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Approximation reduction for multi-granulation dual hesitant

fuzzy rough sets

Yanping He !, Lianglin Xiong?* Haidong Zhang 3!
1. School of FElectrical Engineering,
Northwest University for Nationalities,
Lanzhou, Gansu, 730030, P. R. China
2. School of Mathematics and Computer Science,
Yunnan Minzu University,
Kunming, Yunnan, 650500, P. R. China
8. School of Mathematics and Computer Science,
Northwest University for Nationalities,
Lanzhou, Gansu, 730030, P. R. China

Abstract

Multi-granulation dual hesitant fuzzy rough set is an extension of intuitionistic
fuzzy multi-granulation rough sets and multi-granulation fuzzy rough sets. For further
studying the theories and applications of multi-granulation dual hesitant fuzzy rough
sets, in this paper, we mainly investigate reduction approaches of the multi-granulation
dual hesitant fuzzy rough sets. We develop a reduction approach in multi-granulation
dual hesitant fuzzy decision information systems based on multi-granulation dual h-
esitant fuzzy rough sets to eliminate redundant dual hesitant fuzzy granulations. And
an example is provided to illustrate the validity of this approach.

Key words: Multi-granulation fuzzy rough set; Multi-granulation dual hesitant
fuzzy rough set; Reduction approach

1 Introduction

Rough set theory, introduced by Pawlak [19,20], is a new mathematical approach to
cope with imprecision and uncertainty in data analysis, and can be regarded as a valid
means of granular computing [21]. In Pawlak’s rough set model, a key notion is equivalence

*Corresponding author. Address: School of Mathematics and Computer Science Yunnan Minzu Uni-
versity, Kunming, Yunnan, 650500, China. E-mail:lianglin_5318@126.com

fCorresponding author. Address: School of Mathematics and Computer Science, Northwest University
for Nationalities, Lanzhou, Gansu, 730030, P.R.China. E-mail:lingdianstar@163.com
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relation. However, the equivalence relation is a very stringent condition which may limit
the application of rough sets. Therefore, by replacing the equivalence relation with other
binary relations, such as fuzzy, interval-valued fuzzy, intuitionistic fuzzy, hesitant fuzzy
and interval-valued hesitant fuzzy, and so on, lots of researchers have proposed many new
rough sets model. For example, Dubois and Prade [4] initiated two rough set models which
are called rough fuzzy sets and fuzzy rough sets. Furthermore, Wu et al. [31, 32] studied
various generalized fuzzy approximation operators which are characterized by different
sets of axioms. According to fuzzy rough sets in the sense of Nanda and Majumda [18],
Jena and Ghosh [8] presented the concept of intuitionistic fuzzy rough sets which are
not defined by an approximation space. By using a special type of intuitionistic fuzzy
triangular norm min, Zhou and Wu [48] discussed various relation-based intuitionistic
fuzzy rough approximation operators. Meanwhile, they [49] also investigated intuitionistic
fuzzy rough approximations on one universe based on intuitionistic fuzzy implicators.
In [46], Zhang et al. proposed a generalized interval-valued fuzzy rough set and applied
it to decision making. Very recently, rough set theory has been developed into hesitant
fuzzy environment and interval-valued hesitant fuzzy environment, and the results are,
respectively, called hesitant fuzzy rough sets [41] and interval-valued hesitant fuzzy rough
sets [45].

The generalization of Pawlak’s rough set model has become a new research hotspot
from the perspective of granular computing. Since Qian et al. [22] proposed multi-
granulation rough set (MGRS) theory, lots of fruitful results about MGRS theory have
been achieved. Qian et al. [23] proposed an incomplete multi-granulation rough set model
by using multiple tolerance relations on the universe, and studied decision-theoretic rough
sets based on multi-granulations [25]. She et al. [27] investigated topological structures of
MGRSs. Yang et al. [42] extended Qian’s MGRS model to fuzzy environment and explored
a MGRS based on fuzzy relations. Along the lines of Qian’s MGRSs, Xu et al. [36] ini-
tiated an ordered MGRS model. And they [34,35] also proposed multi-granulation fuzzy
rough sets based on multiple classical equivalence relations and multi-granulation fuzzy
rough sets in a fuzzy tolerance approximation space. Through combining MGRSs and
intuitionistic fuzzy rough sets, Huang et al. [7] proposed intuitionistic fuzzy MGRSs and
gave a reduction approach of this model. Liu et al. [9,10] presented covering fuzzy rough
sets based on MGRSs. To handle data sets in the context of hybrid attributes, Lin et
al. [11] introduced the neighborhood-based MGRSs, generalized the covering into multi-
granulation environment and proposed the covering based on optimistic and pessimistic
MGRSs [12]. More recently, Liang et al. [16] presented an efficient rough feature selection
algorithm through a multi-granulation view. Yang et al. [43] proposed a test cost sensitive
multi-granulation rough set model to take the test cost into consideration in both data
mining and machine learning.

As one of the extensions of Zadeh’s fuzzy set [50], hesitant fuzzy (HF) set theory,
initiated by Torra [28,29], permits the membership degree of an element to a set having

1188 Yanping He et al 1187-1206



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

several possible values, and can express the hesitant information more comprehensively
than other extensions of fuzzy set. Since the appearance of hesitant fuzzy set, it has
attracted more and more scholars’ attention. For example, Xu and Xia [33,37,38] discussed
the aggregation operators, correlation measures, distance, and similarity measures for HF
sets. Meanwhile, Chen et al. [2] gave correlation coefficients of HF sets and applied
them to clustering analysis. Subsequently, Liao et al. [15] proposed novel correlation
coefficients between hesitant fuzzy sets and and applied them to decision making. In [5],
Farhadinia introduced information measures for HF sets. Rodrguez et al. [26] proposed
a HF linguistic term set providing a more powerful form to represent decision makers’
preferences in the decision making process. Liao and Xu [13,14] developed a hesitant fuzzy
VIKOR method based on some new measures, and proposed some new hybrid weighted
aggregation operators under hesitant fuzzy multi-criteria decision making environment.
Zhang and Wei [51] proposed an extension of VIKOR method based on hesitant fuzzy set
in decision making problem.

Dual hesitant fuzzy (DHF) set, introduced by Zhu et al. [44], is a comprehensive set en-
compassing fuzzy sets, intuitionistic fuzzy sets [1], hesitant fuzzy sets, and fuzzy multiset-
s [17] as special cases. By several possible values for the membership and nonmembership
degrees, dual hesitant fuzzy sets are more objective than hesitant fuzzy sets to describe
the vagueness of data or information. In recent years, many authors have investigated
multiple attribute decision-making theories and methods under the dual hesitant fuzzy en-
vironment [3,6,30,40]. Very recently, the combination of dual hesitant fuzzy sets and other
uncertainty theories is becoming a research hotspot. For example, by integrating rough
set theory with dual hesitant fuzzy sets, Zhang et al. [47] proposed a single-granulation
dual hesitant fuzzy rough set (SGDHFRS). Based on the SGDHFRSSs, they presented the
concept of multi-granulation dual hesitant fuzzy rough sets (MGDHFRSs) in which two
types of this model are proposed: one is called the optimistic MGDHFRS; the other is
called the pessimistic MGDHFRS. The relationships among the optimistic MGDHFRS,
the pessimistic MGDHFRS and the SGDHFRS are then established. However, reduc-
tion approaches of the MGDHFRSs are not still be investigated. In order to develop
the application of the MGDHFRSSs, topological properties and reduction approaches on
MGDHFRSs further need to be studied. The objective of this paper is mainly to focus on
the study of reduction approaches of the MGDHFRSs.

The rest of the paper is organized as follows. The next section reviews some basic
concepts considered in the study, such as HF sets, DHF sets and MGDHFRSs. In Section 3,
we propose a reduction approach of MGDHFRSs to eliminate redundant DHF granulations
by a numerical example. Finally, we conclude the paper in Section 4.
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2 Preliminaries

2.1 Dual hesitant fuzzy sets

As an extension of hesitant fuzzy sets, dual hesitant fuzzy sets are defined by Zhu et
al. [44] as follows:

Definition 2.1 ( [44]) Let U be a fized set, a dual hesitant fuzzy set D on U is described
as:

D = {< , hp(z), gn(z) > [z € U},
in which hp(z) and gp(x) are two sets of some values in [0,1], denoting the possible
membership degrees and non-membership degrees of the element x € U to the set D re-

spectively, with the conditions: 0 < v,n <1 and 0 < vt +n* < 1, where for all z € U,
v € hn(x),n € go(x), v© € hy () = Uyeny@ymaz{v}, 1" € g5 () = Upegy@ymaz{n}.

For convenience, the pair d(x) = (hp(x), gp(z)) is called a DHF element denoted by
d = (h,g). The set of all DHF sets on U is denoted by DHF(U).

2.2 Multi-granulation dual hesitant fuzzy rough sets

In [47], Zhang et al. proposed a SGDHFRS by integrating rough set theory with dual
hesitant fuzzy sets. First, they introduced a DHF relation as follows:

Definition 2.2 ( [47]) Let U,V be two nonempty and finite universes. A DHF subset R
of the universe U XV is called a DHF relation from U to V', namely, R is given by
R ={<(z,9), he(z,y), gr(z,y) > |(z,y) € U x V},

where hr,gr : U X V. — [0, 1] are two sets of some values in [0,1], denoting the possible
membership degrees and non-membership degrees of the relationships between x and y
respectively, with the conditions: 0 < v,n < 1 and 0 < T +nT < 1, where for all
(z,y) € UxV, v € hg(z,y),n € gr(z,y), 7" € hg(2,y) = Uyepgayymaz{r},n* €
gﬁg(% y) = UnEgR(a:,y)maJ:{n}'

In particular, if U = V', we call R a DHF relation on U. In what follows several special
DHF relations are introduced as follows:

Definition 2.3 ( [47]) The DHF relation R from U to V is said to be serial if for each
x € U, there exists ay € V such that hg(z,y) = {1} and gr(x,y) = {0}; R is said to
be reflexive on U if hg(x,z) = {1} and gr(z,x) = {0} for all x € U; R is referred to
as a symmetric DHF relation on U if hg(z,y) = hr(y,x) and gr(x,y) = gr(y,z) for all
z,y€U.

If a DHF relation R on U is reflexive and symmetric, it is called a DHF tolerance
relation on U.
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Based on the above DHF relation, lower and upper DHF approximation operators are
defined as follows:

Definition 2.4 ( [47]) Let U be a nonempty and finite universes and R be a DHF tol-
erance relation on U. The pair (U,R) is called a DHF tolerance approximation space.
For any A € DHF(U), the lower and upper approzimations of A with respect to (U,R),
denoted by R(A) and R(A), are two DHF sets of U and are, respectively, defined as follows:

R(A) = {< z, hp(a)(2), gr(a)(2) > |z € U}, (1)
R(A) = {< =, hig(a) (@), 9g(a) (@) > |z € U}, (2)

where

hray () = Ayevigr(z, ;) Y ha(y;)}s grea) (@) = Yyev{hr(z,y5) A galy;)};

higay (@) = Yy ev{hr(@,y;) A ha(y)}s gra (@) = Ayev{gr(@,y;) ¥ ga(y;)}-

R(A) and R(A) are, respectively, called the single-granulation lower and upper approzi-
mations of A with respect to (U,R). The pair (R(A),R(A)) is called a SGDHFRS of A with
respect to (U,R), and R,R : DHF(U) — DHF(U) are referred to as single granulation

lower and upper DHF rough approximation operators, respectively.

Based on the SGDHFRSSs, Zhang et al. [47] presented two MGDHFRS models: one is
called the optimistic MGDHFRS; the other is called the pessimistic MGDHFRS.

Definition 2.5 ( [47]) Let U be a nonempty and finite universe of discourse and R;(1 <
i <m) be m DHF tolerance relations on U; the pair (U, {R;|1 < i < m}) is called the DHF
tolerance approximation space. For any A € DHF(U), the optimistic multi-granulation
dual hesitant fuzzy lower and upper approximations of A with respect to (U, {R;|1 < i <
m}), denoted by Y ;" ]RZ-O(A) and Y, RiO(A), are two DHF sets and are, respectively,
defined as follows:

m o

ZRi (A) ={< =, hZZLRiO(A)(‘T)’gZZL RiO(A)(x) > |z e U}, (3)
i=1 - -

p O

ZRi (A)={< x’hmo(A)(x)’gmo(A)(x) > |z e U}, (4)

=1

where
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hz (RO (A) (a:) VI Ayseu {9r: (2, 95) ¥ ha(y;) s

gZZ"le (:r:) A2y Yyseu {hr, (2, y5) A galys)}

hzl R (A (:c) ANty —ygeU {hr; (@, y5) A ha(y;)}

21:1 s ( )(l’) = —izl /\ijU {gRi ($,yj) - gA(yj)}'

The pair (3", RiO(A),Zﬁl RiO(A)) is called an optimistic MGDHFRS of A with
respect to (U, {R;|1 < i < m}). If 37", R;°(A) = > RiO(A), then A is referred to
as optimistic-definable in (U, {R;|1 < i < m}); otherwise, A is referred to as optimistic-
undefinable in (U, {R;|1 <1i < m}).

Definition 2.6 ( [47]) Let (U,{R;|1 < i < m}) be the DHF tolerance approzimation
space. For any A € DHF(U), the pessimistic multi-granulation dual hesitant fuzzy low-
er and upper approzimations of A with respect to (U, {R;|]1 < i < m}), denoted by
Yoy RiP(A) and Y ", RiP(A), are two DHF sets and are, respectively, defined as fol-

lows:
m P
;Ri (A) = {< @ hym g p) (@), g5 m 5P (@) > |z €U}, (5)
P
R; = P )
DoRs () = {< e e (i () > [0 € U) (6)
where
hZ{LRiP(A)(x) 71‘7;1 XijU {gl& (xvyj) v hA(yJ)}a

I wP(a)(@)
hsm g 4y ®)

x) =

Yit1 Yyev {hr, (2, y5) A ha(y;)},
5w () () = M1 Ayyev {9r: (2, 55) ¥ g (y5)}-
The pair (3> i~ RZ-P(A),Z?; RiP(A)) is called a pessimistic MGDHFRS of A with

respect to (U, {R;]1 < i < m}). If "7 R (A) =37, ]RZ-P(A), then A is referred to as
pessimistic-definable in (U, {R;|1 < i < m}); otherwise, A is referred to as pessimistic-
undefinable in (U, {R;|1 <i < m}).

=A
= Vit Vyev {he, (z,y5) A galy))},
—V

Then, Zhang et al. [47] established the relationships among the optimistic MGDHFRS,
the pessimistic MGDHFRS and the SGDHFRS.

Theorem 2.7 ( [47]) Let U be a nonempty and finite universe of discourse and R;(1 <
i < m) be m DHF tolerance relations on U. For any A € DHF(U), >, R;°(A) and

—m =0
Yot Ry (A) are the optimistic multi-granulation dual hesitant fuzzy lower and upper ap-
prozimations of A with respect to (U, {R;|1 < i < m}), respectively. Then,
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(1) T, RO (A)
(2) T RS (A)

(4)
(A)

U2 1R (A),
A R (A).

Mz

Theorem 2.8 ( [47]) Let U be a nonempty and finite universe of discourse and R;(1 <
i < m) be m DHF tolerance relations on U. For any A € DHF(U), >, R;7(A) and

——P
St Ry (A) are the pessimistic multi-granulation DHF' lower and upper approzimations
of A with respect to (U,{R;|1 < i <m}), respectively. Then,
(1) T R (A) = L Ri(A),
7P R
(2) 220 R (A) = UL R;(A).

3 Approximation reduction approach in multi-granulation
DHF decision information system

In this section, we establish a practical reduction approach in multi-granulation DHF
decision information system (MGDHFDIS) based on the MGDHFRS model. The objective
of reduction is to obtain a smallest subset of DHF relations that may preserve consistence
of MGDHFDIS.

Definition 3.1 Let apr=(U,R = {R;|1 < i < m}) be the DHF tolerance approximation
space, A be the DHF set and RO,RO,RP,@P CR.

(1) If >R .cgo R%(A) = > RiO(A), then RO is referred to as a consistent optimistic
lower approximation of apr. IfKO 18 a consistent optimistic lower approximation, and no
proper subset of RO is a consistent optimistic lower approzimation, then RC is called an
optimistic lower approximation reduct of apr.

(2) If > g.cr? RF(A) = 37, R;7(A), then RY is referred to as a consistent pes-
simistic lower approzimation of apr. If R is a consistent pessimistic lower approzima-
tion, and no proper subset of RY is a consistent pessimistic lower approzimation, then RY
is called a pessimistic lower approzimation reduct of apr.

—_0 =0 =
(3) If ZRZ_E@O R; (A) =" R; (A), then R is referred to as a consistent optimistic
upper approzimation of apr. If@o 18 a consistent optimistic upper approximation set, and

no proper subset of @O 18 a consistent optimistic upper approximation, then @O 1s called
an optimistic upper approximation reduct of apr.

—_ _ p _
(4) If 2op wP RiP(A) = >" R (A), then R” is referred to as a consistent pes-

L. . . =P . . L. .
stmastic upper approximation of apr. If R* is a consistent pessimistic upper approxima-
tion, and no proper subset of R* is a consistent pessimistic upper approzimation, then R
18 called a pessimistic upper approximation reduct of apr.
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Table 1: DHF relation R; in Example 3.3

UxU T T9 T3 T4

({11}, ({0405}, ({0.2,0.3}, ({0.6,0.8},

{0,0)) {0204} {0507} {0.1,0.2})
({0.1,0.2}, ({11}, ({0.2,0.3}, ({0.4,0.5},
2 107,08} {00}) {0607}  {0.50.5})
({0.2,0.2}, ({0508},  ({1,1},  ({0.3,0.4},
{06,071 {0202  {0,0}) {0506}
({0.3,0.5}, ({0405}, ({0.2,0.3}, ({11},
T 104,05))  {02,04}) {0507)H  {0,01)

I

T3

Table 2: DHF relation Ry in Example 3.3
UxU 1 T9 3 T4
(L1, ({0305}, ({0202}, ({0405},

o {001) {0205} {0.7,0.8) {0.3,0.5})
({0.2,02}, ({11},  ({0.4,0.6}, ({0.2,0.5},
w2 {0.60.8})  {0,0})  {0.3,04}) {0.3,05})
({0.1,0.3}, ({0.4,05}, ({11},  ({0.1,0.2},
3 {0506}) {0304}  {00})  {0.7,08)
. ({0.2,05}, ({0.1,0.1}, ({0.50.6}, ({11},

{0.3,05}) {0.8,09}) {0.3,04}) {00}

From Definition 3.1, we see that the lower approximation reduct is the smallest subset
of R = {R;|1 < i < m} which preserves the lower approximations of all DHF sets in U.
And so is for the upper approximation reduct.

Definition 3.2 A multi-granulation DHF' decision information system is a quads S =
(U AR;|1 <@ < m},D,V), where U is a nonempty and finite universe; {R;|1 < i < m}
1s a set of m DHF relations on U; D is a nonempty and finite set of decision attributes;
V ={g(z,d)|z € U,d € D} is a set of the relationships between U and D, and g(z,d) is a
DHF element denoted as g(x,d) = (hq(x), ga(x)). We call g(x,d) the decision DHF value
of x under decision attribute d.

Example 3.3 A MGDHFDIS can be described as follows: U = {x1,x2,23,24}; R;(1 <

i < 5) are DHF relations on U shown as Tables 1-5; D = {di,d2}; V = {g(x;,d;)|z; €
U,dj € D}, where g(xz1,d1) = ({0.3,0.4},{0.2,0.6}), g(z2,d1) = ({0.3,0.5},{0.4,0.5}),
g(zs,d1) = ({0.3,0.7},{0.2,0.3}), g(z4,d1) = ({0.2,0.3},{0.6,0.7}), g(z1,da) = ({0.5,0.7},
{0.2,0.3}), g(z2,d2) = ({0.5,0.6},{0.2,0.4}), g(xs,d2) = ({0.2,0.4},{0.3,0.6}) and g(x4, d2)
— ({0,0.1},{0.8,0.9}).

On the basis of Definition 3.1, approximation reducts in MGDHFDIS based on the
MGDHFRS model are defined as follows.
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Definition 3.4 Let a MGDHFDIS = (U,{R;|1 <i <m},D,V), where U = {x1,x9, - ,xn}
and D = {dl,dg, s ,dv}, Dj = {< J:Z-,g(:ri,dj) > ‘JZZ S U,dj € D} S DHF(U)

(1) For all j(1 < j <), if > g cgo RiO(D]—) =>" ]R,-O(Dj), then RO is referred
to as a consistent optimistic lower approzimation of MGDHFDIS. If RC is a consistent
optimistic lower approximation, and no proper subset ofKO 18 a consistent optimistic lower
approzimation, then R is called an optimistic lower approzimation reduct of MGDHFDIS.

(2) For all j(1 < j <), if > g cgP RS (D;) =", ]RZ-P(Dj), then RY is referred to
as a consistent pessimistic lower approzimation of MGDHFDIS. If R is a consistent pes-
simistic lower approximation, and no proper subset ofKP 1$ a consistent pessimistic lower
approzimation, then RY is called a pessimistic lower approzimation reduct of MGDHFDIS.

(3) For all j(1 < j <), if ZRiE@O RiO(Dj) =>" ]R,-O(Dj), then R s referred

to as a consistent optimistic upper approximation of MGDHFDIS. If R 18 a consis-
tent optimistic upper approximation, and no proper subset of @O 18 a consistent opti-
mistic upper approrimation, then RC 1s called an optimistic upper approximation reduct
of MGDHFDIS.
—P ——P —
(4) For all j(1 < j <w), if ZRieﬁP R; (D;)=>"" R; (Dj), then &Y is referred to

as a consistent pessimistic upper approzimation of MGDHFDIS. Ifﬁp s a consistent pes-
simistic upper approrimation, and no proper subset of R* is a consistent pessimistic upper
approzimation, then R" s called a pessimistic upper approzimation reduct of MGDHFDIS.

In order to obtain the optimistic and pessimistic approximation reducts of MGDHFDIS,
we introduce the concepts of DHF vectors and DHF matrices. In the text that follows,
without loss of generality, we suppose that the first HF elements in all the DHF elements
have the same length k, and the second HF elements in all the DHF elements have the
same length .

Definition 3.5 Let n—dimensional vector & = (a1, g, -+ ,an)T, where a; = (hy, gi)(1 <
i < n) are n DHF elements. Then we call & a n—dimensional DHF vector. If My, =
(G, 02, -+, @), where d;(1 < j < m) are m n—dimensional DHF wvectors, then we call

Mym an x m DHF matrix. Specially, a n—dimensional DHF vector can be viewed as a
n X 1 DHF matriz.

Based on Definition 3.5, a MGDHFDIS can be described as multiple DHF matrices
(DHF relation matrices) and vectors (called decision DHF vectors). For example, by using
DHF relation matrices and decision DHF vectors, the MGDHFDIS in Example 3.3 can be
described as follows:

({1,1},{0,0}) ({0.4,0.5},{0.2,04}) ({0.2,0.3},{0.5,0.7}) ({0.6,0.8},{0.1,0.2})
({0.1,0.2},{0.7,0.8}) ({1,1},{0,0}) ({0.2,0.3},{0.6,0.7})  ({0.4,0.5},{0.5,0.5})
({0.2,0.2},{0.6,0.7}) ({0.5,0.8},{0.2,0.2}) ({1,1},{0,0}) ({0.3,0.4},{0.5,0.6})
({0.3,0.5},{0.4,0.5})  ({0.4,0.5},{0.2,0.4}) ({0.2,0.3},{0.5,0.7}) ({1,1},{0,0})

Mg, =
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Table 3: DHF relation R3 in Example 3.3

UxU T T9 T3 T4

({1,1}, ({0.2,0.4}, ({0.1,0.2}, ({0.3,0.4},

{0,0}) {0.5,0.6}) {0.6,0.8}) {0.4,0.6})
({0.1,0.2}, ({1,1}, ({0.5,0.6}, ({0.3,0.5},
{0.7,0.8}) {0,0}) {0.2,0.3}) {0.4,0.4})
({0.0,0.5}, ({0.1,0.2}, ({1,1}, ({0.7,0.9},
{0.4,04}) {0.7,0.8}) {0,0}) {0.1,0.1})
({0.3,0.4}, ({0.2,0.3}, ({0.3,0.6}, ({1,1},
{0.5,0.6}) {0.5,0.7}) {0.3,0.4}) {0,0})

I

T2

T3

Tq

Mg, =

My, =

({1,1},{0,0})
({0.2,0.2},{0.6,0.8})
> | ({0.1,0.3},{0.5,0.6})
({0.2,0.5},{0.3,0.5})

({1,1},{0,0})
({0.1,0.2},{0.7,0.8})
* | ({0.0,0.5},{0.4,0.4})
({0.3,0.4},{0.5,0.6})

({1,1},{0,0})
({0.1,0.2},{0.7,0.7})
: ({0.3,0.4},{0.5,0.6})
({0.4,0.5},{0.3,0.5})

({1,1},{0,0})
({0.1,0.1},{0.8,0.9})
({0.0,0.3},{0.6,0.7})
({0.4,0.5},{0.3,0.4})

({0.3,0.5},{0.2,0.5})
({1,1},{0,0})
({0.4,0.5},{0.3,0.4})
({0.1,0.1},{0.8,0.9})

({0.2,0.4},{0.5,0.6})
({1.1}.{0,0})
({0.1,0.2},{0.7,0.8})
({0.2,0.3},{0.5,0.7})

({0.4,0.6},{0.3,0.4})
({1,1},{0,0})
({0.5,0.5},{0.3,0.4})
({0.0,0.2},{0.7,0.8})

({0.5,0.5},{0.4,0.5})
({1.1}.,{0,0})
({0.2,0.5},{0.4,0.5})
({0.1,0.2},{0.6,0.8})

({0.2,0.2},{0.7,0.8})
({0.4,0.6},{0.3,0.4})

({1,1},{0,0})
({0.5,0.6},{0.3,0.4})

({0.1,0.2},{0.6,0.8})
({0.5,0.6},{0.2,0.3})
({1.1},{0,0})
({0.3,0.6},{0.3,0.4})

({0.6,0.7},{0.3,0.3})
({0.5,0.6},{0.2,0.3})
({1,1},{0,0})
({0.1,0.4},{0.5,0.5})

({0.1,0.2},{0.6,0.8})
({0.6,0.7},{0.2,0.3})
({1,1},{0,0})
({0.1,0.2},{0.6,0.8})

({0.4,0.5},{0.3,0.5})
({0.2,0.5},{0.3,0.5})
({0.1,0.2},{0.7,0.8})

({1,1},{0,0})

({0.3,0.4},{0.4,0.6})
({0.3,0.5},{0.4,0.4})
({0.7,0.9},{0.1,0.1})

({1,1}3.{0,0})

({0.8,0.9},{0.1,0.1})
({0.2,0.3},{0.6,0.7})
({0.3,0.4},{0.6,0.6})

({1,1},{0,0})

({0.2,0.3},{0.5,0.6})
({0.2,0.3},{0.6,0.7})
({0.2,0.2},{0.6,0.7})

({1,1},{0,0})

and decision DHF vectors:
Dy = (({0.3,0.4},{0.2,0.6}), ({0.3,0.5},{0.4,0.5}), ({0.3,0.7},{0.2,0.3}), ({0.2,0.3},{0.6,0.7})) 7,
Dy = (({0.5,0.7},{0.2,0.3}), ({0.5,0.6},{0.2,0.4}), ({0.2,0.4}, {0.3,0.6}), ({0,0.1}, {0.8,0.9}))7".
Now, the union, intersection and complement of two DHF vectors and matrices can be
defined as follows:

Definition 3.6 Let a1 = (aq1,0a192, -+ ,a1,) and da = (ag1, a0, ,q0,)T be two
n—dimensional DHF vectors, where ay; = (hi4, g1:) and ag; = (h2i, g2i)(1 < i < n) are
DHF elements. Assume that My = (&1, a2, -
two n xm DHF matrices, where d1; and dzj(1 < j < m) are n—dimensional DHF vectors;
then,

(1) @1V = (an Y as,aiz Y ag, - ap, Yay)!,
where ay; Y ag; = {({hi’i(s) v hgi(s)}, {gfl-(t) A g;i(t)}ﬂl <s< k1<t <IH1<i<n);

Q1) and My = (A1, Ao, - -+, o) be
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(2) @ Maz = (a11 A a1, 12 A g, -+ Qi A )L
where aq; A gy = {({h‘fi(s) A hgi(s)}, {gi'i(t) Vggi(t)})ll <s<k1<t<I}1l<i<n)
(8) The complementary vector of dy is denoted as

(O_Z].)c = (N A1, ~ Q12, - , aln)T7

where ~ oy = {({g7"}, {(hSPV1 < s <k 1<t <131 <i < n);
(4) My U My = (011 U diag, 1o U ding, - -+, G U Qo );
(5) My @ My = (G1 M Giag, ig M g, -« Gy M G2

(6) The complementary matrixz of My is denoted as
M€ = ((@11)°, (G12)% -+, (@1m)9) T
In the following we introduce the product operation of DHF matrices.

Definition 3.7 Let P and Q) be two DHF matrices, and

(P11,py,)  (Pr2:py,) (Prw»Py,,)

p_ (P21,P5;)  (P22,Dy,) (Paw» Pyy,)

(ﬁmhgml) (ﬁm%gmz) (ﬁmw?ﬂmw)
(@11,9,,)  (T12,4,) (@1n>qy,,)
Q _ (621 9 le) (6227 ng) (62717 QQn)
(qwl ) le) (qw27 ng) (qwnv an)

Then, the product of P and Q is a m x n DHF matriz, denoted as follows:

M=PoQ@ = ((ﬂjiij))gigm,lsﬁn’

where
aj:zgwgd@uxaw}={me@ﬁ@Aa$@M1sSskL
zij = Klgugw{giu Ygu]} E {1</\< (Bijt) \/g‘;](t))‘]_ <t< l}
<u<w

In the following discussions, for convenience, we don’t distinguish between DHF vectors
and DHF sets on U.

Theorem 3.8 Let R be the DHF relation on U, Mr be DHF matriz of R and A €
DHF(U); then

(1) R(A) = (Mg 0 A°Y,

(2) R(A) = Mg o A,
where R(A) and R(A) are the single-granulation lower and upper approzimations defined
in Definition 2.4.

Proof. It can be easily verified from Definitions 3.7 and 2.4. O
According to Theorems 3.8, 2.7 and 2.8, we conclude that the following theorem holds.
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Table 4: DHF relation Ry in Example 3.3
UxU T xro x3 T4

{11}, ({0406}, ({0607}, ({0.8,0.9},

o {00} {0304} {03,031 {0.1,0.1})
({0.1,0.2}, ({11},  ({0.5,0.6}, ({0.2,0.3},
2 {0707}  {0,0}) {0203} {0.6,0.7})
({0.3,04}, ({0.505), ({11},  ({0.3,0.4},
3 {0506}) {03,04})  {00})  {0.6,0.6})
o ({0.4,0.5}, ({0.0,02}, ({0.1,0.4}, ({11},

{0.305}) {0.7,08}) {0.505})  {0,0})

Table 5: DHF relation R5 in Example 3.3
UxU T1 T9 3 T4
(L1}, ({0505}, ({0102}, ({0.2,0.3},

”31 {0,0))  {04,05}) {0.6,0.8}) {0.5,0.6})
({0.1,0.1}, ({11},  ({0.6,0.7}, ({0.2,0.3},
2 {0.8,09})  {0,0})  {0.2,03}) {0.6,0.7})
({0.0,0.3}, ({0.2,0.5},  ({1,1},  ({0.2,0.2},
3 {0.6,0.7}) {04,005}  {0,0})  {0.6,0.7})
. ({0.4,05}, ({0.1,0.2}, ({0.1,0.2},  ({1,1},

{0.3,04}) {0.6,08}) {0.6,0.8})  {0,0})

Theorem 3.9 Let R;(1 < i < m) be m DHF relations on U, Mg, be the DHF relation
matrices of R;(1 <i<m) and A € DHF(U); then
(1) i RO(A) = U (Mg, 0 A%,

(2) TR () = A (M, o A);
(3) S0 R (A) = @y (Mg, 0 A%,
(1) SR, (A) = U (Mg, o A).

Example 3.10 (Continued from Example 3.3) According to Theorem 3.8(2), we have

Ry(D;) = Mg, oDy =(({0.3,0.5},{0.2,0.5}), ({0.3,0.5},{0.4,0.5}),
({0.3,0.7},{0.2,0.3}), ({0.3,0.5}, {0.4,0.5}))7,

Ry(Dy) = Mg, o Dy =(({0.3,0.5}, {0.2,0.5}), ({0.3,0.6}, {0.3,0.4}

{0.3,0.7},{0.2,0.3}), ({0.3,0.6},{0.3,0.4})

T
R3(Dq) = Mg, oDy = ,

({0.3,0.4},{0.2,0.6}), ({0.3,0.6}, {0.2,0.3}
{0.3,0.7},{0.2,0.3}), ({0.3,0.6}, {0.3,0.4}))7,

—~~ —~

)
)
)
)
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Ri(Dy) = Mg, o Dy =(({0.3,0.7},{0.2,0.3}), ({0.3,0.6},{0.2,0.3}),

=( )
({0.3,0.7},{0.2,0.3}), ({0.3,0.4},{0.3,0.5} )"

Rs =( )
)

R5(Dy) = Mg, oDy =(({0.3,0.5},{0.2,0.5}), ({0.3,0.7},{0.2,0.3}
({0.3,0.7},{0.2,0.3}), ({0.3,0.4},{0.3,0.6})

Then by Theorem 3.9(2) and (4), we obtain

)
)
T

Brum— O

> Ri (D) =(({0.3,04},{0.2,0.6}), ({0.3,0.5},{0.4,0.5}),
=1

({0.3,0.7},{0.2,0.3}), ({0.3,0.4},{0.4,0.6}))7,

and

P
5

SR, (D1) =(({0.3,0.7},{0.2,0.3}), ({0.3,0.7},{0.2,0.3}),

i=1
({0.3,0.7},{0.2,0.3}), ({0.3,0.6}, {0.3,0.4} )"

Stmilarly, we have

Ry (Dy) = Mg, oDy =(({0.5,0.7},{0.2,0.3}), ({0.5,0.6},{0.2,0.4}),
({0.5,0.6},{0.2,0.4}), ({0.4,0.5}, {0.2,0.4}))7,

Ry(Dy) = Mg, oDy =(({0.5,0.7},{0.2,0.3}), ({0.5,0.6}, {0.2,0.4}),
({0.4,0.5},{0.3,0.4}), ({0.2,0.5}, {0.3,0.5}))7,

R3(Dg) = Mg, o Dy =(({0.5,0.7},{0.2,0.3}), ({0.5,0.6},{0.2,0.4}),
({0.2,0.5},{0.3,0.4}), ({0.3,0.4},{0.3,0.6}))7,

Ri(Dy) = Mg, o Dy =(({0.5,0.7},{0.2,0.3}), ({0.5,0.6}, {0.2,0.4}),
({0.5,0.5},{0.3,0.4}), ({0.4,0.5},{0.3,0.5}))T,

R5(Dg) = Mg, o Dy =(({0.5,0.7},{0.2,0.3}), ({0.5,0.6},{0.2,0.4}),
({0.2,0.5},{0.3,0.5}), ({0.4,0.5},{0.3,0.4}))T.

Then
5 O
> Ri (D) =(({0.5,0.7},{0.2,0.3}), ({0.5,0.6},{0.2,0.4}),

=1

({0.2,0.5},{0.3,0.5}), ({0.2,0.4}, {0.3,0.6}))7,
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and

5 P

ZRi (D2) =(({0.5,0.7},{0.2,0.3}), ({0.5,0.6}, {0.2,0.4}),

i=1
({0.5,0.6},{0.2,0.4}), ({0.4,0.5},{0.2,0.4}))T.
According to Theorem 3.8(1), we have

Ry (D) = (Mg, o D;%)° =(({0.2,0.3},{0.6,0.7}), ({0.3,0.5},{0.4,0.5}),
({0.3,0.5},{0.4,0.5}), ({0.2,0.3}, {0.6,0.7}))7,

Ry(Dy) = (Mg, o D1%)° =(({0.3,0.4}, {0.4,0.6}), ({0.3,0.5}, {0.4,0.5}),
({0.3,0.5},{0.4,0.5}), ({0.2,0.3},{0.6,0.7}))T,
Rs(Dy) = (Mg, o D1%)¢ =(({0.3,0.4},{0.3,0.6}), ({0.3,0.4}, {0.4,0.5}),
({0.2,0.3},{0.6,0.7}), ({0.2,0.3}, {0.6,0.7}))7,
R4(Dy) = (Mg, o D1%)° =(({0.2,0.3},{0.6,0.7}), ({0.3,0.5}, {0.4,0.5}),
({0.3,0.5},{0.4,0.5}), ({0.2,0.3}, {0.6,0.7}))7,
Rs (D) = (Mg, oD%)¢ =(({0.3,0.4},{0.4,0.6}), ({0.3,0.5},{0.4,0.5}),
({0.3,0.5},{0.2,0.5}), ({0.2,0.3}, {0.6,0.7}))7,
Then according to Theorem 3.9(1) and (3), we obtain
5 0]
S R; (D) =(({0.3,0.4}, {0.3,0.6}), ({0.3,0.5}, {0.4,0.5}),
i=1
({0.3,0.5},{0.2,0.5}), ({0.2,0.3}, {0.6,0.7}))7,
and
5 P
D> R (D1) =(({0.2,0.3},{0.6,0.7}), ({0.3,0.4},{0.4,0.5}),
i=1

({0.2,0.3},{0.6,0.7}), ({0.2,0.3}, {0.6,0.7})).

Similarly, we have

Ry (D2) = (Mg, o Do¢)® =(({0.1,0.2},{0.6,0.8}), ({0.5,0.5}, {0.4,0.5}),
({0.2,0.4}, {0.3,0.6}), ({0.0,0.1},{0.8,0.9}))7,
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Ry(Dy) = (Mg, o Do%)°¢ =(({0.3,0.5},{0.4,0.5}), ({0.3,0.4},{0.3,0.6}),
({0.2,0.4}, {0.3,0.6}), ({0.0,0.1},{0.8,0.9}))7,
R3(Dy) = (Mg, 0 Do¢)¢ =(({0.4,0.6}, {0.3,0.4}), ({0.2,0.4}, {0.3,0.6}),
({0.1,0.1}, {0.7,0.9}), ({0.0,0.1}, {0.8,0.9})) 7,
Ry(Dy) = (Mg, 0 Do¢)° =(({0.1,0.1},{0.8,0.9}), ({0.2,0.4}, {0.3,0.6}),
({0.2,0.4}, {0.3,0.6}), ({0.0,0.1},{0.8,0.9}))7,
R5(Da) = (Mg, o Do¢)¢ =(({0.5,0.6},{0.2,0.4}), ({0.2,0.4}, {0.3,0.6}),
({0.2,0.4},{0.3,0.6}), ({0.0,0.1}, {0.8,0.9}))7.
Then
5 0]
> Ri (D) =(({0.5,0.6},{0.2,0.4}), ({0.5,0.5},{0.3,0.5}),
=1
({0.2,0.4},{0.3,0.6}), ({0.0,0.1},{0.8,0.9}))7,
and
5 P
> Ri (D) =(({0.1,0.1},{0.8,0.9}), ({0.2,0.4}, {0.4,0.6}),
=1

({0.1,0.1},{0.7,0.9}), ({0.0,0.1}, {0.8,0.9})).

It is well known that a discernibility function is a key notion to reduction algorithms
in rough set theory. Therefore, by constructing the discernibility functions, we present
a practical method to determine the optimistic and pessimistic approximation reducts of
MGDHFDIS.

Definition 3.11 Let MGDHFDIS = (U, {R;|1 < j < m},D = {di|]l < i < v},V),
|[U| =n and D;(1 <i <w) be decision vectors. Denote

where 05, = {({07}, {71 < s <k, 1 <t <1}(1 < u < n);

(A%

ZR] (DZ) = <5i176i27 Tt 75171)(1 S 7/ S 'U),
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where 0, = {({77}, {021 < s <k 1 <t <131 < u < )

where p, = {({p0 1AL NI < s < k1<t <11 < u<n);

ZRJ (Di) = (s> P>+ > Pin) (1 <0 < 0),

where Py, = {({P Y PO NIL < s <k 1<t <11 < u < n);

R;(D;) = (rij1:Tijo, s Tijn) (1 <0 < 0,1 < j <m),
where 1,5, {({Lju 1, {%]u D1<s<k1<t<l}1<u<n);
R;(Ds) = (Fiji, Tijo, -+ »Tajn) (1 < i <, 1 < j <m),

where Tizu = {({FF TR DL < s <k 1<t < (1< u < ).

Then, the optimistic lower approximation discernibility function of MGDHFDIS is
v n k 1
/\ ANVANAN V Rj A\ V R;);

=lu=1s=1t=1 7447(3)_00(5) 1<j<m U(t)_QZEt)JSjSm

—iju iju

the optimistic upper approximation discernibility function of MGDHFDIS is

v n k 1
=N N AN V R;j A Vv R;)i
i=lu=1s=11=1 zo(s) *"(5) ,1<5<m 7t —o7(t) 1<j<m

z] —iju T —iu

the pessimistic lower approxzmatzon discernibility function of MGDHFDIS is

v n k [
P= AN AN A V R; A V R;);
i=lu=ls=1t=1 o) _po() y i 27O 1

7zgu 1]u

the pessimistic upper approximation discernibility function of MGDHFDIS is

v n k1
AWAWAWAYS V Rj A Vv R;).
i=1lu=1s=1t=1 72(5)_70(5) 1<j<m F:7](17?_47(75) 1<j<m

According to Definitions 3.11 and 3.4, we can easily obtain the following theorem.

Theorem 3.12 Let MGDHFDIS = (U {Rj|1 < j < m},D = {d;|]1l < i < v}, V),

|U| = n. We can convert the approzimation discernibility functions io, fO, iP and
_p ) o ) o o 1 o o2 P2
[ of MGDHFDIS into their disjunction forms f~ = \/ ( A\ Rap1), [~ = V ( A\ Rap2),
- a=1 B=1 a=1 B=1
P as _p as B4 ’ o
= VI /\ Raps), and f = \/ (A Rapa), respectively. Then, By = {Rup1|8 =
a=1 =1 a=1 =1
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-0
1,2, Bit(a = 1,2, ,a1), By = {Rap|B = 1,2,--+, fot(a = 1,2,--- ,ag), BY =
—P
{Raﬂ3|ﬁ = 1727"' 753}(05 = 1a27"' ,Oég), and Ba = {Roc,34‘6 = 1727"' ,,84}(0[ =
1,2, ,au) are the optimistic lower upper, and pessimistic lower and upper approzimation
reducts of MGDHFDIS, respectively.

From Theorem 3.12, we see that all the approximation reducts of MGDHFDIS can be
obtained through using the discernibility functions defined in Definition 3.11.

Example 3.13 (Continued from Example 3.10) From Definition 3.11, we obtain
9 =((Ry VR3 VRs) AR3 AR5) A (Ry AR5) = Ry AR5 AR,

70 =(Rs AR A (R4 VR5) AR ARs)) A (R AR3 AR5) =Ry ARy ARy ARs,

P = (ReAR3)A(RIA(R3VR4VR) AR A (RaVR3 VR, VRs) AR3) = Ry AR3 ARy,
and

?P = (]R4/\]R5 A (RQ\/Rg)) ARy = (]Rl ARy /\R4/\R5) vV (Rl /\Rg/\R4/\R5).

Hence, by virtue of Theorem 8.12, we draw the conclusion that the optimistic lower
approzimation reducts of MGDHFDIS are {R;,R3,R5};

The optimistic upper approzimation reducts of MGDHFDIS are {R1,Ra,R3, R5};

The pessimistic lower approzimation reducts of MGDHFDIS are {R1,Rg, Ry4};

The pessimistic upper approzimation reducts of MGDHFDIS are {R;,Ra, Ry, R5} and
{Ry,R3, Ry, R5}.

4 Conclusion

As two new mathematical approaches to cope with imprecision and uncertainty in data
analysis, DHF sets and MGRS theory have their own advantages. Considering the facts,
Zhang et al. [47] proposed a MGDHFRS by combining DHF sets and MGRS theory which
includes many existing MGRS models as special types, such as MGRSs [22], MGFRSs
in a fuzzy tolerance approximation space [34] and IFMGRSs [7]. Since the MGDHFRS
includes both ingredients of DHF sets and MGRSs, it is more effective and flexible than
both DHF sets and MGRSs to handle imprecise and imperfect information. In this study,
in order to further investigate the applications of MGDHFRSs, we present a reduction
method in MGDHFDIS based on MGDHFRSs. An example is also provided to illustrate
the validity of this method. Generally, this reduction approach based on discernibility
functions can be extended to other various rough set models in the context of defining
discernibility functions.

In the future, topological structures of the MGDHFRSs are the main research direction
considered by our group. Moreover, it is important and interesting to further investigate
the applications of the MGDHFRSs.

1203 Yanping He et al 1187-1206



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments
and suggestions. This work is supported by the National Natural Science Foundation of
China (No. 11601474), by the Research Project Funds for Higher Education Institutions
of Gansu Province (No. 2015B-006) and by the Natural Science Foundation of Gansu
Province (No. 1606RJZA003).

References

[1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.

[2] N. Chen, Z. S. Xu, M. M. Xia, Correlation coefficients of hesitant fuzzy sets and their applica-
tions to clustering analysis, Applied Mathematical Modelling 37 (2013) 2197-2211.

[3] Y.F. Chen, X.D.Peng, G.H Guan, H.D. Jiang, Approaches to multiple attribute decision making
based on the correlation coefficient with dual hesitant fuzzy information, Journal of Intelligent
and Fuzzy Systems 26 (2014) 2547-2556.

[4] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, International Journal of General
Systems 17 (1990) 191-2009.

[5] B. Farhadinia, Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy
sets, Information Sciences 240 (2013) 129-144.

[6] B. Farhadinia, Correlation for dual hesitant fuzzy sets and dual interval-valued hesitant fuzzy
Sets, International Journal of Intelligent Systems 29 (2014) 184-205.

[7] B. Huang, C.X. Guo, Y.L. Zhuang, H.X. Li, X.Z. Zhou, Intuitionistic fuzzy multigranulation
rough sets, Information Sciences 277 (2014) 299-320.

[8] S.P. Jena, S.K. Ghosh, Intuitionistic fuzzy rough sets, Notes on Intuitionistic Fuzzy Sets 8
(2002) 1-18.

[9] C.H. Liu, M.Z. Wang, Covering fuzzy rough set based on multi-granulations, in: International
Conference on Uncertainty Reasoning and Knowledge Engineering, 2011, pp. 146-149.

[10] C.H. Liu, D.Q. Miao, Covering Rough Set Model Based on Multigranulations, RSFDGRc2011,
87-90.

[11] G.P. Lin, Y.H. Qian, J.J. Li, NMGRS: Neighborhood-based multigranulation rough sets,
International Journal of Approximate Reasoning 53 (7) (2012) 1080-1093.

[12] G.P. Lin, J.Y. Liang, Y.H. Qian, Multigranulation rough sets: From partition to covering,
Information Sciences 241 (2013) 101-118.

[13] H.C. Liao, Z.S Xu, A VIKOR-based method for hesitant fuzzy multi-criteria decision making,
Fuzzy Optimization Decision Making 12 (4) (2013) 373-392.

[14] H.C. Liao, Z.S. Xu, Some new hybrid weighted aggregation operators under hesitant fuzzy
multi-criteria decision making environment, Journal of Intelligent and Fuzzy Systems 26 (4)
(2014) 1601-1617.

1204 Yanping He et al 1187-1206



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

[15] H.C. Liao, Z.S Xu, X.J. Zeng, Novel correlation coefficients between hesitant fuzzy sets and
their application in decision making, Knowledge-Based Systems 82 (2015) 115-127.

[16] J.Y. Liang, F. Wang, C.Y. Dang, Y.H. Qian, An efficient rough feature selection algorithm
with a multi-granulation view, International Journal of Approximate Reasoning 53 (2012) 912-
926.

[17] S. Miyamoto, Multisets and fuzzy multisets, in: Z.Q. Liu, S. Miyamoto (Eds.), Soft Computing
and Human-Centered Machines, Springer, Berlin, Germany, 2000, pp. 9-33.

[18] S. Nanda, S. Majumda, Fuzzy rough sets, Fuzzy Sets and Systems 45 (1992) 157-160.

[19] Z. Pawlak, Rough sets, International Journal of Computer Information Sciences 11 (1982)
145-172.

[20] Z. Pawlak, Rough Sets-Theoretical Aspects to Reasoning about Data, Kluwer Academic Pub-
lisher, Boston, 1991.

[21] W. Pedrycz, Granular Computing: Analysis and Design of Intelligent Systems, CRC
Press/Francis Taylor, Boca Raton, 2013.

[22] Y.H. Qian, J.Y. Liang, Y.Y. Yao, C.Y. Dang, MGRS: a multi-granulation rough set, Infor-
mation Scinences 180 (2010) 949-970.

[23] Y.H. Qian, J.Y. Liang, W. Pedrycz, C.Y. Dang, An efficient accelerator for attribute reduction
from incomplete data in rough set framework, Pattern Recognition 44 (2011) 1658-1670.

[24] Y .H. Qian, J.Y. Liang, C.Y. Dang, Incomplete multigranulation rough set, IEEE Transactions
on Systems, Man and Cybernetics C Part A 20 (2010) 420-431.

[25] Y.H. Qian, H.Z, Y.L. Sang, J.Y. Liang, Multigranulation decision-theoretic rough sets, Inter-
national Journal of Approximate Reasoning 55 (2014) 225-237.

[26] R. M. Rodrguez, L. Martnez, F.Herrera, Hesitant fuzzy linguistic term sets for decision mak-
ing, IEEE Transactions on Fuzzy Systems 20 (2012) 109-119.

[27] Y.H. She, X.L. He, On the structure of the multigranulation rough set model, Knowledge-
Based Systems 36 (2012) 81-92.

[28] V. Torra, Y. Narukawa, On hesitant fuzzy sets and decision, The 18th IEEE International
Conference on Fuzzy Systems, Jeju Island, Korea, (2009) 1378-1382.

[29] V. Torra, Hesitant fuzzy sets, International Journal of Intelligent Systems 25 (2010) 529-539.

[30] H. J. Wang, X. F. Zhao, G. W. Wei, Dual hesitant fuzzy aggregation operators in multiple
attribute decision making, Journal of Intelligent and Fuzzy Systems 26 (2014) 2281-2290.

[31] W.Z. Wu, J.S. Mi, W.X. Zhang, Generalized fuzzy rough sets, Information Sciences 151 (2003)
263-282.

[32] W.Z. Wu, W.X. Zhang, Constructive and axiomatic approaches of fuzzy approximation oper-
ators, Information Sciences 159 (2004) 233-254.

[33] M.M. Xia, Z.S. Xu, Hesitant fuzzy information aggregation in decision making, International
Journal of Approximate Reasoning 52 (2011) 395-407.

1205 Yanping He et al 1187-1206



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

[34] W.H. Xu, Q.R. Wang, X.T. Zhang, Multi-granulation fuzzy rough sets in a fuzzy tolerance
approximation space, International Journal of Fuzzy Systems 13 (4 )(2011) 246-259.

[35] W.H. Xu, Q.R. Wang, and S.Q. Luo, Multi-granulation fuzzy rough sets, Journal of Intelligent
and Fuzzy Systems 26 (2014) 1323-1340.

[36] W.H. Xu, W.X. Sun, X.Y. Zhang, W.X. Zhang, Multiple granulation rough set approach to
ordered information systems, International Journal of General Systems 41 (5) (2012) 475-501.

[37] Z.S. Xu, M. M. Xia, Distance and similarity measures for hesitant fuzzy sets, Information
Sciences 181 (2011) 2128-2138.

[38] Z.S. Xu, M. M. Xia, On distance and correlation measures of hesitant fuzzy information,
International Journal of Intelligent Systems 26 (2011) 410-425.

[39] D.S. Yeung, D.G. Chen, E.C.C. Tsang, J.W.T. Lee, X.Z. Wang, On the generalization of fuzzy
rough sets, IEEE Transactions on Fuzzy Systems 13 (2005) 343-361.

[40] J. Ye, Correlation coefficient of dual hesitant fuzzy sets and its application to multiple attribute
decision making, Applied Mathematical Modelling 38 (2014) 659-666.

[41] X.B. Yang, X. N. Song, Y.S. Qi, J.Y. Yang, Constructive and axiomatic approaches to hesitant
fuzzy rough set, Soft Computing 18 (2014) 1067-1077.

[42] X.B. Yang, X.N. Song, H.L. Dou, Multi-granulation rough set: from crisp to fuzzy case,
Annals of Fuzzy Mathematics and Informatics 1 (1) (2011) 55-70.

[43] X.B. Yang, Y.S. Qi, X.N. Song, J.Y. Yang, Test cost sensitive multigranulation rough set:
Model and minimal cost selection, Information Sciences 250 (2013) 184-199.

[44] B. Zhu, Z.S. Xu, M.M. Xia, Dual hesitant fuzzy sets, Journal of Applied Mathematics 2012
(2012), Article ID 879629, 13 pages.

[45] H.D. Zhang, L. Shu, S.L. Liao, On interval-valued hesitant fuzzy rough approximation oper-
ators, Soft Computing 20 (1) (2016) 189-209.

[46] H.D. Zhang, L. Shu, Generalized interval-valued fuzzy rough set and its application in decision
making, International Journal of Fuzzy Systems 17 (2) (2015) 279-291.

[47] H.D. Zhang, Y.P. He, L.L. Xiong, Multi-granulation dual hesitant fuzzy rough sets, Journal
of Intelligent and Fuzzy Systems 30 (2016) 623-637.

[48] L. Zhou, W.Z. Wu, On genernalized intuitionistic fuzzy approximation operators, Information
Sciences 178 (2008) 2448-2465.

[49] L. Zhou, W.Z. Wu, On characterization of intuitonistic fuzzy rough sets based on intuitionistic
fuzzy implicators, Information Sciences 179 (2009) 883-898.

[50] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 378-352.

[61] N. Zhang, G. Wei, Extension of VIKOR method for decision making problem based on hesitant
fuzzy set, Applied Mathematical Modelling 37 (7) (2013) 4938-4947.

1206 Yanping He et al 1187-1206



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

THE FEKETE-SZEGO PROBLEM FOR SOME CLASSES
OF ANALYTIC FUNCTIONS

ADAM LECKO, BOGUMILA KOWALCZYK, OH SANG KWON AND NAK EUN CHO

ABSTRACT. Given an analytic standardly normalized function g in D := {z € C : |z| < 1},
by C(g) will be denoted the class of analytic standardly normalized function f such that

Re{eié%} >0, zeD,

for some ¢ € (—m/2,7/2). For the class C(g) the Fekete-Szego problem is examined.

1. INTRODUCTION
In [3] Fekete and Szeg6 found the maximum value of the coefficient functional
q)A(f) = ‘a3_/\a%‘v A€ [Oal]a

over the class S of univalent functions f in the unit disk D := {z € C : |z] < 1} of the form
(1.1) f(z) =2+ Zanz", z € D.
n=2

By applying the Loewner method they proved that

[ 14 2exp(=20/(1= X)), Ae0,1),
maxan(n) = { 1 72O reb

Y

The problem of calculating max e 7 ®(f) for various compact subclasses F of the class
A of all analytic functions f in D of the form (1.1), as well as for A being an arbitrary real
or complex number, was considered by many authors (see e.g., [8], [12], [23], [14], [10], [20],

[13], [2]).
Let S8* denote the class of starlike functions, i.e., f € S* if f € A and
/
Rezf (2) >0, zeD.
f(2)
Let 8¢ denote the class of convex functions, i.e., f € S¢if f € A and
Zf”(Z)}
Re<1+ >0, zeD.
{ f'(z)

Given 0 € (—m/2,7/2) and g € A, let C5(g) denote the class of all functions f € A such
that

(1.2) Re {ei‘szgf(li’j)} >0, zeD.

2010 Mathematics Subject Classification. 30C45, 30C80.
Key words and phrases. Fekete-Szeg6 problem, starlike functions, convex functions, close-to-convex func-
tions, close-to-convex functions with argument 9.
1
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For g € A let
o= |J Gl
de(—m/2,m/2)
and for 0 € (—7/2,7/2) let
Cs = | Cs(g).
geA

Given 0 € (—n/2,7/2) and g € S*, functions in Cs(g) and in C(g) are called close-to-
convex with argument § with respect to g and close-to-convex with respect to g, respectively.
For § € (—m/2,7/2) let

Cs = U Cs(g), Cs:= U Cs(g)-

gES* geSe©

c= U UGl

se(—m/2,m/2) gES*
denote the class of close-to-convexr functions and let

c=J Uoaw.

se(—m/2,m/2) geS©

For details on close-to-convex functions see [22, pp. 184-185], [11], [7] (cf. [6, Vol. II, pp.
1-11]). The class C§ was considered in [1].

For the whole class C* of close-to-convex functions, the sharp bound of the Fekete-Szego
functional on R was calculated by Koepf in [14] who extended the earlier result for the class
C; due to Keogh and Merkes [12], namely, he proved that

Let

|3 — 4\, A€ (—00,1/3] U1, +00),
(1.3)  max®,(f) =max®x(f) = 1/3+4/(97), A€ [1/3,2/3],
fec 1€ 1, A€ [2/3,1].

For the class C¢ of close-to-convex functions with respect to convex functions, the sharp
bound of the Fekete-Szego functional on the interval [0, 1] was studied by Srivastava, Mishra
and Das in [25], who extended the earlier result for the class C§ due to Abdel-Gawad and
Thomas [1]. By Theorem 3 of [1], Theorems 1 to 4 of [25] and by observation in Section 2 of
the paper [18], the following result holds:

B [ 5/3-9M4, Ae[0,2/9]
(14) max A(f) = max a(f) = { 2/3+1/(9)\), M€ [2/9,2/3],
and
Given «a € [0,1], let
Jga(2) == Ao zeD,

and

z
ha(z) := T ? eD.

The corresponding classes C(gq) and C(h,) are defined, respectively, by the following condi-
tions:

(1.6) Re {ei‘s(l - az)Qf’(z)} >0, zeD,

1208 ADAM LECKO et al 1207-1231



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

THE FEKETE-SZEGO PROBLEM FOR ANALYTIC FUNCTIONS 3

and
(1.7) Re {eiﬁu - az)f’(z)} >0, zeD,

where 6 € (—7/2,7/2).
The upper bound on the Fekete-Szego functional for the class C(g,) was obtained in [15],
where it was shown that

setiay ™)
2 4 2 2
‘34-304—{—04 —(1+a)?)|, A€ R\ (1i(a), m2(a)),
(1.8) < _ 92
where
o 200 L 2(2+Oé)
Tl(()é) = m, TQ(Q) = m

As it is well known, the Koebe function k := g7 and the function h := hy are extremal
for various computational problems in the class S* of starlike and in the class §¢ of convex
functions, respectively. The Fekete-Szegd problem was separately considered for the class
C(k) in [16] and for the class C(h) in [17], i.e., when o := 1 in (1.6) and (1.7). Setting o :=1
into (1.8) we get the result for the class C(k).

For « := 0 the condition (1.6) as well as (1.7) is of the form

(1.9) Re {ei‘sf'(z)} >0, zeD.

Functions f having such a property are called of bounded turning with argument § and form
the class Cs(h) denoted usually as P’(9), and further the class P’ of functions called of bounded
turning (cf. [6, Vol. I, p. 101]). On the other hand, the condition (1.7) is known as a famous
criterium of univalence due to Noshiro [21] and Warschawski [27] (cf. [6, p. 88]). By setting
a := 0 into (1.8) we get the following result published, among other results, in [10, Theorem
2.3

] 2

By(f) = =
X A(f) =73

In this paper we unify mentioned results proving the Fekete-Szego inequality for the class
C(g) with g € A such that
9"(0)] < 4.

2. MAIN RESULT

By P we denote the class of all analytic functions p in D of the form

oo
(2.1) p(z) =1+ 2", z€D,
n=1
having a positive real part in . Let
1+=2
L(z) := , e D.
(2) 1-=2 -

For eache € T:={z € C: |z| =1} let
L.(z) := L(ez), z¢€D.
Clearly L. € P for every € € T.
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The inequalities (2.2) and (2.3) below are well known. They can be found in [24, pp. 41
and 166).

Lemma 2.1. Ifp € P is of the form (2.1), then

(2.2) len] <2, neN,
and

02 ‘61‘2
2. e P )
(2.3) =< 5

Both inequalities are sharp. The equality in (2.2) holds for every function L. € P, € € T.
The equality in (2.3) holds for every function

pro(z) = tL (eiﬁz) +(1—-t)L <621922>
= 142teP2 42292 4. 2¢eD,
where t € [0,1] and 0 € R.

Now we prove the main theorem of this paper. The idea of the proof is based on the
Koepf’s method [14] of calculating @ for close-to-convex functions with A restricted to the
interval (1/2,2/3). However, we apply it homogenously for the class C(g) for all real X in the
same manner as in [15] and [16]. Also the Laguerre’s rule of counting zeros of polynomials in
an interval is the key tool in the proof.

We recall shortly the Laguerre’s rule of counting zeros of polynomials in an interval (see
[19], [9], [26, pp. 19-20]). Given a real polynomial
(2.4) Qu) = apu™ + ayu™ ' + - 4 ap_1u+ ap

consider a finite sequence (qx), k = 0,1,...,n, of polynomials of the form
k .
(2.5) qr(u) = Zajuk_].
=0

For each ug € R let N(Q;ug) denote the number of sign changes in the sequence (gx(uo)) , k =
0,1,...,n. Given an interval I C R, denote by Z(Q; I) the number of zeros of @ in I counted
with their orders. Then the following theorem due to Laguerre holds.

Theorem 2.2. If a < b, Q(a) # 0 and Q(b) # 0, then Z(Q;[a,b]) = N(Q;a) — N(Q;b) or
N(Q;a) — N(Q;b) — Z(Q; [a,b]) is an even positive integer.

Note that ¢x(0) = ar and gx(1) = Z?:o a;. Thus in the case of the interval [0, 1] Theo-
rem 2.2 reduces to the following useful corollary.

Corollary 2.3. IfQ(0) # 0 and Q(1) # 0, then Z(Q;[0,1]) = N(Q;0)—N(Q; 1) or N(Q;0)—
N(Q;1)—Z(Q;10,1]) is an even positive integer, where N(Q;0) and N(Q;1) are the numbers
of sign changes in the sequence of polynomial coefficients (ay) and in the sequence of sums

(Z?:o aj> , where k =0,1,...,n, respectively.
The main theorem of the paper is

Theorem 2.4. If g € A is of the form

(2.6) g(z) =2+ Z b, ze€D,
n=2
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with
(2.7) |ba| < 2,
then
max o
JRex ol
1 1., 2
ng — A0+ (1 + [b2]) 3 Al A€ RN\ [11(|ba]), 72(]b2])] ,
(2:8) = 1 1 (2—3)N)2%be)? 2
“by — —Ab2 2 b b
3= 1]+ pory ey + e A€ (Do)l
where
2[bo| 2(|bal + 4)
2.9 bol) 1= —— 2 bol) = 2L
( ) 7—1(| 2|) 3(‘1)2’4—2) 7—2(‘ 2|) 3<‘b2|+2)

Proof. Let g € A be of the form (2.6) and f € C(g) be of the form (1.1). Observe that
f €C(g) if and only if

(2.10) 2f'(z) = e ¥g(2) (p(z) cos§ +isind), zeD,

for some § € (—7/2,7/2) and p € P. Setting the series (1.1), (1.3) and (2.1) into (2.10) by
comparing coefficients we get

1 .
as = 3 (cle_“S cosd + b2) ,
1 . .
(2.11) as = 3 <02e_1‘5 cosd + crbae  cos§ + b3> )
Let A € R. Using (2.3) from the above we have
DA(f) = |as— a3
1 " 1 : 1
= g@ge_l‘s cosd + gclee_lé cosd + gbg

1 - .
—1/\ (c%e*m cos? & 4 2¢1boe 0 cos & + bg)

1 1 1 2 .
= 'b A3+ = (CQ - Cl) e cos §

3° 4 3 2
1 3. _ 1 1 )
+EC% (1—2)\6 5cos6>e 5c055+<3—2)\> c1boe 0 cos §
1 1 1 2 2 ;
< ‘3()3—4/\63 +3<2—|C;|> cosé—i—‘cé‘ 1—%)@_160055 cos §
1 1
+‘3—2/\ |c1]|b2| cos &
1 1 2 ey 9
= |Sb3 — - \b3 - 1—(3x—2=x2 25 -1
'3 37 1\ + (S—i- 6 1 cos
(2.12) + 1—1)\] ||b2] )
. 3 5 C1||02 COS 0.
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Set x := |ci| and y := cosd. Clearly, y € (0,1] and, in view of (2.2), z € [0,2]. It is
convenient to use in further computation v := 2 — 3\ instead of A\. For v € R let

sy(y) == \/1 - <1 - ivz) y?, ye€[0,1].

By the assumption (2.7), set |ba| := 2, where a € [0,1]. Set R := [0, 2] x [0, 1]. For « € [0, 1]
and v € R define

Forlz,y) == (4+ 2% (sy(y) — 1) + 2aly]z)y, (z,y) € R.

Hence and from (2.12) we have

1
+ - max F,,(z,y).

1 1
2.13 D) = |3bs = M
( ) max O, (f) < ‘3 3747721 T (z,y)ER

fec(g)

Now for a € [0,1] and v € R we find the maximum value of F, 5 on the rectangle R.
1. In the corners of R we have

For(0,0) = Fo,(2,0)=0,
(2.14) Fory(0,1) = 4,
Fay(2,1) = 2(1+2a)lyl.

2. For x = 0 and y € (0,1) we have a linear function and for x € (0,2) and y = 0 we
have a constant function.
3. For x € (0,2) and y = 1, let

1
Gony(7) = Fay(2,1) = 5 (7] = 2) 2% + 20l + 4.

For || = 2 we get the linear functions, so let |y| # 2. Then G, .(x) = 0 if and only if

x = 2ap = Zq -
2 -yl 7
Thus 24 € (0,2) if and only if
aly|
2.15 aZ0N0< <1.
(249) 2]
The left-hand inequality in (2.15) holds if and only if
(2.16) a£0A0< |y <2
We can write the right-hand inequality (2.15) as
1 -2
(1+a)hl-2 _,
2 -l

and, in view of (2.16), it holds when |y| < 2/(1 + «). But 2/(14+«a) < 2 for o € (0, 1], so this
with (2.16) yields that z,, € (0,2) if and only if

(2.17) a#0N0< |y <

1+a
Thus the function G, has a critical point in (0,2), namely, 2, as the unique one, if

and only if (2.17) holds. Moreover we have

20[272

- 4y
2 -9

(2.18) For(Tay, 1) = Gay (mow)
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4. For x =2 and y € (0,1), let

Hon(y) := Fay(2,y) = 4(ysy(y) + alvly) .
For |y| = 2 we have the linear functions evidently, so let || # 2. Note first that

(219) S’Y(y) > 07 y e (07 1)7
since the equation s,(y) = 0, y € (0,1), equivalently written as
(2.20) 4="")y* =4, ye(0.1),
has no solution. Indeed, as y? > 0, we have |y| < 2. But from (2.20) we obtain
4
2
= >1
V=L

which is a contradiction. Thus (2.20) has no solution, so (2.19) holds. Taking into account
(2.19) we have

/ )—1
(2.21) ys,(y) = = o

Using (2.21) we get

;o s3(y) — 1
Ha,'y(y) =4 SV(Z/) +t T 0‘|7| y Y E (07 1)
S'y(y)
Hence
222 () =0

if and only if
253(y) +alylsy(y) —1=0,
i.e., in view of (2.19) if and only if

—aly| + /8 + a?y?
2.23 _ _.
(223 ) v

As |y] # 2, so from the above we get the equation

4 — o2~2 /S T a2~2

Sa,y-

2(4 —7?)
Thus the solution of the equation (2.24), and hence of (2.22), exists if and only if
4 — 2.2 8 2~2
(2.25) 0<—27 2+(4O‘_|7V2V) to g

Let |y| < 2. The left-hand inequality in (2.25) is clearly true since 4 — a?4? > 0. Write
the right-hand inequality in (2.25) equivalently as

(2.26) aly|vV8 + a2y < 4— (2 - o)y
The above inequality can hold only when
2

2.27 < /.
(227) hl< =
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But 2/v2 — a? < 2, so squaring (2.26) and reducing we equivalently have
(2.28) (1—a®)y =4y +4>0.

Let a = 1. Then, taking into account (2.27), the inequality (2.28) holds if and only if
|v] < 1. Let o € [0,1). Then (2.28) holds if and only if

Iv\>r F

Hence, from (2.27) and by the fact that for o € [0, 1),

\ll—l—a —a \ll—a

we see that (2.28) and, consequently, (2.25) holds if and only if

2
2.29 < .
(229) <y

In this way, we proved that for a € [0, 1], the inequality (2.28), so (2.25) holds if and
only if (2.29) holds.
Let |y| > 2. Then the left-hand inequality in (2. 25) holds if and only if

(2.30) aly|V8 + a2y < a?y?

Note that a?y? —4 < 0 for |y| < 2/a, so then (2.30) is false. Assume that |y| > 2/a.
Squaring (2.30), after reducing, we get |y| < 1/a, which contradicts the assumption.
Thus we proved that the function H, , has a critical point in (0, 1), namely,

. W— 0?2 + ah|V/a%y? + 8

2(4 —~2) = e
as the unique solution of (2.24), if and only if (2.29) holds. Moreover,
Fa,’y(27 ya,’y) = Ha,’y(yoa;y)
4— v/ 8
(2.31) = \/ oy —i(_fmy 2 + o’y (\/84—0(2 —|—3a|’y])

5. We will prove that for each o € [0, 1] and v € R the function F, , has no critical point
n (0,2) x (0,1).
We have
OFay 0
ox
if and only if
y(@(sy(y) = 1) +ahl) =

and since y # 0 and = # 0, if and only if
«
(2.32) sw=1-" e

Observe first that v # 0 because if v = 0, then the equation (2.32) reduces to so(y) =
1, y € (0,1), which has no solution in (0, 1).

If o = 0, then the equation (2.32) reduces to s,(y) = 1, y € (0,1), which is satisfied if
and only if |7| = 2 and y € (0,1) is any. On the other hand, if |y| = 2, then the equation
(2.32) is satisfied for v = 0 only.

Since & > 0, by comparing (2.32) and (2.19), we additionally see that = > al~|.
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Thus the solution of (2.32) can exist only when

(2.33) (a=0AlY=2)V(@a#AO0AY#O0A |y #2Ax > aly|).
Squaring then (2.32) we obtain
2aly| | a?y?
2 —
(2.34) sy(y) —1=— . poa

Since by (2.19), s,(y) # 0 for y € (0, 1), taking into account (2.21) we have

oF, 2 (2(y) — 12
—— =442 (s4(y) — 1) + 2aly|xr + ————.
Thus, by using (2.32) and (2.34), we have
OF ¢~ 0
dy
if and only if
(_ 2alv| i 0‘272> 22
2
4+ 2° (—OM> + 2aly|z + a ° =0,
z p_ahl
x

and after simplifying, if and only if
—2aly|2? + a?y2z

4+ aly|lz + =0.

z —alyl
Thus
(2.35) aly|lz® — 4r +daly| =0, 2z € (0,2).

Note first that for « = 0 the equation (2.35) has no solution. Let o # 0. From (2.33),
v # 0. Then the discriminant A = 16(1 — a?42) > 0 if and only if 0 < |y| < 1/a. Note
that A = 0 if and only if |7| = 1/a, and then the equation (2.35) has no solution. Thus the
equation (2.35) has no root when |y| > 1/a. Consequently, for « = 0 and v € R as well as
for a € (0,1] and |y| > 1/« the function F, - has no critical point in (0,2) x (0,1).

Thus by (2.33) we consider

(2.36) aFOANY|#2AN0< |y <1/aAz>alyl

Solving now (2.35) we have

2-2y/1—-a%y? 2421 —-a?y?

T apr e al]

Since x2.qy > 0 and 21,44%2:0,y = 4, so we immediately see that 0 < 21,0y < 2 < T2,0,-
Thus 2.q,4 ¢ (0,2) and it remains to consider 21.q .
Observe that 1,4, > a|y|. Indeed, this follows from the fact that the inequality

L2500,y

2 —2¢/1 — a24?
alyl

2 —a?y? > 2v/1 — a2+2,

which is evidently true for 0 < |y| < 1/a.

> aly|

is equivalent to
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Setting x := 21,4,y into (2.34) we have

200 a2~2
Tha,y lil;a,'y
Hence
20py| _ o¥y?
2 = Loy m%;ow _ 2a]y|T10, — 0?y?
- 1 B 1
1= 22 <1 - 472>
(237 (4 —a?y? —44/1 - 04272) a’?

2
(1 —y/1- a272> (4—72)
A solution in (0,1) of (2.37) exists if and only if

(4 —a?y? —44/1 - a2fy2> a?~?

(1- VI=a%2) (4= )

< 1.

(2.38) 0<

By (2.36) consider
1
(2.39) a7é0/\]7|7é2/\0<|’y|<a.

We will prove that then the condition (2.38) is false.
(A) Suppose that 2 < |y| < 1/a. Since, as easy to check, the left-hand side of the
inequality

(2.40) 4 — o’y > 44/1 — o242
is positive, by squaring and computing, we equivalently get the inequality
o’y +8 >0,

which is true. Hence and by the fact that 4 — 42 < 0 we see that the left-hand inequality in
(2.38) is false.
(B) By (2.39) it remains to consider

1
a#O/\O<\’y|<a§2.

(a) As in Part (A), we prove that (2.40) holds. Hence and by the fact that 4 — 4% > 0
we see that the left-hand inequality in (2.38) holds.
(b) Since 4 — 42 > 0, write the right-hand inequality in (2.38) as
2
(4 —a?y? —4y/1 - 042’}/2> o’y < <1 —v1- a2’y2> (4 —~?)
and, after computing, equivalently as
(2.41) (8 = 2(1 +2a)7?) V1 — a292 < (a* + a?)y* — 2(1 + 4a®)+? + 8.
We will show that (2.41) is false. To verify it, we will prove that the inequality
(2.42) sa(t) >1a(t), te(0,1/a?),
holds, where
sa(t) == (8 —2(1 +2a*)t) V1—a2t, te[0,1/a?],
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and
ro(t) = (@ 4+ a®)t? —2(1 + 4ot +8, tc [0, 1/a2] .
Then substituting ¢ := 72 into (2.42), we get the true inequality which shows that (2.41) is
false.
Let
we(t) == s2(t) —r2(t), te [0, 1/a2] .

Thus after computing we have
(2.43) wo(t) = a*t® (4 — (1+a®)?), te[0,1/a%].
Note that w,(t) = 0 if and only if
t=0Vt= L =:t
N (1 +a2)2 Y
since, as easy to check, to € [0,1/a?] for a € (0,1].
Let av:=1. Then t; = 1 and by (2.43),
wi(t) = (s1(t) —r1())(s1(t) +71(t)) = 4t3(1 —t) >0, t€(0,1).
Hence and from the fact that
51(0) +7r1(0) =16 > 0,
it follows that
Sl(t) - Tl(t) >0, te (Oa 1)a
which confirms (2.42).
Let now « € (0,1). Then by (2.43),

(2.44) W (t) = (Sa(t) — ra(t))(sa(t) + ra(t)) >0, te€(0,ty),
and

(2.45) W (t) = (sa(t) — ra(t))(sal(t) + (1)) <0, te (ta, 1/a2) .
Since

5a(0) +7r4(0) = 16 > 0,
from (2.44) it follows that
(2.46) Sa(t) —ra(t) >0, te(0,tq).

Similarly, since
1 1 1
Sa<062>+7’a<a2):1—042<0,

from (2.45) it follows that

(2.47) sa(t) —7Ta(t) >0, t€ (ta,1/a?).

Thus from (2.46), (2.47) and by the continuity of the functions s, and r, at ¢ := t,, we have
sat) —ra(t) >0, te (0,1/a?),

which confirms (2.42).

Thus, taking into account Parts (A) and (B), we proved that (2.41) is false, so the
condition (2.38) does not hold and, therefore the equation (2.37) has no solution in (0, 1).

In this way, the proof that for o € [0, 1] and v € R the function F, 5 has no critical point
in (0,2) x (0,1) is finished.

6. Now we calculate the maximum value of F,, , in R, which, as was shown, is attained
on the boundary of R. Let a € [0, 1].
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(A) |v| > 2/(1 + «). Taking into account Part 3 with (2.17) and Part 4 with (2.29), we
see that the maximum value of Fy, , is attained in a corner of R. Thus by (2.14) it suffices to
compare the following values:

(2.48) 0, 4, 2(142a)y|.
Since, for |y| > 2/(1 + «),

4 + 8a
2(1+2 >
(1420 2 T2 >
so from (2.48) we have
(2.49) max Fo(z,y) = Faqy(2,1) = 2(1 4 2a)|7y].

(z,y)ER

(B) v2/(1+«a) < |y] < 2/(a + 1). Taking into account Part 4 with (2.17) and Part 5
with (2.29), we see that the maximum value of Fi, , is attained in a corner of R or in (24, 1) .
Thus we compare all values (2.48) and, by (2.18), the value

2 2.2
= 2T 4y
2=l

FO‘?’Y (xa7’y7 1)

Observe that
2042,.)/2
2=l
Indeed, since || < 2/(a + 1) < 2, the above after computing is equivalent to the inequality

+4>2(1+2a)].

(1+a)}y=2)" >0,
which clearly holds. Thus
20[2’)/2

(2.50) max Fo(2,y) = Fay (Tay, 1)

e
(w,y)ER 2— |

(C) v = 0. Taking into account Part 3 with (2.17) and Part 4 with (2.29), the maximum
value of F, is attained in a corner of R or in the point (2,yq,0) = (2, 1/\/5) . Thus, by
comparing all values (2.48) for v := 0 and, by (2.31), the value

Fo0(2,9a,0) =2,
we have

(2.51) max Fuo(x,y) = Fapo(0,1) =4.
(z,y)ER

(D) 0 < |v| < v/2/(a+1). Then we compare all values (2.48) and, by (2.18) and (2.31),
For(apy, 1) and Fo (2,Ya,) - We will show that the value Fy, , (%o, 1) is the largest one.

(Dy) Since |y| < 1/2/(a+ 1) < 2 for a € [0, 1], s0 a®?/(2 — |7]) > 0 and therefore
Fory(xay, 1) > 4.
Moreover, repeating arguments of Part (B), we see that
Forny (aqy,1) > 2(1 4 2a)|y|.
(D2) Thus it remains to prove that
(2.52) Foy (Taqy1) 2 Fapy (2, Ya,)
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i.e., in view of (2.18) and (2.31), that

9 2.2
sy 4
2yl
4 — o292 + aly|[\/8 + a?~?
(2.53) 2\/ 2(41;) (\/8—1-04272—{—304]7\).

As |y] < 2, so both sides of (2.53) are positive. Thus squaring (2.53) and computing we
equivalently have

ay]? + (6a? — 8a?) vt + (2002 + 8) [7]* — (8a® + 16) 7% — 24|y| + 48

(254)  >ah|@- [ (e*?+8)"°.
To verify that (2.54) holds, we will show that
(2.55) Qalu) > Sa(u), wue0,uq],
where u,, := /2/(a + 1),
Qa(u) = o™’ + (6a* —8a?) u* + (2002 + 8) u®
— (8a® +16) u® — 24u + 48, u € [0, ua],
and

Sa(u) == au(2 — u) (®u? + 8)3/2 , u € [0, uq).
(1°) a = 0. Then ug = /2 and the inequality (2.55) reduces to
Qo(u) =u* —2u? —=3u+6= (u® —3) (u—2) >0=Sp(u), ue [0,\/5} ;
which is true. Thus (2.55) holds, which confirms (2.54).
(2°) a=1. Then u; = 1 and the inequality (2.55) reduces to
u® — 2u’ + 28u® — 24u” — 24u + 48
(2.56) > u(2 —u) (u + 8)3/2 ,  uel0,1].
Since
u’ —2ut 4+ 28u® — 24u® — 24u+48 > —2u® +28u® — 24 — 24+ 48
= u’+26u® >0, uel0,1],

so both sides of (2.56) are nonnegative. Thus squaring (2.56) and computing we equivalently
get the inequality

(u—1)% (2u® + 32u* + 40u® — 92u® + 144u + 144) >0, u € [0,1],

which clearly holds. To see this, replace u? by u. Thus (2.55) holds, which confirms (2.54).
(3°) a € (0,1). Define

Vo(u) := Q%(u) — Si(u), u € [0,ud].
We will show that

(2.57) Va(u) >0, w€0,uql,
i.e., that
(2.58) (Qul) = S (1)) (Qu(u) + Sa(w)) > 0, € [0,ua).

Further, taking into account that @, and S, are continuous functions with
Qa(0) — S,(0) =48 > 0,
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from (2.58) we deduce that
Qa(u) — So(u) >0, uel0,uq],

i.e., that (2.55) holds.
Now we prove that (2.57) holds, i.e., that the following inequality holds:

Va(u)
= (a4u5 + (6044 — 8a2) ut + (20a2 + 8) ud — (8a2 + 16) u? — 24u + 48)2
—a?u?(2 — u)? (@®u® + 8)3 >0, wuel0,uql,
which after computation is equivalent to
Vo) = (o —a®u® + (2a® — 5a° + 5a*)u®
(20a°® — 16a* — 8a?)u” + (—12a5 + 62 + 3602 4 4)u°
(16a* — 24a® — 16)u® — (8a* + 12402 + 8)u* + (27202 + 96)u®
9

(1760” + 60)u® — 144u + 144 = Y "a;u”7 >0, u € [0,uq).
j=0

+
+

Asin (2.5), let (gr), k=0,1,...,9, be a sequence of polynomials of the form

k
qx(u) = Zajuk_j, u € [0, uq],
=0

corresponding to the polynomial @ := V,, in (2.4) for Laguerre’s rule.
(a) Now we check the signs of the elements of the sequence (gx(0)), i.e., of the sequence
(ag) for k =10,1,...,9. A simple computing shows that for o € (0,1) we have

0(0) = a%?®-1) <0,

1(0) = a*(2a* —5a%+5) >0,

@(0) = 40250 —4a? —2) <0,

g3(0) = 2(—=6a° +3a* +18a% +2) > 0,
u(0) = 8(2a*—3a%-2) <0,

—4(20* + 310% +2) < 0,

o

ot
AN N N N N N N N
PN s S N N N N

g6(0) = 272a% +96 > 0,
q7(0) = —176a% —60 < 0,
(0) = —144 <0,
g0(0) = 144 > 0.
Hence
(2.59) N(Va;00=7, aec(0,1).

(b) Now we check the signs of the elements of the sequence (gx(uq)) for k=0,1,...,9.
(i) K = 0. We have

qo(u) = a6(a2 —1), u€[0,uq]
Thus

(2.60) qo(ua) <0, ae€(0,1).
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(ii) k = 1. We have
q1(u) = a* ((@* — a®)u+2a* —5a% +5), wu e [0,uq).
We will show that
(2.61) q1(uq) >0, a€(0,1),
i.e., after computing that

(2.62) —(2a* =52 +5)Va+ 1< (a*—a®)V2, ac(0,1).

Observe that since both sides of (2.62) are negative, after squaring and computing we equiv-
alently get

(2.63) 40® — 207 — 1808 + 20° + 430" — 5002 +25 >0, a € (0,1).
To verify that (2.63) holds, we will show that
(2.64) w(t) >0, telo0,1],
where
w(t) = 4% — 267 — 185 + 267 + 43t* — 50¢2 + 25

8
= > bt I, te0,1].
j=0

Note that the numbers of sign changes in the sequence of polynomial coefficients (by), and in
the sequence of sums (Z?:o b]-) , where £ =0,1,...,8, equal 4, i.e., N(w;0) = N(w;1) = 4.

Applying Corollary 2.3, we see that the polynomial w has no zero in the interval (0, 1) and,
since w(0) =25 > 0, so (2.64) and, consequently, (2.63) holds. Thus (2.61) is confirmed.
(iii) k£ = 2. We have

g2 (u) = (a® — a®)u? + (20® — 5a° + 5at)u + 200 — 160 — 802,  w € [0, uq).
We will show that
(2.65) ¢2(uq) <0, a€(0,1),
i.e., after computing that
V2a?2(2a* — 50 4 5)
(2.66) < (—2a° — 18a* +16a* +8)Va + 1, «a € (0,1).
It is easily seen that the left-hand side of (2.66) is positive and since

—2a° —18a* + 1602 +8 > —2a% — 140 — 4a* + 16a% + 8
(2.67) = 4o +8>0, ac(0,1),

so is the right-hand side of (2.66). Thus squaring (2.66) and computing we equivalently get
—4a'? + 20! 4+ 58010 +198a° + 850® — 320" — 25408

(2.68) —32a° — 41a? + 12803 + 12802 + 32a + 32 > 0.
To verify that (2.68) holds, we will show that
(2.69) w(t) >0, tel[o,1],
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w(t) = —4t" + 26" 4 58t'0 +198t7 + 85t — 320¢7 — 254¢°
12
=327 — 41t + 1286% + 128¢% + 32t + 32 =: > _b;t'*7I, € [0,1].
j=0
Note that the numbers of sign changes in the sequence of polynomial coefficients (bx) and in
the sequence of sums <Z§:0 bj> , where £ =0,1,...,12, equal 3, i.e., N(w;0) = N(w;1) = 3.
Applying Corollary 2.3, we see that the polynomial w has no zero in the interval (0, 1) and,
since w(0) = 32 > 0, so (2.69) and, consequently, (2.68) holds. Thus (2.65) is confirmed.
(iv) k = 3. We have
() = (a®—a®)u? + (2a® — 5a° + 5a*)u? + (2008 — 16a* — 8a?)u
—12a% + 60" + 360% +4, u € [0,uq].
(2.70)
We will show that
(2.71) q3(uq) >0, a€(0,1),
i.e., after computing that
(a4 1)(—a® — 9a* 4+ 8a% + 4)V2
< (20® = 6a” — 11a° + 30° + 8a* + 180 + 1807
(2.72) +2a+2)Va+1, ac(0,1).
Since for a € (0, 1),
—a5—9a4+8a2—|—42 —20t4+4>0
and
—6a” — 1108 + 1802 + 1802 > —6a° — 1102 + 182 + 1802
=122+ 70% > 0,
so both sides of (2.72) are positive. Thus squaring (2.72) and computing we get equivalently
4a'" — 220" — 72a'® — 1000 — 67a'3 + 217a!? + 223!
—531a!'? — 7480 — 24a® + 65227 + 1112a° + 10560°
(2.73) +5400* + 22002 + 840” + 120+ 4 > 0.
Observe now that the left-hand side of (2.73) is greater or equal to
40! — 220" — 72a'? — 100" — 67!t + 21702 + 223!t
—531a” — 748a° — 24a° + 65207 + 1112a° + 1056a°
+540a* + 220a° + 84a® + 12a + 4
= 40’7 + 23a'? + 156! + 121a” + 340a° + 1056a°
+540a” + 2200 + 84a® + 12a + 4

which is clearly positive for o € (0, 1). Thus (2.73) holds, which confirms (2.71).
(v) k = 4. We have

uw) = (a®—aut + (2® — 508 + 5a)u? + (20a° — 16a* — 8a?)u?
+(—12a8 + 6a* + 360 + 4)u
(2.74) +160 — 240% — 16, wu € [0, uy)].
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We will show that there exists a unique « € (0, 1) such that
(2.75) qa(ta) = 0,
i.e., after computing, a unique o € (0, 1) such that

(20® — 607 — 11a° + 30° + 8a* + 18a° + 18a” + 2a + 2) V2

(2.76) = (—2a" — 18a° — 8a° + 8a* + 12a° + 20a* + 8 + 8) Va + 1.
To verify that (2.76) holds, we will show that the equation
(2.77) r(t) = s(t)

has a unique solution in (0,1), where for ¢ € [0, 1],
r(t) == (2% — 67 — 1% 4 3¢° + 8t" + 18t% + 18* + 2t + 2) V2,
s(t) = (—2t" — 18t% — 8% + 8t* + 12t + 20¢* + 8¢ + 8) V£ + L.

Define
w(t) :== s%(t) — r2(t), te[0,1].
Thus
w(t) = 416 — 26415 — 46t — 70¢13 — 189112 — 82¢!!
+145t19 + 20417 + 42448 + 5287 4 316t° 4 92t°
16
—188t* — 3047 — 180> — 88t — 28 =: Y b;t'07I, 1€ 0,1].
j=0

Note that the numbers of sign changes in the sequence of polynomial coefficients (b;) and
in the sequence of sums <Z§:0 bj) , where £ =0,1,...,16, equal 3 and 2, respectively, i.e.,
N(w;0) =3 and N(w;1) = 2. Thus applying Corollary 2.3, we see that the equation

(2.78) w(t) = (s(t) —r(t)) (s(t) +r(t)) =0

has a unique zero t =: to. Since w(0) = —28 and w(1) = 512, so ¢y € (0,1). Observe that for
t € [0,1] we have

t
T\(@) > 218 — 61t — 1163 + 3¢° + 8t + 1863 + 1812 + 2t + 2
= 284+ 3° + 2P+ T+ 182 42t +2>0
and
s(t) 4 2 3 4 3 2
> 2t 182 — 843 + 8¢ + 1263 + 20t2 + 8t + 8
NES

= 6t1+ 483 + 22 + 8t +8 > 0.

Hence r(t) > 0 and s(t) > 0 for ¢t € [0,1]. Thus from (2.78) it follows that r(tg) = s(to).
Consequently, the equation (2.77) has a unique solution in (0, 1), namely, ¢ = t. Thus, (2.76)
so (2.75) holds with a := ty.

Moreover, since for & = 1 we have u; = 1 and q4(u1) = q4(1) = 8 > 0, we deduce that

(2.79) g1(ua) <0, a € (0,a),
and
(280) Q4(Ua) > 07 (ORS (Oé(), 1)
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(vi) k = 5. We have
s(u) = (o —a®u’ + (2a® - 5a° + 5at)ut + (2008 — 16a* — 8a?)u?

+(—12a5 + 6a* + 360 + 4)u® + (162 — 240° — 16)u
—8a’ — 12402 — 8, w € [0,uy].

We will show that

(2.81) q5(uq) <0, a€(0,1),

i.e., after computing that
(a® +10a" +13a° — 100" — 160* — 14a® — 8a — 4) V2
< a(=2a" + 605 +13a° + o + 2503 + 4402

(2.82) +15a+2)vVa+1, ac(0,1).

Clearly, for o € (0, 1) we have

a® +10a" + 13a° — 10a* — 160® — 140> —8a — 4 < 0,

so the left-hand side of (2.82) is negative. But the right-hand side of (2.82) is clearly positive.
In this way, (2.82) holds, which confirms (2.81).
(vii) k = 6. We have

g(u) = (o —a®ub + (2a® — 5a° + 5a*)u® + (2008 — 16a* — 8a?)ut
+(—12a5 + 6a* + 360 + 4)u® + (160t — 240 — 16)u?
—(8a* + 124a* + 8)u + 272a% + 96, u € [0, uq].
We will show that
(2.83) g6(uq) >0, a€(0,1),
i.e., after computing that
(=207 +6a° +130° + ot 4 250° + 4402 + 15a + 2)V2
< (20" 4+ 18a° + 8a® + 600" + 1240° 4 720°
(2.84) +40a 4+ 16)Va +1, a€(0,1).

Both sides of (2.84) are positive evidently. Thus squaring (2.84) and computing we get
equivalently the inequality

4018 — 260 — 540! — 6203 — 361a!? — 14740t
—3097a'? — 5658a° — 11809a® — 19102a” — 21382a°
—18548a° — 129750 — 67560 — 258802 — T68a — 128 < 0,

which is clearly true for o € (0, 1). Thus (2.83) is confirmed.
(viii) k = 7. We have

gr(u) = (a® —a®u" + (2a® — 508 + 5ah)ub + (20a° — 16a* — 8a2)u®
+(—12a° 4 6a* 4 3602 + 4)u? + (16a* — 240* — 16)u>
—(8a* + 1240 + 8)u® + (27202 + 96)u — 1760 — 60, u € [0, uy).
We will show that
(2.85) q7(uq) >0, a€(0,1),
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i.e., after computing that
(—40® + 120" + 26a° + 460° + 182a” + 2350°
+1190° + 49 + 15) Va + 1
< (2a® + 200" + 26a° + 68a° + 184a” + 1960°
(2.86) +112a% + 56a 4+ 16) V2, a € (0,1).

Both sides of (2.86) are positive evidently. Thus squaring (2.86) and computing we equiva-
lently get

(@ —1)(—16a" 4 88a!* 4 30403 + 904a!? + 2348a!! + 3964a'°
+45600° + 12280% — 9016a" — 2287605 — 30417a° — 25691a*
(2.87) —14838a° — 6286a% — 1889a — 287) > 0, a € (0,1).
Since for a € (0,1) we have

—16a'® 4 88a™ + 3040’3 + 904a'? 4 23480 + 39640
+45600° 4 12280® — 9016a” — 2287605 — 304170°
—25691a* — 148380 — 628602 — 1889 — 287
< —16a!® 4 880" + 30408 + 90405 + 23480 + 396403
+4560a? + 1228 — 90160 — 228760° — 30417a°
—25691a* — 1483803 — 628602 — 1889 — 287
= —16a!® — 8928a" — 2257208 — 295130° — 23343a*
—108740> — 172602 — 661 — 287 < 0,
so (2.87) holds. Thus (2.85) is confirmed.
(ix) k = 8. We have
gs(u) = (a® —a®)ud + (2a® — 5a° 4+ 5aM)u” + (2008 — 16a* — 8a?)ub
+(—=12a5 + 6a* + 3602 + 4)u® + (160* — 240° — 16)u?
—(8a* + 124a% + 8)u® + (27202 + 96)u>
—(1760* + 60)u — 144, u € [0, uq].
We will show that
(2.88) gs(uq) <0, a€(0,1),
i.e., after computing that
(2.89) r(a) < s(a), ae€(0,1),
where
r(@) = (40" +36a° + 16a° + 120a* + 2120° + 36a*
—28a—4)Va+1, ac(0,1),
and
s(a) = (—4a® +12a" 4 26a° + 46a° + 182a* + 2350% + 11907
+49a + 15)v2, a € (0,1).
We see at once that

(2.90) s() >0, ae(0,1).
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It is easily seen that for o € (0,1),
s?(a) = r*(a) = (s(@) —r(a)) (s(c) +r(e))
= 16a'% — 104a'® — 216a™ — 600a'® — 14440'? — 147211
+1276a'0 4 99560 + 2522008 + 48204a" + 734215
+767060° 4+ 502750 + 2032002 + 561102 + 1350a + 217 > 0.

Hence either

(2.91) s(a) —r(a) >0, s(a)+7r(e) >0, aec(0,1),
(2.92) s(a) —r(a) <0, s(a)+r(a) <0, aec(0,1).

Supposing that (2.92) holds, we see that then s(a) < 0 for a € (0, 1). However this contradicts
(2.90). Thus (2.91) holds so (2.88) is confirmed.
(x) k=9. We have
qo(u) = Vo (u), wu € [0,uq].
We will show that
(2.93) q(uq) >0, aec(0,1),
i.e., after computing that

(—40® +12a" + 26a° + 460° + 1640’ + 1630 + 110

—23a — 3)Va + 1

< (20° 4+ 200" + 260° + 680 + 1660 + 124a° + 4a?
(2.94) —~16a — 2)V2, « € (0,1).
To verify that (2.94) holds, we will show that
(2.95) r(t) <s(t), te(0,1),
where

r(t) = (—4t% + 127 + 26t° + 46t° + 164¢* + 163¢> + 11¢2
—23t —3)Vt+1, tcl0,1],
and
s(t) = (2% 4207 + 26t° + 68¢° + 166" + 124¢° + 4¢>
—16t — 2)V2, t€0,1].

Let

w(t) == s2(t) — r2(t), telo,1].
Thus after computing we have

(2.96) w(t) = (t — D2t + 1) (2t + 1) v(t),
where
v(t) = —8t13 440t + 168t + 556¢'0 + 1464¢° +
+2776t% 4 4148t7 + 4220t° + 2358t° + +455¢*
13 '
(2.97) —176t% — 106¢% — 18t — 1 = Y b;t*~7, t€[0,1].
j=0
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We use now Corollary 2.3 since v(0) = —1 # 0 and v(1l) = 15876 # 0. Note that the
numbers of sign changes in the sequence of polynomial coefficients (b;) and in the sequence

of sums (Z?:o bj>, where £ = 0,1,...,13, equal 2 and 1, respectively, i.e., N(v;0) = 2

and N(v;1) = 1. Applying Corollary 2.3, we see that the polynomial v has the unique zero
t =:tp € (0,1). Moreover t is the zero of order 1. Hence and from (2.96) it follows that ¢¢ is
the unique zero of order 1 of w in (0, 1), also. Since

w(0) = v(0) = —1 < 0,

so from (2.96) and by the continuity of the function w we have

(2.98) w(t) = (s(t) —r(t)(s(t) +r(t)) <0, te(0,ty)
and

(2.99) w(t) = (s(t) —r(t)(s(t) +r(t)) >0, te (to,1).
Since

s(0) +7(0) = —2v2 — 3 < 0,
from (2.98) it follows that

(2.100) s(t) —r(t) >0, te(0,ty),
and
(2.101) s(t)+7r(t) <0, te(0,tg).

Similarly, since
s(1) 4+ r(1) = 784v/2 > 0,
from (2.99) it follows that

(2.102) s(t)—r(t) >0, te(to,1),
and

(2.103) s(t) +r(t) >0, te(to,1).
Thus from (2.100) and (2.102) we have

(2.104) s(t)—r(t) >0, te(0,1)\ {to}.
Moreover, from (2.101) and (2.103) is follows that

(2.105) s(to) + r(to) = 0.

The continuity of the function s —r and (2.104) yield
(2.106) s(tg) — r(to) > 0.
Suppose now that

(2.107) s(to) — r(to) = 0.

Hence and from (2.105) we have
8(t0> = T(to) = 0.

Thus

N O]
and

0 (- wol. el
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where g and o are some polynomials in [0, 1]. Hence
w(t) = s*(t) = r*(t) = (t —t0)* (20°(t) — (t+ 1)o*(1)), te0,1],
which yields a contradiction since, as was shown, ¢y is the unique zero of order 1 of w in
(0,1). Thus the strong inequality in (2.106) holds, which together with (2.104) finishes the
proof of (2.95). In this way (2.93) is confirmed.
Summarizing, from (2.60), (2.61), (2.65), (2.71), (2.75), (2.79), (2.80), (2.81), (2.83),

(2.85), (2.88) and (2.93) it follows that for three cases, namely, for « € (0,p), @ := ap and
a € (ap, 1), where o is the unique root of the equation (2.75), we have

N(Vysua) =17.

Hence, by (2.59) and by Corollary 2.3 we conclude that for each a € (0, 1) the polynomial V,
has no zero in (0, uy), and since V,,(0) = 144 > 0, so (2.57) holds. Thus (2.55) is confirmed,
which finishes the proof of the inequality (2.52).

Summarizing, taking into account (2.49)-(2.52), we proved that

2(1+2a)lyl, vl =

1+a
max Fy~(x,y) = 2,2
iy Fea(#:9) 207 L4 < :
2— | “1+a
Finally, substituting v = 2 — 3\ and « = |ba|/2, the above and (2.13) yield (2.8). O

Remark 2.5. Since the condition (2.7), i.e., the inequality |b2| < 2 holds for g € S, Theo-
rem 2.4 is true for the class C(g), where g is in S.

Now we recall the result for the class C(g,) proved in [15].
Theorem 2.6. Let o € [0,1]. Then

max &
e V)
2 4
S gatat-rara. AR\ ((0), 7'(a)
2.108 <
| ) | |1—)\|+1'w +g A€ [T (), 7" (a)]
3 2-2-3\) " 3 ’ :
where ) 22 )
/ o o 7 — +a
() := S0 +a)’ (@) : 301ta)
Proof. Let a € [0, 1]. Since
& - n n
9ga(2) = 0~ > na" 2", zeD,
n=1
S0
(2.109) by =20, b3 = 30’
Then in view of (2.9) we have
2|b 2«
A(bal) = A2~ = 7/(a)

and
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Now for A € R\ [7/(«), 7"(v)] by using (2.109) the inequality (2.8) is of the form

1, 1 2
d < |oby— B 4+ (14 |b2]) |5 — A
(ax A(f) < ‘33 22|+ ( +|2!)’3 ’
2
= a?l - A+ (1+20) 3)\‘
2 4
= ‘3+3a+a2—(1+a)2)\
and for A € [7/(a), 7"(«)] of the form
1 1 (2-3N)2b2)> 2
d < |=by — —\b3 -
max (/) < '33 2 T e —po3) 3

1 (2-3))?2 2

2
1- Tl [N
O‘<| A3 2—2—3)\|>+3

For a := 1 we get the following result proved in [16].

Corollary 2.7.

P
e 0
|3 — 4], A€ (—00,1/3]U[1, +00),
(2.110) << 1 (2-3))?2 2
- 1-— = 1/3,1].

Let now formulate the result for the class C(hq).

Theorem 2.8. Let o € [0,1]. Then

d
[ax ()
2 1 1 2 ! "
o’z —=A+(1+a) ;s -, A€ RN\ [T (a), 7"(a)],
(2.111) < 3 4 3
. a o2 iM_F 1_1)\ +2 X e [7(a), 7" ()]
12 2-]2=3x\ ' [3 4 3’ ’ ’
where ( )
2« 24+«
/ — 1 e i
T =snray T @ 3T,
Proof. Let a € [0, 1]. Since
ha(z) = 1 —Zaz = Zan_lz”, z €D,
S0
2.112 2 = 3 = Q.
b by = o
Then in view of (2.9) we have
2|b 2«
b)) = gt = = 7(a)

23
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and
AVl +2) 32+ ) ‘
Now for A € R\ [7/(«), 7"(0)] by using (2.112) the inequality (2.8) is of the form

11
d < oby— B 4+ (14 |b2]) |5 — A
2, < [go = i e[ -
11 2
2
= S A+ (1 g\
a®l3 g ‘-1—( + ) 3 ‘
and for A € [7'(a), 7" ()] of the form
1 1 (2—-3\)2b2)> 2
d —bg — —\b3| + =
(e ) < ‘33 2 T e o3 T3
1 1 (2= 3)) 2
2
= S =
O‘(’s 4‘+ 22— 12— 3/\|>+3
Thus (2.111) was proved. 0

For av := 1 we get the following result proved in [17].
Theorem 2.9.

)
Jnax A(f)

1 1| 2

S — oA+ 2232 A € (—00,2/9] U [10/9, +00),
2113 <13 4103
‘ =] 1 (2-3))? 11 2

— 2 - S+ 2, X e [2/9,10/9).

12 2—\2—3)\]+‘3 1 ‘+3’ € [2/9,10/9]
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Abstract

We prove the existence and uniqueness of fractional neutral impuldiezeditial
equations with infinite delay via contraction mapping principle and fixed point technique
for condensing map. We use the resolvent operator technique for integral equations to
make the mild solution of the problem more appropriate.

Keywords: Fractional diferential equations, Fractional order impulsive conditions,
Neutral diferential equations, Infinite delay, Resolvent operators.
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1 Introduction

In recent years, a significant number of the investigates managed the possibility of the frac-
tional differential equations in ffierent areas of engineering and science disciplines, for ex-
ample, rheology, viscoelasticity, biomedical, control theory, porous media. Fractidiead di
ential equations give an incredible mathematical model for real world phenomena, in which
the fractional rate of progress relies on upon the impact of the heredifacyseand describ-
ing the long memory of the systems. For detailed investication of the fractionatetiffal
equations, we read [4, 13, 19, 23].

The hypothesis of partial neutral integrafdrential equations with infinite delay have
been utilized for displaying the advancement of physical systems, in which the reaction

*Corresponding authoE-mail:
angurajpsg@yahoo.com(A. Anguraj), kanjanadevimaths@gmail.com(S. Kanjanadevi) and du-
mitru@cankaya.edu.tr(D. Baleanu).
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depermls on the present and previous history of the system. This sort of equations emerge in
the theory of heat conduction in material with fading memory [18]. Since we consider the
infinite delay, we use the notion is phase space which acts as an essential part in the study of
qualitative theory of delay equations. This idea was presented by Hale and Kato in [7].

Study of impulsive dierential equations turn into an essential field of research because of
their various applications. The purpose behind this applicability emerges from the way that,
numerous real world processes and phenomena which are subjected amid their improvement
to short-term external impacts can be demostrated as impulsieeetitial equations with
non-integer order and which cannot be depicted by using classitalatitial equations [15].

For more subtle elements of fractional impulsiv&eliential equations, see [5, 6, 16, 21].

Similar results for integer order derivative for abstract neutral function@rential
equations with impulsive condition was studied by [2, 8, 12]. The work on fractional neu-
tral impulsive diferential equations with infinite delay are carried out by [3, 22]. In [14] N.
Kosmatov studied the fractional order initial value problems with fractional impulses by the
contribution of Caputo and Riemann-Liouville derivatives.

Hernandez et al. [9], examined that the concepts of mild solutions utilized as a part of
a few late writing on abstract fractionalffrential equations are not suitable. In [9], he
consider the more appropriate mild solution of the abstract fractiofiglrential equations
with time by means of resolvent operator for integral equations [20]. The same idea was used
by some authors to show the existence of fractionaethfitial equations without impulse,
see [1, 10]. But in our best of knowledge this resolvent operator concept was not used in
the fractional impulsive dierential equations of order lies in @). Note that the order of
integration determines the shape of the memory function.

Impulsive fractional diferential equations is constructed with either the lower bound as
the corresponding impulses or the lower bound as zero at each impulses. Here we construct
the solution of fractional order impulsive Cauchy problem involving Caputo derivative with
lower bound as zero. That is thei@rent solutions keeping in each impulses the lower bound
as zero. This will improve the characterization of the memory property of the factional
derivative.

Motivations of the study in [9, 14] and the applications of fractional order derivative give
rise in this present article. Here we prove the existence and uniqueness theorems of mild
solutions for fractional neutral impulsiveftirential equations with infinite delay given by

“Dg. (u(t) + q(t, w)) = u(t) + p(t,w), t #t;, te J :=[0,4a], (1.1)
Do u(ty) — D u(ty) = (W), t=1,---,m, (1.2)
uQ)=¢ e Ba, U0Q)=2z€é&, (1.3)

where 0< 8 < 1 anda € (1, 2). Hered is the infinitesimal generator of a cosine operator
family {€(t)}-0 on a Banach spac€. The memory functiony; : (—o0,0] - &, w(o) =
u(t + o), o < 0, associated with some suitable abstract phase spacé=1t, <ty <--- <
tmi1 = a are pre-fixed values and the appropriate functipjts: J X Ba — &, Iy : Bp —
&,t=1---,m which are defined later.
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We deive the mild solution of (1.1)-(1.3) by resolvent operator technique. The existence
results of fractional neutral impulsiveftkrential equations with infinite delay via fixed point
technigue for condensing map and the uniqueness of the problem is verified by using con-
traction mapping principle.

2 Preliminaries

Let the spacel(&£, &”) is the set of all bounded linear operators from Banach sgaicego
Banach spacé&” provided with the nornfi - || (¢ . Here the domait¥ (<), takes the norm
lullz(ry = llull + [l<Z ull. Further moreB; (u, &) symbolizes the closed ball having centeuat
and distance in &.

The class of all continuous functions frofi into & is referred byC(J; &) with the
sup-norm|| - [lc¢y.¢)- Likewise C*(7;&),0 < y < 1 is the set of ally—Hdlder &-valued
continuous functions frony into & provided with||ullcy(7.¢) = lUllc(7.¢) + [IUllcr(7:4), Where

— llu)-u(lle
[|U|]C7(J;é") = SURsstseq (()t—s()V) -

Now, we present the piece-wise continuous sgaces’) which is framed by set of all the
functionsu : J — & such that the function(:) is continuous at # t;, u(t;") andu(t;) = u(t;)
exists for everyt = 1,2,--- ,m. We can easily seen that it is a Banach space concerning the
norm||ullpc(sy = SUR. s llU(t)ll.s.

We consider the phase spacBx || - Il,), is a linear space of functiomy mapping from
(-0, 0] into & with respect to the seminorin||4,, which is previously addressed in Hino et
al., [11] to examine the infinite delay problem. We assume the spceeets the axioms
given below:

(1) fu:(-oco,v+a] = &, v € R,a> 0suchthat, € #,, andul,.s € PC([v,v+a]; &),
then the subsequent conditions hold fortal[v, v + a)
() U € ABa.
(i) u®lle < Dllullz,
(iii) [|ullz, < S(t = v)sudllu(9)lle @ v < s <t} + M(t — v)||Uy |, Wheredt, | :

[0, ) — [1, o0), is locally bounded and continuous respectivejys O is a constant.
K], 9,9t are independent af().

(2) The phase spac#, is complete.

We know that the Caputo fractional derivative of a functioof ordera > 0 defined as
follows:

“Dg-u(t) = Ig-*Du(t), n=Tfal,

wherel§. u(t) = ﬁ fot(t — 9”7 tu(s)ds Also, in general the Caputo derivati?®j. is a left
inverse oflg. but not a right inverse, i.e., we haiBy, g, u(t) = u(t), and I§.°Dg.u(t) =
u(t) — u(0) - tu'(0),for0O < a < 2.
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Next,we consider that the Volterra integral equation

u(t) = Tla) fot(t -9 tezu(s)ds+ p(t), te T, (2.1)

has a corresponding resolvent operd®(t)}..oc on &, see [9] andpin C(J; &). More de-

tailed explanations about resolvent operator for integral equations one can refer [20]. The
definition of mild solution for the integral equation (2.1) by utilizing the concept presented
in [20] is given in [9].

Definition 2.1. [9 Deflnltlon 1.2] Afunction uin the space@; &) is called a mild solution
of(2.1)onJ, if = 0(t - 9 tu(s)ds in AT; (7)) and

F(a)

u(t) = % fo (t— 9" tu(s)ds+ p(t), te T,

Definition 2.2. [20, Definition 1.4] A resolvent operator(§ for equation (2.1) is said to be
differentiable, if §-)u € W([0, c0); &) for every ue Z(<7) and there isp € L. ([0, «))
with [|S"(Y)ull < ¢(t)l|ull (), a.e. on[0, o), for every ue ().

Lemma 2.1. [9, Lemma 1.1] Suppose (2.1) admits gfelientiable resolvent &) and if
p e C(T; 2(«)), then

t
u) = pO + [ St-9p(9ds te .
0
is said to be a mild solution of (2.1).

Now, our point is to present the concept of mild solution for equation (1.1) to (1.3). In
this way, we first identify that iti(-) is a solution of (1.1)-(1.3), then one can estimate the
corresponding integral equation given by

u(t) = ¢(0) + A(0. ¢) + (Z+ )t — A(t u) + T2 - f) Y 7t - t)l(w)

O<ty<t
a-1 a-1
F( )f(t ) u(s)ds+ a )f(t 9 p(s us)ds te T, (2.2)

wheredq(t, u)h-o = &, £ is independent of.
Motivated by Definition 2.1 and the representation (2.2), we introduce the following
definition.

Definition 2.3. A function u: (-o0,a] — & is a mild solution of (1.1)-(1.3), if @) =
6. U(0) =z uly € PC(&), &5 i(t- 9" u(9dse Z(«), ¥ te T, ad

u(t) = ¢(0) + A(0, ) + (Z+ &)t — a(t, u) + T2 - ) > 7t - t)le(w)

O<ty<t

a-1 - o1
e )f(t S u(sds+ e )f(t 5" 'p(s uds te T,

whee d%q(t, W)l-o = &, £ is independent of u.
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3 Existence and Uniqueness Results

Now, we will make the subsequent hypotheses:

(H1) p: 9 x Ba — 2() is continuous function and Iét, € C(; R) such that
”p(t’ wl) - p(t’ wZ)H_@(Of) < Lp(t)”wl - wZH%A’ te j? w1, W2 € %A-

(H2) The functionrm, belongs taC(J; R) and a non-decreasing function
W [0, +o0) — (0, +e0) such that|p(t, @)l () < M(OW(llwll5,),
teJ,w e Ba.

(H3) q: 9 x Ba — 2(<7) is continuous function antd, € C(J; R) with
”q(t’ wl) - q(t? wZ)”_@(W) < Lq(t)”wl - wZH%A’ te j? w1, W7 € %A-

(H4) C1 > 0, andC; > 0 such thatiq(t, @)l|z, < Cill@llz, + C2, t€ T, @ € Ba.

(H5) It : Br — 2() are continuous functions and let positive constdntsuch that
”If(wl) - If(w2)||.@(®/) < Lf”wl - wZH%A’ t= l’ 2’ e, M@, @z € %A-

(H6) Letd!,> 0andd! > 0 such thafil;(@)|| < d}|lw]||+ d?forallt = 1,2,--- ,m, @ € Ba.
From Lemma 2.1 we note the subsequent Proposition,

Proposition 3.1. Suppose equation (2.2) admits geliential resolvent operator
{SM}=0 and if pg e C(T X Ba; 2()), It € C(Ba; Z()), then

u(t) = ¢(0) + A(0, ¢) + (Z+ &t — A(t, u) + T2 - f) > 7t - t)le(w)
O<ty<t

i t _ Q-1 t rx ~
+F(a)f0(t S D(S,us)ds+f08(t 9) (#(0) + g(0, ¢) + (z+ &)s— (s, us)

TR=-p) D s t)h(w) +

O<t;<s

1 S o
@fo(s_ﬂ 1p(T,UT)dT]dSt€j,

is called a mild solution of the problem (1.1)-(1.3).
Let a functionx : (—o0, @] — & be defined by, = ¢ andx(t) = ¢(0) + fot S'(t-9)¢(0)ds

forallt € J. Itis easily say thalix|| < (RaH(1 + llgllzrr)) + Ma)llPllz,, Wheredt, =
SUR.g M(L), Ka = sup. K(1).

Theorem 3.1. Assume thatH1), (H3) and(H5) are satisfied, and if

a[l

SallLOll + T =) Y ¢ L+ s

O<ti<a

ILeMINA + llllLrrry) < L

Then (1.1)-(1.3) has a unique mild solution.
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Proof. Let the spaceZ(a) = {u : (-c,a] —» & : U, uly € PC(&)} endowed with the
sup-norm. Now by Proposition 3.1, we consider the operatoe?(a) — Z'(a) by

0, t e (—0,0],

q(0,¢) + (z+ &t —q(t, U + %) + (2 = B) Xoety<t tf_l(t — t) (U, + %)
TU) = $+ds [t 97 p(s U+ xJds+ [ S'(t-9) (q(0.¢) + (z+&)s
—q(S, Us + Xs) + I'(2 = B) Yo<t<s tfﬁ_l(s — )l (U + %)

+155 o (=D p(r, U + X, )dr)ds te .

It is easily seen thafu; + Xllz, < Kallull + (RaH( + llellarry) + Ma)llPllz,, Where

llulle = SUR.sct IU(S)I-
Letu e Z(a) and from the assumptioii(l), (H3) and {H5), we get that

fo IS'(t - 9(a(0.9) + (z+ &)S— (S Us + X)) + T2~ )

l S
P (s R _ a1
: o;;stf (8=t +%) + I'(a) fo (s—7)*"p(r, u, + x,)dr)|| ds

< (lla(0, p)Il + allz+ &l + lla(s, us + Xs)ll + I'(2 — B)a

(07
-1
x> I, + X+

O<ti<a ar(a)

Ip(T, Ur + XT)II] el

which follows thats — S'(t — s)(9(0, ¢) + (z+ £)s— (S, Us + Xs) + I'(2 = B) X0t tf‘l(s -
t)le(Uy, + X,) + ﬁ fos(s— )% 1p(r, u; + x,)d7) is integrable on [(X], Yt € J. Then, the
operator¥ is well defined and have the values ¥ (a).

Now, foru andvin Z(a) andt € [, we get

ITu(t) - VIl < lla(t, b+ x) — At v+ I+ T2 - B8) Y ¢ -1)

O<ty<t
><|||f(Utt + Xtt) - |f(th + th)||
L e _
+F(a) fo (t—9)*Ip(s us) — p(s Vs)llds
+ f ot — 9 (1A(S. Us + X&) — A(S. Ve + X3l
0
+T(2-B) D =ty + %) = (v + )l

O<t;<s

1 s e
e fo (5= )" HIp(r, Us) - p(r.v,)dr | ds
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7
< (HLq(t)”C(J;JR) +I(2-p)a Z L
O<ti<a
F( )|||-p(t)||C(JIR)) (L + llellrmy)lue = Villz,
< Ra(”'—q(t)llcw;k) +I(2-p)a Z L
O<ti<a
r( )”Lp(t)”C(JIR)) (1 + lllligry) [ U= V.
ThenZT is a contraction map and has a fixed paiij of T. Thus, we determine that-) is
a unique mild solution of (1.1)-(1.3). |

Theorem 3.2. Let S(t) be compact for all & 0, (H2) — (H6) are satisfied and if
_ plgl |

Ka [Cl +T(2 ,B)aO;atf d + — ( )

Ka(lLg®)ll + TR - p)a Y L)+ llgll) < L.

O<tk<a

||mp(t)|| I|m |nf Wl ))

Then (1.1)-(1.3) has a mild solution.

Proof. Taker > 0, such that

(cl||¢||% +2C; + [cl +T@2-pa )’ tf‘ld%] (Rar + (RaD(+ ellirny)

O<ti<a

Mgl z) + TR —Pa Y 67 + llz+glla+ —— r( )
O<t;<a

XW(Rar + (RaH(1 + llellrirm)) + Ema)ll(ﬁll,azA)) (L+1lel) <8,

||mp(t)||

forall s>r.

Let the operato® : 8,(0, Z'(a)) — Z'(a) be defined likewise considered in the previous
Theorem 3.1, and in a similar manner we can easy to seé&tlgtvell defined. Now, our
aim to show that : 8,(0, Z(a)) — B,(0, Z(a)) is a condensing map.

The subsequent steps shows the remaining proof.

Step 1.T has values ii8,(0, Z°(a)), i.e.,TB,(0, Z(a)) c B:(0, Z(a)).
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Letu e 8,(0, Z(a)) andt € 7, then

ITU®I < G, @Il + lla(t, U + Xl + TR =) > 7t = tllle(u, + X,

O<ty<t

+|IZ+§||t+F( )f(t 9 Ip(s Us + Xs)llds

- fo IS(t = 91110, #)1l + (s Us + Xl + Iz + £lls
Q2= ) Y st + )l

O<t;<s

f (s— " Ylp(r. U, +xT)||dT)ds

(@)
< (Cl||¢||%A + 20 + Call + Xl + TR = p)a ) #7Hdlu, + %L,
O<t;<a
a’
+0) +liz+ la+ —— oT (o) Me(DIWIue + xtllﬁA)) (1 +llell)
<

(cl||¢||%A +2C; + [cl +T(2-p)a Z tf—ldg] re

O<ti<a

+I(2 - B)a Z " 1d2+||z+§||a+

oSia oT(@) 'mp(t)”W(f*)] (1 +llel)

wherer” = Rar + (RaH(1 + llellrgr)) + Ma)llgllz,-
This implies thaf|Tu(t)|| < r, i.e.,Tu € B,(0, Z(a)) andTB;(0, Z'(a)) c B:(0, Z(a)).

The remainder of the proof continuing with the decomposition opefater z?zlz
where

TUt) = q0,¢) + @+t -t e+ x) +T(2-B) D 7t =t + %)
O<ty<t
+ fo S'(t- 9 (A0.9) + 2+ £)S— (S Us + Xe)
+I'(2-pB) Z (s — t)le(uy, + xtf)] ds
O<t;<s
Tout) = Tl) f (t— 9" p(s Us+ X5)ds
Tut) = fS (t—s)l_( ) s(s—r)“‘lp(r, U, + X, )drds

Step 2. T, is a contraction map o8, (0, Z'(a)).
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Letu e B,(0, Z(a)).

[1T2u(t) — Tl

IA

llact, ue + %) — alt, ve + Xl
+I'(2 - ) Z tf_l(t — )l (U, + %) — Le(ve, + X))l

O<ty<t

+ f 1St = 9II(IA(S, Us + X&) — (S Ve + XS
0
+I'(2 - ) Z tf_l(S— Il (U, + %) — (Vg + X))

O<ti<s

(gl + T2 - Ba > & L)llur = wll, (1 + ligl)

O<t;<a

KalllLg@Il + T2 = B)a > &)L+ lglllu = ik

O<ti<a

IA

IA

Hence,I, is a contraction map o8, (0, Z(a)).

Step 3.3, is a completely continuous map.

It is easy to see that the map is continuous, since the functidnis continuous.

Next, we only we need to prove thdj is a compact operator.

LetO< e <t <a, ue Z(a). From the mean value theorem for the Bochner integral (see
[17, Lemma II.1.3]), we have that

TLLoult) = % fog(t — 9% p(s us + Xs)ds+ % fé (t— 97 p(s us + X5)ds
€ B Qe 0,&) + (;(_0;) co({(t — 9 Ip(s,us+ Xs) : s€[e,1]})

where Q = [|my(t)|[W(r*), and the notiorro(U) refers the convex hull of the set

Since from [9, Lemma 2.2], the mapis compact ang € C(J x Ba;, (<)), from the
above inclusion we find th&,8,(0, Z'(a)) = {T,u(t) : u € B,(0, Z(a))} c C. + K., where
K. is compact and diarl) = Q?E; — 0 ase — 0. This proves that the s@,L8;(0, Z()) is
relatively compact in spacg for all tin 7.

Consided >0, 0<t<asuchthat t+1 < a, and foru € 8,(0, Z(a)),

IA

IT2u(t + 1) — Tou(t)] % fo ((t= 9" = (t+1 - 9" Ip(S Us + X)llordS

-+

- _ Q-1 p
+F(a) : (t+1=9"7Ip(s, Us + Xs)ll 7\ dS
< ) IP(S, Us + Xs)llz(er)
_ 2K
~ al(a)

whichimplies that¥, 8, (0, Z°(a)) is equicontinuous.
Hence from the above resuls is completely continuous.
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Step 4 The operatofZ; is completely continuous.
Lett € [0,a) and consider#(s) = ﬁ fot(t — 9% Ip(s,us + Xs)ds Foru € B,(0, Z(a))
and there exist > 0, we takd € (0, €) such that + | < a, and from [10, Lemma 2.2],

I Tau(t + 1) — Tsu(t) ||
| t
< f |S't+1-92(9 |l ds+f | S (NZP(t-s+])-P(t-9)Ilds
0 0

A

t

|
f Pt +1 =9 Il Z(9) llow) d3+f (I PNce (.ol "ds
0 0

2 |
ari) (aaf0¢(t+l—s)ds+l" ||90||L1([f))

which proves thatt; 8, (0, Z(a)) is right equicontinuous dtin [0, a). The above discussion
allow us to show tha&s;8;, (0, Z(a)) is left equicontinuous dtin the interval (Qa]. From
this argument we say thag 3, (0, Z°(a)) is equicontinuous.

In this sequel we finally prove th&&su(t) : u € 8,(0, Z'(a))} is relatively compact &,
Yte (0, a.

Take O< t < aandQ; = [[MpyMIW(r)llelliyg,.. The setV = {FP(s) : se€ J,u €
B:(0, Z(a))} is relatively compact ing, since from the previous Step 2. ufbelongs to
B,(0, Z(a)), by using the concept in [17, Lemma II.1.3], we get

IA

Tut) = fOE S'(t—9)A(s)ds+ ft S'(t-9A(9)ds

€ BQ%_fI;(o, &)+ (t—e)co({S'(s)y: s€ [et],ye V)

and rence {T3u(t) : u e B,(0, Z(a))} c Bolaw (0, &)+K,, where K, is compact aneorl(—a) -0

ase — 0. This proves thatTsu(t) : u e Br(O Z(a))} is relatively compact irf’. Hence we
finally conclude that; is completely continuous.

From the above steps we can say that the opefato$, (0, Z(a)) — B:(0, Z(a)) is a
condensing map. Then the existence results follows from [17, Theorem IV.3.2]. O
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4  Application

We look at the following partial fractional impulsive neutraffdrential equations with infi-
nite delay of the form

D5, (v(t,n)+ [ ”a(t—s,g,n)v(s,g)dgds)

2 t
= aa_;ﬂv(t’ n + [ dit,t— s n,v(s,p))ds (t,n) € I x[0,n], (4.1)
VtO) =Vt ) =0, te 7, 4.2)
V(r,m) = ¢(r,n), 0<n<m 7<0, (4.3)
°DE V() () — “DEM(t)(n) = f et - 9v(s )ds (4.9)

where 0O< 8 < 1,1 < a < 2 and¢ € Ba = PCy x L%(g, &). Assume that : R* - R, & :
R — R, a: R® — R are continuous functions ar?‘ﬁia(:c‘aﬂ exisk. O<t; < ---<ty<aare
prefixed numbers.

Let the space® = L%([0,7]). Let &7 : 2(«/) c & — & be defined byru = u” with
2(<7) consist of set of alu andu” in & such thau(0) = u(r) = 0. If {€(t)}0 IS a strongly
continuous cosine family o#, then./ is its infinitesimal generator. The well known result
that the associated sine opera@(t) is compact for every € R and henced - &) tis
compact for everyl belongs tq(%).

Consider

t
ut) = —— f (t— 9" zu(s)ds s3> 0,
(@) Jo
havean analytic resolver{S(t)}=o on & given by

S - {% [ et — )M, t> 0,

ov

1, t=0,

with T, consisting of the rayo€” : ¢ > 0} and{oe™ : ¢ > 0}. Herel,,, v € (1,%),is a
contour, [20, Example 11.2.1].
To represent the equations (4.1)-(4.4) in the form of (1.1)-(1.3) by

0 T
ot §)(n) = f fo a(s. ¢, (s O)dzds

0
o(t. ) (1) = f d(t. s 7. o(s m))ds

0
1(s)(n) = f &(9s(s n)ds

(o)

Therefore, under the appropriate conditions on the funcapdss;, the mild solution ex-
ists for partial fractional impulsive problem (4.1)-(4.4) in view of Theorem 3.2 and unique-
ness results exists from Theorem 3.1.
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Conclusion

In this work we consider the fractional neutral infinite delaffetiential equations with frac-

tional impulsive conditions involving Caputo derivative of order lies in the interval (1,2). To
improve the characterization of the memory property of the fractional derivative, we con-
sider the lower bound at each impulse as zero. We use resolvent operator to derive the mild
solutions in order to make it as more appropriate.
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Abstract

In this paper, firstly, we study the solution to linear matrix inequality AXB + (AXB)* > C for
Hermitian matrix C. Furthermore, for the applications, we derive the representations for the common
Re-nnd solution to equations AX = C and X B = D, and the Re-nnd {1, 3, 4}-inverse for square matrix.

Keywords: Matrix inequality, Re-nnd solution, Re-nnd generalized inverse

AMS(2000) Subject Classification: 15A09, 15A24

1 Introduction

Let C™*™ denote the set of all m x n matrices over the complex field C, C}} denote the set of all m xm
Hermitian matrices, U,, denote the set of all n x n unitary matrices. For A € C™*" its range space, rank
and conjugate transpose will be denoted by R(A), r(A) and A* respectively. i (A) and i_(A) denote
the numbers of the positive and negative eigenvalues of a Hermitian matrix A counted with multiplicities,
respectively. The identity matrix of order n is denoted by I,,.

For a matrix A € C™*™, the Moore-Penrose inverse A' is defined to be the unique solution of the four

Penrose equations [1]
(1) AXA=A, (2) XAX =X, (3) (AX)" = AX, (4) (XA)" = XA.

For convenience, we denote E4 = I — AAT and Fy =1 — ATA.
The Hermitian part of A € C™*™ is defined by H(A) = (A + A*). We say that A is Re-nnd (Re-
nonnegative definite) if H(A) > 0 and A is Re-pd (Re-positive definite) if H(A) > 0. Let A\ *) be the

*Corresponding author. E-mail addresses: liuxifu211@hotmail.com (X. Liu).
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Re-nnd {4, j, - - - , k}-inverse of square matrix A. Recently, some researches on Re-nnd solution and Re-nnd
generalized inverse were done by several authors [2-7].

The Lowner partial ordering is one of the most basic concepts for characterizing relations between
two Hermitian matrices. A challenging research topic on Hermitian matrices is to solve linear matrix

inequalities (LMIs) induced from the Lowner partial ordering, such as

AXB + (AXB)* > C, (1.1)

AXB+ (AXB)* < (>,<)C, AX + (AX)* > (<,>,<)C, AXA* > (<,>,<)C.

In this article, we consider the matrix inequality (1.1), where A € C™*", B € CP*™ and C € C} are
given, X € C"*P is variable matrix.

Newly, some special cases of (1.1) were considered by several authors, such as: the case that C is
nonnegative definite matrix [8], the case B = I,, [9], the case that block matrix ( A B* ) is full row
rank [10]. Researches on other linear matrix inequalities can be found in [8, 11]. For the applications, (1.1)
can be used to establish the general forms of Re-nnd solution of matrix equation AXB = C [10], and the
solution of matrix equation AXA* = B (or AX = B) subject matrix inequality constraint CXC* > D
[12, 13], and the Re-nnd inverses AL ALY (i = 3,4) of square matrix [3, 4, 10]. In [2, 6], the authors
provided some necessary and sufficient conditions for the existence of common Re-nnd and Re-pd solutions
to AX = C and XB = D, however, the general solutions are still unsolved.

We are, therefore, motivated to focus our research interest on (1.1) without any restrictions on matrices
A, B,C.

It is well known that (1.1) can equivalently be written as
AXB+ (AXB)"=C+VV* (1.2)
for some V. Tian and Rosen [8] shown that equation (1.2) is solvable for X if and only if VV* satisfies
EqVV* = —EqC, EAVV*Ey = —-EsCE,s, FpVV*Fp =—FpCFp, (1.3)

whereG:( A B* )

This paper is organized as follows. In section 2, firstly, we establish some necessary and sufficient
conditions for the solvability of matrix inequality (1.1), secondly, we derive a general form for VV*, finally,
we present a general solution of X to matrix inequality (1.1). Furthermore, for the applications, we provide
the explicit expressions for the common Re-nnd solution to equations AX = C and XB = D, and the

Re-nnd generalized inverse A(134) of square matrix A.
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Before proceeding to the next section, we list some useful results which will facilitate the proof of our
theorems.

Lemma 1.1. ([14]) Let A € C}, B € C™*" and C € CP*™ be given. Then

Xr%ax it[A—BXC — (BXC)*] = min{ix(My), itx(Ma)},

e nxm

Xr%in it[A—BXC—(BXC)*] = r( A B C*)+max{is(M)—r(Ny), ix(My)—7r(N2)},
6 nxm

where

A

A B A Cr A B C* A B C*
Ml_(B* O)’M2_<C’ O)’N1_<B* 0 0)’N2_<0 0 o)’
B
B* 0

Lemma 1.2. ([14]) Let A € C;, B € C™*", and denote M = ( ) Then

Zi(M) = T(B) + ii(EBAEB).

Lemma 1.3. ([15]) Let A, B € C™*™ be given. Then the matrix equation AX X* = B has a solution for
XX* if and only if R(B) C R(A), AB* > 0 and r(AB*) = r(B). In this case, the general solution can be

written in the following parametric form
XX* =B (AB*)'B+ FA\WW?*Fy,

where W € C™*" is arbitrary.
Lemma 1.4. ([16]) Given matrices A, B,C,D € CP*™. The matrix equations AXX*A* = BB* and
CXX*C* = DD* have a common Hermitian nonnegative-definite solution if and only if R(B) C R(A)

(orr( A B ) =r(A)) and there exists T € U, such that
Ecp, (DT — CATB) = 0. (1.4)

If a common Hermitian nonnegative-definite solution exists, then a representation of the general common

Hermitian nonnegative-definite solution is X X™* with
X = A'B4+ Fy(CFA)' (DT — CA'B) 4+ FoFerp, Z,

where Z € C"*™ is arbitrary and T' € U, is a parameter matrix satisfying (1.4).
Lemma 1.5. ([8]) Let A € C™*P and B € C?7*™ and C' € C} are given. Then the matrix equation

AXB + (AXB)* = C has a solution X € CP*1 if and only if

(A B*)(A B )Y'C=C, EsCE4=0, FyCFp=0.
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In this case, the general solution can be written as
]' *
X = 20X +X3),

where X7 and X5 are general solutions of the equation AX1B + B*X,A* = C.

Lemma 1.6. ([17]) Let A; € C™*", By € CP*F Ay € C™¥!) By € C9** and C € C™** be known and
X; € Cv*P X, € C*9 unknown; M = E4, Ay, N = ByFp,, S = AsFy. Then the following statements
are equivalent:

(i) The system A1 X1B1 + A3 X2Bs = C is solvable;

(it) The following rank equalities are satisfied,

A, ¢\ _ (A 0 Ay €\ [ Ay 0
"o B )"V o B )"V o B )T\ 0o B )
B, 5
T(C A1 AQ):T(Al AQ),T B2 :T‘( 1).

In this case, the general solution can be expressed as

X, = AlCBI — AlA,MTEA,CBl — AISALCFg, NTByBl — A1SVENByBl + Fa, U + ZEp,,

X, = M'E, OBl + FyS'SAICF, Nt + Fy (V — STSVNNY) + WEg,,

where U, V, W and Z are arbitrary matrices over complex field with appropriate sizes.

Lemma 1.7. ([8]) Let A € C™*" B € C™** and C' € C'*"™. Then

r(A B)=r(A)+r(EaB), ’I“< é ) =7r(A)+r(CFa),
T( g ? ) =r(B)+r(C)+r(EgAFc).

Lemma 1.8. ([9]) Let A,C € C™*™. There exists a Re-nnd solution to equation AX = C if and only
if R(C) C R(A), AC* is Re-nnd. There exists a Re-pd solution to equation AX = C if and only if
R(C) C R(A), i1 (AC* + CA*) = r(A).

2 Main results

In this section, our purpose is to investigate the solution to the linear matrix inequality (1.1), and then
apply our result to establish the general expressions for the common Re-nnd solution to AX = C and

XB = D, and the Re-nnd {1, 3, 4}-inverse for square matrix A.
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First, we come to establish some necessary and sufficient conditions for the solvability of matrix in-
equality (1.1).
Theorem 2.1. Let A € C"™*", B € CP*™ and C € C}} be given, X € C"*P be variable matrix, denote
G= ( A B* ) Then the following statements are equivalent:
(1) Matrix inequality (1.1) is solvable;
(2) EACE4 <0, FgCFp <0, and

r(C A B*)+T(A):r(j; a %) r(C A B*)—H’(B)zr(i ° %*);

(3) T(EGcEA) = T(EGCFB) = T(EGC), EACEA g 0 and FBCFB < 0.
Proof. Note that (1.1) can be rewritten as C — AXB — (AXB)* < 0. So, (1.1) is solvable if and only if

mini[C — AXB — (AXB)"] =0.
Applying Lemma 1.1, we get
mini[C — AXB — (AXB)']
r(C A B* )—&-max{u(g é)—r(i 61 B ),i+(g %* )—r(g 61 BB* )}
C

0
r(C A B*)+max{r(A)+i(EsCEs) —r A B
+\&A A A* 0 0 ’

. C A B*
T‘(B) +Z+(FBCFB) —7’( B 0 0 )} (21)
Letting the right hand side of (2.1) be zero yields
r(C A B*)4r(A)+iy(EACEs) = 1"( ool )
, . C
r(C A B*)+r(B)+iy(FgCFp) = r B

which are equivalent to

« cC A B*

r(C A B*)+r(4) = T(A* 0 0 ), (2.2)
* cC A B*

r(C A B*)+r(B) = r(B 0 0 > (2.3)
FACE4 <0 and FpCFgp <O0.

Applying Lemma 1.7 to (2.2) and (2.3) yields r(EgCE4) = r(EgC) and r(EqCFp) = r(EgC) respec-
tively. Thus, the proof is complete. [
Next, we present some properties for matrices A, B and C which satisfy the conditions in Theorem

2.1.
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Corollary 2.1. Let A € C™*", B € CP*™ and C € C} be given, denote G = ( A B* ) If the

conditions in the statement (2) or (3) of Theorem 2.1 are satisfied, then the following hold,

r(EqCEg) = r(EqC) or R(EqCEg) = R(EgC), EqCFEq <0, (2.4)
R[EACEq(EqCEG)!EGCEA — EACE 4] C R(EAGGY), (2.5)
EACEq(EqCEG) EGCE, — EACE, >0, (2.6)
R[FpCEq(EqCEg) EqCFp — FgCFp) C R(FgGGT), (2.7)
FCEg(EGCEG)!EqCF — FgCFp > 0. (2.8)

Proof. It follows from the two rank equalities of statement (2) in Theorem 2.1 that
R((Cc A B ))nR((A° 0 0))=0, R((C A B ))nR((B 0 0)")=0.

Hence,
R((C A B )*)mR(<§ 8 8)):(2),

which means that

cC A B*
r A 0 0 =r(C A B*)+r(A B* ).
B 0 0

By Lemma 1.7, we have

*

C
r(EqCEq)+2r(G) =r ( A*
B

S O

B
0 )—r(c A B )+r( A B ) =r(EsC)+2r(G),
0

S0,
T(EGcEc;) = ’I“(E(;C) or R(EGcEg) = R(Egc)
On the other hand, it follows from Lemma 1.2 that
. C; 4 B . FgCFg FgBA
iy | A 0 0 =14 A F 0 +r(B)
B 0 0 B
T(B) + ’I“(FBA) + i-‘,—(EFBAFBCFBEFBA)

i+ (FcCEg) +r(G)

= r(B)+r(FpA)=r(G), (FpCFp <0isused)

means that iy (EgCEg) =0 or EGCEg < 0. Then (2.4) holds.

Furthermore, applying Lemma 1.7, and elementary block matrix operations, we get

r(EAGGY) =r(EAG)=7( A G )—r(A)=r(G)—r(A),
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and

r EAGGT EACEg(EGcEg)TEGcEA—EACEA

(
= ’I“( EAG EACEG(EGcEG)TEGCEA—EACEA )
= 7’( A G CEg(EGcEg)TEGcEA—CEA )—T(A)
r(

G CEg(EcCEG)'EGCEA—CE4 ) —r(A)

= r[EGC’EG(EgCEG)TEGCEA — EqCE4]+r(GQ) —r(4)

)

= 7(G)—r(A) =7(EsGG"). (R(EqCEg) = R(EgC) is used)

Thus, (2.5) is evident.

By Lemma 1.2 and (2.4), one can compute that

i [EACEq(EqCEG) EqCEs — EACE 4]

. . EqCE; EqCE
= 14 [EACEA - EACEG(EchG)TEGc’EA] =14 ( EiCEg EjCE::
¢ C G
. Eg 0 c C Ez 0 . c C 0
- M 0 Ea c c 0 Er ) ™|l G 0o o
0 A* 0
C 0 G 0 C 0 0
. 0 0 G A 0 0 -G
= | g o—gr o0 o |TT@O-rA =il g e
0 A* 0 0 A* A* 0
C 0 0 0 A
0 0 -A —-B* A
= iy 0 —-A* 0 0 0 | —r(G)—r(A)
0 —B 0 0 0
A* A* 0 0 0
C 0 0 0 A
0 0 -A —-B* 0
= iy 0 —-A* 0 0 0 | —r(G)—rA)
0 -B 0 0 0
A* 0 0 0 0
C 0 0 A
. 0 0 -G 0 .
= i4 0 —G* 0 0 —r(G)—r(A) =i (EACEA) =0
A* 0 0 0

which is equivalent to (2.6).

Similarly, (2.7) and (2.8) can be proved. O

1.4, we get the solution of VV* to (1.3).

1251

)—u(EGCEG)
0
A
S| =@ )
0
A
A
S - -
0

When the matrices A, B and C satisfy the conditions in Theorem 2.1, then, by Lemma 1.3 and Lemma
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Lemma 2.1. Let A € C™*" B € CP*™ and C € C% be given, X € C"*P be variable matrix. Denote

G=(A B*),P=EsGG, Q=FpGG'Fp, and
H, = EACEg(EqCEg) EqCE, — EACE,, Hy = FgCEq(EqCEg)EqCFp — FpCFp.

Suppose that the conditions in the statement (2) or (3) of Theorem 2.1 are satisfied, then equations in

(1.3) have a common solution for VV*, which can be written as
VV* = —CEq(EqCEg) EcC + GGTWW*GGT, (2.9)
where
1 1 1
W =PH2+QVHZT ~ FgPTH?) + FpFyZ, (2.10)

with T € U,,, and Z € C™*™ are arbitrary.
Proof. In view of Lemma 1.3 and Corollary 2.1, we know that EgVV* = —FEgC is solvable, and the

solution of VV* can be formed by
VV* = ~CEg(EcCEg) EqC + GGTWW*GGH, (2.11)
where W € C™*™ ig arbitrary. Substituting VV* into the last two equations in (1.3) produces

EAGG'WW*GG'Ey = FEACEq(EqCEg)'EqCEL— EACE4 2 Hy, (2.12)

FpGGWW*GG'Fg = FpCEq(EqCEg) EqCFp — FgCFg 2 H,. (2.13)

Corollary 2.1 shows that both (2.12) and (2.13) are consistent. Next, we come to prove that (2.12) and
(2.13) have a common Hermitian nonnegative-definite solution WW*.
By Lemma 1.4, the matrix equations (2.12) and (2.13) have a common Hermitian nonnegative-definite

solution if and only if there exists T' € U, such that

1
Erpycair, oo (H3 T = FpGGT(EAGGNTH?Z) =0. (2.14)

N[

It follows from Lemma 1.7 that

r (FEGG'Fr,qai) = r( gigg: ) —r(EAGGY) =r< gig ) —r(EAQG)
- r( B0 C) r) ) - (A @) -r(4)

= 7(G) - r(B) = r(FgGGH),

i.e., R (FBGGTFEAggt) = R(FBGGT), therefore EFBGGTF

E GGt = EFBGGT and

1
ErpGair, oo FrGG (EAGGYHY =0.
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Applying Lemma 1.7 again and (2.4), we have

r[Epy,aarHa) = r( FgGGY Hy ) —r(FpGG") =r( FpG H, ) —r(FpG)
= ’I“( B* G C’EG(EgCEG)TEGCFB — CFB ) — ’I"(B) — T(FBG)
= T( G CEg(EGcEg)TEGcFB - CFB ) — T(G)

= r[EqCEq(EqCEG) EqCFp — EgCFp] =0,

1

means that Fr ggiHz =0, i.e., Erycair, H2§ = 0. Hence, (2.14) holds for any T' € U,,,, and there
A

GGt
exists a common Hermitian nonnegative-definite solution to (2.12) and (2.13). By Lemma 1.4, the common
Hermitian nonnegative-definite solution is WW* with

1 1 1

W = P'H? 4+ FpQY(H}T — FgGG'P'H?) + FpFoZ
1 1 1
= P'H? +Q'(H}T — FgP'H?) + FpFqZ, (2.15)
where T' € U,,, and Z € C™*™ are arbitrary.
Substituting (2.15) into (2.14) yields (2.9). O
Combining Theorem 2.1 and Lemma 2.1, we can deduce the following result.

Theorem 2.2. Let A € C™*", B € CP*™, (' € C}} be given, X € C"*P be variable matrix, and suppose

that matrix inequality (1.1) is solvable. Then, a general solution to (1.1) can be expressed as

X = %(X1+X§), (2.16)
where
X, = AN (CH+VVHB - ATB*M(C +VV*)BT — ATS(B*)'(C + VV*)NTA* BT
—A'SY|ENyA*BT + FuYs + Y3Ep, (2.17)
Xy = MY CH+VVAY +STS(B)(C+ VVNT + Fa(vy — STSYINNT) 4 YiFa, (2.18)

with VV* is given by (2.9), M = EoB*, N = A*Fg, S = B*Fy, and Y; (i = 1,2,3,4) are arbitrary
matrices over complex field with appropriate sizes.
Proof. Since the matrix inequality (1.1) is equivalent to (1.2), where VV* is given by (2.9). In view of

Lemma 1.5, the general solution to (1.2) can be written as
1 *
X = §(X1 + X3),
where X7 and X5 are general solutions of the equation

AX\B+ B*X,A* =C+VV*. (2.19)
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It follows from (1.3) and Lemma 1.6 that (2.19) is solvable, and

X, = AN CH+VVHB' — AIB*MTEA(C +VV*)Bt — ATS(B*)'(C + VV*)FzNTA* Bt
~ATSY,ENA*BY + FaYs + Y3Ep,

Xy, = MEA(C+VV)A) + FySTS(BY(C 4+ VVHEFgNT + Fy (Y1 — STSYINNT) + Vi Fy,

where M = EoB*, N = A*Fp, S = B*Fy, and Y;, (i = 1,2,3,4) are arbitrary matrices over complex
field with appropriate sizes. Together with MTE4 = MT, Fg Nt = NT and Fj;ST = ST, then (2.17) and
(2.18) are followed. O

In [2], the author presented some sufficient and necessary conditions for the existence of common Re-
nnd solution to AX = C and XB = D, however, the general solution has not been established by now.
Next, we restudy this problem, and derive its general solution.
Theorem 2.3. Let A,C € C"*™, and B, D € C™*™, suppose that both AX = C and XB = D have a
a Re-nnd solution. If the pair of equations have a common solution (i.e., AD = CB), then there exists a

common Re-nnd solution if and only if

A C A CA* A CB

In this case, a general common Re-nnd solution can be written as

X =A'C+F,DB" + %(}71 + Y5, (2.21)

where,

Vi = Fu(C+VV*)Ep— FAMY(C+VV*)Ep — EgFuy(C +VV*)N'Eg — EgFy ZiExFa,

Vo = MYC+VV*F4+SIS(C+ VV*)N! + EgFy (2, — STSZ,NNFy,

VV* = —CEg(EqCEq) EcC + GGTWW*GGT,
1 1 1

W = P'H?+QV(HZT - BB'P'H?)+ FpFqZ,

H, = A'ACEq(EqCEq)'EqCATA - ATACATA,

H, = BB'CEq;(EqCEq) EqCBB'— BB'CBBY.
with C = —[(ATC + FADB') + (A'C + F4uDB")*|, G = ( Fx Ep ), M = AAEp, N = F4BB',

S =EpFy, P=A'AGG', Q = BB'GG'Fp, T € U,, and Z, Z, € C™*™ are arbitrary.

Proof. The rank equality (2.20) was obtained by [Theorem 2.1, 2]. Furthermore, by [Lemma 1.1, 2], a
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general common solution to AX = C and XB = D can be expressed as
X = ATC + FADB' 4+ F,Y Ej, (2.22)

where Y € C™*™ is arbitrary. Therefore, there exists a common Re-nnd solution X if and only if

X + X* >0 for some Y, i.e.,
FAYEp + (FAYER)* > —[(A'C + F4oDB') 4+ (A'C + FaDB")*| £ C (2.23)
is solvable. Applying Theorem 2.2 to (2.23) yields
1 *
Y= S0, (2.24)
where
Yi = FA(C+VV*Ep— FAEgM'(C +VV*)Eg — FASEg(C +VV*)N'F,Ep
—FuSZ\ENFsEp + ATAZy + Z3BBT,
Y, = MYC+VV*Fs+ STSER(C+VV*)Nt + Fy (2, — STSZ NN + Z, At A,
with M = ATAEp, N = FABB', S = EgFy, and Z;, (i = 1,2,3,4) are arbitrary matrices over complex
field with appropriate sizes. Together with F4S = EgFy, FpyEp = EpF)yy, we have
Fu\YiEp = FA(C+VV*Ep— FsEgMY(C +VV*)Ep — FASEp(C + VV*)N'FAEp — FuSZ,ExFsEp
= FA(C+VV*)Eg — FAMY(C+VV*)Eg — EgFy(C +VV*)N'Eg — EgFy Z1ENFa,
EpYsFy = EgM'(C+VV*)Fs+ EpSTSER(C+VV*)NTFy + EpFr (21 — STSZ NN F4
= MY CH+VV*)Foa+STS(C+VV*)NT + EgFr(Zy — STSZ NNTF,.
Denote Y; = F,Y1Ep and Y, = EgY;F,4. Combining (2.22) and (2.24) produces (2.21). O
Since the Re-nnd generalized inverse A34) can be regarded as the common Re-nnd solution of
A*AX = A* and XAA* = A*, where A € C™*™ therefore, by Theorem 2.3, we have the following
result.

Theorem 2.4. Let A € C™*™. Then there exists a Re-nnd generalized inverse A3 if and only if

A*A?, A2A* are Re-nnd, and

A*A A\ A*A (A9 A*A A*A (2.25)
"Laar —a )T A —aar ) T Aaar a2 ) '
In this case, a general Re-nnd generalized inverse A(13%) can be written as

1 -~ -
A = AT+ S (V1 +Y5),
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where,

Yi = FA(CH+VVHEy—FsMY(C+VV*Ey — EAFy(C+VV*)NTEy — EAFyZ1EnFly,

Yo = MU C+VV*)Fa+STS(C+VVINT 4 EaFy(Z) — STSZINNT)F4,

VV* = —CEg(EqCEg) EqC+GGTWW*GGT,
1 1 1

W = PH? +QV(HZT - AATPTH?) + FpFyZ,

H, = AVACEq(EqCEqg) EqCATA — ATACATA,

Hy, = AA'CEq(EGCEG) EqCAAT — AATCAAT.

with C = —[AT + (A")], G = ( Fa Ea ), M = ATAE4, N = F4AAT, S = EoFy, P = ATAGGT,
Q = AATGG'Fp, T € U,, and Z,Z, € C"™*™ are arbitrary.

Proof. In view of Lemma 1.8, A*AX = A* and X AA* = A* have Re-nnd solution if and only if A*A? and
A?A* are Re-nnd respectively. Moreover, by Theorem 2.3, these two equations have a common Re-nnd

solution if and only if

A*A A*\ [ AA (A")2A )\ [ ATA ATAAY
"Uaas —a )77 a4 —aaqa ) T\ A4 —aA2ar )

which is equivalent to (2.25). The formula of ALY follows directly by (2.21). The proof is complete.
U
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Abstract

We consider the initial value problem of quaternion fuzzy fractional differential equations
in the generalized regular fuzzy function space. And we propose a notion of the disturbed
fuzzy Dirac operator. By using the associate space method and fixed point theorem, a sufficient

condition for the existence and stability of the solution of the initial value problem is given.

Keywords: quaternion-valued grades of membership, quaternion fuzzy fractional differential

equation, associate space, generalized regular function, Hyers—Ulam stability

1 Introduction

The notion of fuzzy complex number was first proposed by Buckley in [1]. In [2], Tamir et al.
pointed out the limitations of the mixed fuzzy and crisp definition of [3] and generalized it by
allowing a fuzzy phase term. As illustrated with examples in [2], the advantage of this augmented
definition of complex fuzzy sets is its ability to accommodate fuzzy cycles. In order to extent fuzzy
complex number, the concept of the fuzzy quaternion number was introduced by Moura et al., who
in [4] discuss some concepts such as their arithmetic properties, infimum, supremum, distance, and

so on. The quaternion membership function was given by a mapping w : H — [0, 1] such that
u(a + bi + ¢j + dk) = min{A(a), B(b),C(c), D(d)},

where A, B, C, D are all real fuzzy numbers. Yang et al. proposed a different definition of quaternion
fuzzy sets and discussed entailed results which parallel those of regular fuzzy numbers in [5].

The study on fractional differential equations has been rapidly advancing in recent years. Frac-
tional equations have received increasing attentions [6, 7, 8, 9, 10, 11]. Recently, Agarwal et al.
considered a differential equation of fractional order with uncertainty and presented the concept
of solution [12]. They considered the Riemann-Liouville differentiability which was a combina-
tion of Hukuhara difference and Riemann-Liouville derivative. The shortcomings of applications
of Hukuhara difference was discussed in [13] by Bede and Gal. The results on existence and u-
niqueness of the solution were later established in [14, 15, 16, 17], and in [18, 19]. Salahshour et

*Corresponding author. Email: zhanpengyang@mail.ie.ac.cn(Z.P. Yang), iecasrwj@163.com(W.J. Ren).
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al. applied fuzzy Laplace transforms to solve fuzzy differential equations [20, 21]. The numerical
solution of the fuzzy differential equation was obtained in [22, 23, 24]. Furthermore, Malinowski
introduced random fuzzy fractional integral equations-theoretical [25].

The study of stability problems for functional equations is related to a question of Ulam [26]
concerning the stability of group homomorphisms and affirmatively answered for Banach spaces
by Hyers [27]. Some authors then considered the stability of the fuzzy difference and functional
equations [28, 29, 30, 31]. In this paper, we consider existence and stability of the solution for
quaternion fuzzy fractional differential equations. By the associate space method and fixed point
theorem, we given a sufficient condition of the Hyers—Ulam stability for quaternion fuzzy fractional
differential equations. Moreover, We provide a way of incorporating such the theory of fuzzy

fractional differential equations into quaternionic analysis.

2 Notation and Basic results

Let Px(R?) denote the set of all nonempty convex compact subsets of R?. The Hausdorff metric
for A, B € Pg(R3) is defines by

d(A,B) =inf{e | AC N(B,¢) and B C N(4,¢)},

where N(A,e) = {z € R? | ||z — y|| < e for some y € A}.
Throughout this paper, we put A := {0,1,2,3} and denote by eg = 1, e; =14, ea = j, e3 = k,
where 4, j, k are units of the real quaternion algebra H.

In [5], Yang et al. considered quaternion fuzzy sets on R3, i.e., quaternion grades of membership.

Definition 1. [5] The quaternion membership function f is defined by

f(V,z) = e fo(V) + e1fi(z) + eafo(x) + ez f3(x),

where V' is to be interpreted as a set in a fuzzy set of sets and x as an element of V.

In particluar, for z € R3, we have

f(z) = fo(z)eo + fi(x)er + fa(x)ez + f3(z)es,

where fo, f1, f2, f3 : R3 — [0, 1]. Denote f by (fo,fl,fg,fg). The 7 = (To,Tl,Tg,Tg)—level sets for
f = (f07f17f27f3) is defined by

L7 =Ll LA™ Nl N [fs]™. (2.1)

Denote F" the set of all v : R™ — [0, 1] satisfying all of the following conditions:
(i) v is normal, i.e., there exists z¢g € R" such that v(xg) = 1;

(ii) v is fuzzy convex, i.e., for all t1,t5 € R™, X\ € [0, 1]:

v (A1 + (1= A)ta) > min{v(ty), v(t2)};
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(iii) v is upper semi-continuous;
(iv) [v]° is compact.

Moreover, we define F4" as follows:

Fin = {(vg,v1,v9,13) € F" x F" x F" x F"|
dtg, s.t., Ul(t()) =1,0¢€ A}

Then, for v = (vg, v1,va,v3) € F*™, [f]* = Miea[n]™ € Pg(R?) for all a; € [0,1],1 € A.
For f:g € j:'4n’ where f = (f07f17f27f3) and 9= (90’91792793)7 and A is a scalar, let

f+g9 = (fo+go, fi+ 91 fa+ 92, f3+ g3),
)‘f = (Af(]:)‘fl?)\vaAfi%)-

Let us define D : F" x F™ — [0,00) by
D(Vhy?) = Sup{d([l/l]r, [Vﬂr) | S [07 1]}7 (2'2>

where d is the Hausdorff metric. (F", D) is a metric space which can be embedded isomorphically
as a cone in a Banach space [32]. However, D is not a suitable metric for our space of interest,
.7:"4”, as we quickly see that linearity is violated. Instead, let us consider the product metric D’ on
Fin = Frox Frox F* x F". For f = (fo, f1, f2, f3) € F*" and g = (g0, 91, 92, 93) € F*", we define
D' : Fin x Fi — [0,00) by the relation

D/(fag) = D/((foaflanafi’r)’ (90791392793))

(2.3)
= I{g\X{D(fl,gz)}-

Then, D’ is a linearity preserving metric for F4". Since F4" ¢ F4" D’ is also a metric for F4".
Hence, (F*, D') is a complete metric space. Now, as (F4, D') is a metric space and D’ preserves
linearity, by the Arens-Eells theorem [33] there exists an embedding Fin <5 B where B is a Banach
space. The zero element on 4" then reads 04(x) = (0(x), 0(x),0(z),0(x)) € F,

We define strongly generalized differentiability as in [13] in terms of the generalize Hukuhara
difference. For z,y € F4nif there exists z € F4" such that z = z + yory=uz+ (—1)z, we write
x ©y = z and call z the difference of x and y.

A fuzzy-valued function f defined in the bounded, simply connected domain Q@ C R? is a
mapping f : Q — F4 and f can be represented in a form f = E?:o ejfj(z). Its conjugate f is
defined by

3
f=efolz) &) ejfi(@),
j=1
where f;(z) are continuous fuzzy-valued functions in z = (z1, 22, x3) € Q.

Definition 2. Let Q C R? be a bounded, simply connected domain. We call a mapping F : Q — Fin
strongly generalized partial derivative at © = (x1,x2,x3) € Q if there exists some gf e F* such
that
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(i) there exists the differences F(-,x; + h,-) © F(-,z;,-),
F(,zi,-)© F(-,z; —h,-) and

or _ - Flzith,-)o F(,z,-) lim F(,zi,-) © F(-, 25 — h, )’ (2.4)
oxr;  h—0+ h h—0+ h
or
(ii) there exists the differences F(-,x;,-) © F(-,x;i + h,-), F(-,x; — h,-) © F(-,2;,-) and
F F( i " F'a % h’a' . F'a i*ha' F'a i "
0x;  h—0t —h h—0+ —h
or
(iii) there exists the differences F(-,x; + h,-) © F(-,x;,-), F(-,x; —h,-) © F(-,x;,-) and
F F( i )" F'7 i " . F'a i Iy F'a i "
0 ~ im (,xi+h,-)OF(,x ):hm (,xi—h,-) O F(,x )7 (2.6)
Ox; h—0t h h—0t+ —h
or
(iv) there exists the differences F(-,x;,-) © F(-,z; + h,-), F(-,z;,-) © F(-,x; — h,-) and
F F( i " F'a i )" . F'7 i " F'7 1 I
oF _ - (,xi,-) © (x—i—h):hm (hxi, ) F(,x h). (2.7)
8.%’ h—0T —h h—0Tt h

In general, we have the following results on the connection between the strongly generalized
partial derivative of F' and its endpoint function F}* and F*.

Let F: Q — F¥ be a quaternion fuzzy function. If F is strongly generalized partial derivative
at x € ), then we have the following case:

If F is strongly generalized partial derivative at € Q in (i), then, for each «; € [0, 1], F}; and

F;, are strongly generalized partial derivative functions at  and

[OF " [(OF\® [O0F\"

_al‘i N 8:& 1 ’ 8951 r ’
OF\® [(OF\™ (OF\* (0F\™ [0F\" (2.8)
OF\® [(OF\™ [(OF\™ (OF\* [(0F\* (2.9)
8:3@- r N 8332 or ’ 81‘1 1r ’ 6:@ o ’ 81‘1 3 ' '

Definition 3. Let F : Q — F*" be a continuous mapping. The fuzzy Riemann-Liouville integral
of F is defined by

where

and

(12, F)(z) = 1“(15) /Om(m — PR 7, Y (2.10)

where x € Q,z; > 0,0 < < 1.

Then, the Riemann-Liouville integral of a quaternion fuzzy-valued function F' can be expressed

as follow:
(I F) () = [(I). F) (@), (I, F2) ()],
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where

(0 FP@) = 55 | o= e

and

3. F)@) = 55 | o= ) B g

Definition 4. The fuzzy Riemann-Liouville fractional derivatives of order n — 1 < [ < n for

fuzzy-valued function F is defined by (provided it exists)

("L, F)(x) = F(nl—ﬂ);:; /Ox(x — LR (T dr (2.11)

Similarly, we have
(RLDS, F)(x) = [(REDS, F) (@), (REDY, Fo) ()],
where (RLD§+FZ"‘)(JU) =

1o
- -z . _ \n—B-lpoa/ .
F(n o 6) axzn /0 ($’L T) F1l ( » Ty )dT

and (RLDJ, F2)(x) =
1 am [T
- — )V BTLRY( 7,
F(nﬁ)@x?/o (337/ T) r(aTv ) T
Definition 5. The fuzzy Caputo derivative of F' forn —1 < 8 < n and x € Q is denoted by
(CD€+F)(Q:) (provided it exists) and defined by

Cpb. p\(p) = — L S 1 p
CDLF@) = g [, (= PG (212
Then,
(CDE F*)(x) = [(C DL Ff) (@), (€D F2) (@)
where _ .
(DY FP)(x) = F(nl_ 5)/0 (@i —T)”‘ﬁ_l%ﬂa(',T,-)dT
and . n
COYFRN) = g [ o= P R

Now let us introduce the fuzzy Dirac operator as
3
0
D= epr—-.
; kaxk

The fuzzy Dirac operator acts on f as follows
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Definition 6. The disturbed fuzzy Dirac operator is the operator which is defined by
Dgu = Du+ D,
where B is a real number.

Definition 7. A fuzzy function v : Q — Fin s called a generalized reqular fuzzy function if it

satisfies Dgu = 04.

Definition 8. Let L(t,x,u) be a first order differential operator depending on t, x, w and the
first order derivative 8%) while I(t, z,u) is a differential operator on the time t. Then L is called
“associated” to | if L transforms solutions of lu = 04 into solutions of the same equation for fized

t, i.e. lu= 04 implies I[Lu] = O4.
If A:Y — X is an operator, let us consider the fixed point equation
x=Ax), xz€) (2.13)

and the inequation
d(y, A(y)) <e. (2.14)

Definition 9. The equation (2.13) is called generalized Hyers—Ulam stable if there exists ¢ : Rt —
R* increasing, continuous at 0 and 1 (0) = 0 such that for each € > 0 and for each solution y* of
(2.14) there exists a solution x* of the fized point equation (2.13) such that

d(y”, z*) < (e).

If there exists ¢ > 0 such that ¥(t) := ct, for each t € RT, the equation (2.13) is said to be
Hyers—Ulam stable.

3 Main results

In this section, we consider the initial value problem

3
5 Ou
C na _ ) L
Dfiu=Y» AY'— + Bu+ C := L(u),
ot ; Ox; (3.1)

u(0,z) = p(x),

where z = (21, 22,23) € Q and  is a bounded, simply connected domain in R?; ¢ € [0,T] is the

time variable; © D2, , is the Caputo fractional derivative of t; u = u(t, ) is quaternion fuzzy-valued

0+t

functions defined in [0, T]x Q. AU) = AW (¢, z); B = B(t,z) and C' = C(t, z) are quaternion-valued

functions defined in [0, 7] x Q. The initial function ¢(z) is a generalized regular fuzzy function.
It is easy to show that solutions of the initial value problem are fixed points of the operator

B(u) :=u(t,x) = p(z) + ! ] /0 (t — 1) L(u)dr. (3.2)

()
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In order to use fixed points theorem, we have to estimate the integro-differential operator on the
right-hand side of (3.2). That is a little bit difficult because the integrand contains derivative with
the spacelike variables x;. But we can estimation it by using the following two properties of the
associated function space:

(i) The operator maps the space into itself. Here we use the concept “associated pair” [34, 35,
36].

(ii) For the element of the associated space one has an “interior estimate” [36], that is, the norm
(metric) of the derivative with respect to spacelike variables of the element of the associated space
can be estimated by the norm of the element.

For our subsequent results, we need the following hypotheses.

(H1) A =AY = -0,
A(l) A( ) Ag?’)’
A%K _ _Ag _ Ag3)(%>
AyT =-Ay =AY

(HZ) (DA(l) + ,BA(l) — 23160)61 (DA + ﬁA — 23260)62 =
(DA®) + BAG) — 2Bseq)es;

(H3) BDAMe; +2525°% | AMVejer + 26824 eq + DB + 28(Baes + Bses) = 0;

(H4) DgC = DC + pC =0 for each t € [0,7].

Theorem 1. Assume that AU (t,z)(j = 1,2,3), B(t,z) and C(t,x) are all quaternion-valued func-
tion for t € [0,T]. The operator L is associated with the operator Dg if hypotheses (H1)—(H4) are
satisfied.

According to Definition 8, we can obtain that the operator L is associated with the operator
Dg, if Dgu = 04 implies Dg(Lu) = 04. Here, we omit the proof.
To solve the initial value problem (3.1) we need the interior estimate of generalized fuzzy regular

functions.

Theorem 2. Let Q;, C Q, and Qs, C Q. Let m§) denote the finite measure of @ C R™ and u be a

generalized fuzzy reqular function. We obtain the interior estimate of generalized reqular functions

2(3mQ 3mQy L
A 3 12 ~

D (205, < P o

Oz’ dzst(Qsl , 8952) (3.3)
= T]D/ (u,0y4).
Proof. Assume that u is a quaternion-valued function. By Theorem 5 in [37], we have
ul _ BCE3B+ 5]

< 5 = 7[5, 4
on |, = Sl =l (3.4)
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Now, for a generalized fuzzy regular function u, we consider its endpoint function uf* and uy. It
easy to see that uj* and uy are also generalized regular functions. Then, we obtain their interior

estimate as follows:

1
i (Wi SR e TR 55)
O ||, dist(Qs,, 00%,) Ll '
and )
|| < PCEEL R, 56
Ox; ||, dist(Qs,,00s,) Urllsz-
Moreover, we can obtain
i Ou A oul® »
D = d
(te) =z {2 (5] 04}
ou\* [ou\?] -
- {e(GR), (), ) )]
0<a<l Ti/) Ow; r (3.7)
,82(37”9) [3_|_ (3mQ)%]
dist(Qs,,00s,)
sup {d([uf’, ug], (0)4) } = 0D’ (u,00).
0<a<1
This concludes the proof. ]

Theorem 3. Assume that L satisfies the hypotheses of Theorem 1 and assume that @ is an arbitrary
generalized fuzzy reqular function. The initial value problem (3.1) is solvable in the conical domain
M, ={(t,z) : z € Q,0 <t < o-dist(x,00)}(c is small enough). The solution u(t,x) is also
generalized fuzzy reqular function for each t. Moreover, the fixed point equation w = B(u) is Hyers—
Ulam stable.

Proof. To prove this, we know that the solution of the differential equation (3.1) must satisfy the

Volterra equation

B(u) := u(t,x) = ¢(x) + F(la) /0 (t — ) ' L(u)dr. (3.8)

We then proof that the operator B has a fixed point. It is easy to see that B maps C([0,7] x Q, E*)

to itself. Moreover, we have

: R P o
D (B(u) © B(v),04) = D (F(a)/o (t — ) tL(u)dr,
F(la) /0 (t — 7)* ' L(v)dr)
! / t—Tale(]) "(wov,04) + BD (o v,04)dr
F( ) (3.9)
< P(la)(M +3nN)D' (u S v,04) /Dt(t — ) ldr
= F(al_kl)(M+377N)taDl(u®v,O4)

= PVD/(u@U>(A)4)7
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where M = ||B||, N = max;—; 2,3{||A@|[}.

We may then choose a number 7 > 0 such that

N = (M + 3pN)r® < 1.

INa+1)
Then in the domain M, = {(t,z) : x € 2,0 < t < o -dist(z,00) < 7}, B is a contraction mapping.
Thus, by the Banach’s fixed point theorem, we obtain the desired uniqueness of the solution of

the differential equation. Theorem 2.10 in [38] implies that the operator B is a c-weakly Picard

operator with the positive constant ¢ = —— and the fixed point equation u = B (u) is Hyers—Ulam

I—y
stable.
Moreover, the solution u(t, ) belongs to the associated space for each t. The solution u(t, x) is

also generalized regular. O
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Abstract. In this paper, we introduce set-valued quadratic p-functional inequalities and prove the
Hyers-Ulam stability of the set-valued quadratic p-functional inequalities by using the fixed point
method.

1. INTRODUCTION AND PRELIMINARIES

Set-valued functions in Banach spaces have been developed in the last decades. The pioneering paper
by Aumann [5] and Debreu [14] were inspired by problems arising in Control Theory and Mathematical
Economics. We can refer to the papers by Arrow and Debreu [3], McKenzie [27], the momographs by
Hindenbrand [20], Aubin and Frankowska [4], Castaing and Valadier [8], Klein and Thompson [25] and
the survey by Hess [19].

The stability problem of functional equations originated from a question of Ulam [53] concerning the
stability of group homomorphisms. Hyers [21] gave a first affirmative partial answer to the question of
Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by
Rassias [42] for linear mappings by considering an unbounded Cauchy difference. A generalization of
the Rassias theorem was obtained by Gavruta [18] by replacing the unbounded Cauchy difference by a
general control function in the spirit of Rassias’ approach

The functional equation

fl@+y)+ flx—y) =2f(x) +2f(y)
is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. A Hyers-Ulam stability problem for the quadratic functional
equation was proved by Skof [52] for mappings f : X — Y, where X is a normed space and Y is a
Banach space. Cholewa [12] noticed that the theorem of Skof is still true if the relevant domain X is
replaced by an Abelian group. Czerwik [13] proved the Hyers-Ulam stability of the quadratic functional
equation. The functional equation

2f(xz +y) +2f(x —y) = f(22) + f(2y)

is called a Jensen quadratic functional equation. In particular, every solution of the Jensen quadratic
functional equation is said to be a Jensen quadratic mapping. The stability problems of several functional
equations have been extensively investigated by a number of authors and there are many interesting
results concerning this problem (see [1, 17, 18, 22, 23], [39]-[41], [43]-[51], [54, 55]).

Let X be a set. A function d: X x X — [0, 00] is called a generalized metric on X if d satisfies

(1) d(z,y) = 0 if and only if z = y;

92010 Mathematics Subject Classification: 47H10, 54C60, 39B52, 47H04, 91B44.

YKeywords: Hyers-Ulam stability, set-valued quadratic p-functional inequality, fixed point.
*Corresponding author.
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(2) d(z,y) = d(y, ) for all z,y € X;

(3) d(z, z) < d(z,y) + d(y, z) for all z,y,z € X.

Let (X, d) be a generalized metric space. An operator T': X — X satisfies a Lipschitz condition with
Lipschitz constant L if there exists a constant L > 0 such that d(Tz,Ty) < Ld(z,y) for all z,y € X.
If the Lipschitz constant L is less than 1, then the operator T is called a strictly contractive operator.
Note that the distinction between the generalized metric and the usual metric is that the range of the

former is permitted to include the infinity. We recall the following theorem by Margolis and Diaz.

Theorem 1.1. [9, 15] Let (X,d) be a complete generalized metric space and let J : X — X be a strictly

contractive mapping with Lipschitz constant L < 1. Then for each given element x € X, either
d(J"z, J" ™ z) = oo
for all nonnegative integers n or there exists a positive integer ng such that
(1) d(J"z, J"z) < 0, Vn > no;
(2) the sequence {J™x} converges to a fized point y* of J;
(3) y* is the umque fized point of J in the set Y = {y € X | d(J™z,y) < o0}
(4) d(y,y*) < 27 d(y, Jy) forally €Y.

In 1996, Isac and Rassias [24] were the first to provide applications of stability theory of functional
equations for the proof of new fixed point theorems with applications. By using fixed point methods,
the stability problems of several functional equations have been extensively investigated by a number
of authors (see [10, 11, 29, 34, 35, 38]).

Let Y be a Banach space. We define the following:

Y . the set of all subsets of Y

Cy(Y) : the set of all closed bounded subsets of Y

C.(Y) : the set of all closed convex subsets of Y;

Cep(Y) : the set of all closed convex bounded subsets of Y.

On 2Y we consider the addition and the scalar multiplication as follows:

C+C' ={z+2:2€Ca’ e€C}, AC ={\z:z € C},
where C,C’ € 2¥ and A € R. Further, if C,C" € C.(Y), then we denote by C & C' = C' + C".
It is easy to check that

AC + 2O = \C +C"), A4+ p)C CAC + uC.

Furthermore, when C' is convex, we obtain (A + p)C = AC + uC for all A\, up € RT.
For a given set C € 2, the distance function d(-, C') and the support function s(-, C') are respectively
defined by

d#,0) = wifle—yliyeCl, weY,
s(z*,C) = sup{(z*,z):2x € C}, xreY™.
For every pair C,C’ € Cy(Y), we define the HausdorfT distance between C and C’ by
h(C,C") =inf{\ > 0:C C C' + \By, C' CC+ \By},

where By is the closed unit ball in Y.
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The following proposition reveals some properties of the Hausdorff distance.

Proposition 1.2. For every C,C', K, K' € C,(Y) and A > 0, the following properties hold
(a) H(C & C', K & K) < h(C, K) + h(C", K');
(b) h(AC, \K) = \h(C, K).

Let (Cop(Y), @, h) be endowed with the Hausdorff distance h. Since Y is a Banach space, (Cep(Y), @, h)
is a complete metric semigroup (see [8]). Debreu [14] proved that (Ce(Y), $, h) is isometrically em-
bedded in a Banach space as follows.

Lemma 1.3. [14] Let C(By+) be the Banach space of continuous real-valued functions on By endowed
with the uniform norm || - ||u. Then the mapping j : (Cep(Y), @, h) — C(By+), given by j(A) = s(-, A),
satisfies the following properties:

(a) j(A® B) = j(4) + j(B);

(b) F(AA) = Aj(A);

() h(A, B) = [5(4) - §(B)lu;

(d) §(Cep(Y)) is closed in C(By~)

for all A,B € Cop(Y) and all X > 0.

Let f:Q — (Cep(Y),h) be a set-valued function from a complete finite measure space (2, %, v) into
Cw(Y). Then f is Debreu integrable if the composition j o f is Bochner integrable (see [7]) In this
case, the Debreu integral of f in  is the unique element (D) [, fdv € Ce(Y') such tha j((D) [, fdv)
is the Bochner integral of j o f. The set of Debreu integrable functions from Q to Ce(Y) will be
denoted by D(£2,Ce(Y)). Furthermore, on D(Q, Cop(Y)), we define (f + g)(w) = f(w) ® g(w) for all
fyg € D(Q,Ce(Y)). Then we obtain that ((©2,Cep(Y)), +) is an abelian semigroup.

Set-valued functional equations have been extensively investigated by a number of authors and there
are many interesting results concerning this problem (see [6], [30]-[33], [36, 37]).

Using the fixed point method, we prove the Hyers-Ulam stability of the following set-valued quadratic
p-functional inequalities

hWf(@+y)© flz—y),2f(x) & 2f(y) <p-h2f(z+y) @2f(x —y), f2z) ® f(2y)) (1.1)

and
h2f(z+y) @2f(x —y), f(22) ® f(2y)) < p-h(flz+y)  f(z —y),2f () B 2f(y)). (1.2)
Throughout this paper, let X be a real vector space and Y a real Banach space.
2. STABILITY OF THE SET-VALUED QUADRATIC p-FUNCTIONAL INEQUALITY (1.1)

Throughout this section, assume that p is a positive real number less than %

Using the fixed point method, we prove the Hyers-Ulam stability of the set-valued quadratic p-
functional inequality (1.1).

Definition 2.1. Let f: X — C(Y). The quadratic set-valued functional equation is defined by
fla+y) o fle—y)=2f(z) ®2f(y)

for all z,y € X. Every solution of the quadratic set-valued functional equation is called a quadratic

set-valued mapping.
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Definition 2.2. [26] Let f : X — C(Y). The Jensen quadratic set-valued functional equation is
defined by

2f(z +y) @ 2f(xr —y) = f(22) @ f(2y)

for all z,y € X. Every solution of the Jensen quadratic set-valued functional equation is called a Jensen

quadratic set-valued mapping.
Lemma 2.3. Suppose that f: X — (Cuy(Y), h) is a mapping satisfying f(0) = {0} and
h(fx+y) @ flz—y),2f(x) ©2f(y)) <p-h2f(z+y) D2f(z—y), f(22) D f(2y)) (2.1)
for all z,y € X. Then f: X — (C(Y), h) is a quadratic set-valued mapping.
Proof. Letting y = x in (2.1), we get h(f(2z),4f(x)) = 0 for all z € X. Thus f(2x) = 4f(z) and so
hfz+y) e flz—y),2f(x)®2f(y)) < p-h2f(z+y)d2f(z—y), [(2x)® f(2y))
= p h(2f(z+y) ®2f(z—y),4f(z) ®4f(y))
= 2p-h(f(z+y)® flx—y),2f(z) ®2f(y))
for all z,y € X. Since p < %, h(f(z +y) ® f(z —y),2f(z) ®2f(y)) = 0 and so
fle+y) e flz—y)=2f(z) ®2f(y)
for all z,y € X. 0

Theorem 2.4. Let ¢ : X2 — [0,00) be a function such that there exists an L < 1 with

p(z,y) < %p(?xﬂy)
for all z,y € X. Suppose that f : X — (Cep(Y), h) is a mapping satisfying f(0) = {0} and
hf(@+y)® flz—y),2f(2) & 2f(y) <p-h(2f(z+y) &2f(z —y), f(22) & f(2y)) + p(z,y) (22)

for all x,y € X. Then there exists a unique quadratic set-valued mapping Q : X — (Cep(Y),h) such
that

WP @), Q) < 77 9(r,2) (23)

forallx € X.

Proof. Let y =z in (2.2). Since f(z) is convex, we get

h(f(2z),4f(z)) < p(z, x) (2.4)
and so
(015 (2)) 2055 < ot =
for all z € X.
Consider

S:={g: g: X = Cau(Y), g(0) = {0}}

and introduce the generalized metric on X,

(g, f) = inf{n € (0,00) : h(g(x), f(x)) < pe(z,z), v € X},
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where, as usual, inf ¢ = +00. It is easy to show that (S,d) is complete (see [16, Theorem 2.4] and [28,
Lemma 2.1]).
Now we consider the linear mapping J : § — S such that

Jg(z) :=4g (g)

for all x € X.
Let g, f € S be given such that d(g, f) = e. Then
h(g(x), f(x)) < ep(z, )

for all x € X. Hence

koot = (10 ()47 (2)) = (o (5) 1 (3)) e
for all z € X. So d(g, f) = € implies that d(Jg, Jf) < Le. This means that

d(Jg,Jf) < Ld(g, f)
forall g, f € S.
It follows from (2.5) that d(f, Jf) < £.
By Theorem 1.1, there exists a mapping @ : X — Y satisfying the following:
(1) @ is a fixed point of J, i.e.,

off) - o

for all x € X. The mapping @ is a unique fixed point of J in the set
M={geS:d(f,g) < oo}
This implies that @ is a unique mapping satisfying (2.6) such that there exists a p € (0, 00) satisfying
B (@), Q@) < pip(, 2)

for all x € X;
(2) d(J"f,Q) — 0 as n — oo. This implies the equality

e A
Jim 41 (55) = Q@)
for all z € X;

(3)d(f,Q) < ﬁd(f, J f), which implies the inequality

L
d(f.Q) < =7

This implies that the inequality (2.3) holds.
By (2.2),

(e () o (52) ews (@) ames ()
Sp.h<2.4"f (JJS;Z/) 2. 4nf <x2—ny>’4nf(2nx1)@4nf<2ny1)) +4n¢(2%’2%)

<p‘h<2~4"f (x;y> ©2-4nf <x2—ny> ’4nf(2n$_1> @A f <2ny_1)> +L”<p(x,y)
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and so

MQ(x +y) ® Qr — ), 2Q(x) ®2Q(y)) < p-h(2Q(z +y) 2Q(z — y), Q(2z) & Q(2y))
for all ,y € X. By Lemma 2.3, Q(z +y) ® Q(z — y) = 2Q(z) ® 2Q(y), as desired. O

Corollary 2.5. Let p > 2 and 6 > 0 be real numbers, and let X be a real normed space. Suppose that
f: X = (Cu(Y),h) is a mapping satisfying f(0) = {0} and
h(f(z+y) @ flz—y),2f(x) ©2f(y) < p-h2f(z+y)©2f(z—y), f(2z) ® f(2y))
+ 0= + [[ylI") (2.7)

for all x,y € X. Then there exists a unique quadratic set-valued mapping @@ : X — Y satisfying

h(f(z),Q(z)) < P — 4

(| ”
forallx € X.

Proof. The proof follows from Theorem 2.4 by taking

p(e,y) = 0([]” + llyl”)

for all z,y € X. Then we can choose L = 2277 and we get the desired result. ([
Theorem 2.6. Let ¢ : X2 — [0,00) be a function such that there exists an L < 1 with

Ty
< A
p(z,y) < 4Ly (27 2)

for all z,y € X. Suppose that f : X — (Cep(Y), h) is a mapping satisfying f(0) = {0} and (2.2). Then
there exists a unique quadratic set-valued mapping Q : X — (Cep(Y), h) such that

1

L —
M (@), Q) < 7ol )

forallx € X.

Proof. 1t follows from (2.4) that

1 1
(o) 34 20)) < g @)
for all x € X.
The rest of the proof is similar to the proof of Theorem 2.4. O

Corollary 2.7. Let 2 > p >0 and 0 > 0 be real numbers, and let X be a real normed space. Suppose
that f : X — (Cep(Y), h) is a mapping satisfying f(0) = {0} and (2.7). Then there exists a unique
quadratic set-valued mapping Q : X — 'Y satisfying

20
W @), Q) < =5

(| ”
forallx € X.

Proof. The proof follows from Theorem 2.6 by taking

p(@,y) = 0([l<]” + llyl”)

for all 2,9 € X. Then we can choose L = 2P~2 and we get the desired result. ([
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3. STABILITY OF THE SET-VALUED QUADRATIC p-FUNCTIONAL INEQUALITY (1.2)

Throughout this section, assume that p is a positive real number less than 2.
Using the fixed point method, we prove the Hyers-Ulam stability of the set-valued quadratic p-
functional inequality (1.2).

Lemma 3.1. Suppose that f: X — (Ce,(Y), h) is a mapping satisfying f(0) = {0} and

h(2f(z+y) & 2f(x—y), f(2x) & f(2y)) < p-h(f(z+y) & flz—y),2f(x) & 2f(y)) (3.1)
forallxz,y € X. Then f: X — (Cop(Y), h) is a Jensen quadratic set-valued mapping.
Proof. Letting y =0 in (3.1), we get h(4f(z), f(2z)) =0 for all x € X. Thus f(2z) = 4f(z) and so

2h(f(x +y) & flz—y),2f(2) ©2f(y)) h2f(x +y) © 2f(x — y),4f () ©4f(y))
h(2f(z+y) @2f(x —y), f(2z) & f(2y))
p-h(f(z+y) @ flz—y)2f(x) ®2f(y))
for all x,y € X. Since p < 2, h(2f(z +y) ©2f(z —y), f(2x) ® f(2y)) = 0 and so
2f(x+y) @ 2f(z —y) = f(2x) & f(2y)

for all z,y € X. (]

IN

Theorem 3.2. Let ¢ : X2 — [0,00) be a function such that there exists an L < 1 with
L
plw,y) < T (22,29)
for all z,y € X. Suppose that f : X — (Cep(Y), h) is a mapping satisfying f(0) = {0} and

h2f(z+y) ®2f(x—y), f22) & f(2y)) < p- h(f(z +y) & e —y), 2f(x) 2f(y) + ¢(z,y) (3.2)

for all x,y € X. Then there exists a unique Jensen quadratic set-valued mapping Q : X — (Cep(Y), h)
such that

L
M (), Q) < 17 9(5,0)
forallz e X.
Proof. Let y =0 in (3.2). Since f(z) is convex, we get
h(f(2x),4f(z)) < ¢(x,0) (3-3)
and
(1007 (5)) 22 () < et o
for all z € X.
Consider

S:={g: g: X = Ca(Y), g(0) = {0}

and introduce the generalized metric on X,

d(g, f) = inf{p € (0,00) = h(g(x), f(z)) < pe(z,0), x € X},
where, as usual, inf ¢ = 4+00. It is easy to show that (S, d) is complete (see [16, Theorem 2.4] and [28,
Lemma 2.1]).
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Now we consider the linear mapping J : S — S such that

Jg(z) :=4g (g)

for all x € X.
By the same reasoning as in the proof of Theorem 2.4, one can show that
d(Jg,Jf) < Ld(g, f)

forall g, f € S.
It follows from (3.4) that d(f,Jf) < £.
The rest of the proof is similar to the proof of Theorem 2.4. O

Corollary 3.3. Let p > 2 and 6 > 0 be real numbers, and let X be a real normed space. Suppose that
f: X = (Cu(Y),h) is a mapping satisfying f(0) = {0} and

h2f(z+y)®2f(x—y), f2x) D f(2y)) < p-h(flz+y)® flz—1y),2f(x)®2f(y))
+ O[] + [lyl[*) (3.5)

for all x,y € X. Then there exists a unique Jensen quadratic set-valued mapping Q : X — Y satisfying

W @), Q) < 57—

e
forallz e X.
Proof. The proof follows from Theorem 3.2 by taking
e, y) = 0(lz[” + [ly[I*)
for all z,y € X. Then we can choose L = 2277 and we get the desired result. ([

Theorem 3.4. Let ¢ : X2 — [0,00) be a function such that there exists an L < 1 with

Ty
) <4L (77 7)
plz,y) <4le (5,5
for all z,y € X. Suppose that f : X — (Cep(Y), h) is a mapping satisfying f(0) = {0} and (3.2). Then
there exists a unique Jensen quadratic set-valued mapping Q : X — (Cep(Y'), h) such that

M7 @), Q@) < Tl

x,0)
forallz e X.
Proof. Tt follows from (3.3) that

1 1
n (31 0) < Je 0
for all x € X.
The rest of the proof is similar to the proofs of Theorems 2.4 and 3.2. O

Corollary 3.5. Let 0 < p < 2 and 0 > 0 be real numbers, and let X be a real normed space. Suppose
that f : X — (Cep(Y), h) is a mapping satisfying f(0) = {0} and (5.5). Then there exists a unique
Jensen quadratic set-valued mapping @ : X — Y satisfying

W (@), Q@) < 5

[|[”

forallx € X.
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Proof. The proof follows from Theorem 3.4 by taking

p(@,y) = 0([l]” + llyl”)

for all 2,9 € X. Then we can choose L = 2P~2 and we get the desired result. (]
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APPROXIMATE TERNARY QUADRATIC 3-DERIVATIONS ON TERNARY
BANACH ALGEBRAS AND C*-TERNARY RINGS

HOSSEIN PIRI*, SHAGHAYEGH ASLANI, VAHID KESHAVARZ, THEMISTOCLES M. RASSIAS,
CHOONKIL PARK* AND YOUNG SUN PARK"*

ABSTRACT. In the current article, we use a fixed point alternative theorem to establish the
Hyers-Ulam stability and also the superstability of a ternary quadratic 3-derivation on ternary

Banach algebras and C”*-ternary rings.

1. Introduction and preliminaries

Ternary algebraic operations were considered in the 19th century by several mathematicians
and physicists such as Cayley [5] who introduced the notion of cubic matrix which in turn was
generalized by Kapranov, Gelfand and Zelevinskii in 1990 [22]. As an application in physics,
the quark model inspired a particular brand of ternary algebraic systems. The so-called Nambu
mechanics which has been proposed by Nambu [25] in 1973, is based on such structures. There
are also some applications, although still hypothetical, in the fractional quantum Hall effect,
the non-standard statistics (the anyons), supersymmetric theories, Yang-Baxter equation, etc,
(see [1, 35]). The comments on physical applications of ternary structures can be found in
([6, 12, 17, 18, 26, 27, 31]).

We say that a functional equation (Q) is stable if any function g satisfying the equation
(Q) approximately is near to true solution of (Q). A basic question in the theory of functional
equations is as follows: when is it true that a function, which approximately satisfies a func-
tional equation, must be close to an exact solution of the equation? If the problem accepts a
unique solution, we say the equation is stable. Also, if every approximately solution is an exact
solution of it, we say the functional equation is superstable (see [3]). The first stability problem
concerning group homomorphisms was raised by Ulam [34] and partially solved by Hyers [20].
In [29], Rassias [16] generalized the result of Hyers for approximately linear mappings. Gajda
[15] answered the question for another case of linear mapping, which was rased by Rassias.
The stability problems of various functional equations have been extensively investigated by a
number of authors (see [13, 14, 21]).

The functional equation f(z +y) + f(x —y) = 2f(x) + 2f(y) is called quadratic functional
equation. In addition, every solution of the above equation is said to be a quadratic mapping.
A Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [33]
for mappings f : X — Y, where X is a normed space and Y is a Banach space. Later,
Czerwik [7] proved the Cauchy-Rassias stability of the quadratic functional equation. Since
then, the stability problems of various functional equation have been extensively investigated
by a number of authors (see [4, 9, 11, 23, 28]). As it is extensively discussed in [30], the full
description of a physical system S implies the knowledge of three basic ingredients: the set of

2010 Mathematics Subject Classification. 39B52; 39B82; 46B99; 17A40.
Key words and phrases. quadratic functional equation; Hyers-Ulam stability; superstability; ternary qua-

dratic 3-derivation; ternary Banach algebra; C*-ternary ring.
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the observables, the set of the states and the dynamics that describes the time evolution of
the system by means of the time dependence of the expectation value of a given observable
on a given statue. Originally the set of the observables were considered to be a C*-algebra
[19]. In many applications, however, this was shown not to be the most convenient choice, and
so the C*-algebra was replaced by a von Neumann algebra. This is because the role of the
representation turns out to be crucial, mainly when long range interactions are involved. Here
we used a different algebraic structure.

A ternary algebra is a complex Banach space, equipped with a ternary product (z,y,z) —
[z,y, 2] of A3 into A, which is linear in the outer variables, conjugate linear in the middle

variable, and associative in the sense that [m, Y, [z, u, v]] = [x, [y, 2, u]v} = [[m, Y, 2], u, v}, and

satisfies ||[z,y, z]|| < ||| - [|yl| - ||z]|. A C*-ternary ring is a complex Banach space, A equipped
with a ternary product which is associative and linear in the outer variables, conjugate linear

in the middle variable, and ||[z, z, z]|| = ||z||® (see [37]).
If a C*-ternary algebra (A4,[,-,:]) has an identity, that is, an element e € A such that

x = [x,e,e] = [e,e,x] for all x € A, then it is routine to verify that A, endowed with the
operation zoy := [x,e,y], x* := [e,z,e] is a unital C*-algebra. Conversely, if (A4,0) is a
unital C*-algebra, then [z,y, z] := xoy*oz makes A into a C*-ternary ring.

Recently, Shagholi et al. [32] proved the stability of ternary quadratic derivations on ternary
Banach algebras. Moslehian investigated the stability and the superstability of ternary deriva-
tions on C*-ternary rings [24]. Xu et al. [36] used the fixed point alternative (Theorem 4.2
of current article) to establish the Hyers-Ulam stability of the general mixed additive-cubic
functional equation, where functions map a linear space into a complete quasi fuzzy p-normed
space. The Hyers-Ulam stability of an additive-cubic-quartic functional equation in NAN
-spaces was also proved by using the mentioned theorem in [2].

In this article, we prove the Hyers-Ulam stability and the superstability of ternary quadratic
3-derivations on ternary Banach algebras and C*-ternary rings associated with the quadratic
functional equation f(z +vy) + f(x —y) = 2f(x) + 2f(y) using the fixed point theorem.

2. Stability of ternary quadratic 3-derivations

Throughout this article, for a ternary Banach algebra (or C*-ternary ring) A , we denote

n—times

Ax Aw A

by A",

Definition 2.1. Let A be a ternary Banach algebra or C*-ternary ring. Then a mapping
D : A— A is called a ternary quadratic 3-derivation if it is a quadratic mapping that satisfies

D ([[90179027333]7 [v1, y2, y3], [21az2az3]D

= [D(lwr. e wa)) lyr, o, v, |33, 3], 27, 23, 230, o0, 22, 2 |
o+ [[w1, @2, 3], o7, 03, 23, | DAyt w3 v 121, 23, 23], [, 22, 2]
[l ma, @l [ @, 25), (13w, 3], 1, 2, ), D[22, 22, 24]) |

for all x1,x2,23,91,Y2,Y3, 21, 22, 23 € A.
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It was proved in [10] that for the vector spaces X and Y and a fixed positive integer k, the
mapping f : X — Y is quadratic if and only if the following equality holds:

of <""‘”’“y) 2f< ky) = K f(2) + K £(y)

for all z,y € X. Also, we can show that f is quadratic if and only if for a fixed positive integer
k, we have

f(kx + ky) + f(kx — ky) = 2k f(x) + 2K> f ()
for all xz,y € X. Before proceeding to the main results, to achieve our aim, we need the
following known fixed point theorem which has been proved in [8].

Theorem 2.2. Suppose that (2,d) is a complete generalized metric space and J : Q@ — € is a
strictly contractive mapping with the Lipschitz constant L. Then, for any x € Q, either

d(J"z, J" ) = 0o, ¥n >0,

or there exists a positive integer ng such that
(1) d(J"x, J"1x) < 00 for all n > ng;
(2) the sequence {J"x} is convergent to a fized point y* of J;
(3) y* is the unique fized point of J in A ={y € Q:d(J™x,y) < co};
(4) d(y,y*) < 12 d(y, Jy) for all y € A.

In the following theorem, we prove the Hyers-Ulam stability of ternary quadratic 3-derivation
on C*-ternary rings.

Theorem 2.3. Let A be a C*-ternary ring, f: A — A be a mapping with f(0) =0, and also
let ¢ : A1 —[0,00) be a function such that

(1) H2f <“a+“b) tof (“"”;“b> — 12(f(a) +f(b))H < ¢(a,b,0,0,0,0,0,0,0,0,0),

Hf(|:x17x27'r3 [y1, Y2, ys3], [2’1’2’272’3]})
— | Flan, w2, @), 1,2, ], | [oi w3, 03), 127, 25, 230, [0, 22, 2|
— [lev,@2.a), o, 23, 3], [ £(0y7 3,93, 127, 25, 23], o0, 22, 2]
~[[or, @, @], o, 5,230, [, 3. 030, 2, 92,9 £ (2,2, ) ]|

< (0,0, 21,22, 23, Y1, Y2, Y3, 21, 22, 23)

forallpe T ={XeC:|\ =1} and all a,b, z1, 2, x3,Y1, Y2, Y3, 21, 22, 23 € A. If there exists
a constant M € (0,1) such that

(3) @(20“7 2b7 2%1, 2(E2, 21"37 2y17 2y27 2y37 2'217 222) 223)
< 4M¢(a> b? x1,22,23,Y1,Y2,Y3, 21, 22, 253)

for all a,b,x1,x2,x3,Y1,Y2,Y3, 21, 22,23 € A, then there exists a unique ternary quadratic 3-
derivation D : A — A such that
M

<
(W I£(a) - Dla)] <
for all a € A, where ¥(a) = ¢(a,0,0,0,0,0,0,0,0,0,0).

P(a)
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Proof. Tt follows from (3) that

5) . cp(2ja, 27b, 2jx1,2j:c2,2jx3,2jy1,2jy2,2jy3,2j21,2j22,2j23)
im 2
j—00 49

for all a,b, z1, z2, 3, Y1, Y2, Y3, 21, 22, 23 € A. Putting p = 1,b = 0 and replacing a by 2a in (1),
we have

|4£(a) = 20) | < v(20) < ¥(20) < 4010(a)

and so

© @) {reza] < arvia

for all a € A. We consider the set Q :={h: A — A |h(0) = 0} and introduce the generalized
metric on X as follows:

d(hy, ha) = inf{K € (0,00) : [ 1(a) — ha(a)l] < Kth(a),Ya € A},

if there exists such a constant K, and d(h1, he) = 0o, otherwise. One can show that (€, d) is
a complete metric space. We now show that J : Q@ — Q by

1
@ J(h)(a) = 3h(2a)
for all a € A. Given hi,hy € Q, let K € R* an arbitrary constant with d(hy, he) < K, that is,
(8) d(h1(a), ha(a)) < K¢(a)
for all a € A. Substituting a by 2a in (8) and using (3) and (7), we have
1 1
1(Th1)(a) = (Jh2)(a)ll = 7 [1h1(2a) = h2(2a)l| < 7 K9(2a) < KMy(a)

for all a € A and thus d(Jhi, Jhe) < KM. Therefore, we conclude that d(Jhy, Jhy) <
Md(hq, he) for all hy, hy € Q. It follows from (6) that

(9) d(Jf, f) < M.

By Theorem 2.2, the sequence {J" f} converges to a unique fixed point D : A — A in the set
O ={h e Qd(f, h) <}, ie.,

(10) lim = = D(a),

for all @ € A. By Theorem 2.2 and (9), we have

aiJf.f) . M
df, D)< =57 <171

The last inequality shows that (4) holds for all @ € A. Replace 2"a and 2"b by a and b,
respectively. Now, dividing both sides of the resulting inequality by 2", and letting n goes to
infinity, we obtain

(11) 2D <““"2“‘b) +2D (““;“b> = 42(D(a) + D(b))
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for all a,b € A and p € T. Putting =1 in (11), we have

2D (“;b> +2D (a;b> = D(a) + D(b)

for all a,b € A. Hence D is a quadratic mapping by [33, Proposition 1]. So it follows from the
definition of D, (2), (5) and (10) that

D ([[3717172,563]7 [y1, Y2, 3], [31,2’2723]]>
— | D1, @, w3]). 1. 2.l I w3, 93] =4, 23,23 (21, 22, 2|

— |21, 223, a1, 3, 23], [ D, w3, ) 1, 25, 230, 0,2, 2]

= [l 2w, [, 3, 23, (7, v vl [on, v ), D21, 22, 28] |

) 1
= lim <49nf ( [[2”1‘1, 2nIE2, 2nﬂj‘3}, [Qnyl, 2ny2, 2ny3], [2”Z1, 2”22, 2”Z3]] )

n—00
1 * * * * * *
- [@f ([2711:17 271:1:27 2n$3]) ; [ylay27 y3]a [[y17y27y3]a [ZlazQa Z3]7 [Zla 22, ZB]:H
* * * 1 * * * * * *
- |:[l'1,a?2,x3], [x17x27x3}3 [7f([2ny17 2ny27 2ny3])a [217227 ZS]’ [Zla 225 Z3]:|]

43n

* % % * k% 1
- |:[:L‘17 €2, 1‘3], [xlv Lo, 1‘3], |:[y15 y27y3]’ [yla Y2, y3]7 Ef(pnzlv 2n22’ 2n23]):H>

n—o0

1
< lim 4W(,O(O,O,2nx1,2"332,2"$3,2”y1,Q"yg,Q"yg,2"21,2",22,2",273) =0
for all z1, z2,x3,%1,¥2,¥3, 21, 22, 23 € A and so

D <|:[1"17 132,133], [917?/2,%], [Zla 22, Z3]:|)
= [P, w2, @), Ty, v wsl, [[v, 3 vl 126, 25, 230, o, 2, 24]
o [l w2, @l Tt s, @3], [ DALyt w3, w3, 125, 28, 23], o1, 22,241

o+ [lwn, w2, aa), o, @3, 23), [[07, w3, 31 [ v vl D, 20, 2)] .

which means that D is a ternary quadratic 3-derivation. O

Corollary 2.4. Let p,0 be nonnegative real numbers such that p < 2 and let f be a mapping
on a C*-ternary ring A with f(0) =0 and

Jor (M52 ) war (M251) ~ it + £o)]| < oClall + 100IP)
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Hf( x1, T2, 23, [Y1, Y2, Y3l [21722723]D
f ‘/1:17]"271;3 [y17y27y3]7 [[yfaygvyg])[quz;72§]7[zl)z27z3]

I
- s
— [lw1, wa, 2], [, 23, 23], (ot 8, w3D) (21 25, 280, o, 2, 2]
al

.’El,xQ,Jfg .’131,.%'2715‘3] [[yfuy;7y§]7 [y17y2>y3]7 f([217227z3]) H
Oz lI” + llz2ll” + llzsll” + [y 7 + ly2ll” + llysl? + lzall” + [[z2]|” + [|25]])

forallp €T and all a,b, x1,x9, 23, y1, Y2, Y3, 21, 22, 23 € A. Then there exists a unique ternary
quadratic 3-derivation D : A — A satisfying

2pr0

(@) = Do)l <

lal”

for all a € A.
Proof. The result follows from Theorem 2.3 by putting

(@, b, w1, 2,23, Y1, Y2, Y3, 21, 22, 23) := O([|al|” + [[DI” + [l [[” + [[z2][” + [ls]”
+ P+ lw2ll” + llysll” + [lz” + 220" + [1z5]1%)

for all a, b, x1, x2, X3, Y1, Y2, Y3, 21, 22, 23 € A. O

Now, we establish the superstability of ternary quadratic 3-derivations on C*-ternary rings
as follows:

Corollary 2.5. Let p, 0 be nonnegative real numbers such that 11p < 2 and let f be a mapping
on a C*-ternary ring A with f(0) =0 and

) for (M) ar (M) < @)+ @) < 0 ol o

Hf( 1, T2, T3], [Y1, Y2, Y3], [2’1;22,23]})
Pl w2, @), Iy, v, wsl, | [0 s, w3l 41, 25, 231 [, 20, 2 |

!
-|
= [lw1, @2, ws), o, w5, 23], [ F(lut s, viD), (21, 25, 230 [0, 22, 28] |
al

o2, 23], o7, 25,23, (1993, 30 [ vl £ (121, 20, 29)) ]|
<O Nerll? - ol - s 1 - g 7 - g P s - 120 - 22l - 17

for all p € T and all a,b,x1,22,x3,Y1,Y2,Y3, 21, 22,23 € A. Then f is a ternary quadratic
3-derivation on A.

Proof. Putting a = b =0 in (12), we get f(0) = 0. Now, if we put b = 0, u = 1 and replace a
by 2a in (12), then we have f(2a) = 4f(a) for all a € A . It is easy to see by induction that
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f(@2"a) = 4" f(a), and so f(a) = f(iza) for all a € A and n € N. It follows from Theorem 2.3

that f is a quadratic mapping. Putting
QO(CL, b7 T1,T2,T3,Y1,Y2,Y3, 21,22, 23)

=0 llall” - 1617 -l [P - Nlal” - llsl” - llyall® - Nw2ll” - [lysll® - [zall” - 122l - l|23]1P

in Theorem 2.3, we can obtain the desired result. O

Theorem 2.6. Let A be a ternary Banach algebra, and let f : A — A be a mapping with
f(0) =0, and also let ¢ : A> — [0,00) be a function such that

(13) Hf(:ua + :U‘b) + f(,ua - Mb) - 2M2(f(a) + f(b))H S QO((I, bv 07 07 O>O>07070701 0)
Hf([[551,902,963]7[311734272113]’[21,22,23]})
— (s 2, wa]), Ty ol [t 3 w30, 21 25,250, o2, 2]

(14) — |1, 23], 2, 5, 23, | £ 03,03 (27, 25, 25, (21, 22, 2 |

- [[131,1)2,563], [5517553733;], [[yi y;a y§]7 [91,3/27y3], f([zla 22, 23]) H

< 80(07 07331;1’27333’y17y27 Y3, 21, 22, Z3)

forallw e T and all a,b, x1,x2, x3,Y1,Y2, Y3, 21, 22, 23 € A. If there exists a constant m € (0, 1)
such that

(15> (,0(2@7 2b7 lea 2.%'2, 2%3, 23/17 23/27 23/3: 2Z17 2227 223)
< 4m90(a’ b’ Z1,22,T3,Y1,Y2,Y3, 21, 22, 23)

for all a,b,x1, 9,23, y1,Y2,ys3, 21, 22,23 € A, then there exists a unique ternary quadratic 3-
derivation D : A — A satisfying

4m
16 - D <
(16) I£(a) = D(a)| < 1—~
for all a € A, where 1(a) = ¢(a,a,0,0,0,0,0,0,0,0,0).
Proof. Using (15), we obtain
(17) lim ©(2"a, 2™b, 2" w1, 2" o, 2™ s, 2" y1, 2™ Y9, 2" y3, 2721, 2" 29, 2" 23)

n—oo 477,

¥(a)

=0

for all a,b, z1,x2, T3, Y1, Y2, Y3, 21, 22, 23 € A. Putting p = 1,a = b and replacing a by 2a in
(13), we get

| £20) = 4£(0)|| < w(@
for all @ € A. By the last inequality, we have
(15) |3700) - f(@)| < ot

for all a € A. Similar to the proof of Theorem 2.3, we consider the set Q2 := {h: A — A|h(0) =
0} and introduce a generalized metric on Q by

d(g,h) := inf{C € (0,00) : [lg(a) — h(a)[| < C¢(a),Va € A},
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if there exists such constant C, and d(g, h) = 0o, otherwise. Again, it is easy to check the fact
that (€2, d) is a complete metric space. We now define the linear mapping 7" : Q — Q by

(19) T(h)(a) = ;h(20)
for all a € A. For arbitrary elements g,h € Q and C € (0, 00) with d(g,h) < C, we have
(20) lg(a) = h(a)[| < C4(a)

for all a € A. Replacing a by 2a in the inequality (20) and using (15) and (19), we we have
1 1
I(Tg)(a) = (Th)(a)ll = ;1G(2a) — h(2a)|| < ;CV(2a) < Cmyp(a)

for all @ € A. Thus d(Tg,Th) < Cm. Therefore, we conclude that d(T'g,Th) < md(g, h) for
all g,h € Q. Tt follows from (18) that

(21) ES?

Hence T is a strictly contractive mapping on §2. Now, Theorem 2.2 shows that T has a unique
fixed point D : A — A in the set Q1 = {h € Q,d(f,h) < co}. On the other hand,

. 2"
(22) nh_)rrolo = D(a)
for all a € A. By Theorem 2.2 and (21), we obtain
a(r
dppy < dTLD) m

1-m — 4(1—-m)’

i.e., the inequality (16) is true for all a € A. Let us replace a and b in (13) by 2"a and 2"b
respectively, and then divide both sides by 2". Passing to the limit as n — oo, we get

(23) D(pa + pb) + D(pa — pb) = 2u>D(a) + 2u>D(b)
for all a,b € A and X\ € T. Putting =1 in (23), we have
(24) D(a+b)+ D(a—b) =2D(a) +2D(b)

for all a,b € A. Hence D is a quadratic mapping.
It follows from (14) that

* * * 1 * * * * * *
(25) — [lw1, o2 w3, 03, |57 (20, 2703, 2"a0), 124, 25, 230, [, 22, 2]

1
o[ <[[2%1a 2"x9, 2" x3], [2"y1, 2" Y2, 2"y3], [2" 21, 2" 22, 2n23]D

1 * k% ® %k _%
- [Ef(pnl‘la 2711:27 2n$3])7 [yla y27y3]’ [yla Ya, y3]7 [zlaZQa Z3]a [Zla 22, Z3]:|j|

* _x % * k% 1
- [[xlvaa $3], [x17x25 $3]7 |:[y17y2)y3]7 [y17y25y3]7 Ef([QnZh 2n227 2”23])i|:| H

1
S @@(05 0; 2nxla 2nx27 27L$3’ 2ny17 2”3/27 2ny37 2”21’ 2n22; 2nz3)
for all z1,z2, 23, Y1, Y2, Y3, 21, 22, 23 € A.
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Taking the limit in the equality (25) and using (17), one obtains that
D ([[901,962,563], [y1, Y2, y3), [21,22,23]})
= [D(s. 2w, lyr, o, sl [t 3. 3], 47, 25, 230, o, 22, 2]
+ |1,z 3a), o7, 23, 23], [ DAy w3, 93)), [, 25, 23] [, 22, 2]
o+ [fwr, @2, 3], 1, 25, 23], (97, 93, 3], 1, 2. 5], D[z, 20, 25]) |

for all a, b, x1, x2, 3, Y1, Y2, Y3, 21, 22, 23 € A. Therefore, D is a ternary quadratic 3-derivation.
This completes the proof. O

The following corollaries are some applications to show the stability and superstability of
ternary quadratic 3-derivations under some conditions.

Corollary 2.7. Let A be a ternary Banach algebra. Let p,0 be nonnegative real numbers such
that p < 2 and let f be a mapping on a C*-ternary ring A with f(0) =0 and

| £+ b) + Flua = ub) = 242(1(@) + £O))|| < OC0all” + [6]17),

Hf( x1, T2, 23], [Y1, Y2, Y3 [2’172’2723]})

= [ Fwr @2, s, Ty v, vl | [u w3, vl (31, 23, 230, o1, 22, 2]
[xl,xz,xg (@i, w323, £ (i, w3 931D (o1 23,53, o, 2,20

131,.’1)2,1'3 131,.'E2,$3] |:[y1<a y;a y§]7 [y17y2>y3]7 f([zla 22, Z3]):|:| H

< O(lzall? + lw2ll” + Nzl + lyall” + lly2l” + llysll” + 22 l1” + lz2[1” + [|23]”)

forallp €T and all a,b, x1,x9, T3, Y1, Y2, Y3, 21, 22, 23 € A. Then there exists a unique ternary
quadratic 3-derivation D : A — A satisfying

2p0
4—2p

1f(a) = D(a)|| <

lal”

for all a € A.
Proof. The result follows from Theorem 2.6 by putting

(@, b, w1, 9,23, Y1,Y2,Y3, 21, 22, 23) := O(||al|” + [[DI1” + [l [[” + [[2][” + [l3]”

+ lwall” + llyall” + llysll” + lz0ll” + ll22]l” + ll23]17)

for all a, b, x1,x2, X3, Y1, Y2, Y3, 21, 22, 23 € A. O

Corollary 2.8. Let p, 0 be nonnegative real numbers such that 11p < 2 and let f be a mapping
on a C*-ternary ring A with f(0) =0 and

(26) | £+ pib) + flua — ub) = 262 (f(@) + £0))| < OCUall”0]1).
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| ([or 220w, 1, v2,08), L1, 22, 25)]

|: 1‘1,372, I3])) [y1792,y3]> |:[yT7 y;7 y§]7 [Zfa Z;7Z§]7 [217 22, 23]

— [lov, @2, a), o7, 23, 3], [ £(1u7, 03,930 127, 25, 23], o1, 22, 2]

[$17$27$3 [$T7$§7$§L hyf,yg,ygL[y1,y2,y3LlfQZ1,22,Zﬂ) H

<Ol ll” - ol - sl - lyall® - w2ll” - llysll? - [lz0]” - 2201 - 1237

for all w € T and all a,b,x1,22,23,Y1,Y2,Y3, 21, 22,23 € A. Then f is a ternary quadratic
3-derivation on A.

Proof. If we put @ = b = 0 in (26), then we have f(0) = 0. Moreover, letting b = 0, pp =1
and replacing a by 2a in (26), we obtain f(2a) = 4f(a) for all a € A. Similar to the proof of
Corollary 2.5, we can show that f is a quadratic mapping. Putting

QD(G, b,$1,1‘2,1‘3,y1,y2,y3, 21,22, Z3)

=0 [lal[” - [ol1” - [l [P - N2 ll” - fls]” - Nlyall” - [ly2ll® - lysl” - 20l - [lz2]” - 23]

in Theorem 2.6, we can obtain the desired result. ([
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Abstract

In this paper, we introduce a new class of coupled systems of boundary value problems for
fractional differential equations which contains multiple orders of fractional derivatives and integrals,
and discuss the existence and uniqueness of solutions. We apply Leray-Schauder’s alternative and
Banach’s contraction mapping principle to obtain the desired results. Illustrative examples is also
included.

Key words and phrases: Fractional differential systems; nonlocal boundary conditions; integral
boundary conditions; fixed point theorem.
AMS (MOS) Subject Classifications: 34A08, 34B15.

1 Introduction

Differential equations of fractional order have played a significant role in engineering, science, and pure
and applied mathematics in recent years. Fractional differential equations arise in the mathematical
modeling of systems and processes occurring in many engineering and scientific disciplines such as
physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology, economics,
control theory, signal and image processing, biophysics, blood flow phenomena, etc. [1]-[4]. Fractional-
order boundary value problems involving a variety of classical, nonlocal and integral boundary conditions
have been addressed by many authors, for instance, see [5]-[13] and the references cited therein.

Coupled systems of fractional-order differential equations also constitute an interesting and impor-
tant field of research in view of their applications in many real world problems such as anomalous
diffusion [14], disease models [15]-[18], ecological models [19], synchronization of chaotic systems [20]-
[22], etc. For some theoretical works on coupled systems of fractional-order differential equations, we
refer the reader to a series of papers [23]-[28].

Recently in [29] a new class of fractional boundary valued problems was introduced, which contains
four orders of Riemann-Liouville fractional derivatives, two in fractional differential equation and two

*Corresponding author
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in boundary conditions of the form

(AD* + (1 = \)D?) (t) = f(t,z(t)), te(0,T),

(1)
2(0) =0, uD"2(T)+ (1 —p)Dx(T) = 73,

where D? is the Riemann-Liouville fractional derivative of order ¢ € {a, 3,71,72} such that 1 < a, 3 < 2
and 0 < v1,72 < a— 3, v3 € R, the given constants 0 < A< 1,0 < p <1land f € C([0,T] x R,R) is a
continuous function. Existence and uniqueness results were obtained by means of Banach’s contraction
mapping principle, Krasnoselskii’s fixed point theorem and Leray-Schauder’s nonlinear alternative.

In this paper, we study a coupled system of fractional differential equations

(AD™ + (1 = N\)DP) a(t) = f(t,z(t),y()), t€(0,T), 1<a,B<2
{ (MDD + (1= M) D7) y(t) = g(t, 2(t),y(t), t€(0,T), 1<ay,fr <2,
subject to the following type of boundary conditions
2(0) =0, pD"2(T)+ (1 - p)D7x(T) = s,
{ y(0) =0, mI®y(T)+ (1 — m)I*y(T) = b, ?

where D? denotes the Caputo fractional derivatives of order ¢ € {a, 3, a1, B1,71,72}, IX denotes the
Riemann-Liouville fractional integral of order x € {d1,02}, 73,95 E R, 0 < A, A1 <1, 0 < p, g <1 and
f,9:[0,T] x R? — R are appropriately chosen functions.

The paper is organized as follows. In Section 2, we recall some basic definitions of fractional calculus
and present two auxiliary lemmas. The main results are presented in Section 3. We give two results:
the first one derives the existence of solutions via Leray-Schauder’s alternative, whereas the second one
concerning existence and uniqueness of solutions is established by Banach’s contraction principle. We
also discuss two examples for illustration of the existence-uniqueness results.

2 Preliminaries

Before presenting two auxiliary lemmas, we recall some basic definitions of fractional calculus [1, 2].

Definition 2.1 For (n—1)—times absolutely continuous function y : [0,00) — R, the Caputo derivative
of fractional order q is defined as

1 t
‘Diy(t) = m/ (t—s)" "1y (s)ds, n—1<qg<n,n=][q+]1,
0

where [q] denotes the integer part of the real number q.

Definition 2.2 The Riemann-Liouville fractional integral of order q is defined as

1 t ]
0 = 51, Lt 170

provided the integral exists.
Lemma 2.3 The boundary value problem
(AD* + (1 = \)D?) z(t) = w(t), te(0,T),
2(0) =0, pD"a(T)+ (1= p)D"x(T) = s,
is equivalent to the following integral equation

o(t) = Apﬁa_lﬁ) / <tfs>“*5*1x<s>ds+%@ / (t— )" w(s)ds
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i - ;U’()‘_]-) g — ) B 1115 ds
e (73 g ), )

T
K )/0 (T — 8)* " 1y(s)ds

(e —m)
_ w T _ s a*ﬁ*’ﬁ*lx s s
/\F(a—ﬁ—ny)/O (T =) (s)d
I : a1 (s)ds =
M/O(TS) ()d>, teJ:=[0,T]

where the non zero constant A1 is defined by

MTl—’Yl (1 _ M)Tl—’m
L2-m) [(2—12)

Proof. The first equation of (4) can be rewritten as

A=

-1 1
D%x(t) = ”\TD%(t) +wlt), ted

Applying the Riemann-Liouville fractional integral of order « to both sides of (7), we obtain

A—1

T = — t —8)* B 1x(s)ds 1 t —5)* Lw(s)ds 1 5
0 = sraog ) -9 e+ g [ =9 e+ 0 Ca,

where constants C7, Cy € R. The first boundary condition of (4) implies that C7 = 0. Hence

(8)

A—1 t 1 t
- @@ _ a—p-1 _ a—1
o) = 3= [ €= 9" e+ spes [ =) s + ot
Taking the Caputo fractional derivative of order ¢ € {1,742} such that 0 < ¢ < a— 3 to (8), we deduce
that
A—1 t
D¥z(t) = —/ t—s)* PV 1g(s)ds
0 = o= - (5

1 L a—ue 1 v
+m/0(t s) 1u)(s)ds—|—027r(2711))151 .

Substituting the values 1) = 77 and 1) = 7, to the above relation and using the second condition of (4),

we obtain a constant ~3 as

\_ T
B S fy T e
p ! o pri
Py, @ s
— )\ — T
+M/O (T — 5)*=P=1271p(s)ds
1—p T oy (1—p)T'
+ Al — 72) /o (T = 5) 7 e(o)ds + ['(2—) ”
which yields
C, = i _ M /T(T _ s)o"ﬁ’m’lx(s)ds Y /T(T — g)a*71*1w(s)ds
2T NPT N a—5-) Jy AL( —m) Jo
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_ (1 _M)()‘_ 1) g —g a—ﬁ—'yz—ll, $)ds — ].—,U/ T —s oz—'yz—lw s)ds
—ma_ﬁ_%)/o (T s) (s)d W@_W)/O (T ) (s)ds|.

Substituting the value of the constant Cy into (8), we deduce the integral equation (5). The converse
follows by direct computation. This completes the proof. O

In the same way, we obtain the following result with the Riemann-Liouville fractional integal bound-
ary conditions.

Lemma 2.4 The boundary value problem
(MD™ + (1= \)DP) y(t) =wi(t), te(0,T),
y(0) =0, I y(T)+ (1~ p)I*y(T) = 0,

is equivalent to the following integral equation

y(t) = Aer(;:ﬁl) /0 (t =)™ ys)ds + Alrl(m) /o (¢ = o) e (e)ds
p(Ar —1)

t
+— 10—
A2<3 NI + a1 = By

T
H1 d1t+ar—1
- - T — 1 1 d

)\1F(51 +OZ1)/O ( S) (.4)1(5) 5

(I—p)(AM—1) T o B
“ ATyt —ﬁ1)/o (T — s)d2rar=Pi=ly(s)ds

1= /T Satai—1
- T — )T ds |, teJ, 10
TG ran )y @9 e()ds (10)

g _851 ay—p1—1 s)ds
[ty

where the non zero constant Ay is defined by

pa T (1= ) T2
Ay = + . 11
T T2+0,) [(2+ds) 1

3 Main Results

Let us introduce the space X = {u(t) |u(t) € C(J,R)} endowed with the norm ||u|| = sup{|u(t)|,t € J}.
Obviously (X, || - ||) is a Banach space. Also Y = {v(t)[v(t) € C(J,R)} endowed with the norm
|v]] = sup{|v(t)|,t € J} is a Banach space. Then the product space (X x Y, ||(u,v)]||) is also a Banach
space equipped with norm ||(u, v)|| = |Ju|| + ||Jv]|.

In view of Lemmas 2.3 and 2.4, we define the operator 7 : X x Y — X x Y by

T (u,v)(t)
T (u,v)(t) = ( To(u, v)() )
where
T v)(t) = Al“?a_—lﬁ)/o (8= 5)* " u(s)ds + %««)/o R

i _ /J/(A — 1) g — s (x—ﬁ—fyl—lu s)ds
+A1<73 oo fy Y ()

ad ' a=m=L (s u(s),v(s))ds
el MCER G (RO NICI
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_ (1 — :u)(/\ — 1) g — s ozfﬁf'mflu s)ds
g Jy (770l

1_7'u g _sa—’yg—l s.ul(s). v(s s
_Ar(a_%)/o (T=s) F(s,u(s), ())d>,

and

A —1

Tlwo)t) = g =" s+ e [ (= el u(s) o)

M (o — By

t pa(A — 1)
+ (6
Ao ( 3 /\1F((51 + o — ﬁl

T
)/0 (T—s)‘sﬁo‘l*ﬂl*lv(s)ds

T
M 1+a1—1
- WM/O (T — )71 g (s, u(s), v(s))ds

(=) -1 g — 5)0tar=Bi=1y ) dg
/\1F(52+041—ﬁ1)/0 S e

1— T a1
_ )MW[) (T - 3)5 + g(s,u(S),v(s))d,s) .

Let us introduce the following hypotheses which are used hereafter.

(Hy) Assume that there exist real constants k;, v; > 0 (i = 1,2) and ko > 0,19 > 0 such that Va; € R,

(i = 1,2) we have
Lf(t 21, 22)| < ko + k1|21 | + ka|2a,

lg(t, x1,x2)| < vo + vi|21]| + valaal.

(Hy) Assume that f,h:J x R? — R are continuous functions and there exist constants m;,n;, i = 1,2

such that for all t € J and u;,v; € R, i =1,2,
|f(t,u,uz) — f(t,v1,v2)| < mylug —v1| + malug — vg]

and
lg(t,u1,u2) — g(t,v1,v2)| < nilur — vi| + najug — val.

For the sake of convenience, we set constants

T TafA/lJrl Taf'ngrl 1—
M, = N A (L=p
AMl(a+1)  MiT(@a—y+1)  AMD(a—v2 +1)
TP 1] To=B=m+ly I\ — 1] Te=B=r2 411 — p)| X\ — 1|
YT A(a—B+1)  MiD(a-B—-m+1) A T(a—B-v2+1)
T Tor+on+1 To2+ar+1(1 _
My 1 ( fi1)

= + + s
)\1F(O¢1 + 1) )\1A2F(51 + a1 + 1) )\1A2F((52 + a1 + 1)
Ta1—51|)\1 _ 1| T51+051—51+1M1‘)\1 _ 1| T52+051—51+1(1 _ /141)|)\1 _ 1|

No =
? MI(ar —B14+1)  MAJT(61+a1 — F1+1) AMAT (02 + a1 — B1 4+ 1)

and

MO = Hlln{l — (Mlkl —|— N1 —|— MQVl), 1 — (Mlkg —|— MQVQ —|— NQ)}7 :ZC,L', V; Z 0 (Z = 1,2)

The first result is based on Leray-Schauder alternative.
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Lemma 3.1 (Leray-Schauder alternative) ([30] p. 4.) Let F : E — E be a completely continuous
operator (i.e., a map that restricted to any bounded set in E is compact). Let

E(F)={x € E:x=M\F(zx) for some 0 <\ <1}
Then either the set E(F) is unbounded, or F has at least one fized point.
Theorem 3.2 Assume that (Hy) holds. In addition, it is assumed that
Mk + Ny + Moy <1 and Myks + Movs + Ny < 1,

where My and My are given by (13) and (15) respectively. Then the system (2)-(3) has at least one
solution.

Proof. First we show that the operator 7 : X x Y — X x Y is completely continuous. By continuity
of functions f and g, the operator 7 is continuous.

Let Q = {(u,v) € X xY : ||(u,v)]] < r} C X XY be a bounded set. Then there exist positive
constants L and Lo such that

[f (&, u(®), v(®)| < Ly, |g(t, ult),v(t))] < L2, V(u,v) € Q.
Then for any (u,v) € €, we have

U, v A=l t — 5)2 7P Yu(s)|ds 1 t — )7 f(s,u(s),v(s))|ds
B0 < s L =9 e+ s [ =9 s (s o)l

i M()‘_l) ’ _s a—B-y1—1 u(s)lds
i (mumaﬂm/o (T ) u(s)ld

T
— / (T — 5201 (s, u(s), v(s))|ds

Jr)\1"(04—71
(1 - /J)|)\ B 1‘ T _ Ja—pB—v2—1
+—Ar(a76772)/0 (T —s) fu(s)|ds

1_7M ! — ) 2=l £ (s au(s), v(s s
+ >/0<T ) |f<,<>,<>>|d>

Al (o — 7o
T Taf’v1+1 Ta*’72+1 1—
< I n B (1—p)
A(a+1)  MiT(a—71+1) MM T(a—y+1)

T PN~ 1| To=B=mFly I\ — 1|
+[ull — + —
M(a—-0+1) M T(a—F-—m+1)
et (1 — A U], bt
AMT(a =B~y +1) Ay
= L1M1—|—N1’I"—|— |’)/3‘T/A1

+

and consequently,
71 (u,v)|| < LMy + Nyr+ |y3|T/As.

Similarly, we get
[ T2(u,v)|| < LoaMa + Nor + |65|T/As.

Thus, it follows from the above inequalities that the operator 7 is uniformly bounded.

Next, we show that 7 is equicontinuous. Let ¢, ¢y € [0,7] with ¢; < t5. Then we have

T (u(ta), v(t2)) = Ta(u(tr), v(t1))]
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7|)\_1‘ - — 8)* Py (s)ds — " — 5)* Ay (s)ds
ma_g)l/o (t2 = 9" uleds = [0 <>d]

; ’ —5)* 7 f(s,u(s s — " — )27 (s, u(s),v(s))ds
+ma)[/0 (t2 = 9 f(svu(s)o(e)ds = [ (=) f(,(),())d]

lta — 1] plA =1 /T —Beyi-1
—+ 4+ —-— " T*S « m uls dS
A 73] N(a—F-1 ), ( ) (s)

H ! a=n=b s u(s). v(s))ds
S T =T ) o)

A-pr-1 [ a—B—r2—
i | @ s
T
+ﬁ/{) (T— S)CX—’Y‘z—lf(S,U(S),U(S))ds)
20ty —t)* B+ 15 49PN = 1| |t —ta| [ |A— LuTo B
' Al(a =B+ 1) TN M(a—f—m+1)

P ek | B e
M(a—0B—y+1) Ay

2ty — ) 5T — 477 L=t pre—m (L—p)To
Al(a+ 1) Ay AM(a—vy+1)  M(a—v+1)

IN

+Ly

Analogously, we can obtain

|75 (u( — Tz (u(t1),v(t1))]
[2 = ) g PSP N 1] =] (D 1T
M (ap — 1+ 1) Ay MI(01+a1 — 1 +1)
AL — 1](1 — p)To2ter=5 |ta — t1][03]
M (02 + a1 — 1+ 1) As

+ Lo

2ty — ) L |15 Ty — ( pu Tor+en (1 — py)ToFn )
M

_|_
/\1F(a1 + ].) A2 ((51 + a1 + ].) )\1F(52 + a1 + 1)

As tyg —t; — 0, the right-hand sides of the above inequalities tends to zero independently of (u,v) € Q.
Therefore, by the Arzeld-Ascoli theorem, the operator 7 (u, v) is equicontinuous, and thus the operator
T (u,v) is completely continuous.

Finally, it will be verified that the set & = {(u,v) € X x Y|(u,v) = 07 (u,v),0 < § < 1} is bounded.
Let (u,v) € &, with (u,v) = 6T (u,v). For any t € [0, 7], we have

u(t) =0T, (u7 U)(t)v U(ﬁ) = 97’2(”7”)(75)

Then
T Ta*’YlJrl'u TOt*’Y2+1(1 _‘u)
) < (ko+k k
+lu ||{ TP 1 TP\ 1]
MN(a—p+1) AMT(a—B—7+1)

+

T P24 (1 - p)|A — 1|} sl T
)\Alf(a — /6 — Y2 —+ ].) Al
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and

T N T51+a1+1‘ul
)\1F(C¥1 + ].) )\1A2F(51 + a1+ 1)

<
—~
~~
=
VAN

(o + v lull 4 v2lv]])

N T52+a1+1(1 — Hl) N ” || |: Tal—ﬁlp\l _ 1|
v .
MAST (82 + ;g +1) MIl(aq = B +1)
N T51+a1’ﬁ1+1u1|)\1—1| T‘52+‘11*ﬁ1+1(1—u1)|)\1—1| |53\T
)\1A2F(51 + oy — B+ 1) )\1A2F(52 + a1 — B+ 1) Ao ’

Hence we have
[ull < Mi(ko + kallull + kallvl]) + Nuf[ull + |vs|T'/A4

and
[v]l < Ma(vo + vallull + val[v]]) + Naflv|| + |d5|T/ Az,

which imply that

bl + lloll - = (Mo + Mavo + Irs|T/ A1 +183IT/As )
+(Myiky + Ny + Movy)|lull + (Mikg + Mava + No)|lv]|.

Consequently,

Miko + Mavo + |v3|T/ A1 + 03T/ Az
M, ’
for any t € [0,T], where My is defined by (16), which proves that £ is bounded. Thus, by Lemma 3.1,

the operator 7 has at least one fixed point. Hence the boundary value problem (2)-(3) has at least one
solution. The proof is complete. O

I, )| <

In the second result, we prove existence and uniqueness of solutions of the boundary value problem
(2)-(3) via Banach’s contraction principle.

Theorem 3.3 Assume that (Hy) holds. In addition, assume that
Ml(ml + mz) + N1 + Mg(nl + TLQ) + Ny < 1,

where My, N1, My and Ny are given by (12) and (15), respectively. Then the system (2)-(3) has a
unique solution on J.

Proof. Define sup,¢; f(t,0,0) = Fy < oo and sup,c; g(t,0,0) = Gy < oo such that

,s> N1 My + NoMs + |v3|T/ Ay + |63]T/Ag
= 1= My(my +mg) — Ma(n1 +n2) — (N1 + Na)'

We show that 7B, C B,, where B, = {(u,v) € X xY :|(u,v)|| < r}.
For (u,v) € B,, we have

u,v M g —_ 5 a—(B— uls s
Twn)O < sz | =97 lule)ld
1 g a—1
@) /0 (T = 5)° Y| (s, u(s), v(s)) — £(5,0,0)| + |f(s,0,0)[|ds

£ M ’ — 3 a—0F—y1—1 uls s
+A1 <|73+)\F(aﬁfyl)/o (T —s) lu(s)|d
1 r I
X a—) /0 (T' =) [1£(s,u(s),v(s)) = f(5,0,0)| + | f(s,0,0)[Jds
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(1 _H)|/\_ 1| T — s a—fB—y2—1 w(s)|ds

I—p T a=v2=17| f(s. uls). v(s)) — f(s 5 .
+m/0 (T~ s) [1£(s,u(s), v(s)) f<,o>|+|f<,o,o>|1d>

T Toz—’n—i—llu Ta—’Yz-‘rl(l _ U)
+ +
)\F(OZ —+ ].) )\Al].—‘(Oé -7 + ].) )\Alf(a — Y2 + 1)
T PIN—1] To=B=mnHly I\ — 1]
+z|l - + — 3
A(a—B+1) M T(a—B-m+1)
TP (1 — p) A — 1I} |ys| T~
)\AlF(a - ﬂ — Y2 + 1) A1

Mi[(mq + ma)r + Fol + Nir + |y3|T /A

IN

(ma[lull + mallv]| + Fo)

+

IN

Hence
|77 (u, v)|| < Mi[(m1 + mao)r + Fol + Nir + |y3|T/As.

In the same way, we can obtain that

172 (u, v)|| < Ma[(n1 + n2)r + Go] + Nar + (03| T/ Aa.

Consequently, |T'(u,v)| < 7.
Now for (ug,v2), (u1,v1) € X x Y, and for any ¢ € [0, ], we get

T3 (uz, 02) () — T (u, 02) (1)

5 M/{) (T =) Hua(s) = ur(s)lds
1 T
5 =T s a(s) ()  Fsvn 5). a5
Ta—l /L|>\—1| T _Saiﬁi’hilu $) — i (s s
Y <AP(O‘—5—%)/0 (T=5) |ua(s) — ua(s)ld
T
+m/o (T — s)* "1 f(s,ua(s), va(s)) — f(s,u1(s),v1(s))|ds
1 S
+m/o (T = )* 777 fua(s) = wa(s)lds
— T
+ﬁ/o (T—S)a—’y2—1|f(5,Uz(S)a’Uz(S))—f(s7u1(3)71;1(3))|d5>
< (mallus |+ malles — )| 5 T

Mo+l | MiT(a—7 1)
To=v+1(1 — p)
)\AlF(a — Y2 + 1)
A EEE]
)\All_‘(Oé — ﬂ — Y2 + 1)

T PN —1] N To= Pty I\ —1|
AM(a=pB+1)  MT(a-F-m+1)

T lluz — [

+

< My[(malluz — ur | +mallve —vi|]) + Niflug — w1 |
< Mi(my +ma)[|luz — ur + [Jve — vi|])] + Nuf[|ug — us|| + [Jva — v1 ]
< [My(my +ma) + Nil[lluz — wa ]| + [lvz — vill],

and consequently we obtain

171 (u2, v2) = Ta(ur, v1)|| < [Mi(ma +ma) + Nil[[Jug — w]| + [lvz = va]]- (17)
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Similarly,
72 (uz, v2) — Ta(ur,v1)|| < [Ma(n1 + nz2) + No|[lluz — us]| + [lvz — vi|]. (18)

It follows from (17) and (18) that
17 (uz,v2) =T (u1,v1)|| < [Mi(my1 +ma) + N1+ Ma(ny + na) + NoJ([Juz — ui || + [lva — v1]]).

Since Mj(my + ma) + N1 + Ma(ny + n2) + Na < 1, therefore, 7 is a contraction operator. So, By
Banach’s fixed point theorem, the operator 7 has a unique fixed point, which is the unique solution of
problem (2)-(3). This completes the proof. O

Example 3.4 Consider the following coupled system of fractional differential equations with multiple
orders of fractional derivatives and integrals boundary conditions of the form

33 5 t 1 |z(2)] y2(t)
D29/1o D16/1o t) = - 2
(38 38 =) = t+1 3 4 10(1+ [y(1)])’ relossl
24 3 o(t) t ly(@)|
DL9/13 Dis/13 _ lz(t)] 4 = 2
(27 + o0 y(t) = Vi+3+ e +gtan™ (=7 ), t€[0,3/2],

(19)

9 3\ 7 3\ 1
_ 7D8/15 e 7D11/15 et _ -
#(0)=0 % “\3) "1 \2) 73

2 3 3 . 3 2
= ) SVET e 232y (2) = 2.
y(0) =0, 1%y <2> + ey 5 =

Here \ = 33/38, a = 29/15, 8 = 16/15, T = 3/2, \; = 24/27, a; = 19/13, B, = 15/13, p = 9/16,
v = 8/15, vo = 11/15, v3 = 1/3, uy = 2/5, & = 1/2, §3 = 3/2, 63 = 2/7. From all constants,
we can compute that A; = 1.307202573, Ay = 1.050302214. M; = 3.248792650, N1 = 0.4373542422,
My = 2.869543745 and Ny = 0.3962406719. Clearly,

t |z| y?
t = — o 1001 - 1)
|£(t,2. )] ‘t+1+3s (4)+1o<1+y|>

and

t
lglt.y)| = ‘m+ 2 4 Lo ('Z)’

<
V2
Setting ko = 3/5, k1 = 1/12, ky = 1/10, vy = 3/+/2, v1 = 1/10 and v, = 1/12, we have
Miki + Msvy + Np = 0.9950413375 <1 and Mk + Movs + Ny = 0.9602485823 < 1.

Therefore, by applying Theorem 3.2, the boundary value problem (19) has at least one solution on
[0,3/2].

Example 3.5 Consider the following coupled system of fractional differential equations with multiple
orders of fractional derivatives and integrals boundary conditions of the form

49 1779 10/9 _t+1 lz(t)e”"
(55074 gy w0 = 5 (1+|x(>\>

L1

§ sin |y(t)| cos 2nt, t € [0,1/2],
41 5 t ()] 1 -|—2|y
—D¥7T 4 — D87 y(t) = = + tan? - te0,1/2
(35027 + 20 Yy = 4= () 4 L (VIOLZWON) - gy, "
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Here A = 49/53, a = 17/9, 8 =10/9, T = 1/2, \y = 41/46, oy = 13/7, 31 =8/7, pn =13/31, 1 =5/9,
Y2 = 4/9? V3 = 3/47 H1 = 6/11a 61 = 5/27 52 = 7/27 63 = 2/37 f(t,l‘,y) = ((t+ 1)/2) + ((“T|67t )/(2(1 +
[21)))+ ((sin |y cos 2t)/(3)) and g(t, z, ) = (/4)+tan~(j2]/3) + (4 +2ly])/(8(1+|y]))). From above
information, we can calculate that A; = 0.7921804090, A, = 0.004528637717. M; = 0.3706636539,
N1 = 0.09832444532, My = 0.4209829845 and N, = 0.1927580748. It is easy to see that

and

1 1
|f(t,1‘,y) —f(t,’U,,U)| < §‘$—U| =+ §|y—?]|,

1 1
|g(t,1‘,y) —g(t,u,v)| < §|1‘—’U;| + Z‘y_v|

Putting my = 1/2, mg = 1/3, n; = 1/3 and ngy = 1/4, we deduce that

Ml(ml + mg) + Ny + Mg(nl + ’I’LQ) + Ny = 0.8455423059 < 1.

Hence, by using Theorem 3.3, the boundary value problem (20) has a unique solution on [0,1/2].
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Abstract

In this paper, we introduce a new kind of nonlocal nonlinear flux type integral boundary con-
ditions and discuss the existence and uniqueness of solutions for a coupled system of fractional
differential equations supplemented with these conditions. We apply Leray-Schauder’s alternative
and Banach’s contraction mapping principle to obtain the desired results. An illustrative example is
also included. Our results are new and enrich the existing material on coupled systems of fractional
differential equations equipped with integral boundary conditions.

Key words and phrases: Fractional differential systems; nonlocal boundary conditions; integral
boundary conditions; fixed point theorem
AMS (MOS) Subject Classifications: 34A08, 34B15.

1 Introduction

Fractional differential equations appear in the mathematical modeling of several systems and processes
occurring in many branches of applied sciences such as blood flow phenomena, control theory, signal and
image processing, reaction-diffusion models, aerodynamics, electrodynamics of complex medium, poly-
mer rheology, etc. [1]-[4]. Fractional order differential equations are also found to be of great support in
describing the hereditary properties of various materials and processes. With this advantage, fractional-
order models have become more realistic and practical than the corresponding classical integer-order
models. Fractional-order boundary value problems involving a variety of classical, nonlocal and integral
boundary conditions have been addressed by many authors, for instance, see [5]-[10] and the references
cited therein.

Coupled systems of fractional-order differential equations also constitute an interesting and impor-
tant field of research in view of their applications in many real world problems such as anomalous
diffusion [11], disease models [12]-[15], ecological models [16], synchronization of chaotic systems [17]-
[19], etc. For some theoretical works on coupled systems of fractional-order differential equations, we
refer the reader to a series of papers [20]-[24].

The integral boundary conditions provide a descent approach to relax the limitation of circular
cross-section of blood vessels with an arbitrary shaped cross-section of such vessels in the study of
blood flow problems [25] and model the problem of bacterial self-organization [26]. Recently, in [27, 28],
the authors investigated fractional-order differential inclusions and equations with nonlocal nonlinear
flux type integral boundary conditions.

In this paper, we consider a more generalized version of flux type integral boundary conditions
and develop the existence criteria for a coupled system of Caputo type fractional differential equations
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equipped with these new conditions. Precisely, we investigate the following coupled system of Caputo
type fractional differential equations

“Dia(t) = f(t,a(t),y(t), te(0.1], 1<q<2,
{cmya)—h(t,x(w,y(t)), telo,1], 1<p<2,

supplemented with the nonlocal nonlinear flux type integral boundary conditions:

(1)

3 1
2'(0) = a/o 2/ (s)ds, z(1) = 6/0 g(2'(s))ds, 0<E<1,
9 1 (2)
v = [ sy = [ oW (s)ds 0<0<1,

where ¢D?.,¢ DP denote the Caputo fractional derivatives of order ¢ and p respectively, f,h: [0,1] x R x
R — R, g : R — R are appropriately chosen functions, and «, 3, a1, 81 are real constants.

The objective of the present paper is to enhance the theoretical treatment of coupled systems
further by considering a new boundary value problem of coupled fractional-order differential equations
supplemented with nonlocal nonlinear flux type integral boundary conditions. The paper is organized
as follows. In Section 2, we recall some basic definitions of fractional calculus and present an auxiliary
lemma. The main results are presented in Section 3. We give two results: the first one derives the
existence of solutions via Leray-Schauder’s alternative, whereas the second one concerning existence and
uniqueness of solutions is established by Banach’s contraction principle. We also discuss an example
for illustration of the existence-uniqueness result.

2 Preliminaries

Before presenting an auxiliary lemma, we recall some basic definitions of fractional calculus [3, 2].

Definition 2.1 For (n—1)—times absolutely continuous function y : [0,00) — R, the Caputo derivative
of fractional order q is defined as

1 t
)/(ts)"qu(")(S)dS, n—1l<g<nn=lg+1,

DIy (t) = =

where [q] denotes the integer part of the real number q.

Definition 2.2 The Riemann-Liouville fractional integral of order q is defined as

1t = g [ gt >0

provided the integral exists.
To define the solution for the problem (1)-(2), we use the following lemma.
Lemma 2.3 Let o # 1. For ¢ € C([0,1],R), the linear problem consisting by the equation
‘Dix(t)=o¢(t), te€][0,1], 1<qg<2, (3)

supplemented with the boundary conditions

3 1
2'(0) = 04/0 ' (s)ds, w(1)= B/O g(2'(s))ds, 0<E<1, (4)

is equivalent to the integral equation

(1) —/t“s)q_ldx Jds + 1:2// S‘qT_l <>d¢ds—/01“;(‘°‘q);_l¢<s>ds

IRy R
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Proof. It is well known that the general solution of the fractional differential equation (3) can be

written as
(t) = co + t+/t Unb) i
z(t) =co+ 1 -
0 F(Q)

where ¢g,c; € R are arbitrary constants. Using the boundary conditions (4) in (6), we find that

co = ﬁ/ (/OS S_qT_)l) o(r dT+1—a§// q—l )deS)ds
_[;((q31)¢(d ‘1_a5/;/’ S otnars

¢(s)ds, (6)

and 2
s—T1)1"
drds.
“ 1—a5// T A
Substituting the values of ¢g, ¢ in (6), we get (5). The converse follows by direct computation. This
completes the proof. O

3 Main Results

Let us introduce the space X = {u(t)|u(t) € C([0,1],R)} endowed with the norm ||u|| = sup{|u(¢)|,t €
[0,1]}. Obviously (X, || - ||) is a Banach space. Also Y = {v(t)|v(t) € C([0,1],R)} endowed with the
norm ||v|| = sup{|v(t)|,t € [0,1]} is a Banach space. Then the product space (X x Y, ||(u,v)]|) is also a

Banach space equipped with norm ||(u, v)|| = |lul| + ||v].
In view of Lemma 2.3, we define the operator T : X xY — X xY by T'(u,v)(t) = 1w, 0)(1) ,
Ty (u,v)(t)
where

Ti(u,v)(t) = /o“I“;;;_f<S7U(S)7U(S)) 16;2// Sjliql f(r,u(r),v(r))drds

_[fa=9rt ) e
A g ) ci+ﬂ/" (A T [l v

1—a§/ / : _qT_l TvU(T),U(T))des> ds,

and

— S)pfl

To(u,v)(t) = /O(tr(mh(s,u(s),v(s)) alt_l // h(r,u(T),v(r))drds

1—0&19

Y L ) M .
/0 ) h(,(),())d+51/0 (/0 F(p_l)h(,(),())d

aq O 15 (s—r)p2
+1—7a16‘/0 /0 ]."(p—l)h(T’u(T)’U(T))des>ds’ a0 # 1.

Let us introduce the following hypotheses which are used hereafter.

(Hy) Assume that there exist real constants k;, A; > 0 (i = 1,2) and kg > 0,A9 > 0 such that
Vz; € R, (i =1,2) we have

|f(t,l‘1,.132)‘ <ko+ k1‘$1| + k‘2|$2|7 ‘h(t,x1,$2)| < )Xo+ /\1|.2?1| + /\2|.2?2|.

(Ha) [g(v)] < |v], YveR.

1306 Bashir Ahmad et al 1304-1312



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

B. AHMAD, S. K. NTOUYAS AND A. ALSAEDI

(H3) Assume that f,h : [0,1]xR? — R are continuous functions and there exist constants m;, n;,i = 1,2
such that for all t € [0,1] and u;,v; € R,i = 1,2,

|f(t,u, uz) — f(t,v1,v2)| < mylug —v1| +malug — vy

and
|h(t, w1, u2) — h(t,v1,v2)| < nilug — v1| + nofus — val.

For the sake of convenience, we set

1 a7 8] |af
M, = 2 1 7
: r<q+1>< +I1a€|>+F(q+2)<q+ +I1a£|>’ g
o o 67 18] -
SRSy (” |1—a19> D) <p“+ i —ale|>’ )
and
MO = min{l — (Mlkl + Mg)\l), 1-— (Mlk‘g + MQ)\2)}7 ki, )\1 Z 0 (Z = 1,2). (9)

The first result is based on Leray-Schauder alternative.

Lemma 3.1 (Leray-Schauder alternative) ([29] p. 4.) Let F : E — E be a completely continuous
operator (i.e., a map that restricted to any bounded set in E is compact). Let

E(F)={x € E:x=M\F(z) for some0 <\ <1}
Then either the set E(F) is unbounded, or F' has at least one fized point.
Theorem 3.2 Assume that (Hy ), (Hz) hold. In addition it is assumed that
Miky + MaAy <1 and Miks + Mads < 1,

where My and My are given by (7) and (8) respectively. Then the system (1)-(2) has at least one
solution.

Proof. First we show that the operator T': X x Y — X x Y is completely continuous. By continuity
of functions f, h and g, the operator T is continuous.
Let © C X XY be bounded. Then there exist positive constants Ly and Ly such that

|f(t, u(t),v(t)] < L1, |h(t,u(t),v(t)] < Lo, V(u,v) € Q.

Then for any (u,v) € Q, we have

ool < [ C ot + WD o), o aras

1 (1—8)‘171 )q 2
R R (/ ) o)l

|1—as\/ / q—l (T,u(T),U(T))deS>d8
1 | E o
LI{F(q+1) <2+ |1a§> +F(Q+2) <q+1+ 1a€|>}7

which implies that
1 s 18] o]
Ty(u,0)| < L 2+ + +1+ = LiM.
[T (u, v) || < 1{r(q+1)< |1_a5|> T(g+2)\? 11— af] o
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Similarly, we get

1 1|67 |51 o1
Ty(u,0)|| < L 2 14 9 VU,
I1T2(u, v} < 2{F(p+l)< +1—010|>+F(P+2) P T a

Thus, it follows from the above inequalities that the operator T' is uniformly bounded.

Next, we show that T is equicontinuous. Let ¢1,t5 € [0,1] with ¢; < t2. Then we have

1 (u(t2), v(t2)) = Ti(u(ts), v(tr))|

tz 1 tl
< — t —sqflds——/ t; — 8)7 Luds
{‘ / z—) T Jy 177
|O£||t2—t1|// S—’T deS
11—« T(g—1)

RN Cetass L [ g lalle =t g
SL{W@AK“ g [ d+|uﬂarmuﬁ

Ly |affts —t:| &7
——[2(t2 — 1)+ [t — 1| + L .
rEsT R e
Analogously, we can obtain
Lo |011||f2 - t1| or
To(u(t to)) — To(u(t )| < =——2@2—t1)P +th -t ]+ L :
T (u(t2), v(t2)) — Ta(u(t1),v(t1))| < P(p+1)[ (ta —t1)" +[t5 — t][] + L2 T—a0) Tp+D)

Therefore, the operator T'(u,v) is equicontinuous, and thus the operator T'(u, v) is completely continu-

ous.
Finally, it will be verified that the set £ = {(u,v) € X xY|(u,v) = AT (u,v),0 < A < 1} is bounded.
Let (u,v) € &, with (u,v) = AT (u,v). For any ¢ € [0, 1], we have

u(t) = M1 (u,v)(t), v(t) = ATa(u,v)(t).
Then

1 [lISs |8l o

and

1 |y |0P |1B1] v |
lu(t)] < {F(p+1) <2+ 1 _a19|> + T+ 2) <P+1+ = |>}(>\o+)\1l|u|| + Azlfvl]).

Hence we have

[ull < Mi(ko + ku[lull + k2llvl)), llv]l < M2(Ao + Arlull + Azfjv]]),
which imply that
[ull + [Jo]] = (Miko + MaAo) + (Miky + MaAy)|ull + (Miks + MaAs)||v]].
Consequently,
Miko + Moo
My
for any ¢t € [0,1], where My is defined by (9), which proves that £ is bounded. Thus, by Lemma 3.1,

the operator T has at least one fixed point. Hence the boundary value problem (1)-(2) has at least one
solution. The proof is complete. O

[, )] <

In the second result, we prove existence and uniqueness of solutions of the boundary value problem
(1)-(2) via Banach’s contraction principle.
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Theorem 3.3 Assume that (Hz), (Hs) hold. In addition, assume that

Mi(my +m2) + Ma(ny +n2) <1,
where My and My are given by (7) and (8) respectively. Then the system (1)-(2) has a unique solution.
Proof. Define sup,¢jg q; f(¢,0,0) = N1 < oo and sup,¢(g,1) 9(¢,0,0) = N2 < oo such that

> N1 My + NoM,
= 1= My(mq +mg) — Ma(ny +n2)’

We show that T'B, C B,, where B, = {(u,v) € X xY : ||(u,v)|| < r}. For (u,v) € B,, we have

ool < [ R uteh o) - 160,04 1£(2.0,0))ds

o
o

(1—s)1t
+/ g (s uls)v(s)) = £(,0.0)[+1£(2,0,0))ds

— ) — T
+\/3|/ (/ )<|f<m<> o(r)) — F(£,0,0)] + |£(t,0.0))d

|| AA (s — 7)1~ If(T,u(T)w(T))—f(t,0,0)|+|f(t,0,0)|)d7—ds>ds

// S_qT—l (If(m,u(r), v(7)) = f(£,0,0)| + | f(¢,0,0)])drds

\1—a£| T(¢g—1)

IN

LI €9 Lt
Lig+1) [1-aT(¢g+1) T(g+1)

1 e
+ﬁ|<r(q+ S aﬂr(qm) }<m1|u|| Fmalle] + )

= Ml[(ml +m2)T+N1].

Hence
T3 (u, v)(@)|| < Mi[(ma 4+ me)r + Ni].

In the same way, we can obtain that
T2 (u, v)(t)|| < Ma[(ny + na)r + Noj.

Consequently, ||T(u,v)(t)]| < r.
Now for (ug,v2), (u1,v1) € X x Y, and for any ¢ € [0, ¢], we get

|T' (w2, v2)(t) — T1(ug,v1)(t)]

(
/o (t_sq))q |f(s,uz(s),v2(5)) — f(s,u1(s),v1(s))|ds

IN

|af
1 — af] / / I'(q — 1 F(roua(7),v2(7)) — [f(7,u1(7), v1(7))|dTds
L — f(s,u1(s),v1(8))|ds
+/ WU(S ,u2(8),v2(8)) — f(s,u1(s),v1(s))|d

! S (s —71)12
+18) [ g< / (F_)l)f(s,uz<s>,u2<s>>—f<s7u1<s>,v1<s>>|d7

o]
MrE=rY

/ / q—l ‘f s, u2(s), va(s)) f(Svul(S),vl(S)ﬂdes)ds
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| oler 1
P(g+1) [1—-agl(g+1) T(g+1)
1 o]
+ +
'5<rm+1> 1= adll(g+2)
= Mi(ma|lug — ur]l + mallve — v1l])
< Mi(my +me)([lug —ur] + [Jva —v1]),

) }(m1u2 — ug|| + mallva — v1]|)

and consequently we obtain

|71 (w2, v2)(t) — T1(ur,v1)|| < Mi(ma + ma)(flug — sl + [[ve — v1l]). (10)

Similarly,
(T2 (u2,v2)(t) — Ta(ur, v1)|| < Ma(ny +n2)([lug — wal| + [[va — v1l])- (11)

It follows from (10) and (11) that
[T (u2,v2)(t) = T'(ur,v1)@)[| < [M1(m1 + ma) + Ma(n1 + n2)](fluz — wi]| + [lvz — va]]).
Since Mi(mq + msg) + Ma(ny + na) < 1, therefore, T is a contraction operator. So, By Banach’s fixed

point theorem, the operator T has a unique fixed point, which is the unique solution of problem (1)-(2).
This completes the proof. O

Example. Consider the following system of fractional boundary value problem

1 |z (t)] 1.
CD3/2 — 1 T 2 1
x(t) 221+ [2(D)] +1+ 35 S0 y(t), telo,1],
- [ ly(®)| 1
cD¥2y(t) = — sin(2mx(t)) + — 2 4+ = t€[0,1
v = go sinCre ) + gy T2 0
1 3 1 /! (12)
O =5 [ s s =3 [ g s)as
0 0
4 /4 3 1
O =5 [y s =7 [ awsnas
b 0 4 0
>
Hereq:p:3/2,a:1/2’ a1:4/5,€:1/379:1/4, /6:1/3, ﬁ1:3/4ag(v):{ 1\]/25’ {Zizia
_ 1 |u Loy 1 Bl 1
flt,u,v) = ETIER +1+ 35 S0, and h(t,u,v) = 39, sin(2mu) + 1601 + [o] + 5" With the

given data, we find that M; ~ 1.9027815, M, =~ 1.6365646. Note that |f(¢,u1,us) — f(t,v1,v2)] <
1 1 1
175'“1 —ug| + E|Ul — v, [g(t, u1,uz) — g(t,v1,v2)| < Tﬁ\ul — ug| + T6|U1 — vg|, and M;(m1 4+ ma) +

Ms(nq1 + ng) & 0.4424181 < 1. Thus all the conditions of Theorem 3.3 are satisfied and consequently,
its conclusion applies to the problem (12).

4 Conclusions

We have obtained the existence criteria for the solutions of a coupled system of nonlinear Caputo
type fractional differential equations equipped with a new kind of nonlocal nonlinear flux type integral
boundary conditions. Our results are new in the sense of introduced integral boundary conditions (2)
and contribute to the theory of coupled systems of fractional differential equations.
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Abstract

The aim of this paper is to introduce a new non-convex hybrid algorithm for a
family of countable quasi-Lipschitz mappings. We establish strong convergence theo-
rems of common fixed points for a uniformly closed asymptotically family of countable
quasi-Lipschitz mappings in a Hilbert space.
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1 Introduction

Fixed point theory of special mappings like nonexpansive, asymptotically nonexpansive,
contractive and other mappings is an active area of interest and finds applications in many
related fields like image recovery, signal processing and geometry of objects [13]. From time
to time, some versions of theorems relating to fixed points of functions of special nature
keep on appearing in almost in all branches of mathematics. Consequently, we apply them
in industry, toy making, finance, aircrafts and manufacturing of new model cars. For
example, a fixed-point iteration scheme has been applied in intensity modulated radiation
therapy optimization to pre-compute dose-deposition coefficient matrix, see [12]. Because
of its vast range of applications almost in all directions, the research in it is moving rapidly

*Corresponding author
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and an immense literature is present currently. The construction of fixed point theorems
(for example, Banach fixed point theorem) which not only claim the existence of a fixed
point but yield an algorithm, too (in the Banach case fixed point iteration x, 11 = f(x,)).
Any equation that can be written as x = f(z) for some mapping f that is contracting
with respect to some (complete) metric will provide such a fixed point iteration. Mann’s
iteration method was the stepping stone in this regard and is invariably used in most of
the occasions, see [4]. But it only ensures weak convergence, see [2] but more often then
not, we require strong convergence in many real world problems relating to Hilbert spaces,
see [1]. So mathematician are in search for the modifications of the Mann’s process to
control and ensure the strong convergence (see [2,3,5-9,11] and references therein).

Most probably the first noticeable modification of Mann’s Iteration process was pro-
posed by Nakajo and Takahashi [9] in 2003. They introduced this modification for only
one nonexpansive mapping in a Hilbert space, where Kim and Xu [5] introduced a mod-
ification for asymptotically nonexpansive mappings in the Hilbert space in 2006. In the
same year Martinez-Yanes ad Xu [7] introduced a modification of the Ishikawa iteration
process for a nonexpansive mapping for a Hilbert space. They also gave modification of
the Halpern iteration method in a Hilbert space. Su and Qin [11] gave a monotone hybrid
iteration process for nonexpansive mappings in a Hilbert space. Liu et al. [6] gave a novel
iteration method for a finite family of quasi-asymptotically pseudo-contractive mappings
in a Hilbert space.

Let H be a Hilbert space and C' be a nonempty closed and convex subset of H. Let
P.(-) be the metric projection onto C. A mapping T : C' — C' is said to be nonexpensive if
|ITz—Ty| < |lx—y| forall z,y € C. Denote by F(T') the set of fixed points of T'. It is well
known that F(T') is closed and convex. A mapping 7" : C' — C is said to be quasi-Lipschitz
if F(T) # (0 and |[Tz —p| < L|jz — p| for all z € C, p € F(T), where 1 < L < o0 is a
constant. If L = 1, then T is known as quasi-nonexpansive. It is well-known that T is said
to be closed if z,, — = and ||Tx,, — z,|| — 0 as n — oo implies Tx = z. T is said to be
weak closed if z,, = x and | Tz, — z,|| — 0 as for n — oo implies Tx = x. It is admitted
fact that a mapping which is weak closed should be closed but converse is no longer true.

Let {T},} be a sequence of mappings from C into itself with a nonempty common fixed
points set F. Then {T,,} is said to be uniformly closed if for any convergent sequences
{zn} C C with conditions || Tz, — zn|| — 0 as n — oo, the limit of {z,} belongs to F.

In 1953 Mann [4] proposed an iterative scheme given as

Tpt1 = (1 —ap)zy + @ T(x,), n=0,1,2,....
Guan et al. [3] established the following non-convex hybrid iteration algorithm corre-
sponding to Mann iterative scheme:
xg € C' =(Qp, choosen arbitrarily,
Yn = (1 —an)zn + apThzn, n>0,
Co={2€C:|lyn— 2| <1+ (Lpn — Da)||xn — 2| N4, n >0,
Qn={2€Qn-1:{xrp—2,20—2,) >0}, n>1,

Tp4+1 = Pmcann!EO-

They also established non-convex hybrid iteration algorithms and proved some strong
convergence results relating to common fixed points for a uniformly closed asymptotically
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family of countable quasi-Lipschitz mappings in a Hilbert space. They applied their results
for the finite case to obtain fixed points. In this article we established a kind of non-
convex hybrid iteration algorithm concerning S P-iterative process [10] and proves strong
convergence theorems of common fixed points for a uniformly closed asymptotically family
of countable quasi-Lipschitz mappings in a Hilbert space. We also present an application
of our algorithm.

2 Main results

In this section we formulate our main results.

Definition 2.1. Let C be a closed convex subset of a Hilbert space H, and Let {7},} be
a family of countable quasi-L,-Lipschitz mappings from C into itself. {T},} is said to be
asymptotically if lim,,_,~ L, = 1.

The following lemmas is well known.

Proposition 2.2. Let C be a closed convex subset of a Hilbert space H. For x € H and
z € C, z = Pox if and only if we have (x — z,z —y) > 0 for all y € C.

Proposition 2.3. Let C be a closed convexr subset of a Hilbert space H. For any given
xg € H, we have p = Poxg if and only if (p — z,29 — p) > 0 for all z € C.

Proposition 2.4. ([3]) Let C be a closed convex subset of a Hilbert space H and let {T,}
be a uniformly closed asymptotically family of countable quasi-L,,-Lipschitz mappings from
C into itself. Then the common fized point set F is closed and convex.

Theorem 2.5. Let C be a closed convex subset of a Hilbert space H, and let {T,} : C — C
be a uniformly closed asymptotically family of countable quasi-L,,-Lipschitz mappings from
C into itself. Assume that o, € (0,1] and Bn,yn € [0,1] for all n € N. Then {z,}
generated by

xg € C = Qq, choosen arbitrarily,
Yn = (1 —an)zn + anThzn, n >0,
zn = (1= Bp)tn + BnTatn, n >0,
thn = (1 —vn)zn + WTnxn, n>0,
Cpn={2€C:|yn —2[| <[1+ Ln(an + Bn + v — 2000y
—200Yn — 2BnVn + 30 Bnyn) + L2 (nfn + anyn
+Bnyn — 3anBnn) + anﬁn'ynLgL —an — Bn—Tn
+nfn + anYn + Bn¥n — anBuYnlllzn — 2} N A, n >0,
Qn={2€Qn-1:{(rn—2z,20—x,) >0}, n>1,

Tpt+l = Pmcann!EOa

converges strongly to Prxg, where coC, denotes the closed convex closure of C,, for all
n>1and A={z€ H :|z— Prxg| <1}.
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Proof. We give our proof in following steps.
STEP 1. We know that ¢oC,, and @),, are closed and convex for all n > 0. Next, we
show that F'N A C ¢oC),, for all n > 0. Indeed, for each p € F' N A, we have

lyn —pll = I(1 — an)2n + anThzn — p|
= [[(1 = an)((1 = Bn)tn + BnTatn) + anTn((1 — Ba)tn + BnTntyn) — pl|
= [|(1 — o) (1 = B)[(1 = w)zn + ¥nTnzn] + BuTn[(1 — Yn)Tn + 1nTnan])
+ anTn((1 = Bp)[(1 = ) zn + YnTnzn] + BuTn[(1 — Yn)zn + ynThan]) — pl
= H(l —ap — Bpn — Y + @B + anyn + Buvn — O‘nﬁn'yn)(‘ﬁn - p)
+ (an + Bn + 0 — 20080 — 20070 — 280V + 300 Bnyn) (Tnxn — p)
+ (anBn + anyn + Bayn — 3O‘nﬁn7n)(T5$n -p)+ anﬁn'yn(Tg"En -p)ll
< (1= an = Bn— v+ anbn + anyn + Bavn — anBuvn) |Tn — 1|l
+ (an + Bn + Yo — 20080 — 200n — 26nVn + 3anBnyn) Lallzn — pl|
+ (anBn + anyn + Bavn — 3anﬁn7n)L$L”$n —pll+ anﬁn'ynLiH"En =7l
=1+ Lyp(an + Bn + Yn — 20080 — 2000 — 2BnYn + 300 BnYn)
+ Li(anﬁn + anYn + Bnvn — 30 Bnn) + anﬁn'ynLi
— an = Bn — Y+ Bn + anYn + Bu¥n — anBunlllTn — Dl

and p € A, so p € C,, which implies that FNA C C, for all n > 0. therefore, FNA C ¢coC,
for all n > 0.

STEP 2. We show that FN A C ¢oC,, N @, for all n > 0. it suffices to show that
FNACQ, for all n > 0. We prove this by mathematical induction. For n = 0 we have
FNACC =g Assume that FNA C @Q,. Since x,1 is the projection of xy onto
coCyp, N @y, from Proposition 2.2, we have

(Tnt1 — 2, Tpg1 —x0) <0, Vz €eC,NQy,

as FN A C ¢coC, NQ,, the last inequality holds, in particular, for all z € £ N A. This
together with the definition of Q1 implies that F N A C @Q,11. Hence the FN A C
coCy, N Qy, holds for all n > 0.
STEP3. We prove {x,} is bounded. Since F' is a nonempty closed and convex subset of
C, there exists a unique element 2y € F' such that zg = Prxo. From z,+1 = Pec,nQ.0,
we have
[Znt1 — 2ol < ||z — @ol|

for every z € coCy, N Q. As 29 € FN A C coC, NQ,, we get
|21 — ol < [lz0 — o

for each n > 0. This implies that {z,,} is bounded.
STEP 4. We show that {z,,} converges strongly to a point of C' (we show that {x,} is
a Cauchy sequence). As z,41 = Psc,ng,.20 C @Qpn and x, = Pg,zo (Proposition 2.3), we
have
[#nt1 — zoll = [lzn — 2ol
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for every n > 0, which together with the boundedness of ||z, — (|| implies that there exists
the limit of ||z, —z¢||. On the other hand, from 4, € Q,, we have (x,—Tp1m, Tn—20) <
0 and hence
|Zntm — @nll® = | (@n4m — 20) — (20 — 20)|?
< ||Tntm — $0||2 —lzn — $0||2 — 2(ZTntm — Tn, Tn — To)
< ||Zntm — 5170||2 — |lzn — 5170||2
—0, n—o0
for any m > 1. Therefore {x,} is a cauchy sequence in C, then there exists a point ¢ € C
such that lim,, .., , = q.
STEP 5. We show that 3, — ¢ as n — oco. Let

Dy ={2€C:|lyn — 2|* < [lzn — 2l + (L = D)(Ly + D}
From the definition of D,,, we have
Dp={2€C:{yp—2,9yn — 2) < (xp — 2,20 — 2) + (L3 — 1)(L3 + 1)}
= {2 € O lynll® = 2(yn, 2) + [12[1” < ll2nll® = 2{2n, 2) + [|2]1* + (L7, = (L5, + 1)}
= {2 € C:2(zn —yn, 2) < [lzall® = llynll® + (L3 = (L3 + 1)}
This shows that D,, is convex and closed, n € ZT U {0}. Next, we want to prove that
Cn CDypyn>0.
In fact, for any z € C,,, we have
Ny — 2)|? < [1+ Lol + B + Yo — 20080 — 2007 — 260Yn + 30050 7n)
+ Li(anﬁn + anYn + Buyn — 30 Bnvn) + anﬁn'ynLi —ap — Bn— T
+ anfn + ann + Bnyn — anﬁn'yn]znfnn - z||2
= ||zn — z||2 + [2(Ln(an + Bn + Yo — 2008 — 2007 — 2BnYn + 30 BnYn)
+ Li(anﬁn + anVn + Bnyn — 30 Bnyn) + anﬁn'ynLi —an — Bn—Tn
+ anfn + anYn + Bn¥n — nBrYn)n + (Lu(an + Bn + 0 — 2008,
— 2000 — 2BnVn + 3anBavn) + Li(anﬁn + anVn + Bn¥n — 3 BaYn)
+ O‘nﬁn'ynLgL —ap — Bn — Y+ anBn + ann + Ban — O‘nﬁn'yn)z] |zn — z||2
<l = 2012 + 2025 = 1) + (L = 1|2 — 212
= |l — 21* + (L, = V(L + D)l — 2%
From
Cn={2€C |y, —2|| < [1+ Lp(an + Bn + 0 — 20000 — 2070 — 280 + 30060 Vn)

+ Li(anﬁn + anYn + ﬁn7n - 3O‘nﬁn7n) + anﬁn'ynLi — Qp — ﬁn —Yn + anﬁn
+ anVn + Bavn — anBuynlllTn — 2|} MA, 1 >0,

We have C,, C A, n > 0. Since A is convex, we also have ¢coC,, C A, n > 0. Consider
T, € coC,_1, we know that

lyn = 21l < llzn — 2I* + (L5 = (L5 + Dllwn — 2]
< lwn — 2l + (L5 = DLy +1).
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This implies that z € D,, and hence C,, C D,, n > 0. Sinnce D,, is convex, we have
co(Cy) C Dy, n > 0. Therefore

Hyn - $n+1||2 < ||$n - $n+1||2 + (Li - 1)(L§L + 1) —0

as n — oo. That is, y, — q as n — oo.
STEP 6. We show that ¢ € F. From the definition of y,,, we have

(an + ﬁn + Yo — QpYn — ﬁnlyn - anﬁn + anﬁn'yn)
+ (nYn + BuYn + anfBn — 200 Bnn) T + O‘nﬁn'VnTr%HTn:En — Tn|
= |yn — x| — 0

as n — oo. Since ay, € (a,1] C [0, 1], from the above limit we have

lim — oo|| Tz, — zp|| = 0.
n

Since {7, } is uniformly closed and x,, — ¢, we have ¢ € F..
STEP 7. We claim that ¢ = zp = Ppxg, if not, we have that ||zo — p|| > ||x0 — 20]|-
There must exist a positive integer N, if n > N, then ||xg—x,| > ||zo— 20|, which leads to

|20 = @n||® = ||20 — T + T, — T0]|?
= |lz0 — @nll® + [|zn — @ol|* + 2(20 — T, TH — @0)-

It follows that (29 — @, X, — x9) < 0 which implies that z2g€Q,, so that zp€F, this is a
contradiction. This completes the proof. O

In [3], we show an example of C,, which does not involve a convex subset.

Corollary 2.6. Let C be a closed convex subset of a Hilbert space H, and let T be a closed
quasi-nonezpansive mapping from C' into itself. Assume that o, € (0, 1] and By, v € [0, 1]
for alln € N. Then {x,} generated by

xo € C =Qo, choosen arbitrarily,

Yn = (1 —ap)zn + anTz,, n >0,

zn = (1= Bp)tn + BnTt,, n >0,

th =1 —v)xn + WTxn, n>0,
Co=42€C:|lyn—z|| <||lzn— 2|} N A, n >0,
Qn={2€Qn_1:{(xn—2,x0—1y) >0}, n>1,

Tni1 = Pe,ng,To,

converges strongly to Ppr)xo, where A= {z € H : ||z — Prxo| < 1}.

Proof. Take T, =T, L, = 1 in Theorem 2.5, in this case, C,, is convex and closed and ,
for all n > 0, by using Theorem 2.5, we obtain Corollary 2.6. U
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Corollary 2.7. Let C' be a closed conver subset of a Hilbert space H, and let T be a
nonexpansive mapping from C' into itself. Assume that o, € (0,1] and By, v, € [0,1] for
alln € N. Then {x,} generated by

xg € C =Qo, choosen arbitrarily,

Yn = (1 —ap)zn + anTz,, n >0,

zn = (1= Bp)tn + BnTt,, n >0,

th =1 —v)xn + WTxn, n>0,
Co=42€C:|lyn—z|| <||lzn— 2|} N A, n>0,

Qn={2€Qn_1:{(xrn—2,20—xy) >0}, n>1,

Tni1 = Pe,ng,To,

converges strongly to Ppr)xo, where A= {z € H : ||z — Prxo| < 1}.

3 Applications

Here, we give an application of our result for the following case of finite family of asymp-
totically quasi-nonexpansive mappings {7, n}g:_ol. Let

1T}z = p|| < kijlle —pll, VozeC peF,

where F' is the common fixed point set of {7}, } 0 and lim; o k;; = 1 forall 0 <4 <
N — 1. The finite family of asymptotically quasi-nonexpansive mappings {7, }n:0 is said
to be uniformly L-Lipschitz if

1Tz — T/y|l < Lijle —yll, Ve,yeC
foralli € {0,1,2,..., N —1}, j > 1, where L > 1.

Theorem 3.1. Let C be a closed convex subset of a Hilbert space H, and let {T, 2[:_01 :
C — C be a uniformly L-Lipschitz finite family of asymptotically quasi-nonexpansive
mappings with a nonempty common fized point set F'. Assume that o, € (0, 1] and By, vn €
[0,1] for alln € N. Then {x,} generated by

xg € C =Qq, choosen arbitrarily,

Yn = (1 — apn)zp + aan(%)zm n >0,

2n = (1= Bo)tn +ﬁnTj((§ )

tn = (1= Y)ZTn + Z((n))iﬁm n >0,

Cn={2€C :|lyn — 2| <1+ ki) j(n)(n + Brn + 0 — 2008,
=20 Yn — 2BnYn + 3anOnn) + k‘iz(n) i) (anﬁn + anYn
+BnYn — 30 Bnvn) + anﬁn'Vnk?(n) j(n) — —Bn—"n
+0nBn + anYn + Bn¥n — anBuYnlllTn — z||} NA, n>0,

Qn={2€Qn-1:{(rn—2z,20—2x,) >0}, n>1,

Tn+1 = Peo,no, o,
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converges strongly to Prxgy, where coC,, denotes the closed convex closure of C,, for all
n>1,n=_n)—1)N+i(n) foralln >0 and A={z € H : ||z — Ppxo| < 1}.

Proof. We can drive the prove from the following two conclusions.

Conclusion 1. {T, fLV:Bl 2o is a uniformly closed asymptotically family of countable

quasi- L,-Lipschitz mappings from C' into itself.

Conclusion 2. F = ﬂg:o F(T,) =M F(Ti%)), where F(T),) denotes the fixed point

set of the mappings T,. O

Corollary 3.2. Let C be a closed convex subset of a Hilbert space H, and letT : C' — C' be
a L-Lipschitz asymptotically quasi-nonexpansive mappings with nonempty common fixed
point set F. Assume that o, € (0,1] and Bn,yn € [0,1] for all n € N. Then {x,}
generated by

xg € C =Qq, choosen arbitrarily,
Yn = (1 —ap)zn + Tz, n >0,
zn = (1= Bp)tn + BnT"t,, n >0,
tn = (1 —yp)zn + T x,, n >0,
Cn={2€C:|yn —2[| <1+ kn(an + Bn + 0 — 2005,
—200Yn — 2BnYn + 30 Bnn) + k2 (B + anyn
+Bnyn — 3anBnvn) + anﬁn'ynkg —an —Bn—Tn
+nfn + anYn + Bn¥n — anBuYnlllzn — 2} N A, n >0,
Qn={2€Qn-1:{(rn—2z,20—2x,) >0}, n>1,

Tn+1 = Peo,no, o,

converges strongly to Prxgy, where coC,, denotes the closed convex closure of C,, for all
n>1and A={z€ H :|z— Prxg| <1}.

Proof. Take T;, =T in Theorem 3.1, we get the desired result. O
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Abstract

We generalize an intermixed algorithm to three and m-strict pseudo-contractions
in Hilbert spaces and show that this algorithm converges strongly to the fixed points
of three and m-strict pseudo-contractions in Hilbert spaces, independently. Conse-
quently, we can find the common fixed points of these mappings.
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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H with its inner product
(-,-) and norm || - ||. A mapping T : C' — C is said to be nonexpansive if

1Tz =Tyl < llz —yll

for all z,y € C. We use Fiz(T) to denote the set of fixed points of 7. A mapping
T : C — (' is said to be strictly pseudo-contractive if there exists a constant 0 < A < 1
such that

1Tz = Tyll* < |l =yl + M| = T)x — (I = T)y|?, Va,yeC.

It is well known that every strictly pseudo-contractive mapping is also nonexpansive
mapping but a nonexpansive mapping may not be pseudo-contractive mapping. For the

*Corresponding author
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rest of this article, we reserve C' to be a nonempty closed convex subset of a Hilbert space
H.

Iterative construction of fixed points is a celebrated idea in these days in the realm
of nonlinear mappings. 7' : C — C be a nonlinear mapping and {«,} be a real number
sequence in (0,1). For fixed z¢p € C arbitrarily, define a sequence {x,} by the following
manner

Tyl = QpTp + (1 - an)T$na n > 0. (1'1)

which is the Mann’s iteration scheme ([11]). If 7" is a nonexpansive mapping with Fiz(T') #
0 and {c, } satisfies the condition Y7 5 c,(1—ay,) = oo, then the sequence {x,, } generated
by Mann’s algorithm converges weakly to a fixed point of 7" ([14]). Now, it is a common fact
that, in infinite-dimensional Hilbert spaces, Mann’s algorithm fails to converge strongly

An active area of research today is to develop Iterative methods for nonexpansive
mappings; see [1-4,7-10,14-19] . But for strict pseudo-contraction mappings, iterative
methods are far less developed though Browder and Petryshyn [1] started this work in
1967. Because of some powerful applications, (see Scherzer [15]), we desired to create
algorithms for computation of the fixed points of strict pseudo-contraction mappings. As
Mann’s algorithm is too strong enough to approximate fixed points of pseudo-contractions,
we need to find other type of iterative algorithms, see [6,12,21]. The first attempt was
made by Ishikawa [9] with the following Ishikawa algorithm which can be viewed as a
double-step Mann’s algorithm.

{yn = (1 - ﬁn)fEn + BT xy,

Tn+l = (1 - Oln)fnn + anTyn, n >0,

where {a,} and {3,} are sequences in the interval [0, 1], T is a (nonlinear) self-mapping
of C, where xg € C arbitrarily. Ishikawa proved that his algorithm converges in norm to a
fixed point of a Lipschitz pseudo-contraction T if {a, } and {3, } satisfy certain conditions
and if T is compact.

In 2000, Noor [13] gave following three step Noor iterative scheme

Zn = (1 - 'Vn):En + 'VnT:Ena
Yn = (1 - ﬁn)fEn + ﬁnTZm
Tn+l = (1 - an)fnn + o, Tyn, n >0,

In [20], the following algorithm for two strict pseudo-contraction mappings S and 7' is
given which converges strongly.

Algorithm 1.1. For given xy € C, yg € C arbitrarily, let the sequences {z,} and {y,}
be generated iteratively by

Tn+l1l = (1 - ﬁn)fEn + ﬁnPC[anf(yn) + (1 — k- an)$n + kT:En]a n >0,
Ynt1 = (1= Bn)yn + BaPolang(xn) + (1 — k — an)yn + kSyn], n >0,

where {an} and {B,} are two real number sequences in (0,1).
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The quest for the answer of the question, can we develop an iterative algorithm which
strongly converges to fixed points of finite many strict pseudo-contractions? However
the answer of this problem is still not known. In this paper, Our main purpose is to
give a redundant intermixed algorithms for three and m-strict pseudo-contractions. It is
shown that the above said algorithm converges strongly to the fixed points of three and
m-strict pseudo-contractions, independently. As applications, we can find these common
fixed points in the settings of Hilbert spaces.

2 Preliminaries

The metric projection from H onto C is defined as: for each point z € H, Poz is the
unique point in C with the property:

|z — Pex|| < ||z —yll, yeC,
where P¢ is given by
Pox e C, (x— Pox,y— Pox) <0, yeC.

Consequently, P is nonexpansive. Following well-known lemmas will be important for
our results.

Lemma 2.1. ([12]) Let T : C — C be a A-strictly pseudo-contractive mapping. Then
I — T is demi-closed at 0, that is, if v, =z € C and x,, — Tx, — 0, then x = Tx.

Lemma 2.2. ([10]) Let {z,} and {y,} be bounded sequences in a Banach space E and
{Bn} be a sequence in [0,1] with 0 < liminf,, . G, < limsup,,_,o Bn < 1. Suppose that
Tnt1 = (L= Bp)xn + Brzn for all n > 0 and limsup,,_, . (|| znt1 — znll = [|Tn+1 — za||) < 0.
Then limy, .0 ||2n, — zn|| = 0.

Lemma 2.3. ([16]) Assume {a,} is a sequence of nonnegative real numbers such that
an+1 < (1=7n)an +900n, n > 0, where {v,} is a sequence in (0,1) and {6,} is a sequence
in R such that

(1) 22020 Y = 003

(i) Umsup,, o 0p <0 or D07 [0p7n| < 00.

Then lim,,_,o a, = 0.

3 Main results

Let C' be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C
be a A-strict pseudo-contraction. Let f : C — H be a pj-contraction, g : C' — H be a
po-contraction and h : C'— H be a ps-contraction. Let k € (0,1 — A) be a constant.

Now we give the following redundant intermixed algorithm for three strict pseudo-
contractions 17, Ty and T3.
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Algorithm 3.1. For given xy € C, yo € C and zy € C arbitrarily, let the sequences {x,},
{yn} and {z,}be generated iteratively by

Tnt1 = (1= Bn)xn + BuPolanf(yn) + (1 — k — ap)x, + ETi2,]), n >0,
Yn+1 = (1 - ﬁn)yn + ﬁnPC[ang(zn) + (1 — k- an)yn + kT2yn]a n >0, (3'1)
Znt1 = (1= Bn)zn + BnPolanh(zy) + (1 — k — o)z + kT32,], n >0,

where {an} and {B,} are two real number sequences in (0,1).

Remark 3.2. Note that this algorithm is said to be the redundant intermixed algorithm
as {z,} in {z,} and {z,} is in {y,} and {y,} is in {x,}. So we can use this algorithm to
find the fixed points of 17, T5 and T3, independently.

Theorem 3.3. Suppose that Fiz(Th) # 0, Fiz(Ty) # 0 and Fix(T3) # 0. Assume the
following conditions are satisfied:

(C1) limy o0 0y = 0 and 07 oty = 00;

(C2) B € [&1,&] C (0,1) for alln > 0.

Then the sequences {x,}, {yn} and {z,} generated by (3.1) converge strongly to the
fized points Ppiy(r)f(Y*); Prie(1y)9(z*) and Py h(z*) of T1, Tz and T3, respectively,
where x* € Fix(T), y* € Fix(T) and z* € Fix(T3).

Note that, Polaf + (1 — k — )l + kT is contractive for small enough «, see [20].
First, we give the following propositions.

Proposition 3.4. The sequences {x,}, {yn} and {z,}are bounded.

Proof. Since Fix(Ty) # 0, Fix(Ty) # 0 and Fix(T3) # 0, we can choose z* € Fiz(T}),
y* € Fix(Ty) and z* € Fix(T3). From (3.1), we have
[#n1 — 2| = [|(1 = Bu)an + Bulolonf(yn) + (1 — k — an)an + kTizn] — 27|
< BullPelonf(yn) + (1 — k — an)zy + kT3] — 27|
+ (1 = Bn)llzn — 2|
< Bromlf(yn) — 27| + Bull(L = k — an)(@n — 27) + k(Trzn — Thz™)|
+ (1 = Bn)llzn — 2| (32)
< Brownlf(yn) = FYO + Browmllf(y7) — 27| + (1 = Bn) [z — 27|
+ Bn(1 — an)|an — 27|
< p1Bnomllyn — Y7l + Brow | f(y") — 2™ + (1 — anfBp)||an — 27|
< pBnamllyn — ¥ + Bnanl[f(y7) — 2" + (1 — anfn) 20 — 27|,
where p = max{p1, p2, p3}.
Similarly, we have
[Yn+1 = Y| < p2Branllzn — 27| + Bramllg(z") =yl + (1 — anf)llyn — y7||

< pBnanllzn — 27| 4 Branllg(2") — ¥ || + (1 — anfn) lyn — v7||

and

lznt1 = 2| < psBnanllzn — 2% 4 Bnanl|h(z*) — 2" + (1 — anf)llzn — 27

< pPnom||lzn — 27| + Bpom[|h(2) = 2% + (1 — anfBn) || 2n — 27|

4
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By adding (3.2), (3.3) and (3.4), we obtain

[2n1 =2 + lyner = y7 [ + 2040 = 27
<[ =1 =p)amfbo](lzn — 27 + llyn = y*[ + llzn — 27[]) + anBu(llf(y") — 27|
+llg) =yl + [A(z") = 27]))

< max{n:vn o+ Ny =yl + 2 — 21l

£ () — 2" + llgz®) —y*| + [lg(z") — 2| }
L—p

By induction, we have
1n = 2 + lm — 571l + 12 — 2°]
< maX{Hon o+ llyo — 'l + l120 — 1l

£ (") — 2| + [lg(z") — y*[| + [|h(z") — 27| }
11—«

So, {zn}, {yn} and {z,} are bounded. This completes the proof. O
Proposition 3.5. ||z, — T1x,| — 0, ||[yn — Toyn|| — 0 and ||z, — T5z,|| — O.

Proof. We will prove it for {z,,} and {z,}, for {y,} it is similar. We first estimate ||x;,+1 —
Zn||. Set uy, = Polanf(yn) + (1 — k — ap)xy + kTi2,],n > 0. It follows that

[un+1 — unll < llont1 f(Ynt1) + (1 =k — ant1)Tng1 + KT12040
—anf(yn) — (1 — k — ap)xy + KTy ||
<|[(1 =k — ans1)(@nt1 — zn) + E(T12041 — Trwy) ||
+ a1 (1 (Yns D)l + lzall) + an(lf () | + [[2nl)
< (1 = any1)|znt1 — 2ol + a1 (L (o) | + llznl)
+ an([[f ()| + llznll)-

Since a,, — 0, we deduce that

lim sup(||uns1 — Unl| = [[Znr1 — z4l]) <0.
n—oo

From Lemma 2.2, we get
limy, o0 ||t — 2| = 0 and limy, o0 [|Zpy1 — @] = 0.
From (3.1), we derive

|Znt1 — Thznll < (1= Bp)llzn — Tizn|l + Buanll f(yn) — Triwa||
+ ﬁn(l —k— Oén)H:En - Tl:En”
= [1 = (k+ an)Bnlllzn — Tiwn | + Branll f(yn) — T1on]-
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Thus
lzn — Thixy| < ||Xn — Zpg1l] + [|Tns1 — Tizn||

<1 = (k+an)Bulllzn — Tiwn || + Branll f(yn) — Trizn||
+ lzn — Tnia |-
It follows that

|zn — Thzn|| < (zn — g1l + Buon|l f(yn) — T124]|)

-
(k+ an)Bn

— 0.
Similarly, we can obtain
Timn [y — Tapill = 0.
Now, we will prove
lim ||z, — T52,] = 0.
n—0o0
Set w, = Polanh(zn) + (1 — k — ap)zy + kT32,], n > 0. It follows that
w1 — wal| < llant1h(zns1) + (1 =k — ang1)zns1 + kT32n11
—aph(zy) — (1 —k — an)zn + kT2,
<N =k — any1)(zna1 — 20) + k(132041 — T320) ||
+ anp1 ([|(zng )| + llznll) + cn(([R(zn) | + ll2nl])
< (1= ant1)llznr1 = 2ol + anpr (A (@) [ 4 120 ])
+ an([|h(zn) | + [Iznl)-

Since a,, — 0, we deduce that

lim sup(|[wn+1 — wa |l = [[2n4+1 — 2nl]) < 0.
n—oo

From Lemma 2.2, we get
limy, o0 ||wpn — 2n|| = 0 and lim, oo ||2ne1 — 2n|| = 0.
From (3.1), we derive
[2n41 = Taznl| < (1 = Bn)llzn — Taznl| + Bnan||h(zn) — Taza||
+ Bn(1 — k — ap)||zn — T3z
= [1 = (k + an)Bulllzn — Tsznl| + Buanllh(zn) — T324].

Thus
20 — T3zn || < |l2n — zng1ll + |2ne1 — T32al|

<1 = (k+an)Bulllzn — Tazull + Bnanl|h(2n) — T3z, ||
+ 1|20 — Zna1 |-
It follows that

20 — T32p || < (lzn = zng 1|l + Bron||M(zn) — T32n]|)

-
(k+ an) B

— 0.

This completes the proof. O
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Note that the mapping Po[af + (1 — k — «)I + kT1] is contractive for small enough a.
Thus, the equation x = Po[tf(z) + (1 — k — t)z + kT 2] has a unique fixed point, denoted
by x¢, that is,

Ty = Pc[tf(ll?t) + (1 — k- t):l?t + k‘TllEt] (35)

for small enough t.
In order to prove Theorem 3.3, we need the following lemma.

Lemma 3.6. Suppose Fix(T;) # 0, i = 1,2,3. Then as t — 0, the net {x;} defined by
(3.5) converges strongly to a fized point of T;.

Proof. Let z* € Fixz(T3). From (3.5), we have
|zt — 2*|| = || Pofth(z:) + (1 — k — )z + kT32¢] — 2*||

< th(ze) = 27|+ [[(1 =k =) (2t — 27) + k(T32 — 27)||

< tpillze — 27| + t[|R(27) = 27| + (1 = )]z — 27,
hence

1
L—p1
Thus, {2} is bounded. Again, from (3.5), we get
e~ Tseall < tlaze) — ozl + (1~ k= D)}z — Tyl

lze = 27 < 1A(z") = 2"

It follows that ;

|2t — T3z¢]| < k——i—t”h(zt) —Tsz]| — 0.
Let {t,} C (0,1). Assume that ¢, — 0 as n — oco. Put z, := z;,. We have lim,, ., ||z, —
T3z,|| = 0. Set my = th(z) + (1 — k — t)z; + kT3z, for all t. Then, we have z; = Pomy,

and for any z* € Fiz(T3),
=2 =z —mpy+my — 2F
=zi—my+t(h(z) —2")+ (1 —k —t)(ze — 2") + k(T52 — 7).
From the property of the metric projection, we deduce

(zt —my, 2z — 2%) < 0.

So
llze — 2% = (2 —my, 2 — 2%) + (1 — k — t)(z — 2%) + k(Tazs — 2%), 2 — %)
+ t(h(z) — 2%, 2 — 27%)
<M=k —=t)(z — 2%) + k(T2 — 27) |||z — 27|
+ t(h(zt) — h(2"), 2zt — 2%) + t(h(2¥) — 2", zs — 2¥)
<[1= (1= pu)f]llze — 22 + (") — 2, 7 — 27).
Hence
o — 252 < — o (h(z*) — 2%, 24 — 2*), V2" € Fia(T).
(1=p1)
By the similar arguments as that in [12], we can obtain that the net {z;} converges strongly
to z* € Fiz(T3). This completes the proof. O

1328 Wagqgas Nazeer et al 1322-1333



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.7, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

From Lemma 3.6, we know that the net {z;} defined by z; = Poltu+(1—k—t)z;+kT32],
where u € H converges to Ppiy(m)u. Let 2* € Fix(T3) and y* € Fizx(Tz) and x* €
Fiz(Ty). If we take u = h(z*), then the net {z;} defined by z; = Po[th(z*) + (1 — k —
t)z¢ + kT32] converges to Ppiyry)h(y").

Finally, we prove Theorem 3.3.

Proof. Now, we prove that ©,, — Prip(1y)f(¥"); Yn — Prie(1,)9(2") and 2z, — Ppig(ry)h(z7),
where z* € Fiz(T1), y* € Fix(T3) and z* € Fix(T3). First we observe that, if the sequence
{wy} is bounded and ||w,, — Tw,|| — 0, we easily deduce that

lim sup(f (Priz(1,)9(2")) = Priwer)) f(¥"), wn — Ppir) f(y")) <0,

n—oQ

lim sup(g(Priz(15)M(7")) — Prizmy)9(2"), Wn — Ppiz1,)9(2%)) <0

and
lim Sup<h(PFzm(T1)f(y*)) - PFzm(T3)h($*)a Wy, — PFzm(T3)h($*)> <0.
We set

up = Polanf(yn) + (1 — k — an)xy, + kKT12,], n >0,
Up = PC[Oan(Zn) (1 —k— Oén)yn + kTQyn]v n Z 07
m, = Polaph(x,) + (1 — k — an)zn + kT32,], n>0.

_|_
_|_

Thus, we deduce that the sequences {u,}, {v,} and {m,} are bounded; and ||u, — T u,| —
0, ||vn, — Tov,|| — 0 and ||m,, — T3my|| — 0. Therefore,

lim sup(f (Priz(1,)9(2")) = Priwr)) f(¥7), un — Prigery f(y™)) <0,

lim sup(g(Ppiz(15) (%)) = Ppiz(12)9(2")s vn — Prig(1,)9(2*)) <0

and
lim Sup<h(PFzm(T1)f(y*)) - PFzm(T3)h($*)a mp — PFzm(T3)h($*)> <0.

n—oo

Next, we estimate ||u, — Prig(ry)f(y")ll. Set @y, = an f(yn) + (1 =k — ap)zn + K120,

On = ang(zn) + (1 — k — an)yn + kToy, and m,, = aph(z,) + (1 — k — ay)z, + kT32, for
all n.

|Un — Priaery) ()17

= |PcUs] = Priwry f(y")]?

< (Un = Pria(r))f (") Un — Ppiger) F (7))

= (anf(yn) + (1 =k — an)n + k1120 — Priw(r) f(Y"), Un — Ppix) f(Y7))

< an(f(Yn) = Prie(r))f(¥"); Un — Prig(r)) f(¥"))

+ (1 = an)llzn = Prizery) f W) MUn — Prizey) f ()]l

8
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11—« X 1 X
12+ §||Un — Py f )P

< “N2n — Prigeroy f(y")

+ an(f(Yn) = f(Pric(1,)9(27)); Un — Prizer) f(y7))
— Prinr) f ("), Un — Prigr) f(y7))

+ an<f(PFim(T2)g(z*))

1- Qo * 1 *
5 20 — Prigery) f ()11 + —||Un — Privry f )P

Priv(r)9(Z) 1 Un — Ppigr) f(y7) |l
Prio) f(Y), Un — Prizer) f(Y"))

<

+ anpllyn —

+an<f(PFzm(T2) ( ))_

11—«
<

n . 1 *
20 — Prigery) f(y)I1 + —||Un — Privry f )P

Qnp

+ =5l = Priayg (=) 1" + [ Un = Priae) F(y")1%)

+ an (f(Priz(r)9(2")) = Prior) f (W), Un — Prizer) f(Y7)),

so, we have

||Un - PFzm(T1)f(y*)||2

l-—a * Qnp *
“en = Priaa) FON* + 17— — Sl = Pria(ry9(z )12
n

T 1-a 1-—
20£n * * *
T o p<f(PFim(T2)g(z )) = Prizr) f(Y), Un = Prizer) f(y))-
Thus
||$n+1 - PFzm(T1)f(y*)||2
< (1= Bu)ll#n = Priar) f )P + BullUn — Priary) f (5|1
1-— P % anﬁnp *
<(1- = nBn) |20 — Privry) f () |° + - IIyn Prigy9(z)II°
QP
20,8, * * *
i, p<f(PFim(T2)g(z ) = Priar)f ("), Un — PFim(Tl)f(y ))-
Similarly
||yn+1 PFzm(Tz ( )H
1-— P 12 anﬁnp 3\ (12
< (1= T8 )l — eGP + 222 ey Py (s
2anﬁn * * *
+ m@( Fin(m) P (Y")) = Prig(r)9(2%), Vo — Prizr,)9(27))
and

241 — Prig(ry)h(z*)||?

1—0p *
sQ_ p%@ﬁ%—&mmMMW+i$ﬁW”‘

1—oa,

2anﬁn * *
t1 -, p<h(PFim(T1)f(y )) = Prig(ryh(z7),
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Combing all above, we have
12041 — Prizr) O + 19ns1 — Priv)9(Z)I° + 2041 — Prizy) h(z*)||?
< (1= T ) (o — Priar S0P+ o = PriccryaOI)
+ 20 = Pria(ry)h(z*)[1?)

20,8y * * *
- o p<f(PFim(T2)g(z )) = Privr) W), Un — Priger) f(Y7))
20,8y, * * *

1. p<9(PFiz(T3)h($ ) = Priv(1)9(2"), Vo = Prig(1,)9(2"))
2anﬁn

- p<h(PFiz(T1)f(y*)) — Prig(ry)Mx"), My — Ppigmy)h(z")).

Therefore, z,, — Priyr)f(¥*); Un — Pria(1,)9(2") and 2, — Ppiyr,)h(z*). This
completes the proof. O

4 An redundant intermixed algorithm for m-strict pseudo-
contractions

Let T; : C — C be A-strict pseudo-contractions, f; : C — H be p;-contractions for
1=1,2,3,...,mand k € (0,1 — \) be a constant.

We propose the following redundant intermixed algorithm for m-strict pseudo-contra-
ction mappings 7T; for i = 1,2, 3, ..., m.

Algorithm 4.1.

$;L+1 =(1- ﬁn)"E}L + ﬁnPC[O‘nfl(:Egz) +(1—k— O‘n)‘f}z + le:E}L]? >0,
$$L+1 =(1- ﬁn)"EgL + ﬁnPC[anh(:Eg) +(1—k— an)‘f% + kTQ:E%L]? >0,
wp = (1= Bu)zy + BuPolanfs(zy) + (1 — k — an)x) + kTzz)], n >0, (4.1)

;U;Ln—l—l = (1= Bn)zy' + ﬁnPC[anf4($%z) + (1 =k —an)ry’ + KTy, n >0,
where {an} and {B,} are two real number sequences in (0,1).

Theorem 4.2. Suppose that Fix(T;) # 0. Assume the following conditions are satisfied:
(C1) limy o0 0y = 0 and 07 oty = 00;
(C2) By € [&1,&]) C (0,1) for alln > 0.
Then the sequences {zt} generated by (4.1) converge strongly to the fived points
Prigr) fi(x*) of Ty, where x™* € Fix(T;) for all i =1,2,3,...,m.

5 Conclusions

In this article, we presented an intermixed algorithm for three and m-strict pseudo-
contractions in Hilbert spaces which are extensions of the results in [20]. We also proved

10
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that, the above algorithm converges strongly to the fixed points for three and m-strict
pseudo-contractions in Hilbert spaces, independently. Consequently, we can find the com-
mon fixed points of three and m-strict pseudo-contractions in Hilbert spaces.
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ON FIXED POINT THEOREMS IN DUALISTIC PARTIAL METRIC
SPACES

MUHAMMAD NAZAM!, MUHAMMAD ARSHAD?, CHOONKIL PARK?* AND DONG YUN SHIN**

ABSTRACT. In this paper, we introduce dualistic contractive mappings and use such map-
pings to prove some fixed point theorems. The results extend various comparable results
existing in the literature. Moreover, we give examples that show the superiority and effec-
tiveness of our results among corresponding fixed point theorems in partial metric spaces.

Keywords: Fixed point, dualistic partial metric, monotone mapping.
AMS 2010 Subject Classification: 46540; 47H10; 54H25.

1. INTRODUCTION AND PRELIMINARIES

In [6], Matthews introduced the concept of partial metric space as a suitable mathemat-
ical tool for program verification and proved an analogue of Banach fixed point theorem in
complete partial metric spaces. O’Neill [7] introduced the concept of dualistic partial met-
ric, which is more general than partial metric and established a robust relationship between
dualistic partial metric and quasi metric. In [10], Oltra and Valero presented a Banach
fixed point theorem on complete dualistic partial metric spaces. They also showed that the
contractive condition in Banach fixed point theorem in complete dualistic partial metric
spaces cannot be replaced by the contractive condition of Banach fixed point theorem for
complete partial metric spaces. Later, Valero [10] generalized the main theorem of [9] using
nonlinear contractive condition instead of Banach contractive condition.

Alghamdi et. al.[1], presented the following theorems in partial metric spaces, which are
stated below:

Theorem 1. Let (X,p) be a complete partial metric space and let T : X — X be a weakly
contractive mapping. Then T has a unique fixed point x* € X and the Picard iterative
sequence {T"(x)}nen converges to x* with respect to T(p°), for every x € X. Moreover,
p(z*, z*) = 0.

Theorem 2. Let (X,p) be a complete partial metric space and let T : X — X be a
Kannan mapping. Then T has a unique fived point x € X and the Picard iterative sequence
{T™(2) }nen converges to x* with respect to T(p®), for every x € X. Moreover, p(xz*,z*) = 0.
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We shall prove new fixed point theorems that generalize fixed point theorems provided
by Alghamdi, Shahzad and Valero in [1]. We will show, with the help of examples, that the
new results allow us to find fixed points of mappings in some cases in which the results in
partial metric spaces cannot be applied. The key feature in these fixed point theorems is
that the contractivity condition on the nonlinear map is only assumed to hold on elements
that are comparable in the partial order. However, the map is assumed to be monotone.

Throughout, in this paper, the letters R*, R and N will represent the set of nonnegative
real numbers, real numbers and positive integers, respectively.

Let us recall some mathematical basics of dualistic partial metric space to make this paper
self-sufficient.

Definition 1. [7] A dualistic partial metric on a nonempty set X is a function D : X x X —
R satisfying the following properties, for all x,y, z, € X:

(D1) x =y D(z,x) = D(y,y) = D(z,y).
(D2) D(z,z) < D(z,y)
(D3) D(%,y) = D(y,x)
(D4) D D(z,y) + D(y, 2) — D(y,y).

If (X, D) is a dualistic partial metric space, then the function dp : X x X — R defined
by
dD<m7y) - D(l‘,y) - D(.T,',J,‘)

is a quasi metric on X such that 7(D) = 7(dp) for all z,y € X.

Remark 1. It is obvious that every partial metric is a dualistic partial metric but the
converse is not true. To support this comment, define Dy : R x R — R by

Dv(l‘»y) =zV Y= sup{m,y}

for all z,y € R. It is clear that Dy is a dualistic partial metric. Note that Dy, is not a
partial metric, since Dy (—1,—2) = —1 ¢ R*. However, the restriction of Dy to R, Dy|p+,
is a partial metric.

Example 1. If (X, d) is a metric space and ¢ € R is arbitrary constant, then
D(z,y) =d(z,y) +c.

defines a dualistic partial metric on X.

Example 2. Let X = R and define the function D : X x X — R by
D(z,y) =x+y—uay

for all z <y A 1. Then (X, D) is a dualistic partial metric space.

Following [7], each dualistic partial metric D on X generates a T topology 7(D) on X
which has, as a base, the family of D-balls {Bp(z,€) : z € X,e > 0} and Bp(z,¢) ={y €
X : D(z,y) < e+ D(z,z)}.

Definition 2. [7] Let (X, D) be a dualistic partial metric space.
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(1) A sequence {zy}nen in (X, D) converges to a point € X if and only if D(z,z) =
limy, 00 D(x, 24).

(2) A sequence {zp}nen in (X, D) is called a Cauchy sequence if
limy, ;00 D(@n, T ) exists and is finite.

(3) A dualistic partial metric space (X, D) is said to be complete if every Cauchy se-
quence {x,}nen in X converges, with respect to 7(D), to a point € X such that
D(x,x) = limy, ;m—s00 D (T, Tm).

Following lemma will be helpful in the sequel.

Lemma 1. [7, 10]
(1) A dualistic partial metric (X, D) is complete if and only if the metric space (X, d},)
is complete.
(2) A sequence {zp}nen in X converges to a point z € X, with respect to 7(d},) if and
only if limy, o D(x, 2) = D(z,z) = limy, m—00 D(Tn, Tm)-
(3) If limy,—yo0 ¢, = v such that D(v,v) = 0 then lim,,_,oc D(xy,y) = D(v,y) for every
y € X.

Later on, Oltra and Valero [9] established a Banach fixed point theorem for dualistic
partial metric spaces in such a way that the Matthews fixed point theorem is obtained as a
particular case. The aforesaid result can be stated as follows:

Theorem 3. Let (X, D) be a complete dualistic partial metric space and let T : X — X be
a mapping such that there exists o € [0, 1] satisfying

|D(T (), T(y))| < a|D(z,y)l,

for all z,y € X. Then T has a unique fized point x* € X. Moreover, D(x*,2*) = 0 and

the Picard iterative sequence {T"(xq)}nen converges to x* with respect to T(d3,), for every
reX.

2. MAIN RESULTS
In this section, we shall prove the dualistic partial metric versions of Theorems 1 and 2.

Definition 3. Let (X, =<,D) be an ordered dualistic partial metric space. A self map T
defined on X is said to be a Kannan type dualistic contractive mapping if there exists
k € [0, 1] such that

|D(T (), T(y))| <

|

1Dz, T(2))| + |D(y, T(y))]] (2.1)
for all comparable x,y € X.

Our first main result is given below.

Theorem 4. Let (X, <) be a partially ordered set and (X, D) be a complete dualistic par-
tial metric space. Let T : X — X be a nondecreasing mapping. If T satisfies following
conditions;

(1) T is a Kannan type dualistic contractive mapping.
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(2) there exists xg € X such that xog = T(xp).
(3) if {xn} is a nondecreasing sequence in X such that {x,} — x € X, then z, = x.

Then T has a fized point * such that D(z*,z*) = 0.

Proof. Let us consider the Picard iterative sequence {zy, },en with initial point 2o € X (i.e.,
p = T(xp—1) for all n € N). Of course, if there exists n € N such that =, = x,+1 = T'(x,),
then z, is a fixed point of T. On the other hand, if x, # z,4+1 for all n € N, then
ZTp X Tpt1. Indeed by xg < T'(x¢), we obtain xzy < x1. Since T is nondecreasing, o = =1
implies T'(z9) = T'(z1) and so x; < z. Continuing in this way, we get

o321 20223232 2Ty DTy 200

Since x,, < xp41 for each n € N, using contractive condition (2.1), we have

D 2)| = D(T(x0), T(a)
< 21D, To))| + 1D, 7))

— §[|D(:1:0,:U1)! + |D(z1, z2)|],

which implies
k k
(1= Z)ID(a1,22)| < 5[D(zo, 21)]

and so

|D(x1,22)| < A[D(0,21)],

Where)\:ﬁand0<)\<1.
Similarly,

[D(x2,23)] = |D(T(21),T(22))]
< g[ID(fﬂl»T(ZBl))\ + [D (w2, T(x2))]]-

Thus,
| D (w2, 23)| < A[D(x1, T(21))| < A D(x0,21)|-

Continuing in this way, we have
[D(@n, ant1)] < A"[D(xo, 21)]- (2.2)
Since x,, < , from the contractive condition (2.1), we get

|D(2, 20)| < BN D(20, 21)]- (2.3)
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In order to prove that {z,} is a Cauchy sequence in (X, D), we shall prove that {z,} is a
Cauchy sequence in (X, df,). Clearly,

D(xpn, 2nt1) — D(wp, 2n) < |D(2p, 2py1)| + [ D (20, 20)|
< N'D(zg,z1)| + k:)\"_llD(xo, x1)|

< A'(3—k)[D(wo, 1)
for all n € N. Thus for a fixed p € N,

D(@sp-1s@atp) = D(@ntp1s Tarpor) < X713 = K| Do, 1) (2.4)

for all n € N.
Now using (D4) and (2.4), we have

D(xnwrn—i-p) - D(xnaxn) < D(xn)xn—i—l) + D(xn—i—lxn—s—Q) +...

n—1
+ D(@n4p—1,Tntp) = D) D(Tnti, Tnti)
i=0
< PN NPTY (3 - E) | D (2, 1)
ATL
< . )\(3 — k)| D(z0,x1)].
Similarly,
)\TL
D, 0) = Dlitnsps #nsp) < 7 (1+ )| Do, 1)
Consequently,
n
dp(zp, xm) < 41 — )\\D(xg,xl)]

foralln+p=m>neN
This leads to limy, ;o0 5 (2, Zm) = 0. Thus, {z,} is a Cauchy sequence in (X,d3)).
Since (X, D) is a complete dualistic partial metric space, by Lemma 1, (X,dj})) is also
complete and there exists 2* € (X, d})) such that x, — 2* as n — oo, i.e,,
nll_)r{.lo dp(zp,x™) = 0.
By Lemma 1, we have

lim D(z*,z,) = D(z*,2%) = lim D(xp,Zm). (2.5)

n—00 n,Mm—00
Since limy, m—o00 dp(Zn, Tm) = 0, the inequality (2.3) implies that limy, ;o0 D(2p, Zm) = 0,
which shows that {z,} is a Cauchy sequence in (X, D). From (2.5), we get

D(z*,z*) = lim D(x,,z*) = 0. (2.6)

n—oo

Now, it follows from the hypotheses (3), (2.1) and (D4) that
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D(z*,T(z*)) < D(x*,xn)+ D(xyn, T(z%)) — D(zpn,xn),
< D(z%,2p) + [D(zn, T(27))| + |D(@n, 2n)|,
< D" 20) + LD (@ncr. )| + D T )] + Dl a0

Hence we obtain
k * * * k
(1 =3)D@", T(z") < D(a",zn) + 5 |D(@n—1,2n)| + [D(zn, 2n)].
Letting n — oo and using (2.3) and (2.2), we obtain

(1- S)D(x*,T(:c*)) <0.

and so D(z*,T(z*)) < 0, but also 0 = D(z*,2*) < D(z*,T'(z*)). We deduce that
D(z*,Tz*) = D(z*,2") = D(T(z¥),T(z")) = 0.

This implies that 2* = T'(z*). Hence z* is a fixed point of T' with D(z*,2*) = 0 and
{T"(z)}nen converges to z* with respect to 7(df,) for any z € X. O

Remark 2. In case when D(z,y) € RT for all x,y € X, Theorem / reduces to Theorem 2.

A natural question that can be raised is whether the contractive condition in the state-
ment of Theorem 4 can be replaced by the contractive condition in the statement of Theorem
2. The following easy example provides a negative answer to this question.

Example 3. Consider the complete ordered dualistic partial metric (R, <, Dy). Define the
self-mapping Ty : R — R by

w0 4270

It is easy to check that Ty is nondecreasing with respect to usual order on R and for all
comparable x,y € R, contractive condition

Dy(Tof#), To(v)) < Dy (, To(a)) + Dy (3, Toly))]

holds. However, Ty does not have a fived point. Observe that Ty does not satisfy the
contractive condition in the statement of Theorem 4. Indeed, note that for all k € [0, 1], we
have

1= |Dy(=1,-1) = [Dv(T6(0),To(0))| > gHDV(OaTO(O))’+|Dv(07T0(0))H
— K0V (=1)[=0.

For next result, we begin with following definition.
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Definition 4. Let (X, =<, D) be an ordered dualistic partial metric space. A mapping T :
X — X is said to be a weakly dualistic contractive if there exists o : X x X — [0,1] such
that for all0 < a <b

0(a,b) = sup{a(z,y) : a < |D(z,y)| < b} < 1,
and for all comparable z,y € X
[D(T(x), T(y))| < o, y)|D(z,y)|. (2.7)

Example 4. Consider ([—1,1],<, Dy) an ordered dualistic partial metric space. Define the
mapping T3 : X — X by

for allx € X. We define a: [-1,1] x [-1,1] = [0,1] by

Dy (Tsz, Tsy)

Dv(x,y) 2va(x,y)7é0

O[(:L‘,y) =
0 if Dv(z,y) =0

D\/ (T3.%', T3y)

D\/(l’,y)
% for all comparable z,y € [—1,1] and that 6(a,b) < 1 for all a,b € R with 0 < a < b.

Moreover,

Observe that > 0 provided that Dy (z,y) # 0. It is easy to check that o(x,y) <

|Dv(T3z, Tsy)| < a(z,y)|Dy(z,y)]
for all comparable x,y € [—1,1].

Theorem 5. Let (X, <) be a partially ordered set and (X, D) be a complete dualistic partial
metric space. LetT : X — X be a nondecreasing mapping. Assume thatT satisfies following
conditions;

(1) T is a weakly dualistic contractive mapping.

(2) there exists xog € X such that xog = T(xp).

(3) either T is continuous or if {xy,} is a nondecreasing sequence in X such that {z,} —
x € X, then z, < x.

Then T has a fized point z* with D(x*, z*) = 0.

Proof. Consider the Picard iterative sequence {x,},ecn with an initial point zp € X (i.e.,
Zp = Txy_1 for all n € N). It is clear that if there exists n € N such that x,, = x,1, then
Ty is a fixed point of T. On the other hand, if x,, # x,41 for each n € N, then x, < x,,41.

Indeed by g =< T'(z¢), we obtain x¢p < z1. Since T' is nondecreasing, xo =< x; implies
T(xp) = T(x1), and so x1 = x2. Continuing in this way, we get

To 201 202 223 2 XLy D1 D0
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Since x,, < x4 for each n € N using contractive condition (2.7), we have

D, znt1)] = [D(T(2n-1),T(2n))|
< a(xn—lvxn)‘D(mn—luxn)’
< [D(@p-1,2n)|-

This implies that the sequence {|D(xy, Tn+1)|}nen is decreasing and bounded below. So it
converges to r € R with

r = inf |D(zp_1,2,)| > 0.
neN
We claim that » = 0. For the purpose of contradiction, assume r > 0.
0<r< |D(33na$n+1)| < |D($n71axn)| <--- < |D(CL‘0,$1)‘.
It implies 0 < r < |D(zp,x1)| and so we deduce that
0 =06(r,|D(xo,z1)|) = sup{e(z,y) :  r < |D(z,y)| < |D(xo,z1)[} < 1.

Now from contractive conition (2.7), we get

r < |D(@n, Tng)|
< a(@p-1,20)[D(Tn-1,2n)|
< 0(r,[D(zo, z1) )| D(xn-1, zn)|
< 62(r,|D(xo, 21)])| D(xn—2, 2n-1)| <.
< 0"(r,|D(xo, 21)|)| D(wo, 71)].

Therefore,
r < lim 0"(r,|D(xo,x1)])|D(x0, x1)].
n—oo
This implies that » < 0, which is a contradiction. Consequently, r = 0 and hence
n—0o0

lim |D(zp,Zpt1)| =0 = ILm D(xp, xzp+1) = 0. (2.8)

Now since x, =< z,, by arguing like above, we can show that lim, ,« |D(xpn,2z,)| =
limy, o0 D(2p, x,) = 0, since

|D($n7 xn)| < a(wn—ly xn—l)‘D(xn—la xn—l)‘

for all n € N and thus the sequence {|D(xy, zy)|}nen is decreasing and bounded below.
Next we show that {z,} is a Cauchy sequence in the metric space (X,d},)). It is clear
that

D(#n, tn+1) = D(@n, xn) < 07(0,|D (o, 1)[)|D(wo, 21)| + 6™(0, | D(wo, w0)|)| D(xo, z0)]|

< 0" [|D(xo,r1)| + |D(x0, x0)|]

for all n € N, where 6" = (6"(0, |D(zg, z1)]) vV 6™(0, | D(xq, zo)|)) for all n € N. This implies
that, for a fixed p € N, we have
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D(zp, Tpip) — D(xp,xn) < D(zp,Tpi1) + D(@pr12n42) + ...

p—1
+ D(@nip-1,Tntp) — Z D(@n+tis Tnti)
i=0
< (0" + 0" 0P [ID (@, 1) + [D (0, 20) ]
HTL
< DG, )| + Do, o)

for all n € N. Similarly, we can calculate that

n
1-6
which implies that limy, oo d},(2n, Zntp) = 0. Hence {z,} is a Cauchy sequence in (X, df,).
Since (X, D) is a complete dualistic partial metric space, by Lemma 1, (X, d},) is also com-
plete and there exists z* € (X, d},) such that z,, — z* as n — oo, i.e., lim, o d}(zp, 2*) =
0. Now again from Lemma 1, we get

D(anrp»xn) - D($n+p,ﬂ3n+p) < [|D(z0, 21)| + [D(w0, 70)|],

D(z*,z%) = lim D(zp,2*) = lm D(x,,zn); m=mn+p. (2.9)

n—00 7,M—00
Now since limy, ;m—00 dp(Zn, Tm) = 0, limy, o0 [D(Tn, Tm) — D(zp, ,)] = 0 and

lim D(zy,zp) = lim D(x,,x,)
n,M—00 n—00

but (2.8) implies that
lim D(zp,z,) = 0.
n—oo

It follows directly that
D(z*,z*) = lim D(x,,z*) = 0. (2.10)

n—oo

Now if T' is continuous, then

¥ = lim z, = hm T"(xo) = hm T (z0) = (hm T"(xg)) = T(x").

n—o0

Now if T" is discontinuous, then by the hypotheses (3), we have
D(x*,T(z*)) D(z*,xn) + D(zy, T(z*)) — D(zp, xn)
D(a*, zn) + [D(zn, T(27))| + |D(2n, zn)|
D(z*,zp) + a(xp—1,2")|D(xpn—1,2")| + | D(2p, Tp)]
D(z*,xp) + |D(xp-1,2")| + |D(zp, zpn)|-
Since limy, 00 D(2Zp, Tn) = limy, 00 D(2p, 2*) = 0, D(2*, T(2*)) < 0, but also
0= D(z*,2") < D(z*,T(z")).

IA AN IAIA

We deduce that
D(z*,Tz*) = D(z*,z*) = D(T'(z*), T(z*)) = 0.
This implies that * = T'(z*). Hence z* is a fixed point of T with D(x*, z*). O
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Remark 3. Since every dualistic partial metric is an extension of partial metric, Theorem
5 is an extension of Theorem 1.
There arises the following natural question:

Whether the contractive condition in the statement of Theorem 5 can be replaced by the
contractive condition in Theorem 17

The following example provides a negative answer to the above question.

Example 5. Consider the complete ordered dualistic partial metric (R, <, D\/) and the self-
mapping Ty defined as in Example 3. Then, for fized k € [0,1[, it is easy to verify that for
all comparable x,y € R, the contractive condition

Dy(To(x), To(y)) < oz, y)Dy(x,y)

holds with «(x,y) = k. However, Ty does not have a fized point. Observe that Ty does not
satisfy the contractive condition of Theorem 5. Indeed, there is no mapping o : RxR — [0, 1]
such that

1= |Dy(=1,-1) = [Dy(T6(0),T5(0))| > (0, 0)| Dy (0,0)| = 0.

Remark 4. Significance of the above results lies in the fact that these results are true
for all real numbers whereas such results proved in partial metric spaces are only true for
positive real numbers.
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Abstract. In this paper, a kind of new Stancu-Bézier type operators is intro-
duced. The Korovkin type approximation theorem of these operators is inves-
tigated. The rates of convergence of these operators are studied by means of
modulus of continuity. Then, by using the Ditzian-Totik modulus of smooth-
ness, a direct theorem concerned with an approximation for these operators is
also obtained.

Keywords: Stancu-Bézier type operators; Korovich type approximation theo-
rem; Rate of convergence; Modulus of continuity; Modulus of smoothness

Mathematical subject classification: 41A10, 41A25, 41A36

1. Introduction

In 2012, Ren [6] introduced Bernstein type operators as follows:

n—1

Ln(f% x) = f(O)Pn,O(I) + Z Pn,k(x)Bn,k(f) + f(l)Pn,n(x)v (1)

k=1
where f € C[0,1], z € [0,1], P, x(z) = ( Z >xk(1 —2)" % (k=0,1,..,n),

1 nk— n(n—k)—
and Bk (f) = Bamammy Jo 11— 1) (=B =1f)dt (k = 1,...,n — 1),
B(.,.) is the beta function.
The moments of the operators L, (f;x) were obtained as follows (see [6]):
Remark 1. For L, (t™;z), m = 0, 1,2, we have

(i) Lp(1;2) = 1,
(11) Ln(t;x) =T
nn—1) , n+1
nf 41" n? 41"
In 2015, Inspired by [1], Ren and Zeng [7] introduced new type Bézier oper-

ators, which is the Bézier variant of the Bernstein type operators Ln(f;x), as
follows:

(iii) Ln(t°;2) =

Lna(f;2) = F(0)Q0 (x) + ZQ *() + 1R (), (2)

*Corresponding authors: Mei-Ying Ren and Xiao-Ming Zeng.
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where f € C[0,1], z € [0,1], « > 0, an,)c(ac) = J3u (@) =I5 1 (@), Jnngr(w) =
n
0, Jnr(z) = > Pni(z), Par(z) (k=0,1,..n), Byi(f) (k=1,..,n—1) and
i=k
B(.,.) are as stated in (1).
In the present paper, we will study the Stancu variant of the new type

Bézier operators Ly, o(f;x), which have been given by (2). We introduce new
Stancu-Bézier type operators as follows:

p
n+y

n+p
n+y

n—1
LED (f32) = F(—")Q% @) + Y Q@) BEY (1) + F(E2)Q (@), (3)
k=1

where f, z, «, Qg,az(x)(k =0,1,...,n) are as stated in (2), 8, are two given real
parameters satisfying the condition 0 < 8 < ~, B(.,.) is the beta function, and

1 . —k)— n
BY(f) = oy Jo A=) (B dg k=1, - 1,

nk,n

It is clear that Lgﬁgf)(f;x) are bounded and positive on C[0,1]. When 8 =
v =0, L%?,’J)(f; x) become the operators Ly, o(f;x).

The goal of this paper is to study the approximation properties of these
operators with the help of the Korovkin type approximation theorem. We also
estimate the rates of convergence of these operators by using a modulus of con-
tinuity. Then, we obtain the direct theorem concerned with an approximation
for these operators by means of the Ditzian-Totik modulus of smoothness.

In the paper, for f € C[0,1], we denote ||f|| = maz{|f(z)|: z €[0,1]}.
w(f,8) (6 > 0) denotes the usual modulus of continuity of f € C0,1].

2. Auxiliary results

Now, we give some lemmas, which are necessary to prove our results.
Lemma 1. Let a > 0,2 € [0,1], 0 < 8 < . We have

(i) L (152) = 15
(ii) nlingo Lgﬁgy)(t; z) = x uniformly on [0, 1];
(iil) 1i_>m Lﬁ{f’g)(t?; z) =z uniformly on [0, 1].

Proof (i) Since Y, _, lea,i(x) =1, so, by (3), we get Lgf,’])(l; x) = 1.
(ii) by (2) and (3), we have

LSEQ) (t;x) = Lyo(t;x) +

n -+ n+~’

thus, by Lemma 2 (ii) in [7], we have lim Lgﬁ;])(t; z) = z uniformly on [0,1].
n— oo
(iii) by (2) and (3), we have

L 2L, a(tT) +

2np
L'”/(Xt;x—i—
e alti2) +

LB (42, 1) =
(t52) = ( (n+~)? n+ -y

n,o

)%,

thus, by Lemma 2 (iii) in [7], we have lim L{%)(#?;2) = 22 uniformly on [0,1].
n—oo
Lemma 2.(see [4]) For x € [0,1], k =0,1,...,n, we have

() aPn,k($)7 o> L
0<@nil@) < { Po(2), O<a<l

Lemma 3.(see [5]) For 0 < o < 1, v > 0, we have

S = nal Pi(e) < (n+ 1)V (4z) 0¥,
k=0
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where the constant A, only depends on s.
Lemma 4. Let a > 0, 0 < 8 <, We have

() BY (1) = 15

3, k+ 8
(i) B3 () =
2 2
B (12 n 2 kK 2k B
B t7) = k — .
W) B i) = e mr o T T v T
Proof By [7], we have By, (1) = 1, By x(t) = £, B, x(t?) = = (B + 5

so, by simple calculation, we obtain

0B (1) = 13

) n B k+p8
B B B 1) = :
(11) nk () n+ n,k(t>+ nt mk( ) n+

B 1) = G Bt 4 (e Bt ¥ oy
B n? 5 Kk 2k B2
Tyt W g

Lemma 5. For a > 1,2 € [0,1], 0 < 8 < v, we have

B, k(1)

. ; 2a(1 +7)
(1)L(,f;])((t —1)%1) < ni—i—v
1
() LED (|t — z];2) < m.
y n+fy

Proof (i) For « > 1,2 € [0,1], 0 < 8 < 7, by (3), Lemma 2, (1) and Remark
1, we obtain

LED((t )% )

_ B Q) (@) () B o, B o)
= (s @ +ZQ wi (= 2)%) + (2 = Q@)
< al(-7 +ZPM JBED (6= ) + (2 = )]
nty n—+y ’
— n’ 2. 2”5 . B .
= O‘[an(t ;o) + (n+,y)2L7l(tvx) + (n+’y)2L"(1’I)]
—2ax( L,(t;x) + %Ln(l; x)) + ar?L,(1;2)
_ n? nn—1) 5 n+1 2nfx B? nr+
_a{(nJr*y)Z[ n gl n2+1x]+ (n 4 7)? (n+'y)2}_2am( n+7 )
+ax?
_ ot =28y’ —26y o =2Byn® =28y +9%07 47 5 B2
‘! (n+7)%(n?+1) #l-a) mt2mz+1) " (TH—V)Q]
n+1 B2+ 42
sl O Gy
a(n+1+ 5% +4%)
(ot P
< 2o47)

n—+-y
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(ii) In view of L(B 7)(1; x) = 1, by the Cauchy-Schwarz inequality, we have

L(B (|t — z|; z) \/L(ﬁ ) \/L(B ) 2, 2),

thus, we get
2a(1
LEN(|t — z|;z) < M.
’ n—+v

Lemma 6. For 0 < a < 1,z € [0,1], 0 < 8 <, we have

(i) L(ﬁt’])((t — m) r) < M(ﬁ N —a.

(i) LEY (|t — zf;2) <V MP? - nmE

where the constant Méﬁﬁ) only depends on «, 3,y
Proof (i) For 0 < a < 1,2 € [0,1], 0 < 8 <+, by (3), Lemma 2 and
Lemma 4, we obtain

LED((t — )% )

B QY (@) 2 20)(e)
=(—— @) B ((t ~ - o
(n+7 +ZQ 2 96))+(n+7 ) @i ()
< (L) + S @B (e (D e
> n+ n, ! n, n, n+'}/ n,n
- 1 k 2k B2 k+p3
<Y PH(o)——5 K+ =)+ + -2 + 2
< L PG B D G Y e M
1 - 2(8 —vx)
= —— k—nz)?P, (z) + =—2 k—nz)P.(x
(n+'7)2 k:O( ) ,k( ) (n‘i"Y)Q ;}( ) ,k( )
1 n
+(7’L+’}/22 +62—2ﬂ7$+72$2) nk:()
=: Il + 12 + I3.
By Lemma 3, we get [; < ZET')I) (n+1)7%(A2)* < 2(A2)*n"%, I, <
Gt 3 lh—nal Py (@) < BEERE 0 1) (4y)" S 4(8+7)(4y) 07,

here the constant A . (¢ =1,2) only depends on «.

a

Using the Holder inequality, we have Y7 P%,(z) < (n+1)' %[ 3 Po ()],
k=0 k=0

and |2 4 5% — 287z + 2% <1+ (B +7)?, so, we have

n

(n+ 1) Page(@)]* < 201+ (B +7)%n

k=0

1+ (8+7)?

Iy <
SRR

Denote M = 2(A2)® +4(8+7)(A1)* +2[1+ (8+1)?], then we can get

1
o

L (¢ = 2)%2) < M n~
(ii) Since
L(ﬁ (|t — z|;z) \/L(ﬁ'v \/L(B ) 2, 2),
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thus, we get

LED (¢ — alsx) < \/MPD a7t

Lemma 7. For f € C[0,1], x € [0,1], « >0, and 0 < 8 < v, we have
| LED (o) I £ -
Proof By (3) and Lemma 1 (i), we have

| LD (F2) IS ALY (L5 2) = |-

3. Main results

First of all we give the following convergence theorem for the sequence
{2 (f50))
Theorem 1. Let o > 0,z € [0,1], 0 < 8 < . Then the sequence {L('@ﬁ)(f;a:)}
converges to | uniformly on [0,1] for any f € C[0,1].
Proof  Since L (f, x) is bounded and positive on C]0, 1], and by Lemma 1,
we have lim ||Ln7a )(em, ) —em] =0 for e,(t) =t", m=0,1,2. So, accord-
n—oo
ing to the well-known Bohman-korovkin theorem ([2, P.40, Theorem 1.9]), we

see that the sequence {L%B Q)( f;x)} converges to f uniformly on [0,1] for any
fecCio,1].

Next we estimate the rates of convergence of the sequence {L(ﬁ 7)} by means
of modulus of continuity.
Theorem 2. Let f € C[0,1], x € [0,1], 0 < 8 < ~. Then

(i) when a > 1, we have

ILED () = I < L+ V2a(l +9)w

(ii) when 0 < o < 1, we have

LED (i) — F@)] < (14 Y ME )l f,nm ).

Here the constant MC(YB"Y) only depends on «, 3,7
Proof (i) When o > 1, by Lemma 1 (i), we have

ILED(fi2) = f(@)]

\/ +7’

n—1
<115~ F@Ie%@) + Y. Q@B (150) - 1))
k=1
ntB, _ (@)
+|f<nﬂ> (@) Q) ()
<f,|—fx\ QL +Z@£ﬁz VB (w(f [t = 1)
n+p (@)
el — T @)
s 1 (o)
< (L VAFal o el —==)Q1 @)
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+ZQ(”) B (14 VA - st —==))

U+ VA — ol =)l )

< wlfZm) + VI =D (= ),

0, by Lemma 5 (ii), we obtain

LED(f ) <1+ v2a(l + .
| (f32) = f(z)] 7)] \/Tv)

The desired result follows immediately.
(ii) When 0 < o < 1, by Lemma 1 (i), we have

ILLD (fyz) — fla)|

n—1
W 1=~ Q@) + Y QBT U It~ 2)
v k=1
ol 122 Q@)
< (L4 nf | —alw(f,n Q)

+ZQ£?,1 )BU (1 +nf |t — af)w(f,n"F))

(140 2 (o DR

w(f,n" %) +nFw(f,n H)LEDI (|t - 2|5 2),

0, by Lemma 6 (ii), we obtain |L$ﬁ’a7)(f; x)—f(x)] < (1+4/ Z\l((,tﬁ’v))w(f7 n”2).

The desired result follows immediately.
Theorem 3. Let f € C1[0,1], z € [0,1], 0 < 3 <. Then
(i) when a > 1, we have

LD (fi2) = f(@)]

S[Hf’Her(f’,ﬁ )(1+/2a(1 7)) 17)

(ii) when 0 < o < 1, we have

LED (F;2) — F@)] < 7]+ (= )1+ Y M) PP nea,

Here the constant ng"w only depends on «, 3, 7.
Proof Let f € C'[0,1]. For any t,z € [0,1], § > 0, we have

O - f@) - F@)t-2)] < | / /() — ()| dul
< w(f )t -zt —al
< w(f )t —a| + 6Nt - 2)?),
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hence, by the Cauchy-Schwarz inequality, we have

LEDFW) = fl@) = /@)t - 2);)
<w(f, ®(<;wu—x|>+61U;W@—waU

(6 LED (L) + 61 LLD (- 2% ) LD (¢ — 2% ).

So, we get

LY (f;2) = f(2)]
< IFILED (1t = s 2)

+w(f,8)(1+6- ¢i@” —2)%2))\/Lno((t —2)%2).  (4)

(i) When o > 1, taking ¢ = \/anv in (4), by Lemma 5 and inequality (4),
we obtain the desired result.

(ii)When 0 < a < 1, taking 6 =n~% in (4), by Lemma 6 and inequality (4),
we obtain the desired result.

Finally we study the direct theorem concerned with an approximation for

the sequence {L(B ﬂ’)} by means of the Ditzian-Totik modulus of smoothness.
For the next theorem we shall use some notations.

For f € C[0,1], =z(l—2),0<A<1,z€][0,1], let

he* ()
2

he? ()

wr(fit) = s s e+ 2 — - 2

0<h<t ot hgo;(:u) €[0,1]

be the Ditzian-Totik modulus of first order, and let
1
() = nf {|| f =gl +tlle*g'l| + 2 lg'|1} (5)
geEWN

be the corresponding K-functional, where Wy = {f|f € AC},.[0,1], [|*f|| <
o0, || f'[l < oo}
It is well known that (see [3])

KLP)‘(fa t) < nga* (f, t)a (6)

for some absolute constant C' > 0.

Now we state our next main result.
Theorem 4. Let f € C[0,1], a > 1, 2 € [0,1], 0 < 8 <, p(z) = /z(1 — ),
on(x) = p(x)+ ﬁ, 0 < XA < 1. Then there exists an absolute constant C' > 0

such that
(6.7) )

Proof Let g € Wy, by Lemma 1 (i) and Lemma 7, we have

LD (f2) = f(2)]
<L (f = gso)l + 1 f (@) = g(@)| + ILED (g:.2) — g(2))]
<2|f = gll + 1L (g5 2) — g(@)]. (7)
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Since g(t f g (u)du + g(z), L%B(’])(l'x) =1, so, we have

LD (g 2) - g(a)]

A
“A
TI,
“5

\

G
E

s

&

A
=
=

Q
"2
Qq
Q..
i
3

By the Holder inequality, we get

|/ 6 du|<|/ o Y (w)duMt — x|t (9)

Since

67 (&) ~ min(p ™ (@), VA F ), (10)
here a ~ b means that there exists some constant C > 0, such that C~1b < a <
Ch.

Also, by (11) in [7] , we have
[ wan < 4t 21 o), (1)
thus, by (9), (10) and (11), we obtain

|/ =M u)du| < CoM @)t — o, (12)

also, by (8) and (12), we have
LS (g52) —g(@)] < Cléng'ILE (8, (@)t — afs2)

= Clang 16, M @) LT (|t = z)s ). (13)
In view of the proof of Lemma 5 (i), we have
+1 8% +77
LB (4 — )2 2) < al— T (1 — et
(= a)5a) < algmall—a) + =,
so, by the Cauchy-Schwarz inequality and Lemma 1 (i), we have
Lgﬁ?(ﬁ)ﬂt—:ﬂ;m) < \/L(’B’W 1;2) \/L(B ) 2 x)
n+1 B2 + 2
< T - Zr
- \/a[mﬂ)”( x)+(n+7)2]
on(2)
, 14
so, by (13) and (14), we obtain
G
L(B “/) o= A, 15
| jx) — g(x)] < \/Tll gl (15)
thus, by (7), (15) and 6, (z) = ¢(z) + ﬁ, we have
LD (fr2) = f(2))
(51 ’\({E)
< _ 6)\ /
<Clf -9l + \/n—ll I
517)\(1.) 517)\(1,)
C o 4 n A 4 n Al A/
< CIf =4l \/mllw gl \/W(\/m) gl
51 (a) M),
Ol f — n g =2 4'IIN. 16
(s —gll+ \/n—ll gl +(\/m) llg'll] (16)
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Then, in view of (16), (5) and (6), we obtain
LM x
vn -+

where C' is a positive constant, in different places, the value of C' may be differ-
ent.

~

ILL (frz) — fla)| < CKa(f, ) < Cwar(f,
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ABSTRACT

The main objective of this paper is to study the global stability of the positive solutions and the periodic character
of the difference equation

ATy + 0T,
Tn41 :axn+ﬁxn—l+7xn—k+M7 n:07 17 )
CTp— + dxp_

where the parameters «, 8, v, a, b, ¢, d € (0, 00) and the initial conditions x_,, _4y1 ..., x_1 and zy are
positive real numbers where s = maz{l, k}. Examples to illustrate the importance of our results.

Keywords: difference equations, stability, global stability, boundedness, periodic solutions.
Mathematics Subject Classification: 39A10

1. INTRODUCTION

Difference equations have always played an important role in the construction and analysis of mathematical
models of economic process, biology, ecology, physics and so forth. The study of nonlinear rational difference
equations of higher order is of paramount importance, since we still know so little about such equations.

In [1] Papaschinopoulos et al. studied the asymptotic behavior and the periodicity of the positive solutions

of the nonautonomous difference equation
x

P
n—1
g

Tpt+1 = An +

Kalabusi¢ et al. [2] investigated the global character of the solution of the nonlinear rational difference

equation
T _ Brn_i+0Ts_k
n+l = Ba, +Dz, "

Elsayed et al. [3] studied the global stability character and the periodicity of solutions of the recursive
sequence

o bryn 1 +ctn_k
Tn41 = ATp—s + g = Frez. -

Zayed et al. [4] investigated the behavior of the following rational recursive sequences

bx
Tptl = ATy — —n—cmn—dmn,k'
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El-Moneam et al. [5] obtained the boundedness, the periodicity and the global stability of the positive solution
of the difference equation,

_ brp _1+ctn_o+frn_3+TTn_4a
Tpt1 = an + Az, _1+ex, _o+gTn_3+5Tn_4a°

El-Dessoky [6] studied the global stability, the boundedness and the periodicity of the nonlinear difference
equation
Tni1 = ATy + DTp_p + CTp_y — —Fn=s n=0,1, ..

€Lp—s—QLp—t

For other related results, see [1 - 30].

Our aim in this paper is to obtain some qualitative behavior of the positive solutions of the difference equation

_ ATy _1+bTp _
Tnt1 = Qn + BTn—t + VOn—k + g =0, 1, .., (1)
where the parameters o, 8, v, a, b, ¢, d € (0, co) and the initial conditions x_s, T_sy1 ..., £—1 and xo are

positive real numbers where s = maz{l, k}.

2. LOCAL STABILITY OF THE EQUILIBRIUM POINT

In this section, we study the local stability character of the equilibrium point of Eq. (1).
Eq. (1) has equilibrium point and is given by

oF = ax” + Bt +yat + e

If o+ 8+~ < 1, then the only positive equilibrium point z* of Eq. (1) is given by z* = %.

THEOREM 2.1. (i) Let ad > ¢b, a+B+~v < 1 and v > (ad_é’cci(;)_(s;b[;_”),then equilibrium x* of Eq. (1) is
locally asymptotically stable.

(i) Let ¢b > ad, a++v < 1 and § > (ad_(cfi(;)_(sgg_m,then equilibrium x* of Eq. (1) is locally
asymptotically stable.

Proof: Suppose that G : (0, 00)® — (0, 0o) be a continuous function defined by

G(uo, u1, ug) = aug + Buy + yug 4 LERL2, (2)
Therefore, it follows that
OG (ug, ui, ua) __ 0G(uo, ui, ua) __ B + (ad—cb)usg OG (ug, w1, ua) __ _ _(ad=bc)ug
dug =a duq - (cur+duz)?’ Ous =7 (cur+duz)?”
Then, we see that
AG(z*, =™, z*) G (z*, =™, z*) B (ad—cb)(l—a—B—7) OG(z*, =™, =*) __ ad—bc)(1—a—B—y
dug = aQ, Ou1 =p+ (c+d)(a+b) ’ Oua =7- (c+d)(a+b)

Under the conditions of part (i), we get

|Oé|+ ﬁ‘i’ ad—cb)(l—a—B—v ‘+‘77 ad—bc)(l—a—B—v < 1,

(c+d)(atD) (c+d)(atD)
(ad—cb)(1—a—f—r) (ad—be)(1—a—F—)
at B+ ey T T (erdatD) < 1
and so
a+pf+y<l

Then the equilibrium z* of Eq. (1) is locally asymptotically stable, the proof of part (i) is complete.
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Under the conditions of part (ii), we get

|a|+ B* bec—ad)(l—a—B—v ‘+‘7+ bec—ad)(l—a—B—v < 1,

(c+d)(a+b) (c+d)(a+tb)
be—ad)(l1—a—f— be—ad)(1—a—f—
o+ f - epdrand=il p oy 4 Ceplilnasi= <
and so
a+pf+y<Ll

Then the equilibrium z* of Eq. (1) is locally asymptotically stable, the proof of part (ii) is complete.

Example 1. See Figure (1) when we take the Eq. (1) withl =4, k=3,0=0.2,58=0.1, y=0.5, a = 0.4,
b=0.3, c=0.6 and d = 1 and the initial conditions x_4 = 0.6, x_3 =7, x_o =2, x_1 = 3 and zy = 5.

X(n+1)=alfa X(n)+ beta X(n-)+gamma X(n-k)+((@ X(n-)+b X(n-K))/(c X(n-)+d X(n-k)))
T T T T T

X(n)

Fig. 1. sketch the behavior of the solution of Eq. (1).
Example 2. The solution of Eq. (1) is local stability if { =4, k =3, «a =02, 5 =0.1, v =0.2, a = 0.4,

b=0.3, c=0.6 and d = 1 and the initial conditions z_4 =6, z_3 = 1.1, x_2 = 0.8, z_; = 2 and x¢p = 0.2 (See
Fig. 2).

X(n+1)=alfa X(n)+ beta X(n-l+gamma X(n-k)+((@ X(n-y+b X(n-k)/(c X(n-)+d X(n-K)))
2 T T T T T

18 Bl
16 -
14 | Bl

12 =

x(n)
-
[ T
—
1 1

0.8

06 [ -

04 =

0.2 -

Fig. 2. Plot the behavior of the solution of equation (1) under the conditions (i).
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Example 3. Figure (3) shows that if ] =4, k=3, « =02,5=03, vy=02,a=04,b=2¢=1.6
and d = 1, then the solution of Eq. (1) is local stability with the initial conditions z_4, = 6, z_3 = 1.1,
r_ =08, x_1 =2 and zg = 0.2.

X(n+1)=alfa X(n)+ beta X(n-)+gamma X(n-k)+((a X(n-)+b X(n-k))/(c X(n-)+d X(n-k)))
25 T T T T T T

15 =

()

05 =

Fig. 3. Plot the behavior of the solution of equation (1) under the conditions (ii).
Example 4. See Figure (4) when we take Eq. (1) with i =4, k=3, a =0.2, 5 =0.28, v =0.82, a = 0.4,

b=0.3, c=0.6 and d = 1 and the initial conditions x_4 =6, x_3 =1.1, x_5 = 0.8, z_1; =2 and xg = 0.2.

X(n+1)=alfa X(n)+ beta X(n-lj+gamma X(n-k)+((@ X(n-1)+b X(n-K))/(c X(n-)}+d X(n-K)))
10000 T T T T T

9000

8000

7000 —

6000 —

5000

X(n)

4000 —

3000

2000

1000

Fig. 4. Draw the behavior of the solution of Eq. (1).

3. GLOBAL STABILITY OF THE EQUILIBRIUM POINT

THEOREM 3.1. The equilibrium point =* is a global attractor of Eq. (1) if one of the following conditions holds:

(i) ad—cb > 0, b>a.
(ti)) cb—ad > 0, a>=b.

Proof. Let 7, s be nonnegative real numbers and assume that H : [r,s]> — [r, s] be a function defined by

o auy +bu
H(ug, u1, u1) = qug + Pus + yus + v e
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Then

OH (ug, w1, ui) __
- Ou1 (cup+duy)? Ousz (cuo+duy)?”

ot OH (uo, w1, u1) _ B+ (ad—cb)ui and OH (uo, u1, u1) _ (ad—bc)ug

a,

We consider two cases:
Casel: Assume that ad —cb >0, a+8+v<1and v > (ad_é’cci_(;)_(s;g_ﬂ)

that the function H(ug, w1, ug) is increasing in ug, u; and decreasing in uy. Suppose that (m, M) is a solution
of the system

is true, then we can easily see

M=HM, M, m) and m=H(m, m, M).
Then from Eq. (1), we see that

M = aM + M +~ym 4 L4Ebm and  m = am + fm + yM 4 LntbM

cM~+dm ecm—+dM
then
c(1—a—-B)M?*+d(1—a—B)mM — cymM — dym? = aM + bm,
c(1—a—B)m?*+d(1l—a—B)mM — cymM —dyM?* = am+bM,

Subtracting this two equations, we obtain
(M =m){(c(1 —a—=B)+dy) (M+m)]+(b—a)} =0,

under the condition o + 8 < 1, b > a, we see that M = m. Then z* is a global attractor of Eq. (1).

Case 2: Assume that c¢b >ad, f+v<1and 8> KL_((ZW is true, then we can easily see that the
function H(ug, ui, ue) is decreasing in ug, w; and increasing in us. Suppose that (m, M) is a solution of the

System
M=H(m, m, M) and wm=H(M, M, m).

Then from Eq. (1), we see that

M:am+ﬁm+’yM+am+bM and m:aM+BM+7m+M

cm~+dM 7 cM+dm

then
d(1 —)M? +c(1 —y)mM —c(a+ B)m? —d(a+B)mM = am+bM,
d(1 —y)m* +c(1 —y)ymM — c(a+ ) M?* —d(a+B)mM = aM +bm,

Subtracting this two equations, we obtain
(M =m){(d(1 =) +c(a+B)) (M+m) +(a—0b)} =0,
under the condition v # 1, a # b, we see that M = m. Then z* is a global attractor of Eq. (1).
Example 5. The solution of Eq. (1) is global stability if I = 4, k = 3, a =0.02, 8 =0.01, v =0.03, a = 0.4,

b=1,¢=0.2and d =1 and the initial conditions z_4 =6, x_3 = 1.1, z_2 = 0.8, x_1 = 2 and z¢p = 0.2 (See
Fig. 5).

Example 6. Figure (6) shows the global stability of the solution of Eq. (1) when [ =4, k = 3, a = 0.02,
=02 ~v=01a=11,b =03, ¢c =1 and d = 0.3 and the initial conditions z_4 = 6, x_3 = 1.1,
r_ =08, x_1 =2 and zg = 0.2.
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X(n+1)=afa X(n)+ beta X(n-)+gamma X(n-k)+((a X(n-+b X(n-k))/(c X(n-)+d X(n-K))
25 T T T T T

X(n)

0 ) 10 20 30 40 50 60 70 80 90

Fig. 5. sketch the behavior of the solution of Eq. (1) when ad > ¢b and b > a.

X(n+1)=alfa X(n)+ beta X(n-]}+gamma X(n-k)+((a X(n-)+b X(n-K))/(c X(n-+d X(n-K)))
2 T T T T T

x(n)

°

® -

T T
—
1 1

0 10 20 30 40 50 60 70 80 90

Fig. 6. Shows the behavior of the solution of Eq. (1) when ¢b > ad, a > b.

4. BOUNDEDNESS OF THE SOLUTIONS

THEOREM 4.1. Every solution of Eq. (1) is bounded if 5+ v < 1.
Proof. Let {z,} - _ be a solution of Eq. (1). It follows from Eq. (1) that

_ ATy 1 +bTyn i
Tpt1 = O@p + BTy + Yok + g
_ ATy, ] br, 1
= ap + frni + VEn—k + CTy_y+dT, cxy_y+de, 1"
Then
e b
Tng1 S ATy + BTy + Vg + T2+ T2 = awy + By YTk + 2+ b for all n > 0.

By using a comparison, we can right hand side as follows

a b
Ynt+1 = OYn + BYn—1 + VWYn—k + p + 7

and this equation is locally asymptotically stable if « + 8 + v < 1, and converges to the equilibrium point
= W‘“‘Z“l’;—. Therefore
—a—f—7)
; d+b
Jim supyn < ety
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Thus the solution is bounded.
THEOREM 4.2. FEvery solution of Eq. (1) is unbounded if o« > 1 or 8 > lor~ > 1.
Proof. Let {z,}.—__ be a solution of Eq. (1).Then from Eq. (1) we see that

n=-—s

ATy 1 +bT

Tpi1l = Ty + BTp_| + VTp_k + T rde oy for all n > 0.

We see that the right hand side can be written as follows y,+1 = ay,. Then

Yn+1 = Q"yYp + const.,

(oo}
n=-—s

and this equation is unstable because o > 1, and lim y,, = c0.Then by using ratio test {z,} is unbounded.
n—oo

Using the same technique, we can prove the other cases.

Example 7. Whenl =4, k=3, a=1.3, 5=0.5, y=0.2,a=04,b=0.3, c= 0.6 and d = 1, the solution
of Eq. (1) with initial conditions x_4 = 6, x_3 = 1.1, z_2 = 0.8, z_; = 2 and 2y = 0.2, the solution of the
difference equation is unbounded (See Fig. 7).

%10 M X(n+1)=alfa X(n)+ beta X(n-l)+gamma X(n-k)+((a X(n-y+b X(n-K))/(c X(n-)+d X(n-K)))
4 T T T T T

35 -

x(n)
~
T

0 10 20 30 40 50 60 70
n

Fig. 7. Plot the behavior of the solution of equation (1) when a > 1.

Example 8. Figure (8) shows that l =4, k=3, «=0.2, =15 v=0.5a=04,b=0.3, c=0.6 and
d = 1, the solution of Eq. (1) with initial conditions z_4 =6, x_3 = 1.1, x_5 = 0.8, z_; = 2 and xg = 0.2 is
unbounded.

%10 ©  X(n+l)=alfa X(n)+ beta X(n-ly+gamma X(n-K)+((@ X(n-)+b X(n-k))/(c X(n-y+d X(n-K)))
T T T T T

x(n)

n

Fig. 8. Draw the behavior of the solution of equation (1) when 5 > 1.
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Example 9. Figure (9) shows the solution of Eq. (1) is unbounded if ] =4, k=3, =0.2, =04, v=1.2,
a =104,b =03, c =06 and d = 1 and the initial conditions x_4 = 6, x_3 = 1.1, z_o = 0.8, z_; = 2
and xy = 0.2.

%10 °  X(n+l)=alfa X(n)+ beta X(n-rgamma X(n-Ky+((@ X(n-)+b X(n-K))/(c X(n-)+d X(n-k)))
12 T T T T

10 —

x(n)
=)
T

n

Fig. 9. Shows the behavior of the solution of equation (1) when > 1.

5. EXISTENCE OF PERIODIC SOLUTIONS
THEOREM 5.1. Ifl is an even and k is an odd, then Eq. (1) has a prime period two solutions if
b—a)(c—d)(1+a+p—7)>4(bc(a+p)+ad(l—"7)), (3)
where a < b, c<d, y<landy<1l+a+ (.

Proof. Suppose that there exists a prime period two solution ...P, @, P, @, ..., of Eq. (1). We see from
Eq. (1) when [ is even, and k is odd that

P=0aQ+ fQ+P + 2Lt and Q= aP + AP +4Q + 25128

cQ+dP cP+dQ

Then
c(1-=7)PQ+d(1—~)P* = c(a+pB)Q*+d(a+B)PQ+aQ +bP, (4)
c(1=%)cPQ+d(1-7)Q* = c(a+B)P?>+d(a+B)PQ+aP +bQ. (5)

Subtracting (4) from (5) gives
d(1—7)(P?=Q%) =c(a+p)(Q° —P*) —a(P - Q) +b(P - Q),

(dl=7)+cl@+B)(P-QP+Q)=(b—a)(P-Q),
Since P # @ , it follows that
(d(l=7)+c(a+p)(P+Q)=b—a,

_ b—a
P+Q= d(1—~)+c(a+p) " (6)
Again, adding (4) and (5) yields

2PQ(c(1=7) —d(a+ ) = (c(a+B) —d(1=9)) (P’ +Q*) + (a + b)(P +Q), (7)
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It follows by (6), (7) and the relation
PP+ Q?=(P+Q)*-2PQ forall P,Q€R,

that
2PQ(c(1—v) —d(a+p)) = (c(la+B) —d(1-7)) (P+Q)* —2PQ) + (a+b)(P+Q),

2c=d)(1+a+f-7PQ = (P+Q)[(c(a+pB)—d(1-7)(P+Q)+(a+Dd)],
_ (c(at+B)=d(1=v))(b=a)+(a+b)(d(1=y)+c(a+p))
2e-d)(L+atB-1PQ = (m=iimm) ( S reath) ).
_ —a be(a+pB)+ad(1—
2(c=d)(I+a+f-7PQ = 2 (d(l—vl))+c(a+ﬁ)> ( d((l—v))+0(o$+ﬁ?)>
PQ = (b—a)(be(a+p)tad(1—v)) (8)

T (e=d)(1tatp=y)(d(1-y)+e(at+p))?
Now it is clear from equations (6) and (8) that P and @ are the two distinct roots of the quadratic equation

b—a)(da ad+pBcb
(d(1 =) +cla+B) 8 = (b—a)t + i ih st rsmay = O (9)
and so
( b—a )2 4(b—a)(be(a+B)+ad(1—7))
d1—7)+c(athB) (c—d)(1+a+B—)(d(1—)+c(a+B))?
b—a) > a(be(a+B)+ad(1—9))

(e=d)(14+a+B—7)(d(1—7)+c(a+B))*

Forb>a, c>dandvy<1,v<1+4a+ 3, then
(b—a)(c—d)(Ql+a+8—7)>4(bc(a+p)+ad(l—r7)).

Therefore Inequality (3) holds and the proof is complete.

Example 10. Figure (10) shows the Eq. (1) has a prime period two solution when [ = 4, k = 3, a =
0.001, 8 = 0.03, v = 0.06, a = 0.1, b = 0.9, ¢ = 0.8 and d = 0.06 and the initial conditions x_4 = @,
T3 =P 1 _9=0Q, x_ 1:Pande:quchthatP:ﬂ—)andQ:ﬂ—where

2(d(1=v)+c(a+p) 2(d(1—=v)+c(a+p))
_ 12 _ A0-a)beloib) vod( =)
£= \/(b —a) (c—d)(I+a+B—)

X(n+1)=alfa X(n)+ beta X(n-l+gamma X(n-k)+((@ X(n-ly+b X(n-k)/(c X(n-)+d X(n-K)))
T T T T T

10

X(n)
o
T
T

Fig. 9. Plot the solution of Eq. (1) has a periodic solution.
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THEOREM 5.2. Ifl is an odd and k is an even, then Eq. (1) has a prime period two solutions if
(a=b)(d—c)(d—c)l+a+~v—08)>4(ad(a+vy)+cb(1—75)), (10)

where b<a, c<d and f < a+~y+1.

Proof. Suppose that there exists a prime period two solution ...P, @, P, @, ..., of Eq. (1). We see from
Eq. (1) when [ is odd, and k is even that

P=aQ+ P +~vQ + 454 and Q = aP + BQ + P + 24tb0

cP+dQ cQ+dP"
Then
c(1-B)P’+d(1-B)PQ = cla+~)PQ+d(a+~)Q*+aP +bQ, (11)
c1-B)Q*+d(1-B)PQ = c(a+v)PQ+d(a+v)P?+aQ + bP. (12)

Subtracting (11) from (12) gives
c(1=p)(P* = Q%) = —d(a+7) (P’ - Q%) +a(P-Q) —b(P - Q),

(c(l=p)+d(a+)(P-Q)P+Q)=(a-b)(P-Q),

Since P # @ , it follows that
(c(I=p)+d(a+7))(P+Q)=a—b,

P +Q = spitiwr- (13)
Again, adding (11) and (12) yields
2d(1-B)PQ+c(1-B)(P*+Q*) =2c(a+7)PQ+d(a+7) (P*+Q* + (a+b)(P+Q),

2PQ(d(1—B) —cla+7)) = (d(a+7) —c(l—=5) (P’ + Q) + (a +b)(P+Q), (14)
It follows by (13), (14) and the relation

PP+ Q?=(P+Q)*-2PQ forall P,QE€R,

that
2PQ(d(1—B) —cla+7) = (d(a+7) —c(1=5)) (P+Q)*-2PQ) + (a + b)(P+Q),

2(d—co)(l+a+v—p8)PQ

(P+Q)[(d(a+7)—c(1-5)(P+Q)+(a+D),

a=b (d(aty)=c(1=p))(a=b)+(c(1=B)+d(a+v))(a+b)
c(1=B)+d(a+7) c(1=B)+d(a+v)

9 a—b ) (ad(a—‘r'y)—‘rcb(l—ﬁ))
c(1-p)+d(a+7) c(1-p)+d(a+7)

_ (a=b(edaty) b))
PQ = G5 (1T atr-) tel—p)d(at )" (15)

Now it is clear from equations (13) and (15) that P and @ are the two distinct roots of the quadratic equation

a—b)(ad(a+~y)+cb(1—0 o
(c(1=B) +d(a+7) e~ (a-b)t+ o im A S E oy = 0 (16)

and so

( a—b >2 > 4(a=b)(ad(a+v)+cb(1-1))
c(1-B)+d(a+7) (d—c)(1+a+y—B)(c(1-B)+d(a+7))*’
4(ad(a+v)+cb(1—-5))
(@a=b) > arar—n
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For b <a, c<dand <1+ o+, then
(a=b)(d=c)(d—c)I+a+v—0)>4(ad(a+v)+cb(l—7)).

Therefore Inequality (10) holds and the proof is complete.

Example 11. Figure (11) shows the Eq. (1) has a prime two solution when | = 1, & = 4, o = 0.001,
B =06,~v =002 a=09 b=02 ¢c= 0.05 and d = 0.55 and the initial conditions z_4, = Q, x_3 =
P x5 =0Q,z_y =P and zqg = @Q, such that P = and Q = =——22"5 ___ where ¢ =

2(c(1=B)+d(a+v))
R

a—b+¢
2(c(1=B)+d(a+7))

X(n+1)=beta X(n-l)J*gamma X(n-k)+((a X(n-)+b X(n-k))/(c X(n-1)+d X(n-k)))
22 T T T T

20 b

18 b

16 n

2 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

n

Fig. 11. sketch the solution of Eq. (1) has a periodic solution.

THEOREM 5.3. Fquation (1) has no prime period two solutions if | and k are even and +~v+ 1 # 0.

Proof. Suppose that there exists a prime period two solution ...P, @, P, @, ..., of Equation (1). We see
from Equation (1) when [ and k are even that

P = aQ+pQ+1Q+ L7, (17)
Q = aP+pP+yP 4 45HL (18)

Subtracting (17) from (18) gives
(@a+B8+7+1)(P-Q)=0,

Since a + 5+ v+ 1 #0, then P = Q. This is a contradiction. Thus, the proof is completed.

Example 12. Figure (12) shows the Eq. (1) has no period two solution when [ = 4, k =4, a = 0.2, § =
0.7, v=04,a=0.8,b=0.3, c= 0.6 and d = 0.9 and the initial conditions z_4 =6, z_3 =7, 29 =2, 21 =3
and zg = 5.
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X(n+1)=beta X(n-l)+gamma X(n-k)+((@ X(n-)+b X(n-K))/(c X(n-}+d X(n-K))
120 T T T T T

100 |-

0

Fig. 12. Draw the solution of Eq. (1) has no periodic when ! and k are even.

THEOREM 5.4. FEquation (1) has no prime period two solutions if | and k are odd and 1 — 8 — v # 0.

Proof. Suppose that there exists a prime period two solution ...P, @, P, @, ..., of Eq. (1). We see from
Eq. (1) when [ and k are odd that

P = aQ+BP+~+P+ 25HE, (10)
Q = aP+pQ+1Q+ 38 (20)

Subtracting (19) from (20) gives
(l-a=p-7)(P-Q)=0,

Since 1 —a — g —~ #0, then P = Q. This is a contradiction. Thus, the proof is completed.
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OSCILLATION OF SOLUTIONS
OF CERTAIN LINEAR
DIFFERENTIAL EQUATIONS

YONG LIU AND XTAOGUANG QI

ABSTRACT. In this article, we mainly investigate the growth of solutions of certain
higher order linear differential equations. The results we obtain generalize some previous
results of P. C. Wu and J. Zhu.

1 INTRODUCTION

In this paper, we assume that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna theory(e.g.see [8, 14, 15]). In addition, we will use
the notations o(f), u(f), A(f), /\(%) to denote the order, the lower order, the exponents of
the convergence of the zero-sequence and the exponents of convergence of pole-sequence of
a meromorphic function f(z), respectively.

For a set E C R™, let m(H), respectively m;(H), denote the linear measure, respectively
the logarithmic measure, of H. By xH(t), we denote the characteristic function of H.

Moreover, the upper logarithmic density and the lower logarithmic density of H are defined
by

log densH = lim sup(/lr(xH(t)/t)dt)/ logr

7—00

logdensH = lipgio]élf(/ (xH(t)/t)dt)/logr,
1
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where yH (t) is the characteristic function of the set H.

For the second order linear differential equation
f"+AQ)f" + B(2)f =0, (1.1)

many authors have investigated the growth of solutions of (1.1), where A(z) and B(z) are
entire functions. It is well known that if B(z) is transcendental and fi, fo are two linearly
independent solutions of equation (1.1), then at least one of fi, fo must have infinite order.
On the other hand, there exist some equations of the form (1.1) that possess a solution f # 0
of finite order; for example, f(z) = e2? satisfies f” 4+ e 2*f' — (2¢7%* +4)f = 0. Thus a nat-
ural question is: what conditions on A(z) and B(z) can guarantee that every solution f # 0
of (1.1) has infinite order? Many authors have focused on this subject, such that ([1-3, 9-13])

Recently, P. C. Wu and J. Zhu [12] proved the following result:

Theorem A. [12] Let A(z) be a meromorphic function with finite order having a finite
deficient value. Suppose that B(z) is a meromorphic function satisfying the following con-
dition:

)\(%) < uw(B) < %

Then every solution f # 0 of equation (1.1) is of infinite order.

Thus a natural question arises: whether does the conclusion hold when u(B) = % ?
We give an affirmative answer, and get the following interesting result:

Theorem 1.1. Let Ag(z) be a meromorphic function with )\(Aio) < n(Ap) < 3. And

let Aj(2)(j = 1,2,--- ,k — 1) be meromorphic functions with finite order having a finite
deficient value. Then every solution f Z 0 of
FO 4+ A1 () PV 4 A(2) 1 (2) + Ao(2) f =0 (1.2)

satisfies o(f) = oc.

2 SOME LEMMAS

Lemma 2.1. [7] Let f(z) be a transcendental meromorphic function of finite-order o, and
let € > 0 be a given constant. Then there exists a set H C (1,00) that has finite logarithmic
measure, such that for all z satisfying |z| € H U [0,1] and for all k,j,0 < j < k, one has

f®()
0 (2)
Similarly, there exists a set E C [0,27) of linear measure zero such that for all z = re

with |z| sufficiently large and 6 € [0,27) \ E, and for all k, 5,0 < j < k, the inequality (2.1)
holds.

< |o|(E=i)o=1+e) (2.1)

0
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Lemma 2.2. [5] Let f(z) be a meromorphic function of finite order o. Given ¢ > 0 and

Lo <l < %, there exist a constant K(o0,() and a set E; C [0,00) of lower logarithmic

density greater than 1 — ¢ such that for all v € E¢ and for every interval J of length

/‘f ‘d9<K(o— C)(Zlog ) (r, ).

By the remarks following Theorem 8.1 in [4] and ref [9], we can obtain that

Lemma 2.3. Suppose that g(z) is an entire function of u(f) = %, and satisfies

log L(r, g) = o(log M (r,g))

where L(r, g) = min|,—, [g(2)], M (r, g) = max,|—, |g(z)|. There ezists a set G of logarithmic
density 1, a set H of density 0, a real-valued function ¢(r), and a positive function U(r)
varying slowing in the sense that

Vo)
Jim =7 1,reG (2.1)

for all o > 0, such that forr € G — H

log |g(re' e = (cos( )+ o(1)rz2U(r), r — oo, (2.2)

uniformly for ¢ € [—m, 7).

Lemma 2.4. [6] Suppose that g(z) is transcendental and meromorphic in the plane, of
lower order p < a < 1, and define L(r,g) = min{|g(2)| : |z| = r} and

Y1 ={r>1:logL(r,g) > y(cosma + d(c0,g9) — 1)T(r,g)},.

T
sinTa

where v = Then Y7 has upper logarithmic density at least 1 — g

Lemma 2.5. Suppose f(z) is meromorphic and A(%) <u(f) < % Then either, for every
§ < u(f), there exists rpy, — oo such that

log |£(2)] > 13, (2.3)
for all z satisfying |z| = rm. Or, for every § < u(f), if
k, = {6 € [0,2n) : log | f(re?)| < r}
there exists a set Ey C [1,00) of upper logarithmic density 1 such that for r € Ey,

m(K,) — 0, r — oo.

Proof. Let f(z) = ((Z)) , where [(z) is canonical products(or polynomial) formed by the poles
of f(z), and g(z) is entire. From )\( ) < u(f), we have

A(}) = M) =o(l) < ulf), p(f) = p(9)-
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We divide our proof into two cases:

Case 1: u(f) < 3. Since )\(%) < u(f), we have 6(co, f) = 1. Let )\(%) <d<a <
uw(f) <a< % By Lemma 2.4, then there exists a set £ of (1, 00), having lower logarithmic
density 1 — 8) " guch that for all r € F, we have

a )
log L(r, f) > vy cosmaT(r, f) > 1 > 1,

TQ
sinTa”

where v = Hence, for every 6 < u(f), there exists r,,, — oo such that

log|f(2)| > rp,

for all z satisfying |z| = rp,. So (i) holds.
Case 2: pu(f) = 1. There exist the following two subcases:

Subcase 2.1. If there exists r,, — oo with
log L(ry, g) > alog M(ry,g) as r, — o0 (2.4)
for some a > 0. Hence for given 0 < € < min{‘s;g(l), W}, by (2.4) we have

log L(Tm f) > 10g L(T’n, g) - log M(Tny l)
> ardte — e 5 40 (2.5)

So (i) also hold.

Subcase 2.2. Otherwise
log L(r, g) = o(log M (r, g)). (2.6)

We choose max{é,)\(%)} < & < a < u(g). We note that E* = G — H has logarithmic
density 1, where G, H are defined as in Lemma 2.3. By Lemma 2.3, (2.1), (2.2), (2.6) and
the fact that £* has logarithmic density 1, we obtain

1

\I}('r)rE_5 — 00, (27)

as r — 00. Defining A
Kx, = {0 € [0,2n] : log |g(re®)| < r¢}.

By (2.2) and (2.7), for all » € E* we have that
m(K#,) — 0.

Set F' = {z|f(z) = oo}, since )\(%) < %, we have m(F) < co. Obviously, E** = E* — F has
logarithmic density 1. If § € K,. for all r € E**, we have

log |g(re”)| < log|f(2)| +log M (r,d) < r°+r® < r°.

So, K, C K. Thus Lemma 2.5 holds. O
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Lemma 2.6. Suppose f(z) is a nonconstant meromorphic function of order o < o1 < 0.
For a positive number «, there exists a set E(a) C [1,00) with finite linear measure such
that

m(B(@) N[Z,er]) < exp(—r®),7 > ro(f),

and that, for |z| = r & E(a), we have

’f(j)(z)
f(2)
Proof. Let A(a,d) = {z : |z —a| < 0} and let {l,},{m,} denote all the zeros and poles
of f(z), respectively. Let A = A; U Ay, where Ay = U,A(l,, 1 exp(—=3|1,[**)), Az =
Uy A(my, %exp(—3\m,,|2a)).

Suppose By = {t > 1: An{|z| =t} # 0}. Obviously

< exp(r3a), r>ro(f), j=1,2,--- k.

m(Ei(0) N[, er)

< An(3r, )+ (3 })} exp(—r2%)

2 1
< E(Br)gl exp(—12%) < z exp(—r®),r > ri(«a)
for |z| =r & E1(a). We consider the differentiated Poisson-Jensen formula, for |z| = r and

R = 3r, we have

z /Z 2 ' 22 Sreig

z 1,z
+ Z (z—l * (37“)2#—62)

z myz
* Z (z —my * (3r)? —Wyz)'
|my|<3r

We use the method of ref [9], we also obtain

zf'(2) ‘ 3 1
< ={m@3r, f) + m(3r, =
e 5 (m(3r 1)+ m(3r, 2)
1 a
+4r(n(3r, f) + n(3r, ?))6(9”2 +0(1)
g (8,,,, + 3)7,‘0'16(97‘)204‘
Hence )
z ’ o1—1 (97")20‘ r3o
< (8r+3)r7t e <e
fla | <r+d
We use the same method to each of the functions f/, - - -, f*), we get there exists a set E(a)
such that

m(E(a) N [g, er]) < exp(—r®),
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and if |z| = r € E(«), we obtain

jf;f()i)z) <& 1<j<k
Evidently
mi(B()N [ er]) < W = o(1).
Since my([%, er]) = 2, we obtain that the logarithmic density of E is 0. O

By the remarks following Theorem 8.1 in [4] and ref [9], we can easily get that

Lemma 2.7. Suppose f(z) is meromorphic of)\(%) < p(f) <1land0 < e < min(

n(H-A)

2 1=

w(f)). Suppose there exists an unbounded set of r-valued such that

log | (re"")| > )"

for all 0 € ]0,27]. Suppose also that E3 C [1,00) satisfies

m(E3 N [g, er]) < exp(—r%),r > Ry.

Then there is an unbounded set of s-values with s & Es3 such that

log | (se)| > s>

for all 6 € [0, 27].

3 Proof of Theorem 1.1

Suppose that A;(z) (j =1,2,--- ,k—1) has a finite deficiency d(a;, f) = 2a; >0 at a; € C.

By the definition of deficiency, for all sufficiently r, we get

1

i, Aj—a;

) = ayT(r, Aj).

Hence, for all sufficiently r, there exists a point z, satisfying |z,| = r and

log |A;(2,) — a;| < —ojT(r, Aj).
By Lemma 2.2, we choose | > 0 so small that

1 Qa;
K(p¢)(l,log 7) < -

Then for all » € E, and for every interval J, we obtain that

A’-(Teie) s
o < =LT(r, A;
T/J ‘Aj(rew)‘ < 2 (r: A5),

1371
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where E, is a set with lower logarithmic density greater than 1 — ¢. Suppose z, = retfr

and ¢ > 0 be a sufficiently small number, we choose a number 6y > 0,6, — 6y| < [, and a
set E, C [0,00) with lower logarithmic density greater than 1 — ¢. For all given r € E,
and for all 6 € [0, — (3,0, + (3], we have

log ]Aj(rew) — aj

6
A d ,
— log |4; (re®) — ] +/9 o |45(e) — aldt
< —aT(r, Aj) + /9]149(746“)’\ |
—Q r, ; r -
- ’ o, | Aj(ret)

< —%T(r, A;) <0.
Thus for |z,| =7 € E(p) \ [0,71] and 0 € [0, — 6y, 0, + 6p], we obtain
|Aj(re)] < laj| +1. (3.2)

Let transcendental f # 0 be a finite order solution of (1.2), and suppose )\(Aio) < u(Ao).
We divide the proof into two cases depending on the growth property of Ay(z) by Lemma 2.5.

(L
Case 1. For given €,0 < € < min{M, 1 — u(f), “%0)}. there exists a sequence

rm — 00 such that

log |Ag(z)| > rHAo)=e, (3.3)
From (1.2), we get

(k) ( "(z
|Ao(z)] < ’f (i)) f(( ). (3.4)

f f(2)

By Lemma 2.6, set @ = Te, there exists a set E, C [l,00) with finite linear measure
satisfying

(k-1

4ot ‘Al(z)“

m(Eq N [g, er]) < e, r> Ry (3.5)
and if |z| =r &€ E,, we get
f(‘])(Z) 15¢ 3
" 1< <k R 3.6
‘f(z)‘<e ’ SISR T >Ry ( )

By Lemma 2.7, there exists a sequence s, — 00, S;m, € Eq such that for all 6 € [0, 27],
log |Ag(sme™)| > stAo)=2e, (3.7)
With (3.1), (3.4), (3.6), (3.7), as s, — 0o, we have
exp(si72) < (Jar| + -+ a1 | + k) exp(s)). (3.8)

Thus, (3.8) is impossible.
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Case 2. For given £,0 < € < @’ If
K, = {0 € [0,27) : log|g(r'?)| < rHA0)=5},

there exists a set Ep C [0, 00) having logarithmic density 1 such that m(K,) — 0, as r — oo
in Eg.

By Lemma 2.1, there exists a set E3 C [0,00) with linear measure zero such that for all
|z| = r & E3, we get

‘ f(k) (2) ‘ < ’z‘ka(f)—l-i—e' (3.9)
f(2)

Note that E4 = E(p)NEy\ E3 has a positive lower logarithmic density, and for all sufficiently

large r € E4, we have [0, — ¢, 0, +¢] — K, # 0. Hence, there exist unbounded points z = re®

such that (3.2), (3.9) and log|Ag(re?)| > r#(40)=¢ we obtain that

exp{r )7y < (k + [al)r*7 D (3.10)

Obviously, (3.10) is impossible. By case 1, and case 2, we obtain that o(f) = oco.
If rational function f # 0 be a solution of (1.2), using the above similar method, we can
get a contradiction. Hence, Theorem 1.1 hold.
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