

‖yn − xn‖ = 0 and lim
n→∞

‖zn − xn‖ = 0.

Furthermore from

‖xn − T (PT )n−1xn‖ ≤ ‖xn − T (PT )n−1yn‖ + ‖T (PT )n−1yn − T (PT )n−1xn‖

+ ‖xn − T (PT )n−1yn‖+ hn‖yn − xn‖,

it follows

lim
n→∞

‖xn − T (PT )n−1xn‖ = 0.

Using equations, we get

lim
n→∞

‖xn+1 − T (PT )n−1yn‖ = 0.

lim
n→∞

‖xn+1 − T (PT )n−1zn‖ = 0.

lim
n→∞

‖xn+1 − yn‖ = 0.

lim
n→∞

‖xn+1 − zn‖ = 0.

Now

‖xn − Txn‖ ≤ ‖xn − T (PT )n−1xn‖+ ‖T (PT )n−1xn − Txn‖

≤ ‖xn − T (PT )n−1xn‖+ ‖T (PT )n−1xn − T (PT )n−1yn−1‖

+ ‖T (PT )n−1yn−1 − Txn‖ + ‖T (PT )n−1xn − T (PT )n−1zn−1‖

+ ‖T (PT )n−1zn−1 − Txn‖,

and using above condition we get required result limn→∞ ‖xn − Txn‖ = 0. The completes

the proof.

3 The conditions (BP)

Here we recall the condition introduced in [5]. Let E be a Banach space and T : E → E be

a bounded linear operator. In 1966, Browdin and Petryshyn [2] considered the existence

of a solution of the equation f = u − Tu by iteration of Picard-Poincoré-Newmann,

{

x0 ∈ E

xn+1 = Txn + f,
(3.1)

or
{

x0 ∈ E

xn+1 = T nx0 + (f + Tf + · · ·+ T n−1f), ∀n ≥ 0, f ∈ E.
(3.2)

In fact, in 1958, Browder [1] proved the following.

Theorem 3.1. Let E be a reflexive Banach space. Then a solution u of the equation

u−Tu = f exists for a given point f ∈ E and an operator T which is asmyptotic bounded

if and only if the sequence {xn} defined by (3.1) is bounded for any fixed x0 ∈ E.

6
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Relaxing the assumption of reflexivity on E, under a slight sharp condition on T,

Browden and Petryshyn proved the following:

Theorem 3.2. Let E be a Banach space, T : E → E be a bounded linear operator which

is asymptotically convergent, that is, {T nx} converges in E for all x ∈ E. Then we have

the following:

(1) If f ∈ R(1 − T ), the sequence {xn} converges to a solution u of the equation

u + Tu = f.

(2) If any subsequence {xnk
} of the sequence {xn} converges to an element y ∈ E, then

y is a solution of the equation y − Ty = f.

(3) If E is a reflexive Banach space and the sequence {xn} is bounded, then the sequence

{xn} converges to a solution of the equation u + Tu = f.

Motivated by the above theorem, we have the concept of the condition (BP) as in [5]

given by

Let E be a real normed linear space, C be a nonempty subset of E and T : C → E be

a mapping

Definition 3.3. (Condition) The pair (T, C) is said to satisfy the condition (BP) if for

any bounded closed subset G of C, {z : z = x − Tx, x ∈ G} is a closed subset of E.

Let E and F be Banach spaces. Recall that a mapping T : E → F is completely

continuous if it is continuous and compact (that is, C is bounded implies that T (C) is

compact) or a weakly convergent sequence (xn → x weakly) implies a strong convergent

sequence (Txn → Tx).

Next we establish a relation between the condition (BP) and completely continuous

mapping given as:

Proposition 3.4. Let E be a real normed linear space, C be a nonempty subset of E and

T : C → E be a completely continuous mapping. Then the pair (T, C) satisfy the condition

(BP).

Proof. It is similar as in [5].

Remark 3.5. ([5]) The converse of the above proposition does not holds in general.

4 Strong convergence theorems

Now we turn to strong convergence theorems for the asymptotically nonexpansive non-self

mappings with condition in the real uniformly convex Banach spaces. First two results

correspond to our new scheme where as remaining results are the same results in [3] and [5],

which are the simple derivations of our result.

Theorem 4.1. Let E be a real uniformly convex Banach space and C be a nonempty closed

convex subset of E. Let T : C → E be an asymptotically nonexpansive non-self mapping

7
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with {hn}, {h′

n} ⊂ [1,∞) and h′

n ≤ hn such that
∑

∞

n=1(hn − 1) < ∞,
∑

∞

n=1(h
′

n − 1) < ∞
and Fix(T ) 6= ∅. Let {xn} be a sequence defined by























x1 ∈ C,

yn = P ((1 − βn)xn + βnT (PT )n−1xn),

zn = P ((1 − γn)yn + γnT (PT )n−1yn),

xn+1 = P
(

(1 − αn)xn + αnT (PT )n−1
(

yn+zn

2

))

(4.1)

for all n ≥ 1, where

0 ≤ lim inf
n→∞

αn, lim sup
n→∞

αn < 1, lim sup
n→∞

βn < 1, lim sup
n→∞

γn < 1.

If the pair (T, C) satisfy the condition (BP), then the sequence {xn} converges strongly to

a fixed point of T.

Proof. Let G = {xn}, where A denotes the closure of A. Since the sequence {xn} is

bounded in C by Lemma 2.2 and so G is a bounded closed subset of C. As pair (T, C)

satisfy (BP) conditions, it follows that

N = {z = x − Tx : x ∈ G}

is closed. Lemma 2.3 guarantees {xn − Txn} ⊂ N and xn − Txn → 0, {yn − Tyn} ⊂ N

and yn − Tyn → 0 as n → ∞. Clearly the zero vector 0 ∈ N so there exist a q ∈ G such

that q = Tq so q ∈ Fix(T ). Since q ∈ G so there exists a positive integer n0 such that

xn0
= q or there exists a subsequence {xnk

} of the sequence {xn} such that xnk
→ q as

k → ∞.

If xnk
= q, then it follows from Lemma 2.2 that xn = q for all n ≥ n0 and so xn → q

as n → ∞.

If xnk
→ q, then, since limn→∞ ‖xn − q‖ exists, we have xn → q as n → ∞. This

completes the proof.

Using Theorem 4.1 and Proposition 3.4, we have

Corollary 4.2. Let E be a real uniformly convex Banach space and C be a nonempty closed

convex subset of E. Let T : C → E be an asymptotically nonexpansive non-self mapping

with {hn}, {h
′

n} ⊂ [1,∞) and h′

n ≤ hn such that
∑

∞

n=1(hn − 1) < ∞,
∑

∞

n=1(h
′

n − 1) < ∞
and Fix(T ) 6= ∅. Let {xn} be a sequence defined by (4.1), where

0 ≤ lim inf
n→∞

αn, lim sup
n→∞

αn < 1, lim sup
n→∞

βn < 1, lim sup
n→∞

γn < 1.

If T is completely continuous, then the sequence {xn} converges strongly to a fixed

point of T.

Theorem 4.3. Let E be a real uniformly convex Banach space and C be a nonempty

closed convex subset of E. Let T : C → E be an asymptotically nonexpansive non-self

mapping with {hn} ⊂ [1,∞) such that
∑

∞

n=1(hn − 1) < ∞ and Fix(T ) 6= ∅. Let {xn} be

a sequence defined by (1.3), where

0 ≤ lim inf
n→∞

αn and lim sup
n→∞

αn < 1.

8
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If the pair (T, C) satisfy the condition (BP), then the sequence {xn} converges strongly

to a fixed point of T.

Proof. In Theorem 4.1, take βn = 0 and γn = 0 for all n ≥ 1, we arrive at the result.

Using Theorem 4.3 and Proposition 3.4, we have

Corollary 4.4. Let E be a real uniformly convex Banach space and C be a nonempty

closed convex subset of E. Let T : C → E be an asymptotically nonexpansive non-self

mapping with {hn} ⊂ [1,∞) such that
∑

∞

n=1(hn − 1) < ∞ and Fix(T ) 6= ∅. Let {xn} be

a sequence defined by (1.3), where

0 ≤ lim inf
n→∞

αn and lim sup
n→∞

αn < 1.

If T is completely continuous, then the sequence {xn} converges strongly to a fixed

point of T.

Remark 4.5. The results proved in [3] can also be obtained from our Theorem 4.1 under

special assumptions of sequences on αn, βn and γn.

5 Examples

Here we focus on the families of examples to apply on our results. First example also

extends the example presented in [5].

Example 5.1. Let X be a Hilbert space and

C = {x ∈ X : ‖x‖ ≤ r, ∀r > 0}.

Let P : C → C by

Px =

{

x, if x ∈ C,
rx
‖x‖

, if x ∈ X − C.

Then P is a nonexpansive retraction of X onto C (see [5]).

Take X = Rn with

〈x, y〉 =

n
∑

i=1

xiyi

and

‖x‖ =

(

n
∑

i=1

(xi)
2

)
1

2

.

Then X is a Hilbert space.

Let C = {x ∈ X : ‖x‖ ≤ 1, }.
Take P : C → C by

Px =

{

x, if x ∈ C,
x

‖x‖
, if x ∈ X − C.

9
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Then P is a nonexpansive retraction of X onto C by [8], taking r = 1.

Define Ti : C → X by Ti = (0, 0, ..., 1−xi, 0, 0, ..., 0) for all X = (x1, x2, x3, ..., xn) ∈ C.

Then

‖Txi − Tyi‖ = ‖(0, 0, ...1− xi, 0, 0, ..., 0)− (0, 0, ..., 1− yi, 0, 0, ..., 0)‖

= ‖(0, 0, ..., xi − yi, 0, 0, ..., 0)‖

≤ ‖x − y‖.

So Tix are a family of nonexpansive non-self mappings, so

‖Ti(PTi)
2−1x − Ti(PTi)

2−1y‖ ≤ ‖P (Tix) − P (Tiy)‖

≤ ‖Tix − Tiy‖

≤ ‖x− y‖.

Suppose that

‖Ti(PTi)
k−1x − Ti(PTi)

k−1y‖ ≤ ‖x − y‖, ∀n = k.

Taking n = k + 1, we have

‖Ti(PTi)
(k+1)−1x − Ti(PTi)

(k+1)−1y‖ ≤ ‖P (Tix)(k+1)−1 − P (Tiy)(k+1)−1‖

= ‖P (Ti)P (Tix)k−1 − P (Ti)P (Tiy)k−1‖

≤ ‖TiP (Tix)k−1 − TiP (Tiy)k−1‖

≤ ‖x − y‖.

It follws that from Mathematical Induction, Ti is a family of an asymptotically non ex-

pensive non-self mapping with sequence {hi,n} defined by hi,n = 1 for all n ≥ 1. Put

Fix(Ti) =
{

(0, 0, ...,
1

2
, 0, 0, ..., 0)

}

.

Now, we prove that the pairs (Ti, C) for each i satisfy the condition. For any closed

subset G of C, we denoted Ni = {z = x − Tix : x ∈ G} Then Ni are closed. Reality is

that, for any zn ∈ Ni with zn → z, there exist xn ∈ G such that zn = xn − Tixn. As G is

bounded and closed in C so is compact. Therefore, there exists a convergent subsequence

{xnk
} of {xn}. Letting xnk

→ x0 as k → ∞, we have x0 ∈ G. Also as Ti are continuous so

z = lim
k→∞

znk
= lim

k→∞

(xnk
− Tixnk

) = x0 − Tix0 ∈ Ni.

For any given x1 ∈ C, take a sequence {xn}










yn = P ((1− β1)xn + βnTi(PTi)
n−1xn),

zn = P ((1− γ1)yn + γnTi(PTi)
n−1yn),

xn+1 = P
(

(1− α1)xn + αnTi(PTi)
n−1
(

yn+zn

2

))

for any n ≥ 1, where

αn =
4

5
+

1

6n
, n = 0 (mod 2),

αn =
1

10
+

1

2n
, n = 1 (mod 2),

βn = γn =
2n

3n + 2
, n ≥ 1.

10
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Clearly

lim inf
n→∞

αn =
1

10
, lim sup

n→∞

αn =
4

5
,

lim sup
n→∞

βn = lim sup
n→∞

γn =
2

3
.

So all condition of Theorem 4.1 are satisfied and so {xn} converge strongly to a fixed point

(0, 0, 0, ..., 1
2 , 0, 0, ..., 0) of Ti.

Remark 5.2. If we take T1(x1, x2) = (1 − x1, 0) with x1 = (0, 0), then {xn} converges

strongly to Fix(Ti) = ( 1
2 , 0) after single iteration.

Example 5.3. Let X = l2 with 〈x, y〉 =
∑

∞

i=1 xiyi and ‖x‖ =
(
∑

∞

i=1 x2
i

)
1

2 . Then X is a

real infinite dimensional Hilbert space. Let C = {x ∈ X : ‖x‖ ≤ 1}. Define a mapping

P : X → C by

Px =

{

x, if x ∈ X,
x

‖x‖
, if x ∈ X − C.

Then P is nonexpansive retraction of X onto C. Define T : C → X by

Tx = (−x1,−x2, ...,−xi, ...), ∀x ∈ C.

Then we have
‖Tx− Ty‖ = ‖(y1 − x1, y2 − x2, ..., yi − xi, ...)‖

=

(

∞
∑

i=1

(yi − xi)
2

)
1

2

= ‖x− y‖

for all x = (x1, x2, ..., xi, ...), y = (y1, y2, ..., yi, ...) ∈ C so T is an asymptotically non-

expansive non-self mapping with sequence {hn} defined by hn = 1 for all n ≥ 1 and

Fix(T ) = {(0, 0, ..., 0)}.
Now we prove that the pair (T, C) satisfy our condition and T is not completely

continuous. In fact for any closed subset G of C, we denote N = {z = x − Tx : c ∈ G}.
For any zn ∈ N with zn → z as n → ∞, there exists zn = xn −Txn = 2xn. It follows from

zn → z that xn → 1
2z as n → ∞. Since G is closed in C, it follows that 1

2z ∈ G. Since T

is continuous, it follows that

z = lim
n→∞

zn = lim
n→∞

(xn − Txn) =
1

2
z − T

(

1

2
z

)

∈ N.

This shows that the pair (T, C) satisfy the condition (BP). Since T is surjective, and

unit ball C = {x ∈ X : ‖x‖ ≤ 1}, is not sequentially compact, so T is not completely

continuous (see [5]).

For x1 ∈ C, define sequence {xn} by











yn = P ((1 − βn)xn + βnT (PT )n−1xn),

zn = P ((1 − γn)yn + γnT (PT )n−1yn),

xn+1 = P
(

(1 − αn)xn + αnT (PT )n−1
(

yn+zn

2

))

,

11
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where αn = 3
5 + 1

4n
, n = 1 (mod 2), and αn = 1

7 + 1
2n

, n = 0 (mod 2) for all c ≥ 1,

βn = 3n
4n+2 , γn = 3n

4n+2 for all n ≥ 1. Clearly lim infn→∞ αn = 1
7 and lim supn→∞

αn = 3
5

and lim supn→∞
βn = lim supn→∞

γn = 3
4 . So all conditions of Theorem 4.1 are satisfied.

Hence the sequence {xn} converges strongly to fixed point (0, 0, ..., 0) of T.

Acknowledgement

This work was supported by the Dong-A University research fund.

References

[1] F. E. Browder, On the iteration of transformations in noncompact minimal dynamical

systems, Proc. Amer. Math. Soc., 9 (1958), 773–780.

[2] F. E. Browder and W. V. Petryshyn, The solution by iteration of linear functional

equations in Banach spaces, Bull. Amer. Math. Soc., 72 (1966), 566–570.

[3] C. E. Chidume, E. U. Ofoedu and H. Zegeye, Strong and weak convergence theorems

for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 280 (2003), 364–

374.

[4] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive

mapping, Proc. Amer. Math. Soc., 35 (1972), 171–174.

[5] W. Guo, A. A. Abdou, L. A. Khan and Y. J. Cho, Strong convergence theorems for

asymptoticlly nonexpansive nonself-mappings with applications, Fixed Point Theory

Appl., 2015 (2015), Article ID 212, 12 pages.

[6] W. Guo, Y. J. Cho and W. Guo, Convergence theorems for mixed type asyptotically

nonexpansive mappings, Fixed Point Theory Appl., 2015 (2015), Article ID 224, 15

pages.

[7] W. Guo and W. Guo, Weak convergence theorems for asyptotically nonexpansive

nonself-mappings, Appl. Math. Lett., 24 (2011), 2181–2185.

[8] Y. Q. Liu and W. Guo, Convergence theorems of composite implied iretation scheme

for mixed type asyptotically nonexpansive mappings, Acta Math. Sci. Ser. A, 35

(2015), 422–440.

[9] J. Schu, Iteration construction of fixed points of asymptotically nonexpansive map-

pings, J. Math. Anal. Appl., 158 (1991), 407–413.

[10] L. Wang, Strong convergence theorems for common fixed points of nonself asymptot-

ically nonexpansive mappings, J. Math. Anal. Appl., 323 (2006), 550–557.

[11] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991),

1127–1138.

12

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1564 Young Chel Kwun et al 1553-1564



On existence of nondecreasing solutions of
q-quadratic integral equations

February 16, 2017

Mohamed Abdalla Darwisha,b, Maryam Al-Yamib and Kishin Sadaranganic

aDepartment of Mathematics, Faculty of Science, Damanhour University
Damanhour, Egypt

e-mail: dr.madarwish@gmail.com

bDepartment of Mathematics, Sciences Faculty for Girls, King Abdulaziz University
Jeddah, Saudi Arabia

e-mail: mohad20020@hotmail.com
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Abstract

We investigate a q-fractional integral equation with supremum and prove
an existence theorem for it. We will prove that our q-integral equation has a
solution in C[0, 1] which is monotonic on [0, 1]. The monotonicity measure of
noncompactness due to Banaś and Olszowy and Darbo’s theorem are the main
tools used in the proof our main result.
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1 Introduction

Jackson in [20, 21] introduced the concept of quantum calculus (q-calculus). This area of
research has rich history and several applications, see [1, 3, 22, 23] and references therein.
There are several developments and applications of the q-calculus in mathematical physics,
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especially concerning quantum mechanics, the theory of relativity and special functions [1, 3,
17, 23, 24]. Recently, several researchers attracted their attention by the concept of q-calculus,
and we can find several new results in [2, 3, 18, 25] and the references therein.

In several papers among them [4, 19], differential equations with supremum as well as
integral equations with supremum have been studied. In [10, ?, 12, 13, 14, 15] Darwish et al.
studied differential and integral equations of arbitrary orders with supremum. Also, Caballero
et al. [8, 9] introduced and studied the quadratic Volterra equations with supremum. They
showed that these equations have monotonic solutions in the space C[0, 1]. In [10], Darwish
generalized and extend Caballero et al. [8] results to the quadratic integral equations of
arbitrary orders with supremum.

In this paper we will study the q-quadratic integral equation with supremum

y(t) = f(t) +
tβ−1(Ty)(t)

Γq(β)

∫ t

0
(qs/t; q)β−1 κ(t, s) max

[0,σ(s)]
|y(τ)| dqs, t ∈ J = [0, 1], (1.1)

where 0 < β, q ∈ (0, 1), f : J → R, T : C(J)→ C(J), κ : J × J → R+ and σ : J → J .
By using Darbo fixed point theorem and the monotonicity measure of noncompactness

due to Banaś and Olszowy [6] we prove the existence of monotonic solution to Eq.(1.1) in
C[0, 1].

2 Fractional q-calculus

We collect basic definitions and results of the q-fractional integrals and q-derivatives, for more
details, see [2, 3, 7, 17, 18, 24, 25] and references therein.

First, for a real parameter q ∈ (0, 1), we define a q-real number [a]q by

[a]q =
1− qa

1− q
, a ∈ R,

and a q-analog of the Pochhammer symbol (q-shifted factorial) is defined by

(a; q)n =


1, n = 0,

n−1∏
k=0

(1− aqk), n ∈ N.

Also, the q-analog of the power (a− b)n is given by

(a− b)(n) =


1, n = 0,

n−1∏
k=0

(a− bqk), n ∈ N; a, b ∈ R.

Moreover,
(a− b)(n) = an(b/a; q)n, a 6= 0.
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Notice that, lim
n→∞

(a; q)n exists and we will denote it by (a; q)∞.

More generally, for β ∈ R, aqβ 6= q−n (n ∈ N), we define

(a; q)β =
(a; q)∞

(aqβ; q)∞

and

(a− b)(β) = aβ
(b/a; q)∞

(qβb/a; q)∞
.

Notice that (a− b)(β) = aβ(b/a; q)β. Therefore, if b = 0, then a(β) = aβ.

Now, the q-gamma function is given by

Γq(x) =
G(qx)

(1− q)x−1G(q)
, x ∈ R\{0,−1,−2, · · · },

whereG(qx) = 1
(qx;q)∞

. Or, equivalently, Γq(x) = (1−q)(x−1)

(1−q)x−1 and satisfies Γq(x+1) = [x]qΓq(x).

Next, the q-derivative of a function f is given by

(Dqf)(t) =
f(t)− f(qt)

t− qt
, (Dqf)(0) = lim

t→0
(Dqf)(t),

and the q-derivative of higher order of a function f is defined by

(Dn
q f)(t) =


f(t), n = 0,

Dq(D
n−1
q f)(t), n ∈ N.

Let f be a function defined on [0, b]. The q-integral of f is defined as follows

(Iqf)(t) =

∫ t

0
f(s) dqs = t(1− q)

∞∑
n=0

qnf(tqn), t ∈ [0, b]. (2.2)

If f is given on the interval [0, b] and a ∈ [0, b], then∫ b

a
f(s) dqs =

∫ b

0
f(s) dqs−

∫ a

0
f(s) dqs.

The operator Inq is defined by

(Inq f)(t) =


f(t), n = 0,

Iq(I
n−1
q f)(t), n ∈ N.

The fundamental theorem of calculus satisfies for Dq and Iq, i.e., (DqIqf)(t) = f(t), and if f
is continuous at t = 0, then (IqDqf)(t) = f(t)− f(0).
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The following four formulas will be used later in this paper

[a(t− s)](β) = aβ(t− s)(β),

tDq(t− s)(β) = [β]q(t− s)(β−1),

sDq(t− s)(β) = −[β]q(t− qs)(β−1)

and

tDq

∫ t

0
f(t, s) dqs =

∫ t

0
tDqf(t, s) dqs+ f(qt, t),

where tDq denotes the derivative with respect to variable t.

Notice that, if β > 0 and a ≤ b ≤ t, then (t− b)(β) ≤ (t− a)(β).

Definition 1. [1] Let f be a function defined on [0, 1]. The fractional q-integral of the
Riemann-Liouville type of order β ≥ 0 is given by

(Iβq f)(t) =


f(t), β = 0,

1
Γq(β)

t∫
0

(t− qs)(β−1)f(s) dqs = tβ(1− q)β
∞∑
n=0

qn (qβ ;q)n
(q;q)n

f(tqn), β > 0, t ∈ [0, 1].

Notice that, for β = 1, the above q-integral reduces to (2.2).

Definition 2. [1] The fractional q-derivative of the Riemann-Liouville type of order β ≥ 0
is given by

(Dβ
q f)(t) =


f(t), β = 0,

(D
[β]
q I

[β]−β
q f)(t), β > 0,

where [β] stands for the smallest integer equal or greater than β.

In q−calculus, the derivative rule for the product of two functions and integration by
parts formulas are

(Dqfg)(t) = (Dqf)(t)g(t) + f(qt)(Dqg)(t),∫ t

0
f(s)(Dqg)(s) dqs = [f(s)g(s)]t0 −

∫ t

0
(Dqf)(s)g(qs) dqs.

Lemma 1. Let β, γ ≥ 0. Then the following are verified for a function f defined on [0, 1]:

(1) (Iγq I
β
q f)(t) = (Iβ+γ

q f)(t),

(2) (Dβ
q I

β
q f)(t) = f(t).

Lemma 2. [24] For β > 0. Then q-integration by parts allows us to have

(Iβq 1)(t) =
t(β)

Γq(β + 1)

or ∫ t

0
(t− qs)(β−1) dqs =

t(β)

[β]q
.
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3 Measure of noncompactness

We assume that (E, ‖.‖) is a real Banach space with zero element θ and we denote by B(x, r)
the closed ball with radius r and centre x, where Br ≡ B(θ, r).

Now, let X ⊂ E and denote by X and ConvX the closure and convex closure of X,
respectively. Also, the symbols X+Y and λY stands for the usual algebraic operators on sets.
Moreover, the families ME and NE are defined by ME = {A ⊂ E : A 6= ∅, A is bounded}
and NE = {B ⊂ME : B is relatively compact}, respectively.

Definition 3. [5] Let µ : ME → [0,+∞). If the following conditions

1◦ ∅ 6= {X ∈ME : µ(X) = 0} = kerµ ⊂ NE ,

2◦ if X ⊂ Y , then µ(X) ≤ µ(Y ),

3◦ µ(X) = µ(X) = µ(ConvX),

4◦ µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ), 0 ≤ λ ≤ 1 and

5◦ if (Xn) is a sequence of closed subsets of ME with Xn+1 ⊂ Xn, n = 1, 2, 3, ..., and
lim
n→∞

µ(Xn) = 0 then X∞ = ∩∞n=1Xn 6= ∅

hold. Then, the mapping µ is said to be a measure of noncompactness in E.

Here, kerµ is the kernel of the measure of noncompactness µ.
Our result will establish in C(J) the Banach space of all defined, continuous and real

functions on J ≡ [0, 1] with ‖y‖ = max{|y(τ)| : τ ∈ J}.
Next, we defined the measure of noncompactness related to monotonicity in C(J), see

[5, 6].
We fix a bounded subset Y 6= ∅ of C(J). For ε ≥ 0 and y ∈ Y , ω(y, ε) denotes the

modulus of continuity of the function y given by

ω(y, ε) = sup{|y(t)− y(s)| : t, s ∈ J, |t− s| ≤ ε}.

Moreover, we let
ω(Y, ε) = sup{ω(y, ε) : y ∈ Y }

and
ω0(Y ) = lim

ε→0
ω(Y, ε).

Define
d(y) = sup

t,s∈J, s≤t
(|y(t)− y(s)| − [y(t)− y(s)])

and
d(Y ) = sup

y∈Y
d(y).

Notice that all functions in Y are nondecreasing on J if and only if d(Y ) = 0.
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Now, we define the map µ on MC(J) as

µ(Y ) = d(Y ) + ω0(Y ).

Clearly, µ verifies all conditions in Definition 3 and, therefore it is a measure of noncompact-
ness in C(J) [6].

Definition 4. Let ∅ 6= M ⊂ E. Let P : M → E be a continuous operator. Suppose
that P maps bounded sets onto bounded ones. If there exists a bounded Y ⊂ M with
µ(PY ) ≤ αµ(Y ), α ≥ 0, then P is said to be satisfies the Darbo condition with respect to a
measure of noncompactness µ.

If α < 1, then P is called a contraction operator with respect to µ.

Theorem 1. [16] Let Ω 6= ∅ be a bounded, convex and closed subset of E. If P : Ω→ Ω is a
contraction operator with respect to µ. Then P has at least one fixed point belongs to Ω.

We will need the following two lemmas throughout our proof [8].

Lemma 3. Let r : J → J be a continuous function and y ∈ C(J). If, for t ∈ J ,

(Fy)(t) = max
[0,σ(t)]

|y(τ)|,

then Fy ∈ C(J).

Lemma 4. Let (yn) be a sequence in C(J) and y ∈ C(J). If (yn) converges to y ∈ C(J),
then (Fyn) converges uniformly to Fy uniformly J .

4 Main Theorem

Let us consider the following hypotheses:

(h1) f ∈ C(J). Moreover, f is nondecreasing and nonnegative on J .

(h2) The operator T : C(J)→ C(J) is continuous and satisfies the Darbo condition with a
constant c for the measure of noncompactness µ . Moreover, Tx ≥ 0 if x ≥ 0.

(h3) ∃ a, b ≥ 0 s.t. |(Tx)(t)| ≤ a+ b‖x‖ ∀x ∈ C(J), t ∈ J .

(h4) The function κ : J × J → R+ is continuous on J × J and nondecreasing ∀t and s
separately. Moreover, κ∗ = sup

(t,s)∈J×J
κ(t, s).

(h5) The function σ : J → J is nondecreasing and continuous on J .

(h6) ∃ r0 > 0 such that

‖f‖+
κ∗r0(a+ br0)

Γq(β + 1)
≤ r0 (4.3)

and ck∗r0
Γq(β+1) < 1.
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Now, we rewrite Eq.(1.1) as

x(t) = f(t) +
(Tx)(t)

Γq(β)

∫ t

0
κ(t, s) (t− qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs, 0 < β ≤ 1, t ∈ J, (4.4)

and define the two operators K and F on C(J) as follows

(Ky)(t) =
1

Γq(β)

∫ t

0
κ(t, s)(t− qs)(β−1) max

[0,σ(s)]
|y(τ)| dqs (4.5)

and
(Fy)(t) = f(t) + (Ty)(t) · (Ky)(t), (4.6)

respectively. Finding a fixed point of the operator F is equivalent to solving Eq.(4.4).
Under the above hypotheses, we state and prove our main theorem.

Theorem 2. Assume the hypotheses (h1)− (h6) be verified. Then Eq.(4.4) has at least one
solution x ∈ C(J) which is nondecreasing on J .

Proof. First, we will show that the operator F maps C(J) into itself. For this, it is sufficient
to show that Kx ∈ C(J) if x ∈ C(J). Fix ε > 0 and let x ∈ C(J) and t1, t2 ∈ J (t1 ≤ t2)
with |t2 − t1| ≤ ε. We have

|(Kx)(t2)− (Kx)(t1)| =

∣∣∣∣ 1

Γq(β)

∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

− 1

Γq(β)

∫ t1

0
κ(t1, s)(t1 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

∣∣∣∣
≤

∣∣∣∣ 1

Γq(β)

∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

− 1

Γq(β)

∫ t2

0
κ(t1, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

∣∣∣∣
+

∣∣∣∣ 1

Γq(β)

∫ t2

0
κ(t1, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

− 1

Γq(β)

∫ t1

0
κ(t1, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

∣∣∣∣
+

∣∣∣∣ 1

Γq(β)

∫ t1

0
κ(t1, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

− 1

Γq(β)

∫ t1

0
κ(t1, s)(t1 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

∣∣∣∣
≤ 1

Γq(β)

∫ t2

0
|κ(t2, s)− κ(t1, s)|(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

+
1

Γq(β)

∫ t2

t1

|κ(t1, s)|(t2 − qs)(β−1) max
[0,σ(s)]

|x(τ)| dqs
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+
1

Γq(β)

∫ t1

0
|κ(t1, s)| |(t2 − qs)(β−1) − (t1 − qs)(β−1)| max

[0,σ(s)]
|x(τ)| dqs

≤ ‖x‖
Γq(β)

ωκ(ε, .)

∫ t2

0
(t2 − qs)(β−1) dqs

+
κ∗‖x‖
Γq(β)

{∫ t1

0
[(t1 − qs)(β−1) − (t2 − qs)(β−1)]dqs+

∫ t2

t1

(t2 − qs)(β−1)dqs

}
=

‖x‖
Γq(β + 1)

ωκ(ε, .) t
(β)
2 +

κ∗ ‖x‖
Γq(β + 1)

[t
(β)
1 − t(β)

2 + 2(t2 − t1)(β)]

≤ ‖x‖
Γq(β + 1)

ωκ(ε, .) t
(β)
2 +

2κ∗ ‖x‖
Γq(β + 1)

(t2 − t1)(β)

≤ ‖x‖
Γq(β + 1)

ωκ(ε, .) tβ2 +
κ∗ ‖x‖

Γ(β + 1)
εβ, (4.7)

where we used
ωκ(ε, .) = sup

t, τ∈J, |t−τ |≤ε
|κ(t, s)− κ(τ, s)|.

Notice that, since the function κ is uniformly continuous on J ×J , then when ε→ 0 we have
that ωκ(ε, .)→ 0.

Therefore, Kx ∈ C(J) and consequently, Fx ∈ C(J).
Now, ∀t ∈ J , we have

|(Fx)(t)| ≤
∣∣∣∣f(t) +

(Tx)(t)

Γq(β)

∫ t

0
κ(t, s)(t− qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

∣∣∣∣
≤ ‖f‖+

a+ b‖x‖
Γq(β)

∫ t

0
κ(t, s)(t− qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

≤ ‖f‖+
a+ b‖x‖
Γq(β + 1)

κ∗‖x‖.

Hence

‖Fx‖ ≤ ‖f‖+
a+ b‖x‖
Γq(β + 1)

κ∗‖x‖.

From hypothesis (h6), if ‖x‖ ≤ r0, we get

‖Fx‖ ≤ ‖f‖+
a+ br0

Γq(β + 1)
κ∗r0

≤ r0.

Therefore, F maps Br0 into itself.
Next, we consider the operator F on the set B+

r0 = {x ∈ Br0 : x(t) ≥ 0, ∀t ∈ J}. It is
clear that B+

r0 6= ∅ is closed, convex and bounded. By this facts and hypotheses (h1), (h3)
and (h5), we obtain F transforms B+

r0 into itself.
In what follows, we will show that F is continuous on B+

r0 . For, let (xn) be us a sequence
in B+

r0 such that xn → x and we will show that Fxn → Fx. We have, ∀t ∈ J ,

|(Fxn)(t)− (Fx)(t)| =

∣∣∣∣(Txn)(t)

Γq(β)

∫ t

0
κ(t, s)(t− qs)(β−1) max

[0,σ(s)]
|xn(τ)|dqs
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− (Tx)(t)

Γq(β)

∫ t

0
κ(t, s)(t− qs)(β−1) max

[0,σ(s)]
|x(τ)|dqs

∣∣∣∣
≤

∣∣∣∣(Txn)(t)

Γq(β)

∫ t

0
κ(t, s)(t− qs)(β−1) max

[0,σ(s)]
|xn(τ)| dqs

− (Tx)(t)

Γq(β)

∫ t

0
κ(t, s)(t− qs)(β−1) max

[0,σ(s)]
|xn(τ)| dqs

∣∣∣∣
+

∣∣∣∣(Tx)(t)

Γq(β)

∫ t

0
κ(t, s)(t− qs)(β−1) max

[0,σ(s)]
|xn(τ)| dqs

− (Tx)(t)

Γq(β)

∫ t

0
κ(t, s)(t− qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

∣∣∣∣
≤ |(Txn)(t)− (Tx)(t)|

Γq(β)

∫ t

0
|κ(t, s)|(t− qs)(β−1) max

[0,σ(s)]
|xn(τ)| dqs

+
|(Tx)(t)|

Γq(β)

∫ t

0
|κ(t, s)|(t− qs)(β−1)

∣∣∣∣ max
[0,σ(s)]

|xn(τ)| − max
[0,σ(s)]

|x(τ)|
∣∣∣∣ dqs.

Applying Lemma 4, we obtain

‖Fxn −Fx‖ ≤
κ∗r0

Γq(β + 1)
‖Txn − Tx‖+

κ∗(a+ b r0)

Γq(β + 1)
‖xn − x‖. (4.8)

By the continuity of T , ∃n1 ∈ N such that

‖Txn − Tx‖ ≤
εΓq(β + 1)

2κ∗r0
∀n ≥ n1.

Also, ∃n2 ∈ N such that

‖xn − x‖ ≤
εΓq(β + 1)

2κ∗(a+ br0)
∀n ≥ n2.

Now, take max{n1, n2} ≤ n, then (4.8) gives us that

‖Fxn −Fx‖ ≤ ε.

This shows that F is continuous in B+
r0 .

Now, we take ∅ 6= X ⊂ B+
r0 . Let us fix an arbitrarily number ε > 0 and choose x ∈ X

and t1, t2 ∈ J with |t2 − t1| ≤ ε. We will assume that t1 ≤ t2 because no generality will be
loss. Then, by using our hypotheses and inequality (4.7), we get

|(Fx)(t2)− (Fx)(t1)| ≤ |f(t2)− f(t1)|+ |(Tx)(t2) (Kx)(t2)− (Tx)(t2) (Kx)(t1)|
+ |(Tx)(t2) (Kx)(t1)− (Tx)(t1) (Kx)(t1)|

≤ ω(f, ε) + |(Tx)(t2)| |(Kx)(t2)− (Kx)(t1)|
+ |(Tx)(t2)− (Tx)(t1)| |(Kx)(t1)|

≤ ω(f, ε) +
(a+ b‖x‖)
Γq(β + 1)

[
‖x‖ωκ(ε, .) + 2κ∗‖x‖εβ

]
+

ω(Tx, ε)

Γq(β + 1)
‖x‖κ∗
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≤ ω(f, ε) +
r0(a+ br0)

Γq(β + 1)
[ωκ(ε, .) + 2 κ∗εβ] +

κ∗r0

Γq(β + 1)
ω(Tx, ε).

Hence,

ω(Fx, ε) ≤ ω(f, ε) +
r0(a+ br0)

Γq(β + 1)
[ωκ(ε, .) + 2κ∗εβ] +

κ∗ r0

Γq(β + 1)
ω(Tx, ε).

Consequently,

ω(FX, ε) ≤ ω(f, ε) +
r0(a+ br0)

Γq(β + 1)
[ωκ(ε, .) + 2κ∗εβ] +

κ∗r0

Γq(β + 1)
ω(TX, ε).

Since the function κ is uniformly continuous on J × J and the function f is continuous on J ,
then the last inequality gives us that

ω0(FX) ≤ κ∗r0

Γq(β + 1)
ω0(TX). (4.9)

Further, fix arbitrary x ∈ X and t1, t2 ∈ J with t2 > t1. Then, by our hypotheses, we have

|(Fx)(t2)− (Fx)(t1)| − [(Fx)(t2)− (Fx)(t1)]

=

∣∣∣∣f(t2) +
(Tx)(t2)

Γq(β)

∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

−f(t1)− (Tx)(t1)

Γq(β)

∫ t1

0
κ(t1, s)(t1 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

∣∣∣∣
−
[
f(t2) +

(Tx)(t2)

Γ(qβ)

∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

−f(t1)− (Tx)(t1)

Γq(β)

∫ t1

0
κ(t1, s)(t1 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

]
≤ {|f(t2)− f(t1)| − [f(t2)− f(t1)]}+

∣∣∣∣(Tx)(t2)

Γq(β)

∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

− (Tx)(t1)

Γq(β)

∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

∣∣∣∣
+

∣∣∣∣(Tx)(t1)

Γq(β)

∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

− (Tx)(t1)

Γq(β)

∫ t1

0
κ(t1, s)(t1 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

∣∣∣∣
−
{[

(Tx)(t2)

Γq(β)

∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

− (Tx)(t1)

Γq(β)

∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

]
+

[
(Tx)(t1)

Γq(β)

∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs
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− (Tx)(t1)

Γq(β)

∫ t1

0
κ(t1, s)(t1 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

]}
≤ {|(Tx)(t2)− (Tx)(t1)| − [(Tx)(t2)− (Tx)(t1)]}

× 1

Γq(β)

∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

+
(Tx)(t1)

Γq(β)

{∣∣∣∣∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

−
∫ t1

0
κ(t1, s)(t1 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

∣∣∣∣
−
[∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

−
∫ t1

0
κ(t1, s)(t1 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

]}
. (4.10)

Now, we will prove that∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs−

∫ t1

0
κ(t1, s)(t1 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs ≥ 0.

In fact, we have∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs−

∫ t1

0
κ(t1, s)(t1 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

=

∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs−

∫ t2

0
κ(t1, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

+

∫ t2

0
κ(t1, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs−

∫ t1

0
κ(t1, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

+

∫ t1

0
κ(t1, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs−

∫ t1

0
κ(t1, s)(t1 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

=

∫ t2

0
(κ(t2, s)− κ(t1, s))(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

+ +

∫ t2

t1

κ(t1, s)(t2 − qs)(β−1) max
[0,σ(s)]

|x(τ)| dqs

+

∫ t1

0
κ(t1, s)[(t2 − qs)(β−1) − (t1 − qs)(β−1)] max

[0,σ(s)]
|x(τ)| dqs.

But, κ(t1, s) ≤ κ(t2, s) because κ(t, s) is increasing with respect to t, then∫ t2

0
(κ(t2, s)− κ(t1, s))(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs ≥ 0 (4.11)

and, since (t2 − qs)(β−1) − (t1 − qs)(β−1) ≥ 0 for s ∈ [0, t1) then∫ t1

0
κ(t1, s)[(t2 − qs)(β−1) − (t1 − qs)(β−1)] max

[0,σ(s)]
|x(τ)| dqs
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+

∫ t2

t1

κ(t1, s)(t2 − qs)(β−1) max
[0,σ(s)]

|x(τ)| dqs

≥
∫ t1

0
κ(t1, t1)[(t2 − qs)(β−1) − (t1 − qs)(β−1)] max

[0,σ(t1)]
|x(τ)| dqs

+

∫ t2

t1

κ(t1, t1)(t2 − qs)(β−1) max
[0,σ(t1)]

|x(τ)| dqs

= κ(t1, t1) max
[0,σ(t1)]

|x(τ)|
[∫ t2

0
(t2 − qs)(β−1) dqs−

∫ t1

0
(t1 − qs)(β−1) dqs

]
= κ(t1, t1)

tβ2 − t
β
1

[β]q
max

[0,σ(t1)]
|x(τ)|

≥ 0. (4.12)

Finally, (4.11) and (4.12) imply that∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs−

∫ t1

0
κ(t1, s)(t1 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs ≥ 0.

The above inequality and (4.10) leads us to

|(Fx)(t2)− (Fx)(t1)| − [(Fx)(t2)− (Fx)(t1)]

= {|(Tx)(t2)− (Tx)(t1)| − [(Tx)(t2)− (Tx)(t1)]}

× 1

Γq(β)

∫ t2

0
κ(t2, s)(t2 − qs)(β−1) max

[0,σ(s)]
|x(τ)| dqs

≤ κ∗r0

Γq(β + 1)
d(Tx).

Thus,
d(Fx)Γq(β + 1) ≤ κ∗r0d(Tx)

and therefore,
d(FX)Γq(β + 1) ≤ κ∗r0d(TX). (4.13)

Finally, (4.9) and (4.13) gives us that

ω0(FX) + d(FX) ≤ κ∗r0

Γq(β + 1)
(ω0(FX) + d(TX))

or

µ(FX) ≤ r0κ
∗

Γq(β + 1)
µ(TX)

≤ κ∗cr0

Γq(β + 1)
µ(X).

But κ∗r0c
Γq(β+1) < 1, then

µ(FX) ≤ µ(X). (4.14)

Inequality (4.14) enables us to use Theorem 1, then there are solutions to Eq.(1.1) in C(J).
This finishes our proof.
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