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Abstract

We study the convergence of implicit midpoint type Picard sequence for strongly

accretive and strongly pseudocontractive mappings. We have also improved the results

of some authors.

2010 Mathematics Subject Classification: 47H06, 47J05, 47J25

Key words and phrases: Banach space, Lipschitzian mapping, strongly pseudocontrac-

tive mapping, strongly accretive mapping, implicit midpoint type Picard iteration

1 Introduction and Preliminaries

Let E be a real Banach space with dual E∗. A mapping T with domain D(T ) and range

R(T ) in E is called strongly pseudocontractive if and only if for all x, y ∈ D(T ), the

following inequality is satisfied:

‖x − y‖ ≤ ‖(1 + r)(x− y)− rt(Tx − Ty)‖ (1.1)

for r > 0 and some t > 1. If t = 1 in inequality (1.1), then T is called pseudocontractive.

∗Corresponding author

1
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For E, we will denote by J the normalized duality mapping from E to 2E∗

defined by

J(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2},

where 〈·, ·〉 denotes the generalized duality pairing. As a consequence of a result of Kato

[15], it follows from inequality (1.1) that T is strongly pseudocontractive if and only if

〈(I − T )x − (I − T )y, j(x− y)〉 ≥ k‖x − y‖2 (1.2)

holds for all x, y ∈ D(T ) and for some j(x− y) ∈ J(x − y), where k = t−1
t

∈ (0, 1).

Consequently, it follows easily (again from Kato [15] and inequality (1.2) that T is

strongly pseudocontractive if and only if the following inequality holds:

‖x − y‖ ≤ ‖x − y + s[(I − T − kI)x− (I − T − kI)y‖ (1.3)

for all x, y ∈ D(T ) and s > 0.

Closely related to the class of pseudocontractive mappings is the class of accretive

operators. A mapping A with domain D(A) and range R(A) in E is called accretive if the

following inequality holds:

‖x − y‖ ≤ ‖x − y + s(Ax − Ay)‖

for all x, y ∈ D(A) and s > 0. Also, as a consequence of Kato [15], this accretive condition

can be expressed in terms of the duality map as follows: For each x, y ∈ D(A), there exists

j(x− y) ∈ J(x − y) such that

〈Ax − Ay, j(x− y)〉 ≥ 0. (1.4)

Consequently, inequality (1.1) with t = 1 yields that A is accretive if and only if

T := (I − A) is pseudocontractive. Furthermore, setting A := (I − T ), it follows from

inequality (1.3) that T is strongly pseudocontractive if and only if (A − kI) is accretive,

and using (1.4), this implies that T (= I − A) is strongly pseudocontractive if and only if

the following inequality holds

〈Ax − Ay, j(x− y)〉 ≥ k‖x − y‖2 (1.5)

for all x, y ∈ D(A) and some k ∈ (0, 1). Operators A satisfying inequality (1.5) for all

x, y ∈ D(A) and some k ∈ (0, 1) are called strongly accretive. It is then clear that A is

strongly accretive if and only if T := (I − A) is strongly pseudocontractive. Thus, the

mapping theory for strongly accretive operators is closely related to the fixed point theory

of strongly pseudocontractive maps. We shall exploit this connection in the sequel.

The notion of accretive operators was introduced independently in 1967 by Browder [2]

and Kato [15]. An early fundamental result in the theory of accretive operators, due to

Browder, states that the initial value problem

du

dt
+ Au = 0, u(0) = u0 (1.6)

is solvable if A is locally Lipschitzian and accretive on E. If u is independent of t, then

Au = 0 and the solution of this equation corresponds to the equilibrium points of the

2
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system (1.6). Consequently, considerable research efforts have been devoted, especially

within the past 15 years or so, to developing constructive techniques for the determination

of the kernels of accretive operators in Banach spaces (see [3,4,8–12,14,16,17,19,20,22]).

Two well known iterative schemes, the Mann iterative method (see [18]) and the Ishikawa

iteration scheme (see [13]) have successfully been employed.

In [16], Liu obtained a fixed point of the strictly pseudocontractive mapping as the

limit of an iteratively constructed sequence with error estimation in general Banach spaces.

Theorem 1.1. Let E be a Banach space, and let K be a nonempty closed convex and

bounded subset of E. Let T : K → K be a Lipschitzian strictly pseudocontractive mapping.

If Fix(T ) 6= ∅, where Fix(T ) is the fixed point set of T, then {xn} is a sequence in K

generated by x1 ∈ K,

xn+1 = (1− αn)xn + αnTxn,

where {αn} is a seqnence in (0, 1] satisfying

∞
∑

n=1

αn = ∞, αn → 0 n → ∞

strongly converges to q ∈ Fix(T ) and Fix(T ) is a single set.

In [21], Sastry and Babu showed that any fixed point of a Lipschitzian, strictly pseu-

docontractive mapping T on a closed convex subset K of a Banach space E is necessarily

unique, and may be norm approximated by an iterative procedure. They also provided a

convergence rate estimate and removes the boundedness assumption on K, generalizing

Theorems of Liu.

Theorem 1.2. Let (E, ‖ · ‖), K, T, L and k be as described above. Let q ∈ K be a fixed

point of T . Suppose that {αn} is a sequence in (0, 1] such that for some η ∈ (0, k), for all

n ∈ N,

αn ≤
k − η

(L + 1)(L + 2 − k)
, while

∞
∑

n=1

αn = ∞.

Fix x1 ∈ K. Define for all n ∈ N,

xn+1 := (1 − αn)xn + αnTxn.

Then there exists a sequence {βn} in (0, 1) with each βn ≥ η
1+k

αn such that for all n ∈ N,

‖xn+1 − q‖ ≤
n

∏

j=1

(1− βj)‖x1 − q‖.

In particular, {xn} converges strongly to q, and q is the unique fixed point of T .

The Mann and Ishikawa iteration schemes are global and their rate of convergence is

generally of the order O(n−
1

2 ). It is clear that if, for an operator U , the classical iteration

sequence of the form, xn+1 = Uxn, x0 ∈ D(U) (the so-called Picard sequence) converges,

then it is certainly superior and preferred to either the Mann or the Ishikawa sequence

since it requires less computations and moreover, its rate of convergence is always at least

as fast as that of a geometric progression.

In [5, 6], Chidume proved the following results.

3
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Theorem 1.3. Let E be an arbitrary real Banach space and A : E → E be a Lipschitz

(with constant L > 0) and strongly accretive mapping with strong accretivity constant

k ∈ (0, 1). Let x∗ denote a solution of the equation Ax = 0. Set ε := 1
2

(

k
1+L(3+L−k)

)

and

define Aε : E → E by Aεx := x − εAx for each x ∈ E. For arbitrary x0 ∈ E, define the

sequence {xn} in E by

xn+1 = Aεxn, n ≥ 0. (1.7)

Then {xn}∞n=0 converges strongly to x∗ with

‖xn+1 − x∗‖ ≤ δn‖x0 − x∗‖,

where δ = 1 − 1
2kε ∈ (0, 1) is the Lipschitz constant of the operator A. Moreover, x∗ is

unique.

Corollary 1.4. Let E be an arbitrary real Banach space and K be nonempty convex subset

of E. Let T : K → K be Lipschitz (with constant L > 0) and strongly pseudocontractive

(i.e., T satisfies inequality (1.3) for all x, y ∈ K). Assume that T has a fixed point x∗ ∈ K.

Set ε0 := 1
2

(

k
1+L(3+L−k)

)

and define Tε0 : K → K by Tε0x = (1 − ε0)x + ε0Tx for each

x ∈ K. For arbitrary x0 ∈ K, define the sequence {xn}
∞

n=0 in K by

xn+1 = Tε0xn, n ≥ 0. (1.8)

Then {xn} converges strongly to x∗ with

‖xn+1 − x∗‖ ≤ δn‖x0 − x∗‖,

where δ := 1 − 1
2kε0 ∈ (0, 1). Moreover, x∗ is unique.

Recently Ćirić et al. [7] presented the following results.

Theorem 1.5. Let E be an arbitrary real Banach space, A : E → E be a Lipschitz (with

constant L > 0) and strongly accretive mapping with strong accretivity constant k ∈ (0, 1).

Let x∗ denote a solution of the equation Ax = 0. Set ε := k−η
L(2+L) , η ∈ (0, k) and define

Aε : E → E by Aεx := x− εAx for each x ∈ E. For arbitrary x0 ∈ E, define the sequence

{xn} in E by

xn+1 = Aεxn, n ≥ 0.

Then {xn} converges strongly to x∗ with

‖xn+1 − x∗‖ ≤ θn‖x0 − x∗‖,

where θ = 1 − k−η
k−η+L(2+L)

η ∈ (0, 1). Thus the choice η = k
2 yields θ = 1 − k2

2[k+2L(2+L)]
.

Moreover, x∗ is unique.

Corollary 1.6. Let E be an arbitrary real Banach space, K be a nonempty convex subset

of E. Let T : K → K be Lipschitz (with constant L > 0) and strongly pseudocontractive

(i.e., T satisfies inequality (1.3) for all x, y ∈ K). Assume that T has a fixed point x∗ ∈ K.

Set ε0 := k−η
L(2+L) , η ∈ (0, k) and define Tε0 : K → K by Tε0x = (1 − ε0)x + ε0Tx for each

x ∈ K. For arbitrary x0 ∈ K, define the sequence {xn} in K by

xn+1 = Tε0xn, n ≥ 0.

4
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Then {xn} converges strongly to x∗ with

‖xn+1 − x∗‖ ≤ θn‖x0 − x∗‖,

where θ := 1 − k−η
k−η+L(2+L)

η ∈ (0, 1). Moreover, x∗ is unique.

However Kang et al. [14] established the following results.

Theorem 1.7. Let E be an arbitrary real Banach space, A : E → E be a Lipschitz (with

constant L > 1) and strongly accretive mapping with strong accretivity constant k ∈ (0, 1).

Let x∗ denote a solution of the equation Ax = 0. Set ε := k−η
L+(1+L)(k−η)

, η ∈ (0, k) and

define Aε : E → E by Aεxn := (1 − ε) xn−1 + εxn − εAxn for each xn ∈ E. For arbitrary

x0 ∈ E, define the sequence {xn} in E by

xn = Aεxn, n ≥ 1.

Then {xn} converges strongly to x∗ with

‖xn+1 − x∗‖ ≤ λn‖x0 − x∗‖,

where λ = 1 − k−η
L+(k−η)(1+L+k)η ∈ (0, 1). Thus the choice η = k

2 yields λ = 1 −
k2

2[2L+k(1+L+k)] . Moreover, x∗ is unique.

Corollary 1.8. Let E be an arbitrary real Banach space ans K be a nonempty closed

convex subset of E. Let T : K → K be Lipschitz (with constant L > 0) and strongly

pseudocontractive (i.e., T satisfies inequality (1.3) for all x, y ∈ K). Assume that T has

a fixed point x∗ ∈ K. Set ε0 := k−η
L+(1+L)(k−η)

, η ∈ (0, k) and define Aε0 : K → K by

Aε0xn := (1 − ε0) xn−1 + ε0xn − ε0Axn for each xn ∈ K. For arbitrary x0 ∈ K, define the

sequence {xn} in K by

xn = Aε0xn, n ≥ 1.

Then {xn} converges strongly to x∗ with

‖xn+1 − x∗‖ ≤ λn
0‖x0 − x∗‖,

where λ0 = 1 − k−η
L+(k−η)(1+L+k)η ∈ (0, 1). Thus the choice η = k

2 yields λ0 = 1 −
k2

2[2L+k(1+L+k)] . Moreover, x∗ is unique.

Let H be the Hilbert space. Recently Alghamdi et al. [1] defined the following algo-

rithm.

Algorithm 1.9. Initialize xn ∈ H arbitrarily and iterate

xn+1 = (1− tn)xn + tnT

(

xn + xn+1

2

)

, n ≥ 0,

where tn ∈ (0, 1) for all n.

For the approximation of fixed points of nonexpansive mappings under the setting of

Hilbert spaces, they provide the following results.

5
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Lemma 1.10. Let {xn} be the sequence generated by Algorithm 1.9. Then

(i) ‖xn+1 − p‖ ≤ ‖xn − p‖ for all n ≥ 0 and p ∈ Fix(T ),

(ii)
∑

∞

n=1 tn‖xn − xn+1‖2 < ∞,

(iii)
∑

∞

n=1 tn(1− tn)‖xn − T (xn+xn+1

2 )‖2 < ∞.

Lemma 1.11. Let {xn} be the sequence generated by Algorithm 1.9. Suppose that t2n+1 ≤
atn for all n ≥ 0 and a > 0. Then

lim
n→∞

‖xn+1 − xn‖ = 0.

Lemma 1.12. Assume that

(i) t2n+1 ≤ atn for all n ≥ 0 and a > 0,

(ii) lim supn→∞
tn > 0.

Then the sequence {xn} generated by Algorithm 1.9 satisfies the property

lim
n→∞

‖xn − Txn‖ = 0.

Theorem 1.13. Let H be a Hilbert space and T : H → H be a nonexpansive mapping

with Fix(T ) 6= ∅. Assume that {xn} is generated by Algorithm 1.9, where the sequence

{tn} of parameters satisfies the conditions:

(i) t2n+1 ≤ atn for all n ≥ 0 and a > 0,

(ii) lim supn→∞
tn > 0.

Then {xn} converges weakly to a fixed point of T .

In this paper, we study the convergence of implicit Picard sequence for strongly ac-

cretive and strongly pseudocontractive mappings. We have also improved the results

of [5–7, 14, 16, 19–21].

2 Main results

In the following theorems, L > 1 will denote the Lipschitz constant of the operator A and

k > 0 will denote the strong accretivity constant of A (as in inequality (1.5)). Furthermore,

ε > 0 is defined by

ε :=
k − η

L + 1
2 (1 + L) (k − η)

, η ∈ (0, k).

With these notations, we prove the following theorem.

Theorem 2.1. Let E be an arbitrary real Banach space, A : E → E be a Lipschitz and

strongly accretive mapping with strong accretivity constant k ∈ (0, 1). Let x∗ denote a

solution of the equation Ax = 0. Define Aε : E → E by Aεxn := (1 − ε) xn−1 + ε
xn−1+xn

2 −

εA
xn−1+xn

2 for each xn ∈ E. For arbitrary x0 ∈ E, define the sequence {xn}
∞

n=0 in E by

xn = Aεxn, n ≥ 1.

Then {xn}
∞

n=0 converges strongly to x∗ with

‖xn+1 − x∗‖ ≤ ρn‖x0 − x∗‖,

where ρ = 1− 2(k−η)
2L+(k−η)(2+L+k)

η ∈ (0, 1). Thus the choice η = k
2 yields ρ = 1− k2

4L+k(2+L+k)
.

Moreover, x∗ is unique.

6
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Proof. Existence of x∗ follows from Theorem 13.1 of [8]. Define T := (I − A) where I

denotes the identity mapping on E. Observe that Ax∗ = 0 if and only if x∗ is a fixed point

of T . Moreover, T is strongly pseudocontractive (satisfies inequality (1.2) since A satisfies

(1.5), and so T also satisfies inequality (1.3) for all x, y ∈ E and all s > 0. Furthermore,

the recursion formula xn = Aεxn becomes

xn = (1− ε)xn−1 + εT

(

xn−1 + xn

2

)

, n ≥ 1. (2.1)

Observe that

x∗ = (1 + ε)x∗ + ε(I − T − kI)x∗ − (1 − k)εx∗,

and from the recursion formula (2.1) that

xn−1 = (1 + ε)xn + ε(I − T − kI)
xn−1 + xn

2
− (1− k)ε

xn−1 + xn

2

+ ε2
(

xn−1 − T

(

xn−1 + xn

2

))

,

(2.2)

so that

xn−1 − x∗ = (1 + ε)(xn − x∗) + ε

[

(I − T − kI)
xn−1 + xn

2
− (I − T − kI)x∗

]

− (1 − k)ε

(

xn−1 + xn

2
− x∗

)

+ ε2
(

xn−1 − T

(

xn−1 + xn

2

))

.

Assume that xn ' xn−1, which yields that xn−1+xn

2 ' xn. Replace xn−1+xn

2 by xn in

the second term of right hand side, we get

xn−1 − x∗ = (1 + ε)(xn − x∗) + ε [(I − T − kI)xn − (I − T − kI)x∗]

− (1− k)ε

(

xn−1 + xn

2
− x∗

)

+ ε2
(

xn−1 − T

(

xn−1 + xn

2

))

.

This implies, using inequality (1.3) with s = ε
1+ε

and y = x∗ that

‖xn−1 − x∗‖

≥ (1 + ε)

[
∥

∥

∥

∥

(xn − x∗) +
ε

1 + ε
[(I − T − kI)xn − (I − T − kI)x∗]

∥

∥

∥

∥

]

− (1− k)ε

∥

∥

∥

∥

xn−1 + xn

2
− x∗

∥

∥

∥

∥

− ε2
∥

∥

∥

∥

xn−1 − T

(

xn−1 + xn

2

)
∥

∥

∥

∥

≥ (1 + ε)‖xn − x∗‖ − (1− k)
ε

2
‖xn−1 − x∗‖

− (1− k)
ε

2
‖xn − x∗‖ − ε2

∥

∥

∥

∥

xn−1 − T

(

xn−1 + xn

2

)
∥

∥

∥

∥

= −(1 − k)
ε

2
‖xn−1 − x∗‖ +

(

1 + (1 + k)
ε

2

)

‖xn − x∗‖

− ε2
∥

∥

∥

∥

xn−1 − T

(

xn−1 + xn

2

)∥

∥

∥

∥

.

(2.3)
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Observe that
∥

∥

∥

∥

xn−1 − T

(

xn−1 + xn

2

)
∥

∥

∥

∥

≤ ‖xn−1 + Txn−1‖+

∥

∥

∥

∥

Txn−1 + T

(

xn−1 + xn

2

)∥

∥

∥

∥

≤ ‖Axn−1‖+
1

2
‖xn−1 − xn‖ +

∥

∥

∥

∥

Axn−1 − A

(

xn−1 + xn

2

)
∥

∥

∥

∥

≤ L ‖xn−1 − x∗‖ +
1

2
‖xn−1 − xn‖ + L

∥

∥

∥

∥

xn−1 −
xn−1 + xn

2

∥

∥

∥

∥

= L ‖xn−1 − x∗‖ +
1

2
(1 + L) ‖xn−1 − xn‖

= L ‖xn−1 − x∗‖ +
1

2
(1 + L) ε

∥

∥

∥

∥

xn−1 − T

(

xn−1 + xn

2

)
∥

∥

∥

∥

,

and so

‖xn−1 − T

(

xn−1 + xn

2

)

‖ ≤
L

1 − 1
2 (1 + L) ε

‖xn−1 − x∗‖ , (2.4)

so that from (2.3) we obtain

(

1 + (1 − k)
ε

2

)

‖xn−1 − x∗‖

≥
(

1 + (1 + k)
ε

2

)

‖xn − x∗‖ −
Lε2

1− 1
2 (1 + L) ε

‖xn−1 − x∗‖ .

Therefore

‖xn − x∗‖ ≤
1 + (1− k) ε

2 + Lε2

1− 1

2
(1+L)ε

1 + (1 + k) ε
2

‖xn−1 − x∗‖, (2.5)

and consider

ρ =
1 + (1 − k) ε

2 + Lε2

1− 1

2
(1+L)ε

1 + (1 + k) ε
2

= 1 −
ε

1 + (1 + k) ε
2

[

k −
Lε

1 − 1
2 (1 + L) ε

]

= 1 −
ε

1 + (1 + k) ε
2

η

= 1 −
2 (k − η)

2L + (k − η) (2 + L + k)
η.

(2.6)

From (2.5) and (2.6), we get

‖xn − x∗‖ ≤ ρ‖xn−1 − x∗‖

≤ · · · ≤ ρn‖x0 − x∗‖

→ 0

as n → ∞. Hence xn → x∗ as n → ∞. Uniqueness follows from the strong accretivity

property of A. This completes the proof.
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The following is an immediate corollary of Theorem 2.1.

Corollary 2.2. Let E be an arbitrary real Banach space and K be anonempty closed

convex subset of E. Let T : K → K be Lipschitz (with constant L > 1) and strongly

pseudocontractive (i.e., T satisfies inequality (1.3) for all x, y ∈ K). Assume that T has

a fixed point x∗ ∈ K. Set ε0 := k−η

L+1

2
(1+L)(k−η)

; η ∈ (0, k) and Define Aε0 : K → K by

Aε0xn := (1 − ε0) xn−1 + ε0
xn−1+xn

2 − ε0A
xn−1+xn

2 for each xn ∈ K. For arbitrary x0 ∈ K,

define the sequence {xn} in K by

xn = Aε0xn, n ≥ 1. (2.7)

Then {xn} converges strongly to x∗ with

‖xn+1 − x∗‖ ≤ ρn
0‖x0 − x∗‖,

where ρ0 = 1 − 2(k−η)
2L+(k−η)(2+L+k)η ∈ (0, 1). Thus the choice η = k

2 yields ρ0 = 1 −
k2

4L+k(2+L+k)
. Moreover, x∗ is unique.

Proof. Observe that x∗ is a fixed point of T if and only if it is a fixed point of Tε0.

Furthermore, the recursion formula (2.7) simplifies to the formula

xn = (1 − ε0)xn−1 + ε0Txn,

which is similar to (2.1). Following the method of computations as in the proof of the

Theorem 2.1, we obtain

‖xn − x∗‖ ≤
1 + (1 − k) ε0

2 +
Lε20

1− 1

2
(1+L)ε0

1 + (1 + k) ε0
2

‖xn−1 − x∗‖

=

(

1 −
2 (k − η)

2L + (k − η) (2 + L + k)
η

)

‖xn−1 − x∗‖.

(2.8)

Set ρ0 = 1 − 2(k−η)
2L+(k−η)(2+L+k)η. Then from (2.8) we obtain

‖xn − x∗‖ ≤ ρ0‖xn−1 − x∗‖

≤ · · · ≤ ρn
0‖x0 − x∗‖

→ 0

as n → ∞. This completes the proof.

Remark 2.3. Since L > 1, consider

ρ = 1 −
2 (k − η)

2L + (k − η) (2 + L + k)
η

= 1 −
k − η

L + (k − η) (1 + L + k)

−

(

2

2L + (k − η) (2 + L + k)
−

1

L + (k − η) (1 + L + k)

)

(k − η)η

< 1 −
k − η

L + (k − η) (1 + L + k)

−
(k − η)2 (L + k) η

(2L + (k − η) (2 + L + k)) (L + (k − η) (1 + L + k))
.
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Thus the relation between Kang et al. [14] and our parameter of convergence, that is, λ

and ρ, respectively, is the following:

ρ < λ.

Our convergence parameter ρ shows the overall improvement for λ, and consequently

the results of Chidume [5, 6], Ćirić et al. [7] and Kang et al. [14] are improved.
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JORDAN HOMOMORPHISMS IN C∗-TERNARY ALGEBRAS AND

JB∗-TRIPLES

MOHAMMAD RAGHEBI MOGHADAM, THEMISTOCLES M. RASSIAS, VAHID KESHAVARZ, CHOONKIL

PARK∗ AND YOUNG SUN PARK

Abstract. In this paper, we investigate Jordan homomorphisms between C∗-ternary algebras

and Jordan derivations on C∗-ternary algebras, and Jordan homomorphisms between JB∗-triples

and Jordan derivations on JB∗-triples, associated with the following Apollonius type additive

functional equation

f(z − x) + f(z − y) = −1

2
f(x+ y) + 2f

(
z − x+ y

4

)
.

1. Introduction and preliminaries

We say that a functional equation (Q) is stable if any function g satisfying the equation (Q)

approximately is near to true solution of (Q).

Also, we say that a functional equation is superstable if every approximately solution is an

exact solution of it.

Ternary algebraic operations were considered in the 19 th century by several mathematicians

such as A.

Cayley [3] who introduced the notion of cubic matrix which in turn was generalized by Kapra-

nov, Gelfand and Zelevinskii in 1990 [17]. As an application in physics, the quark model inspired

a particular brand of ternary algebraic systems. The so-called Nambu mechanics which has been

proposed by Y. Nambu [19] in 1973, is based on such structures.

There are also some applications, although still hypothetical, in the fractional quantum Hall

effect, the non-standard statistics (the anyons), supersymmetric theories, Yang-Baxter equation,

etc, (cf. [1, 40]).

The comments on physical applications of ternary structures can be found in [2, 5, 7, 18].

A C∗-ternary algebra is a complex Banach spaceA, equipped with a ternary product (x, y, z) 7→
[x, y, z] of A3 into A, which is C-linear in the outer variables, conjugate C-linear in the middle

variable, and associative in the sense that [x, y, [z, w, v]] = [x, [w, z, y], v] = [[x, y, z], w, v], and

satisfies ‖[x, y, z]‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖[x, x, x]‖ = ‖x‖3 (see [41]).

If a C∗-ternary algebra (A, [·, ·, ·]) has an identity, i.e., an element e ∈ A such that x =

[x, e, e] = [e, e, x] for all x ∈ A, then it is routine to verify that A, endowed with x ◦ y := [x, e, y]

and x∗ := [e, x, e], is a unital C∗-algebra. Conversely, if (A, ◦) is a unital C∗-algebra, then

0Keywords: Apollonius type additive functional equation, C∗-ternary algebra Jordan homomorphism, Hyers-

Ulam stability, C∗-ternary Jordan derivation, JB∗-triple Jordan homomorphism, JB∗-triple Jordan derivation.
∗Corresponding author.
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[x, y, z] := x ◦ y∗ ◦ z makes A into a C∗-ternary algebra.

A C-linear mapping H : A→ B is called a C∗-ternary algebra homomorphism if

H
(

[x, y, z]
)

= [H(x), H(y), H(z)]

for all x, y, z ∈ A.

A C-linear mapping δ : A→ A is called a C∗-ternary derivation if

δ
(

[x, y, z]
)

= [δ(x), y, z] + [x, δ(y), z] + [x, y, δ(z)]

for all x, y, z ∈ A (see [22]).

A C-linear mapping H : A→ B is called a ternary Jordan homomorphism if

H
(

[x, x, x]
)

= [H(x), H(x), H(x)]

for all x ∈ A.
A C-linear mapping δ : A→ A is called a ternary Jordan derivation if

δ
(

[xxx]
)

= [δ(x)xx] + [xδ(x)x] + [xxδ(x)]

for all x ∈ A. Suppose that J is a complex vector space endowed with a real trilinear composition

J ×J ×J 3 (x, y, z) 7→ {xy∗z} ∈ J which is complex bilinear in (x, z) and conjugate linear in

y. Then J is called a Jordan triple system if {xy∗z} = {zy∗x} and

{{xy∗z}u∗v}+ {{xy∗v}u∗z} − {xy∗{zu∗v}} = {z{yx∗u}∗v}

hold.

We are interested in Jordan triple systems having a Banach space structure. A complex

Jordan triple system J with a Banach space norm ‖ · ‖ is called a J∗-triple if, for every x ∈ J ,

the operator x�x∗ is hermitian in the sense of Banach algebra theory. Here the operator x�x∗

on J is defined by (x�x∗)y := {xx∗y}. This implies that x�x∗ has real spectrum σ(x�x∗) ⊂ R.

A J∗-triple J is called a JB∗-triple if every x ∈ J satisfies σ(x�x∗) ≥ 0 and ‖x�x∗‖ = ‖x‖2.
A C-linear mapping H : J → L is called a JB∗-triple homomorphism if

H
(
{xyz}

)
= {H(x)H(y)H(z)}

for all x, y, z ∈ J .

A C-linear mapping δ : J → J is called a JB∗-triple derivation if

δ
(
{xyz}

)
= {δ(x)yz}+ {xδ(y)z}+ {xyδ(z)}

for all x, y, z ∈ J (see [20]).

A C-linear mapping H : J → L is called a JB∗-triple Jordan homomorphism if

H
(
{xxx}

)
= {H(x)H(x)H(x)}

for all x ∈ J .

A C-linear mapping δ : J → J is called a JB∗-triple Jordan derivation if

δ
(
{xxx}

)
= {δ(x)xx}+ {xδ(x)x}+ {xxδ(x)}
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for all x ∈ J
The study of stability problems originated from a famous talk given by Ulam [39] in 1940:

“Under what condition does there exist a homomorphism near an approximate homomorphism?”

In the next year 1941, Hyers [11] answered affirmatively the question of Ulam for additive map-

pings between Banach spaces. Th.M. Rassias [25] provided a generalization of Hyers’ Theorem

which allows the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let f : E → E′ be a mapping from a normed vector space E

into a Banach space E′ subject to the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ E. Also, if for each x ∈ E the function f(tx) is continuous in t ∈ R, then L is

R-linear.

Th.M. Rassias [26] during the 27th International Symposium on Functional Equations asked

the question whether such a theorem can also be proved for p ≥ 1. Gajda [9] following the same

approach as in Th.M. Rassias [25], gave an affirmative solution to this question for p > 1. For

further research developments in stability of functional equations the readers are referred to the

works of Găvruta [10], Jung [16], Park [23], Th.M. Rassias [27]–[30], Th.M. Rassias and Šemrl

[31], F. Skof [38] and the references cited therein. See also [32, 33, 34, 35, 36, 37] for functional

equations.

In an inner product space, the equality

‖z − x‖2 + ‖z − y‖2 =
1

2
‖x− y‖2 + 2

∥∥∥z − x+ y

2

∥∥∥2
holds, and is called the Apollonius’ identity. The following functional equation, which was

motivated by this equation,

Q(z − x) +Q(z − y) =
1

2
Q(x− y) + 2Q

(
z − x+ y

2

)
, (1.1)

is quadratic. For this reason, the function equation (1.1) is called a quadratic functional equation

of Apollonius type, and each solution of the functional equation (1.1) is said to be a quadratic

mapping of Apollonius type. Jun and Kim [15] investigated the quadratic functional equation of

Apollonius type.

In this paper, employing the above equality (1.1), we introduce a new functional equation,

which is called the Apollonius type additive functional equation and whose solution of the func-

tional equation is said to be the Apollonius type additive mapping:

L(z − x) + L(z − y) = −1

2
L(x+ y) + 2L

(
z − x+ y

4

)
.
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In this paper, we investigate Jordan homomorphisms and Jordan derivations in C∗-ternary

algebras, and Jordan homomorphisms and Jordan derivations in JB∗-triples.

2. Jordan homomorphisms between C∗-ternary algebras

Throughout this section, assume that A is a C∗-ternary algebra with norm ‖ · ‖A and that B

is a C∗-ternary algebra with norm ‖ · ‖B.

In this section, we investigate Jordan homomorphisms between C∗-ternary algebras.

The following lemma was proved in [24].

Lemma 2.1. Let f : A→ B be a mapping such that∥∥∥f(z − x) + f(z − y) +
1

2
f(x+ y)

∥∥∥
B
≤
∥∥∥2f(z − x+ y

4
)
∥∥∥
B

for all x, y, z ∈ A. Then f is additive.

The following lemma was proved in [8].

Lemma 2.2. Let f : A→ B be an additive mapping. Then the following assertions are equivalent

f
(

[x, x, x]
)

= [f(x), f(x), f(x)]

for all x ∈ A, and

f
(

[x, y, z] + [y, z, x] + [z, x, y]
)

= [f(x), f(y), f(z)] + [f(y), f(z), f(x)] + [f(z), f(x), f(y)]

for all x, y, z ∈ A.

The following lemma was proved in [6].

Lemma 2.3. Let f : A→ A be an additive mapping. Then the following assertions are equiva-

lent.

f
(

[x, x, x]
)

= [f(x), x, x] + [x, f(x), x] + [x, x, f(x)]

for all x ∈ A, and

f
(

[xyz] + [yzx] + [zxy]
)

= [f(x), b, c] + [x, f(y), z] + [x, y, f(z)] + [f(y), z, x] + [y, f(z), x]

+ [y, z, f(x)] + [f(z), x, y] + [z, f(x), y] + [z, x, f(y)],

for all x, y, z ∈ A.

Theorem 2.4. Let r 6= 1 and θ be nonnegative real numbers, and let f : A → B be a mapping

such that ∥∥∥f(z − µx) + µf(z − y) +
1

2
f(x+ y)

∥∥∥
B
≤
∥∥∥2f(z − x+ y

4
)
∥∥∥
B
, (2.1)∥∥∥f([x, y, z] + [y, z, x] + [z, x, y])− [f(x), f(y), f(z)]− [f(y), f(z), f(x)]− [f(z), f(x), f(y)]

∥∥∥
B

≤ θ
(
‖x‖3rA + ‖y‖3rA + ‖z‖3rA

)
(2.2)
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for all µ ∈ T1 := {λ ∈ C | |λ| = 1} and all x, y, z ∈ A. Then the mapping f : A → B is a

C∗-ternary algebra Jordan homomorphism.

Proof. Assume r > 1.

Let µ = 1 in (2.1). By Lemma 2.1, the mapping f : A→ B is additive.

Letting y = −x and z = 0, we get

‖f(−µx) + µf(x)‖B ≤ ‖2f(0)‖B = 0

for all x ∈ A and all µ ∈ T1. So

−f(µx) + µf(x) = f(−µx) + µf(x) = 0

for all x ∈ A and all µ ∈ T1. Hence f(µx) = µf(x) for all x ∈ A and all µ ∈ T1. By the same

reasoning as in the proof of [21, Theorem 2.1], the mapping f : A→ B is C-linear.

It follows from (2.2) that∥∥∥f([x, y, z] + [y, z, x] + [z, x, y]
)
− [f(x), f(y), f(z)]− [f(y), f(z), f(x)]− [f(z), f(x), f(y)]

∥∥∥
B

= lim
n→∞

8n
∥∥∥f( [x, y, z]

8n
+

[y, z, x]

8n
+

[z, x, y]

8n

)
−
[
f(

x

2n
), f(

y

2n
), f(

z

2n
)
]
−
[
f(

y

2n
), f(

z

2n
), f(

x

2n
)
]
−
[
f(

z

2n
), f(

x

2n
), f(

y

2n
)
]∥∥∥

B

≤ lim
n→∞

8nθ

8nr

(
‖x‖3rA + ‖y‖3rA + ‖z‖3rA

)
= 0

for all x, y, z ∈ A. Thus

f
(

[x, y, z] + [y, z, x] + [z, x, y]
)

= [f(x), f(y), f(z)] + [f(y), f(z), f(x)] + [f(z), f(x), f(y)]

for all x, y, z ∈ A. Hence the mapping f : A→ B is a C∗-ternary algebra Jordan homomorphism.

Similarly, one obtains the result for the case r < 1. �

3. Jordan derivations on C∗-ternary algebras

Throughout this section, assume that A is a C∗-ternary algebra with norm ‖ · ‖A.

In this section, we investigate Jordan derivations on C∗-ternary algebras.

Theorem 3.1. Let r 6= 1 and θ be nonnegative real numbers, and let f : A → A be a mapping

satisfying (2.1) such that∥∥∥f([x, y, z] + [y, z, x] + [z, x, y]
)
− [f(x), b, c]− [x, f(y), z]− [x, y, f(z)]− [f(y), z, x]

− [y, f(z), x]− [y, z, f(x)]− [f(z), x, y]− [z, f(x), y]− [z, x, f(y)]
∥∥∥
A

≤ θ
(
‖x‖3rA + ‖y‖3rA + ‖z‖3rA

) (3.1)

for all x, y, z ∈ A. Then the mapping f : A→ A is a C∗-ternary Jordan derivation.
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Proof. Assume r > 1.

By the same reasoning as in the proof of Theorem 2.4, the mapping f : A→ A is C-linear.

It follows from (3.1) that∥∥∥f([x, y, z] + [y, z, x] + [z, x, y]
)
− [f(x), y, z]− [x, f(y), z]− [x, y, f(z)]− [f(y), z, x]

− [y, f(z), x]− [y, z, f(x)]− [f(z), x, y]− [z, f(x), y]− [z, x, f(y)]‖A

= lim
n→∞

8n
∥∥∥f([

x, y, z

8n
] + [

y, z, x

8n
] + [

z, x, y

8n
]
)
−
[
f(

x

2n
),
y

2n
,
z

2n

]
−
[ x

2n
, f(

y

2n
),
z

2n

]
−
[ x

2n
,
y

2n
, f(

z

2n
)
]
−
[
f(

y

2n
),
z

2n
,
x

2n

]
−
[ y

2n
, f(

z

2n
),
x

2n

]
−
[ y

2n
,
z

2n
, f(

x

2n
)
]
−
[
f(

z

2n
),
x

2n
,
y

2n

]
−
[ z

2n
, f(

x

2n
),
y

2n

]
−
[ z

2n
,
x

2n
, f(

y

2n
)
]∥∥∥

A

≤ lim
n→∞

8nθ

8nr

(
‖x‖3rA + ‖y‖3rA + ‖z‖3rA

)
= 0

for all x, y, z ∈ A. So

f
(

[x, y, z] + [y, z, x] + [z, x, y]
)

= [f(x), y, z] + [x, f(y), z] + [x, y, f(z)] + [f(y), z, x]

+[y, f(z), x] + [y, z, f(x)] + [f(z), x, y] + [z, f(x), y] + [z, x, f(y)]

for all x, y, z ∈ A.

Thus the mapping f : A→ A is a C∗-ternary Jordan derivation.

Similarly, one obtains the result for the case r < 1. �

4. Jordan homomorphisms between JB∗-triples

Throughout this paper, assume that J is a JB∗-triple with norm ‖ · ‖J and that L is a

JB∗-triple with norm ‖ · ‖L.

In this section, we investigate Jordan homomorphisms between JB∗-triples.

Theorem 4.1. Let r 6= 1 and θ be nonnegative real numbers, and let f : J → L be a mapping

such that

‖f(z − µx) + µf(z − y) +
1

2
f(x+ y)‖L ≤ ‖2f(z − x+ y

4
)‖L, (4.1)

∥∥∥f({xyz}+ {yzx}+ {zxy}
)
− {f(x)f(y)f(z)} − {f(y)f(z)f(x)} − {f(z)f(x)f(y)}

∥∥∥
L

≤ θ
(
‖x‖3rJ + ‖y‖3rJ + ‖z‖3rJ

) (4.2)

for all µ ∈ T1 and all x, y, z ∈ J . Then the mapping f : J → L is a JB∗-triple Jordan

homomorphism.

Proof. Assume r > 1.

By the same reasoning as in the proof of Theorem 2.4, the mapping f : J → L is C-linear.
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It follows from (4.2) that∥∥∥f({xyz}+ {yzx}+ {zxy}
)
− {f(x)f(y)f(z)} − {f(y)f(z)f(x)} − {f(z)f(x)f(y)}

∥∥∥
L

= lim
n→∞

8n
∥∥∥f( {xyz}

2n.2n.2n
+
{yzx}

2n.2n.2n
+
{zxy}

2n.2n.2n

)
−
{
f(

x

2n
)f(

y

2n
)f(

z

2n
)
}

−
{
f(

y

2n
)f(

z

2n
)f(

x

2n
)
}
−
{
f(

z

2n
)f(

x

2n
)f(

y

2n
)
}∥∥∥
L

≤ lim
n→∞

8nθ

8nr

(
‖x‖3rJ + ‖y‖3rJ + ‖z‖3rJ

)
= 0

for all x, y, z ∈ J . Thus

f
(
{xyz}+ {yzx}+ {zxy}

)
= {f(x)f(y)f(z)}+ {f(y)f(z)f(x)}+ {f(z)f(x)f(y)}

for all x, y, z ∈ J . Hence the mapping f : J → L is a JB∗-triple Jordan homomorphism.

Similarly, one obtains the result for the case r < 1. �

5. Jordan derivations on JB∗-triples

Throughout this paper, assume that J is a JB∗-triple with norm ‖ · ‖J .

In this section, we investigate Jordan derivations on JB∗-triples.

Theorem 5.1. Let r 6= 1 and θ be nonnegative real numbers, and let f : J → J be a mapping

satisfying (4.1) such that∥∥∥f({xyz}+ {yzx}+ {zxy})− {f(x)yz} − {xf(y)z} − {xyf(z)} − {f(y)zx}

− {yf(z)x} − {yzf(x)} − {f(z)xy} − {zf(x)y} − {zxf(y)}
∥∥∥
A

≤ θ
(
‖x‖3rA + ‖y‖3rA + ‖z‖3rA

) (5.1)

for all x, y, z ∈ J . Then the mapping f : J → J is a JB∗-triple Jordan derivation.

Proof. Assume r > 1.

By the same reasoning as in the proof of Theorem 2.4, the mapping f : J → J is C-linear.

It follows from (5.1) that∥∥∥f({xyz}+ {yzx}+ {zxy}
)
− {f(x)yz} − {xf(y)z} − {xyf(z)} − {f(y)zx}

− {yf(z)x} − {yzf(x)} − {f(z)xy} − {zf(x)y} − {zxf(y)}
∥∥∥
J

= lim
n→∞

8n
∥∥∥f( {xyz}

2n.2n.2n
+
{yzx}

2n.2n.2n
+
{zxy}

2n.2n.2n

)
−
{
f(

x

2n
)
y

2n
z

2n

}
−
{ x

2n
f(

y

2n
)
z

2n

}
−
{ x

2n
y

2n
f(

z

2n
)
}
−
{
f(

y

2n
)
z

2n
x

2n

}
−
{ y

2n
f(

z

2n
)
x

2n

}
−
{ y

2n
z

2n
f(

x

2n
)
}
−
{
f(

z

2n
)
x

2n
y

2n

}
−
{ z

2n
f(

x

2n
)
y

2n

}
−
{ z

2n
x

2n
f(

y

2n
)
}∥∥∥
J

≤ lim
n→∞

8nθ

8nr

(
‖x‖3rJ + ‖y‖3rJ + ‖z‖3rJ

)
= 0
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for all x, y, z ∈ J . So f({xyz}+{yzx}+{zxy}) = {f(x)yz}+{xf(y)z}+{xyf(z)}+{f(y)zx}+

{yf(z)x}+ {yzf(x)}+ {f(z)xy}+ {zf(x)y}+ {zxf(y)}
for all x, y, z ∈ J .

Thus the mapping f : J → J is a JB∗-triple Jordan derivation.

Similarly, one obtains the result for the case r < 1. �
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THE GENERIC STABILITY OF KKM POINTS IN PMT SPACES

M. TATARI, S. M. VAEZPOUR, AND REZA SAADATI*

Abstract. In this paper, we consider the generic stability of generalized KKM points and present a result

concerning the generic continuity of set-valued mappings in PMT spaces. Then we prove that almost all
of generalized KKM points of probabilistic upper semicontinuous set-valued mappings defined on compact

subsets of such spaces are stable in the sense of Baire category theory. Also, we discuss on existence of the
essential component of generalized KKM points.

Keywords: KKM point, PMT space, Hausdorff distance, Generic stability, Essential component, Generic
continuity

1. Introduction

In 2003, Yu et.al. [1], introduced the concept of KKM points of a KKM mapping G : X → K(X),
from a bounded complete convex subset X of a normed linear space E into nonempty compact subsets of
X. By Fort theorem, they prove that if M be the collection of all KKM mappings G, then there exists a
dense residual subset Q of M such that for each G ∈ Q, G is essential. They also proved there exists at
least one essential component of KKM points for each G ∈ M ; (see also [2, 3]). In this paper, we present
a result concerning generic continuity of set-valued mappings based upon extensions of Fort’s theorems in
probabilistic metric type spaces.

2. Preliminaries

First, let us give the background and auxiliary results which will be needed. For more details see [4, 5, 6,
7, 8].

Definition 2.1. ([9, 10]) mapping F : (−∞,∞) → [0, 1] is called a distribution function if it is non-
decreasing and left-continuous with infx∈R F (x) = 0 and supx∈R F (x) = 1. If in addition F (0) = 0, then F
is called a distance distribution function. The set of all distance distribution functions (d.d.f)is denoted by
∆+. The maximal element for ∆+ in this order is the d.d.f , ε0, given by

ε0(t) =

{
0 if t ≤ 0 ,
1 if t > 0 .

Definition 2.2. ([9]) A triangular norm (shorter t-norm) is a binary operation T on [0, 1], i.e., a function

T : [0, 1]
2 → [0, 1] which satisfies the following conditions:

(1) T is associative and commutative;
(2) T (a, 1) = a for all a ∈ [0, 1];
(3) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

In particular, a t−norm T is said to be continuous if it is a continuous function in [0, 1]
2
. A t−norm is

called sup-continuous if supλ∈Λ T (aλ, b) = T (supλ∈Λ aλ, b) for any family {aλ : λ ∈ Λ} ⊂ [0, 1] and b ∈ [0, 1].
The operatins TL(a, b) = max(a+ b− 1, 0), TM (a, b) = min{a, b} and Tp(a, b) = ab on [0, 1] are T norms.

Lemma 2.3. ([11]) Let T be a t−norm.

(1) If T is left-continuous, then T satisfies sup0<a<1 T (a, b) = b for all b ∈ [0, 1] ;
(2) If sup0<a<1 T (a, b) = b for all b ∈ [0, 1], then T satisfies sup0<a<1 T (a, a) = 1.

*The corresponding author.

1
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2 TATARI, VAEZPOUR, AND SAADATI

Definition 2.4. A probabilistic metric type space (PMT space) is a triple (X,F, T ), where X is a nonempty
set, T is a continuous t-norm and F is a mapping from X ×X into ∆+ such that, if Fx,y denote the value
of F at the pair (x, y), the following conditions hold:

(PMT1) Fx,y(t) = ε0(t) for all t > 0 if and only if x = y;
(PMT2) Fx,y(t) = Fy,x(t);
(PMT3) Fx,y(K(s+ t)) ≥ T (Fx,z(s), Fz,y(t)) for any x, y, z ∈M , t, s ≥ 0 for some constant K ≥ 1;

Observe that if K = 1, then the PMT space is a probabilistic metric space, however it does not hold true
when K > 1.

Example 2.5. ([12]) Let X be the set of Lebesgue measurable functions on [0, 1] such that
∫ 1

0
|f(x)|pdx <∞,

where p > 0 is a real number. Define

Fx,y(t) =

{
0 if t ≤ 0 ,

t

t+
∫ 1
0
|f(x)−g(x)|pdx)

1
p

if t > 0 .

Then (X,F, Tp) is a PMT space with K = 2
1
p .

In [12], the authors proved that every PMT space (X,F, T ), generated a topology τ on X which has as
a base the family of sets of the form {Bx(r, t) : x ∈ X , 0 < r < 1 , t > 0}, where Bx(r, t) = {y ∈ X :
Fx,y(t) > 1− r} for all r ∈ (0, 1) and t > 0, and (X,F, T ) is a Hausdorff topological space. In virtue of this
topology τ, a sequence {xn} in (X,F, T ) is said to be convergent to x (we write xn → x or limn→∞ xn = x)
if limn→∞ Fxn,x(t) = 1 for all t > 0; {xn} is called a Cauchy sequence in (X,F, T ) if for any given t > 0 and
r ∈ (0, 1), there exists N = N(ε, λ) ∈ Z+ such that Fxn,xm(t) > 1 − r, whenever n,m ≥ N . Let t > 0 and
r ∈ (0, 1], A is said to have a finite (r, t)-net if there exists a finite set S ⊂ A such that A ⊂

⋃
x∈S Bx(r, t),

i.e. , for each y ∈ A there is x ∈ S such that Fx,y(t) > 1 − r. A is said to be totally bounded if for each
t > 0 and r ∈ (0, 1], A has a finite (r, t)-net. A is said to be probabilistically bounded( P−bounded ) if
supt>0 infx,y∈A Fx,y(t) = 1. Let P (X) denote the class of all nonempty subsets of X. We use the notions:

(1) Pcl(X) = {Y ∈ P (X) : Y is closed};
(2) Pbd(X) = {Y ∈ P (X) : Y is probabilistic bounded};
(3) Pcp(X) = {Y ∈ P (X) : Y is compact};
(4) Pcl,bd(X) = Pcl(X)

⋂
Pbd(X) .

Let Ψ : X → X be a mapping. Ψ is said to be closed if ΨA ∈ Pcl(X) for each A ∈ Pcl(X). It is said to be
bounded if ΨA ∈ Pbd(X) for each A ∈ Pbd(X).

Lemma 2.6. ([12]) Let (X,F, T ) be a PMT space. Let A ⊂ X.

(1) A is compact if and only if A is sequentially compact;
(2) If A is compact, then A is closed and totally bounded;
(3) If A is totally bounded, then A ∈ Pbd(X) and Ā is also totally bounded.

3. Probabilistic Hausdorff distance type

Given x ∈ X, B ∈ P (X), the ”probabilistic distance type” from x to B is defined as

Fx,B(t) = FB,x(t) =

{
0 if t = 0 ,
sups<t supy∈B Fx,y(s) if t ∈ (0,∞) ,

with the convention Fx,∅ = 1− ε0.
Given A,B ∈ P (X), the ”probabilistic type distance” from A to B is defined as

FA,B(t) = FB,A(t) =

{
0 if t = 0 ,
sups<t infx∈A supy∈B Fx,y(s) if t ∈ (0,∞) .

For convenience, we write F̃A,B(s) = infx∈A supy∈B Fx,y(s). Then FA,B(t) = sups<t F̃A,B(s). Based on the
above formulas, we can obtain the following definition.
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Definition 3.1. ([13, 14]) Let (X,F, T ) be a PMT space and let A,B ∈ P (X). The probabilistic Hausdorff
distance type between A and B is a mapping HA,B : [0,∞)→ [0, 1] defined by

HA,B(t) = sup
s<t

min{F̃A,B(s), F̃B,A(s)}

= sup
s<t

min{ inf
x∈A

sup
y∈B

Fx,y(s), inf
y∈B

sup
x∈A

Fx,y(s)}, t ∈ (0,∞),

where HA,B(0) = 0.

According to the above definition, some results related to the probabilistic Hausdorff distance type can
be obtained.

Lemma 3.2. ([13]) Let (X,F, T ) be a PMT space, Let A,B,C ∈ P (X), x, y ∈ X and s, t ∈ <+. Then

(1) Fx,B(K(s+ t)) ≥ T (Fx,y(s), Fy,B(t));
(2) Hx,B(K(s+ t)) ≥ T (Fx,A(s), HA,B(t));
(3) FA,B(K(s+ t)) ≥ T (FA,C(s), FC,B(t)).

Theorem 3.3. Let (X,F, T ) be a PMT space. Then (Pcl,bd(X), H, T ) is also a PMT space.

Proof. The conditions (PMT1) and (PMT2) are obvious. Now, we have to show that the condition (PMT3)
is satisfied.

Let A,B,C ∈ Pcl,bd(X). If at least one of these three sets is empty, by Definition (3.1) it can easily be
verified that the inequality is true. Moreover, if s = 0 or t = 0, the inequality is also obvious. Thus, we
assume that these three sets are non-empty and t > 0, s > 0.

Set u < s, v < t. For every x ∈ A we may assume that supy∈B Fx,y(u) > 0. Then for each ε ∈
(0, supy∈B Fx,y(u)) there exists yx ∈ B such that

sup
y∈B

Fx,y(u)− ε ≤ Fx,yx(u) .

Moreover, since F is a probabilistic metric type, it follows that

T (Fx,y(u), sup
z∈C

Fx,z(v)) ≤ sup
z∈C

Fx,z(K(u+ v)) ,

for every y ∈ B and constant K > 0. Thus we can obtain

T ((sup
y∈B

Fx,y(u)− ε), inf
y∈B

sup
z∈C

Fy,z(v)) ≤ T (Fx,yx(u), sup
z∈C

Fyx,z(v)) ≤ sup
z∈C

Fx,z(K(u+ v))

By the arbitrariness of ε and the continuity of T we have

T (sup
y∈B

Fx,y(u), inf
y∈B

sup
z∈C

Fy,z(v)) ≤ sup
z∈C

Fx,z(K(u+ v)). (3.1)

Then we have that

T ( inf
x∈A

sup
y∈B

Fx,y(u), inf
y∈B

sup
z∈C

Fy,z(v)) ≤ inf
x∈A

sup
z∈C

Fx,z(K(u+ v)) ,

which implies that

T (F̃A,B(u), F̃B,C(v)) ≤ F̃A,C(K(u+ v)). (3.2)

In addition, if supy∈B Fy,y(u) = 0 for every x ∈ A, then the inequality (1) still holds. So the inequality (2)
is also true in this case. Analogously, we also obtain that

T (F̃B,A(u), F̃C,B(v)) ≤ F̃C,A(K(u+ v)).

Therefore, we have

T ( min{F̃A,B(u), F̃B,A(u)},min{F̃B,C(v), F̃C,B(v)} )

≤ min{T (F̃A,B(u), F̃B,C(v)), T (F̃B,A(u), F̃C,B(v))}
≤ min{F̃A,C(K(u+ v)), F̃C,A(K(u+ v))}.
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4 TATARI, VAEZPOUR, AND SAADATI

Furthermore, we can get that

T ( sup
u<s

min{F̃A,B(u), F̃B,A(u)}, sup
v<t

min{F̃B,C(v), F̃C,B(v)} )

≤ sup
u<s, v<t

min{F̃A,C(K(u+ v)), F̃C,A(K(u+ v))}

≤ sup
u+v<s+t

min{F̃A,C(K(u+ v)), F̃C,A(K(u+ v))}.

Then, it follows from the above inequality that

T (HA,B(s), HB,C(t)) ≤ HA,C(K(s+ t)) .

Hence, we conclude that (Pcl,bd(X), H, T ) is a PMT space. This completes the proof. �

As a consequence of Theorem (3.3) and Lemma (2.6) we have the following result.

Corollary 3.4. Let (X,F, T ) be a PMT space. Then (Pcp, H, T ) is also a PMT space.

Theorem 3.5. Let (X,F, T ) be a complete PMT space. Then (Pcl,bd(X), H, T ) is a complete PMT space.

Proof. By Theorem (3.3), (Pcl,bd(X), H, T ) is a PMT space. Now let {An}∞n=1 ⊂ Pcl,bd(X), An → A with
respect to H. We shall prove that A ∈ Pcl,bd(X). Take an arbitrary number λ ∈ (0, 1]. By continuity of T ,
we have sup0<a<1 T (a, a) = 1, applying the Lemma (2.3), we have µ ∈ (0, λ] and ν ∈ (0, λ] such that

T (1− µ, 1− µ) > 1− λ and T (1− ν, 1− ν) > 1− µ. (3.3)

The convergence of {An} implies that there exists N ∈ Z+ such that

HA,An
(1) > 1− ν for all n ≥ N. (3.4)

Since AN is probabilistically bounded, we have supt>0 infx,y∈AN
Fx,y(t) = 1. Thus, there exists M = M(ν) >

0 such that Fx,y(M/K) > 1− ν for all x, y ∈ AN . Suppose that u,w ∈ A are two arbitrary points. From (4)
it follows that there exists x, y ∈ AN such that Fu,x(1/K) > 1 − ν and Fw,y(1) > 1 − ν. Thus, from(3) we
have

Fu,y(M + 1) ≥ T (Fu,x(1/K), Fx,y(M/K)) ≥ T (1− ν, 1− ν) > 1− µ,
and moreover,

Fu,w(M + 2) ≥ T (Fu,y((M + 1)/K), Fy,w(1/K)) ≥ T (1− µ, 1− ν) ≥ T (1− µ, 1− µ) > 1− λ.

Hence supt>0 infu,w∈A Fu,w(t) ≥ infu,w∈A Fu,w(M + 2) ≥ 1 − λ. By the arbitrariness of λ, we have
supt>0 infu,w∈A Fu,w(t) = 1, i.e. , A is probabilistically bounded. Also similar to proof of Theorem 2.2, [13]
we can prove that A is closed. From Theorem (3.3) we see that A is closed. Therefore A ∈ Pcl,bd(X), and
so the proof is complete. �

Theorem 3.6. Let (X,F, T ) be a complete PMT space. Then (Pcp(X), H, T ) is complete PMT space.

Proof. By Theorem (3.3), (Pcl,bd(X), H, T ) is a complete PMT space. By Corollary (3.4) we see that Pcp(X)
is PMT space. Since Pcp(X) ⊂ Pcl,bd(X) , it is enough that Pcp(X) is closed with respect to H.

Suppose that {An}∞n=1 ⊂ Pcp(X) , An → A with respect to H. We shall prove that A ∈ Pcp(X). Choose
any ε > 0 and λ ∈ (0, 1]. By the left-continuity of T and lemma (2.3), we have sup0<a<1 T (a, a) = 1, and
then there exists µ ∈ (0, λ] such that

T (1− µ, 1− µ) > 1− λ. (3.5)

By the convergence of {An}, there exists N ∈ Z+ such that

HA,An
(
ε

2
) > 1− µ , for all n ≥ N.

Since by Lemma (2.6), AN is compact, AN is also totally bounded. Thus, AN has a finite ( ε2 , µ)-net SN .
From this we infer that SN is a finite (ε, λ)-net of A. In fact, for each x ∈ A, it follows the existence of
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y ∈ AN such that Fx,y( ε
2K ) > 1− µ. For such y we can select z ∈ SN with Fy,z(

ε
2K ) > 1− µ. Hence, from

(5) we have

Fx,z(ε) ≥ T (Fx,y(
ε

2K
), Fy,z(

ε

2K
)) ≥ T (1− µ, 1− µ) > 1− λ.

This shows that SN is a finite (ε, λ)-net of A, and so A is totally bounded. From the completeness of
(X,F, T ) it follows that A is compact, i.e. , A ∈ Pcp(X). �

4. Stability of KKM points

Stability of solution maps has been intensively investigated recently [15, 16, 17]. In this section, we first
give some Lemmas and concepts, then we investigate on exictence of essential components and the stability
of the set of KKM points in PMT space.

For a set A, we denote the set of all nonempty finite subsets of A by 〈A〉. Let A be a nonempty p-bounded
subset of PMT space (X,F, T ). Then:

(1) co (A) =
⋂
{B ⊂ X, B is a closed ball in X such that A ⊂ B};

(2) A(X) = {A ⊂ X, A = co (A)}, i.e. A ∈ A(X) if and only if A is an intersection of all closed balls
containing A. In this case, we say that A is an admissible set in X;

(3) A is called subadmissible, if for each D ⊂< A >, co(D) ⊂ A. Obviously, if A is an admissible subset
of X, then A must be subadmissible.

Recall that closed and open balls of X are defined as

Bx[r, t] = {y ∈ X, Fx,y(t) ≥ 1− r}, Bx(r, t) = {y ∈ X, Fx,y(t) > 1− r} ,
for any x ∈ X and 0 < r < 1 and t > 0. Let (X,F, T ) be a PMT space and A a subadmissible subset of X
and Pcp(X) the set of all nonempty compact subsets of X. G : X → Pcp(X) is called a KKM mapping, if
for each A ∈< X >, we have co(A) ⊂ G(A). More generally, if G : X → Pcp(X), S : X → Pcp(X) are two
set-valued functions such that for any A ∈< X >, S(co(A)) ⊆ G(A), then G is called a generalized KKM
mapping with respect to S. If the set-valued function S : X → Pcp(X) satisfies the requirement that for any

generalized KKM mapping G : X → Pcp(X) with respect to S the family {G(x) : x ∈ X} has the finite
intersection property, then S is said to have the KKM property. We define

KKM(X,Pcp(X)) := {S : X → Pcp(X) : S has the KKM property } .
Thus if S ∈ KKM(X,Pcp(X)), then for any generalized KKM mapping G : X → Pcp(X) with respect
to S we have

⋂
x∈X G(x) 6= ∅. then such a point x∗ ∈

⋂
x∈X G(x), is called the KKM point of G and

denote by K(G) the set of all generalized KKM points of G. Let M be the collection of all KKM mappings
G : X → Pcp(X) with respect to S. For each G1, G2 ∈M define

H̃G1,G2
(t) = inf

x∈X
HG1(x),G2(x)(t) ,

where H is the probabilistic Hausdorff distance type defined on all compact subsets of X. Clearly (M, H̃, T )
is a PMT space.

Lemma 4.1. (M, H̃, T ) is a complete PMT space.

Proof. Let {Gn}∞n=1 be any Cauchy sequence in M , then for any t > 0 and r ∈ (0, 1), there exists a positive

integer k such that H̃Gn,Gm
(t) > 1− r whenever n,m ≥ k, i.e.

inf
x∈X

HGn(x),Gm(x)(t) > 1− r ,

for any n,m ≥ k. It follows that for each x ∈ X, {Gn}∞n=1 is a Cauchy sequence in (Pcp(X), H, T ). By
Theorem (3.6), there is G : X → Pcp(X) such that HGn(x),G(x)(t) > 1 − r for each x ∈ X. And it is easy
to prove that infx∈X HGn(x),G(x)(t) > 1 − r. Suppose that G were not generalized KKM mapping with

respect to S, then there exist {x1, ..., xm} ⊂ X and x
′ ∈ S(co{x1, ..., xm}) such that x

′ ∈
⋃m
i=1G(xi). Since

supx∈X HGn(x),G(x)(t) > 1− r, there is n2 such that
⋃m
i=1Gn(xi) ⊂

⋃m
i=1BG(xi)(r, t) for any n ≥ n2. Thus

x
′
/∈
⋃m
i=1Gn(xi) for any n ≥ n2 which contradicts the assumption that Gn is generalized KKM mapping
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with respect to S for all n = 1, 2, ... . Hence G must be generalized KKM mapping with respect to S, and
(M, H̃, T ) is complete. �

Now we state some definitions. A set-valued mapping S from PMT space (X,F, T ), into nonempty
subsets of a PMT space (Y, F ∗, T ∗) is said to be probabilistic upper (lower) semicontinuous at x0 ∈ X,

if for any 0 < r < 1, there exists 0 < r
′
< 1 such that S(x

′
) ⊂ BS(x0)(r, t) (S(x0) ⊂ BS(x′ )(r, t)) for

each x
′ ∈ X with Fx0,x

′ (t) > 1 − r
′
, for t > 0. S is probabilistic continuous at x0 ∈ X if S is both

probabilistic upper semicontinuous and probabilistic lower semicontinuous at x0. Also S is said probabilistic
metric upper semicontinuous at x0 ∈ X if, for any 0 < r < 1, there exists a neighborhood U of x0 such
that S(U) ⊂ BS(x0)(r, t) for t > 0. It is easily verified that if S(x0) is compact, then S is probabilistic
metric upper semicontinuous at x0 if and only if S is probabilistic upper semicontinuous at x0. In general
probabilistic metric upper semicontinuity is a weaker notion than probabilistic upper semicontinuity. On
the other hand, the set-valued mapping S is said to be probabilistic metric lower semicontinuous at x0 if
for any 0 < r < 1 there exists a neighborhood U of x0 such that S(x0) ⊂ BS(x)(r, t) for every x ∈ U and
t > 0. It is easy to see that if S(x0) is totally bounded, then S is probabilistic lower semicontinuous at x0 if
and only if S is probabilistic metric lower semicontinuous at x0. However, we can also show that in general
probabilistic lower semicontinuity is a weaker notion than probabilistic metric lower semicontinuity.

Also a subset Q in X is called a residual set if it contains a countable intersection of open dense subsets
of X. A set Q is called nowhere dense in X if int(Q) = ∅. If there exists a dense residual set Q of X such
that S is continuous at each point of Q then we say that S is continuous at most point of X. In this case
we shall also say that S is generically continuous on X. Result concerning generic continuity of set-valued
mappings were first considered by Fort in [18]. After Fort’s theorems were published there have been several
extensions of his original results; see [19, 20]. In the following we will extend Fort’s theorem in PMT space.

Theorem 4.2. Let (X,F, T ) be a complete PMT space, (Y, F ∗, T ∗) be a PMT space and S : X → 2Y be
a probabilistic metric upper semicontinuous. Then there exists a dense residual set Q ⊂ X such that S is
probabilistic metric lower semicontinuous at each x ∈ Q.

Proof. For each 0 < r < 1 let

C(r) = {x ∈ X : ∀ 0 < r0 < r and 0 < r
′
< 1, ∃ y ∈ Bx(r

′
, t), such thatBS(y)(r0, t) + S(x) for t > 0}

First, we prove that C(r) is a closed set. For any 0 < k < r and 0 < r
′
< 1, let r0 < r00 < r and

r00 − r0 = η. Due to the probabilistic metric upper semicontinuity of S, for each z ∈ C(r), there exists

0 < r
′′
< r

′
such that S(x) ⊂ BS(z)(η, t) for all x ∈ Bz(r

′′
, t). Then there exists x ∈ C(r)∩Bz(r

′′
, t) such that

S(x) ⊂ BS(z)(η, t). From x ∈ Bz(r
′′
, t), Choose 0 < r

′′′
< r

′′
such that Bx(r

′′′
, t) ⊂ Bz(r

′′
, t). As x ∈ C(r),

it is easy to see that there exists y ∈ Bx(r
′′′
, t) ⊂ Bz(r

′′
, t) ⊂ Bz(r

′
, t) such that BS(y)(r00, t) + S(x).

Thus, it follows that BS(y)(r0, t) ⊃ S(z). In fact, if BS(y)(r0, t) ⊃ S(z), then BBS(y)(r0,t)(η, t) ⊃ BS(y)(η, t),

so that BS(y)(r00, t) + S(x). Thus, it follows that BS(y)(r0, t) + S(z). In fact, if BS(q)(r0, t) ⊃ S(z),
then BBS(y)(r0,t)(η, t) ⊃ BS(z)(η, t), so that BS(y)(r00, t) ⊃ S(x) which contradicts x ∈ C(r). Thus, it is

proved that z ∈ C(r) and C(r) is a closed set. Next, we will prove that C(r) is a nowhere dense set, that
is, to prove that C(r) contains no interior point. If not, let x1 ∈ C(r) be a interior point of C(r). For
any 0 < r0 < r, choose r0 < r00 < r and set r00 − r0 = η. Then there exists 0 < r1 < 1 such that
Bx1

(r1, t) ⊂ C(r) and S(x
′
) ⊂ BS(x1)(η, t), ∀x

′ ∈ Bx1
(r1, t). From x1 ∈ C(r), it is known that there exists

x2 ∈ Bx1
(r1, t) such that BS(x2)(r00, t) + S(x1). For x2 ∈ Bx1

(r1, t) ⊂ C(r), choose 0 < r2 <
r1
2 such that

Bx2
(r2, t) ⊂ Bx1

(r1, t) ⊂ C(r) and S(x
′
) ⊂ BS(x2)(η, t) for all x

′ ∈ Bx2
(r2, t). From x2 ∈ C(r), there exists

x3 ∈ Bx2
(r2, t) such that BS(x3)(r00, t) + S(x2). The rest may be deduced by analogy, thus there exists

r1, r2, ..., rn−1, rn, ... such that 0 < rn <
rn−1

2
,

Bxn
(rn, t) ⊂ Bxn−1

(rn−1, t) ⊂ ... ⊂ Bx2
(r2, t) ⊂ Bx1

(r1, t) ⊂ C(ε)

and
S(x

′
) ⊂ BS(xn)(η, t) , ∀x

′
∈ Bxn(rn, t) .
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We also have

BS(xn+1)(r00, t) + S(xn) , n = 1, 2, ... .

From the completeness of (X,F, T ) and the closedness of C(r), it is known that there exists x∗ ∈ C(r) and
xn → x∗. As x∗ ∈ Bxn

(rn, t) for each n = 1, 2, ..., we have S(x∗) ⊂ BS(xn)(η, t). Therefore,BS(p∗)(r0, t) ⊂
BBS(xn)(η,t)(r0, t) = BS(xn)(r00, t). It follows from BS(xn)(r00, t) + S(xn−1) that BS(x∗)(r0, t) + S(xn−1).
In addition, from xn → x∗ and the upper semicontinuity of S at x∗, for given r0 > 0, it is known that
S(xn−1) ⊂ BS(x∗)(r0, t) when n is sufficiently large, which is a contradiction. Thus, we can prove that C(r)
is nowhere dense.

Let (0, 1)R be the rational number set in [0, 1], C =
⋃
r∈(0,1)R

C(r) and Q = X \C. From the completeness

of X and nowhere density of C(r), it is easy to see that C is of first category. Hence, Q is a dense residual

set and of second category for any 0 < r < 1, choose r
′ ∈ (0, 1)R such that 0 < r0 < r. For each x ∈ Q, by

the definition of Q we have x /∈ C(r0). Also by the definition of C(r0), there exists 0 < r∗ < r0 and r
′
> 0

such that BS(y)(r
∗, t) ⊃ S(x) for all y ∈ Bx(r

′
, t), and hence BS(y)(r, t) ⊃ S(x). From the arbitrariness of

0 < r < 1, it is known that S is probabilistic metric lower semicotinuous at x. Therefore, S is probabilistic
metric lower semicontinuous at each p ∈ Q.

�

Because in general probabilistic metric upper semi-continuity is a weaker notion than probabilistic upper
semicontinuity, the following corollary is obvious.

Corollary 4.3. Let (X,F, T ) be a complete PMT space, (Y, F ∗, T ∗) be a PMT space and S : X → 2Y be
probabilistic upper semicontinuous. Then there exists a dense residual set Q ⊂ X such that S is probabilistic
metric lower semicontinuous at each x ∈ Q, and hence S is also probabilistic lower semi-continuity at each
x ∈ Q.

For each G ∈M , K(G) is the set of all KKM points of G, G→ K(G) indeed defines a set-valued mapping
K : M → 2X

Lemma 4.4. K : M → 2X is a probabilistic upper semicontinuous and compact-valued (pusco) mapping.

Proof. For any G ∈ M , for any sequence {xn}∞m=1 in K(G) with xn → x∗, then xn ∈ G(x) for each x ∈ X.
Since G(x) is compact, then x∗ ∈ G(x) for each x ∈ X and x∗ ∈

⋂
x∈X G(x), x∗ ∈ K(G). Hence K(G) is

closed, K(G) ⊆ G(x) must be compact. Fix t > 0, suppose that K were not probabilitic upper semicontinuous
at G ∈ M , then there exist 0 < r0 < 1 and a sequence {Gn}∞n=1 in M with Gn → G such that for each
n = 1, 2, ..., there is xn ∈ K(Gn) with xn /∈ BK(G)(r0, t). Since xn ∈ K(Gn), we have xn ∈

⋂
x∈X Gn(x).

For any x ∈ X, since Gn(x) → G(x), Gn(x) (n = 1, 2, ...) and G(x) is compact, thus
⋂∞
n=1Gn(x)

⋃
G(x) is

compact. xn ∈ Gn(x), we may assume that xn → x∗, we obtain x∗ ∈ G(x). Thus x∗ ∈
⋂
x∈X Gn(x) and

x∗ ∈ K(G) ⊂ BK(G)(r0, t) which contradicts the assumption that xn → x∗ and xn /∈ BK(G)(r0, t) for each
n = 1, 2, ... . Therefore, K must be probabilistic upper semicontinuous on M . �

Definition 4.5. G ∈M , (1) x ∈ K(G) is essential if for any 0 < r < 1, there exists 0 < r
′
< 1 such that for

each G
′ ∈M with H̃G,G′ (t) > 1− r′ , there exists x

′ ∈ K(G
′
), with Fx,x′ (t) > 1− r, (2) G is weakly essential

if there exists x ∈ K(G) which is essential and (3) G is essential if every x ∈ K(G) is essential.

Theorem 4.6. K : M → Pcp(X) is probabilistic lower semicontinuous at G ∈M if and only if G is essential.

Proof. If K is probabilistic lower semicontinuous at G ∈ M , then for any 0 < r < 1, there exists 0 < r
′
< 1

such that K(G) ⊂ BK(G′ )(r, t) for each G
′ ∈ M with H̃G,G′ (t) > 1 − δ. For each x ∈ K(G) there exists

x
′ ∈ K(G

′
) with Fx,x′ (t) > 1 − r, x is essential and G is essential. Conversely, suppose that G is essential.

If K were not probabilistic lower semicontinuous at G, then there exist 0 < r0 < 1 and a sequence {Gn}∞n=1

in M with Gn → G such that for each n = 1, 2, ..., there is an xn ∈ K(G) with xn ∈ BK(Gn)(r0, t). Since
K(G) is compact, we map assume that xn → x ∈ K(G). Since x is essential, Gn → G, xn → x, there is an N
such that Fxn,x(t) > 1− r1

2 and BK(Gn)(
r1
2 , t) for all n ≥ N . Hence xn ∈ BK(Gn)(r1, t) for all n ≥ N which
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contracts the assumption that xn /∈ BK(Gn)(r0, t) for all n = 1, 2, ... . Hence K must be probabilistic lower
semicontinuous at G. �

Theorem 4.7. There exists a dense residual subset Q of M such that for each G ∈ Q, G is essential.

Proof. by Lemma (4.4), K : M → Pcp(X) is an pusco mapping. By Corollary (4.3), there exists a dense
residual subset Q of M such that for each G ∈ Q, K is probabilistic lower semicontinuous at G. By Theorem
(4.6), for each G ∈ Q, G is essential. �

Remark 4.8. If G ∈ Q, by Lemma (4.4) and Theorem (4.6), K is probabilistic continuous, then for any

0 < r < 1, there exists 0 < r
′
< 1 such that for any G

′ ∈M with H̃G,G′ (t) > 1− r′ , HK(G),K(G′ )(t) > 1− r,
G is stable.

Now we shall introduce some definitions. For each G ∈ M , the component of a point x ∈ K(G) is the
union of all connected subsets of K(G) which contain the point x. Note that components are connected
closed subsets of K(G) and are also connected compact. It is easy to see that the components of two distinct
points K(G) either coincide or are disjoint, so that all components constitute a decomposition of K(G) into
connected pairwise disjoint compact subsets, i.e. ,

K(G) =
⋃
α∈Λ

Cα(G)

where Λ is an index set; for any α ∈ Λ, Cα(G) is a nonempty connected compact and for any α, β ∈ Λ(α 6= β),
Cα(G)

⋂
Cβ(G) = ∅.

Definition 4.9. For each G ∈ M , let e(G) be a nonempty closed subset of K(G). Fix t > 0, e(G) is called

an essential set of K(G) if for eny 0 < r < 1, there exists 0 < r
′
< 1 such that for any G

′ ∈ M with

H̃G,G′ (t) > 1 − r′ , K(G
′
)
⋂
Be(G)(r, t) 6= ∅. If Cα(G), the component of K(G) is essential, then Cα(G) is

called an essential component of K(G).

Following theorem is the main result .

Theorem 4.10. For each G ∈M , there exists at least one essential component of K(G).

Proof. By Lemma (4.4), K : M → Pcp(X) is probabilistic upper semicontinuous, that is for any 0 < r < 1,

there exists 0 < r
′
< 1 such that for any G

′ ∈ M with H̃G,G′ (t) > 1 − r′ , K(G
′
) ⊂ BK(G)(r, t). Hence

K(G
′
)
⋂
BK(G)(r, t) 6= ∅, K(G) is essential set of itself. Let Φ denote the family of all essential sets of K(G)

ordered by set inclusion. Thus Φ is nonempty and every decreasing chain of elements in Φ has a lower bound
(because by the compactness the intersection is in Φ); therefore by Zorn’s Lemma, Φ has a minimal element
m(G) and m(G) is essential. Suppose that m(G) were not connected. Then there exist two nonempty closed
sets c1(G), c2(G) and two open sets V1 and V2 such that m(G) = c1(G)

⋃
c2(G), c1(G) ⊂ V1, c2(G) ⊂ V2,

V1

⋂
V2 = ∅. Since m(G) is minimal, neither c1(G) nor c2(G) is essential, there exist 0 < r1 < 1, 0 < r2 < 1

such that for any 0 < r
′
< 1, there exists G1, G2 ∈ M such that H̃G1,G2

(t) > 1 − r
′
, H̃G,G2

(t) > 1 −
r
′

with K(G1)
⋂

[Bc1(G)(r1, t)] = ∅, K(G2)
⋂

[Bc2(G)(r2, t)] = ∅. Denote W1 = V1

⋂
[Bc1(G)(r1, t)], W2 =

V2

⋂
[Bc2(G)(r2, t)], then W1,W2 are open. Since c1(G) ⊂ W1, c2(G) ⊂ W2, there exists 0 < r0 < 1 such

that [Bc1(G)(r1, t)] ⊂W1, [Bc2(G)(r2, t)] ⊂W2. Denote W
′

1 = Bc1(G)(r
′
, t), W

′

2 = Bc2(G)(r
′
, t), we know that

W
′

1, W
′

2 are open. Since W
′

1

⋃
W
′

2 = Bc1(G)∪c2(G)(r
′
, t) = Bm(G)(r

′
, t) ⊃ m(G), then there exists 0 < r∗ < 1

such that for any G
′ ∈ M with H̃G,G′ (t) > 1 − r∗, K(G

′
)
⋂

(W1

⋃
W2) 6= ∅. We may suppose that r∗ > a,

where a = FW ′1 ,W
′
2
(t) > 0. For this r∗ we can find an r† > r∗ such that T (1− r†, 1− r†) ≥ 1− r∗. Thus for

0 < r† < 1 there exist G
′

1, G
′

2 ∈ M such that H̃G,G
′
1
( t

2K ) > 1 − r†, H̃G,G
′
2
( t

2K ) > 1 − r†, K(G
′

1)
⋂
W
′

1 = ∅,
K(G

′

2)
⋂
W
′

2 = ∅. Note that

H̃G
′
1,G
′
2
(t) > T (H̃G,G

′
1
(
t

2K
)) H̃G,G

′
1
(
t

2K
) > T (1− r†, 1− r†) ≥ 1− r∗ > a .
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Now define G
′

: X → Pcp(X) as follows:

G
′
(x) = [G

′

1 \W
′

2]
⋂

[G
′

2 \W
′

1], x ∈ X

Suppose that G
′

were not a generalized KKM mapping with respect to S, then there exist {x1, ..., xm} ⊂ X
and x

′ ∈ S(co{x1, ..., xm}) such that x
′
/∈
⋃m
i=1G

′
(xi). Since W

′

1

⋂
W
′

2 = ∅, then x
′
/∈ W

′

1 or x
′
/∈ W

′

2.

Without loss of generality, we may assume that x
′
/∈W ′

1. Since x
′
/∈ G2(xi) \W

′

1, then x
′
/∈ G2(xi) for each

i = 1, ...,m, x
′
/∈
⋃m
i=1G2(xi) which contradicts that G2 ∈M . Thus G

′ ∈M .

Next we are going to prove that H̃G′ ,G
′
1
(t) ≥ H̃G

′
1,G
′
2
(t). Note that

H̃G′ ,G
′
1
(t) = inf

x∈X
HG′ (x),G

′
1(x)(t) = inf

x∈X
{sup
s<t

min{ inf
y∈G′ (x)

Fy,G′1(x)(s), inf
y∈G′1(x)

Fy,G′ (x)(s)}}

and
H̃G

′
1,G
′
2
(t) = inf

x∈X
HG

′
1(x),G

′
2(x)(t) = inf

x∈X
{sup
s<t

min{ inf
y∈G′1(x)

Fy,G′2(x)(s), inf
y∈G′2(x)

Fy,G′1(x)(s)}} .

For any y ∈ G′1(x), if y ∈ G′1(x) \W ′

2, then Fy,G′1
(s) = 1; if y ∈ G′1(x) \W ′

1, then

Fy,G′1(x)(s) ≥ inf
y∈G′2(x)

Fy,G′1(x)(s) ,

and
inf

y∈G′ (x)
Fy,G′1(x)(s) ≥ inf

y∈G′2(x)
Fy,G′1(x)(s) ≥ HG

′
1(x),G

′
2(x)(t).

For any y ∈ G
′

1(x), since W
′

1

⋂
W
′

2 = ∅, then y /∈ W
′

1 or y /∈ W
′

2. If y /∈ W
′

2, then y ∈ G
′

1(x) \ W ′

2,

Fy,G′ (x)(s) = 1; if y ∈W ′

2, then y /∈W ′

1,

Fy,G′ (x)(s) ≥ Fy,G′2(x)(s) \W
′

1 = sup
z∈G′2(x)\W ′1

Fy,z(s).

Since Fy,G′2(x)(s) ≥ FG′1(x),G
′
2(x)(s) ≥ H̃G

′
1,G
′
2
(t) > 1−r∗, and when y ∈W ′

2, z ∈W ′

1, Fy,z(s) ≤ FW
′

1,W
′

2(s) ≤
a ≤ r∗, thus Fy,G′ (x)(s) = supz∈G′2(x) Fy,z(s), Fy,G′ (x)(s) ≥ Fy,G′2(x)(s) ≥ infy∈G′1(x) Fy,G′2(x)(s), infy∈G′1(x) Fy,G′ (x)(s) ≥
infy∈G′1(x) Fy,G′2(x)(s) ≥ HG

′
1(x),G

′
2(x)(s).

Thus HG
′
1(x),G

′
2(x)(s) ≤ HG′ (x),G

′
1(x)(t), for any x ∈ X, H̃G

′
1,G
′
2
(t) ≤ H̃G′ ,G

′
1
(t). Since

H̃G′ ,G(2Kt) ≥ T (H̃G′ ,G
′
1
(t), H̃G

′
1,G

(t))

≥ T (H̃G
′
1,G
′
2
(t), H̃G

′
1,G

(t))

≥ T (1− r∗, 1− r†) ≥ T (1− r†, 1− r†) ≥ 1− r∗,

K(G
′
)
⋂

[W
′

1

⋃
W
′

2] 6= ∅. Take x∗ ∈ K(G
′
)
⋂

[W
′

1

⋃
W
′

2], without losing the generality, we may assume that

x∗ ∈ K(G
′
)
⋂
W
′

1, then x∗ /∈ G′2(x) \W ′

1 for any x ∈ X. Since K(G
′

1)
⋂
W
′

1 = ∅, then x∗ /∈ K(G
′

1), that is

x∗ /∈
⋂
x∈X G

′

1(x). There is x̃ ∈ X such that x∗ /∈ G′1(x̃), so x∗ /∈ G′1(x̃) \W ′

2, x∗ /∈ G′(x̃), x∗ /∈ K(G
′
) which

is a contradiction. Thus, m(G) must be connected. Thus there is a component cα0
(G) of K(G) such that

m(G) ⊂ cα0
(G). It is obvious that cα0

(G) is essential which complete the proof. �

5. Conclusions

In this paper, at first we studied probabilistic metric type spaces. Next, we presented a result concerning
generic continuity of set-valued mappings based upon extensions of Fort’s theorems in these spaces.
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Abstract: We provide a function-theoretic estimate for the essential norm of the generalized in-

tegration operator I
(n)
g,ϕ from mixed-norm spaces H(p, q, φ) to Zygmund-type spaces Zµ by means of

the definition of the essential norm of an operator and the properties of the analytic function.
Keywords Essential norm; generalized integration operator; mixed-norm spaces; Zygmund-type
space; mean value theorem
MR(2000) Subject Classification 47B38, 47G10, 47A30, 30D45.

1 Introduction

Let D = {z ∈ C : |z| < 1} denote the open unit disc in the complex plane C, H(D) the linear space
of all analytic functions on D and S(D) the set of all analytic self-maps on D. Let g ∈ H(D) and
ϕ ∈ S(D). The following generalized integration operator:

I(n)
g,ϕf(z) =

∫ z

0

f (n)(ϕ(ξ))g(ξ)dξ, z ∈ D,

has been recently introduced in [23] and considerably studied (see, e.g., [10, 11, 21, 26, 36]). One of
the reasons is that it provides connections between operator theorem and complex analysis and helps
us to gain a deep understanding of both areas. Recently, there has a lot of work on some related
operators on different spaces of analytic functions on the unit disc, see also [1, 6, 20, 28, 29, 30, 31, 32]
and the related references therein.

Recall that, for 0 < p, q < ∞ and φ normal, let H(p, q, φ) denote the space of all f ∈ H(D) such
that

‖f‖p,q,φ =

(
∫ 1

0

Mp
q (f, r)

φp(r)

1 − r
dr

)1/p

< ∞,

where the integral means Mp(f, r) are defined by

Mq(f, r) =

(

1

2π

∫ 2π

0

|f(reiθ)|qdθ

)1/q

, 0 ≤ r < 1.

For 1 ≤ p < ∞, the mixed-norm space H(p, q, φ) equipped with the norm ‖ · ‖p,q,φ is a Banach space
(see [13, 34]). For related results in the setting of the unit ball, see, for example, [12, 24] and the

∗
Foundation item: Supported by the Natural Science Foundation of China (11171285) and the Foundation Research

Project of Jiangsu Province, China (BK20161158)
†Email: minliu@jsnu.edu.cn
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references therein. Given a bounded, continuous and strictly positive function µ on D. Let Zµ denote
the space of all f ∈ H(D) ∩ C(D) such that

sup
z∈D

µ(z)|f ′′(z)| < ∞.

Under the norm
‖f‖Zµ

= |f(0)| + |f ′(0)| + sup
z∈D

µ(z)|f ′′(z)|, (1)

it is easy to see that Zµ is a Banach space.
Let X and Y be two Banach spaces. T is a bounded linear operator from X to Y . The essential

norm of T is defined by
‖T ‖e,X→Y = inf

S
{‖T − S‖X→Y } ,

where ‖ · ‖X→Y denote the operator norm and the infimum is taken over all admissible compact
operator S from X to Y . For results on the essential norms of composition, weighted composition and
some integral operators, see, for instance, [2, 3, 4, 5, 7, 8, 9, 14, 15, 16, 17, 18, 19, 22, 27, 33, 35, 37, 38],
and the references therein.

Inspired by the above results, for 1 ≤ p < ∞ and 0 < q < ∞, we provide a function-theoretic

estimate for the essential norms of the generalized integration operator I
(n)
g,ϕ: H(p, q, φ) → Zµ on

the basis of the characterizations of the boundedness and compactness of the generalized integration
operator ([10]). The main result is Theorem 3.1.

Throughout the paper, the letter C denotes a positive constant which may vary at each occurrence
but it is independent of the essential variables. For two functions A and B, we use the abbreviation
A � B if there is a positive constant C independent of A and B such that A ≤ CB. We write A ≍ B
if A � B � A.

2 Some Lemmas

To prove our main results, we need several lemmas. The next Schwartz-type lemma is proved in a
standard way, hence we omit its proof.

Lemma 2.1 Assume that 0 < p, q < ∞. Then I
(n)
g,ϕ: H(p, q, φ) → Zµ is compact if and only I

(n)
g,ϕ:

H(p, q, φ) → Zµ is bounded and for every bounded sequence {fm} in H(p, q, φ) which converges to

zero uniformly on compact subsets of D as m → ∞, we have ‖I
(n)
g,ϕfm‖Zµ

→ 0 as m → ∞.

The following characterizations of boundedness and compactness of the operator I
(n)
g,ϕ: H(p, q, φ) →

Zµ have been essentially proved in [10]. The parts of this work which are relevant here are given in
the following two lemmas.

Lemma 2.2 ([10]) Assume that 0 < p, q < ∞. Then I
(n)
g,ϕ: H(p, q, φ) → Zµ is bounded if and only if

M1 = sup
z∈D

µ(z)|ϕ′(z)g(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)1/q+n+1
< ∞, (2)

and

M2 = sup
z∈D

µ(z)|g′(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)1/q+n
< ∞. (3)
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Lemma 2.3 ([10]) Assume that 0 < p, q < ∞. Then I
(n)
g,ϕ: H(p, q, φ) → Zµ is compact if and only

if I
(n)
g,ϕ: H(p, q, φ) → Zµ is bounded,

lim
|ϕ(z)|→1

µ(z)|ϕ′(z)g(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)1/q+n+1
= 0, (4)

and

lim
|ϕ(z)|→1

µ(z)|g′(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)1/q+n
= 0. (5)

On the basis of the compactness criterion, the following lemma provides a sufficient condition of the

compactness of the operator I
(n)
g,ϕ: H(p, q, φ) → Zµ.

Lemma 2.4 Assume that 1 ≤ p < ∞, 0 < q < ∞. Then I
(n)
g,ϕ: H(p, q, φ) → Zµ is compact, if I

(n)
g,ϕ:

H(p, q, φ) → Zµ is bounded and ‖ϕ‖∞ < 1.

Proof. Since I
(n)
g,ϕ: H(p, q, φ) → Zµ is bounded and ‖ϕ‖∞ < 1, the conditions (4) and (5) hold,

Lemma 2.3 implies that the operator I
(n)
g,ϕ: H(p, q, φ) → Zµ is compact.

The last auxiliary results needed are the following two lemmas.

Lemma 2.5 ([25]) Let 0 < p, q < ∞ and f ∈ H(p, q, φ). Then for every m ∈ N0, there is a positive
constant C independent of f such that

|f (m)(z)| ≤ C
‖f‖p, q, φ

φ(|z|) (1 − |z|2)
m+1/q

, z ∈ D.

Lemma 2.6 ([10, P. 384]) Let 0 < p, q < ∞, ω ∈ D and

fj,ω(z) =
(1 − |ω|2)j+t

φ(|ω|)(1 − ωz)j+t+1/q
, z ∈ D.

Then fj,ω ∈ H(p, q, φ) (j ∈ N), where the constant t is from the definition of the normality of the
function φ.

3 The essential norm of the operator I
(n)
g,ϕ : H(p, q, φ) → Zµ

The following theorem is the main result of the paper.

Theorem 3.1 Assume that 1 ≤ p < ∞, 0 < q < ∞, I
(n)
g,ϕ: H(p, q, φ) → Zµ is bounded. Then

‖I(n)
g,ϕ‖e,H(p, q, φ)→Zµ

≍ max

{

lim
|ϕ(z)|→1

µ(z)|ϕ′(z)g(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)n+1+1/q
, lim
|ϕ(z)|→1

µ(z)|g′(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)n+1/q

}

.

Proof. If ‖ϕ‖∞ < 1, by Lemma 2.4, I
(n)
g,ϕ: H(p, q, φ) → Zµ is compact, so ‖I

(n)
g,ϕ‖e,H(p, q, φ)→Zµ

= 0.
The result holds.
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Now assume that ‖ϕ‖∞ = 1. We first give the lower estimate of

‖I
(n)
g,ϕ‖e,H(p, q, φ)→Zµ

. Let Cj(q, t) = 1/q + j + t, j = 1, 2, . . . , n + 2. For a fixed ω ∈ D, set the test
function

fω(z) = Cn+1(q, t)f1,ω(z) − C1(q, t)f2,ω(z)

= Cn+1(q, t)
(1 − |ω|2)1+t

φ(|ω|)(1 − ωz)1+t+1/q
− C1(q, t)

(1 − |ω|2)2+t

φ(|ω|)(1 − ωz)2+t+1/q
, z ∈ D.

By Lemma 2.6, we have fω ∈ H(p, q, φ) and sup
ω∈D

‖fω‖p, q, φ ≤ C. By an easy calculation,

f
(n)
ω (z) =

Cn+1(q, t)C1(q, t)C2(q, t) · · ·Cn(q, t)(1 − |ω|2)1+t (ω)
n

φ(|ω|)(1 − ωz)n+1+t+1/q

−
C1(q, t)C2(q, t)C3(q, t) · · ·Cn+1(q, t)(1 − |ω|2)2+t (ω)n

φ(|ω|)(1 − ωz)n+2+t+1/q
, (6)

f
(n+1)
ω (z) =

C2
n+1(q, t)C1(q, t)C2(q, t) · · ·Cn(q, t)(1 − |ω|2)1+t (ω)

n+1

φ(|ω|)(1 − ωz)n+2+t+1/q

−
C1(q, t)C2(q, t) · · ·Cn+2(q, t)(1 − |ω|2)2+t (ω)

n+1

φ(|ω|)(1 − ωz)n+3+t+1/q
, (7)

Let {zk}k∈N ⊂ D, satisfying lim
k→∞

|ϕ(zk)| = 1. Let

fk(z) = fϕ(zk)(z)

=
Cn+1(q, t)(1 − |ϕ(zk)|2)1+t

φ(|ϕ(zk)|)(1 − ϕ(zk)z)1+t+1/q
−

C1(q, t)(1 − |ϕ(zk)|2)2+t

φ(|ϕ(zk)|)(1 − ϕ(zk)z)2+t+1/q
, k ∈ N.

Then fk ∈ H(p, q, φ), sup
k∈N

‖fk‖p, q, φ ≤ C and {fk} converges to zero uniformly on compact subsets of

D, so for every compact operator K: H(p, q, φ) → Zµ, by Lemma 2.1 , one has lim
k→∞

‖Kfk‖Zµ
= 0.

Using (6) and (7), we have

f
(n)
k (ϕ(zk)) = 0, f

(n+1)
k (ϕ(zk)) =

−C1(q, t)C2(q, t) · · ·Cn+1(q, t)
(

ϕ(zk)
)n+1

φ(|ϕ(zk)|) (1 − |ϕ(zk)|2)
n+1+1/q

.

Therefore

C‖I(n)
g,ϕ − K‖H(p, q, φ)→Zµ

≥ lim sup
k→∞

‖
(

I(n)
g,ϕ − K

)

fk‖Zµ

≥ lim sup
k→∞

(

‖I(n)
g,ϕfk‖Zµ

− ‖Kfk‖Zµ

)

≥ lim sup
k→∞

‖I(n)
g,ϕfk‖Zµ

≥ C1(q, t)C2(q, t) · · ·Cn+1(q, t) lim sup
k→∞

µ(zk)|ϕ(zk)|n+1 · |ϕ′(zk)g(zk)|

φ(|ϕ(zk)|)(1 − |ϕ(zk)|2)n+1+1/q
,
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thus

‖I(n)
g,ϕ‖e,H(p, q, φ)→Zµ

≥ C lim
|ϕ(z)|→1

µ(z) |ϕ′(z)g(z)|

φ(|ϕ(z)|) (1 − |ϕ(z)|2)
n+1+1/q

. (8)

Further, let

hk(z) =
Cn+2(q, t)(1 − |ϕ(zk)|2)1+t

φ(|ϕ(zk)|)(1 − ϕ(zk)z)1+t+1/q
−

C1(q, t)(1 − |ϕ(zk)|2)2+t

φ(|ϕ(zk)|)(1 − ϕ(zk)z)2+t+1/q
, k ∈ N.

Similarly hk ∈ H(p, q, φ), sup
k∈N

‖hk‖p, q, φ ≤ C, and

h
(n)
k (ϕ(zk)) =

C1(q, t)C2(q, t) · · ·Cn(q, t)
(

ϕ(zk)
)n

φ(|ϕ(zk)|) (1 − |ϕ(zk)|2)
n+1/q

, h
(n+1)
k (ϕ(zk)) = 0.

It is clear that {hk} converges to zero uniformly on compact subsets of D, Lemma 2.1 implies that
lim

k→∞
‖Khk‖Zµ

= 0 and consequently

C‖I(n)
g,ϕ − K‖H(p, q, φ)→Zµ

≥ lim sup
k→∞

‖
(

I(n)
g,ϕ − K

)

hk‖Zµ

≥ lim sup
k→∞

(

‖I(n)
g,ϕhk‖Z − ‖Khk‖Zµ

)

≥ lim sup
k→∞

‖I(n)
g,ϕhk‖Zµ

≥ C1(q, t)C2(q, t) · · ·Cn(q, t) lim sup
k→∞

µ(zk)|ϕ(zk)|n · |g′(zk)|

φ(|ϕ(zk)|)(1 − |ϕ(zk)|2)n+1/q

= C1(q, t)C2(q, t) · · ·Cn(q, t) lim sup
k→∞

µ(zk) · |g′(zk)|

φ(|ϕ(zk)|)(1 − |ϕ(zk)|2)n+1/q
,

thus

‖I(n)
g,ϕ‖e,H(p, q, φ)→Zµ

≥ C lim
|ϕ(z)|→1

µ(z) |g′(z)|

φ(|ϕ(z)|) (1 − |ϕ(z)|2)n+1/q
. (9)

By (8) and (9), we get

max

{

lim
|ϕ(z)|→1

µ(z)|ϕ′(z)g(z)|

φ(|ϕ(z)|) (1 − |ϕ(z)|2)
n+1+1/q

, lim
|ϕ(z)|→1

µ(z) |g′(z)|

φ(|ϕ(z)|) (1 − |ϕ(z)|2)
n+1/q

}

� ‖I(n)
g,ϕ‖e,H(p, q, φ)→Zµ

,

as desired.
Next, we intend to give the upper estimate of ‖I

(n)
g,ϕ‖e,H(p, q, φ)→Zµ

. Since I
(n)
g,ϕ: H(p, q, φ) → Zµ

is bounded, then for any f ∈ H(p, q, φ), there is a constant C such that ‖I
(n)
g,ϕf‖Zµ

≤ C‖f‖p, q, φ.

Taking test function f(z) = zn

n ∈ H(p, q, φ), we obtain

K1 := sup
z∈D

µ(z) |g′(z)| < ∞. (10)
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If take f(z) = zn+1

n+1 ∈ H(p, q, φ), we have

K2 := sup
z∈D

µ(z)|ϕ′(z)g(z)| < ∞. (11)

For a fixed ρ ∈ (0, 1), using the normality of φ we have

sup
z∈D

µ(z) |ρϕ′(z)g(z)|

φ(ρ|ϕ(z)|) (1 − |ρϕ(z)|2)
n+1+1/q

≤ sup
z∈D

µ(z) |ρϕ′(z)g(z)|

φ(ρ) (1 − |ρ|2)
n+1+1/q

< ∞,

and

sup
z∈D

µ(z)|g′(z)|

φ(ρ|ϕ(z)|) (1 − |ρϕ(z)|2)
n+1/q

≤ sup
z∈D

µ(z) |g′(z)|

φ(ρ) (1 − |ρ|2)
n+1/q

< ∞.

By Lemma 2.2, we get I
(n)
g,ρϕ: H(p, q, φ) → Zµ is bounded. Since |ρϕ(z)| ≤ ρ < 1, by Lemma 2.6,

I
(n)
g,ρϕ: H(p, q, φ) → Zµ is compact, thus

‖I(n)
g,ϕ‖e,H(p, q, φ)→Zµ

≤
∥

∥

∥
I(n)
g,ϕ − I(n)

g,ρϕ

∥

∥

∥

H(p, q, φ)→Zµ

= sup
‖f‖H(p, q, φ)≤1

∥

∥

∥

(

I(n)
g,ϕ − I(n)

g,ρϕ

)

f
∥

∥

∥

Zµ

= sup
‖f‖H(p, q, φ)≤1

sup
z∈D

µ(z)

∣

∣

∣

∣

(

I(n)
g,ϕf − I(n)

g,ρϕf
)′′

(z)

∣

∣

∣

∣

≤ sup
‖f‖H(p, q, φ)≤1

sup
z∈D

µ(z)
∣

∣

∣
f (n+1)(ϕ(z)) − ρf (n+1)(ρϕ(z))

∣

∣

∣
|ϕ′(z)g(z)|

+ sup
‖f‖H(p, q, φ)≤1

sup
z∈D

µ(z)|f (n)(ϕ(z)) − f (n)(ρϕ(z))||g′(z)|

≤ sup
‖f‖H(p, q, φ)≤1

sup
|ϕ(z)|≤r

µ(z)
∣

∣

∣
f (n+1)(ϕ(z)) − ρf (n+1)(ρϕ(z))

∣

∣

∣
|ϕ′(z)g(z)|

+ sup
‖f‖H(p, q, φ)≤1

sup
r<|ϕ(z)|<1

µ(z)
∣

∣

∣
f (n+1)(ϕ(z)) − ρf (n+1)(ρϕ(z))

∣

∣

∣
|ϕ′(z)g(z)|

+ sup
‖f‖H(p, q, φ)≤1

sup
|ϕ(z)|≤r

µ(z)|f (n)(ϕ(z)) − f (n)(ρϕ(z))||g′(z)|

+ sup
‖f‖H(p, q, φ)≤1

sup
r<|ϕ(z)|<1

µ(z)|f (n)(ϕ(z)) − f (n)(ρϕ(z))||g′(z)|

:= I
(n)
1,ρ,r + I

(n)
2,ρ,r + I

(n)
3,ρ,r + I

(n)
4,ρ,r, (12)

Using the mean value theorem, the triangle inequality, (10), (11) and Lemma 2.5 we have

I
(n)
1,ρ,r = sup

‖f‖H(p, q, φ)≤1

sup
|ϕ(z)|≤r

µ(z)
∣

∣

∣
f (n+1)(ϕ(z)) − ρf (n+1)(ρϕ(z))

∣

∣

∣
|ϕ′(z)g(z)|

= sup
‖f‖H(p, q, φ)≤1

sup
|ϕ(z)|≤r

|µ(z)|ϕ′(z)g(z)|
∣

∣

∣
f (n+1)(ϕ(z)) − f (n+1)(ρϕ(z)) + (1 − ρ)f (n+1)(ρϕ(z))

∣

∣

∣

≤ sup
‖f‖H(p, q, φ)≤1

sup
|ϕ(z)|≤r

(1 − ρ)µ(z)|ϕ′(z)g(z)|

(

sup
|w|≤r

|f (n+2)(w)| + sup
|w|≤r

|f (n+1)(w)|

)

≤ C(1 − ρ)

(

1

φ(r)(1 − r2)n+2+1/q
+

1

φ(r)(1 − r2)n+1+1/q

)

→ 0 (ρ → 1), (13)
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I
(n)
3,ρ,r = sup

‖f‖H(p, q, φ)≤1

sup
|ϕ(z)|≤r

µ(z)|f (n)(ϕ(z)) − f (n)(ρϕ(z))||g′(z)|

≤ sup
‖f‖H(p, q, φ)≤1

sup
|ϕ(z)|≤r

(1 − ρ)µ(z)|g′(z)| sup
|w|≤r

|f (n+1)(w)|

≤ C(1 − ρ)
1

φ(r)(1 − r2)n+1+1/q
→ 0 (ρ → 1), (14)

I
(n)
2,ρ,r =

sup
‖f‖H(p, q, φ)≤1

sup
r<|ϕ(z)|<1

µ(z)
∣

∣

∣
f (n+1)(ϕ(z)) − ρf (n+1)(ρϕ(z))

∣

∣

∣
|ϕ′(z)g(z)|

≤ sup
‖f‖H(p, q, φ)≤1

sup
r<|ϕ(z)|<1

µ(z)|ϕ′(z)g(z)|
(∣

∣

∣
f (n+1)(ϕ(z))

∣

∣

∣
+
∣

∣

∣
ρf (n+1)(ρϕ(z))

∣

∣

∣

)

≤ sup
‖f‖H(p, q, φ)≤1

sup
r<|ϕ(z)|<1

µ(z)|ϕ′(z)g(z)|
C‖f‖p, q, φ

φ(|ϕ(z)|)(1 − |ϕ(z)|2)n+1+1/q

+ sup
‖f‖H(p, q, φ)≤1

sup
r<|ϕ(z)|<1

µ(z)|ϕ′(z)g(z)|
C‖f‖p, q, φ

φ(ρ|ϕ(z)|)(1 − |ρϕ(z)|2)n+1+1/q

≤ sup
r<|ϕ(z)|<1

Cµ(z)|ϕ′(z)g(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)n+1+1/q
+ sup

r<|ϕ(z)|<1

Cµ(z)|ϕ′(z)g(z)|

φ(ρ|ϕ(z)|)(1 − |ρϕ(z)|2)n+1+1/q

→ 2C sup
r<|ϕ(z)|<1

µ(z)|ϕ′(z)g(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)n+1+1/q
(ρ → 1), (15)

and

I
(n)
4,ρ,r = sup

‖f‖H(p, q, φ)≤1

sup
r<|ϕ(z)|<1

µ(z)|f (n)(ϕ(z)) − f (n)(ρϕ(z))||g′(z)|

≤ sup
‖f‖H(p, q, φ)≤1

sup
r<|ϕ(z)|<1

Cµ(z)|g′(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)n+1/q
‖f‖p, q, φ

+ sup
‖f‖H(p, q, φ)≤1

sup
r<|ϕ(z)|<1

Cµ(z)|g′(z)|

φ(ρ|ϕ(z)|)(1 − |ρϕ(z)|2)n+1/q
‖f‖p, q, φ

≤ C sup
r<|ϕ(z)|<1

µ(z)|g′(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)n+1/q
+ C sup

r<|ϕ(z)|<1

µ(z)|g′(z)|

φ(ρ|ϕ(z)|)(1 − |ρϕ(z)|2)n+1/q

→ 2C sup
r<|ϕ(z)|<1

µ(z)|g′(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)n+1/q
(ρ → 1). (16)

Using the conditions (13-16), let ρ → 1 in (12), then let r → 1, we have

‖I(n)
g,ϕ‖e,H(p, q, φ)→Zµ

≤ 2C lim
|ϕ(z)|→1

µ(z)|ϕ′(z)g(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)n+1+1/q
+ 2C lim

|ϕ(z)|→1

µ(z)|g′(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)n+1/q

� max

{

lim
|ϕ(z)|→1

µ(z)|ϕ′(z)g(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)n+1+1/q
, lim
|ϕ(z)|→1

µ(z)|g′(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)n+1/q

}

,

we get the desired result, so we are done.
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ABSTRACT

This paper is devoted to study the form of the solutions and the periodicity of the following third order systems
of rational difference equations

xn+1 =
yn−2

1− yn−2xn−1yn
, yn+1 =

xn−2
±1± xn−2yn−1xn

,

with initial conditions x−2, x−1, x0, y−2, y−1 and y0 are real numbers.

Keywords: System of difference equations, Periodic solutions.

Mathematics Subject Classification: 39A10

–––––––––––––––––

1. INTRODUCTION

Recently, many researchers have studied systems of difference equations. This concern is due to the importance
of some systems that can be used in some mathematical models in biology, economics, genetics, psychology,
populations etc [1-37]. Many articles discuss difference equations systems, for example, Cinar [1] investigated
the following system

xn+1 =
m

yn
, yn+1 =

pyn
xn−1yn−1

.

Elsayed et al. [2] dealt with the solutions of the system of the difference equations

xn+1 =
1

xn−pyn−p
, yn+1 =

xn−pyn−p
xn−qyn−q

,

and
xn+1 =

1

xn−pyn−pzn−p
, yn+1 =

xn−pyn−pzn−p
xn−qyn−qzn−q

, zn+1 =
xn−qyn−qzn−q
xn−ryn−rzn−r

.

The behavior of positive solutions of the following system

xn+1 =
xn−1

1 + xn−1yn
, yn+1 =

yn−1
1 + yn−1xn

.

has been discussed by Kurbanli et al. [3].

In [7] Yalçınkaya studied the sufficient condition for the global asymptotic stability of the following system

zn+1 =
tnzn−1 + a

tn + zn−1
, tn+1 =

zntn−1 + a

zn + tn−1
.
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In [5] El-Dessoky considered the solutions of the following system

xn+1 =
yn−1yn−2

xn (±1± yn−1yn−2)
, yn+1 =

xn−1xn−2
yn (±1± xn−1xn−2)

.

Touafek et al. [6] examined the periodic nature and found the form of the solutions of the following system

xn+1 =
xn−3

±1± xn−3yn−1
, yn+1 =

yn−3
±1± yn−3xn−1

.

Kurbanli [7] investigated solutions’ behavior for the following

xn+1 =
xn−1

xn−1yn − 1
, yn+1 =

yn−1
yn−1xn − 1

, zn+1 =
xn

zn−1yn
.

El-Dessoky et al. [8] obtained the form of the solutions of the following system

xn+1 =
xn−1

1 + ynxn−1
, yn+1 =

yn−1
1 + xnyn−1

, zn+1 =
zn−m
xnyn

.

We consider in this paper, the solution of the systems of difference equations

xn+1 =
yn−2

1− yn−2xn−1yn
, yn+1 =

xn−2
±1± xn−2yn−1xn

,

with initial conditions x−2, x−1, x0, y−2, y−1 and y0 are real numbers.

2. ON THE SYSTEM: XN+1 =
YN−2

1−YN−2XN−1YN
, YN+1 =

XN−2
1+XN−2YN−1XN

In this section, we investigate the solutions of the system of two difference equations

xn+1 =
yn−2

1− yn−2xn−1yn
, yn+1 =

xn−2
1 + xn−2yn−1xn

, (1)

where n ∈ N0 and the initial conditions are real numbers with y−2x−1y0 6= 1 and x−2y−1x0 6= −1.
The following theorem is concerned with the form of the solutions of system (1).

Theorem 1. Suppose that {xn, yn} are solutions of system (1). Then every solution of system (1) are periodic
with period six and for n = 0, 1, 2, ...,

x6n−2 = x−2, x6n−1 = x−1, x6n = x0, x6n+1 =
y−2

(1− y−2x−1y0)
,

x6n+2 = y−1(1 + x−2y−1x0), x6n+3 =
y0

(1− y−2x−1y0)
,

and y6n−2 = y−2, y6n−1 = y−1, y6n = y0, y6n+1 =
x−2

(1 + x−2y−1x0)
,

y6n+2 = x−1(1− y−2x−1y0), y6n+3 =
x0

(1 + x−2y−1x0)
.

Proof: If n = 0, the result holds. We now assume that n > 0 and that our assumption holds for n− 1. That is,

x6n−8 = x−2, x6n−7 = x−1, x6n−6 = x0, x6n−5 =
y−2

(1− y−2x−1y0)
,

x6n−4 = y−1(1 + x−2y−1x0), x6n−3 =
y0

(1− y−2x−1y0)
,

and y6n−8 = y−2, y6n−7 = y−1, y6n−6 = y0, y6n−5 =
x−2

(1 + x−2y−1x0)
,

y6n−4 = x−1(1− y−2x−1y0), y6n−3 =
x0

(1 + x−2y−1x0)
.
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Now it follows from Eq.(1) that

x6n−2 =
y6n−5

1− y6n−5x6n−4y6n−3

=

x−2
(1+x−2y−1x0)

1−
³

x−2
(1+x−2y−1x0)

y−1(1 + x−2y−1x0)
x0

(1+x−2y−1x0)

´
=

x−2

(1 + x−2y−1x0)
³
1− x−2y−1x0

(1+x−2y−1x0)

´ = x−2,

y6n−1 =
x6n−4

1 + x6n−4y6n−3x6n−2

=
y−1(1 + x−2y−1x0)

1 +
³
y−1(1 + x−2y−1x0)

x0
(1+x−2y−1x0)

x−2
´

=
y−1(1 + x−2y−1x0)

1 + y−2y−1x0
= y−1,

x6n =
y6n−3

1− y6n−3x6n−2y6n−1
=

x0
(1+x−2y−1x0)

1−
³

x0
(1+x−2y−1x0)

x−2y−1
´ = x0,

y6n+1 =
x6n−2

1 + x6n−2y6n−1x6n
=

x−2
1 + x−2y−1x0

.

Also, we can prove the other relations and so the proof is completed.

Example 1. We look at interesting numerical example for the system (1) with the initial conditions x−2 =
0.5, x−1 = 0.9, x0 = 0.2, y−2 = 1.1, y−1 = 0.7 and y0 = 0.3. (See Fig. 1).

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

3

4

5

6

7

8

n

x(n
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plot of X(n+1)=Y(n−2)/(1−Y(n−2)X(n−1)Y(n)),Y(n+1)=X(n−2)/(1+X(n−2)Y(n−1)X(n))

 

 
X(n)
Y(n)

Figure 1.

3. ON THE SYSTEM: XN+1 =
YN−2

1−YN−2XN−1YN
, YN+1 =

XN−2
1−XN−2YN−1XN

In this section, we get the form of the solutions of the system of two difference equations

xn+1 =
yn−2

1− yn−2xn−1yn
, yn+1 =

xn−2
1− xn−2yn−1xn

, (2)

where n ∈ N0 and the initial conditions are arbitrary real numbers.
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Theorem 2. Suppose that {xn, yn} are solutions of system (2). Then for n = 0, 1, 2, ...,

x6n−2 = x−2

n−1Y
i=0

(1− (6i)x−2y−1x0)(1− (6i+ 3)x−2y−1x0)
(1− (6i+ 1)x−2y−1x0)(1− (6i+ 4)x−2y−1x0)

,

x6n−1 = x−1

n−1Y
i=0

(1− (6i+ 1)y−2x−1y0)(1− (6i+ 4)y−2x−1y0)
(1− (6i+ 2)y−2x−1y0)(1− (6i+ 5)y−2x−1y0)

,

x6n = x0

n−1Y
i=0

(1− (6i+ 2)x−2y−1x0)(1− (6i+ 5)x−2y−1x0)
(1− (6i+ 3)x−2y−1x0)(1− (6i+ 6)x−2y−1x0)

,

x6n+1 =
y−2

(1− y−2x−1y0)

n−1Y
i=0

(1− (6i+ 3)y−2x−1y0)(1− (6i+ 6)y−2x−1y0)
(1− (6i+ 4)y−2x−1y0)(1− (6i+ 7)y−2x−1y0)

,

x6n+2 =
y−1(1− x−2y−1x0)

(1− 2x−2y−1x0)

n−1Y
i=0

(1− (6i+ 4)x−2y−1x0)(1− (6i+ 7)x−2y−1x0)
(1− (6i+ 5)x−2y−1x0)(1− (6i+ 8)x−2y−1x0)

,

x6n+3 =
y0(1− 2y−2x−1y0)
(1− 3y−2x−1y0)

n−1Y
i=0

(1− (6i+ 5)y−2x−1y0)(1− (6i+ 8)y−2x−1y0)
(1− (6i+ 6)y−2x−1y0)(1− (6i+ 9)y−2x−1y0)

,

y6n−2 = y−2

n−1Y
i=0

(1− (6i)y−2x−1y0)(1− (6i+ 3)y−2x−1y0)
(1− (6i+ 1)y−2x−1y0)(1− (6i+ 4)y−2x−1y0)

,

y6n−1 = y−1

n−1Y
i=0

(1− (6i+ 1)x−2y−1x0)(1− (6i+ 4)x−2y−1x0)
(1− (6i+ 2)x−2y−1x0)(1− (6i+ 5)x−2y−1x0)

,

y6n = y0

n−1Y
i=0

(1− (6i+ 2)y−2x−1y0)(1− (6i+ 5)y−2x−1y0)
(1− (6i+ 3)y−2x−1y0)(1− (6i+ 6)y−2x−1y0)

,

y6n+1 =
x−2

(1− x−2y−1x0)

n−1Y
i=0

(1− (6i+ 3)x−2y−1x0)(1− (6i+ 6)x−2y−1x0)
(1− (6i+ 4)x−2y−1x0)(1− (6i+ 7)x−2y−1x0)

,

y6n+2 =
x−1(1− y−2x−1y0)

(1− 2y−2x−1y0)

n−1Y
i=0

(1− (6i+ 4)y−2x−1y0)(1− (6i+ 7)y−2x−1y0)
(1− (6i+ 5)y−2x−1y0)(1− (6i+ 8)y−2x−1y0)

,

y6n+3 =
x0(1− 2x−2y−1x0)
(1− 3x−2y−1x0)

n−1Y
i=0

(1− (6i+ 5)x−2y−1x0)(1− (6i+ 8)x−2y−1x0)
(1− (6i+ 6)x−2y−1x0)(1− (6i+ 9)x−2y−1x0)

.

where
−1Q
i=0

Ci = 1

Proof: The result holds for n = 0. Now suppose that n > 1 and that our assumption holds for n− 1. that is,

x6n−5 =
y−2

(1− y−2x−1y0)

n−2Y
i=0

(1− (6i+ 3)y−2x−1y0)(1− (6i+ 6)y−2x−1y0)
(1− (6i+ 4)y−2x−1y0)(1− (6i+ 7)y−2x−1y0)

,

x6n−4 =
y−1(1− x−2y−1x0)

(1− 2x−2y−1x0)

n−2Y
i=0

(1− (6i+ 4)x−2y−1x0)(1− (6i+ 7)x−2y−1x0)
(1− (6i+ 5)x−2y−1x0)(1− (6i+ 8)x−2y−1x0)

,

x6n−3 =
y0(1− 2y−2x−1y0)
(1− 3y−2x−1y0)

n−2Y
i=0

(1− (6i+ 5)y−2x−1y0)(1− (6i+ 8)y−2x−1y0)
(1− (6i+ 6)y−2x−1y0)(1− (6i+ 9)y−2x−1y0)

,

y6n−5 =
x−2

(1− x−2y−1x0)

n−2Y
i=0

(1− (6i+ 3)x−2y−1x0)(1− (6i+ 6)x−2y−1x0)
(1− (6i+ 4)x−2y−1x0)(1− (6i+ 7)x−2y−1x0)

,
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y6n−4 =
x−1(1− y−2x−1y0)

(1− 2y−2x−1y0)

n−2Y
i=0

(1− (6i+ 4)y−2x−1y0)(1− (6i+ 7)y−2x−1y0)
(1− (6i+ 5)y−2x−1y0)(1− (6i+ 8)y−2x−1y0)

,

y6n−3 =
x0(1− 2x−2y−1x0)
(1− 3x−2y−1x0)

n−2Y
i=0

(1− (6i+ 5)x−2y−1x0)(1− (6i+ 8)x−2y−1x0)
(1− (6i+ 6)x−2y−1x0)(1− (6i+ 9)x−2y−1x0)

.

It follows from Eq.(2) that

x6n−2 =
y6n−5

1− y6n−5x6n−4y6n−3

=

x−2
(1−x−2y−1x0)

n−2Q
i=0

(1−(6i+3)x−2y−1x0)(1−(6i+6)x−2y−1x0)
(1−(6i+4)x−2y−1x0)(1−(6i+7)x−2y−1x0)⎛⎜⎜⎜⎜⎜⎜⎝

1− x−2
(1−x−2y−1x0)

n−2Q
i=0

(1−(6i+3)x−2y−1x0)(1−(6i+6)x−2y−1x0)
(1−(6i+4)x−2y−1x0)(1−(6i+7)x−2y−1x0)

y−1(1−x−2y−1x0)
(1−2x−2y−1x0)

n−2Q
i=0

(1−(6i+4)x−2y−1x0)(1−(6i+7)x−2y−1x0)
(1−(6i+5)x−2y−1x0)(1−(6i+8)x−2y−1x0)

x0(1−2x−2y−1x0)
(1−3x−2y−1x0)

n−2Q
i=0

(1−(6i+5)x−2y−1x0)(1−(6i+8)x−2y−1x0)
(1−(6i+6)x−2y−1x0)(1−(6i+9)x−2y−1x0)

⎞⎟⎟⎟⎟⎟⎟⎠

=

x−2
(1−x−2y−1x0)

n−2Q
i=0

(1−(6i+3)x−2y−1x0)(1−(6i+6)x−2y−1x0)
(1−(6i+4)x−2y−1x0)(1−(6i+7)x−2y−1x0)µ

1− x0y−1x−2
(1−3x−2y−1x0)

n−2Q
i=0

(1−(6i+3)x−2y−1x0)
(1−(6i+9)x−2y−1x0)

¶

=

x−2
(1−x−2y−1x0)

n−2Q
i=0

(1−(6i+3)x−2y−1x0)(1−(6i+6)x−2y−1x0)
(1−(6i+4)x−2y−1x0)(1−(6i+7)x−2y−1x0)³

1− x−2y−1x0
(1−(6n−3)x−2y−1x0)

´

=

x−2
(1−x−2y−1x0)

n−2Q
i=0

(1−(6i+3)x−2y−1x0)(1−(6i+6)x−2y−1x0)
(1−(6i+4)x−2y−1x0)(1−(6i+7)x−2y−1x0)³
1−(6n−2)x−2y−1x0
1−(6n−3)x−2y−1x0

´

=

x−2
(1−x−2y−1x0)

n−2Q
i=0

(1−(6i+3)x−2y−1x0)(1−(6i+6)x−2y−1x0)
(1−(6i+4)x−2y−1x0)(1−(6i+7)x−2y−1x0)³
1−(6n−2)x−2y−1x0
1−(6n−3)x−2y−1x0

´ .

Then we see that

x6n−2 = x−2

n−1Y
i=0

(1−(6i)x−2y−1x0)(1−(6i+3)x−2y−1x0)
(1−(6i+1)x−2y−1x0)(1−(6i+4)x−2y−1x0) .

Also, we see from Eq.(2) that

y6n−1 =
x6n−4

1− x6n−4y6n−3x6n−2

=

y−1(1−x−2y−1x0)
(1−2x−2y−1x0)

n−2Q
i=0

(1−(6i+4)x−2y−1x0)(1−(6i+7)x−2y−1x0)
(1−(6i+5)x−2y−1x0)(1−(6i+8)x−2y−1x0)

1−

⎛⎜⎜⎜⎜⎜⎜⎝
y−1(1−x−2y−1x0)
(1−2x−2y−1x0)

n−2Q
i=0

(1−(6i+4)x−2y−1x0)(1−(6i+7)x−2y−1x0)
(1−(6i+5)x−2y−1x0)(1−(6i+8)x−2y−1x0)

x0(1−2x−2y−1x0)
(1−3x−2y−1x0)

n−2Q
i=0

(1−(6i+5)x−2y−1x0)(1−(6i+8)x−2y−1x0)
(1−(6i+6)x−2y−1x0)(1−(6i+9)x−2y−1x0)

x−2
n−1Q
i=0

(1−(6i)x−2y−1x0)(1−(6i+3)x−2y−1x0)
(1−(6i+1)x−2y−1x0)(1−(6i+4)x−2y−1x0)

⎞⎟⎟⎟⎟⎟⎟⎠
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y6n−1 =

y−1(1−x−2y−1x0)
(1−2x−2y−1x0)

n−2Q
i=0

(1−(6i+4)x−2y−1x0)(1−(6i+7)x−2y−1x0)
(1−(6i+5)x−2y−1x0)(1−(6i+8)x−2y−1x0)

1−

⎛⎜⎜⎝
x−2x0y−1(1−x−2y−1x0)

(1−3x−2y−1x0)

n−2Q
i=0

(1−(6i+4)x−2y−1x0)(1−(6i+7)x−2y−1x0)
(1−(6i+6)x−2y−1x0)(1−(6i+9)x−2y−1x0)

n−1Q
i=0

(1−(6i)x−2y−1x0)(1−(6i+3)x−2y−1x0)
(1−(6i+1)x−2y−1x0)(1−(6i+4)x−2y−1x0)

⎞⎟⎟⎠

=

y−1(1−x−2y−1x0)
(1−2x−2y−1x0)

n−2Q
i=0

(1−(6i+4)x−2y−1x0)(1−(6i+7)x−2y−1x0)
(1−(6i+5)x−2y−1x0)(1−(6i+8)x−2y−1x0)

1−
µ
x−2x0y−1

n−2Q
i=0

(1− (6i+ 4)x−2y−1x0)
n−1Q
i=0

1
(1−(6i+4)x−2y−1x0)

¶

=

y−1(1−x−2y−1x0)
(1−2x−2y−1x0)

n−2Q
i=0

(1−(6i+4)x−2y−1x0)(1−(6i+7)x−2y−1x0)
(1−(6i+5)x−2y−1x0)(1−(6i+8)x−2y−1x0)

1−
³

x−2x0y−1
1−(6n−2)x−2y−1x0

´

=

y−1(1−x−2y−1x0)
(1−2x−2y−1x0)

n−2Q
i=0

(1−(6i+4)x−2y−1x0)(1−(6i+7)x−2y−1x0)
(1−(6i+5)x−2y−1x0)(1−(6i+8)x−2y−1x0)³
1−(6n−1)x−2y−1x0
1−(6n−2)x−2y−1x0

´ .

Then

y6n−1 = y−1

n−1Y
i=0

(1− (6i+ 1)x−2y−1x0)(1− (6i+ 4)x−2y−1x0)
(1− (6i+ 2)x−2y−1x0)(1− (6i+ 5)x−2y−1x0)

.

Similarly we can prove the other relations. Hence, the proof is completed.

Lemma 1. If x−2, x−1, x0, y−2, y−1 and y0 are arbitrary real numbers and {xn, yn} are solutions of system (2),
then the following statements are true:

(i) If x−2 = 0, y−1 6= 0, x0 6= 0, then we have x6n−2 = y6n+1 = 0 and x6n = y6n+3 = x0, x6n+2 = y6n−1 = y−1.

(ii) If x−1 = 0, y−2 6= 0, y0 6= 0, then we have x6n−1 = y6n+2 = 0 and x6n+1 = y6n−2 = y−2, x6n+3 = y6n = y0.

(iii) If x0 = 0, y−1 6= 0, x−2 6= 0, then we have x6n = y6n+3 = 0 and x6n−2 = y6n+1 = x−2, x6n+2 = y6n−1 = y−1.

(iv) If y−2 = 0, x−1 6= 0, y0 6= 0, then we have y6n−2 = x6n+1 = 0 and x6n−1 = y6n+2 = x−1, x6n+3 = y6n = y0.

(v) If y−1 = 0, x0 6= 0, x−2 6= 0, then we have y6n−1 = x6n+2 = 0 and x6n−2 = y6n+1 = x−2, x6n = y6n+3 = x0.

(vi) If y0 = 0, y−2 6= 0, x−1 6= 0, then we have y6n = x6n+3 = 0 and x6n−1 = y6n+2 = x−1, x6n+1 = y6n−2 = y−2.

Proof: The proof follows from the form of the solutions of system (2).

Example 2. We assume the initial conditions x−2 = −0.5, x−1 = 0.9, x0 = 3, y−2 = 2, y−1 = 0.4 and y0 = 0.3,
for the difference system (2), see Fig. 2.
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Figure 2.

The following cases can be proved similarly.

4. ON THE SYSTEM: XN+1 =
YN−2

1−YN−2XN−1YN
, YN+1 =

XN−2
−1+XN−2YN−1XN

In this section, we get the solutions of the system of the difference equations

xn+1 =
yn−2

1− yn−2xn−1yn
, yn+1 =

xn−2
−1 + xn−2yn−1xn

, (3)

where n ∈ N0 and the initial conditions are arbitrary real numbers such that x−2y−1x0 6= ±1 and y−2x−1y0 6=
1, 6= 1

2 .

Theorem 3. If {xn, yn} are solutions of difference equation system (3). Then every solution of system (3) are
periodic with period twelve and for n = 0, 1, 2, ...,

x12n−2 = x−2, x12n−1 = x−1, x12n = x0, x12n+1 =
y−2

(1− y−2x−1y0)
,

x12n+2 = −y−1(−1 + x−2y−1x0), x12n+3 =
y0(−1 + 2y−2x−1y0)
(−1 + y−2x−1y0)

,

x12n+4 =
x−2(1 + x−2y−1x0)

(−1 + x−2y−1x0)
, x12n+5 =

x−1
(−1 + 2y−2x−1y0)

,

x12n+6 =
x0(−1 + x−2y−1x0)

(1 + x−2y−1x0)
, x12n+7 =

−y−2(−1 + 2y−2x−1y0)
(−1 + y−2x−1y0)

,

x12n+8 = −y−1(1 + x−2y−1x0), x12n+9 =
−y0

(1− y−2x−1y0)
,

y12n−2 = y−2, y12n−1 = y−1, y12n = y0, y12n+1 =
x−2

(−1 + x−2y−1x0)
,

y12n+2 =
−x−1(−1 + y−2x−1y0)

(−1 + 2y−2x−1y0)
, y12n+3 =

−x0
(1 + x−2y−1x0)

,

y12n+4 = −y−2, y12n+5 = −y−1, y12n+6 = −y0, y12n+7 =
−x−2

−1 + x−2y−1x0
,

y12n+8 =
x−1(−1 + y−2x−1y0)

(−1 + 2y−2x−1y0)
, y12n+9 =

x0
(1 + x−2y−1x0)

.
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Example 3. Figure (3) shows the behavior of the solution of the difference system (3) with the initial conditions
x−2 = −0.7, x−1 = 1.6, x0 = −0.3, y−2 = −0.2, y−1 = −1.9 and y0 = 1.1.
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Figure 3.

5. ON THE SYSTEM XN+1 =
YN−2

1−YN−2XN−1YN
, YN+1 =

XN−2
−1−XN−2YN−1XN

In this section, we discuss the solutions of the following system of the difference equations

xn+1 =
yn−2

1− yn−2xn−1yn
, yn+1 =

xn−2
−1− xn−2yn−1xn

, (4)

where n ∈ N0 and the initial conditions are real numbers with x−2y−1x0 6= −1, 6= −12 and y−2x−1y0 6= ±1.
Theorem 4. Suppose that {xn, yn} are solutions of system (4). Then every solution of system (4) are periodic
with period twelve and for n = 0, 1, 2, ...,

x12n−2 = x−2, x12n−1 = x−1, x12n = x0, x12n+1 =
y−2

(1− y−2x−1y0)
,

x12n+2 =
y−1(1 + x−2y−1x0)

(1 + 2x−2y−1x0)
, x12n+3 =

y0
(1 + y−2x−1y0)

, x12n+4 = −x−2,

x12n+5 = −x−1, x12n+6 = −x0, x12n+7 =
−y−2

(1− y−2x−1y0)
,

x12n+8 =
−y−1(1 + x−2y−1x0)

(1 + 2x−2y−1x0)
, x12n+9 =

−y0
(1 + y−2x−1y0)

,

y12n−2 = y−2, y12n−1 = y−1, y12n = y0, y12n+1 =
−x−2

(1 + x−2y−1x0)
,

y12n+2 = −x−1(1− y−2x−1y0), y12n+3 =
−x0(1 + 2x−2y−1x0)
(1 + x−2y−1x0)

,

y12n+4 =
−y−2(1 + y−2x−1y0)

(1− y−2x−1y0)
, y12n+5 =

−y−1
(1 + 2x−2y−1x0)

,

y12n+6 =
−y0(1− y−2x−1y0)

(1 + y−2x−1y0)
, y12n+7 =

x−2(1 + 2x−2y−1x0)

(1 + x−2y−1x0)
,

y12n+8 = x−1(1 + y−2x−1y0), y12n+9 =
x0

(1 + x−2y−1x0)
.

Example 4. Figure (4) shows the periodicity of the solution of the difference system (4) when we put the initial
conditions x−2 = −0.7, x−1 = .6, x0 = 5, y−2 = −.5, y−1 = .18 and y0 = 6.
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1. Introduction

Associated with a body K ∈ Kn0 are its harmonic quermassintegrals, Ŵ0, Ŵ1, · · · , Ŵn.
These quermassintegrals were introduced by Hadwiger [6,section 6.4.8], and can be defined

by letting Ŵ0 = V (K), Ŵn = ωn, and for j = 1, 2, · · · , n− 1,

Ŵn−j =
ωn
ωj

[

∫
Gr(n,j)

V {j}(K|ξ)−1dµj(ξ)]−1. (1.1)

Where K|ξ denote the image of the orthogonal projection of K onto ξ. From the Schwarz
or Höder inequality, we have

Ŵi(K) ≤Wi(K).

Here 0 < i < n, with equality hold if and only if K has constant outer n− i-measure. For
more details, please see [8,10].

Recently, the Orlicz-Brunn Minkowski theory originated with the work of Lutwak,
Yang and Zhang [11,12]and Haberl [5]. This theory is much more general than the Lp
Brunn-Minkowski theory(see [2,9,13]), for the development of the Orlicz Brunn Minkowski
theory, see[3-5,7,11-12,15-16]. Gardner [3] extended the Lp Brunn-Minkowski theory to a
Orlicz Brunn-Minkowski theory. As the same time, Xi, jin and leng[15] defined the Orlicz
addition and given the Orlicz Brunn-Minkowski inequality. Note that xi use a completely
different approach technique of Steiner symmetrization, although these results coincide
with Gardner.

Following the spirit of Hadwiger, we introduce the Orlicz mixed harmonic quermass-
integrals as follow: Let K,L ∈ Kn0 , φ ∈ C+, we have, for j = 1, 2, · · · , n− 1,

Ŵφ,n−j(K,L) =
ωn
ωj

[

∫
Gr(n,j)

V
{j}
φ (K|ξ, L|ξ)
V {j}(K|ξ)

V {j}(K|ξ)−1dµj(ξ)]−1. (1.2)

∗Research is supported by the Natural Science Foundation of China (Grant No.11471209).
†Corresponding author:zbzeng@shu.edu.cn; jilewen2008@163.com.
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Note that, taking K = L, φ(1) = 1, we have Ŵφ,n−j(K,K) = Ŵn−j(K). where V {j}(K|ξ)
denotes the j−dimensional volume of intersection of K with an j− dimensional subspace
ξ ⊂ Rn. The Grassmann manifold Gr(n, j) is endowed with the normalized Haar measure.

In Section 3. Using the Orlicz combination, we give the variational formula of harmonic
quermassintegrals. That is, if K,L ∈ Kn0 , φ ∈ C+, then for each j = 1, 2, · · · , n − 1,
ξ ∈ Gr(n, j),

lim
ε→0+

Ŵn−j(K +φ ε · L)− Ŵn−j(K)

ε
=

j

φ
′
l(1)

Ŵφ,n−j(K,L)−1Ŵn−j(K)2.

Orlicz mixing homogeneous quermassintegrals as a generalization of the harmonic ho-
mogeneous integration. A nature question is whether there is a Minkowski type isoperi-
metric inequality for Orlicz mixing homogeneous quermassintegrals, we give a definite
answer.

In the section 4, we prove the following Minkowski type inequality: Let K,L ∈ Kn0 , 0 <
j < n, φ ∈ C+. Then

Ŵφ,n−j(K,L)−1 ≥ Ŵn−j(K)−1φ((
Ŵn−j(L)

Ŵn−j(K)
)1/j).

If φ is strictly convex, with equality holds if and only if K and L are dilations.
We also establish the Brunn-Minkowski type inequality for convex bodies. The follow-

ing Brunn-Minkowski type inequality: Let K,L ∈ Kn0 , 0 < j < n, ε > 0. Then for any
φ ∈ C+,

φ(1) ≥ φ((
Ŵn−j(K)

Ŵn−j(K +φ ε · L)
)1/j) + εφ((

Ŵn−j(L)

Ŵn−j(K +φ ε · L)
)1/j).

If φ is strictly convex, with equality holds if and only if K and L are dilations.
In the section 5, We obtain the Brunn-Minkowski type inequality for Orlicz sum

+φ(K1,K2, · · · ,Kn). Let K1,K2, · · · ,Kn ∈ Kn0 ∈ Kn0 , φ is n ≥ 2 variate functions,
j = 1, 2, · · · , n− 1. Then following inequality hold,

1 ≥ φ((
Ŵn−j(K1)

Ŵn−j(+φ(K1,K2, · · · ,Kn))
)1/j , · · · , ( Ŵn−j(Kn)

Ŵn−j(+φ(K1,K2, · · · ,Kn))
)1/j).

If φ is strictly convex, with equality holds if and only if K1,K2, · · · ,Kn are dilations.

2. Notation and background material

We collect some basic facts about convex bodies that are needed in our paper.
2.1. Mixed volumes

The unit ball in Rn and unit sphere denoted by B and Sn−1, respectively. Let Gr(n, j)
denote the Grassmann manifold of j−dimensional subspaces ξ through the origin in Rn.
dµj(ξ) is the normalized rotation invariant measure on Gr(n, j) and to emphasize the
dependence of j.

The Minkowski addition and scalar product of sets K and L in Rn is defined by(see[1])

aK + bL = {ax+ by : x ∈ K, y ∈ L}, for all a, b ∈ R. (2.1)

If K,L ∈ Kn0 can be defined as a convex body such that

haK+bL(u) = ahK(u) + bhL(u), for all u ∈ Sn−1.

2
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The volume of a Minkowski combination λ1L1 + · · ·+ λmLm of convex bodies L1, . . . , Lm
can be expressed as a homogeneous polynomial of degree n (see [1]):

V (λ1L1 + · · ·+ λmLm) =
∑
i1,...,in

V (Li1 , . . . , Lin)λi1 · · ·λin .

The coefficients V (Li1 , . . . , Lin) are called mixed volumes of Li1 , . . . , Lin .

2.2. Orlicz mixed volumes

Consider convex function φ : (−∞, 0) ∪ (0,∞) → (0,∞) such that limt→∞ φ(t) =
∞, limt→0 φ(t) = 0 . we assume that C be the class of convex function φ : (0,∞)→ (0,∞).
Let C+ be the class of convex and strictly increasing functions φ : [0,∞) → (0,∞) such
that limt→∞ φ(t) = ∞, limt→0 φ(t) = 0 . It is easy to conclude from [14, pp. 23-24] that
φ ∈ C is continuous on [0,∞), and the left derivative φ′l and right derivative φ′r exists and
φ′l are positive on (0,∞).

The Orlicz combination were defined by Gardner [3] and xi [15]. Let α, β > 0(not both
zero) and φ ∈ C+, the Orlicz combination α ·K +φ β · L given by, for all u ∈ Sn−1

hα·K+φβ·L(u) = inf{t > 0 : αφ
(hK(u)

t

)
+ βφ

(hL(u)

t

)
≤ φ(1)}. (2.2)

By the definition of Orlicz combination and Orlicz mixed volume, we derive

φ(1) = αφ(
hK(u)

hα·K+φβ·L(u)
) + βφ(

hK(u)

hα·L+φβ·L(u)
). (2.3)

Vφ(K,K) = φ(1)V (K)

V (K +φ ε · L)φ(1) = Vφ(K +φ ε · L,K) + εVφ(K +φ ε · L,L) for all ε > 0. (2.4)

If φ(t) = tp, p ≥ 1, then the Orlicz combination reduces to the Lp combination. Xi[15]
defined the Orlicz mixed volume Vφ(K,L) of K,L ∈ Kn0 by

Vφ(K,L) =
φ
′
l(1)

n
lim
ε→0+

V (K +φ ε · L)− V (K)

ε

and obtain the following integral formula of the Orlicz mixed volume:

Vφ(K,L) =
1

n

∫
Sn−1

φ(
hL(u)

hK(u)
)hK(u)dS(K,u).

Jensen’ inequality: Let µ be a probability measure in a space X, let U be an open
convex set in Rn, and let ϕ be a convex real-valued function on U. Assume that g : X →
U is measurable and component-wise µ-integrable, and that ϕ ◦ g is µ-integrable. Let
z0 =

∫
X g(x)dµ(x). Then z0 ∈ U and∫

X
ϕ(g(x))dµ(x) ≥ ϕ(

∫
X
g(x)dµ(x)).

If φ is strictly convex, equality holds if and only if g(x) is constant for µ−almost all
x ∈ X.(see[4])

3. Orlicz mixed harmonic quermassintegrals

3

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

456 Lewen Ji et al 454-462



In this section, We are ready to derive the variational formula of harmonic quermassin-
tegrals with respect to Orlicz combination. For this aim, the following Lemma is needed.

According to the proof of lemma 5.2 and theorem 2(see[15]) , we give the following
Lemma :

Lemma 3.1 Let K,L ∈ Kn0 , φ ∈ C+, 0 < ε0 < 1 and Kε = K+φ ε ·L . Then for ε ∈ (0, ε0],

the family of functions {V
{j}(Kε|·)−V {j}(K|·)

ε } uniformly bounded on Gr(n, j).

Lemma 3.2[7] Let K,L ∈ Kn0 , φ ∈ C+ and j = 1, 2, · · · , n−1. Then for each ξ ∈ Gr(n, j)
and ε > 0, we have

(K +φ ε · L)|ξ = (K|ξ) +φ ε · (L|ξ).

Theorem 3.3 If K,L ∈ Kn0 , φ ∈ C+, then for each j = 1, 2, · · · , n− 1,

lim
ε→0+

Ŵn−j(K +φ ε · L)− Ŵn−j(K)

ε
=

j

φ
′
l(1)

Ŵφ,n−j(K,L)−1Ŵn−j(K)2.

Proof. By the Lemma 3.1, there exist a positive constant c, such that for all ξ ∈
Gr(n, j) and 0 < ε ≤ ε0,

V {j}(Kε|ξ)− V {j}(K|ξ)
ε

< c.

Therefore,

| V
{j}(Kε|ξ)−1 − V {j}(K|ξ)−1

ε
|

=
V {j}(Kε|ξ)− V {j}(K|ξ)
εV {j}(Kε|ξ)V {j}(K|ξ)

≤ c

minξ∈Gr(n,j) V {j}(K|ξ)2
.

Thus, we know that the family of functions {V
{j}(Kε|·)−1−V {j}(K|·)−1

ε }0<ε≤ε0 uniformly
bounded on Gr(n, j) and calculating the limitation

lim
ε→0+

V {j}(Kε|ξ)−1 − V {j}(K|ξ)−1

ε
= − j

φ
′
l(1)

V
{j}
φ (K|ξ, L|ξ)V {j}(K|ξ)−2,

pointwise on Gr(n, j). It follows from Lebesgue dominated convergence theorem, Lemma
3.2 that

lim
ε→0+

Ŵn−j(K +φ ε · L)− Ŵn−j(K)

ε

= −ωn
ωj

[

∫
Gr(n,j)

V {j}(K|ξ)−1dµj(ξ)]−2 lim
ε→0+

∫
Gr(n,j)

V {j}((K +φ ε · L)|ξ)−1 − V {j}(K|ξ)−1

ε
dµj(ξ)

=
ωn
ωj

[

∫
Gr(n,j)

V {j}(K|ξ)−1dµj(ξ)]−2
j

φ
′
l(1)

∫
Gr(n,j)

V
{j}
φ (K|ξ, L|ξ)V {j}(K|ξ)−2dµj(ξ)

=
j

φ
′
l(1)

Ŵn−j(K)2Ŵφ,n−j(K,L)−1,

as desired.

4. Brunn-Minkowski type inequalities

4

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

457 Lewen Ji et al 454-462



In the section. We establish the Minkowski type isoperimetric inequality for Orlicz
mixed affine quermassintegrals, on this basis, we obtain the Brunn-Minkowski type in-
equality with respect to Orlicz combination for Orlicz mixed harmonic quermassintegrals.
Theorem 4.1 Let K,L ∈ Kn0 , 0 < j < n, φ ∈ C+. Then

Ŵφ,n−j(K,L)−1 ≥ Ŵn−j(K)−1φ((
Ŵn−j(L)

Ŵn−j(K)
)1/j). (4.1)

If K and L are dilations, then equality holds in (4.1). Conversely, if φ is strictly convex,
then K and L are dilations.

Proof. The condition on K guarantees that Ŵn−j(K) > 0. Since

Ŵn−j(K) =
ωn
ωj

[

∫
Gr(n,j)

V {j}(K|ξ)−1dµj(ξ)]−1.

(ωn
ωj

)−1V {j}(K|ξ)−1dµj(ξ)

Ŵ−1
n−j(K)

is a probability measure on Gr(n, j). It follows from Jensen’s in-

equality and Hölder inequality that

(
Ŵφ,n−j(K,L)

Ŵn−j(K)
)−1 =

(ωnωj )−1
∫
Gr(n,j) V

{j}
φ (K|ξ, L|ξ)V {j}(K|ξ)−2dµj(ξ)

Ŵn−j(K)−1

≥ φ(
(ωnωj )−1

∫
Gr(n,j) V

{j}(K|ξ)−1−1/jV {j}(L|ξ)1/jdµj(ξ)

Ŵn−j(K)−1
)

≥ φ(
Ŵn−j(K)−(1+1/j)Ŵn−j(L)1/j

Ŵn−j(K)−1
) = φ((

Ŵn−j(L)

Ŵn−j(K)
)1/j).

If K and L are dilations, taking K = aL, a > 0, then by Orlicz mixed harmonic
quermassintegrals and harmonic quermassintegrals, we have following equality holds,

[
Ŵφ,n−j(K,L)

Ŵn−j(K)
]−1 = φ(a) = φ((

Ŵn−j(L)

Ŵn−j(K)
)1/j)

conversely, we will show K and L are dilations when φ is strictly convex. We are divided
into two cases to prove.

Firstly, we suppose j = 1. By the define of Orlicz mixed volume, we derive

V
{1}
φ (K|u, L|u)

V {1}(K|u)
= φ(

hL(u)

hK(u)
)

hK(u)

hK(u) + hK(−u)
+ φ(

hL(−u)

hK(−u)
)

hK(−u)

hK(u) + hK(−u)
.

Note that,

hL(u)

hK(u)

hK(u)

hK(u) + hK(−u)
+
hL(−u)

hK(−u)

hK(−u)

hK(u) + hK(−u)
=
V {1}(L|u)

V {1}(K|u)
.

Since equality hold in inequality (4.1), we know that
V
{1}
φ (K|u,L|u)
V {1}(K|u) = V {1}(L|u)

V {1}(K|u) . It follows

from φ is strictly convex that
hL(u)

hK(u)
=
hL(−u)

hK(−u)
.

5
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And by Hölder equality condition, we conclude, exist a positive constant b > 0, for any
u ∈ Sn−1, such that V {1}(K|u) = bV {1}(L|u). Consequently, we obtain K and L are
dilations.

Now, we suppose 2 ≤ j ≤ n − 1. For any ξ ∈ Gr(n, j), we have
V
{j}
φ (K|ξ,L|ξ)
V {j}(K|ξ) =

φ(( V
{j}(L|ξ)

V {j}(K|ξ))
1/j) according to equality hold in inequality (4.1). By the Mimkowski isoperi-

metric inequality of Orlicz mixed volume, we have, for ξ ∈ Gr(n, j) , K|ξ and L|ξ are dila-
tions of each. By Lemma 3.12(see[7]), we derive K and L are dilations for each ξ ∈ Gr(n, j)
.

In Theorem 4.1, we derive the following corollary:

Corollary 4.2 Let K,L ∈ Kn0 , 0 < j < n, p ≥ 1. Then

Ŵp,n−j(K,L)−1 ≥ Ŵn−j(K)−1(
Ŵn−j(L)

Ŵn−j(K)
)p/j . (4.2)

When p = 1, the equality holds for 2 ≤ j ≤ n−1 if and only if K and L are homothetic;
the equality holds for j = 1 if and only if exist a positive constant a such that for u ∈ Sn−1,
V {1}(K|u) = aV {1}(L|u). When p > 1, the equality holds if and only if K and L are
dilations.

Now, we obtain the following Brunn-Minkowski type inequality for Orlicz mixed har-
monic quermassintegrals as follows:

Theorem 4.3 Let K,L ∈ Kn0 , 0 < j < n, ε > 0. Then for any φ ∈ C+,

φ(1) ≥ φ((
Ŵn−j(K)

Ŵn−j(K +φ ε · L)
)1/j) + εφ((

Ŵn−j(L)

Ŵn−j(K +φ ε · L)
)1/j). (4.3)

If φ is strictly convex, equality holds in (4.3) if and only if K and L are dilations.
Proof. Let Kφ = K +φ ε · L. From Orlicz mixed harmonic quermassintegrals, Orlicz

combination, the Theorem 4.1 and (2.4), it follows that

φ(1) =
(ωnωj )−1

∫
Gr(n,j) φ(1)V {j}(Kφ|ξ)−1dµj(ξ)

Ŵ−1n−j(Kφ)

=
Ŵ−1n−j(Kφ,K) + εŴn−j(Kφ, L)−1

Ŵn−j(Kφ)−1
≥ φ((

Ŵn−j(K)

Ŵn−j(Kφ)
)1/j) + εφ((

Ŵn−j(L)

Ŵn−j(Kφ)
)1/j).

The equality holds in theorem 4.1, we know that, if K and L are dilations, then equality
holds in (4.3). Conversely, if φ is strictly convex, then K and L are dilations.

Using Theorem 4.3, we give the following Corollary:

Corollary 4.4 Let K,L ∈ Kn0 , 0 < j < n, ε > 0. Then for any p ≥ 1,

Ŵn−j(K +φ ε · L)p/j ≥ (Ŵn−j(K))p/j + ε(Ŵn−j(L))p/j . (4.4)

When p = 1, the equality holds for 2 ≤ j ≤ n−1 if and only if K and L are homothetic; the
equality holds for j = 1 if and only if exist a positive constant a such that for u ∈ Sn−1,
V {1}(K|u) = aV {1}(L|u). When p > 1, the equality holds if and only if K and L are
dilations.

6
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We now derive the equivalence between the inequality (4.1) and the inequality (4.3).
We have proved Theorem 4.3 by Theorem 4.1. Thus, we only need to prove the inequality
(4.1) by the inequality (4.3).

Proof. Let Kφ = K +φ ε · L, by (4.3), the following function

f(ε) = φ((
Ŵn−j(K)

Ŵn−j(Kφ)
)1/j) + εφ((

Ŵn−j(L)

Ŵn−j(Kφ)
)1/j)− φ(1)

is non-positive, then

lim
ε→0+

f(ε)− f(0)

ε
= lim

ε→0+

φ((
Ŵn−j(K)

Ŵn−j(Kφ)
)1/j) + εφ((

Ŵn−j(L)

Ŵn−j(Kφ)
)1/j)− φ(1)

ε

= lim
ε→0+

φ((
Ŵn−j(K)

Ŵn−j(Kφ)
)1/j)− φ(1)

ε
+ φ((

Ŵn−j(L)

Ŵn−j(Kφ)
)1/j)

= lim
ε→0+

φ((
Ŵn−j(K)

Ŵn−j(Kφ)
)1/j)− φ(1)

(
Ŵn−j(K)

Ŵn−j(Kφ)
)1/j − 1

lim
ε→0+

(
Ŵn−j(K)

Ŵn−j(Kφ)
)1/j − 1

ε

+ φ((
Ŵn−j(L)

Ŵn−j(Kφ)
)1/j).

Let a = (
Ŵn−j(K)

Ŵn−j(Kφ)
)1/j and a→ 1− as ε→ 0+, consequently,

lim
ε→0+

φ((
Ŵn−j(K)

Ŵn−j(Kφ)
)1/j)− φ(1)

(
Ŵn−j(K)

Ŵn−j(Kφ)
)1/j − 1

= lim
a→1+

φ(a)− φ(1)

a− 1
= φ

′
l(1)

and by theorem 3.3, we have

lim
ε→0+

(
Ŵn−j(K)

Ŵn−j(Kφ)
)1/j − 1

ε
= − 1

φ
′
l(1)

(
Ŵφ,n−j(K,L)

Ŵn−j(K)
)−1.

Thus,

lim
ε→0+

f(ε)− f(0)

ε
= −(

Ŵφ,n−j(K,L)

Ŵn−j(K)
)−1 + φ((

Ŵn−j(L)

Ŵn−j(Kφ)
)1/j) ≤ 0,

which finishes the proof.
Obviously, We derive the equivalence between the inequality (4.2) and the inequality

(4.4).

5. Brunn-Minkowski inequality with respect to n variables
Gardner in [3] introduced the notion of Orlicz sum: consider a young function φ :

[0,∞)n → [0,∞), that is for every u ∈ Sn−1 ∩ [0,∞)n, φ(tu) is convex and strict-
ly increasing with φ(0) = 0. For K1,K2, · · · ,Kn ∈ Kn0 , exist a unique convex body
+φ(K1,K2, · · · ,Kn) ∈ Kn0 , the support function defined by

h+φ(K1,K2,··· ,Kn)(u) = inf{λ > 0 : φ(
hK1(u)

λ
,
hK2(u)

λ
, · · · , hKn(u)

λ
) ≤ 1}, u ∈ Rn.
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The convex body +φ(K1,K2, · · · ,Kn) is called Orlicz sum of K1,K2, · · · ,Kn.
We obtain the Brunn-Minkowski type inequality on above Orlicz sum.

Theorem 5.1 Let K1,K2, · · · ,Kn ∈ Kn0 ∈ Kn0 , φ is n ≥ 2 variate young functions,
j = 1, 2, · · · , n− 1. Then following inequality hold,

1 ≥ φ((
Ŵn−j(K1)

Ŵn−j +φ (K1,K2, · · · ,Kn)
)1/j , · · · , ( Ŵn−j(Kn)

Ŵn−j +φ (K1,K2, · · · ,Kn)
)1/j).

If K1,K2, · · · ,Kn are dilations, then the above equality holds . Conversely, if φ is strictly
convex, then K1,K2, · · · ,Kn are dilations.

Proof. Considering a probability measure ν on Gr(n, j), is given by

dν(ξ) =
V {j}(K|ξ)−1∫

Gr(n,j)V {j}(K|ξ)−1dµj(ξ)

dµj(ξ).

Using the same method of theory 4.1 . We have , for all ξ ∈ Gr(n, j)

1 ≥ φ((
V {j}(K1|ξ)
V {j}(K|ξ)

)1/j , · · · , (V
{j}(Kn|ξ)
V {j}(K|ξ)

)1/j),

here K = +φ(K1,K2, · · · ,Kn).
It follows from Jensen’s inequality that

1 ≥
∫
Gr(n,j)

φ((
V {j}(K1|ξ)
V {j}(K|ξ)

)1/j , · · · , (V
{j}(Kn|ξ)
V {j}(K|ξ)

)1/j)dν(ξ)

≥ φ(

∫
Gr(n,j)

((
V {j}(K1|ξ)
V {j}(K|ξ)

)1/j , · · · , (V
{j}(Kn|ξ)
V {j}(K|ξ)

)1/j)dν(ξ))

= φ(

∫
Gr(n,j) V

{j}(K1|ξ)1/jV {j}(K|ξ)−1/j+1dµj(ξ)∫
Gr(n,j) V

{j}(K|ξ)−1dµj(ξ)
,

· · · ,

∫
Gr(n,j) V

{j}(Kn|ξ)1/jV {j}(K|ξ)−1/j+1dµj(ξ)∫
Gr(n,j) V

{j}(K|ξ)−1dµj(ξ)
)

≥ φ((
Ŵn−j(K1)

Ŵn−j(K)
)1/j , · · · , (Ŵn−j(Kn)

Ŵn−j(K)
)1/j).

Here equality holds according to the equality holds of theorem 4.1, we obtain, ifK1,K2, · · · ,Kn

are dilations, then the above equality holds . Conversely, if φ is strictly convex, then
K1,K2, · · · ,Kn are dilations.

Let φ1, φ2 ∈ C+ and φ(t1, t2) = φ1(t1) + φ2(t2), Then for every K,L ∈ Kno , we have

1 ≥ φ1(
Ŵn−j(K)

Ŵn−j(+φ(K,L)
)1/j) + φ2(

Ŵn−j(L)

Ŵn−j(+φ(K,L)
)1/j).

More generally, taking φ(t1, t2) = φ1(t1)+εφ2(t2)
φ(1) , then, for +φ(K,L) = K +φ ε ·L, we have,

φ(1) ≥ φ((
Ŵn−j(K)

Ŵn−j(K +φ ε · L)
)1/j) + εφ((

Ŵn−j(L)

Ŵn−j(K +φ ε · L)
)1/j).
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ROUGHNESS IN (2
 ;2
 _q�)-FUZZY SUBSTRUCTURES OF
SEMIGROUPS BASED ON SET VALUED MAPPING

NOOR REHMAN, SYED INAYAT ALI SHAH, ABBAS ALI, AND RABIA ASLAM

Abstract. Study of generalized roughness for fuzzy algebraic substrucures
of semigroups has been initiated. Many di¤erent kinds of set valued maps
are needed to preserve an algebraic substrucure while considering its lower
and upper approximations. In the present paper generalized lower and upper
approximations in (2
 ;2
 _q�)-fuzzy ideals of semigroups have been investi-
gated. An (2
 ;2
 _q�)-fuzzy subset of a subsemigroup have two parts viz.
lower and upper parts. Several properties of lower and upper approximations
have been given for these. To conclud this paper, lower and upper approxi-
mations for (2
 ;2
 _q�)-fuzzy interior ideals and (2
 ;2
 _q�)-fuzzy bi-ideals
have been discussed in semigroups.

1. INTRODUCTION

A semigroup is an algebraic structure consisting of a nonempty set S together
with an associative binary operation: Semigroups are important in many areas of
mathematics, for example coding and language theory, automata theory, combina-
torics and mathematical analysis. Zadeh introduced the notion of fuzzy subset in
[24].
The idea of quasi coincidence of a fuzzy point with a fuzzy set which is mentioned

in [17], played a vital role to generate some di¤erent types of fuzzy subgroups, called
(�; �)-fuzzy subgroups, introduced by Bakat and Das (see [2]-[4]) : Fuzzy point play
a vital role in the study of (�; �)-fuzzy subgroups initiated by Bhakat and Das
[3], using the combined notions of � belongingness� and �quasi-coincidence� of a
fuzzy point with a fuzzy set. Shabir et al. have applied this concept in semi-
group [20]: Rehman and Shabir initiated the study of (�; �)-fuzzy substructures in
ternary semigroups [18]. Jun introduced (2;2 _qk)-fuzzy subalgebras in BCK /BCI
algebras [11]. Shabir et al. introduced (2;2 _qk)-fuzzy ideals in semigroup [21]:
Rehman and Shabir initiated the study of (2;2 _qk)-fuzzy substructures in ternary
semigroups [22]. Shabir and Ali introduced (2
 ;2
 _q�)-fuzzy ideal in semigroup
[23]. Rehman and Shabir initiated the study of (2
 ;2
 _q�)-fuzzy substructures in
ternary semigroups [19].
Pawlak was the �rst to discuss rough set with the help of equivalence relation

among the elements of a set which is a key point to discuss the uncertainty [16].
There are at least two methods for the development of rough set theory, the con-
structive and axiomatic approaches. In rough sets, equivalence classes play an
important role in the construction of both lower and upper approximations. But
some times in algebraic structures, it is di¢ cult to �nd equivalence relations. Many
researchers have worked on this to initiate rough set without equivalence relations.

Key words and phrases. Semigroup, Generalized fuzzy roughness, (2
 ;2
 _q�)-fuzzy ideals
.
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2 NOOR REHMAN, SYED INAYAT ALI SHAH, ABBAS ALI, AND RABIA ASLAM

Couso and Dubois in [7] initiated generalized rough set or �T -rough set�with the
help of a set valued mapping, which is a more generalized rough form of the Pawlak
rough set. The notion of roughness in fuzzy set introduced by Dubois and Prade
in [9]. Some researchers applied this concept in [1] and [6].
Many researchers have taken interest to apply the concept of roughness in dif-

ferent algebraic structures (see [5],[8],[12],[15]). Hossini has applied generalized
rough set in fuzzy algebraic structures (See [13],[14]). However, in the case of
(2
 ;2
 _q�)-fuzzy algebraic structures much attention has not been paid. There-
fore it is important to study the roughness in generalized fuzzy algebraic structures
such as in (2
 ;2
 _q�)-fuzzy structures.

2. Preliminaries

In this section some basic concepts of fuzzy set, fuzzy point, (2
 ;2
 _q�)-fuzzy
substructures of semigroup, di¤erent types of set valued homomorphism are given.
Throughout this paper S will denote a semigroup unless speci�ed otherwise
A fuzzy subset � of S is a function � : S ! [0; 1] : A fuzzy subset � of S is called

fuzzy left (right) ideal of S if � (ab) � � (b) (� (ab) � � (a)) for all a; b 2 S: � is
fuzzy ideal of S if it is both fuzzy left and fuzzy right ideal of S:

De�nition 1. [17] A fuzzy subset � of S of the form

� (x) =

�
t 2 (0; 1] if x = y
0 otherwise

is said to be a fuzzy point with support x and value t and is denoted by xt:

De�nition 2. [23] Let � be a fuzzy subset of S: Then � is called an (2
 ;2
 _q�)-
fuzzy subsemigroup of S if the following condition hold:

(8x; y 2 S) (8t1; t2 2 (
; 1])
�
xt1 ; yt2 2
 �! (xy)minft1;t2g 2
 _q��

�
Theorem 1. [23] Let � be a fuzzy subset of S: Then � is an (2
 ;2
 _q�)-fuzzy
subsemigroup of S if and only if � (xy) _ 
 � min f� (x) ; � (y) ; �g for all x; y 2 S:

De�nition 3. [23] Let � be a fuzzy subset of S: Then � is called an (2
 ;2
 _q�)-
fuzzy left ideal of S if the following condition holds:

(8x; y 2 S) (8t 2 (
; 1]) (yt 2 �! (xy)t 2
 _q��)

Theorem 2. [23] Let � be a fuzzy subset of a semigroup S: Then � is an (2
 ;2
 _q�)-
fuzzy left ideal of S if and only if � (ab) _ 
 � min f� (b) ; �g for all a; b 2 S:

De�nition 4. [23] Let � be an (2
 ;2
 _q�)-fuzzy subsemigroup of S: Then � is
called an (2
 ;2
 _q�)-fuzzy interior ideal of S if the following condition holds:

(8x; a; y 2 S) (8t 2 (0; 1]) (at 2
 �! (xay)t 2
 _q��)

Theorem 3. [23] Let � be an (2
 ;2
 _q�)-fuzzy subsemigroup of S. Then � is an
(2
 ;2
 _q�)-fuzzy interior ideal of S if and only if � (xay)_ 
 � min f� (a) ; �g for
all x; y and a 2 S:

De�nition 5. [23] Let � be an (2
 ;2
 _q�)-fuzzy subsemigroup of S. Then � is
called an (2
 ;2
 _q�)-fuzzy bi-ideal of S if the following condition holds:

(8x; a; y 2 S) (8t1; t2 2 (
; 1])
�
xt1 ; yt2 2
 �! (xay)minft1;t2g 2
 _q��

�
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GENERALIZED ROUGHNESS IN (2
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 _q�)-FUZZY SEMIGROUPS 3

Theorem 4. [23] Let � be an (2
 ;2
 _q�)-fuzzy subsemigroup of S. Then � is an
(2
 ;2
 _q�)-fuzzy bi-ideal of S if and only if � (xay)_
 � min f� (x) ; � (y) ; �g for
all x; y and a 2 S:

De�nition 6. [23] Let �; � be fuzzy subsets of a semigroup S, we de�ne the fuzzy
subsets ��; (� ^ �)� ; (� _ �)� of S as follows:

�� (x) = (� (x) _ 
) ^ �, (� ^ �)� (x) = ((� ^ �) (x) _ 
) ^ �

and (� _ �)� (x) = ((� _ �) (x) _ 
) ^ �:

De�nition 7. Let �; � be fuzzy subsets of S, we de�ne the fuzzy subsets ��; (� ^ �)� ;
(� _ �)� of S as follows:

�� (x) = � (x) _ �, (� ^ �)� (x) = ((� ^ �) (x) _ �)

and (� _ �)� (x) = ((� _ �) (x) _ �) :

De�nition 8. Let T : S ! P (S) be a set valued (SV) mapping. Then T is called
an SV-homomorphism, if T (a)T (b) � T (ab) for all a; b 2 S:

De�nition 9. Let T : S ! P (S) be an SV-homomorphism. Then T is called
re�exive if a 2 T (a) for all a 2 S: In this paper re�exive set valued homomorphism
will be denoted by RSV-homomorphism.

De�nition 10. Let T : S ! P (S) be a set valued (SV) mapping. Then T is called
a strong set valued (SSV) homomorphism, if T (a)T (b) = T (ab) for all a; b 2 S:

3. Generalized roughness in (2
 ;2
 _q�)-fuzzy subsemigroups

This section deals with generalized roughness in fuzzy sets and the approximation
of (2
 ;2
 _q�)-fuzzy subsemigroups. We provide an example to show that the lower
approximation of an (2
 ;2
 _q�)-fuzzy subsemigroup of a semigroup S is not an
(2
 ;2
 _q�)-fuzzy subsemigroup of a semigroup S under an SV-homomorphism.

De�nition 11. Let S be a semigroup and T : S ! P (S) be an SV-mapping. Let
� be a fuzzy subset of S. For every x 2 S; we de�ne T -rough lower and T -rough
upper fuzzy subsets of S by

T (�) (x) =
^

a2T (x)

� (a) and T (�) (x) =
_
� (a)

a2T (x)

:

Proposition 1. Let T : S ! P (S) be an SV-homomorphism and � be a fuzzy
subset of S: If � is an (2
 ;2
 _q�)-fuzzy subsemigroup of S, then T (�) is an
(2
 ;2
 _q�)-fuzzy subsemigroup of S:

Proof. Let a; b 2 S and � be an (2
 ;2
 _q�)-fuzzy subsemigroup of S: Let at1 ; bt2 2

T (�). Then T (�) (a) � t1 > 
 and T (�) (b) � t2 > 
; where t1; t2 2 (
; 1] : It
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4 NOOR REHMAN, SYED INAYAT ALI SHAH, ABBAS ALI, AND RABIA ASLAM

follows that

min ft1; t2; �g � T (�) (a) ^ T (�) (b) ^ �
=

_
x2T (a)

(� (x)) ^
_

y2T (b)

(� (y)) ^ �

=
_

x2T (a);y2T (b)

(� (x) ^ � (y) ^ �)

�
_

x2T (a);y2T (b)

� (xy) _ 
 =

0@ _
� (xy)

xy2T (a)T (b)

1A _ 

=

0@ _
� (z)

z2T (a)T (b)

1A _ 
 (where z = xy)

�

0@_� (z)
z2T (ab)

1A _ 
 = T (�) (ab) _ 
:
This implies that min ft1; t2; �g � T (�) (ab) _ 
:
Ifmin ft1; t2g > �, then T (�) (ab) > �: This implies that T (�) (ab)+min ft1; t2g >

�+� = 2�:Which implies (ab)minft1;t2g q�T (�) : Ifmin ft1; t2g � �, then T (�) (ab) �
min ft1; t2g > 
: This implies that (ab)minft1;t2g 2
 T (�) : Hence (ab)minft1;t2g 2

_q�T (�) : Therefore T (�) is an (2
 ;2
 _q�)-fuzzy subsemigroup of S: �

Proposition 2. Let T : S ! P (S) be an SSV-homomorphism and � be a fuzzy
subset of S: If � is an (2
 ;2
 _q�)-fuzzy subsemigroup of S; then T (�) is an
(2
 ;2
 _q�)-fuzzy subsemigroup of S:

Proof. Let a; b 2 S and let � be an (2
 ;2
 _q�)-fuzzy subsemigroup of S: Let
at1 ; bt2 2 T (�) : Then T (�) (a) � t1 > 
 and T (�) (b) � t2 > 
, where t1; t2 2
(
; 1] : It follows that

fT (�) (ab) _ 
g =
^

z2T (ab)

� (z) _ 
 =
^

z2T (a)T (b)

� (z) _ 


=
^

xy2T (a)T (b)

� (xy) _ 
 (where z = xy)

�
^

x2T (a);y2T (b)

(� (x) ^ � (y) ^ �)

=

0@ ^
x2T (a)

(� (x))

1A ^
0@ ^
y2T (b)

(� (y))

1A ^ �
= T (�) (a) ^ T (�) (b) ^ � � min ft1; t2; �g :

This implies that fT (�) (ab) _ 
g � min ft1; t2; �g :
Ifmin ft1; t2g > �; thenT (�) (ab) > �: This implies that T (�) (ab)+min ft1; t2g >

�+� = 2�:Which implies (ab)minft1;t2g q�T (�) : Ifmin ft1; t2g � �; then T (�) (ab) �
min ft1; t2g > 
: This implies that (ab)minft1;t2g 2
 T (�) : Hence (ab)minft1;t2g 2

_q�T (�) : Therefore T (�) is an (2
 ;2
 _q�)-fuzzy subsemigroup of S: �
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Remark 1. If T is an SV-homomorphism, then T (�) may not be an (2
 ;2
 _q�)-
fuzzy subsemigroup as seen in the following example.

Example 1. Consider the semigroup S with the following table:

� a b c d
a a a a a
b a a a a
c a a b a
d a a b b

De�ne an SV-mapping T : S ! P (S) by T (a) = fa; b; c; dg ; T (b) = fa; b; cg ; and
T (c) = T (d) = fa; bg : Then T is an SV homomorphism. Let � be a fuzzy subset
of S de�ne by � (a) = 0:5; � (b) = 0:6; � (c) = 0:6; � (d) = 0:2. Also T (�) (d) =
T (�) (b) = T (�) (c) = 0:5 and T (�) (a) = 0:2: Let a0:2; b0:3; c0:36; d0:15 2 T (�) :
Then � is an (20:1;20:1 _q0:3)-fuzzy subsemigroup of S: But (bb)minf0:3;0:3g = (a)0:3 :
Since T (�) (a) = 0:2 � 0:3: This implies that (a)0:3 20:1T (�) : Also T (�) (bb) +
min f0:3; 0:3g � 2�. This implies that (a)0:3 q0:3T (�) : Hence T (�) is not an
(20:1;20:1 _q0:3)-fuzzy subsemigroup of S:

4. Approximation of some types of fuzzy subsets

The notion of di¤erent types of fuzzy subsets related to (2
 ;2
 _q�)-fuzzy sub-
sets of S is given in [23]. In this section we discuss the lower and upper approxi-
mations of these subsets.

Proposition 3. Let T : S ! P (S) be an SV-homomorphism and let �; � be fuzzy
subsets of S: Then the following hold:

(i) T (� ^ �)� = T (�)� ^ T (�)�
(ii) T (� _ �)� = T (�)� _ T (�)� :

Proof. (i) Let x 2 S: Then

T (� ^ �) (x)� =
_

z2T (x)

(� ^ �)� (z) =
_

z2T (x)

((� ^ �) (z) _ �)

=
_

z2T (x)

((�) (z) _ �) ^ ((�) (z) _ �)

=
_

z2T (x)

((�) (z) _ �) ^ ((�) (z) _ �)

=
_

z2T (x)

((�) (z) _ �) ^
_

z2T (x)

((�) (z) _ �)

=
_

z2T (x)

�� (z) ^
_

z2T (x)

�� (z) = T (�)
�
(x) ^ T (�)� (x) :

(ii) The proof is similar to (i) using De�nition 7. �

Proposition 4. Let T : S ! P (S) be an SV-homomorphism and let �,� be fuzzy
subsets of S: Then the following hold:

(i) T (� ^ �)� = T (�)� ^ T (�)�
(ii) T (� _ �)� = T (�)� _ T (�)� :
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Proof. (i) Let x 2 S. Then

T (� ^ �)� (x) =
^

z2T (x)

(� ^ �)� (z) =
^

z2T (x)

((� ^ �) (z) _ �)

=
^

z2T (x)

((�) (z) _ �) ^ ((�) (z) _ �)

=
^

z2T (x)

((�) (z) _ �) ^ ((�) (z) _ �)

=
^

z2T (x)

((�) (z) _ �) ^
^

z2T (x)

((�) (z) _ �)

=
^

z2T (x)

�� (z) ^
^

z2T (x)

�� (z) = T (�)
�
(x) ^ T (�)� (x) :

(ii) The proof is similar to (i) using De�nition 7. �

Proposition 5. Let T : S ! P (S) be an SV homomorphism and let �; � be fuzzy
subsets of S: Then the following hold:

(i) T (� ^ �)� = T (�)� ^ T (�)�
(ii) T (� _ �)� = T (�)� _ T (�)� :

Proof. (i) Let x 2 S: Then

T (� ^ �)� (x) =
_

z2T (x)

(� ^ �)� (z) =
_

z2T (x)

((� ^ �) (z) _ 
) ^ �

=
_

z2T (x)

(((�) (z) _ 
) ^ ((�) (z) _ 
)) ^ �

=
_

z2T (x)

(((�) (z) _ 
) ^ �) ^ (((�) (z) _ 
) ^ �)

=
_

z2T (x)

(((�) (z) _ 
) ^ �) ^
_

z2T (x)

(((�) (z) _ 
) ^ �)

=
_

z2T (x)

�� (z) ^
_

z2T (x)

�� (z) = T (�)
�
(x) ^ T (�)� (x) :

(ii) The proof is similar to (i) using De�nition 6. �

Proposition 6. Let S be a semigroup and T : S ! P (S) be an SV-homomorphism.
If � and � are fuzzy ideals of S; then

T (� � �)� (y) � T (�)� (y) ^ T (�)� (y) :

Proof. Let � and � be fuzzy ideals of S. Then

(� � �) (y) � (� � S) (y) =
_
y=ab

f� (a) ^ S (b)g

=
_
y=ab

f� (a) ^ 1g = � (a) � � (ab) = � (y) :

That is (� � �) (y) � � (y) : Now ((� � �) (y) _ 
) ^ � � (� (y) _ 
) ^ �. This implies
that (� � �)� (y) � (�)� (y) : Similarly (� � �)� (y) � (�)� (y) :Hence T (� � �)� (y) �
T (�)

�
(y) and T (� � �)� (y) � T (�)� (y) :
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Therefore T (� � �)� (y) �
�
T (�)

�
(y) ^ T (�)� (y)

	
: �

In general equality does not hold in above proposition. Following example makes
the situation clear.

Example 2. Consider the semigroup S of Example 1: De�ne an SV-mapping T :
S ! P (S) by T (a) = fa; b; cg ; T (b) = fb; cg ; T (c) = fcg and T (d) = fdg : Then
T is an SV-homomorphism. Let �; � be fuzzy subsets of S de�ned by � (a) =
0:4; � (b) = 0:35; � (c) = 0:2 and � (d) = 0:2 also � (a) = 0:38; � (b) = 0:3; � (c) =
0:1 = � (d) : Then clearly � and � are fuzzy ideals of S: Also (� � �)� (a) = 0:36;
(� � �)� (b) = (� � �)� (c) = (� � �)� (d) = 0:1: This implies that T (� � �)� (a) =
0:36; T (� � �)� (b) = T (� � �)� (c) = T (� � �)� (d) = 0:1: Also T (�)� (b) = 0:35
and T (�)� (b) = 0:3: Therefore T (� � �)� (b) �

�
T (�)

�
(b) ^ T (�)� (b)

	
; where


 = 0:1 and � = 0:36:

However in case of an idempotent semigroup equality can be shown.

Proposition 7. Let S be an idempotent semigroup and T : S ! P (S) be an
SV-homomorphism. If � and � are fuzzy ideals of S; then

T (� � �)� (y) = T (�)� (y) ^ T (�)� (y) :

Proof. From Proposition 6; it is obvious that T (� � �)� (y) � T (�)� (y)^T (�)� (y) :
For the reverse inequality, let y 2 S: It follows that

T (�)
�
(y) ^ T (�)� (y) =

_
a2T (y)

(�)
�
(a) ^

_
b2T (x)

(�)
�
(b)

=
_

a2T (y)

(((�) (y) _ 
) ^ �) ^
_

b2T (y)

(((�) (b) _ 
) ^ �)

=
_

a2T (y);b2T (y)

(((�) (a) _ 
) ^ �) ^ (((�) (b) _ 
) ^ �)

=
_

ab2T (y)T (y)

(((�) (a) _ 
) ^ ((�) (b) _ 
)) ^ �

=
_

ab2T (y)T (y)

(((�) (a) ^ (�) (b)) _ 
) ^ �

�
_

z=ab2T (yy)

(((�) (a) ^ (�) (b)) _ 
) ^ �

=
_

z2T (y)

 _
z=ab

((�) (a) ^ (�) (b)) _ 

!
^ �

=
_

z2T (y)

((� � �) (z) _ 
) ^ � =

=
_

z2T (y)

(� � �)� (z) = T (� � �)� (y) :

This implies that T (�)� (y) ^ T (�)� (y) � T (� � �)� (y) : Hence T (� � �)� (y) =
T (�)

�
(y) ^ T (�)� (y) : �

Proposition 8. Let T : S ! P (S) be an SV-homomorphism and let �,� be fuzzy
subsets of S: Then the following hold:
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(i) T (� ^ �)� = T (�)� ^ T (�)�
(ii) T (� _ �)� = T (�)� _ T (�)� :

Proof. (i) Let x 2 S. Then

T (� ^ �)� (x) =
^

z2T (x)

(� ^ �)� (z) =
^

z2T (x)

((� ^ �) (z) _ 
) ^ �

=
^

z2T (x)

(((�) (z) _ 
) ^ ((�) (z) _ 
)) ^ �

=
^

z2T (x)

(((�) (z) _ 
) ^ �) ^ (((�) (z) _ 
) ^ �)

=
^

z2T (x)

(((�) (z) _ 
) ^ �) ^
^

z2T (x)

(((�) (z) _ 
) ^ �)

=
^

z2T (x)

�� (z) ^
^

z2T (x)

�� (z) = T (�)
�
(x) ^ T (�)� (x) :

(ii) The proof is similar to (i) using De�nition 6. �

Proposition 9. Let S be an idempotent semigroup and T : S ! P (S) be an
SV-homomorphism. If � and � are fuzzy ideals of S; then

T (� � �)� (y) =
�
T (�)

�
(y) ^ T (�)� (y)

	
:

Proof. The proof is similar to the proof of Proposition 7. �

5. Upper and lower approximations of (2
 ;2
 _q�)-fuzzy ideals of
semigroups

In this section some properties of upper an lower approximation for fuzzy ideals
of semigroups are studied.

Proposition 10. Let T : S ! P (S) be an RSV-homomorphism. If � is an
(2
 ;2
 _q�)-fuzzy left ideal of S, then T (�) is an (2
 ;2
 _q�)-fuzzy left ideal of
S:

Proof. Let a; b 2 S and let � be an (2
 ;2
 _q�)-fuzzy left ideal of S: Let bt 2

T (�) : Then T (�) (b) � t > 
; where t 2 (
; 1] : It follows that

min ft; �g � T (�) (b) ^ � =
_

y2T (b)

(� (y)) ^ �

=
_

y2T (b)

(� (y) ^ �) �
_

a2T (a);y2T (b)

� (ay) _ 


=

0@ _
� (ay)

ay2T (a)T (b)

1A _ 
 =
0@ _

� (z)
z2T (a)T (b)

1A _ 
 (z = ay)

�

0@_� (z)
z2T (ab)

1A _ 
 = T (�) (ab) _ 
.
This implies that min ft; �g �

�
T (�) (ab) _ 


	
:

Hence by Theorem 2, T (�) is an (2
 ;2
 _q�)-fuzzy left ideal of S: �
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Proposition 11. Let T : S ! P (S) be an SSV-homomorphism and and � be
a fuzzy subset of S: If � is an (2
 ;2
 _q�)-fuzzy left ideal of S; then T (�) is an
(2
 ;2
 _q�)-fuzzy left ideal of S:

Proof. Let a; b 2 S and let � be an (2
 ;2
 _q�)-fuzzy left ideal of S: Let bt 2 T (�) :
Then T (�) (b) � t > 
, where t 2 (
; 1] : It follows that

T (�) (ab) _ 
 =
^

z2T (ab)

� (z) _ 
 =
^

z2T (a)T (b)

� (z) _ 


=
^

xy2T (a)T (b)

� (xy) _ 
 (where z = xy)

�
^

y2T (b)

(� (y) ^ �) =

0@ ^
y2T (b)

(� (y))

1A ^ �
= T (�) (b) ^ � � min ft; �g :

This implies that T (�) (ab) _ 
 � min ft; �g : Hence by Theorem 2; T (�) is an
(2
 ;2
 _q�)-fuzzy left ideal of S: �

Proposition 12. Let T : S ! P (S) be an RSV-homomorphism and � be a fuzzy
subset of S. If � is an (2
 ;2
 _q�)-fuzzy interior ideal of S; then T (�) is an
(2
 ;2
 _q�)-fuzzy interior ideal of S:

Proof. It is straightforward. �

Proposition 13. Let T : S ! P (S) be an SSV-homomorphism and � be a fuzzy
subset of S. If � is an (2
 ;2
 _q�)-fuzzy interior ideal of S; then T (�) is an
(2
 ;2
 _q�)-fuzzy interior ideal of S:

Proof. It is straightforward. �

Proposition 14. Let T : S ! P (S) be an RSV-homomorphism and � be a fuzzy
subset of S: If � is an (2
 ;2
 _q�)-fuzzy bi-ideal of S; then T (�) is an (2
 ;2
 _q�)-
fuzzy bi-ideal of S:

Proof. Let a; x; y 2 S and let � be an (2
 ;2
 _q�)-fuzzy bi-ideal of S: Let xts ,ytp 2

T (�) : Then T (�) (x) � ts > 
 and T (�) (y) � tp > 
; where ts;tp 2 (
; 1] : It
follows that

min fts; tp; �g �
�
T (�) (x) ^ T (�) (y) ^ �

	
=

_
b2T (x)

� (b) ^
_

d2T (y)

� (d) ^ �

=
_

b2T (x);d2T (y)

(� (b) ^ � (d) ^ �) �
_

b2T (x);a2T (a);d2T (y)

� (bad) _ 


=
_

ba2T (x)T (a);d2T (y)

� (bad) _ 
 �
_

bc2T (xa);d2T (y)

� (bad) _ 


=
_

(ba)d2T (xa)T (y)

� (bad) _ 
 �
_

(ba)d2T ((xa)y)

� (bad) _ 


=
_

z2T ((xa)y)

� (z) _ 
 (where z = bad)

=
�
T (�) (xay) _ 


	
:
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This implies that min fts; tp; �g � T (�) ((xa) y) _ 
.
Hence by Theorem 4, T (�) is an (2
 ;2
 _q�)-fuzzy bi-deal of S: �

Proposition 15. Let T : S ! P (S) be an SSV-homomorphism and � be a fuzzy
subset of S. If � is an (2
 ;2
 _q�)-fuzzy bi-ideal of S; then T (�) is an (2
 ;2
 _q�)-
fuzzy bi-ideal of S:

Proof. Let a; x; y 2 S and let � be an (2
 ;2
 _q�)-fuzzy bi-ideal of S: Let xts ; ytp 2

T (�) : Then T (�) (x) � ts > 
 and T (�) (y) � tp > 
; where ts;tp 2 (
; 1] : It
follows that

T (�) ((xa) y) _ 
 =
^

z2T ((xa)y)

� (z) _ 
 =
^

z2T (xa)T (y)

� (z) _ 


=
^

(bc)d2T ((xa)y)

� ((bc) d) _ 
 (where z = (bc) d)

=
^

bc2T (xa);d2T (y)

� ((bc) d) _ 
 =
^

bc2T (x)T (a);d2T (y)

� ((bc) d) _ 


=
^

b2T (x);c2T (a);d2T (y)

� ((bc) d) _ 


�
^

b2T (x);d2T (y)

(� (b) ^ � (d) ^ �)

=
^

b2T (x)

� (b) ^
^

d2T (y)

� (d) ^ � = T (�) (x) ^ T (�) (y) ^ �:

This implies that T (�) ((xa) y) _ 
 � min ft1; t2; �g.
Hence by Theorem 4, T (�) is an (2
 ;2
 _q�)-fuzzy bi-ideal of S: �

Conclusion; Associative algebras are being studied all over the globe, in partic-
ular semigroups have attracted many authors and researchers. The (2
 ;2
 _q�)-
fuzzy algebraic substructures are generalizations of fuzzy algebraic substructures
and (2;2 _qk)-fuzzy algebraic substructures. In this paper, generalized roughness
have been studied for (2
 ;2
 _q�)-fuzzy algebraic substructures of semigroups. It
is seen that, in order to preserve a particular algebraic substructure in case of its ap-
proximations, many types of set valued homomorphisms are required. This aspect
of roughness study in semigroups makes this study more interesting.

References

[1] M. Banerjee, S. K. Pal, Roughness of a fuzzy set, Inform. Sci., 93 (1996), 235-246.
[2] S. K. Bhakat, P. Das, On the de�nition of a fuzzy subgroup, Fuzzy Sets & Systems, 51 (1992),

235-241.
[3] S. K. Bakat, P. Das, (2;2 _q)-fuzzy subgroups, Fuzzy Sets & Systems, 80 (1996), 359-368.
[4] S. K. Bakat, P. Das, Fuzzy subrings and ideals rede�ned, Fuzzy Sets & Systems, 81 (1996),

383-393.
[5] R. Biswas, S. Nanda, Rough groups and Rough subgroups, Bull. polish Acad. of Sciences, 42

(1994), No 3.1.
[6] K. Chakrabarty, R. Biswas, S. Nanda, Fuzziness in rough sets, Fuzzy Sets & Systems, 110

(2000), 247-251.
[7] I. Couois, D. Dubois, Rough set, Coverings and incomplete information, Fundamenta infor-

matica, XXI (2001) 1001-1025.
[8] B. Davvaz, Roughness in rings, Inform. Sci., 164-(2004), 147-163.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

472 NOOR REHMAN et al 463-473



GENERALIZED ROUGHNESS IN (2
 ;2
 _q�)-FUZZY SEMIGROUPS 11

[9] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. Journal of General System,
17 (1990), 191-208

[10] W. A. Dudek, M. Shabir, M. I. Ali, (�; �)-fuzzy ideals of hemirings, Comput. Math. Appl.,
58 (2009), 310-32.5.

[11] Y. B. Jun, Generalization of (2;2 _q)-fuzzy subalgebras in BCK /BCI, Comput. Math. Appl.,
58 (7) (2009), 1383-1390.

[12] Y. B. Jun, Roughness of ideals in BCK-algebra, Scientiae Math. Japonica, 57 (1) (2008),
165-169.

[13] S. B. Hosseini, T -rough semiprime ideals on commutative rings, The Journal of Nonlinear
Science and Application, 4 (2011), 270-280.

[14] S. B. Hosseini, N. Jafarzadeh, A. Gholami, T -rough Ideal and T -rough Fuzzy Ideal in a
semigroup, Advanced Materials Research, Vol 433-440 (2012), 4915-4919.

[15] N. Kuroki, Rough ideals in semigroups, Inform. Sci., 100 (1997), 139-163.
[16] Z. Pawlak, Rough set , Int. J. Computer Science, 11 (1982), 341-356.
[17] P. P. Ming, L. Y. Ming, Fuzzy topology I:Neighborhood structure of a fuzzy point and Moor-

Smith convergence, J. Math. Anal. Appl., 76 (1980), 571-59.
[18] N. Rehman, M. Shabir, Characterization of ternary semigroup by (�; �)-fuzzy ideals,World

Applied Sciences Journal, 18 (11) (2012), 1556-1570.
[19] N. Rehman, M. Shabir, Some characterization of ternary semigroups by the properties of their

(2
 ;2
 _q�)-fuzzy ideals, Journal of Intelligent & Fuzzy Systems, 26 (2014), 2107-2117.
[20] M. Shabir, Y. B. Jun, Y. Nawaz, Characterization of Regular semigroup by (�; �)-fuzzy

ideals, Comput. Math. Appl., 59 (2010), 161-17.
[21] M. Shabir, Y. B. Jun, Y. Nawaz, Semigroup Characterized by (2;2 _qk)-fuzzy ideals, Com-

put. Math. Appl., 60 (2010), 1473-1493.
[22] M. Shabir, N. Rehman, Characterization of ternary semigroup by (2;2 _qk)-fuzzy ideals,

Iranian Journal of Science & Technology, Trans. A-Science, 36 (A3) (2012) 395-410.
[23] M. Shabir, M. Ali, Characterization of semigroup by the properties of their (2
 ;2
 _q�)-fuzzy

ideals, Iranian Journal of Science & Technology, Trans. A-Science 37 A2 (2013), 117-131.
[24] L. A Zadeh, Fuzzy Set, Inf. control, 8 (1965), 338-353.

Corresponding author: Department of Mathematics and Statistics, Riphah Interna-
tional University Islamabad Pakistan

E-mail address : noorrehman82@yahoo.com

Department of Mathematics, Islamia College University Peshawar KPK Pakistan

Department of Mathematics and Statistics, Riphah International University Islam-
abad Pakistan

E-mail address : abbasali5068@gmail.com

Department of Mathematics and Statistics, Riphah International University Islam-
abad Pakistan

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

473 NOOR REHMAN et al 463-473



Equivalence between some iterations in CAT (0) spaces

Kyung Soo Kim

Graduate School of Education, Mathematics Education
Kyungnam University, Changwon, Gyeongnam, 51767, Republic of Korea

e-mail: kksmj@kyungnam.ac.kr

Abstract. We obtain some equivalence conditions for the convergence of iterative sequences

for set-valued contraction mapping in CAT (0) spaces.

1. Introduction

Let (X, d) be a metric space. One of the most interesting aspects of metric
fixed point theory is to extend a linear version of known result to the nonlinear
case in metric spaces. To achieve this, Takahashi [32] introduced a convex
structure in a metric space (X, d). A mapping W : X ×X × [0, 1] → X is a
convex structure in X if

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)

for all x, y ∈ X and λ ∈ [0, 1]. A metric space together with a convex structure
W is known as a convex metric space. A nonempty subset K of a convex
metric space is said to be convex if

W (x, y, λ) ∈ K
for all x, y ∈ K and λ ∈ [0, 1]. In fact, every normed space and its convex
subsets are convex metric spaces but the converse is not true, in general (see,
[32]).

Example 1.1. ([15, 16]) Let X = {(x1, x2) ∈ R2 : x1 > 0 , x2 > 0}.
For all x = (x1, x2), y = (y1, y2) ∈ X and λ ∈ [0, 1]. We define a mapping
W : X ×X × [0, 1]→ X by

W (x, y, λ) =

(
λx1 + (1− λ)y1,

λx1x2 + (1− λ)y1y2
λx1 + (1− λ)y1

)
and define a metric d : X ×X → [0,∞) by

d(x, y) = |x1 − y1|+ |x1x2 − y1y2|.
Then we can show that (X, d,W ) is a convex metric space but not a normed
linear space.

02010 Mathematics Subject Classification: 40G05, 41A60, 41A65, 51K05.
0Keywords: CAT(0) space, geodesic, Hausdorff metric, contraction, fixed point, multi-

valued mapping, iteration.
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A metric space X is a CAT (0) space. This term is due to M. Gromov [10]
and it is an acronym for E. Cartan, A.D. Aleksandrov and V.A. Toponogov.
If it is geodesically connected, and if every geodesic triangle in X is at least as
‘thin’ as its comparison triangle in the Euclidean plane(see, e.g., [2], p.159).
It is well known that any complete, simply connected Riemannian manifold
nonpositive sectional curvature is a CAT (0) space. The precise definition is
given below. For a thorough discussion of these spaces and of the fundamental
role they play in various branches of mathematics, see Bridson and Haefliger
[2] or Burago et al. [1].

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or,
more briefly, a geodesic from x to y) is a mapping c from a closed interval
[0, l] ⊂ R to X such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t − t′| for all
t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l. The image α of c is
called a geodesic (or, metric) segment joining x and y. When it is unique, this
geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic space if
every two points of X are joined by a geodesic, and X is said to be uniquely
geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X. A
subset Y ⊆ X is said to be convex if Y includes every geodesic segment joining
any two of its points.

A geodesic triangle4(x1, x2, x3) is a geodesic metric space (X, d) consists of
three points x1, x2, x3 ∈ X (the vertices of 4) and a geodesic segment between
each pair of vertices (the edges of 4). A comparison triangle for the geodesic
triangle 4(x1, x2, x3) in (X, d) is a triangle 4̄(x1, x2, x3) = 4(x̄1, x̄2, x̄3) in
R2 such that dR2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always

exists(see, [2]).

A geodesic metric space is said to be a CAT (0) space if all geodesic triangles
of appropriate size satisfy the following CAT (0) comparison axiom.

Let 4 be a geodesic triangle in X and let 4̄ ⊂ R2 be a comparison
triangle for 4. Then 4 is said to satisfy the CAT (0) inequality if for
all x, y ∈ 4 and all comparison points x̄, ȳ ∈ 4̄,

d(x, y) ≤ d(x̄, ȳ).

Complete CAT (0) spaces are often called Hadamard spaces(see [22]). If x, y1, y2
are points of a CAT (0) space and if y0 is the midpoint of the segment [y1, y2],
which we will denote by y1⊕y2

2 , then the CAT (0) inequality implies

d2
(
x,
y1 ⊕ y2

2

)
≤ 1

2
d2(x, y1) +

1

2
d2(x, y2)−

1

4
d2(y1, y2).
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This inequality is the (CN) inequality of Bruhat and Tits [3]. In fact, a geodesic
space is a CAT (0) space if and only if satisfies the (CN) inequality (cf. [2],
p.163). The above inequality has been extended by Khamsi and Kirk [12] as

d2(z, αx⊕ (1− α)y)

≤ αd2(z, x) + (1− α)d2(z, y)− α(1− α)d2(x, y),
(CN∗)

for any α ∈ [0, 1] and x, y, z ∈ X. The inequality (CN∗) also appeared in [5].
Let us recall that a geodesic metric space is a CAT (0) space if and only if

it satisfies the (CN) inequality(see, [2], p.163). Moreover, if X is a CAT (0)
metric space and x, y ∈ X, then for any α ∈ [0, 1], there exists a unique point
αx⊕ (1− α)y ∈ [x, y] such that

d(z, αx⊕ (1− α)y) ≤ αd(z, x) + (1− α)d(z, y)

for any z ∈ X and [x, y] = {αx ⊕ (1 − α)y : α ∈ [0, 1]}. In view of the above
inequality, CAT (0) space have Takahashi’s convex structureW (x, y, α) = αx⊕
(1− α)y. It is easy to see that for any x, y ∈ X and λ ∈ [0, 1],

d(x, (1− λ)x⊕ λy) = λd(x, y),

d(y, (1− λ)x⊕ λy) = (1− λ)d(x, y).

As a consequence,

1 · x⊕ 0 · y = x,

(1− λ)x⊕ λx = λx⊕ (1− λ)x = x.
(1.1)

Moreover, a subset K of CAT (0) space X is convex if for any x, y ∈ K, we
have [x, y] ⊂ K.

2. Preliminaries

Let D be a nonempty subset of a CAT (0) space X. We shall denote by
CB(D) the family of nonempty bounded closed subset of D. Let H(·, ·) be
the Hausdorff metric on CB(D), i.e.,

H(A,B) = max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
, A,B ∈ CB(D),

where dist(a,B) = inf {d(a, b) : b ∈ B} is the distance from the point a to the
set B.

A multivalued mapping T : D → CB(D) is said to be a contraction if there
exists a constant k ∈ (0, 1) such that

H(Tx, Ty) ≤ k · d(x, y), ∀ x, y ∈ D.
A point x is called a fixed point of any mapping T if x ∈ Tx. We denote by
F (T ) the set of all fixed points of T .
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Let X be a CAT (0) space, and let {xn} be a bounded sequence in X, for
x ∈ X we let

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf {r(x, {xn}) : x ∈ X} ,
and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})} .
It is known that in a CAT (0) space asymptotic center A({xn}) consists of
exactly one point(see, e.g., [6], Proposition 7).

Definition 2.1. ([23]) A sequence {xn} in a CAT (0) space X is said to 4-
converge to x ∈ X if x is the unique asymptotic center of {un} for every
subsequence {un} of {xn}. In this case one must write

xn
4−→ x or 4− lim

n→∞
xn = x

and call x the 4-limit of {xn}.

Remark 2.1. In a CAT (0) spaceX, strong convergence implies4-convergence.

Lemma 2.1. ([28]) Let (X, d) be a complete metric space and T : X → CB(X)
be a multivalued mapping. Then for any given ε > 0 and for any given x, y ∈
X, u ∈ Tx, there exists v ∈ Ty such that

d(u, v) ≤ (1 + ε)H(Tx, Ty)

where H(·, ·) is the Hausdorff metric on CB(X).

Definition 2.2. Let D be a nonempty convex subset of a CAT (0) space X,
T : D → CB(D) be a multivalued mapping. Let {αn}, {βn} and {γn} are
three sequences in [0, 1] satisfying some conditions.
(1) The sequence of Picard iterates (cf., [30]) is defined by w0 ∈ D,

wn+1 = νn, (P)

where νn ∈ Twn such that

d(νn+1, νn) ≤ (1 + ε)H(Twn+1, Twn).

(2) The sequence of Mann iterates (cf., [27]) is defined by u0 ∈ D,

un+1 = (1− αn)un ⊕ αnθn, (M)

where θn ∈ Tun such that

d(θn+1, θn) ≤ (1 + ε)H(Tun+1, Tun).
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(3) The sequence of Ishikawa iterates (cf., [11]) is defined by r0 ∈ D,

sn = (1− βn)rn ⊕ βnδn,
rn+1 = (1− αn)rn ⊕ αnσn,

(I)

where δn ∈ Trn and σn ∈ Tsn such that

d(δn+1, δn) ≤ (1 + ε)H(Trn+1, T rn),

d(σn+1, σn) ≤ (1 + ε)H(Tsn+1, T sn).

(4) The sequence of three-step iterates (cf., [13, 14]) is defined by x0 ∈ D,

zn = (1− γn)xn ⊕ γnµn,
yn = (1− βn)xn ⊕ βnξn,

xn+1 = (1− αn)xn ⊕ αnηn,
(TH)

where µn ∈ Txn, ξn ∈ Tzn and ηn ∈ Tyn such that

d(µn+1, µn) ≤ (1 + ε)H(Txn+1, Txn),

d(ξn+1, ξn) ≤ (1 + ε)H(Tzn+1, T zn),

d(ηn+1, ηn) ≤ (1 + ε)H(Tyn+1, T yn).

Another iteration processes and other some results in CAT (0) space have
been studied extensively by various authors(see e.g. [4, 9, 17, 24, 26, 31]).

Lemma 2.2. ([7]) Let {an} be recursively generated by

an+1 = (1− tn)an + b2n

with n ≥ 1, an ≥ 0, {tn} ⊆ [0, 1] and
∞∑
n=1

b2n <∞,
∞∑
n=1

tn =∞.

Then
lim
n→∞

an = 0.

3. Main theorems

Theorem 3.1. Let (X, d) be a CAT (0) space and D be a nonempty convex
subset of X. Let T : D → CB(D) be a multivalued contraction mapping with
k < 1

1+ε and F (T ) 6= ∅ satisfying Tp = {p} for any fixed point p ∈ F (T ). Let

a constant L satisfying supw∈Tx,x∈D d(p, w) ≤ L, for all x ∈ D. Let {wn} and
{xn} be the Picard and three step iterative sequence defined by (P) and (TH)
respectively and satisfying the following conditions:

(i) αn, βn, γn ∈ [0, 1], ∀ n ≥ 0;
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(ii) limn→∞ βn = 0;
(iii)

∑∞
n=0 αnβn <∞,

∑∞
n=0(1− αn) =∞.

If w0 = x0, then the following statements are equivalent:

(1) the Picard iterative sequence {wn} 4-converegs to x∗ ∈ F (T );
(2) the three step iterative sequence {xn} 4-converegs to x∗ ∈ F (T ).

Furthermore, x∗ is the unique fixed point of T .

Proof. From Nadler [28], there exists a fixed point x∗ ∈ F (T ). Put

M ′ = L+ d(p, x0).

From the contractive of T , we have

d2(xn+1, p) = d2((1− αn)xn ⊕ αnηn, p)
≤ (1− αn)d2(xn, p) + αnd

2(ηn, p)− (1− αn)αnd
2(n, ηn)

≤ (1− αn)d2(xn, p) + αn(H(Tyn, Tp))
2

≤ (1− αn)d2(xn, p) + αnk
2d2(yn, p)

≤ (1− αn)d2(xn, p) + αnk
2(d2((1− βn)xn ⊕ βnξn, p))

≤ (1− αn)d2(xn, p)

+ αnk
2((1− βn)d2(xn, p) + βnd

2(ξn, p)− βn(1− βn)d2(xn, ξn))

≤ (1− αn)d2(xn, p) + αn · k2(1− βn)d2(xn, p)

+ αnβn · k4 · d2(zn, p)− αnβn(1− βn)k2 · d2(xn, ξn)

≤ (1− αn)d2(xn, p) + αn(1− βn) · k2d2(xn, p)
+ αnβn · k4((1− γn)d2(xn, p) + γnd

2(µn, p)− (1− γn)γnd
2(xn, µn))

− αnβn(1− βn)k2 · d2(xn, ξn)

≤ d2(xn, p)− αnβnγn(1− γn) · k4 · d2(xn, µn),

for p ∈ F (T ). This implies

0 ≤ αnβnγn(1− γn)k4d2(xn, µn) ≤ d2(xn, p)− d2(xn+1, p).

Therefore, we have

d(xn+1, p) ≤ d(xn, p).

By induction, it is easy to see that

sup
n≥0
{d(p, µn), d(p, ηn), d(p, ξn), d(p, xn), d(p, yn), d(p, zn)} ≤M ′,

for µn ∈ Txn, ηn ∈ Tyn and ξn ∈ Tzn, n ≥ 0. By hypothesis, let

M ′′ = d(p, w0) + d(p, w1) <∞, ∀ p ∈ F (T ).
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Put

M = max{M ′,M ′′}.
From {wn} be the Picard iterative sequence defined by (P), we have

d(νn, νn+1) ≤ (1 + ε)H(Twn, Twn−1)

≤ (1 + ε)k · d(wn, wn−1)

= (1 + ε)k · d(νn−1, νn−2)

≤ (1 + ε)k(1 + ε)H(Twn−1, Twn−2)

≤ ((1 + ε)k)2d(wn−1, wn−2)

...

≤ ((1 + ε)k)nd(w1, w0)

≤ ((1 + ε)k)nM

(3.1)

for any given ε > 0. From {xn} be the three step iterative sequence defined
by (TH) and (3.1), for each n ≥ 0

d(xn+1, wn+1) = d((1− αn)xn ⊕ αnηn, νn)

≤ (1− αn)d(xn, νn) + αn · d(ηn, νn)

≤ (1− αn){d(xn, wn) + d(wn, νn)}
+ αnk · d(yn, wn)

≤ (1− αn){d(xn, wn) + ((1 + ε)k)nM}
+ αnk · d(yn, wn),

(3.2)

d(yn, wn) = d((1− βn)xn ⊕ βnξn, wn)

≤ (1− βn)d(xn, wn) + βn · d(ξn, νn−1)

≤ (1− βn)d(xn, wn)

+ βn(d(ξn, , νn) + d(νn, νn−1))

≤ (1− βn)d(xn, wn)

+ βnk · d(zn, wn) + βn((1 + ε)k)nM

(3.3)

and
d(zn, wn) = d((1− γn)xn ⊕ γnµn, wn)

≤ (1− γn)d(xn, wn) + γn · d(µn, νn−1)

≤ (1− γn)d(xn, wn)

+ γnk{d(xn, wn) + d(wn, wn−1)}
≤ (1− γn)d(xn, wn)

+ γnk{d(xn, wn) + ((1 + ε)k)n−1M}.

(3.4)
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Substituting (3.4) into (3.3), we get

d(yn, wn)

≤ (1− βn)d(xn, wn)

+ βnk
[
(1− γn)d(xn, wn) + γnk{d(xn, wn) + ((1 + ε)k)n−1M}

]
+ βn((1 + ε)k)nM

≤ (1− βn)d(xn, wn) + βn((1 + ε)k)nM

+ βnk{(1− γn(1− k))d(xn, wn) + γn((1 + ε)k)nM}.

(3.5)

Combining (3.5) and (3.2), we can obtain

d(xn+1, wn+1)

≤ (1− αn){d(xn, wn) + ((1 + ε)k)nM}

+ αnk
[
(1− βn)d(xn, wn) + βn((1 + ε)k)nM

+ βnk
{

(1− γn(1− k))d(xn, wn) + γn((1 + ε)k)nM
}]

= (1− αn)d(xn, wn) + (1− αn)((1 + ε)k)nM

+ αnk(1− βn)d(xn, wn) + αnβnk((1 + ε)k)nM

+ αnβnk
2
{

(1− γn(1− k))d(xn, wn) + γn((1 + ε)k)nM
}

=
[
1− αn + αn(1− βn)k + αnβnk

2(1− γn(1− k))
]
d(xn, wn)

+ (1− αn)((1 + ε)k)nM + αnβnk(1 + kγn)((1 + ε)k)nM

≤ (1− αn(1− k))d(xn, wn)

+ {(1− αn) + αnβn(1 + kγn)}((1 + ε)k)nM.

(3.6)

Take

an = d(xn, wn), tn = αn(1− k)

and

b2n = {(1− αn) + αnβn(1 + kγn)}((1 + ε)k)nM

in (3.6). Since (1 + ε)k < 1,
∑∞

n=0 αnβn < ∞ and
∑∞

n=0(1 − αn) < ∞, we
have

∞∑
n=0

tn =∞,
∞∑
n=0

b2n <∞.

By Lemma 2.2, we know that

4− lim
n→∞

d(xn, wn) = 0.
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If wn
4−→ x∗ ∈ F (T ) as n→∞, by Definition 2.1, we have

d(xnk
, x∗) ≤ d(xnk

, wnk
) + d(wnk

, x∗)
4−→ 0

as n→∞. If xn
4−→ x∗ ∈ F (T ) as n→∞, we have

d(wnk
, x∗) ≤ d(wnk

, xnk
) + d(xnk

, x∗)
4−→ 0

as n→∞. Therefore, the equivalence between the statement (1) and (2) was
proved. Finally, we prove that x∗ ∈ X is the unique fixed point of T. In fact,
let x∗, y∗ ∈ X be two fixed points of T . Since T is a multivalued contraction
with constant 0 < k < 1, we have

d(x∗, y∗) ≤ (1 + ε)H(Tx∗, T y∗)

≤ (1 + ε)k · d(x∗, y∗).

Since ε is arbitrary, this implies that

d(x∗, y∗) = 0,

i.e.,

x∗ = y∗.

This completes the proof. �

If γn = 0 in (TH), then it reduces to (I). So we can easily prove the following
corollary.

Corollary 3.1. Let (X, d) be a CAT (0) space and D be a nonempty convex
subset of X. Let T : D → CB(D) be a multivalued contraction mapping with
k < 1

1+ε and F (T ) 6= ∅ satisfying Tp = {p} for any fixed point p ∈ F (T ).

Let a constant L satisfying supw∈Tx,x∈D d(p, w) ≤ L, for all x ∈ D. Let {wn}
and {rn} be the Picard and Ishikawa iterative sequence defined by (P) and (I)
respectively and satisfying the following conditions:

(i) αn, βn ∈ [0, 1], ∀ n ≥ 0;
(ii) limn→∞ βn = 0;

(iii)
∑∞

n=0 αnβn <∞,
∑∞

n=0(1− αn) =∞.

If w0 = r0, then the following statements are equivalent:

(1) the Picard iterative sequence {wn} 4-converegs to x∗ ∈ F (T );
(2) the Ishikawa iterative sequence {xn} 4-converegs to x∗ ∈ F (T ).

Furthermore, x∗ is the unique fixed point of T .

If βn = 0 in (I), then it reduces to (M). So we can easily prove the following
corollary.
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Corollary 3.2. Let (X, d) be a CAT (0) space and D be a nonempty convex
subset of X. Let T : D → CB(D) be a multivalued contraction mapping with
k < 1

1+ε and F (T ) 6= ∅ satisfying Tp = {p} for any fixed point p ∈ F (T ).

Let a constant L satisfying supw∈Tx,x∈D d(p, w) ≤ L, for all x ∈ D. Let {wn}
and {rn} be the Picard and Mann iterative sequence defined by (P) and (M)
respectively and satisfying the following conditions:

(i) αn ∈ [0, 1], ∀ n ≥ 0;
(ii)

∑∞
n=0(1− αn) =∞.

If w0 = u0, then the following statements are equivalent:

(1) the Picard iterative sequence {wn} 4-converegs to x∗ ∈ F (T );
(2) the Mann iterative sequence {xn} 4-converegs to x∗ ∈ F (T ).

Furthermore, x∗ is the unique fixed point of T .

4. Some remarks and open problem

For a real number κ, a CAT (κ) space is defined by a geodesic metric space
whose geodesic triangle is sufficiently thinner than the corresponding triangle
in a model space with curvature κ.

For κ = 0, the 2-dimensional model space M2
κ = M2

0 is the Euclidean space
R2 with the metric induced from the Euclidean norm. For κ > 0, M2

κ is the 2-
dimensional sphere 1√

κ
S2 whose metric is length of a minimal great arc joining

each two points. For κ < 0, M2
κ is the 2-dimensional hyperbolic space 1√

−κH
2

with the metric defined by a usual hyperbolic distance. For more details about
the properties of CAT (κ) spaces, see [2], [8], [20], [21], [29].

Open Problem 1. It will be interesting to obtain a generalization of both
Theorem 3.1 and Theorem 3.2 to CAT (κ) space.

Open Problem 2. Can Theorem 3.1 be generalized to more than one con-
tractive, or a commutative or left amenable semigroup S of mappings for which
the sequence is defined by a strongly left invariant sequence (or net) of finite
means on S(see [18], [19], [25])?
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[9] R. Esṕınola and B. Pia̧tek, The fixed point property and unbounded sets in CAT (0)
spaces, J. Math. Anal. Appl., 408 (2013), 638–654.

[10] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ. 8.
Springer, New York, 1987.

[11] S. Ishikawa, Fixed point by a new iteration, Proc. Amer. Math. Soc., 44 (1974), 147–150.
[12] M.A. Khamsi and W.A. Kirk, On uniformly Lipschitzian multivalued mappings in Ba-

nach and metric spaces, Nonlinear Anal., 72 (2010), 2080–2085.
[13] J.K. Kim, K.H. Kim and K.S. Kim, Three-step iterative sequences with errors for

asymptotically quasi-nonexpansive mappings in convex metric spaces, Proc. of RIMS
Kokyuroku, Kyoto Univ., 1365 (2004), 156–165.

[14] J.K. Kim, K.H. Kim and K.S. Kim, Convergence theorems of modified three-step iterative
sequences with mixed errors for asymptotically quasi-nonexpansive mappings in Banach
spaces, PanAmerican Math. Jour., 14(1) (2004), 45–54.

[15] J.K. Kim, K.S. Kim and S.M. Kim, Convergence theorems of implicit iteration pro-
cess for a finite family of asymptotically quasi-nonexpansive mappings in convex metric
spaces, Proc. of RIMS Kokyuroku, Kyoto Univ., 1484 (2006), 40–51.

[16] J.K. Kim, K.S. Kim and Y.M. Nam, Convergence and stability of iterative processes
for a pair of simultaneously asymptotically quasi-nonexpansive type mappings in convex
metric spaces, J. of Compu. Anal. Appl., 9(2) (2007), 159–172.

[17] K.S. Kim, Some convergence theorems for contractive type mappings in CAT (0) spaces,
Abst. Appl. Anal., Vol. 2013, Article ID 381715, 9 pages.

[18] K.S. Kim, Invariant means and reversible semigroup of relatively nonexpansive mappings
in Banach spaces, Abst. Appl. Anal., Vol. 2014, Article ID 694783, 9 pages.

[19] K.S. Kim, Convergence of a hybrid algorithm for a reversible semigroup of nonlinear
operators in Banach spaces, Nonlinear Analysis, 73 (2010), 3413–3419.
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Abstract

The purpose of this paper is to introduce the generalized viscosity implicit rules of one asymptotically nonex-
pansive mapping in Hilbert spaces. We obtain some strong convergence theorems under certain assumptions
imposed on the parameters. We also apply our main results to solve mixed equilibrium problem in Hilbert
spaces. A numerical example is also given to support our main results. The results obtained in this paper
improve and extend many recent ones in this field.
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1. Introduction

Let C be a subset of real Hilbert space H. Let F (T ) be the set of fixed points of mapping T . We recall
some basic definitions.

A mapping f : C → C is called a strict contraction, if there exists a constant α ∈ (0, 1) such that

‖f(x)− f(y)‖ ≤ α ‖x− y‖ , ∀ x, y ∈ C. (1.1)

A mapping T : C → C is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ ,∀ x, y ∈ C. (1.2)

A mapping T : C → C is called asymptotically nonexpansive if there exists a sequence {θn} ⊂ [0,+∞)
with limn→∞ θn = 0 such that

‖Tnx− Tny‖ ≤ (1 + θn) ‖x− y‖ ,∀n ≥ 0, x, y ∈ C. (1.3)

It is easy to see that asymptotically nonexpansive mapping contains strict contraction, nonexpansive mapping
as a special case.

A mapping A : C → H is called monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C. (1.4)
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A mapping A : C → H is called α-inverse strongly monotone if there exists a positive real number α
such that

〈Ax−Ay, x− y〉 ≥ α ‖Ax−Ay‖2 , ∀x, y ∈ C. (1.5)

Recently, viscosity iterative algorithms for finding a common element of the set of fixed point of nonex-
pansive mappings, the set of solution of variational inequality problem and mixed equilibrium problems have
been investigated extensively by many authors, see [1-15] and the references therein. For instance, Moudafi[1]
introduced the viscosity technique for nonexpansive mappings in Hilbert spaces. Xu [2] refined the main
results of [1] in Hilbert spaces and extended them to more general uniformly smooth spaces. Precisely, he
proved that the suggested viscosity iterative sequence converges strongly to a fixed point of one nonexpansive
mapping, which also solves some variational inequality.

Very recently, the implicit midpoint rule has become a powerful methods for solving ordinary differential
equations; see [16-22] and the references therein. Xu et al. [20] considered the following viscosity implicit
midpoint rule:

xn+1 = αnf(xn) + (1− αn)T (
xn + xn+1

2
), n ≥ 0. (1.6)

By using contractions to regularize the implicit midpoint rule for nonexpansive mappings, they proved that
the iterative sequence defined by (1.6) converges in norm to a fixed point of T , which also solves the variational
inequality:

〈(I − f)q, x− q〉 ≥ 0, x ∈ F (T ). (1.7)

On the other hand, many authors studied the Mann and Ishikawa iterations processes for asymptotically
nonexpansive mapping in Hilbert spaces or Banach spaces, see [23-30] and the references therein. For
example, Lou et al.[24] investigated some iterative algorithms for asymptotically nonexpansive mapping on
a uniformly convex Banach space with uniformly Gâteaux differentiable norm.

In this paper, we introduce a viscosity implicit rules for an asymptotically nonexpansive mapping in
Hilbert spaces. Under suitable assumptions imposed on the parameters, we obtain some strong convergence
theorems for finding a fixed point of an asymptotically nonexpansive mapping. We also apply our main
results to solve mixed equilibrium problem in Hilbert spaces.

2. Preliminaries

Let C be a nonempty closed convex subset of H. For all x ∈ H, there exists a unique nearest point in
C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C. (2.1)

In this case, P is called a metric projection of H onto C. It is well known that PC is a nonexpansive mapping
of H onto C and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 , ∀x, y ∈ H. (2.2)

Furthermore, PCx is characterized by the following properties: PCx ∈ C and

〈x− PCx, y − PCx〉 ≤ 0, (2.3)

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 ,∀x ∈ H, y ∈ C. (2.4)

We need the following lemmas for proving our main results.

Lemma 2.1 ([2]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− αn)an + δn, n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(i)
∑∞
n=0 αn =∞,

(ii) either lim supn→∞
δn
αn
≤ 0 or

∑∞
n=1 |δn| <∞.

Then limn→∞ an = 0.

Lemma 2.2 ([21]). Let T be an asymptotically nonexpansive mapping defined on a nonempty bounded closed
convex subset C of a Hilbert space H. If {xn} is a sequence in C such that xn ⇀ z and Txn− xn → 0, then
z ∈ F (T ).
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3. Main results

Theorem 3.1. Let H be a Hilbert space, C a nonempty closed convex subset of H. Let T : C → C be
an asymptotically nonexpansive mapping with a sequence {θn} such that F (T ) 6= ∅ and f : C → C a strict
contraction with coefficient α ∈ [0, 1). Pick any x0 ∈ C. Let {xn} be a sequence generated by

xn+1 = αnf(xn) + (1− αn)Tn(
xn + xn+1

2
), (3.1)

where {αn} is a real sequence in [0, 1] satisfying the following conditions:
(i) limn→∞ αn = 0,

∑∞
n=0 αn =∞;

(ii) limn→∞
θn
αn

= 0;

(iii)
∑∞
n=1 |αn+1 − αn| <∞;

(iv)
∑∞
n=0 supx∈C′

∥∥Tn+1x− Tnx
∥∥ <∞, where C

′
is a closed convex subset of C that contains sequence

{xn}.
Then {xn} converges strongly to a fixed point q of the asymptotically nonexpansive mapping T , which is also
the solution of the variational inequality

〈(I − f)q, y − q〉 ≥ 0, for all y ∈ F (T ).

Proof. First, we show that {xn} is bounded. Indeed, take p ∈ F (T ) arbitrarily, since limn→∞
θn
αn

= 0, then

there exists N ∈ N such that for all n ≥ N, θnαn
≤ 1−α

2 . Choose a constant M1 > 0 sufficiently large such
that

‖xN − p‖ ≤M1, ‖f(p)− p‖ ≤ 1− α
2

M1.

We proceed by induction to show that ‖xn − p‖ ≤ M1,∀n ≥ 1. Assume ‖xn − p‖ ≤ M1, for some n ≥ N .
We show that ‖xn+1 − p‖ ≤M1. We observe

‖xn+1 − p‖

= ‖αnf(xn) + (1− αn)Tn(
xn + xn+1

2
)− p‖

= ‖αn(f(xn)− p) + (1− αn)[Tn(
xn + xn+1

2
)− p]‖

≤ αn‖f(xn)− f(p)‖+ αn‖f(p)− p‖+ (1− αn)‖Tn(
xn + xn+1

2
)− p‖

≤ ααn‖xn − p‖+ αn‖f(p)− p‖+ (1− αn)(θn + 1)‖xn + xn+1

2
− p‖

≤ ααn‖xn − p‖+ αn‖f(p)− p‖+
(1− αn)(θn + 1)

2
‖xn − p‖+

(1− αn)(θn + 1)

2
‖xn+1 − p‖

It follows that

‖xn+1 − p‖ ≤
1− αn + 2αnα+ (1− αn)θn

1 + αn − (1− αn)θn
‖xn − p‖+

αn
1 + αn − (1− αn)θn

‖f(p)− p‖

= [1− 2αn(1− α)− 2(1− αn)θn
1 + αn − (1− αn)θn

]‖xn − p‖+
αn

1 + αn − (1− αn)θn
‖f(p)− p‖

≤ [1− αn(1− α)

1 + αn − (1− αn)θn
]‖xn − p‖+

αn(1− α)

1 + αn − (1− αn)θn

‖f(p)− p‖
1− α

≤ max{‖xn − p‖,
‖f(p)− p‖

1− α
}

≤M1. (3.2)

This implies that {xn} is bounded.
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Next, we prove that limn→∞ ‖xn+1 − xn‖ = 0. It follows from (3.1) that

‖xn+1 − xn‖

= ‖αnf(xn) + (1− αn)Tn(
xn + xn+1

2
)− αn−1f(xn−1)− (1− αn−1)Tn−1(

xn−1 + xn
2

)‖

= ‖αn(f(xn)− f(xn−1)) + (αn − αn−1)f(xn−1) + (1− αn)[Tn(
xn + xn+1

2
)− Tn(

xn−1 + xn
2

)]

+ (1− αn)Tn(
xn−1 + xn

2
)− (1− αn−1)Tn(

xn−1 + xn
2

)

+ (1− αn−1)[Tn(
xn−1 + xn

2
)− Tn−1(

xn−1 + xn
2

)]‖

= ‖αn(f(xn)− f(xn−1)) + (1− αn)[Tn(
xn + xn+1

2
)− Tn(

xn−1 + xn
2

)] + (αn − αn−1)

· [f(xn−1)− Tn(
xn−1 + xn

2
)] + (1− αn−1)[Tn(

xn−1 + xn
2

)− Tn−1(
xn−1 + xn

2
)]‖

≤ ααn‖xn − xn−1‖+ (1− αn)(θn + 1)(
‖xn+1 − xn‖

2
+
‖xn − xn−1‖

2
)

+ |αn − αn−1| ‖f(xn−1)− Tn(
xn−1 + xn

2
)‖+ sup

x∈C′
‖Tnx− Tn−1x‖

=
2ααn + (1− αn)(θn + 1)

2
‖xn − xn−1‖+

(1− αn)(θn + 1)

2
‖xn+1 − xn‖

+ |αn − αn−1|M2 + sup
x∈C′

‖Tnx− Tn−1x‖,

where M2 is a constant such that

M2 = sup
n≥0
‖f(xn−1)− Tn(

xn−1 + xn
2

)‖.

It follows that

2− (1− αn)(θn + 1)

2
‖xn+1 − xn‖ ≤

2ααn + (1− αn)(θn + 1)

2
‖xn − xn−1‖+ |αn − αn−1|M2

+ sup
x∈C′

‖Tnx− Tn−1x‖.

This implies

‖xn+1 − xn‖

≤ 2ααn + (1− αn)(θn + 1)

2− (1− αn)(θn + 1)
‖xn − xn−1‖+

2M2

2− (1− αn)(θn + 1)
·

|αn − αn−1|+
2

2− (1− αn)(θn + 1)
sup
x∈C′

‖Tnx− Tn−1x‖

=

(
1− 2[1− ααn − (1− αn)(θn + 1)]

2− (1− αn)(θn + 1)

)
‖xn − xn−1‖+

2M1

2− (1− αn)(θn + 1)
·

|αn − αn−1|+
2

2− (1− αn)(θn + 1)
sup
x∈C′

‖Tnx− Tn−1x‖. (3.3)

Let

γn =
2[1− ααn − (1− αn)(θn + 1)]

2− (1− αn)(θn + 1)
.
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We note

γn =
2[αn(1− α) + θn(αn − 1)]

1− θn + αn(θn + 1)

≥ 2[αn(1− α) + θn(αn − 1)]

1− θn + (θn + 1)

= αn(1− α) + θn(αn − 1)

≥ αn(1− α)− θn ≥
1− α

2
αn.

By condition (i), we have
∑∞
n=0 γn =∞. Apply Lemma 2.1 to (3.3), we get

lim
n→∞

‖xn+1 − xn‖ = 0. (3.4)

Next, we prove that limn→∞ ‖xn − Txn‖ = 0. In fact, we have

‖xn+1 − Tn(
xn + xn+1

2
)‖ = αn‖f(xn)− Tn(

xn + xn+1

2
)‖

→ 0 as n→∞. (3.5)

Moreover, we get

‖xn − Tnxn‖

= ‖xn − xn+1 + xn+1 − Tn(
xn + xn+1

2
) + Tn(

xn + xn+1

2
)− Tnxn‖

≤ ‖xn+1 − xn‖+ ‖xn+1 − Tn(
xn + xn+1

2
)‖+ ‖Tn(

xn + xn+1

2
)− Tnxn‖

≤ ‖xn+1 − xn‖+ ‖xn+1 − Tn(
xn + xn+1

2
)‖+

θn + 1

2
‖xn+1 − xn‖

=
θn + 3

2
‖xn+1 − xn‖+ ‖xn+1 − Tn(

xn + xn+1

2
)‖.

Combining (3.4) and (3.5), we can obtain

lim
n→∞

‖xn − Tnxn‖ = 0. (3.6)

We notice

‖xn − Txn‖
= ‖xn − Tnxn + Tnxn − Tn+1xn + Tn+1xn − Txn‖
≤ ‖xn − Tnxn‖+ ‖Tnxn − Tn+1xn‖+ (1 + θ1)‖Tnxn − xn‖
≤ ‖xn − Tnxn‖+ sup

x∈C′
‖Tnx− Tn+1x‖+ (1 + θ1)‖Tnxn − xn‖.

By condition (iv) and (3.6), we have

lim
n→∞

‖xn − Txn‖ = 0. (3.7)

Next, we claim that

lim sup
n→∞

〈q − f(q), q − xn〉 ≤ 0, (3.8)

where q = PF (T )f(q). Indeed, there exists a subsequence {xni
} of {xn} such that

lim sup
n→∞

〈q − f(q), q − xn〉 = lim
i→∞

〈q − f(q), q − xni〉 .
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Since {xn} is bounded, there exists a subsequence of {xn} which converges weakly to p. Without loss of
generality, we may assume that xni

⇀ p. From (3.7) and Lemma 2.2, we have p ∈ F (T ). This together with
the property of the metric projection implies that

lim sup
n→∞

〈q − f(q), q − xn〉 = lim
i→∞

〈q − f(q), q − xni〉 = 〈q − f(q), q − p〉 ≤ 0.

Then (3.8) holds. Finally, we show that xn → q as n→∞. In fact, we have

‖xn+1 − q‖2

= 〈αnf(xn) + (1− αn)Tn(
xn + xn+1

2
)− q, xn+1 − q〉

= 〈αn(f(xn)− q) + (1− αn)(Tn(
xn + xn+1

2
)− q), xn+1 − q〉

= αn〈f(xn)− f(q), xn+1 − q〉+ αn〈f(q)− q, xn+1 − q〉+ (1− αn)〈Tn(
xn + xn+1

2
)− q, xn+1 − q〉

≤ ααn‖xn − q‖ · ‖xn+1 − q‖+ (1− αn)(θn + 1)‖xn − q
2

+
xn+1 − q

2
‖ · ‖xn+1 − q‖

+ αn 〈f(q)− q, xn+1 − q〉

≤ ααn
2
‖xn − q‖2 +

ααn
2
‖xn+1 − q‖2 +

(1− αn)(θn + 1)

4
‖xn − q‖2

+
(1− αn)(θn + 1)

4
‖xn+1 − q‖2 +

(1− αn)(θn + 1)

2
‖xn+1 − q‖2 + αn〈f(q)− q, xn+1 − q〉,

which implies

4− 2ααn − 3(1− αn)(θn + 1)

4
‖xn+1 − q‖2

≤ 2ααn + (1− αn)(θn + 1)

4
‖xn − q‖2 + αn〈f(q)− q, xn+1 − q〉.

That is

‖xn+1 − q‖2

≤ 2ααn + (1− αn)(θn + 1)

4− 2ααn − 3(1− αn)(θn + 1)
‖xn − q‖2 +

4αn
4− 2ααn − 3(1− αn)(θn + 1)

〈f(q)− q, xn+1 − q〉

= [1− 4(αnθn + αn − ααn − θn)

4− 2ααn − 3(1− αn)(θn + 1)
]‖xn − q‖2 +

4αn
4− 2ααn − 3(1− αn)(θn + 1)

·

〈f(q)− q, xn+1 − q〉. (3.9)

Put

γn =
4(αnθn + αn − ααn − θn)

4− 2ααn − 3(1− αn)(θn + 1)
.

We have

γn =
4[θn(αn − 1) + αn(1− α)]

1− 2ααn + 3θn(αn − 1) + 3αn

≥ 4[θn(αn − 1) + αn(1− α)]

1 + 3αn
≥ θn(αn − 1) + αn(1− α)

≥ αn(1− α)− θn ≥
1− α

2
αn.

Apply Lemma 2.1 to (3.9), we obtain xn → q as n→∞. This completes the proof.
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Since nonexpansive mapping is asymptotically nonexpansive, so we obtain the main results of [20].

Theorem 3.2. Let H be a Hilbert space, C a nonempty closed convex subset of H. Let T : C → C be a
nonexpansive mapping with such that F (T ) 6= ∅ and f : C → C a strict contraction with coefficient α ∈ [0, 1).
Pick any x0 ∈ C. Let {xn} be a sequence generated by

xn+1 = αnf(xn) + (1− αn)T (
xn + xn+1

2
), (3.10)

where {αn} is a real sequence in [0, 1] satisfying the following conditions:
(i) limn→∞ αn = 0,

∑∞
n=0 αn =∞;

(iii)
∑∞
n=1 |αn+1 − αn| <∞ or limn→∞

αn

αn−1
= 0.

Then {xn} converges strongly to a fixed point q of nonexpansive mapping T , which is also the solution of the
variational inequality

〈(I − f)q, y − q〉 ≥ 0, for all y ∈ F (T ).

Now we give an example that one mapping satisfies condition (iv) in Theorem 3.1.

Example 3.3. Let T : C → C be a strict contraction with a constant β ∈ (0, 1) and let C ′ be a bounded
subset of C. Then∥∥Tn+1x− Tnx

∥∥ ≤ βn ‖Tx− x‖ ≤ βnK1,∀x ∈ C ′,

where K1 is a constant such that K1 = supx∈C′(‖x‖+ ‖Tx‖). It follows that

∞∑
n=1

sup
x∈C′

∥∥Tn+1x− Tnx
∥∥ ≤ ∞∑

n=1

βnK1 =
βK1

1− β
<∞.

Example 3.4. Let C be a nonempty closed convex subset of a Banach space. Define mapping T : C → C
as Tnx = (1 + 1

n )x for any x ∈ C. It is easy to see that T is asymptotically nonexpansive mapping in the
intermediate sense. Let {xn} be a bounded sequence in C, we observe∥∥Tn+1xn − Tnxn

∥∥ =
1

n(n+ 1)
‖xn‖ ≤

1

n2
‖xn‖ ≤

1

n2
K2,

where K2 is a constant such that K2 = supn≥1 ‖xn‖. Hence we obtain

∞∑
n=1

∥∥Tn+1xn − Tnxn
∥∥ ≤ ∞∑

n=1

1

n2
K2 <∞.

4. Applications

In this section, we apply our main results to solve mixed equilibrium problems.
Let ϕ : C → R be a real-valued function and F : C × C → R be a bifunction. The mixed equilibrium

problem is to find x ∈ C such that

F (x, y) + ϕ(y)− ϕ(x) ≥ 0,∀ y ∈ C. (4.1)

The set of solutions of (1.1) is denoted by MEP (F,ϕ). If ϕ = 0, then problem (4.1) reduces to equilibrium
problem which is to find x ∈ C such that

F (x, y) ≥ 0, ∀ y ∈ C. (4.2)

We denote the set of solutions of (4.2) by EP (F ).
For solving the mixed equilibrium problem, let us give the following assumptions for the bifunction F,ϕ

and the set C([13]):
(A1) F (x, x) = 0 for all x ∈ C;
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(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for any x, y ∈ C;
(A3) for each y ∈ C, x 7→ F (x, y) is weakly upper semicontinuous;
(A4) for each x ∈ C, y 7→ F (x, y) is convex;
(A5) for each x ∈ C, y 7→ F (x, y) is lower semicontinuous;
(B1) for each x ∈ H and r > 0, there exists a bounded subset Dx ⊆ C and yx ∈ C such that for any

z ∈ C\Dx,

F (z, yx) + ϕ(yx) +
1

r
〈yx − z, z − x〉 < ϕ(z);

(B2) C is bounded set.

Lemma 4.1 ([13]). Let C be a nonempty closed convex subset of H. Let F be a bifunction from C × C to
R satisfying (A1)-(A5) and let ϕ : C → R ∪ {+∞} be a proper lower semicontinuous and convex function.

Assume that either (B1) or (B2) holds. For r > 0 and x ∈ H, define a mapping T
(F,ϕ)
r : H → C as follows.

T (F,ϕ)
r (x) =

{
z ∈ C : F (z, y) + ϕ(y) +

1

r
〈y − z, z − x〉 ≥ ϕ(z), ∀ y ∈ C

}
for all x ∈ H. Then the following conclusions hold:

(1) for each x ∈ H, T
(F,ϕ)
r (x) 6= ∅;

(2) T
(F,ϕ)
r is single-valued;

(3) T
(F,ϕ)
r is firmly nonexpansive, i.e., for any x, y ∈ H,∥∥∥T (F,ϕ)
r (x)− TF,ϕr (y)

∥∥∥2 ≤ 〈T (F,ϕ)
r (x)− T (F,ϕ)

r (y), x− y
〉

;

(4) F (T
(F,ϕ)
r ) = MEP(F,ϕ);

(5) MEP(F,ϕ) is closed and convex.

Theorem 4.1. Let H be a Hilbert space, C a nonempty closed convex subset of H. Let F be a bifunction
from C × C to R satisfying (A1)-(A5), ϕ : C → R ∪ {+∞} be a proper lower semicontinuous and convex
function. Assume that either (B1) or (B2) holds. Let f : C → C be a strict contraction with coefficient
α ∈ [0, 1). Pick any x0 ∈ C. Let {xn} be a sequence generated by

xn+1 = αnf(xn) + (1− αn)zn,
zn ∈ C such that F (zn, y) + ϕ(y) + 1

r 〈y − zn, zn − un〉 ≥ ϕ(zn),∀ r > 0, y ∈ C,
un = xn+xn+1

2 ,
(4.3)

where {αn} is a real sequence in [0, 1] satisfying the following conditions:
(i) limn→∞ αn = 0,

∑∞
n=0 αn =∞;

(iii)
∑∞
n=1 |αn+1 − αn| <∞ or limn→∞

αn

αn−1
= 0.

Then {xn} converges strongly to an element of mixed equilibrium problem (4.1), which is also the solution
of the variational inequality

〈(I − f)q, y − q〉 ≥ 0, for all y ∈ MEP(F,ϕ).

Proof. We can rewrite (4.3) as follows:

xn+1 = αnf(xn) + (1− αn)T (F,ϕ)
r (

xn + xn+1

2
).

Then we obtain the desired results by Theorem 3.2 easily.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

493 Qian Yan et al 486-496



5. Numerical Examples

Example 5.1. Let inner product < ·, · >: R3 × R3 → R be defined by

〈x,y〉 = x · y = x1 · y1 + x2 · y2 + x3 · y3

and the usual norm ‖·‖ : R3 → R be defined by

‖x‖ =
√
x21 + y21 + z21 , ∀ x = (x1, x2, x3),y = (y1, y2, y3) ∈ R3.

Let T, f : R3 → R3 be defined by

Tx =
1

3
(x), f(x) =

1

4
x, ∀ x ∈ R.

Let αn = 1
5n ,∀ n ∈ N and let {xn} be a sequence generated by (3.10). It is easy to see that F (T ) = {0}.

Then {xn} converges strongly to 0 by Theorem 3.2.
We can rewrite (3.10) as follows:

xn+1 =
10n+ 1

50n+ 2
xn. (5.1)

Choosing x1 = (1, 3, 5) in (5.1), we have the following numerical results in Figure 1 and Figure 2.

Figure 1: Figure 2:
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HERMITE HADAMARD TYPE INEQUALITIES FOR m-CONVEX

AND (α,m)-CONVEX FUNCTIONS FOR FUZZY INTEGRALS

M. A. LATIF 1, WAJEEHA IRSHAD 2, AND M. MUSHTAQ 3

Abstract. In this paper we prove Hermite–Hadamard type inequalities for

m-convex and (α,m)-convex functions for fuzzy integrals. Some examples are

also given to illustrate the results.

1. Main Results

Let [0, b], where b > 0, be an interval of the real line R. A function f is said to
be convex on [0, b] if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y),

holds for all x, y ∈ [0, b] and t ∈ [0, 1] and
a function f is starshaped with respect to the origin on [0, b] if

f(tx) ≤ tf(x),

holds for all x ∈ [0, b] and t ∈ [0, 1] .
In [26] G. Toader, (see also [1, 2, 4]) defined m-convexity: another intermediate

between the usual convexity and starshaped convexity as follow:

Definition 1. The function f : [0, b] → R, b > 0, is said to be m-convex, where
m ∈ [0, 1] , if we have

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y)

for all x, y ∈ [0, b] and t ∈ [0, 1] . We say that f is m-concave if −f is m-convex.

The class of all m-convex functions on [0, b] for which f(0) ≤ 0 is denoted by
Km(b). Obviously, for m = 1, m-convexity is the standard convexity of functions
on [0, b] , and for m = 0 the concept of starshaped functions.

The following lemmas hold (see [26] see also [1, Lemma A & Lemma B, Page 2]).

Lemma 1. [1, Lemma A, Page 2] If f is in the class Km(b) , then it is starshaped.

Lemma 2. [1, Lemma B, Page 2] If f is in the class Km(b) and 0 < n < m ≤ 1,
then f is in the class Kn(b).

From Lemma 2 and Lemma 3 it follows that

K1(b) ⊂ Km(b) ⊂ K0(b)

whenever m ∈ (0, 1) . Note that in the class K1(b) are only convex functions
f : [0, b]→ R for which f(0) ≤ 0, that is, K1(b) is a proper subclass of the class of

Date: June, 23, 2016.
Key words and phrases. Hermite–Hadamard inequality, Sugeno integral, m-convex function,

(α,m)-convex function.
This paper is in final form and no version of it will be submitted for publication elsewhere.
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convex functions on [0, b]. It is interesting to point out that for any m ∈ (0, 1) there
are continuous and differentiable functions which are m-convex, but which are not
convex in the standard sense (see [27]).

The notion of m-convexity was further generalized in the following definition (see
also [1, 2]).

Definition 2. [11] The function f : [0, b]→ R, b > 0, is said to be (α,m)-convex,
where (α,m) ∈ [0, 1]2 , if we have

f(tx+m(1− t)y) ≤ tαf(x) +m(1− tα)f(y)

for all x, y ∈ [0, b] and t ∈ [0, 1].

The class of all (α,m)-convex functions on [0, b] for which f(0) ≤ 0 is denoted
by Kα

m(b).
If we take (α,m) = (1,m) , it can be easily seen that (α,m)-convexity reduces

to m-convexity and for (α,m) = (1, 1) , (α,m)-convexity reduces to the concept of
usual convexity defined on [0, b], b > 0.

For further results on inequalities related to m-convex and (α,m)-convex func-
tions we refer the readers to [1, 2, 4].

In [4], S.S. Dragomir and G. Toader proved the following Hadamard type in-
equality for m-convex functions:

Theorem 1. Let f : [0,∞) → R be an m-convex function with m ∈ (0, 1] . If
0 ≤ a < b <∞ and f ∈ L1 ([a, b]) then

(2.1)
1

b− a

∫ b

a

f(x)dx ≤ min

{
f(a) +mf

(
b
m

)
2

,
f(b) +mf

(
a
m

)
2

}

We will see that this inequalitiy does not valid for fuzzy integrals in general.
To prove our assertion we consider the function f : [0,∞)→ [0,∞), f(x) = axn,

n ∈ N, n ≥ 2, a ≥ 0, then f is m-convex on [0,∞), m ∈ (0, 1].

Example 1. Take X = [0, 1] and let µ be the usual Lebesgue measure on X. Let

f : [0,∞) → [0,∞) be defined as f(x) = x2

3 with m = 9
10 . Now to calculate the

Sugeno integral
∫ 1

0
x2

3 dµ, consider the distribution function F associated to f on
[0, 1] then

F (α) = µ ([0, 1] ∩ {f ≥ α}) = µ

(
[0, 1] ∩

{
x2

3
≥ α

})
= µ

(
[0, 1] ∩

{
x ≥
√

3α
})

= 1−
√

3α

and we solve the equation 1 −
√

3α = α. It can be easily seen that the solution of
this equation is 5

2 −
1
2

√
21, therefore by Remark 1, we have that∫ 1

0

x2

3
dµ =

5

2
− 1

2

√
21 ≈ 0.208 71.

Now
f(a) +mf

(
b
m

)
2

=
5

27
≈ 0.1851852
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and on the other hand

f(b) +mf
(
a
m

)
2

=
1

6
≈ 0.16666667.

Therefore

min

{
f(a) +mf

(
b
m

)
2

,
f(b) +mf

(
a
m

)
2

}
=

1

6
≈ 0.16666667.

Which follows that (2.1) is not satisfied in the fuzzy context.

Now we prove Hdadamard type inequalites like (2.1) but for Sugeno Integral or
fuzzy integral.

Theorem 2. Let g : [0,∞) → [0,∞) be an m-convex function with m ∈ (0, 1]
such that mg(0) < g(1) and g(0) < mg

(
1
m

)
. Let µ be the Lebesgue measure on

[0, 1] ⊂ [0,∞), then

(2.2)

∫ 1

0

gdµ ≤ min

{
1,

mg
(

1
m

)
1 +mg

(
1
m

)
− g(0)

,
g (1)

1 + g (1)−mg(0)

}
.

Proof. Since g is an m-convex function, therefore for x ∈ [0, 1] and m ∈ (0, 1], we
have

g(x) = g ((1− x) 0 + 1 · x) ≤ (1− x) g(0) +mxg

(
1

m

)
= h(x)

and hence by (3) of Proposition 1,∫ 1

0

gdµ ≤
∫ 1

0

(
(1− x) g(0) +mxg

(
1

m

))
dµ =

∫ 1

0

h(x)dµ.

Let F be the distribution function associated to h on [0, 1], then

F (α) = µ ([0, 1] ∩ {h ≥ α}) = µ

(
[0, 1] ∩

{
(1− x) g(0) +mxg

(
1

m

)
≥ α

})
= µ

(
[0, 1] ∩

{
x ≥ α− g(0)

mg
(

1
m

)
− g(0)

})

= 1− α− g(0)

mg
(

1
m

)
− g(0)

and as a solution of the equation α = 1− α−g(0)
mg( 1

m )−g(0)
, we get

(2.3) α =
mg
(

1
m

)
1 +mg

(
1
m

)
− g(0)

.

Analogously by the m-convexity of g, we also have

g(x) = g ((1− x) 0 + 1 · x) ≤ m (1− x) g(0) + xg(1) = h1(x).

Arguing smilarly, let F1 be the distribution function accociated to h1 on [0, 1], then

(2.4) α =
g (1)

1 + g (1)−mg(0)
.

By (1) of Proposition 1, we have that

(2.5)

∫ 1

0

h(x)dµ =

∫ 1

0

h1(x)dµ ≤ µ ([0, 1]) = 1.
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The equations (2.3), (2.4), (2.5) and the definition of Sugeno integral give us the
desired inequality. �

A similar results may be stated as follow, however, we leave the details for the
intrested readers.

Proposition 1. Let g : [0,∞) → [0,∞) be an m-convex function with m ∈ (0, 1]
such that mg(0) > g(1) and g(0) > mg

(
1
m

)
. Let µ be the Lebesgue measure on

[0, 1] ⊂ [0,∞), then

(2.6)

∫ 1

0

gdµ ≤ min

{
1,

g (0)

1−mg
(

1
m

)
+ g(0)

,
mg (0)

1− g (1) +mg(0)

}
.

Remark 1. If m = 1, then the inequalities (2.2) and (2.6) become those inequalities
proved in Theroem 1 and Theorem 2 from [3, p. 3].

Now we give general cases of Theroem 2 and Theorem 3.

Theorem 3. Let f : [0,∞)→ [0,∞) be an m-convex function with m ∈ (0, 1] such
that mg( am ) < g(b) and g(a) < mg

(
b
m

)
. Let µ be the Lebesgue measure on [a, b]

and 0 ≤ a < b <∞. Then

(2.7)

∫ b

a

gdµ ≤ min

{
1,

mg
(
b
m

)
(b− a)

b− a+mg
(
b
m

)
− g(a)

,
(b− a) g (b)

b− a+ g(b)−mg
(
a
m

)} .

Proof. Since g is an m-convex function m ∈ (0, 1], therefore for x ∈ [a, b], 0 ≤ a <
b <∞, we have

g(x) = g

((
1− x− a

b− a

)
a+

x− a
b− a

· b
)

≤
(
b− x
b− a

)
g(a) +m

(
x− a
b− a

)
g

(
b

m

)
= h(x)

By (3) of Proposition 1, we have∫ b

a

gdµ ≤
∫ b

a

[(
b− x
b− a

)
g(a) +m

(
x− a
b− a

)
g

(
b

m

)]
dµ =

∫ b

a

h(x)dµ.

Let us consider the distribution function F given by

F (α) = µ ([a, b] ∩ {h ≥ α})

= µ

(
[a, b] ∩

{(
b− x
b− a

)
g(a) +m

(
x− a
b− a

)
g

(
b

m

)
≥ α

})
= µ

(
[a, b] ∩

{
x ≥

α (b− a) +mag
(
b
m

)
− bg(a)

mg
(
b
m

)
− g(a)

})

= b−
α (b− a) +mag

(
b
m

)
− bg(a)

mg
(
b
m

)
− g(a)

and as solution of the equation b− α(b−a)+mag( b
m )−bg(a)

mg( b
m )−g(a)

= α, we get that

(2.8) α =
mg
(
b
m

)
(b− a)

b− a+mg
(
b
m

)
− g(a)

.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

500 M. A. LATIF et al 497-506



HERMITE HADAMARD INEQUALITY FOR FUZZY INTEGRALS 5

Analogously by the m-convexity of g, we also have

g(x) = g

((
1− x− a

b− a

)
a+

x− a
b− a

· b
)

≤ m
(
b− x
b− a

)
g(
a

m
) +

(
x− a
b− a

)
g (b) = h1(x).

Arguing smilarly, let F1 be the distribution function accociated to h1 on [a, b], then

(2.9) α =
(b− a) g (b)

b− a+ g(b)−mg
(
a
m

) .

Moreover by (1) of Proposition 1, we have

(2.10)

∫ b

a

h(x)dµ =

∫ b

a

h1(x)dµ ≤ µ ([a, b]) = b− a.

From (2.8), (2.9), (2.10) and by the definition of fuzzy integral, we obtain (2.7).
This completes the proof of the Teorem. �

Again, we state smilar results like the one proved in Theorem 4, however, the
details are left to the intrested readers.

Proposition 2. Let f : [0,∞) → [0,∞) be an m-convex function with m ∈ (0, 1]
such that mg( am ) > g(b) and g(a) > mg

(
b
m

)
. Let µ be the Lebesgue measure on

[a, b] and 0 ≤ a < b <∞. Then

(2.11)

∫ b

a

gdµ ≤ min

{
1,

(b− a) g (a)

b− a+ g(a)−mg
(
b
m

) , m (b− a) g
(
a
m

)
b− a+mg

(
a
m

)
− g(b)

}
.

Remark 2. If m = 1, then the inequalities (2.7) and (2.11) become those inequal-
ities proved in Theorem 3 from [3, p. 4].

Example 2. Take X = [0, 1] and let µ be the usual Lebesgue measure on X. Let
f : [0,∞) → [0,∞) be defined as f(x) = x2, then f is an m-convex function on
[0, 1] with mg(0) < g(1) and g(0) < mg

(
1
m

)
, m ∈ (0, 1]. Now

mg
(

1
m

)
1 +mg

(
1
m

)
− g(0)

=
1

m+ 1

and
g (1)

1 + g (1)−mg(0)
=

1

2

Therefore by Theorem 2, we have ∫ 1

0

x2dµ ≤ 1

2
.

Now we give our results for (α,m)-convex functions

Theorem 4. Let g : [0,∞) → [0,∞) be an (α,m)-convex function with α, m ∈
(0, 1]2 such that mg(0) < g(1) and g(0) < mg

(
1
m

)
. Let µ be the Lebesgue measure

on [0, 1], then

(2.12)

∫ 1

0

gdµ ≤ min {1, α1, α2} ,
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where α1 and α2 are positive real solutions of the equations α
′

= 1−
(

α
′
−g(0)

mg( 1
m )−g(0)

) 1
α

and α
′

= 1−
(

α
′
−g(0)

g(1)−mg(0)

) 1
α

respectively.

Proof. Since g is an (α,m)-convex function, therefore for x ∈ [a, b] and α, m ∈
(0, 1]2, we have

g(x) = g ((1− x) 0 + 1 · x) ≤ (1− xα) g(0) +mxαg

(
1

m

)
= h(x)

and hence by (3) of Proposition 1,∫ 1

0

gdµ ≤
∫ 1

0

(
(1− xα) g(0) +mxαg

(
1

m

))
dµ =

∫ 1

0

h(x)dµ.

Let F be the distribution function associated to h on [0, 1], then

F (α
′
) = µ

(
[0, 1] ∩

{
h ≥ α

′
})

= µ

(
[0, 1] ∩

{
(1− xα) g(0) +mxαg

(
1

m

)
≥ α

′
})

= µ

[0, 1] ∩

x ≥
(

α
′ − g(0)

mg
(

1
m

)
− g(0)

) 1
α




= 1−

(
α

′ − g(0)

mg
(

1
m

)
− g(0)

) 1
α

and hence we get the equation

(2.13) α
′

= 1−

(
α

′ − g(0)

mg
(

1
m

)
− g(0)

) 1
α

.

Analogously by the (α,m)-convexity of g, we also have

g(x) = g ((1− x) 0 + 1 · x) ≤ m (1− xα) g(0) + xαg(1) = h1(x).

Arguing smilarly, let F1 be the distribution function accociated to h1 on [0, 1], then
we have that the following equation:

(2.14) α
′

= 1−

(
α

′ − g(0)

g (1)−mg(0)

) 1
α

.

By (1) of Proposition 1, we have that

(2.15)

∫ 1

0

h(x)dµ =

∫ 1

0

h1(x)dµ ≤ µ ([0, 1]) = 1.

The equations (2.13), (2.14), (2.15) and the definition of Sugeno integral give us
the required inequality. �

A similar result can be stated as follow, however, the details are left to the
intrested reasers:
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Proposition 3. Let g : [0,∞) → [0,∞) be an (α,m)-convex function with α,
m ∈ (0, 1]2 such that mg(0) > g(1) and g(0) > mg

(
1
m

)
. Let µ be the Lebesgue

measure on [0, 1] ⊂ [0,∞), then

(2.16)

∫ 1

0

gdµ ≤ min {1, α1, α2} ,

where α1 and α2 are positive real solutions of the equations α
′

=

(
g(0)−α

′

g(0)−mg( 1
m )

) 1
α

and α
′

=

(
g(0)−α

′

mg(0)−g(1)

) 1
α

respectively.

Remark 3. If (α,m) = (1, 1), then the inequalities (2.12) and (2.16) become those
inequalities proved in Theroem 1 and Theorem 2 from [3, p.4].

Now in following results we give the general case of the last two results.

Theorem 5. Let g : [0,∞) → [0,∞) be an (α,m)-convex function with α, m ∈
(0, 1]2 such that mg( am ) < g(b) and g(a) < mg

(
b
m

)
. Let µ be the Lebesgue measure

on [a, b], 0 ≤ a < b <∞, then

(2.17)

∫ 1

0

gdµ ≤ min {1, α1, α2} ,

where α1 and α2 are positive real solutions of the equations α
′

= (b− a)

[
1−

(
α

′
−g(a)

mg( b
m )−g(a)

) 1
α

]

and α
′

= (b− a)

[
1−

(
α

′
−g( am )

g(b)−mg( am )

) 1
α

]
respectively.

Proof. Since g is an (α,m)-convex function, therefore for x ∈ [0, 1] and α, m ∈
(0, 1]2, we have

g(x) = g

((
1− x− a

b− a

)
a+

x− a
b− a

· b
)

≤
(

1−
(
x− a
b− a

)α)
g(a) +m

(
x− a
b− a

)α
g

(
b

m

)
= h(x)

and hence by (3) of Proposition 1,

∫ 1

0

gdµ ≤
∫ 1

0

[(
1−

(
x− a
b− a

)α)
g(a) +m

(
x− a
b− a

)α
g

(
b

m

)]
dµ =

∫ 1

0

h(x)dµ.
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Let F be the distribution function associated to h on [0, 1], then

F (α
′
) = µ

(
[a, b] ∩

{
h ≥ α

′
})

= µ

(
[a, b] ∩

{(
1−

(
x− a
b− a

)α)
g(a) +m

(
x− a
b− a

)α
g

(
b

m

)
≥ α

′
})

= µ

[a, b] ∩

x ≥ a+ (b− a)

(
α

′ − g(a)

mg
(
b
m

)
− g(a)

) 1
α




= (b− a)

1−

(
α

′ − g(a)

mg
(
b
m

)
− g(a)

) 1
α


and hence we get the equation

(2.18) α
′

= (b− a)

1−

(
α

′ − g(a)

mg
(
b
m

)
− g(a)

) 1
α

 .

Analogously by the (α,m)-convexity of g, we also have

g(x) = g

((
1− x− a

b− a

)
a+

x− a
b− a

· b
)

≤ m
(

1−
(
x− a
b− a

)α)
g
( a
m

)
+

(
x− a
b− a

)α
g(b) = h1(x).

Arguing smilarly, let F1 be the distribution function accociated to h1 on [0, 1], then
we have that the following equation:

(2.19) α
′

= (b− a)

1−

(
α

′ − g
(
a
m

)
g (b)−mg

(
a
m

)) 1
α

 .

By (1) of Proposition 1, we have that

(2.20)

∫ 1

0

h(x)dµ =

∫ 1

0

h1(x)dµ ≤ µ ([a, b]) = b− a.

The equations (2.18), (2.19), (2.20) and the definition of Sugeno integral give us
the required inequality. �

A similar resutl is stated below, however, the details are left:

Theorem 6. Let g : [0,∞) → [0,∞) be an (α,m)-convex function with α, m ∈
(0, 1]2 such that mg( am ) > g(b) and g(a) > mg

(
b
m

)
. Let µ be the Lebesgue measure

on [a, b], 0 ≤ a < b <∞, then

(2.21)

∫ 1

0

gdµ ≤ min {1, α1, α2} ,

where α1 and α2 are positive real solutions of the equations α
′

= (b− a)

[(
g(a)−α

′

g(a)−mg( b
m )

) 1
α

]

and α
′

= (b− a)

[(
g( am )−α

′

mg( am )−g(b)

) 1
α

]
respectively.
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Remark 4. If (α,m) = (1, 1), then the inequalities (2.17) and (2.21) become those
inequalities proved in Theroem 3 from [3, p.4].
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[21] H. Román-Flores, A. Flores-Franulič, Y. Chalco-Cano, A Jensen type inequality for fuzzy

integrals, Information Sciences 177 (2007) 3192–3201.
[22] M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. Thesis, Tokyo Institute of

Technology, 1974.

[23] E. Pap, Null-additive Set Functions, Kluwer, Dordrecht, 1995.
[24] J. Tabor, J. Tabor, Characterization of convex functions, Stud. Math. 192 (2009) 29-37.

[25] G. H. Toader, Some generalisations of the convexity, Proc. Colloq. Approx. Optim, Cluj-

Napoca(Romania), 1984, 329-338.
[26] G. Toader, On a generalization of the convexity, Mathematica, 30 (53) (1988), 83-87.

[27] S. Toader, The order of a star-convex function, Bull. Applied & Comp. Math., 85-B (1998),

BAM-1473, 347–350.
[28] Z. Wang, G. Klir, Fuzzy Measure Theory, Plenum, New York, 1992.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

505 M. A. LATIF et al 497-506



10 M. A. LATIF 1, WAJEEHA IRSHAD 2, AND M. MUSHTAQ 3

[29] M. Ying, Linguistic quantifiers modeled by Sugeno integrals, Artificial Intelligence 170 (2006)

581–606.

College of Science, Department of Mathematics, University of Hail, Hail 2440, Saudi

Arabia.
E-mail address: m amer latif@hotmail.com

E-mail address: wchattah@hotmail.com

E-mail address: mmushtaq@uet.edu.pk

2,3Department of Mathematics, University of Engineering and Technology, Lahore,
Pakistan

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

506 M. A. LATIF et al 497-506



Very true operators on equality algebras
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Abstract

In this paper, we introduce the concept of very true operators on equality algebras and
investigate some related properties of such operators. As an application of properties of
very true operators on equality algebras, we give a characterization of prelinear equality
algebras, and discuss the relation between very true operator and internal state operator
on equality algebras. Moreover, we put forth the notion of very true filter on equality
algebras and obtain some important results. In particular, using very true filter, we
characterize the simple very true equality algebras and establish the uniform structures
on very true equality algebras.

Keywords: fuzzy higher logic; equality algebras; very true operators; very true filters;
uniform structures.

1. Introduction

Fuzzy type theory [13, 14, 15, 16], whose basic connective is a fuzzy equality ∼, was
developed as a fuzzy counterpart of the classical higher-order logic (type theory in which
identity is a basic connective, see [9]). Since the truth values for algebra of fuzzy type
theory is no longer a residuated lattice, a specific algebra called an EQ-algebra [17] was
proposed. Viewing the axioms of EQ-algebras with a purely algebraic eye it appears
that unlike in the case of residuated lattices where the adjointness condition ties product
with implication. By contrast, the product in EQ-algebras is quite loosely related to the
other connectives, which lead to the product in EQ-algebra may be replaced by other
similar connectives. Furthermore, the freedom in choosing the product might prohibit
to find deep related algebraic results. For this reason, a new algebraic structure was in-
troduced in [11], called equality algebra, which consisting of two binary operations-meet
and equivalence, and constant 1. It was proved in [12] that any equality algebra has
a corresponding BCK-meet-semilattice and any BCK-meet-semilattice with (D) has a
corresponding equality algebras. Apart from their algebraic interest, the general moti-
vation for equality algebras from the side of logic was to define an algebraic structure
which (with appropriate extensions) is suitable to axiomatize a large class of substruc-
tural logics based on an equivalence connective rather than implication. The very first
step toward this aim has been done in [11]. Indeed, the equality algebras could also be
candidates for a possible algebraic semantics for fuzzy type theory, which lead to the
study of equality algebra is highly motivated.

∗Corresponding author.
Email addresses: wjt@stumail.nwu.edu.cn(J.T. Wang), xlxin@nwu.edu.cn (X.L. Xin),
skywine@gmail.com(Y.B. Jun).
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In the sense of Zadeh [5]( 1975), fuzzy logic distinguish in broad and narrow sense. In
narrow sense, fuzzy logic deals with some many valued logic but asks questions different
from those asked by logicians, who devote to completeness and soundness, etc. Compare
to narrow sense, Zadeh stress the importance of fuzzy truth values as very true, quite
true and so on, that themselves are fuzzy subsets of all truth degrees. He always gives
some examples of handling these fuzzy truth values but seems uninterested in any sort
of axiomatization. In order to answer the question “ if any natural axiomatization is
possible and how far can even this sort of fuzzy logic be captured by standard methods
of mathematical logic“, Hájek[8] introduced the concept of very true operator on BL-
algebras as a tool for reducing the number of possible logical values in many valued
fuzzy logic. Consequently, the notion of very true operator has been extended to other
logical algebras such as MV-algebra [2], R`-monoid[3], residuated lattices[10, 20] and
provided an algebraic foundation for reasoning about fuzzy truth valued of events in
many valued logic system, which belong to a subclass of substructural logic based on an
fuzzy implication.

As for BL-algebras, MV-algebras R`-monoid and residuated lattices, we observed that
although they are different algebras they all are essentially particular types of equality
algebras. Thus, it is natural to generalized the concept of very true operators to equality
algebras for studying the most general results regarding very true operators in the above-
mentioned algebras. On the other hand, BL,  Lukasiewicz, ML, they are all many valued
logic system belong to a subclass of substructural logic based on an fuzzy implication.
However, the logic system corresponding to equality algebra is a fuzzy higher logic, which
belong to subclass of substructural logic based on fuzzy equality and is different from
above common many valued logic system that based on fuzzy implication. Moreover, all
results of this paper may be considered providing an algebraic foundation for reasoning
about probabilities of fuzzy events for higher fuzzy logic. This is the motivation for us
to investigate very true operators on equality algebras.

Based on above consideration, we enrich the language of equality algebras by adding
a very true operator to get algebras named very true equality algebras. This paper is
structured in five sections. In order to make the paper as self-contained as possible,
we recapitulate in Section 2 the definition of equality algebras, and review their basic
properties that will be used in the remainder of the paper. In Section 3, we introduce
very true operator on equality algebras and study some properties of them. Also, we
give a characterizations of a prelinear equality algebras and discuss the relation between
very true operator and internal state on equality algebras. In Section 4, we investigate
very true filter of very true equality algebras. In particular, by using very true filter,
simple very true equality algebras are characterized and the uniform structures on very
true equality algebras are established.

2. Preliminaries

In this section, we summarize some definitions and results about equality algebras
which will be used in the following and we shall not cite them every time they are used.

Definition 2.1. [11] An algebra (E ,∼,∧, 1) of type (2, 2, 0) is called an equality algebra
if it satisfies the following conditions:

(E1) (E ,∧, 1) is a commutative idempotent integral monoid (i.e., ∧-semilattice with top
element 1),
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(E2) x ∼ y = y ∼ x,

(E3) x ∼ x = 1,

(E4) x ∼ 1 = x,

(E5) x ≤ y ≤ z implies x ∼ z ≤ y ∼ z and x ∼ z ≤ x ∼ y,

(E6) x ∼ y ≤ (x ∧ z) ∼ (y ∧ z),
(E7) x ∼ y ≤ (x ∼ z) ∼ (y ∼ z),

for all x, y, z ∈ E .

In what follows, by E we denote the universe of (E ,∼,∧, 1). For any x, y ∈ E , we
define fuzzy implication as x → y = x ∼ (x ∧ y) and agree that ∼ and → have higher
priority than ∧.

On an equality algebra (E ,∼,∧, 1) we define x ≤ y iff x ∧ y = x. It is easy to check
that ≤ is a partial order relation on E and for all x ∈ E , x ≤ 1.

Definition 2.2. [6, 7] Let (E ,∼,∧, 1) be an equality algebra. Then E is called:

(1) bounded if there exists an element 0 ∈ E such that 0 ≤ x for all x ∈ E ,

(2) prelinear if for all x, y ∈ E , 1 is the unique upper bounded in E of the set {(y →
x), (x→ y)}.

Proposition 2.3. [6, 7] If (E ,∼,∧, 1) is a prelinear equality algebra, then (E ,≤) is a
lattice, where the join operation is given by x ∨ y = ((x→ y)→ y) ∧ (y → x)→ x), for
any x, y ∈ E .

Proposition 2.4. [6, 7] An equality algebra (E ,∼,∧, 1) is prelinear if and only if (x→
y)→ z ≤ ((y → x)→ z)→ z, for all x, y, z ∈ E.

Proposition 2.5. [11, 12] In every equality algebra (E ,∼,∧, 1) the following properties
hold for all x, y, z ∈ E :

(1) x ∼ y ≤ x↔ y ≤ x→ y,

(2) x ∼ y = 1 iff x = y,

(3) x→ y = 1 iff x ≤ y,

(4) x→ y = 1 and y → x = 1 imply x = y,

(5) 1→ x = x, x→ 1 = 1, x→ x = 1,

(6) x ≤ y → x,

(7) x ≤ (x→ y)→ y,

(8) x→ y ≤ (y → z)→ (x→ z),

(9) x ≤ y → z iff y ≤ x→ z,

(10) if x ≤ y, then x ≤ x ∼ y,

(11) x ≤ y imply y → x = y ∼ x,

(12) x ≤ y imply y → z ≤ x→ z, z → x ≤ z → y,

(13) If E is a prelinear equality algebra, then
∧
i∈I(xi → y) =

∨
i∈I xi → y, provided that

both infimum as well as supremum exist.

Definition 2.6. [11] Let (E ,∼,∧, 1) and (E ′, ,u, 1′) be two equality algebras and f :
E −→ E ′ be a mapping. We call f a homomorphism if the following conditions hold for
all x, y ∈ E :
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(1) f(x ∧ y) = f(x) u f(y),

(2) f(x ∼ y) = f(x) f(y).

The following theorem provides a connection of equality algebras with a special class
of BCK-algebras with meet.

Theorem 2.7. [4, 11, 12] The following two statements hold:

(1) For any equality algebra (E ,∼,∧, 1), the structure Ψ(E) = {E ,∧,→, 1} is a BCK-
meet-semilattice, where → denotes the implication of E ,

(2) For any BCK(D)-meet-semilattice (B,∧,→, 1), the structure Φ(B) = {B,∧,↔, 1) is
an equality algebra, where ↔ denotes the equivalence operation of B. Moreover, the
implication of Φ(B) coincide with →, that is, x→ y = x↔ (x ∧ y).

Let (E ,∼,∧, 1) be an equality algebra. A nonempty set F is called a filter of E if it
satisfies: (1) x ∈ F , x ≤ y implies y ∈ F , (2) x ∈ F , x ∼ y ∈ F implies y ∈ F . One
can prove that the set of filters of an equality algebra coincide with the set of filter of
its underlying BCK-algebra. A filter F of an equality algebra E is proper if F 6= E . A
proper filter is called maximal if it is not strictly contained in any other proper filter of
E . We will denote by F (E) the set of all filter of E . Clearly, {1}, E ⊆ F (E) and F (E)
is closed under arbitrary intersections. As a consequence, (F (E),⊆) forms a complete
lattice. An equality algebra (E ,∼,∧, 1) is calle a simple if F (E) = {{1}, E}. (see [4, 12])

Definition 2.8. [4, 11, 12] Let (E ,∼,∧, 1) be an equality algebra. A subset θ ⊆ E ×E is
called a congruence of E if it is an equivalence relation on E and for all x1, y1, x2, y2 ∈ E
such that (x1, y1), (x2, y2) ∈ θ the following hold:

(1) (x1 ∧ x2, y1 ∧ y2) ∈ θ,
(2) (x1 ∼ x2, y1 ∼ y2) ∈ θ.

Let F be a filter of E . Define the congruence relation ≡F on E by x ≡F y if and only
if x ∼ y ∈ F . The set of all congruence class is denote by E/F , i.e. E/F = {[x]|x ∈ E},
where [x] = {x ∈ E|x ≡F y}. Define •, ⇀ on E/F as follows: [x] • [y] = [x ∧ y],
[x] ⇀ [y] = [x ∼ y]. Therefore, (E/F, •,⇀, [1]) is an equality algebra which is called a
quotient equality algebra of E with respect to F . (see [4])

In what follows, we review some notions about uniformity which will be necessary in
the following section.

Let X be a nonempty set and U, V be any subset of X×X. Defined U ◦V = {(x, y) ∈
X ×X| for some z ∈ X, (z, y) ∈ U and (x, z) ∈ V }, U−1 = {(x, y) ∈ X ×X|(y, x) ∈ U},
4 = {(x, x) ∈ X ×X|x ∈ X}.

Definition 2.9. [1, 18, 19] By an uniformity on X we shall mean a nonempty collection
K of subsets of X ×X which satisfies the following conditions:

(U1) 4 ⊆ U for any U ∈ K,

(U2) If U ∈ K, then U−1 ∈ K,

(U3) If U ∈ K, then there exists a V ∈ K such that V ◦ V ⊆ U ,

(U4) If U, V ∈ K, then U ∩ V ∈ K,

(U5) If U ∈ K and U ⊆ V ⊆ X ×X then V ∈ K,

The pair (X,K) is called an uniform structure (uniform space).
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3. Very true operators on equality algebras

In this section, we introduce the notion of very true operators in an equality algebras
and investigate some related properties of such operators. Also, we give characteriza-
tions of prelinea equality algebras and discuss relations between very true operators and
internal state operators on equality algebras.

Definition 3.1. Let E be an equality algebra. The mapping τ : E −→ E is called a very
true operator if it satisfies the following conditions:

(VE1) τ(1) = 1,

(VE2) τ(x) ≤ x,

(VE3) τ(x) ≤ ττ(x),

(VE4) τ(x ∼ y) ≤ τ(x) ∼ τ(y),

(VE5) τ(x ∧ y) = τ(x) ∧ τ(y).

The pair (E , τ) is said to be very true equality algebra.

Note. (1) Such a proliferation of logics deserves some explanation. Since 1 is con-
sidered as the logical value absolutely true. First note that (VE1) means that absolutely
true is very true, which is the standard axiom obtain the classical logic. (VE2) means
that if ϕ is very true then it is true. (VE3) says that very true of very true is very true,
which is a kind of necessitation with respect to very true connective. (VE4) means that
if both ϕ and ϕ ∼ ψ are very true then so is ψ, that means the connective τ preserve
modus ponens based on fuzzy equality ∼. (VE5) says that if both ϕ and ψ are very true
then so is conjunction ϕ∧ψ, one can easily to check that (VE5) is sound for each natural
interpretation in equality algebra. Indeed, the order in equality algebra is lattice order,
that is the conjunction ∧ is interpreted as the lattice meet ∧.

(2) Although equality algebras belong to some subclasses of substructural logics based
on fuzzy equality rather than on fuzzy implication, we define very true operators on them
in the way which is in accordance with traditional definitions in residuated lattices. In
fact, a very true operator on residuated lattice was introduced by Vychodil [10] in 2005
as a mapping τ : E → E satisfying conditions (VE1)-(VE3) in Definition 3.1 and (VE4’)
τ(x→ y) ≤ τ(x)→ τ(y). We know that residuated lattices are special cases of equality
algebras satisfying the residuated law. In residuated lattice, fuzzy equality ∼ can be
defined by x ∼ y = (x→ y) ∧ (y → x). From (VE4) and (VE5), one can obtain that the
connective τ always preserve modus ponens based on fuzzy implication. Based on (VE4’)
and the isotonicity of very true connective τ , one can easily obtain τ(x ∼ y) = τ((x →
y) ∧ (y → x)) ≤ τ(x → y) ∧ τ(y → x) ≤ (τ(x) → τ(y)) ∧ (τ(y) → τ(x)) = τ(x) ∼ τ(y),
thus the (VE5) hold. From this point of view, the very true equality algebra essentially
generalize residuated lattice with very true operator. Thus, it is the most general logic
algebras with very true in the existing ones founded in the literature, at least to the
authors knowledge.

Now, we will give some important examples to illustrate above definition is existing
and meaningful.

Example 3.2. For every equality algebra E there exist at least two very true operator.
One is the identical mapping τ0(x) = x for any x ∈ E , and the other is defined by
τ1(1) = 1 and τ1(x) = 0 for any x < 1. It is evident that if τ is a very true operator on
E , we have τ1(x) ≤ τ(x) ≤ τ0(x). Thus these τ0 ,τ1 are extremal.
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Example 3.3. Let E = {0, a, b, 1} with 0 ≤ a ≤ b ≤ 1. Consider the operation ∼ and
→ given by the following tables:

∼ 0 a b 1

0 1 a 0 0
a a 1 a a
b 0 a 1 b
1 0 a b 1

→ 0 a b 1

0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then (E ,∼,∧, 1) is an equality algebra in [4]. Now,we define τ(0) = 0, τ(a) = a,
τ(b) = a, τ(1) = 1. One can easily check that τ is a very true operator on E . However,
τ is not a endhomomorphism on E since τ(a ∼ b) = a 6= 1 = τ(a) ∼ τ(b).

Next, we present some useful properties of very true operator on equality algebras.

Proposition 3.4. Let (E , τ) be a very true equality algebra, then for any x, y, z ∈ E we
have,

(1) If E is a bounded equality algebra, then τ(0) = 0,

(2) τ(x) = 1 if and only if x = 1,

(3) ττ(x) = τ(x),

(4) τ(x→ y) ≤ τ(x)→ τ(y),

(5) x ≤ y implies τ(x) ≤ τ(y),

(6) τ(x) ≤ y if and only if τ(x) ≤ τ(y),

(7) τ(E) = Fixτ ,where Fixτ = {x ∈ E|τ(x) = x},
(8) Fixτ is closed under ∧,

(9) If y ≤ x, then τ(x)→ τ(y) = τ(x) ∼ τ(y),

(10) τ(x ∼ y) ≤ τ(x)→ τ(y),

(11) τ(x ∼ y) ≤ (x ∧ z) ∼ (y ∧ z),
(12) If τ(E) = E , then τ = idE ,

(13) Ker(τ) = {1}, where Ker(τ) = {x ∈ E|τ(x) = 1},
(14) Ker(τ) is a filter of E ,

(15) τ(x) = x or τ(x) and x are not comparable,

(16) If E is linearly order, then τ = idE .

Proof. (1) Applying (VE2), we have τ(0) ≤ 0 and hence τ(0) = 0.
(2) If τ(x) = 1 for some x ∈ E then by (VE2), 1 = τ(x) ≤ x giving x = 1. The

converse follows by (VE1).
(3) Applying (VE2) and (VE3), we have ττ(x) = τ(x).
(4) By (VE4) and (VE5) we have τ(x → y) = τ(x ∧ y ∼ x) = τ(x ∧ y) ∼ τ(x) ≤

τ(x) ∧ τ(y) ∼ τ(x) = τ(x)→ τ(y).
(5) If x ≤ y, then x → y = 1. It follows from (VE1) and (4) that τ(x) → τ(y) = 1.

Therefore, τ(x) ≤ τ(y).
(6) Assume that τ(x) ≤ y, we have ττ(x) ≤ τ(y). By (3), we get ττ(x) = τ(x). Thus

τ(x) ≤ τ(y). Conversely, suppose that τ(x) ≤ τ(y), we have τ(x) ≤ τ(y) ≤ y.
(7) Let y ∈ τ(E), so there exists x ∈ E such that y = τ(x). Hence τ(y) = ττ(x) =

τ(x) = y. It follows that y ∈ Fixτ . Conversely, if y ∈ Fixτ , we have y ∈ τ(E). Therefore,
τ(E) = Fixτ .

(8) By (VE5), we obtain that Fixτ is closed under ∧.
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(9) Since y ≤ x, we have τ(y) ≤ τ(x) and τ(x)→ τ(y) = τ(x) ∼ τ(x)∧τ(y) = τ(x) ∼
τ(y).

(10) By Proposition 2.5(1) and (4),(5), we have τ(x ∼ y) ≤ τ(x→ y) ≤ τ(x)→ τ(y).
(11) By (E6) and (VE2), one can obtain it very easy and hence we omit the process

of this proof.
(12) For any x ∈ E , we have x = τ(x0) for some x0 ∈ E . By (3), we have τ(x) =

τ(τ(x0)) = τ(x0) = x. Therefore, τ = idE .
(13) Assume that x ∈ E but x 6= 1 such that τ(x) = 1. Applying (VE2), we have

1 = τ(x) ≤ x and hence x = 1, which is a contradiction. Therefore, Ker(τ) = {1}.
(14) It is easy to check it and hence we omit the process.
(15) Assume x ∈ E such that τ(x) 6= x and τ(x) and x are comparable. Then τ(x) < x

or x < τ(x), from (3),(5), we have τ(x) < τ(x), which is a contradiction.
(16) It follows from (15) directly.

From the above Proposition 3.4, one can see that τ(E) is closed under the operation
∧. However, the following example shows that τ(E) is not a subalgebra of E since it is
not closed under ∼ in general.

Example 3.5. Let E = {0, a, b, c, 1} with 0 ≤ a ≤ b, c ≤ 1. Consider the operation ∼
and → given by the following tables:

∼ 0 a b c 1

0 1 0 0 0 0
a 0 1 c b a
b 0 c 1 0 b
c 0 b 0 1 c
1 0 a b 1 b

→ 0 a b c 1

0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

Then (E ,∼,∧, 1) is an equality algebra. Now,we define τ(0) = 0, τ(a) = a, τ(b) = a,
τ(c) = c, τ(1) = 1. One can easily check that τ is a very true operator on E . However,
τ(E) is not a subalgebra of E since a ∼ c = b /∈ τ(E).

Although the τ(E) is not necessary a subalgebra of an equality algebra in general,
while it forms an equality algebra after redefined its fuzzy equality, which reveals the
essence of the fixed point set.

Theorem 3.6. Let (E , τ) be a very true equality algebra. Then (τ(E),∧, , 1) is also
an equality algebra, where x y = τ(x ∼ y) for all x, y ∈ τ(E).

Proof. Now, we will show that (τ(E),∧, , 1) is an equality algebra.
For (E1), we show that (τ(E),∧, 1) is a semilattice with 1 as the greatest element.

From Definition 3.1(5), we have that τ(E) is closed under ∧. Therefore (τ(E),∧) is a
semilattice. For all x ∈ τ(E), one can easily check that x∧ 1 = x. Thus, 1 is the greatest
element in τ(E).

For (E2), we will show that x y = y  x. It is easy to prove.
For (E3), we will show that x x = 1. Applying (VE1), we have τ(1) = 1 and hence

x x = τ(x ∼ x) = τ(1) = 1.
For (E4), we will show that x 1 = x. Since x ∈ τ(E), we have τ(x) = x and hence

x 1 = τ(x ∼ 1) = τ(x) = x.
In the similarly way, we can show that (E5)-(E7) hold.
Combine them, we obtain that (τ(E),∧, , 1) is an equality algebra.
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Note. In fact, it is easily checked that (τ(E),∧, , 1) is an equality algebra, where
τ(x)  τ(y) = τ(x ∼ y). Furthermore, we also obtain that if τ(x)  τ(y) = 1, then
τ(x) = τ(y). Indeed, if τ(x), τ(y) ∈ Fixτ , by above Theorem 3.6, τ(x)  τ(y) =
τ(τ(x) ∼ τ(y)) = τ(x) ∼ τ(y). Thus τ(x) ∼ τ(y) = 1, and we have τ(x) = τ(y) by
Proposition 2.5(3).

In what following, we will give an analogy first isomorphism theorem related to very
true operator on equality algebras, which will be used in the next section.

Theorem 3.7. Let (E , τ) be a very true equality algebra and (τ(E),∧, , 1) be an
equality algebra. Then the following properties hold:

(1) τ : E −→ τ(E) is a homomorphism,

(2) The mapping τ0 : E/Ker(τ) −→ τ(E) defined by τ0([x]) = τ(x) is a isomorphism.

Proof. (1) It follows from (VE1) and (VE5) in Definition 3.1 that τ(1) = 1 and τ(x∧y) =
τ(x)∧τ(y). Moreover, from the above Note, we have τ(x) τ(y) = τ(x ∼ y). Therefore
τ : E −→ τ(E) is a homomorphism.

(2) Assume that [x] = [y] and hence (x, y) ∈ Ker(τ). Then x ∼ y ∈ Ker(τ), that
is, τ(x ∼ y) = 1. From the above Note, we have τ(x)  τ(y) = 1 and (τ(E),∧, , 1)
is an equality algebras and so τ(x) = τ(y). Therefore, τ0 is well defined. Now, we will
show that τ0 is a isomorphism. First, we will show that τ0 is a homomorphism. From
(1), we have τ0([x] ⇀ [y]) = τ0([x ∼ y]) = τ(x ∼ y) = τ(x)  τ(y) = τ0([x])  τ0([y]).
Moreover, we have τ0([x] • [y]) = τ0([x ∧ y]) = τ(x ∧ y) = τ(x) ∧ τ(y) = τ0([x]) ∧ τ0([y]).
Clearly, τ0([1]) = 1. Hence τ0 is a homomorphism. Next, we will show that τ0 is
one to one. From the above Note, if τ0([x]) = τ0([y]) then τ(x) = τ(y) and hence
τ(x) τ(y) = τ(x ∼ y) = 1, that is means (x, y) ∈ Ker(τ) and hence [x] = [y] and so τ0

is one to one. Furthermore, since τ is onto, τ0 is onto. Combine them, we obtain that τ0

is a isomorphism.

As an application of the properties respect to very true operators, we give a char-
acterization of prelinear equality algebras. For obtaining this important result, we need
the following theorem.

Theorem 3.8. The following conditions are equivalent in each very true equality alge-
bra (E , τ):

(1) τ(x→ y) ≤ (x ∧ z)→ (y ∧ z),
(2) τ(y) ≤ z → (y ∧ z),
(3) τ(y) ≤ u→ (u ∧ (z → (y ∧ z)).

Proof. (1)⇒ (2) Assume (1) holds. From Proposition 2.5 (1) and Proposition 3.5 (11),
we have τ(x→ y) ≤ ((1 ∧ z) ∼ (y ∧ z)) ≤ ((1 ∧ z)→ (y ∧ z)) = z → (y ∧ z).

(2)⇒ (3) Assume (2) holds. By (VE3), we get τ(y) ≤ ττ(y) ≤ τ(z → (y ∧ z)), which
implies, by (2) again, τ(y) ≤ u→ (u ∧ (z → (z ∧ y))).

(3)⇒ (2) Taking u = 1, we obtain that (2) holds.
(2)⇒ (1) Assume (2) holds. By (3), we have τ(x→ y) ≤ (x∧z)→ ((x→ y)∧(x∧z)).

Thus, τ(x → y) ≤ (x ∧ z) → ((x → y) ∧ x ∧ z). Furthermore, from Proposition 2.5(12),
we have τ(x→ y) ≤ (x ∧ z)→ ((x→ y) ∧ x ∧ z) ≤ (x ∧ z)→ (y ∧ z).
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Conditions for an equality algebra to be a prelinear equality algebra is gave via very
true operator on equality algebra.

Theorem 3.9. The following conditions are equivalent in each very true equality alge-
bras:

(1) E is prelinear,

(2) τ(x ∨ y) = τ(x) ∨ τ(y),

(3) τ(x→ y) ∨ τ(y → x) = 1,

(4) τ((x→ y)→ z) ≤ τ(y → x)→ z)→ z.

Proof. (1)⇒ (2) Assume that E is prelinear equality algebra. By(VE5) and Proposition
2.3, we obtain, for all x, y ∈ L, τ(x ∨ y) = τ((x → y) → y) ∧ τ((y → x) → x). By
Proposition 3.4(5) and (VE3), we get τ(x ∨ y) ≤ τ((x → y) → (τ(x) ∨ τ(y))) ∧ (τ(y →
x) → (τ(x) ∨ τ(y))). Hence by Proposition 2.5(13), we obtain τ(x ∨ y) ≤ (τ(x →
y))∨ (τ(y → x))→ (τ(x)∨ τ(y)) and hence τ(x∨ y) ≤ τ(x)∨ τ(y). The other inequality
easily by Proposition 3.4(5).

(2)⇒ (3) straightforward.
(3) ⇒ (4) This follows exactly by a proof similar to the proof of the equivalence

between prelinearity and (x→ y)→ z ≤ ((y → x)→ z)→ z) in Proposition 2.4.
(4)⇒ (1) Taking very true operator τ = idE and direct from Proposition 2.4.

Note. We know a BL-algebras is an prelinear quality algebra satisfies the divisibili-
ty. From the above theorem, one can check that the very true prelinear equality algebra
essentially generalize BL-algebras with very true operator, which introduced by Hájek [8]
in 2001 as a mapping τ : E → E satisfying conditions (VE1)-(VE3), (4) in Proposition
3.5 and (2) in Theorem 3.9.

In what follows, we will give a relationship between very true equality algebras and
sate (morphism) equality algebras, which was introduced by L.C. Ciungu [4] to providing
an algebraic foundation for reasoning about probabilities of fuzzy events of a large class
of substructural logics based on an fuzzy equality.

Definition 3.10. [4] An equality algebra with internal state or state equality algebra is
a structure (E , σ) = (E ,∧,∼, σ, 1), where (E ,∧,∼, 1) is an equality algebra and σ : E → E
is a unary operator on E , called internal state or state operator, such that for all x, y ∈ E
the following conditions are satisfied:

(1) σ(x) ≤ σ(y), whenever x ≤ y,

(2) σ(x ∼ x ∧ y) = σ((x ∼ x ∧ y) ∼ y) ∼ σ(y),

(3) σ(σ(x) ∼ σ(y)) = σ(x) ∼ σ(y),

(4) σ(σ(x) ∧ σ(y)) = σ(x) ∧ σ(y).

Definition 3.11. [4] Let (E ,∧ ∼, 1) be an equality algebra. A state morphism operator
on E is a map σ : E → E satisfying the following condition for all x, y ∈ E :

(1) σ(x ∼ y) = σ(x) ∼ σ(y),

(2) σ(x ∧ y) = σ(x) ∧ σ(y),

(3) σ(σ(x)) = σ(x).

The pair (E , σ) is called a state morphism equality algebra.
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Theorem 3.12. [4] Any state morphism on a linearly ordered equality algebra E is an
internal state on E .

Theorem 3.13. Let (E , τ) be a very true equality algebra. Then the following conditions
are equivalent:

(1) (E , τ) is a state morphism equality algebras,

(2) τ = idE .

Proof. (1) ⇒ (2) We note that (E , τ) is not only a state morphism equality algebras
but also a very true equality algebras. In order to prove this important result, we need
some useful result. First, we will prove that x < y implies τ(x) < τ(y). Assume that
x < y, then τ(x) ≤ τ(y). If τ(x) = τ(y), then τ(x → y) = τ(x) → τ(y) = 1. By
Proposition 3.4(13), we have y → x = 1 and hence y ≤ x, which is a contraction to
x < y. Now, we will show that τ(x) = x for all x ∈ E . By (VE2), we have τ(x) ≤ x.
Assume that τ(x) 6= x, then τ(x) < x and hence ττ(x) < τ(x). Thus τ(x) < τ(x), which
is a contradiction. Therefore, τ = idE .

(2)⇒ (1) straightforward.

Theorem 3.14. Let (E , τ) be a very true linearly order equality algebra. Then the
following conditions are equivalent:
(1) (E , τ) is a state equality algebras,
(2) τ = idE .

Proof. It follows from Proposition 3.4(16), we can easily to obtain this result.

4. Very true filters in very true equality algebras

In this section, we introduce very true filters of very true equality algebras and obtain
some important result of them. In particular, using very true filter, we give a charac-
terization of simple very true equality algebras and construct the uniform structures on
very true equality algebras.

Definition 4.1. Let (E , τ) be a very true equality algebra. A nonempty subset F of E
is called a very true filter of (E , τ) if F is a filter of E such that if x ∈ F , then τ(x) ∈ F
for all x ∈ E .

Example 4.2. Let (E , τ) be a very true equality algebra. Then Ker(τ) = {x ∈ X|τ(x) =
1} is a very true filter of (E , τ).

Example 4.3. Consider the Example 3.3, one can easily check that the very true filter
of (E , τ) are {1}, {a, b, 1} and E . On the other hand, one can see that {b, 1} is not a very
true filter of (E , τ), but it is a filter of E , that is to say, not every filter is very true filter.

As an application of very true filters, we give a characterizations of simple very true
equality algebras. For obtaining this important result, we need the following proposition.

Proposition 4.4. Let (E , τ) be a very true equality algebra.

(1) If F is a filter of τ(E), then τ−1(F ) is a very true filter of (E , τ),
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(2) If F is a very true filter of (E , τ), then τ(F ) is a filter of τ(E).

Proof. (1) Suppose that F is a filter of τ(E). If x, x ∼ y ∈ τ−1(F ). Then τ(x), τ(x ∼
y) ∈ F . Since τ(x ∼ y) ≤ τ(x) ∼ τ(y) and τ(x) ∼ τ(y) ∈ F , thus τ(y) ∈ F , that is
y ∈ τ−1(F ). Let x, y ∈ E such that x ∈ τ−1(F ) and x ≤ y. Then τ(x) ≤ τ(y). Since
τ(x) ∈ F and τ(y) ∈ τ(E), we can obtain that τ(y) ∈ F , that is y ∈ τ−1(F ). Obviously,
1 ∈ τ−(F ). Therefore τ−1(F ) is a filter of E .

If x ∈ τ−1(F ), then τ(x) ∈ F , so ττ(x) = τ(x) ∈ F , that is, τ(x) ∈ τ−1(F ).
Therefore, τ−1(F ) is a very true filter of (E , τ).

(2) First, we have τ(F ) = F∩τ(E). Indeed, if x ∈ F∩τ(E), then x = τ(x) as x ∈ τ(E),
and τ(x) ∈ τ(F ) as x ∈ F . Thus, we have x ∈ τ(F ). It follows that F ∩ τ(E) ⊆ τ(F ).
Conversely, if y ∈ τ(F ), then there exists x ∈ F such that y = τ(x). Since F is an very
true filter of (E , τ), we obtain y = τ(x) ∈ F . Therefore, τ(F ) = F ∩ τ(E).

If x, x y ∈ τ(F ) = F ∩ τ(E), then τ(y) ∈ F ∩ τ(E) = τ(F ) and hence y ∈ τ(F ). On
the other hand, if x ∈ τ(F ) = F ∩ τ(E), y ∈ τ(E) such that x ≤ y, then y ∈ F ∩ τ(E) =
τ(F ). Therefore, τ(F ) is a filter of τ(E).

Now, we introduce simple very true equality algebras and give a characterizations of
it via very true filter.

Definition 4.5. A very true equality algebra (E , τ) is called simple very true if it has
exactly two very true filter: {1} and E .

Example 4.6. For each equality algebra E , (E , τ1) is a simple very true equality algebra,
where τ1(1) = 1 and τ1(0) = 0 if x < 1.

Theorem 4.7. Let (E , τ) be a very true equality algebra. Then the following are equiv-
alent:

(1) (E , τ) is a simple very true equality algebra,

(2) τ(E) is a simple equality algebra.

Proof. (1) ⇒ (2) Let F be a filter of τ(E) and F 6= {1}. It follows from Proposition
4.4(1) that τ−1(F ) is a very true filter of (E , τ). Since (E , τ) is very true simple, we have
that τ−1(F ) = {1} or τ−1(F ) = E . Notice that F ⊆ τ−1(F ) (if x ∈ F , then τ(x) = x,
that is, x ∈ τ−1(F ), we obtain that τ−1(F ) 6= {1}. Thus, τ−1(F ) = E . Then 0 ∈ τ−1(F ),
that is, 0 = τ(0) ∈ F . So we obtain that F = τ(E). Therefore, τ(E) is simple equality
algebra.

(2) ⇒ (1) Let F be a very true filter of (E , τ) and F 6= {1}. By Proposition 4.4(2),
we obtain that τ(F ) is a filter of τ(E). Since τ(E) is simple equality algebra, we obtain
that τ(F ) = {1} or τ(F ) = E . Since Ker(τ) = {1}, we have F 6= {1}. Thus, τ(F ) = E .
Then 0 ∈ τ(F ), that is, 0 ∈ F . It follows that F = E . Therefore (E , τ) is a simple very
true equality algebra.

Note. The above theorem brings a method of how to check a very true equality
algebra is simple very true. As an application of above theorem, one can easily check
that the very true equality algebra in example 4.6 is simple very true since τ(E) = {0, 1}
is a simple equality algebra.

For any very true filter F of (E , τ). Defined by τF : E/F −→ E/F as a mapping
τF ([x]) = [τ(x)].
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Proposition 4.8. Let (E , τ) be a very true equality algebra and F be a very true filter
of very true equality algebra (E , τ). Then τF is a very true operator on E/F .

Proof. First, we will prove that τF is well defined. Indeed, assume that [x] = [y] for
x, y ∈ E . Then (x, y) ∈≡F , i.e., x ∼ y ∈ F . Since F is a very true filter and hence
τ(x ∼ y) ∈ F . Now, applying (VE4) of Definition 3.1, τ(x ∼ y) ≤ τ(x) ∼ τ(y) ∈ F .
Thus (τ(x), τ(y)) ∈ F and [τ(x)] = [τ(y)]. The rest of the proof is easy:

(VE1) τF ([1]) = [τ(1)] = [1],

(VE2) τF ([x]) = [τ(x)] ≤ [x],

(VE3) τF ([x]) = [τ(x)] ≤ [ττ(x)] ≤ τF τF ([x]),

(VE4) τF ([x] ∼ [y]) = [τ(x ∼ y)] ≤ [τ(x) ∼ τ(y)] = τF ([x]) ∼ τF ([y]),

(VE5) τF ([x] ∧ [y]) = [τ(x ∧ y)] = [τ(x) ∧ τ(y)] = τF ([x]) ∧ τF ([y]).

Combine them, one can obtain that (E/F, τF ) is a very true equality algebra.

Proposition 4.9. In the very true equality algebra (E/Ker(τ), τKer(τ)) we have:

(1) [x] ≤ [y] iff τ(x ∼ x ∧ y) = 1 iff τ(x→ y) = 1,

(2) [x] = [y] iff τ(x ∼ y) = 1.

Proof. (1) Applying the definition of E/Ker(τ) we get: [x] ≤ [y] iff [x] • [y] = [x] iff
[x] = [x ∧ y] iff [x] ⇀ [x ∧ y] = [1] iff [x ∼ x ∧ y] = [1] iff x ∼ x ∧ y ∈ Ker(τ) iff
τ(x ∼ x ∧ y) = 1 iff τ(x→ y) = 1.

(2) We have [x] = [y] iff [x] ⇀ [y] = [1] iff [x ∼ y] = [1] iff x ∼ y ∈ Ker(τ) iff
τ(x ∼ y) = 1.

Definition 4.10. Let (E , τ) be a very true equality algebra and θ be a congruence on
E . Then θ is called a very true congruence on (E , τ) if (x, y) ∈ θ implies (τ(x), τ(y)) ∈ θ
for each x, y ∈ E .

Example 4.11. Consider the Example 3.4, one can see that R = {{0, 0}, {a, a}, {b, b},
{1, 1}, {a, b}, {b, a}, {a, 1}, {1, a}, {1, b}, {b, 1}} is a very true congruence on a very true
equality algebra (E , τ).

Theorem 4.12. Let (E , τ) be a very true equality algebra. Then there is a one to one
correspondence between its very true filters and its very true congruences.

Proof. Suppose that θ is a very true congruence relation on (E , τ). Clearly Fθ = {x ∈
E|(x, 1) ∈ θ} is a very true filter of (E , τ). Now given x ∈ Fθ, we have (x, 1) ∈ η and hence
(τ(x), 1) = (τ(x), τ(1)) ∈ θ and therefore τ(x) ∈ Fθ. This proves that Fθ is a very true
filter on (E , τ). Conversely, let F be a very true filter. Then θF is a very true congruence
on very true equality algebra, since for each (x, y) ∈ θF , we have x ∼ y ∈ F . Since F is a
very true filter and hence τ(x ∼ y) ∈ F . By (VE4), we have τ(x) ∼ τ(y) ∈ θF , thus θF is
an very true congruence of (E , τ). It can be easily shown that gh(θ) = θ and hg(F ) = F ,
for all very true congruence θ and very true filter F of (E , τ).

As another applications of very true filter on very true equality algebra, we consider
the uniformity structure on a very true equality algebra.
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Theorem 4.13. Let (E , τ) be a very true equality algebra and F be a very true filter
of (E , τ). Define UF = {(x, y) ∈ E × E|τ(x) ∼ τ(y) ∈ F} and K∗ = {UF |F is a very true
filter of (E , τ)}. Then K∗ satisfies the conditions (U1)-(U4).

Proof. Now, we will show that K∗ satisfies the conditions (U1)-(U4).
(U1) Let UF ∈ K∗ and (x, x) ∈ 4. Since x ∼ x = 1 ∈ F , we have (x, x) ∈ UF .

Therefore (U1) holds.
(U2) Note that (x, y) ∈ UF if and only if τ(x) ∼ τ(y) ∈ F if and only if τ(y) ∼ τ(x) ∈

F if and only if (y, x) ∈ UF if and only if (x, y) ∈ U−1
F . Thus U−1

F = UF ∈ K∗. Therefore
(U2) is true.

(U3) Let Σ(F ) = {Fa|Fa ⊆ F} be the collection of very true filters contained in F .
Clearly, Σ(F ) is not empty. Let G be the very true filter generated by ∪aFa. Then
UG ⊆ K∗. It is sufficient to show that UG ◦ UG ⊆ UF . If (x, y) ∈ UG ◦ UG, then there
exists z ∈ E such that (x, z) ∈ UG and (z, y) ∈ UG. It follows from (E7) in Definition
2.1 that (x, y) ∈ UG, that is, τ(x) ∼ τ(y) ∈ G. Since G is the minimal very true filter
containing ∪aFa and ∪aFa ⊆ F , it follows that G ⊆ F . Thus τ(x) ∼ τ(y) ∈ F and hence
(x, y) ∈ UF . Therefore UG ◦ UG ⊆ UF is true.

(U4) This will from the observation that UG ∩ UF = UG∩F for all UG, UF ∈ K∗.
Indeed, if (x, y) ∈ UG ∩ UF . Then (x, y) ∈ UG and (x, y) ∈ UF , which implies τ(x) ∼
τ(y) ∈ G and τ(x) ∼ τ(y) ∈ F . Thus τ(x) ∼ τ(y) ∈ G ∩ F and hence (x, y) ∈ UG∩F .
Similary, we can show that UF∩G ⊆ UF∩UG, whence UF∩G = UF∩UG. This completeness
the proof.

Theorem 4.14. Let (E , τ) be a very true equality algebra. Define K = {U ∈ E×E|UF ⊆
U , for some UF ∈ K∗}. Then K satisfies a uniformity on (E , τ) and hence the pair
((E , τ),K) is a uniform space.

Proof. Using Theorem 4.13, we can show that K satisfies the conditions (U1) − (U4).
Now, we will show that it satisfies (U5). If U ∈ K and U ⊆ V ⊆ E ×E . Then there exists
a UF ∈ K∗ such that UF ⊆ U ⊆ V , which implies that V ∈ K. Therefore,((E , τ),K) is a
uniform space.

For x ∈ E and U ∈ K, we define

U [x] = {y ∈ E|(x, y) ∈ U}.

Theorem 4.15. Let (E , τ) be a very true equality algebra. Define T = {G ⊆ E|τx ∈
G, ∃U ∈ K,U [x] ⊆ G}. Then T is a topology on (E , τ).

Proof. It is clear ∅ ∈ T and E ∈ T . Also from the nature of that definition, it is clear
that T is closed under arbitrary union. Finally to show that T is closed under finite
intersection, let G,W ∈ T and suppose x ∈ G∩W . Then there exist U and V ∈ K such
that U [x] ⊆ G and V [x] ⊆ W . Let N = U ∩ V , then N ∈ K. Also N [x] ⊆ U [x] ∩ V [x]
and hence N [x] ⊆ G ∩W , thus G ∩W ∈ T . Therefore T is a topology on (E , τ).

Note We denote the uniform topology obtained by an arbitrary family Λ, by TΛ and If
Λ = {F}, we denote it by TF .

Theorem 4.16. Let (E , τ) be a very true equality algebra. For each x ∈ E , the collection
Ux = {U [x]|U ∈ K} forms a neighborhood base at x, making (E , τ) a topological space.
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Proof. We note that x ∈ U [x] for each x. Since U1[x] ∩ U2[x] = (U1 ∩ U2)[x], which
means that the intersection of neighborhoods is a neighborhood. Finally, if U [x] ∈ Ux
then there exists a W ∈ K such that W ◦W ⊆ U by (U3). Then for any y ∈W [x],W [y],
so this property of neighborhoods is satisfied.

Theorem 4.17. Let (E , τ) be a very true equality algebra and (E ,TKer(τ)) be a compact
topological space. Then τ(E) is finite.

Proof. Since E = ∪{UF [x]|x ∈ E} and (E , TF ) is a compact topological space. Thus there
exist x1, x2 · · · , xn ∈ E such that E = ∪UF [xi]. Now, let x be a arbitrary element of E .
By Theorem 3.7, τ : E −→ τ(E) is a homomorphism and by the Note after the Theorem
3.6, (τ(E), , 1) is an equality algebra, hence we have τ(UF [x]) = {τ(y)|y ∈ UF [x]} =
{τ(y)|(τ(x), τ(y) ∈ θF } = {τ(y)|τ(x) ∼ τ(y) ∈ F} = {τ(y)|τ(x) = τ(y)} = {τ(x)}. Thus
τ(UF [x]) = {τ(x)} and so Fixτ = ∪UF [xi] = {τ(x1), · · · , τ(xn)}, that is, τ(E) is finite.

Corollary 4.18. Let (E , τ) be a very true equality algebra and (E ,TKer(τ)) be a compact
topological space. Then τ(E) is a compact subset of E .

Proof. It follows from Theorem 4.17 directly and hence we omit it.

5. Conclusion

As we mentioned in the introduction, the study of equality algebras is motivated by
the goal to develop appropriate algebraic semantics for fuzzy type theory, so a concept of
fuzzy type theory should be introduced based on these algebras. In this paper, motivating
by the previous research on very true residuated lattice, very true MV-algebras and very
true BL-algebras, we extended the concept of very true operators to the more general
fuzzy structures, namely equality algebras. We introduce and study very true equality
algebras and prove some new results regarding these structures. The aim of this paper
is to provide an algebraic foundation for fuzzy type theory. Since the above topics are of
current interest we suggest further directions of research:

1. Characterize very true filter generated by a subset of an very true equality algebra
in terms of fuzzy equality operation.

2. Define and characterize subdirectly irreducible very true equality algebras.
3. Establish the logic system corresponding to very true equality algebra and prove

the soundness and completeness theorem of this logic.
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Abstract

In this paper, a system of accretive inclusions is proposed and a splitting iter-

ative method is investigated for solutions of proposed system of operator inclusion

problems. Under suitable conditions on the parameters, strong convergence of our

splitting iterative method is established in a reflexive Banach space.
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1 Introduction

In the area of nonlinear analysis, the theory of accretive operators is an important and

developing field [3, 4]. The class of accretive operators is firmly connected with equations

of evolutions found in the heat, wave, Schrödinger and similar other equations [5]. Many

problems in operations research and mathematical physics can be written as variational

inequalities, equilibrium problems or operator inclusions with accretive operators [2, 10,

17].

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and

‖ · ‖, respectively. One popular method for solving the following inclusion problem:

find z ∈ H such that 0 ∈ Az, (1.1)

∗Corresponding author
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where A : H → 2H is an m-accretive operator, is the proximal point algorithm, which

was proposed by Martinet [15, 16] and generalized by Rockafellar [20, 21]. Rockafellar [20]

proved the weak convergence of the sequence {xn} defined by

xn+1 = JA
rn

xn, n ∈ N (1.2)

to an element of solution set of problem (1.1). The weak and strong convergence of the

sequence {xn} defined by (1.2) have been extensively discussed in Hilbert and Banach

spaces (see [7, 28, 29, 30, 31] and the references therein). The proximal point like methods

for finding solutions of problem (1.1) have been studied by Lehdili and Moudafi [12] and

Tossings [26] in Hilbert spaces and by Sahu and Yao [23] in Banach spaces.

Many nonlinear problems arising in applied areas such as image recovery, signal pro-

cessing, and machine learning can be mathematically modeled in form of inclusion problem:

to find z ∈ C such that

0 ∈ (A + B)z, (1.3)

where C is a nonempty closed convex subset of H , A : H → 2H and B : C → H are

monotone operators. For instance, a stationary solution to the initial value problem of the

evolution equation

0 ∈
∂u

∂t
+ Fu, u0 = u(0)

can be recast as (1.3) when the governing maximal monotone F is of the form F = A+B,

see, for example, [13].

The central problem is to iteratively find the solution of the inclusion problem (1.3)

when A and B are two monotone operators in a Hilbert space H . One method for finding

solutions of problem (1.3) is splitting method. A splitting method for (1.3) means an

iterative method for which each iteration involves only with the individual operators A

and B, but not the sum A + B. Splitting methods for linear equations were introduced

by Douglas and Rachford [8] and Peaceman and Rachford [18]. Extensions to nonlinear

equations in Hilbert spaces were carried out by Kellogg [9] and Lions and Mercier [13] (see

also [22, 27]).

In this paper, we are interested in the following system of operator inclusion problems:

find z ∈ C such that 0 ∈ (Ai + Bi)z, i ∈ ∆N := {1, 2, · · · , N}, (1.4)

in the framework of a Banach space X , where N ≥ 1 is a positive integer, C is a

nonempty closed convex subset of X , Ai : X → 2X is an m-accretive operator such

that
⋂

i∈∆N
D(Ai) ⊆ C and Bi : C → X an operator. The inclusion problem (1.4) is more

general in nature. For instance, if Bi is the operator constantly zero for all i ∈ ∆N , the

problem (1.4) reduces

find z ∈ C such that 0 ∈ Aiz, i ∈ ∆N . (1.5)

The purpose of this paper is to introduce a forward-backward splitting method to

solve the system of operator inclusion problem (1.4) in a Banach space. We prove strong

convergence of iterative sequences generated by our algorithm. In Section 2, we give

duality mappings, nonexpansive mappings and their properties and accretive operators

and their properties. In Section 3, we introduce a forward-backward splitting method and

state main theoretical result of the paper. Our iterative method improves and generalizes

the corresponding results of inclusion problem (1.5).

2
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2 Preliminaries

2.1 Duality mappings

A continuous strictly increasing function ϕ : R+ → R+ is said to be a gauge if ϕ(0) = 0

and limt→∞ ϕ(t) = ∞. The mapping Jϕ : X → 2X∗

defined by

Jϕ(x) = {j ∈ X∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ = ϕ(‖x‖)}, x ∈ X,

is called the duality mapping with gauge ϕ. In the special case where ϕ(t) = t, the duality

mapping Jϕ =: J is the classical normalized duality mapping. In the case ϕ(t) = tp−1,

p > 1, the duality mapping Jϕ =: Jp is called the generalized duality mapping and it is

given by

Jp(x) := {j ∈ X∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ = ‖x‖p−1}, x ∈ X.

Note that if p = 2, then J2 = J is the normalized duality mapping. By ϕ we always mean

a gauge and by Φ the corresponding function defined by

Φ(t) =

∫ t

0
ϕ(s)ds.

For a smooth Banach space X , we have

Φ(‖x + y‖) ≤ Φ(‖x‖) + 〈y, Jϕ(x + y)〉 for all x, y ∈ X ; (2.1)

or considering the normalized duality mapping J, we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x + y)〉 for all x, y ∈ X.

2.2 Nonexpansive mappings

Let C be a nonempty subset of a Banach space X and T : C → X a mapping. T is said

to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x − y‖ for all x, y ∈ C.

The set of fixed point of T is denoted by Fix(T ).

The following result was proved by Kirk [11].

Lemma 2.1. (Kirk [11]) Let X be a reflexive Banach space and let C be a nonempty

closed convex bounded subset of X which has normal structure. Let T be a nonexpansive

mapping of C into itself. Then T has a fixed point.

A subset C of a Banach space X is called a retract of X if there exists a continuous

mapping P from X onto C such that Px = x for all x in C. We call such P a retraction

of X onto C. It follows that if a mapping P is a retraction, then Py = y for all y in the

range of P . A retraction P is said to be sunny if P (Px + t(x − Px)) = Px for each x in

X and t ≥ 0. If a sunny retraction P is also nonexpansive, then C is said to be a sunny

nonexpansive retract of X .

The following lemmas will be useful for our main result.

3
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Lemma 2.2. ([1, Corollary 5.6.4]) Let X be a Banach space with a weakly continuous

duality mapping Jϕ : X → X∗ with gauge function ϕ. Let C be a nonempty closed convex

subset of X and T : C → C an nonexpansive mapping. Then I − T is demiclosed at

zero, that is, if {xn} is a sequence in C which converges weakly to x and if the sequence

{xn − Txn} converges strongly to zero, then x − Tx = 0.

Lemma 2.3. ([6]) Let X be a strictly convex Banach space. Let C be a nonempty closed

convex subset of X and let N ≥ 1 be a positive integer. For each i ∈ ∆N , let Ti : C → C

be a nonexpansive mapping such that
⋂

i∈∆N
Fix(Ti) 6= ∅. Let {δi}i∈∆N

⊂ (0, 1) such

that
∑N

i=1 δi = 1. Then the mapping
∑N

i=1 δiTi is nonexpansive with Fix(
∑N

i=1 δiTi) =
⋂

i∈∆N
Fix(Ti).

Lemma 2.4. Let C be a convex subset of a smooth Banach space X , D a nonempty subset

of C and P a retraction from C onto D. Then the following are equivalent:

(a) P is a sunny and nonexpansive.

(b) 〈x − Px, J(z − Px)〉 ≤ 0 for all x ∈ C, z ∈ D.

(c) 〈x− y, J(Px − Py)〉 ≥ ‖Px − Py‖2 for all x, y ∈ C.

Lemma 2.5. Let X be a reflexive Banach space which has a weakly continuous duality

map Jϕ. Let C be a nonempty closed convex subset of X and T : C → C a nonexpansive

mapping such that Fix(T ) 6= ∅. Then Fix(T ) is the sunny nonexpansive retract of C.

The property (N ) alludes to the fact that in order to solve the system of operator

inclusions (1.4).

Definition 2.6. ([22]) Let C be a nonempty closed convex subset of a Banach space X .

An operator B : C → X is said to satisfy the property (N ) on (0, γX,B) if there exists

γX,B ∈ (0,∞], depends on X and B, such that I − ξB : C → C is nonexpansive for each

ξ ∈ (0, γX,B).

Remark 2.7. For a nonexpansive mapping T : C → C with B = I − T , the average

mapping Tw = I − wB is always nonexpansive for each w ∈ (0, γX,B), where γX,B = 1.

2.3 Accretive operators

Let X be a real Banach space. For an operator A : X → 2X , we define its domain, range

and graph as follows:

D(A) = {x ∈ X : Ax 6= ∅},

R(A) =
⋃

{Az : z ∈ D(A)},

and

G(A) = {(x, y) ∈ X × X : x ∈ D(A), y ∈ Ax},

respectively. Thus, we write A : X → 2X as follows: A ⊆ X ×X. The inverse A−1 of A is

defined by

x ∈ A−1y if and only if y ∈ Ax.

The operator A is said to be accretive if for each xi ∈ D(A) and yi ∈ Axi (i = 1, 2),

there exists j ∈ J(x1 − x2) such that 〈y1 − y2, j〉 ≥ 0. An accretive operator A is said

4
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to be maximal accretive if there is no proper accretive extension of A and m-accretive if

R(I+A) = X , where I stands for the identity operator on X (It follows that R(I+rA) = X

for all r > 0). If A is m-accretive, then it is maximal accretive, but the converse is not

true in general. If A is accretive, then we can define, for each λ > 0, a nonexpansive

single-valued mapping JA
λ : R(1 + λA) → D(A) by

JA
λ = (I + λA)−1.

It is called the resolvent of A. It is well known that if A is an m-accretive operator on a

Banach space X , then for each λ > 0, the resolvent JA
λ = (I + λA)−1 is a single-valued

nonexpansive mapping whose domain is entire space X . An accretive operator A defined on

a Banach space X is said to satisfy the range condition if D(A) ⊂ R(1+λA) for all λ > 0,

where D(A) denotes the closure of the domain of A. It is well known that for an accretive

operator A which satisfies the range condition, A−1(0) = Fix(JA
λ ) for all λ > 0. We also

define the Yosida approximation Ar by Ar = (I − JA
r )/r. We know that Arx ∈ AJA

r x for

all x ∈ R(I + rA) and ‖Arx‖ ≤ |Ax| = inf{‖y‖ : y ∈ Ax} for all x ∈ D(A) ∩ R(I + rA).

We also know the following [25]: For each λ, µ > 0 and x ∈ R(I + λA) ∩ R(I + µA), it

holds that
∥

∥JA
λ x − JA

µ x
∥

∥ ≤
|λ − µ|

λ
‖x − JA

λ x‖.

Lemma 2.8. ([22]) Let C be a nonempty closed convex subset of a Banach space X ,

A ⊆ X × X an accretive operator such that D(A) ⊆ C ⊆
⋂

t>0 R(I + tA) and B : C → X

an operator such that Zer(A+B) 6= ∅ and B has the property (N ) on (0, γX,B), where γX,B

is a constant depends on X and B. For r ∈ (0, γX,B), define an operator JA,B
r : C → C

by

JA,B
r x = JA

r (I − rB)x, x ∈ C.

Then the following statements hold.

(a) JA,B
r is nonexpansive.

(b) Fix(JA,B
r ) = Zer(A + B).

Lemma 2.9. ([24]) Let {xn} and {yn} be bounded sequences in a Banach space X and let

{βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞
βn < 1. Suppose that

xn+1 = (1− βn)xn + βnyn for all n ∈ N

and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.10. ([14]) Let {an} and {cn} be two sequences of nonnegative real numbers and

let {bn} be a sequence in R satisfying the following condition:

an+1 ≤ (1− αn)an + bn + cn for all n ∈ N,

where {αn} is a sequence in (0, 1]. Assume that
∑

∞

n=1 cn < ∞. Then the following state-

ments hold:

5
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(a) If bn ≤ Kαn for all n ∈ N and for some K ≥ 0, then

an+1 ≤ δna1 + (1 − δn)K +

n
∑

j=1

cj for all n ∈ N,

where δn =
∏n

j=1(1− αj) and hence {an} is bounded.

(b) If
∑

∞

n=1 αn = ∞ and lim supn→∞

bn

αn
≤ 0, then {an}

∞

n=1 converges to zero.

3 Main results

Now we are ready to prove our main result for solving the system of operator inclusions

(1.4) in the framework of Banach space.

Theorem 3.1. Let X be a strictly convex and reflexive Banach space which has a weakly

continuous duality map Jϕ. Let C be a nonempty closed convex subset of X and let N ≥ 1

be a positive integer. Let f : C → C be a contraction mapping with Lipschitz constant kf .

For each i ∈ ∆N , let Ai : X → 2X be an m-accretive operator such that
⋂

i∈∆N
D(Ai) ⊆ C

and Bi : C → X an operator such that S :=
⋂

i∈∆N
Zer(Ai + Bi) 6= ∅. For each i ∈ ∆N ,

let Bi has the property (N ) on (0, γX,Bi
), where γX,Bi

is a constant depends on X and Bi.

Let {αn}, {βn} and {γn} be real number sequences in (0, 1) and let {δn,i} be a real

number sequence in (0, 1) for each i ∈ ∆N satisfying the following conditions:

(C1) αn + βn + γn =
∑N

i=1 δn,i = 1 for all n∈ N,

(C2) limn→∞ αn = 0 and
∑

∞

n=1 αn = ∞,

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞
βn < 1,

(C4) limn→∞ δn,i = δi ∈ (0, 1) for all i ∈ ∆N .

Let {xn} be a sequence in C generated by the following splitting iterative method:

xn+1 = αnf(xn) + βnxn + γn

N
∑

n=1

δn,iJ
Ai

ri
(I − riB)xn for all n ∈ N, (3.1)

where {ri}i∈∆N
is a set of positive real numbers. Then {xn} converges strongly to x∗ ∈ C,

which is the unique solution to the following variational inequality:

to find z ∈
⋂

i∈∆N

Zer(Ai + Bi) such that 〈(I − f)z, x − z〉 ≥ 0 (3.2)

for all x ∈
⋂

i∈∆N
Zer(Ai + Bi).

Proof. (a) Define T =
∑N

i=1 δiJ
Ai

ri
(I − riB). From Lemmas 2.3 and 2.8, we see that T is

nonexpansive with Fix(T ) =
⋂

i∈∆N
Zer(Ai + Bi). From Lemma 2.5 shows that S is the

Sunny nonexpansive retract of C. Let QS be the sunny nonexpansive retraction of C onto

S. It follows that QSf is a contraction. Hence there exists a unique fixed point x∗ ∈ C of

QSf. From Lemma 2.4 that the variational inequality problem (3.2) has a unique solution

x∗ ∈ C.

(b) We proceed with the following steps:

Step I: {xn} is bounded.
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From (3.1), we have

‖xn+1 − x∗‖ ≤ αn‖f(xn) − x∗‖ + βn‖xn − x∗‖ + γn

∥

∥

∥

∥

∥

N
∑

i=1

δn,iJ
Ai

ri
(I − riB)xn − x∗

∥

∥

∥

∥

∥

≤ kfαn‖xn − x∗‖ + αn‖f(x∗) − x∗‖ + βn‖xn − x∗‖

+ γn

N
∑

i=1

δn,i‖J
Ai

ri
(I − riB)xn − x∗‖

≤ kfαn‖xn − x∗‖ + αn‖f(x∗) − x∗‖ + (1 − αn)‖xn − x∗‖

= (1− (1− kf)αn)‖xn − x∗‖ + αn‖f(x∗) − x∗‖

≤ max

{

‖xn − x∗‖,
‖f(x∗)− x∗‖

1 − kf

}

≤ max

{

‖x1 − x∗‖,
‖f(x∗) − x∗‖

1− kf

}

.

Thus, {xn} is bounded.

Step II: ‖xn+1 − xn‖ → 0 and ‖xn − Txn‖ → 0 as n → ∞.

Set yn =
∑N

n=1 δn,iJ
Ai

ri
(I − riB)xn. Note

‖yn+1 − yn‖ =

∥

∥

∥

∥

∥

N
∑

i=1

δn+1,iJ
Ai

ri
(I − riB)xn+1 −

N
∑

i=1

δn,iJ
Ai

ri
(I − riB)xn

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

N
∑

i=1

δn+1,iJ
Ai

ri
(I − riB)xn+1 −

N
∑

i=1

δn+1,iJ
Ai

ri
(I − riB)xn

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

N
∑

i=1

δn+1,iJ
Ai

ri
(I − riB)xn −

N
∑

i=1

δn,iJ
Ai

ri
(I − riB)xn

∥

∥

∥

∥

∥

≤
N

∑

i=1

δn+1,i‖J
Ai

ri
(I − riB)xn+1 − JAi

ri
(I − riB)xn‖

+

∥

∥

∥

∥

∥

N
∑

i=1

(δn+1,i − δn,i)J
Ai

ri
(I − riB)xn

∥

∥

∥

∥

∥

≤ ‖xn+1 − xn‖ +

N
∑

i=1

|δn+1,i − δn,i| ‖J
Ai

ri
(I − riB)xn‖.

From (3.1), we have

xn+1 = αnf(xn) + βnxn + γnyn

= βnxn + (1− βn)zn,

where

zn =
1

1− βn
[αnf(xn) + γnyn] .
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Hence

zn+1 − zn =
1

1 − βn+1
[αn+1f(xn+1) + γn+1yn+1] −

1

1 − βn
[αnf(xn) + γnyn]

=
1

1 − βn+1
[αn+1f(xn+1) + (1− αn+1 − βn+1)yn+1]

−
1

1 − βn
[αnf(xn) + (1 − αn − βn)yn]

=
αn+1

1 − βn+1
[f(xn+1) − yn+1] −

αn

1 − βn
[f(xn) − yn] + yn+1 − yn.

Note

‖zn+1 − zn‖ ≤
αn+1

1− βn+1
‖f(xn+1) − yn+1‖ +

αn

1− βn
‖f(xn) − yn‖ + ‖yn+1 − γn‖

≤
αn+1

1− βn+1
‖f(xn+1) − yn+1‖ +

αn

1− βn
‖f(xn) − yn‖

+ ‖xn+1 − xn‖ +
N

∑

i=1

|δn+1,i − δn,i| ‖J
Ai

ri
(I − riB)xn‖.

Thus, we have

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤
αn+1

1 − βn+1
‖f(xn+1)− yn+1‖ +

αn

1 − βn

‖f(xn)− yn‖

+

N
∑

i=1

|δn+1,i − δn,i|‖J
Ai

ri
(I − riB)xn‖.

From the conditions (C1)-(C4), we get

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

From Lemma 2.9, we obtain that

lim
n→∞

‖zn − xn‖ = 0.

Since xn+1 − xn = (1− βn)(zn − xn), we have

‖xn+1 − xn‖ = (1 − βn)‖zn − xn‖ ≤ ‖zn − xn‖ → 0 as n → ∞.

Observe that

‖xn − Txn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Txn‖

≤ ‖xn − xn+1‖ + αn‖f(xn) − Txn‖ + βn‖xn − Txn‖

+ γn

∥

∥

∥

∥

∥

N
∑

i=1

(δn,i − δi)J
Ai

ri
(I − riB)xn

∥

∥

∥

∥

∥

≤ ‖xn − xn+1‖ + αn‖f(xn) − Txn‖ + βn‖xn − Txn‖

+ γn

N
∑

i=1

|δn,i − δi| ‖J
Ai

ri
(I − riB)xn‖,
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which implies that

(1− βn)‖xn − Txn‖ ≤ ‖xn − xn+1‖+ αn‖f(xn) − Txn‖

+ γn

N
∑

i=1

|δn,i − δi| ‖J
Ai

ri
(I − riB)xn‖.

Thus, we have

lim
n→∞

‖xn − Txn‖ = 0.

Step III: {xn} converges strongly to x∗.

Take a subsequence {xni
} of {xn} such that

lim sup
n→∞

〈f(x∗)− x∗, Jϕ(xn − x∗)〉 = lim
i→∞

〈f(x∗) − x∗, Jϕ(xni
− x∗)〉.

Since X is reflexive, we may further assume that xni
⇀ z for some z ∈ C. It follows from

Lemma 2.2 that z ∈ Fix(T ). From the weak continuity of the duality mapping Jϕ and

(3.2) we obtain that

lim sup
n→∞

〈f(x∗)− x∗, Jϕ(xn − x∗)〉 = lim
i→∞

〈f(x∗) − x∗, Jϕ(xni
− x∗)〉

= 〈f(x∗)− x∗, Jϕ(z − x∗)〉

≤ 0.

From (2.1) and (3.1), we have

Φ(‖xn+1 − x∗‖)

= Φ(‖αnf(xn) + βnxn + γnyn − x∗‖)

≤ Φ(‖αn(f(xn) − f(x∗) + βn(xn − x∗) + γn(yn − x∗) + αn(f(x∗) − x∗)‖)

≤ Φ(‖αn(f(xn) − f(x∗) + βn(xn − x∗) + γn(yn − x∗)‖)

+ αn〈f(x∗)− x∗, Jϕ(xn+1 − x∗)〉

≤ Φ(αn‖f(xn)− f(x∗)‖ + βn‖xn − x∗‖ + γn‖yn − x∗‖)

+ αn〈f(x∗)− x∗, Jϕ(xn+1 − x∗)〉

≤ Φ((1− (1 − kf)αn)‖xn − x∗‖) + αn〈f(x∗) − x∗, Jϕ(xn+1 − x∗)〉

≤ (1− (1− kf )αn)Φ(‖xn − x∗‖) + αn〈f(x∗) − x∗, Jϕ(xn+1 − x∗)〉.

Noticing that lim supn→∞
〈f(x∗) − x∗, Jϕ(xn+1 − x∗)〉 ≤ 0 and

∑

∞

n=1 αn = ∞. Therefore,

we conclude from Lemma 2.10 that Φ(‖xn −x∗‖) → 0, that is, {xn} converges strongly to

x∗.

Theorem 3.1 is more general in nature due to the property (N ) of operators Bi, there-

fore, we are able to derive the some new and known results from it. To demonstrate the

wide range of applicability of our convergence theory, a few examples are detailed below.

In particular for Bi = 0, we immediately obtain an improvement upon Qing and Lv [19,

Theorem 2.1] as follows:
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Corollary 3.2. Let X be a strictly convex and reflexive Banach space which has a weakly

continuous duality map Jϕ. Let C be a nonempty closed convex subset of X and let N ≥ 1

be a positive integer. Let f : C → C be a contraction mapping with Lipschitz constant kf .

For each i ∈ ∆N , let Ai : X → 2X be an m-accretive operator such that
⋂

i∈∆N
D(Ai) ⊆ C

such that
⋂

i∈∆N
A−1

i (0) 6= ∅. Let {αn}, {βn} and {γn} be real number sequences in (0, 1)

and let {δn,i} be a real number sequence in (0, 1) for each i ∈ ∆N satisfying the conditions

(C1)-(C4).

Let {xn} be a sequence in C generated in the following iterative process:

xn+1 = αnf(xn) + βnxn + γn

N
∑

n=1

δn,iJ
Ai

ri
xn for all n ∈ N,

where {ri}i∈∆N
is a set of positive real numbers. Then {xn} converges strongly to x∗ ∈ C,

which is the unique solution to the following variational inequality:

to find z ∈
⋂

i∈∆N

A−1
i (0) such that 〈(I − f)z, x − z〉 ≥ 0

for all x ∈
⋂

i∈∆N
A−1

i (0).

Theorem 3.3. Let X be a strictly convex and reflexive Banach space which has a weakly

continuous duality map Jϕ. Let C be a nonempty closed convex subset of X and let N ≥ 1

be a positive integer. Let f : C → C be a contraction mapping with Lipschitz constant kf .

For each i ∈ ∆N , let Ai : X → 2X be an m-accretive operator such that
⋂

i∈∆N
D(Ai) ⊆ C

and Ti : C → C a nonexpansive with Bi = I − Ti such that S :=
⋂

i∈∆N
Zer(Ai + Bi) 6= ∅.

Let {αn}, {βn} and {γn} be real number sequences in (0, 1) and let {δn,i} be a real

number sequence in (0, 1) for each i ∈ ∆N satisfying the conditions (C1)-(C4).

Let {xn} be a sequence in C generated in the following iterative process:

xn+1 = αnf(xn) + βnxn + γn

N
∑

n=1

δn,iJ
Ai

ri
(I − riBi)xn for all n ∈ N,

where {ri}i∈∆N
is a set of positive real numbers. Then {xn} converges strongly to x∗ ∈ C,

which is the unique solution to the following variational inequality:

to find z ∈
⋂

i∈∆N

Zer(Ai + Bi) such that 〈(I − f)z, x − z〉 ≥ 0

for all x ∈
⋂

i∈∆N
Zer(Ai + Bi).

Proof. Note each Ti is nonexpansive with Bi = I − Ti. It follows from Remark 2.7 that

the average mapping T
(i)
w = I −wBi is always nonexpansive for each w ∈ (0, γX,Bi

), where

γX,Bi
= 1. Therefore, Theorem 3.3 follows from Theorem 3.1.
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Sidi-Israeli Quadrature Method for Steady-State

Anisotropic Field Problems by Direct Domain

Mapping∗

Xin Luo † Jin Huang‡ Tai-Song Xiong§

Abstract

In this paper, the two-dimensional steady-state anisotropic field problems
are transformed into the Laplace equation by direct domain mapping, and
then the Sidi-Israeli quadrature method is applied to solve the weakly singu-
lar boundary integral equation of the Laplace equation. Especially, the kress’s
variable transformation is used for the polygon case in order to improve the ac-
curacy by smoothing the singularities of the exact solution at the corner points
of the boundary. The convergence and error analysis of numerical solutions
are given by use of collective compact theory. At last, numerical examples are
tested and results verify the theoretical analysis.

Keyword : Boundary integral equation, singularity, variable transforma-
tion, convergence

1 Introduction

Consider an anisotropic medium in domain Ω ∈ R2 bounded by its boundary Γ =
∪m

j=1Γj (m ≥ 1) which may consist of m segments each being sufficiently smooth (
in the sense of Liapunov ). In the absence of heat sources, the equation governing
steady-state heat conduction with Dirichlet condition can be described as (see as
[1, 2, 5])







κij

∂2u(x)

∂xi∂xj

= 0, (i, j = 1, 2),

u(x) = g, x ∈ Γ,

(1.1)
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where u represents the temperature, and κ = {κij}1≤i,j≤2 denotes the thermal con-
ductivity matrix which satisfies the symmetry (κ12 = κ21) and positive-definite (|κ| =
κ11κ22 − κ2

12 > 0) conditions.
Using the following coordinate transformation [2]

x̂1 =

√

|κ|

κ11
x1, x̂2 = x2 −

κ12

κ11
x1, (1.2)

Eq. (1.1) can be written as the ’isotropic’ Laplacian form in a mapped plane in the
transformed x̂i−system

∂2u(x̂)

∂x̂2
1

+
∂2u(x̂)

∂x̂2
2

= 0, x̂ = (x̂1, x̂2) ∈ Ω′. (1.3)

Then by single-layer potential theory [8], Eq. (1.3) can be converted into the following
weakly singular boundary integral equation (BIE):

−
1

2π

∫

Γ′

v(x̂) ln |x̂ − ŷ|dsx̂ = g(ŷ), ŷ ∈ Γ′, (1.4)

where Γ′ is the boundary of the transformed domain Ω′. The solution of Eq. (1.4)
exists and is unique as long as CΓ′ 6= 1, where CΓ′ is the logarithmic capacity [11, 12].
As soon as v(x̂) is solved from (1.4), the solution u(x̂) of the problem (1.3) can be
calculated by the following

u(ŷ) = −
1

2π

∫

Γ′

v(x̂) ln |x̂ − ŷ|dsx̂, ŷ ∈ Ω′. (1.5)

Finally, using the inverse transformation of (1.2)

x1 =
κ11

√

|κ|
x̂1, x2 = x̂2 +

κ12
√

|κ|
x̂1, (1.6)

we can obtain the solution u(x) of the problem (1.1).
As far as we know, the most popular numerical methods for engineering prob-

lems include, for example, the finite element method (FEM) [17], the finite difference
method (FDM) [15], and the boundary element method (BEM) [11, 12]. The for-
mer two, used frequently in numerical modeling, are referred to as domain solution
techniques and require full discretization of the whole domain and are often compu-
tationally costly and mathematically tricky in the volume mesh generation [1]. The
BEM has been recognized as an efficient computational method that only the bound-
ary needs to be modeled and owing the high approximation. For the application of
BEM for the steady-state anisotropic heat conduction problems (1.1), various types of
elements, namely constant, continuous and discontinuous linear elements and contin-
uous and discontinuous quadratic elements has been investigated in the literature [5].
In this article, the Sidi-Israeli quadrature formula [3] is applied to calculate weakly
singular integrals. Especially for the case of closed curved polygons Γ′, we use the
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Kress’s variable transformation [4] to overcome the corner singularities and improve
the accuracy at the boundary corners.

This paper is organized as follows: in Section 2, the convergence and error analysis
are carried out based on the theory of collectively compact operators [6, 7] for closed
smooth boundaries. The Kress’s variable transformation is introduced to overcome
the corner singularities for curved polygons in Section 3. Numerical examples are
provided to verify the theoretical results in Section 4, and some useful conclusions
are made in Section 5.

2 Sidi-Israeli quadrature method for boundary in-

tegral equation on smooth domain

Suppose that the boundary Γ′ (= ∂Ω′) to be a smooth closed curve and assume that
the curve Γ′ can be parameterized by ŷ(t) = ϕ(t) = (ϕ1(t), ϕ2(t)) : [0, 2π) → ∂Ω′.
Then Eq. (1.4) can be written as

g(s) = −
1

2π

∫ 2π

0

ln
∣

∣ϕ(s) − ϕ(t)
∣

∣v(t)dt, (2.1)

where v(t) = |ϕ′(t)|v(ϕ(t)) and g(t) = g(ϕ(t)) are periodic functions with period 2π.
In order to achieve high accuracy for numerical computation of finite-range in-

tegrals with weakly singular kernels, the following lemma about Sidi’s quadrature
formula is introduced.

Lemma 2.1. [3] Assume that the functions H1(t, τ) and H2(t, τ) are 2ℓ times dif-
ferentiable on [0, 2π]. Assume also that the functions H(t, τ) are periodic with period

T = 2π, and that they are 2ℓ times differentiable on ˜R = (−∞,∞)\{τ + kT}∞k=−∞.
If a(t, τ) = H1(t, τ)ln|t − τ | + H2(t, τ), then

Qn[a(t, τ)] = h

n
∑

j=0
tj 6=τ

a(tj , τ) + H2(tj, τ)h + ln(
h

2π
)H1(tj , τ)h, h =

2π

n
, tj = jh,

and

En[a(t, τ)] = 2
ℓ−1
∑

µ=1

ζ
′

(−2µ)

(2µ)!

∂2µ

∂τ 2µ

(

H1(tj, τ)
)

h2µ+1 + O (h2ℓ), as h → 0,

where ζ(z) is a Riemann function [9, 13] and En[a(t, τ)] =
∫ 2π

0
a(t, τ)dt −Qn[a(t, τ)].

Define the integral operator

(Lv)(s) =

∫ 2π

0

l(s, t)v(t)dt, (2.2)

with the kernel

(l(s, t) = −
1

2π
ln

∣

∣ϕ(s) − ϕ(t)
∣

∣,

3
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and construct the Nyström operator by the Sidi’s quadrature formula

(Lhv)(s) = −
h

2π

[

ln
( h

2π
) + ln |ϕ′(s)|

]

v(s) + h

n−1
∑

j=0
tj 6=s

l(s, tj)v(tj), tj = jh, h =
2π

n
.

Let V h = span{e0(s), e1(s), · · · , en(s)} ⊂ C[0, 2π) be a piecewise linear function
subspace with nodes {sj}

n
j=0, where ei(s) is the basis function satisfying ei(sj) = δij .

Define a prolongation operator P h : R
n → V h and a restricted operator Qh satisfying

{

P hv = v · e, v = (v0, · · · , vn), e = (e0, · · · , en) ∈ R
n,

Qhv = (v(s0), · · · , v(sn)) ∈ R
n, v ∈ C[0.2π).

Then Eq. (2.1) and its approximation equation are

{

Lv = g

Lhvh = Qhg

where Lh = [lij ]
n−1
i,j=0 and the entries are

lij =

{

hl(si, tj), i 6= j,

− h
2π

ln
(

h|ϕ′(ti)|
2π

)

, i = j.

Define the following integral operator

(A0v)(s) =

∫ 2π

0

a0(s, t)v(t)dt, (2.3)

with the kernel

a0(s, t) = −
1

2π
ln

∣

∣2e−1/2sin
s − t

2

∣

∣.

Let L−A0 = A1, then the integral equation (1.4) can be split into a singularity part
and a compact perturbation part

A0v + A1v = g, (2.4)

where (A1v)(s) = (v(.), a1(s, .))L2 with the kernel

a1(s, t) =











− 1
2π

ln
∣

∣e1/2 ϕ(s)−ϕ(t)

2sin s−t
2

∣

∣, s − t 6= 2πZ,

− 1
2π

ln
(

e1/2|ϕ′(s)|
)

, s − t = 2πZ.

Now we construct the approximations of A0 and A1. For the logarithmically
singular operators A0, by the Sidi’s quadrature formula [3], we can construct the
Fredholm approximation

(Ah
0v)(s) = h

n−1
∑

j=0

a0(s, tj)v(tj), (2.5)

4
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where

a0(s, tj) =











−
1

2π
ln

∣

∣2e−1/2sin
(s − tj

2

)
∣

∣ s 6= tj,

−
1

2π
ln

(e−1/2h

2π

)

s = tj ,

(2.6)

which has the following error bounds:

(Ah
0v)(si) − (A0v)(si) =

−2

π

2l−1
∑

µ=1

ζ
′

(−2µ)

(2µ)!
[v(s)](2µ)

∣

∣

∣

∣

s=si

h2µ+1 + O(h2l). (2.7)

For the integral operators A1 with periodic kernels, we can construct the Nyström
approximation by the trapezoidal rule [8],

(Ah
1v)(s) = h

n−1
∑

i=0

a1(s, tj)v(tj) j = 0, 1, · · · , n − 1,

which has the error bounds O (h2l), l ∈ N .
Consider the discrete approximation of (2.4)

(Ah
0 + Ah

1)v
h = gh, (2.8)

where vh = (vh
0 , vh

1 , · · · , vh
n−1)

T , Ah
0 = [a0(si, tj)]

n−1
i,j=0, Ah

1 = [a1(si, tj ]
n−1
i,j=0, and gh =

(g(ϕ(s0)), · · · , g(ϕ(sn−1)))
T . Obviously, (2.8) is a linear equation system with n

unknowns. Once vh is solved from (2.8), the solution of (1.5) u(ŷ) (ŷ ∈ Ω′) can be
computed by

uh(ŷ) = −
h

2π

n
∑

i=0

vh(si)
∣

∣x̂′(si)
∣

∣ ln
∣

∣x̂(si) − ŷ
∣

∣. (2.9)

From (2.6), we have

Ah
0 = −

h

2π











ln
(

e−
1

2
h
2π

)

ln
∣

∣2e−
1

2 sinh
2

∣

∣ · · · ln
∣

∣2e−
1

2 sin (n−1)h
2

∣

∣

ln
∣

∣2e−
1

2 sinh
2

∣

∣ ln
(

e−
1

2
h
2π

)

· · · ln
∣

∣2e−
1

2 sin (n−2)h
2

∣

∣

...
...

...
...

ln
∣

∣2e−
1

2 sin (n−1)h
2

∣

∣ ln
∣

∣2e−
1

2 sin (n−2)h
2

∣

∣ · · · ln
(

e−
1

2
h
2π

)











.

By [10], we know that ‖(Ah
0)

−1‖ ≤ cn. Hence the Eq. (2.8) is equivalent to

(Eh + P h(Ah
0)

−1QhAh
1)v

h = P h(Ah
0)

−1Qhgh, (2.10)

where Eh is the identity operator.

Lemma 2.2. The operator sequence
{

P h(Ah
0)

−1QhAh
0 : C3[0, 2π) → C[0, 2π)

}

is

uniformly bounded and
P h(Ah

0)
−1QhA0

p
→ I.
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where
p
→ denotes the pointwisely convergence and I is the embedding operator .

Proof. Let v ∈ C3[0, 2π) and vh be the solutions of the auxiliary equations A0v = g

and Ah
0v

h = Qhg respectively, where

Ah
0Q

hv = Ah
0v(ti) = h

n−1
∑

j=0
j 6=i

a0(si, tj)v(tj) −
1

2π
ln

(he−1/2

2π

)

v(ti),

and

Qhg = g(si) =

∫ 2π

0

a0(si, t)v(t)dt.

From (2.7), we obtain that

Qhg − Ah
0Q

hv = O (h3),

and
‖Qhg − Ah

0Q
hv‖2 = (n(O (h3))2)

1

2 = O (h
5

2 ). (2.11)

By (2.11), the following holds

‖Qhv − (Ah
0)

−1QhA0v‖2 = ‖Qhv − (Ah
0)

−1Qhg‖2

= ‖Qhv − vh‖2

= ‖(Ah
0)

−1Ah
0(Q

hv − vh)‖2

≤
1

h
‖Ah

0(Q
hv − vh)‖2

=
1

h
‖Ah

0Q
hv − Ah

0v
h‖2

=
1

h
‖Qhg − Ah

0Q
hv‖2 = O (h

3

2 ),

the proof of Lemma 2.2 is completed. �

Theorem 2.3. Assume that ∂Ω′ is a simply smooth and closed curve, Qh is a
restricted operator and P h is a prolongation operator with nodes {si}

n
i=0, then the

operator sequence {P h(Ah
0)

−1QhAh
1} is collectively compactly convergent to A−1

0 A1 in
C[0, 2π), that is,

P h(Ah
0)

−1QhAh
1

c.c
→ A−1

0 A1.

Proof. Since (P h(Ah
0)

−1Qh)(P hAh
1Q

h) = (P h(Ah
0)

−1QhA0)((A0)
−1P hAh

1Q
h), we

get

‖(P h(Ah
0)

−1Qh)(P hAh
1Q

h)‖ ≤ ‖P h(Ah
0)

−1QhA0‖0,3‖(A0)
−1P hAh

1Q
h‖3,0.

From [10] and by Lemma 2.2, we have (A0)
−1P hAh

1Q
h c.c
→ A−1

0 A1 and P h(Ah
0)

−1QhA0
p
→

I. The proof of Theorem 2.3 is completed. �
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Replacing (Ah
0)

−1, Ah
0 , Ah

1 , vh and gh by (Â0
h
)−1 = P h(Ah

0)
−1Qh, Â0

h
= P hAh

0Q
h

, Â1
h

= P hAh
1Q

h, v̂h = P hvh and ĝh = P h(Ah
0)

−1Qhgh , respectively. Then (2.10) can
be written as

(Eh + (Â0

h
)−1Â1

h
)v̂h = ĝh. (2.12)

Theorem 2.4. Assume that ∂Ω′ is a simply smooth and closed curve, v and v̂h

are the solutions of (2.4) and (2.12), respectively, xi ∈ C6[0, 2π) and g(s) ∈ C5[0, 2π),
then the following holds

(v̂h − v)
∣

∣

s=si
= O (h3). (2.13)

Proof. By the trapezoidal rule, the asymptotic expansion holds [10]

(g − gh)
∣

∣

s=si
= h3P hQhϕ1

∣

∣

s=si
+ O (h5), (2.14)

with ϕ1(s) = −ζ
′

(−2)g′′(s)/π . Using (2.7) and (2.14), we can obtain

P h(Ah
0 + Ah

1)Q
h(vh − v)

∣

∣

s=si

= gh − P h(Ah
0 + Ah

1)Q
hv

∣

∣

s=si

= gh − [((A0 + A1)v − h3P hQhϕ2)
∣

∣

s=si
+ O (h5)]

= (gh − g)
∣

∣

s=si
+ h3P hQhϕ2

∣

∣

s=si
+ O (h5)

= h3P hQhϕ
∣

∣

s=si
+ O (h5),

where ϕ2(s) = −ξ
′

(−2)v′′(s)/π, and ϕ(s) = ϕ1(s) + ϕ2(s). From Theorem 2.3, we
have

(Eh + (Â0
h
)−1Ah

1)(v − v̂h)
∣

∣

s=si
= h3(Â0

h
)−1P hQhϕ(s)

∣

∣

s=si
+ O (h5). (2.15)

Since (Eh + (Â0
h
)−1Ah

1)
−1 is uniformly bounded, we immediately get

(v̂h − v)
∣

∣

s=si
= O (h3). (2.16)

�

3 Corner singularity and convergence analysis

Definition 3.1. [14] A real-valued function γ is said to be a sigmoidal transformation
if the following conditions are satisfied:

(i) γ ∈ C1[0, 1] ∪ C∞(0, 1) with γ(0) = 0;
(ii) γ(x) + γ(1 − x) = 1, 0 ≤ x ≤ 1;
(iii) γ is strictly increasing on [0, 1] and its derivative γ′ is strictly increasing on

[0, 1/2] with γ′(0) = 0.

7

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

540 Xin Luo et al 534-555



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kress’s variable transformation
γ

r
(t

)

r=2
r=3
r=4
r=5

Figure 1: γr transformation

The Kress’s variable transformation is an example of ”algebraic” sigmoidal trans-
formations, which was first proposed by Kress [4]. The function γ, defined on [0, 1]
by

γ(x) = f(x)/(f(x) + f(1 − x)),

where
f(x) = (x + cB3(x))r,

here r > 1, c is a constant to be determined and B3 is the Bernoulli polynomial of
degree 3 defined by

B3(x) := x(x − 1/2)(x − 1).

If we choose c = −8(1/r − 1/2), then we have

γr(t) =
Θ1(t)

Θ2(t)
=

(θ(t))r

(θ(t))r + (θ(2π − 2πt))r
: [0, 1] → [0, 1], r ≥ 1, (3.1)

where θ(t) = (1
r
− 1

2
)(1 − 2t)3 + 1

r
(2t − 1) + 1

2
. The plots for γr is shown in Figure 1.

Assume that Γ′ = ∪m
q=1Γ

′
q (q > 1) be the boundary of a polygonal domain Ω′ in

R2, Γ′
q ∈ C2ℓ+1(q = 1, ..., m, ℓ ∈ N), and let gq = g

∣

∣

Γ′
q

. Define the boundary integral

operators on Γ′
q,

(Lpqvq)(ŷ) = −
1

2π

∫

Γ′
q

vq(x̂) ln
∣

∣x̂ − ŷ
∣

∣dsx̂, ŷ = (ŷ1, ŷ2) ∈ Γ′
p (p, q = 1, ..., m). (3.2)

Then Eq. (1.4) can be converted into a matrix operator equation

Lv = G, (3.3)

where L = [lpq]
m
p,q=1, G = (g1(ŷ), ..., gm(ŷ))T and v = (v1(x̂), ..., vm(x̂))T . Assume

that Γ′
q can be described by the parameter mapping: x̂q(s) = ϕ(s) = (ϕq1(s), ϕq2(s))

8
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: [0, 1] → Γ′
q with |ϕ

′

q(s)| = [|ϕ
′

q1(s)|
2+ |ϕ

′

q2(s)|
2]1/2 > 0. In order to degrade the

singularities at corners, we apply the Kress’s variable transformation to (3.3) and
give the following decomposition of Lpq,

Lpq = A0(pp) + A1(pq).

The operators A0(pp) and A1(pq) are singular and compact operators respectively, and
their Nyström approximation are







(A0(pp)wp)(t) =
∫ 1

0
a0(pq)(t, τ)wp(τ)dτ, t ∈ [0, 1],

(A
hp

0(pp)wp)(t) = hp

∑nm

j=1
t6=τj

a0(pp)(t, τj)wp(τj) − hp ln
∣

∣e−1/2hp

∣

∣wp(t), hp = 1/np,

and






A1(pq)(wq)(t) =
∫ 1

0
a1(pq)(t, τ)wq(τ)dτ, t ∈ [0, 1],

(A
hq

1(pq)wq)(t) = hq

nq
∑

j=1

a1(pq)(t, τj)wq(τj), t ∈ [0, 1], τj = jh p, q = 1, ..., m,

where

a0(pp)(t, τ) = −
1

2π
ln

∣

∣2e−1/2 sin π(t − τ)
∣

∣,

and

a1(pq)(t, τ) =















−
1

2π
ln

|x̂p(t) − ŷq(τ)|

|2e−1/2sinπ(t − τ)|
as p = q,

−
1

2π
ln |x̂p(t) − ŷq(τ)| as p 6= q,

here

x̂q(t) = (ϕq1(γr(t)), ϕq2(γr(t))),

wq(t) = vq(ϕq(γr(t)))|ϕ
′
q(γr(t))|γ

′
r(t).

Then Eq. (3.3) and its discrete equations are

{

(A0 + A1)W = G,

(Ah
0 + Ah

1)W
h = Gh.

(3.4)

where

A0 = diag(A0(11), · · · , A0(mm)), A1 = [A1(pq)]
m
p,q=1,

W = (w1, · · · , wm)T , G = (g1, · · · , gm)T , gq(t) = gq(ϕq(t)),

W h = (wh1

1 (t1), ..., w
h1

1 (tn1
), ..., whm

m (t1), ..., w
hm

m (tnm
))T ,

Ah
0 = diag(Ah1

0(11), ..., A
hm

0(mm)), Ah
0(pp) = [a0(pp)(tj , τi)]

np

j,i=1,

Ah
1 = [A

hq

1(pq)]
m
p,q=1, Ah

1(pq) = [a1(pq)(tj , τi)]
np,nq

j,i=1 ,

Gh = (g1(t1), ..., g1(tn1
), ..., gm(t1), ..., gm(tnm

))T .

9
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The operator A0(pp) is an isometry operator from (Hr[0, 1])m to (Hr+1[0, 1])m [11, 12].

In addition, from [10], we know that A
hq

0(qq) and Ah
0 are invertible, and ||(A

hq

0(qq))
−1|| =

O(nq) and ||(Ah
0)

−1|| = O(h−1
q ), where ‖ · ‖ denotes the spectral norm. Hence Eq.

(3.4) is equivalent to

{

(E + A−1
0 A1)W = A−1

0 G = G̃

(Eh + (Ah
0)

−1Ah
1)W

h = G̃h.
(3.5)

Obviously, the second equation of (3.5) is a system of linear equations with n

(= Σm
j=1nj) unknowns. Once W h is solved by (3.5), the solution u(ŷ) (ŷ ∈ Ω′) can be

computed by

uh(ŷ) = −
1

2π

m
∑

p=1

np
∑

q=1

hp ln |x̂pq(τq) − ŷ||x̂′
p(τq)|w

h
q (τq).

Let the function vq(t) = tαqφq(t) (0 > αq ≥ −1/2), where φq(t) is differentiable
enough on [0, 1] with φq(0) 6= 0. From Taylor’s formula we have

vq(t) =
l

∑

j=0

φ
(j)
q (0)

j!
tj+αq + O(tl+αq+1) as t → 0+ (3.6)

and

γ′
r(t) ∼

∞
∑

j=0

δjt
r−1+j as t → 0+, and δ0 > 0. (3.7)

By substituting (3.6) and (3.7) into the expression of wq(t), then the function wq(t)
can be expressed by

wq(t) = c1φq(0)tr(αq+1)−1(1 + O(t)) as t → 0+, (3.8)

where c1 is a constant independent of t.
Similarly, let the function vq(t) = (1 − t)αq φ̃q(t) (0 > αq ≥ −1/2), where φ̃q(t)

is differentiable enough on [0, 1] with φ̃q(1) 6= 0. Then the function wq(t) can be
expressed by

wq(t) = c2φ̃q(1)(1 − t)r(αq+1)−1(1 + O(1 − t))) as t → 1−, (3.9)

where c2 is a constant independent of t.
Remark 1 The function vq(t) has singularities at endpoints t = 0 and t = 1 [16],

but wq(t) has no singularities by Kress transformation at t = 0 and t = 1.

Lemma 3.2. Let

ã1(pq)(t, τ) = a1(pq)(t, τ)γ′
r(t), γ ≥ 1, Γp ∩ Γq 6= ∅, (3.10)

then ã1(pq)(t, τ) is smooth on [0, 1]2.
Proof. By using the continuity of ã1(pp)(t, τ) and the boundness of γ′

r(t), we can

10

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

543 Xin Luo et al 534-555



immediately complete the proof for the case p = q. Let Γp−1 ∩ Γp = Pp = (0, 0) and
βp ∈ (0, 2π) be the corresponding interior angle. Since ϕp−1(1) = ϕp−1(0), the kernel
a1(p−1,p)(t, τ) have singularities at the points (t, τ) = (0, 1) and (t, τ) = (1, 0). For
convenience of analysis, we only discuss the case in that (t, τ) = (1, 0). If (t, τ) 6=
(1, 0), we write

ã1(p−1,p)(t, τ) = −
1

4π
(S1(t, τ) + S2(t, τ)), (3.11)

where
S1(t, τ) = γ′(t) ln(|ϕp−1(t)|

2 + |ϕp(τ)|2)

and

S2(t, τ) = γ′(t) ln[1 − 2|ϕp−1(t)||ϕp(τ)| cos βp−1/(|ϕp−1(t)|
2 + |ϕp(τ)|2)].

Since
∣

∣

∣

∣

2|ϕp−1(t)||ϕp(τ)| cos βp−1/(|ϕp−1(t)|
2 + |ϕp(τ)|2)

∣

∣

∣

∣

< 1,

the function S2(t, τ) and its first derivative are bounded. Noting that

γ(k)
r (0) = γ(k)

r (1) = 0, k = 0, · · · , γ,

we have
|ϕ

(k)
p̄ (0)| = |ϕ

(k)
p̄ (1)| = 0, p̄ = p − 1 or p, k = 1, · · · , γ.

Let (t, τ) ∈ [ε/2, ε]× [1 − ε, 1 − ε/2] for all ε > 0, we have

|S1(t, τ)| = O(εr−1| ln ε|),

so S1(t, τ) is also bounded. In addition, from

∣

∣

∣

∣

∂

∂τ
S1(t, τ)

∣

∣

∣

∣

≤ O(tr−1)
2|ϕp(τ)||x̂′

p−1(γr(τ))||γ
′

r(τ)|

|ϕp−1(t)|2 + |ϕp(τ)|2

= O(εr−1)O(ε2r−2)/O(ε2r−2) = O(εr−1),

we know
∂ã1(pq)(t,τ)

∂τ
is also continuous in (C[0, 1])2. The proof of Lemma 3.2 is com-

pleted. �

Suppose that
tν = (ν + 1)/2 for − 1 < ν ≤ 1,

so that −1 < ν ≤ 1 with t0 = 1/2 and t1 = 1. The offset trapezoidal rule Q
[ν,r]
n f with

11
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transformation γr, n ∈ N , −1 < ν ≤ 1 is defined by

Q[ν,r]
n f =



























1

n

n−1
∑

j=0

f(γr((j + tν)/n))γ′
r((j + tν)/n), −1 < ν < 1,

1

n

n−1
∑

j=1

f(γr(j/n))γ′
r(j/n), ν = 1.

At the same time, we define the truncation error E
[ν,r]
n f by

E[ν,r]
n f := If − Q[ν,r]

n f. (3.12)

Let us assume that near x = 0 we can write

γr(x) = c0(r)x
r(1 +

∞
∑

k=1

dk(r)x
k). (3.13)

Theorem 3.3. [14] Assume that f is holomorphic at both 0 and 1, and fr(τ) :=
f(γr(τ))γ′

r(τ), 0 ≤ τ ≤ 1 can be continuous into the strip S such that
(i) fr(τ) is continuous in S and holomorphic in int(S);
(ii) fr(τ) = o(exp(2πn|Rz|)) as Rz → ∞ in S, uniformly with respect to Rz.

For any sigmoidal transformation γr of order r > 1 and for −1 < ν ≤ 1 then for
n >> 1

(2πn)rE[0,r]
n f ∼ 2c0(r)Γ(r + 1)(f(0) + f(1)) × {cos(rπ/2)(1 − 21−r)ζ(r)

− sin(rπ/2)(r + 1)d1(r)(1 − 2−r)ζ(r + 1)/(2πn)} + O(1/nmin(2,r)),
(3.14)

and

(2πn)rE[1,r]
n f ∼ 2c0(r)Γ(r + 1)(f(0) + f(1)) × {cos(rπ/2)ζ(r)

− sin(rπ/2)(r + 1)d1(r)ζ(r + 1)/(2πn)} + O(1/nmin(2,r)).
(3.15)

Theorem 3.4. [14] Suppose f is defined on S by

f(z) = zα(1 − z)βg(z) for α, β > 1, (3.16)

where g is holomorphic on S, real on [0, 1] and such that g(0) 6= 0, g(1) 6= 0. Let γr

be a sigmoidal transformation of order r, r > 1. Then for n >> 1

nrE[ν,r]
n f ∼ Jν(α, r, n)g(0) + J−ν(β, r, n)g(1),

where the strip S of the complex z− plane defined by

S := {z : 0 ≤ x = Rz ≤ 1, −∞ < y = Iz < ∞},

12
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and
Jν(α, r, n) : = −r(c0(r))

1+α{ζ(1 − r(α + 1), tν)

+ (α + 1 + 1/r)d1(r)ζ(−r(α + 1), tν)/n}/n
rα.

(3.17)

and
t−ν = 1 − tν , for − 1 < ν ≤ 1.

Remark 2 If we choose r = 3 for γr, then γ3 ∼ O (t3) and d1(r) = 0. In addition,
if β = 0, we have

E[ν,r]
n f ∼ n−ω, ω = min{r, (α + 1)r}. (3.18)

For the Nyström approximation operator A
hq

1(pq) of the integral operator A1(pq), we

have the error bounds [8]

(A1(pq)wq)(t)− (A
hq

1(pq)wq)(t) = O (hr), for Γp = Γq or Γp ∩Γq = ∅, r ∈ N, (3.19)

and
A1(pq)(wq)(t) − (A

hq

1(pq)wq)(t) = O (hω), for Γp ∩ Γq ∈ {Pq}, (3.20)

where ω = min{r, (α + 1)r}.

For the approximate operator A
hp

0(pp) of the logarithmically singular operator A0(pp),

(A
hp

0(pp)wp)(t) = −
hl

2π















nq
∑

j=1
t6=τj

ln
∣

∣2e−1/2 sin π(t − τj)
∣

∣wp(τj)















−
hp

2π

{

ln
∣

∣2e−1/2hp

∣

∣wp(t)
}

(i = 1, ..., np),

(3.21)

which have the error bounds [3]

(A
hp

0(pq)wp)(t) − (A0(pp)wp)(t) = −
2

π

2ℓ−1
∑

µ=1

ζ ′(−2µ)

(2µ)!
[wp(t)]

(2µ)h2µ+1
p + O(h2ℓ

p ), t ∈ {ti},

where ζ ′(t) is the derivative of the Riemann zeta function.
From (3.21), we can obtain

A
hp

0(pp) = −
hp

2π













ln( hp

e1/2
) ln( sin(πhp)

e1/2/2
) · · · ln( sin((np−1)πhp)

e1/2/2
)

ln( sin(πhm)

e−1/2/2
) ln( hp

e1/2
) · · · ln( sin((np−2)πhp)

e1/2/2
)

...
...

...
...

ln( sin((np−1)πhp)

e1/2/2
) ln( sin((np−2)πhp)

e1/2/2
) · · · ln( hp

e1/2
)













,

Define the subspace C0[0, 1] = {v(t) ∈ C[0, 1] : v(t)/γ3(πt) ∈ C[0, 1]} of the
space C[0, 1] with the norm ||v||∗ = max0≤t≤1 |v(t)/γ3(πt)|. Let Shp = span{ej(t),
j = 1, ..., np} ⊂ C0[0, 1] be a piecewise linear function subspace with the basis nodes
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{ti}
np

i=1, where ej(t) are the basis functions satisfying epj(tpi) = δji. Also define a
prolongation operator Ihp : ℜnp → Shp and a restricted operator Rhp : C0[0, 1] → ℜnp

satisfying
{

P hpv =
∑np

j=1 vpjepj(τ), v = (vp1, · · · , vpnp
) ∈ R

n,

Qhpv = (v(τp1), · · · , v(τpnp
)) ∈ R

n, v ∈ C[0, 2π).

For the properties of A
hp

0(pp), we have the following lemma from [10].

Lemma 3.5. The operator sequence {P hp(A
hp

0(pp))
−1QhpA0(pp) : C2[0, 1] → C[0, 1]}

is uniformly bounded and

P hp(A
hp

0(pp))
−1QhpA0(pp)

p
→ I. (3.22)

If |p − q| 6= 1 or m − 1, by the definition of A1(pq) we know the kernel a1(pq)(t, τ)
of the operator A1(pq) and its derivatives of higher order are continuous .

Lemma 3.6. Let Γ′ = ∪m
q=1Γ

′
q satisfy CΓ′ 6= 1, and also let

Ā
hq

1(pq) =

{

A
hq

1(pq), Γ′
p = Γ′

q or Γ′
p ∩ Γ′

q = ∅,

Ã
hq

1(pq), Γ′
p ∩ Γ′

q ∈ {Pq},

where the kernel ã1(pq)(t, τ) of Ã1(pq) is defined by (3.10). Then under the transfor-
mation (3.1), we have

‖(A0(pp))
−1Ā

hq

1(pq)‖2,0 ≤ M (3.23a)

and

P hp(A
hp

0(pp))
−1QhpĀ

hq

1(pq)

c.c
→ (A0(pp))

−1A1(pq), in C[0, 1] → C[0, 1], (3.23b)

where M is a constant.
proof. From [10] and by Lemma 3.2, a1(pq)(t, τ) and ã1(pq)(t, τ) are continuous on

(C2[0, 1])2, and then we have (3.23a). Using the results of Lemma 3.5, and by

‖P hp(A
hp

0(pp))
−1QhpĀ

hq

1(pq)‖0,0 = ‖(P hp(A
hp

0(pp))
−1QhpA0(pp))((A0(pp))

−1Ā
hq

1(pq))‖0,0

≤ ‖P hp(A
hp

0(pp))
−1QhpA0(pp)‖0,2‖(A0(pp))

−1Ā
hq

1(pq)‖2,0

≤ C,

where C is a constant. Thus, we complete the proof of Lemma 3.6. �

Consider the following discrete equation

(Eh + P h(Ah
0)

−1QhAh
1)W

h = P h(Ah
0)

−1QhGh, (3.24)

where P h =diag(P h1, ..., P hm) and Qh =diag(Qh1 , ..., Qhm).
Theorem 3.7. Assume Γ′ = ∪m

q=1Γ
′
q satisfy CΓ′ 6= 1, and Γ′

q (q = 1, ..., m) are
smooth curves. Then we have

P h(Ah
0)

−1QhAh
1

c.c
→ A−1

0 A1. (3.25)
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Proof. Let B = {z : ||z|| ≤ 1, z ∈ (C[0, 1])m} be the unit ball in the space
V = (C[0, 1])m, and

H = {H(1), H(2), · · · }, H (n) = {h
(n)
1 , · · · , h(n)

m }

are multi-parameter sequences. Also let max1≤q≤m h
(n)
q → 0 as nq → ∞. Choosing

the sequence {Zh, h ∈ H} ⊂ Θ and

Zh = (Z1h, · · · , Zmh), Zqh = (zq1, · · · , zqnq
), q = 1, · · · , m,

satisfying
max

1≤p≤m
max

0≤q≤np

max
0≤t≤1

|zh
pq(t)/γ3(πt)| ≤ 1. (3.26)

From

P h(Ah
0)

−1Qh =











P h1(Ah1

0(11))
−1Qh1

P h2(Ah2

0(22))
−1Qh2

. . .

P hm(Ahm

0(mm))
−1Qhm











and

P hAh
1Q

h =











P h1Ah1

1(11)Q
h1 P h2Ah2

1(12)Q
h2 . . . P hmAhm

1(1m)Q
hm

P h1Ah1

1(21)Q
h1 P h2Ah2

1(22)Q
h2 . . . P hmAhm

1(2m)Q
hm

...
...

...

P h1Ah1

1(m1)Q
h1 P h2Ah2

1(m2)Q
h2 . . . P hmAhm

1(mm)Q
hm











,

we have

P h(Ah
0)

−1QhAh
1Q

hZh =













∑m

q=1 P h1(Ah1

0(11))
−1Qh1A

hq

1(1q)Q
hqZqh

∑m

q=1 P h2(Ah2

0(22))
−1Qh2A

hq

1(2q)Q
hqZqh

...
∑m

q=1 P hm(Ahm

0(mm))
−1QhmA

hq

1(mq)Q
hqZqh













.

If Γ′
p ∩ Γ′

q = ∅, from Lemma 3.6 we obtain

P hp (A
hp

0(pp))
−1QhpA

hq

1(pq)

cc
→ A−1

0(pp)A1(pq). (3.27)

If Γ′
p ∩ Γ′

q 6= ∅, using Lemma 3.5 and Lemma 3.6, and by

||P hp(Ah
0(pp))

−1QhpA
hq

1(pq)Q
hqZqh||0 = ||P hp(Ah

0(pp))
−1QhpÃ

hq

1(pq)Q
hqZqh/γ3(πt)||0

≤
∥

∥P hpp (Ah
0(pp))

−1QhpA0(pp)

∥

∥

0,3
||A−1

0(pp)Ã
hq

1(pq)||3,0

∥

∥||QhqZqh

∥

∥

∗
,

(3.28)
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we can find an infinite subsequence in {P hp(A
hp

0(pp))
−1QhpA

hq

1(pq)Q
hqZqh} which con-

verges as h → 0. Hence, there exists an infinite subsequence Hl ⊂ H such that
(3.28) converges, As above, there exists an infinite subsequence {Hl, l = 1, · · · , m}
such that {P h(Ah

0)
−1QhAh

1 , h ∈ Hm} is a convergent sequence in the space V =
(C0[0, 1])m. This shows that {P h(Ah

0)
−1QhAh

1} is a collectively compact sequence,
and P h(Ah

0)
−1QhAh

1 is pointwisely convergent to A−1
0 A1. The proof of Theorem 3.7

is completed. �

Similar to Theorem 2.4, we have the following theorem.
Theorem 3.8. Assume Γ′ = ∪m

q=1Γ
′
q satisfy CΓ′ 6= 1, gq = g|Γ′

q
∈ C6(Γ′

q), then
when we choose an appropriate number r in (3.18) such that ω > 3, there exists a
vector function Φ = (Φ1,..., Φm)T ∈ (C0[0, 1])m independent of h = (h1, ..., hm)T such
that the following multi-parameter asymptotic expansions hold at nodes

w − ŵh = diag(h3
1, ..., h

3
m)Φ + O(h5

max)e, (3.29)

where hmax = max1≤q≤m hq, and e = (1, 1, · · · , 1)T is a m dimensional vector.

4 Numerical experiments

In this section, two numerical examples are presented to verify the efficiency of the
Sidi-Israeli quadrature method for anisotropic heat conduction problems.

Suppose that en =
∣

∣u− un

∣

∣ be the errors by Sidi-Israeli quadrature method using
n boundary nodes, and let rn = log2(en/en/2) be the error ratio.

Example 1. [5] Consider the steady state heat conduction in an anisotropic
material in the two dimensional disc Ω of radius unity. The thermal conductivity
tensor is chosen to be κ11 = 5.0, κ12 = κ21 = 2.0, and κ22 = 1.0. Dirichlet boundary
conditions corresponding to the analytical solution u(x1, x2) = x3

1/5 − x2
1x2 + x1x

2
2 +

x3
2/3 are applied to the whole boundary Γ = {(x1, x2)|x

2
1 + x2

2 = 1}. Under the
transformation (1.2), the physical domain is distorted into an oblique ellipse Ω′ with
the boundary Γ′ = {(x̂1, x̂2)|(5x̂1)

2 +(x̂2 +2x̂1)
2 = 1} on the mapped plane, as shown

in Fig. 2. The computed values at the interior points P1 = (0.2, 0.2), P2 = (0.4, 0.4)
and P3 = (0.6, 0.6) using different boundary nodes are listed in Table 1, from the
numerical results we can see that rn ≈ 3.

In addition, the numerical solution u of the interior points along the line x2 = x1

are computed, where x1 =
√

2/2ρ and ρ = −0.9 : 0.05 : 0.9. The plots of computed
errors are shown in Figure 3 to Figure 5.

Example 2. Consider a square domain Ω with the boundary Γ =
∑4

q=1 Γq, where
Γ1 = {(x1, 0) : 0 ≤ x1 ≤ 1}, Γ2 = {(1, x2) : 0 ≤ x2 ≤ 1}, Γ3 = {(x1, 1) : 0 ≤
x1 ≤ 1}, and Γ4 = {(0, x2) : 0 ≤ x2 ≤ 1}. The invariant coefficients are chosen
to be κ11 = 1, κ12 = 0.5, and κ22 = 1. The Dirichlet condition are applied to
the Γ is u(x1, x2) = 1

2
x2

1 + x1x2 − x2
2 + 2. Let each boundary Γq (q = 1, · · · , 4) be

divided into 2k (k = 4, · · · , 10) segments. The physical domain and the ’isotropic’
mapped domain (parallelogram) are shown in Fig. 6. In order to overcome the
singularities at the corners, we use Sidi-Israeli quadrature method with the Kress’s
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Table 1: The errors for u at the points P1 = (0.2, 0.2), P2 = (0.4, 0.4) and P3 =
(0.6, 0.6)

n 25 26 27 28 29 210 211

en(P1) 8.633E-4 2.420E-5 3.672E-6 4.589E-7 5.735E-8 7.169E-9 8.961E-10
rn(P1) - 5.517 2.720 3.000 3.000 3.000 3.000
en(P2) 1.533E-3 9.791E-6 6.180E-6 7.621E-7 9.525E-8 1.191E-8 1.488E-9
rn(P2) - 7.291 0.644 3.020 3.000 3.000 3.000
en(P3) 2.377E-3 1.532E-3 7.495E-5 3.283E-7 9.447E-8 1.178E-8 1.472E-9
rn(P3) - 0.6324 4.355 7.835 1.797 3.004 3.000

x
1

x
2

O x̂1

x̂2

O

Figure 2: Left: The physical domain Ω; Right: The mapped domain Ω′.
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Figure 3: Left: Errors for u by 25 boundary nodes; Right: Errors for u

by 26 boundary nodes.
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Figure 4: Left: Errors for u by 27 boundary nodes; Right: Errors for u

by 28 boundary nodes.
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Figure 5: Left: Errors for u by 29 boundary nodes; Right: Errors for u

by 210 boundary nodes.
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x
1

x
2

O

x̂1

x̂2

O

Figure 6: Left: The physical domain Ω; Right: The mapped domain Ω′.

variable transformation γ3 for this problem. The computed values at the interior
points P1 = (0.1, 0.1), P2 = (0.3, 0.3) and P3 = (0.5, 0.5) using n (= 4 × 2k, k =
4, · · · , 10 nodes are listed in Table 2, from the numerical results we can also see that
rn ≈ 3.

In addition, the numerical solution u of the interior points along the line x2 = x1

are computed, where x1 = ρ and ρ = 0.1 : 0.02 : 0.9. The plots of computed errors
are shown in Figure 7 to Figure 9.

Table 2: The errors for u at the points P1 = (0.1, 0.1), P2 = (0.3, 0.3) and P3 =
(0.5, 0.5)

n 24 25 26 27 28 29 210

en(P1) 1.154E-4 1.254E-5 1.565E-6 1.956E-7 2.444E-8 3.055E-9 3.819E-10
rn(P1) - 3.202 3.002 3.000 3.000 3.000 3.000
en(P2) 1.158E-4 1.445E-5 1.805E-6 2.256E-7 2.820E-8 3.525E-9 4.406E-10
rn(P2) - 3.003 3.001 3.000 3.000 3.000 3.000
en(P3) 1.198E-4 1.495E-5 1.869E-6 2.336E-7 2.919E-8 3.649E-9 4.561E-10
rn(P3) - 3.002 3.001 3.000 3.000 3.000 3.000

5 Conclusions

In this paper, the Sidi-Israeli quadrature method is used to solve the boundary in-
tegral equations of steady state anisotropic heat conduction problems on the two-
dimensional domain with smooth boundaries and polygons respectively. Especially,
in order to provide a good accuracy in the solution near the singular points, the
Kress’s variable transformation is used for the weakly singular integral equations of
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problems (1.1). The numerical results show that the presented algorithm has a high
accuracy of O (n−3), which coincides with our theoretical analysis.

References

[1] Yan Gu, Wen Chen and Xiao-Qiao He, Singular boundary method for steady-
state heat conduction in three dimensional general anisotropic media, Interna-
tional Journal of Heat and Mass Transfer. 55 ( 2012) 4837-4848.

[2] Y.C. Shiah and C.L. Tan, BEM treatment of two-dimensional anisotropic field
problems by direct domain mapping, Eng. Anal. Boundary Elem. 20 (1997) 347-
351.

[3] A. Sidi and M. Israeli,Quadrature methods for periodic singular and weakly
singular Fredholm integral equation, J. Sci. Comput. 3 (1988) 201-231.

[4] R. Kress, A Nyström method for boundary integral equations in domains with
corners. Numer. Math. 58 (1990) 145-161.

[5] N.S. Mera, L. Elliott, D.B. Ingham, and D. Lesnic, A comparison of bound-
ary element method formulations for steady state anisotropic heat conduction
problems, Eng. Anal. Boundary Elem. 25 (2001) 115-128.

[6] P.M. Anselone, Collectively Compact Operator Approximation Theory, Prentice-
Hall, Englewood Cliffs, NJ. 1971.

[7] P.M. Anselone, Singularity subtraction in numerical solution of integral equa-
tions, J. Austral Math. Soc. 22 (1981) 408-418.

[8] P. Davis, Methods of Numerical Integration, Second edition, Academic Press,
New York, 1984.

[9] Abramowitz M, Stegun I., Handbook of Mathematical Functions. New York:
Dover Publications, 1965.

[10] J. Huang and Z. Wang, Extrapolation algorithms for solving mixed boundary
integral equations of the Helmholtz equation by mechanical quadrature methods,
SIAM J. Sci. Comput. 31 (2009) 4115-4129.

[11] I.H. Sloan and A. Spence, The Galerkin method for integral equations of first-
kind with logarithmic kernel: theory, IMA J. Numer. Anal. 8 (1988) 105-122.

[12] Y. Yan and I. Sloan, On integral equations of the first kind with logarithmic
kernels, J. Integral Equations Appl. 1 (1988) 517-548.

[13] George E. Andrews et al., Special Functions, Cambridge University Press, 2001

21

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 24, NO.3, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

554 Xin Luo et al 534-555



[14] David Elliott, Sigmoidal Transformations and the Trapezoidal Rule, J. Austral.
Math. Soc. B 40 (1998) 77-137.
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Hyers-Ulam stability of an additive set-valued functional
equation

Gang Lu, Jun Xie, Choonkil Park∗ and Yuanfeng Jin∗

Abstract. In this paper, we define the following additive set-valued functional equation

f(2x+ 3y − z) + f(2y + 3z − x) + f(3x+ 2z − y)

= f(x+ y) + f(y + z) + f(x+ z) + f(2x) + f(2y) + f(2z)
(1)

and prove the Hyers-Ulam stability of the above additive set-valued functional equation.

1. Introduction and preliminaries

The stability problem of functional equations was originated from a question of Ulam [28] concerning

the stability of group homomorphisms. Hyers [6] gave a first affirmative partial answer to the question

of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by

Rassias [19] for linear mappings by considering an unbounded Cauchy difference. A generalization of the

Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general

control function in the spirit of Rassias’ approach (see [1, 4, 5, 7, 8, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27]).

It is easy to show that if f : R→ R is a solution of the inequality

|f(x+ y)− f(x)− f(y)| < ε (1.1)

for some ε > 0 then there exists a linear function g(x) = mx,m ∈ R, such that |f(x)− g(x)| < ε for all

x ∈ R.

The inequality (1.1) can be written as the form

f(x+ y)− f(x)− f(y) ∈ B(0, ε),

where B(0, ε) := (−ε, ε). Hence we have

f(x+ y) +B(0, ε) ⊆ f(x) +B(0, ε) + f(y) +B(0, ε)

and denoting by F (x) = f(x) +B(0, ε), x ∈ R, we get

F (x+ y) ⊆ F (x) + F (y), x, y ∈ R

and

g(x) ∈ F (x).

Let Y be a real normed space. The family of all closed and convex subsets, containing 0, of Y will

be denoted by ccz(Y ).

02010 Mathematics Subject Classification: 54C60, 39B52, 47H04, 49J54.
0Keywords: Hyers-Ulam stability, additive set-valued functional equation, closed and convex subset,

cone
∗Corresponding authors.
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Let A,B be nonempty subsets of a real vector space X and λ a real number. We define

A+B = {x ∈ X : x = a+ b, a ∈ A, b ∈ B},

λA = {x ∈ X : x = λa, a ∈ A}.

Lemma 1.1. ([13]) Let λ and µ be real numbers. If A and B are nonempty subsets of a real vector

space X, then

λ(A+B) = λA+ λB,

(λ+ µ)A ⊆ λA+ µB.

Moreover, if A is a convex set and λµ ≥ 0, then we have

(λ+ µ)A = λA+ µA.

A subset A ⊆ X is said to be a cone if A+A ⊆ A and λA ⊆ A for all λ > 0. If the zero vector in X

belongs to A, then we say that A is a cone with zero.

Set-valued functional equations have been extensively investigated by a number of authors and there

are many interesting results concerning this problem (see [3, 10, 11, 12]).

2. Stability of the set-valued functional equation (1)

In this section, let X be a real vector space, A ⊆ X a cone with zero and Y a Banach space.

The following theorem is similar to the results of [16] and [18]

Theorem 2.1. If F : A→ ccz(Y ) is a set-valued map satisfying

F (2x+ 3y − z) + F (2y + 3z − x) + F (3x+ 2z − y)

⊆ F (x+ y) + F (y + z) + F (x+ z) + F (2x) + F (2y) + F (2z)
(2.1)

and

sup{diam(F (x)) : x ∈ A} < +∞

for all x, y, z ∈ A, then there exists a unique additive mapping g : A→ Y such that g(x) ∈ F (x).

Proof. Take an element x ∈ A. Letting y = z = x in (2.1) and using Lemma 1.1, we get

3F (4x) ⊆ 6F (2x). (2.2)

Replacing 2x by 2nx in (2.2), we obtain

F
(
2n+1x

)
⊆ 2F (2nx)

and
F (2n+1x)

2n+1
⊆ F (2nx)

2n
.

Denoting by Fn(x) = F (2nx)
2n , x ∈ A,n ∈ N, we obtain that (Fn(x))n≥0 is a decreasing sequence of

closed subsets of the Banach space Y . We have also

diam(Fn(x)) =
1

2n
diam (F (2nx)) .
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Taking account of sup{diam(F (x)) : x ∈ A} < +∞, we get

lim
n→∞

diam(Fn(x)) = 0.

Using the Cantor theorem for the sequence (Fn(x))n≥0, we obtain that the intersection ∩n≥0Fn(x) is a

singleton set and we denote this intersection by g(x) for all x ∈ A. Thus we get a mapping g : A → Y

and g(x) ∈ F0(x) = F (x) for all x ∈ A.

We now show that g is additive. For all xi ∈ A, i = 1, 2, · · · , N and n ∈ N,

Fn(2x+ 3y − z) + Fn(2y + 3z − x) + Fn(3x+ 2z − y)

=
F (2n(2x+ 3y − z))

2n
+
F (2n(2y + 3z − x))

2n
+
F (2n(3x+ 2z − y))

2n

⊆ F (2n(x+ y)) + F (2n(y + z)) + F (2n(x+ z)) + F (2n(2x)) + F (2n(2y)) + F (2n(2z))

2n
.

= Fn(x+ y) + Fn(y + z) + Fn(x+ z) + Fn(2x) + Fn(2y) + Fn(2z).

By the definition of g, we obtain

g(2x+ 3y − z) + g(2y + 3z − x) + g(3x+ 2z − y)

=

∞⋂
n=0

Fn(2x+ 3y − z) +

∞⋂
n=0

Fn(2y + 3z − x) +

∞⋂
n=0

Fn(3x+ 2z − y)

⊆
∞⋂

n=0

{Fn(2x+ 3y − z) + Fn(2y + 3z − x) + Fn(3x+ 2z − y)}

⊆
∞⋂

n=0

{Fn(x+ y) + Fn(y + z) + Fn(x+ z) + Fn(2x) + Fn(2y) + Fn(2z)}

and g(xi) ∈ Fn(xi). Thus we get

‖g(2x+ 3y − z) + g(2y + 3z − x) + g(3x+ 2z − y)

−g(x+ y)− g(y + z)− g(z + x)− g(2x)− g(2y)− g(2z)‖

≤ diam (Fn (x+ y)) + diam (Fn (y + z)) + diam (Fn (x+ z)) + diam (Fn (2x))

+diam (Fn (2y)) + diam (Fn (2z))

which tends to zero as n tends to ∞. Thus

g(2x+ 3y − z) + g(2y + 3z − x) + g(3x+ 2z − y)

= g(x+ y) + g(y + z) + g(x+ z) + g(2x) + g(2y) + g(2z)
(2.3)

for all x, y, z ∈ A.

Letting x = y = z = 0 in (2.3), we have 3g(0) = 6g(0). Thus g(0) = 0. Letting x = y = z in (2.3), we

get g(2x) = 2g(x) for all x ∈ A. And letting y = z = 0 in (2.3), we have

g(−x) + g(3x) = 2g(x) = g(2x) (2.4)

for all x ∈ A. Letting z = −x, y = 2x in (2.4), we get

g(z) + g(y − z) = g(y) (2.5)

for all y, z ∈ A. Letting y = 0 in (2.5), we have g(−z) = −g(z) for all z ∈ A. Hence

g(y − z) = g(y) + g(−z)
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for all y, z ∈ A. That is, g is an additive mapping. �
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Topological spaces induced by fuzzy prime ideals in BCC-algebras
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Abstract. In this paper, we construct a topological space on the set of all fuzzy prime ideals of a commutative

BCC-algebra X, and we discuss fuzzy prime ideals in commutative BCC-algebras.

1. Introduction

In 1966, Imai and Iséki ([7]) defined a class of algebras of type (2,0), called BCK-algebras which generalized the

notion of an algebra of sets with the set subtraction as the only fundamental non-nullary operation, and also the

notion of implication algebras ([8]). The class of all BCK-algebras is a quasi-variety. Iséki posed an interesting

problem whether the class of BCK-algebras is a variety. That problem was solved by Wroński ([11]), who proved

that BCK-algebra do not form a variety. In connection with this problem, Komori ([9]) introduced the notion

of BCC-algebras, and Dudeck ([1, 2]) redefined the notion of BCC-algebras by using a dual form of the original

definition in the sense of Komori. In [5], Dudek and Zhang introduced a new notion of ideals in BCC-algebras and

described some connections between such ideals and congruences. Dudek and Jun ([3]) considered the fuzzification

of ideals in BCC-algebras. Dudek, Jun and Stojakovic ([4]) described fuzzy BCC-ideals and its image. In this

paper, we define a topology on the set of all fuzzy prime ideals of a commutative BCC-algebra X and the resulting

space, denoted by F -spec(X), and obtain some related properties.

2. Preliminaries

By a BCC-algebra ([6]) we mean a nonempty set X with a constant 0 and a binary operation “ ∗ ” satisfying

axioms: for all x, y, z ∈ X,

(I) ((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0,

(II) 0 ∗ x = 0,

(III) x ∗ 0 = x,

(IV) x ∗ y = 0 and y ∗ x = 0 imply x = y.

For brevity, we also call X a BCC-algebra. In X we can define a binary relation “ ≤ ” by x ≤ y if and only

if x ∗ y = 0. Then ≤ is a partial ordering on X. The relation “ ≤ ” is called a BCC-order on X. A non-empty

subset S of a BCC-algebra X is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S.

In a BCC-algebra X, the following hold: for any x, y, z ∈ X,

(2.1) x ∗ x = 0,

(2.2) (x ∗ y) ∗ x = 0,

(2.3) x ≤ y ⇒ x ∗ z ≤ y ∗ z,

0*Correspondence: +82 33 248 2011(phone), +82 33 256 2011(fax) (K. S. So).
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(2.4) x ≤ y ⇒ z ∗ y ≤ z ∗ x.

Any BCK-algebra is a BCC-algebra, but there exist BCC-algebras which are not BCK-algebras (cf. [2]).

Note that a BCC-algebra is a BCK-algebra if and only if it satisfies:

(2.5) (x ∗ y) ∗ z = (x ∗ z) ∗ y, for all x, y, z ∈ X.

Definition 2.1 ([5]). Let X be a BCC-algebra and ∅ 6= I ⊆ X. I is called an ideal (or a BCK-ideal) of X if it

satisfies the following conditions:

(i) 0 ∈ I,

(ii) x ∗ y, y ∈ I imply x ∈ I for all x, y ∈ X.

Theorem 2.2 ([5]). In a BCC-algebra X, every ideal of X is a subalgebra of X.

Definition 2.3 ([5]). Let X be a BCC-algebra and ∅ 6= I ⊆ X. I is called a BCC-ideal of X if it satisfies the

following conditions:

(i) 0 ∈ I,

(ii) (x ∗ y) ∗ z ∈ I and y ∈ I imply x ∗ z ∈ I, for all x, y, z ∈ X.

Lemma 2.4 ([5]). In a BCC-algebra X, any BCC-ideal of X is an ideal of X.

Corollary 2.5 ([5]). Any BCC-ideal X of a BCC-algebra X is a subalgebra of X.

Remark. In a BCC-algebra, a subalgebra need not be an ideal, and an ideal need not be a BCC-ideal in general

(see [2, 4]).

We now review some fuzzy logic concept. Let X be a BCC-algebra. A fuzzy set µ in X is a function

µ : X → [0, 1]. The set µt := {x ∈ X|µ(x) ≥ t}, where t ∈ [0, 1] is fixed, is called a level set of X. By

Im(µ) we denote the image set of µ. A fuzzy set µ : X → [0, 1] is called a fuzzy subalgebra ([3]) of X if

µ(x ∗ y) ≥ min{µ(x), µ(y)} for all x, y ∈ X.

Definition 2.6. For t ∈ [0, 1], fuzzy point xt is a fuzzy subset of X such that

xt(y) :=

{
t if y = x,

0 if y 6= x.

Definition 2.7 ([3]). A fuzzy set µ in a BCC-algebra X is called a fuzzy BCK-ideal if

(i) µ(0) ≥ µ(x) for all x ∈ X,

(ii) µ(x) ≥ min{µ(x ∗ y), µ(y)} for all x, y ∈ X.

Lemma 2.8 ([3]). Let X be a BCC-algebra and µ be a fuzzy BCK-ideal of X.

(i) if x ∗ y = 0, then µ(x) ≥ µ(y) for any x, y ∈ X,

(ii) µ(x ∗ y) ≥ min{µ(x ∗ z), µ(z ∗ y)} for all x, y, z ∈ X.

Definition 2.9 ([3]). A fuzzy set µ in a BCC-algebra X is called a fuzzy BCC-ideal if

(i) µ(0) ≥ µ(x) for all x ∈ X,

(ii) µ(x ∗ z) ≥ min{µ((x ∗ y) ∗ z), µ(y)} for all x, y, z ∈ X.
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Any fuzzy BCC-ideal is a fuzzy BCK-ideal in BCC-algebras.

Lemma 2.10 ([4]). If µ is a fuzzy BCC-ideal of a BCC-algebra X, then, for any x, y, z ∈ X,

(i) x ≤ y implies µ(y) ≤ µ(x),

(ii) µ(x ∗ y) = µ(0), then µ(x) ≥ µ(y),

(iii) µ(x ∗ y) ≥ µ(x),

(iv) µ(x ∗ y) ≥ min{µ(x), µ(y)},
(v) µ(x ∗ (y ∗ z)) ≥ min{µ(x), µ(y), µ(z)},
(i) µ((x ∗ y) ∗ (x ∗ z)) ≥ µ(z ∗ y).

Proposition 2.11 ([3]). A fuzzy set µ in a BCC-algebra X is a fuzzy BCK(BCC, resp.)-ideal (subalgebra, resp.)

if and only if for every t ∈ [0, 1], the level subset µt is either empty or a BCK(BCC, resp.)-ideal (subalgebra,

resp.) of X.

Theorem 2.12. If I is an ideal of a BCC-algebra, then the characteristic function χI : X → [0, 1] of I, is a fuzzy

ideal of X with I = XχI
, where XχI

=: {x ∈ X|χI(x) = χI(0).

Proof. It is easily checked that χI is a fuzzy ideal of X. Given an ideal I, we have

XχI
={x ∈ X|χI(x) = χI(0)}

={x ∈ X|χI(x) = 1}

=I.

�

3. Toplogical Spaces by fuzzy prime ideals

Theorem 3.1. Let X be a BCC-algebra and let {ηi}{i∈Λ} be a family of fuzzy BCK(BCC, resp.)-ideals of X.

Then ∩i∈Ληi is a fuzzy BCK(BCC, resp.)-ideal of X.

Proof. Straighforward. �

If µ is a fuzzy subset of a BCC-algebra X, then the ideal generated by µ which is denoted by 〈µ〉 is defined as

follows:

〈µ〉 = ∩{η|µ ⊆ η, η is a fuzzy BCC(BCK, resp.)-ideal of X}.

For all x, y in a BCC-algebra X, y ∗ (y ∗ x) is denoted by x ∧ y. A BCC-algebra X is said to be commutative

([2]) if x ∗ (x ∗ y) = y ∗ (y ∗ x), for all x, y ∈ X, i.e., x ∧ y = y ∧ x. If X is a commutative BCC-algebra, then it is

easy to check that

x ∧ y ≤ x and x ∧ y ≤ y. (∗)

A proper ideal P of a BCC-algebra X is said to be prime if for all ideals A,B of X such that AB ⊆ P , either

A ⊆ P or B ⊆ P , where

AB = {a ∧ b|a ∈ A, b ∈ B}.

In what follows, let X be a BCC-algebra, unless otherwise specified.
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Definition 3.2. Let µ and η be two fuzzy subsets of X. Then the fuzzy set µη is defined by

µη(x) = sup{min{µ(y), η(z)}|x = y ∧ z}.

Clearly, since x ∧ x = x, each x ∈ X is expressible as x = y ∧ z for some y, z ∈ X.

Definition 3.3. A non-constant fuzzy ideal µ of X is said to be fuzzy prime if for all fuzzy ideals θ, σ such that

θσ ⊆ µ, either θ ⊆ µ or σ ⊆ µ.

Lemma 3.4. Let µ and η be two fuzzy BCK(BCC, resp.)-ideals of X. Then µη ⊆ µ ∩ η.

Proof. Let x ∈ X such that x = a∧ b for some a, b ∈ X and let µ, η be fuzzy BCK(BCC, resp.)-ideals of X. Then

µ(a) ≤ µ(a ∧ b) = µ(x) and η(b) ≤ η(a ∧ b) = η(x) from Lemma 2.10-(i). Hence min{µ(a), η(b)} ≤ (µ ∩ η)(x).

Thus µη(x) ≤ (µ ∩ η)(x). �

Let Y be the set of all fuzzy prime ideals of X. Let V (θ) := {µ ∈ Y |θ ⊆ µ}, where θ is any fuzzy subset of X.

Put Y (θ) = Y \ V (θ), the complement of V (θ) in Y .

Lemma 3.5. If θ is a fuzzy subset of X, then V (〈σ〉) = V (σ). In particular, V (〈xβ〉) = V (xβ) for any fuzzy point

xβ of X.

Proof. Clearly, V (σ) ⊆ V (〈σ〉). Now, let µ ∈ V (〈σ〉) = {µ ∈ Y |〈σ〉 ⊆ µ}. Then we have 〈σ〉 ⊆ µ. Since σ ⊆ 〈σ〉,
we have σ ⊆ µ which implies that µ ∈ V (σ). Thus V (〈σ〉) ⊆ V (σ). �

Theorem 3.6. Let τ = {Y (θ)|θ is a fuzzy BCK(BCC)-ideal of X}. Then the pair (Y, τ) is a topological

space.

Proof. Consider the fuzzy ideals θ and σ of Y defined by θ(x) := 0 and σ(x) := 1 for all x ∈ X. Then V (θ) = Y

and V (σ) = ∅ so that ∅, Y ∈ τ . Now let θ1 and θ2 be two fuzzy BCK(BCC)-ideals of X. We show that

V (θ1) ∪ V (θ2) = V (θ1 ∩ θ2). To do this, if µ ∈ V (θ1) ∪ V (θ2), then µ ∈ V (θ1) or µ ∈ V (θ2), i.e., θ1 ⊆ µ or

θ2 ⊆ µ and hence θ1 ∩ θ2 ⊆ µ. Therefore µ ∈ V (θ1 ∩ θ2). Thus V (θ1) ∪ V (θ2) ⊆ V (θ1 ∩ θ2). On the other

hand, if µ ∈ V (θ1 ∩ θ2), then θ1 ∩ θ2 ⊆ µ. By Lemma 3.4, θ1θ2 ⊆ θ1 ∩ θ2 ⊆ µ and θ1θ2 ⊆ µ. Since µ is a fuzzy

prime ideal of X, θ1 ⊆ µ or θ2 ⊆ µ. Hence µ ∈ V (θ1) ∪ V (θ2). Therefore V (θ1 ∩ θ2) ⊆ V (θ1) ∪ V (θ2) and hence

V (θ1) ∪ V (θ2) = V (θ1 ∩ θ2). Thus Y (θ1) ∩ Y (θ2) = Y (θ1 ∩ θ2), i.e., τ is closed under finite intersection.

Now we will prove that if {θi}i∈Λ is a family of fuzzy BCK(BCC)-ideal of X, then

∩i∈ΛV (θi) = V (〈∪i∈Λθi〉). (∗∗)

Let µ ∈ Y . Then we have

µ ∈ V (θi),∀i ∈ Λ⇔ θi ⊆ µ,∀i ∈ Λ

⇔ ∪i∈Λ θi ⊆ µ

⇔ 〈∪i∈Λθi〉 ⊆ µ

⇔ µ ∈ V (〈∪i∈Λθi〉).

Therefore (∗∗) holds. Thus ∩i∈ΛY (θi) = Y (〈∪i∈Λθi〉). This proves that τ is closed under arbitrary union. Thus

(Y, τ) is a topological space. �
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The topological space (Y, τ) described in Theorem 3.6 is called a fuzzy spectrum of Y or F -spectrum of Y and

is denoted by F -spec (Y ).

Theorem 3.7. Let (Y, τ) be a topological space. Then the subfamily B = {Y (xβ)|x ∈ X,β ∈ (0, 1]} of τ is a

base for τ .

Proof. It is enough to show that for all Y (θ) ∈ τ and µ ∈ Y (θ) there exists Y (xβ) ∈ B such that µ ∈ Y (xβ) and

Y (xβ) ⊆ Y (θ). To do this, if Y (θ) ∈ τ and µ ∈ Y (θ), then θ * µ. Hence there exists x ∈ X such that θ(x) > µ(x).

If θ(x) = β, then

µ ∈ Y (xβ). (1)

If σ ∈ V (θ) is an arbitrary element, then σ(x) ≥ θ(x) = β = xβ(x), which implies that xβ ⊆ σ. Therefore

σ ∈ V (xβ) and hence V (θ) ⊆ V (xβ). Thus we have

Y (xβ) ⊆ Y (θ). (2)

By (1) and (2), the proof is complete. �

4. Fuzzy prime ideals of commutative BCC-algebras

Proposition 4.1. Let µ be a fuzzy BCK(BCC)-ideal of a BCC-algebra X. Then Xµ := {x ∈ X|µ(x) = µ(0)}
is a BCK(BCC)-ideal of X.

Proof. Straightforward. �

If µ is not a fuzzy BCK(BCC)-ideal of a BCC-algebra X, then Proposition 4.1 need not be true as shown in

the following example.

Example 4.2. Let X be a BCC-algebra with the following table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 1 0 0 0 0 1

2 2 2 0 0 1 1

3 3 2 1 0 1 1

4 4 4 4 4 0 1

5 5 5 5 5 5 0

Then (X; ∗, 0) is not a BCK-algebra, since (2 ∗ 1) ∗ 4 = 1 6= 0 = (2 ∗ 4) ∗ 1. Let S := {0, 1, 2, 3, 4} and

T := {0, 1, 2}. Then S is a BCC-ideal of X and T is a BCC-subalgebra of X, but not a BCK-ideal of X,

since 3 ∗ 2 = 0 ∈ T and 3 /∈ T ([5]). Let µ : X → [0, 1] be a map defined by µ(0) = µ(1) = µ(2) = 1 and

µ(3) = µ(4) = µ(5) = 1
2 . Then µ is not a BCK-ideal, since 1

2 = µ(3) < min{µ(3 ∗ 2), µ(2)} = 1. Xµ = {0, 1, 2}
is not a BCK-ideal of X, since 1 = 3 ∗ 2 ∈ Xµ and 2 ∈ Xµ, but 3 /∈ Xµ. Define a fuzzy subset ν in X

by ν(0) = ν(1) = ν(5) = 0.9 and ν(2) = ν(3) = ν(4) = 0.3. Then ν is not a fuzzy BCC-ideal of X, since

ν(4 ∗ 2) = ν(4) = 0.3 < min{ν((4 ∗ 5) ∗ 2) = ν(1 ∗ 2) = ν(0) = 0.9, ν(5) = 0.9} = 0.9. But Xν = {0, 1, 5} is not a

BCC-ideal of X, since (4 ∗ 5) ∗ 0 = 1, 5 ∈ Xν but 4 ∗ 0 = 4 /∈ Xν .

A proper ideal P of a BCC-algebra X is said to be s-prime if

x ∧ y ∈ P ⇔ x ∈ P or y ∈ P, for all x, y ∈ X.
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Definition 4.3. Let X be a commutative BCC-algebra. A non-constant fuzzy BCK-ideal (or fuzzy ideal) µ of

X is said to be s-prime if for all x, y ∈ X, either µ(x ∧ y) = µ(x) or µ(x ∧ y) = µ(y).

Lemma 4.4. A non-constant fuzzy set µ of a commutative X is a fuzzy s-prime ideal of X if and only if for each

t ∈ [0, 1], µt is either empty or an s-prime ideal of X if it is proper.

Proof. Suppose that µ is a fuzzy s-prime ideal of X. For each t ∈ [0, 1], assume that µt 6= ∅ and x ∧ y ∈ µt,

where x, y ∈ X. Then µ(x ∧ y) ≥ t. Since µ is a fuzzy s-prime ideal of X, we obtain µ(x ∧ y) = µ(x) ≥ t or

µ(x ∧ y) = µ(y) ≥ t. Hence either x ∈ µt or y ∈ µt. Thus µt is an s-prime ideal of X.

Conversely, if µ is not an s-prime ideal of X, then µ(x ∧ y) 6= µ(x) and µ(x ∧ y) 6= µ(y) for all x, y ∈ X. Let

x ∧ y ∈ µt for all x, y ∈ X. Then µ(x ∧ y) ≥ t. Since µ is not an s-prime ideal of X, we obtain µ(x) < t and

µ(y) < t. Hence x /∈ µt and y /∈ µt, which is a contradiction. �

Lemma 4.5. Let µ be a fuzzy prime ideal of a BCC-algebra X. Then for any t ∈ [0, 1], µt is either empty or a

prime ideal of X if it is proper.

Proof. Let t ∈ [0, 1] and µt 6= ∅. By Proposition 2.11, µt is a BCK-ideal of X. Now let A,B be two ideals of X

such that

AB ⊆ µt = {x ∈ X|µ(x) ≥ t}.

If we define the fuzzy subsets θ := χA and σ := χB , then it is easy to show that θσ ⊆ µ, which implies θ ⊆ µ or

σ ⊆ µ, since µ is a fuzzy prime ideal of X. It follows that A ⊆ µt or B ⊆ µt. �

Lemma 4.6. Let X be a commutative BCC-algebra X. If z ≤ x and z ≤ y for all x, y, z ∈ X, then z ≤ x ∧ y.

Proof. Since z ≤ x and z ≤ y, we have z ∗ x = 0 and z ∗ y = 0. Then z = z ∗ 0 = z ∗ (z ∗ x) = x ∗ (x ∗ z) and

z = z ∗ 0 = z ∗ (z ∗ y) = y ∗ (y ∗ z), since X is commutative. Hence z = x ∗ (x ∗ z) = x ∗ (x ∗ (y ∗ (y ∗ z))) ≤
x ∗ (x ∗ y) = y ∧ x = x ∧ y. This competes the proof. �

A BCC-algebra X is said to be positive implicative ([2]) if for any x, y, z ∈ X, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

Lemma 4.7. Let X be a positive implicative BCC-algebra which is commutative. Then a proper ideal P of X

is an s-prime ideal of X if and only if P is a prime ideal of X.

Proof. Suppose that P is an s-prime ideal such that AB ⊆ P for some ideals A,B of X. In order to prove that

A ⊆ P or B ⊆ P , let us assume that neither A ⊆ P nor B ⊆ P . Then there exist a ∈ A, b ∈ B such that a /∈ P
and b /∈ P . Since a ∧ b ∈ AB and AB ⊆ P , we have a ∧ b ∈ P . Since P is an s-prime ideal of X, a ∈ P or b ∈ P ,

which is a contradiction. Thus AB ⊆ P implies A ⊆ P or B ⊆ P .

Conversely, suppose that for any ideals A,B of X, AB ⊆ P implies A ⊆ P or B ⊆ P . We prove that P is an

s-prime ideal of X. Let a ∧ b ∈ P , where a, b ∈ X. Put A(a) := {x ∈ X|x ≤ a} and A(b) := {y ∈ X|y ≤ b}.
Clearly, 0, a ∈ A(a). Let x ∗ y, y ∈ A(a). Then x ∗ y ≤ a and y ≤ a. Since X is positive implicative, we have

(x ∗ y) ∗ a = (x ∗ a) ∗ (y ∗ a) = (x ∗ a) ∗ 0 = x ∗ a = 0. Hence x ∈ A(a). Therefore A(a) is a BCK-ideal of X.

Similarly, A(b) is a BCK-ideal of X. We claim that A(a)A(b) ⊆ P . Let x ∈ A(a) and y ∈ A(b). Then x ≤ a and

y ≤ b. Since X is commutative, we obtain x ∧ y ≤ x. Since (X,≤) is a partially ordered set, we have x ∧ y ≤ a.

Similarly, x ∧ y ≤ b. By Lemma 4.6, we obtain x ∧ y ≤ a ∧ b and a ∧ b ∈ P . Since P is a BCK-ideal, x ∧ y ∈ P .

Hence A(a)B(b) ⊆ P . By hypothesis, A(a) ⊆ P or A(b) ⊆ P . Since a ∈ A(a), b ∈ A(b), we have a ∈ P or b ∈ P .

Thus P is an s-prime ideal of X. �
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Theorem 4.8. Let µ be a fuzzy prime ideal of a BCC-algebra X. Then Xµ is a prime ideal of X.

Proof. Clearly, Xµ = µµ(0). By Lemma 4.5, Xµ is a prime ideal of X. �

Theorem 4.9. Let µ be a fuzzy prime ideal of a positive implicative BCC-algebra X which is commutative.

Then µ is a fuzzy s-prime ideal of X.

Proof. Let µ be a fuzzy prime ideal of X. By Lemma 4.5, µt is a prime ideal of X. Using Lemma 4.7, µt is an

s-prime ideal of X. It follows from Lemma 4.4 that µ is a fuzzy s-prime ideal of X. �

The following example shows that the converse of Theorem 4.9 does not hold.

Example 4.10. Let X := {0, e} be a set with the following table:

∗ 0 e

0 0 0

e e 0

Then (X; ∗, 0) is a positive implicative BCC-algebra which is commutative. Define the fuzzy subset µ of X by

µ(0) = 0.7, µ(e) = 0. Clearly µ is a fuzzy s-prime ideal of X. Now consider the fuzzy ideals σ and θ of X which

are defined by σ(x) = 1
2 for all x ∈ X and θ(e) = 0, θ(0) = 1. Then we have σθ ⊆ µ but σ * µ and θ * µ. Thus

µ is not a fuzzy prime ideal of X.

Theorem 4.11. Let X be a commutative BCC-algebra. Then I is an s-prime ideal of X if and only if χI is a

fuzzy s-prime ideal of X.

Proof. Suppose that I is an s-prime ideal of X. By Theorem 2.12, χI is a fuzzy ideal of X. Since I is proper, χI

is a non-constant function. Let x, y ∈ X. If x ∈ I or y ∈ I, then x ∧ y ∈ I. Hence χI(x ∧ y) = 1 = χI(x) ∨ χI(y).

If x /∈ I and y /∈ I, then x ∧ y /∈ I. Hence χI(x ∧ y) = 0 = χ(x) ∨ χI(y). Thus χI is a fuzzy s-prime ideal of X.

Conversely, since I = XχI
, if χI is a fuzzy s-prime ideal of X, it follows by Lemma 4.4 that I is an s-prime

ideal of X. �

Corollary 4.12. Let X be a positive implicative BCC-algebra which is commutative. Then P is a prime ideal

of X if and only if χP is a fuzzy prime ideal of X.

Proof. Let P be a prime ideal of X. Then χP is a fuzzy ideal of X. Now let θ, σ be two fuzzy ideals such that

θσ ⊆ χP . We shall show that

θ ⊆ χP or σ ⊆ χP . (∗ ∗ ∗)

If (∗ ∗ ∗) does not hold, then there exist x, y ∈ X \ P such that θ(x) > 0 and σ(y) > 0. By Lemma 4.7, we have

x ∧ y /∈ P . Since θσ ⊆ χP , we have

0 < min{θ(x), σ(y)} ≤ θσ(x ∧ y) ≤ χP (x ∧ y).

In other words, x ∧ y ∈ P , which is a contradiction. Hence (∗ ∗ ∗) holds.

Conversely, let χP be a fuzzy prime ideal. By Theorem 4.9, χP is a fuzzy s-prime ideal. By Theorem 4.11, P

is an s-prime ideal of X. By Lemma 4.7, P is a prime ideal of X. �
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RIESZ FUZZY NORMED SPACES AND STABILITY OF A LATTICE

PRESERVING FUNCTIONAL EQUATION

CHOONKIL PARK, EHSAN MOVAHEDNIA∗, SEYED MOHAMMAD SADEGH MODARRES MOSADEGH,

AND MOHAMMAD MURSALEEN

Abstract. The main objective of this paper is to introduce and to study fuzzy normed Riesz spaces.

By the direct method, we prove the Hyers-Ulam stability of the following lattice preserving functional

equation in fuzzy Banach Riesz space

N2 (f(τx ∨ ηy)− τf(x) ∨ ηf(y), t) ≥ N1(ϕ(τx ∨ ηy, τx ∧ ηy), t)

where (X ,N1), (Y,N2) are fuzzy normed Riesz space and fuzzy Banach Riesz space, respectively; and

ϕ : X × X → X is a mapping such that

ϕ(x, y) ≤ (τη)
α
2 ϕ

(
x

τ
,
y

η

)
for all τ, η ≥ 1 and α ∈ [0, 1).

1. Introduction

Riesz spaces are named after Frigyes Riesz who first defined them in [1] . Riesz spaces are real vector

spaces equipped with a partial order. Under this partial order the Riesz space must satisfy some axioms,

including the axiom that it is a lattice.

For the basic theory of vector lattices (Riesz spaces) and Banach lattices and for unexplained termi-

nology we refer to [2, 3, 4].

In 1984, Katrasas [5] defined a fuzzy norm on a linear space to construct a fuzzy vector topological

structure on the space. Later, some mathematicians have defined fuzzy norms on a linear space from

various points of view [6, 7]. In particular, Bag and Samanta [8], following Cheng and Mordeson [9],

gave an idea of a fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and

Michalek type [10]. They also established a decomposition theorem of a fuzzy norm into a family of

crisp norms and investigated some properties of fuzzy normed spaces.

A classical question in the theory of functional equations is the following: When is it true that a

function which approximately satisfies a functional equation D must be close to an exact solution of

D? If the problem accepts a solution, we say that the equation D is stable. The first stability prob-

lem concerning group homomorphisms was raised by Ulam [11] in 1940. In 1941, Hyers [12] solved

this stability problem for additive mappings subject to the Hyers condition on approximately additive

mappings. The result of Hyers was generalized by Rassias [13] for linear mapping by considering an un-

bounded Cauchy difference. The stability problems of several functional equations have been extensively

investigated by a number of authors, and there are many interesting results concerning this problem

([14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]). Recently, considerable attention has been increasing to

the problem of fuzzy stability of functional equations. Several fuzzy stability results concerning Cauchy,

Jensen, simple quadratic, and cubic functional equations have been investigated [26]–[31].

In this paper, Riesz fuzzy normed spaces are defined and the stability condition are verified.

2010 Mathematics Subject Classification. 54A40, 46S40, 39B52.
Key words and phrases. fuzzy normed Riesz space; fixed point; Hyers-Ulam stability; lattice preserving functional

equation.
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2. Preliminary estimates

A non empty setM with a relation “≤” is said to be an ordered set whenever the following conditions

are satisfied :

1. x ≤ x for every x ∈M.

2. x ≤ y and y ≤ x implies that x = y.

3. x ≤ y and y ≤ z implies that x ≤ z.
If, in addition, for all x, y ∈ M either x ≤ y or y ≤ x, then M is called a totally ordered set. Let A
be subset of an ordered set M. x ∈ M is called an upper bound of A if y ≤ x for every y ∈ A. z ∈ M
is called a lower bound of A if y ≥ z for all y ∈ A. Moreover, if there is an upper bound of A, then A
is said to be bounded from above. If there is a lower bound of A, then A is said to be bounded from

below. If A is bounded from above and from below, then we will briefly say that A is order bounded.

An order set (M,≤) is called a lattice if any two elements x, y ∈M have a least upper bound denoted

by x ∨ y = sup(x, y) and a greatest lower bound denoted by x ∧ y = inf(x, y).

A real vector space E which is also an ordered set is an ordered vector space if the order and the

vector space structure are compatible in the following sense:

1. If x, y ∈ E such that x ≤ y, then x+ z ≤ y + z for all z ∈ E .
2. If x, y ∈ E such that x ≤ y, then αx ≤ αy for all α ≥ 0.

(E ,≤) is called a Riesz space if (E ,≤) is a lattice and ordered vector space.

A norm ‖ · ‖ on Riesz space E , is called a lattice norm if ‖x‖ ≤ ‖y‖ whenever |x| ≤ |y|. In the latter case

(E , ‖ · ‖) is called a normed Riesz space.

(E , ‖ · ‖) is called a Banach lattice if for all x, y ∈ E
1. (E , ‖ · ‖) is a Banach space.

2. E is a Riesz space.

3. ‖ · ‖ is a lattice norm.

Example 2.1. Suppose that X is compact Hausdorff space. We denote by C(K) the Banach space of all

real continuous functions on X . Let “≤” be a point-wise order on C(K), f ≤ g if and only if f(t) ≤ g(t)

for all t ∈ K. It is easy to see that (C(K),≤) is a Banach lattice.

Let E be a Riesz space and let the positive cone E+ of E consist of all x ∈ E such that x ≥ 0. For

every x ∈ E let

x+ = x ∨ 0 x− = −x ∨ 0 |x| = x ∨ −x.

Let E be a Riesz space. For all x, y, z ∈ E and a ∈ R the following assertions hold

1. x+ y = x ∨ y + x ∧ y , −(x ∨ y) = −x ∧ y.
2. x+ (y ∨ z) = (x+ y) ∨ (x+ z) , x+ (y ∧ z) = (x+ y) ∧ (x+ z).

3. |x| = x+ + x− , |x+ y| ≤ |x|+ |y|.
4. x ≤ y is equivalent to x+ ≤ y+ and y− ≤ x−.

5. (x ∨ y) ∧ z = (x ∧ y) ∨ (y ∧ z) , (x ∧ y) ∨ z = (x ∨ y) ∧ (y ∨ z).
A Riesz space E is Archimedean if x ≤ 0 holds whenever the set {nx : n ∈ N} is bounded from

above.

Definition 2.1. [2] Let X and Y be Banach lattices. A mapping T : X → Y is called positive if

T (X+) = {T (|x|) : x ∈ X} ⊂ Y+.

Theorem 2.1. [3] For an operator T : X → Y between two Riesz spaces the following statements are

equivalent:

1. T is a lattice homomorphism.

2. T (x+) = T (x)+ for all x ∈ X .

3. T (x ∧ y) = T (x) ∧ T (y).

4. If x ∧ y = 0 in X , then T (x) ∧ T (y) = 0 holds in Y.
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5. T (|x|) = |T (x)|.

Definition 2.2. [4] Let X and Y be Banach lattices and let T : X → Y be a positive mapping. We

define

(P1) lattice homomorphism functional equation:

T (|x| ∨ |y|) = T (|x|) ∨ T (|y|);

(P2) semi-homogeneity: for all x ∈ X and every number α ∈ R+

T (α|x|) = αT (|x|).

Remark 2.1. [4] Given two Banach lattices X and Y, let a positive mapping f : X → Y satisfy the

property (P1). Then the following statements are valid.

1. f(|x ∨ y|) ≤ f(|x|) ∨ f(|y|) for all x, y ∈ X .
2. The semi-homogeneity implies that f(0) = 0.

3. f is an increasing operator, in the sense that if x, y ∈ X are such that |x| ≤ |y|, then f(|x|) ≤ f(|y|).

3. Main results

Definition 3.1. Let (X ,≤) be a Riesz space. A function N : X × R → [0, 1] is called a Riesz fuzzy

norm on X if for all x, y ∈ X and all s, t ∈ R

(N1) N (x, t) = 0 for t ≤ 0 ;

(N2) x = 0 if and only if N (x, t) = 1 for all t> 0 ;

(N3) N (cx, t) = N (x, t/|c|) if c6= 0 ;

(N4) N (x+ y, t+ s) ≥ min {N (x, t),N (y, s)} ;

(N5) N (x, .) is a non-decreasing function of R and

limt→∞ N (x, t) = 1 ;

(N6) for x 6= 0,N (x, .) is continuous on R ;

(N7) N (x, t) ≥ N (y, t) whenever |x| ≤ |y|.
Then (X ,≤,N ) is called a Riesz fuzzy normed space.

Example 3.1. Let (X ,≤, ‖.‖) be a normed Riesz space. One can easily verify that for each k > 0 ,

Nk(x, t) =


t

t+ k‖x‖
if t > 0

0 if t ≤ 0

defines a Riesz fuzzy norm on X .

Note that (N1)−(N6) have been checked in [8]. We show that (N7) is satisfied. Suppose that |x| ≤ |y|
for all x, y ∈ X . Then ||x|| ≤ ||y|| since (X ,≤, ‖ · ‖) is a normed Riesz space. So

t

t+ k‖x‖
≥ t

t+ k‖y‖
and so

N (x, t) ≥ N (y, t)

for all t > 0 and k > 0. Therefore, (X ,≤,N ) is a Riesz fuzzy normed space.

Example 3.2. Let (X ,≤, ‖.‖ ) be a normed Riesz space. We define

N (x, t) =


0 if t ≤ ‖x‖

1 if t > ‖x‖.
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It is very easy to show that (X ,≤,N ) is a Riesz fuzzy normed space.

Remark 3.1. Convergent and Cauchy sequences in Riesz fuzzy normed space are same as in fuzzy

normed space.

Definition 3.2. Let (X ,≤,N ) be a fuzzy normed Riesz space. A sequence {xn} in X is said to be

convergent if there exists an x ∈ X such that limn→∞N (xn − x, t) = 1 for all t >0. In this case, x is

called the limit of the sequence {xn} and we denote it by

N − limn→∞N (xn − x, t) = x.

Definition 3.3. Let (X ,≤,N ) be a fuzzy normed Riesz space. A sequence {xn} in X is said to be

Cauchy if for each ε > 0 and each δ > 0 there exists an n0 ∈ N such that

N (xm − xn, δ) > 1− ε (m,n ≥ n0).

Definition 3.4. Let (X ,≤,N ) be a fuzzy normed Riesz space. A sequence yn in X is called order fuzzy

convergent to y as n→∞ if there exists a sequence xn ↓ 0 in X as n→∞ and

N (yn − y, t) ≥ N (xn, t)

for all n ∈ N. We write y = of − limn→∞ yn.

It is well-known that every convergent sequence in a fuzzy normed Riesz space is Cauchy. If each

Cauchy sequence is convergent, then the Riesz fuzzy norm is said to be complete and the fuzzy normed

Riesz space is called a fuzzy Banach Riesz space.

Theorem 3.1. Let (X ,≤,N ) be a fuzzy normed Riesz space and let {xn}, {yn} be sequences in X such

that

x = of − lim
n→∞

xn and y = of − lim
n→∞

yn.

Then

xn + yn = of − lim
n→∞

x+ y,

xn ∨ yn = of − lim
n→∞

x ∨ y,

xn ∧ yn = of − lim
n→∞

x ∧ y.

Theorem 3.2. Let (X ,≤,N ) be a fuzzy normed Riesz space. Then lattice operators are continuous.

Proof. Assume that

lim
n→∞

N (xn − x, s) = 1 limn→∞N (yn − y, t) = 1 (3.1)

for all t, s > 0. Therefore,

N (xn ∧ yn − x ∧ y, t+ s) = N (xn ∧ yn − xn ∧ y + xn ∧ y − x ∧ y, t+ s)

≥ min{N (xn ∧ yn − xn ∧ y, t),N (xn ∧ y − x ∧ y, s)}
≥ min{N (yn − y, t),N (xn − x, s)}.

So

lim
n→∞

N (xn ∧ yn − x ∧ y, t+ s) = 1.

It is easy to see that the other lattice operations are continuous. �

Theorem 3.3. Every fuzzy normed Riesz space is Archimedean.
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Proof. Let (X ,≤,N ) be fuzzy normed Riesz space. We show that X has Archimedean properties.

Suppose that x, y ∈ X+ and nx ≤ y for all n ∈ N.

N (nx, t) ≥ N (y, t) t > 0

and so

N
(
x,
t

n

)
≥ N (y, t) t > 0.

Therefore,

N (x, t) ≥ N (y, nt) t > 0

and

N (x, t) ≥ N (n−1y, t) t > 0.

Since n ∈ N is arbitrary as n→∞, we have x = 0. Hence X has Archimedean properties. �

Theorem 3.4. Let (E ,≤,N ) be a fuzzy normed Riesz space. Then the positive cone E+ is closed.

Proof. Assume that xn ∈ E+

lim
n→∞

N
(
xn − x,

t

2

)
= 1 for all t > 0, x ∈ E .

By Theorem 3.2, we have

lim
n→∞

N
(
xn ∨ 0− x ∨ 0,

t

2

)
= 1 for all t > 0, x ∈ E .

So xn ∨ 0 = xn since xn ∈ E+. Therefore,

lim
n→∞

N
(
xn − x ∨ 0,

t

2

)
= 1 for all t > 0, x ∈ E

and hence by (N4), we get

N (x− x ∨ 0, t) ≥ min

{
N
(
xn − x ∨ 0,

t

2

)
,N
(
xn − x,

t

2

)}
for all t > 0 and x ∈ E . Two terms on the right hand side of the above inequality tend to 1 as n→∞,

and so x = x ∨ 0. Hence x ∈ E+. Thus the proof is complete. �

Theorem 3.5. Let (E ,≤,N ) be a fuzzy normed Riesz space. For every increasing convergent sequence

{xn} ⊂ E

lim
n→∞

N (xn − u, t) = 1 for all t > 0,

where u = sup{xn : n ∈ N}.

Proof. Suppose that {xn} is an increasing convergent sequence and

lim
n→∞

N (xn − x, t) = 1 for all t > 0 and all n ∈ N. (3.2)

For every m ≥ n, we have

xm − xn ∈ E+.
It follows from Theorem 3.4 that x− xn ≥ 0 and xn ≤ u ≤ x for all n ∈ N. So by (N7)

N (xn − x, t) ≤ N (xn − u, t) for all t > 0.

Therefore, as n→∞, we have limn→∞N (xn−u, t) = 1 and hence u = x. This completes the proof. �

Definition 3.5. The sequence {xn} is called uniformly bounded if there exist e ∈ E+ and an ∈ l1 such

that xn ≤ an · e.
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Definition 3.6. Let (E ,≤,N ) be a fuzzy normed Riesz space. Then E is called uniformly complete if

sup{
∑n
i=1 xi : n ∈ N} exists for every uniformly bounded sequence xn ⊂ E+.

Theorem 3.6. Every fuzzy Banach Riesz space is uniformly complete.

Proof. Let (E ,≤,N ) be a fuzzy Banach Riesz space and {xn} ⊂ E+ be a sequence such that xn ≤ ane

for a suitable sequence {an} ∈ l1 and some e ∈ E+. We show that sup{
∑n
i=1 xi : n ∈ N} exists. We set

yn = x1 + x2 + ...+ xn and bn =
∞∑

j=n+1

aj . (3.3)

By (3.3) and (N7) we have

N (yn+p − yn, t) = N (xn+1 + · · ·+ xn+p, t)

≥ N (
∞∑
j=1

an+j · e, t)

= N (bn · e, t)

for all t > 0. As n→∞, we get

lim
n→∞

N (yn+p − yn, t) = 1.

So (yn) is a Cauchy sequence in fuzzy Banach Riesz space and therefore there exists y ∈ E such that

yn −→N y. Since yn is increasing and convergence sequence, by Theorem 3.5, we have

lim
n→∞

N (yn − ∨yn, t) = 1

that is, yn −→N sup{
∑∞
i=1 xi : n ∈ N}. Using a unique limit we have

y = sup{
∞∑
i=1

xi : n ∈ N}.

Thus the proof is complete. �

Definition 3.7. Let (E ,≤,N ) be a fuzzy normed Riesz space. A ⊂ E is solid if

(1) f ∈ A if and only if |f | ∈ A;

(2) if 0 ≤ f ∈ A and g ∈ E+ then f ∧ g ∈ A.

Definition 3.8. Every solid subset I of E is called an ideal in E.

Definition 3.9. An ordered closed ideal is referred to as a band.

Theorem 3.7. Let (E ,≤,N ) be a fuzzy normed Riesz space. Then the closure of every solid subset of

E is solid.

Proof. Let A ⊂ E be solid and f ∈ A. We show that |f | ∈ A. There exists {fn} ∈ A such that

fn −→N f . It follows from ||fn| − |f || ≤ |fn − f | and (N7) that

N (|fn| − |f |, t) ≥ N (|fn − f |, t)
= N (fn − f, t)

for all n ∈ N and t > 0. Therefore, |fn| →N |f | as n tends to infinity. Hence |f | ∈ A, since A is solid

and fn ∈ A. Conversely, assume that |f | ∈ A. Then there exists fn ∈ A+ such that fn −→N |f |. By

(3.2) we have

fn ∧ f −→N f ∧ |f | = f.
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Therefore, f ∈ A, since fn ∧ f ∈ A.
Now, assume that 0 ≤ f ∈ A and g ∈ E+. There exists a sequence {fn} ∈ A+ such that fn −→N f.

Hence by (3.2)

fn ∧ g →N f ∧ g.

So fn ∧ g ∈ A. Since fn ∈ A and A is solid, f ∧ g ∈ A. �

Theorem 3.8. Let (E ,≤,N ) be a fuzzy normed Riesz space. Then every band in E is closed.

Proof. Suppose that B is a band and assume that {fn} ⊂ B is a sequence such that fn −→N f for some

f ∈ E . It follows from (3.2) that

|fn| ∧ |f | →N |f |

as n→∞. For every n ∈ N, let

gn = (|fn| ∨ · · · ∨ |f1|) ∧ |f |.

Then {gn} is an increasing sequence and

gn = (|fn| ∧ |f |) ∨ ... ∨ (|f1| ∧ |f |).

So |fn| ∧ |f | ≤ gn ≤ |f |. Therefore, by (N7) we have

N (|f | − gn, t) ≥ N (|f | − |fn| ∧ |f |, t)

for all t > 0. Hence gn −→N |f | as n→∞. �

4. Hyers-Ulam stability of lattice homomorphisms in fuzzy normed Riesz spaces

Using the direct method, we prove the Hyers-Ulam stability of lattice homomorphisms in fuzzy Banach

Riesz space as below.

Theorem 4.1. Let f be a positive operator from a fuzzy normed Riesz space (X ,N1) to a fuzzy Banach

Riesz space (Y,N2) such that

N2 (f(τx ∨ ηy)− τf(x) ∨ ηf(y), t) ≥ N1(ϕ(τx ∨ ηy, τx ∧ ηy), t) (4.4)

for all x, y ∈ X and t > 0. Here ϕ : X × X → X is a mapping such that

ϕ(x, y) ≤ (τη)
α
2 ϕ

(
x

τ
,
y

η

)
for all τ, η ≥ 1 and for which there are a number α ∈ [0, 1) and a unique positive operator T : X → Y
satisfying the properties (P1) and (P2) for x ∈ X+ and the inequality

N2(T (x)− f(x), t) ≥ N1(ϕ(x, x),
τ − τα

τα
, t).

Proof. Putting y = x and τ = η in (??), we have

N2(f(τx)− τf(x), t) ≥ N1(ϕ(τx, τx), t)

≥ N1 (ταϕ(x, x), t)

= N1

(
ϕ(x, x),

t

τα

)
.

Therefore,

N2

(
1

τ
f(τx)− f(x), τα−1t

)
≥ N1(ϕ(x, x), t). (4.5)
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Now, replacing x by τx in (4.5) and using the assumption that ϕ(τx, τx) ≤ ταϕ(x, x) and the property

(N3) and (N7) of Definition 3.1, we obtain

N2

(
1

τ
f(τ2x)− f(τx), τα−1t

)
≥ N1(ϕ(τx, τx), t)

≥ N1 (ταϕ(x, x), t)

= N1

(
ϕ(x, x),

t

τα

)
.

Hence

N2

(
1

τ2
f(τ2x)− 1

τ
f(τx), τ2α−2t

)
≥ N1(ϕ(x, x), t). (4.6)

By comparing (4.5) and (4.6) and using property (N4), we obtain

N2

(
1

τ2
f(τ2x)− f(x),

(
τα−1 + τ2(α−1)

)
t

)
≥ N1(ϕ(x, x), t). (4.7)

Again, replacing x by τx in (4.7), we have

N2

(
1

τ3
f(τ3x)− 1

τ
f(τx),

(
τ2(α−1) + τ3(α−1)

)
t

)
≥ N1(ϕ(x, x), t). (4.8)

By comparing (4.5) and (4.8) and the property (N4), we obtain

N2

(
1

τ3
f(τ3x)− f(x),

(
τ (α−1) + τ2(α−1) + τ3(α−1)

)
t

)
≥ N1(ϕ(x, x), t).

With this process, we obtain

N2

(
1

τn
f(τnx)− f(x),

n∑
k=1

τk(α−1)t

)
≥ N1(ϕ(x, x), t) (4.9)

for all n ∈ N. If m ∈ N and n > m > 0, then n−m ∈ N. Replacing n by n−m in (4.9), we get

N2

(
1

τn−m
f(τn−mx)− f(x),

n−m∑
k=1

τk(α−1)t

)
≥ N1(ϕ(x, x), t). (4.10)

By replacing x by τmx and using (N7), we obtain

N2

(
1

τn
f(τnx)− 1

τm
f(τmx),

1

τm

n−m∑
k=1

τk(α−1)t

)
≥ N1(ϕ(τmx, τmx), t)

≥ N1 (τmαϕ(x, x), t)

= N1

(
ϕ(x, x),

t

τmα

)
.

It follows that

N2

(
1

τn
f(τnx)− 1

τm
f(τmx),

1

τm

n∑
k=m+1

τk(α−1)t

)
≥ N1 (ϕ(x, x), t) . (4.11)

Let c > 0, and let ε be given. Since limt→∞N1(ϕ(x, x), t) = 1, there is some t0 > 0 such that

N1(ϕ(x, x), t) ≥ 1− ε.

Fix t > t0. The convergence of series
∑∞
k=1 τ

k(α−1) guarantees that there exists some n0 ≥ 0 such that,

for each n > m > n0, the inequality
n∑

k=m+1

τk(α−1) < c
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holds. It follows that

N2

(
1

τn
f(τnx)− 1

τm
f(τmx), c

)
≥ N2

(
1

τn
f(τnx)− 1

τm
f(τmx),

n∑
k=m+1

τk(α−1)t

)
≥ N1(ϕ(x, x), t) ≥ 1− ε.

Hence

{
f(τnx)

τn

}
is a Cauchy sequence in fuzzy Banach Riesz space (Y,N2) and thus this sequence

converges to some T (x) ∈ Y. It means that

T (x) = N2 − lim
n→∞

f(τnx)

τn

Furthermore, by putting m = 0 in (4.11), we have

N2

(
1

τn
f(τnx)− f(x),

n∑
k=1

τk(α−1)t

)
≥ N1(ϕ(x, x), t).

So

N2

(
1

τn
f(τnx)− f(x), t

)
≥ N1

(
ϕ(x, x),

t∑n
k=1 τ

k(α−1)

)
.

As n→∞, we have

N2 (T (x)− f(x), t) ≥ N1

(
ϕ(x, x),

τ − τα

τα
t

)
.

Next, we show that T satisfies (P1). Putting τ = η = τn in (4.4), we get

N2 (f (τnx ∨ τny)− τnf(x) ∨ τnf(y), t) ≥ N1 (ϕ(τnx ∨ τny, τnx ∧ τny, t)

≥ N1

(
ϕ(x ∨ y, x ∧ y),

t

τnα

)
.

Substituting x with τnx and y with τny in this last inequality, one can get

N2 (f(τn (τnx ∨ τny))− τnf(τnx) ∨ τnf(τny), t)

≥ N1

(
ϕ(τnx ∨ τny, τnx ∧ τny, t

τnα

)
≥ N1

(
ϕ(x ∨ y, x ∧ y),

t

τ2nα

)
,

which yields

N2

(
f
(
τ2n(x ∨ y)

)
τ2n

− f(τnx)

τn
∨ f(τny)

τn
,
t

τ2n

)
≥ N1

(
ϕ(x ∨ y, x ∧ y), τ2(1−α)t

)
.

The term on the right-hand side of the above inequality tends to 1 as n → ∞. By Theorem 3.2, we

obtain

N2(T (x ∨ y)− T x ∨ T y, t) ≥ 1.

This means that

T (x ∨ y) = T x ∨ T y,

consequently, the property (P1) holds.

Next, we show that T (τx) = τT (x) for all x ∈ X+ and τ ≥ 1. In fact, in the inequality (4.4), choose

η = τ , y = 0 and substitute 2nτ for τ and consider Remark 2.1.

N2 (f (2nτx ∨ 0)− 2nτf(x) ∨ 0, t) ≥ N1 (ϕ (2nτx, 0) , t)
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for all x ∈ X. Now we replace x with 2nx. Consequently, by (2.1)

N2

(
f (4nτx)

4n
− τf(2nx)

2n
,
t

4n

)
≥ N1 (ϕ (4nτx, 0) , t)

≥ N1 (4nαταϕ (x, 0) , t) .

Therefore,

N2

(
f (4nτx)

4n
− τf(2nx)

2n
, t

)
≥ N1

(
4n(α−1)ταϕ (x, 0) , t

)
.

The term on the right-hand side of the above inequality tends to 1 as n→∞. Thus

T (τx) = τ(T x)

for all x ∈ X+. �

Theorem 4.2. Let X ,Y be Banach lattices and p : [0,∞)→ [0,∞) be a continuous function. Consider

a positive map f : X → Y for which there are numbers ν ∈ R and 0 ≤ r < 1 such that

N2

(
f(α|x| ∨ β|y|)− αp(α)f(|x|) ∨ βp(β)f(|y|)

p(α) ∨ p(β)
, t

)
≥ N1 (ν (xr ∨ yr) , t) (4.12)

for all x, y ∈ X and α, β ∈ R+. Then there exists a unique positive mapping T : X → Y which satisfies

the properties (P1), (P2) and the inequality

N2 (F (|x|)− T (|x|), t) ≥ N1

(
2νx

2− 2r
, t

)
.

Proof. Putting α = β = 2 and x = y in (4.12), we get

N2

(
f(2|x|)− 2p(2)f(|x|) ∨ 2p(2)f(|x|)

p(2) ∨ p(2)
, t

)
≥ N1 (νxr, t)

for all x ∈ X and r ∈ [0, 1). Therefore,

N2 (f(2|x|)− 2f(|x|), t) ≥ N1 (νxr, t) ,

N2

(
1

2
f(2|x|)− f(|x|), t

)
≥ N1 (νxr, 2t) .

The rest of the proof is similar to the previous one. �

5. Conclusion

In the classical Riesz space theory, Banach lattice requires more attention. In the present research

work, we briefly introduced and studied the fuzzy normed Riesz spaces. Thus we think that there are

many open problems and applications in this new research area. For example we will introduce M-space,

L-space and order unit in fuzzy normed Riesz spaces in our future research work.
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BIPOLAR FUZZY SETS OF BCK-MODULES

M. A. ALGHAMDI1, N. O. ALSHEHRI2, AND N. M. MUTHANA3

Abstract. The notion of bipolar fuzzy BCK-submodules are introduced, and
some characterizations of bipolar fuzzy BCK-submodules are given. The con-
ceopt of homomorphic images and preimages of bipolar fuzzy BCK-submodules
are investigated. Normality and completely normality of bipolar fuzzy BCK-
submodules are discussed.

keywords: bipolar fuzzy BCK-submodule, normal (completely normal) bipolar
fuzzy BCK-submodule, maximal bipolar fuzzy BCK-submodule.

1. Introduction

In the traditional fuzzy sets, which presented by Zadeh [8] in 1965, the mem-
bership of elements are expressed in degrees ranging from 0 to 1. The membership
degree 0 is assigned to elements which do not satisfy a corresponding property to
the concerned fuzzy set. It is of interest to know whether these elements are sat-
isfying a counter-property of our fuzzy set, but the restriction of the membership
degrees to the interval [0,1] led to a great di¢ culty in doing this. For this reason,
Lee [7] introduced the concept of the bipolar-valued fuzzy sets as an extension of
the fuzzy sets. In the case of bipolar-valued fuzzy sets, the membership degrees
range is increased from the interval [0,1] to the interval [-1,1]. The representation of
bipolar-valued fuzzy sets express the di¤erence of contrary elements from irrelevant
elements.
The notion of bipolar-valued fuzzy subalgebra and bipolar-valued fuzzy ideal was

introduced by Lee [6].
H. A. S. Abujabal, M. Aslam and A. B. Thaheem [1], introduced the notion

of BCK-modules as an action of BCK-algebra over a commutative group. The
concept of fuzzy BCK-submodules was introduced by M. Bakhshi [2], where he
characterized the fuzzy BCK-submodules and provided some operations of it.
In this paper, we apply the notion of bipolar-valued fuzzy set on BCK-modules

and introduce the notion of bipolar-valued fuzzy BCK-submodules. Then we present
some characterization of bipolar-valued fuzzy BCK-submodules by means of posi-
tive t-level cut and negative s-level cut. Moreover, a certain form of bipolar fuzzy
BCK-submodules is derived from a given BCK-submodule. We investigate the
homomorphic image and preimage of the bipolar-valued fuzzy BCK-submodules
under some conditions. The later work is devoted to discuss the normality and
completely normality of bipolar fuzzy BCK-submodules. A maximal bipolar fuzzy
BCK-submodule is de�ned and its range is speci�ed quit so. Many examples are
given to illustrate our concepts and results.

1
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2 M. A. ALGHAMDI1, N. O. ALSHEHRI2, AND N. M. MUTHANA3

2. Preliminaries

In this section we review some de�nitions and results regarding BCK-algebras,
BCK-modules and bipolar fuzzy sets.
By a BCK-algebra, we mean an algebra (X; �; 0) of type (2; 0) satisfying the

following axioms:
(I) ((x � y) � (x � z))(z � y) = 0;
(II) (x � (x � y)) � y = 0;
(III) x � x = 0;
(IV) 0 � x = 0;
(V) x � y = 0 and y � x = 0 implies x = y, for all x; y; z 2 X.

Let (X; �; 0) be a BCK-algebra. Then X is a partially ordered set with the
partial ordering � de�ned on X by: x � y if and only if x � y = 0. X is said to
be bounded if there is an element 1 2 X such that x � 1 for all x 2 X. X is said
to be commutative (implicative) if x ^ y = y ^ x (x � (y � x) = x) for all x; y 2 X
where x ^ y = y � (y � x).

De�nition 2.1[1] Let X be a BCK-algebra. Then by a left X-module (abbre-
viated X-module), we mean an abelian group M with an operation X �M �!M
with (x;m) 7! xm satis�es the following axioms for all x; y 2 X and m;n 2M;

(1) (x ^ y)m = x(ym);
(2) x(m+ n) = xm+ xn;
(3) 0m = 0:

Moreover, if X is bounded and M satis�es 1m = m, for all m 2 M , then M is
said to be unitary.

Example 2.2 Any bounded implicative BCK-algebra X forms an X-module,
where "+ "is de�ned as x+ y = (x � y) _ (y � x) and xy = x ^ y.
A subgroup N of an X-module M is called submodule of M if N is also an

X-module.

Theorem 2.3 [2] A subset N of a BCK-module M is a BCK-submodule of M
if and only if n1 � n2; xn 2 N for all n1; n2; n 2 N and x 2 X.

De�nition 2.4 [1] Let M;N be modules over a BCK-algebra X. A mapping
f :M �! N is called an X-homomorphism if
(1) f(m1 +m2) = f(m1) + f(m2)
(2) f(xm) = xf(m) for all m1;m2;m 2M , x 2 X.

A BCK-module homomorphism is said to be monomorphism (epimorphism) if
it is one to one (onto). If it is both one to one and onto, then we say that it is an
isomorphism.

Let X be the universe of discourse. A bipolar valued fuzzy set � of X is an
object having the form

� = f(x; �+(x);��(x)) j x 2 Xg
where �+ : X �! [0; 1] and �� : X �! [�1; 0] are mappings. The positive

membership degree �+(x) denotes the satisfaction degree of an element x to the
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BIPOLAR FUZZY SETS OF BCK-MODULES 3

property corresponding to a bipolar -valued fuzzy set � = f(x; �+(x);��(x)) j x 2
Xg, and the negative membership degree ��(x) denotes the satisfaction degree of
x to some implicit counter-property of � = f(x; �+(x);��(x)) j x 2 Xg.
For the sake of simplicity, we shall use the symbol � = (X; �+;��) for the

bipolar-valued fuzzy set � = f(x; �+(x);��(x)) j x 2 Xg, and use the notion of
bipolar fuzzy sets instead of the notion of bipolar-valued fuzzy sets.
For a bipolar fuzzy set � = (X; �+;��) and (t; s) 2 [0; 1]� [�1; 0], we de�ne

P (�; t) = fx 2 X j �+(x) � tg;
N(�; s) = fx 2 X j ��(x) � sg

which are called the positive t-level cut of � = (X; �+;��) and the negative
s-level cut of � = (X;�+;��), respectively. For k 2 [0; 1], the set

L(�; k) = P (�; k) \N(�;�k)
is called the k-level cut of � = (X; �+;��) (see [6]).

If � = (X; �+;��) and 	 = (X; 	+;	�) are bipolar fuzzy sets de�ned on X,
then the union and the intersection of � and 	 are bipolar fuzzy sets of X de�ned
as follows:
� [ 	 = (X; (� [	)+ ; (� [	)�) and � \ 	 = (X; (� \	)+ ; (� \	)�); re-

spectively, where

(� [	)+ (x) = max
�
�+ (x) ;	+ (x)

	
; (� [	)� (x) = min

�
�� (x) ;	� (x)

	
;

and

(� \	)+ (x) = min
�
�+ (x) ;	+ (x)

	
; (� \	)� (x) = max

�
�� (x) ;	� (x)

	
;

for all x 2 X.

De�nition 2.5 [3] Let � = (X; �+;��) and 	 = (X; 	+;	�) be bipolar fuzzy
sets of X. If 	+ (x) � �+ (x) and 	� (x) � �� (x) for all x 2 X, then we say
that 	 = (X; 	+;	�) is a bipolar fuzzy extension of � = (X; �+;��) (simply �
is subset of 	) and we write � � 	.

In what follows, X will denote a bounded BCK-algebra andM;N are X-modules
unless otherwise speci�ed.

3. Bipolar Fuzzy BCK-Submodules

In this section applying bipolar fuzzy sets theory to BCK-modules, we introduce
the notion of bipolar fuzzy BCK-submodules and discuss their properties.

De�nition 3.1 A bipolar fuzzy set � = (M ; �+;��) of a BCK-module M is
said to be a bipolar fuzzy BCK-submodule if it satis�es:
(BFS1) �+(m1 +m2) � minf�+(m1);�

+(m2)g and
��(m1 +m2) � maxf��(m1);�

�(m2)g;
(BFS2) �+(�m) = �+(m) and ��(�m) = ��(m);
(BFS3) �+(xm) � �+(m) and ��(xm) � ��(m):
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4 M. A. ALGHAMDI1, N. O. ALSHEHRI2, AND N. M. MUTHANA3

For the sake of simplicity, we shall use the symbols BF(M) and BFS(M) for the
set of all bipolar fuzzy sets of M , and the set of all bipolar fuzzy BCK-submodules
of M , respectively.

Example 3.2 Let X = P (Z) with � de�ned by A � B = A \ Bc and 0 is the
empty set ?, then X is a BCK-algebra. M = ZZ = ff j f : Z �! Zg, considered
with the traditional addition of maps and 0 is the zero map, is an abelian group. If
we de�ne an action of X on M by Af = �Af , then M forms an X-module. De�ne
a bipolar fuzzy set � = (M ; �+;��) on M by

�+(f) =

�
1 if f = 0;
0 otherwise,

and

��(f) =

�
�1 if f = 0;
0 otherwise.

Then � is a bipolar fuzzy BCK-submodule of M.

Example 3.3 Let X = f0; a; b; c; dg and consider the following table:

� 0 a b c d
0 0 0 0 0 0
a a 0 a 0 a
b b b 0 0 b
c c b a 0 d
d d d d d 0

Tab. 3.1

Then (X; �; 0) is a commutative BCK-algebra which is not bounded. The subset
M = f0; a; b; cg of X along with the operation + de�ned by Table 3.2 is an abelian
group. Table 3.3 shows the action of X on M (xm = x ^ m). Consequently, M
forms an X-module.

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

Tab. 3.2

^ 0 a b c
0 0 0 0 0
a 0 a 0 a
b 0 b b b
c 0 a b c
d 0 0 0 0

Tab. 3.3

Now let � = (M ; �+;��) be a bipolar fuzzy set on M de�ned as follows:

M 0 a b c
�+ 1 0:7 0:7 0:7
�� �0:8 �0:6 �0:6 �0:6

Tab. 3.4
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BIPOLAR FUZZY SETS OF BCK-MODULES 5

Then � = (M ; �+;��) is a bipolar fuzzy BCK-submodule of M .

Theorem 3.4 A bipolar fuzzy set � = (M ; �+;��) 2 BFS(M) if and only if
(i) �+(xm) � �+(m) and ��(xm) � ��(m);
(ii) �+(m1 �m2) � minf�+(m1);�

+(m2)g and
��(m1 �m2) � maxf��(m1);�

�(m2)g for all m;m1;m2 2M and x 2 X:
Proof Let � = (M ; �+;��) 2 BFS(M), then

�+(m1 �m2) � minf�+(m1);�
+(�m2)g

= minf�+(m1);�
+(m2)g;

��(m1 �m2) � maxf��(m1);�
�(�m2)g

= maxf��(m1);�
�(m2)g:

Conversely, assume that (i) and (ii) are satis�ed. Put x = 0 in (i), then �+(0) �
�+(m); and ��(0) � ��(m) for all m 2M . So using (ii), we have

�+(�m) = �+(0�m) � minf�+(0);�+(m)g � �+(m);
�+(m) = �+(0� (�m)) � minf�+(0);�+(�m)g � �+(�m);

which implies that
�+(�m) = �+(m):

Moreover,

�+(m1 +m2) = �+(m1 � (�m2))

� minf�+(m1);�
+(�m2)g

= minf�+(m1);�
+(m2)g:

We can verify that ��(�m) = ��(m) and ��(m1+m2) � maxf��(m1);�
�(m2)g

by similar argument.

Theorem 3.5 A bipolar fuzzy set � = (M ; �+;��) 2 BFS(M) if and only if
(i) �+(0) � �+(m) and ��(0) � ��(m);
(ii) �+(x1m1 � x2m2) � minf�+(m1);�

+(m2)g and ��(x1m1 � x2m2) �
maxf��(m1);�

�(m2)g
for all m;m1;m2 2M and x1; x2 2 X:
Proof Let � = (M ; �+;��) 2 BFS(M) and letm;m1;m2 2M and x1; x2 2 X:

(i) is already shown in the proof of Theorem 3.4. Moreover,

�+(x1m1 � x2m2) � minf�+(x1m1);�
+(x2m2)g

� minf�+(m1);�
+(m2)g;

and

��(x1m1 � x2m2) � maxf��(x1m1);�
�(x2m2)g

� maxf��(m1);�
�(m2)g:

Now, let � = (M ; �+;��) be a bipolar fuzzy set of M . Assume that (i) and (ii)
hold. Let m;m1;m2 2 M and x 2 X, then �+(xm) = �+(xm � 0) = �+(xm �
0m) � minf�+(m));�+(m)g = �+(m); and ��(xm) = ��(xm � 0) = ��(xm �
0m) � maxf��(m));��(m)g = ��(m): Now
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6 M. A. ALGHAMDI1, N. O. ALSHEHRI2, AND N. M. MUTHANA3

�+(m1�m2) = �
+(1m1�1m2) � minf�+(m1);�

+(m2)g; and ��(m1�m2) =
��(1m1 � 1m2) � maxf��(m1);�

�(m2)g: Using Theorem 3.4, � = (M ; �+;��)
is a bipolar fuzzy BCK-submodule of M .

Theorem 3.6 Let � = (M ; �+;��) 2 BF(M). Then � 2 BFS(M) if and only
if ? 6= P (�; t) and ? 6= N(�; s) are submodules of M for all (t; s) 2 [0; 1]� [�1; 0].
Proof Assume that � = (M ; �+;��) 2 BFS(M) and (t; s) 2 [0; 1]� [�1; 0] be

such that ? 6= P (�; t);? 6= N(�; s): Let m; m1;m2 2 P (�; t) and m0;m0
1;m

0
2 2

N(�; s) and x 2 X. Then

�+(m1 �m2) � minf�+(m1);�
+(m2)g � t;

��(m0
1 �m0

2) � maxf��(m0
1);�

�(m0
2)g � s:

i.e. m1 �m2 2 P (�; t) and m0
1 �m0

2 2 N(�; s):
Further,

�+(xm) � �+(m) � t;
��(xm0) � ��(m0) � s:

Thus we have xm 2 P (�; t) and xm0 2 N(�; s): Hence P (�; t) and N(�; s) are
submodules of M .
Conversely, assume that ? 6= P (�; t) and ? 6= N(�; s) are submodules of M

for all (t; s) 2 [0; 1] � [�1; 0]. For m;m0 2 M; let t0 = minf�+(m);�+(m0)g
and s0 = maxf��(m);��(m0)g: Then m;m0 2 P (�; t0) and m;m0 2 N(�; s0):
Since P (�; t0) and N(�; s0) are submodules of M; then m � m0 2 P (�; t0) and
m�m0 2 N(�; s0), which means that

�+(m�m0) � t0 = minf�+(m);�+(m0)g,
and

��(m�m0) � s0 = maxf��(m);��(m0)g:
Now, let �+(m) = t1, ��(m0) = s1 and x 2 X: Then m 2 P (�; t1) and m0 2

N(�; s1) which implies that xm 2 P (�; t1) and xm0 2 N(�; s1): i.e. �+(xm) �
t1 = �

+(m); and ��(xm0) � s1 = ��(m0): Thus by Theorem 3.4, � 2 BFS(M):

Corollary 3.7 If � = (M ; �+;��) 2 BFS(M), then the intersection of a non-
empty positive t-level cut and a non-empty negative s-level cut of � = (M ; �+;��)
is a submodule of M for all (t; s) 2 [0; 1] � [�1; 0]: In particular, the non-empty
k-level cut of � = (M ; �+;��) is a submodule of M for all k 2 [0; 1]:

The union of a non-empty positive t-level cut and a non-empty negative s-level
cut of � = (M ; �+;��) 2 BFS(M) is not a submodule of M in general as seen in
the following example.

Example 3.8 Let X = f0; a; b; c; d; 1g with a binary operation � de�ned on
Table 3.5. For the subset M = f0; a; c; dg of X, de�ne an operation + as x + y =
(x � y) _ (y � x). It follows by Table 3.6 that (M;+) is an abelian group. M is an
X-module according to Table 3.7.
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� 0 a b c d 1
0 0 0 0 0 0 0
a a 0 0 a 0 0
b b a 0 b a 0
c c c c 0 0 0
d d c c a 0 0
1 1 d c b a 0

Tab. 3.5

+ 0 a c d
0 0 a c d
a a 0 d c
c c d 0 a
d d c a 0

Tab. 3.6

^ 0 a c d
0 0 0 0 0
a 0 a 0 a
b 0 a 0 a
c 0 0 c c
d 0 a c d
1 0 a c d

Tab. 3.7

De�ne a bipolar fuzzy set on M by the following table:

M 0 a c d
�+ 0:9 0:6 0:4 0:4
�� �1 �0:5 �0:7 �0:5

Tab. 3.8

We can easily check that � = (X; �+;��) is a bipolar fuzzy BCK-submodule
of M . The positive 0:5-level cut is P (�; 0:5) = f0; ag; and the negative �0:7-level
cut is N(�;�0:7) = f0; cg: It is clear that P (�; 0:5) [ N(�;�0:7) = f0; a; cg is
not a submodule of M . Furthermore, P (�; 0:6) [ N(�;�0:6) = f0; a; cg is not a
submodule of M .

A su¢ cient condition for P (�; k) [ N(�;�k) to be a submodule of M is given
in the next theorem. without this condition, P (�; k) [ N(�;�k) need not be a
submodule of M as we have already seen.

Theorem 3.9 If � = (M ; �+;��) 2 BFS(M) such that

(*) �+(m) + ��(m) � 0;

or

(**) �+(m) + ��(m) � 0;

for all m 2M , then the union of a non-empty positive k-level cut and a non-empty
negative �k-level cut of � = (M ; �+;��) is a submodule of M for all k 2 [0; 1]:
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Proof Let k 2 [0; 1] such that P (�; k) 6= ? and N(�;�k) 6= ?. Then they are
submodules ofM by Theorem 3.6. Let x 2 X and m;m1;m2 2 P (�; k)[N(�;�k).
If m 2 P (�; k); then

xm 2 P (�; k) � P (�; k) [N(�;�k):
If m 2 N(��;�k); then

xm 2 N(�;�k) � P (�; k) [N(�;�k):
Now we shall prove that m1 �m2 2 P (�+; k)[N(��;�k): We have the following
three cases:
i. m1;m2 2 P (�; k);
ii. m1;m2 2 N(�;�k);
iii. m1 2 P (�; k); m2 2 N(�;�k):
Case i. implies that

m1 �m2 2 P (�; k) � P (�; k) [N(�;�k):
Case ii. gives

m1 �m2 2 N(�;�k) � P (�; k) [N(�;�k):
In case iii. �+(m1) � k and ��(m2) � �k: If we consider (*), then �+(m2) +

��(m2) � 0 which means that �+(m2) � k and so
m1 �m2 2 P (�; k) � P (�; k) [N(�;�k):

If we consider (**), then �+(m1)+�
�(m1) � 0 implies that ��(m1) � �k. Hence

m1 �m2 2 N(�;�k) � P (�; k) [N(�;�k):
Therefore P (�; k) [N(�;�k) is a submodule of M .

For a bipolar fuzzy set � = (M ; �+;��) and an element m 2M , we shall write
� (m) = (�; �) in the meaning of �+ (m) = � and �� (m) = �.

Theorem 3.10 Let M be a module over a BCK-algebra X and ? 6= N � M:
Suppose that � = (M ; �+;��) is a bipolar fuzzy set on M de�ned as follows:

�(m) =

�
(�; 
) if m 2 N;
(�; �) otherwise,

where (�; 
); (�; �) 2 [0; 1]�[�1; 0] with � > � and 
 < �: Then � = (M ; �+;��)
is a bipolar fuzzy BCK-submodule of M if and only if N is a submodule of M .
Proof Assume that � = (M ; �+;��) 2 BFS(M) and we shall prove that N is

a submodule of M . Let n 2 N and x 2 X. Then �+(xn) � �+(n) = � > � which
implies that �+(xn) = � i.e. xn 2 N:
Now let n1; n2 2 N , then �+(n1) = �+(n2) = � and �+(n1�n2) � minf�+(n1);
�+(n2)g = � > � and this gives �+(n1 � n2) = � i.e. n1 � n2 2 N: Hence N is

a submodule of M:
Conversely, let N be a submodule of M and let m;m1;m2 2M and x 2 X: We

shall prove that �+(xm) � �+(m) and ��(xm) � ��(m): If m 2 N;then xm 2 N
and we obtain

�+(xm) = � = �+(m);

and
��(xm) = 
 = ��(m):
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If m =2 N; then �+(m) = � and ��(m) = �. So we have
�+(xm) � � = �+(m)

and
��(xm) � � = ��(m):

To show that

�+(m1�m2) � minf�+(m1);�
+(m2)g and ��(m1�m2) � maxf��(m1);�

�(m2)g;
we consider the following cases:
i. m1;m2 2 N;
ii. m1;m2 =2 N;
iii. m1 2 N;m2 =2 N:
For case i. we have m1 �m2 2 N and so

�+(m1 �m2) = � = minf�+(m1);�
+(m2)g

and
��(m1 �m2) = 
 = maxf��(m1);�

�(m2)g:
For case ii. and iii. we have

�+(m1 �m2) � � = minf�+(m1);�
+(m2)g

and
��(m1 �m2) � � = maxf��(m1);�

�(m2)g:
Therefore � = (M ; �+;��) 2 BFS(M):

For a submodule N of M , denote by �N = (M;�+N ;�
�
N ) the bipolar fuzzy set

de�ned in the theorem above with (�; 
) = (1;�1) and (�; �) = (0; 0).

Example 3.11 Let f : M �! N be a homomorphism of BCK-modules. We
know that ker f and Im f are submodules of M and N respectively. So �ker f =
(M ; �+ker f ;�

�
ker f ) and	Im f = (N ; 	

+
Im f ;	

�
Im f ) are bipolar fuzzy BCK-submodules.

De�nition 3.12 Let f : M �! N be a BCK-module homomorphism and let
� 2 BFS(M): Then the homomorphic image f(�) = (N ; f(�+); f(��)) of � under
f de�ned as follows:

f(�+)(n) =

(
sup

m2f�1(n)
�+(m) if f�1(n) 6= ?;

0 if f�1(n) = ?;
and

f(��)(n) =

(
inf

m2f�1(n)
��(m) if f�1(n) 6= ?;

0 if f�1(n) = ?:

Theorem 3.13 Let f : M �! N be a BCK-module epimorphism. If � =
(M ; �+;��) 2 BFS(M), then the homomorphic image f(�) 2 BFS(N):
Proof According to Theorem 3.6, it is su¢ cient to prove that P (f(�); t) and

N(f(�); s) are submodules of N for all (t; s) 2 [0; 1]�[�1; 0] satisfying P (f(�); t) 6=
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?; N(f(�); s) 6= ?. Let n0; n1; n2 2 P (f(�); t) and x 2 X: Since f is an epimor-
phism, then there exist m0 2 f�1(n0);m1 2 f�1(n1);m2 2 f�1(n2) such that
�+(mi) � t, i = 0; 1; 2. Now

f(�+)(xn0) = sup
m2f�1(xn)

�+(m) � �+(xm0) � �+(m0) � t;

and

f(�+)(n1�n2) = sup
m2f�1(n1�n2)

�+(m) � �+(m1�m2) � minf�+(m1);�
+(m2)g � t:

Which implies that xn0; n1 � n2 2 P (f(�); t). Therefore P (f(�); t) is a sub-
module of N for all t 2 [0; 1]. Analogously, we can verify that N(f(�); s) is a
submodules of N for all s 2 [�1; 0]. This completes the proof.

De�nition 3.14 Let f : M �! N be a homomorphism of BCK-modules, and
	 = (N ; 	+;	�) be a bipolar fuzzy set of N . Then the preimage of 	, f�1(	) =
(M ; f�1(	+); f�1(	�)), is the bipolar fuzzy set on M given by f�1(	+)(m) =
	+(f(m)), f�1(	�)(m) = 	�(f(m)) for all m 2M .

Theorem 3.15 Let f :M �! N be a homomorphism of BCK-modules, and	 =
(N ; 	+;	�) 2 BFS(N), then the preimage f�1(	) = (M ; f�1(	+); f�1(	�))
2 BFS(M).
Proof Suppose that 	 = (N ; 	+;	�) 2 BFS(N) and f is a homomorphism of

BCK-modules from M to N . Then for all m1;m2 2M , we have

f�1(	+)(m1 �m2) = 	+(f(m1 �m2)) = 	
+(f(m1)� f(m2))

� minf	+(f(m1));	
+(f(m2))g

= minff�1(	+)(m1); f
�1(	+)(m2)g

Moreover, let x 2 X and m 2M: then

f�1(	+)(xm) = 	+(f(xm)) = 	+(xf(m))

� 	+(f(m)) = f�1(	+)(m):

Analogously, we have

f�1(	�)(m1 �m2) � maxff�1(	�)(m1); f
�1(	�)(m2)g

and
f�1(	�)(xm) � max f�1(	�)(m):

Hence, f�1(	) = (M ; f�1(	+); f�1(	�)) is a bipolar fuzzy BCK-submodule of
M .

Theorem 3.16 Let f : M �! N be an epimorphism of BCK-modules. If
	 = (N ; 	+;	�) is a bipolar fuzzy set on N such that the preimage f�1(	) =
(M ; f�1(	+); f�1(	�)) 2 BFS(M), then 	 2 BFS(N):
Proof Let f�1(	) = (M ; f�1(	+); f�1(	�)) be a bipolar fuzzy BCK-submodule

on M and let f : M �! N be an epimorphism. For n0; n1; n2 2 N; there exist
m0;m1;m2 2M such that f(m0) = n0; f(m1) = n1; and f(m2) = n2.
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Now

	+(n1 � n2) = 	+(f(m1 �m2)) = f
�1(	+)(m1 �m2)

� minff�1(	+)(m1); f
�1(	+)(m2)g

= minf	+(f(m1);	
+(f(m2))g

minf	+(n1);	+(n2)g
and

	+(xn0) = 	
+(f(xm0)) = f

�1(	+)(xm0) � f�1(	+)(m0) = 	
+(f(m0)) = 	

+(n0);

for all x 2 X. By similar argument, we have

	�(n1 � n2) � maxf	�(n1);	�(n2)g;
and

	�(xn0) � 	�(n0):
This �nishes the proof.

For a bipolar fuzzy set � = (M ; �+;��), we de�ne M� to be the set of all
elements m 2M with �(m) = �(0).

Proposition 3.17 If � = (M ; �+;��) 2 BFS(M), then M� is a submodule of
M .
Proof Clearly M� 6= ?, since 0 2 M�. Let m;m1;m2 2 M� and x 2 X. Then

�+ (0) � �+(xm) � �+ (m) = �+ (0)
i.e. �+ (xm) = �+ (0). Similarly, �� (xm) = �� (0) and so xm 2 M�. Further-
more,

�+ (0) � �+ (m1 �m2) � min
�
�+ (m1) ;�

+ (m2)
	
= �+ (0) ;

which means �+ (m1 �m2) = �+ (0). Analogously, �� (m1 �m2) = �� (0).
Hence m1 �m2 2M�. Therefore M� is a submodule of M .

De�nition 3.18 If � (0) = (1;�1) for � = (M ; �+;��) 2 BFS(M), then � is
said to be normal.

Theorem 3.19 Let � = (M ; �+;��) 2 BFS(M). The normalization �� =
(M ; ��+; ���) of � de�ned by ��+ (m) = �+ (m)+1��+ (0) and ��� (m) = ��(m)�
1��� (0), for all m 2M , is normal bipolar fuzzy BCK-submodule ofM containing
�.
Proof Clearly, ��+ (m) � �+ (m) and ��� (m) � ��(m) for all m 2M . i.e.� �

��. Now let m;m1;m2 2M and x 2 X. Then
��+(xm) = �+ (xm) + 1� �+ (0) � �+ (m) + 1� �+ (0) = ��+(m);

and

��+(m1 �m2) = �+ (m1 �m2) + 1� �+ (0)
� min

�
�+ (m1) ;�

+ (m2)
	
+ 1� �+ (0)

= min
�
�+ (m1) + 1� �+ (0) ;�+ (m2) + 1� �+ (0)

	
= min

�
��+(m1); ��

+(m2)
	
:
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Analogously, ���(xm) � ���(m) and ���(m1 � m2) � max
�
���(m1); ��

�(m2)
	
.

Hence �� 2 BFS(M). Moreover,
��+ (0) = �+ (0) + 1� �+ (0) = 1;

and
��� (0) = ��(0)� 1� �� (0) = �1:

Which means that �� is normal.

Let S(M) (respectively N (M)) denote the set of all submodules (respectively,
normal bipolar fuzzy BCK-submodules) of M . We de�ne functions F : S(M)
�! N (M) and G : N (M) �! S(M) by F (N) = �N and G (�) = M�. Then
GF = 1S(M) and FG (�) = F (M�) = �M� � �.

Note that S(M) (respectively N (M)) is a poset under the set inclusion (respec-
tively, bipolar fuzzy set inclusion).

Theorem 3.20 If N;K 2 S(M), then �N\K = �N \�K , that is, F (N \K) =
F (N) \ F (K). If �;	 2 N (M), then M�\	 = M� \M	, that is, G (� \	) =
G (�) \G(	).
Proof Let m 2M . If m 2 N \K, then �N\K(m) = (1;�1). From m 2 N and

m 2 K it follows that �N (m) = �K(m) = (1;�1). Hence

(�N \ �K)+ (m) = minf�+N (m) ;�
+
K (m)g = 1 = �

+
N\K (m) ;

and
(�N \ �K)� (m) = maxf��N (m) ;�

�
K (m)g = �1 = �

�
N\K (m) :

If m =2 N \K, then m =2 N or m =2 K. Thus
(�N \ �K)+ (m) = minf�+N (m) ;�

+
K (m)g = 0 = �

+
N\K (m) ;

and
(�N \ �K)� (m) = maxf��N (m) ;�

�
K (m)g = 0 = �

�
N\K (m) :

Therefore �N\K = �N \ �K , and so F (N \K) = F (N) \ F (K). Now let �;	 2
N (M). Then
M�\	 =

�
m 2M j (� \	)+ (m) = 1; (� \	)� (m) = �1

	
=

�
m 2M j minf�+ (m) ;	+ (m)g = 1;max

�
�� (m) ;	� (m)

	
= �1

	
=

�
m 2M j �+ (m) = 	+ (m) = 1;�� (m) = 	� (m) = �1

	
=

�
m 2M j �+ (m) = 1;�� (m) = �1

	
\�

m 2M j 	+ (m) = 1;	� (m) = �1
	

= fm 2M j �(m) = � (0)g \ fm 2M j 	(m) = 	 (0)g
= M� \M	,

that is, G (� \	) = G (�) \G(	). This completes the proof.

Proposition 3.21 Let � = (M ; �+;��) be a non-constant normal bipolar fuzzy
BCK-submodule which is maximal in (N (M);�), then � takes only a value among
(0; 0) ; (1; 0) ; (0;�1) and (1;�1).
Proof Let � = (M ; �+;��) be a non-constant maximal element in (N (M);�).

Since � is normal, then � (0) = (1;�1). Let m0 2 M be such that �+ (m0) 6= 1.
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Then �+ (m0) = 0. Otherwise, 0 < �+ (m0) < 1. Consider 	 = (M;	+;	�)
de�ned by

	+ (m) =
1

2
(�+ (m) + �+ (m0)), 	� (m) =

1

2
(�� (m) + �� (m0));

for all m 2M . Clearly 	 is well de�ned. Let m;m1;m2 2M , then

	+ (m1 �m2) =
1

2
(�+ (m1 �m2) + �

+ (m0))

� 1

2
(minf�+

�
m1);�

+(m2

�
g+�+ (m0))

= minf1
2
(�+(m1) + �

+ (m0));
1

2
(�+(m2) + �

+ (m0))g

= min
�
	+ (m1) ;	

+ (m2)
	
,

and

	+ (xm) =
1

2
(�+ (xm) + �+ (m0))

� 1

2
(�+ (m) + �+ (m0))

= 	+ (m) :

By similar argument, we can show

	� (m1 �m2) � maxf	� (m1) ;	
� (m2)g;

and
	� (xm) � 	� (m) :

Hence, 	 2 BFS(M). Clearly, �	 is non-constant and by Theorem 3.19, �	 =�
M; �	+; �	�

�
2 N (M). Now for all m 2M , we have

�	+ (m) = 	+ (m) + 1�	+ (0)

=
1

2
(�+ (m) + �+ (m0)) + 1�

1

2
(�+ (0) + �+ (m0))

=
1

2
(1 + �+ (m)) � �+ (m) ;

and

�	� (m) = 	� (m)� 1�	� (0)

=
1

2
(�� (m) + �� (m0))� 1�

1

2
(�� (0) + �� (m0))

=
1

2
(�� (m)� 1)

� �� (m) :

Furthermore,

�	+ (m0) =
1

2
(1 + �+ (m0)) > �

+ (m0) :

This means that � is a proper subset of �	, which contradicts the maximality of �
in N (M). Thus the possible values of �+ are only 0 and 1. Likewise, we can show
that 0 and �1 are the only possible values of ��. Therefore, � takes only a value
among (0; 0) ; (1; 0) ; (0;�1) and (1;�1). This �nishes the proof.
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For � = (M ; �+;��) 2 BFS(M), consider the following sets:

M
(0;0)
� = fm 2M j �+(m) � 0;�� (m) � 0g =M;

M
(1;0)
� = fm 2M j �+(m) � 1;�� (m) � 0g = fm 2M j �+(m) = 1g;

M
(0;�1)
� = fm 2M j �+(m) � 0;�� (m) � �1g = fm 2M j �� (m) = �1g;

M
(1;�1)
� = fm 2M j �+(m) � 1;�� (m) � �1g

= fm 2M j �+(m) = 1;�� (m) = �1g:
Clearly, we have the relations

M
(1;�1)
� �M (1;0)

� �M (0;0)
� ; M

(1;�1)
� �M (0;�1)

� �M (0;0)
� ; M

(1;0)
� \M (0;�1)

� =M
(1;�1)
� :

De�nition 3.22 A normal bipolar fuzzy BCK-submodule � = (M ; �+;��) is
said to be completely normal if there exists m 2M such that � (m) = (0; 0).

Example 3.23 Let N be a proper submodule of M . Then �N = (M ; �
+
N ;�

�
N )

is completely normal bipolar fuzzy BCK-submodule.

Denote by C(M) the set of all completely normal bipolar fuzzy BCK-submodules
of M . Note that C(M) � N (M) and the restriction of the partial ordering " � "
of N (M) gives a partial ordering of C(M).

Theorem 3.24 A non-constant maximal element of (N (M);�) is also a maximal
element of ( C(M);�).
Proof First, we show that if � = (M ; �+;��) is a non-constant maximal el-

ement of (N (M);�),then � 2 C(M). Suppose that there is no m 2 M with

� (m) = (0; 0) i.e. M (0;0)
� �

�
M

(1;0)
� [M (0;�1)

�

�
= ?. Since � is non-constant

normal, then � assumes the value (1; 0) or (and) (0;�1) at some points in M and
so we have the following cases:
i. M (1;0)

� �M (1;�1)
� 6= ?; M (0;�1)

� �M (1;�1)
� = ?:

ii. M (0;�1)
� �M (1;�1)

� 6= ?; M (1;0)
� �M (1;�1)

� = ?:
iii. M (1;0)

� �M (1;�1)
� 6= ?; M (0;�1)

� �M (1;�1)
� 6= ?:

For case i. let

	(m) =

(
(1;�1) if m 2M (1;�1)

� ;�
1;� 1

2

�
if m 2M (1;0)

� �M (1;�1)
� :

For case ii. let

	(m) =

(
(1;�1) if m 2M (1;�1)

� ;�
1
2 ;�1

�
if m 2M (0;�1)

� �M (1;�1)
� :

For case iii. let

	(m) =

8><>:
(1;�1) if m 2M (1;�1)

� ;�
1;� 1

2

�
if m 2M (1;0)

� �M (1;�1)
� ;�

1
2 ;�1

�
if m 2M (0;�1)

� �M (1;�1)
� :

Noting thatM (1;�1)
� ,M (1;0)

� , andM (0;�1)
� are submodules ofM , it is not di¢ cult to

show that 	 = (M ; 	+;	�) 2 BFS(M) in each case. obviously, 	 is non-constant
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normal and � � 	. But this contradicts the fact that � is non-constant maximal
in (N (M);�). Thus � should has the value (0; 0) at some points m 2 M and
so � 2 C(M). Now let �0 2 C(M) such that � � �0. It follows that � � �0

in N (M). Since � is maximal in (N (M) ;�) and since �0 is non-constant, then
� = �0. Therefore � is maximal in (C (M) ;�).

De�nition 3.25 A bipolar fuzzy set � = (M ; �+;��) 2 BFS(M) is said to be
maximal if it satis�es:
(i) � is non-constant
(ii) �� is maximal element in (N (M);�).

Theorem 3.26 A maximal bipolar fuzzy BCK-submodule is completely normal
and equivalent to its normalization.
Proof If � = (M ; �+;��) is a maximal bipolar fuzzy BCK-submodule of M ,

then �� is non-constant maximal in (N(M);�) and so it is maximal in (C (M) ;�).
So for some m 2M ,

0 = ��+ (m) = �+ (m) + 1� �+ (0) ;
0 = ��� (m) = �� (m)� 1� �� (0) :

Which implies that

�+ (m) = �+ (0)� 1 � 0;
�� (m) = �� (0) + 1 � 0.

Since �+ (m) � 0 and �� (m) � 0, then �+ (0) = 1 and �� (0) = �1. Therefore
� = �� and so � is completely normal.

Now we arrive at one of our main theorems

Theorem 3.27 A maximal bipolar fuzzy BCK-submodule takes exactly the
values (1;�1); (0; 0).
Proof Assume that � = (M ; �+;��) is a maximal bipolar fuzzy BCK-submodule.

Then � takes a value among (0; 0) ; (1; 0) ; (0;�1) and (1;�1) and it is completely
normal. So M (0;0)

� �
�
M

(1;0)
� [M (0;�1)

�

�
6= ?. The subsets M (1;0)

� �M (1;�1)
� and

M
(0;�1)
� �M (1;�1)

� of M are empty. If not, then we have the following cases:

i. M (1;0)
� �M (1;�1)

� 6= ?; M (0;�1)
� �M (1;�1)

� = ?
ii. M (0;�1)

� �M (1;�1)
� 6= ?; M (1;0)

� �M (1;�1)
� = ?

iii. M (1;0)
� �M (1;�1)

� 6= ?; M (0;�1)
� �M (1;�1)

� 6= ?
For case i. let

	(m) =

8><>:
(1;�1) if m 2M (1;�1)

� ;�
1;� 1

2

�
if m 2M (1;0)

� �M (1;�1)
� ;

(0; 0) if m 2M (0;0)
� �M (1;0)

� :

For case ii. let

	(m) =

8><>:
(1;�1) if m 2M (1;�1)

� ;�
1
2 ;�1

�
if m 2M (0;�1)

� �M (1;�1)
� ;

(0; 0) if m 2M (0;0)
� �M (0;�1)

� :

:
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For case iii. let

	(m) =

8>>>><>>>>:
(1;�1) if m 2M (1;�1)

� ;�
1;� 1

2

�
if m 2M (1;0)

� �M (1;�1)
� ;�

1
2 ;�1

�
if m 2M (0;�1)

� �M (1;�1)
� ;

(0; 0) if m 2M (0;0)
� �

�
M

(1;0)
� [M (0;�1)

�

�
:

In each case, 	 is non-constant completely normal bipolar fuzzy BCK-submodules
containing �. A contradiction. Hence M (1;0)

� � M (1;�1)
� = ? and M (0;�1)

� �
M

(1;�1)
� = ?, i.e. � does not assume the values (1; 0) and (0;�1) at any point in

M . Therefore � takes exactly the values (0; 0) and (1;�1).

Clearly M (1;�1)
� =M�, for � 2 N (M). We are thus led to the following result.

Corollary 3.28 If � = (M ; �+;��) is a maximal bipolar fuzzy BCK-submodule,
then �M�

= �.

Theorem 3.29 For a maximal bipolar fuzzy BCK-submodule � = (M ; �+;��),
M� is a maximal submodule of M .
Proof Let � = (M ; �+;��) be a maximal bipolar fuzzy BCK-submodule and

suppose that N is a proper submodule of M such that M� � N . Consider the
normal bipolar fuzzy BCK-submodule 	N = (M ; 	+N ;	

�
N ). If M� is a proper

submodule of N then � is proper subset of 	N . A contradiction. Hence M� is a
maximal submodule of M .

4. Conclusion

The notion of bipolar-valued fuzzy set was introduced by K. M. Lee in 2000.
Since then, bipolarity has been applied to various algebraic structures by many
researchers. In this paper, we have applied the notion of bipolar-valued fuzzy sets
to BCK-modules. We have characterized our new concept "bipolar fuzzy BCK-
submodule " in several ways. Next, the homomorphic images and pre images of
bipolar fuzzy BCK-submodules were discussed. The remainder of the paper was
focused on the normal and completely normal bipolar fuzzy BCK-submodules which
guided �nally to the concept of maximality.
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