
 
 
Volume 25, Number 8                                                                      December 2018 
ISSN:1521-1398 PRINT,1572-9206 ONLINE 
 
 
                                                                                                      

 
 

                               Journal of 
      
          Computational 
 
          Analysis and  
 
          Applications 
              EUDOXUS PRESS,LLC 



               Journal of Computational Analysis and Applications 
                 ISSNno.’s:1521-1398 PRINT,1572-9206 ONLINE 
                                     SCOPE OF THE JOURNAL 
                An international publication of Eudoxus Press, LLC 
                (sixteen times annually) 
                      Editor in Chief: George Anastassiou 
                      Department of Mathematical Sciences,  
                      University of Memphis, Memphis, TN 38152-3240, U.S.A 
                         ganastss@memphis.edu 
 http://www.msci.memphis.edu/~ganastss/jocaaa 
                 The main purpose of "J.Computational Analysis and Applications"  
            is to publish high quality research articles from all subareas of  
            Computational Mathematical Analysis and its many potential  
            applications and connections to other areas of Mathematical  
            Sciences. Any paper whose approach and proofs are computational,using  
            methods from Mathematical Analysis in the broadest sense is suitable  
            and welcome for consideration in our journal, except from Applied  
            Numerical Analysis articles. Also plain word articles without formulas and 
            proofs are excluded. The list of possibly connected  
            mathematical areas with this publication includes, but is not  
            restricted to: Applied Analysis, Applied Functional Analysis,  
            Approximation Theory, Asymptotic Analysis, Difference Equations,  
            Differential Equations, Partial Differential Equations, Fourier  
            Analysis, Fractals, Fuzzy Sets, Harmonic Analysis, Inequalities,  
            Integral Equations, Measure Theory, Moment Theory, Neural Networks,  
            Numerical Functional Analysis, Potential Theory, Probability Theory,  
            Real and Complex Analysis, Signal Analysis, Special Functions,  
            Splines, Stochastic Analysis, Stochastic Processes, Summability,  
            Tomography, Wavelets, any combination of the above, e.t.c.  
              "J.Computational Analysis and Applications" is a  
            peer-reviewed Journal. See the instructions for preparation and submission 
            of articles to JoCAAA. Assistant to the Editor: 
Dr.Razvan Mezei,mezei_razvan@yahoo.com, Madison,WI,USA.  
Journal of Computational Analysis and Applications(JoCAAA) is published by 
EUDOXUS PRESS,LLC,1424 Beaver Trail 
Drive,Cordova,TN38016,USA,anastassioug@yahoo.com 
http://www.eudoxuspress.com. Annual Subscription Prices:For USA and 
Canada,Institutional:Print $800, Electronic OPEN ACCESS. Individual:Print $400. For 
any other part of the world add $150 more(handling and postages) to the above prices for 
Print. No credit card payments. 
Copyright©2018 by Eudoxus Press,LLC,all rights reserved.JoCAAA is printed in USA.              
JoCAAA is reviewed and abstracted by AMS Mathematical                   
Reviews,MATHSCI,and Zentralblaat MATH. 
It is strictly prohibited the reproduction and transmission of any part of JoCAAA and in 
any form and by any means without the written permission of the publisher.It is only 
allowed to educators to Xerox articles for educational purposes.The publisher assumes no 
responsibility for the content of published papers. 

1376



 
Editorial Board  

Associate Editors of Journal of Computational Analysis and Applications 
 

Francesco Altomare 
Dipartimento di Matematica 
Universita' di Bari 
Via E.Orabona, 4 
70125 Bari, ITALY 
Tel+39-080-5442690 office 
   +39-080-3944046 home 
   +39-080-5963612 Fax 
altomare@dm.uniba.it 
Approximation Theory, Functional 
Analysis, Semigroups and Partial 
Differential Equations, Positive 
Operators. 
 
Ravi P. Agarwal 
Department of Mathematics 
Texas A&M University - Kingsville 
700 University Blvd. 
Kingsville, TX 78363-8202 
tel: 361-593-2600 
Agarwal@tamuk.edu 
Differential Equations, Difference 
Equations, Inequalities 
 
George A. Anastassiou 
Department of Mathematical Sciences 
The University of Memphis 
Memphis, TN 38152,U.S.A 
Tel.901-678-3144 
e-mail: ganastss@memphis.edu 
Approximation Theory, Real 
Analysis, 
Wavelets, Neural Networks, 
Probability, Inequalities. 
 
J. Marshall Ash 
Department of Mathematics 
De Paul University 
2219 North Kenmore Ave. 
Chicago, IL 60614-3504 
773-325-4216 
e-mail: mash@math.depaul.edu 
Real and Harmonic Analysis 
 
Dumitru Baleanu 
Department of Mathematics and 
Computer Sciences,  
Cankaya University, Faculty of Art 
and  Sciences, 
06530 Balgat, Ankara,  
Turkey, dumitru@cankaya.edu.tr  

Fractional Differential Equations 
Nonlinear Analysis, Fractional  
Dynamics 
 
Carlo Bardaro 
Dipartimento di Matematica e  
Informatica 
Universita di Perugia 
Via Vanvitelli 1 
06123 Perugia, ITALY 
TEL+390755853822 
   +390755855034 
FAX+390755855024 
E-mail carlo.bardaro@unipg.it 
Web site:   
http://www.unipg.it/~bardaro/ 
Functional Analysis and 
Approximation Theory, Signal 
Analysis, Measure Theory, Real 
Analysis. 

Martin Bohner 
Department of Mathematics and  
Statistics, Missouri S&T 
Rolla, MO 65409-0020, USA 
bohner@mst.edu  
web.mst.edu/~bohner 
Difference equations, differential  
equations, dynamic equations on 
time scale, applications in 
economics, finance, biology. 
 
Jerry L. Bona 
Department of Mathematics 
The University of Illinois at 
Chicago 
851 S. Morgan St. CS 249 
Chicago, IL 60601 
e-mail:bona@math.uic.edu 
Partial Differential Equations, 
Fluid Dynamics 
    
Luis A. Caffarelli 
Department of Mathematics 
The University of Texas at Austin 
Austin, Texas 78712-1082 
512-471-3160 
e-mail: caffarel@math.utexas.edu 
Partial Differential Equations 
George Cybenko 
Thayer School of Engineering 

1377



Dartmouth College 
8000 Cummings Hall, 
Hanover, NH 03755-8000 
603-646-3843 (X 3546 Secr.) 
e-mail:george.cybenko@dartmouth.edu 
Approximation Theory and Neural  
Networks 
 
Sever S. Dragomir 
School of Computer Science and  
Mathematics, Victoria University, 
PO Box 14428, 
Melbourne City, 
MC 8001, AUSTRALIA 
Tel. +61 3 9688 4437 
Fax  +61 3 9688 4050 
sever.dragomir@vu.edu.au 
Inequalities, Functional Analysis, 
Numerical Analysis, Approximations, 
Information Theory, Stochastics. 
 
Oktay Duman 
TOBB University of Economics and  
Technology, 
Department of Mathematics, TR-
06530,  
Ankara, Turkey,  
oduman@etu.edu.tr                  
Classical Approximation Theory, 
Summability Theory, Statistical 
Convergence and its Applications 
  
Saber N. Elaydi 
Department Of Mathematics 
Trinity University 
715 Stadium Dr. 
San Antonio, TX 78212-7200 
210-736-8246 
e-mail: selaydi@trinity.edu 
Ordinary Differential Equations, 
Difference Equations 
  
   
J .A. Goldstein 
Department of Mathematical Sciences 
The University of Memphis 
Memphis, TN 38152 
901-678-3130 
jgoldste@memphis.edu 
Partial Differential Equations, 
Semigroups of Operators 
   
H. H. Gonska 
Department of Mathematics 
University of Duisburg 
Duisburg, D-47048 
Germany 

011-49-203-379-3542 
e-mail: heiner.gonska@uni-due.de 
Approximation Theory, Computer 
Aided Geometric Design 
  
John R. Graef 
Department of Mathematics 
University of Tennessee at 
Chattanooga 
Chattanooga, TN 37304 USA 
John-Graef@utc.edu 
Ordinary and functional 
differential equations, difference 
equations, impulsive systems, 
differential inclusions, dynamic 
equations on time scales, control 
theory and their applications 
 
Weimin Han 
Department of Mathematics 
University of Iowa 
Iowa City, IA 52242-1419 
319-335-0770 
e-mail: whan@math.uiowa.edu 
Numerical analysis, Finite element  
method, Numerical PDE, Variational  
inequalities, Computational 
mechanics   
 
Tian-Xiao He 
Department of Mathematics and  
Computer Science 
P.O. Box 2900, Illinois Wesleyan 
University 
Bloomington, IL 61702-2900, USA 
Tel (309)556-3089 
Fax (309)556-3864 
the@iwu.edu 
Approximations, Wavelet, 
Integration Theory, Numerical 
Analysis, Analytic Combinatorics 
 
Margareta Heilmann 
Faculty of Mathematics and Natural       
Sciences, University of Wuppertal 
Gaußstraße 20 
D-42119 Wuppertal, Germany,  
heilmann@math.uni-wuppertal.de       
Approximation Theory (Positive 
Linear Operators) 
 
Xing-Biao Hu 
Institute of Computational 
Mathematics 
AMSS, Chinese Academy of Sciences 
Beijing, 100190, CHINA 
hxb@lsec.cc.ac.cn 

1378



Computational Mathematics 
 
Jong Kyu Kim 
Department of Mathematics 
Kyungnam University 
Masan Kyungnam,631-701,Korea 
Tel  82-(55)-249-2211 
Fax  82-(55)-243-8609 
jongkyuk@kyungnam.ac.kr 
Nonlinear Functional Analysis, 
Variational Inequalities, Nonlinear 
Ergodic Theory, ODE, PDE, 
Functional Equations. 
 
Robert Kozma 
Department of Mathematical Sciences 
The University of Memphis 
Memphis, TN 38152, USA 
rkozma@memphis.edu 
Neural Networks, Reproducing Kernel 
Hilbert Spaces, 
Neural Percolation Theory 
  
Mustafa Kulenovic 
Department of Mathematics 
University of Rhode Island 
Kingston, RI 02881,USA 
kulenm@math.uri.edu 
Differential and Difference 
Equations 
 
Irena Lasiecka 
Department of Mathematical Sciences 
University of Memphis 
Memphis, TN 38152 
PDE, Control Theory, Functional    
Analysis, lasiecka@memphis.edu 

Burkhard Lenze 
Fachbereich Informatik 
Fachhochschule Dortmund 
University of Applied Sciences 
Postfach 105018 
D-44047 Dortmund, Germany 
e-mail: lenze@fh-dortmund.de 
Real Networks, Fourier Analysis, 
Approximation Theory 
   
Hrushikesh N. Mhaskar 
Department Of Mathematics 
California State University 
Los Angeles, CA 90032 
626-914-7002 
e-mail: hmhaska@gmail.com 
Orthogonal Polynomials, 
Approximation Theory, Splines, 
Wavelets, Neural Networks 

 
Ram N. Mohapatra 
Department of Mathematics 
University of Central Florida 
Orlando, FL 32816-1364 
tel.407-823-5080  
ram.mohapatra@ucf.edu 
Real and Complex Analysis, 
Approximation Th., Fourier 
Analysis, Fuzzy Sets and Systems 
  
Gaston M. N'Guerekata 
Department of Mathematics 
Morgan State University 
Baltimore, MD 21251, USA 
tel: 1-443-885-4373 
Fax 1-443-885-8216 
Gaston.N'Guerekata@morgan.edu  
nguerekata@aol.com 
Nonlinear Evolution Equations, 
Abstract Harmonic Analysis, 
Fractional Differential Equations, 
Almost Periodicity & Almost 
Automorphy 
 
M.Zuhair Nashed 
Department Of Mathematics 
University of Central Florida 
PO Box 161364 
Orlando, FL  32816-1364 
e-mail: znashed@mail.ucf.edu 
Inverse and Ill-Posed problems, 
Numerical Functional Analysis, 
Integral Equations, Optimization, 
Signal Analysis 
   
Mubenga N. Nkashama 
Department OF Mathematics 
University of Alabama at Birmingham 
Birmingham, AL 35294-1170 
205-934-2154 
e-mail: nkashama@math.uab.edu 
Ordinary Differential Equations, 
Partial Differential Equations 
 
Vassilis Papanicolaou 
Department of Mathematics 
National Technical University of 
Athens 
Zografou campus, 157 80 
Athens, Greece 
tel:: +30(210) 772 1722 
Fax   +30(210) 772 1775 
papanico@math.ntua.gr 
Partial Differential Equations, 
Probability 
 

1379



Choonkil Park 
Department of Mathematics 
Hanyang University 
Seoul 133-791 
S. Korea, baak@hanyang.ac.kr 
Functional Equations 
 
Svetlozar (Zari) Rachev,  
Professor of Finance, College of 
Business, and Director of 
Quantitative Finance Program, 
Department of Applied Mathematics & 
Statistics 
Stonybrook University 
312 Harriman Hall, Stony Brook, NY 
11794-3775 
tel: +1-631-632-1998, 
svetlozar.rachev@stonybrook.edu 
 
Alexander G. Ramm 
Mathematics Department  
Kansas State University 
Manhattan, KS 66506-2602 
e-mail: ramm@math.ksu.edu  
Inverse and Ill-posed Problems,  
Scattering Theory, Operator Theory,  
Theoretical Numerical Analysis, 
Wave Propagation, Signal Processing 
and Tomography 
 
Tomasz Rychlik 
Polish Academy of Sciences 
Instytut Matematyczny PAN 
00-956 Warszawa, skr. poczt. 21 
ul. Śniadeckich 8 
Poland  
trychlik@impan.pl 
Mathematical Statistics, 
Probabilistic Inequalities 
 
Boris Shekhtman 
Department of Mathematics 
University of South Florida 
Tampa, FL 33620, USA 
Tel  813-974-9710  
shekhtma@usf.edu 
Approximation Theory, Banach 
spaces, Classical Analysis 
 
T. E. Simos 
Department of Computer 
Science and Technology 
Faculty of Sciences and Technology 
University of Peloponnese 
GR-221 00 Tripolis, Greece 
Postal Address: 
26 Menelaou St. 

Anfithea - Paleon Faliron 
GR-175 64 Athens, Greece 
tsimos@mail.ariadne-t.gr 
Numerical Analysis 
 
H. M. Srivastava 
Department of Mathematics and 
Statistics 
University of Victoria 
Victoria, British Columbia V8W 3R4 
Canada 
tel.250-472-5313; office,250-477-
6960 home, fax 250-721-8962 
harimsri@math.uvic.ca 
Real and Complex Analysis, 
Fractional Calculus and Appl., 
Integral Equations and Transforms, 
Higher Transcendental Functions and 
Appl.,q-Series and q-Polynomials, 
Analytic Number Th. 
 
I. P. Stavroulakis 
Department of Mathematics 
University of Ioannina 
451-10 Ioannina, Greece 
ipstav@cc.uoi.gr 
Differential Equations 
Phone  +3-065-109-8283 
 
Manfred Tasche 
Department of Mathematics 
University of Rostock 
D-18051 Rostock, Germany 
manfred.tasche@mathematik.uni-  
rostock.de 
Numerical Fourier Analysis, Fourier  
Analysis, Harmonic Analysis, Signal  
Analysis, Spectral Methods, 
Wavelets, Splines, Approximation 
Theory 
 
Roberto Triggiani 
Department of Mathematical Sciences 
University of Memphis 
Memphis, TN 38152 
PDE, Control Theory, Functional    
Analysis, rtrggani@memphis.edu   
 

Juan J. Trujillo 
University of La Laguna 
Departamento de Analisis Matematico 
C/Astr.Fco.Sanchez s/n 
38271. LaLaguna. Tenerife. 
SPAIN 
Tel/Fax 34-922-318209 
Juan.Trujillo@ull.es 

1380



Fractional: Differential Equations-
Operators-Fourier Transforms, 
Special functions, Approximations, 
and Applications 
 
Ram Verma 
International Publications 
1200 Dallas Drive #824 Denton, 
TX 76205, USA 
Verma99@msn.com 
Applied Nonlinear Analysis, 
Numerical Analysis, Variational 
Inequalities, Optimization Theory, 
Computational Mathematics, Operator 
Theory 

Xiang Ming Yu 
Department of Mathematical Sciences 
Southwest Missouri State University 
Springfield, MO 65804-0094 
417-836-5931 
xmy944f@missouristate.edu 
Classical Approximation Theory,  
Wavelets 
  
Lotfi A. Zadeh 
Professor in the Graduate School 
and Director, Computer Initiative, 
Soft Computing (BISC) 
Computer Science Division 
University of California at 
Berkeley 
Berkeley, CA 94720 
Office: 510-642-4959 
Sec:    510-642-8271 
Home:   510-526-2569 
FAX:    510-642-1712 
zadeh@cs.berkeley.edu 
Fuzzyness, Artificial Intelligence,  
Natural language processing, Fuzzy  
logic 
 
Richard A. Zalik 
Department of Mathematics 
Auburn University 
Auburn University, AL 36849-5310 
USA. 
Tel 334-844-6557 office 
      678-642-8703 home 
Fax 334-844-6555 
zalik@auburn.edu 
Approximation Theory, Chebychev 
Systems, Wavelet Theory 
 
Ahmed I. Zayed 
Department of Mathematical Sciences 
DePaul University 

2320 N. Kenmore Ave. 
Chicago, IL 60614-3250 
773-325-7808 
e-mail: azayed@condor.depaul.edu 
Shannon sampling theory, Harmonic  
analysis and wavelets, Special  
functions and orthogonal 
polynomials, Integral transforms 
 
Ding-Xuan Zhou 
Department Of Mathematics 
City University of Hong Kong 
83 Tat Chee Avenue 
Kowloon, Hong Kong 
852-2788 9708,Fax:852-2788 8561 
e-mail: mazhou@cityu.edu.hk 
Approximation Theory, Spline 
functions, Wavelets 
 
Xin-long Zhou 
Fachbereich Mathematik, Fachgebiet  
Informatik 
Gerhard-Mercator-Universitat 
Duisburg 
Lotharstr.65, D-47048 Duisburg, 
Germany 
e-mail:Xzhou@informatik.uni- 
duisburg.de 
Fourier Analysis, Computer-Aided  
Geometric Design, Computational  
Complexity, Multivariate  
Approximation Theory, Approximation 
and Interpolation Theory 
 
Jessada  Tariboon 
Department of Mathematics, 
King Mongkut's University of 
Technology N. Bangkok 
1518 Pracharat 1 Rd., Wongsawang, 
Bangsue, Bangkok, Thailand 10800 
 jessada.t@sci.kmutnb.ac.th, Time scales, 
Differential/Difference Equations, 
Fractional Differential Equations 
 

1381

mailto:Verma99@msn.com


 
Instructions to Contributors 

 Journal of Computational Analysis and Applications 
  An international publication of Eudoxus Press, LLC, of TN.  

  
Editor in Chief: George Anastassiou 

Department of Mathematical Sciences  
University of Memphis 

Memphis, TN 38152-3240, U.S.A. 
 
       

 
      1. Manuscripts files in Latex and PDF and in English, should be submitted via 
email to the Editor-in-Chief: 
 
      Prof.George A. Anastassiou  
      Department of Mathematical Sciences  
      The University of Memphis  
      Memphis,TN 38152, USA.  
      Tel. 901.678.3144  
      e-mail: ganastss@memphis.edu  
 
Authors may want to recommend an associate editor the most related to the 
submission to possibly handle it. 
 
      Also authors may want to submit a list of six possible referees, to be used in case we 
cannot find related referees by ourselves. 
 
 
2. Manuscripts should be typed using any of TEX,LaTEX,AMS-TEX,or AMS-LaTEX 
and according to EUDOXUS PRESS, LLC. LATEX STYLE FILE. (Click HERE to 
save a copy of the style file.)They should be carefully prepared in all respects. 
Submitted articles should be brightly typed (not dot-matrix), double spaced, in ten 
point type size and in 8(1/2)x11 inch area per page. Manuscripts should have generous 
margins on all sides and should not exceed 24 pages. 
 
3. Submission is a representation that the manuscript has not been published 
previously in this or any other similar form and is not currently under consideration 
for publication elsewhere. A statement transferring from the authors(or their 
employers,if they hold the copyright) to Eudoxus Press, LLC, will be required before 
the manuscript can be accepted for publication.The Editor-in-Chief will supply the 
necessary forms for this transfer.Such a written transfer of copyright,which previously 
was assumed to be implicit in the act of submitting a manuscript,is necessary under the 
U.S.Copyright Law in order for the publisher to carry through the dissemination of 
research results and reviews as widely and effective as possible. 
 

1382

mailto:ganastss@memphis.edu?subject=JCAAM%20inquirey
http://www.msci.memphis.edu/~ganastss/jcaam/EUDOXStyle.tex


4. The paper starts with the title of the article, author's name(s) (no titles or degrees), 
author's affiliation(s) and e-mail addresses. The affiliation should comprise the 
department, institution (usually university or company), city, state (and/or nation) and 
mail code. 
 
      The following items, 5 and 6, should be on page no. 1 of the paper. 
 
5. An abstract is to be provided, preferably no longer than 150 words. 
 
6. A list of 5 key words is to be provided directly below the abstract. Key words should 
express the precise content of the manuscript, as they are used for indexing purposes. 
 
      The main body of the paper should begin on page no. 1, if possible. 
 
7. All sections should be numbered with Arabic numerals (such as: 1. 
INTRODUCTION) .  
Subsections should be identified with section and subsection numbers (such as 6.1. 
Second-Value Subheading). 
If applicable, an independent single-number system (one for each category) should be 
used to label all theorems, lemmas, propositions, corollaries, definitions, remarks, 
examples, etc. The label (such as Lemma 7) should be typed with paragraph 
indentation, followed by a period and the lemma itself. 
 
8. Mathematical notation must be typeset. Equations should be numbered 
consecutively with Arabic numerals in parentheses placed flush right, and should be 
thusly referred to in the text [such as Eqs.(2) and (5)]. The running title must be placed 
at the top of even numbered pages and the first author's name, et al., must be placed at 
the top of the odd numbed pages. 
 
9. Illustrations (photographs, drawings, diagrams, and charts) are to be numbered in 
one consecutive series of Arabic numerals. The captions for illustrations should be 
typed double space. All illustrations, charts, tables, etc., must be embedded in the body 
of the manuscript in proper, final, print position. In particular, manuscript, source, 
and PDF file version must be at camera ready stage for publication or they cannot be 
considered. 
 
    Tables are to be numbered (with Roman numerals) and referred to by number in 
the text. Center the title above the table, and type explanatory footnotes (indicated by 
superscript lowercase letters) below the table.  
 
10. List references alphabetically at the end of the paper and number them 
consecutively. Each must be cited in the text by the appropriate Arabic numeral in 
square brackets on the baseline.  
      References should include (in the following order):  
     initials of first and middle name, last name of author(s)  
      title of article,  

1383



      name of publication, volume number, inclusive pages, and year of publication.  
 
      Authors should follow these examples: 
 
          Journal Article  
 
          1. H.H.Gonska,Degree of simultaneous approximation of bivariate functions by Gordon operators, 
(journal name in italics) J. Approx. Theory, 62,170-191(1990).  
 
          Book  
 
          2. G.G.Lorentz, (title of book in italics) Bernstein Polynomials (2nd ed.), Chelsea,New York,1986.  
 
          Contribution to a Book  
 
          3. M.K.Khan, Approximation properties of beta operators,in(title of book in italics) Progress in 
Approximation Theory (P.Nevai and A.Pinkus,eds.), Academic Press, New York,1991,pp.483-495. 
 
     11. All acknowledgements (including those for a grant and financial support) should 
occur in one paragraph that directly precedes the References section. 
 
     12. Footnotes should be avoided. When their use is absolutely necessary, footnotes 
should be numbered consecutively using Arabic numerals and should be typed at the 
bottom of the page to which they refer. Place a line above the footnote, so that it is set 
off from the text. Use the appropriate superscript numeral for citation in the text. 
 
     13. After each revision is made please again submit via email Latex and PDF files  
of the revised manuscript, including the final one. 
       
    14. Effective 1 Nov. 2009 for current journal page charges, contact the Editor in 
Chief. Upon acceptance of the paper an invoice will be sent to the contact author. The 
fee payment will be due one month from the invoice date. The article will proceed to 
publication only after the fee is paid. The charges are to be sent, by money order or 
certified check, in US dollars, payable to Eudoxus Press, LLC, to the address shown on 
the Eudoxus homepage.  
 
      No galleys will be sent and the contact author will receive one (1) electronic copy of 
the journal issue in which the article appears. 
 
 
     15. This journal will consider for publication only papers that contain proofs for 
their listed results. 

 
       
   
   

 

1384

http://www.eudoxuspress.com/


Kantorovich Type Integral Inequalities for Tensor

Products of Continuous Fields of Positive

Operators

Pattrawut Chansangiam∗

Department of Mathematics, Faculty of Science,
King Mongkut’s Institute of Technology Ladkrabang,

Bangkok 10520, Thailand.

Abstract

This paper establishes a number of Kantorovich type integral inequal-
ities involving tensor products of continuous fields of positive operators
parametrized by a locally compact Hausdorff space. Such integrals appear
as Bochner integrals with respect to a finite Radon measure on that space.
Kantorovich type inequalities in which the operator product are replaced
by an operator mean are also investigated.

Keywords: continuous field of operators, Bochner integral, tensor product,
operator mean, operator monotone function
Mathematics Subject Classifications 2010: 26D15, 46G10, 47A63, 47A64,
47A80.

1 Introduction

One of well-known analytic inequalities is the classical Kantorovich inequality
[10], which states that for real numbers ai and wi such that 0 < a 6 ai 6 b and
wi > 0 for all 1 6 i 6 n, we have(

n∑
i=1

wiai

)(
n∑

i=1

wi

ai

)
6 (a+ b)2

4ab

(
n∑

i=1

wi

)2

. (1.1)

This inequality can be regarded as a reverse version of weighted arithmetic-
harmonic mean inequality. Applications of this inequality arise in convergence
analysis for numerical methods and statistics. Various generalizations, varia-
tions, refinements and equivalences of this inequality in several settings have
been investigated. Let us focus on an integral version of (1.1):

∗Corresponding author. Email: pattrawut.ch@kmitl.ac.th

1
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Theorem 1.1 (see e.g. [4]). Let J be a real interval equipped with a probability
measure µ. For any continuous function f : J → R such that Range(f) ⊆ [a, b]
for some a, b > 0, it holds that∫

J

f2 dµ 6 (a+ b)2

4ab

(∫
J

f dµ

)2

. (1.2)

Over the years, Kantorovich type inequalities were obtained in the contexts
of matrices and operators, see e.g. [5, 7, 12, 14] and references therein. A
matrix analogue of the inequality (1.1) involving Hadamard product (entrywise
product, denoted by ⊙) is given as follows.

Theorem 1.2 ([13], Theorem 2.2). For each i = 1, 2, . . . , n, let Ai and Wi be
positive definite matrices of the same size such that 0 < aI 6 Ai 6 bI. Then

n∑
i=1

W
1
2
i AiW

1
2
i ⊙

n∑
i=1

W
1
2
i A

−1
i W

1
2
i 6 a2 + b2

2ab

(
n∑

i=1

Wi ⊙
n∑

i=1

Wi

)
. (1.3)

Note that the constant bound (a2 + b2)/(2ab) of the matrix case (1.3) is
slightly different to that of scalar case (a2 + b2)/(4ab) in (1.1) and (1.2). The
inequality (1.3) can be viewed as a reverse of the Fiedler’s inequality

A ◦A−1 > I

which holds for any positive definite matrix A (see [6]). Kantorovich type in-
equality in which the operator product is replaced by an operator mean was
considered in [15, 17].

In this paper, we establish certain integral inequalities of Kantorovich type
for continuous fields of positive operators on a Hilbert space. The inequalities
(1.1) and (1.2) are generalized in many ways in terms of Bochner integrals of
operator-valued functions defined on a locally compact Hausdorff space equipped
with a finite Radon measure. Instead of the Hadamard product in Theorem 1.2,
we consider the (Hilbert) tensor product and Kubo-Ando operator mean. Our
results include discrete inequalities as special cases.

This paper consists of four sections. Section 2 provides fundamental facts
about continuous fields of operators and its integrability. Section 3 deals with
Kantorovich type integral inequalities involving tensor products of continuous
fields of operators. In Section 4, we recall Kubo-Ando theory of operator means
and then derive Kantorovich type inequalities involving operator means.

2 Continuous field of operators and Bochner in-
tegrability

Throughout, let H be a complex Hilbert space. Denote by B(H) and B(H)+

the C∗-algebra of all bounded linear operators on H and its positive cone, re-
spectively. Let A and A+ be a unital C∗-subalgebra of B(H) and its positive

2
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cone, respectively. Capital letters always denote operators on a Hilbert space.
In particular, I denotes the identity operator, where the underlying space is
clear from the context. The spectrum of an operator A is expressed as Sp(A).
As usual, the operator norm of an operator A is denoted by ∥A∥. For selfadjoint
elements A,B ∈ A, the expression A 6 B indicates that B − A is a positive
element, while A > 0 means that A is positive and invertible.

Let us denote the supremum norm of a real-valued function f defined on a
set E by ∥f∥∞,E . The symbol ∥·∥1 denotes the L1-norm on a given set, which
is clear from the context.

The next lemma asserts the continuity of the map A 7→ f(A). Here, f(A) is
the continuous functional calculus of f on Sp(A).

Lemma 2.1. Let ∆ be a nonempty compact subset of C and let f : ∆ → C
be a continuous function. Let A be the subset of A consisting of all operators
whose spectra are contained in ∆. Then the map sending A ∈ A to f(A) ∈ A is
continuous.

Proof. Let ϵ > 0. Weierstrass’ approximation theorem guarantees the existence
of a polynomial p such that

∥f − p∥∞,∆ <
ϵ

3
.

Since the map X 7→ p(X) is continuous on A, there is a positive constant δ such
that ∥p(A) − p(B)∥ < ϵ

3 whenever ∥A − B∥ < δ. For any operators A,B ∈ A
such that ∥A−B∥ < δ, we have

∥f(A)− f(B)∥ 6 ∥f(A)− p(A)∥+ ∥p(A)− p(B)∥+ ∥p(B)− f(B)∥
= ∥f − p∥∞,σ(A) + ∥p(A)− p(B)∥+ ∥f − p∥∞,σ(B)

6 ∥f − p∥∞,∆ + ∥p(A)− p(B)∥+ ∥f − p∥∞,∆

< ϵ.

Note that the above equality holds since the Gelfand transform f 7→ f(A) is an
isometry. Therefore the map A 7→ f(A) is continuous.

From now on, let Ω be a locally compact Hausdorff space. Equip Ω with a
Radon measure µ, i.e., µ is a Borel measure on Ω that is finite on all compact
subsets, outer regular on all Borel subsets, and inner regular on all open subsets.
A family (At)t∈Ω of operators in A is said to be a continuous field of operators
if the parametrization t 7→ At is continuous on Ω. If we further assume the
Lebesgue integrability of the function t 7→ ∥At∥, then the Bochner integral∫
Ω
At dµ(t) is well-defined as the element in A satisfying

ϕ

(∫
Ω

At dµ(t)

)
=

∫
Ω

ϕ(At) dµ(t)

for every ϕ in the norm dual of A (see e.g. [16]). Let C(Ω;A+) be the set of
all continuous fields(At)t∈Ω such that At ∈ A+ for all t ∈ Ω. If we want to

3
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specify that Sp(At) ⊆ J , for some subset J ⊆ [0,∞), we shall use the notation
C(Ω;A+, J).

The next lemma is useful for integrating any vector-valued function on a
finite measure space.

Lemma 2.2 (see e.g. [1], Theorem 11.44). Let (X, ∥·∥X) be a Banach space,
and let (Γ, ν) be a finite measure space. Suppose that f : Γ → X is a measurable
function (here, X is equipped with the Borel σ-algebra). Then f is Bochner
integrable if and only if its norm function ∥f∥ is Lebesgue integrable, i.e.,∫

Γ

∥f∥ dν < ∞.

Here, ∥f∥ is defined by ∥f∥(x) = ∥f(x)∥X for any x ∈ X.

In what follows, suppose that µ is a finite Radon measure on Ω. The inte-
grability of a real-valued function is always in the sense of Lebesgue.

Proposition 2.3. Let ∆ be a nonempty compact subset of C and let f : ∆ → C
be a continuous function. Let (At)t∈Ω be a continuous field of normal operators
in A whose spectra are contained in ∆. Let (Wt)t∈Ω be a field in C(Ω;A+).
Suppose that the function t 7→ ∥Wt∥ is integrable on Ω. Then we can form the
Bochner integral ∫

Ω

W
1
2
t f(At)W

1
2
t dµ(t). (2.1)

In addition, if f is nonnegative on ∆, then the operator (2.1) is positive.

Proof. By Lemma 2.2, it suffices to prove the integrability of the norm function

t 7→ ∥W
1
2
t f(At)W

1
2
t ∥. Since t 7→ At is continuous, the map t 7→ f(At) is

continuous by Lemma 2.1, and hence so is the map t 7→W
1
2
t f(At)W

1
2
t . Thus∫

Ω

∥W
1
2
t f(At)W

1
2
t ∥ dµ(t) 6

∫
Ω

∥W
1
2
t ∥ · ∥f(At)∥ · ∥W

1
2
t ∥ dµ(t)

=

∫
Ω

∥Wt∥
1
2 · ∥f∥∞,Sp(At) · ∥Wt∥

1
2 dµ(t)

6
∫
Ω

∥f∥∞,∆ · ∥Wt∥ dµ(t)

= ∥f∥∞,∆

∫
Ω

∥Wt∥ dµ(t)

< ∞.

Now, suppose f(∆) ⊆ [0,∞). The spectral mapping theorem implies that
f(At) is a positive element for all t ∈ Ω. Therefore the resulting integral (2.1)
is positive.

4
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Remark 2.4. For convenience, we may assume that Ω is a compact Hausdorff
space. In this case, any Radon measure on Ω is always finite and hence every
continuous field (Xt)t∈Ω of operators is automatically Bochner integrable. In-
deed, its norm function t 7→ ∥Xt∥ is bounded and, thus, integrable. It follows
that the map t 7→ Xt is Bochner integrable by Lemma 2.2.

Lemma 2.5 (see e.g. [1], Lemma 11.45). Let X and Y be Banach spaces and
let (Γ, ν) be a measure space. Suppose that a function f : Γ → X is Bochner
integrable. If T : X → Y be a bounded linear operator, then the composition
T ◦ f is also Bochner integrable and∫

Γ

(T ◦ f) dν = T

(∫
Γ

f dν

)
.

The next proposition will be useful in later discussions.

Proposition 2.6. Let (At)t∈Ω be a bounded continuous field of operators in A.
For any X ∈ A, we have∫

Ω

At dµ(t)⊗X =

∫
Ω

(At ⊗X) dµ(t), (2.2)

X ⊗
∫
Ω

At dµ(t) =

∫
Ω

(X ⊗At) dµ(t). (2.3)

Proof. By Lemma 2.2, the map t 7→ At is Bochner integrable on Ω since it is
continuous and bounded. Note that the maps T 7→ T ⊗X and T 7→ X ⊗ T are
bounded linear operators from B(H) to B(H⊗H). It follows from Lemma 2.5
that the maps t 7→ At ⊗X and t 7→ X ⊗ At are Bochner integrable on Ω, and
the properties (2.2) and (2.3) hold.

3 Integral inequalities of Kantorovich type for
tensor products of operators

In this section, we derive operators integral inequalities of Kantorovich type in
which the operator product is given by the tensor product. From now on, let
a, b be constants such that 0 < a 6 b. For each A,B ∈ B(H), we denote

A⊗s B =
1

2
(A⊗B +B ⊗A).

Recall that the tensor power A⊗2 is defined to be A⊗A.

Lemma 3.1. The minimum constant k for which the inequality

A⊗B−1 +A−1 ⊗B 6 kI. (3.1)

holds for all positive elements A,B ∈ A whose spectra are contained in [a, b] is
determined by k = (a2 + b2)/(ab). Here, I denotes the identity on H⊗H.

5
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Proof. Since Sp(A), Sp(B) ⊆ [a, b], we have

Sp(A⊗B−1) = {xy : x ∈ Sp(A), y ∈ Sp(B−1)}
= {xz−1 : x ∈ Sp(A), z ∈ Sp(B)}
⊆ [a/b, b/a].

Note also that (A ⊗ B−1)−1 = A−1 ⊗ B. Let us denote by r(·) the spectral
radius of an operator. Spectral mapping theorem now implies that

∥A⊗B−1 +A−1 ⊗B∥ = r(A⊗B−1 +A−1 ⊗B)

= sup{λ+ λ−1 : λ ∈ Sp(A⊗B−1)}
6 sup{λ+ λ−1 : λ ∈ [a/b, b/a]}

=
a2 + b2

ab
.

Thus, we arrive at inequality (3.1). The constant (a2 + b2)/(ab) cannot be
improved since the case A = aIH and B = bIH is reduced to the scalar case.

The following theorem is an integral inequality of Kantorovich type.

Theorem 3.2. Let (At)t∈Ω be a field in C(Ω;A+, [a, b]). Let (Wt)t∈Ω be a field
in C(Ω;A+) such that the function t 7→ ∥Wt∥ is integrable on Ω. Then∫

Ω

W
1
2
t AtW

1
2
t dµ(t)⊗s

∫
Ω

W
1
2
t A

−1
t W

1
2
t dµ(t) 6 a2 + b2

2ab

(∫
Ω

Wt dµ(t)

)⊗2

. (3.2)

Moreover, the constant (a2 + b2)/(2ab) is best possible.

Proof. For convenience, let us denote

X =

∫
Ω

Wt
1
2AtWt

1
2 dµ(t) and Y =

∫
Ω

Wt
1
2At

−1Wt
1
2 dµ(t).

By Proposition 2.3 with ∆ = [a, b], the operators X,Y and
∫
Ω
Wt dµ(t) are

well-defined and positive via putting f(x) = x, f(x) = 1/x, and f(x) = 1,
respectively. Using properties (2.2) and (2.3) in Proposition 2.6, we obtain

X ⊗ Y =

∫
Ω

(
W

1
2
t A

−1
t W

1
2
t ⊗

∫
Ω

W
1
2
r A

−1
r W

1
2
r dµ(r)

)
dµ(t)

=

∫∫
Ω2

(
W

1
2
t AtW

1
2
t ⊗W

1
2
r A

−1
r W

1
2
r

)
dµ(r) dµ(t).

Similarly, we have

Y ⊗X =

∫∫
Ω2

(
W

1
2
t At

−1W
1
2
t ⊗W

1
2
r ArW

1
2
r

)
dµ(r) dµ(t).

6
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It follows that

2(X ⊗s Y ) =

∫∫
Ω2

(
W

1
2
t AtW

1
2
t ⊗W

1
2
r A

−1
r W

1
2
r +W

1
2
t A

−1
t W

1
2
t ⊗W

1
2
r ArW

1
2
r

)
dµ(r) dµ(t)

=

∫∫
Ω2

(Wt ⊗Wr)
1
2

(
At ⊗A−1

r +A−1
t ⊗Ar

)
(Wt ⊗Wr)

1
2 dµ(r) dµ(t).

Lemma 3.1 together with Proposition 2.6 imply that

X ⊗s Y 6 1

2

∫
Ω

∫
Ω

a2 + b2

ab
(Wt ⊗Wr) dµ(r) dµ(t)

=
a2 + b2

2ab

∫
Ω

(∫
Ω

Wr dµ(r)

)
⊗Wt dµ(t)

=
a2 + b2

2ab

∫
Ω

Wt dµ(t)⊗
∫
Ω

Wt dµ(t).

Therefore, we arrive at (3.2). The best possibility of the constant (a2+b2)/(2ab)
also comes from Lemma 3.1.

The next result is an integral inequality of Kantorovich type in which the
weights are scalars.

Corollary 3.3. Let (At)t∈Ω be a field in C(Ω;A+, [a, b]). Let w : Ω → [0,∞) be
a continuous integrable function. Then∫

Ω

w(t)At dµ(t)⊗s

∫
Ω

w(t)A−1
t dµ(t) 6 a2 + b2

2ab
∥w∥21I. (3.3)

Proof. From Theorem 3.2, put Wt = w(t)I for each t ∈ Ω.

Corollary 3.4. Let (At)t∈Ω and (Bt)t∈Ω be fields in C(Ω;A+) such that

i) Sp(At) ⊆ [a, b] ⊆ (0,∞) for each t ∈ Ω,

ii) the function t 7→ ∥Bt∥ is integrable on Ω, and

iii) AtBt = BtAt for each t ∈ Ω.

Then ∫
Ω

AtBt dµ(t)⊗s

∫
Ω

A−1
t Bt dµ(t) 6 a2 + b2

2ab

(∫
Ω

Bt dµ(t)

)2

I. (3.4)

Proof. From Theorem 3.2, put Wt = Bt for each t ∈ Ω.

Corollary 3.5. Let f, ϕ : Ω → [0,∞) be continuous functions. Assume that
Range(f) ⊆ [a, b] ⊆ (0,∞) and ϕ is integrable with

∫
Ω
ϕdµ = 1. Then

∥ϕf∥1 6 a2 + b2

2ab

1

∥ϕ/f∥1
.

7
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Proof. From Corollary 3.4, put A = C. Note that
∫
Ω
(ϕ/f) dµ > 0.

Theorem 3.2 can be extended in the following way:

Theorem 3.6. Let (At)t∈Ω be a filed in C(Ω;A+, [a, b]). Let (Wt)t∈Ω be a field
in C(Ω;A+) such that the function t 7→ ∥Wt∥ is integrable on Ω. Let f be a
continuous real-valued function defined on [a, b] ∪ [1/b, 1/a] such that

(i) f(x)f(1/x) 6 1 for all x ∈ [a, b],

(ii) f([a, b]) ⊆ [a, b] or f([a, b]) ⊆ [1/b, 1/a].

Then∫
Ω

W
1
2
t f(At)W

1
2
t dµ(t)⊗s

∫
Ω

W
1
2
t f(A

−1
t )W

1
2
t dµ(t) 6 a2 + b2

2ab

(∫
Ω

Wt dµ(t)

)⊗2

.

(3.5)

Proof. Since Sp(A−1
t ) ⊆ [1/b, 1/a] for each t, the function t 7→ W

1
2
t f(A

−1
t )W

1
2
t

is Bochner integrable by Proposition 2.3. The assumption also implies that

f(A−1
t ) 6 f(At)

−1

for each t ∈ Ω. The inequality (3.5) now follows from Theorem 3.2. Note that
the constant (a2 + b2)/(2ab) is not affected.

Theorem 3.6 is reduced to Theorem 3.2 by setting f(x) = x or f(x) = 1/x.

Corollary 3.7. Let 0 < a < b. Consider three continuous functions ϕ : Ω →
[a, b], g : [a, b] → (0,∞) and f : [a, b] ∪ [1/b, 1/a] → R. Suppose that

(i) f(x)f(1/x) 6 1 for all x ∈ [a, b],

(ii) f([a, b]) ⊆ [a, b] or f([a, b]) ⊆ [1/b, 1/a].

Then we have the bound

∥(fg) ◦ ϕ∥1 6 a2 + b2

2ab

∥g ◦ ϕ∥21
∥(f ◦ 1

ϕ )(g ◦ ϕ)∥1
.

Proof. It is a special case of Theorem 3.6 when A = C.

4 Kantorovich type integral inequalities involv-
ing operator means

In this section, we establish integral analogues of Kantorovich inequality in-
volving operator means. First of all, we recall some fundamental facts about
operator means [11]; see also [9, Ch. 5].

8
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Definition 4.1. A binary operation σ : B(H)+ ×B(H)+ → B(H)+ is called a
connection if the following conditions hold for all A,B,C,D ∈ B(H)+:

(i) (joint) monotonicity: A 6 C,B 6 D =⇒ AσB 6 C σD

(ii) transformer inequality: C(AσB)C 6 (CAC)σ (CBC)

(iii) (joint) continuity from above: for any sequences (An), (Bn) in B(H)+, if
An ↓ A and Bn ↓ B, then An σ Bn ↓ AσB. Here, Xn ↓ X indicates that
(Xn) is a decreasing sequence converging strongly to X.

It follows that every connection σ satisfies the following properties:

X(AσB)X = (XAX)σ (XBX), (4.1)

(A+B)σ (C +D) > (AσC) + (B σD) (4.2)

for all A,B,C,D > 0 and X > 0. A mean is a connection σ with idempotent
property AσA = A for all A > 0.

Recall also that a continuous function f : [0,∞) → R is said to be operator
monotone if the condition 0 6 A 6 B implies f(A) 6 f(B). Such f is said to
be super-multiplicative if f(xy) > f(x)f(y) for all x, y > 0.

Proposition 4.2 ([11]). There is a one-to-one correspondence between operator
connections and operator monotone functions from [0,∞) to itself such that

f(A) = I σ A, A ∈ B(H)+. (4.3)

Moreover, σ is an operator mean if and only if f(1) = 1.

Such f in this proposition is called the representing function of σ. Every
operator connection σ admits an integral representation (see e.g. [3])

AσB =

∫ 1

0

A !tB dν(t), A,B ∈ B(H)+

for some finite Radon measure ν on the interval [0, 1]. Here, !t denotes the
t-weighted harmonic mean. Hence if A,B ∈ A+, then AσB ∈ A+ since the
integral is a limit of finite sums.

Lemma 4.3 ([2]). For any operator connection σ and A,B ∈ B(H)+, we have

∥AσB∥ 6 ∥A∥σ ∥B∥.

Here, σ on the right hand side is the induced connection on [0,∞) defined by
(a σ b)I = aI σ bI for any a, b ∈ [0,∞).

Lemma 4.4. Let σ be an operator connection with associated super-multiplicative
operator-monotone function. Then for all positive operators A,B,C,D, we have

(AσC)⊗s (B σD) 6 (A⊗s B)σ (C ⊗s D). (4.4)

9
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Proof. By a continuity argument using the monotonicity and the continuity from
above of a connection, we may assume that A,B > 0. Putting X = A− 1

2CA− 1
2

and Y = B− 1
2DB− 1

2 , we have from properties (4.1) and (4.3) that

(AσC)⊗ (B σD) = (A⊗B)
1
2 [(I σ X)⊗ (I σ Y )](A⊗B)

1
2

= (A⊗B)
1
2 [f(X)⊗ f(Y )](A⊗B)

1
2

6 (A⊗B)
1
2 [f(X ⊗ Y )](A⊗B)

1
2

= (A⊗B)
1
2 [I σ (X ⊗ Y )](A⊗B)

1
2

= (A⊗B)σ (C ⊗D).

Now, using property (4.2) yields

(AσC)⊗ (B σD) + (B σD)⊗ (AσC)

6 (A ⊗ B)σ (C ⊗ D) + (B ⊗ A)σ (D ⊗ C)

6 [(A ⊗ B) + (B ⊗ A)] σ [(C ⊗ D) + (D ⊗ C)] .

The following result can be regarded as a Kantorovich type integral inequal-
ity concerning an operator mean.

Theorem 4.5. Let (At)t∈Ω be a filed in C(Ω;A+, [a, b]). Let (Wt)t∈Ω be a field
in C(Ω;A+) such that the function t 7→ ∥Wt∥ is integrable on Ω. Let σ be a
mean associated with a super-multiplicative representing function. Then

∫
Ω

W
1
2
t (At σ Bt)W

1
2
t dµ(t) ⊗s

∫
Ω

W
1
2
t (A−1

t σ B−1
t )W

1
2
t dµ(t)

6 a2 + b2

2ab

(∫
Ω

Wt dµ(t)

)⊗2

.

(4.5)

Proof. The upper semicontinuity of σ, and the continuity of the maps t 7→ At

and t 7→ Bt together imply the measurability of the map t 7→ AtσBt. Note
that ∥AtσBt∥ 6 b by the monotonicity and the idempotency of σ, and the

norm estimation in Lemma 4.3. It follows that the map t 7→W
1
2
t (At σ Bt)W

1
2
t is

Bochner integrable by Lemma 2.2. Similarly, the map t 7→W
1
2
t (A−1

t σ B−1
t )W

1
2
t

10
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is Bochner integrable. Now, we have∫
Ω

W
1
2
t (AtσBt)W

1
2
t dµ(t)⊗s

∫
Ω

W
1
2
t (A−1

t σ B−1
t )W

1
2
t dµ(t)

6
∫
Ω

(
W

1
2
t AtW

1
2
t σW

1
2
t BtW

1
2
t

)
dµ(t)⊗s

∫
Ω

(
W

1
2
t A

−1
t W

1
2
t σW

1
2
t B

−1
t W

1
2
t

)
dµ(t)

(since σ satisfies the transformer inequality)

6
[∫

Ω

Wt
1
2AtWt

1
2 dµ(t)σ

∫
Ω

Wt
1
2BtWt

1
2 dµ(t)

]
⊗s

[∫
Ω

Wt
1
2A−1

t Wt
1
2 dµ(t)σ

∫
Ω

Wt
1
2B−1

t Wt
1
2 dµ(t)

]
(by (4.2))

6
[∫

Ω

Wt
1
2AtWt

1
2 dµ(t)⊗s

∫
Ω

Wt
1
2A−1

t Wt
1
2 dµ(t)

]
σ

[∫
Ω

Wt
1
2BtWt

1
2 dµ(t)⊗s

∫
Ω

Wt
1
2B−1

t Wt
1
2 dµ(t)

]
(by Lemma 4.4)

6 a2 + b2

2ab

(∫
Ω

Wt dµ(t)

)⊗2

σ
a2 + b2

2ab

(∫
Ω

Wt dµ(t)

)⊗2

(by Theorem 3.2)

=
a2 + b2

2ab

(∫
Ω

Wt dµ(t)

)⊗2

.

Theorem 4.5 is reduced to Theorem 3.2 by putting At = Bt for all t ∈ Ω.

Corollary 4.6. Let (At)t∈Ω and (Bt)t∈Ω be two fields in C(Ω;A+, [a, b]). Let
w : Ω → [0,∞) be an integrable continuous function. Let σ be an operator mean
associated with a super-multiplicative representing function. Then∫

Ω

w(t)(At σ Bt) dµ(t) ⊗s

∫
Ω

w(t)(A−1
t σ B−1

t ) dµ(t) 6 a2 + b2

2ab
∥w∥21I. (4.6)

Proof. From Theorem 4.5, put Wt = w(t)I for all t ∈ Ω.

Theorem 4.7. Let 0 < a 6 1 6 b. Let (At)t∈Ω be a field in C(Ω;A+, [a, b]). Let
(Wt)t∈Ω be a field in C(Ω;A+) such that the function t 7→ ∥Wt∥ is integrable.
For any super-multiplicative operator-monotone function f : [0,∞) → [0,∞)
such that f(1) = 1, we have∫
Ω

W
1
2
t f(At)W

1
2
t dµ(t)⊗s

∫
Ω

W
1
2
t f(A

−1
t )W

1
2
t dµ(t) 6 a2 + b2

2ab

(∫
Ω

Wt dµ(t)

)⊗2

.

(4.7)

Proof. Proposition 4.2 guarantees the existence of an operator mean σ such that
f(A) = I σ A for all A > 0. The inequality (4.7) now follows from Theorem 4.5
by considering I σAt instead of At σ Bt.
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Corollary 4.8. Let 0 < a 6 1 6 b and α ∈ [−1, 1]. Let (At)t∈Ω be a field in
C(Ω, ;A+, [a, b]), and let (Bt)t∈Ω be a field in C(Ω, ;A+) such that AtBt = BtAt

for each t ∈ Ω. Then∫
Ω

Aα
t Bt dµ(t)⊗s

∫
Ω

A−α
t Bt dµ(t) 6 a2 + b2

2ab

(∫
Ω

Bt dµ(t)

)⊗2

. (4.8)

Proof. It suffices to assume that α ∈ [0, 1]. The famous Löwner-Heinz states
that the function f(x) = xα is operator monotone (see e.g. [9, Ch.4]). Note
that f is also super-multiplicative and f(1) = 1. The inequality 4.8 now follows
by replacing Wt by Bt in Theorem 4.7.

The case A = C in Corollary 4.8 reads as follows.

Corollary 4.9. Let 0 < a 6 1 6 b and α ∈ [−1, 1]. Let ϕ : Ω → [a, b] and
g : Ω → (0,∞) be continuous functions. We have

∥gϕα∥1 6 a2 + b2

2ab

∥g∥21
∥gϕ−α∥1

.

The next result is a generalization of Theorem 1.2 in the context of operators
in which the constant bound is given by (a2 + b2)/(2ab).

Corollary 4.10. Let (At)t∈Ω be a field in C(Ω;A+, [a, b]). If µ(Ω) = 1, then

∫
Ω

A2
t dµ(t)⊗s I 6 a2 + b2

2ab

(∫
Ω

At dµ(t)

)⊗2

. (4.9)

Proof. From Corollary 4.8, put α = 1 and At = Bt for all t ∈ Ω.

Remark 4.11. Discrete versions for all results in this paper can be obtained
by putting Ω to be a finite space endowed with the counting measure. For
example, a discrete version of Theorem 4.5 is as follows: For each i = 1, 2, . . . , n,
let Ai and Bi be operators in A+ whose spectra are contained in [a, b], and let
Wi ∈ A+. Let σ be an operator mean associated with a super-multiplicative
operator-monotone function. Then

n∑
i=1

W
1
2
i (Ai σ Bi)W

1
2
i ⊗s

n∑
i=1

W
1
2
i (A−1

i σ B−1
i )W

1
2
i 6 a2 + b2

2ab

(
n∑

i=1

Wi

)⊗2

.
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Characteristic fuzzy sets and conditional fuzzy subalgebras
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Abstract. The notion of characteristic fuzzy sets is introduced. Using this notion,

conditions for a subset of BCK/BCI-algebra to be a subalgebra are discussed. The

notion of conditional fuzzy subalgebras is introduced, and several properties are investi-

gated. Given a subalgebra of BCK/BCI-algebras, conditions for the characteristic fuzzy

set to be a conditional fuzzy subalgebra of several types are provided.

1. Introduction

The notions of “membership” and “quasicoincidence” of fuzzy points and fuzzy sets

were introduced by Pu and Liu in [13]. The idea of quasi-coincidence of a fuzzy point

with a fuzzy set, played a vital role to generate some different types of fuzzy subgroups,

called (α, β)-fuzzy subgroups, introduced by Bhakat and Das [1]. In particular, (∈,∈∨ q )-

fuzzy subgroup is an important and useful generalization of Rosenfeld’s fuzzy subgroup.

Recently, these notions are applied to several algebraic structures, for example, near rings

(see [2]), hypernear-rings (see [3]), hemirings (see [4]), lattices (see [9]), pseudo-BL alge-

bras (see [15]), and BL-algebras (see [16]) etc. In BCK/BCI-algebras, many research

articles have been published on (α, β)-fuzzy subalgebras (see [6], [7], [8], [11], [12] and

[14]) which is an important and useful generalization of the well-known concepts, called

fuzzy subalgebras.

In this paper, we define characteristic fuzzy sets, as a generalization of crisp character-

istic function, and conditional fuzzy subalgebra. Using this notion, we discuss conditions
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2 G. Muhiuddin and Shuaa Aldhafeeri

for a subset of BCK/BCI-algebra to be a subalgebra. Given a subalgebra of BCK/BCI-

algebras, we provide conditions for the characteristic fuzzy set to be a conditional (∈, q)-
fuzzy subalgebra, a conditional (q,∈)-fuzzy subalgebra, a conditional (q, q)-fuzzy sub-

algebra, a conditional (∈,∈ ∧ q )-fuzzy subalgebra, and a conditional (q,∈ ∧ q )-fuzzy

subalgebra.

2. Preliminaries

By a BCI-algebra we mean an algebra (X, ∗, 0) of type (2, 0) satisfying the axioms:

(a1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(a2) (x ∗ (x ∗ y)) ∗ y = 0,

(a3) x ∗ x = 0,

(a4) x ∗ y = y ∗ x = 0 ⇒ x = y,

for all x, y, z ∈ X. We can define a partial ordering ≤ by x ≤ y if and only if x ∗ y = 0. If

a BCI-algebra X satisfies the axiom

(a5) 0 ∗ x = 0 for all x ∈ X,
then we say that X is a BCK-algebra. A nonempty subset S of a BCK/BCI-algebra X

is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S. We refer the reader to the books

[5] and [10] for further information regarding BCK/BCI-algebras.

A fuzzy set µ in a set X of the form

µ(y) :=

 t ∈ (0, 1] if y = x,

0 if y 6= x,

is said to be a fuzzy point with support x and value t and is denoted by xt.

For a fuzzy point xt and a fuzzy set µ in a set X, Pu and Liu [13] introduced the

symbol xtαµ, where α ∈ {∈, q ,∈ ∨ q ,∈ ∧ q }. To say that xt ∈ µ (resp. xt q µ), we

mean µ(x) ≥ t (resp. µ(x) + t > 1), and in this case, xt is said to belong to (resp. be

quasi-coincident with) a fuzzy set µ. To say that xt ∈∨ q µ (resp. xt ∈∧ q µ), we mean

xt ∈ µ or xt q µ (resp. xt ∈ µ and xt q µ). To say that xt αµ, we mean xtαµ does not hold,

where α ∈ {∈, q,∈∨ q ,∈∧ q }.

A fuzzy set µ in a BCK/BCI-algebra X is called a fuzzy subalgebra of X if it satisfies:

(2.1) µ(x ∗ y) ≥ min{µ(x), µ(y)}

for all x, y ∈ X.
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Characteristic fuzzy sets and conditional fuzzy subalgebras 3

A fuzzy set µ in X is said to be an (α, β)-fuzzy subalgebra of X, where

α, β ∈ {∈, q , ∈∨ q , ∈∧ q } and α 6= ∈∧ q , if it satisfies the following condition:

(2.2) xt1αµ, yt2αµ ⇒ (x ∗ y)min{t1,t2} β µ.

for all x, y ∈ X and t1, t2 ∈ (0, 1].

Lemma 2.1 ([7]). A fuzzy set µ in X is an (∈,∈∨ q )-fuzzy subalgebra of X if and only

if it satisfies:

(2.3) (∀x, y ∈ X) (µ(x ∗ y) ≥ min{µ(x), µ(y), 0.5}) .

3. Characteristic fuzzy sets

In what follows, let X denote a BCK/BCI-algebra and ε, δ ∈ [0, 1] with ε > δ unless

otherwise specified.

For a non-empty subset S of X, define a characteristic fuzzy set µ
(ε,δ)
S in X as follows:

µ
(ε,δ)
S (x) :=

 ε if x ∈ S,

δ otherwise.

In particular, the characteristic fuzzy set µ
(ε,δ)
S in X with ε = 1 and δ = 0 is the char-

acteristic function χS of S in X.

Theorem 3.1. For any non-empty subset S of X, the following are equivalent:

(1) S is a subalgebra of X.

(2) The characteristic fuzzy set µ
(ε,δ)
S is a fuzzy subalgebra of X.

Proof. Assume that S is a subalgebra of X and let x, y ∈ X. If x, y ∈ S, then x ∗ y ∈ S
and so

µ
(ε,δ)
S (x ∗ y) = ε = min

{
µ
(ε,δ)
S (x), µ

(ε,δ)
S (y)

}
.

If x /∈ S or y /∈ S, then µ
(ε,δ)
S (x) = δ or µ

(ε,δ)
S (y) = δ. Hence

µ
(ε,δ)
S (x ∗ y) ≥ δ = min

{
µ
(ε,δ)
S (x), µ

(ε,δ)
S (y)

}
.
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4 G. Muhiuddin and Shuaa Aldhafeeri

Therefore µ
(ε,δ)
S is a fuzzy subalgebra of X.

Conversely, suppose that (2) is valid. Let x, y ∈ S. Then µ
(ε,δ)
S (x) = ε and µ

(ε,δ)
S (y) = ε.

It follows that µ
(ε,δ)
S (x ∗ y) ≥ min

{
µ
(ε,δ)
S (x), µ

(ε,δ)
S (y)

}
= ε. Thus x ∗ y ∈ S, and therefore

S is a subalgebra of X. �

Theorem 3.2. If S is a subalgebra of X, then the characteristic fuzzy set µ
(ε,δ)
S is an

(∈,∈∨ q )-fuzzy subalgebra of X.

Proof. Assume that S is a subalgebra of X. For any x, y ∈ X, if x, y ∈ S, then x ∗ y ∈ S
and so

µ
(ε,δ)
S (x ∗ y) = ε ≥ min

{
µ
(ε,δ)
S (x), µ

(ε,δ)
S (y), 0.5

}
.

If x /∈ S or y /∈ S, then µ
(ε,δ)
S (x) = δ or µ

(ε,δ)
S (y) = δ. Hence

µ
(ε,δ)
S (x ∗ y) ≥ δ ≥ min

{
µ
(ε,δ)
S (x), µ

(ε,δ)
S (y), 0.5

}
.

It follows from Lemma 2.1 that µ
(ε,δ)
S is an (∈,∈∨ q )-fuzzy subalgebra of X. �

The converse of Theorem 3.2 is not true in general as seen in the following example.

Example 3.3. Let X = {0, a, b, c, d} be a BCK-algebra with the following Cayley table:

∗ 0 a b c d

0 0 0 0 0 0

a a 0 0 0 0

b b b 0 0 0

c c c b 0 0

d d d c b 0

For a subset S = {0, c, d} of X, consider a characteristic fuzzy set µ
(ε,δ)
S in X with ε = 0.7

and δ = 0.5. Then µ
(ε,δ)
S is an (∈, ∈∨ q )-fuzzy subalgebra of X, but S is not a subalgebra

of X since d ∗ c = b /∈ S.

Theorem 3.4. Assume that ε ≤ 0.5. If the characteristic fuzzy set µ
(ε,δ)
S is an (∈,∈∨ q )-

fuzzy subalgebra of X then S is a subalgebra of X.
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Characteristic fuzzy sets and conditional fuzzy subalgebras 5

Proof. Let x, y ∈ S. Then µ
(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y). Using Lemma 2.1, we have

µ
(ε,δ)
S (x ∗ y) ≥

{
µ
(ε,δ)
S (x), µ

(ε,δ)
S (y), 0.5

}
= {ε, 0.5} = ε,

and so x ∗ y ∈ S. Therefore S is a subalgebra of X. �

Corollary 3.5. A non-empty subset S of X is a subalgebra of X if and only if the

characteristic function χS of S is an (∈,∈∨ q )-fuzzy subalgebra of X.

Proof. Clearly, we can find the necessity by taking ε = 1 and δ = 0 in Theorem3.2.

Conversely, suppose that the characteristic function χS of S is an (∈,∈ ∨ q )-fuzzy

subalgebra of X. Let x, y ∈ S. Then χS(x) = 1 = χS(y), which implies from (2.3) that

χS(x ∗ y) ≥ min{χS(x), χS(y), 0.5} = min{1, 0.5} = 0.5.

Hence x ∗ y ∈ S, and therefore S is a subalgebra of X. �

Theorem 3.6. For a subset S of X, let µ
(ε,δ)
S is an (∈, q)-fuzzy subalgebra of X. If δ ≤ 0.5

or ε+ δ ≤ 1, then S is a subalgebra of X.

Proof. Let x, y ∈ S and assume that δ ≤ 0.5. Then µ
(ε,δ)
S (x) = ε > δ and µ

(ε,δ)
S (y) = ε > δ,

that is, xδ ∈ µ(ε,δ)
S and yδ ∈ µ(ε,δ)

S . Hence (x ∗ y)δ = (x ∗ y)min{δ,δ} q µ
(ε,δ)
S , which implies

that µ
(ε,δ)
S (x ∗ y) + δ > 1. Since δ ≤ 0, 5, it follows that µ

(ε,δ)
S (x ∗ y) > 1 − δ ≥ δ. Thus

µ
(ε,δ)
S (x ∗ y) = ε and x ∗ y ∈ S. Therefore S is a subalgebra of X.

Now, suppose that ε + δ ≤ 1. Then µ
(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y), and so xε ∈ µ

(ε,δ)
S and

yε ∈ µ(ε,δ)
S . Hence (x ∗ y)ε = (x ∗ y)min{ε,ε} q µ

(ε,δ)
S , which implies that µ

(ε,δ)
S (x ∗ y) + ε > 1.

Therefore µ
(ε,δ)
S (x∗y) > 1−ε ≥ δ, and thus µ

(ε,δ)
S (x∗y) = ε, that is, x∗y ∈ S. Consequently,

S is a subalgebra of X. �

Theorem 3.7. Let ε > 0.5. If the characteristic fuzzy set µ
(ε,δ)
S is a (q,∈)-fuzzy subalgebra

of X, then S is a subalgebra of X.

Proof. Let x, y ∈ S. Then µ
(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y), which implies that

µ
(ε,δ)
S (x) + ε = ε+ ε > 1 and µ

(ε,δ)
S (y) + ε = ε+ ε > 1,

that is, xε q µ
(ε,δ)
S and yε q µ

(ε,δ)
S . Since µ

(ε,δ)
S is a (q,∈)-fuzzy subalgebra of X, it follows

that (x ∗ y)ε = (x ∗ y)min{ε,ε} ∈ µ
(ε,δ)
S and so that µ

(ε,δ)
S (x ∗ y) = ε, that is, x ∗ y ∈ S.

Therefore S is a subalgebra of X. �

Theorem 3.8. Assume that ε > 0.5 and ε+ δ ≤ 1. If the characteristic fuzzy set µ
(ε,δ)
S is

a (q, q)-fuzzy subalgebra of X, then S is a subalgebra of X.
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6 G. Muhiuddin and Shuaa Aldhafeeri

Proof. Let x, y ∈ S. Then µ
(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y), which implies that

µ
(ε,δ)
S (x) + ε = ε+ ε > 1 and µ

(ε,δ)
S (y) + ε = ε+ ε > 1,

that is, xε q µ
(ε,δ)
S and yε q µ

(ε,δ)
S . Since µ

(ε,δ)
S is a (q, q)-fuzzy subalgebra of X, it follows that

(x∗y)ε = (x∗y)min{ε,ε} q µ
(ε,δ)
S . Hence µ

(ε,δ)
S (x∗y) > 1−ε ≥ δ, and therefore µ

(ε,δ)
S (x∗y) = ε.

This proves that x ∗ y ∈ S, and S is a subalgebra of X. �

Theorem 3.9. Assume that ε + δ ≤ 1. If the characteristic fuzzy set µ
(ε,δ)
S is an (∈,

∈∧ q )-fuzzy subalgebra of X, then S is a subalgebra of X.

Proof. Assume that ε + δ ≤ 1 and the characteristic fuzzy set µ
(ε,δ)
S is an (∈,∈ ∧ q )-

fuzzy subalgebra of X. Let x, y ∈ S. Then µ
(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y), and so xε ∈ µ(ε,δ)

S and

yε ∈ µ(ε,δ)
S . Hence (x∗y)ε = (x∗y)min{ε,ε} ∈∧ q µ(ε,δ)

S , that is, (x∗y)ε = (x∗y)min{ε,ε} ∈ µ(ε,δ)
S

and (x ∗ y)ε = (x ∗ y)min{ε,ε} q µ
(ε,δ)
S . Hence µ

(ε,δ)
S (x ∗ y) ≥ ε and µ

(ε,δ)
S (x ∗ y) + ε > 1. If

µ
(ε,δ)
S (x ∗ y) ≥ ε, then µ

(ε,δ)
S (x ∗ y) = ε and thus x ∗ y ∈ S. If µ

(ε,δ)
S (x ∗ y) + ε > 1, then

µ
(ε,δ)
S (x ∗ y) > 1− ε ≥ δ and so µ

(ε,δ)
S (x ∗ y) = ε, which shows that x ∗ y ∈ S. Therefore S

is a subalgebra of X. �

Theorem 3.10. Assume that ε > 0.5 and ε+δ ≤ 1. If the characteristic fuzzy set µ
(ε,δ)
S is

a (q,∈∧ q )-fuzzy subalgebra or a (q,∈∨ q )-fuzzy subalgebra of X, then S is a subalgebra

of X.

Proof. Let x, y ∈ S. Then µ
(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y), which implies that

µ
(ε,δ)
S (x) + ε = ε+ ε > 1 and µ

(ε,δ)
S (y) + ε = ε+ ε > 1,

that is, xε q µ
(ε,δ)
S and yε q µ

(ε,δ)
S . If µ

(ε,δ)
S is a (q,∈∧ q )-fuzzy subalgebra of X, then

(x ∗ y)ε = (x ∗ y)min{ε,ε} ∈∧ q µ(ε,δ)
S ,

that is, µ
(ε,δ)
S (x ∗ y) ≥ ε and µ

(ε,δ)
S (x ∗ y) + ε > 1. If µ

(ε,δ)
S (x ∗ y) ≥ ε, then x ∗ y ∈ S. If

µ
(ε,δ)
S (x ∗ y) + ε > 1, then µ

(ε,δ)
S (x ∗ y) > 1− ε ≥ δ and so µ

(ε,δ)
S (x ∗ y) = ε. Thus x ∗ y ∈ S,

and therefore S is a subalgebra of X.

If µ
(ε,δ)
S is a (q,∈∨ q )-fuzzy subalgebra of X, then (x ∗ y)ε = (x ∗ y)min{ε,ε} ∈∨ q µ(ε,δ)

S ,

and so that (x ∗ y)ε ∈ µ(ε,δ)
S or (x ∗ y)ε q µ

(ε,δ)
S . If (x ∗ y)ε ∈ µ(ε,δ)

S , then µ
(ε,δ)
S (x ∗ y) = ε

and so x ∗ y ∈ S. If (x ∗ y)ε q µ
(ε,δ)
S , then µ

(ε,δ)
S (x ∗ y) + ε > 1. Since ε + δ ≤ 1, it follows

that µ
(ε,δ)
S (x ∗ y) > 1− ε ≥ δ and so that µ

(ε,δ)
S (x ∗ y) = ε. Thus x ∗ y ∈ S. Therefore S is

a subalgebra of X. �
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Characteristic fuzzy sets and conditional fuzzy subalgebras 7

Lemma 3.11. We have the following relations among the types of (∈, ∈∨ q ), (∈∨ q ,∈),

(∈∨ q , q), (∈∨ q , ∈∧ q ), and (∈∨ q , ∈∨ q ):

(∈,∈∨ q )

(∈∨ q ,∈∨ q )

KS

(∈∨ q ,∈)

3;

(∈∨ q ,∈∧ q )ks

KS

+3 (∈∨ q , q)

ck
(3.1)

Combining Lemma 3.11 and Theorem 3.4, we have the following corollary.

Corollary 3.12. Assume that ε ≤ 0.5. If the characteristic fuzzy set µ
(ε,δ)
S is any one of

an (α, β)-fuzzy subalgebra of X with (α, β) ∈ {(∈∨ q ,∈), (∈∨ q , ∈∧ q ), (∈∨ q , ∈∨ q )},
then S is a subalgebra of X.

Theorem 3.13. Assume that ε + δ ≤ 1. If the characteristic fuzzy set µ
(ε,δ)
S is a (∈∨ q ,

q)-fuzzy subalgebra of X, then S is a subalgebra of X.

Proof. If S is not a subalgebra of X, then there exists a, b ∈ S such that a ∗ b /∈ S. Thus

µ
(ε,δ)
S (a) = ε = µ

(ε,δ)
S (b) and µ

(ε,δ)
S (a ∗ b) = δ. Hence aε ∈ µ

(ε,δ)
S and bε ∈ µ

(ε,δ)
S , which

imply that aε ∈∨ q µ(ε,δ)
S and bε ∈∨ q µ(ε,δ)

S . Since µ
(ε,δ)
S (a ∗ b) + ε = δ + ε ≤ 1, we have

(a ∗ b)ε q µ(ε,δ)
S . This is a contradiction, and so S is a subalgebra of X. �

4. Conditional (α, β)-fuzzy subalgebras

We begin with a definition.

Definition 4.1. Let R := {ρ ∈ (0, 1] | ρ has relations to ε and/or δ} . A characteristic

fuzzy set µ
(ε,δ)
S in X is called an R-conditional (α, β)-fuzzy subalgebra of X, where α, β ∈

{∈, q , ∈∨ q , ∈∧ q } and α 6= ∈∧ q , if it satisfies the following condition:

(∀x, y ∈ X) (∀ρ1, ρ2 ∈ R)
(
xρ1αµ

(ε,δ)
S , yρ2αµ

(ε,δ)
S ⇒ (x ∗ y)min{ρ1,ρ2} β µ

(ε,δ)
S

)
.(4.1)

Example 4.2. (1) Let X = {0, 1, 2, 3, 4} be a set with the following Cayley table:

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 1

2 2 2 0 2 0

3 3 1 3 0 3

4 4 4 2 4 0
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Then X is a BCK-algebra (see [10]). If we take R = {ρ ∈ (0, 1] | 0.3 < ρ ≤ 0.7},
then µ

(ε,δ)
S with S := {0, 2, 4} is an R-conditional (∈,∈∧ q )-fuzzy subalgebra of X where

δ = 0.2 and ε = 0.7.

(2) For a fixed element a of a BCI-algebra X, let

S := {x ∈ X | a ∗ (a ∗ x) = x}.

For δ = 0.3 and ε = 0.6, if we consider R1 = {ρ ∈ (0, 1] | ρ > 0.4} then µ
(ε,δ)
S is an

R1-conditional (∈, q)-fuzzy subalgebra of X. If we take R2 = {ρ ∈ (0, 1] | ρ ≤ 0.6} then

µ
(ε,δ)
S is an R2-conditional (q,∈)-fuzzy subalgebra of X.

(3) Let X = {0, 1, 2, a, b} be a set with the following Cayley table:

∗ 0 1 2 a b

0 0 0 0 a a

1 1 0 1 a a

2 2 2 0 a a

a a a a 0 0

b b a b 1 0

Then X is a BCI-algebra (see [5, 10]). Consider R = {ρ ∈ (0, 1] | 0.3 < ρ ≤ 0.9}, Then

µ
(ε,δ)
S with S := {0, 1, 2} is an R-conditional (q, q)-fuzzy subalgebra of X where δ = 0.1

and ε = 0.7.

(4) Let X be a BCI-algebra and let S := {x ∗ a | x ∈ X} for a fixed element a ∈ X.

Consider R = {ρ ∈ (0, 1] | 0.3 < ρ ≤ 0.7}. Then µ
(ε,δ)
S is an R-conditional (q,∈∧ q )-fuzzy

subalgebra of X with δ = 0.1 and ε = 0.7.

Theorem 4.3. Let R := {ρ ∈ (0, 1] | ρ > δ and ε+ ρ > 1} . If S is a subalgebra of X,

then µ
(ε,δ)
S is an R-conditional (∈, q)-fuzzy subalgebra of X.

Proof. Let x, y ∈ X and ρ1, ρ2 ∈ R be such that xρ1αµ
(ε,δ)
S and yρ2αµ

(ε,δ)
S . Then µ

(ε,δ)
S (x) ≥

ρ1 > δ and µ
(ε,δ)
S (y) ≥ ρ2 > δ, which imply that x, y ∈ S. Thus x ∗ y ∈ S, and so

µ
(ε,δ)
S (x ∗ y) = ε. Hence

µ
(ε,δ)
S (x ∗ y) + min{ρ1, ρ2} = ε+ min{ρ1, ρ2} > 1,

that is, (x ∗ y)min{ρ1,ρ2} q µ
(ε,δ)
S . Therefore µ

(ε,δ)
S is an R-conditional (∈, q)-fuzzy subalgebra

of X. �
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If we take ε = 1 and δ = 0 in Theorems 3.6 and 4.3, then we have the following corollary.

Corollary 4.4. A non-empty subset S of X is a subalgebra of X if and only if the

characteristic function χS of S is an (∈, q)-fuzzy subalgebra of X.

Theorem 4.5. Let R := {ρ ∈ (0, 1] | ε ≥ ρ and δ ≤ 1− ρ} . If S is a subalgebra of X,

then µ
(ε,δ)
S is an R-conditional (q,∈)-fuzzy subalgebra of X.

Proof. Let x, y ∈ X and ρ1, ρ2 ∈ R be such that xρ1 q µ
(ε,δ)
S and yρ2 q µ

(ε,δ)
S . Then µ

(ε,δ)
S (x)+

ρ1 > 1 and µ
(ε,δ)
S (y) + ρ2 > 1, which imply that µ

(ε,δ)
S (x) > 1 − ρ1 ≥ δ and µ

(ε,δ)
S (u) >

1− ρ2 ≥ δ. Hence µ
(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y), and so x, y ∈ S. Since S is a subalgebra of X,

we have x∗y ∈ S. Thus µ
(ε,δ)
S (x∗y) = ε ≥ min{ρ1, ρ2}, and hence (x∗y)min{ρ1,ρ2} ∈ µ

(ε,δ)
S .

Therefore µ
(ε,δ)
S is an R-conditional (q,∈)-fuzzy subalgebra of X. �

If we take ε = 1 and δ = 0 in Theorems 3.7 and 4.5, then we have the following corollary.

Corollary 4.6. A non-empty subset S of X is a subalgebra of X if and only if the

characteristic function χS of S is a (q,∈)-fuzzy subalgebra of X.

Theorem 4.7. Let R := {ρ ∈ (0, 1] | δ ≤ 1− ρ < ε} . If S is a subalgebra of X, then the

characteristic fuzzy set µ
(ε,δ)
S is an R-conditional (q, q)-fuzzy subalgebra of X.

Proof. Let x, y ∈ X and ρ1, ρ2 ∈ R be such that xρ1 q µ
(ε,δ)
S and yρ2 q µ

(ε,δ)
S . Then µ

(ε,δ)
S (x)+

ρ1 > 1 and µ
(ε,δ)
S (y) + ρ2 > 1, which imply that µ

(ε,δ)
S (x) > 1 − ρ1 ≥ δ and µ

(ε,δ)
S (y) >

1 − ρ2 ≥ δ. It follows that µ
(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y) and so that x, y ∈ S. Since S is a

subalgebra of X, we have x ∗ y ∈ S and so µ
(ε,δ)
S (x ∗ y) = ε. Thus

µ
(ε,δ)
S (x ∗ y) + min{ρ1, ρ2} = ε+ min{ρ1, ρ2} > 1,

that is, (x ∗ y)min{ρ1,ρ2} q µ
(ε,δ)
S . This shows that µ

(ε,δ)
S is a (q, q)-fuzzy subalgebra of X. �

If we take ε = 1 and δ = 0 in Theorems 3.8 and 4.7, then we have the following corollary.

Corollary 4.8. A non-empty subset S of X is a subalgebra of X if and only if the

characteristic function χS of S is a (q, q)-fuzzy subalgebra of X.

Since the (q,∈∨ q )-fuzzy subalgebra is induced by a (q,∈)-fuzzy subalgebra or a (q, q)-

fuzzy subalgebra, we have the following corollary by using Theorems 4.5 and 4.7.

Corollary 4.9. Let R be any one of

{ρ ∈ (0, 1] | δ ≤ 1− ρ < ε} and {ρ ∈ (0, 1] | ε ≥ ρ and δ ≤ 1− ρ} .
If S is a subalgebra of X, then the characteristic fuzzy set µ

(ε,δ)
S is an R-conditional

(q,∈∨ q )-fuzzy subalgebra of X.
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Theorem 4.10. Let R := {ρ ∈ (0, 1] | δ < ρ ≤ ε and 1− ρ < ε} . If S is a subalgebra of

X, then the characteristic fuzzy set µ
(ε,δ)
S is an R-conditional (∈,∈∧ q )-fuzzy subalgebra

of X.

Proof. Let x, y ∈ X and ρ1, ρ2 ∈ R be such that xρ1 ∈ µ
(ε,δ)
S and xρ2 ∈ µ

(ε,δ)
S . Then

µ
(ε,δ)
S (x) ≥ ρ1 > δ and µ

(ε,δ)
S (y) ≥ ρ2 > δ, which imply that µ

(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y). Hence

x, y ∈ S. Since S is a subalgebra of X, we have x ∗ y ∈ S. Hence µ
(ε,δ)
S (x ∗ y) = ε ≥

min{ρ1, ρ2}, i.e., (x ∗ y)min{ρ1,ρ2} ∈ µ
(ε,δ)
S . Now,

µ
(ε,δ)
S (x ∗ y) + min{ρ1, ρ2} = ε+ min{ρ1, ρ2} > 1

and so (x∗y)min{ρ1,ρ2} q µ
(ε,δ)
S . Therefore (x∗y)min{ρ1,ρ2} ∈∧ q µ

(ε,δ)
S , and consequently µ

(ε,δ)
S

is an (∈,∈∧ q )-fuzzy subalgebra of X. �

If we take ε = 1 and δ = 0 in Theorems 3.9 and 4.10, then we have the following

corollary.

Corollary 4.11. A non-empty subset S of X is a subalgebra of X if and only if the

characteristic function χS of S is an (∈,∈∧ q )-fuzzy subalgebra of X.

Theorem 4.12. Let R := {ρ ∈ (0, 1] | ε ≥ ρ and ε+ ρ > 1 ≥ δ + ρ} . If S is a subalgebra

of X, then the characteristic fuzzy set µ
(ε,δ)
S is an R-conditional (q,∈∧ q )-fuzzy subalgebra

of X.

Proof. Let x, y ∈ X and ρ1, ρ2 ∈ R be such that xρ1 q µ
(ε,δ)
S and yρ2 q µ

(ε,δ)
S . Then µ

(ε,δ)
S (x)+

ρ1 > 1 and µ
(ε,δ)
S (y) + ρ2 > 1, which imply that µ

(ε,δ)
S (x) > 1 − ρ1 ≥ δ and µ

(ε,δ)
S (y) >

1− ρ2 ≥ δ. Hence µ
(ε,δ)
S (x) = ε = µ

(ε,δ)
S (y), and so x, y ∈ S. Since S is a subalgebra of X,

we have x ∗ y ∈ S and thus

µ
(ε,δ)
S (x ∗ y) = ε ≥ min{ρ1, ρ2},

that is, (x∗y)min{ρ1,ρ2} ∈ µ
(ε,δ)
S . Now, µ

(ε,δ)
S (x∗y) + min{ρ1, ρ2} = ε+ min{ρ1, ρ2} > 1, and

so (x ∗ y)min{ρ1,ρ2} q µ
(ε,δ)
S . Hence (x ∗ y)min{ρ1,ρ2} ∈∧ q µ

(ε,δ)
S , and µ

(ε,δ)
S is a (q,∈∧ q )-fuzzy

subalgebra of X. �

If we take ε = 1 and δ = 0 in Theorems 3.10 and 4.12, then we have the following

corollary.

Corollary 4.13. A non-empty subset S of X is a subalgebra of X if and only if the

characteristic function χS of S is an (q,∈∧ q )-fuzzy subalgebra of X.

Before ending our research, we pose an open question.

Question. Given a subalgebra S of X, when will the characteristic fuzzy set µ
(ε,δ)
S in X

be a
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(1) conditional (∈∨ q ,∈)-fuzzy subalgebra of X?

(2) conditional (∈∨ q , q)-fuzzy subalgebra of X?

(3) conditional (∈∨ q ,∈∨ q )-fuzzy subalgebra of X?

(4) conditional (∈∨ q ,∈∧ q )-fuzzy subalgebra of X?

5. Conclusion

we have introduced the notions of characteristic fuzzy sets, as a generalization of crisp

characteristic function, and conditional fuzzy subalgebra. Using this notion, we have

discussed conditions for a subset of BCK/BCI-algebra to be a subalgebra. Given a sub-

algebra of BCK/BCI-algebras, we have provided conditions for the characteristic fuzzy

set to be a conditional (∈, q)-fuzzy subalgebra, a conditional (q,∈)-fuzzy subalgebra, a

conditional (q, q)-fuzzy subalgebra, a conditional (∈,∈∧ q )-fuzzy subalgebra, and a con-

ditional (q,∈∧ q )-fuzzy subalgebra.

On the basis of these results, we will apply the notions of characteristic fuzzy sets and

conditional fuzzy substructures to ideal and filter theory in several algebraic structures,

for example, BCK/BCI-algebras, MV -algebras, BL-algebras, MTL-algebras, residuated

lattices, R0-algebras, lattice implication algebras, EQ-algebras etc.
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1 Introduction and preliminaries

In 2000, Hitzler and Seda [4] presented the concept of dislocated metric
space and generalized the well-known Banach contraction mapping principle
in complete dislocated metric spaces. In recent years, the study of dislocated
metric spaces has always attracted interest of researchers; see, for instance,
[1–3, 5–8, 10–16] and the references cited therein. One of the main reasons
for this lies in the fact that dislocated metric spaces play very important
roles not only in topology but also in other branches of science involving
mathematics especially in logic programming and electronics engineering.

In the present paper, we prove some common fixed point theorems in the
setting of dislocated metric spaces for two pairs of weakly compatible self
mappings which generalize, extend, and improve related results reported in
the literature. We need the following auxiliary definitions and results.

Definition 1.1 [4] Let X be a nonempty set and let d : X × X → [0,∞) be
a function satisfying the following conditions:
(c1) d(ξ, η) = d(η, ξ) for all ξ, η ∈ X ;
(c2) d(ξ, η) = d(η, ξ) = 0 implies that ξ = η;
(c3) d(ξ, η) ≤ d(ξ, ζ) + d(ζ, η) for all ξ, η, ζ ∈ X .
Then d is called dislocated metric (or d-metric) on X . The nonempty set X
together with d-metric, i.e., (X , d), is called a dislocated metric space.

Definition 1.2 [4] A sequence {ξn} in a d-metric space (X , d) is called
Cauchy sequence if for given ϵ > 0, there exists an n0 ∈ N such that
d(ξm, ξn) < ϵ for all m,n ≥ n0.

Definition 1.3 [4] A sequence {ξn} in a d-metric space (X , d) converges
with respect to d (or in d) if there exists a ξ ∈ X such that

lim
n→∞

d(ξn, ξ) = 0.

In this case, ξ is called a limit of sequence {ξn} and we write ξn → ξ as
n → ∞.

Definition 1.4 [4] A d-metric space (X , d) is called complete if every Cauchy
sequence in it is convergent with respect to d.
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Definition 1.5 [4] Let (X , d) be a d-metric space. A mapping T : X → X
is called contraction if there exists a λ ∈ [0, 1) such that d(T ξ, T η) ≤ λd(ξ, η)
for all ξ, η ∈ X .

Lemma 1.6 [11] Let (X , d) be a d-metric space. If g : X → X is a contrac-
tion function, then {gn(ξ0)} is a Cauchy sequence for each ξ0 ∈ X .

Lemma 1.7 [4] Limits in a d-metric space are unique.

Definition 1.8 [9] Let A and S be mappings from a metric space (X , d) into
itself. Then, A and S are said to be weakly compatible if they commute at
their coincident points; that is, Aξ = Sξ for some ξ ∈ X yields ASξ = SAξ.

Theorem 1.9 [4] Let (X , d) be a complete dislocated metric space and let
T : X → X be a contraction mapping. Then, T has a unique fixed point.

Remark 1.10 [3] It is easy to verify that in a d-metric space, the following
statements hold.
(i) A subsequence of a Cauchy sequence in d-metric space is a Cauchy se-
quence.
(ii) A Cauchy sequence in d-metric space with a convergent subsequence is
also convergent.
(iii) Limits of a convergent sequence are unique.
(iv) A d-metric d is continuous, i.e., ξn → ξ and ηn → η imply that
d(ξn, ηn) → d(ξ, η) as n → ∞.

2 Main results

In this section, we prove some fixed point theorems in d-metric spaces.

Theorem 2.1 Let (X , d) be a complete dislocated metric space. Assume that
A,B, S, T : X → X are continuous self mappings satisfying the conditions:
(i) T (X ) ⊂ A(X ) and S(X ) ⊂ B(X );
(ii) the pairs (S,A) and (T,B) are weakly compatible;
(iii) d(Sξ, Tη) ≤ a1[d(Aξ, Tη) + d(Bη, Sξ)] + a2[d(Bη, Tη) + d(Aξ, Sξ)] +
a3d(Aξ,Bη) + a4[d(Aξ, Sξ) + d(Aξ, Tη)] + a5[d(Aξ,Bη) + d(Bη, Tη)] for all
ξ, η ∈ X , where a1, a2, a3, a4, a5 ≥ 0 and 0 ≤ 4a1 + 2a2 + a3 + 3a4 + 2a5 < 1.
Then A, B, S, and T have a unique common fixed point.
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Proof. Define two sequences {ξn} and {ηn} by

η2n := Bξ2n+1 = Sξ2n and η2n+1 := Aξ2n+2 = Tξ2n+1 for n = 0, 1, 2, . . . .

If η2n = η2n+1 for some n, then Bξ2n+1 = Tξ2n+1. Therefore, ξ2n+1 is a
coincident point of B and T . Also, if η2n+1 = η2n+2 for some n, then Aξ2n+2 =
Sξ2n+2. Hence, ξ2n+2 is a coincidence point of A and S. Suppose now that
η2n ̸= η2n+1 for all n. Then, we conclude that

d(η2n, η2n+1) = d(Sξ2n, T ξ2n+1)

≤ a1[d(Aξ2n, T ξ2n+1) + d(Bξ2n+1, Sξ2n)]

+a2[d(Bξ2n+1, T ξ2n+1) + d(Aξ2n, Sξ2n)]

+a3d(Aξ2n, Bξ2n+1) + a4[d(Aξ2n, Sξ2n) + d(Aξ2n, T ξ2n+1)]

+a5[d(Aξ2n, Bξ2n+1) + d(Bξ2n+1, T ξ2n+1)]

≤ a1[d(η2n−1, η2n+1) + d(η2n, η2n)]

+a2[d(η2n, η2n+1) + d(η2n−1, η2n)]

+a3d(η2n−1, η2n) + a4[d(η2n−1, η2n) + d(η2n−1, η2n+1)]

+a5[d(η2n−1, η2n) + d(η2n, η2n+1)]

≤ a1[d(η2n−1, η2n) + d(η2n, η2n+1)

+d(η2n−1, η2n) + d(η2n, η2n+1)]

+a2[d(η2n, η2n+1) + d(η2n−1, η2n)] + a3d(η2n−1, η2n)

+a4[d(η2n−1, η2n) + d(η2n−1, η2n) + d(η2n, η2n+1)]

+a5[d(η2n−1, η2n) + d(η2n, η2n+1)]

= (2a1 + a2 + a3 + 2a4 + a5)d(η2n−1, η2n)

+(2a1 + a2 + a4 + a5)d(η2n, η2n+1).

Therefore, we get

d(η2n, η2n+1) ≤
2a1 + a2 + a3 + 2a4 + a5
1− (2a1 + a2 + a4 + a5)

d(η2n−1, η2n).

Let

h =
2a1 + a2 + a3 + 2a4 + a5
1− (2a1 + a2 + a4 + a5)

< 1.

Then
d(ηn, ηn+1) ≤ hd(ηn−1, ηn).

4
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Similarly, we have
d(ηn−1, ηn) ≤ hd(ηn−2, ηn−1).

Continuing this process, we obtain

d(ηn, ηn+1) ≤ hnd(η0, η1).

Now, for any m,n satisfying m > n, using triangle inequality, we get

d(ηn, ηm) ≤ d(ηn, ηn+1) + d(ηn+1, ηn+2) + · · ·+ d(ηm−1, ηm)

≤ hnd(η0, η1) + hn+1d(η0, η1) + · · ·+ hm−1d(η0, η1)

≤ (hn + hn+1 + hn+2 + · · · )d(η0, η1)

=
hn

1− h
d(η0, η1).

Since h ∈ [0, 1), hn → 0 as n → ∞, which shows that {ηn} is a Cauchy
sequence in the complete dislocated metric space (X , d). Hence, there exists
a point p ∈ X such that limn→∞ ηn = p and

lim
n→∞

Sξ2n = lim
n→∞

Bξ2n+1 = lim
n→∞

Tξ2n+1 = lim
n→∞

Aξ2n+2 = p.

Since T (X ) ⊂ A(X ), there exists a point v ∈ X such that p = Av. Therefore,

d(Sv, p) = d(Sv, Tξ2n+1)

≤ a1[d(Av, Tξ2n+1) + d(Bξ2n+1, Sv)]

+a2[d(Bξ2n+1, T ξ2n+1) + d(Av, Sv)]

+a3d(Av, Sv) + a4[d(Av, Sv) + d(Au, Tξ2n+1)]

+a5[d(Av,Bξ2n+1) + d(Bξ2n+1, T ξ2n+1)].

Taking n → ∞, we get

d(Sv, p) ≤ a1[d(p, p) + d(p, Sv)] + a2[d(p, p) + d(p, Sv)]

+a3d(p, Sv) + a4[d(p, Sv) + d(p, p)] + a5[d(p, p) + d(p, p)]

≤ (2a1 + 2a2 + 2a4 + 4a5)d(p, Sv) + (a1 + a2 + a3 + a4)d(p, Sv)

= (3a1 + 3a2 + a3 + 3a4 + 4a5)d(p, Sv),

which is a contradiction, and so Sv = Av = p. Again, since S(X ) ⊂ B(X ),
there exists a point u ∈ X such that p = Bu. We claim now that p = Tu. If

5
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p ̸= Tu, then

d(p, Tu) = d(Sv, Tu)

≤ a1[d(Av, Tu) + d(Bu, Sv)] + a2[d(Bu, Tu) + d(Av, Sv)]

+a3d(Av,Bu) + a4[d(Av, Sv) + d(Av, Tu)]

+a5[d(Av,Bu) + d(Bu, Tu)]

= a1[d(p, Tu) + d(p, p)] + a2[d(p, Tu) + d(p, p)] + a3d(p, p)

+a4[d(p, p) + d(p, Tu)] + a5[d(p, p) + d(p, Tu)]

≤ (3a1 + 3a2 + 2a3 + 3a4 + 3a5)d(p, Tu),

which is a contradiction, and thus p = Tu. Hence, we have Sv = Av =
Tu = Bu = p. Since (S,A) are weakly compatible, SAv = ASv implies that
Sp = Ap. Next, we show that p is the fixed point of S. If Sp ̸= p, then

d(Sp, p) = d(Sp, Tu)

≤ a1[d(Ap, Tu) + d(Bu, Sp)] + a2[d(Bu, Tu) + d(Ap, Sp)]

+a3d(Ap,Bu) + a4[d(Ap, Sp) + d(Ap, Tu)]

+a5[d(Ap,Bu) + d(Bu, Tu)]

= a1[d(Sp, p) + d(p, Sp)] + a2[d(p, p) + d(Sp, Sp)] + a3d(Sp, p)

+a4[d(Sp, Sp) + d(Sp, p)] + a5[d(Sp, p) + d(p, p)]

≤ (2a1 + 4a2 + a3 + 3a4 + 3a5)d(Sp, p),

which is a contradiction, and so Sp = p. This yields Ap = Sp = p. Again,
(T,B) are weakly compatible, and hence TBu = BTu implies that Tp = Bp.
Now, we show that p is the fixed point of T . If Tp ̸= p, then

d(p, Tp) = d(Sp, Tp)

≤ a1[d(Ap, Tp) + d(Bp, Sp)] + a2[d(Bp, Tp) + d(Ap, Sp)]

+a3d(Ap, Sp) + a4[d(Ap, Sp) + d(Ap, Tp)]

+a5[d(Ap,Bp) + d(Bp, Tp)]

= a1[d(p, Tp) + d(Tp, p)] + a2[d(Tp, Tp) + d(p, p)]

+a3d(p, Tp) + a4[d(p, Tp) + d(p, Tp)]

+a5[d(p, Tp) + d(Tp, Tp)]

≤ (2a1 + 4a2 + a3 + 2a4 + 3a5)d(p, Tp),

6
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which is a contradiction, and hence p = Tp. Therefore, we have Ap = Bp =
Sp = Tp = p, which shows that p is the common fixed point of the self
mappings A, B, S, and T .

Uniqueness. Suppose that v ̸= u are two common fixed points of the
mappings A, B, S, and T . Then, we have

d(v, u) = d(Sv, Tu)

≤ a1[d(Av, Tu) + d(Bu, Sv)] + a2[d(Bu, Tu) + d(Av, Sv)]

+a3d(Av,Bu) + a4[d(Av, Sv) + d(Av, Tu)]

+a5[d(Av,Bu) + d(Bu, Tu)]

= a1[d(v, u) + d(u, v)] + a2[d(u, u) + d(v, v)] + a3d(v, u)

+a4[d(v, v) + d(v, u)] + a5[d(v, u) + d(u, u)]

≤ (2a1 + 4a2 + a3 + 3a4 + 3a5)d(v, u),

which is a contradiction, and therefore v = u. The proof is complete. �

Letting A = B = I (an identity mapping), we can derive the following
result from Theorem 2.1.

Corollary 2.2 Let (X , d) be a complete dislocated metric space. If S, T :
X → X are continuous self mappings satisfying

d(Sξ, Tη) ≤ a1[d(ξ, Tη) + d(η, Sξ)] + a2[d(η, Tη) + d(ξ, Sξ)] + a3d(ξ, η)

+a4[d(ξ, Sξ) + d(ξ, Tη)] + a5[d(ξ, η) + d(η, Tη)]

for all ξ, η ∈ X , where a1, a2, a3, a4, a5 ≥ 0 and 0 ≤ 4a1+2a2+a3+3a4+2a5 <
1, then S and T have a unique common fixed point.

If a4 = a5 = 0 and S = T , then Corollary 2.2 reduces to the following
result obtained by Isufati [6].

Corollary 2.3 Let (X , d) be a complete dislocated metric space. If T : X →
X is a continuous self mapping satisfying

d(Tξ, Tη) ≤ a1[d(ξ, Tη) + d(η, T ξ)] + a2[d(η, Tη) + d(ξ, T ξ)] + a3d(ξ, η)

for all ξ, η ∈ X , where a1, a2, a3 ≥ 0 and 0 ≤ 4a1 + 2a2 + a3 < 1, then T has
a unique fixed point.

7
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Letting a4 = a5 = 0 in Theorem 2.1, we get the following result reported
by Panthi and Jha [11].

Corollary 2.4 Let (X , d) be a complete dislocated metric space. If A,B, S, T :
X → X are continuous self mappings satisfying the conditions:
(i) T (X ) ⊂ A(X ) and S(X ) ⊂ B(X );
(ii) the pairs (S,A) and (T,B) are weakly compatible;
(iii) d(Sξ, Tη) ≤ a1[d(Aξ, Tη) + d(Bη, Sξ)] + a2[d(Bη, Tη) + d(Aξ, Sξ)] +
a3d(Aξ,Bη) for all ξ, η ∈ X , where a1, a2, a3 ≥ 0 and 0 ≤ 4a1+2a2+a3 < 1,
then A, B, S, and T have a unique common fixed point.

Remark 2.5 Our results improve those obtained by Aage and Salunke [1, 2],
Jha and Panthi [7], Jha et al. [8], Rao and Rangaswamy [12], and Shrivas-
tava et al. [14].

3 Further results without any continuity re-

quirement

In this section, we prove some fixed point theorems without any continuity
requirement in d-metric spaces.

Theorem 3.1 Let (X , d) be a complete dislocated metric space. Suppose that
A,B, S, T : X → X are self mappings satisfying the conditions:
(i) T (X ) ⊂ A(X ) and S(X ) ⊂ B(X );
(ii) the pairs (S,A) and (T,B) are weakly compatible;
(iii) d(Sξ, Tη) ≤ a1[d(Aξ, Tη) + d(Bη, Sξ)] + a2[d(Bη, Tη) + d(Aξ, Sξ)] +
a3d(Aξ,Bη) + a4[d(Aξ, Sξ) + d(Aξ, Tη)] + a5[d(Aξ,Bη) + d(Bη, Tη)] for all
ξ, η ∈ X , where a1, a2, a3, a4, a5 ≥ 0 and 0 ≤ 4a1 + 2a2 + a3 + 3a4 + 2a5 < 1,
then A, B, S, and T have a unique common fixed point.

Proof. Let ξ0 ∈ X be arbitrary. Choose ξ1 ∈ X such that Bξ1 = Sξ0.
Again, choose ξ2 ∈ X such that Aξ2 = Tξ1. Continuing this process, choose
ξn ∈ X such that Sξ2n = Bξ2n+1 and Tξ2n+1 = Aξ2n+2 for n = 0, 1, 2, . . .. To
simplify, we consider the sequence {ηn} which is defined by η2n := Sξ2n and
η2n+1 := Tξ2n+1 for n = 0, 1, 2, . . .. Next, we claim that {ηn} is a Cauchy

8

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1417 Peiguang Wang et al 1410-1424



sequence. Indeed, for n ≥ 1, we have

d(η2n, η2n+1) = d(Sξ2n, T ξ2n+1)

≤ a1[d(Aξ2n, T ξ2n+1) + d(Bξ2n+1, Sξ2n)]

+a2[d(Aξ2n, Sξ2n) + d(Bξ2n+1, T ξ2n+1)]

+a3d(Aξ2n, Bξ2n+1) + a4[d(Aξ2n, Sξ2n) + d(Aξ2n, T ξ2n+1)]

+a5[d(Aξ2n, Bξ2n+1) + d(Bξ2n+1, T ξ2n+1)]

≤ a1[d(η2n−1, η2n+1) + d(η2n, η2n)]

+a2[d(η2n−1, η2n) + d(η2n, η2n+1)]

+a3d(η2n−1, η2n) + a4[d(η2n−1, η2n) + d(η2n−1, η2n+1)]

+a5[d(η2n−1, η2n) + d(η2n, η2n+1)]

≤ a1[d(η2n−1, η2n) + d(η2n, η2n+1)

+d(η2n, η2n+1) + d(η2n+1, η2n)]

+a2[d(η2n−1, η2n) + d(η2n, η2n+1)] + a3d(η2n−1, η2n)

+a4[d(η2n−1, η2n) + d(η2n−1, η2n) + d(η2n, η2n+1)]

+a5[d(η2n−1, η2n) + d(η2n, η2n+1)]

= (a1 + a2 + a3 + 2a4 + a5)d(η2n−1, η2n)

+(3a1 + a2 + a4 + a5)d(η2n, η2n+1).

Hence, we conclude that

d(η2n, η2n+1) ≤ hd(η2n−1, η2n),

where

h =
a1 + a2 + a3 + 2a4 + a5
1− (3a1 + a2 + a4 + a5)

∈ [0, 1).

This implies that {ηn} is a Cauchy sequence in X . Then, by Remark 1.10,
{Sξ2n}, {Bξ2n+1}, {Tξ2n+1}, and {Aξ2n+2} are also Cauchy sequences. As-
sume that Sξ is a complete subspace of X , the sequence {Sξ2n} converges to
some Sa such that a ∈ X . So, {ηn}, {Bξ2n+1}, {Tξ2n+1}, and {Aξ2n+2} also
converge to Sa. Since SX ⊂ BX , there exists a v ∈ X such that Sa = Bv.
We show that Bv = Tv. In fact, we have

d(Sξ2n, T v) ≤ a1[d(Aξ2n, T v) + d(Bv, Sξ2n)]

+a2[d(Aξ2n, Sξ2n) + d(Bv, Tv)]

+a3d(Aξ2n, Bv) + a4[d(Aξ2n, Sξ2n) + d(Aξ2n, T v)]

+a5[d(Aξ2n, Bv) + d(Bv, Tv)].

9
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Letting n → ∞, we get

d(Bv, Tv) ≤ a1[d(Bv, Tv) + d(Bv,Bv)] + a2[d(Bv,Bv) + d(Bv, Tv)]

+a3d(Bv,Bv) + a4[d(Bv,Bv) + d(Bv, Tv)]

+a5[d(Bv,Bv) + d(Bv, Tv)]

≤ (a1 + a2 + a3 + a4 + a5)d(Bv,Bv)

+(a1 + a2 + a4 + a5)d(Bv, Tv)

≤ (3a1 + 3a2 + 2a3 + 3a4 + 3a5)d(Bv, Tv).

Therefore, d(Bv, Tv) = 0, which implies that Tv = Bv. Since TX ⊂ AX ,
there exists a u ∈ X such that Tv = Au. We show that Su = Au. Indeed,
we have

d(Su,Au) = d(Su, Tv)

≤ a1[d(Au, Tv) + d(Bv, Su)] + a2[d(Au, Su) + d(Bv, Tv)]

+a3d(Au,Bv) + a4[d(Au, Su) + d(Au, Tv)]

+a5[d(Au,Bv) + d(Bv, Tv)]

≤ a1[d(Au,Au) + d(Au, Su)] + a2[d(Au, Su) + d(Au,Au)]

+a3d(Au,Au) + a4[d(Au, Su) + d(Au,Au)]

+a5[d(Au,Au) + d(Au,Au)]

≤ a1[d(Au, Su) + d(Su,Au) + d(Au, Su)]

+a2[d(Au, Su) + d(Au, Su) + d(Su,Au)]

+a3[d(Au, Su) + d(Su,Au)]

+a4[d(Au, Su) + d(Au, Su) + d(Su,Au)]

+a5[d(Au, Su) + d(Su,Au) + d(Au, Su) + d(Su,Au)]

= (3a1 + 3a2 + 2a3 + 3a4 + 4a5)d(Au, Su).

Hence, d(Su,Au) = 0, which yields Au = Su, and so Bv = Tv = Au =
Su. By virtue of the fact that (S,A) are weakly compatible, we deduce
that ASu = SAu, which yields AAu = ASu = SAu = SSu. The weak
compatibility of B and T implies that BTv = TBv, from which it follows
that BBv = BTv = TBv = TTv. Let us show that Bv is a fixed point of T .

10
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In fact, we have

d(Bv, TBv) = d(Su, TBv)

≤ a1[d(Au, TBv) + d(BBv, Su)]

+a2[d(Au, Su) + d(BBv, TBv)]

+a3d(Au,BBv) + a4[d(Au, Su) + d(Au, TBv)]

+a5[d(Au,BBv) + d(BBv, TBv)]

≤ a1[d(Bv, TBv) + d(TBv,Bv)]

+a2[d(Bv,Bv) + d(TBv, TBv)]

+a3d(Bv, TBv) + a4[d(Bv,Bv) + d(Bv, TBv)]

+a5[d(Bv, TBv) + d(TBv, TBv)]

≤ 2a1d(Bv, TBv) + a2[d(Bv, TBv) + d(TBv,Bv)

+d(TBv,Bv) + d(Bv, TBv)] + a3d(Bv, TBv)

+a4[d(Bv, TBv) + d(TBv,Bv) + d(Bv, TBv)]

+a5[d(Bv, TBv) + d(TBv,Bv) + d(Bv, TBv)]

= (2a1 + 4a2 + a3 + 3a4 + 3a5)d(Bv, TBv),

which yields d(Bv, TBv) = 0, and so TBv = Bv. Therefore, Bv is a fixed
point of T . It follows that BBv = TBv = Bv, which implies that Bv is also
a fixed point of B. On the other hand, we get

d(SBv,Bv) = d(SBv, TBv)

≤ a1[d(ABv, TBv) + d(BBv, SBv)] + a2[d(ABv, SBv)

+d(BBv, TBv)] + a3d(ABv,BBv) + a4[d(ABv, SBv)

+d(ABv, TBv)] + a5[d(ABv,BBv) + d(BBv, TBv)]

≤ a1[d(Bv,Bv) + d(Bv, SBv)] + a2[d(SBv,Bv)

+d(Bv, SBv)] + a3d(Bv,Bv) + a4[d(Bv,Bv)

+d(Bv,Bv)] + a5[d(Bv,Bv) + d(Bv,Bv)]

≤ a1[d(Bv, SBv) + d(SBv,Bv) + d(Bv, SBv)]

+a2[d(SBv,Bv) + d(Bv, SBv)] + a3[d(Bv, SBv)

+d(SBv,Bv)] + a4[d(Bv, SBv) + d(SBv,Bv)

+d(Bv, SBv) + d(SBv,Bv)] + a5[d(Bv, SBv)

+d(SBv,Bv) + d(Bv, SBv) + d(SBv,Bv)]

= (3a1 + 2a2 + 2a3 + 4a4 + 4a5)d(SBv,Bv),
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which implies that d(Bv, SBv) = 0, and hence SBv = Bv. Therefore, Bv is
a fixed point of S. It follows that ABv = SBv = Bv, which shows that Bv
is also a fixed point of A. Then Bv is a common fixed point of A, B, S, and
T .

Uniqueness. Let w, u ∈ X be two fixed points such that Aw = Bw =
Sw = Tw and Au = Bu = Su = Tu. If d(w, u) ̸= 0, then

d(w, u) = d(Sw, Tu)

≤ a1[d(Aw, Tu) + d(Bu, Sw)] + a2[d(Bu, Tu) + d(Aw, Sw)]

+a3d(Aw,Bu) + a4[d(Aw, Sw) + d(Aw, Tu)]

+a5[d(Aw,Bu) + d(Bu, Tu)]

= a1[d(w, u) + d(u,w)] + a2[d(u, u) + d(w,w)] + a3d(w, u)

+a4[d(w,w) + d(w, u)] + a5[d(w, u) + d(u, u)]

≤ (2a1 + 4a2 + a3 + 3a4 + 3a5)d(w, u),

which is a contradiction. Hence, d(v, u) = 0, which implies that v = u. The
proof is complete. �

Remark 3.2 One can derive from Theorem 3.1 a number of fixed point the-
orems for self mappings A, B, S, and T . For example, we have the following
result by letting a4 = a5 = 0.

Corollary 3.3 Let (X , d) be a complete dislocated metric space. If A,B, S, T :
X → X are self mappings satisfying the conditions:
(i) T (X ) ⊂ A(X ) and S(X ) ⊂ B(X );
(ii) the pairs (S,A) and (T,B) are weakly compatible;
(iii) d(Sξ, Tη) ≤ a1[d(Aξ, Tη) + d(Bη, Sξ)] + a2[d(Bη, Tη) + d(Aξ, Sξ)] +
a3d(Aξ,Bη) for all ξ, η ∈ X , where a1, a2, a3 ≥ 0 and 0 ≤ 4a1+2a2+a3 < 1,
then A, B, S, and T have a unique common fixed point.

Remark 3.4 Our results generalize, extend, and improve those obtained by
Bennani et al. [3].

4 Examples

The following examples illustrate theoretical results obtained in the previous
sections.
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Example 4.1 Assume that X = [0, 1], d is a usual metric, and define the
mappings A, B, S, and T by

Aξ = ξ, Bξ = ξ, Sξ = 0, and Tξ =
1

12
ξ.

Let

a1 =
1

20
, a2 =

1

24
, a3 =

1

28
, a4 =

1

30
, and a5 =

1

34
.

Then A, B, S, and T satisfy all assumptions of Theorem 2.1. As a matter
of fact, 0 ∈ X is the unique common fixed point of the mappings A, B, S,
and T .

Example 4.2 Let X = [0, 1], d(ξ, η) = |ξ|+ |η|, and define the mappings A,
B, S, and T by

Aξ = ξ, Bξ = ξ, Sξ = 0, and Tξ =
ξ

6
.

Set

a1 =
1

25
, a2 =

1

28
, a3 =

1

32
, a4 =

1

36
, and a5 =

1

40
.

Then A, B, S, and T satisfy all assumptions of Theorem 3.1. In fact, 0 ∈ X
is the unique common fixed point of the mappings A, B, S, and T .
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QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN
BANACH SPACES

SUNGSIK YUN

Abstract. In this paper, we solve the quadratic ρ-functional inequalities

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (0.1)

≤
∥∥∥∥ρ(4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥ ,
where ρ is a fixed non-Archimedean number with |ρ| < |2|, and∥∥∥∥4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

∥∥∥∥ (0.2)

≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖,
where ρ is a fixed non-Archimedean number with |ρ| < 1.

Furthermore, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequalities
(0.1) and (0.2) in non-Archimedean Banach spaces.

1. Introduction and preliminaries

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique element
having the 0 valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.
A field K is called a valued field if K carries a valuation. The usual absolute values of R and
C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality.
If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,
then the function | · | is called a non-Archimedean valuation, and the field is called a non-
Archimedean field. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. A trivial example of
a non-Archimedean valuation is the function | · | taking everything except for 0 into 1 and
|0| = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field, hence
call it simply a field.

Definition 1.1. ([8]) Let X be a vector space over a field K with a non-Archimedean
valuation | · |. A function ‖ · ‖ : X → [0,∞) is said to be a non-Archimedean norm if it
satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖ (r ∈ K, x ∈ X);

2010 Mathematics Subject Classification. Primary 46S10, 39B62, 39B52, 47S10, 12J25.
Key words and phrases. Hyers-Ulam stability; non-Archimedean normed space; quadratic ρ-functional

inequality.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1425 SUNGSIK YUN 1425-1431



S. YUN

(iii) the strong triangle inequality

‖x+ y‖ ≤ max{‖x‖, ‖y‖}, ∀x, y ∈ X

holds. Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 1.2. (i) Let {xn} be a sequence in a non-Archimedean normed space X. Then
the sequence {xn} is called Cauchy if for a given ε > 0 there is a positive integer N such that

‖xn − xm‖ ≤ ε

for all n,m ≥ N .
(ii) Let {xn} be a sequence in a non-Archimedean normed space X. Then the sequence

{xn} is called convergent if for a given ε > 0 there are a positive integer N and an x ∈ X
such that

‖xn − x‖ ≤ ε

for all n ≥ N . Then we call x ∈ X a limit of the sequence {xn}, and denote by limn→∞ xn = x.
(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed space X

is called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of Ulam [18] con-
cerning the stability of group homomorphisms. The functional equation f(x+y) = f(x)+f(y)
is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to
be an additive mapping. Hyers [7] gave a first affirmative partial answer to the question of
Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings
and by Rassias [11] for linear mappings by considering an unbounded Cauchy difference.
A generalization of the Rassias theorem was obtained by Găvruta [6] by replacing the un-
bounded Cauchy difference by a general control function in the spirit of Rassias’ approach.

The functional equation f
(
x+y
2

)
= 1

2
f(x) + 1

2
f(y) is called the Jensen equation.

The functional equation f(x+y)+f(x−y) = 2f(x)+2f(y) is called the quadratic functional
equation. In particular, every solution of the quadratic functional equation is said to be a
quadratic mapping. The stability of quadratic functional equation was proved by Skof [17]
for mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa
[5] noticed that the theorem of Skof is still true if the relevant domain E1 is replaced by an

Abelian group. The functional equation 2f
(
x+y
2

)
+ 2

(
x−y
2

)
= f(x) + f(y) is called a Jensen

type quadratic equation. The stability problems of various functional equations have been
extensively investigated by a number of authors (see [1, 3, 4, 9, 10, 12, 13, 14, 15, 16, 19, 20]).

In Section 2, we solve the quadratic ρ-functional inequality (0.1) and prove the Hyers-Ulam
stability of the quadratic ρ-functional inequality (0.1) in non-Archimedean Banach spaces.

In Section 3, we solve the quadratic ρ-functional inequality (0.2) and prove the Hyers-Ulam
stability of the quadratic ρ-functional inequality (0.2) in non-Archimedean Banach spaces.

Throughout this paper, assume that X is a non-Archimedean normed space and that Y is
a non-Archimedean Banach space. Let |2| 6= 1.

2. Quadratic ρ-functional inequality (0.1) in non-Archimedean normed
spaces

Throughout this section, assume that ρ is a fixed non-Archimedean number with |ρ| < |2|.
In this section, we solve the quadratic ρ-functional inequality (0.1) in non-Archimedean

normed spaces.
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Lemma 2.1. If a mapping f : G→ Y satisfies

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (2.1)

≤
∥∥∥∥ρ(4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥
for all x, y ∈ G, then f : G→ Y is quadratic.

Proof. Assume that f : G→ Y satisfies (2.1).
Letting x = y = 0 in (2.1), we get ‖2f(0)‖ ≤ |ρ|‖f(0)‖. So f(0) = 0.
Letting y = x in (2.1), we get ‖f(2x) − 4f(x)‖ ≤ 0 and so f(2x) = 4f(x) for all x ∈ G.

Thus

f
(
x

2

)
=

1

4
f(x) (2.2)

for all x ∈ G.
It follows from (2.1) and (2.2) that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

≤
∥∥∥∥ρ(4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥
= |ρ|‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

and so

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ G. �

Now, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (2.1) in
non-Archimedean Banach spaces.

Theorem 2.2. Let r < 2 and θ be nonnegative real numbers and let f : X → Y be a mapping
satisfying

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤
∥∥∥∥ρ(4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥
+ θ(‖x‖r + ‖y‖r) (2.3)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2

|2|r
θ‖x‖r (2.4)

for all x ∈ X.

Proof. Letting x = y = 0 in (2.3), we get ‖f(0)‖ ≤ |ρ|‖2f(0)‖. So f(0) = 0.
Letting y = x in (2.3), we get

‖f(2x)− 4f(x)‖ ≤ 2θ‖x‖r (2.5)
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for all x ∈ X. So
∥∥∥f(x)− 4f

(
x
2

)∥∥∥ ≤ 2
|2|r θ‖x‖

r for all x ∈ X. Hence∥∥∥∥4lf
(
x

2l

)
− 4mf

(
x

2m

)∥∥∥∥ (2.6)

≤ max
{∥∥∥∥4lf

(
x

2l

)
− 4l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥4m−1f
(

x

2m−1

)
− 4mf

(
x

2m

)∥∥∥∥}
= max

{
|4|l

∥∥∥∥f ( x2l

)
− 4f

(
x

2l+1

)∥∥∥∥ , · · · , |4|m−1 ∥∥∥∥f ( x

2m−1

)
− 4f

(
x

2m

)∥∥∥∥}
≤ max

{
|4|l

|2|rl
, · · · , |4|

m−1

|2|r(m−1)

}
2

|2|r
θ‖x‖r =

θ

|2|(r−2)l
2

|2|r
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.6) that the
sequence {4nf( x

2n
)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{4nf( x
2n

)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.6), we get (2.4).
It follows from (2.3) that

‖Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y)‖

= lim
n→∞

|4|n
∥∥∥∥f (x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)
− 2f

(
y

2n

)∥∥∥∥
≤ lim

n→∞
|4|n|ρ|

∥∥∥∥4f (x+ y

2n+1

)
+ f

(
x− y

2n

)
− 2f

(
x

2n

)
− 2f

(
y

2n

)∥∥∥∥+ lim
n→∞

|4|nθ
|2|nr

(‖x‖r + ‖y‖r)

= |ρ|
∥∥∥∥4Q(x+ y

2

)
+Q(x− y)− 2Q(x)− 2Q(y)

∥∥∥∥
for all x, y ∈ X. So

‖Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y)‖ ≤
∥∥∥∥ρ(4Q

(
x+ y

2

)
+Q(x− y)− 2Q(x)− 2Q(y)

)∥∥∥∥
for all x, y ∈ X. By Lemma 2.1, the mapping h : X → Y is quadratic.

Now, let T : X → Y be another quadratic mapping satisfying (2.4). Then we have

‖Q(x)− T (x)‖ =
∥∥∥∥4qQ

(
x

2q

)
− 4qT

(
x

2q

)∥∥∥∥
≤ max

{∥∥∥∥4qQ
(
x

2q

)
− 4qf

(
x

2q

)∥∥∥∥ , ∥∥∥∥4qT
(
x

2q

)
− 4qf

(
x

2q

)∥∥∥∥} ≤ 2

|2|(r−2)q+r
θ‖x‖r,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that Q(x) = T (x) for
all x ∈ X. This proves the uniqueness of Q. Thus the mapping Q : X → Y is a unique
quadratic mapping satisfying (2.4). �

Theorem 2.3. Let r > 2 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying (2.3). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

|4|
‖x‖r

for all x ∈ X.
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Proof. It follows from (2.5) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 2θ

|4|
‖x‖r

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2. �

3. Quadratic ρ-functional inequality (0.2)

Throughout this section, assume that ρ is a fixed non-Archimedean number with |ρ| < 1.
In this section, we solve the quadratic ρ-functional inequality (0.2) in non-Archimedean

normed spaces.

Lemma 3.1. If a mapping f : G→ Y satisfies∥∥∥∥4f (x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

∥∥∥∥ (3.1)

≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖
for all x, y ∈ G, then f : G→ Y is quadratic.

Proof. Assume that f : G→ Y satisfies (3.1).
Letting x = y = 0 in (3.1), we get ‖f(0)‖ ≤ |ρ|‖2f(0)‖. So f(0) = 0.

Letting y = 0 in (3.1), we get
∥∥∥4f (x

2

)
− f(x)

∥∥∥ ≤ 0 and so

4f
(
x

2

)
= f(x) (3.2)

for all x ∈ G.
It follows from (3.1) and (3.2) that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

=
∥∥∥∥4f (x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

∥∥∥∥
≤ |ρ|‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

and so
f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ G. �

Now, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (3.1) in
non-Archimedean Banach spaces.

Theorem 3.2. Let r < 2 and θ be nonnegative real numbers, and let f : X → Y be a
mapping satisfying∥∥∥∥4f (x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

∥∥∥∥ ≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖

+ θ(‖x‖r + ‖y‖r) (3.3)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ θ‖x‖r (3.4)

for all x ∈ X.
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Proof. Letting x = y = 0 in (3.3), we get ‖2f(0)‖ ≤ |ρ|‖f(0)‖. So f(0) = 0.
Letting y = 0 in (3.3), we get∥∥∥∥4f (x2

)
− f(x)

∥∥∥∥ ≤ θ‖x‖r (3.5)

for all x ∈ X. So∥∥∥∥4lf
(
x

2l

)
− 4mf

(
x

2m

)∥∥∥∥ (3.6)

≤ max
{∥∥∥∥4lf

(
x

2l

)
− 4l+1f

(
x

2l+1

)∥∥∥∥ , · · · , ∥∥∥∥4m−1f
(

x

2m−1

)
− 4mf

(
x

2m

)∥∥∥∥}
= max

{
|4|l

∥∥∥∥f ( x2l

)
− 4f

(
x

2l+1

)∥∥∥∥ , · · · , |4|m−1 ∥∥∥∥f ( x

2m−1

)
− 4f

(
x

2m

)∥∥∥∥}
≤ max

{
|4|l

|2|rl
, · · · , |4|

m−1

|2|r(m−1)

}
θ‖x‖r =

θ

|2|(r−2)l
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.6) that the
sequence {4nf( x

2n
)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{4nf( x
2n

)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.6), we get (3.4).
The rest of the proof is similar to the proof of Theorem 2.2. �

Theorem 3.3. Let r > 2 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying (3.3). Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ |2|
rθ

|4|
‖x‖r (3.7)

for all x ∈ X.

Proof. It follows from (3.5) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ |2|rθ|4| ‖x‖r
for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ (3.8)

≤ max
{∥∥∥∥ 1

4l
f
(
2lx
)
− 1

4l+1
f
(
2l+1x

)∥∥∥∥ , · · · , ∥∥∥∥ 1

4m−1f
(
2m−1x

)
− 1

4m
f (2mx)

∥∥∥∥}
= max

{
1

|4|l
∥∥∥∥f (2lx

)
− 1

4
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|4|m−1
∥∥∥∥f (2m−1x

)
− 1

4
f (2mx)

∥∥∥∥
}

≤ max

{
|2|rl

|4|l+1
, · · · , |2|

r(m−1)

|4|(m−1)+1

}
|2|rθ‖x‖r =

|2|rθ
|2|(2−r)l+2

‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.8) that the
sequence { 1

4n
f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
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{ 1
4n
f(2nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.8), we get (3.7).
The rest of the proof is similar to the proofs of Theorems 2.2 and 3.2. �
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Abstract

We introduce a new inversion free variant of the basic fixed point iteration method for obtaining a
maximal positive definite solution of the nonlinear matrix equation X + A∗X−1A = I with A normal.
It has fewer operations and matrix-matrix multiplications than the existing algorithms. We derive con-
vergence conditions for the iteration and some numerical results to illustrate the behavior of the new
algorithm.
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1 Introduction

Consider the nonlinear matrix equation
X +A∗X−1A = I, (1.1)

where A is an n × n complex normal matrix and I the identity matrix. Here A∗ stands for the conjugate
transpose of A.

Nonlinear matrix equation (1.1) has many applications. It often arises in control theory, dynamic pro-
gramming, ladder networks, stochastic filtering, statistics, and etc.; see [1, 3–11, 14–23] and the references
therein. It is well known that X is a solution of (1.1) if and only if it solves

X = I −A∗(I −A∗X−1A)−1A.

Assuming that A is invertible, we can write the above equation as

X = F ∗(R+X−1)−1F + I,

where F = A−∗A and R = −A−∗A−1. This is a special case of the discrete algebraic Riccati equation

X − F ∗(R+X−1)−1F − I = 0,

∗E-mail address: gzzdm2008@163.com.
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where I = I∗ and R = R∗ is invertible. For more details about the discrete algebraic Riccati equation, we
refer to [2, 13].

In [17], Zhan proposed the following inversion free iteration

M1 :

{
Xn+1 = I −A∗YnA,
Yn+1 = Yn(2I −XnYn),

starting from X0 = Y0 = I.
In [11], Guo and Lancaster proposed the following inversion free iteration

M2 :

{
Yn+1 = Yn(2I −XnYn),

Xn+1 = I −A∗Yn+1A,

starting from X0 = Y0 = I.
When A is a nonsingular matrix, Monsalve and Raydan proposed in [16] the following inversion free

iteration

M3 :

{
X0 = AA∗,

Xn+1 = 2Xn −XnA
−∗(I −Xn)A−1Xn, n = 0, 1, . . .

to solve the minimal solution. The maximal solution of (1.1) can be obtained through X+ = I − Y−, where
Y− is the minimal solution of the dual equation Y + AY −1A∗ = I. M3 generates a Hermitian sequence of
Xn. The implementation of iteration M3 involves three matrix-matrix multiplications per iteration and the
inverse operation of A at the beginning only.

In [8], El-Sayed and Al-Dbiban proposed an algorithm that avoids the matrix inversion for every iteration,
called an inversion free variant of the basic fixed point iteration.

M4 :

{
Yn+1 = (I −Xn)Yn + I,

Xn+1 = I −A∗Yn+1A,

starting from X0 = Y0 = I.
It is important to notice that M1 and M2 generate a Hermitian sequence and require four matrix-matrix

multiplications per iteration, while M4 requires three matrix-matrix multiplications per iteration but does
not generate a Hermitian sequence. If A is a normal matrix, we will prove that M4 generates a Hermitian
sequence. And we propose the following algorithm.

M5 :

{
Y0 = I,

Yn+1 = (AYn)∗(AYn) + I, n = 0, 1, . . . .

The algorithm indicated by M5 is an inverse-free iterative method. Notice that it only requires to compute
X = I − A∗Y A at the end of the process, and only needs two matrix-matrix multiplications per iteration.
Therefore it is clearly inexpensive. By an inductive argument, it is also worth noticing that in M5, Yn is a
Hermitian matrix for all n.

The following notations will be used throughout the paper. Let Cn×n be the set of n×n complex matrices.
The notation B ≥ 0(B > 0) means that B is a Hermitian positive semi-definite (definite) matrix. Moreover,
B ≥ C(B > C) is used as a different notation for B −C ≥ 0(B −C > 0). This induces a partial ordering on
the Hermitian matrices. The symbols ρ(A) and ‖A‖ denote the spectral radius and the spectral norm of a
square matrix A, respectively.

2 Conditions for the Existence of Solutions

The following lemmas are needed for our purpose.

Lemma 2.1. For Algorithm M4, if A is normal, then

AXn = XnA, AYn = YnA,

A∗Xn = XnA
∗, A∗Yn = YnA

∗

for n = 0, 1, . . ..
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Proof. Since Y1 = Y0 = X0 = I,

AY0 = Y0A, AY1 = Y1A, AX0 = X0A.

Because
X1 = I −A∗Y1A = I −A∗A,

Y2 = (I −X1)Y1 + I = A∗A+ I,

and AA∗ = A∗A,
AY2 = A(A∗A+ I) = (A∗A+ I)A = Y2A.

That is, AYn = YnA is true for n=0, 1, 2. So, assume that AYn = YnA is true for n = k. Now we prove that
AYn = YnA when n = k + 1. In fact

AYk+1 = A((I −Xk)Yk + I) = AA∗YkAYk +A = Yk+1A.

This completes the induction for n = k + 1. Therefore,

AYn = YnA

for n = 0, 1, 2, . . .. We also have

AXn+1 = A(I −A∗Yn+1A) = A−A∗Yn+1AA+A = Xn+1A

for n = 1, 2, . . .. The proof of A∗Xn = XnA
∗ and A∗Yn = YnA

∗ are similar to that of AXn = XnA and
AYn = YnA, respectively.

Lemma 2.2. If A is normal, then Algorithm M4 generates a Hermitian sequence.

Proof. Since Y1 = Y0 = X0 = I, Y1, Y0, and X0 are Hermitian. Assume that Yn is Hermitian for n = k.
Then

Y ∗k+1 = ((I −Xk)Yk + I)∗ = (A∗YkAYk + I)∗ = YkA
∗YkA+ I.

If A is a normal matrix, then according to Lemma 2.1,

Y ∗k+1 = A∗YkAYk + I = Yk+1.

This completes the induction for n = k + 1. Since Xn = I −A∗YnA,

X∗n = I −A∗Y ∗nA = I −A∗YnA = Xn

for n = 1, 2, . . .. This completes the proof.

Lemma 2.3. For Algorithm M4, if A is normal, then {Xn, Yn, Xn+1, Yn+1} is a commuting family, n =
0, 1, 2, . . ..

Proof. Since Y1 = Y0 = X0 = I, X1 = I−A∗A, it is easy to check that {X0, Y0, X1, Y1} is a commuting family.
Now we prove that {Xn, Yn, Xn+1, Yn+1} is a commuting family for n = 1, 2, . . .. Since Xn = I −A∗YnA,

Yn+1 = (I −Xn)Yn + I = A∗YnAYn + I.

According to Lemma 2.1,

Yn+1Yn = (A∗YnAYn + I)Yn

= A∗YnAYnYn + Yn

= YnA
∗YnAYn + Yn

= YnYn+1,

(2.1)
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and

Yn+1Xn+1 = Yn+1(I −A∗Yn+1A)

= Yn+1 − Yn+1A
∗Yn+1A

= Yn+1 −A∗Yn+1AYn+1

= Xn+1Yn+1.

This implies that YnXn = XnYn for n = 1, 2, . . .. From (2.1) and Lemma 2.1,

Yn+1Xn = Yn+1(I −A∗YnA)

= Yn+1 − Yn+1A
∗YnA

= Yn+1 −A∗YnAYn+1

= XnYn+1,

(2.2)

and

Xn+1Yn = (I −A∗Yn+1A)Yn

= Yn −A∗Yn+1AYn

= Yn − YnA∗Yn+1A

= YnXn+1.

It follows from (2.2) and Lemma 2.1 that

Xn+1Xn = (I −A∗Yn+1A)Xn

= Xn −A∗Yn+1AXn

= Xn −XnA
∗Yn+1A

= XnXn+1.

This completes the proof.

Lemma 2.4. If 0 < M ≤ N , 0 < P ≤ Q, and {M,N,P,Q} is a commuting family, then

MP ≤ NQ.

Proof. Since M , N , P , Q are positive definite matrices, and {M,N,P,Q} is a commuting family. By Theorem
2.5.5 in [12], there is a unitary U such that

U∗MU = Λ, U∗NU = Ω, U∗PU = Σ, U∗MU = Γ,

where Λ, Ω, Σ, and Γ are diagonal. Since M , N , P , Q are positive definite matrices, Λ, Ω, Σ, and Γ are
positive diagonal matrices. Because {M,N,P,Q} is a commuting family,

MP = UΛΣU = UΛ
1
2 ΣΛ

1
2U = P

1
2MP

1
2 ≤ P 1

2NP
1
2 = N

1
2PN

1
2 . (2.3)

Since 0 < P ≤ Q,
N

1
2PN

1
2 ≤ N 1

2QN
1
2 = NQ. (2.4)

Combining (2.3) and (2.4), we have
MP ≤ NQ.

This completes the proof.

Now, we prove that the sequence {Xn} in Algorithm M4 is monotone decreasing and converges to the
maximal solution X+, and the sequence {Yn} in Algorithm M4 is monotone increasing and converges to X−1+ .

Theorem 2.5. Let A be normal. If the nonlinear matrix equation (1.1) has a positive definite solution, and
the two sequences {Xn} and {Yn} are determined by Algorithm M4, then {Xn} is monotone decreasing and
converges to the maximal solution X+, and {Yn} is monotone increasing and converges to X−1+ .
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Proof. We will prove that
I = X0 ≥ X1 ≥ · · · ≥ Xn ≥ X+

and
I = Y0 ≤ Y1 ≤ · · · ≤ Yn ≤ X−1+ .

Since X+ is a solution of (1.1), i.e.,
X+ = I −A∗X−1+ A,

X0 = I ≥ X+ and I ≤ X−1+ . Also
X1 = I −A∗A ≤ I = X0

and
X1 = I −A∗A ≥ I −A∗X−1+ A = X+,

i.e., I = X0 ≥ X1 ≥ X+.
For the sequence {Yn} we have Y0 = Y1 = I, and since I ≤ X−1+ , then Y0 = Y1 ≤ X−1+ . From Lemmas

2.3 and 2.4, on the one hand,

Y2 = (I −X1)Y1 + I = A∗A+ I ≥ I = Y1 = Y0;

on the other hand
Y2 = (I −X1)Y1 + I ≤ (I −X+)X−1+ + I = X−1+ ,

i.e., Y0 = Y1 ≤ Y2 ≤ X−1+ .
Assume that the above inequalities are true for n = k, i.e.,

I = X0 ≥ X1 ≥ · · · ≥ Xk ≥ X+ (2.5)

and
I = Y0 ≤ Y1 ≤ · · · ≤ Yk ≤ X−1+ . (2.6)

Now we prove inequalities for n = k + 1. From (2.5) and (2.6), the sequences {Xn} and {Yn} are Hermitian
positive definite for i = 0, 1, . . . , k. According to Algorithm M4, Lemmas 2.3 and 2.4, (2.5), and (2.6), we get

Yk+1 = (I −Xk)Yk + I ≥ (I −Xk−1)Yk−1 + I = Yk,

Yk+1 = (I −Xk)Yk + I ≤ (I −X+)X−1+ + I = X−1+ ,

i.e., Yk ≤ Yk+1 ≤ X−1+ . Concerning the sequence {Xn}, we have

Xk −Xk+1 = A∗(Yk+1 − Yk)A

since Yk+1 ≥ Yk. Hence Xk ≥ Xk+1. Therefore,

Xk+1 = I −A∗Yk+1A ≥ I −A∗X−1+ A = X+,

i.e., Xk ≥ Xk+1 ≤ X+.
This completes the induction for n = k + 1. Thus,

I = X0 ≥ X1 ≥ · · · ≥ Xn ≥ X+

and
I = Y0 ≤ Y1 ≤ · · · ≤ Yn ≤ X−1+

are true for all n. Therefore, These are convergent sequences, i.e., lim
n→∞

Xn and lim
n→∞

Yn exist. Taking limit

in Algorithm M4 leads to Y = X−1 and X = I − A∗X−1A. Moreover, as each Xn ≥ X+ and Yn ≤ X−1+ ,

then X = X+ and Y = X−1+ , respectively. This completes the proof.
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According to Theorem 2.5, we know that the sequence {Yn} determined by Algorithm M4 is monotone
increasing and converges toX−1+ . From Lemmas 2.1 and 2.3, if A is normal, then {A, Yn, Yn+1} is a commuting
family, n = 0, 1, 2, . . .. So we can amend Algorithm M4 and obtain the following algorithm.

M5 :

{
Y0 = I,

Yn+1 = (AYn)∗(AYn) + I, n = 0, 1, . . . .

In this algorithm, M5 generates a Hermitian sequence, and requires two matrix-matrix multiplications per
iteration. Notice that it only requires to compute X = I−A∗Y A at the end of the process. It is an inverse-free
iterative method.

If A is normal, from [9, Theorem 11], the nonlinear matrix equation (1.1) has a solution if and only if
ρ(A) ≤ 1

2 . Therefore, the nonlinear matrix equation (1.1) has a solution if and only if ‖A‖ ≤ 1
2 .

Lemma 2.6. Let A be normal. Assume that nonlinear matrix equation (1.1) has a positive definite solution
and the sequence {Yn} is determined by Algorithm M5. Then {Yn} satisfies ‖AYn‖ < 1 for every n = 0, 1, . . ..

Proof. Since A is normal and the nonlinear matrix equation (1.1) has a positive definite solution, ‖A‖ ≤ 1
2 .

Because Y0 = I, ‖AY0‖ = ‖A‖ ≤ 1
2 < 1. For Y1 we have Y1 = A∗A + I, thus ‖AY1‖ = ‖A(A∗A + I)‖ ≤

‖A‖3 + ‖A‖ < 1. That is, the inequality holds for n = 0, 1. So, assume that the inequality satisfies n = k,
i.e., ‖AYk‖ < 1. Now we prove the inequality when n = k + 1.

‖AYk+1‖ = ‖A ((AYk)∗(AYk) + I) ‖
= ‖A(AYk)∗(AYk) +A‖
≤ ‖A‖‖AYk‖2 + ‖A‖
< ‖A‖+ ‖A‖
≤ 1.

This completes the induction for n = k + 1 and the lemma.

Lemma 2.7. Let A be normal. The maximal solution X+ of the nonlinear matrix equation (1.1) commutes
with A.

Proof. If A is normal, by [18], we have

X+ =
1

2

[
I + (I − 4A∗A)

1/2
]
.

So, AX+ = X+A. This completes the proof.

Theorem 2.8. Let A be normal. If the nonlinear matrix equation (1.1) has a positive definite solution, then
the sequence {Yn} determined by Algorithm M5 satisfies

‖Yn+1 −X−1+ ‖ ≤ ‖AX−1+ ‖‖Yn −X−1+ ‖

for all n large enough.

Proof. Since the nonlinear matrix equation (1.1) has a positive definite solution, X+ = 1
2

[
I + (I − 4A∗A)

1/2
]

is the maximal solution. Then
X+ +A∗X−1+ A = I.

Multiplying by X−1+ on the right, we obtain

X−1+ = (X−1+ A)∗AX−1+ + I.

By Lemma 2.7,
X−1+ = (AX−1+ )∗(AX−1+ ) + I.

By Algorithm M5,
Yn+1 = (AYn)∗(AYn) + I. (2.7)
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Subtracting X−1+ from both sides of (2.7) we have that

Yn+1 −X−1+ = (AYn)∗(AYn) + I −X−1+

= (AYn)∗(AYn) + I −
(
(AX−1+ )∗(AX−1+ ) + I

)
= (AYn)∗(AYn)− (AX−1+ )∗(AX−1+ )

= (AYn)∗(AYn)− (AX−1+ )∗(AYn) + (AX−1+ )∗(AYn)− (AX−1+ )∗(AX−1+ )

= (Yn −X−1+ )∗A∗(AYn) + (AX−1+ )∗A(Yn −X−1+ ).

(2.8)

Taking norms in (2.8) and recalling that lim
n→∞

Yn = X−1+ and ‖A‖ ≤ 1
2 , we have that

‖Yn+1 −X−1+ ‖ = ‖(Yn −X−1+ )∗A∗(AYn) + (AX−1+ )∗A(Yn −X−1+ )‖
≤ ‖Yn −X−1+ ‖‖A‖

(
‖AYn‖+ ‖AX−1+ ‖

)
≤ ‖AX−1+ ‖‖Yn −X−1+ ‖.

This completes the proof.

3 Numerical Experiments

To illustrate the performance of our method described in the previous section, in this section several interesting
examples are given, which were carried out using MATLAB on a PC computer. We report the number of
required iterations (denoted as IT), the norm of the residual (denoted as Res), the computing time in seconds
(denoted as CPU), and the number of matrix-matrix (denoted as MM) multiplications required when the
process is stopped. Assume A is normal and (1.1) has a solution. Then

X+ =
1

2

[
I + (I − 4A∗A)

1/2
]

(3.1)

is the maximal solution, and if A is nonsingular,

X− =
1

2

[
I − (I − 4A∗A)

1/2
]
. (3.2)

is the minimal solution [18, Theorem 4.1]. This allows us to test the local convergence behavior of the five
methods by taking the computed X+ by using (3.1) as the accurate maximal solution and X− by using (3.2)
as the accurate minimal solution.

In our implementation,
‖Yn −X−1+ ‖ ≤ ‖X−1+ ‖ × 10−9

is used as the termination criterion for M1, M2, M4, and M5, and

‖Xn −X−‖ ≤ ‖X−‖ × 10−9

is used as the termination criterion for M3. We compare our iteration M5, with the inverse-free methods
M1, M2, M3 and M4 for solving (1.1). In all cases we describe also the initial guess for which convergence is
guaranteed.

Since M3 converges to the minimal solution, we use M3 to find the minimal solution Y− of the dual
equation Y + AY −1A∗ = I. We can obtain the maximal solution of (1.1) through X+ = I − Y−. The value
of ”Res” in our tables reports ‖F (Xn)‖F = ‖Xn + A∗X−1n A − I‖F for M1, M2, M3, M4 and M5 when the
process is stopped.

Experiment 3.1. In this test, the matrix A is from [8] using Example 3.1

A =
1

32


0.2 −0.1 −0.5 0.1
−0.1 0.6 −0.5 0.7
−0.5 −0.5 0.1 0.8
0.1 0.7 0.8 0.5


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Table 1: Performance of M1, M2, M3, M4 and M5 to solve (1) for Experiment 3.1.
Scheme IT ‖F (Xn)‖F MM

M1 6 8.7390e-12 24
M2 4 2.9322e-14 16
M3 7 1.7493e-11 21
M4 4 1.1655e-13 12
M5 3 1.1655e-13 6

Since A is normal and ‖A‖ = 0.0412 ≤ 0.5, from [9, Theorem 11], the nonlinear matrix equation (1.1)
has a solution. In Table 1, we can see that M1 requires more matrix-matrix multiplications than the other
methods to achieve convergence. M3 requires more iterations than the other four methods to satisfy the
stopping criterion. M5 carries out fewer iterations and matrixCmatrix multiplications than all the other
methods. For this experiment, we could say that M5 is the best option.

Experiment 3.2. In this test, let

A =
1

14


4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4

 ∈ Cm×m.

Table 2: Iterations and the number of matrix-matrix products for Experiment 3.2.

m ‖A‖ M1 M2 M3 M4 M5
IT MM IT MM IT MM IT MM IT MM

4 0.4013 29 116 16 64 15 45 22 66 21 42
8 0.4200 33 132 18 72 17 51 26 78 25 50
16 0.4261 34 136 19 76 18 54 27 81 26 52
32 0.4279 35 140 19 76 18 54 28 84 27 54
64 0.4284 35 140 19 76 18 54 28 84 27 54
128 0.4285 35 140 19 76 18 54 28 84 27 54
256 0.4286 35 140 19 76 18 54 28 84 27 54
512 0.4286 35 140 19 76 18 54 28 84 27 54
1024 0.4286 35 140 19 76 - - 28 84 27 54

Table 3: CPU time(s) for Experiment 3.2.
m M1 M2 M3 M4 M5
4 0.002191 0.000315 0.000634 0.000986 0.000246
8 0.002479 0.000821 0.000937 0.001263 0.000568
16 0.005854 0.001868 0.003523 0.002451 0.000956
32 0.012124 0.008553 0.006721 0.006701 0.004385
64 0.019125 0.014864 0.017950 0.022326 0.013876
128 0.075103 0.046237 0.075727 0.065126 0.049925
256 0.522263 0.300470 0.479174 0.383668 0.290019
512 3.557083 2.176928 20.980815 2.392791 1.886120
1024 46.442456 24.082342 - 27.282594 21.436297

According to Table 2, we know that ‖A‖ ≤ 0.5. Since A is normal and A is nonsingular, the nonlinear
matrix equation X+A∗X−1A = I has a solution. In this test, the matrix sequence of Xn in M3 is badly scaled
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Table 4: Errors for Experiment 3.2.
m M1 M2 M3 M4 M5
4 1.9737e-10 5.8016e-11 2.2961e-10 1.3549e-10 1.3549e-10
8 1.8449e-10 6.3914e-11 2.1623e-10 9.5667e-11 9.5667e-11
16 3.2512e-10 5.5185e-11 1.8543e-10 1.4121e-10 1.4121e-10
32 2.5631e-10 9.4206e-11 3.0952e-10 1.1751e-10 1.1751e-10
64 3.8878e-10 1.4330e-10 4.6222e-10 1.8003e-10 1.8003e-10
128 5.6750e-10 2.0941e-10 6.7030e-10 2.6386e-10 2.6386e-10
256 8.1479e-10 3.0082e-10 9.5949e-10 3.7953e-10 3.7953e-10
512 1.1608e-9 4.2868e-10 1.3654e-09 5.4118e-10 5.4118e-10
1024 1.647e-19 6.0853e-10 - 7.6847e-10 7.6847e-10

when m = 1024. In Table 2, we can see that M1 requires more iterations and matrix-matrix multiplications
than the other methods to satisfy the stopping criterion. We can also observe that M5 needs more iterations
than M2 and M3 to reach convergence, but it carries out fewer matrix-matrix multiplications than M1, M2,
M4. Table 2 shows that M5 and M3 require the same number of matrix-matrix multiplications, but M5
considerably outperforms M3 in CPU time from Table 3. From Table 3 we observe that M5 outperforms the
other methods in CPU time. From our numerical results, we can see that M1 is the most expensive iteration
out of the five methods. For this experiment, we could say that M5 is the best option.
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Abstract

In this paper, we show the Ulam-Hyers stability and Ulam-Hyers-Rassias stability criterion for

nonlinear Hadamard fractional relaxation differential equations on compact and unbounded time

intervals. More explicit Ulam-Hyers stability and Ulam-Hyers-Rassias results are presented by virtue

of estimation of Mittag-Leffler functions.

Keywords: Hadamard fractional derivative, Relaxation differential equations, Ulam-Hyers

stability, Ulam-Hyers-Rassias stability, Mittag-Leffler functions.

1. Introduction

The widely application of fractional differential equations arise in various areas of physics and

engineering (see [1, 2, 3, 4]). During the past decades, fractional differential equations has been more

and more recognized as an alternative model to the classical differential equations. There are many

interesting advance on the theory analysis for Caputo type and Riemann-Liouville type fractional

differential equations as well as Hadamard type fractional differential equations (see, for example,

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]).

The well-known Ulam stability problem of functional equations originated are posed in 1940.

Numerous monographs and special issues have appeared devoted to the theory of Ulam stability

for functional equations and differential equations (see for example [16, 17, 18, 19, 20, 21, 22, 23]).

Recently, Li and Wang [24] explore some fundamental properties of continuity, integrable estimation,

asymptotic property on Mittag-Leffler functions for a Hadamard fractional differential equation with

constant coefficient and present existence results for such equation by using fixed point theorems.

However, to our knowledge, Ulam’s stability results for nonlinear Hadamard fractional differential

equation with constant coefficient have not been investigated extensively. Especially, there are few

research on the Ulam’s stability for this kind of equation on noncompact interval.

IThis work was partially supported the Youth Science Foundation of Shanxi University of Finance and Economic.
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In this paper, we investigate Ulam’s type stability of Hadamard fractional differential equations

with constant coefficient λ ∈ R \ {0} of the type:

HD
α
1+y(x) = λy(x) + f(x, y(x)), 0 < α < 1, x ∈ J = (1, e] or (e,∞), (1)

where HD
α
1+ denotes the left-sided Hadamard fractional derivative of order α with the low limit 1

(see Definition 2.2), and nonlinear term f : J × R → R is a given function satisfying some certain

conditions. Let ε > 0 and φ : J → R+ be a continuous function.

Set J̄ := [1, e] or [e,∞). Consider equation (1) and the following inequalities:

|HDα
1+z(x)− λz(x)− f(x, z(x))| ≤ ε, 0 < α < 1, x ∈ J, (2)

and

|HDα
1+z(x)− λz(x)− f(x, z(x))| ≤ εφ(x), 0 < α < 1, x ∈ J. (3)

Definition 1.1. Equation (1) is Ulam-Hyers stable if there exists a constant c > 0 such that for each

ε > 0 and for each solution z ∈ Cγ,ln(J̄ ,R) of inequality (2) there exists a solution y ∈ Cγ,ln(J̄ ,R)

of equation (1) with

|z(x)− y(x)| ≤ cε, x ∈ J.

Remark 1.2. A function z ∈ Cγ,ln(J̄ ,R) is a solution of inequality (2) if and only if there exists

a function h ∈ Cγ,ln(J̄ ,R) such that (i) |h(x)| ≤ ε, x ∈ J , (ii) HD
α
1+z(x) = λz(x) + f(x, z(x)) +

h(x), x ∈ J .

Definition 1.3. Equation (1) is Ulam-Hyers-Rassias stable stable if there exists a constant c > 0

such that for each ε > 0 and for each solution z ∈ Cγ,ln(J̄ ,R) of inequality (3) there exists a solution

y ∈ Cγ,ln(J̄ ,R) of equation (1) with

|z(x)− y(x)| ≤ cεφ(x), x ∈ J.

Remark 1.4. A function z ∈ Cγ,ln(J̄ ,R) is a solution of inequality (3) if and only if there exists a

function h̃ ∈ Cγ,ln(J̄ ,R) such that (i) |h̃(x)| ≤ εφ(x), x ∈ J , (ii) HD
α
1+z(x) = λz(x) + f(x, z(x)) +

h̃(x), x ∈ J .

The rest of this paper is organized as follows. In Section 2, some notations and preparation

results are given. In Section 3, some useful remarks on bounded and unbounded time intervals are

presented. Section 4 is devoted to to give Ulam-Hyers stability and Ulam-Hyers-Rassias stability

criteria of the equation (1) on bounded and unbounded time intervals respectively. Finally, the

reason on the equation (1) is not necessary Ulam-Hyers-Rassias stable is analysed.

2
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2. Preliminaries

Let Y be a Banach space endowed with the norm ∥·∥Y . Set J := (1, e] or (e,∞). Denote C(J, Y )

be the Banach space of all continuous functions from J into Y with the norm ∥y∥C = supx∈J ∥y(x)∥Y .

For 0 < µ < 1, we denote the set Cµ,ln(J̄ , Y ) := {y(x) : y : J → Y is continuous such that(
ln x

a

)µ
y(x) ∈ C(J̄ , Y )}. Following [1, Theorem 3.29], Cµ,ln(J̄ , Y ) is a Banach space with the norm

∥y∥Cµ,ln
= ∥(lnx)µy(x)∥C = sup

x∈J̄

∥(lnx)µy(x)∥Y .

The following definitions and lemmas will be used in this paper.

Definition 2.1. (see [1, p.110, (2.7.1)]) The left-sided Hadamard fractional integral of order α ∈ R+

of function y(t) are defined by

(HJ
α
a+y)(t) =

1

Γ(α)

∫ t

a

(
ln
t

s

)α−1

y(s)
ds

s
, (0 < a < t ≤ b),

where Γ(·) is the Gamma function.

Definition 2.2. (see [1, p.111, (2.7.7)]) The left-sided Hadamard fractional derivative of order

α ∈ [n− 1, n), n ∈ Z+ of function y(t) are defined by

(HD
α
a+y)(t) =

1

Γ(n− α)

(
t
d

dt

)n ∫ t

a

(
ln
t

s

)n−α+1

y(s)
ds

s
, (0 < a < t ≤ b).

Lemma 2.3. (see [4, Theorem 2.3]) Let α, β ∈ (0, 1] and β < 1+α be arbitrary. Then the following

statements hold:

(i) For all z > 0, we have

Eα,β(z) :=
∞∑
k=0

zk

Γ(αk + β)
=

1

α
z

1−β
α exp(z

1
α ) +

∫ ∞

0

S(v, z)dv,

where

S(v, z) =
1

πα
v

1−β
α exp(−v 1

α )
v sin(π(1− β))− z sin(π(1− β + α))

v2 − 2vz cos(πα) + z2
.

(ii) For all z < 0, we have

Eα,β(z) =

∫ ∞

0

S(v, z)dv,

where

S(v, z) =
1

πα
v

1−β
α exp(−v 1

α )
v sin(π(1− β))− z sin(π(1− β + α))

v2 − 2vz cos(πα) + z2
.

We note that Eα(z) = Eα,1(z).

By virtue of Lemma 2.3, Li and Wang [24] derived the following useful results for two-parameter

Mittag-Leffler function.

Lemma 2.4. (see [24, Theorem 2.11]) Let λ > 0 be arbitrary, α, β ∈ (0, 1] and β < 1 + α. Denote

ω(α, β, λ) = max

{
α sin(βπ)Γ(2α− β + 1)

λ2απ sin2(πα)
,
α| sin(π(β − α))|Γ(α− β + 1)

λαπ sin2(πα)

}
.
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For all x ∈ (1,∞), we have∣∣∣∣(lnx)α−1Eα,α(λ(lnx)
α)− 1

α
λ

1−α
α exp(λ

1
α lnx)

∣∣∣∣ ≤ ω(α, α, λ)

(lnx)α+1
.

In particular, for all x ∈ (1,∞),∣∣∣∣Eα(λ(lnx)
α)− 1

α
exp(λ

1
α lnx)

∣∣∣∣ ≤ ω(α, 1, λ)

(lnx)α
.

Further, we give the following integral estimation.

Lemma 2.5. Let λ > 0 be arbitrary, α ∈ (0, 1], we have

(i) For all x ∈ (1, e], we have

J1 :=

∣∣∣∣∫ x

1

(
(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)− λ

1−α
α Eα(λ(lnx)

α) exp(−λ 1
α ln t)

) dt
t

∣∣∣∣
≤ Eα,α(λ)

α
+

Eα(λ)

λ
.

(ii) For all x ∈ (e,∞), we have

J2 :=

∣∣∣∣∫ x

1

(
(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)− (lnx)α−1Eα,α(λ(lnx)

α) exp(−λ 1
α ln t)

) dt
t

∣∣∣∣
≤ Eα,α(λ)

α
+

exp(λ
1
α )

αλ
+ ω(α, α, λ)

(
1

α
+

2

λ
1
α

)
:=M(α, λ).

Proof. (i) For all x ∈ (1, e], we obtain

J1 ≤ Eα,α(λ)

∣∣∣∣∫ x

1

(lnx− ln t)α−1 dt

t

∣∣∣∣+ λ
1−α
α Eα(λ)

∣∣∣∣∫ x

1

exp(−λ 1
α ln t)

dt

t

∣∣∣∣
≤ Eα,α(λ)

α
+

Eα(λ)

λ
,

where we use the decreasing property of Eα,α(z) for z > 0.

(ii) For all x > e, by using Lemma 2.4, we have

I1 :=

∣∣∣∣∣
∫ x

e

1

(
(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)− (lnx)α−1Eα,α(λ(lnx)

α) exp(−λ 1
α ln t)

) dt
t

∣∣∣∣∣
≤

∣∣∣∣ ∫ x
e

1

(
(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)− 1

α
λ

1−α
α exp(λ

1
α (lnx− ln t))

)
dt

t

∣∣∣∣
+

∣∣∣∣ ∫ x
e

1

1

α
λ

1−α
α exp(λ

1
α (lnx− ln t))− (lnx)α−1Eα,α(λ(lnx)

α) exp(−λ 1
α ln t)

)
dt

t

∣∣∣∣
≤

∫ x
e

1

ω(α, α, λ)

(lnx− ln t)α+1

dt

t
+

∫ x
e

1

ω(α, α, λ)

(lnx)α+1
exp(−λ 1

α ln t)
dt

t

≤
∫ x

e

1

ω(α, α, λ)

(lnx− ln t)α+1

dt

t
+ ω(α, α, λ)

∫ x
e

1

exp(−λ 1
α ln t)

dt

t

≤ ω(α, α, λ)

α
+
ω(α, α, λ)

λ
1
α

= ω(α, α, λ)

(
1

α
+

1

λ
1
α

)
.
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According to Lemma 2.4 again, we have

(lnx)α−1Eα,α(λ(lnx)
α) ≤ ω(α, α, λ)

(lnx)α+1
+

1

α
λ

1−α
α exp(λ

1
α lnx).

Thus, using the decreasing property of Eα,α(z) for z > 0 again, one has

I2 :=

∣∣∣∣∣
∫ x

x
e

(
(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)− (lnx)α−1Eα,α(λ(lnx)

α) exp(−λ 1
α ln t)

) dt
t

∣∣∣∣∣
≤

∣∣∣∣∣
∫ x

x
e

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)
dt

t

∣∣∣∣∣+
∣∣∣∣∣
∫ x

x
e

(lnx)α−1Eα,α(λ(lnx)
α) exp(−λ 1

α ln t)
dt

t

∣∣∣∣∣
≤ Eα,α(λ)

∫ x

x
e

(lnx− ln t)α−1 dt

t

+

∣∣∣∣ ∫ x

x
e

(
ω(α, α, λ)

(lnx)α+1
exp(−λ 1

α ln t) +
λ

1−α
α

α
exp(λ

1
α (lnx− ln t))

)
dt

t

∣∣∣∣
≤ Eα,α(λ)

α
+
ω(α, α, λ)

(lnx)α+1

∫ x

x
e

exp(−λ 1
α ln t)

dt

t
+

1

α
λ

1−α
α

∫ x

x
e

exp(λ
1
α (lnx− ln t))

dt

t

≤ Eα,α(λ)

α
+
ω(α, α, λ)

λ
1
α

− exp(−λ 1
α )

λ
1
α

+
1

α
λ

1−α
α λ−

1
α exp(λ

1
α )

≤ Eα,α(λ)

α
+
ω(α, α, λ)

λ
1
α

+
exp(λ

1
α )

αλ
.

From above, we obtain

J2 ≤ I1 + I2 ≤ Eα,α(λ)

α
+

exp(λ
1
α )

αλ
+ ω(α, α, λ)

(
1

α
+

2

λ
1
α

)
.

The proof is completed

To end this section, we recall the following inequality which will be used in the sequel.

Lemma 2.6. (see [25, Lemma 23]) If λ, v, w > 0, then for any t > a, a > 0, we have(
ln
t

a

)1−v ∫ t

a

(
ln
t

s

)v−1 (
ln
s

a

)λ−1 ( s
a

)−w ds

s
≤ Cw−λ,

where C is a positive constant independent of the time variable t.

3. Some useful lemmas and remarks

Now we plan to give the following integral estimation.

Lemma 3.1. Let λ > 0, z ∈ Cγ,ln([1,∞),R) be a solution of inequality (2). Then z is a solution of

the following inequality:∣∣∣∣z(x)− (lnx)α−1Eα,α(λ(lnx)
α)c0 −

∫ x

1

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)f(t, z(t))
dt

t

∣∣∣∣
≤

∫ x

1

ω(α, α, λ)ε

(lnx− ln t)α+1

dt

t
+
εxλ

1
α

αλ
,

where c0 = HJ
1−α
1+ z(1+).

5
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Proof. According to the Remark 1.2, we have

HD
α
1+z(x) = λz(x) + f(x, z(x)) + h(x), x ∈ (1,∞).

By [1, p.234,(4.1.89)-(4.1.95)] or [26, p.182, (7.2.60)-(7.2.64)], we obtain

z(x) = (lnx)α−1Eα,α(λ(lnx)
α)c0 +

∫ x

1

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)f(t, z(t))
dt

t

+

∫ x

1

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)h(t)
dt

t
, x ∈ (1,∞).

For all 1 < x <∞, using Lemma 2.4, one has∣∣∣∣z(x)− (lnx)α−1Eα,α(λ(lnx)
α)c0 −

∫ x

1

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)f(t, z(t))
dt

t

∣∣∣∣
=

∣∣∣∣∫ x

1

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)h(t)
dt

t

∣∣∣∣
≤

∣∣∣∣∫ x

1

(
(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)− 1

α
λ

1−α
α exp(λ

1
α (lnx− ln t))

)
h(t)

dt

t

∣∣∣∣
+

∣∣∣∣∫ x

1

1

α
λ

1−α
α exp(λ

1
α (lnx− ln t))h(t)

dt

t

∣∣∣∣
≤

∫ x

1

ω(α, α, λ)ε

(lnx− ln t)α+1

dt

t
+ ε

∫ x

1

1

α
λ

1−α
α exp(λ

1
α (lnx− ln t))

dt

t

≤
∫ x

1

ω(α, α, λ)ε

(lnx− ln t)α+1

dt

t
+

ε

αλ
exp(λ

1
α lnx)− ε

λ
1
α

≤
∫ x

1

ω(α, α, λ)ε

(lnx− ln t)α+1

dt

t
+
εxλ

1
α

αλ
.

The proof is completed.

Remark 3.2. Note that for some fixed point x0 and x0 > δ > 1, we have∫ x0

1

1

(lnx0 − ln t)α+1

dt

t
= lim

δ→x0

∫ δ

1

1

(lnx0 − ln t)α+1

dt

t
= lim

δ→x0

1

α
[(lnx0 − ln δ)−α − (lnx0)

−α] = ∞,

which yields that it is not possible to obtain some explicit estimation in this case.

Next, we divide our time interval (1,∞) into two subintervals (1, e] and (e,∞).

Remark 3.3. Let λ > 0, z ∈ Cγ,ln([1, e],R) be a solution of inequality (2). Then z is a solution of

the following inequality:∣∣∣∣z(x)− (lnx)α−1Eα,α(λ(lnx)
α)c0 −

∫ x

1

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)f(t, z(t))
dt

t

∣∣∣∣
≤

∣∣∣∣∫ x

1

(
(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)− λ

1−α
α Eα(λ(lnx)

α) exp(−λ 1
α ln t)

)
h(t)

dt

t

∣∣∣∣
+

∣∣∣∣∫ x

1

λ
1−α
α Eα(λ(lnx)

α) exp(−λ 1
α ln t)h(t)

dt

t

∣∣∣∣
≤ ε

(
Eα,α(λ)

α
+

Eα(λ)

λ

)
+
εEα(λ)

λ

≤ ε

(
Eα,α(λ)

α
+

2Eα(λ)

λ

)
, x ∈ (1, e],

where we use Lemma 2.5(i), Remark 1.2 and Eα,α(z) is an increasing function for z > 0.
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Remark 3.4. Let λ > 0, z ∈ Cγ,ln([e,∞),R) be a solution of inequality (2). Then z is a solution

of the following inequality:∣∣∣∣z(x)− (lnx)α−1Eα,α(λ(lnx)
α)c0 −

∫ x

1

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)f(t, z(t))
dt

t

∣∣∣∣
≤

∣∣∣∣∫ x

1

(
(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)− (lnx)α−1Eα,α(λ(lnx)

α) exp(−λ 1
α ln t)

)
h(t)

dt

t

∣∣∣∣
+

∣∣∣∣∫ x

1

(lnx)α−1Eα,α(λ(lnx)
α) exp(−λ 1

α ln t)h(t)
dt

t

∣∣∣∣
≤ εM(α, λ) + ε

∣∣∣∣∫ x

1

(
ω(α, α, λ)

(lnx)α+1
exp(−λ 1

α ln t) +
1

α
λ

1−α
α exp(λ

1
α (lnx− ln t))

)
dt

t

∣∣∣∣
≤ εM(α, λ) +

εω(α, α, λ)

λ
1
α

+
εx

1
α

λ
1
α

= ε

(
M(α, λ) +

ω(α, α, λ)

λ
1
α

+
x

1
α

λ
1
α

)
,

where we use Lemma 2.4, Lemma 2.5(ii) and Remark 1.2.

Remark 3.5. Let λ < 0, z ∈ Cγ,ln([1,∞),R) be a solution of inequality (2). Then z is a solution

of the following inequality:∣∣∣∣z(x)− (lnx)α−1Eα,α(λ(lnx)
α)c0 −

∫ x

1

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)f(t, z(t))
dt

t

∣∣∣∣
≤ ε(lnx)α

Γ(α+ 1)
, x ∈ (1,∞),

where we use the fact Eα,α(z) ≤ 1
Γ(α) for z < 0.

Remark 3.6. Let λ < 0, z ∈ Cγ,ln([1,∞),R) be a solution of inequality (3). Then z is a solution

of the following inequality:∣∣∣∣z(x)− (lnx)α−1Eα,α(λ(lnx)
α)c0 −

∫ x

1

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)f(t, z(t))
dt

t

∣∣∣∣
=

∣∣∣∣∫ x

1

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)h̃(t)
dt

t

∣∣∣∣
≤ ε

Γ(α)

∫ x

1

(lnx− ln t)α−1φ(t)
dt

t
, x ∈ (1,∞),

where we use the fact Eα,α(z) ≤ 1
Γ(α) for z < 0 again.

4. Main results

4.1. Ulam-Hyers stability results

We introduce the following assumptions:

(A1) f : (1, e]× R → R be a function such that f(·, y(·)) ∈ Cγ ln[1, e], 1− α ≤ γ < 1.

(A2) There exists L > 0 such that

|f(x, y)− f(x, z)| ≤ L|y − z| for each x ∈ J and all y, z ∈ R.

(A3) ω = 1− LEα,α(λ)B[1− γ, α] > 0.

7
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Theorem 4.1. Assume that (A1), (A2), and (A3) are satisfied. Then equation (1) with λ > 0 is

Ulam-Hyers stable on J = (1, e].

Proof. Let z ∈ Cγ,ln([1, e],R) be a solution of inequality (2). By (A1), (A2), and (A3), one can apply

Banach fixed point theorem to derive HD
α
1+y(x) = λy(x) + f(x, y(x)), 0 < α < 1, x ∈ J,

HJ
1−α
1+ z(1+) = c0,

has the unique solution

y(x) = (lnx)α−1Eα,α(λ(lnx)
α)c0 +

∫ x

1

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)f(t, y(t))
dt

t
.

By using Lemma 2.5(i) and Remark 3.3, we have

|(z(x)− y(x))(lnx)γ |

=

∣∣∣∣(lnx)γ(z(x)− (lnx)α−1Eα,α(λ(lnx)
α)c0 −

∫ x

1

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)f(t, y(t))
dt

t

)∣∣∣∣
≤

∣∣∣∣(lnx)γ(z(x)− (lnx)α−1Eα,α(λ(lnx)
α)c0 −

∫ x

1

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)f(t, z(t))
dt

t

)∣∣∣∣
+

∣∣∣∣∫ x

1

(lnx)γ(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)(f(t, z(t))− f(t, y(t)))
dt

t

∣∣∣∣
≤ ε(lnx)γ

(
Eα,α(λ)

α
+

2Eα(λ)

λ

)
+ LEα,α(λ)

∫ x

1

(lnx)γ(lnx− ln t)α−1(ln t)−γ dt

t
∥z − y∥Cγ,ln

≤ ε(lnx)γ
(
Eα,α(λ)

α
+

2Eα(λ)

λ

)
+ LEα,α(λ)B[1− γ, α]∥z − y∥Cγ,ln

,

which yields that

∥z − y∥Cγ,ln
≤ ε

ω

(
Eα,α(λ)

α
+

2Eα(λ)

λ

)
(lnx)γ .

Thus,

|z(x)− y(x)| ≤ cε, c =
1

ω

(
Eα,α(λ)

α
+

2Eα(λ)

λ

)
> 0.

The proof is completed.

Remark 4.2. Let λ < 0. Assume that (A1) and (A2) are satisfied. One can use the above similar

methods via Remark 3.5 to check that the equation (1) is Ulam-Hyers-Rassias stable on J = (1,∞)

provided by ρ = 1− LB[1−γ,α]
Γ(α) > 0. That is,

|z(x)− y(x)| ≤ cεφ(x), x ∈ (1,∞), c =
ε

ρΓ(α+ 1)
> 0, φ(x) = (lnx)α.

Example 4.3. Let α = 2
3 , λ = 1

2 and γ = 1
2 . Consider the fractional order differential equation

HD
2
3

1+y(x) =
1

2
y(x) +

1

l
sin2 y(x), x ∈ (1, e], l > 0, (4)

and the inequality

|HD
2
3

1+z(x)−
1

2
z(x)− 1

l
sin2 z(x)| ≤ ε, x ∈ (1, e]. (5)
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Let z ∈ Cγ,ln([1, e],R) be a solution of inequality (5). Then there exists a function h(x) = ε lnx ∈

Cγ,ln([1, e],R) such that |h(x)| ≤ ε, x ∈ (1, e], and HD
2
3

1+z(x) =
1
2z(x)+

1
l sin

2 z(x)+h(x), x ∈ (1, e].

Define f(x, y(x)) = 1
l sin

2(x), x ∈ (1, e] and L = 2
l . Obviously, (A1) and (A2) hold. Moreover,

we choose l = 6E 2
3 ,

2
3

(
1
2

)
B
[
1
2 ,

2
3

]
, then

ω = 1− 2

l
E 2

3 ,
2
3

(
1

2

)
B

[
1

2
,
2

3

]
=

2

3
> 0,

which implies that (A3) holds. According to Theorem 4.2, we have

|z(x)− y(x)| ≤ 3ε

2

(
1.5E 2

3 ,
2
3

(
1

2

)
+ 4E 2

3

(
1

2

))
.

Thus, equation (4) is Ulam-Hyers stable on (1, e] with c = 3
2

(
1.5E 2

3 ,
2
3

(
1
2

)
+ 4E 2

3

(
1
2

))
.

4.2. Ulam-Hyers-Rassias stability result

Next, we introduce the following assumptions:

(B1) Let λ < 0 and γ = 1− α.

(B2) f : J × R → R is jointly continuous and there exists L(·) ∈ C([1,∞),R+) such that

|f(x, y)− f(x, z)| ≤ L(x)|y − z| for each x ∈ J and all y, z ∈ R,

where L(·) satisfying∫ x

1

(lnx)γ(lnx− ln t)α−1(ln t)−γL(t)
dt

t
≤ C̃(lnx)α−1, C̃ > 0. (6)

(B3) There exists a φ(·) ∈ C([1,∞),R+) such that∫ x

1

(lnx− ln t)α−1φ(t)
dt

t
≤ Ĉφ(t), Ĉ > 0. (7)

(B4) ω
′ = 1− C̃

Γ(α) > 0.

Theorem 4.4. Let λ < 0. Assume that (B1), (B2), (B3) and (B4) are satisfied. Then equation (1)

is Ulam-Hyers-Rassias stable on J = (1,∞).

Proof. Note that the fact Eα,α(z) ≤ 1
Γ(α) for z < 0. By Remark 3.6, one can obtain

|(z(x)− y(x))(lnx)γ |

≤
∣∣∣∣(lnx)γ(z(x)− (lnx)α−1Eα,α(λ(lnx)

α)c0 −
∫ x

1

(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)f(t, z(t))
dt

t

)∣∣∣∣
+

∣∣∣∣∫ x

1

(lnx)γ(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)(f(t, z(t))− f(t, y(t)))
dt

t

∣∣∣∣
≤ 1

Γ(α)

∣∣∣∣∫ x

1

(lnx)γ(lnx− ln t)α−1εφ(t)
dt

t

∣∣∣∣
+

1

Γ(α)

∫ x

1

(lnx)γ(lnx− ln t)α−1L(t)|y − z|dt
t

≤ ε(lnx)γ

Γ(α)
Ĉφ(x) +

1

Γ(α)

∫ x

1

(lnx)γ(lnx− ln t)α−1(ln t)−γL(t)
dt

t
∥y − z∥Cγ,ln

≤ ε(lnx)γ

Γ(α)
Ĉφ(x) +

C̃

Γ(α)
(lnx)γ+α−1∥y − z∥Cγ,ln

.
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This yields that (
1− C̃

Γ(α)

)
∥y − z∥Cγ,ln

≤ ε(lnx)γ

Γ(α)
Ĉφ(x).

This implies that

|y(x)− z(x)| ≤ Ĉε

ω′Γ(α)
φ(x), x ∈ J.

The proof is completed.

Example 4.5. Let α = 1
2 , λ = −1

2 and γ = 1
2 . Consider the fractional order differential equation

HD
1
2

1+y(x) = −1

2
y(x) +

1

lx3
sin2 y(x), x ∈ (1,∞), l > 0, (8)

and the inequality

|HD
1
2

1+z(x)−
1

2
z(x)− 1

lx3
sin2 z(x)| ≤ εφ(x), x ∈ (1,∞). (9)

Define f(x, y(x)) = 1
lx3 sin

2(x) and L(x) = 1
lx3 , x ∈ (1,∞). Let z ∈ Cγ,ln([1,∞),R) be a solution

of inequality (9). There exists a function h(x) = ε
x (lnx)

α−1−γ ∈ Cγ,ln([1,∞),R) such that |h(x)| ≤

ε(lnx)α−1−γ := φ(x), x ∈ (1,∞). Moreover, (5) via Lemma 2.6 reduces to∫ x

1

(lnx)
1
2 (lnx− ln t)−

1
2 (ln t)−

1
2
2

lt3
dt

t
≤ 2C

l

√
3(lnx)−

1
2 , x ∈ (1,∞),

and (9) reduces to∫ x

1

(lnx)γ(lnx− ln t)α−1ε(lnx)α−1−γ dt

t
≤ Ĉε(lnx)α−1−γ = Ĉε(lnx)−1, Ĉ > 0, x ∈ (1,∞).

From above, (B1), (B2) and (B3) hold. Now we choose l = Γ(0.5)

4
√
3C

and ω′ = 1− 2C
√
3

l = 1
2 > 0, which

implies that (B4) holds. According to Theorem 4.4, we have

|z(x)− y(x)| ≤ 2Ĉε

Γ(0.5)
(lnx)−1.

Thus, equation (8) is Ulam-Hyers-Rassias stable on (1,∞) with c = 2Ĉ
Γ(0.5) and φ(x) = ε(lnx)−1, x ∈

(1,∞).

4.3. Final remarks

Let λ > 0. Assume that (B1) and (B2) are satisfied. It seems that we can not use the above

approach to discuss Ulam-Hyers-Rassias stability of the equation (1) with λ > 0 on J = (e,∞).

In fact, by Remark 3.4, one has

|(z(x)− y(x))(lnx)γ | ≤

(
εM(α, λ) +

εω(α, α, λ)

λ
1
α

+
εx

1
α

λ
1
α

)
(lnx)γ

+

∣∣∣∣ ∫ x

1

(lnx)γ(lnx− ln t)α−1Eα,α(λ(lnx− ln t)α)L(t)|y(t)− z(t)|dt
t

∣∣∣∣
≤

(
εM(α, λ) +

εω(α, α, λ)

λ
1
α

+
εx

1
α

λ
1
α

)
(lnx)γ +Υ(x)∥y − z∥Cγ,ln

, (10)
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where

Υ(x) = (lnx)γEα,α(λ(lnx)
α)

∣∣∣∣ ∫ x

1

(lnx− ln t)α−1L(t)(ln t)−γ dt

t

∣∣∣∣.
Set L(t) = t−w, w > 0. According to Lemma 2.6, we have

Υ(x) = (lnx)γEα,α(λ(lnx)
α)

∣∣∣∣ ∫ x

1

(lnx− ln t)α−1(ln t)−γt−w dt

t

∣∣∣∣
= (lnx)γEα,α(λ(lnx)

α)

∣∣∣∣ ∫ x

1

(lnx− ln t)α−1(ln t)(1−γ)−1t−w dt

t

∣∣∣∣
≤ Cw1−γ Eα,α(λ(lnx)

α)

(lnx)1−α−γ
(C > 0)

≤ λ
1−α
α Cw1−γ

α
xλ

1
α +γ ,

where we use the fact

lim
x→∞

1
αλ

1−α
α exp(λ

1
α lnx)

(lnx)α−1Eα,α(λ(lnx)α)
= 1.

Dividing (lnx)γ by (10) we obtain

|(z(x)− y(x))| ≤

(
εM(α, λ) +

εω(α, α, λ)

λ
1
α

+
εx

1
α

λ
1
α

)
+

Υ(x)

(lnx)γ
∥y − z∥Cγ,ln

. (11)

Obviously,

lim
x→∞

Υ(x)

(lnx)γ
=
λ

1−α
α cw1−γ

α
lim
x→∞

xλ
1
α +γ

(lnx)γ
= ∞.

Thus, the term Υ(x)
(ln x)γ ∥y− z∥Cγ,ln

in (11) does not vanish. Therefore, the equation (1) with λ > 0 is

not necessary Ulam-Hyers-Rassias stable on J = (e,∞).
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[10] J. Wang, M. Fečkan, Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal.,

19(2016), 806-831
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[21] J. Wang, M. Fečkan, Y. Zhou, Ulam’s type stability of impulsive ordinary differential equations, J. Math. Anal.

Appl., 395(2012), 258-264.
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LINEARLY STABLE PERIODIC SOLUTIONS FOR

LAGRANGIAN EQUATION

FENG WANG1,2 AND SHENGJUN LI3,4

Abstract. In this paper we study the existence and uniqueness of linearly

stable periodic solutions for the Lagrangian equation. The proof is based on
the eigenvalue theory combined with degree theory. Compared with those

results in the literature, our conditions are weaker.

1. Introduction

This paper is devoted to the study of the existence and uniqueness of linear
stablity of periodic solutions for the following nonlinear scalar Lagrangian equation

ẍ+ g(t, x) = 0,(1.1)

where g(t, x) : R × R → R is a T -periodic function in t and is semilinear in the
following sense: There exist T -periodic functions φ,Φ ∈ L1(0, T ) such that

φ(t) ≤ gx(t, x) ≤ Φ(t),

uniformly in t ∈ [0, T ]. We say that a T -periodic solution ψ(t) of (1.1) is linearly
stable if the linearized equation

ÿ + (gx(t, ψ(t))y = 0(1.2)

is stable. But it is not sufficient to guarantee that ψ(t) is Lyapunov stable as
(1.1) is a conservative system, Lyapunov stability of ψ(t) cannot be determined by
linearized equation (1.2) and involves higher order approximations of (1.1). Based
on this idea, a practical method, now known as the third order approximation, has
been developed by Ortega based on the Birkhoff normal forms and the Moser’s
twist theorem [17]. After there has been considerable progress on this topic. We
refer the reader to [2, 3, 4, 5]. However, an “almost” necessary condition for ψ(t)
to be stable is that it is linearly stable. In this direction, it is worth mentioning
the example found by Chu [3]. That is, the equilibrium x(t) = 0 of the motion of

2010 Mathematics Subject Classification. Primary 34C25.
Key words and phrases. Lagrangian equation; linear stability; periodic solutions; existence;

uniqueness.
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ported by the National Natural Science Foundation of China (Grant No.11461016), the Scientific
Research Foundation of Hainan University (kyqd1544), Hainan Natural Science Foundation(Grant

No.20167246).

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1454 FENG WANG et al 1454-1462



2 FENG WANG AND SHENGJUN LI

a pendulum with variable length and relativistic effects( x′√
1− x′2

)′
+ l(t) sinx = 0, l(t) > 0, l ∈ C(R/TZ),

is stable if its linearized equation

ẍ+ l(t)x = 0

is stable. In this paper it is shown how a topological invariant, the index of an
oscillation, can be used to obtain linear stability results. Actually, it will be proved
that the index characterizes linearly stable in certain case (see section 2). Our
study is mainly motivated by [7], where a result is the following.

Theorem 1.1. If there exists a > 0 and Φ ∈ L1(0, T ) such that

a < gx(t, x) ≤ Φ(t),(1.3)

for all x and a.e. t ∈ [0, T ], and ‖Φ‖p < K(2p∗) for some p ∈ [1,+∞], then (1.1)
has a unique T -periodic solution which is linearly stable.

It must be noticed that the strict positiveness assumption of gx(t, x) is crucial
for this result since this implied the monotonicity of the nonlinearity and then a
method of lower and upper coupled with the monotone iterative technique was used
to get existence and linear stability. Unfortunately, in some interesting problems we
find that the constant gx(t, x) changes sign and Theorem 1.1 cannot be applied. It
should be pointed out that Ortega has presented the index characterized asymptotic
stability in dissipative case. See the references [15, 16] and the surveys [18, 19]. In
this paper, we try to obtain similar results for the conservative case following the
ideas in [15, 16, 18, 19], see Theorem 2.3 below.

The purpose of the present paper is to extend Theorem 1.1 which hold when
gx(t, x) changes sign, we prove the following theorems.

Theorem 1.2. Suppose that g(t, x) ∈ C1(R × R) satisfies the following semilin-
earity condition: there exist T -periodic functions φ,Φ ∈ L1(0, T ) such that

φ(t) ≤ gx(t, x) ≤ Φ(t),(1.4)

uniformly in t. Furthermore, assume

φ(t) > 0 and λ1(Φ) > 0,(1.5)

here φ(t) denotes the average of φ(t) over a period and λ1 is antiperiodic eigenvalue.
Then (1.1) has a unique T -periodic solution which is linearly stable.

Let us recall a lower bound for λ1(Φ) from [20]. Let us define the positive part
of a function Φ as Φ+ = max{Φ, 0}. If the Lp norm ‖Φ+‖p satisfies

‖Φ+‖p ≤ K(2p∗), p∗ = p/p− 1,

then (see (13) in [20])

λ1(Φ) ≥
( π
T

)2(
1− ‖Φ

+‖p
K(2p∗)

)
.

Here K(q) is the best Sobolev constant in the following inequality:

C‖x‖2q ≤ ‖ẋ‖22 for all x ∈ H1
0 (0, T ),
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where H1
0 (0, T ) is a Sobolev space of all the T -periodic absolutely continuous func-

tions x such that
∫ T

0
ẋ2(t)dt <∞ with the norm

‖x‖1,T =
(∫ T

0

ẋ2(t)dt+

∫ T

0

x2(t)dt
) 1

2

.

Explicitly,

K(q) =

 2π
qT 1+2/q

(
2

2+q

)1−2/q( Γ( 1
q )

Γ( 1
2 + 1

q )

)2

, if 1 ≤ q <∞,
4
T , if q =∞.

See Talenti [13]. Thus we have the following

Corollary 1.3. Assume all conditions of Theorem 1.2 hold except (1.5) and as-
sume

φ(t) > 0 and ‖Φ+‖p < K(2p∗), 1 ≤ p ≤ +∞.
Then the same conclusion holds. In particular, when p = +∞, we arrive at the
usual criterion

‖Φ+‖∞ < K(2) =
π2

T 2
.

2. Linear stability and index

2.1. Hill’s equation and eigenvalue theory. To each function a ∈ L1(R/TZ),
we associate a linear equation

ẍ+ a(t)x = 0,(2.1)

which is called Hill’s equation and there are many studies about it. The book by
Magnus and Winkler [11] is a classical reference.

Now we recall some standard notions in the theory of Hill’s equations. Denote
by Ψ(t) = φ1(t) + iφ2(t) the complex-valued solution of (2.1) with the initial data:
Ψ(0) = 1 and Ψ′(0) = i, where φ1 and φ2 are respectively the real and imaginary
parts of Ψ. Let

M(t) =

(
φ1(t) φ2(t)

φ̇1(t) φ̇2(t)

)
be employed for the fundamental matrix solution of

Ẋ = A(t)X, X(0) = I2,

where the column vector function X(t) = (x(t), x′(t))T , I2 is the 2 × 2 identity
matrix and A(t) is the matrix function

A(t) =

(
0 1
−a(t) 0

)
.

Liouville’s theorem implies that the matrix solution M(t) always satisfies

detM(t) = 1.

This property motivates our interest in the symplectic group. The monodromy
matrix associated with (2.1) is

M(T ) =

(
φ1(T ) φ2(T )

φ̇1(T ) φ̇2(T )

)
.

Then M is symplectic, i.e., detM = 1. The eigenvalues ρi, i = 1, 2, of M are called
the Floquet multipliers of (2.1). They satisfy ρ1 · ρ2 = 1. We can classify (2.1)
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into three types, according to the Floquet multipliers, as either hyperbolic when
|ρ1,2| 6= 1, or elliptic when |ρ1,2| = 1 but ρ1,2 6= ±1, or parabolic when ρ1,2 = ±1,
respectively.

Next we introduce some notations on eigenvalues. Consider the eigenvalue prob-
lems

x′′ + (λ+ a(t))x = 0(2.2)

subject to the periodic boundary condition

x(0)− x(T ) = x′(0)− x′(T ) = 0,(2.3)

or to the anti-periodic boundary condition

x(0) + x(T ) = x′(0) + x′(T ) = 0.(2.4)

We use

λD1 (a) < λD2 (a) < · · · < λDn (a) · · ·
to denote all eigenvalues of (2.2) with the Dirichlet boundary condition (D) :

x(0) = x(T ) = 0.(2.5)

The following are standard results for eigenvalue theory. See, e.g. Reference [11].
A partial generalization of these results to the one-dimensional p-Laplacian with
periodic potentials is given in Reference [14].

Theorem 2.1. There exist two sequences {λn(a) : n ∈ N} and {λn(a) : n ∈ Z+}
of the reals such that

(P1) they have the following order:

−∞ < λ0(a) < λ1(a) ≤ λ1(a) < · · · < λn(a) ≤ λn(a) < · · ·

and λn(a)→ +∞, λn(a)→ +∞ as n→∞.
(P2) λ is an eigenvalue of (2.2)-(2.3) if and only if λ = λn(a) or λn(a) for some

even integer n; λ is an eigenvalue of (2.2)-(2.4) if and only if λ = λn(a) or λn(a)
for some odd integer n.

(P3) (Continuity) λDn (a), λn(a), and λn(a) are continuous functions of q with

respect to the L1-metric on q’s: d(a1, a2) =
∫ T

0
|a1(t)− a2(t)|dt.

(P4) the eigenvalues λn(a) and λn(a) can be recovered from the Dirichlet eigen-
values in the following way: for any n ∈ N,

λn(a) = min{λDn (at0) : t0 ∈ R}, λn(a) = max{λDn (at0) : t0 ∈ R},

here at0(t) denotes the translation of a(t) : at0(t) ≡ a(t+ t0).
(P5) (Comparison) the comparison results hold for all of these eigenvalues. If

a1 ≥ a2 then

λn(a1) ≤ λn(a2), λn(a1) ≤ λn(a1), λDn (q1) ≤ λDn (q2),(2.6)

for any n ∈ N. If a1(t) ≥ a2(t) for all t, and a1(t) > a2(t) for t in a subset of
positive measure, then all of the inequalities in (2.6) are strict.

(P6) (Nodal structure) The eigenfunction of λ0(a) do not vanish everywhere. For
n ∈ N, the eigenfunctions of λn(a) or λn(a) have exactly n−1 zeros in the intervals
of the form (t0, t0 + T ).
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2.2. Definition of the index via the Poincaré map. In this subsection we
assume uniqueness for the initial value problem associated to (1.1). Given ξ =
(ξ1, ξ2) ∈ R2, let x(t; ξ) be the solution of (1.1) satisfying

x(0) = ξ1, x′(0) = ξ2.

The Poincaré map is defined as the mapping

PT : DT ⊂ R2 → R2, PT (ξ) = (x(T ; ξ), ẋ(T ; ξ)),

where DT = {ξ ∈ R2 : x(t; ξ) is defined in [0, T ]}.
The standard theory of the Cauchy problem says that DT is open in R2 and PT

is a homeomorphism between DT and PT (DT ). In addition, the fixed points of PT
correspond to the initial conditions of the T -periodic solutions and the search of
T -periodic solutions is reduced to the study of the equation in R2,

ξ = PT (ξ).

Let x be a T -periodic solution of 1.1 and ξ0 = (x(0), x′(0)). The solution x is
said to be isolated (periodic T ) if ξ0 is an isolated fixed point of PT . In such case
the index of x is defined in terms of the following formula

indT (x) = i[PT , ξ0],

where i refers to the definition of the local fixed point index in the plane employed
in [1]. For more information on the index of periodic solutions see [8] and [12].

2.3. Connection between linear stability and index. In this subsection we
proof a few lemmas that are crucial for the proofs of the main results. First we
need the following.

Definition 2.2. Given a T -periodic solution x(t) of (1.1). It will be said that x(t)
is non-degenerate of periodic T if the variational equation is

(2.7) ÿ + gx(t, x)y = 0

has no periodic solutions different from zero of periodic T .

Theorem 2.3. Assume that x is a nondegenerate T -periodic solution of (1.1) such
that the inequality below holds

λ1(gx(t, x)) ≥ 0,(2.8)

for t ∈ R. Then x is linearly stable if and only if indT (x)=1.

Remark 2.4. Notice that a nondegenerate solution is always isolated and it is
assumed that x is a nondegenerate in order to employ linearization techniques.
We do not know if Theorem 2.3 is still valid when nondegenerate is replaced by
degenerate. Because the computation of the index in the degenerate case

ρ1 = ρ2 = 1

is more delicate the previous technique does not work and the index of x depends
not only on (2.7) but also on the nonlinear terms of the Taylor expansion of g.
Some methods about computation in the degenerate case can be found in [?] or [9]
for more details.

The crucial step in proof of Theorem 1.2 is the following observation on the Hill
equation (2.1).
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Lemma 2.5. Assume that

λ1(a) > 0.(2.9)

Then problem (2.1) does not admit any negative Floquet multipliers. In particular,
(2.1) does not admit any nontrivial subharmonic periodic solution of order 2.

Proof. Suppose that there is a nontrivial solution of (2.1) with a negative Floquet
multiplier, i.e. x(t + T ) = ρx(t), t ∈ R for some ρ < 0. Hence, there exists
t0 ∈ [0, T ] with x(t0) = x(t0 + T ) = 0. Thus the corresponding x is a nontrivial
solution of the following Dirichlet boundary value problem{

ẍ(t) + a(t)x = 0,
x(t0) = x(T + t0) = 0.

That is, x is an eigenfunction associated with eigenvalue λDk (a) = 0 for some k ≥ 1
of {

ẍ(t) + (λ+ a(t))x = 0,
x(t0) = x(T + t0) = 0,

and hence λ1(a) ≤ λD1 (a) ≤ λDk (a) = 0, contradicting (2.9).
Proof of Theorem 2.3. When the inequality in (2.8) is not strict it is elementary
to show that x is linearly stable and indT (x) = 1. Therefore it will be assumed that
the inequality in (2.8) is strict, at least on a set of positive measure. Denote by
ρ1, ρ2 (|ρ1| ≥ |ρ2|) the Floquet multipliers of (2.1). By Lemma 2.5 the multipliers
are either conjugate complex or real and positive. In the elliptic case,

ρ1 = ρ2

if and only if

indT (x) = sign{det(I2 −M(T ))} = sign{|1− ρ1|2} = 1.

In the hyperbolic case,

0 < ρ1 < 1 < ρ2

if and only if

indT (x) = sign{det(I2 −M(T ))} = sign{(1− ρ1)(1− ρ2)} = −1.

The parabolic case is excluded because x is nondegenerate 1 cannot be a Floquet
multipler.

The conclusion now follows from the well-known principle of stability for Hill
equation (see Theorem 7.2 in [6]) that periodic system (2.1) is stable in the sense
of Lyapunov if and only if (2.1) is elliptic, or is parabolic (ρ1 = ρ2 = ±1) with
further property that all solutions of (2.1) satisfy x(t + T ) = x(t), the T -periodic
solutions in case ρ1 = ρ2 = 1, or x(t+ T ) = −x(t), the T -anti-periodic solutions in
case ρ1 = ρ2 = −1.

3. Proof of Theorem 1.2

The proof of existence is based on the following two lemmas.

Lemma 3.1. Assume that

a(t) > 0 and λ1(a) > 0.(3.1)

Then Hill equation (2.1) has only the trivial T -periodic solution.
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Proof. Suppose on the contrary that (2.1) admits a nontrivial T -periodic solution
x(t). We claim that x(t) vanishes at some t0 ∈ [0, T ]. If not, then x(t) 6= 0 for all t

in R. By the periodic boundary conditions, we have ẋ(T ) = ẋ(0) and ẋ(T )
x(T ) = ẋ(0)

x(0) .

Dividing (2.1) by x(t) and integrating by part gives that∫ T

0

ẋ(t)2

x(t)2
+

∫ T

0

a(t)dt = 0,

which contradicts the hypothesis a(t) > 0. So x(t) has a zero in [0,T]. We may
assume that x(0) = 0 so that x(0) = x(T ) = 0. Thus the corresponding x is a
nontrivial solution of the Dirichlet boundary value problem (2.1)-(2.5) That is, x is
an eigenfunction associated with eigenvalue λDk (a) = 0 for some k ≥ 1 of (2.2)-(2.5),
and hence λ1(a) ≤ λD1 (a) ≤ λDk (a) = 0, contradicting (3.1).

Lemma 3.2. Under the conditions of Lemma 3.1, the Hill equation (2.1) is stable.

Proof. The proof will be completed using Theorem 2.3. To this end, we compute
the local index and consider following parametric equation

Lλ = ẍ+ [λa(t) + (1− λ)a0]x = 0, λ ∈ [0, 1],

where 0 < a0 < (π/T )2.
Let aλ = λa(t) + (1− λ)a0. Since

aλ = λa(t) + (1− λ)a0 > 0,

and
λ1(aλ) ≥ λ λ1(a) + (1− λ)λ1(a0) > 0,

it follows from Lemma 3.1 that Lλx = 0 does not admit a nontrivial T -periodic
solution. Let Bε be the ε-ball of 0, then Lλx = 0 has no T -periodic solution on ∂Bε
for λ ∈ [0, 1]. By the homotopy invariance properties of the topological degree, we
have that

ind(L1, 0) = deg(L1, Bε, 0) = deg(Lλ, Bε, 0)

= deg(L0, Bε, 0) = sgn

∣∣∣∣ 0 1
−a0 0

∣∣∣∣ = 1.

The conclusion follows from Theorem 2.3.
Proof of Theorem 1.2 In order to show that the conditions are sufficient, we
divide the proof into two steps.

Step 1: Uniqueness. Suppose that x1(t) and x2(t) are two T -periodic solutions
of (1.1). Then

[x1(t)− x2(t)]′′ + [g(t, x1(t))− g(t, x2(t))] = 0.(3.2)

Setting x̃(t) = x1(t)− x2(t), we obtain, from (3.2), that

x̃′′(t) + β(t)x̃(t) = 0,(3.3)

where β(t) = g(t,x1)−g(t,x2)
x1−x2

. It follows from Lemma 3.1 that x̃(t) ≡ 0, which implies

that x1(t) ≡ x2(t) for all t ∈ R.
Step 2: Existence and linearly stable. Without loss of generality, we may assume

that g(t, 0) = 0, for otherwise we can reduce both sides of Eq. (1.1) by g(t, 0).
A natural choice for the parametrized equation in applying homotopy invariance
property is to take H defined by

Hλ(x) = ẍ(t) + λg(t, x) + (1− λ)Φ(t)x = 0,(3.4)
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in which Φ(t) is as in Theorem 1.2.
We claim that there is R > 0 such that equation (3.4) has no solution on ∂BR

in L∞[0, T ] for all λ ∈ [0, 1]. Suppose the assertion is not true. Let xn = xn(t)
be a sequence of T -periodic solutions such that ‖xn‖ → ∞ and λn ∈ [0, 1] be the

corresponding sequence. Let zn(t) = xn(t)
‖xn‖ . First, dividing (3.4) by ‖xn‖, then

multiplying by ϕ(t) ∈ C2
T and finally integrating by parts we have that∫ T

0

{
znϕ̈+

[
λng(t, xn) + (1− λn)Φ(t)xn

]
· ϕ/‖xn‖

}
dt = 0.

The conditions of Theorem 1.2 imply that {[λng(t, xn) + (1− λn)Φ(t)xn]/‖xn‖} is
bounded and hence is pre-compact in weak star topology in L1[0, T ]. Thus there
is a subsequence such that g(t, xn)/xn ⇀ α(t) and λn → λ. Taking the limit as
n→∞, one obtains that zn → z,∫ T

0

(zϕ̈+ zω(t)ϕ)dt = 0,

where ω(t) = λα(t) + (1−λ)Φ(t) satisfying the conditions of Lemma 3.1. It follows
from Lemma 3.1 that z(t) ≡ 0, which contradicts ‖z(t)‖ = 1. This shows the
boundedness of the periodic solutions of (3.4). By the standard argument one can
verify that the C1-norm is bounded independently of λ. Next, by applying the
homotopy invariance property, we have that

deg(H1, BR, 0) = deg(H0, BR, 0).

From the same reasonings of Lemma 3.2 one proves that deg(H0, BR, 0) = 1. This
completes the existence of T -periodic solution x, and linear stability can be obtained
by Lemma 3.2.

4. Final remark

Theorem 2.3 can be applied to other kinds of problems. In particular, to the
piecewise linear equation

ẍ+ µ(t)x+ − ν(t)x− = 0,(4.1)

where x+ = max{x, 0}, x− = max{−x, 0}, µ, ν ∈ L1(0, T ). The equation (4.1)
is very popular since a series of works of Lazer and McKenna [10] as a simple
mathematical model for vertical oscillations of a long-span suspension bridge. The
following result can be proved in a way similar to Theorem 1.2
Equation (4.1) has a unique T -periodic solution which is linearly stable if µ(t) >

0, ν(t) > 0 and

‖max
t∈R
{µ(t), ν(t)}‖p < K(2p∗), 1 ≤ p ≤ +∞.
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Abstract: The primary focus of this paper is to investigate the boundedness and asymptotic
behavior of the following symmetric system of max-type difference equations

1 1 1 0
1 1 1

max{ , }, max{ , }, max{ , }, ,
p p p
n n n

n n nq q q
n n n

y z xx c y c z c n
z x y+ + +

− − −

= = = ∈

where the parameters , , (0, )c p q∈ ∞ and the initial conditions 1 0 1 0 1 0, , , , ,x x y y z z− − − are

arbitrary positive real numbers. Our main results considerably improve results appearing in
the literature (see, Stević, (2014) [29]).

Keywords: max-type system, difference equations, boundedness, global attractivity.

1. Introduction

In last few decades there has been a great interest in studying nonlinear difference
equations and systems for developing some new techniques which can be used in
investigating the models describing real life situations in biology, control theory, economics,
etc. (see, e.g., [1-15] and the references therein). Recently, the so-called max-type difference
equation has attracted more and more attention. However, the maxima operator is not a
smooth function in n-dimensional real vector space so that the techniques which use
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Telecommunications, Chongqing 400065 P. R. China.
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derivatives could be of almost no use, so the study of max-type systems of difference
equations become more difficult. Some studies of these difference equations have been
presented in [16-25].

Paper [26] is one of the first such papers on max-type difference equations. It studies
positive solutions of the difference equation

1 0
1

max{ , },
p
n

n p
n

xx a n
x+

−

= ∈ , (1.1)

where initial values 1 0,x x− , and parameters a and p are positive numbers.

In [27], Stevo Stević studied the boundedness character of positive solutions to the
following max-type difference equation,

1
0max{ , },

p
n

n r
n k

xx A n
x

−

−

= ∈ , (1.2)

where \{1}k N∈ , the parameters A and r are positive and p is a nonnegative real number.

As an extension of (1.2), Stevo Stević studied the boundedness character and global
attractivity of positive solutions of the following symmetric system of max-type difference
equation

1 1 0
1 1

max{ , }, max{ , },
p p
n n

n np p
n n

y xx c y c n
x y+ +

− −

= = ∈ , (1.3)

where , (0, )c p∈ +∞ (see [28]).

Above results motivated Stevo Stević to continuously investigate the behavior of positive
solutions of the following max-type system of differences

1 1 1 0
1 1 1

max{ , }, max{ , }, max{ , },
p p p
n n n

n n np p p
n n n

y z xx c y c z c n
z x y+ + +

− − −

= = = ∈ , (1.4)

where the parameters c and p are positive real numbers. It is proved that system (1.4) is

permanent when (0,4)p∈ and so forth (see [29]).

Motivated by works [26-29], the primary focus of this paper is to investigate the
boundedness character and global attractivity of the following max-type difference equations

1 1 1 0
1 1 1

max{ , }, max{ , }, max{ , }, ,
p p p
n n n

n n nq q q
n n n

y z xx c y c z c n
z x y+ + +

− − −

= = = ∈ (1.5)
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where , , (0, )c p q∈ +∞ . It is obvious that the paper can be considered as a continuation of

studying special cases of the next systems of difference equations

1 1 1 0max{ , }, max{ , }, max{ , }, ,
p p p
n m n m n m

n n n n n nq q q
n k n k n k

y z xx A y A z A n
z x y

− − −
+ + +

− − −

= = = ∈

where ,m k N∈ , , (0, )p q∈ +∞ , and ( )
0

n n N
A

∈
is a sequence of positive numbers. For more

related papers in this research area, see, for example, [30-33] and the references therein.

The rest of the paper is organized as follows. In Section 2, we will focus our attention on
the buondedness character of solutions of system (1.5) by developing new iterative method
and inequality technique. In Section 3, we will investigate the asymptotic behavior of
solutions of system (1.5). Then we show an example and carry out numerical simulations in
Section 4, from which it can be seen that all simulations agree with the theoretical results.
We finally conclude our paper in Section 5.

2. Boundedness character of solutions

This section is devoted to analyzing the boundedness of the positive solutions to the max-
type difference systems (1.5).

Theorem 2.1. Assume that 2( )f p qλ λ λ= − + and (a) there is 1 1λ > such that 1( ) 0f λ = ,

or (b) there is 1 2 1λ λ= = such that 1 2( ) ( ) 0f fλ λ= = . Then the system (1.5) has positive

unbounded solutions.

Proof. Obviously, from (1.5), we can easily see that

1 1 1
1 1 1

, ,
p p p
n n n

n n nq q q
n n n

y z xx y z
z x y+ + +

− − −

≥ ≥ ≥ . (2.1)

By taking logarithm in (2.1), for any 0n∈ , we obtain

1 1 1 1 1 1ln ln ln , ln ln ln , ln ln lnn n n n n n n n nx p y q z y p z q x z p x q y+ − + − + −≥ − ≥ − ≥ − . (2.2)

Moreover, it follows that

1 1 1 1 1 1ln ln lnn n n n n n n n nx y z p x y z q x y z+ + + − − −≥ − . (2.3)

Let lnn n n nv x y z= , where 1n ≥ − , then inequality (2.3) becomes

1 1n n nv pv qv+ −≥ − , 0n∈ . (2.4)

By hypothesis (a), we have that 1( ) 0f λ = and 1 1λ > .

Let
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1
1

( )( ) ff aλλ λ
λ λ

= = +
− , (2.5)

then it follows that

1( ) ( )( )f aλ λ λ λ= + − . (2.6)

Thus, we can obtain 1p aλ= − and 1q aλ= − .

Set

-1 0,n n nu v av n= + ∈ . (2.7)

Then inequation (2.4) can be written in the following form

1 1 1 1 1 1

1 1 1

1 1

( )
( )

0.

n n n n n n

n n n n

n n

v pv qv v a v a v
v av v av
u u

λ λ
λ

λ

+ − + −

+ −

+

− + = − − −
= + − +
= −

≥

(2.8)

That is

1 1n nu uλ+ ≥ . (2.9)

Let 1 0,v v− be chosen such that

0 1| || |v a v−≥ . (2.10)

This, along with (2.9), yields to

1 1 0
n

nu uλ+ ≥ , and 0 0u > . (2.11)

Letting n →∞ in (2.11), from assumption (a) 1 1λ > and 0 0u > , it follows that

-1n n nu v av= + → +∞ as n →+∞ . (2.12)

Hence { } 1n n
v

≥−
is unbounded. As lnn n n nv x y z= , it follows that

n n nx y z →∞ as n →∞ , (2.13)

which along with 2 2 2 33n n n n n nx y z x y z+ + ≥ implies

2 2 2
n n nx y z+ + → +∞ , (2.14)

from which it follows that the sequence { } 1
( , , )n n n n
x y z

≥−
is unbounded.
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By hypothesis (b), we have 2, 1p q= = . Then from (2.1) we get

1 1 1

1 1 1

, ,n n n n n n

n n n n n n

x y y z z x
y z z x x y
+ + +

− − −

≥ ≥ ≥ . (2.15)

Moreover, one has

1 1 1 0 0 0
0

1 1 1 1 1 1

,n n n n n n

n n n n n n

x y y x y z x y z n N
x y z x y z x y z
+ + +

− − − − − −

≥ ≥ ≥ ∈ . (2.16)

and consequently

0 0 0
0 0 0 0

1 1 1

( ) ,n
n n n

y x zx y z x y z n N
x y z− − −

≥ ∈ . (2.17)

If we choose the initial conditions 1 1 1 0 0 0, , , , ,x y z x y z− − − such that 0 0 0 1 1 1 0x y z x y z− − −> > then
we obtain (2.13) and consequently (2.14), which implies that the sequence{ } 1

( , , )n n n n
x y z

≥−
is

unbounded, and then the proof of Theorem 2.1 is completed.

Next, we study the different cases concerning with the boundedness of positive solutions
to the systems (1.5).

Theorem 2.2. If 0c > , 0p > and 2 4p q< , then the solutions to system (1.5) are bounded.

Proof. Assume that 1( , , )n n n nx y z ≥− is a positive solution to systems (1.5). Then the following

estimate obviously holds

0min{ , , } , .n n nx y z c n≥ ∈ (2.18)

Due to the symmetry among { }nx , { }ny and { }nz , as long as we prove the boundedness of

{ }nx , other sequences { }ny and { }nz can be proved as well.

From systems (1.5), it follows that

2

1
1 0

1 1 2

max{ , } max{ , , },
p p qp
n n

n q q pq
n n n

y zcx c c n
z z x

−
−

+
− − −

= = ∈ . (2.19)

Case1. When 2p q≤ , we get

21
1 1max{ , , }n q p pq p q

x c
c c+ − − +

≤ . (2.20)

Thus, the sequence 1{ }n nx ≥− is bounded.

Case2. When 2p q> , let sequence { } 0l l
a

≥
be defined as follows
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1 0 0/( ), 0,l la q p a a l N+ = − = ∈ . (2.21)

From (1.5) and (2.21), we have

2

1
1

1 1 2

( / )1
/ /( / )
1 2

/( / )
( / ) ( / )2

/ /( / )
1 2 3

/ /
1 2

max{ , } max{ , , }

max{ , ( ) , ( ) }

max{ , ( ) , ( ) , ( ) }

max{ , ( , (

p p qp
n n

n q q pq
n n n

p p q p pn
q p q p q p
n n

p q p q p
p p q p p p q p pn

q p q p q p q
n n n

q p q
n n

y zcx c c
z z x

zcc
z x

xc cc
z x y

c cc
z x

−
−

+
− − −

−−
−

− −

− −
− −−

−
− − −

− −

= =

=

=

=

=
3 1

3 2

3 13 1
3k-2

3

(3 1) ( / )
( / )

3

( )
( / )3

/ /( / )
1 2 3 (3 1)

3
/ /( / )
1 2

, , ( ) ) ) }

max{ , ( , ( , , ( , ) ) ) }

max{ , ( , ( , , (

k

k

kk

k

p a
n k p a p q p p

p q p q
n k

p p a qp a
p a p q p pn k

q p q p q p q q
n n n k n k

p a
n k

q p q p q p
n n

x
y

yc c cc
z x y z

yc cc
z x z

−

−

−−

−
− − − −

−
−

− −−
− −−

−
− − − − +

−
−

−
− −

=

=

，

，

3k-1

3 1

3k

( / )

(3 1)

(3 1) ( / )
/ /( / )
1 2 (3 2)

) ) ) }

max{ , ( , ( , , ( ) ) ) }.
k

p a p q p p
q
n k

p a
n k p a p q p p

q p q p q p q
n n n k

zc cc
z x x

+

− −

− +

−
− + − −

−
− − − +

=

，

，

(2.22)

From the monotonicity of ( ) /( )g x q p x= − on the interval (0, )p along with the fact

0 10 /a a q p= < = , it follows that the sequence { }la is increasing as far as la p≤ for

every 0l∈Ν . Hence, we have *liml la x→+∞ = , * (0, ]x p∈ and *x is the solution of the

following equation

( ) ( ) 0f x x p x q= − − = . (2.23)

However the equation (2.23) has no real roots existing in (0, ]p when 2 4p q< , which is

contradiction. Hence there is 0l ∈ such that 0 1la p− < and 0l
a p≥ .

If 0 3l k= , then by using (2.18) in (2.22) it follows that

3
3k-1

3k-1 1

31 2

( / )3
1 / /( / )

1 2 (3 1)

( )

max{ , ( , ( , , ( ) ) ) }

1max{ , ( , ( , , ( ) ) ) }

k

k

p a
p a p q p pn k

n q p q p q p q
n n n k

p a p a p
q p aa a

yc cx c
z x z

c cc
c c c

−
− −−

+ −
− − − +

− −
− +

=

≤

，

，

(2.24)

for 3n k> , from which the boundedness of { } 1n n
x

≥−
follows in this case.

If 0 3 1l k= + , then it follows that
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3 1

3k

3k 1

3 11 2

(3 1) ( / )
1 / /( / )

1 2 (3 2)

( )

max{ , ( , ( , , ( ) ) ) }

1max{ , ( , ( , , ( ) ) ) }

k

k

p a
n k p a p q p p

n q p q p q p q
n n n k

p a p a p
q p aa a

zc cx c
z x x

c cc
c c c

+

+

−
− + − −

+ −
− − − +

− −
− +

=

≤

，

，

(2.25)

for 3 1n k≥ + , from which the boundedness of { } 1n n
x

≥−
follows in this case.

If 0 3 2l k= + , then it follows that

3 2

3k+1

3k+1 1

3 21 2

(3 2) ( / )
1 / /( / )

1 2 3( 1)

( )

max{ , ( , ( , , ( ) ) ) }

1max{ , ( , ( , , ( ) ) ) }

k

k

p a
n k p a p q p p

n q p q p q p q
n n n k

p a p a p
q p aa a

xc cx c
z x y

c cc
c c c

+

+

−
− + − −

+ −
− − − +

− −
− +

=

≤

，

，

(2.26)

for 3 1n k≥ + , from which the boundedness of { } 1n n
x

≥−
follows in this case.

Combined the case 1 2p q≤ and the case 2 2 4q p q< < , we can obtain that the sequence

1{ }n nx ≥− is bounded when 2 4p q< . In the same way, we can prove that the sequence { }ny and

{ }nz are bounded as well. Hence, every solution to systems (1.5) is bounded when 2 4p q< .

Theorem 2.3. Assume that 0c > , 0q > and 1p = . Then the solutions to systems (1.5)
are bounded.

Proof. Assume that {( , , )}n n nx y z is any positive solution to systems (1.5) in particular 1p = .

We can easily know that , ,n n nx c y c z c≥ ≥ ≥ . Therefore, we have

1 1 1 0max{ , }, max{ , }, max{ , },n n n
n n nq q q

y z xx c y c z c n N
c c c+ + +≤ ≤ ≤ ∈ . (2.27)

From the above (2.27), it follows that

1 2
1 2 2 3max{ , } max{ , , } max{ , , , }n n n

n q q q q q q

y z xc c cx c c c
c c c c c c

− −
+ ≤ ≤ ≤ . (2.28)

Set

2
1 1 1 0 0 1 12 3max{ , , , }, 1,2, , ,n

n q q q

vc cv c n and v x v x v x
c c c

−
+ − −= = = = = . (2.29)

Assume that { }nv is the solution to (2.29). Then nv is greater than nx for any 2n > .

Case 1. 1c > .
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(a). If 3 1
1

qv c +
− ≤ , 3 1

0
qv c +≤ and 3 1

1
qv c +≤ , from (2.29) we can obtain that 1qc > and

2
3

n
q

v c
c
− < , so 2 5 8, , ,v c v c v c= = = , which implies that 3 1nv c− = . Moreover, 4v c= , 7v c= ,

10 ,v c= , which implies that 3 1nv c+ = and similarly 3nv c= . Hence, the boundedness of

{ } 1n n
v

≥− follows in this case.

(b). If 3 1
1

qv c +
− > , 3 1

0
qv c +> and 3 1

1
qv c +> , from (2.29) we can obtain that 5 2 1c z z z−< < < .

Through iteration, we can get that 3 1{ }nv − is monotonically decreasing. Additionally,

nv c≥ for any 3 1,n k k N= − ∈ , we can obtain that 3 1{ }nv − is bounded. Similarly, 3{ }nv and

3 1{ }nv + are bounded as well. Hence, the boundedness of { } 1n n
v

≥− follows in this case.

(c). If 3 1
1

qv c +
− ≤ , 3 1

0
qv c +≤ and 3 1

1
qv c +> , from above proof we can obtain that 3 1nv c− = ,

3nv c= and 3 1{ }nv + is monotonically decreasing. Additionally nv c≥ , we can obtain the

boundedness of { } 1n n
v

≥− follows in this case.

(d). If 3 1
1

qv c +
− ≤ , 3 1

0
qv c +> and 3 1

1
qv c +≤ , from above proof we can obtain that

3 1nv c− = , 3 1nv c+ = and 3{ }nv is monotonically decreasing. Additionally nv c≥ , we can

obtain the boundedness of { } 1n n
v

≥− follows in this case.

(e). If 3 1
1

qv c +
− > , 3 1

0
qv c +≤ and 3 1

1
qv c +≤ , from above proof we can obtain that 3nv c= ,

3 1nv c+ = and 3 1{ }nv − is monotonically decreasing. Additionally nv c≥ , we can obtain the

boundedness of { } 1n n
v

≥− follows in this case.

(f). If 3 1
1

qv c +
− ≤ , 3 1

0
qv c +> and 3 1

1
qv c +> , from above proof we can obtain that 3 1nv c− = ,

3{ }nv and 3 1{ }nv + are monotonically decreasing. Additionally nv c≥ , we can obtain the

boundedness of { } 1n n
v

≥− follows in this case.

(g). If 3 1
1

qv c +
− > , 3 1

0
qv c +≤ and 3 1

1
qv c +> , from above proof we can obtain that 3nv c= ,

3 1{ }nv − and 3 1{ }nv + are monotonically decreasing. Additionally nv c≥ , we can obtain the

boundedness of { } 1n n
v

≥− follows in this case.

(h). If 3 1
1

qv c +
− > , 3 1

0
qv c +> and 3 1

1
qv c +≤ , from above proof we can obtain that

3 1nv c+ = , 3 1{ }nv − and 3{ }nv are monotonically decreasing. Additionally nv c≥ , we can

obtain the boundedness of { } 1n n
v

≥− follows in this case.
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Due to the bounededness of { } 1n n
v

≥− and n nx v≤ , we can obtain the boundedness of { }nx .

Similarly { }ny and { }nz are bounded as well. Hence, every positive solution to systems
(1.5) is bounded.

Case 2. 0 1c< ≤ .

(a) If 1q ≥ , in fact nx c≥ , from (1.5) it follows that

1
1

1 1 1 2

1 1 2 1
1 1 2

max{ , } max{ , , }

1 1 1max{ , , } max{ , , }

n n
n q q q q

n n n n

q q q q q
n n n

y zcx c c
z z z x
cc c

z z x c c

−
+

− − − −

− − −
− − −

= =

= ≤
(2.30)

for n N∈ , which means that { }nx is bounded.

(b). If 0 1q< < , let sequence { } 0l l
a

≥
be defined as follows

1 1 1 1, , 1 , ,l l l l la a b b qa a q b q l+ += − = = − = ∈ . (2.31)

Thus, from (1.5) we have

1

1

1 11

1 1

1
1 1

1
1 2 1 2

(1 )1
2 2
(1 )

1 2 3 1 2 3

[(1 )(1 )1
3

(1 )
1 2 3

max{ , , } = max{ , , }

max{ , , , } = max{ , , , }

= max{ , , , ,

aq
n n

n bq q q
n n n n

a bq q aq
n n

b qaq q q q q
n n n n n n

q qq qq
n

q q q q
n n n

z zc cx c c
z x z x

x xcc c cc c
z x y z x y

ycc cc
z x y

−
− −

+
− − − −

−− −−
− −

−
− − − − − −

− −− −−
−

−
− − −

=

=

2 21 1 1

1 1 2

3 2 3 2 31 1 1 2 2 1 2

3 3 11 2 1 2

] (1 )
3

[(1 ) ]
4 1 2 3 4

(3 1)

1 2 3 4 3 1 2 3

}= max{ , , , , }

=

= max{ , , , , , }= max{ , , , ,
k k

k

a bq q a a b
n

b qa qaq q q q
n n n n n

a b aa a b a b a a
n k

b bb b b bq q
n n n n n k n n n

yc ccc
z z x y z

xc c c c c cc cc c
z x y z y z x y

− −

−

−− − −
−

− −
− − − − −

−− −
− −

− − − − − − − −

3 1

3 3 1

3 1 3 1 331 1 1 2 2 1 2

3 3 3 31 2 1 2

1

(3 1)

4 3

3 3

1 2 3 4 (3 1) 1 2 3 4 (3 1)

1 2

, }

= max{ , , , , , }= max{ , , , , , }

= max{ , ,

k

k

k k k

k k

a
n k

b b
n n k

a b aaa a b a b a a
n k n k

b b b bb b b bq q
n n n n n k n n n n n k

a

q
n n

x
z y

y yc c c c c cc cc c
z x y z z z x y z z

ccc
z x

−

−

− −

− −

− −

−− −
− −

− − − − − + − − − − − +

− −

3 3 3 131 1 2 2 1 2

3 3 1 3 3 11 2 1 2

(3 1) 3 1

3 4 (3 2) 1 2 3 4 (3 2)

, , , }= max{ , , , , , }
k k k

k k

a b aaa b a b a a
n k n k

b b b bb b b bq
n n n k n n n n n k

z zc c c c ccc
y z x z x y z x

+

+ +

−− −
− + − +

− − − + − − − − − +

(2.32)

for every k N∈ .

From (2.31), we can deduce

1 1 0,l l la a qa l N+ −− + = ∈ . (2.33)
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It is easy to see that the general solution of difference equation (2.33) is

1 1 2 2
l l

la c cλ λ= + , 1 2,c c R∈ , (2.34)

where 1,2 (1 1 4 ) / 2qλ = ± − . The fact 1,2 1λ < along with (2.34) implies that the sequence

lim 0l la→+∞ = . From this and (2.31) we get lim 0l lb→+∞ = .

Now note that from (2.32) it follows that

3 131 2

3 3 11 2

(3 1)
1

1 2 3 4 3

max{ , , , , , }
k

k

aaa a
n k

n b bb bq
n n n n n k

xc c ccx c
z x y z y

−

−

− −
+

− − − − −

≤ , (2.35)

or

331 2

3 31 2

3
1

1 2 3 4 (3 1)

x max{ , , , , , }
k

k

aaa a
n k

n b bb bq
n n n n n k

yc c ccc
z x y z z

−
+

− − − − − +

≤ , (2.36)

or

3 131 2

3 3 11 2

(3 1)
1

1 2 3 4 (3 2)

max{ , , , , , }
k

k

aaa a
n k

n b bb bq
n n n n n k

zc c ccx c
z x y z x

+

+

− +
+

− − − − − +

≤ . (2.37)

The convergence of { } 1l l
a

≥− and { } 1l l
b

≥− along with (2.35)-(2.37) implies the boundedness

of { } 1n n
x

≥− . Since systems (1.5) is symmetric, the boundedness of { } 1n n
x

≥− implies the

boundedness of { } 1n n
y

≥− and { } 1n n
z

≥− , as claimed.

Theorem 2.4. Assume that 0c > , (0,1)p∈ , then the solutions to systems (1.5) are bounded.

Proof. Assume that 1( , , )n n n nx y z ≥− is a positive solution to systems (1.5). Then the following
estimate obviously holds

0min{ , , } , .n n nx y z c n≥ ∈ (2.38)

Hence

2

32

2

1
1

2

max{ , } max{ , , }

max{ , , , }.

p pp
n n

n q q pq q

ppp
n

q pq q p q pq q

y zcx c c
c c c

xccc
c c c

−
+ +

−
+ + +

≤ ≤

≤

(2.39)

Let { }nv be the solutions of the following difference equation (2.40) and 1 1,v x− −=

0 0 1 1,v x v x= = .
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3

2 2
2

1
1 1max{ , , , }, 1,2,3,

p
n

n q p pq p q p q pq q

vv c n
c c c

−
+ − − + + +
= = . (2.40)

Since (0,1)p∈ , the following function

3

2 2

1 1( ) max{ , , , }
p

q p pq p q p q pq q

xf x c
c c c− − + + +

= (2.41)

is a concave function for sufficiently large x . Thus, it follows that there is a fixed point *x ,

such that ( )f x x< for *x x> . It is easy to see that if *
2 (0, ]v x∈ , the sequence 2{ }n nv ≥ is

bounded above by *x and if *
2v x> , it is non-increasing and bounded below by *x .

Hence the sequence { }nv is bounded and consequently the sequence { }nx is bounded too.

In the same way, we can prove that the sequence { }ny and { }nz are bounded as well.
Hence, every solution to systems (1.5) is bounded as claimed.

3. Asymptotic behavior of solutions

This section is devoted to analyzing the asymptotic behavior of solutions to system (1.5)
for 1c > and (0,1]c∈ .

Theorem 3.1. Assuming 0 1p< ≤ , when (0 ,1]c ∈ then {( , , )}n n nx y z converges to
* * *( , , ) (1,1,1)x y z = , while 1c > , {( , , )}n n nx y z converges to * * *( , , ) ( , , )x y z c c c= .

Proof. Case 1. (0,1]c∈ .

Due to the positivity of the solution to {( , , )}n n nx y z with initial data 0 1, 0x x− > ,

0 1, 0y y− > and 0 1, 0z z− > , the systems (1.5) can be transformed to the following systems (3.1)

by the change of , ,n n ns t r
n n nx e y e z e= = = , where 0, 0, 0,n n ns t r n k≥ ≥ ≥ > and ln 0c < .

1 1

1 1

1 1

max{ln , } max{ln , } ,
max{ln , } max{ln , } ,
max{ln , } max{ln , } .

n n n n n

n n n n n

n n n n n

s c pt qr c pt pt
t c pr qs c pr pr
r c ps qt c ps ps

+ −

+ −

+ −

= − ≤ ≤

= − ≤ ≤
= − ≤ ≤

(3.1)

Obviously, from systems (3.1), inequality (3.2) follows

3 3 3
3 3 3s , ,n n n n n ns p t p t r p r+ + +≤ ≤ ≤ . (3.2)

For 1p ≤ , 3n ns s+ < can be obtained from inequality (3.2). The sequences 3{ },ns 3 1{ }ns +

and 3 2{ }ns + are monotone decreasing. In addition, as 0ns > , we can get that lim 0n ns→∞ =

and lim lim 1ns
n n nx e→∞ →∞= = . Then { }nx converges to 1. { }ny and { }nz can be proved
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in the same way. Therefore, when (0,1]c∈ , if 1p ≤ , then {( , , )}n n nx y z converges to
* * *( , , ) (1,1,1)x y z = .

Case 2. c>1.

Correspondingly, systems (1.5) can be transformed to systems (3.3) by the change of
, ,n n ns t r

n n nx c y c z c= = = , where 1,ns ≥ 1, 1n nt r≥ ≥ due to , ,n n nx c y c z c≥ ≥ ≥ .

1 1

1 1

1 1

max{1, },
max{1, },
max{1, }.

n n n

n n n

n n n

s pt qr
t pr qs
r ps qt

+ −

+ −

+ −

= −

= −
= −

(3.3)

Furthermore, systems (3.3) can be written as systems (3.4).

1 1

1 1

1 1

1 max{0, 1},
1 max{0, 1},
1 max{0, 1}.

n n n

n n n

n n n

s pt qr
t pr qs
r ps qt

+ −

+ −

+ −

− = − −

− = − −
− = − −

(3.4)

Similar proof has been fully given in case (0,1]c∈ and here the rest proof is omitted.
Then the result is much alike with the one in above case:

lim 1nn
s

→∞
= , lim 1nn

t
→∞

= , lim 1nn
r

→∞
= , (3.5)

and

lim lim ns
nn n

x c c
→∞ →∞

= = , lim lim nt
nn n

y c c
→∞ →∞

= = , lim lim nr
nn n

z c c
→∞ →∞

= = . (3.6)

Therefore, assume 0 1p< ≤ and 1c> , then ( , , )n n nx y z converges to * * *( , , ) ( , , )x y z c c c= .

Hence Theorem 3.1 is proved completely.

4. Simulation experiment

In this section, some numerical simulations are given to support our theoretical analysis.
As examples, we consider the following difference equations

0.5 0.5 0.5

1 1 1 02 2 2
1 1 1

max{0.5, }, max{0.5, }, max{0.5, },n n n
n n n

n n n

y z zx y y n
z x x+ + +

− − −

= = = ∈ , (4.1)

1 1 1 02 2 2
1 1 1

max{1, }, max{1, }, max{1, },n n n
n n n

n n n

y z xx y z n
z x y+ + +

− − −

= = = ∈ , (4.2)

and

0.5 0.5 0.5

1 1 1 02 2 2
1 1 1

max{1.5, }, max{1.5, }, max{1.5, },n n n
n n n

n n n

y z xx y z n
z x y+ + +

− − −

= = = ∈ . (4.3)
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By employing Matlab R2013b, we solve the numerical solutions of the above equations,
which are shown respectively in the following Figures.

More precisely, the initial conditions of (4.1) are that 1 1.5x− = , 0 1.2x = , 1 0.5y− = ,

0 0.8y = , 1 1z− = , and 0 1.5z = . It is easy to show that the equations (4.1) satisfy the

conditions of Theorem 2.2. Fig.4.1 shows that the solutions of the equations (4.1) are

bounded. The initial conditions of (4.2) are that 1 1.5x− = , 0 1.2x = , 1 0.5y− = , 0 0.8y = ,

1 2.5z− = , and 0 3z = . It is easy to show that the equations (4.2) satisfy the conditions of

Theorem 2.3 and Theorem 3.1. Figure 4.2 shows the solutions to equations (4.2) are

bounded and globally attractive. The initial conditions of equations (4.3) are that 1 1.5x− = ,

0 1.2x = , 1 0.5y− = , 0 0.8y = , 1 1z− = , and 0 1.5z = . It is easy to show that the equations

(4.3) satisfy the conditions of Theorem 2.4 and Theorem 3.1. Figure 4.3 shows the solutions
to the equations (4.3) are bounded and globally attractive.
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Figure 4.1. the solutions to equation (4.1)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1475 Chang-youWang et al 1463-1479



14

-20 0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

n

x(
n)

/y
(n

)/z
(n

)

 

 

c=1,p=1,q=2

x(n)
y(n)
z(n)

Figure4.2. the solutions to equation (4.2)

-20 0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

n

x(
n)

/y
(n

)/z
(n

)

 

 

c=1.5,p=0.5,q=2

x(n)
y(n)
z(n)

Figure 4.3. the solutions to equation (4.3)
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5. Conclusion

It is obvious that the system of three max-type difference equations (1.5) is the extension
of the models in [26-29]. In this paper, we have dealt with the problem of boundedness
character and global attractivity for a class of max-type difference system. And we have
obtained some sufficient conditions which ensure the boundedness character and global
attractivity of the max-type system. Especially, the sufficient conditions that we obtained are
very simple, which provide flexibility for the application and analysis of max-type
difference system. These results generalize and improve some previous works. In addition,
we present the use of a new iteration method for symmetric systems of max-type difference
equations. This technique is a powerful tool for solving various difference equations and it
can be applied to other nonlinear differential equations in mathematical physics.
Computations are performed using the software package Matlab R2013b. Finally, some
numerical examples are given to show the validity of the obtained theoretic results
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The convexity of n-dimensional fuzzy mappings and the
saddle point conditions of the fuzzy optimization problems
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Abstract The purpose of this work is to consider the optimization problem of n-dimensional fuzzy
number valued functions. Firstly, the differentiability and convexity of n-dimensional fuzzy number
valued function are discussed by means of the support function and a new order relation, which is built
in the aid of the support function and the order of vector. Secondly, the fuzzy Lagrange function of fuzzy
nonlinear programming is presented and weak duality theorems are obtained. At last, the saddle point
of fuzzy lagrangian function is defined, the sufficient and necessity conditions of saddle point are given.
Keywords Fuzzy numbers; fuzzy programming; saddle point; duality theorem

1. Introduction

Since the concept and operations of fuzzy set were introduced by Zadeh, many studies have focused
on the theoretical aspects and applications of fuzzy sets, one of the main stream is the fuzzy optimization
in operation research. In 1970, Bellman and Zadeh[1] inspired the development of fuzzy optimization by
providing the aggregation operators, which combined the fuzzy goals and fuzzy decision space. After this
motivation and inspiration, there came out a lot of articles dealing with the fuzzy optimization problems
and the insightful survey can be seen in [3, 7, 11].

The duality of fuzzy linear programming was first studied by Rodder and Zimmermann[9] who consid-
ered the economic interpretation of the dual variables. Zhong and Shi[20] presented a parametric approach
for duality in fuzzy multi criteria and multi constrainted linear programming which extended fuzzy linear
programming approaches. Wu[14]formulate the fuzzy primal and dual linear programming problems with
fuzzy coefficients by using fuzzy scalar product, prove the weak and strong duality theorems. Wu[15]
discuss the saddle-point optimality conditions in fuzzy optimization problems by introducing the fuzzy
scalar product. In Wu[16], under a general setting partial ordering, the duality theorems and saddle point
optimality of fuzzy nonlinear programming problems are derived. Zhang[21]discuss the saddle-points and
minimax theorems under fuzzy environment, obtain the KT conditions for fuzzy programming and con-
sider the /perturbed0convex fuzzy programming. Gong[5] propose the fuzzy Lagrangian function of a
fuzzy optimization problem by considering a total ordering on the set of fuzzy numbers, and the saddle
point of fuzzy Lagrangian function with its optimality condition were dicussed.Howere,the fuzzy number
in these research above is on the real line,which is one dimensional.There are few studies on n-dimensional
fuzzy numbers, maybe the ranking of n-dimensional fuzzy numbers has been a bottleneck for researchers.

The differentiability of fuzzy mappings from an open subset of a normed space into the n-dimension
fuzzy number space En was developed by Puri and Ralescu[8], which generalized and extended the
concept of Hukuhara differentiability for set mappings. Wang and Wu[12] proposed the directional
derivative,differential and sub-differential of fuzzy mappings from Rn into E using Hukuhara difference.
Hai[6] characterize the generalized difference of n-dimensional fuzzy number valued functions by means
of support functions and give the order relation �sby the aid of support function. Yan[18] give the order
relation on E considering the left and right endpoints and weights, which is a total order. Based on this,
we give the order relation of n- dimensional fuzzy numbers by means of the support function and the
order of vector, this order is partial and practical.

†This work is supported by National Natural Science Foundation (11461062) and the Scientific Research Project for
Higher Education of Gansu Province (2015A-144).

∗Corresponding Author: Hong-Xia Li. Tel.: +8613830467235. E-mail addresses: lhxia0929@163.com
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The purpose of this work is to consider the optimization problem of n-dimensional fuzzy number
valued function. First, we present the terminology used in the present paper, and give the order relation
of n-dimensional fuzzy-number-valued function. In section 3, the differentiability and convexity are
introduced and its relations is studied. For nonlinear fuzzy programming problem, the weak duality
theorem the saddle point of fuzzy lagrangian function is is presented, further, the sufficient and necessity
condition of saddle point are obtained.

2. Definitions and preliminaries

In this section,basic definitions and operations for fuzzy numbers are presented.
Definition 2.1[17] X = Rn, n ≥ 1 is the real n-dimensional Euclidean space, A fuzzy number is a

mapping ũ : Rn → [0, 1] with the following properties:
(1) ũ is a normal fuzzy set, i.e.there exists x0 ∈ Rn such that ũ(x0) = 1,
(2) ũ is a convex fuzzy set, i.e. ũ(λx+ (1− λ)y) ≥ min{ũ(x), ũ(y)} for any x, y ∈ Rn and λ ∈ [0, 1].
(3) ũ is upper semi-continuous.

(4) [ũ]0 = cl(suppũ) = {x ∈ Rn : ũ(x) > 0} is compact.
we will denote En the set of fuzzy numbers.It is clear that any ũ ∈ En, r ∈ [0, 1], [ũ]r = {x ∈ Rn :

ũ(x) ≥ r} denoted as r−level cut is a compact convex set. Further, we give the representation theorem
of these compact convex sets.

Theorem 2.2[17] Let ũ ∈ En, then
(1)[ũ]r is a nonempty compact convex subset of Rn for any r ∈ [0, 1],
(2)[ũ]r1 ⊆ [ũ]r2 , for 0 ≤ r2 ≤ r1 ≤ 1,
(3)If rk > 0 and rk is a nondecreasing sequence converging to r ∈ (0, 1], then

⋂∞
k=1[ũ]rk = [ũ]r,

Conversely, if {[A]r ⊆ Rn : r ∈ [0, 1]} satisfies the conditions (1)-(3),then there exists a unique ũ ∈ En

such that [ũ]r = [A]r for each r ∈ (0, 1] and [ũ]0 = cl(
⋃

r∈(0,1][ũ]r) ⊆ [A]0.

Let ũ, ṽ ∈ En and k ∈ R, the addition ũ+ ṽ and scalar multiplication kũ is defined as: for any x ∈ Rn,

(ũ+ ṽ)(x) = sup
s+t=x

min{ũ(s), ṽ(t)},

(kũ)(x) = ũ(
x

k
), k 6= 0, 0ũ = 0̃,

where 0̃(x) = 1 when x = 0, 0̃(x) = 0 when x 6= 0.
It is easy to get that the addition ũ+ ṽ and scalar multiplication kũ have the level cut:

[ũ+ ṽ]r = [ũ]r + [ṽ]r = {x+ y : x ∈ [ũ]r, y ∈ [ũ]r},

[kũ]r = k[ũ]r = {kx : x ∈ [ũ]r}.

The Hausdorff distance D : En × En → [0,+∞) is defined by

D(ũ, ṽ) = sup
r∈[0,1]

d([ũ]r, ṽ]r),

where d is Harsdorff metric given by d(A,B) = inf{ε : N(A, ε) ⊃ B,N(B, ε) ⊃ A}, and N(A, ε) = {x ∈
Rn : d(x,A) = infy∈A d(x, y) ≤ ε}is the ε− neighborhood of A. Then (En, D) is a complete metric space,
and satisfies D(ũ+ w̃, ṽ + w̃) = D(ũ, ṽ), D(kũ, kṽ) = |k|D(ũ, ṽ) for any ũ, ṽ, w̃ ∈ En and k ∈ R.
Definition 2.3[17] Let ũ ∈ En, the support function of ũ is defined by

ũ∗(r, p) = sup
a∈[ũ]r

〈a, p〉, (r, p) ∈ I × Sn−1,

where I = [0, 1], Sn−1 = {x ∈ Rn : ‖x‖ = 1} be the unit sphere of Rn and 〈·, ·〉be the inner product in
Rn, that is 〈x, y〉 =

∑n
i=1 xiyi, where x = (x1, x2, · · · , xn) ∈ Rn, y = (y1, y2, · · · , yn) ∈ Rn. Also, assume

that ũ = (ũ1, ũ2, · · · , ũn), then 〈x, ũ〉 =
∑n

i=1 xiũi, ũi ∈ En.

Theorem 2.4[6,17]Let ũ ∈ En, then support functionũ∗ satisfy:
(1)ũ∗(r, p+ q) ≤ ũ∗(r, p) + ũ∗(r, q) for p, q ∈ Sn−1.
(2)ũ∗(r, kp) = kũ∗(r, p), k ≥ 0.
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(3)ũ∗ is uniformly bounded on I × Sn−1, and |ũ∗(r, p)| ≤ supa∈ũ]0 ‖a‖,
(4)ũ∗(r, p) is nonincreasing and left continuous on r ∈ [0, 1], right continuous at r = 0 for each fixed

p ∈ Sn−1.
(5)ũ∗(r, ·) is uniformly Lipschitz continuous for r ∈ [0, 1], that is

|ũ∗(r, p)− ṽ∗(r, q)| ≤ ( sup
a∈ũ]0

‖a‖)‖x− y‖,

(6)
d([ũ]r, [ṽ]r) = sup

p∈Sn−1

|ũ∗(r, p)− ṽ∗(r, p)|,

for any r ∈ [0, 1], ũ, ũ ∈ En.
(7)(−ũ)∗(r, p) = ũ∗(r,−p).

Theorem 2.5 Let ũ, ṽ ∈ En, then
(1)(sũ+ tṽ)∗(r, p) = sũ∗(r, p) + tṽ∗(r, p), s, t ≥ 0,
(2)D(ũ, ṽ) = supr∈[0,1] ‖ũ∗(r, p)− ṽ∗(r, p)‖ = supr∈[0,1] supp∈Sn−1 |ũ∗(r, p)− ṽ∗(r, p)|.

Proof (1)We prove that (ũ+ ṽ)∗(r, p) = ũ∗(r, p)+ ṽ∗(r, p) firstly. From the definition of support function,

(ũ+ ṽ)∗(r, p) = sup
a∈[ũ+ṽ]r

〈a, p〉 = sup
a∈[ũ]r+[ṽ]r

〈a, p〉 = sup
b∈[ũ]r,c∈[ṽ]r

〈b+ c, p〉

= sup
b∈[ũ]r,c∈[ṽ]r

(〈b, p〉+ 〈c, p〉) = ũ∗(r, p) + ṽ∗(r, p).

in addition,for any k ≥ 0,

(kũ)∗(r, p) = sup
a∈[kũ]r

〈a, p〉 = sup
a∈k[ũ]r

〈a, p〉 = sup
a
k
∈[ũ]r

k〈a
k
, p〉 = kũ∗(r, p),

therefore,we get (1).
(2)

D(ũ, ṽ) = sup
r∈[0,1]

d([ũ]r, [ũ]r) = sup
r∈[0,1]

sup
p∈Sn−1

|ũ∗(r, p)− ṽ∗(r, p)| = sup
r∈[0,1]

‖ũ∗(r, p)− ṽ∗(r, p)‖.

we denote by Kn and Kn
C the spaces of (nonempty) compact convex sets of Rn respectively.The

generalized Hukuhara difference of two set A,B ∈ Kn
C(gH-difference for short)is defined in[4,6,10] as

follows:

A	gH B = C ⇔

{
(a)A = B + C,

or(b)B=A+(-1)C

where A + B = {x + y : x ∈ A, y ∈ B}, kA = {kx : x ∈ A}, k ∈ R. Stefanini[10] extent the generalized
Hukuhara difference to the fuzzy case. For any ũ, ṽ ∈ En, the generalized Hukuhara difference(gH-
difference for short)is the fuzzy number w̃, if it exist,then

ũ	gH ṽ = w̃ ⇔

{
(a)ũ = ṽ + w̃,

or(b)ṽ = ũ+ (−1)w̃.

From the theorem 2.4,it is easy to have the follows:
Theorem 2.6 Let ũ, ṽ ∈ En, ũ	gH ṽ = w̃, Then w̃∗(r, p) = ũ∗(r, p)− ṽ∗(r, p), r ∈ [0, 1], p ∈ Sn−1

Proof Since ũ	gH ṽ = w̃, then either (a)ũ = ṽ + w̃, or (b)ṽ = ũ+ (−1)w̃. For (a), from 2.5(1),we have

ũ∗(r, p) = ṽ∗(r, p) + w̃∗(r, p).

For (b),
ṽ∗(r, p) = ũ∗(r, p) + (−1)w̃∗(r, p) = ũ∗(r, p) + w̃∗(r,−p),

then
w̃∗(r, p) = −w̃∗(r,−p) = ũ∗(r, p)− ṽ∗(r, p)
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for any r ∈ [0, 1], p ∈ Sn−1.
Definition 2.7[18]Let ũ, ṽ ∈ E, ũ � ṽ denoted as∫ 1

0
r(ũ−(r) + ũ+(r))dr ≤

∫ 1

0
r(ṽ−(r) + ṽ+(r))dr,

where [ũ]r = [ũ−(r), ũ+(r)], [ṽ]r = [ṽ−(r), ṽ+(r)], r ∈ [0, 1].
For any x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ Rn, we define: x ≤ y if and only if xi ≤ yifor any

i(i = 1, 2, · · · , n), and x < y means x ≤ y and there exist m, such that xm < ym(m = 1, 2, · · · , n).
Definition 2.8 For any ũ, ṽ ∈ En, we say that ũ � ṽ if

(τ(ũ1), τ(ũ2), · · · , τ(ũn) ≤ (τ(ṽ1), τ(ṽ2), · · · , τ(ṽn),

where τ(ũi) =
∫ 1
0 r(ũ

∗(r, e+i ) − ũ∗(r, e−i ))dr, e+i = (x1, x2, · · · , xn) ∈ Sn−1, e−i = (y1, y2, · · · , yn) ∈ Sn−1

andxj = 1, yj = −1 when j = i, xj = yj = 0 when j 6= i(i, j = 1, 2, · · · , n). we say that ũ ≺ ṽ if ũ � ṽ
and there exist i(i = 1, 2, · · · , n), such that τ(ũi) < τ(ṽi). Particularly, Def 2.8 is just as Def 2.7 when
n = 1, it means the Def 2.8 is the extension of the Def 2.7. ũ � ṽ also denoted as ṽ � ũ.

min(ũ, ṽ) = w̃ if and only if τ(w̃i) = min(τ(ũi), τ(ṽi))(i = 1, 2, · · · , n). In the follows, we denote
(τ(ũ1), τ(ũ2), · · · , τ(ũn)) = H[ũ],

3. Differentiability and convexity

Wang and Wu[12] present the directional derivative of the fuzzy mapping F : Rn → E, that is
characterized by the directional derivative of the real function. Below we give the differentiability of
F : Rn → En, and transformed it into the differentiability of functional in Banach space, then defined
gradient and convexity and studied its relations.
Definition 3.1 Let F : M(⊂ Rn) → En be a fuzzy-number-valued function, x0 = (x01, x

0
2, · · · , x0n) ∈

intM. If there exist ũ1, ũ2, · · · , ũn ∈ En, such that

lim
x→x0

D(F (x), F (x0) +
∑n

j=1(xj − x0j )ũj)
d(x, x0)

= 0,

then we call F is differentiable at x0, and denote5F (x0) = (ũ1, ũ2, · · · , ũn) the gradient of F at x0, where
x = (x1, x2, · · · , xn).
Theorem 3.2 Let F : M(⊂ Rn)→ En be a fuzzy-number-valued function, x0 = (x01, x

0
2, · · · , x0n) ∈ intM.

F is differentiable at x0 if and only if

F (x)∗(r, p) = F (x0)∗(r, p) +

n∑
j=1

(xj − x0j )ũ∗j (r, p) + o(d(x, x0)) (3.1)

for any r ∈ [0, 1] and p ∈ Sn−1.
Proof F is differentiable at x0, if and only if

lim
x→x0

D(F (x), F (x0) +
∑n

j=1(xj − x0j )ũj)
d(x, x0)

= 0,

if and only if

lim
x→x0

supr∈[0,1] supp∈Sn−1 |F (x)∗(r, p)− F (x0)∗(r, p)−
∑n

j=1(xj − x0j )ũ∗j (r, p)|
d(x, x0)

= 0,

if and only if

lim
x→x0

|F (x)∗(r, p)− F (x0)∗(r, p)−
∑n

j=1(xj − x0j )ũ∗j (r, p)|
d(x, x0)

= 0

for any r ∈ [0, 1] and p ∈ Sn−1, if and only if

F (x)∗(r, p) = F (x0)∗(r, p) +
n∑

j=1

(xj − x0j )ũ∗j (r, p) + o(d(x, x0))
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for any r ∈ [0, 1] and p ∈ Sn−1.
Theorem 3.3 Let F : M(⊂ Rn)→ En be a fuzzy-number-valued function, F is differentiable at x, if x

is a local minimum solution, then ∇F (x) = (0̃, 0̃, · · · , 0̃).
Proof Since x is a local minimum solution, then there exist a δ > 0, such that F (x) � F (x) for any
x ∈

⋃
(x, δ) ∩M. that is

τ(F (x)i) =

∫ 1

0
r[F (x)∗(r, e+i )− F (x)∗(r, e−i )]dr ≥

∫ 1

0
r[F (x)∗(r, e+i )− F (x)∗(r, e−i )]dr = τ(F (x)i)

for 1 ≤ i ≤ n. From the theorem 3.2 and arbitrariness of x,

τ((ũj)i) =

∫ 1

0
r[ũ∗j (r, e

+
i )− ũ∗j (r, e−i )]dr = 0(i, j = 1, 2, · · · , n),

thus ũj = 0̃, and ∇F (x) = (0̃, 0̃, · · · , 0̃).
Definition 3.4 Let F : M(⊂ Rn) → En be a fuzzy-number-valued function,M be a convex set. Then
F (x) is said to be a convex fuzzy-number-valued function on M if for any x, y ∈M,λ ∈ [0, 1], such that
λx+ (1− λ)y ∈M, we have

F (λx+ (1− λ)y) � λF (x) + (1− λ)F (y). (3.2)

we call F (x) is a strictly convex fuzzy-number-valued function on M, if for any x, y ∈ M,x 6= y, λ ∈
[0, 1],such that λx+ (1− λ)y ∈M, we have

F (λx+ (1− λ)y) ≺ λF (x) + (1− λ)F (y).

Theorem 3.5 Let M be an open convex set, F : M → En, and F is differentiable, then F is convex if
and only if

F (x) � F (y) + 〈∇F (y), x− y〉 (3.3)

for any x, y ∈M.
Proof Assume that F is convex, then for any x, y ∈M,λ ∈ (0, 1), we have

F (λx+ (1− λ)y) � λF (x) + (1− λ)F (y),

that is
H[F (λx+ (1− λ)y)] ≤ λH[F (x)] + (1− λ)H[F (y)].

thus
τ(F (λx+ (1− λ)y)i) ≤ λτ(F (x)i) + (1− λ)τ(F (y)i)

for any 1 ≤ i ≤ n, that is∫ 1

0
r[F (λx+ (1− λ)y)∗(r, e+i )− F (λx+ (1− λ)y)∗(r, e−i )]dr

≤ λ
∫ 1

0
r[F (x)∗(r, e+i )− F (x)∗(r, e−i )]dr + (1− λ)

∫ 1

0
r[F (y)∗(r, e+i )− F (y)∗(r, e−i )]dr.

Since F is differentiable, then

F (λx+ (1− λ)y)∗(r, p)− F (y)∗(r, p) =
n∑

j=1

λ(xj − yj)ṽ∗j (r, p) + λo‖x− y‖,

for any r ∈ [0, 1] and p ∈ Sn−1, where ∇F (y) = (ṽ1, ṽ2, · · · , ṽn), therefore,∫ 1

0
r[F (λx+ (1− λ)y)∗(r, e+i )− F (λx+ (1− λ)y)∗(r, e−i )]dr −

∫ 1

0
r[F (y)∗(r, e+i )− F (y)∗(r, e−i )]dr
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≤ λ(

∫ 1

0
r[F (x)∗(r, e+i )− F (x)∗(r, e−i )]dr −

∫ 1

0
r[F (y)∗(r, e+i )− F (y)∗(r, e−i )]dr),

thus ∫ 1

0
r[

n∑
j=1

λ(xj − yj)ṽ∗j (r, e+i )−
n∑

j=1

λ(xj − yj)ṽ∗j (r, e−i )]dr

≤ λ(

∫ 1

0
r[F (x)∗(r, e+i )− F (x)∗(r, e−i )]dr −

∫ 1

0
r[F (y)∗(r, e+i )− F (y)∗(r, e−i )]dr),

that is

τ(
n∑

j=1

(xj − yj)(ṽj)i) ≤ τ(F (x)i)− τ(F (y)i),

We have
n∑

j=1

(xj − yj)ṽj � F (x)− F (y),

therefore
F (x) � F (y) + 〈∇F (y), x− y〉.

Conversely, assume that for any x(1), x(2) ∈M, we have

F (x(2)) � F (x(1)) + 〈∇F (x(1)), x(2) − x(1)〉.

Let y be a point between the x(1) and x(2), then y = λx(1) + (1− λ)x(2) for some λ ∈ (0, 1), and y ∈ M
since M is a convex set. Based on the assumption, we have

F (x(1)) � F (y) + 〈∇F (y), x(1) − y〉,

F (x(2)) � F (y) + 〈∇F (y), x(2) − y〉,

that is
H[F (x(1))] ≥ H[F (y)] +H[〈∇F (y), x(1) − y〉], (3.4)

H[F (x(2))] ≥ H[F (y)] +H[〈∇F (y), x(2) − y〉]. (3.5)

From (3.4)and (3.5),

τ(F (x(1))i) ≥ τ(F (y)i) + τ(〈∇F (y), x(1) − y〉)i), (3.6)

τ(F (x(2))i) ≥ τ(F (y)i) + τ(〈∇F (y), x(2) − y〉)i) (3.7)

for 1 ≤ i < n. Multiple(3.6),(3.7)by λ, (1− λ) respectively, and then add the result, we have

λτ(F (x(1))i) + (1− λ)τ(F (x(2))i) ≥ τ(F (y)i),

that is
F (λx(1) + (1− λ)x(2)) � λF (x(1)) + (1− λ)F (x(2)),

thus F is a convex fuzzy-number-valued function.

4. The duality and the saddle point

Duality plays an important role in the development of optimization theory and algorithm. In this
section, the duality theory of fuzzy nonlinear programming is introduced, and the weak duality theorems
are obtained. At the same time, the Lagrange function of fuzzy nonlinear programming and saddle
point are defined, and then discusses the relation between the saddle point of Lagrange function and the
optimal solution of prime problem and dual problem and given saddle point optimality conditions.
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Let X ⊂ Rn be an open set, F (x), Gi(x)(i = 1, 2, · · · ,m) be fuzzy-valued functions on X, now we
consider the following primal fuzzy optimization:

(FP )

{
minF (x),

Gj(x) � 0̃(j = 1, 2, · · · ,m),
(4.1)

where S = {x ∈ X|Gj(x) � 0̃(j = 1, 2, · · · ,m)} is the set of feasible solutions for problem (FP ), and
denote x ∈ S the feasible solution for problem (FP ).

We define the fuzzy-valued Lagrangian function for the primal problem as follow:

L(x, u) = F (x) +

m∑
j=1

ujGj(x)

for all x ∈ S and all (u1, u2, · · · , um) ∈ Rm, uj ≥ 0(j = 1, 2, · · · ,m).
Now we define the dual fuzzy optimization problem as follow:

(FD)

{
maxL(u)

uj ≥ 0(j = 1, 2, · · · ,m).
(4.2)

where L(u) = minx L(x, u), u = (u1, u2, · · · , um) ∈ Rm.
Theorem 4.1 (Weak Duality Theorem) Let x ∈ X(⊂ Rn), u ∈ Y (⊂ Rm) be the feasible solution of
problems (FP) and (FD) respectively. then

F (x) � L(u).

Proof From the definition of L(u), we have

L(u) = min
x
L(x, u) = min

x
(F (x) +

m∑
j=1

ujGj(x)) � F (x) +
m∑
j=1

ujGj(x). (4.3)

that is

τ(L(u)i) ≤ τ(F (x)i) +

m∑
j=1

ujτ(Gj(x)i),

for 1 ≤ i < n. Since x and u is the feasible solution of problems (FP) and (FD) respectively, that is uj ≥ 0

and Gj(x) � 0̃(j = 1, 2, · · · ,m), thus τ(Gj(x)i) ≤ 0(i = 1, 2, · · · , n), then we have τ(L(u)i) ≤ τ(F (x)i)for
1 ≤ i < n, then L(u) � F (x).

From above it follows easily:
Proposition 4.2 For the problems (FP) and (FD), we have

min{F (x)|Gj(x) � 0̃, x ∈ X, j = 1, 2, · · · ,m} � max{L(u)|u ≥ 0}.

Proposition 4.3 Assume that
F (x) � L(u),

where x ∈ {x|Gj(x) � 0̃, x ∈ X, j = 1, 2, · · · ,m}, u ≥ 0, then x and u are the optimal solutions of
problems (FP) and (FD) respectively.
Definition 4.4 Let x ∈ X(⊂ Rn), u ∈ Y (⊂ Rm), then (x, u) is called a saddle point of the fuzzy-valued
Lagrangian function L : X × Y → En if and only if

L(x, u) � L(x, u) � L(x, u) (4.4)

holds for every (x, u) ∈ X × Y.
Theorem 4.5 Let (x, u) be a saddle point of the fuzzy-valued Lagrangian function L(x, u), then x and
u are the optimal solutions of problems (FP) and (FD) respectively.
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Proof Assume that (x, u) be a saddle point, we are going to prove x ∈ S firstly. It follows easily from
the definition of saddle point, L(x, u) � L(x, u) holds for all u ∈ Rm, that is

F (x) +
m∑
j=1

ujGj(x) � F (x) +
m∑
j=1

ujGj(x),

so

τ(F (x)i) +
m∑
j=1

ujτ(Gj(x)i) ≤ τ(F (x)i) +
m∑
j=1

ujτ(Gj(x)i),

m∑
j=1

(uj − uj)τ(Gj(x)i) ≤ 0. (4.5)

holds for any 1 ≤ i < n, Let uk = uk + 1 and uj = uj , j 6= k, from (5.5)we have τ(Gk(x)i) ≤ 0(k =
1, 2, · · · ,m).It says that x is a feasible solution of (FP). Now we’ll prove x and u are the optimal so-
lutions of problems (FP) and (FD) respectively. Let uj(j = 1, 2, · · · ,m) in (4.5) be taken as 0, then∑m

j=1(−uj)τ(Gj(x)i) ≤ 0. since uj ≥ 0, τ(Gj(x)i) ≤ 0, then we have

m∑
j=1

(−uj)τ(Gj(x)i) = 0. (4.6)

From the right inequality of (4.4), τ(F (x)i) ≤ τ(F (x)i) +
∑m

j=1(ujτ(Gj(x)i) holds for all x ∈ S. So

F (x) � L(u). That is x and u are the optimal solutions of problems (FP) and (FD) from the proposition
4.3.
Lemma 4.6[16] Let X be a nonempty convex set in a real vector space Rn, F : X → R,G = (G1, G2, · · · ,
Gn), Gi : Rn → R(i = 1, 2, · · · , n) be convex functions. We consider the following conditions.

Condition a: F (x) < 0 and G(x) ≤ 0 for some x ∈ X;
Condition b: u0F (x) + 〈u,G(x)〉 ≥ 0 for all x ∈ X, (u0, u) ≥ 0 and (u0, u) 6= 0.
If x does not satisfy Condition a, then Condition b has a solution (u0, u) when x substitute x.

Theorem 4.7 Let X ⊂ Rn be a nonempty convex sets, F : X → En, Gj : X → En(j = 1, 2, · · · ,m)
be convex fuzzy-valued functions, x be an optimal solution of problem (FP ), assume that there exist x

, such that Gj(x) � 0̃, then there exists u ≥ 0,such that

L(x, u) � F (x)

holds for every x ∈ X.
Proof x be an optimal solution of (FP ), then F (x) � F (x) for any x ∈ X, that is

τ(F (x)i) =

∫ 1

0
r[F (x)∗(r, e+i )− F (x)∗(r, e−i )]dr ≥

∫ 1

0
r[F (x)∗(r, e+i )− F (x)∗(r, e−i )]dr = τ(F (x)i)

for 1 ≤ i < n, Since F : X → En, Gj : X → En(j = 1, 2, · · · ,m) be convex fuzzy-valued functions,
then τ(F (x)i), τ(Gj(x)i)(j = 1, 2, · · · ,m, i = 1, 2, · · · , n) are convex real-valued functions. Therefore we
consider the following systems:∫ 1

0
r[F (x)∗(r, e+i )− F (x)∗(r, e−i )]dr −

∫ 1

0
r[F (x)∗(r, e+i )− F (x)∗(r, e−i )]dr < 0,

∫ 1

0
r[G∗j (r, e

+
i )−G∗j (r, e−i )]dr ≤ 0(j = 1, 2, · · · ,m),

the system has no solution on X, then from lemma 4.6, there exists (u0, u) ≥ 0 and (u0, u) 6= 0 such that

u0(τ(F (x)i)− τ(F (x)i)) +

m∑
j=1

ujτ(Gj(x)i) ≥ 0
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for every x ∈ X. assume that u0 = 0, then
∑m

j=1 ujτ(Gj(x)i) ≥ 0 holds for every x ∈ X, since there

exists x, such that τ(Gj(x)i) ≤ 0 for 1 ≤ i ≤ n, then uj = 0(j = 1, 2, · · · ,m), it contracts (u0, u) 6= 0,
thus u0 > 0. dividing the inequality by u0, we have

τ(F (x)i)− τ(F (x)i) +
m∑
j=1

u′jτ(Gj(x)i) ≥ 0,

where u′j =
uj

u0
(j = 1, 2, · · · ,m). then

F (x) +
m∑
j=1

u′jGj(x) � F (x).

denote u by u′, and then there exists u ≥ 0, such that L(x, u) � F (x).
Theorem 4.8 Let X ⊂ Rn be a nonempty convex set, F : X → En, Gj : X → En(j = 1, 2, · · · ,m) be
convex fuzzy-valued functions, x be a optimal solution of problem (FP ), assume there exists x, such that

Gj(x) � 0̃, then there exists u ≥ 0, such that (x, u) be a saddle point of the fuzzy-valued Lagrangian
function L(x, u).
Proof Let x be an optimal solution of problem (FP ), from the theorem 4.7, there exists u ≥ 0 such that

L(x, u) � F (x) (4.7)

holds for every x ∈ X. then

L(x, u) = F (x) +
m∑
j=1

ujGj(x) � F (x),

and uj ≥ 0, Gj(x) � 0̃(j = 1, 2, · · · ,m), so

m∑
j=1

ujGj(x) = 0̃. (4.8)

That is

L(x, u) = F (x) +

m∑
j=1

ujGj(x) = F (x),

From (4.7), we have
L(x, u) � L(x, u). (4.9)

From the definition of L(x, u), we have

L(x, u) = F (x) +

m∑
j=1

ujGj(x),

and Gj(x) � 0̃, uj ≥ 0(j = 1, 2, · · · ,m), then

L(x, u) � F (x) = L(x, u). (4.10)

the (4.9),(4.10) indicate that (x, u) be a saddle point of the fuzzy-valued Lagrangian function L(x, u).

5. Conclusion

In this article, we introduced the convexity and differentiability of n-dimensional fuzzy-number-valued
function by means of a new order relation, which Pave a way for n-dimensional fuzzy optimization
problem, so the saddle point optimal condition can be implemented.The n-dimensional fuzzy number
valued function has been embedded into a complete Banach space, which is expressed by its support
function, but the order of its support function is improper for fuzzy number, and establish this new order
relationship more grasp the location information of fuzzy numbers. In the future work, we will discuss
the application of n-dimensional fuzzy optimization in practice.
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Abstract

The full comprehension and handling of the phenomenon of shattering, sometime happening

during the process of polymer chain degradation [29, 32], remains unsolved when using the tra-

ditional evolution equations describing the degradation. This traditional model has been proved

to be very hard to handle as it involves evolution of two intertwined quantities. moreover, the

explicit form of its solution is, in general, impossible to obtain. In this article, we explore the

possibility of generalizing evolution equation modeling the polymer chain degradation and ana-

lyze the model with β derivative. We consider the general case where the breakup rate depends

on the size of the chain breaking up. In the process, the alternative version of Sumudu integral

transform is used to provide an explicit form of the general solution representing the evolution

of polymer sizes distribution. In particular, we show that this evolution exhibits existence of

complex periodic properties due to the presence of cosine and sine functions governing the so-

lutions. Numerical simulations are performed for some particular cases and proves that such a

system describing the polymer chain degradation contains complex and simple harmonic poles

whose effects are given by these functions or a combination of them. This result may be crucial

in the ongoing research to better handle and explain the phenomenon of shattering.

Keywords: β- derivative; depolymerization; replicated fractional poles; simple and complex

harmonic motion; shattering

1 Introduction, motivation and Justification

Depolymerization is the process where polymers or biopolymers are converted into

monomers or mixtures of monomers. Polymers range from familiar synthetic plastics

such as polystyrene (also called styrofoam) to natural biopolymers such as DNA and pro-

teins that are fundamental to biological structure and function. Historically, products

arising from the linkage of repeating units by covalent chemical bonds have been the

primary focus of polymer science; emerging important areas of the science now focus on

non-covalent links. Polyisoprene of latex rubber and the polystyrene of styrofoam are

examples of polymeric natural/biological and synthetic polymers, respectively. In biolog-

ical contexts, essentially all biological macromolecules, i.e. proteins (polyamides), nucleic

∗Email: dgoufef@unisa.ac.za
∗∗mugissb@unisa.ac.za
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acids (polynucleotides), and polysaccharides are purely polymeric, composed in large part

of polymeric components, for instance, isoprenylated/lipid-modified glycoproteins, where

small lipidic molecule and oligosaccharide modifications occur on the polyamide backbone

of the protein.

Today, it is widely known that the Newtonian concept of derivative can no longer

satisfy all the complexity of the natural occurrences. A couple of complex phenomena

and features happening in some areas of sciences or engineering are still (partially) un-

explained by the traditional existing methods and remain open problems. Usually in

mathematical modeling of a natural phenomenon that changes, the evolution is described

by a family of time-parameter operators, that map an initial given state of the system to

all subsequent states that takes the system during the evolution. A widely devotion has

been predominantly offered to way of looking at that evolution in which time’s change

is described as transitions from one state to another. Hence, this is how the theory of

semigroups was developed [16, 25], providing the mathematicians with very interesting

tools to investigate and analyze resulting mathematical models. However, most of the

phenomena scientists try to analyze and describe mathematically are complex and very

hard to handle. Some of them like depolymerization, the rock fractures and fragmentation

processes are difficult to analyze [11, 33] and often involve evolution of two intertwined

quantities: the number of particles and the distribution of mass among the particles in the

ensemble [15, 20, 28]. Then, though linear, they display non-linear features such as phase

transition (called “shattering”) causing the appearance of a “dust” of “zero-size” particles

with nonzero mass. The phenomena of “shattering” remain (partially) unexplained by

traditional models.

Another example is the groundwater flowing within a leaky aquifer. Recall that an

aquifer is an underground layer of water-bearing permeable rock or unconsolidated mate-

rials (gravel, sand, or silt) from which groundwater can be extracted using a water well.

Then, how do we explain accurately the observed movement of water within the leaky

aquifer? As an attempt to answer this question, Hantush [17, 18] proposed an equation

with the same name and his model has since been used by many hydro-geologists around

the world. However, it is necessary to note that the model does not take into account

all the non-usual details surrounding the movement of water through a leaky geological

formation. Indeed, due to the deformation of some aquifers, the Hantush equation is not

able to account for the effect of the changes in the mathematical formulation. Hence, all

those non-usual features are beyond the usual models’ resolutions and need other tech-

niques and methods of modeling with more parameters involved.

Furthermore, time’s evolution and changes occurring in some systems do not happen

on the same manner after a fixed or constant interval of time and do not follow the same

routine as one would expect. For instance, a huge variation can occur in a fraction of

second causing a major change that may affect the whole system’s state forever. Indeed,

it has turned out recently that many phenomena in different fields, including sciences, en-
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gineering and technology can be described very successfully by the models using fractional

order differential equations [4, 6, 9, 10, 13, 14, 19, 22, 27]. Hence, differential equations

with fractional derivative have become a useful tool for describing nonlinear phenomena

that are involved in many branches of chemistry, engineering, biology, ecology and numer-

ous domains of applied sciences. Many mathematical models, including those in acoustic

dissipation, mathematical epidemiology, continuous time random walk, biomedical engi-

neering, fractional signal and image processing, control theory, Levy statistics, fractional

phase-locked loops, fractional Brownian, porous media, fractional filters motion and non-

local phenomena have proved to provide a better description of the phenomenon under

investigation than models with the conventional integer-order derivative [6, 22, 26].

One of the attempts to enhance mathematical models was to introduce the concept

of derivative with fractional order. There exist in the literature number of definitions of

fractional derivatives, including Riemann–Liouville and Caputo derivatives respectively

defined as

Dα
x (f(x)) =

1

Γ(n−α)

(
d

dx

)n∫ x

0

(x− t)n−α−1f (t)dt, (1)

n−1<α≤n and

Dα
x (f(x)) =

1

Γ(n−α)

∫ x

0

(x− t)n−α−1

(
d

dt

)n

f (t)dt, (2)

n−1<α≤n. A new fractional derivative with no singular kernel was recently proposed

by Caputo et al. in [7]. However, Caputo fractional derivative [8], for instance, is the

one mostly used for modelling real world problems in the field [4, 6, 13–15, 20, 28].

However, this derivative exhibits some limitations like not obeying the traditional chain

rule; which chain rule represents one of the key elements of the match asymptotic method

[20, 28]. Recall that the match asymptotic method has never been used to solve any

kind of fractional differential equations because of the nature and properties of fractional

derivatives. Hence, the conformable fractional derivative was proposed [2, 21]. This

fractional derivative is theoretically very easier to handle and obeys the chain rule. But

it also exhibits a huge failure that is expressed by the fact that the fractional derivative

of any differentiable function at the point zero is zero. This does not make any sense in a

physical point of view and then, a modified new version, the β–derivative was proposed

in order to skirt the noticed weakness. The main aim of this new derivative was, first

of all, to extend the well-known match asymptotic method to the scope of the fractional

differential equation and later to describe the boundary layers problems within the folder

of fractional calculus. The β–derivative was defined as [1, 15, 20]:

A
0 D

β
t g(t) =





lim
ε→0

g
(

t+ε(t+ 1

Γ(β))
1−β

)

−g(t)

ε
for all t≥ 0, 0<β≤ 1

g(t) for all t≥ 0, β=0,

(3)
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where g is a function such that g : [0, ∞)→R and Γ the gamma-function

Γ(ζ) =

∫ ∞

0

tζ−1e−tdt.

If the above limit of exists then g is said to be β−differentiable.

Note that for β=1, we have A
0 D

β
t g(t) =

d
dt
g(t). Moreover, unlike other derivatives with

fractional parameters, the β–derivative of a function can be locally defined at a certain

point, the same way like the first order derivative. For a general order, let us say mβ, the

mβ–derivative of g is defined as

A
0 D

mβ
t g(t) =A

0 Dβ
t

(
A
0 D

(m−1)β
t g(t)

)
for all t≥ 0, m∈N, 0<β≤ 1 (4)

Notice that themβ–derivative of a given function provides information about the previous

n−1–derivatives of the same function. For instance we have

A
0 D

2β
t g(t)=A

0 Dβ
t

(
A
0 D

β
t g(t)

)

=

(
t+

1

Γ(β)

)1−β
[
(1−β)

(
t+

1

Γ(β)

)−β

g′+

(
t+

1

Γ(β)

)1−β

g′′

]
.

(5)

This gives the β–derivative a unique property of memory, that is not provided by any

other derivative. It is also easy to verify that for β =1, we recover the second derivative

of g. For more properties and details on this new derivative, the readers can consult the

reference [1, 15, 20, 28].

1.1 The kinetic equation

The evolution of the sizes distribution occurring during polymer chain degradation is

well known [12, 15, 32] to be described by the following integrodifferential equation

∂

∂t
g(x,t) =−g(x,t)

∫ x

0

H(y,x−y)dy+2

∞∫

x

g(y, t)H(x,y−x)dy, x, t > 0. (6)

Expressing the solution of equation (6) in its explicit form is very hard since fragmentation

(or polymer chain degradation) processes, as explained in the previous section, are difficult

to analyse as they involve evolution of two intertwined quantities: the distribution of

mass among the particles in the ensemble and the number of particles in it. That is why,

though linear, they display non-linear features such as “shattering” phenomena which

they cannot fully explain [11, 15, 33]. Then, in order to have a broader idea about the

evolution of polymer chain degradation and maybe trying to understand the phenomenon

of shattering as described here above, we explore the possibility of extending the analysis

by considering the β–derivative defined in the previous section. This yields the following

integrodifferential equation:
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A
0 D

β
t g(x,t) =−g(x,t)

∫ x

0

Hβ(y,x−y)dy+2

∞∫

x

g(y, t)Hβ(x,y−x)dy, x, t > 0. (7)

subject to the initial condition

g(x,0)= g
0
(x), x> 0 (8)

where g(x,t) represents the density of x-groups (i.e. groups of size x) at time t andHβ(x,y)

gives the average fragmentation rate, that is, the average number at which clusters of size

x+y undergo splitting to form an x-group and a y-group.

2 Some useful properties in the β−differentiation

Recall that there is a growing problem about the choice of the type of fractional

derivative to use among the large number of its existing versions. We already men-

tioned the incapacity of most of them to explicitly provide the variation of the functions.

Moreover, many models using fractional derivatives are not easy to handle analytically.

The β–derivative allows us to palliate some insufficiencies of other fractional derivatives

and then, we were able to successfully extend the well-known match asymptotic method

[20, 28] to the scope of the fractional differential equation and also describe the boundary

layers problems within the scope of fractional calculus. Next we recall some properties of

the β–derivative all proved in [15, 20, 28].

Theorem 2.1. Assuming that, a given function, say g : [a, ∞)→R is β−differentiable

at a given point, say t0≥ a, β ∈ (0, 1], then g is also continuous at t0.

Theorem 2.2. Assuming that f is β−differentiable on an open interval (a, b) then

1. If A
0 D

β

t f(t)< 0 for all t∈ (a, b) then f is decreasing on (a,b);

2. If A
0 D

β

t f(t)> 0 for all t∈ (a, b) then f is increasing on (a,b);

3. If A
0 D

β

t f(t) = 0 for all t∈ (a, b) then f is constant on (a,b).

Theorem 2.3. Assuming that, g 6= 0 and f are two β−differentiable functions with β ∈
(0,1] then the following relations are satisfied

1. A
0 D

β

t (af (t)+bg(t))= aA0 D
β

t (f (t))+bA0 D
β

t (g (t)) for all real numbers a and b;

2. A
0 D

β

t (c)= 0 for any given constant c;

3. A
0 D

β

t (f (t)g(t))= g (t)A0 D
β

t (f (t))+f (t)A0 D
β

t (g (t)) ;

4. A
0 D

β

t

(
f(t)
g(t)

)
=

g(t)A
0
D

β

t
(f(t))−f(t)A

0
D

β

t
(g(t))

g2(t)
.
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Theorem 2.4. Let f : [a, ∞) → R be a function such that f is differentiable and also

β−differentiable. Let g be a function defined in the range of f and also differentiable,

then we have the following rule

A
0 D

β

t (gof(t))=

(
t+

1

Γ(β)

)1−β

f ′(t)g′ (f(t)) (9)

Definition 2.1. Let f : [a, ∞) → R be a given function, then we propose that the β−
integral of f is

A
a I

β

t (f(t)) =

∫ t

a

(
ξ+

1

Γ(β)

)β−1

f(ξ)dξ (10)

The above operator is the inverse operator of the proposed fractional derivative. We

shall present to underpin this statement by the following theorem.

Theorem 2.5. A
0 D

β
t

[
A
0 I

β

t f(t)
]
= f (t) for all t ≥ 0 with f a given continuous and

differentiable function.

Proof. [1, Theorem 7]

Theorem 2.6.
A
a I

β

t

[
Dβ

t f(t)
]
= f (t)−f(a) (11)

for all t ≥ a with f a given continuous and differentiable function.

Proof. [1, Theorem 8]

3 Solutions to the model

Note that these above models (6) and (7) are well applicable in many branches of

natural sciences, including physics, chemistry, engineering, biology, ecology, just to name

a few, and in numerous domains of applied sciences, such as the rock fractures and break

of droplets. Various types of fragmentation equations have been comprehensively an-

alyzed in numerous works (see, e.g., [12, 30, 33]). In the domain of polymer science,

the fragmentation dynamics has also been of considerable interest, since degradation of

bonds or depolymerisation results in fragmentation, see [5, 23, 32]. In [23], the authors

used statistical arguments to find and analyze the size distribution of the model. The

authors in [5] analysed the model in combination with the inverse process, that is, the

coagulation process, and provided a similar result for the size distribution. However, the

classical fragmentation model (6) has been proved to be unable to fully describe some

bizarre phenomena observed in such a degradation process, like for instance shattering

as described above and also in [11, 23, 32, 33]. Recall that shattering is a phenomenon

seen as an explosive or dishonest Markov process, see e.g. [3, 24] and has been associated

with an infinite cascade of breakup events creating a ‘dust’ of particles of zero size which,

however, carry non-zero mass. Hence, to have explicit solutions to the model, we consider
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the case where the breakup rate depends on the size of the chain breaking and takes the

form

Hβ(x,y) = (x+y)ν, ν ∈R (12)

Substituting in equation (7) yields

Dβ
t (g(x,t)) =−xν+1g(x,t)+2

∞∫

x

yνg(y, t)dy, 0≤ β≤ 1 (13)

Taking the the modified Sumudu transform Sβ (see the Appendix below) of both sides of

equation (13) yields

Sβ

(
Dβ

t g(x,t), r
)
=−xν+1Gβ

s (x,r)+2

∞∫

x

yνGβ
s (y,r)dy,

where Gβ
s (x,r) represents the the modified Sumudu transform Sβ(g(x,t), r) of g(x,t).

Using the relation (23) of Appendix, we obtain

r−2(Gβ
s (x,r)−g

0
(x)) =−xν+1Gβ

s (x,r)+2

∞∫

x

yνGβ
s (y,r)dy,

rearranged to have

(
1+xν+1r2

)
Gβ

s (x,r)−2r2
∞∫

x

yνGβ
s (y,r)dy= g

0
(x). (14)

Next, it is important to mention that considering the differential equation (13), it is

implicitly required that the function ξ −→ g(ξ, t) is integrable, in the sense of Lebesgue,

on any interval [ε,∞) for ε > 0 and almost every ξ > 0. Obviously, the same assertion

applies to the functions ξ−→ g
0
(ξ) and ξ−→Gβ

s (ξ,r), 0≤ β≤ 1.

This allows us to put

Z(x,r) =−2r2
∞∫

x

yνGβ
s (y,r)dy (15)

knowing that the integrand will be integrable over any interval [ε,∞) and the integral will

be absolutely continuous at each x > 0. The substitution of Z(x,r) into (14) yields the

partial differential equation
(
1+xν+1r2

1+r2xν

)
∂xZ(x,r)+Z(x,r) = g

0
(x). (16)

Choosing the constant in the general solution so as to have solutions converging to zero

at ∞, we obtain its solution given as

Z(x,r) = 2r2e−σr,ν(x)

∞∫

x

ξνg
0
(ξ)

1+r2ξν+1
eσr,ν(ξ)dξ
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where

σr,ν(x) =

x∫

0

2r2ξν

1+r2ξν+1
dξ= ln

(
1+r2xν+1

) 2
ν+1

. (17)

Thus, substituting Z(x,r) into (15) yields the solution of (14) given as

Gβ
s (x,r) =

−1

xν

(
2r2xν

1+r2xν+1
e−σr,ν(x)

) x∫

∞

ξνg
0
(ξ)

1+r2ξν+1
eσr,ν(ξ)dξ+

g
0
(x)

1+r2xν+1

=
g
0
(x)

1+r2xν+1
− 2r2

(1+r2xν+1)
2

ν+1
+1

x∫

∞

ξν
(
1+r2ξν+1

) 2
ν+1

−1

g
0
(ξ)dξ

(18)

Applying the inverse of the modified Sumudu transform, which coincides with the inverse

Sumudu transform, we are finally lead to the solution of the model (13), given by

g(x,t)=S−1
β (Gβ

s (x,r), t)

= g
0
(x)S−1

β

(
1

1+r2xν+1
, t

)
−2

x∫

∞

ξνg
0
(ξ)S−1

β


r2 (1+r2ξν+1)

2
ν+1

−1

(1+r2xν+1)
2

ν+1
+1

, t


dξ

= g
0
(x)cos(t

√
xν+1)−2

x∫

∞

ξνg
0
(ξ)S−1

β


r2 (1+r2ξν+1)

2
ν+1

−1

(1+r2xν+1)
2

ν+1
+1

, t


dξ

(19)

Remark 3.1. The expression g(x,t) in (19) is well-defined only if the integral

x∫

∞

ξνg
0
(ξ)S−1

β


r2 (1+r2ξν+1)

2
ν+1

−1

(1+r2xν+1)
2

ν+1
+1

, t


dξ

converges.

We are now capable of taking some specific values of ν to see the exact expression of

the solution.

• For ν =1, expression (19) becomes

g(x,t)= g
0
(x)S−1

β

(
1

1+r2x2
, t

)
−2

x∫

∞

ξg
0
(ξ)S−1

β

(
r2

(1+r2x2)
2
, t

)
dξ

= g
0
(x)cosxt− tsinxt

x

x∫

∞

ξg
0
(ξ)dξ

(20)
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• For ν =−3, expression (19) becomes

g(x,t) = g
0
(x)S−1

β

(
1

1+r2x−2
, t

)
−2

x∫

∞

ξg
0
(ξ)S−1

β

(
r2
(
1+r2ξ−2

)−2
, t
)
dξ

= g
0
(x)cos

t

x
−2

x∫

∞

ξg
0
(ξ)

ξtsin t
ξ

2
dξ

= g
0
(x)cos

t

x
−

x∫

∞

tξ2g
0
(ξ)sin

t

ξ
dξ

(21)

0.5
1

1.5
2

2.5
3

0

5

10

15
−40

−30

−20

−10

0

10

20

30

40

x

g
1
(x,t) when g

0
(x) = 1/x3

t

g 1(x
,t)

Fig. 1. g(x, t) when ν=1 and g
0
(x) =1/x3

4 Concluding remarks

We have explored the possibility of using new and alternative methods to generalize

evolution equation modeling the polymer chain degradation. In the process, a modified

version of the Sumudu transform is exploited to perform analysis of the system endowed

the β−derivative and where the breakup rate depends on the size of the chain breaking

up. Explicit forms of the solutions in some particular cases showed that the dynamics of

this evolution exhibits complex periodic properties due to the presence of cosine and sine

functions, as shown in Figs. 1 to 6, plotted for a positive value (ν = 1) and a negative

value (ν = −3) of ν. Figs. 1 to 3 represent the solution for ν = 1 with initial condition

g
0
(x) = 1/x3 : Fig.1 is the 2−D surface plot while Fig. 2 and 3 are respectively its cross
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section and longitudinal section drawn for some specific values of the size x and time t. A

similar reasoning applies to Figs. 4 to 6, but this time with ν =−3. This infers existence

of complex and simple harmonic poles in the dynamics of polymer chain degradation

whose effects are characterized by these functions or a combination of them. This work

improved the preceding one with the inclusion of a more general expression of the breakup

rate derivative and β−derivative. This work might be a breakthrough that may lead to
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a better understanding of bizarre phenomena happening in some dynamics such as the

phenomenon of shattering.
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Appendix: The new Sumudu integral transform

Definition: Let g be a function defined in (0,∞), then, we define the modified Sumudu

transform of g as

Sβ(g(t),u) =

∫ ∞

0

(
t+

1

Γ(β)

)β−dβe
1

u
e−

t
u g(t)dt, (22)

where dβe is the smallest integer greater or equal to β. Since β ∈ (0,1] in this article then,

β−dβe= β−1.

An important property of the modified Sumudu transform:

If S(g(t),u) is the well known Sumudu transform of g defined in [31] as

S(g(t),u) =

∫ ∞

0

1

u
exp

[
− t

u

]
g(t)dt,

then, we have the following relation:

Sβ(
A
0 D

β
t g

n−1(t),u) =
1

un
S(g(t),u)−

n−1∑

k=0

1

un−k
g(k)(0) (23)
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Proof. By definition we have

Sβ(
A
0 D

β
t g

n−1(t),u) =

∫ ∞

0

(
t+

1

Γ(β)

)β−1

1

u
exp

[
− t

u

]


(
t+

1

Γ(β)

)β−1

lim
ε→0

gn−1

(
t+ε

(
t+ 1

Γ(β)

)1−β
)
−gn−1(t)

ε


dt

=

∫ ∞

0

(
t+

1

Γ(β)

)β−1
1

u
exp

[
− t

u

] ((
t+

1

Γ(β)

)1−β

lim
η→0

gn−1 (t+η)−gn−1(t)

η

)
dt

(24)

where we have put η = ε
(
t+ 1

Γ(β)

)1−β

−→ 0 as ε −→ 0. Hence, making use of the well

known property of Sumudu transform S(g(t),u) [31], we obtain

Sβ(
A
0 D

β
t g

n−1(t),u) =S(gn(t),u) =
1

un
S(g(t),u)−

n−1∑

k=0

1

un−k
g(k)(0),

which concludes the proof.
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Abstract
A �xed point theorem is given under general conditions on the opera-

tors involved in a Banach space setting. The results �nd applications in
left multivariate fractional calculus.
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gence, left multivariate fractional calculus.

1 Introductions

Numerous problems can be formulated as an equation like

R (x) = 0; (1.1)

where R is a continuous operator de�ned on a subset 
 of a Banach space B1
with values in a Banach space B2 using Mathematical Modelling [1], [7], [11],
[12], [16], [18]. The solutions denoted by x� can be found in explicit form only
in special cases. That is why most solution methods for these equations are
usually iterative. Let L (B1; B2) denote the space of bounded linear operators
from B1 into B2. Let also A (�) : 
! L (B1; B1) be a continuous operator. Set

F = LR; (1.2)

1
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where L 2 L (B2; B1). We shall approximate x� using a sequence fxng generated
by the �xed point scheme:

xn+1 := xn + zn, A (xn) zn + F (xn) = 0
, zn = Q (zn) := (I �A (xn)) zn � F (xn) ;

(1.3)

where x0 2 
. The sequence fxng de�ned by

xn+1 = Q (xn) = Q(n+1) (x0) (1.4)

exists. In case of convergence we write:

Q1 (x0) := lim
n!1

(Qn (x0)) = lim
n!1

xn: (1.5)

Many methods in the literature can be considered special cases of method (1.3).
We can choose A to be: A (x) = F 0 (x) (Newton�s method), A (x) = F 0 (x0)

(Modi�ed Newton�s method), A (x) = [x; g (x) ;F ] ; g : 
 ! B1 (Ste¤ensen�s
method). Many other choices for A can be found in [1-20] and the references
there in. Therefore, it is important to study the convergence of method (1.3)
under generalized conditions. In particular, we present the semi-local conver-
gence of method (1.3) using only continuity assumptions on operator F and for
a so general operator A as to allow applications to left multivariate fractional
calculus and other areas.
The rest of the paper is organized as follows: Section 2 contains the semi-

local convergence of method (1.3). In the concluding Section 3, we suggest some
applications to left multivariate fractional calculus.

2 Convergence

Let B (w; �), B (w; �) stand, respectively for the open and closed balls in B1
with center w 2 B1 and of radius � > 0.
We present the semi-local convergence of method (1.3) in this section.

Theorem 2.1 Let F : 
 � B1 ! B2, A (�) : 
! L (B1; B1) and x0 2 
 be as
de�ned in the Introduction. Suppose: there exist �0 2 (0; 1), �1 2 (0; 1), � � 0
such that for each x; y 2 


� := �0 + �1 < 1; (2.1)

kF (x0)k � �; (2.2)

kI �A (x)k � �0; (2.3)

kF (y)� F (x)�A (x) (y � x)k � �1 ky � xk (2.4)

2
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and
B (x0; �) � 
; (2.5)

where
� =

�

1� � : (2.6)

Then, sequence fxng generated for x0 2 
 by

xn+1 = xn +Q
1 (0) ; Qn (z) := (I �A (xn)) z � F (xn) (2.7)

is well de�ned in B (x0; �), remains in B (x0; �) for each n = 0; 1; 2; ::: and
converges to x� which is the only solution of equation F (x) = 0 in B (x0; �).
Moreover, an apriori error estimate is given by the sequence f�ng de�ned by

�0 := �, �n = T1n (0) , Tn (t) = �0 + �1�n�1 (2.8)

for each n = 1; 2; ::: and satisfying

lim
n!1

�n = 0: (2.9)

Furthermore, an aposteriori error estimate is given by the sequence f�ng der�ned
by

�n := H1
n (0) , Hn (t) = �t+ �1pn�1; (2.10)

qn := kxn � x0k � �� �n � �; (2.11)

where
pn�1 := kxn � xn�1k for each n = 1; 2; ::: (2.12)

Proof. We shall show using mathematical induction the following assertion
is true:
(An) xn 2 X and �n � 0 are well de�ned and such that

�n + pn�1 � �n�1: (2.13)

By the de�nition of �, (2.3)-(2.6) we have that there exists r � � (Lemma 1.4
[7, pp. 3]) such that

�0� + kF (x0)k = r

and
�k0r � �k0�! 0 as k !1:

That is (Lemma 1.5 [7, pp. 4]) x1 is well de�ned and p0 � r.
We need the estimate:

T1 (�� r) = �0 (�� r) + �1�0 =

�0�� �0r + �1� = G0 (�)� r = �� r:

3
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That is (Lemma 1.4 [7, pp. 3]) �1 exists and satis�es

�1 + p0 � �� r + r = � = �0:

Hence (I0) is true. Suppose that for each k = 1; 2; :::; n; assertion (Ik) is true.
We must show: xk+1 exists and �nd a bound r for pk. Indeed, we have in turn
that

�0�k + �1
�
�k�1 � �k

�
= �0�k + �1�k�1 � �1�k

= Tk (�k)� �1�k � �k:

That is there exists r � �k such that

r = �0r + �1
�
�k�1 � �k

�
and (�0 + �1)

i
r ! 0 (2.14)

as i!1:
The induction hypothesis gives that

qk �
k�1X
m=0

pm �
k�1X
m=0

�
�m � �m+1

�
= �� �k � �;

so xk 2 B (x0; �) � 
 and x1 satis�es kI �A (x1)k � �0 (by (2.3)).
Using the induction hypothesis, (1.3) and (2.4), we get

kF (xk)k = kF (xk)� F (xk�1)�A (xk�1) (xk � xk�1)k (2.15)

� �1pk�1 � �1
�
�k�1 � �k

�
leading together with (2.14) to:

�0r + kF (xk)k � r;

which implies xk+1 exists and pk � r � �k. It follows from the de�nition of
�k+1 that

Tk+1 (�k � r) = Tk (�k)� r = �k � r;

so �k+1 exists and satis�es

�k+1 + pk � �k � r + r = �k

so the induction for (In) is completed.
Let j � k. Then, we obtain in turn that

kxj+k � xkk �
jX
i=k

pi �
jX
i=k

�
�j � �j+1

�
= �k � �j+k � �k: (2.16)

We also have using induction that

�k+1 = Tk+1
�
�k+1

�
� Tk+1 (�k) � ��k � ::: � �k+1�: (2.17)

4
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Hence, by (2.1) and (2.17) lim
k!1

�k = 0, so fxkg is a complete sequence in a
Banach space X and as such it converges to some x�. By letting j ! 1 in
(2.16), we conclude that x� 2 B (xk; �k). Moreover, by letting k !1 in (2.15)
and using the continuity of F we get that F (x�) = 0. Notice that

Hk (�k) � Tk (�k) � �k;

so the apriori bound exists. That is �k is smaller in general than �k. Clearly, the
conditions of the theorem are satis�ed for xk replacing x0 (by (2.16)). Hence,
by (2.8) x� 2 B (xn; �n), which completes the proof for the aposteriori bound.

Remark 2.2 (a) It follows from the proof of Theorem 2.1 that the conclusions
hold, if A (�) is replaced by a more general continuous operator A : 
! B1.
(b) In the next section some applications are suggested for special choices of

the "A" operators with 
0 := �0 and 
1 := �1:

3 Applications to left multivariate fractional cal-
culus

Our presented earlier semi-local convergence results, see Theorem 2.1, apply in
the next two multivariate fractional settings given that the following inequalities
are ful�lled:

k1�A (x)k1 � 
0 2 (0; 1) ; (3.1)

and 


(F (y)� F (x))�!i �A (x) (y � x)


 � 
1 ky � xk ; (3.2)

where 
0; 
1 2 (0; 1), furthermore


 = 
0 + 
1 2 (0; 1) ; (3.3)

for all x; y 2
kQ
i=1

[a�i ; b
�
i ], where ai < a�i < b�i < bi, i = 1; :::; k.

Above
�!
i is the unit vector in Rk, k 2 N,




�!i 


 = 1, and k�k is a norm in Rk.
The speci�c functions A (x), F (x) will be described next.
I) Consider the left multidimensional Riemann-Liouville fractional integral

of order � = (�1; :::; �k) (�i > 0, i = 1; :::; k):

�
I�a+f

�
(x) =

1
kQ
i=1

� (�i)

Z x1

a1

:::

Z xk

ak

kY
i=1

(xi � ti)�i�1 f (t1; :::; tk) dt1:::dtk;

(3.4)

5
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where � is the gamma function, f 2 L1

�
kQ
i=1

[ai; bi]

�
, a = (a1; :::; ak), and

x = (x1; :::; xk) 2
kQ
i=1

[ai; bi] :

By [6], we get that
�
I�a+f

�
is a continuous function on

kQ
i=1

[ai; bi]. Further-

more by [6] we get that I�a+ is a bounded linear operator, which is a positive
operator, plus that

�
I�a+f

�
(a) = 0:

In particular,
�
I�a+f

�
is continuous on

kQ
i=1

[a�i ; b
�
i ] :

Thus there exist x1; x2 2
kQ
i=1

[a�i ; b
�
i ] such that

�
I�a+f

�
(x1) = min

�
I�a+f

�
(x) ;�

I�a+f
�
(x2) = max

�
I�a+f

�
(x) ;

(3.5)

over all x 2
kQ
i=1

[a�i ; b
�
i ] :

We assume that �
I�a+f

�
(x1) > 0: (3.6)

Hence 

I�a+f


1;

kQ
i=1
[a�i ;b�i ]

=
�
I�a+f

�
(x2) > 0: (3.7)

Here, we de�ne

Jf (x) = mf (x) , 0 < m <
1

2
; (3.8)

for any x 2
kQ
i=1

[a�i ; b
�
i ] :

Therefore the equation

Jf (x) = 0, x 2
kY
i=1

[a�i ; b
�
i ] ; (3.9)

has the same solutions as the equation

F (x) :=
Jf (x)

2
�
I�a+f

�
(x2)

= 0; x 2
kY
i=1

[a�i ; b
�
i ] : (3.10)

Notice that

I�a+

 
f

2
�
I�a+f

�
(x2)

!
(x) =

�
I�a+f

�
(x)

2
�
I�a+f

�
(x2)

� 1

2
< 1; x 2

kY
i=1

[a�i ; b
�
i ] : (3.11)

6
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Call

A (x) :=

�
I�a+f

�
(x)

2
�
I�a+f

�
(x2)

, 8 x 2
kY
i=1

[a�i ; b
�
i ] : (3.12)

We notice that

0 <

�
I�a+f

�
(x1)

2
�
I�a+f

�
(x2)

� A (x) � 1

2
; 8 x 2

kY
i=1

[a�i ; b
�
i ] : (3.13)

Hence, the �rst condition (3.1) is ful�lled by

j1�A (x)j = 1�A (x) � 1�
�
I�a+f

�
(x1)

2
�
I�a+f

�
(x2)

=: 
0, 8 x 2
kY
i=1

[a�i ; b
�
i ] : (3.14)

Hence, k1�A (x)k1 � 
0, where k�k1 is over
kQ
i=1

[a�i ; b
�
i ] : Clearly 
0 2 (0; 1).

Next, we assume that f(x)

2(I�a+f)(x2)
is a contraction, that is

����� f (x)

2
�
I�a+f

�
(x2)

� f (y)

2
�
I�a+f

�
(x2)

����� � � kx� yk ; all x; y 2
kY
i=1

[a�i ; b
�
i ] , 0 < � < 1:

(3.15)
Hence����� mf (x)

2
�
I�a+f

�
(x2)

� mf (y)

2
�
I�a+f

�
(x2)

����� � m� kx� yk � �

2
kx� yk ; all x; y 2

kY
i=1

[a�i ; b
�
i ] .

(3.16)
Set � = �

2 , it is 0 < � < 1
2 : We have that

jF (x)� F (y)j � � kx� yk ; (3.17)

all x; y 2
kQ
i=1

[a�i ; b
�
i ] :

Equivalently we have

jJf (x)� Jf (y)j � 2�
�
I�a+f

�
(x2) kx� yk ; all x; y 2

kY
i=1

[a�i ; b
�
i ] : (3.18)

We observe that 


(F (y)� F (x))�!i �A (x) (y � x)


 �
jF (y)� F (x)j+ jA (x)j ky � xk � (3.19)

� ky � xk+jA (x)j ky � xk = (�+ jA (x)j) ky � xk =: ( 1) , 8 x; y 2
kY
i=1

[a�i ; b
�
i ] :

7
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By [6], we have that

���I�a+f� (x)�� �
 

kY
i=1

(bi � ai)�i

� (�i + 1)

!
kfk1 ; (3.20)

8 x 2
kQ
i=1

[a�i ; b
�
i ], where k�k1 now is over

kQ
i=1

[ai; bi] :

Hence

jA (x)j =
���I�a+f� (x)��
2
�
I�a+f

�
(x2)

� 1

2
�
I�a+f

�
(x2)

 
kY
i=1

(bi � ai)�i

� (�i + 1)

!
kfk1 <1; (3.21)

8 x 2
kQ
i=1

[a�i ; b
�
i ].

Therefore we get

( 1) �
 
�+

1

2
�
I�a+f

�
(x2)

 
kY
i=1

(bi � ai)�i

� (�i + 1)

!
kfk1

!
ky � xk ; (3.22)

8 x; y 2
kQ
i=1

[a�i ; b
�
i ] :

Call

0 < 
1 := �+
1

2
�
I�a+f

�
(x2)

 
kY
i=1

(bi � ai)�i

� (�i + 1)

!
kfk1 ; (3.23)

and by choosing (bi � ai) small enough, i = 1; :::; k; we can make 
1 2 (0; 1),
ful�lling (3.2).
Next, we call and we need that

0 < 
 := 
0 + 
1 =

 
1�

�
I�a+f

�
(x1)

2
�
I�a+f

�
(x2)

!
+

 
�+

1

2
�
I�a+f

�
(x2)

 
kY
i=1

(bi � ai)�i

� (�i + 1)

!
kfk1

!
< 1; (3.24)

equivalently,

�+
1

2
�
I�a+f

�
(x2)

 
kY
i=1

(bi � ai)�i

� (�i + 1)

!
kfk1 <

�
I�a+f

�
(x1)

2
�
I�a+f

�
(x2)

; (3.25)

equivalently,

2�
�
I�a+f

�
(x2) +

 
kY
i=1

(bi � ai)�i

� (�i + 1)

!
kfk1 <

�
I�a+f

�
(x1) ; (3.26)

8
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which is possible for small � and small (bi � ai), all i = 1; :::; k: That is 
 2 (0; 1),
ful�lling (3.3). So our numerical method converges and solves (3.9).
II) Let � = (�1; :::; �k), �i > 0; mi = d�ie (d�e ceiling function), �i =2 N;

i = 1; :::; k 2 N, and G 2 C
Pk

i=1mi�1
�

kQ
i=1

[ai; bi]

�
, such that

0 6= @

kP
i=1

mi

G

@xm1
1 :::@xmk

k

2 L1

 
kY
i=1

[ai; bi]

!
:

Here we consider the multivariate left Caputo type fractional mixed partial
derivative of order �:

D�
�aG (x) =

1
kQ
i=1

� (mi � �i)

Z x1

a1

:::

Z xk

ak

kY
i=1

(xi � ti)mi��i�1 � (3.27)

@

kP
i=1

mi

G (t1; :::; tk)

@tm1
1 :::@tmk

k

dt1:::dtk;

where again � is the gamma function, a = (a1; :::; ak), 8 x = (x1; :::; xk) 2
kQ
i=1

[ai; bi] : Notice here that mi � �i > 0, i = 1; :::; k:

By [6], we get that D�
�aG is a continuous function on

kQ
i=1

[ai; bi] ; and it holds

that D�
�aG (a) = 0:

In particular D�
�aG is continuous on

kQ
i=1

[a�i ; b
�
i ] ; where ai < a�i < b�i < bi,

i = 1; :::; k.

Therefore there exist x1; x2 2
kQ
i=1

[a�i ; b
�
i ] such that

(D�
�aG) (x1) = min (D

�
�aG) (x) ;

(D�
�aG) (x2) = max (D

�
�aG) (x) ;

(3.28)

over all x 2
kQ
i=1

[a�i ; b
�
i ] :

We assume that
(D�

�aG) (x1) > 0: (3.29)

Hence
kD�

�aGk
1;

kQ
i=1
[a�i ;b�i ]

= (D�
�aG) (x2) > 0: (3.30)

Here we de�ne
JG (x) = mG (x) , 0 < m <

1

2
; (3.31)

9
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for any x 2
kQ
i=1

[a�i ; b
�
i ] :

Therefore the equation

JG (x) = 0, x 2
kY
i=1

[a�i ; b
�
i ] ; (3.32)

has the same solutions as the equation

F (x) :=
JG (x)

2D�
�aG (x2)

= 0; x 2
kY
i=1

[a�i ; b
�
i ] : (3.33)

Notice that

D�
�a

�
G (x)

2D�
�aG (x2)

�
=

D�
�aG (x)

2D�
�aG (x2)

� 1

2
< 1; x 2

kY
i=1

[a�i ; b
�
i ] : (3.34)

We call

A (x) :=
D�
�aG (x)

2D�
�aG (x2)

, 8 x 2
kY
i=1

[a�i ; b
�
i ] : (3.35)

We notice that

0 <
D�
�aG (x1)

2D�
�aG (x2)

� A (x) � 1

2
: (3.36)

Hence, the �rst condition (3.1) is ful�lled by

j1�A (x)j = 1�A (x) � 1� D�
�aG (x1)

2D�
�aG (x2)

=: 
0, 8 x 2
kY
i=1

[a�i ; b
�
i ] : (3.37)

Hence
k1�A (x)k1 � 
0; (3.38)

where k�k1 is over
kQ
i=1

[a�i ; b
�
i ] :

Clearly 
0 2 (0; 1).
Next we assume that G(x)

2(D�
�aG)(x2)

is a contraction, that is

���� G (x)

2 (D�
�aG) (x2)

� G (y)

2D�
�aG (x2)

���� � � kx� yk ; all x; y 2
kY
i=1

[a�i ; b
�
i ] , (3.39)

with 0 < � < 1:

Hence���� mG (x)

2 (D�
�aG) (x2)

� mG (y)

2 (D�
�aG) (x2)

���� � m� kx� yk � �

2
kx� yk ; (3.40)

10
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all x; y 2
kQ
i=1

[a�i ; b
�
i ].

Set � = �
2 , it is 0 < � < 1

2 : We have that

jF (x)� F (y)j � � kx� yk ; (3.41)

all x; y 2
kQ
i=1

[a�i ; b
�
i ] :

Equivalently we have

jJG (x)� JG (y)j � 2� (D�
�aG) (x2) kx� yk ; all x; y 2

kY
i=1

[a�i ; b
�
i ] : (3.42)

We observe that 


(F (y)� F (x))�!i �A (x) (y � x)


 �
jF (y)� F (x)j+ jA (x)j ky � xk �

� ky � xk+ jA (x)j ky � xk = (�+ jA (x)j) ky � xk =: ( 2) , (3.43)

8 x; y 2
kQ
i=1

[a�i ; b
�
i ] :

By (3.27), we notice that

jD�
�aG (x)j �

1
kQ
i=1

� (mi � �i)
�

 Z x1

a1

:::

Z xk

ak

kY
i=1

(xi � ti)mi��i�1 dt1:::dtk

!








@

kP
i=1

mi

G

@xm1
1 :::@xmk

k










1

=
1

kQ
i=1

� (mi � �i)

 
kY
i=1

(xi � ai)mi��i

mi � �i

!








@

kP
i=1

mi

G

@xm1
1 :::@xmk

k










1

=

 
kY
i=1

(xi � ai)mi��i

� (mi � �i + 1)

!








@

kP
i=1

mi

G

@xm1
1 :::@xmk

k










1

: (3.44)

We have proved that

jD�
�aG (x)j �

 
kY
i=1

(bi � ai)mi��i

� (mi � �i + 1)

!








@

kP
i=1

mi

G

@xm1
1 :::@xmk

k










1

; (3.45)
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8 x 2
kQ
i=1

[a�i ; b
�
i ], where k�k1 now is over

kQ
i=1

[ai; bi].

Hence we get

jA (x)j � 1

2D�
�aG (x2)

 
kY
i=1

(bi � ai)mi��i

� (mi � �i + 1)

!








@

kP
i=1

mi

G

@xm1
1 :::@xmk

k










1

<1; (3.46)

8 x 2
kQ
i=1

[a�i ; b
�
i ].

Therefore we obtain

( 2) �

0BB@�+ 1

2D�
�aG (x2)

 
kY
i=1

(bi � ai)mi��i

� (mi � �i + 1)

!








@

kP
i=1

mi

G

@xm1
1 :::@xmk

k










1

1CCA ky � xk ;
(3.47)

8 x; y 2
kQ
i=1

[a�i ; b
�
i ] :

Call

0 < 
1 := �+
1

2D�
�aG (x2)

 
kY
i=1

(bi � ai)mi��i

� (mi � �i + 1)

!








@

kP
i=1

mi

G

@xm1
1 :::@xmk

k










1

; (3.48)

and by choosing (bi � ai) small enough, i = 1; :::; k; we can make 
1 2 (0; 1),
ful�lling (3.2).
Next we call and we need that

0 < 
 := 
0 + 
1 =

�
1� D�

�aG (x1)

2D�
�aG (x2)

�
+

8>><>>:�+
1

2D�
�aG (x2)

 
kY
i=1

(bi � ai)mi��i

� (mi � �i + 1)

!








@

kP
i=1

mi

G

@xm1
1 :::@xmk

k










1

9>>=>>; < 1; (3.49)

equivalently,

�+
1

2D�
�aG (x2)

 
kY
i=1

(bi � ai)mi��i

� (mi � �i + 1)

!








@

kP
i=1

mi

G

@xm1
1 :::@xmk

k










1

<
D�
�aG (x1)

2D�
�aG (x2)

;

(3.50)
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equivalently,

2�D�
�aG (x2) +

 
kY
i=1

(bi � ai)mi��i

� (mi � �i + 1)

!








@

kP
i=1

mi

G

@xm1
1 :::@xmk

k










1

< D�
�aG (x1) ; (3.51)

which is possible for small � and small (bi � ai), all i = 1; :::; k: That is 
 2 (0; 1),
ful�lling (3.3). So our numerical method converges and solves (3.32).
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Abstract

In this paper, we study the stability analysis of a virus dynamics model with CTL immune response

and with both cell-to-cell and virus-to-cell transmissions. The model contains three types of distributed

time delays. The existence and global stability of all steady states of the model are determined by two

parameters, the basic reproduction number (R0) and the CTL immune response activation number (R1).

By using suitable Lyapunov functionals, we show that if R0 ≤ 1, then the infection-free steady state E0

is globally asymptotically stable; if R1 ≤ 1 < R0, then the CTL-inactivated infection steady state E1

is globally asymptotically stable; if R1 > 1, then the CTL-activated infection steady state E2 is globally

asymptotically stable. Numerical simulations are conducted to support the theoretical results.

Keywords: Virus dynamics; CTL immune response; Global stability; time delay; cell-to-cell transmis-

sion.

1 Introduction

During the past decades, several mathematical models have been proposed to describe the dynamical behavior

of many human viruses such as HIV, HBV, HCV and HTLV-I (see e.g. [1]-[27]). Studying the global stability

of the model’s equilibria has become one of the most important features which help us to better understanding

of the virus dynamics. Thus, several researchers have devoted extensive efforts to study the global stability of

virus dynamics models (see e.g. [2]-[13]). All the above mentioned works focus on cell-free viral spread in a

compartment such as the bloodstream. Recently, some viral infection models have been proposed to model both

virus-to-cell and cell-to-cell transmissions (see [28]-[29]). The viral infection model with cell-to-cell transmission

and distributed time delay has been proposed in [29] as:

Ṫ (t) = λ− dT (t)− β1T (t)V (t)− β2T (t)T ∗(t), (1)

Ṫ ∗(t) =

∫ ∞
0

[β1T (t− s)V (t− s)ds+ β2T (t− s)T ∗(t− s)] f(s)e−µ1sds− µ1T
∗(t), (2)

V̇ (t) = bT ∗(t− s)ds− cV (t), (3)

where, T (t), T ∗(t) andV (t) are the concentrations of the uninfected cells which are susceptible to infection,

infected cells that produces viruses, and free virus particles at time t, respectively; β1 is the virus-to-cell infection

rate constant; β2 is the cell-to-cell infection rate constant; µ1 and c are death rate constants of the infected

cells and viruses, respectively; b is the average number of viruses that bud out from an infected cell. e−µ1s is

the survival rate of infected cells during the time delay s, where s is assumed to be distributed according to a

probability distribution f(s).
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It is observed that, all the viral infection models with cell-to-cell transmission did not consider the effect

of immune response. The immune response is universal and necessary to eliminate or control the disease after

viral infection. The Cytotoxic T Lymphocyte (CTL) cells are responsible to attack and kill the infected cells.

Several viral infection models have been introduced in the literature to model the CTL immune response to

several diseases [23]-[27]. However, in [23]-[27], only virus-to-cell transmission has been considered. Therefore,

our aim in this paper is to propose and analyze a delay-distributed virus dynamics model with virus-to-cell and

cell-to-cell transmissions and takes into account the CTL immune response.

2 The model

In this section, we propose a virus dynamics model with cell-to-cell transmission and CTL immune response.

Ṫ (t) = λ− dT (t)− β1T (t)V (t)− β2T (t)T ∗(t), (4)

Ṫ ∗(t) =

∫ ∞
0

f1(s)e−µ1s [β1T (t− s)V (t− s) + β2T (t− s)T ∗(t− s)] ds− µ1T
∗(t)− pT ∗(t)Z(t), (5)

V̇ (t) = b

∫ ∞
0

e−µ2sf2(s)T ∗(t− s)ds− cV (t), (6)

Ż(t) = kT ∗(t)Z(t)− qZ(t), (7)

where, Z(t) is the concentration of CTL immune cells at time t. The infected cells are killed by the CTL

immune response with rate pT ∗(t)Z(t), where p is constant. The CTLs are proliferated at a rate kT ∗(t)Z(t)

and die at a rate qZ(t). All the other variables and parameters of the model have the same meanings as given

in (1)-(3).

Let us assume that the probability distribution function fi(s) satisfy fi(s) > 0, i = 1, 2 and

∞∫
0

fi(s)ds = 1,

∞∫
0

fi(u)e`udu <∞, i = 1, 2,

where ` > 0. Denote

ηi =

∫ ∞
0

fi(s)e
−µisds, i = 1, 2.

Thus 0 < ηi ≤ 1. Define the Banach space of fading memory type

Cα = {φ ∈ C((−∞, 0],R) : φ(θ)eαθ is uniformly continuous for θ ∈ (−∞, 0] and ‖φ‖ <∞}

where α is a positive constant and ‖φ‖ = sup
θ≤0
|φ(θ)| eαθ. Let

C+
α = {φ ∈ Cα : φ(θ) ≥ 0 for θ ∈ (−∞, 0]}.

The initial conditions for system (4)-(7) are given as:

T (θ) = ϕ1(θ), T ∗(θ) = ϕ2(θ), V (θ) = ϕ3(θ), Z(θ) = ϕ4(θ), for θ ∈ (−∞, 0],

ϕi ∈ C+
α , i = 1, ..., 4. (8)

By the fundamental theory of functional differential equations [33], system (4)-(7) with initial conditions (8)

has a unique solution.

2.1 Non-negativity and boundedness of solutions

We show the non-negativity and boundedness of the solutions of model (4)-(7).
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Lemma 1. The solutions (T (t), T ∗(t), V (t), Z(t)) of model (4)-(7) with initial conditions (8) are non-negative

and ultimately bounded.

Proof : First we prove T (t) > 0 for all t ≥ 0. Assume the contrary and let t1 > 0 such that T (t1) = 0. Then

from Eq. (4), we have Ṫ (t1) = λ > 0. Therefore T (t) < 0 for t ∈ (t1− ε, t1) and ε > 0 is sufficiently small. This

contradicts with the fact of T (t) > 0 for t ∈ [0, t1). It follows that T (t) > 0 for t ≥ 0. From Eqs. (5)-(7), we

have

T ∗(t) = ϕ2(0)e−
∫ t
0
(µ1+pZ(ζ))dζ

+

∫ t

0

e−
∫ t
η
(µ1+pZ(ζ))dζ

∫ ∞
0

f1(s)e−µ1s [β1T (η − s)V (η − s) + β2T (η − s)T ∗(η − s)] dsdη,

V (t) = ϕ3(0)e−ct + b

∫ t

0

e−c(t−ζ)
∫ ∞
0

f2(s)e−µ2sT ∗(ζ − s)dsdζ,

Z(t) = ϕ4(0)e−
∫ t
0
(q−kT∗(ζ))dζ ,

which yield that T ∗(t) ≥ 0, V (t) ≥ 0 and Z(t) ≥ 0for all t ≥ 0.

Next we show the boundedness of the solutions. From Eq. (7) we have lim
t→∞

supT (t) ≤ λ

d
. Let

F (t) =

∫ ∞
0

f1(s)e−µ1sT (t− s)ds+ T ∗(t) +
p

k
Z(t).

Then

Ḟ (t) =

∫ ∞
0

f1(s)e−µ1s [λ− dT (t− s)− β1T (t− s)V (t− s)− β2T (t− s)T ∗(t− s)] ds−

+

∫ ∞
0

β1T (t− s)V (t− s)f1(s)e−µ1sds+

∫ ∞
0

β2T (t− s)T ∗(t− s)f1(s)e−µ1sds− µ1T
∗(t)− pq

k
Z(t)

= λη1 − d
∫ ∞
0

f1(s)e−µ1sT (t− s)ds− µ1T
∗(t)− pq

k
Z(t)

≤ λ− σ
(∫ ∞

0

f1(s)e−µ1sT (t− s)ds+ T ∗(t) +
p

k
Z(t)

)
= λ− σF (t),

where, σ = min{d, µ1, q}. Hence, lim supt→∞ F (t) ≤ λ

σ
. Since

∫∞
0
f1(s)e−µ1sT (t−s)ds > 0 , T ∗ ≥ 0 and Z ≥ 0,

then lim supt→∞ T ∗(t) ≤ L1 and lim supt→∞ Z(t) ≤ L2, where L1 =
λ

σ
and L2 = k

pL1. From Eq. (6) we have

V̇ = b

∫ ∞
0

e−µ2sf2(s)T ∗(t− s)ds− cV (t) ≤ bη2L1 − cV (t) ≤ bL1 − cV (t).

Thus lim sup
t→∞

V (t) ≤ L3, where L3 =
bL1

c
. Therefore, T (t), T ∗(t), V (t) and Z(t) are ultimately bounded. �

2.2 Steady States

Lemma 1.

(i) If R0 ≤ 1, then there exists only positive steady state E0,

(i) if R1 ≤ 1 < R0, then there exist only two positive steady states E0 and E1,

(ii) if R1 > 1, then there exist three positive steady states E0, E1 and E2.

The proof. Let the R.H.S of system (4)-(7) be equal zero

0 = λ− dT − β1TV − β2TT ∗, (9)

0 = η1 (β1TV + β2TT
∗)− µ1T

∗ − pT ∗Z, (10)

0 = η2bT
∗ − cV, (11)

0 = kT ∗Z − qZ. (12)
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Solving Eqs. (9)-(12) we find that the system has three steady states, infection-free steady state E0 =

(T0, 0, 0, 0, 0), where T0 =
λ

d
, CTL-inactivated infection steady state E1(T1, T

∗
1 , V1, 0) and CTL-activated infec-

tion steady state E2(T2, T
∗
2 , V2, Z2), where

T1 =
T0

R0
, T ∗1 =

dc

(bβ1η2 + cβ2)
(R0 − 1), V1 =

bη2T
∗
1

c
,

T2 =
kλc

kdc+ bqβ1η2 + qβ2c
, T ∗2 =

q

k
, V2 =

bη2
c
T ∗2 , Z2 =

µ1

p
(R1 − 1) ,

and

R0 =
T0η1
µ1c

(bβ1η2 + β2c) , R1 =
kdc

q(bβ1η2 + β2c) + kdc
R0,

where R0 represents the basic infection reproduction number which describes the average number of newly

infected cells generated from one infected cell at the beginning of the infectious process and R1 represents the

immune response activation number which expresses the CTL load during the lifespan of a CTL cell. Clearly

R0 > R1. �

2.3 Global stability analysis

In this section, we study the global stability of all the steady states of system (4)-(7) employing the method

of Lyapunov function. We will use the follwing function g(x) = x − 1 − lnx and the notation (T, T ∗, V, Z) =

(T (t), T ∗(t), V (t), Z(t)).

Theorem 1. If R0 ≤ 1, then E0 is GAS.

Proof. Define a Lyapunov functional L as follows:

L(T, T ∗, V, Z) = T0g

(
T

T0

)
+

1

η1
T ∗ +

β1T0
c

V +
p

η1k
Z

+
1

η1

∫ ∞
0

f1(s)e−µ1s

∫ s

0

[β1T (t− θ)V (t− θ) + β2T (t− θ)T ∗(t− θ)]dθds

+
bβ1T0

c

∫ ∞
0

f2(s)e−µ2s

∫ s

0

T ∗(t− θ)dθds.

Calculating the derivative of L along the solutions of the system (4)-(7), we obtain

dL

dt
=

(
1− T0

T

)
(λ− dT − β1TV − β2TT ∗)

+
1

η1

[∫ ∞
0

f1(s)e−µ1s [β1T (t− s)V (t− s) + β2T (t− s)T ∗(t− s)] ds− µ1T
∗ − pT ∗Z

]
+
β1T0
c

[
b

∫ ∞
0

e−µ2sf2(s)T ∗(t− s)ds− cV
]

+
p

η1k
[kT ∗Z − qZ]

+
1

η1

∫ ∞
0

f1(s)e−µ1s [β1TV + β2TT
∗ − β1T (t− s)V (t− s)− β2T (t− s)T ∗(t− s)] ds

+
bβ1T0
c

∫ ∞
0

f2(s)e−µ2s [T ∗ − T ∗(t− s)] ds

=

(
1− T0

T

)
(λ− dT ) +

(
β2T0 +

bβ1T0η2
c

− µ1

η1

)
T ∗ − pq

η1k
Z

= −d (T − T0)2

T
+
µ1

η1
(R0 − 1)T ∗ − pq

η1k
Z. (13)

If R0 ≤ 1, then
dL

dt
≤ 0 for all T, T ∗, Z > 0. Thus the solutions of system (4)-(7) limit to M , the largest

invariant subset of
{

(T, T ∗, V, Z) : dLdt = 0
}

. Clearly, it follows from Eq. (13) that
dL

dt
= 0 if and only if T = T0,
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T ∗ = 0 and Z = 0. Noting that M is invariant, for each element of M we have T ∗ = 0 and Z = 0, then Ṫ ∗ = 0.

From Eq. (5) we drive that

0 = Ṫ ∗ =

∫ ∞
0

f1(s)e−µ1sβ1T0V (t− s)ds.

It follows that V = 0. Hence dL
dt = 0 if and only if T = T0, T ∗ = 0, V = 0 and Z = 0. LaSalle’s invariance

principle implies that E0 is GAS when R0 ≤ 1. �

Theorem 2. If R1 ≤ 1 < R0 , then E1 is GAS.

Proof. Define the following Lyapunov functional

U(T, T ∗, V, Z) = T1g

(
T

T1

)
+

1

η1
T ∗1 g

(
T ∗

T ∗1

)
+
β1T1V1
bη2T ∗1

V1g

(
V

V1

)
+

p

η1k
Z

+
β1T1V1
η1

∫ ∞
0

f1(s)e−µ1s

∫ s

0

g

(
T (t− θ)V (t− θ)

T1V1

)
dθds

+
β2T1T

∗
1

η1

∫ ∞
0

f1(s)e−µ1s

∫ s

0

g

(
T (t− θ)T ∗(t− θ)

T1T ∗1

)
dθds

+
β1T1V1
η2

∫ ∞
0

f2(s)e−µ2s

∫ s

0

g

(
T ∗(t− θ)

T ∗1

)
dθds.

The time derivative of U along the trajectories of (4)-(7) is given by

dU

dt
=

(
1− T1

T

)
(λ− dT − β1TV − β2TT ∗)

+
1

η1

(
1− T ∗1

T ∗

)(∫ ∞
0

f1(s)e−µ1s [β1T (t− s)V (t− s) + β2T (t− s)T ∗(t− s)] ds− µ1T
∗ − pT ∗Z

)
+
β1T1V1
bη2T ∗1

(
1− V1

V

)(
b

∫ ∞
0

f2(s)e−µ2sT ∗(t− s)ds− cV
)

+
p

η1k
(kT ∗Z − qZ)

+
β1T1V1
η1

∫ ∞
0

f1(s)e−µ1s

(
TV

T1V1
− T (t− s)V (t− s)

T1V1
+ ln

(
T (t− s)V (t− s)

TV

))
ds

+
β2T1T

∗
1

η1

∫ ∞
0

f1(s)e−µ1s

(
TT ∗

T1T ∗1
− T (t− s)T ∗(t− s)

T1T ∗1
+ ln

(
T (t− s)T ∗(t− s)

TT ∗

))
ds

+
β1T1V1
η2

∫ ∞
0

f2(s)e−µ2s

(
T ∗

T ∗1
− T ∗(t− s)

T ∗1
+ ln

(
T ∗(t− s)

T ∗

))
ds. (14)

Collecting terms of Eq. (14) and applying the steady state condtions for E1:

λ− dT1 = β1T1V1 + β2T1T
∗
1 =

µ1

η1
T ∗1 =

cµ1

bη1η2
V1,

we get

dU

dt
= − d

T
(T − T1)

2
+ (β1T1V1 + β2T1T

∗
1 )

(
1− T1

T

)
− β1T1V1

η1

∫ ∞
0

f1(s)e−µ1s
T (t− s)V (t− s)T ∗1

T1V1T ∗
ds− β2T1T

∗
1

η1

∫ ∞
0

f1(s)e−µ1s
T (t− s)T ∗(t− s)

T1T ∗
ds

− β1T1V1
η2

∫ ∞
0

f2(s)e−µ2s
V1T

∗(t− s)
V T ∗1

ds+
β1T1V1
η1

∫ ∞
0

f1(s)e−µ1s ln

(
T (t− s)V (t− s)

TV

)
ds

+
β2T1T

∗
1

η1

∫ ∞
0

f1(s)e−µ1s ln

(
T (t− s)T ∗(t− s)

TT ∗

)
ds

+
β1T1V1
η2

∫ ∞
0

f2(s)e−µ2s ln

(
T ∗(t− s)

T ∗

)
ds+

p

η1

(
T ∗1 −

q

k

)
Z + 2β1T1V1 + β2T1T

∗
1 .
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Consider the following equalities

ln

(
T (t− s)V (t− s)

TV

)
= ln

(
T (t− s)V (t− s)T ∗i

TiViT ∗

)
+ ln

(
Ti
T

)
+ ln

(
ViT

∗

V T ∗i

)
,

ln

(
T (t− s)T ∗(t− s)

TT ∗

)
= ln

(
T (t− s)T ∗(t− s)

TiT ∗

)
+ ln

(
Ti
T

)
,

ln

(
T ∗(t− s)

T ∗

)
= ln

(
ViT

∗(t− s)
V T ∗i

)
+ ln

(
V T ∗i
ViT ∗

)
, i = 1, 2. (15)

Using Eq. (15) with i = 1 we get

dU

dt
= − d

T
(T − T1)

2 − (β1T1V1 + β2T1T
∗
1 )

(
T1
T
− 1− ln

(
T1
T

))
− β1T1V1

η1

∫ ∞
0

f1(s)e−µ1s

[
T (t− s)V (t− s)T ∗1

T1V1T ∗
− 1− ln

(
T (t− s)V (t− s)T ∗1

T1V1T ∗

)]
ds

− β2T1T
∗
1

η1

∫ ∞
0

f1(s)e−µ1s

[
T (t− s)T ∗(t− s)

T1T ∗
− 1− ln

(
T (t− s)T ∗(t− s)

T1T ∗

)]
ds

− β1T1V1
η2

∫ ∞
0

f2(s)e−µ2s

[
V1T

∗(t− s)
V T ∗1

− 1− ln

(
V1T

∗(t− s)
V T ∗1

)]
ds+

p

η1

(
T ∗1 −

q

k

)
Z

= − d
T

(T − T1)
2 − (β1T1V1 + β2T1T

∗
1 ) g

(
T1
T

)
− β1T1V1

η1

∫ ∞
0

f1(s)e−µ1sg

(
T (t− s)V (t− s)T ∗1

T1V1T ∗

)
ds

− β2T1T
∗
1

η1

∫ ∞
0

f1(s)e−µ1sg

(
T (t− s)T ∗(t− s)

T1T ∗

)
ds− β1T1V1

η2

∫ ∞
0

f2(s)e−µ2sg

(
V1T

∗(t− s)
V T ∗1

)
ds

+
p

η1

β1bqη2 + β2qc+ dck

(β1bqη2 + β2qc)k
(R1 − 1)Z.

Hence, if R1 ≤ 1, then we obtain that dU
dt ≤ 0 and then solutions of system (4)-(7) limit to M , the largest

invariant subset of
{

(T, T ∗, V, Z) : dUdt = 0
}

. It can be seen that, dUdt = 0 if and only if

T1
T

=
T (t− s)V (t− s)T ∗1

T1V1T ∗
=
T (t− s)T ∗(t− s)

T1T ∗
=
V1T

∗(t− s)
V T ∗1

= 1.

LaSalle’s invariance principle implies the global stability of E1. �

Theorem 3. If R1 > 1, then E2 is GAS.

Define the following Lyapunov functional

W (T, T ∗, V, Z) = T2g

(
T

T2

)
+

1

η1
T ∗2 g

(
T ∗

T ∗2

)
+
β1T2V2
bη2T ∗2

V2g

(
V

V2

)
+

p

η1k
Z2g

(
Z

Z2

)
+
β1T2V2
η1

∫ ∞
0

f1(s)e−µ1s

∫ s

0

g

(
T (t− θ)V (t− θ)

T2V2

)
dθds

+
β2T2T

∗
2

η1

∫ ∞
0

f1(s)e−µ1s

∫ s

0

g

(
T (t− θ)T ∗(t− θ)

T2T ∗2

)
dθds

+
β1T2V2
η2

∫ ∞
0

f2(s)e−µ2s

∫ s

0

g

(
T ∗(t− θ)

T ∗2

)
dθds.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1523 Elaiw et al 1518-1531



The time derivative of W along the trajectories of (4)-(7) is given by

dW

dt
=

(
1− T2

T

)
(λ− dT − β1TV − β2TT ∗)

+
1

η1

(
1− T ∗2

T ∗

)(∫ ∞
0

f1(s)e−µ1s (β1T (t− s)V (t− s) + β2T (t− s)T ∗(t− s)) ds− µ1T
∗ − pT ∗Z

)
+
β1T2V2
bη2T ∗2

(
1− V2

V

)(
b

∫ ∞
0

f2(s)e−µ2sT ∗(t− s)ds− cV
)

+
p

η1k

(
1− Z2

Z

)
(kT ∗Z − qZ)

+
β1T2V2
η1

∫ ∞
0

f1(s)e−µ1s

(
TV

T2V2
− T (t− s)V (t− s)

T2V2
+ ln

(
T (t− s)V (t− s)

TV

))
ds

+
β2T2T

∗
2

η1

∫ ∞
0

f1(s)e−µ1s

(
TT ∗

T2T ∗2
− T (t− s)T ∗(t− s)

T2T ∗2
+ ln

(
T (t− s)T ∗(t− s)

TT ∗

))
ds

+
β1T2V2
η2

∫ ∞
0

f2(s)e−µ2s

(
T ∗

T ∗2
− T ∗(t− s)

T ∗2
+ ln

(
T ∗(t− s)

T ∗

))
ds.

Using the following steady state conditions for E2

λ− dT2 = β1T2V2 + β2T2T
∗
2 =

p

η1
T ∗2Z2 +

µ1

η1
T ∗2 , T ∗2 =

q

k
, V2 =

bqη2
ck

,

we get

dW

dt
= − d

T
(T − T2)

2
+ (β1T2V2 + β2T2T

∗
2 )

(
1− T2

T

)
− β1T2V2

η1

∫ ∞
0

f1(s)e−µ1s
T (t− s)V (t− s)T ∗2

T2V2T ∗
ds− β2T2T

∗
2

η1

∫ ∞
0

f1(s)e−µ1s
T (t− s)T ∗(t− s)

T2T ∗
ds

− β1T2V2
η2

∫ ∞
0

f2(s)e−µ2s
V2T

∗(t− s)
V T2

ds+
β1T2V2
η1

∫ ∞
0

f1(s)e−µ1s ln

(
T (t− s)V (t− s)

TV

)
ds

+
β2T2T

∗
2

η1

∫ ∞
0

f1(s)e−µ1s ln

(
T (t− s)T ∗(t− s)

TT ∗

)
ds

+
β1T2V2
η2

∫ ∞
0

f2(s)e−µ2s ln

(
T ∗(t− s)

T ∗

)
ds+ 2β1T2V2 + β2T2T

∗
2 .

Using Eq. (15) with i = 2 we get

dW

dt
= − d

T
(T − T2)

2 − (β1T2V2 + β2T2T
∗
2 ) g

(
T2
T

)
− β1T2V2

η1

∫ ∞
0

f1(s)e−µ1sg

(
T (t− s)V (t− s)T ∗2

T2V2T ∗

)
ds

− β2T2T
∗
2

η1

∫ ∞
0

f1(s)e−µ1sg

(
T (t− s)T ∗(t− s)

T2T ∗

)
ds− β1T2V2

η2

∫ ∞
0

f2(s)e−µ2sg

(
V2T

∗(t− s)
V T ∗2

)
ds.

Noting that T, T ∗, V, Z > 0, we have that dW
dt ≤ 0. The solutions of model (4)-(7) converge to M , the largest

invariant subset of
{

(T, T ∗, V, Z) : dWdt = 0
}

. We have dW
dt = 0 if and only if T = T2 and g = 0 i.e.,

T2
T

=
T (t− s)V (t− s)T ∗2

T2V2T ∗
=
T (t− s)T ∗(t− s)

T2T ∗
=
V2T

∗(t− s)
V T ∗2

= 1. (16)

If T = T2, then from Eq. (16) we get T ∗ = T ∗2 and V = V2. The set M is invariant and for any element belongs

to M satisfies T ∗ = T ∗2 and

Ṫ ∗ = 0 = η1 (β1T2V2 + β2T2T
∗
2 )− µ1T

∗
2 − pT ∗2Z,

which gives Z = Z2. Therefore, dW
dt = 0 if and only if T = T2, T

∗ = T ∗2 , V = V2 and Z = Z2. The global

asymptotic stability of E2 follows from LaSalle’s invariance principle. �
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3 Numerical simulations

In this section, we perform numerical simulations for the model (4)-(7) with particular distribution functions

f1(s) and f2(s) as:

f1(s) = δ(s− s1), f2(s) = δ(s− s2),

where δ(.) is the dirac delta function, s1 and s2 are positive constants. Then, we can see that,

∞∫
0

fi(s)ds = 1, ηi =

∫ ∞
0

δ(s− si)e−µisds = e−µisi , i = 1, 2,

∫ ∞
0

δ(s− s1)e−µsφ(t− s)ds = e−µs1φ(t− s1),

for any function φ. With such choice, model (4)-(7) leads to:

Ṫ (t) = λ− dT (t)− β1T (t)V (t)− β2T (t)T ∗(t), (17)

Ṫ ∗(t) = [β1T (t− s1)V (t− s1) + β2T (t− s1)T ∗(t− s1)] e−µ1s1 − µ1T
∗(t)− pT ∗(t)Z(t),

V̇ (t) = be−µ2s2T ∗(t− s2)− cV (t), (18)

Ż(t) = kT ∗(t)Z(t)− qZ(t). (19)

The parameters R0 and R1 become R0 =
e−µ1s1λ(bβ1e

−µ2s2 + β2c)

cµ1d
, R1 =

kdc

q(bβe−µ2s2 + β2c) + kdc
R0.

Now we perform some numerical simulations for model (17)-(19) with parameters values given in Table 1.

Table 1: The values of the parameters of model (17 )-(19).

Parameter Value Parameter Value

λ 10 c 3

d 0.01 q 0.1

p 0.1 β2 0.0001

b 10 µ1 0.9

s1 Varied µ2 0.1

s2 Varied β1, k Varied

3.1 Effect of the parameters β1 and k on the stability of steady states

To show the global stablity of the steady states we consider three different initial conditions:

IC1: ϕ1(θ) = 600, ϕ2(θ) = 1, ϕ3(θ) = 1, ϕ4(θ) = 10,

IC2: ϕ1(θ) = 200, ϕ2(θ) = 0.5, ϕ3(θ) = 3, ϕ4(θ) = 5,

IC3: ϕ1(θ) = 700, ϕ2(θ) = 5, ϕ3(θ) = 9, ϕ4(θ) = 12,

where, θ ∈ [−max{s1, s2}, 0].

In this case we choose s1 = 0.5, s2 = 0.9 and study the following subcases:

(i): R0 < 1. We choose, β1 = 0.0001 and k = 0.008, then we compute R0 = 0.295489 and R1 = 0.194228.

From Lemma 2 we have that the system has one steady state E0. From Figures 1-4 we can see that, the

concentration of uninfected cells is increasing and tends its normal value λ/d = 1000, while the concentrations

of infected cells, free viruses and CTls are decaying and approaching zero. It means that, E0 is GAS and the

virus will be removed. This result support the result of Theorem 1.
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(ii): R1 ≤ 1 < R0. We choose β1 = 0.001 and k = 0.008, and then, R0 = 2.317257 and R1 = 0.455395.

Lemma 2 state that the system has two steady states E0 and E1. Figures 5-8 show that the numerical re-

sults are consistent with Theorem 2. We can see that, the solution of the system converges to the steady

E1(431.54, 4.03, 12.77, 0) for the initial conditions IC1-IC3.

(iii): R1 > 1: In this case, we choose β1 = 0.001 and k = 0.03 and then R1 = 1.108600 > 1. According to

Lemma 2, the system has three steady states E0, E1 and E2. From Figures 9-12 we can see that, the solutions

of the system approach the steady state E2(478.41, 3.33, 10.57, 0.98) for large t and for the initial conditions

IC1-IC3. This support the result of Theorems 3.

3.2 Effect of the time delays on the stability of steady states

In this case, we consider the initial condition IC2. We take the values β1 = 0.001 and k = 0.03. Without loss

of generality we let S = s1 = s2. In Table 2, we present the values of R0, R1 and the steady states of system

(17 )-(19) with different values of S.

From Table 2 we can see that, the values of R0 and R1 are decreased as S is increased. Using the values of

the parameters given in Table 1, we obtain that the following:

(i) if 0 ≤ S < 0.8447, then E2 exists and it is GAS,

(ii) if 0.8447 ≤ S < 0.8868, then E1 exists and it is GAS,

(iii) if S ≥ 0.8868, then E0 is GAS.

Figures 13-16 show that the numerical results are also compatible with the results of Theorems 1-3. From a

biological point of view, the intracellular delay plays a similar role as an antiviral treatment in eliminating the

virus. We observe that, sufficiently large delay suppresses viral replication and clears the virus. This gives us

some suggestions on new drugs to prolong the increase the intracellular delay period.

Table 2: The values of steady states, R0 and R1 for model (17)-(19) with different values of the delay parameter

S.

Delay parameter Steady states R0 R1

S = 0.0 E2(578.98, 1.11, 1.23, 27.89) 6.54 3.79

S = 0.2 E2(626.03, 1.11, 1.01, 17.56) 4.40 2.76

S = 0.4 E2(670.65, 1.11, 0.83, 9.87) 2.96 1.99

S = 0.7 E2(731.69, 1.11, 0.61, 1.99) 1.64 1.2

S = 0.80 E2(751.30, 1.11, 0.55, 0) 1.33 1

S = 0.9 E1(904.23, 0.39, 0.18, 0) 1.11 0.85

S = 0.95 E0(1000, 0, 0, 0) 1 0.78

S = 1 E0(1000, 0, 0, 0) 0.91 0.71

S = 1.5 E0(1000, 0, 0, 0) 0.34 0.29

S = 2 E0(1000, 0, 0, 0) 0.13 0.12
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Figure 1: The evolution of uninfected cells with ini-

tial IC1-IC3 in case of R0 ≤ 1.
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Figure 2: The evolution of infected cells with initial

IC1-IC3 in case of R0 ≤ 1.
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Figure 3: The evolution of free viruses with initial

IC1-IC3 in case of R0 ≤ 1.
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Figure 4: The evolution of CTLs with initial IC1-

IC3 in case of R0 ≤ 1.
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Figure 5: The evolution of uninfected cells with ini-

tial IC1-IC3 in case of R1 ≤ 1 < R0.
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Figure 6: The evolution of infected cells with initial

IC1-IC3 in case of R1 ≤ 1 < R0.
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Figure 7: The evolution of free viruses with initial

IC1-IC3 in case of R1 ≤ 1 < R0.
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Figure 8: The evolution of CTLs with initial IC1-

IC3 in case of R1 ≤ 1 < R0.
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Figure 9: The evolution of uninfected cells with ini-

tial IC1-IC3 in case of R1 > 1.
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Figure 10: The evolution of infected cells with ini-

tial IC1-IC3 in case of R1 > 1.
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Figure 11: The evolution of free viruses with initial

IC1-IC3 in case of R1 > 1.
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Figure 12: The evolution of CTLs with initial IC1-

IC3 in case of R1 > 1.
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Figure 13: The evolution of uninfected cells with

different delay parameter S.
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Figure 14: The evolution of infected cells with dif-

ferent delay parameter S.
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Figure 15: The evolution of free viruses with differ-

ent delay parameter S.
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Figure 16: The evolution of CTLs with different

delay parameter S.
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Abstract

This paper study the dynamical behavior of HIV-1 infection model with saturated virus-target and

infected-target incidences. The model is incorporated by two types of intracellular distributed time delays.

The model generalizes all the existing HIV-1 infection models with cell-to-cell transmission presented in the

literature by considering saturated incidence rate. The nonnegativity and boundedness of the solutions of

the model as well as global stability of the steady states are studied. The global stability are established

using Lyapunov method. Using MATLAB we conduct some numerical simulations to confirm our results.

The effect of the saturated incidence of the HIV-1 dynamics is shown.

Keywords: HIV-1 dynamics; Global stability; time delay; cell-to-cell transfer.

1 Introduction

It is known that human immunodeficiency virus type 1 (HIV-1) infects the CD4+ T cells which play the central

role in the immune system of the human body. Mathematical models that describe the dynamics of HIV-1

are helpful in understanding the virus dynamics and improving diagnosis and treatment strategies. The basic

HIV-1 infection model has been given in [1] as:

Ṫ = ρ− dT − βTV (1)

Ṫ ∗ = βTV − µT ∗, (2)

V̇ = bT ∗ − cV, (3)

where, T , T ∗ and V are the concentrations of the uninfected CD4+ T cells, infected cells, and free HIV-1

particles, respectively. The CD4+ T cells are replenished at rate ρ, die at rate dT and become infected at rate

βTV , where β is the virus-target incidence rate constant. The infected cells are die at rate µ. The HIV-1

particles are produced from infected cells at rate bT ∗ and cleared at rate cV . Parameters ρ, d, β, µ, b and c are

all positive.

In model (1)-(3), the infection rate is given by bilinear incidence βTV . In case when the concentration of the

viruses is high, this bilinear incidence may not describe the HIV-1 dynamics accurately. Therefore, the model

has been modified to incorporate the saturated incidence rate [2]:

Ṫ = ρ− dT − βT
(

V

1 + αV

)
(4)

Ṫ ∗ = βT

(
V

1 + αV

)
− µT ∗, (5)

V̇ = bT ∗ − cV, (6)
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where, α is the saturation constant. Moreover, several works have been done to modify the basic model (1)-(3) by

considering different effects such as: CTL immune response [3]-[5], humoral immune response [6]-[8], nonlinear

incidence rate [9]-[11], intracellular time delay [10], [12], [13], [15], antiviral treatments [15]-[17], latently infected

cells [18]-[19] and two types of target cells [20]-[22]. All the these works assume that the uninfected CD4+ T

cells becomes infected due to HIV-1 contacts. Recently, it has been reported that the uninfected CD4+ T cells

can also become infected due to direct contact with infected cells (see [23]-[26]). However, in [23]-[26], the rates

of virus-target and infected-target infection are based on the mass action principle.

The aim of this paper is to study the dynamical behavior of HIV-1 infection model with saturated virus-

target and infected-target incidences. Both discrete and distributed time delays are incorporated. We study

the global stability analysis of the model using Lyapunov method.

2 HIV-1 model with discrete delays

We formulate an HIV-1 infection model with saturated virus-target and infected-target incidences and two types

of discrete time delays as:

Ṫ (t) = ρ− dT (t)− β1T (t)V (t)

1 + α1V (t)
− β2T (t)T ∗(t)

1 + α2T ∗(t)
, (7)

Ṫ ∗(t) = e−δ1τ1
[
β1T (t− τ1)V (t− τ1)

1 + α1V (t− τ1)
+
β2T (t− τ1)T ∗(t− τ1)

1 + α2T ∗(t− τ1)

]
− µT ∗(t), (8)

V̇ (t) = be−δ2τ2T ∗(t− τ2)− cV (t). (9)

Parameter τ1 represents for the time between the virus or the infected cell contacts with an uninfected CD4+ T

cell, until it becomes infected but not yet producer cell. The parameter τ2 represents the time needed for new

HIV-1 to be mature. The factor e−δ1τ1 is the loss of CD4+ T cells during the interval [t− τ1, t] while, e−δ2τ2

represents the loss of infected cells during the interval [t− τ2, t], where δ1 and δ2 are positive constants.

The initial conditions for system (7)-(9) are given as:

T (η) = ϕ1(η), T ∗(η) = ϕ2(η), V (η) = ϕ3(η),

ϕj(η) ≥ 0, η ∈ [−τ, 0], j = 1, 2, 3 (10)

where τ = max{τ1, τ2} and (ϕ1(η), ϕ2(η), ϕ3(η)) ∈ C([−τ : 0),R3
+), where C is the Banach space of continuous

functions mapping the interval [−τ, 0) into R3
+. System (7)-(9) with initial conditions (10) has a unique solution

[27].

2.1 Basic properties

The non-negativity and boundedness of the solutions of system (7)-(9) is established in the following lemma:

Lemma 1. All solutions (T (t), T ∗(t), V (t)) of model (7)-(9) with initial conditions (10) are non-negative

and ultimately bounded.

Proof : From Eq. (7), we have Ṫ |T=0= ρ > 0, therefore T (t) > 0 for t ∈ (0, $1) where (0, $1) is the

maximal interval of existence of solution of system (7)-(9) with (10). Moreover, from Eqs. (8)-(9), we have

T ∗(t) = e−µtϕ2(0) + e−δ1τ1
∫ t

0

e−µ(t−η)
[
β1T (η − τ1)V (η − τ1)

1 + α1V (η − τ1)
+
β2T (η − τ1)T ∗(η − τ1)

1 + α2T ∗(η − τ1)

]
dη ≥ 0,

V (t) = e−ctϕ3(0) + be−δ2τ2
∫ t

0

e−c(t−η)T ∗(η − τ2)dη ≥ 0,

for t ∈ [0, τ ]. By recursive argument we obtain T ∗(t), V (t) ≥ 0 for all t ≥ 0.
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From Eq. (7) we know lim
t→∞

supT (t) ≤ ρ

d
. Let F1(t) = e−δ1τ1T (t− τ1) + T ∗(t). Then

Ḟ1(t) = e−δ1τ1
[
ρ− dT (t− τ1)− β1T (t− τ1)V (t− τ1)

1 + α1V (t− τ1)
− β2T (t− τ1)T ∗(t− τ1)

1 + α2T ∗(t− τ1)

]
+ e−δ1τ1

[
β1T (t− τ1)V (t− τ1)

1 + α1V (t− τ1)
+
β2T (t− τ1)T ∗(t− τ1)

1 + α2T ∗(t− τ1)

]
− µT ∗(t)

= ρe−δ1τ1 − de−δ1τ1T (t− τ1)− µT ∗(t)

≤ ρ− σ
(
e−δ1τ1T (t− τ1) + T ∗(t)

)
= ρ− σF1(t),

where, σ = min{d, µ}. Hence, lim supt→∞ F1(t) ≤ ρ

σ
and then lim supt→∞ T ∗(t) ≤ ρ

σ
. From Eq. (9) we have

V̇ (t) = be−δ2τ2T ∗(t− τ2)− cV (t) ≤ be−δ2τ2 ρ
σ
− cV (t) < b

ρ

σ
− cV (t).

Thus lim sup
t→∞

V (t) ≤ bρ

cσ
. Therefore, T (t), T ∗(t) and V (t) are all ultimately bounded.�

Now we prove the existence of the steady state of the model (7)-(9).

Lemma 2.

(i) If R0 ≤ 1, then there exists only positive steady state S0,

(ii) If 1 < R0, then there exist two positive steady states S0 and S1.

The proof. Let the R.H.S of system (7)-(9) equal to zero

0 = ρ− dT − β1TV

1 + α1V
− β2TT

∗

1 + α2T ∗
, (11)

0 = e−δ1τ1
(

β1TV

1 + α1V
+

β2TT
∗

1 + α2T ∗

)
− µT ∗, (12)

0 = e−δ2τ2bT ∗ − cV, (13)

Solving Eqs. (11)-(13) we find that the system has two steady states, disease-free steady state S0 = (T0, 0, 0),

where T0 =
ρ

d
and endemic steady state S1(T1, T

∗
1 , V1), where

T1 =
µc (1 + α1V1)

(
be−δ2τ2 + α2cV1

)
be−(δ1τ1+δ2τ2) [β1 (be−δ2τ2 + α2cV1) + β2c (1 + α1V1)]

, T ∗1 =
−B +

√
B2 − 4AC

2A
,

V1 =
be−δ2τ2T ∗1

c
,

where

A = µbe−δ2τ2 (dα1α2 + β1α2 + β2α1) ,

B = β2(µc− ρα1be
−(δ1τ1+δ2τ2)) + β1be

−δ2τ2(µ− ρα2e
−δ1τ1) + dµ(cα2 + α1be

−δ2τ2), (14)

C = dµc (1−R0) .

and

R0 =
T0e
−δ1τ1

(
bβ1e

−δ2τ2 + β2c
)

µc
,

where R0 represents the basic infection reproduction number. �

2.2 Global properties

In the following we established the global stability of the two steady states by of system (7)-(9) by constructing

suitable Lyapunov functionals. Through the paper we will use the following function g(x) = x − 1 − lnx and

the notation (T, T ∗, V ) = (T (t), T ∗(t), V (t)).
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Theorem 1. If R0 ≤ 1, then S0 is globally asymptotically stable.

Proof. Define a Lyapunov functional

L1(T, T ∗, V ) = T0g

(
T

T0

)
+

1

e−δ1τ1
T ∗ +

β1T0
c

V +

∫ τ1

0

[
β1T (t− η)V (t− η)

1 + α1V (t− η)
+
β2T (t− η)T ∗(t− η)

1 + α2T ∗(t− η)

]
dη

+
bβ1T0

c
e−δ2τ2

∫ τ2

0

T ∗(t− η)dη.

We evaluate
dL1

dt
along the solutions of the system (7)-(9),

dL1

dt
=

(
1− T0

T

)(
ρ− dT − β1TV

1 + α1V
− β2TT

∗

1 + α2T ∗

)
+

1

e−δ1τ1

[
e−δ1τ1

(
β1T (t− τ1)V (t− τ1)

1 + α1V (t− τ1)
+
β2T (t− τ1)T ∗(t− τ1)

1 + α2T ∗(t− τ1)

)
− µT ∗

]
+
β1T0
c

[
be−δ2τ2T ∗(t− τ2)− cV

]
+

β1TV

1 + α1V
+

β2TT
∗

1 + α2T ∗

− β1T (t− τ1)V (t− τ1)

1 + α1V (t− τ1)
− β2T (t− τ)T ∗(t− τ1)

1 + α2T ∗(t− τ1)
+
bβ1T0
c

e−δ2τ2 [T ∗ − T ∗(t− τ2)]

=

(
1− T0

T

)
(ρ− dT )− α1β1T0

V 2

1 + α1V
− α2β2T0

T ∗2

1 + α2T ∗

+
µ

e−δ1τ1

(
T0bβ1e

−(δ1τ1+δ2τ2)

µc
+
T0β2e

−δ1τ1

µ
− 1

)
T ∗

= −d (T − T0)2

T
− α1β1T0

V 2

1 + α1V
− α2β2T0

T ∗2

1 + α2T ∗
+

µ

e−δ1τ1
(R0 − 1)T ∗. (15)

If R0 ≤ 1, then
dL1

dt
≤ 0 for all T, T ∗, V > 0 and

dL1

dt
= 0 if and only if T = T0 , T ∗ = 0 and V = 0.

Let D0 =
{

(T, T ∗, V ) : dL1

dt = 0
}

. It is easy to show that S0 is the largest invariant subset of D0. LaSalle’s

invariance principle implies that S0 is globally asymptotically stable when R0 ≤ 1.�

Theorem 2. If 1 < R0, then S1 is globally asymptotically stable.

Proof. Define

U(T, T ∗, V ) = T1g

(
T

T1

)
+

1

e−δ1τ1
T ∗1 g

(
T ∗

T ∗1

)
+

β1T1V1
be−δ2τ2T ∗1 (1 + α1V1)

V1g

(
V

V1

)
+

β1T1V1
1 + α1V1

∫ τ1

0

g

(
T (t− η)V (t− η) (1 + α1V1)

T1V1 (1 + α1V (t− η))

)
dη

+
β2T1T

∗
1

1 + α2T ∗1

∫ τ1

0

g

(
T (t− η)T ∗(t− η) (1 + α2T

∗
1 )

T1T ∗1 (1 + α2T ∗(t− η))

)
dη +

β1T1V1
1 + α1V1

∫ τ2

0

g

(
T ∗(t− η)

T ∗1

)
dη.
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Evaluating dU1

dt along the trajectories of (7)-(9) as:

dU1

dt
=

(
1− T1

T

)(
ρ− dT − β1TV

1 + α1V
− β2TT

∗

1 + α2T ∗

)
+

1

e−δ1τ1

(
1− T ∗1

T ∗

)(
e−δ1τ1

[
β1T (t− τ1)V (t− τ1)

1 + α1V (t− τ1)
+
β2T (t− τ1)T ∗(t− τ1)

1 + α2T ∗(t− τ1)

]
− µT ∗

)
+

β1T1V1
be−δ2τ2T ∗1 (1 + α1V1)

(
1− V1

V

)(
be−δ2τ2T ∗(t− τ2)− cV

)
+

β1T1V1
1 + α1V1

(
TV (1 + α1V1)

T1V1 (1 + α1V )
− T (t− τ1)V (t− τ1) (1 + α1V1)

T1V1 (1 + α1V (t− τ1))

)
+

β1T1V1
1 + α1V1

ln

(
T (t− τ1)V (t− τ1) (1 + α1V )

TV (1 + α1V (t− τ1))

)
+

β2T1T
∗
1

1 + α2T ∗1

(
TT ∗ (1 + α2T

∗
1 )

T1T ∗1 (1 + α2T ∗)
− T (t− τ1)T ∗(t− τ1) (1 + α2T

∗
1 )

T1T ∗1 (1 + α2T ∗(t− τ1))

)
+

β2T1T
∗
1

1 + α2T ∗1
ln

(
T (t− τ1)T ∗(t− τ1) (1 + α2T

∗)

TT ∗ (1 + α2T ∗(t− τ1))

)
+

β1T1V1
1 + α1V1

(
T ∗

T ∗1
− T ∗(t− τ2)

T ∗1
+ ln

(
T ∗(t− τ2)

T ∗

))
. (16)

Collecting terms of Eq. (16) and applying the steady state conditions for S1:

ρ− dT1 =
β1T1V1

1 + α1V1
+

β2T1T
∗
1

1 + α2T ∗1
=

µ

e−δ1τ1
T ∗1 =

cµ

be−(δ1τ1+δ2τ2)
V1,

we get

dU1

dt
= − d

T
(T − T1)

2
+

(
1− T1

T

)(
β1T1V1

1 + α1V1
+

β2T1T
∗
1

1 + α2T ∗1

)
+

β1T1V

1 + α1V
+

β2T1T
∗

1 + α2T ∗

− β1T
∗
1 T (t− τ1)V (t− τ1)

T ∗ (1 + α1V (t− τ1))
− β2T

∗
1 T (t− τ1)T ∗(t− τ1)

T ∗ (1 + α2T ∗(t− τ1))
− β2T1T

∗

1 + α2T ∗1
+

β1T1V1
1 + α1V1

+
β2T1T

∗
1

1 + α2T ∗1
− β1T1V1

1 + α1V1

V1T
∗(t− τ2)

V T ∗1
− β1T1V

1 + α1V1
+

β1T1V1
1 + α1V1

+
β1T1V1

1 + α1V1
ln

(
T (t− τ1)V (t− τ1) (1 + α1V )

TV (1 + α1V (t− τ1))

)
+

β2T1T
∗
1

1 + α2T ∗1
ln

(
T (t− τ1)T ∗(t− τ1) (1 + α2T

∗)

TT ∗ (1 + α2T ∗(t− τ1))

)
+

β1T1V1
1 + α1V1

ln

(
T ∗(t− τ2)

T ∗

)
.

Consider the following equalities:

ln

(
T (t− τ1)V (t− τ1) (1 + α1V )

TV (1 + α1V (t− τ1))

)
= ln

(
T (t− τ1)V (t− τ1) (1 + α1V1)T ∗1

T1V1 (1 + α1V (t− τ1))T ∗

)
+ ln

(
T1
T

)
+ ln

(
1 + α1V

1 + α1V1

)
+ ln

(
V1T

∗

V T ∗1

)
,

ln

(
T (t− τ1)T ∗(t− τ1) (1 + α2T

∗)

TT ∗ (1 + α2T ∗(t− τ1))

)
= ln

(
T (t− τ1)T ∗(t− τ1) (1 + α2T

∗
1 )

T1T ∗ (1 + α2T ∗(t− τ1))

)
+ ln

(
T1
T

)
(17)

+ ln

(
1 + α2T

∗

1 + α2T ∗1

)
,

ln

(
T ∗(t− τ2)

T ∗

)
= ln

(
V1T

∗(t− τ2)

V T ∗1

)
+ ln

(
V T ∗1
V1T ∗

)
.
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Using Eqs. (17) we get

dU1

dt
= − d

T
(T − T1)

2
+

β1T1V1
1 + α1V1

[
(1 + α1V1)V

(1 + α1V )V1
− V

V1
− 1 +

1 + α1V

1 + α1V1

]
+

β2T1T
∗
1

1 + α2T ∗1

[
(1 + α2T

∗
1 )T ∗

(1 + α2T ∗)T ∗1
− T ∗

T ∗1
− 1 +

1 + α2T
∗

1 + α2T ∗1

]
− β1T1V1

1 + α1V1

[
T1
T
− 1− ln

(
T1
T

)]
− β1T1V1

1 + α1V1

[
V1T

∗(t− τ2)

V T ∗1
− 1− ln

(
V1T

∗(t− τ2)

V T ∗1

)
+

1 + α1V

1 + α1V1
− 1− ln

(
1 + α1V

1 + α1V1

)]
− β2T1T

∗
1

1 + α2T ∗1

[
T1
T
− 1− ln

(
T1
T

)]
− β2T1T

∗
1

1 + α2T ∗1

[
1 + α2T

∗

1 + α2T ∗1
− 1− ln

(
1 + α2T

∗

1 + α2T ∗1

)]
− β1T1V1

1 + α1V1

[
T (t− τ1)V (t− τ1) (1 + α1V1)T ∗1

T1V1 (1 + α1V (t− τ1))T ∗
− 1− ln

(
T (t− τ1)V (t− τ1) (1 + α1V1)T ∗1

T1V1 (1 + α1V (t− τ1))T ∗

)]
− β2T1T

∗
1

1 + α2T ∗1

[
T (t− τ1)T ∗(t− τ1) (1 + α2T

∗
1 )

T1T ∗ (1 + α2T ∗(t− τ1))
− 1− ln

(
T (t− τ1)T ∗(t− τ1) (1 + α2T

∗
1 )

T1T ∗ (1 + α2T ∗(t− τ1))

)]
Then

dU1

dt
= − d

T
(T − T1)

2 − β1T1V1
1 + α1V1

[
α1 (V − V1)

2

(1 + α1V ) (1 + α1V1)V1

]
− β2T1T

∗
1

1 + α2T ∗1

[
α2 (T ∗ − T ∗1 )

2

(1 + α2T ∗) (1 + α2T ∗1 )T ∗1

]

− β1T1V1
1 + α1V1

[
g

(
T1
T

)
+ g

(
T (t− τ1)V (t− τ1) (1 + α1V1)T ∗1

T1V1 (1 + α1V (t− τ1))T ∗

)
+ g

(
1 + α1V

1 + α1V1

)
+ g

(
V1T

∗(t− τ2)

V T ∗1

)]
− β2T1T

∗
1

1 + α2T ∗1

[
g

(
T1
T

)
+ g

(
T (t− τ1)T ∗(t− τ1) (1 + α2T

∗
1 )

T1T ∗ (1 + α2T ∗(t− τ1))

)
+ g

(
1 + α2T

∗

1 + α2T ∗1

)]
. (18)

Since R0 > 1, then T, T ∗, V > 0. From Eq. (18) we have dU1

dt ≤ 0 and dU1

dt = 0 ocurs at S1. Let D1 ={
(T, T ∗, V ) : dU1

dt = 0
}

. It is clear that S1 is the largest invariant subset of D1. Using LaSalle’s invariance

principle we obtain that S1 is globally asymptotically stable when R0 > 1. �

3 HIV-1 model with distributed delays

In this section, we formulate an HIV-1 infection model with saturated virus-target and infected-target incidences

and two types of distributed time delays:

Ṫ (t) = ρ− dT (t)− β1T (t)V (t)

1 + α1V (t)
− β2T (t)T ∗(t)

1 + α2T ∗(t)
, (19)

Ṫ ∗(t) =

∫ ∞
0

f1(s)e−δ1s
[
β1T (t− s)V (t− s)

1 + α1V (t− s)
+
β2T (t− s)T ∗(t− s)

1 + α2T ∗(t− s)

]
ds− µT ∗(t), (20)

V̇ (t) = b

∫ ∞
0

f2(s)e−δ2sT ∗(t− s)ds− cV (t). (21)

Let us assume that the probability distribution functions fi(s) satisfy fi(s) > 0, i = 1, 2 and

∞∫
0

fi(s)ds = 1,

∞∫
0

fi(u)e`udu <∞, i = 1, 2,

where ` > 0. Denote ηi =
∫∞
0
fi(s)e

−δisds, i = 1, 2, thus, 0 < ηi ≤ 1. Define the Banach space of fading

memory type

Cγ = {φ ∈ C((−∞, 0],R) : eαηφ(η) is uniformly continuous for η ∈ (−∞, 0] and ‖φ‖ <∞}

where γ is a positive constant and ‖φ‖ = sup
η≤0
|φ(η)| eγη. Let

C+
γ = {φ ∈ Cγ : φ(η) ≥ 0 for η ∈ (−∞, 0]}.
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The initial conditions for system (19)-(21) are given as:

T (η) = ϕ1(η), T ∗(η) = ϕ2(η), V (η) = ϕ3(η), for η ∈ (−∞, 0],

ϕi ∈ C+
γ , i = 1, 2, 3. (22)

System (7)-(9) with initial conditions (22) has a unique solution [27].

3.1 Basic properties

The non-negativity and boundedness of the solutions of model (19)-(21) will be established in the next lemma.

Lemma 3. The solutions (T (t), T ∗(t), V (t)) of model (19)-(21) with initial conditions (22) are non-negative

and ultimately bounded.

Proof : Similar to the proof of Lemma 1, one can show T (t) > 0 for all T (t) > 0 for t ∈ (0, $2), where

(0, $2) is the maximal interval of existence of solution of system (19)-(21) with (22). From Eqs. (20)-(21), we

have

T ∗(t) = e−µtϕ2(0) +

∫ t

0

e−µ(t−η)
∫ ∞
0

f1(s)e−δ1s
[
β1T (η − s)V (η − s)

1 + α1V (η − s)
+
β2T (η − s)T ∗(η − s)

1 + α2T ∗(η − s)

]
dsdη ≥ 0,

V (t) = e−ctϕ3(0) + b

∫ t

0

e−c(t−η)
∫ ∞
0

f2(s)e−δ2sT ∗(η − s)dsdη ≥ 0.

From Eq. (19) we have lim
t→∞

supT (t) ≤ ρ

d
. Let F (t) =

∫∞
0
f1(s)e−δ1sT (t− s)ds+ T ∗(t). Then

Ḟ2(t) =

∫ ∞
0

f1(s)e−δ1s
[
ρ− dT (t− s)− β1T (t− s)V (t− s)

1 + α1V (t− s)
− β2T (t− s)T ∗(t− s)

1 + α2T ∗(t− s)

]
ds

+

∫ ∞
0

f1(s)e−δ1s
[
β1T (t− s)V (t− s)

1 + α1V (t− s)
+
β2T (t− s)T ∗(t− s)

1 + α2T ∗(t− s)

]
ds− µT ∗(t)

= ρη1 − d
∫ ∞
0

f1(s)e−δ1sT (t− s)ds− µT ∗(t)

≤ ρ− σ
(∫ ∞

0

f1(s)e−δ1sT (t− s)ds+ T ∗(t)

)
= ρ− σF2(t),

where, σ = min{d, µ}. Hence, lim supt→∞ F2(t) ≤ ρ

σ
. Since

∫∞
0
f1(s)e−δ1sT (t − s)ds > 0 and T ∗ ≥ 0 , then

lim supt→∞ T ∗(t) ≤ ρ

σ
. From Eq. (21) we have

V̇ (t) = b

∫ ∞
0

f2(s)e−δ2sT ∗(t− s)ds− cV (t) ≤ bη2
ρ

σ
− cV (t) ≤ b ρ

σ
− cV (t).

Thus lim sup
t→∞

V (t) ≤ bρ

cσ
. Therefore, T (t), T ∗(t) and V (t) are ultimately bounded.�

The existence of the steady state of the model (19)-(21) will be shown in the next lemma.

Lemma 4.

(i) If R0 ≤ 1, then there exists only positive steady state S0,

(ii) if 1 < R0, then there exist only two positive steady states S0 and S1.

The proof. Let the R.H.S of system (19)-(21) be equal zero

0 = ρ− dT − β1TV

1 + α1V
− β2TT

∗

1 + α2T ∗
, (23)

0 = η1

(
β1TV

1 + α1V
+

β2TT
∗

1 + α2T ∗

)
− µT ∗, (24)

0 = η2bT
∗ − cV, (25)
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Solving Eqs. (23)-(25) we find that the system has two steady states, disease-free steady state S0 = (T0, 0, 0, 0),

where T0 =
ρ

d
, and endemic steady state S1(T1, T

∗
1 , V1), where

T1 =
µc (1 + α1V1) (bη2 + α2cV1)

bη1η2 [β1 (bη2 + α2cV1) + β2c (1 + α1V1)]
, T ∗1 =

−B +
√
B2 − 4AC

2A
, V1 =

bη2T
∗
1

c
,

where

A = µbη2 (dα1α2 + β1α2 + β2α1) ,

B = β2(µc− ρα1bη1η2) + β1bη2(µ− ρα2η1) + dµ(cα2 + α1bη2), (26)

C = dµc (1−R0) ,

and

R0 =
T0η1
µc

(bβ1η2 + β2c) ,

where R0 represents the basic infection reproduction number. �

3.2 Global properties

In this section, we study the global stability of all the steady states of system (19)-(21) employing the method

of Lyapunov function.

Theorem 3. If R0 ≤ 1, then S0 is globally asymptotically stable.

Proof. Define

L2(T, T ∗, V ) = T0g

(
T

T0

)
+

1

η1
T ∗ +

β1T0
c

V

+
1

η1

∫ ∞
0

f1(s)e−δ1s
∫ s

0

[
β1T (t− η)V (t− η)

1 + α1V (t− η)
+
β2T (t− η)T ∗(t− η)

1 + α2T ∗(t− η)

]
dηds

+
bβ1T0

c

∫ ∞
0

f2(s)e−δ2s
∫ s

0

T ∗(t− η)dηds.

Calculating
dL2

dt
along the solutions of the system (19)-(21), we obtain

dL2

dt
=

(
1− T0

T

)(
ρ− dT − β1TV

1 + α1V
− β2TT

∗

1 + α2T ∗

)
+

1

η1

[∫ ∞
0

f1(s)e−δ1s
[
β1T (t− s)V (t− s)

1 + α1V (t− s)
+
β2T (t− s)T ∗(t− s)

1 + α2T ∗(t− s)

]
ds− µT ∗

]
+
β1T0
c

[
b

∫ ∞
0

f2(s)e−δ2sT ∗(t− s)ds− cV
]

+
1

η1

∫ ∞
0

f1(s)e−δ1s
[
β1TV

1 + α1V
+

β2TT
∗

1 + α2T ∗
− β1T (t− s)V (t− s)

1 + α1V (t− s)
− β2T (t− s)T ∗(t− s)

1 + α2T ∗(t− s)

]
ds

+
bβ1T0
c

∫ ∞
0

f2(s)e−δ2s [T ∗ − T ∗(t− s)] ds

=

(
1− T0

T

)
(ρ− dT )− α1β1T0

V 2

1 + α1V
− α2β2T0

T ∗2

1 + α2T ∗
+
µ

η1

(
T0bβ1η1η2

µc
+
T0β2η1
µ

− 1

)
T ∗

= −d (T − T0)2

T
− α1β1T0

V 2

1 + α1V
− α2β2T0

T ∗2

1 + α2T ∗
+
µ

η1
(R0 − 1)T ∗. (27)

If R0 ≤ 1, then
dL2

dt
≤ 0 for all T, T ∗, V > 0. Similar to the proof of Theorem 1 one can easily show that S0 is

globally asymptotically stable when R0 ≤ 1.�

Theorem 4. If 1 < R0 , then S1 is globally asymptotically stable.
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Proof. We construct the following Lyapunov functional

U2(T, T ∗, V, Z) = T1g

(
T

T1

)
+

1

η1
T ∗1 g

(
T ∗

T ∗1

)
+

β1T1V1
bη2T ∗1 (1 + α1V1)

V1g

(
V

V1

)
+

β1T1V1
η1 (1 + α1V1)

∫ ∞
0

f1(s)e−δ1s
∫ s

0

g

(
T (t− η)V (t− η) (1 + α1V1)

T1V1 (1 + α1V (t− η))

)
dηds

+
β2T1T

∗
1

η1 (1 + α2T ∗1 )

∫ ∞
0

f1(s)e−δ1s
∫ s

0

g

(
T (t− η)T ∗(t− η) (1 + α2T

∗
1 )

T1T ∗1 (1 + α2T ∗(t− η))

)
dηds

+
β1T1V1

η2 (1 + α1V1)

∫ ∞
0

f2(s)e−δ2s
∫ s

0

g

(
T ∗(t− η)

T ∗1

)
dηds.

We evaluate dU2

dt along the trajectories of (19)-(21) is given by

dU2

dt
=

(
1− T1

T

)(
ρ− dT − β1TV

1 + α1V
− β2TT

∗

1 + α2T ∗

)
+

1

η1

(
1− T ∗1

T ∗

)(∫ ∞
0

f1(s)e−δ1s
[
β1T (t− s)V (t− s)

1 + α1V (t− s)
+
β2T (t− s)T ∗(t− s)

1 + α2T ∗(t− s)

]
ds− µT ∗

)
+

β1T1V1
bη2T ∗1 (1 + α1V1)

(
1− V1

V

)(
b

∫ ∞
0

f2(s)e−δ2sT ∗(t− s)ds− cV
)

+
β1T1V1

η1 (1 + α1V1)

∫ ∞
0

f1(s)e−δ1s
(
TV (1 + α1V1)

T1V1 (1 + α1V )
− T (t− s)V (t− s) (1 + α1V1)

T1V1 (1 + α1V (t− s))

)
ds

+
β1T1V1

η1 (1 + α1V1)

∫ ∞
0

f1(s)e−δ1s ln

(
T (t− s)V (t− s) (1 + α1V )

TV (1 + α1V (t− s))

)
ds

+
β2T1T

∗
1

η1 (1 + α2T ∗1 )

∫ ∞
0

f1(s)e−δ1s
(
TT ∗ (1 + α2T

∗
1 )

T1T ∗1 (1 + α2T ∗)
− T (t− s)T ∗(t− s) (1 + α2T

∗
1 )

T1T ∗1 (1 + α2T ∗(t− s))

)
ds

+
β2T1T

∗
1

η1 (1 + α2T ∗1 )

∫ ∞
0

f1(s)e−δ1s ln

(
T (t− s)T ∗(t− s) (1 + α2T

∗)

TT ∗ (1 + α2T ∗(t− s))

)
ds

+
β1T1V1

η2 (1 + α1V1)

∫ ∞
0

f2(s)e−δ2s
(
T ∗

T ∗1
− T ∗(t− s)

T ∗1
+ ln

(
T ∗(t− s)

T ∗

))
ds. (28)

Collecting terms of Eq. (28) and applying the steady state conditions for S1:

ρ− dT1 =
β1T1V1

1 + α1V1
+

β2T1T
∗
1

1 + α2T ∗1
=

µ

η1
T ∗1 =

cµ

bη1η2
V1,

we get

dU2

dt
= − d

T
(T − T1)

2
+

(
1− T1

T

)(
β1T1V1

1 + α1V1
+

β2T1T
∗
1

1 + α2T ∗1

)
+

β1T1V

1 + α1V

+
β2T1T

∗

1 + α2T ∗
− T ∗1
η1T ∗

∫ ∞
0

f1(s)e−δ1s
β1T (t− s)V (t− s)

1 + α1V (t− s)
ds

− T ∗1
η1T ∗

∫ ∞
0

f1(s)e−δ1s
β2T (t− s)T ∗(t− s)

1 + α2T ∗(t− s)
ds− β2T1T

∗

1 + α2T ∗1
+

β1T1V1
1 + α1V1

+
β2T1T

∗
1

1 + α2T ∗1
− β1T1V1
η2 (1 + α1V1)

∫ ∞
0

f2(s)e−δ2s
V1T

∗(t− s)
V T ∗1

ds− β1T1V

1 + α1V1

+
β1T1V1

1 + α1V1
+

β1T1V1
η1 (1 + α1V1)

∫ ∞
0

f1(s)e−δ1s ln

(
T (t− s)V (t− s) (1 + α1V )

TV (1 + α1V (t− s))

)
ds

+
β2T1T

∗
1

η1 (1 + α2T ∗1 )

∫ ∞
0

f1(s)e−δ1s ln

(
T (t− s)T ∗(t− s) (1 + α2T

∗)

TT ∗ (1 + α2T ∗(t− s))

)
ds

+
β1T1V1

η2 (1 + α1V1)

∫ ∞
0

f2(s)e−δ2s ln

(
T ∗(t− s)

T ∗

)
ds.
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Using Eq. (17) we get

dU2

dt
= − d

T
(T − T1)

2
+

β1T1V1
1 + α1V1

[
(1 + α1V1)V

(1 + α1V )V1
− V

V1
− 1 +

1 + α1V

1 + α1V1

]
+

β2T1T
∗
1

1 + α2T ∗1

[
(1 + α2T

∗
1 )T ∗

(1 + α2T ∗)T ∗1
− T ∗

T ∗1
− 1 +

1 + α2T
∗

1 + α2T ∗1

]
− β1T1V1

1 + α1V1

[
T1
T
− 1− ln

(
T1
T

)]
− β2T1T

∗
1

1 + α2T ∗1

[
T1
T
− 1− ln

(
T1
T

)]
− β1T1V1
η1 (1 + α1V1)

∫ ∞
0

f1(s)e−δ1s
[
T (t− s)V (t− s) (1 + α1V1)T ∗1
T1V1 (1 + α1V (t− s))T ∗

− 1

]
ds

+
β1T1V1

η1 (1 + α1V1)

∫ ∞
0

f1(s)e−δ1s ln

(
T (t− s)V (t− s) (1 + α1V1)T ∗1
T1V1 (1 + α1V (t− s))T ∗

)
ds

− β2T1T
∗
1

η1 (1 + α2T ∗1 )

∫ ∞
0

f1(s)e−δ1s
[
T (t− s)T ∗(t− s) (1 + α2T

∗
1 )

T1T ∗ (1 + α2T ∗(t− s))
− 1

]
ds

+
β2T1T

∗
1

η1 (1 + α2T ∗1 )

∫ ∞
0

f1(s)e−δ1s ln

(
T (t− s)T ∗(t− s) (1 + α2T

∗
1 )

T1T ∗ (1 + α2T ∗(t− s))

)
ds

− β1T1V1
η2 (1 + α1V1)

∫ ∞
0

f2(s)e−δ2s
[
V1T

∗(t− s)
V T ∗1

− 1− ln

(
V1T

∗(t− s)
V T ∗1

)]
ds

− β1T1V1
1 + α1V1

[
1 + α1V

1 + α1V1
− 1− ln

(
1 + α1V

1 + α1V1

)]
− β2T1T

∗
1

1 + α2T ∗1

[
1 + α2T

∗

1 + α2T ∗1
− 1− ln

(
1 + α2T

∗

1 + α2T ∗1

)]
= − d

T
(T − T1)

2 − β1T1V1
1 + α1V1

[
α1 (V − V1)

2

(1 + α1V ) (1 + α1V1)V1

]
− β2T1T

∗
1

1 + α2T ∗1

[
α2 (T ∗ − T ∗1 )

2

(1 + α2T ∗) (1 + α2T ∗1 )T ∗1

]

− β1T1V1
η1 (1 + α1V1)

∫ ∞
0

f1(s)e−δ1s
[
g

(
T1
T

)
+ g

(
T (t− s)V (t− s) (1 + α1V1)T ∗1
T1V1 (1 + α1V (t− s))T ∗

)
+ g

(
1 + α1V

1 + α1V1

)]
ds

− β2T1T
∗
1

η1 (1 + α2T ∗1 )

∫ ∞
0

f1(s)e−δ1s
[
g

(
T1
T

)
+ g

(
T (t− s)T ∗(t− s) (1 + α2T

∗
1 )

T1T ∗ (1 + α2T ∗(t− s))

)
+ g

(
1 + α2T

∗

1 + α2T ∗1

)]
ds

− β1T1V1
η2 (1 + α1V1)

∫ ∞
0

f2(s)e−δ2sg

(
V1T

∗(t− s)
V T ∗1

)
ds.

Similar to the proof of Theorem 2, one can easily show that S1 is globally asymptotically stable. �

4 Numerical simulations

In order to illustrate our theoretical results, we will perform numerical simulations for system (7)-(9). We use

the data given in Table 1.

Table 1: The data of system (7)-(9).

Parameter Value Parameter Parameter

λ 10 cells mm−3day−1 τ1 Varied

d 0.01 day−1 τ2 Varied

β1 Varied δ1 0.9 day−1

β2 0.0001 cells−1 mm3day−1 δ2 0.1 day−1

α1 Varied b 10 virus cells−1day−1

α2 Varied c 3 day−1

µ 0.9 day−1
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4.1 Effect of the parameter β1 on the stability of steady states

To show the global stability of the steady states we consider three different initial conditions:

IC1: ϕ1(η) = 600, ϕ2(η) = 1, ϕ3(η) = 1,

IC2: ϕ1(η) = 200, ϕ2(η) = 0.5, ϕ3(η) = 3,

IC3: ϕ1(η) = 700, ϕ2(η) = 5, ϕ3(η) = 9,

where, η ∈ [−max{τ1, τ2}, 0].

In this case we choose τ1 = 0.5 day, τ2 = 0.9 day, α1 = 0.009 virus −1 mm3, α2 = 0.005 cells −1 mm3 and

study the following subcases for the initial conditions IC1-IC3.:

(i) R0 ≤ 1. We choose, β1 = 0.0001 virus −1 mm3day−1, then we compute R0 = 0.2867 < 1. From

Lemma 2 we have that the system has one steady state S0. From Figures 1-3 we can see that, the concentration

of uninfected CD4+ T cells is increasing and tends its normal value ρ/d = 1000, while the concentrations of

infected cells and free HIV-1 are decaying and approaching zero for all the three initial conditions IC1-IC3. It

means that, S0 is globally asymptotically stable and the virus will be removed. This result support the result

of Theorem 1.

(ii) R0 > 1. We take β1 = 0.001 virus −1 mm3day−1, and then, R0 = 2.2292 > 1. Lemma 2 state that

the system has two positive steady states S0 and S1. It is clear from Figures 4-6 that, both the numerical

results and the theoretical results given in Theorem 2 are consistent. It is seen that, the solutions of the system

converges to the steady S1(491.6543, 3.6015, 10.9717), for all the three initial conditions IC1-IC3.

4.2 Effect of the saturation infection on the HIV-1 dynamics

In this case, we consider the initial condition IC2. We take the values τ1 = 0.5 day, τ2 = 0.9 day andβ1 = 0.001

virus−1 mm3day−1. Figures 7-9 show the effect of saturation infection. We observe that, as α1 and α2 are

increased, both the virus-target and infected-target infection rates are decreased, and then the concentration

of the CD4+ T cells are increased, while the concentrations of the infected cells and free HIV-1 particles are

decreased.

4.3 Effect of the time delays on the stability of steady states

In this case, we consider the initial condition IC2. We take the values β1 = 0.001 virus −1 mm3day−1, α1 = 0.009

virus−1 mm3 and α2 = 0.005 cells −1 mm3. Let us consider the case τ = τ1 = τ2. The values of R0 and the

steady states of system (7)-(9) with different values of τ are presented in Table 2.

Table 2: The values of steady states, R0 for model (7)-(9) with different values of the delay parameter τ .

Delay parameter Steady states R0

τ = 0.0 E1 = (319.8688, 7.5570, 25.1900) 3.8148

τ = 0.2 E1 = (373.1935, 5.8172, 19.0069) 3.1251

τ = 0.6 E1 = (517.7076, 3.1228, 9.8032) 2.0973

τ = 0.9 E1 = (670.8935, 1.6267, 4.9557) 1.5552

τ = 1. E1 = (733.0161, 1.2061, 3.6377) 1.4077

τ =1.3431 E0 = (1000, 0, 0, 0) 1

τ = 1.5 E0 = (1000, 0, 0, 0) 0.8552

τ = 2 E0 = (1000, 0, 0, 0) 0.5196

τ = 2.5 E0 = (1000, 0, 0, 0) 0.3157
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From Table 2 we can see that, R0 is decreased as τ is increased. Using the data given in Table 1, we get:

(i) if 0 ≤ τ < 1.343070098, then S1 exists and it is globally asymptotically stable,

(ii) if τ ≥ 1.343070098, then S0 is globally asymptotically stable.

Figures 10-12 show that the numerical results are also compatible with the results of Theorems 1 and 2. It

can be seen that when the time delay is increased, the system can be stabilized around the disease-free steady

state S0. This means that the delay plays a similar job as the antiviral treatment in clearing the HIV-1 from

the plasma.
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Figure 1: The evolution of uninfected CD4+ T cells

with initial IC1-IC3 in case of R0 ≤ 1.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time

I
n

fe
c
te

d
 C

e
ll

s

 

 

IC1

IC2

IC3

Figure 2: The evolution of infected cells with initial

IC1-IC3 in case of R0 ≤ 1.
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Figure 3: The evolution of free HIV-1 with initial

IC1-IC3 in case of R0 ≤ 1.
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Figure 4: The evolution of uninfected CD4+ T cells

with initial IC1-IC3 in case of R0 > 1.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1543 Elaiw et al 1532-1546



0 100 200 300 400 500 600
0

2

4

6

8

10

12

Time

I
n

fe
c
te

d
 C

e
ll

s

 

 

IC1

IC2

IC3

Figure 5: The evolution of infected cells with initial

IC1-IC3 in case of R0 > 1.
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Figure 6: The evolution of free HIV-1 with initial

IC1-IC3 in case of R0 > 1.
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Figure 7: The evolution of uninfected CD4+ T cells

with different saturation parameters α1,α2.
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Figure 8: The evolution of infected cells with dif-

ferent saturation parameters α1,α2.
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Figure 9: The evolution of free HIV-1 with different

saturation parameters α1,α2.
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Figure 10: The evolution of uninfected CD4+ T

cells with different delay parameter τ .
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Figure 11: The evolution of infected cells with dif-

ferent delay parameter τ .
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Figure 12: The evolution of free HIV-1 with differ-

ent delay parameter τ .
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The aim of this paper is utilize proper iterative methods for solving

equations on Banach spaces. The di¤erentiability of the operator involved
is not assumed neither the convexity of its domain. Applications of the
semi-local convergence are suggested including Banach space valued func-
tions of fractional calculus, where all integrals are of Bochner-type.
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1 Introduction

Let B1; B2 stand for Banach space and let 
 stand for an open subset of B1.
Let also U (z; �) := fu 2 B1 : ku� zk < �g and let U (z; �) stand for the closure
of U (z; �).
Many problems in Computational Sciences, Engineering, Mathematical Chem-

istry, Mathematical Physics, Mathematical Economics and other disciplines can
written as

F (x) = 0 (1.1)

using Mathematical Modeling [1]-[17], where F : 
 ! B2 is a continuous op-
erator. The solution x� of equation (1.1) is sought in closed form, but this is

1
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attainable only in special cases. That explains why most solution methods for
such equations are usually iterative. There is a plethora of iterative methods
for solving equation (1.1), more the [2, 6, 7, 9 - 13, 15, 16].
Newton�s method [6, 7, 11, 15, 16]:

xn+1 = xn � F 0 (xn)�1 F (xn) : (1.2)

Secant method:
xn+1 = xn � [xn�1; xn;F ]�1 F (xn) ; (1.3)

where [�; �;F ] denotes a divided di¤erence of order one on 
� 
 [7, 15, 16].
Newton-like method:

xn+1 = xn � E�1n F (xn) ; (1.4)

where En = E (F ) (xn) and E : 
 ! L (B1; B2) the space of bounded linear
operators from B1 into B2. Other methods can be found in [7], [11], [15], [16]
and the references therein.
In the present study we consider the new method de�ned for each n =

0; 1; 2; ::: by
xn+1 = G (xn)

G (xn+1) = G (xn)�A�1n F (xn) ; (1.5)

where x0 2 
 is an initial point, G : B3 ! 
 (B3 a Banach space), An =
A (F ) (xn+1; xn) = A (xn+1; xn) and A : 
 � 
 ! L (B1; B2). Method (1.5)
generates a sequence which we shall show converges to x� under some Lipschitz-
type conditions (to be precised in Section 2). Although method (1.5) (and
Section 2) is of independent interest, it is nevertheless designed especially to be
used in g-Abstract Fractional Calculus (to be precised in Section 3). As far as
we know such iterative methods have not yet appeared in connection to solve
equations in Abstract Fractional Calculus.
In this paper we present the semi-local convergence of method (1.5) in Sec-

tion 2. Some applications to Abstract g-Fractional Calculus are suggested in
Section 3 on a certain Banach space valued functions, where all the integrals
are of Bochner-type [8], [14].

2 Semi-local Convergence analysis

We present the semi-local convergence analysis of method (1.5) using conditions
(M):
(m1) F : 
 � B1 ! B2 is continuous, G : B3 ! 
 is continuous and

A (x; y) 2 L (B1; B2) for each (x; y) 2 
� 
:

2
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(m2) There exist � > 0 and 
0 � B1 such that A (x; y)
�1 2 L (B2; B1) for

each (x; y) 2 
0 � 
0 and 


A (x; y)�1


 � ��1:

Set 
1 = 
 \ 
0.
(m3) There exists a continuous and nondecreasing function  : [0;+1)3 !

[0;+1) such that for each x; y 2 
1

kF (x)� F (y)�A (x; y) (G (x)�G (y))k �

� (kx� yk ; kx� x0k ; ky � x0k) kG (x)�G (y)k :

(m4) There exists a continuous and nondecreasing function  0 : [0;+1)!
[0;+1) such that for each x 2 
1

kG (x)�G (x0)k �  0 (kx� x0k) kx� x0k :

(m5) For x0 2 
0 and x1 = G (x0) 2 
0 there exists � � 0 such that


A (x1; x0)�1 F (x0)


 � �:

(m6) There exists s > 0 such that

 (�; s; s) < 1;

 0 (s) < 1

and
kG (x0)� x0k � s � �

1� q0
;

where q0 =  (�; s; s) :

(m7) U (x0; s) � 
.
Next, we present the semi-local convergence analysis for method (1.5) using

the conditions (M) and the preceding notation.

Theorem 2.1 Assume that the conditions (M) hold. Then, sequence fxng
generated by method (1.5) starting at x0 2 
 is well de�ned in U (x0; s), remains
in U (x0; s) for each n = 0; 1; 2; ::: and converges to a solution x� 2 U (x0; s)

of equation F (x) = 0. The limit point x� is the unique solution of equation
F (x) = 0 in U (x0; s) :

Proof. By the de�nition of s and (m5), we have x1 2 U (x0; s). The proof
is based on mathematical induction on k. Suppose that kxk � xk�1k � qk�10 �

and kxk � x0k � s:

3
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We get by (1.5), (m2)� (m5) in turn that

kG (xk+1)�G (xk)k =


A�1k F (xk)



 =

A�1k (F (xk)� F (xk�1)�Ak�1 (G (xk)�G (xk�1)))




�


A�1k 

 kF (xk)� F (xk�1)�Ak�1 (G (xk)�G (xk�1))k �

��1� (kxk � xk�1k ; kxk�1 � x0k ; kyk � x0k) kG (xk)�G (xk�1)k �

 (�; s; s) kG (xk)�G (xk�1)k = q0 kG (xk)�G (xk�1)k � qk0 kx1 � x0k � qk0�

(2.1)
and by (m6)

kxk+1 � x0k = kG (xk)� x0k � kG (xk)�G (x0)k+ kG (x0)� x0k

�  0 (kxk � x0k) kxk � x0k+ kG (x0)� x0k

�  0 (s) s+ kG (x0)� x0k � s:

The induction is completed. Moreover, we have by (2.1) that for m = 0; 1; 2; :::

kxk+m � xkk �
1� qm0
1� q0

qk0�:

It follows from the preceding inequation that sequence fG (xk)g is complete in a
Banach space B1 and as such it converges to some x� 2 U (x0; s) (since U (x0; s)
is a closed ball). By letting k ! +1 in (2.1) we get F (x�) = 0. We also get
by (1.5) that G (x�) = x�. To show the uniqueness part, let x�� 2 U (x0; s) be
a solution of equation F (x) = 0 and G (x��) = x��: By using (1.5), we obtain
in turn that

kx�� �G (xk+1)k =


x�� �G (xk) +A�1k F (xk)�A�1k F (x��)



 �

A�1k 

 kF (x��)� F (xk)�Ak (G (x��)�G (xk))k �
��1� 0 (kx�� � xkk ; kxk+1 � x0k ; kxk � x0k) kG (x��)�G (xk)k �

q0 kG (x��)�G (xk)k � qk+10 kx�� � x0k ;

so lim
k!+1

xk = x��. We have shown that lim
k!+1

xk = x�, so x� = x��:

Remark 2.2 (1) Condition (m2) can become part of condition (m3) by consid-
ering
(m3)

0 There exists a continuous and nondecreasing function ' : [0;+1)3 !
[0;+1) such that for each x; y 2 
1


A (x; y)�1 [F (x)� F (y)�A (x; y) (G (x)�G (y))]


 �

4
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' (kx� yk ; kx� x0k ; ky � x0k) kG (x)�G (y)k :

Notice that
' (u1; u2; u3) �  (u1; u2; u3)

for each u1 � 0, u2 � 0 and u3 � 0. Similarly, a function '1 can replace  1 for
the uniqueness of the solution part. These replacements are of Mysovskii-type
[6], [11], [15] and in�uence the weaking of the convergence criterion in (m6),
error bounds and the precision of s.
(2) Suppose that there exist � > 0, �1 > 0 and L 2 L (B1; B2) with L�1 2

L (B2; B1) such that 

L�1

 � ��1

kA (x; y)� Lk � �1

and
�2 := ��1�1 < 1:

Then, it follows from the Banach lemma on invertible operators [11], and

L�1

 kA (x; y)� Lk � ��1�1 = �2 < 1

that A (x; y)�1 2 L (B2; B1). Let � = ��1

1��2
. Then, under these replacements,

condition (m2) is implied, therefore it can be dropped from the conditions (M).

Remark 2.3 Section 2 has an interest independent of Section 3. It is worth
noticing that the results especially of Theorem 2.1 can apply in Abstract g-
Fractional Calculus as illustrated in Section 3. By specializing function  , we
can apply the results of say Theorem 2.1 in the examples suggested in Section
3. In particular for (3.21), we choose for u1 � 0; u2 � 0, u3 � 0

 (u1; u2; u3) =
���1

�� (�) (� + 1)
;

if jg (x)� g (y)j � �1 for each x; y 2 [a; b] ;

 (u1; u2; u3) =
���2

�� (�) (� + 1)
;

if jg (x)� g (y)j � �2 kx� yk for each x; y 2 [a; b] and �2 = �2 jb� aj ;

 (u1; u2; u3) =
���3

�� (�) (� + 1)
;

if jg (x)j � �3 for each x; y 2 [a; b] and �3 = 2�3; where �; � and F are de�ned
in Section 3. Other choices of function  are also possible.
Notice that with these choices of function  and f = F and g = G, crucial

condition (m3) is satis�ed, which justi�es our de�nition of method (1.5). We
can provide similar choices for the other examples of Section 3.

5
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3 Applications to X-valued g-Fractional Calcu-
lus of Canavati type

Here we deal with Banach space (X; k�k) valued functions f of real domain [a; b].
All integrals here are of Bochner-type, see [14]. The derivatives of f are de�ned
similarly to numerical ones, see [17], pp. 83-86 and p. 93.
Here both needed backgrounds come from [5].
Let � > 1; � =2 N, with integral part [�] = n 2 N: Let g : [a; b] ! R be a

strictly increasing function, such that g 2 C1 ([a; b]), g�1 2 Cn ([g (a) ; g (b)]),
and let f 2 Cn ([a; b] ; X). It clear then we obtain that

�
f � g�1

�
2 Cn ([g (a) ; g (b)] ; X).

Let � := � � [�] = � � n (0 < � < 1).
(I) See [5]. Let h 2 C ([g (a) ; g (b)] ; X), we de�ne theX-valued left Riemann-

Liouville fractional integral as

(Jz0� h) (z) :=
1

� (�)

Z z

z0

(z � t)��1 h (t) dt; (3.1)

for g (a) � z0 � z � g (b), where � is the gamma function:
We de�ne the subspace C�g(x) ([g (a) ; g (b)] ; X) of C

n ([g (a) ; g (b)] ; X), where
x 2 [a; b] :

C�g(x) ([g (a) ; g (b)] ; X) :=
n
h 2 Cn ([g (a) ; g (b)] ; X) : Jg(x)1��h

(n) 2 C1 ([g (x) ; g (b)] ; X)
o
:

(3.2)
So let h 2 C�g(x) ([g (a) ; g (b)] ; X); we de�ne the X-valued left g-generalized
fractional derivative of h of order �, of Canavati type, over [g (x) ; g (b)] as

D�
g(x)h :=

�
J
g(x)
1��h

(n)
�0
: (3.3)

Clearly, for h 2 C�g(x) ([g (a) ; g (b)] ; X), there exists�
D�
g(x)h

�
(z) =

1

� (1� �)
d

dz

Z z

g(x)

(z � t)�� h(n) (t) dt; (3.4)

for all g (x) � z � g (b) :

In particular, when f � g�1 2 C�g(x) ([g (a) ; g (b)] ; X) we have that�
D�
g(x)

�
f � g�1

��
(z) =

1

� (1� �)
d

dz

Z z

g(x)

(z � t)��
�
f � g�1

�(n)
(t) dt; (3.5)

for all z : g (x) � z � g (b) :

We have that Dn
g(x)

�
f � g�1

�
=
�
f � g�1

�(n)
and D0

g(x)

�
f � g�1

�
= f � g�1:

From [5] we have for
�
f � g�1

�
2 C�g(x) ([g (a) ; g (b)] ; X), where x 2 [a; b],

(X-valued left fractional Taylor�s formula) that

f (y)� f (x) =
n�1X
k=1

�
f � g�1

�(k)
(g (x))

k!
(g (y)� g (x))k + (3.6)

6
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1

� (�)

Z g(y)

g(x)

(g (y)� t)��1
�
D�
g(x)

�
f � g�1

��
(t) dt; for all y 2 [a; b] : y � x:

Alternatively, for
�
f � g�1

�
2 C�g(y) ([g (a) ; g (b)] ; X), where y 2 [a; b], we

can write (again X-valued left fractional Taylor�s formula) that:

f (x)� f (y) =
n�1X
k=1

�
f � g�1

�(k)
(g (y))

k!
(g (x)� g (y))k + (3.7)

1

� (�)

Z g(x)

g(y)

(g (x)� t)��1
�
D�
g(y)

�
f � g�1

��
(t) dt; for all x 2 [a; b] : x � y:

Here we consider f 2 Cn ([a; b] ; X), such that
�
f � g�1

�
2 C�g(x) ([g (a) ; g (b)] ; X),

for every x 2 [a; b]; which is the same as
�
f � g�1

�
2 C�g(y) ([g (a) ; g (b)] ; X), for

every y 2 [a; b] (i.e. exchange roles of x and y); we write that as
�
f � g�1

�
2

C�g+ ([g (a) ; g (b)] ; X).
We have that�
D�
g(y)

�
f � g�1

��
(z) =

1

� (1� �)
d

dz

Z z

g(y)

(z � t)��
�
f � g�1

�(n)
(t) dt; (3.8)

for all z : g (y) � z � g (b) :

So here we work with f 2 Cn ([a; b] ; X), such that
�
f � g�1

�
2 C�g+ ([g (a) ; g (b)] ; X) :

We de�ne the X-valued left linear fractional operator

(A1 (f)) (x; y) :=

8>>>>>>>>>>>><>>>>>>>>>>>>:

Pn�1
k=1

(f�g�1)
(k)
(g(x))

k! (g (y)� g (x))k�1+�
D�
g(x)

�
f � g�1

��
(g (y)) (g(y)�g(x))

��1

�(�+1) ; y > x;

Pn�1
k=1

(f�g�1)
(k)
(g(y))

k! (g (x)� g (y))k�1+�
D�
g(y)

�
f � g�1

��
(g (x)) (g(x)�g(y))

��1

�(�+1) ; x > y;

f (n) (x) , x = y:

(3.9)

We may assume that (see [12], p. 3)

k(A1 (f)) (x; x)� (A1 (f)) (y; y)k =



f (n) (x)� f (n) (y)


 =


�f (n) � g�1� (g (x))� �f (n) � g�1� (g (y))


 � � jg (x)� g (y)j ; (3.10)

where � > 0; for any x; y 2 [a; b] :
We make the following estimations:
(i) case of y > x : We have that

kf (y)� f (x)� (A1 (f)) (x; y) (g (y)� g (x))k =

7
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 1

� (�)

Z g(y)

g(x)

(g (y)� t)��1
�
D�
g(x)

�
f � g�1

��
(t) dt�

�
D�
g(x)

�
f � g�1

��
(g (y))

(g (y)� g (x))�

� (� + 1)






(by [1], p. 426, Theorem 11.43)

=
1

� (�)







Z g(y)

g(x)

(g (y)� t)��1
��
D�
g(x)

�
f � g�1

��
(t)�

�
D�
g(x)

�
f � g�1

��
(g (y))

�
dt







(3.11)

(by [8])

� 1

� (�)

Z g(y)

g(x)

(g (y)� t)��1



�D�

g(x)

�
f � g�1

��
(t)�

�
D�
g(x)

�
f � g�1

��
(g (y))




 dt
(we assume here that


�D�

g(x)

�
f � g�1

��
(t)�

�
D�
g(x)

�
f � g�1

��
(g (y))




 � �1 jt� g (y)j ; (3.12)

for every t; g (y) ; g (x) 2 [g (a) ; g (b)] such that g (y) � t � g (x) ; �1 > 0)

� �1
� (�)

Z g(y)

g(x)

(g (y)� t)��1 (g (y)� t) dt = (3.13)

�1
� (�)

Z g(y)

g(x)

(g (y)� t)� dt = �1
� (�)

(g (y)� g (x))�+1

(� + 1)
: (3.14)

We have proved that

kf (y)� f (x)� (A1 (f)) (x; y) (g (y)� g (x))k �
�1
� (�)

(g (y)� g (x))�+1

(� + 1)
;

(3.15)
for all x; y 2 [a; b] : y > x:

(ii) Case of x > y : We observe that

kf (y)� f (x)� (A1 (f)) (x; y) (g (y)� g (x))k =

kf (x)� f (y)� (A1 (f)) (x; y) (g (x)� g (y))k =




 1

� (�)

Z g(x)

g(y)

(g (x)� t)��1
�
D�
g(y)

�
f � g�1

��
(t) dt�

�
D�
g(y)

�
f � g�1

��
(g (x))

(g (x)� g (y))�

� (� + 1)





 = (3.16)

1

� (�)







Z g(x)

g(y)

(g (x)� t)��1
��
D�
g(y)

�
f � g�1

��
(t)�

�
D�
g(y)

�
f � g�1

��
(g (x))

�
dt






 �
8
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1

� (�)

Z g(x)

g(y)

(g (x)� t)��1



�D�

g(y)

�
f � g�1

��
(t)�

�
D�
g(y)

�
f � g�1

��
(g (x))




 dt
(3.17)

(we assume that


�D�
g(y)

�
f � g�1

��
(t)�

�
D�
g(y)

�
f � g�1

��
(g (x))




 � �2 jt� g (x)j ; (3.18)

for all t; g (x) ; g (y) 2 [g (a) ; g (b)] such that g (x) � t � g (y) ; �2 > 0)

� �2
� (�)

Z g(x)

g(y)

(g (x)� t)��1 (g (x)� t) dt = (3.19)

�2
� (�)

Z g(x)

g(y)

(g (x)� t)� dt = �2
� (�)

(g (x)� g (y))�+1

(� + 1)
:

We have proved that

kf (y)� f (x)� (A1 (f)) (x; y) (g (y)� g (x))k �
�2
� (�)

(g (x)� g (y))�+1

(� + 1)
;

(3.20)
for any x; y 2 [a; b] : x > y:

Conclusion 3.1 Set � := max (�1; �2). Then

kf (y)� f (x)� (A1 (f)) (x; y) (g (y)� g (x))k �
�

� (�)

jg (y)� g (x)j�+1

(� + 1)
;

(3.21)
8 x; y 2 [a; b] (the case of x = y is trivially true).

We may choose that �
�(�) < 1:

Also we notice here that � + 1 > 2:
(II) See [5] again. Let h 2 C ([g (a) ; g (b)] ; X), we de�ne the X-valued right

Riemann-Liouville fractional integral as�
J�z0�h

�
(z) :=

1

� (�)

Z z0

z

(t� z)��1 h (t) dt; (3.22)

for g (a) � z � z0 � g (b) :

We de�ne the subspace C�g(x)� ([g (a) ; g (b)] ; X) of C
n ([g (a) ; g (b)] ; X), where

x 2 [a; b] :

C�g(x)� ([g (a) ; g (b)] ; X) :=
n
h 2 Cn ([g (a) ; g (b)] ; X) : J1��g(x)�h

(n) 2 C1 ([g (a) ; g (x)] ; X)
o
:

(3.23)
So let h 2 C�g(x)� ([g (a) ; g (b)] ; X); we de�ne the X-valued right g-generalized
fractional derivative of h of order �, of Canavati type, over [g (a) ; g (x)] as

D�
g(x)�h := (�1)

n�1
�
J1��g(x)�h

(n)
�0
: (3.24)
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Clearly, for h 2 C�g(x)� ([g (a) ; g (b)] ; X), there exists�
D�
g(x)�h

�
(z) =

(�1)n�1

� (1� �)
d

dz

Z g(x)

z

(t� z)�� h(n) (t) dt; (3.25)

for all g (a) � z � g (x) � g (b) :

In particular, when f � g�1 2 C�g(x)� ([g (a) ; g (b)] ; X) we have that�
D�
g(x)�

�
f � g�1

��
(z) =

(�1)n�1

� (1� �)
d

dz

Z g(x)

z

(t� z)��
�
f � g�1

�(n)
(t) dt;

(3.26)
for all g (a) � z � g (x) � g (b) :

We get that�
Dn
g(x)�

�
f � g�1

��
(z) = (�1)n

�
f � g�1

�(n)
(z) ; (3.27)

and �
D0
g(x)�

�
f � g�1

��
(z) =

�
f � g�1

�
(z) ; (3.28)

for all z 2 [g (a) ; g (x)], see [5].
From [5] we have, for

�
f � g�1

�
2 C�g(x)� ([g (a) ; g (b)] ; X), where x 2 [a; b],

� � 1 (X-valued right fractional Taylor�s formula) that:

f (y)� f (x) =
n�1X
k=1

�
f � g�1

�(k)
(g (x))

k!
(g (y)� g (x))k +

1

� (�)

Z g(x)

g(y)

(t� g (y))��1
�
D�
g(x)�

�
f � g�1

��
(t) dt; all a � y � x: (3.29)

Alternatively, for
�
f � g�1

�
2 C�g(y)� ([g (a) ; g (b)] ; X), where y 2 [a; b], � �

1 (again X-valued right fractional Taylor�s formula) that:

f (x)� f (y) =
n�1X
k=1

�
f � g�1

�(k)
(g (y))

k!
(g (x)� g (y))k +

1

� (�)

Z g(y)

g(x)

(t� g (x))��1
�
D�
g(y)�

�
f � g�1

��
(t) dt; all a � x � y: (3.30)

Here we consider f 2 Cn ([a; b] ; X), such that
�
f � g�1

�
2 C�g(x)� ([g (a) ; g (b)] ; X),

for every x 2 [a; b]; which is the same as
�
f � g�1

�
2 C�g(y)� ([g (a) ; g (b)] ; X),

for every y 2 [a; b] ; (i.e. exchange roles of x and y) we write that as
�
f � g�1

�
2

C�g� ([g (a) ; g (b)] ; X).
We have that�
D�
g(y)�

�
f � g�1

��
(z) =

(�1)n�1

� (1� �)
d

dz

Z g(y)

z

(t� z)��
�
f � g�1

�(n)
(t) dt;

(3.31)
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for all g (a) � z � g (y) � g (b) :

So here we work with f 2 Cn ([a; b] ; X), such that
�
f � g�1

�
2 C�g� ([g (a) ; g (b)] ; X) :

We de�ne the X-valued right linear fractional operator

(A2 (f)) (x; y) :=

8>>>>>>>>>>>><>>>>>>>>>>>>:

Pn�1
k=1

(f�g�1)
(k)
(g(x))

k! (g (y)� g (x))k�1��
D�
g(x)�

�
f � g�1

��
(g (y)) (g(x)�g(y))

��1

�(�+1) ; x > y;

Pn�1
k=1

(f�g�1)
(k)
(g(y))

k! (g (x)� g (y))k�1��
D�
g(y)�

�
f � g�1

��
(g (x)) (g(y)�g(x))

��1

�(�+1) ; y > x;

f (n) (x) , x = y:

(3.32)

We may assume that ([12], p. 3)

k(A2 (f)) (x; x)� (A2 (f)) (y; y)k =



f (n) (x)� f (n) (y)


 � �� jg (x)� g (y)j ;

(3.33)
where �� > 0; for any x; y 2 [a; b] :
We make the following estimations:
(i) case of x > y : We have that

kf (x)� f (y)� (A2 (f)) (x; y) (g (x)� g (y))k =

kf (y)� f (x)� (A2 (f)) (x; y) (g (y)� g (x))k = (3.34)

kf (y)� f (x) + (A2 (f)) (x; y) (g (x)� g (y))k =




 1

� (�)

Z g(x)

g(y)

(t� g (y))��1
�
D�
g(x)�

�
f � g�1

��
(t) dt�

�
D�
g(x)�

�
f � g�1

��
(g (y))

(g (x)� g (y))�

� (� + 1)





 (3.35)

(by [1], p. 426, Theorem 11.43)

=
1

� (�)







Z g(x)

g(y)

(t� g (y))��1
��
D�
g(x)�

�
f � g�1

��
(t)�

�
D�
g(x)�

�
f � g�1

��
(g (y))

�
dt







(by [8])

� 1

� (�)

Z g(x)

g(y)

(t� g (y))��1



�D�

g(x)�
�
f � g�1

��
(t)�

�
D�
g(x)�

�
f � g�1

��
(g (y))




 dt
(3.36)

(we assume here that


�D�
g(x)�

�
f � g�1

��
(t)�

�
D�
g(x)�

�
f � g�1

��
(g (y))




 � �1 jt� g (y)j ; (3.37)
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for every t; g (y) ; g (x) 2 [g (a) ; g (b)] such that g (x) � t � g (y) ; �1 > 0)

� �1
� (�)

Z g(x)

g(y)

(t� g (y))��1 (t� g (y)) dt =

�1
� (�)

Z g(x)

g(y)

(t� g (y))� dt = �1
� (�)

(g (x)� g (y))�+1

(� + 1)
: (3.38)

We have proved that

kf (x)� f (y)� (A2 (f)) (x; y) (g (x)� g (y))k �
�1
� (�)

(g (x)� g (y))�+1

(� + 1)
;

(3.39)
8 x; y 2 [a; b] : x > y:

(ii) Case of x < y : We have that

kf (x)� f (y)� (A2 (f)) (x; y) (g (x)� g (y))k =

kf (x)� f (y) + (A2 (f)) (x; y) (g (y)� g (x))k = (3.40)




 1

� (�)

Z g(y)

g(x)

(t� g (x))��1
�
D�
g(y)�

�
f � g�1

��
(t) dt�

�
D�
g(y)�

�
f � g�1

��
(g (x))

(g (y)� g (x))�

� (� + 1)





 =
1

� (�)







Z g(y)

g(x)

(t� g (x))��1
��
D�
g(y)�

�
f � g�1

��
(t)�

�
D�
g(y)�

�
f � g�1

��
(g (x))

�
dt






 �
1

� (�)

Z g(y)

g(x)

(t� g (x))��1



�D�

g(y)�
�
f � g�1

��
(t)�

�
D�
g(y)�

�
f � g�1

��
(g (x))




 dt
(3.41)

(we assume that


�D�
g(y)�

�
f � g�1

��
(t)�

�
D�
g(y)�

�
f � g�1

��
(g (x))




 � �2 jt� g (x)j ; (3.42)

for any t; g (x) ; g (y) 2 [g (a) ; g (b)] : g (y) � t � g (x) ; �2 > 0)

� �2
� (�)

Z g(y)

g(x)

(t� g (x))��1 (t� g (x)) dt =

�2
� (�)

Z g(y)

g(x)

(t� g (x))� dt = (3.43)

�2
� (�)

(g (y)� g (x))�+1

(� + 1)
: (3.44)
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We have proved that

kf (x)� f (y)� (A2 (f)) (x; y) (g (x)� g (y))k �
�2
� (�)

(g (y)� g (x))�+1

(� + 1)
;

(3.45)
8 x; y 2 [a; b] : x < y:

Conclusion 3.2 Set � := max (�1; �2). Then

kf (x)� f (y)� (A2 (f)) (x; y) (g (x)� g (y))k �
�

� (�)

jg (x)� g (y)j�+1

(� + 1)
;

(3.46)
8 x; y 2 [a; b] ((3.46) is trivially true when x = y).

One may choose �
�(�) < 1:

Here again � + 1 > 2:

Conclusion 3.3 Based on (3.10) and (3.21) of (I), and based on (3.33) and
(3.46) of (II), using our numerical results presented earlier, we can solve nu-
merically f (x) = 0:

Some examples for g follow:

g (x) = ex, x 2 [a; b] � R;
g (x) = sinx;

g (x) = tanx;

where x 2
�
��
2 + ";

�
2 � "

�
; with " > 0 small.
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