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Characteristics of Mexican hat wavelet transform

in a class of generalized quotient space

Abhishek Singh∗,1, Aparna Rawat1 and Shubha Singh2

December 24, 2022

Abstract

In this paper, Mexican hat wavelet transformation is defined on the
space of tempered generalized quotients by employing the structure of
exchange property. We study the exchange property for the Mexican hat
wavelet transform by applying the theory of the Mexican hat wavelet
transform of distributions. Further, different properties of Mexican hat
wavelet transform are investigated on the space of tempered generalized
quotients.

Key words: Wavelet transform; Exchange property; Distribution
space; Tempered generalized quotient
Mathematics Subject Classification(2010): 44A15; 44A35; 46F99;
54B15

1

1 Introduction

The wavelet transform (Wf)(b, a) of a square integrable function f , is given by

(Wf)(b, a) =

∫ ∞
−∞

f(t)ψb,a(t)dt, (1.1)

where

ψb,a(t) = (
√
a)−1ψ

(
t− b
a

)
, b, t ∈ Rn, and a > 0. (1.2)

The inversion formula for (1.1) is given by

2

Cψ

∫ ∞
0

[∫ ∞
−∞

(
√
a)−1(Wf)(b, a)ψ

(
x− b
a

)
db

]
da

a2
= f(x), x ∈ Rn, (1.3)

1∗ Corresponding author (mathdras@gmail.com) 1Department of Mathematics and Statis-
tics, Banasthali Vidhyapith, Banasthali, India
2Department of Physics, Banaras Hindu University, Varanasi

1
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where the admissibility condition Cψ is given by

Cψ
2

=

∫ ∞
0

|ψ̂(u)|2

|u|
dv =

∫ ∞
0

|ψ̂(−u)|2

|u|
du <∞ [3,p. 64].

The Mexican hat wavelet is constructed by taking the negative second derivative
of a Gaussian function and is given by [24]

ψ(t) = e−(
t2

2 )(1− t2) = − d2

dt2
e−(

t2

2 ) (1.4)

such that

ψb,a(t) = −a 3
2D2

t e
− (b−t)2

2a2 ,

(
Dt =

d

dt

)
. (1.5)

Thus, (1.1) can be reduced to

(Wf)(b, a) = −a 3
2

∫
R
f(t) D2

t e
− (b−t)2

2a2 dt, a ∈ R+ (1.6)

which then, under certain conditions on f is

(Wf)(b, a) = −a 3
2

∫
R
f (2)(t) e−

(b−t)2

2a2 dt, a ∈ R+. (1.7)

Let a function ka(b− t) be defined by

ka(b− t) =
1√
2πa

e

(
−(b−t)2

2a

)
, (1.8)

where t ∈ R, b = σ + iω and a ∈ R+. Then

D2
t ka2(b− t) =

1√
2πa

D2
t

(
e
−(b−t)2

2a2

)
. (1.9)

Therefore, by (1.5)

ψb,a(t) = −(2π)
1
2 a

5
2D2

t ka2(b− t)

and hence the Mexican hat wavelet transform is given by

(Wf)(b, a) = (2π)
1
2 a

5
2

∫
R
f(t)D2

t ka2(b− t)dt

= (2π)
1
2 a

5
2

∫
R
f (2)(t)ka2(b− t)dt

= (2π)
1
2 a

5
2 (f (2) ∗ ka2)(b), b ∈ C, a ∈ R+, (1.10)

where ka2(b− t) = 1√
2πa

e
−(b−t)2

2a2 .

2
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The most general theory of the MHWT is investigated on the generalized
function space (W γ

α,β)
′

developed by Pathak et al. [8]. It is proved that the

MHWT (Wf)(b, a) of f ∈ (W γ
α,β)

′
, is given by 〈f (2)(t), ka2(b− t)〉 is an analytic

function in the strip α
γ < Re b < β

γ for some α, β, γ ∈ R.

Recently, the wavelet transform has been comprehensively studied in many
functions, distributions, and tempered distribution spaces. Several interesting
properties and applications in generalized function spaces have been developed
(See, for example, [6, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21]. On the other hand,
Mikusiński’s algebraic approach gave a new transformation to the theory of
functional analysis. The space of generalized quotients (Boehmians) is the
recent generalization of the Schwartz distribution and the motivation for the
expansion is in the core of Mikusiński operators. Its application to function
spaces with the involvement of convolution provides different generalized func-
tion spaces. Hence, many integral transforms have been investigated in such
spaces [1, 5, 7, 14, 15, 16, 22, 23].

Let S (Rn) and S (Rn × R+) be the spaces of functions with continuous
derivatives which are rapidly decreasing on Rn and Rn ×R+. The dual of S is
represented by S ′ that is known as the space of tempered distributions. The
spaces S and S ′ have been introduced and developed in [2]. The class S ′

of tempered distributions is contained in (W γ
α,β)

′
. Therefore the Mexican hat

wavelet transform theory can be made applicable to S ′. Further, the Mexican
hat wavelet transform can be expanded to the space of tempered generalized
quotient, as the space is a natural expansion of tempered distributions. Here, we
extend the Mexican hat wavelet transformation to a class of generalized quotient
space that have quotients of sequences in the form of fn/ϕn, where the numer-
ator contains terms of the sequence from some set S ′ and the denominator is
a delta sequence such that it satisfies the following condition

fn ∗ ϕm = fm ∗ ϕm, ∀m,n ∈ N. (1.11)

Further, the delta sequences are defined as sequences of functions {ϕn} ∈ S
that satisfies

1.
∫
Rn ϕn(x)dx = 1 for all n = 1, 2, 3, · · ·.

2. There exists a constant C > 0 such that∫
Rn

|ϕn(x)| dx ≤ C for all n = 1, 2, 3, · · · .

3. limn→∞
∫
‖x‖≥ε ‖x‖

k |(ϕj(x))| dx = 0 for every k ∈ N and ε > 0.

In particular, we extend the transformation to generalized quotient space by
defining an exchange property for the Mexican hat wavelet transform. In the

3
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next section, we introduce some of the basic results required for the investigation
of MHWT on the generalized quotient space. Section 3 describes some algebraic
properties of MHWT in the context of tempered generalized quotients.

2 The exchange property

In this section, the space of tempered generalized quotients is constructed by
applying the exchange property. This construction for generalized quotients in-
dicates that the role of convergence is not necessary.

Theorem 2.1. For a function f ∈ S ′ and t ∈ R,

(Wf)(b, a) = (2π)
1
2 a

5
2 (f (2) ∗ ka2)(b) = (2π)

1
2 a

5
2 lim
n→∞

((f (2) ∗ ka2)e−
t2

2n )(b).

Proof. Consider,

(2π)
1
2 a

5
2 lim
n→∞

((f (2) ∗ ka2)e−
t2

2n )(b) = (2π)
1
2 a

5
2 lim
n→∞

∫
R
f (2)(t)ka2(b)e−

t2

2n dt

= a
3
2 lim
n→∞

∫
R
f (2)(t)e−

(b−t)2

2a2 e−
t2

2n dt

= a
3
2

∫
R
f (2)(t)e−

(b−t)2

2a2 dt.

Therefore,

(Wf)(b, a) = (2π)
1
2 a

5
2 lim
n→∞

((f (2) ∗ ka2)e−
t2

2n )(b).

Theorem 2.2. For f ∈ S
′

and ϕ ∈ S , we have

(W (f ∗ ϕ))(b, a) = (Wf)(b, a) ∗ ϕ.

Proof. By using [4, Lemma 4.3.8], (f ∗ ϕ) ∈ S ′ and hence (W (f ∗ ϕ))(b, a) is
defined. Also, by Theorem 2.1

(W (f ∗ ϕ))(b, a) = (2π)
1
2 a

5
2 lim
n→∞

(((f (2) ∗ ϕ) ∗ ka2)e−
t2

2n )(b).

Consider,

(2π)
1
2 a

5
2 (((f (2) ∗ ϕ) ∗ ka2)e−

t2

2n )(b) = (2π)
1
2 a

5
2

∫
R
(f (2) ∗ ϕ)(t)k(b− t, a2)e−

t2

2n dt

= a
3
2

∫
R

(f (2) ∗ ϕ)(t)e−
(b−t)2

2a2 e−
t2

2n dt

= a
3
2

∫
R
〈f (2)(s), ϕ(t− s)〉e−

(b−t)2

2a2 e−
t2

2n dt

= a
3
2

∫
R
〈f (2)(s), ϕ(t− s)〉ψn(t)dt, (2.1)

4
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where ψn(t) = e−
(b−t)2

2a2 e−
t2

2n .

By [8, Lemma 4.3], we have

a
3
2

∫ m

−m
〈f (2)(s), ϕ(t−s)〉ψn(t)dt = a

3
2

〈
f (2)(s),

∫ m

−m
ϕ(t− s)ψn(t)dt

〉
, ∀m > 0,

which converges to

a
3
2

〈
f (2)(s),

∫ m

−m
ϕ(t− s)ψn(t)dt

〉
as m→∞,

Therefore,∫ ∞
−∞
〈f (2)(s), ϕ(t− s)〉e−

(b−t)2

2a2 e−
t2

2n dt =

〈
f (2)(s),

∫ ∞
−∞

ϕ(t− s)ψn(t) dt

〉
= 〈f (2)(s), (ϕ ∗ ψn)(s)〉. (2.2)

Let us now consider,

(2π)
1
2 a

5
2 ((f (2) ∗ ka2) ∗ ϕ)(b) = (2π)

1
2 a

5
2

∫
R
(f (2) ∗ ka2)(b− t)ϕ(t) dt

= (2π)
1
2 a

5
2

∫ M

−M
〈f (2)(s), ka2(b− t− s)〉ϕ(t) dt,

where supp ϕ ⊆ [−P, P ]. Now by [8, Lemma 4.3 ],

(2π)
1
2 a

5
2 ((f (2) ∗ ka2) ∗ ϕ)(b) = (2π)

1
2 a

5
2

∫ M

−M
〈f (2)(s), ka2(b− t− s)〉ϕ(t) dt

= (2π)
1
2 a

5
2

〈
f (2)(s),

∫ ∞
−∞

ka2(b− t− s)ϕ(t) dt

〉
= (2π)

1
2 a

5
2

〈
f (2)(s),

∫ ∞
−∞

1√
2πa

ψ(t− s)ϕ(t) dt

〉
= a

3
2

〈
f (2)(s),

∫ ∞
−∞

ψ(t− s)ϕ(t) dt

〉
= a

3
2 〈f (2)(s), (ϕ ∗ ψ)(s)〉. (2.3)

From (2.2) and (2.3), we obtain

(W (f ∗ ϕ))(b, a) = (Wf)(b, a) ∗ ϕ.

Definition 2.3. For a family {ϕj}j∈J , where ϕj ∈ S, we define

M

(
{ϕj}J

)
= {x ∈ Rn : ϕj(x) = 0, ∀j ∈ J} . (2.4)

5
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A family of pairs {(fj , ϕj)}J , where fj ∈ S ′ and ϕj ∈ S, have the exchange
property if

fj ∗ ϕk = fk ∗ ϕj ,∀j, k ∈ J. (2.5)

Let set A denotes the collection of {(fj , ϕj)}J , where fj ∈ S ′(Rn) and

ϕj ∈ S(Rn), ∀j ∈ J , with exchange property such that M

(
{ϕj}J

)
= ∅.

If M
(
{ϕj}J

)
= ∅ and M ({λk}K) = ∅, then M

(
{ϕj ∗ λk}J×K

)
= ∅.

Theorem 2.4. If {(fj , ϕj)}J ∈ A, then there exists a unique F ∈ S ′ (Rn × R+)
such that F is the Mexican hat wavelet transform of the family of functions
{(fj , ϕj)}J , i.e., F = (W{(fj , ϕj)}J) .

Proof. Let us consider family of sequences {(fj , ϕj)}J ∈ A, where fj ∈ S ′(Rn)
and ϕ ∈ S , ∀j ∈ J, with exchange property such that |ϕ(x)|> ε, for some ε > 0,
and x ∈M ({ϕj}J)

c
. Then, in some open neighborhood of x, we define

F =
(Wfj)

ϕj
. (2.6)

Case 1: We show that for some open neighborhood of x we have a quotient
F that is unique in that neighborhood, i.e., F does not depend on j ∈ J. Let
U and V be some open neighborhood of x such that |ϕj(x)|> ε, ∀x ∈ U and
|ϕk(x)|> ε, ∀x ∈ V. Then since {(fj , ϕj)} ∈ A, hence it satisfy the exchange
property and therefore,

fj ∗ ϕk = fk ∗ ϕj , ∀j, k ∈ J. (2.7)

Applying Mexican hat wavelet transform to (2.7), we get

(W (fj ∗ ϕk)) = (W (fk ∗ ϕj))
(Wfj) ∗ ϕk = (Wfk) ∗ ϕj (by Theorem 2.2)

(Wfj)

ϕj
=

(Wfk)

ϕk
. (2.8)

Hence, we get a quotient F =
(Wfj)

ϕj
on U ∩ V .

Case 2: We need to show that F ∈ S ′(Rn × R+) is unique. From (2.6) and
(2.8), for any j, k ∈ J, we have

(Wfk) = Fϕk, ∀k ∈ J (2.9)

such that there exists a unique F ∈ S ′(Rn×R+) which implies exchange prop-
erty.

Clearly, for a total sequence, say {ϕj}N, where ϕj ∈ S(Rn) for all j ∈ N,
there is an fj ∈ S ′(Rn) such that (Wfj) = ϕjF. Hence, {(fj , ϕj)}N ∈ A and
F = (W ({(fj , ϕj)}N)).

6
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For the family of pairs of sequences {(fj , ϕj)}J , {(gk, λk)}K ∈ A has an
Equivalence Relation, i.e., {(fj , ϕj)}J {(gk, φk)}K if

fj ∗ λk = gk ∗ ϕj , ∀j ∈ J, k ∈ K. (2.10)

Theorem 2.5. Let {(fj , ϕj)}J , {(gk, λk)}K ∈ A. Then {(fj , ϕj)}J ∼ {(gk, λk)}K
iff (W ({(fj , ϕj)}J)) = (W ({(gk, λk)}K)).

Proof. Let {(fj , ϕj)}J ∼ {(gk, λk)}K , hence, they satisfy the exchange property,
defined as

fj ∗ λk = gk ∗ ϕk, ∀j ∈ J, k ∈ K.

Let F and G denotes the Mexican hat wavelet transform of some family of
sequences such that F = (W ({(fj , ϕj)}J)) and G = (W ({(gk, λk)}K)). Now,
consider,

ϕjF ∗ λk = (Wfj) ∗ λk
= (W (fj ∗ λk))

= (W (gk ∗ ϕj))
= (Wgk) ∗ ϕj
= λkG ∗ ϕj .

Now, by applying Lemma 2, we get F = G.
Conversely, we need to show that the family of sequences {(fj , ϕj)}J and {(gk, λk)}K
are equivalent. Let us consider

F = G

=⇒ (Wfj) ∗ λk = (Wgk) ∗ ϕj
=⇒ (W (fj ∗ λk)) = (W (gk ∗ ϕj))
=⇒ fj ∗ λk = gk ∗ ϕj . (2.11)

Hence, {(fj , ϕj)}J ∼ {(gk, λk)}K .

From the above theorem it is shown that there is an equivalence relation on
A and hence splits A into equivalence classes. The equivalence class contains the

generalized quotient
fn
ϕn

and is denoted by

[
fn
ϕn

]
. These equivalence classes are

called generalized quotients or Boehmians and the space of all such generalized
quotients is denoted by B.

Definition 2.6. Let X =

[
fn
ϕn

]
∈ B, then the MHWT of X as a generalized

quotient is defined by,

Y = (WX)(b, a) =

[
(Wfn)(b, a)

ϕn

]
.

7
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It is well defined since, if X =
[
fn
ϕn

]
= Y =

[
gn
ψn

]
in B, then

fm ∗ ψn = gn ∗ ϕm ∀m,n ∈ N
(W (fm ∗ ψn))(b, a) = (W (gn ∗ ϕm))(b, a)

(Wfm)(b, a) ∗ ψn = (Wgn)(b, a) ∗ ϕm (by Theorem 2.2)[
(Wfn)(b, a)

ϕn

]
=

[
(Wgn)(b, a)

ψn

]
.

Further, by considering the map f →
[
f∗δn
δn

]
, any f ∈ W ′(−∞,∞) can be

considered as an element of B by [4, Theorem 4.3.9], i.e., if X =
[
f∗δn
δn

]
, then

(WX)(b, a) =

[
W (f ∗ δn)(b, a)

δn

]
=

[
(Wf)(b, a) ∗ δn

δn

]
= (Wf)(b, a).

This definition extends the theory of MHWT to more general spaces than
(W γ

α,β)
′
.

From Theorem 2.4 and Theorem 2.5, it is clear that the Mexican hat wavelet
transform is a bijection from the space of generalized quotients to the space of
distributions.

Theorem 2.7. For every X ∈ BS ′ (Rn) there exists a delta sequence (ϕn) such

that X = [{(fn, ϕn)}N] for some fn ∈ S ′(Rn).

Proof. Let (φn) ∈ S (Rn), be a delta sequence and X ∈ BS ′(Rn). Then, (WX)∗
φn ∈ S ′, since (WX) ∈ S ′. Consequently, (WX) ∗ φn = (Wgn) for some
gn ∈ S ′. Therefore, we have

X =

[
gn ∗ φn
φn ∗ φn

]
. (2.12)

Hence, fn = (gn ∗ φn) ∈ S ′ and by using the property of delta sequences
φn ∗ φn ∈ S is a delta sequence. This completes the proof.

Conclusions

The space of generalized quotients includes regular operators, distributions,
ultra-distributions and also objects which are neither regular operators nor dis-
tributions. It may be concluded here that the space of tempered generalized
quotient is constructed in a simple way by using the exchange property. This
new construction is further used to represent the Mexican hat wavelet transform
of tempered generalized quotients with its algebraic properties. This space of
generalized quotient can be applied to examine Mexican hat wavelet transfor-
mation on various manifolds.
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Abstract

The onset of Maxwell-Cattaneo DDC in a viscoelastic fluid layer
is studied using linear stability analysis with the help of normal mode
technique. The parabolic advection diffusion equation, which presupposes
classical fickian diffusion for both heat and salt, controls the evaluation
of temperature and salinity. Analytically, the onset criteria for station-
ary and oscillatory convection is derived. Since the onset of stationary
(steady case) convection is unaffected by Maxwell-Cattaneo effects as well
as visco-elastic parameters, oscillatory convection rather than stationary
convection is the key to visualize the effects of different parameters in
this paper. Two different scenarios for oscillatory convection have been
discussed (i) when Maxwell-Cattaneo coefficient for salinity CS = 0 and
(ii) when Maxwell-Cattaneo coefficient for temperature CT = 0. Also a
comparative study for these two cases i.e. CS = 0 and CT = 0 is per-
formed for different controlling parameters like relaxation parameter (λ1),
retardation parameter (λ2), diffusion ratio (τ), solutal Rayleigh number
(RaS) and Prandtl number (Pr) with the help of graphs.

Keywords

DDC, Maxwell-Cattaneo Effect (M-C Effect), Viscoelastic binary fluid,
Rayleigh number, Thermal Convection.

1 Introduction

The viscoelastic fluid flow is of significant importance in many fields of sci-
ence, engineering, and technology, including geophysics, bioengineering, and the
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processing of materials in the nuclear, chemical, and petroleum sectors [15][4].
Unique patterns of instabilities, such as overstability, which cannot be predicted
or seen in Newtonian fluid, are present in viscoelastic fluids. For almost 40 years
[5], the literature has explored the nature of convective motions in a thin hori-
zontal layer of viscoelastic fluid heated from below in the context of the classical
Rayleigh-Benard convection geometry. The key papers by Vest and Arpaci [5]
provided the first thorough study of the linear stability of a layer of an upper-
convected Maxwell fluid, in which stress exhibits an elastic response to strain
typified by a single viscous relaxation period. Due to the high viscosity of the
polymeric fluids, flow instability and turbulence are much less common than
in Newtonian fluids. For a very long time, it has been widely accepted that
in realistic experimental conditions, oscillatory convection cannot occur in vis-
coelastic fluids .However, recent studies on the elastic behaviour of single long
DNA strands in buffer solutions have revealed how to make a fluid in which
oscillatory viscoelastic convection might be observed. Recently, this notion was
confirmed by Kolodner [21], who found oscillatory convection in DNA suspen-
sions in annular geometry. Theoretically, these studies reignite interest in heat
convection in viscoelastic fluids.
Sushila et. al. [25] studied a hybrid analytical algorithm for the thin film flow
problem that arises in non-Newtonian fluid. They looked at the thin film flow of
a third-grade fluid down an inclined plane in their paper. For the local fractional
transport equation that occurs in fractal porous media, in [14], a an effective
computational technique is presented. Mehta et. al. [22] investigated heat
generation/absorption and the effect of joule heating on radiating MHD mixed
convection stagnation point flow along vertical stretched sheet embedded in a
permeable medium. The use of an unique fractional derivative in the analysis of
heat and mass transfer for the slipping flow of viscous fluid with SWCNT’s sub-
ject to Newtonian heating is explored by [17]. Whereas heat and mass transfer
fractional second grade fluid with slippage and ramped wall temperature using
Caputo-Fabrizio fractional derivative approach is investigated by [24].
Due to a variety of real-world situations where the Fourier law of heat flux is in-
sufficient, the dynamics of Maxwell-Cattaneo (or non-fourier) fluids have drawn
interest. In his investigation of the theory of gases, Maxwell argued that the re-
lationship between heat flow and temperature gradient not only contain a finite
relaxation time but also not be instantaneous. In the case of solid, Cattaneo [3]
established a comparable relation, which Oldroyd [11] developed further. Later
additions were important, such as those by Fox [20] and Carrassi, Morro[18].
The classical Fourier law of heat conduction expresses the heat flux within a
medium is proportional to the local temperature gradient in the system. i.e.

VT = −K∇T (1)

In which VT is heat flux, T is temperature and K the thermal conductivity.
A well consequence of this law is that the heat purturbation propagate with a
infinite velocity. To eliminate this unphysical feature, Maxwell-Cattaneo law is
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one of the various modifications fourier law and takes the form:

τT
DVT

Dt
= −VT −K∇T (2)

Where the relaxation time is τT and the thermal conductivity is K. The deriva-
tive D

Dt here represents the time derivative following the motion so that:

DVT

Dt
=

(
∂

∂t
+ V.∇

)
VT (3)

Where t is time and V is velocity. When a finite speed heatwave [6],[1],[2] is
solved by the inclusion of finite relaxation periods, the parabolic heat equation
of Fourier fluids, in which heat diffuses at infinite speed, is transformed into
a hyperbolic heat equation. The significance of the thermal relaxation term
is typically expressed by the dimensionless Maxwell-Cattaneo coefficient CT ,
which is the ratio of the thermal relaxation time to twice the thermal diffusion
time.

CT =
τTK

2ρCP d2
=

τTκ

2d2
=

(
τT
2

)
τκ

(4)

where thermal diffusion time is τκ(=
d2

κ ), density is ρ, specific heat at constant
pressure is CP , length is d and thermal diffusivity is κ. Thus the classical Fourier
law has CT = 0 .
Numerous physical scenarios have been investigated when it comes to the Maxwell-
Cattaneo heat transport effect, including nano-fluid and nano-material [7], bi-
ological tissue [26] and stellar interiors [16] in the context of DDC. Many fac-
tors, including the coefficient definition, affect the Maxwell-Cattaneo effect’s
potential importance. Eltayeb [9] discussed convection instabilities of Maxwell-
Cattaneo fluids. In his study, he used three distinct forms of the time derivative
of the heat flux to explore the linear and weakly nonlinear stabilities of a hor-
izontal layer of fluid obeying the Maxwell-Cattaneo relationship of heat flux
and temperature. While Eltayeb, Hughes, and Proctor [10] have examined the
convection instability of a Maxwell-Cattaneo fluid in the presence of a verti-
cal magnetic field and have discussed about the instability of a Benard layer
under a vertical uniform magnetic field. The DDC of Maxwell-Cattaneo fluid
has been studied by Hughes, Proctor and Eltayeb [8]. The consequences of in-
clude the Maxwell-Cattaneo (M-C) effects on the commencement of DDC, in
which two factors alter the density of a fluid but diffuse at separate rates, were
investigated in that study. For both temperature and salinity they considered
Maxwell-Cattaneo effect. The modified salinity evolution equation is expressed
as:

τC
DVC

Dt
= −VC − κC∇C (5)

by analogy with temperature equation when M-C effect is included. where C

3
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is salt concentration, κ is salinity diffusivity, τC the relaxation time for salinity
and VC is salt flux. Most of the above discussed work is related with the New-
tonian fluid.
The onset of DDC in viscoelastic fluid (non-Newtonian fluid)layer is investi-
gated by Malashetty and Swamy [19]. They analysed the stability of a binary
viscoelastic fluid layer using linear and weakly nonlinear methods in that study.
In view of importance viscoelastic fluid as discussed above, in this paper we
carry out a linear stability analysis for a Maxwell-Cattaneo DDC in a viscoelas-
tic fluid layer. Here, we focus on the scenario in which the M-C coefficients are
extremely small, driven by geophysical and astrophysical concerns. Therefore,
even when CT , CS << 1, new mechanisms for oscillatory instability might de-
velop, given that the initial gradients of temperature and salinity are relatively
significant. This is because the modified equations now describe singular per-
turbations in the time domain.
The work is presented in the following way. The physical problem is discussed
in sect. 2 with a brief mathematical formulation. In sect. 3, the linear stability
analysis in oscillatory convection for two cases i.e (CT = 0 and CS = 0) for the
free-free boundaries is covered. The results and discussion are included in sect.
4, where we described results shown with the help of graph drawn for different
parameters by fixing the values of all other parameters and discussed whether
these parameters stabilise or destabilise the system. Last but not least, sect. 5
brings to a close a few key aspects of the analysis.

2 Mathematical model

2.1 The physical domain

We consider DDC in a horizontal layer of an incompressible binary vis-
coelastic Maxwell-Cattaneo fluid confined between two parallel horizontal planes
at z = 0 and z = d, a distance d apart with the vertically downward gravity g
acting on it. Origin is set in the lower boundary of a Cartesian frame of refer-
ence, horizontal component x and vertical component z increases upwards. The
surfaces are stretched indefinitely in both x and y directions while maintaining
a consistent temperature gradient ∆T across the porous layer. To account for
the impact of density fluctuations, we presum that the Oberbeck-Boussinesq
approximation is used.

2.2 Governing equations

The momentum equation is modelled using the viscoelastic fluid of the Oldroyd
type. The basic governing equations are

(
1 + λ1

∂

∂t

)[
ρ0

(
∂V

∂t
+ V.∇V

)
+∇p− ρg

]
= µ

(
1 + λ2

∂

∂t

)
∇2V (6)
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(
∂T

∂t
+ (V.∇)T

)
= −∇.VT (7)

τT

(
∂UT

∂t
+∇.(V UT )

)
= −UT −K∇2T (8)(

∂C

∂t
+ (V.∇)C

)
= −∇.VC (9)

τC

(
∂UC

∂t
+∇.(V UC )

)
= −UC −KC∇2C (10)

∇.V = 0 (11)

where UT = ∇.VT , UC = ∇.VC , V = (u, v, w) is velocity, µ is viscosity, λ1 is
relaxation parameter, λ2 is retardation parameter, ρ is density, K is thermal
conductivity, KC is salt conductivity, VT is heat flux and VC is salt flux. The
formula for the relationship between reference density, temperature, and salinity
is:-

ρ = ρ0 [1− βT (T − T0) + βC (C − C0)] (12)

Temperature and salinity’s appropriate boundary conditions are:-

T = T0 +∆T at z = 0 and T = T0 at z = d (13)

C = C0 +∆C at z = 0 and C = C0 at z = d (14)

2.3 Initial state

It is considered that the fluid is in a quiescent initial state, which is represented
by

Vb = (0, 0, 0) , P = Pb(z), T = Tb(z),C = Cb(z), ρ = ρb(z), (15)

VTb
= (0, 0, VT (z)) , VCb

= (0, 0, VC (z))

Using (2.3) in Eqs. (6)− (12) yield

dpb
dz

= −ρbg,
d2Tb

dz2
= 0,

d2Cb

dz2
= 0 (16)

The initial state solution for temperature and salinity fields are given by:-

Tb(z) = Tl −∆T
z

d
,Cb(z) = Cl −∆C

z

d
(17)

5
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2.4 Perturbed state

On the initial state, we superimpose a disturbance of the type:-

V = Vb(z) + V ′(x, y.z, t), T = Tb(z) + T ′(x, y, z.t),C = Cb(z) + C ′(x, y, z, t),

P = Pb(z) + P ′(x, y, z, t), ρ = ρb(z) + ρ′(x, y, z, t), VT = VTb
+ V ′

T (x, y, z, t),

VC = VCb
+ V ′

C (x, y, z, t)

(18)

where perturbations are indicated by primes. Introducing (18) in Eqs. (6)−
(11), and using basic state from Eq. (16), The resulting equations are then
non-dimensionalized using the following transformations

(x, y, z) = d(x∗, y∗, z∗), t =
d2

κTz
t∗, λ1 =

κTz

d2
λ1∗, (V ′) =

κTz

d
(V ∗) , P ′ =

µκTz

Kz
P ∗,

λ2 =
κTz

d2
λ2∗, VT = ∆T

K

d
V ∗
T , VC = ∆T

κ

d
V ∗

C , T
′
= (∆T )T ∗,C

′
= (∆C )C ∗

(19)
After eliminating the asterisks for simplicity, we arrived at the non-dimensional,
linear governing equations, which are(

1 + λ1
∂

∂t

)[
1

Pr

∂

∂t
∇2V −RaT∇2

1T +RaS∇2
1C

]
−

(
1 + λ2

∂

∂t

)
∇4V = 0

(20)
∂T

∂t
= w − UT (21)

2CT
∂UT

∂t
= −UT −∇2T (22)

∂C

∂t
= w − UC (23)

2CS
∂UC

∂t
= −UC − τ∇2C (24)

where the Prandtl number Pr, thermal Rayleigh number RaT , solutal Rayleigh
number RaS , Diffusivity ratio τ , Maxwell-Cattaneo coefficient for temperature
CT and Maxwell-Cattaneo coefficient for salinity CC are defined as: Pr = ν

κTZ
,

RaT = βT g∆TdKZν
κTZ

, RaS = βSg∆CdKZν
κTZ

, τ = κC

κ , CT = τTκ
2d2 , CS = τCκC

2d2 , and

u, v and w are x, y and z component of velocity respectively.
The boundaries are assumed to be impermeable, isothermal and stress free,
therefore we have the following conditions

w =
∂2w

∂z2
= T = C = 0 at z = 0, 1. (25)

6
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3 Linear Stability Analysis

In this part, we employ linear theory to forecast the thresholds of both marginal
and oscillatory convections. Assuming that the amplitudes are small enough,
the time-dependent periodic disturbances in a horizontal plane are used to solve
the eigenvalue problem specified by Eqs. (20)–(24) subject to the boundary
conditions (20) is solved as follows:

w
T
C
UT

UC

 =


W (z)
Θ (z)
Φ (z)
ζ (Z)
γ (Z)

 ei(lx+my)+σt (26)

where the growth rate is represented by the complex quantity σ and the hori-
zontal wave numbers l and m. W , Θ, Φ, ζ and γ are the amplitudes of stream
function, temperature field, solute field, heat flux and solute flux respectively.[

(1 + λ1σ)
( σ

Pr
(D2 − a2)

)
+ (1 + λ2σ)(D

2 − a2)2
]
W + (1 + λ1σ)RaTa

2Θ

−(1 + λ1σ)RaSa
2Φ = 0

(27)

−W + σΘ+ ζ = 0 (28)

(D2 − a2)Θ + (2CTσ + 1)ζ = 0 (29)

−W + σΦ+ γ = 0 (30)

τ(D2 − a2)Φ + (2CSσ + 1)γ = 0 (31)

where D= d
dz and a2=l2 + m2. on the free boundary. we take the solution of

Eqn. (27)-(31) satisfying the boundary condition for free-free case:

[W (z),Θ(z),Φ(z), ζ(z), γ(z)] = [W0,Θ0,Φ0, ζ0, γ0] sin(nπz), (n = 1, 2, 3, ...)
(32)

Substituting Eq. (32) into (27)-(31), and considering n = 1, we get a matrix
equation

M1 −a2RaT a2RaS 0 0
−1 σ 0 1 0
0 −α 0 2CTσ + 1 0

−1 0 σ 0 1
0 0 −τα 0 2CSσ + 1




W0

Θ0

Φ0

ζ0
γ0

 =


0
0
0
0
0

 (33)

where α = a2 + π2, M1 =
[
−σ
Pr + (1+λ2σ)α

(1+λ1σ)

]
α.

For non-trivial solution of W , Θ, Φ, ζ and γ, we need to make the determi-
nant of the above matrix as zero, we get

RaT =

(
σ +

α

(2CTσ + 1)

)[
M1

a2
− RaS(2CSσ + 1)

σ(2CSσ + 1) + τα

]
(34)
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3.1 Stationary state

We have σ = 0 at the stability margin for the direct bifurcation, or stable onset.
The Rayleigh number at which a marginally stable steady mode occurs therefore
becomes

RastT =
α3

a2
− RaS

τ
(35)

We obtained the result which is comparable to that of Turner [13]. This result
also indicate that stationary Rayleigh number is independent of the viscoelastic
parameters and Maxwell-Cattaneo coefficients. The stationary Rayleigh number
RastT given by Eq. (35) attains the critical value

RastT,C =
27

4
π4 − RaS

τ
(36)

for the wave number ac =
π√
2
.

When RaS = 0, Eq. (36) gives

RastT,C =
27

4
π4 (37)

which is classical outcome of Newtonian fluid layer mentioned in the book of
Chandrashekhar [23].

3.2 Oscillatory motion

In general, σ, the growth rate, is a complex quantity with the formula σ =
σr + iω. While the system will become unstable for σr > 0, it is always stable
for σr < 0. σr = 0 for the neutral stability state.
1. The case of CS=0

we put CS=0 in Eq. (34), and get

RaT =

(
σ +

α

2CTσ + 1

)[(
−σα

Pra2
+

(1 + λ2σ)α
2

(1 + λ1σ)a2

)
− RaS

σ + τα

]
(38)

then put σ = iω(ω is real) in Eq. (38) and get

RaT = Π1 + (iω)Π2 (39)

The expression for Π1 is given by

Π1 = D1 −D2 −D3 +D4 −D5

The fact that RaT is a physical quantity proves that it is real. Hence,
from Eq. (39) it follows that either ω = 0 (steady onset) or Π2 = 0 (ω ̸= 0,
oscillatory onset). For oscillatory onset Π2 = 0(ω ̸= 0) and this provides a
dispersion relation of the form

B1

(
ω2

)3
+B2

(
ω2

)2
+B3

(
ω2

)
+B4 = 0 (40)
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where the constants B1 = Q1, B2 = Q1Q7 +Q2 −Q3Q5 −Q3Q8, B3 = Q2Q7 −
Q4Q5 − Q3Q6 − Q3Q7Q8 − Q4Q8 + Q9 + Q3Q10, B4 = −Q4Q6 − Q4Q7Q8 +
Q7Q9 +Q4Q10

Now Eq. (39) with Π2 = 0, gives oscillatory Rayleigh number RaoscT

at the margin of stability as
RaoscT = Π1. (41)

Also, to cause the oscillatory convection, ω2 must be positive. The symbols
D1, D2, D3, D4, D5, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14,
Q15, Q16 and Π2 are defined in Appendix-I

2. The case of CT=0
we put CT=0 in Eq. (34), and get

RaT = (σ + α)

[(
−σα

Pra2
+

(1 + λ2σ)α
2

1 + λ1σ)a2

)
− RaS(2CSσ + 1)

(σ(2CSσ + 1) + τα)

]
(42)

then put σ = iω(ω is real) in Eq. (42) and get

RaT = Π′
1 + (iω)Π′

2 (43)

The expression for Π′
1 is given by

Π′
1 = F1 − F2 + F3 + F4 − F5

For oscillatory onset Π′
2 = 0 (ω ̸= 0) and this provides a dispersion relation of

the form
C1

(
ω2

)3
+ C2

(
ω2

)2
+ C3

(
ω2

)
+ C4 = 0 (44)

where the constants C1 = P1P
2
6 − P2P

2
6P7, C2 = P1 + 2P2P5P6P7 − P2P7 −

P3P
2
6P7+P 2

6P8+P2P6P9, C3 = P1P
5
5 −2P1P5P6−P2P4−P2P

2
5P7+2P3P5P6P7−

P3P7 − 2P5P6P8 + P8 − P2P5P9 + P3P6P9 + P2P9, C4 = −P3P4 − P3P
2
5P7 +

P 2
5P8 − P3P5P9 + P3P9

Now Eq. (43) with Π′
2 = 0, gives oscillatory Rayleigh number RaoscT

at the margin of stability as
RaoscT = Π′

1. (45)

Also, to cause the oscillatory convection, ω2 must be positive. The symbols
F1, F2, F3, F4, F5, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14 and Π′

2

are defined in Appendix-I

4 Result and discussion

In this paper, Linear stability has been investigated in the presence of Maxwell-
Cattaneo DDC for viscoelastic fluid. The onset of instability is examined for var-
ious controlling parameters such as Prandtl number (Pr), diffusivity ratio (τ),
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relaxation parameter(λ1), retardation parameter (λ2), solutal Rayleigh num-
ber (RaS), Maxwell-Cattaneo coefficient for temperature (CT ) and Maxwell-
Cattaneo coefficient for salinity (CS). In most physical contexts, the Maxwell-
Cattaneo effect is so negligible that we have concentrated on the case where
C is smaller than 1, where C is used in the discussion to signify either CT or
CS . Because C is so small, the Maxwell-Cattaneo effect only manifests itself for
concomitantly strong heat and salinity gradients.
In the (a,RaT ) plane, Fig. 1(a)-(f) illustrate the neutral curves of oscillatory
convection for CS , λ1, λ2, τ , Pr and RaS when CT = 0 while Fig 1(a’)-(f’)
illustrate the neutral curves when CS = 0 for CT , λ1, λ2, τ , Pr and RaS . Fig.
1(a) illustrates how CS affects the system’s stability whereas the impact of CT

is depicted in Fig. 1(a’). With a rise in CS , the minimum Rayleigh number
increases, but with a rise in CT , the minimum Rayleigh number decreases. So,
clearly it is shown that CS has stabilizing while CT has destabilizing effect on
the stability of the system.
Fig. 1(b) and Fig. 1(b’) show the influence of relaxation parameter λ1 on the
stability of the system for CT = 0 and CS = 0 respectively. We can see that
raising λ1 causes the lowest value of the Rayleigh number, RaT , is decreases,
indicating that λ1 has a destabilising influence on the Maxwell-Cattaneo DDC
in viscoelastic fluid for both situations, where (CT = 0 and CS = 0). Also,
it is shown graphically that for different values of λ1 the case CS = 0 is more
stable as compare to CT = 0. Fig. 1(c) and Fig. 1(c’) demonstrate that when
the value of λ2 grows, the lowest Rayleigh number similarly rises, stabilising
the system. For different values of λ2, CS = 0 case is more stable. Viscoelastic
parameter behaviour is clear and consistent with what [12] said.
The influence of diffusion ratio τ on the system’s stability is depicted in Fig
1(d) for CT = 0 and in Fig 1(d’) for CS = 0. It is shown the minimum of
critical Rayleigh number rises with rise in the value of (τ). It occurs because
τ = κC

κ has an inverse relationship to thermal diffusivity κ. Therefore, when
the diffusivity ratio τ increases, the value of thermal diffusivity falls, implying
an increase in the Rayleigh number. Also, for different values of τ , CS = 0 is
more stable.
Fig 1(e) and Fig 1 (e’) show graphs for various values of Prandtl number Pr
when CT = 0 and CS = 0 respectively. For the case CT = 0, the system be-
comes stabilised as a result of the minimum of RaT value increasing together
with the value of Prandtl number Pr. The fact that Pr is inversely proportional
to thermal diffusivity explains it. It has been demonstrated that as the value
of Pr increases, the minimum Rayleigh number drops and the system becomes
unstable as a result for CS = 0.
The graphs for various RaS values on the (a,RaT ) plane for CT = 0 and CS = 0
are shown in Fig 1(f) and Fig 1(f’) respectively. So, for CT = 0, as RaS values
rise, the minimum of Rayleigh number rises as well, which causes the system to
stabilise. It has been seen that the system becomes unstable when the value of
RaS rises because the minimum Rayleigh number decreases for CS = 0.
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5 Conclusion

We have attempted to understand the onset of Maxwell-Cattaneo DDC in a bi-
nary viscoelastic fluid layer. With the use of the normal mode technique, linear
stability analysis for stationary and oscillatory convection is carried out in this
study. Because the Maxwell-Cattaneo coefficients have no effect on stationary
states, we have generated graphs for oscillatory convection rather than station-
ary convection.
The conclusions are as follows.

1. The onset of oscillatory convection is found to be delayed by CS , λ2,
τ , Pr, and RaS , whereas the onset of oscillatory convection is found to
be advanced by increasing the value of λ1, which decreases the value of
Rayleigh number corresponding to oscillaory convection in the case of
CT = 0.

2. λ2, τ are found to delay the onset of oscillatory convection whereas on
increasing the value of CT , λ1, Pr and RaS the value of Rayleigh num-
ber corresponding to oscillaory convection decreases, thus it advances the
onset of convection for the case CS = 0.

According to Maxwell-Cattaneo law, there is currently relatively limited study
being done on thermal instability. The Maxwell-Cattaneo law for heat flux and
temperature relation with various external effects, such as Electrohydrodynam-
ics, radiation, rotation, etc., can therefore be applied to diverse types of fluids
in the future.

Appendix-I

D1 = ω2Q8

(
1− Q11

Q16ω2+1

)
,D2 = ω2Q12

Q3ω2+Q4

(
1− Q11

Q16ω2+1

)
,D3 = ω2Q13

Q7+ω2

(
1− Q11

Q16ω2+1

)
,

D4 = ω2Q14

(Q3ω2+Q4)(Q16ω2+1) , D5 = Q5

(Q7+ω2)(Q16ω2+1) , Q1 = 4C2
Tα

2λ1λ2, Q2 =

λ1λ2α
2 − 2CTλ1λ2α

2, Q3 = λ2
1a

2, Q4 = a2, Q5 = 4RaSC
2
T τα, Q6 = RaSτα −

2CTRaSτα, Q7 = τ2α2, Q8 = α
Pra2 , Q9 = α3(λ2−λ1)Q10 = αRaS , Q11 = 2CT ,

Q12 = (λ2 − λ1)α
2, Q13 = RaS , Q14 = α3λ1λ2, Q15 = RaSτα

2, Q16 = 4C2
T ,

Π2 = (Q1ω
4+Q2ω

2)
(Q3ω2+Q4)

− (Q5ω
2+Q6)

Q7+ω2 − Q8 + Q9

(Q3ω2+Q4)
+ Q10

(Q7+Ω2) , F1 = ω2P10,

F2 = P11ω
2

P2ω2+P3
, F3 = ω2Q13((Q5−Q6ω

2)−1)
(Q5−Q6ω2)2+ω2 , F4 = ω2Q12

Q2ω2+Q3
, F5 = Q9+Q4(Q5−Q6ω

2)
(Q5−Q6ω2)2+ω2 ,

P1 = α2λ1λ2 , P2 = a2λ2
1, P3 = a2, P4 = RaSτα, P5 = τα, P6 = 2CS ,

P7 = α2

Pra2 , P8 = (λ2 − λ1)α
3, P9 = 2RaSαCS , P10 = α

a2Pr , P11 = (λ2 − λ1)α
2,

P12 = α3λ1λ2, P13 = 2CSRaS , P14 = RaSα, Π
′
2 = P1ω

2

P2ω2+P3
− P4

(P5−P6ω2)2+ω2 −

P7 +
P8

P2ω2+P3
− P9((P5−P6ω

2)−1)
(P5−P6ω2)2+ω2
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Figure 1: Oscillatory neutral stablity curves for different values of: 1(a)
Maxwell-Cattaneo coefficient for solute CS when CT = 0; 1(a’) Maxwell-
Cattaneo coefficient for temperature CT when CS = 0 .

Figure 2: Oscillatory neutral stability curves for different values of: 1(b) relax-
ation parameter λ1 when CT = 0; 1(b’) relaxation parameter λ1 when CS = 0
.

Figure 3: Oscillatory neutral stability curves for different values of: 1(c) re-
tardation parameter λ2 when CT = 0; 1(c’) retardation parameter λ2 when
CS = 0.

Figure 4: Oscillatory neutral stability curves for different values of: 1(d) diffu-
sivity ratio τ when CT = 0; 1(d’) diffusivity ratio τ when CS = 0.

Figure 5: Oscillatory neutral stability curves for different values of: 1(e) Prandtl
number Pr when CT = 0; 1(e’) Prandtl number Pr when CS = 0.

Figure 6: Oscillatory neutral stability curves for different values of: 1(f) solutal
Rayleigh number RaS when CT = 0; 1(f’) solutal Rayleigh number RaS when
CS = 0.
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Abstract

In this paper, we construct some new image formulas for the incom-
plete H-and H-functions under the Akel’s M-transform. We also pro-
vide image formulas for the incomplete Meijer’s G-functions, incomplete
Fox-Wright functions and Fox’s H-function, as special cases of our main
findings in corollaries.

Key Words and Phrases. Incomplete gamma function;M-transform; Incom-
plete H-functions; Incomplete H-functions; Mellin-Barnes type contour; Incom-
plete Fox-Wright generalized hypergeometric functions.
MSC2010. 26A33, 33B20,33C60, 33E20, 44A40 .

1 Introduction and Preliminaries

Integral transforms have been useful in solving numerous differential and integral
problems for many years. It is possible to convert differential and integral
operators from one domain under consideration into multiplication operators in
another domain by using the right integral transform.

The Laplace transform, the Fourier integral transform, the Mellin transform
are the classical integral transforms used to solve differential equations, integral
equations, and in analysis and the theory of functions. For further information,
see the research papers [5, 10,12,13].

∗Corresponding author
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Akel’s M-transform

Akel in [1] recently, introduced the following M-transform in this sequence:

Mρ,m[f(x)](u, v, w) =

∫ ∞
0

e−ux−
v
x

(xm + wm)ρ
f(wx) dx, (1)

with ρ ∈ C,Re(ρ) > 0,m ∈ N and u, v ∈ C, w ∈ R+ are called the transform
variables.

TheM-transform given by (1), depends on a number of parameters, so that
it covers many known integral transforms as its special cases. This transform has
the duality relations with well-known transforms such as the Laplace transform,
the natural transform and the Srivastava-Luo-Raina M-transform.
This transform is a precious tool for solving certain initial and boundary value
problems with certain variable coefficients. Additional ionformation on this
transform, may be found in [1].

The incomplete H-and H-functions

The incomplete H-functions γm, np, q and Γm, n
p, q have studied and defined by Srivas-

tava et al. [13] in the form of Mellin-Barness contour integral as follow:

γm, np, q (z) = γm, np, q

[
z

∣∣∣∣∣ (g1, ν1, y), (gj, νj)2,p

(hj, ωj)1,q

]
= (2πι)−1

∫
£

g(ϑ, y) z−ϑ dϑ, (2)

and

Γm, n
p, q (z) = Γm, n

p, q

[
z

∣∣∣∣∣ (g1, ν1, y), (gj, νj)2,p

(hj, ωj)1,q

]
= (2πι)−1

∫
£

G(ϑ, y) z−ϑ dϑ,

(3)

where,

g(ϑ, y) =

γ(1− g1 − ν1ϑ, y)
m∏
j=1

Γ(hj + ωjϑ)
n∏

j=2

Γ(1− gj − νjϑ)

q∏
j=m+1

Γ(1− hj − ωjϑ)
p∏

j=n+1

Γ(gj + νjϑ)

, (4)

and

G(ϑ, y) =

Γ(1− g1 − ν1ϑ, y)
m∏
j=1

Γ(hj + ωjϑ)
n∏

j=2

Γ(1− gj − νjϑ)

q∏
j=m+1

Γ(1− hj − ωjϑ)
p∏

j=n+1

Γ(gj + νjϑ)

. (5)

This family of incomplete H-functions characterized as (2) and (3) exist for
x ≥ 0, according to the conditions specified by Srivastava [13].
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Srivastava in [13] developed a generalisation for the family of incomplete
H-functions, referred as the incomplete H-functions, which is described by:

γm, np, q (z) = γm, np, q

[
z

∣∣∣∣∣ (g1, ν1;G1; y), (gj, νj;Gj)2, n, (gj, νj)n+1, p

(hj, ωj)1,m, (hj, ωj;Hj)m+1, q

]

= (2πι)−1

∫
£

g(ϑ, y) z−ϑ dϑ, (6)

and

Γ
m, n
p, q (z) = Γ

m, n
p, q

[
z

∣∣∣∣∣ (g1, ν1;G1; y), (gj, νj;Gj)2, n, (gj, νj)n+1, p

(hj, ωj)1,m, (hj, ωj;Hj)m+1, q

]

= (2πι)−1

∫
£

G(ϑ, y) z−ϑ dϑ, (7)

where

g(ϑ, y) =

[γ(1− g1 − ν1ϑ, y)]G1

m∏
j=1

Γ(hj + ωjϑ)
n∏

j=2

[Γ(1− gj − νjϑ)]Gj

q∏
j=m+1

[Γ(1− hj − ωjϑ)]Hj

p∏
j=n+1

Γ(gj + νjϑ)

, (8)

and

G(ϑ, y) =

[Γ(1− g1 − ν1ϑ, y)]G1

m∏
j=1

Γ(hj + ωjϑ)
n∏

j=2

[Γ(1− gj − νjϑ)]Gj

q∏
j=m+1

[Γ(1− hj − ωjϑ)]Hj

p∏
j=n+1

Γ(gj + νjϑ)

. (9)

Numerous authors are actively working on the development and wide variety
of implications for these incomplete functions, such as in [3, 15], authors es-
tablished modified saigo fractional integral operators involving the product of
a general class of multivariable polynomials and the multivariable H-function
and an integral operator involving the family of incomplete H-function in its
kernel, respectively. The authors of [11] investigated applications of the incom-
plete H-function on the influence of environmental pollution on the occurrence
of biological populations, whereas the authors of [6,7] developed an equation of
internal blood pressure involving incomplete H-functions and specific expansion
formulae for the incomplete H-functions.
The main purpose of this paper is to give new image formulas for incomplete H-
and H-functions under Akel’s M-transform. And by giving suitable values to
the involved parameters, we also present some special cases of our main findings.

The paper is organized in the following way. In Section 2, we establish the
Akel’sM-transform image formulae for the incomplete H- and H-functions. In
Section 3 , we derive some interesting and important special cases of our main
findings. Finally, a brief conclusion in Section 4.
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2 The M-Transform of Incomplete H- and H-
Functions

In this segment, we establish new image formulas for the incomplete H- and
H-functions under the Akel’s M-transform.

Theorem 1. If ρ ∈ C,Re(ρ) > 0,m ∈ N and u, v ∈ C, w ∈ R+, then the
following image formula exists for γm, np, q [z]:

Mρ,m

{
γm, np, q

[
zx

∣∣∣∣∣ (g1, ν1, y), (gj, νj)2,p

(hj, ωj)1,q

]}
(u, v, w) =

w−mρ

um

1

2πι

∫
£

B
(
ρ− ξ

m
,
ξ

m

)
(uw)ξ

γm, n+1
p+1, q

[
z
w

u

∣∣∣∣∣ (g1, ν1, y), (ξ, 1)uv, (gj, νj)2,p

(hj, ωj)1,q

]
dξ.

(10)

Here, B(x, y) represents the classical Euler-Beta function.

Proof. To get the result (1), first we take the L.H.S of (10) and use the definition
(1), we have

Mρ,m

{
γm, np, q

[
zx

∣∣∣∣∣ (g1, ν1, y), (gj, νj)2,p

(hj, ωj)1,q

]}
(u, v, w) =

∫ ∞
0

e−ux−
v
x

(xm + wm)
ρ γ

m, n
p, q (zw x) dx

=

∫ ∞
0

e−ux−
v
x

(xm + wm)
ρ

1

2πι

∫
£

g(ϑ, y)z−ϑ(wx)−ϑ dϑ dx

On interchanging the orders of the integration

=
1

2πι

∫
£

g(ϑ, y)z−ϑ
∫ ∞

0

e−ux−
v
x

(xm + wm)
ρ (wx)−ϑ dx dϑ

Now, on utilizing [1, pg. 6, Eqn. (2.11)], we get

=
1

2πι

∫
£

g(ϑ, y)z−ϑ
w−ϑ−mρ uϑ−1

mΓ(ρ)
H2, 1

1, 2

[
uw

∣∣∣∣∣ (1, 1
m )

(1− ϑ, 1)uv, (ρ,
1
m )

]
dϑ

=
w−mρ

umΓ(ρ)

1

2πι

∫
£

g(ϑ, y)
(
z
w

u

)−ϑ 1

2πι

∫ +ι∞

−ι∞
(uw)ξΓ(

ξ

m
)Γuv(1− ξ − ϑ)Γ(ρ− ξ

m
)dξ dϑ

On changing the order of the integrations and after some adjustment of terms

=
w−mρ

um

1

2πι

∫
£

Γ( ξm ) Γ(ρ− ξ
m )

Γ(ρ)
(uw)ξ

1

2πι

∫
£

g(ϑ, y) Γuv(1− ξ − ϑ)
(
z
w

u

)−ϑ
dϑ dξ,

(11)

using (2), we obtain the required R.H.S of (10).
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Theorem 2. If ρ ∈ C,Re(ρ) > 0,m ∈ N and u, v ∈ C, w ∈ R+, then the
following image formula exists for Γm, n

p, q [z]:

Mρ,m

{
Γm, n
p, q

[
zx

∣∣∣∣∣ (g1, ν1, y), (gj, νj)2,p

(hj, ωj)1,q

]}
(u, v, w) =

w−mρ

um

1

2πι

∫
£

B
(
ρ− ξ

m
,
ξ

m

)
(uw)ξ

Γm, n+1
p+1, q

[
z
w

u

∣∣∣∣∣ (g1, ν1, y), (ξ, 1)uv, (gj, νj)2,p

(hj, ωj)1,q

]
dξ.

(12)

Here, B(x, y) represents the classical Euler-Beta function.

Proof. To get the result (12), we take the Akel’s M-transform presented in (1)
of (3), then on interchanging the order of the integrations and making use of the
known result given in [1, p. 6, Eq. (2.11)], and after some small arrangements
of the terms, we easily get the right hand side assertion of (12).

Theorem 3. If ρ ∈ C,Re(ρ) > 0,m ∈ N and u, v ∈ C, w ∈ R+, then the
following image formula exists for γm, np, q [z]:

Mρ,m

{
γm, np, q

[
zx

∣∣∣∣∣ (g1, ν1;G, y), (gj, νj;Gj)2,n, (gj, νj)n+1,p

(hj, ωj)1,m, (hj, ωj;Hj)m+1,q

]}
(u, v, w)

=
w−mρ

um

1

2πι

∫
£

B
(
ρ− ξ

m
,
ξ

m

)
(uw)ξ

γm, n+1
p+1, q

[
z
w

u

∣∣∣∣∣ (g1, ν1;G, y), (ξ, 1; 1)uv, (gj, νj;Gj)2,n, (gj, νj)n+1,p

(hj, ωj)1,m, (hj, ωj;Hj)m+1,q

]
dξ.

(13)

Here, B(x, y) represents the classical Euler-Beta function.

Proof. To get the result (3), first we take the L.H.S of (13) and use the definition
(1), we have

Mρ,m

{
γm, np, q

[
zx

∣∣∣∣∣ (g1, ν1;G1; y), (gj, νj;Gj)2, n, (gj, νj)n+1, p

(hj, ωj)1,m, (hj, ωj;Hj)m+1, q

]}
(u, v, w)

=

∫ ∞
0

e−ux−
v
x

(xm + wm)
ρ γ

m, n
p, q (zw x) dx

=

∫ ∞
0

e−ux−
v
x

(xm + wm)
ρ

1

2πι

∫
£

g(ϑ, y)z−ϑ(wx)−ϑ dϑ dx

On interchanging the orders of the integration

=
1

2πι

∫
£

g(ϑ, y)z−ϑ
∫ ∞

0

e−ux−
v
x

(xm + wm)
ρ (wx)−ϑ dx dϑ

5
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Now, on utilizing [1, pg. 6, Eqn. (2.11)], we get

=
1

2πι

∫
£

g(ϑ, y)z−ϑ
w−ϑ−mρ uϑ−1

mΓ(ρ)
H2, 1

1, 2

[
uw

∣∣∣∣∣ (1, 1
m )

(1− ϑ, 1)uv, (ρ,
1
m )

]
dϑ

=
w−mρ

umΓ(ρ)

1

2πι

∫
£

g(ϑ, y)
(
z
w

u

)−ϑ 1

2πι

∫ +ι∞

−ι∞
(uw)ξΓ(

ξ

m
)Γuv(1− ξ − ϑ)Γ(ρ− ξ

m
)dξ dϑ

On changing the order of the integrations and after some adjustment of terms

=
w−mρ

um

1

2πι

∫
£

Γ( ξm ) Γ(ρ− ξ
m )

Γ(ρ)
(uw)ξ

1

2πι

∫
£

g(ϑ, y) Γuv(1− ξ − ϑ)
(
z
w

u

)−ϑ
dϑ dξ,

(14)

using (6), we obtain the required R.H.S of (13).

Theorem 4. If ρ ∈ C,Re(ρ) > 0,m ∈ N and u, v ∈ C, w ∈ R+, then the
following image formula exists for Γ

m, n
p, q [z]:

Mρ,m

{
Γ
m, n
p, q

[
zx

∣∣∣∣∣ (g1, ν1;G, y), (gj, νj;Gj)2,n, (gj, νj)n+1,p

(hj, ωj)1,m, (hj, ωj;Hj)m+1,q

]}
(u, v, w)

=
w−mρ

um

1

2πι

∫
£

B
(
ρ− ξ

m
,
ξ

m

)
(uw)ξ

Γ
m, n+1

p+1, q

[
z
w

u

∣∣∣∣∣ (g1, ν1;G, y), (ξ, 1; 1)uv, (gj, νj;Gj)2,n, (gj, νj)n+1,p

(hj, ωj)1,m, (hj, ωj;Hj)m+1,q

]
dξ.

(15)

Here, B(x, y) represents the classical Euler-Beta function.

Proof. To get the result (15), we take the Akel’s M-transform presented in (1)
of (7), then on interchanging the order of the integrations and making use of the
known result given in [1, p. 6, Eq. (2.11)], and after some small arrangements
of the terms, we easily get the right hand side assertion of (15).

3 Special Cases

In this section, we derive some interesting and important special cases of our
main findings by giving some particular values to the parameters involved in
the definitions of M-transform (1) and incomplete H-functions (2) and (3).
(1) Taking n = p, m = 1, substitute q with q + 1 and choosing appropriate
parameters such as z = −z, gj → (1 − gj) (j = 1, · · · , p), and hj → (1 −
hj) (j = 1, · · · , q), the incomplete H-functions (2) and (3) convert, respectively,

to the incomplete Fox-Wright pΨ
(γ)
q - and pΨ

(Γ)
q -functions (see [13, Eqs. (6.3)

6
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and (6.4)]):

γ1, p
p, q+1

[
−z

∣∣∣∣∣ (1− g1, ν1, y), (1− gj, νj)2,p

(0, 1), (1− hj, ωj)1,q

]
= pΨ

(γ)
q

[
(g1, ν1, y), (gj, νj)2,p ;

z(gj, ωj)1,q ;

]
(16)

and

Γ1, p
p, q+1

[
−z

∣∣∣∣∣ (1− g1, ν1, y), (1− gj, νj)2,p

(0, 1), (1− hj, ωj)1,q

]
= pΨ

(Γ)
q

[
(g1, ν1, y), (gj, νj)2,p ;

z(gj, ωj)1,q ;

]
.

(17)

Using above relations (16) and (17), in (10) and (12), respectively, we will get
the following corollaries.

Corollary 1. If ρ ∈ C,Re(ρ) > 0,m ∈ N and u, v ∈ C, w ∈ R+, then the

following image formulae exist for pΨ
(γ)
q [z] and pΨ

(Γ)
q [z]:

Mρ,m

{
pΨ

(γ)
q

[
zx

∣∣∣∣∣ (g1, ν1, y), (gj, νj)2,p

(hj, ωj)1,q

]}
(u, v, w) =

w−mρ

um

1

2πι

∫
£

B
(
ρ− ξ

m
,
ξ

m

)
(uw)ξ

p+1Ψ
(γ)
q

[
z
w

u

∣∣∣∣∣ (g1, ν1, y), (ξ, 1)uv, (gj, νj)2,p

(hj, ωj)1,q

]
dξ

(18)

and

Mρ,m

{
pΨ

(Γ)
q

[
zx

∣∣∣∣∣ (g1, ν1, y), (gj, νj)2,p

(hj, ωj)1,q

]}
(u, v, w) =

w−mρ

um

1

2πι

∫
£

B
(
ρ− ξ

m
,
ξ

m

)
(uw)ξ

p+1Ψ
(Γ)
q

[
z
w

u

∣∣∣∣∣ (g1, ν1, y), (ξ, 1)uv, (gj, νj)2,p

(hj, ωj)1,q

]
dξ.

(19)

Here, B(x, y) indicates the classical Euler-Beta function.

(2) Letting (νj)1,p = 1 = (ωj)1,q, the functions (2) and (3) convert into
Meijer’s incomplete (γ)Gm, n

p, q - and (Γ)Gm, n
p, q - functions:

γm, np, q (z)

[
z

∣∣∣∣∣ (g1, 1, y), (gj, 1)2,p

(hj, 1)1,q

]
= (γ)Gm, n

p, q

[
z

∣∣∣∣∣ (g1, y), (gj)2,p

(hj)1,q

]
(20)

and

Γm, n
p, q (z)

[
z

∣∣∣∣∣ (g1, 1, y), (gj, 1)2,p

(hj, 1)1,q

]
= (Γ)Gm, n

p, q

[
z

∣∣∣∣∣ (g1, y), (gj)2,p

(hj)1,q

]
. (21)

Using above relations (20) and (21) in (10) and (12), respectively, we get the
following corollaries.

7
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Corollary 2. If ρ ∈ C,Re(ρ) > 0,m ∈ N and u, v ∈ C, w ∈ R+, then the
following image formulae exist for (γ)Gm, n

p, q [z] and (Γ)Gm, n
p, q [z], respectively:

Mρ,m

{
(γ)Gm, n

p, q

[
zx

∣∣∣∣∣ (g1, 1, y), (gj, 1)2,p

(hj, 1)1,q

]}
(u, v, w) =

w−mρ

um

1

2πι

∫
£

B
(
ρ− ξ

m
,
ξ

m

)
(uw)ξ

(γ)Gm, n+1
p+1, q

[
z
w

u

∣∣∣∣∣ (g1, 1, y), (ξ, 1)uv, (gj, 1)2,p

(hj, 1)1,q

]
dξ

(22)

and

Mρ,m

{
(Γ)Gm, n

p, q

[
zx

∣∣∣∣∣ (g1, 1, y), (gj, 1)2,p

(hj, 1)1,q

]}
(u, v, w) =

w−mρ

um

1

2πι

∫
£

B
(
ρ− ξ

m
,
ξ

m

)
(uw)ξ

(Γ)Gm, n+1
p+1, q

[
z
w

u

∣∣∣∣∣ (g1, 1, y), (ξ, 1)uv, (gj, 1)2,p

(hj, 1)1,q

]
dξ.

(23)

Here, B(x, y) indicates the classical Euler-Beta function.

(3) If we put y = 0 in (3), we get the Fox’s H-function

Γm, n
p, q

[
z

∣∣∣∣∣ (g1, ν1, 0), (gj, νj)2,p

(hj, ωj)1,q

]
= Hm, n

p, q

[
z

∣∣∣∣∣ (gj, νj)1,p

(hj, ωj)1,q

]
. (24)

Using relation (24), we obtain the subsequent corollaries.

Corollary 3. If ρ ∈ C,Re(ρ) > 0,m ∈ N and u, v ∈ C, w ∈ R+, then the
following image formula exists for Hm, n

p, q [z]:

Mρ,m

{
Hm, n

p, q

[
zx

∣∣∣∣∣ (gj, νj)1,p

(hj, ωj)1,q

]}
(u, v, w) =

w−mρ

um

1

2πι

∫
£

B
(
ρ− ξ

m
,
ξ

m

)
(uw)ξ

Hm, n+1
p+1, q

[
z
w

u

∣∣∣∣∣ (ξ, 1)uv, (gj, νj)1,p

(hj, ωj)1,q

]
dξ. (25)

Here, B(x, y) indicates the classical Euler-Beta function.

(4) If we put v = 0 in (1), then the Akel’s M-transform converts into the
Srivastava-Luo-Raina M-transform (see [1]):

Mρ,m[f(x)](u, 0, w) = Mρ,m[f(x)](u,w), (26)

here, Mρ,m[f(x)](u,w) is the Srivastava-Luo-Raina M-transform, defined in [14].
Using relation (26) in (10) and (12), we obtain the results derived by Bansal et
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al. [2, p. 720, Eqs. (2.1) and (2.2)],

Mρ,m

{
γm, np, q

[
zx

∣∣∣∣∣ (g1, ν1, y), (gj, νj)2,p

(hj, ωj)1,q

]}
(u,w) =

w−mρ

um

1

2πι

∫
£

B
(
ρ− ξ

m
,
ξ

m

)
(uw)ξ

γm, n+1
p+1, q

[
z
w

u

∣∣∣∣∣ (g1, ν1, y), (ξ, 1), (gj, νj)2,p

(hj, ωj)1,q

]
dξ

(27)

and

Mρ,m

{
Γm, n
p, q

[
zx

∣∣∣∣∣ (g1, ν1, y), (gj, νj)2,p

(hj, ωj)1,q

]}
(u,w) =

w−mρ

um

1

2πι

∫
£

B
(
ρ− ξ

m
,
ξ

m

)
(uw)ξ

Γm, n+1
p+1, q

[
z
w

u

∣∣∣∣∣ (g1, ν1, y), (ξ, 1), (gj, νj)2,p

(hj, ωj)1,q

]
dξ.

(28)

Remark. If we take v = 0 in (18) and (19), then we get the known results
obtained by Bansal et al. [2, p. 720-721, Eqs. (2.3) and (2.4)].

4 Conclusion

In this paper, we have derived image formulas for the incomplete H- and H-
functions under the Akel’s M-transform. Furthermore, from our key findings
various special cases can be evaluated by giving suitable values to the involved
parameters and variables with applications in engineering and science, some of
which are clearly indicated in section 3.
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Approximate solutions of space and time

fractional telegraph equations using Taylor series

expansion method
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The study investigates the telegraph equations by considering space and time
fractional derivatives. Caputo’s concept of fractional derivatives is used here.
We are focusing to generalize the solutions of integer order telegraph equations
to fractional order telegraph equations. In this case, approximate solutions
for fractional order telegraph equations have been obtained using Taylor series
expansion. Additionally, it has been shown quantitatively how the solutions
converge by using the number of terms in the series solutions.
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1 Introduction

Recent research suggests that fractional order derivatives are essential for a
wide range of physical phenomena viz. rheology, damping law, heat-diffusion,
wave dynamics, signal processing, etc. Researchers have used different types of
analytical and numerical methods to handle such problems. Techniques includ-
ing modified extended tanh method [1], novel analytical technique [2], coupled
transformation method [3], Galerkin and collocation methods [4], etc. are some
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recent endeavors in this paradigm. Moreover, the semi-analytical homotopy
perturbation method (HPM) has been used to tackle fractional models such
as the heat-conduction equation [5], convection-diffusion problem [6], and wave
equation [7] etc. Additionally, Dubey et al. have used local fractional natu-
ral homotopy analysis method [8, 9] and some coupling techniques such as the
local fractional variational iteration technique with the local fractional natural
transform [10] and local fractional homotopy perturbation method with local
fractional natural transform operator [11] to solve various types of physical
problems.

The studied of fractional telegraph equations (FTEs) have gained popularity
due to various applications they can be applied to, such as modeling reaction
diffusion, transmission and propagation of electrical signals, etc.

The general FTE [12] is given as,

Dp
xϕ(x, t) = aDq

tϕ(x, t) + bDr
tϕ(x, t) + cϕ(x, t) + h(x, t)

,
where 1 < p, q ≤ 2, 0 < r ≤ 1, x, t ≥ 0, ϕ(0, t) = f1(t), ϕx(0, t) = f2(t) and

a, b, c are constants.

Various authors have solved telegraph equations using different numerical
and analytical techniques. The analytical solution for FTE with respect to time
has been obtained by chen et al. [13] by using method of separating variables.
The space-fractional telegraph equation (SFTE) and time-fractional telegraph
equation (TFTE) and related telegraph process have been disscussed by Ors-
ingher and Zaho [14] and Orsingher and Beghin [15]. Moreover, some other
methods such as variational iteration method [16], HPM [17], differential trans-
form method [18] have also been used to handle FTEs.

The Taylor series expansion method (TSEM) is applied by Demir et al. [19]
for different fractional partial differential equation (PDE). In this study, we use
Taylor series of an analytical solution of the integer order differential equation.
This Taylor series solution can be reach out to the approximate or exact solu-
tion of fractional differential equation (FDE). Our approach changes the terms
of Taylor series expansion for derivatives in the sense of fractionals and inte-
gers so that their relationship remains unaltered. Applications of this method
demonstrate that it may be used to solve any differential equation derived from
FDEs with ease and effectiveness, provided that the differential equation has an
analytical or approximative solution. Here, the Caputo concept of the fractional
derivative is utilised.

Here, Taylor series is applied on SFTEs and TFTEs. Firstly, the Taylor
series expansion for analytical solution obtained from integer order telegraph

2
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equation is determined and then the expansion has been extended for FDE.

The rest of the paper follows this format: Methodology of the Taylor series
expansion method is described in Section 2. Section 3 includes solutions of
SFTEs and TFTEs. This section also covers convergency tables and graphical
solutions. Finally, Section 4 concludes this article with a brief summary.

2 Taylor series expansion method

In this section, TSEM has been discussed to handle space and time fractional
PDEs.

2.1 Fundamental approach to solve space-fractional PDEs

Let us consider a genaral form space-fractional PDE as

Dα
xϕ(x, t) = η

(
ϕ,

∂ϕ

∂t
, · · · ∂

nϕ

∂tn
, x, t

)
, k − 1 < α ≤ k, x > 0, t > 0. (1)

To find the solution of Eq. (1), we must first calculate the solution to its
integer order version by using the expression α = k, which is represented as

Dk
xϕ(x, t) = η

(
ϕ,

∂ϕ

∂t
, · · · ∂

nϕ

∂tn
, x, t

)
, t > 0, x > 0. (2)

From the exact answer of Eq. (1), one can get the approximation or exact
solution (2). To do this, we must modify the terms in the Taylor series ex-
pansion of integer order differential equation (2). In the infinite Taylor series
expansion of the solution of Eq. (2), the first k terms remain the same. More-
over, the fractional derivative with respect to x is used in place of the integer
order derivative with respect to x in order to maintain the relationship between
the terms of the Taylor series and to satisfy the boundary conditions of the
fractional differential equation.

To solve Eq. (2) with respect to x, a primitive Taylor series form is shown
below.

ϕ(x, t) =
∞∑

n=0

∂nϕ(0, t)

∂xn

xn

n!
. (3)

The solution of Eq. (1) is thus expressed in the following way:

ϕ(x, t) =

k−1∑
n=0

∂nϕ(0, t)

∂xn

xn

n!
+

∞∑
n=1

k−1∑
j=0

∂kn+jϕ(0, t)

∂xkn+j

xnα+j

Γ(nα+ j + 1)
. (4)

3
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2.2 Fundamental approach to solve time-fractional PDEs

Let us consider a genaral form time-fractional PDE as

Dα
t ϕ(x, t) = η

(
ϕ,

∂ϕ

∂x
, · · · ∂

nϕ

∂xn
, x, t

)
, k − 1 < α ≤ k, t > 0. (5)

For obtaing the solution of Eq. (5), we have to determine the solution for integer
order form of Eq. (5) by taking α = k, which is written as

Dk
t ϕ(x, t) = η

(
ϕ,

∂ϕ

∂x
, · · · ∂

nϕ

∂xn
, x, t

)
, t > 0. (6)

If we alter the terms of the Taylor series expansion in the solution of the integer
order differential equation, we can obtain the approximate or precise solution
of Equation (5) from the exact solution of Eq. (6). The initial k terms of the
infinite Taylor series expansion of solution of Eq. (6) are unaltered. Addition-
ally, in order to maintain the relationship between the terms of the Taylor series
and to satisfy the boundary conditions of the fractional differential equation,
the integer order derivative with respect to t is substituted by the fractional
derivative with respect to t.

For the solution of Eq. (6) with regard to t, the sketched Taylor series form
is shown below.

ϕ(x, t) =
∞∑

n=0

∂nϕ(x, 0)

∂tn
tn

n!
. (7)

Then the solution of Eq. (5) is given in the following format.

ϕ(x, t) =

k−1∑
n=0

∂nϕ(x, 0)

∂tn
tn

n!
+

∞∑
n=1

k−1∑
j=0

∂kn+jϕ(x, 0)

∂tkn+j

tnα+j

Γ(nα+ j + 1)
. (8)

3 Numerical examples

3.1 Solution of SFTE

Take a look at a general SFTE example [20].

∂2αϕ

∂x2α
=

∂2ϕ

∂t2
+ 4

∂ϕ

∂t
+ 4ϕ t ≥ 0, 0 < α ≤ 1, (9)

with initial conditions

ϕ(0, t) = 1 + e−2t, ϕx(0, t) = 2. (10)

The exact solution of Eq. (9) with initial conditions (10) is given as

ϕ(x, t) = e2x + e−2t. (11)

4
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The Taylor series expansion of the exact solution (11) is below.

ϕ(x, t) =

(
e−2t + 1 + 2x+

4x2

2!
+

8x3

3!
+ · · ·

)
. (12)

As discussed in the procedure, the solution to Eq. (9) is given by

ϕ(x, t) =

(
1 + e−2t +

2xα

Γ(α+ 1)
+

4x2α

Γ(2α+ 1)
+

8x3α

Γ(3α+ 1)
+ · · ·

)
. (13)

To demonstrate how well the approach works, we will check its convergence by
increasing the number of terms in the series solution. In perspective of this,
Convergency Table 1 contains values for the fractional value α, with α = 0.8
and a fixed value of t = 0.1, while x ranges from 0 to 1.

Table 1: Convergency chart for the solution of the SFTE.
x ϕ(x, t = 0.1)

3 terms 5 terms 7 terms 9 terms 13 terms 16 terms 17 terms
0 1.818730 1.818730 1.818730 1.818730 1.818730 1.818730 1.818730
0.1 2.159061 2.240025 2.241460 2.241473 2.241473 2.241473 2.241473
0.2 2.411281 2.680719 2.694812 2.695188 2.695194 2.695194 2.695194
0.3 2.638323 3.195128 3.249704 3.252453 3.252541 3.252541 3.252541
0.4 2.850420 3.793880 3.937923 3.949311 3.949894 3.949895 3.949895
0.5 3.052055 4.483454 4.791251 4.825739 4.828286 4.828291 4.828291
0.6 3.245725 5.268850 5.843929 5.929557 5.938111 5.938144 5.938144
0.7 3.433014 6.154317 7.133256 7.318560 7.342541 7.342702 7.342703
0.8 3.615007 7.143644 8.699801 9.062343 9.121244 9.121873 9.121876
0.9 3.792495 8.240293 10.587472 11.244084 11.374845 11.376950 11.376964
1.0 3.966073 9.447488 12.843557 13.962366 14.230392 14.236641 14.236689

The surface of the graph in Fig. 1 depicts the exact solution of the telegraph
equation given in Eq. (11) for α = 1. Further, the surface of graphs in Figs.
2 and 3 show the approximate solutions of the SFTE for α = 0.5 and 0.3
respectively.
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Figure 1: Exact solution of SFTE (11) for α = 1

Figure 2: Approximate solution of SFTE (13) for α = 0.3
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Figure 3: Approximate solution of SFTE (13) for α = 0.5
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3.2 Solution of TFTE

Take a look at the following TFTE [20],

∂αϕ(x, t)

∂tα
=

∂2ϕ(x, t)

∂x2
− ∂ϕ(x, t)

∂t
− ϕ(x, t), x, t ≥ 0, 0 < α ≤ 2 (14)

with initial conditions

ϕ(x, 0) = e−x, ϕt(x, 0) = −e−x. (15)

This equation has the following exact solution for α = 2,

ϕ(x, t) = e−(x+t). (16)

The Taylor series expansion for exact solution (16) as below

ϕ(x, t) = e−2t

(
1− t+

4x2

2!
+

8x3

3!
+ · · ·

)
. (17)

The method allows us to arrive at the following solution to Eq. (14),

ϕ(x, t) = e−x

(
1− t+

tα

Γ(α+ 1)
− tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
− t2α+1

Γ(2α+ 2)
+ · · ·

)
.

(18)
Here, we examine whether the approximation solution for the fractional value

of α is convergent. The calculated values of ϕ(x, t) for α = 1.7, x = 0.1, and t
ranging from 0 to 1 are shown in Table 2. This table indicates that the computed
result ϕ(x, t) converges up to four places of decimal in the approximation of the
tenth term.

The graphical illustration for exact and approximate solutions has been
shown. The graph in Fig. 4 has been plotted for the exact solution (16).
In Figs. 5 and 6, the surfaces of the graphs show the approximate solutions (18)
for α = 1.2 and 1.7.
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Table 2: Convergency chart for the solution of the TFTE.
t ϕ(x = 0.1, t)

2 terms 3 terms 4 terms 5 terms 6 terms 7 terms 8 terms
0 0.9048374 0.9048374 0.9048374 0.9048374 0.9048374 0.9048374 0.9048374
0.1 0.8426171 0.8499774 0.8482249 0.8485619 0.8485076 0.8485151 0.8485142
0.2 0.7888023 0.8057117 0.8016857 0.8024599 0.8023350 0.8023524 0.8023503
0.3 0.7390122 0.7665189 0.7599697 0.7612292 0.7610260 0.7610542 0.7610508
0.4 0.6920779 0.7309256 0.7216762 0.7234549 0.7231680 0.7232079 0.7232030
0.5 0.6473983 0.6981743 0.6860848 0.6884097 0.6880347 0.6880868 0.6880804
0.6 0.6045998 0.6677937 0.6527476 0.6556410 0.6551744 0.6552392 0.6552313
0.7 0.5634244 0.6394591 0.6213556 0.6248370 0.6242755 0.6243535 0.6243440
0.8 0.5236826 0.6129314 0.5916817 0.5957681 0.5951090 0.5952006 0.5951894
0.9 0.4852285 0.5880266 0.5635508 0.5682577 0.5674985 0.5676040 0.5675911
1.0 0.4479456 0.5645982 0.5368238 0.5421650 0.5413035 0.5414232 0.5414086

Figure 4: Exact solution of TFTE (16) for α = 2
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Figure 5: Approximate solution of TFTE (18) for α = 1.2

Figure 6: Approximate solution of TFTE (18) for α = 1.7
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4 Conclusion

If the integer order PDEs have analytical solutions, the Taylor series expansion
method works well enough for fractional order PDEs. Numerical examples of
this method demonstrate that it may be used to solve any differential equation
derived from FDEs with ease and effectiveness, provided that the differential
equation has an analytical or approximative solution. By extending the Taylor
series expansion of the analytical solution, this study has determined the ap-
proximate solutions of the SFTE and TFTE. Furthermore, the infinitive series
solution obtained in numerical examples 3.1 and 3.2 is identical to that given in
[20], confirming the validity of the considered method. Additionally, the con-
vergency Tables 1 and 2 demonstrate the efficacy of the method. As we can
observe that the recorded values in Tables 1 and 2 are being closure enough
if the number of terms increases. Furthermore, a graphic illustration is used
to show both the exact and approximative solutions for integer and fractional
values of α. Using the MATLAB programme, the 3D graphs for the solution of
SFTE and TFTE are shown. The discussed method can also be used to analyse
ODEs and PDEs with fractional derivatives with exponential and Mittag-Leffler
kernels in future iterations of the research.
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Abstract

An M/G/1 feedback retrial queue with working vacation and a waiting server is
taken into consideration in this study. Both retrial times and service times are
assumed to follow general distribution and the waiting server follows an expo-
nential distribution. During the working vacation period customers are served
at a lesser rate of service. Before going for a vacation the server waits for some
arbitrary amount of time and so is called a waiting server. We obtain the prob-
ability generating function (PGF) for the number of customers and the mean
number of customers in the invisible waiting area by utilizing the supplementary
variable technique. We compute the mean waiting time. Out of interest a few
special cases are conferred. Numerical outcomes are exhibited.

Keywords: Retrial queue, Working vacation, Supplementary variable tech-
nique, Waiting server, Feedback.

Mathematics Subject Classification 2010: 60K25, 90B22

1 Introduction

Retrial queues are expressed by the fact that if a customer observed that the
server is occupied then they are entered into the invisible waiting area called an
orbit. In recent years numerous researchers have examined the retrial queue.
For a more in-depth analysis of the retrial queues, we can refer[1,2,3].
In Queueing theory queueing models with server vacation has a most impactful
application. In addition to the vacation strategy Servi and Finn [4] developed a
newest vacation strategy, called as Working Vacation (WV). In the WV period
the server provides a lesser rate of service to the customers than during the
regular service period. Wu and Takagi [5] examined M/G/1/Multiple Working
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Vacation (MWV). Pazhani Bala Murugan and Santhi[7] studied the M/G/1
retrial queue with MWV . For a comprehensive study on WV we can refer [8].
Whenever the system becomes empty the server leaves from the regular service
period (RS) and goes on a WV, but in a waiting server model the server wait
for a arbitrary amount of time before going to WV.
The server wait option is representative of many queueing mechanisms used in
real life, especially when interacting with people. For a detailed study on waiting
server model we can refer [9,10,11]. In queueing models, some customers rejoin
the orbit after receiving the service to receive it again out of dissatisfaction.
This is referred to as feedback. For a broad analysis of feedback retrial queues
we can refer[12,13,14,15].
In this article, we consider an M/G/1 feedback retrial queue with multiple WV
and a waiting server. This article has the following structure. We explain
the model in segment 2. In segment 3 performance measures are established.
Segment 4 discusses some special cases. In segment 5 numerical outcomes are
exhibited . The conclusion is given in segment 6.

2 Model Description

We examined anM/G/1 retrial queue with switch over time to working vacation
where the primary customer’s arrival follows a Poisson process with a rate of
� and service discipline is first-in-first-out(FIFO). If an approaching customer
discovers that the server is occupied, then they exit the service area because
we assume that there is no waiting area and they join the orbit. At a service
completion instant, only the customer at the head of the orbit is permitted to
approach the server. The retrial time follows a general distribution with a distri-
bution function G(x) for the regular service period, let g(x) and G∗(�) signifies
the pdf and LST respectively, and for WV period, let L(x), l(x), L∗(�) signifies
the distribution function, pdf and LST respectively. On the service completion
epoch of each customer, if there is a contest between the primary customer and
an orbit customer. The service time in the RS period follows a general distribu-
tion with the distribution function Rs(x), rs(x) and R∗

s(�) as its pdf and LST
respectively. The service delivered in the WV period follows a general distribu-
tion with Wv(x), wv(x),W

∗

v (�) as its distribution function, pdf, LST. The server
waits for an arbitrary period of time once the orbit turns empty, which follows
an exponential distribution with a rate of �. After completion of the waiting
time, the server goes for WV, which follows an exponential distribution with a
rate of �. After getting the service, customers either rejoin the orbit with prob-
ability m or depart the system with probability n(= 1−m). Inter-arrival times,
retrial times, service time in RS periods and WV periods are all presumed to
be independent of one another.
Let’s use the subsequent random variables.
O(t)- Size of the orbit at time “t”.
G0(t), R0

s(t)- the remaing retrial time and remaining service time in RS period.
L0(t),W 0

v (t)- the remaing retrial time and remaining service time in WV period.
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At time “t” the four distinct states of the server are

E(t) =

⎧







⎨







⎩

0 - if the server is not being occupied in WV

1 - if the server is not being occupied in RS period

2 - if the server is being occupied in WV

3 - if the server is being occupied in RS period

so that the supplementary variables L0(t), G0(t),W 0
v (t) and R0

s(t) are intro-
duced in order to obtain the bivariate Markov Processes {(O(t), B(t)); t ≥ 0},
where

B(t) =

⎧







⎨







⎩

L0(t), if E(t) = 0;

G0(t), if E(t) = 1;

W 0
v (t), if E(t)=2;

R0
s(t), if E(t)=3.

W0,0 = lim
t→∞

P [O(t) = 0, E(t) = 0]

R0,0 = lim
t→∞

P [O(t) = 0, E(t) = 1]

W0,ℎ = lim
t→∞

P [O(t) = ℎ, E(t) = 0, x < L0(t) ≤ x+ dx]; ℎ ≥ 1

R0,ℎ = lim
t→∞

P [O(t) = ℎ, E(t) = 1, x < G0(t) ≤ x+ dx]; ℎ ≥ 1

W1,ℎ = lim
t→∞

P [O(t) = ℎ, E(t) = 2, x < W 0
v (t) ≤ x+ dx]; ℎ ≥ 0

R1,ℎ = lim
t→∞

P [O(t) = ℎ, E(t) = 3, x < R0
s(t) ≤ x+ dx]; ℎ ≥ 0

The above mentioned are the limiting probabilities which we have defined.

R∗

s(�) =

∞
∫

0

e−�xrs(x)dx W ∗

v (�) =

∞
∫

0

e−�xwv(x)dx

L∗(�) =

∞
∫

0

e−�xl(x)dx G∗(�) =

∞
∫

0

e−�xg(x)dx

W ∗

0,ℎ(�) =

∞
∫

0

e−�xW0,ℎ(x)dx W ∗

0,ℎ(0) =

∞
∫

0

W0,ℎ(x)dx

W ∗

1,ℎ(�) =

∞
∫

0

e−�xW1,ℎ(x)dx W ∗

1,ℎ(0) =

∞
∫

0

W1,ℎ(x)dx

R∗

0,ℎ(�) =

∞
∫

0

e−�xR0,ℎ(x)dx R∗

0,ℎ(0) =

∞
∫

0

R0,ℎ(x)dx

R∗

1,ℎ(�) =

∞
∫

0

e−�xR1,ℎ(x)dx R∗

1,ℎ(0) =

∞
∫

0

R1,ℎ(x)dx

3
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W ∗

0 (z, �) =

∞
∑

ℎ=1

W ∗

0,ℎ(�)z
ℎ W ∗

0 (z, 0) =

∞
∑

ℎ=1

W ∗

0,ℎ(0)z
ℎ

W0(z, 0) =

∞
∑

ℎ=1

W0,ℎ(0)z
ℎ W ∗

1 (z, �) =

∞
∑

ℎ=0

W ∗

1,ℎ(�)z
ℎ

W ∗

1 (z, 0) =

∞
∑

ℎ=0

W ∗

1,ℎ(0)z
ℎ W1(z, 0) =

∞
∑

ℎ=0

W1,ℎ(0)z
ℎ

R∗

0(z, �) =

∞
∑

ℎ=1

R∗

0,ℎ(�)z
ℎ R∗

0(z, 0) =

∞
∑

ℎ=1

R∗

0,ℎ(0)z
ℎ

R0(z, 0) =

∞
∑

ℎ=1

R0,ℎ(0)z
ℎ R∗

1(z, �) =

∞
∑

ℎ=0

R∗

1,ℎ(�)z
ℎ

R∗

1(z, 0) =

∞
∑

ℎ=0

R∗

1,ℎ(0)z
ℎ R1(z, 0) =

∞
∑

ℎ=0

R1,ℎ(0)z
ℎ

The above mentioned are the Laplace Steiltjes Transform and PGF which we
have defined.
In steady state the system was illustrated by the subsequent differential differ-
ence equations:

�W0,0 = nW1,0(0) + �R0,0 (1)

−
d

dx
W0,ℎ(x) = −(� + �)W0,ℎ(x) + nW1,ℎ(0)l(x)

+mW1,ℎ−1(0)l(x); ℎ ≥ 1 (2)

−
d

dx
W1,0(x) = −(�+ �)W1,0(x) +W0,1(0)wv(x) + �W0,0wv(x) (3)

−
d

dx
W1,ℎ(x) = −(�+ �)W1,ℎ(x) + �W1,ℎ−1(x) +W0,ℎ+1(0)wv(x)

+�

∞
∫

0

W0,ℎ(x)dx wv(x);ℎ ≥ 1 (4)

(�+ �)R0,0 = nR1,0(0) (5)

−
d

dx
R0,ℎ(x) = −�R0,ℎ(x) + nR1,ℎ(0)g(x) +mR1,ℎ−1(0)g(x)

+�

∞
∫

0

W0,ℎ(x)dx g(x); ℎ ≥ 1 (6)

−
d

dx
R1,0(x) = −�R1,0(x) +R0,1(0)rs(x) + �rs(x)

∞
∫

0

W1,0(x)dx (7)
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−
d

dx
R1,ℎ(x) = −�R1,ℎ(x) + �R1,ℎ−1(x) + �rs(x)

∞
∫

0

W1,ℎ(x)dx

+R0,ℎ+1(0)rs(x) + �rs(x)

∞
∫

0

R0,ℎ(x)dx; ℎ ≥ 1 (8)

Taking the LST from (2) to (8) on both sides results

�W ∗

0,ℎ(�)−W0,ℎ(0) = (�+ �)W ∗

0,ℎ(�)− nW1,ℎ(0)L
∗(�)

−mW1,ℎ−1(0)L
∗(�); ℎ ≥ 1 (9)

�W ∗

1,0(�)−W1,0(0) = (�+ �)W ∗

1,0(�)−W0,1(0)W
∗

v (�)

−�W0,0W
∗

v (�) (10)

�W ∗

1,ℎ(�)−W1,ℎ(0) = (�+ �)W ∗

1,ℎ(�)−W0,ℎ+1(0)W
∗

v (�)

−�W ∗

1,ℎ−1(�)− �W ∗

0,ℎ(0)W
∗

v (�); ℎ ≥ 1 (11)

�R∗

0,ℎ(�)−R0,ℎ(0) = �R∗

0,ℎ(�)− nR1,ℎ(0)G
∗(�)− �G∗(�)W ∗

0,ℎ(0)

−mR1,ℎ−1(0)G
∗(�); ℎ ≥ 1 (12)

�R∗

1,0(�)−R1,0(0) = �R∗

1,0(�)−R0,1(0)R
∗

s(�)− �R∗

s(�)W
∗

1,0(0)

−�R0,0R
∗

s(�) (13)

�R∗

1,ℎ(�)−R1,ℎ(0) = �R∗

1,ℎ(�)− �R∗

1,ℎ−1(�)−R∗

s(�)R0,ℎ+1(0)

−�R∗

s(�)W
∗

1,ℎ(0)− �R∗

s(�)R
∗

0,ℎ(0); ℎ ≥ 1 (14)

Summing over ℎ from 1 to infinity × (9) with zℎ and results,

W ∗

0 (z, �)[� − (�+ �)] = W0(z, 0)− L∗(�)[(n+mz)W1(z, 0)

−nW1,0(0)] (15)

Summing over ℎ from 1 to infinity × (11) with zℎ and comprise with (10)
results,

W ∗

1 (z, �)[� − (�+ � − �z)] = W1(z, 0)−
W ∗

v (�)

z
W0(z, 0)

−�W0,0W
∗

v (�)− �W ∗

v (�)W
∗

0 (z, 0) (16)

Placing � = �+ � in (15), results

W0(z, 0) = L∗(�+ �)[(n+mz)W1(z, 0)− nW1,0(0)] (17)

Placing � = 0 and (Sub.) (17) in (15), results

W ∗

0 (z, 0) =
(1− L∗(�+ �))((n+mz)W1(z, 0)− nW1,0(0))

�+ �
(18)
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Placing � = �+ � − �z and (Sub.) (17) and (18) in (16), results

W1(z, 0) =

[

[�z(�+ �)W0,0 − n[L∗(�+ �)(�+ � − �z)

+�z]W1,0(0)]W
∗

v (�+ � − �z)

]

Dr1(z)
(19)

(Sub.)(19) in (17), results

W0(z, 0) =

[

(�+ �)z[(n+mz)�W ∗

v (�+ � − �z)W0,0

−nW1,0(0)]L
∗(�+ �)

]

Dr1(z)
(20)

Let f(z) = (�+�)z−W ∗

v (�+�−�z)(L∗(�+�)(�+�−�z)+�z), for f(z) = 0
we obtain f(0) < 0 and f(1) > 0 which ⇒ that ∃ a real root z1 ∈ (0, 1).
At z = z1(20) is converted in to

W1,0(0) = �W ∗

v (�− �z1 + �)(n+mz)W0,0 (21)

(Sub.) (21) in (19), results

W1(z, 0) =
�W ∗

v (�+ � − �z)UP (z)

Dr1(z)
W0,0 (22)

where,

UP (z) = z(�+ �)− (n+mz)W ∗

v (�+ � − �z1)[�z + L∗(�+ �)(�+ � − �z)]

(Sub.) (21) in (20), results

W0(z, 0) =

⎡

⎢

⎣

[

(n+mz)�z(�+ �)[W ∗

v (�+ � − �z)

−W ∗

v (�− �z1 + �)]
]

L∗(�+ �)

⎤

⎥

⎦

Dr1(z)
(23)

(Sub.) (21) and (22) in (18), results

W ∗

0 (z, 0) =

⎡

⎢

⎣

[

(1− L∗(�+ �))�z(n+mz)[W ∗

v (�+ � − �z)

−W ∗

v (�+ � − �z1)]
]

⎤

⎥

⎦

Dr1(z)
(24)

Placing � = 0 and (Sub.) (22), (23) and (24) in (16), results

W ∗

1 (z, 0) =
W0,0�(1−W ∗

v (�+ � − �z))UP (z)

(�+ � − �z)Dr1(z)
(25)
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Summing over ℎ from 1 to infinity × (12) with zℎ and results

R∗

0(z, �)(� − �) = R0(z, 0)−G∗(�)[(n+mz)R1(z, 0)− nR1,0(0)]

−W ∗

0 (z, 0)�G
∗(�) (26)

(Sub.) W1,0(0) = (n+mz)�W ∗

v (�+ � − �z1)W0,0 in (1), we get

�R0,0 = �(1− (n+mz)W ∗

v (�+ � − �z1))W0,0

Placing � = � and (Sub.) R1,0(0) = �(1−(n+mz)W ∗

v (�+�−�z1))W0,0−�R0,0

in (26), results

R0(z, 0) = [(n+mz)R1(z, 0)− �(1− (n+mz)W ∗

v (�+ � − �z1))W0,0

−�R0,0 + �W ∗

0 (z, 0)]G
∗(�) (27)

Summing over ℎ from 1 to infinity × (14) with zℎ and comprise with (13)
results

R∗

1(z, �)[�−�+�z)] = R1(z, 0)−

[

R0(z, 0)

z
+�W ∗

1 (z, 0)+�R∗

0(z, 0)+�R0,0

]

R∗

s(�)

(28)
Placing � = 0 and (Sub.) (27) and
nR1,0(0) = (1− (n+mz)W ∗

v (�+ � − �z1))�W0,0 − �R0,0 in (26), results

R∗

0(z, 0) =
[

(n+mz)R1(z, 0)− (1− (n+mz)W ∗

v (�+ � − �z1))�W0,0

−�R0,0 + �W ∗

0 (z, 0)
][ (1−G∗(�))

�

]

(29)

Placing � = �− �z and (Sub.) (27) and (29) in (28), results

R1(z, 0) =

⎡

⎢

⎢

⎢

⎣

R∗

s(�− �z)
[

�zW ∗

1 (z, 0) + �[(1− z)G∗(�) + z]W ∗

0 (z, 0)

−[(1− (n+mz)W ∗

v (�+ � − �z1))�W0,0 + �R0,0]

[(1− z)G∗(�) + z] + �zR0,0

]

⎤

⎥

⎥

⎥

⎦

z − (n+mz)R∗

s(�− �z)[z +G∗(�)(1− z)]
(30)

(Sub.) (30) in (27), results

R0(z, 0) =

⎡

⎢

⎢

⎢

⎣

zG∗(�)
[

�(n+mz)R∗

s(�− �z)W ∗

1 (z, 0) + �W ∗

0 (z, 0)

−�(1− (n+mz)W ∗

v (�+ � − �z1))W0,0

−�(1− (n+mz)R∗

s(�− �z))R0,0

]

⎤

⎥

⎥

⎥

⎦

z − (n+mz)R∗

s(�− �z)
[

(1− z)G∗(�) + z
] (31)

(Sub.) (30) in (29), results
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R∗

0(z, 0) =

⎡

⎢

⎣

(1−G∗(�))z [�W ∗

1 (z, 0)(n+mz)R∗

s(�− �z) + �W ∗

0 (z, 0)

−�(1− (n+mz)W ∗

v (�+ � − �z1))W0,0

−�(1− (n+mz)R∗

s(�− �z))R0,0]

⎤

⎥

⎦

�
{

z − (n+mz)R∗

S(�− �z)
[

(1− z)G∗(�) + z
]}

(32)

Placing � = 0 and (Sub.) (30), (31) and (32) in (28), results

R∗

1(z, 0) =

⎡

⎢

⎢

⎢

⎣

{

W ∗

0 (z, 0)[G
∗(�)(1− z) + z]� + �zR0,0 − [G∗(�)(1− z) + z]

×[�(1− (n+mz)W ∗

v (�+ � − �z1))W0,0 + �R0,0]

+�W ∗

1 (z, 0)z
}

(1−R∗

s(�− �z))

⎤

⎥

⎥

⎥

⎦

(�− �z)
[

z − (n+mz)R∗

s(�− �z)[z +G∗(�)(1− z)]
]

(33)

We define Wv(z) = W ∗

0 (z, 0) +W ∗

1 (z, 0) +W0,0

Wv(z) =
W0,0

(�+ � − �z)D1(z)

{

�z(W ∗

v (�+ � − �z)−W ∗

v (�+ � − �z1))

× (�+ � − �z)(1− L∗(�+ �)) + �(1−W ∗

v (�+ � − �z))

× [z(�+ �)− [�z + L∗(�+ �)(�+ � − �z)]W ∗

v (�+ � − �z1)

× (n+mz)] + (�+ � − �z)[z(�+ �)− (n+mz)W ∗

v (�+ � − �z)

× (�z + L∗(�+ �)(�+ � − �z))]
}

(34)

when the server is on WV period, as the PGF for the number of customers in
orbit.
(Sub.) (24) and (25) in (32), results

R∗

0(z, 0) =
z(1−G∗(�))W0,0

(�+ � − �z)Dr1(z)Dr2(z)

{

�(n+mz)(1−W ∗

v (�+ � − �z))

×R∗

s(�− �z)
{

(�+ �)z − (n+mz)W ∗

v (�+ � − �z1)[�z

+ (�+ � − �z)L∗(�+ �)]
}

+ �z(�+ � − �z)(1− L∗(�+ �))

× (n+mz)(W ∗

v (�+ � − �z)−W ∗

v (�+ � − �z1))− (�+ � − �z)

× (1− (n+mz)W ∗

v (�+ � − �z1))
{

(�+ �)z −W ∗

v (�+ � − �z)

× (n+mz)[�z + (�+ � − �z)L∗(�+ �)]
}

−
�

�
(�+ � − �z)

× (1− (n+mz)W ∗

v (�+ � − �z1))(1− (n+mz)R∗

s(�− �z))

×
{

(�+ �)z −W ∗

v (�+ � − �z)[�z + (�+ � − �z)L∗(�+ �)]
}

}

(35)

(Sub.) (24), (25) in (33), results
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R∗

1(z, 0) =
(1−R∗

s(�− �z))W0,0

Dr2(z)(�+ � − �z)Dr1(z)

{

[�z +G∗(�)(�+ � − �z)](n+mz)

×[1− L∗(�+ �)][W ∗

v (�+ � − �z)−W ∗

v (� + �− �z1)]�z

−(1− (n+mz)W ∗

v (�+ � − �z1))[�z +G∗(�)(�+ � − �z)]

×
{

(�+ �)z − (n+mz)W ∗

v (�+ � − �z)[�z + (�+ � − �z)

×L∗(�+ �)]
}

+ (W ∗

v (�+ � − �z)−W ∗

v (�+ � − �z1))�z

×(�+ �)L∗(�+ �)−
�

�
(1− (n+mz)W ∗

v (�+ � − �z1))G
∗(�)

×(�+ � − �z)
{

(�+ �)z − [�z + (�+ � − �z)L∗(�+ �)]

×W ∗

v (�+ � − �z)(n+mz)
}

+m
[

[��z2W ∗

v (�+ � − �z1)

+�2zW ∗

v (�+ � − �z1)W
∗

v (�+ � − �z)L∗(�+ �)

×+W ∗

v (�+ � − �z1)��zL
∗(�+ �)W ∗

v (�+ � − �z)(1− z)]

×(n+mz)− [�2z2 + ��z2]W ∗

v (�+ � − �z)
]}

(36)

We define RS(z) = R∗

0(z, 0) +R∗

1(z, 0) +R0,0

RS(z) =
W0,0

(�+ � − �z)(Dr1(z)Dr2(z))

{

z(1−G∗(�))
{

(1−W ∗

v (�+ � − �z))

×R∗

s(�− �z)�(n+mz)
[

(�+ �)z − (n+mz)W ∗

v (�+ � − �z1)

×[�z + (�+ � − �z)L∗(�+ �)]
]

+ �z(1− L∗(�+ �))(�+ � − �z)

×(n+mz)(W ∗

v (�+ � − �z)−W ∗

v (�+ � − �z1))− (�+ � − �z)

×(1− (n+mz)W ∗

v (�+ � − �z1))
[

(�+ �)z −W ∗

v (�+ � − �z)

×[�z + (�+ � − �z)L∗(�+ �)](n+mz)
]}

+ (1−R∗

s(�− �z))

×
{

[�z + (�+ � − �z)G∗(�)][W ∗

v (�+ � − �z)−W ∗

v (�+ � − �z1)]

×�z(n+mz)[1− L∗(�+ �)]− (1− (n+mz)W ∗

v (�+ � − �z1))

×[�z +G∗(�)(�+ � − �z)][(�+ �)z − (n+mz)W ∗

v (�+ � − �z)

×[�z + L∗(�+ �)(�+ � − �z)]] + �z(�+ �)(W ∗

v (�+ � − �z)

−W ∗

v (�+ � − �z1))L
∗(�+ �)

}

+m
[

[�2zW ∗

v (�+ � − �z1)

×W ∗

v (�+ � − �z)L∗(�+ �) + ��z2W ∗

v (�+ � − �z1) + (1− z)

×��zW ∗

v (�+ � − �z1)L
∗(�+ �)](n+mz)− [�2z2 + ��z2]

×W ∗

v (�+ � − �z)
]

+
�

�
(�+ � − �z)(1−W ∗

v (�+ � − �z1))

×(n+mz)[(�+ �)z − (n+mz)W ∗

v (�+ � − �z)[�z + L∗(�+ �)

×(�+ � − �z)][mG∗(�)R∗

s(�− �z)−G∗(�)](1− z)

}

(37)
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where,

Dr1(z) = z(�+ �)− (n+mz)W ∗

v (�+ � − �z)[�z

+L∗(�+ �)(�+ � − �z)] (38)

Dr2(z) = z − (n+mz)R∗

s(�− �z)[G∗(�)(1− z) + z] (39)

when the server is on RS period, as the PGF for the number of customers in
the orbit.
Again, we define R(z) = RS(z) +Wv(z)

R(z) =
W0,0

(�+ � − �z)D1(z)D2(z)

{

z(1−G∗(�))
[

(1−W ∗

v (�+ � − �z))�

×(n+mz)R∗

s(�− �z)
[

(�+ �)z − (n+mz)W ∗

v (�+ � − �z1)[�z

+(�+ � − �z)L∗(�+ �)]
]

+ �z(�− �z)(n+mz)(1− L∗(�+ �))

×(W ∗

v (�+ � − �z)−W ∗

v (�+ � − �z1))− (�+ � − �z)(1− (n+mz)

×W ∗

v (�+ � − �z1))
[

(�+ �)z − (n+mz)W ∗

v (�+ � − �z)[L∗(�+ �)

×(�+ � − �z) + �z]
]

]

+ (1−R∗

s(�− �z))
[

[�z + (�+ � − �z)G∗(�)]

×�z(n+mz)[1− L∗(�+ �)][W ∗

v (�+ � − �z)−W ∗

v (�+ � − �z1)]

−(1− (n+mz)W ∗

v (�+ � − �z1))[�z +G∗(�)(�+ � − �z)]
[

(�+ �)z

−(n+mz)W ∗

v (�+ � − �z)[�z + (�+ � − �z)L∗(�+ �)]
]

+ (�+ �)

×�z(W ∗

v (�+ � − �z))−W ∗

v (�+ � − �z1))L
∗(�+ �) +m

{

[��z2

×W ∗

v (�+ � − �z1) + �2zW ∗

v (�+ � − �z1)W
∗

v (�+ � − �z)L∗(�+ �)

+W ∗

v (�+ � − �z1)��zW
∗

v (�+ � − �z)L∗(�+ �)(1− z)](n+mz)

−[�2z2 + ��z2]W ∗

v (�+ � − �z)
]

+
�

�
(�+ � − �z)(1− (n+mz)

×W ∗

v (�+ � − �z1))[(�+ �)z − (n+mz)W ∗

v (�+ � − �z)[�z

+(�+ � − �z)L∗(�+ �)][mG∗(�)R∗

s(�− �z)−G∗(�)](1− z)
]

+
[

(�+ � − �z)(W ∗

v (�+ � − �z)−W ∗

v (�+ � − �z1))(1− L∗(�+ �))

×�z + �(1−W ∗

v (�+ � − �z))[z(�+ �)− (n+mz)W ∗

v (�+ � − �z1)

×(�z + L∗(�+ �)(�+ � − �z))] + (�+ � − �z)[z(�+ �)− (n+mz)

×W ∗

v (�+ � − �z)(�z + L∗(�+ �)(�+ � − �z))]
][

z −R∗

s(�− �z)

×[z + (1− z)G∗(�)]
]

}

(40)

where Dr1(z) and Dr2(z) are given in (38) and (39) as the PGF for the number
of customers in the orbit. Make use of the normalizing condition R(1) = 1 to
findout that W0,0 araise in (41). Using L’Hospitals rule and (Sub.) z = 1 in
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(40) results,

W0,0 =
1− �s

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{

O

�G∗(�)[�+ � −W ∗

v (�)(�+ �L∗(�+ �))]

}

−

{

P +mT

G∗(�)[�+ � −W ∗

v (�)(�+ �L∗(�+ �))]

}

+

{

�W ∗

v (�+ � − �z1)L
∗(�+ �)(1−G∗(�))

G∗(�)[�+ � −W ∗

v (�)(�+ �L∗(�+ �))]
+Q

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(41)

R0,0 =
�

�
(1−W ∗

v (�+ � − �z1))W0,0 (42)

where,

O = (�− �W ∗

v (�+ � − �z1) + �)[�+ �G∗(�)

−W ∗

v (�)(�+ �L∗(�+ �))]

P = �E(Rs)W
∗

v (�)[�+ � −W ∗

v (�+ � − �z1)(�+ �L∗(�+ �))]

T = �[L∗(�+ �)[W ∗

v (�+ � − �z)−W ∗

v (�+ � − �z1)]

−W ∗

v (�+ � − �z)[1− L∗(�+ �)W ∗

v (�+ � − �z1)]]

−
�

�2
(1−W ∗

v (�+ � − �z1))
[

1 +
�

�

]

Q =
�

�
(1−W ∗

v (�+ � − �z1))G
∗(�)

�s =
�E(Rs)

G∗(�)
−

m

G∗(�)

E(Rs) is the mean service time and the system’s stability condition �s < 1 is
obtained from (41).

3 The Model’s Performance Measures

Mean Orbit Length in WV period:

We assume thatWv - mean orbit size and Lv - mean waiting time of the customer
in the orbit during WV period.
Then

Wv =
d

dz
Wv(z)

∣

∣

∣

z=1

=
d

dz
[W ∗

1 (z, 0) +W ∗

0 (z, 0)]
∣

∣

∣

z=1

=
d

dz

[

S(z)

(�+ � − �z)Dr1(z)
+

K(z)

Dr1(z)

]

W0,0

∣

∣

∣

z=1

11
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=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

Dr1(z)(�+ � − �z)S′(z)

−S(z)[(�+ � − �z)Dr′1(z)−Dr1(z)�]

]

Dr1(z))2(�+ � − �z)

+

[

K ′(z)Dr1(z)−Dr′1(z)K(z)

(Dr1(z))2

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

W0,0

∣

∣

∣

∣

∣

z=1

where,

K(z) = �z(1− L∗(�+ �))(n+mz)[W ∗

v (�+ � − �z)−W ∗

v (�+ � − �z1)]

Dr1(z) = z(�+ �)− (n+mz)W ∗

v (�+ � − �z)(L∗(�+ �)

(�+ � − �z) + �z)

S(z) = �(1−W ∗

v (�+ � − �z))
[

z(�+ �)− (n+mz)W ∗

v (�+ � − �z1)

×(L∗(�+ �)(�+ � − �z) + �z)
]

Differentiating S(z),K(z) and Dr1(z) with respect to z, we get

S′(z) = �2W ∗
′

v (�+ � − �z)[z(�+ �)− (n+mz)W ∗

v (�+ � − �z1)

×(�+ � − �z)L∗(�+ �) + �z] + (1−W ∗

v (�+ � − �z))�

×[�+ � − (n+mz)(�− �L∗(�+ �))W ∗

v (�+ � − �z1)]

−m[(�+ � − �z)L∗(�+ �) + �z]W ∗

v (�+ � − �z1)

K ′(z) = (1− L∗(�+ �))(n+mz)�[W ∗

v (�+ � − �z)−W ∗

v (�+ � − �z1)]

+(n+mz)�z(1− L∗(�+ �))(−�W ∗
′

v (�+ � − �z))

+m�z(1− L∗(�+ �))[W ∗

v (�+ � − �z)−W ∗

v (�+ � − �z1)]

Dr′1(z) = (�+ �) + (n+mz)�W ∗
′

v (�+ � − �z)(�z + (n+mz)L∗(�+ �)

(�+ � − �z))−W ∗

v (�+ � − �z)(�− �L∗(�+ �))

−m(�z + (n+mz)L∗(�+ �)(�+ � − �z))W ∗

v (�+ � − �z)

At z = 1 Lv turns

=

⎡

⎢

⎢

⎣

[

�Dr1(1)S
′(1)− S(1)[�Dr′1(1)− �Dr1(1)]

(�Dr1(1))2

]

+

[

Dr1(1)K
′(1)−K(1)Dr′1(1)

(Dr1(1))2

]

⎤

⎥

⎥

⎦

W0,0

we know that Lv =
Wv

�
where,

S(1) = �(1−W ∗

v (�))[� + �−W ∗

v (�+ � − �z1)(�+ �L∗(�+ �))]

S′(1) = �2W ∗
′

v (�)[�+ � −W ∗

v (�+ � − �z1)(�+ �L∗(�+ �))]

+�(1−W ∗

v (�))[�+ � −W ∗

v (�+ � − �z1)(�− �L∗(�+ �))]

−m(�+ �L∗(�+ �))W ∗

v (�+ � − �z1)

12

72

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO.1, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

S.Pazhani Bala Murugan 61-79



K(1) = �(1− L∗(�+ �))(W ∗

v (�)−W ∗

v (� − �z1 + �))

K ′(1) = �(1− L∗(�+ �))
[

W ∗

v (�)−W ∗

v (� + �− �z1)−W ∗
′

v (�)�

+m[W ∗

v (�)−W ∗

v (� + �− �z1)]
]

Dr1(1) = � − (�+ �L∗(�+ �))W ∗

v (�) + �

Dr′1(1) = � + [�W ∗
′

v (�) +mW ∗

v (�)][�+ L∗(�+ �)�]

+�− [�− �L∗(�+ �)]W ∗

v (�)

Mean Orbit Length in RS period:

We assume that Ls - mean orbit size andWs - mean waiting time of the customer
in the orbit during WV period.

Ls =
d

dz
RS(z)

∣

∣

∣

z=1

=
d

dz
[R∗

1(z, 0) +R∗

0(z, 0)]
∣

∣

∣

z=1

=
d

dz

[

Nr1(z)(1−G∗(�)) +Nr2(z)Nr3(z)

Dr1(z)(�+ � − �z)Dr2(z)

]

W0,0

∣

∣

∣

z=1

Ls =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

Dr′2(z)2Nr′1(z)(�Dr1(z)− (�+ � − �z)Dr′1(z))

+(�+ � − �z)Dr1(z)Nr′′1 (z)(Dr′2(z)−Dr′′2 (z)Nr′1(z))
]

×(1−G∗(�)) + 2(�+ � − �z)Nr′2(z)Dr′2(z)(Nr′3(z)Dr1(z)

−Nr3(z)Dr′1(z)) +Nr3(z)[2�Nr′2(z)Dr′2(z) + (�+ � − �z)

Dr′2(z)Nr′′2 (z)− (�+ � − �z)Dr′′2 (z)Nr′2(z)]Dr1(z)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

2(Dr1(z)(�+ � − �z)Dr′2(z))
2

W0,0

∣

∣

∣

z=1

where,

Nr1(z) = �z(n+mz)R∗

s(�− �z)(1−W ∗

v (�+ � − �z))
{

(�+ �)z

−(n+mz)W ∗

v (�+ � − �z1)[(�+ � − �z)L∗(�+ �) + �z]
}

+(�+ � − �z)�z2(n+mz)(1− L∗(�+ �))[W ∗

v (�+ � − �z)

−W ∗

v (�+ � − �z1)]− (1− (n+mz)W ∗

v (�+ � − �z1))
{

(�+ �)

×z − (n+mz)W ∗

v (�+ � − �z)[(�+ � − �z)L∗(�+ �) + �z]
}

×z(�+ � − �z)−
z�

�
(1− (n+mz)R∗

s(�− �z))(�+ � − �z)

×(1− (n+mz)W ∗

v (�+ � − �z1))
{

(�+ �)z − (n+mz)

×W ∗

v (�+ � − �z)[(�+ � − �z)L∗(�+ �) + �z]
}

Nr2(z) = (1−R∗

s(�− �z))

Dr1(z) = (�+ �)z − (n+mz)W ∗

v (�+ � − �z)[L∗(�+ �)

×(�+ � − �z) + �z]

Dr2(z) = z − (n+mz)R∗

s(�− �z)[(1− z)G∗(�) + z]

13
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Nr3(z) = �z[(�+ � − �z)G∗(�) + �z](1− L∗(�+ �))(W ∗

v (�+ � − �z)

−W ∗

v (�+ � − �z1))− (1−W ∗

v (�+ � − �z1))[(�+ � − �z)

×G∗(�) + �z]{(�+ �)z −W ∗

v (�+ � − �z)(�+ � − �z)L∗(�+ �)

+�z)}+ �z(�+ �)(W ∗

v (�+ � − �z)−W ∗

v (�+ � − �z1))

×L∗(�+ �)−
�

�
(1−W ∗

v (�+ � − �z1))G
∗(�)(�+ � − �z)

×
{

(�+ �)z −W ∗

v (�+ � − �z)[�z + (�+ � − �z)L∗(�+ �)
}

+m
[

[

��z2W ∗

v (�+ � − �z1) + �2zW ∗

v (�+ � − �z1)L
∗(�+ �)

×W ∗

v (�+ � − �z) + ��zW ∗

v (�+ � − �z1)W
∗

v (�+ � − �z)

×L∗(�+ �)(1− z)
]

(n+mz)− [�2z2 + ��z2]W ∗

v (�+ � − �z)
]

At z = 1 Ls turns

Ls =

⎡

⎢

⎢

⎢

⎣

(1−G∗(�))
[

2Nr′1(1)Dr′2(1)(�Dr1(1)− �Dr′1(1)) + �Dr1(1)

(Dr′2(1)Nr′′1 (1)−Nr′1(1)Dr′′2 (1))
]

+ 2�Nr′2(1)Dr′2(1)

(Dr1(1)Nr′3(1)−Nr3(1)Dr′1(1)) +Nr3(1)Dr1(1)[2�

Nr′2(1)Dr′2(1) + �Dr′2(1)Nr′′2 (1)− �Nr′2(1)Dr′′2 (1)]

⎤

⎥

⎥

⎥

⎦

2(�Dr1(1)Dr′2(1))
2

W0,0

as it is known that Ws =
Ls

�
,

where,

Nr′1(1) = −��W ∗

v (�) + ��E(Rs)(1−W ∗

v (�))[�+ � − �W ∗

v (�+ � − �z1)

×L∗(�+ �)− �W ∗

v (�+ � − �z1)]− �2L∗(�+ �)W ∗

v (�) + �2

×L∗(�+ �)W ∗

v (�+ � − �z1) + �[� + �− �W ∗

v (�)L
∗(�+ �)

−�W ∗

v (�)]− �2W ∗

v (�+ � − �z1) + �2W ∗

v (�+ � − �z1)W
∗

v (�)

+��W ∗

v (�+ � − �z1)W
∗

v (�)L
∗(�+ �) +

�

�
[−m+ �E(Rs)]

×�(1−W ∗

v (�+ � − �z1)){(�+ �)−W ∗

v (�)[�+ �L∗(�+ �)]}

+�m{(�+ �)−W ∗

v (�)[�+ �L∗(�+ �)]}W ∗

v (�+ � − �z1)

Nr3(1) = (1−W ∗

v (�)){�G
∗(�)W ∗

v (�+ � − �z1)(�+ �L∗(�+ �))− ��

−��G∗(�)− �2G∗(�)}+ (1−W ∗

v (�+ � − �z1)){��W
∗

v (�)

×L∗(�+ �)− �2(1−W ∗

v (�))}+ �2L∗(�+ �)(W ∗

v (�)

−W ∗

v (�+ � − �z1))−
�

�
�G∗(�)(1−W ∗

v (�+ � − �z1))

×{�+ � −W ∗

v (�)(L
∗(�+ �)� + �)}+

{

��W ∗

v (�+ � − �z1)

−�W ∗

v (�)[�+ � − �W ∗

v (�+ � − �z1)L
∗(�+ �)]

}

m

Nr′2(1) = −�E(Rs)
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Nr′′1 (1) = (W ∗

v (�)−W ∗

v (�+ � − �z1))[(1− L∗(�+ �))(��(1−G∗(�))

+�2G∗(�)) + �2L∗(�+ �)] +G∗(�)(�+ � + �W ∗

v (�))

×(�W ∗

v (�+ � − �z1)− �)− ��L∗(�+ �)(1−W ∗

v (�+ � − �z1))

×(W ∗

v (�) + �W ∗
′

v (�)) +G∗(�)W ∗

v (�+ � − �z1)[�+ � − �W ∗

v (�)

×L∗(�+ �) + �W ∗

v (�)]�− �G∗(�)[�+ � − �2W ∗
′

v (�) + �W ∗

v (�)]

+[�W ∗
′

v (�)(�L∗(�+ �)− �) + �W ∗

v (�)W
∗(�+ �)][�G∗(�)

×W ∗

v (�+ � − �z1)− �(1−W ∗

v (�+ � − �z1))] +
�

�
G∗(�)

×(1−W ∗

v (�+ � − �z1))
{

�(�+ �)− �2W ∗

v (�)− 2��W ∗

v (�)

×L∗(�+ �)− �2�W ∗
′

v (�)− ��2W ∗
′

v (�)L∗(�+ �) + ��W ∗

v (�)

−�(�+ �)
}

+m
[

�W ∗

v (�+ � − �z1)
[

[L∗(�+ �)� + �]

×[3(W ∗

v (�)−W ∗
′

v (�)− �E(Rs)) +m(1−W ∗

v (�))− 4]

−3(1−W ∗

v (�))[�− �L∗(�+ �)]
]

+ �(�+ �)
[

2(1−W ∗

v (�)

+�W ∗
′

v (�)) + �E(Rs)[2 +W ∗

v (�)]
]

+ �[1− L∗(�+ �)][2(2� − �)

×[W ∗

v (�)−W ∗

v (�+ � − �z1)]− ��W ∗
′

v (�)]− ��2[1− L∗(�+ �)]

×W ∗

v (�) + (�+ �)W ∗

v (�+ � − �z1)(3� − 2�) + [L∗(�+ �)� + �]

×
[

��W ∗
′

v (�)[3W ∗

v (�+ � − �z1)− 2] +W ∗

v (�)[W
∗

v (�+ � − �z1)

×(2�−m� − �) + �]
]�

�

[

{(�+ �)(1−W ∗

v (�+ � − �z1))[� + 2�

−�+ ��E(Rs)]− 2�mW ∗

v (�+ � − �z1)}+
{

[��(W ∗
′

v (�)

−E(Rs))−m�W ∗

v (�)− 2� + �](1−W ∗

v (�+ � − �z1)) + 2�m

×W ∗

v (�+ � − �z1)
}

[L∗(�+ �)� + �]− �(1−W ∗

v (�+ � − �z1))

×[�− �L∗(�+ �)]W ∗

v (�)
]]

Dr1(1) = � + �− (�+ �L∗(�+ �))W ∗

v (�)

Dr′1(1) = � + [�W ∗
′

v (�) +mW ∗

v (�)][�+ L∗(�+ �)�]

+�− [�− �L∗(�+ �)]W ∗

v (�)

Dr′2(1) = G∗(�)− E(Rs)�−m

Dr′′2 (1) = −2(1−G∗(�))[�E(Rs) +m]− E(R2
s)�

2 − 2�mE(Rs)

Nr′′2 (1) = −�2E(R2
s)
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Nr′3(1) = {(1−W ∗

v (�))(2��E(Rs) + ��2E(R2
s)) + 2��2E(Rs)W

∗
′

v (�)}

×[�+ � −W ∗

v (�+ � − �z1)(�+ �L∗(�+ �))] + 2��E(Rs)

×(1−W ∗

v (�))[�+ � + �W ∗

v (�+ � − �z1)(L
∗(�+ �)− 1)]

+2��[W ∗
′

v (�)(�+ �L∗(�+ �)) + (1−W ∗

v (�))(2− L∗(�+ �)

×W ∗

v (�+ � − �z1))] + 2�2L∗(�+ �)(W ∗

v (�+ � − �z1)

−W ∗

v (�)) + 2�2(1−W ∗

v (�))(1−W ∗

v (�+ � − �z1)) + 2�[�

+�W ∗
′

v (�)(�+ �L∗(�+ �)) + �W ∗

v (�)(L
∗(�+ �)− 1)]

×(1−W ∗

v (�+ � − �z1)) +
�2

�
(1−W ∗

v (�+ � − �z1))
{

[�+ �

−W ∗

v (�)[�+ �L∗(�+ �)]][4� + �� − 1]E(Rs) + 2��W ∗
′

v (�)

×[�+ �L∗(�+ �)]E(Rs) + ��E(R2
s)[�+ � −W ∗

v (�)

(�+ �L∗(�+ �))]
}

4 Special cases

(a) If the service time distribution follows an exponential distribution, no retrial,
no service among the vacation period and there is no feedback then, the present
model will be remodeled as analysis of M/M/1 queue with server vacations and
a waiting server.
(b) If the server does not wait after the completion of the RS period and there
is no feedback then, the present model will be remodeled as an M/G/1 retrial
queue with multiple working vacation.

5 Numerical results

The curved graph constructed in Figure 1 and the values tabulated in the Ta-
ble 1 are obtained by setting the fixed values �v = 3.6, �s = 9.8, �vr = 3.5,
�sr = 5.3, � = 1, m = 0.4 and altering the values of � from 1 to 2 incremented
with 0.2 and increasing the values of � from 0.3 to 1.1 in steps of 0.4, we ob-
served that as � rises Lv falls and hence the stability of the model is verified.

β 0.3

β 0.7

β 1.1

1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.2

0.4

0.6

0.8

1.0

λ

L
V

Figure 1: � versus Lv

� � = 0.3 � = 0.7 � = 1.1
1.0 0.2006 0.4771 1.0399
1.2 0.1479 0.3744 0.8428
1.4 0.1066 0.2870 0.6651
1.6 0.0737 0.2149 0.5181
1.8 0.0475 0.1566 0.3990
2.0 0.0275 0.1097 0.2997

Table 1: � versus Lv
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The curved graph constructed in Figure 2 and the values tabulated in the Ta-
ble 2 are obtained by setting the fixed values �v = 6.6, �s = 10.8, �vr = 3.5,
�sr = 5.3, � = 1.7, m = 0.3 and altering the values of � from 1 to 2 incre-
mented with 0.2 and increasing the values of � from 0.2 to 0.6 in steps of 0.2.
We observed that as � rises Wv falls which is expected.

β=0.2

β=0.4

β=0.6

1.0 1.2 1.4 1.6 1.8 2.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ

W
V

Figure 2: � versus Wv

� � = 0.2 � = 0.4 � = 0.6
1.0 0.2545 0.4949 0.7325
1.2 0.2027 0.4054 0.6375
1.4 0.1624 0.3297 0.5388
1.6 0.1295 0.2652 0.4451
1.8 0.1018 0.2100 0.3602
2.0 0.0781 0.1628 0.2853

Table 2: � versus Wv

The curved graph constructed in Figure 3 and the values tabulated in the Ta-
ble 3 are obtained by setting the fixed values �v = 0.1, �s = 10, �vr = 1.5,
�sr = 4.5, � = 0.6, m = 0.3 and altering the values of � from 1 to 2 incre-
mented with 0.2 and increasing the values of � from 1.3 to 1.7 in steps of 0.2.
We observed that as � rises Ls also rises which shows the stability of the model.

β=1.3

β=
���

β=
���

��� ��� ��� ��	 ��
 2.0

0

2

4

6



λ

L
s

Figure 3: � versus Ls

� � = 1.3 � = 1.5 � = 1.7
1.0 0.0939 0.4101 0.8883
1.2 0.4295 0.9762 1.7499
1.4 0.9517 1.8173 2.9956
1.6 1.6909 2.9705 4.6665
1.8 2.6447 4.4248 6.7373
2.0 3.7557 6.0909 9.0768

Table 3: � versus Ls

The curved graph constructed in Figure 4 and the values tabulated in the Ta-
ble 4 are obtained by setting the fixed values �v = 9.3, �s = 11, �vr = 4.5,
�sr = 5.5, � = 1.5, m = 0.5 and altering the values of � from 1 to 2 incremented
with 0.2 and increasing the values of � from 0.3 to 0.5 in steps of 0.1. From the
graph, we studied that as � rises Ws falls which shows the stability of the model.
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β=0.3

β=0.4

β=0.5

1.0 1.2 1.4 1.6 ��
 2.0

0.2

0.3

0.4

0.5

0.6

0.7

��

λ

W
s

Figure 4: � versus Ws

� � = 0.3 � = 0.4 � = 0.5
1.0 0.5875 0.7271 0.8489
1.2 0.4899 0.6225 0.7527
1.4 0.4107 0.5315 0.6595
1.6 0.3447 0.4523 0.5726
1.8 0.2865 0.3808 0.4904
2.0 0.2280 0.3069 0.4018

Table 4: � versus Ws

6 Conclusion

In this paper, an M/G/1 feedback retrial queue with working vacation and a
waiting server is evaluated. We obtained the PGF for the number of customers
and the mean number of customers in the orbit. We worked out the mean
waiting time. We also derived the performance measures. We performed some
particular cases. We illustrated some numerical results.
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Abstract

In this article, we evaluate the approximate solutions of Nonlinear
Differential Equations (NoLDEs) with the association of S-function, in-
complete H-functions (IHFs) and incomplete I-functions (IIFs) with two
variables by using the Hermite, Legendre and Jacobi polynomials. Here,
we introduce incomplete I-functions with two variables. The NoLDEs are
significantly applicable in fluid dynamics, vibration problems, population
dynamics, electromagnetism, chemical kinetics, combustion theory, eco-
nomics and finance. Recently, it was implemented to solve the resistance
less circuit with a nonlinear capacitor under influence of external periodic
force.
This method is established as an application of improper integrals, poly-
nomials and special functions. The obtained results are helpful to get the
solution of various problems of mathematical physics and engineering in
approximate aspects.

Keywords: Incomplete H-functions, Incomplete I-functions, q-Gamma func-
tions, S-function, Laplace transform, Improper Integral.
MSC2020: 33B20, 33D05, 33E12, 44A10.

1 Introduction and Preliminaries:

Earlier, Nonlinear differential equations play remarkable roles in the field of En-
gineering and Physics. Numerous authors have given their outputs to solving

1
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these equations by several methods. In the nineteen century, many Mathemati-
cians like Gadre [9], Saxena et al. [16], Srivastava [24] and Srivastava et al. [25]
worked on NoLDEs system. In last two decades many more authors such as
Chaurasia et al. [5], Sharma [17], Singh [20], Singh et al. [21, 22, 23], Bansal et
al. [1, 2, 3, 4] and Kumar et al. [11, 12] have also paid their attention in this
branch of Applied Mathematics.

In the section 1, we defined the incomplete H-functions, incomplete I-functions
with two variables and S-function. Section 2, shows some important theorems
that will be used to solve the NoLDEs given in the section 3.

Special functions are well known tool which are uses in various fields of
Engineering and Physics. The incomplete Gamma functions (IGFs) γ(s, y) and
Γ(s, y) are investigated by Prym [14]. The incomplete Gamma functions are base
of the recently developed incomplete forms of special functions like incomplete
H-functions, incomplete H-functions, incomplete I-functions and incomplete ℵ-
functions.
The incomplete Gamma functions γ(s, y) and Γ(s, y) are defined, by

γ(s, y) =

∫ y

0

ts−1e−tdt, (R(s) > 0; y ≥ 0). (1)

Γ(s, y) =

∫ ∞

y

ts−1e−tdt, (y ≥ 0; R(s) > 0 when y = 0). (2)

The IGFs holds the decomposition formula γ(s, y) + Γ(s, y) = Γ(s), here Γ(.) is
well known gamma function.
Pochhammer symbol (µ)λ defined as:

(µ)λ =
Γ(µ+ λ)

Γ(µ)
=

{
1, if λ = 0;µ ∈ C\{0}
(µ)(µ+ 1) . . . (µ+ n− 1), if λ = n ∈ N;µ ∈ C,

(3)

provided Γ(µ) exists. Here C and N are as usual denote the set of complex and
natural numbers respectively.

Definition 1: In terms of the incomplete gamma functions (IGFs) Γ(s, x) and

γ(s, x), the IHFs [26] is defined γM,N
P,Q (z) and ΓM,N

P,Q (z) as follows:

γM,N
P,Q (z) = γM,N

P.Q

[
z

∣∣∣∣ (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q

]
:=

1

2πi

∫
L

φ(s, t)zsds, (4)

where

φ(s, t) =
γ(1− f1 + F1s, t)

∏M
j=1 Γ(wj −Wjs)

∏N
j=2 Γ(1− fj + Fjs)∏Q

j=M+1 Γ(1− wj +Wjs)
∏P

j=N+1 Γ(fj − Fjs)
, (5)

2
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and

ΓM,N
P,Q (z) = ΓM,N

P,Q

[
z

∣∣∣∣ (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q

]
:=

1

2πi

∫
L

ϕ(s, t)zsds, (6)

where

ϕ(s, t) =
Γ(1− f1 + F1s, t)

∏M
j=1 Γ(wj −Wjs)

∏N
j=2 Γ(1− fj + Fjs)∏Q

j=M+1 Γ(1− wj +Wjs)
∏P

j=N+1 Γ(fj − Fjs)
, (7)

The IHFs γM,N
P,Q (z) and ΓM,N

P,Q (z) are exist for all t ≥ 0 and for more existing
conditions (see, [26]).

Definition 2: We introduce the incomplete I-functions with two variables
(Γ)I0,n:m1,n1;m2,n2

pl,ql,r;pl(1)
,q

l(1)
,r(1);pl(2)

,q
l(2)

,r(2)
as follows:

(Γ)I0,n:m1,n1;m2,n2
pl,ql,r;pl(1)

,q
l(1)

,r(1);pl(2)
,q

l(2)
,r(2)

 z1
z2

∣∣∣∣∣∣
(
e1, E

(1)
1 , E

(2)
1 , x

)
,
(
ej , E

(1)
j , E

(2)
j

)
2,n

. . . ,
(
fjl, F

(1)
jl , F

(2)
jl

)
m+1,ql

,

,
(
ejl, E

(1)
jl , E

(2)
jl

)
n+1,pl

, (e
(1)
j , E

(1)
j )

1,n1
,
(
e
(1)

jl(1)
, E

(1)

jl(1)

)
n1+1,p

(1)
l

,(
f
(1)
j , F

(1)
j

)
1,m1

,
(
f
(1)

jl(1)
, F

(1)

jl(1)

)
m1+1,q

(1)
l

,

(e
(2)
j , E

(2)
j )

1,n2
,
(
e
(2)

jl(2)
, E

(2)

jl(2)

)
n2+1,p

(2)
l(

f
(2)
j , F

(2)
j

)
1,m2

,
(
f
(2)

jl(2)
, F

(2)

jl(2)

)
m2+1,q

(2)
l



=
1

(2πω)2

∫
L1

∫
L2

θ (ξ1, ξ2, x) z
ξ1
1 zξ22 θ1(ξ1)θ2(ξ2)dξ1dξ2 (ω =

√
−1), (8)

where

θ (ξ1, ξ2, x) =
Γ(1−e1+

∑2
i=1 E

(i)
j ξi,x)

∏n
j=2 Γ(1−ej+

∑2
i=1 E

(i)
j ξi)∑r

i=1

[∏pl
j=n+1 Γ

(
ejl−

∑2
i=1 E

(i)
jl ξi

)∏ql
j=1 Γ

(
1−fjl+

∑2
i=1 F

(i)
jl ξi

)] ,
and,

θi(ξi) =
∏mi

j=1 Γ(f
(i)
j −F

(i)
j ξi)

∏ni
j=1 Γ(1−e

(i)
j +E

(i)
j ξi)∑r(i)

i(i)=1

[∏q
l(i)

j=mi+1 Γ

(
1−f

(i)

jl(i)
+F

(i)

jl(i)
ξi

)∏p
i(i)

j=ni+1 Γ

(
e
(i)

jl(i)
−E

(i)

jl(i)
ξi

)] , (i = 1, 2).

Now, We can define lower form of the incomplete I-function with two variables

3
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(γ)I0,n:m1,n1;m2,n2
pl,ql,r;pl(1)

,q
l(1)

,r(1);pl(2)
,q

l(2)
,r(2)

as follows:

(γ)I0,n:m1,n1;m2,n2
pl,ql,r;pl(1)

,q
l(1)

,r(1);pl(2)
,q

l(2)
,r(2)

 z1
z2

∣∣∣∣∣∣
(
e1, E

(1)
1 , E

(2)
1 , x

)
,
(
ej , E

(1)
j , E

(2)
j

)
2,n

. . . ,
(
fjl, F

(1)
jl , F

(2)
jl

)
m+1,ql

,

,
(
ejl, E

(1)
jl , E

(2)
jl

)
n+1,pl

, (e
(1)
j , E

(1)
j )

1,n1
,
(
e
(1)

jl(1)
, E

(1)

jl(1)

)
n1+1,p

(1)
l

,(
f
(1)
j , F

(1)
j

)
1,m1

,
(
f
(1)

jl(1)
, F

(1)

jl(1)

)
m1+1,q

(1)
l

,

(e
(2)
j , E

(2)
j )

1,n2
,
(
e
(2)

jl(2)
, E

(2)

jl(2)

)
n2+1,p

(2)
l(

f
(2)
j , F

(2)
j

)
1,m2

,
(
f
(2)

jl(2)
, F

(2)

jl(2)

)
m2+1,q

(2)
l



=
1

(2πω)2

∫
L1

∫
L2

θ (ξ1, ξ2, x) z
ξ1
1 zξ22 θ1(ξ1)θ2(ξ2)dξ1dξ2 (ω =

√
−1),

where

θ (ξ1, ξ2, x) =
γ(1−e1+

∑2
i=1 E

(i)
j ξi,x)

∏n
j=2 Γ(1−ej+

∑2
i=1 E

(i)
j ξi)∑r

i=1

[∏pl
j=n+1 Γ

(
ejl−

∑2
i=1 E

(i)
jl ξi

)∏ql
j=1 Γ

(
1−fjl+

∑2
i=1 F

(i)
jl ξi

)] ,
and,

θi(ξi) =
∏mi

j=1 Γ(f
(i)
j −F

(i)
j ξi)

∏ni
j=1 Γ(1−e

(i)
j +E

(i)
j ξi)∑r(i)

i(i)=1

[∏q
l(i)

j=mi+1 Γ

(
1−f

(i)

jl(i)
+F

(i)

jl(i)
ξi

)∏p
i(i)

j=ni+1 Γ

(
e
(i)

jl(i)
−E

(i)

jl(i)
ξi

)] , (i = 1, 2).

Decomposition formula satisfying in case of incomplete I-functions with two
variables defined in (1) and (2) as (γ)IPQ [zi] +

(Γ)IPQ [zi] = IPQ [zi].

Here, zi ̸= 0; fj (j = 1, . . . , p); ej (j = 1, . . . , q); e
(i)
j (j = 1, . . . , ni); e

(i)

jl(i)
(j =

ni + 1, . . . , pl(i)); f
(i)
j (j = 1, . . . ,mi); f

(i)

jl(i)
(j = mi + 1, . . . , ql(i)); i = 1, 2

are complex numbers and Ej , Fj , E
(i)

jl(i)
, F

(i)

jl(i)
are positive real numbers for

standardization purpose such that

A
(i)
l =

n∑
j=1

E
(i)
j +

pi∑
j=n+1

E
(i)
jl +

ni∑
j=1

E
(2)
j +

p
i(i)∑

j=ni+1

E
(i)

jl(i)

−
qi∑

j=1

F
(i)

jl(i)
−

mi∑
j=1

F
(i)
j −

q
i(i)∑

j=mi+1

F
(i)

jl(i)
≤ 0 (i = 1, 2),

The integral path is a contour starting from L − l∞ to L + l∞ and the poles

of Γ(f
(i)
j − F

(i)
j ξi), j = 1, . . . ,mi, i = 1, 2 are separated from those of Γ(1 −

aj +
∑2

i=1 E
(i)
j ξi), j = 1, . . . , n and Γ(1 − e

(i)
j + E

(i)
j ξi), j = 1, . . . , ni, i = 1, 2

4
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to the left of the contour Lk. The existence conditions for multiple Mellin-
Barnes contours can be obtained with the help of two variables I-function [18]

as |argzi| < π
2 Ā

(i)
i , where

Ā
(k)
l =

n∑
j=1

E
(i)
j −

pl∑
j=n+1

E
(i)
jl −

ql∑
j=1

F
(i)
jl +

ni∑
j=1

E
(i)
j −

p
l(i)∑

j=ni+1

E
(i)

jl(i)

+

mi∑
j=1

F
(i)
j −

q
l(i)∑

j=mi+1

F
(i)

jl(i)
> 0 (i = 1, 2).

for more detail conditions (see [13, 18, 10, 19]).

Definition 3: The S-function introduced and investigated by Saxena et al.
[7] and defined as:

(a,b,c,d,e)

S
(p,q)

(y) =
(a,b,c,d,e)

S
(p,q)

(α1, α2, . . . , αp;β1, β2, . . . , βq; y)

=
∞∑

n=0

(α1)n . . . (αp)n
(β1)n . . . (βq)n

(c)nd,e
Γe(na+ b)

yn

n!
, (9)

where e ∈ R; a, b, c, d ∈ C; Re(a) > 0, αi (i = 1, 2, . . . , p), βj (j = 1, 2, . . . , q),
Re(a) > eRe(d) and p < q + 1. Pochhammer symbol (µ)λ defined in (3).
Here, the k-Pochhammer symbol (y)n,k and k-Gamma function Γq(y) defined
by Diaz et al. [6].
If we put c = d = e = 1 in S-function, it reduces to the generalized M-
series. Similarly, we can convert S-function to other functions named Gener-
alized k-Mittag-Leffler function, k-function, generalized Mittag-Leffler function
and Mittag-Leffler function.

2 Theorems

In this section, we use the linear approximation of the Hermite, Legendre and
Jacobi polynomials to obtain the approximate solution of general NoLDEs which
given below:

..
x + ω

(a,b,c,d,e)

S
(p,q)

[
y
( x

L

)2Λ′]
ΓM,N
P,Q

[
z
( x

L

)2Λ
∣∣∣∣ (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q

]
= NF (t), (10)

..
x + ω

(a,b,c,d,e)

S
(p,q)

[
y
(
1 +

x

L

)ν′]
ΓM,N
P,Q

[
z
(
1 +

x

L

)ν
∣∣∣∣ (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q

]
= NF (t), (11)

5
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..
x + ω

(a,b,c,d,e)

S
(p,q)

[
y
( x

L

)Λ
]
(Γ)I0,n:m1,n1;m2,n2

pl,ql,r;pl(1)
,q

l(1)
,r(1);pl(2)

,q
l(2)

,r(2)

[
z1

(
x
L

)ν
z2

(
x
L

)λ ∣∣∣∣ A∗

B∗

]
= NF (t), (12)

where

A∗ =
(
e1, E

(1)
1 , E

(2)
1 , s

)
,
(
ej , E

(1)
j , E

(2)
j

)
2,n

,
(
ejl, E

(1)
jl , E

(2)
jl

)
n+1,pl

,

(e
(1)
j , E

(1)
j )

1,n1
,
(
e
(1)

jl(1)
, E

(1)

jl(1)

)
n1+1,p

(1)
l

, (e
(2)
j , E

(2)
j )

1,n2
,
(
e
(2)

jl(2)
, E

(2)

jl(2)

)
n2+1,p

(2)
l

and
B∗ = . . . ,

(
fjl, F

(1)
jl , F

(2)
jl

)
m+1,ql

,
(
f
(1)
j , F

(1)
j

)
1,m1

,
(
f
(1)

jl(1)
, F

(1)

jl(1)

)
m1+1,q

(1)
l

,(
f
(2)
j , F

(2)
j

)
1,m2

,
(
f
(2)

jl(2)
, F

(2)

jl(2)

)
m2+1,q

(2)
l

.

Under the effect of external periodic force, these NoLDEs defined in (10), (11)
and (12) used in the theory of resistance less circuits. To solve these Nonlinear
differential equations, we use Hermite, Legendre and Jacobi polynomials.
Now, we derive some new integrals as theorems that will use to solve the above
given NoLDEs.

Theorem 1:∫ ∞

−∞
x2σe−x2

Hn(x)
(a,b,c,d,e)

S
(p,q)

(
yx2ρ′

)
ΓM,N
P,Q

[
zx2ρ

∣∣∣∣ (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q

]
dx =

√
π2n−2σL1(k)

ΓM,N+1
P+1,Q+1

[
z2−2ρ

∣∣∣∣ (−2σ − 2ρ′k, 2ρ), (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q, (n/2− σ − ρ′k, ρ)

]
, (13)

where,

L1(k) =
∞∑
k=0

(α1)k . . . (αp)k
(β1)k . . . (βq)k

(c)kd,e
Γe(ka+ b)

yk

k!
2−2ρ′k.

Proof: By using the results of (6) and (9) in (13), we arrive at∫ ∞

−∞
x2σe−x2

Hn(x)[ ∞∑
k=0

(α1)k . . . (αp)k
(β1)k . . . (βq)k

(c)kd,e
Γe(ka+ b)

(yx2ρ′
)
k

k!

1

2πi

∫
L

ϕ(s, t)(zx2ρ)
s
ds

]
dx,

here ϕ(s, t) defined in (7).
Provided under the given condition, interchange the order of contour integral

6
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and integral. We get,

∞∑
k=0

(α1)k . . . (αp)k
(β1)k . . . (βq)k

(c)kd,e
Γe(ka+ b)

yk

k!

1

2πi

∫
L

ϕ(s, t)zs
[∫ ∞

−∞
x2(σ+ρ′k+ρs)e−x2

Hn(x)dx

]
ds.

By using improper integral given below∫ ∞

−∞
x2σe−x2

Hn(x)dx = 2n−2σ
√
π

Γ(2σ + 1)

(σ − n/2 + 1)
. (14)

After little simplification we get the desire result.

Theorem 2:∫ 1

−1

(1 + x)Λ−1Pn(x)
(a,b,c,d,e)

S
(p,q)

[
y (1 + x)

ν′]
ΓM,N
P,Q

[
z (1 + x)

ν

∣∣∣∣ (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q

]
dx = 2ΛL2(k)Γ

M,N+2
P+2,Q+2[

z2ν
∣∣∣∣ (1− Λ− ν′k, ν), (1− Λ− ν′k, ν), (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q, (Λ− ν′k − n, ν), (1− Λ− ν′k + n, ν)

]
, (15)

where,

L2(k) =
∞∑
k=0

(α1)k . . . (αp)k
(β1)k . . . (βq)k

(c)kd,e
Γe(ka+ b)

yk

k!
2ν

′k.

Proof: By using the known result given in (p.316, eq.15, [8]), we can get the
proof of the Theorem 2 in similar manner as we did in the Theorem 1 .

Theorem 3:∫ 1

−1

(1− x)λ(1 + x)δxnP (λ,δ)
n (x)

(a,b,c,d,e)

S
(p,q)

(yxρ)

(Γ)I0,n:m1,n1;m2,n2
pl,ql,r;pl(1)

,q
l(1)

,r(1);pl(2)
,q

l(2)
,r(2)

[
z1x

ν

z2x
µ

∣∣∣∣ A∗

B∗

]
= 2λ+δ+n+1L3(k)

(Γ)I0,n+2:m1,n1;m2,n2

pl+2,ql+1,r;p
l(1)

,q
l(1)

,r(1);pl(2)
,q

l(2)
,r(2)

[
z12

ν

z22
µ

∣∣∣∣ C∗

D∗

]
, (16)

where,

A∗ =
(
e1, E

(1)
1 , E

(2)
1 , s

)
,
(
ej , E

(1)
j , E

(2)
j

)
2,n

,
(
ejl, E

(1)
jl , E

(2)
jl

)
n+1,pl

,

(e
(1)
j , E

(1)
j )

1,n1
,
(
e
(1)

jl(1)
, E

(1)

jl(1)

)
n1+1,p

(1)
l

, (e
(2)
j , E

(2)
j )

1,n2
,
(
e
(2)

jl(2)
, E

(2)

jl(2)

)
n2+1,p

(2)
l

B∗ = . . . ,
(
fjl, F

(1)
jl , F

(2)
jl

)
m+1,ql

,
(
f
(1)
j , F

(1)
j

)
1,m1

,
(
f
(1)

jl(1)
, F

(1)

jl(1)

)
m1+1,q

(1)
l

,
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(
f
(2)
j , F

(2)
j

)
1,m2

,
(
f
(2)

jl(2)
, F

(2)

jl(2)

)
m2+1,q

(2)
l

C∗ = (−λ− n− ρk, ν, µ) , (−δ − n− ρk, ν, µ) ,
(
e1, E

(1)
1 , E

(2)
1 , s

)
,(

ej , E
(1)
j , E

(2)
j

)
2,n

,
(
ejl, E

(1)
jl , E

(2)
jl

)
n+1,pl

, (e
(1)
j , E

(1)
j )

1,n1
,(

e
(1)

jl(1)
, E

(1)

jl(1)

)
n1+1,p

(1)
l

, (e
(2)
j , E

(2)
j )

1,n2
,
(
e
(2)

jl(2)
, E

(2)

jl(2)

)
n2+1,p

(2)
l

D∗ = . . . ,
(
fjl, F

(1)
jl , F

(2)
jl

)
m+1,ql

, (−1− λ− δ − 2(n− ρk), 2ν, 2µ) ,(
f
(1)
j , F

(1)
j

)
1,m1

,
(
f
(1)

jl(1)
, F

(1)

jl(1)

)
m1+1,q

(1)
l

,
(
f
(2)
j , F

(2)
j

)
1,m2

,(
f
(2)

jl(2)
, F

(2)

jl(2)

)
m2+1,q

(2)
l

and

L3(k) =
∑∞

k=0
(α1)k...(αp)k
(β1)k...(βq)k

(c)kd,e

Γe(ka+b)
yk

k! 2
ρk.

Proof: By using the result given in (p.261, eq.15, [15]), we can get the proof of
the Theorem 3 in similar manner as we did in the Theorem 1 .

3 Polynomials and Linear Approximation

Here, we solve the NoLDEs given in (10), (11) and (12) by using Hermite,
Legendre and Jacobi polynomials respectively.

3.1 Hermite Polynomials and Linear Approximation

Here, we solve the NoLDE given in equation (10) as follows:

..
x + f(x) = NF (t), (17)

where

f(x) = ω
(a,b,c,d,e)

S
(p,q)

[
y
( x

L

)2Λ′]
ΓM,N
P,Q

[
z
( x

L

)2Λ
∣∣∣∣ (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q

]
, (18)

which can be written in terms of Hermite polynomials in the interval (–L, L),
We get

f(x) =
∞∑

n=0

ηnHn

( x

L

)
, (19)

where coefficient ηn is defined by

ηn =

∫∞
−∞ f(Lx)Hn(x)x

2ρe−x2

dx∫∞
−∞ [Hn(x)]

2
e−x2dx

. (20)
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The series given in equation (20) truncated after two terms then, we get a linear
approximation f∗(x) as follows:

f∗(x) = η0H0

( x

L

)
+ η1H1

( x

L

)
. (21)

Now, we can write linear approximation f∗(x) by using equation (18) as

f∗(x) = ω
(a,b,c,d,e)

S
(p,q)

[
y
( x

L

)2Λ′]
ΓM,N
P,Q

[
z
( x

L

)2Λ
∣∣∣∣ (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q

]
, (22)

putting H0(x) = 1 and H1(x) = 2x in (21), we have

f∗(x) = η0 + 2η1

( x

L

)
. (23)

To obtain the values of η0 and η1, we consider n = 0, n = 1 and using equation
(18) in (22), then we have

η0 =

∫∞
−∞ ω

(a,b,c,d,e)

S
(p,q)

(
yx2Λ′

)
AHH0(x)x

2ρe−x2

dx∫∞
−∞ [H0(x)]

2
e−x2dx

, (24)

and

η1 =

∫∞
−∞ ω

(a,b,c,d,e)

S
(p,q)

(
yx2Λ′

)
AHH1(x)x

2ρe−x2

dx∫∞
−∞ [H1(x)]

2
e−x2dx

, (25)

where

AH = ΓM,N
P,Q

[
zx2Λ

∣∣∣∣ (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q

]
Further, using Theorem 1 and result (p.193, eq.(6), [15]) with n = 0 in equation
(24), we get

η0 = 2−2σωL1(k)

ΓM,N+1
P+1,Q+1

[
z2−2ρ

∣∣∣∣ (−2σ − 2ρ′k, 2ρ), (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q, (−σ − ρ′k, ρ)

]
, (26)

similarly, we can obtained

η1 = 2−2σωL1(k)

ΓM,N+1
P+1,Q+1

[
z2−2ρ

∣∣∣∣ (−2σ − 2ρ′k, 2ρ), (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q, (1/2− σ − ρ′k, ρ)

]
. (27)

Now, on replacing f(x) by f∗(x) and using (23), we can express (17) as

..
x + η0 + 2η1

( x

L

)
= NF (t), (28)

9
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If δ2 = 2η1/L and δ21 = η0, then (28) can be written as

..
x + δ2x+ δ21 = NF (t). (29)

Apply Laplace transform in equation (29) to find the approximate solution under
the given constraints

y = L(L− 1) and
.
x = 0 if t = 0,

x∗ =

[
L(L− 1) +

δ21
δ

]
cos δt− δ21

δ
+

N

δ

∫ t

0

F (u) sin δ(t− u)du. (30)

The obtained approximate solution is general in nature.

3.2 Legendre Polynomials and Linear Approximation

The main objective of this section is to solve the NoLDE defined in (11) as
follows:

..
x + f(x) = NF (t), (31)

where

f(x) = ω
(a,b,c,d,e)

S
(p,q)

[
y
(
1 +

x

L

)ν′]
ΓM,N
P,Q

[
z
(
1 +

x

L

)ν
∣∣∣∣ (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q

]
, (32)

which can be written in terms of Legendre polynomials in the interval (–L, L).
We get

f(x) =

∞∑
n=0

τnPn

( x

L

)
, (33)

where coefficient τn is defined by

τn =

∫ 1

−1
f(Lx)Pn(x)(1 + x)Λ−1dx∫ 1

−1
[Pn(x)]

2
dx

. (34)

Truncated the series (34) after two terms. We get a linear approximation f∗(x)
as follows:

f∗(x) = τ0P0

( x

L

)
+ τ1P1

( x

L

)
. (35)

Now, we can write linear approximation f∗(x) by using equation (32) by

f∗(x) = ω
(a,b,c,d,e)

S
(p,q)

[
y
(
1 +

x

L

)ν′]
ΓM,N
P,Q

[
z
(
1 +

x

L

)ν
∣∣∣∣ (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q

]
, (36)
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Putting P0(x) = 1 and P1(x) = x in (35), we have

f∗(x) = τ0 + τ1

( x

L

)
. (37)

Use equation (36) in (34) with n = 0 and n = 1, to obtain the values of τ0 and
τ1 respectively as

τ0 =

∫ 1

−1
ω
(a,b,c,d,e)

S
(p,q)

[
y (1 + x)

ν′]
ALP0(x)(1 + x)Λ−1dx∫ 1

−1
[P0(x)]

2
dx

, (38)

and

τ1 =

∫ 1

−1
ω
(a,b,c,d,e)

S
(p,q)

[
y (1 + x)

ν′]
ALP1(x)(1 + x)Λ−1dx∫ 1

−1
[P1(x)]

2
dx

, (39)

where

AL = ΓM,N
P,Q

[
z (1 + x)

ν

∣∣∣∣ (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q

]
Further, using Theorem 2 and result (p.175, eq.(12), [15]) with n = 0 in (38),
we get

τ0 = ω2Λ−1L2(k)Γ
M,N+2
P+2,Q+2[

z2ν
∣∣∣∣ (1− Λ− ν′k, ν), (1− Λ− ν′k, ν), (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q, (Λ− ν′k, ν), (1− Λ− ν′k, ν)

]
, (40)

Similarly, we can evaluate for n = 1

τ1 = 3ω2Λ−1L2(k)Γ
M,N+2
P+2,Q+2[

z2ν
∣∣∣∣ (1− Λ− ν′k, ν), (1− Λ− ν′k, ν), (f1, F1, t), (fj , Fj)2,P
(wj ,Wj)1,Q, (Λ− ν′k − 1, ν), (2− Λ− ν′k, ν)

]
. (41)

Now, on replacing f(x) by f∗(x) and use (37), we can express in (31) as

..
x + δ21 + δ2x = NF (t), (42)

where δ2 = τ1/L and δ21 = τ0. Apply the Laplace transform in (42) to find the
approximate solution under the constraints

x = L(L− 1) and
.
x = 0 if t = 0,

x∗ =

[
L(L− 1) +

δ21
δ

]
cos δt− δ21

δ
+

N

δ

∫ t

0

F (u) sin δ(t− u)du. (43)

The obtained approximate solution is general in nature.
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3.3 Jacobi Polynomials and Linear Approximation

Here, our aim is to solve the NoLDE given in (12) is as follows:

..
x + f(x) = NF (t), (44)

where

f(x) = ω
(a,b,c,d,e)

S
(p,q)

[
y
( x

L

)Λ
]

(Γ)I0,n:m1,n1;m2,n2
pl,ql,r;pl(1)

,q
l(1)

,r(1);pl(2)
,q

l(2)
,r(2)

[
z1

(
x
L

)ν
z2

(
x
L

)µ ∣∣∣∣ A∗

B∗

]
, (45)

where A∗ and B∗ are defined in (12), which can be written in terms of Jacobi
polynomials in the interval (–L, L). We have

f(x) =

∞∑
n=0

C(ι,κ)
n P (ι,κ)

n

( x

L

)
, (46)

where coefficient C
(ι,κ)
n is defined by

C(ι,κ)
n =

∫ 1

−1
f(Lx)P

(ι,κ)
n (x)(1− x)ι(1 + x)κdx∫ 1

−1

[
P

(ι,κ)
n (x)

]2
(1− x)ι(1 + x)κdx

. (47)

Truncated the above given series after two terms. We get a linear approximation
f∗(x) as follows:

f∗(x) = C
(ι,κ)
0 P

(ι,κ)
0

( x

L

)
+ C

(ι,κ)
1 P

(ι,κ)
1

( x

L

)
. (48)

Now, we can write linear approximation f∗(x) by using equation (45) by

f∗ = ω
(a,b,c,d,e)

S
(p,q)

[
y
( x

L

)Λ
]

(Γ)I0,n:m1,n1;m2,n2
pl,ql,r;pl(1)

,q
l(1)

,r(1);pl(2)
,q

l(2)
,r(2)

[
z1

(
x
L

)ν
z2

(
x
L

)µ ∣∣∣∣ A∗

B∗

]
, (49)

Putting P
(ι,κ)
0 = 1 and P

(ι,κ)
1 = ι−κ

2 + (2+ι+κ)x
2 in (48), we have

f∗(x) = C
(ι,κ)
0 + C

(ι,κ)
1

[
ι− κ

2
+

(2 + ι+ κ)x

2

]
. (50)

Use equation (47) in (45) with n = 0 and n = 1, to obtain the values of C
(ι,κ)
0

and C
(ι,κ)
1 with the help of Theorem 3 and aid a result (p.260, eq.(11), [15])
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with n = 0 in equation (47), we get C
(ι,κ)
0 as follows:

C
(ι,κ)
0 =

ωL3(k)Γ(2 + ι+ κ)

Γ(1 + ι)Γ(1 + κ)

(Γ)I0,n+2:m1,n1;m2,n2

pl+2,ql+1,r;p
l(1)

,q
l(1)

,r(1);pl(2)
,q

l(2)
,r(2)

[
z12

ν

z22
µ

∣∣∣∣ C∗∗

D∗∗

]
, (51)

where
C∗∗ = (−ι− ρk, ν, µ) , (−κ− ρk, ν, µ) ,

(
e1, E

(1)
1 , E

(2)
1 , s

)
,
(
ej , E

(1)
j , E

(2)
j

)
2,n

,(
ejl, E

(1)
jl , E

(2)
jl

)
n+1,pl

, (e
(1)
j , E

(1)
j )

1,n1
,
(
e
(1)

jl(1)
, E

(1)

jl(1)

)
n1+1,p

(1)
l

, (e
(2)
j , E

(2)
j )

1,n2
,(

e
(2)

jl(2)
, E

(2)

jl(2)

)
n2+1,p

(2)
l

D∗∗ = . . . ,
(
fjl, F

(1)
jl , F

(2)
jl

)
m+1,ql

, (−1− ι− κ− 2ρk, 2ν, 2µ) ,
(
f
(1)
j , F

(1)
j

)
1,m1

,
(
f
(1)

jl(1)
, F

(1)

jl(1)

)
m1+1,q

(1)
l

,
(
f
(2)
j , F

(2)
j

)
1,m2

,
(
f
(2)

jl(2)
, F

(2)

jl(2)

)
m2+1,q

(2)
l

.

Similarly, we can obtain C
(ι,κ)
1 as

C
(ι,κ)
1 =

2ωL3(k)Γ(3 + ι+ κ)

Γ(2 + ι)Γ(2 + κ)

(Γ)I0,n+2:m1,n1;m2,n2

pl+2,ql+1,r;p
l(1)

,q
l(1)

,r(1);pl(2)
,q

l(2)
,r(2)

[
z12

ν

z22
λ

∣∣∣∣ C∗∗∗

D∗∗∗

]
, (52)

where
C∗∗∗ = (−ι− 1− ρk, ν, µ) , (−κ− 1− ρk, ν, µ) ,

(
e1, E

(1)
1 , E

(2)
1 , s

)
,(

ej , E
(1)
j , E

(2)
j

)
2,n

,
(
ejl, E

(1)
jl , E

(2)
jl

)
n+1,pl

, (e
(1)
j , E

(1)
j )

1,n1
,(

e
(1)

jl(1)
, E

(1)

jl(1)

)
n1+1,p

(1)
l

, (e
(2)
j , E

(2)
j )

1,n2
,
(
e
(2)

jl(2)
, E

(2)

jl(2)

)
n2+1,p

(2)
l

D∗∗∗ = . . . ,
(
fjl, F

(1)
jl , F

(2)
jl

)
m+1,ql

, (−3− ι− κ− 2ρk, 2ν, 2µ) ,
(
f
(1)
j , F

(1)
j

)
1,m1

,
(
f
(1)

jl(1)
, F

(1)

jl(1)

)
m1+1,q

(1)
l

,
(
f
(2)
j , F

(2)
j

)
1,m2

,
(
f
(2)

jl(2)
, F

(2)

jl(2)

)
m2+1,q

(2)
l

.

Now, on replacing f(x) by f∗(x) and use equation (50), we can write equa-
tion (44) as

..
x + δ2x+

ι− κ

2 + ι+ κ

(
δ2 − δ21

)
= NF (t), (53)

where δ2 = 2+ι+κ
2L and δ21 = 2+ι+κ

(κ−ι)LC
(ι,κ)
0 .

Apply the Laplace transform in equation (53) to find the approximate solution
under the constraints

x = L(L− 1) and
.
x = 0 if t = 0,
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x∗ =

[
L(L− 1) +

(ι− κ)δ

2 + ι+ κ

(
1− δ21

δ

)]
cos δt− (ι− κ)δ

2 + ι+ κ

(
1− δ21

δ

)
+

N

δ

∫ t

0

F (u) sin δ(t− u)du. (54)

The obtained approximate solution is general in nature.

Similarly, we can prove all of the above results and theorems for lower forms of
the incomplete H-function γM,N

P,Q [z] and incomplete I-function with two variables
(γ)I0,n:m1,n1;m2,n2

pl,ql,r;pl(1)
,q

l(1)
,r(1);pl(2)

,q
l(2)

,r(2)
[zi].

4 Conclusion

In this article, we introduced the approximate solution of NoLDE associated
with incomplete H-functions, incomplete I-functions with two variables and S-
function with the help of Hermite, Legendre and Jacobi polynomials. These
obtained results are general and effectively used in the field of Science, Mathe-
matics, Statistics, Economics and finance. These findings can be used to solve
the problem of a resistance less circuit involving a nonlinear capacitor under the
influence of external periodic force.
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Abstract

Mathematical modeling is one of the most used techniques for analyzing and
preventing the transmission of COVID-19. To control this pandemic, it is essen-
tial to classify the infected population. So in this article, a new SEAIQHRDP
model was formulated to investigate the transmittal dynamics of COVID-19. This
model contains nine compartments Susceptible(S) class, Exposed(E) class, Asymp-
tomatic(A) class, Infected(I) class, Quarantined(Q) class, Hospitalized(H) class,
Recovered(R) class, Death(D) class, and Insusceptible (P) class. This model was
fitted to the daily and cumulative confirmed COVID-19 cases in the period between
30th January 2020 and 13th January 2021 in India. Sensitivity analysis concern-
ing R0 was performed to classify the significance of parameters. Contour plots for
R0 were executed and the effect of various parameters on the infected classes had
shown graphically. The necessity of stringent face mask usage and social seclusion
is highlighted by optimal control analysis as a key factor in the dramatic reduction
of infection rates. So the optimal control technique was adopted to lessen the dis-
ease mortality by taking both nonpharmaceutical and pharmaceutical intervention
strategies as control functions and comparing infectives and recoveries with and
without controls.

Keywords: : mathematical model, Stability analysis, Basic reproduction number, Sen-
sitivity analysis, optimal strategy
Subject Classification: 00A71

1 Introduction

The world has been trembling with a new infectious disease COVID-19. The World
Health Organization (WHO) has declared it was a universal pandemic on 11th March
2020 [14]. originally The COVID-19 disease was revealed in December 2019 in Wuhan,
Hubei, China. Later it increased rapidly and spread in all countries in the world. As of
August 28th, 2022, the total confirmed cases of 596,873,121 and death cases of 6,459,684
of COVID-19 had been reported to WHO [15]. On January 30th, 2020 the first COVID-19
case [28] was placed in Kerala, India. A total of 44,389,176 confirmed cases and 527,556
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death cases were placed in India as of August 28th, 2022. Initially, some countries
implemented strictly non-pharmacological interventions namely as use of face masks
social distancing, and hygiene to resist the extent of the COVID-19 pandemic. Due to
these safety measures, the virus spread slowed down gradually but not ceased completely.
Since the vaccination process had started, the COVID-19 cases decreased day by day
and it became under control. But still now in some countries COVID- cases raises
unexpectedly.

Mathematical modeling is a prominent technique for forecasting and controlling the
transmission dynamics of epidemic diseases. Alexander Krämeret al.[1] H.W. Hethcote
[16], R.M.May & R.M Anderson, [38] Brauer F & Chavez CC) [6]. Some standard math-
ematical models such as SIR, SEIR, SEIAR, SEIRD, etc. were broadly used to estimate
the future trend of a pandemic. The standard SIR model Kermack WO & McKendrick
[20] described the spread of the virus using the compartments of susceptible, infected,
and recovered. By incorporating the new compartments, we get new models to detect the
communication dynamics of contagious diseases. An SEIR model by Mwalili S et al. cite
26 was developed by adding an Exposed compartment to the SIR model which contained
distinctive reaction and administration activity factors. This model is used widely to
forecast the direction of the COVID-19 graph in China among other countries. Through
the SEIR model, the influence of control strategies was studied by Lin Q et al.[22] and
formulated the SEIR extension model. A generalized SEIR model Read JM et al.[34]
was advanced in the latent period to cover the communication dynamics of COVID-19.
During the incubation period, it consists of one more compartment as asymptomatic
individuals in the SEIR model. The isolated class in SEIJR was interchanged with the
asymptomatic class in SEIAR. By using this model, Bailey et al [2] displayed related
properties to the SEIJR model Peng L et al. [30]. General models such as SIR, SEIR,
SEIRD, SEIJR, etc. were not suitable for forecast the effect of the widespread disease
since they comprise a finite number of parameters and disregarded essential classes such
as asymptomatic infected, quarantine, Hospitalization, etc. SIDARTHE model of Gior-
dano et al.[11] is an extension of the SEIR model which consists of undetected as well as
detected infected populations.

The field of FDEs has developed greatly over the past few decades as a result of its
applicability in numerous branches of research and technology. To study malaria trans-
mission, Rehman, Attiq ul, and colleagues devised a 9 compartment FDE model [35].
By considering both the government’s activity and the individual’s response, Danane,
Jaouad et al.[8] established a seven-compartment FDE model. Supriya, Yadav, and col-
leagues [42] created the FDE model to investigate the COVID-19 trend using an effective
and potent analytical q-HASTM approach. By Jagdev Singh, a fractional guava fruit
model with memory effect was developed [41]

In general, before showing any symptoms an individual exposed to the virus will
become infectious i.e. pre-symptomatic through an incubation period of 5 days Liu C
et al. [23]. Many reports have shown that a huge number of individuals who were
exposed to the virus did not show any symptoms i.e., they all remain asymptomatic.
The pre-symptomatic or asymptomatic individuals were capable to diffuse the virus
to others. Since the reported asymptomatic cases in India are high, it was necessary
to include the asymptomatic class in the epidemiological model. As for the total of
parameters and accurateness model, the above-discussed models were not perfect for
long-term predictions. Therefore one more compartment dead population had been
incorporated in the SEIAR model presented through Huang et al.[15] to improve the
accurateness model for long-term prediction.

Raj Kishore et.al [33] developed the SEIQRDP model by including the quarantine
class (Q) and insusceptible class (P) and predicted the number of active cases. By
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Figure 1: Flow Chart of SEAIQHRDP model

incorporating an asymptomatic class Singh HP et al [39] introduced the SEAIQRDT
model and forecast the confirmed cases. When the best optimal control technique is
used early in a pandemic, the intensity of epidemic peaks tends to decline, spreading
the maximum impact of an epidemic across a longer time. Massad, Eduardo et al [25]
developed an optimal control model to analyze the effect of vaccination on the zika virus.
To analyze the COVID-19 trend in the future, Bandekar SR and Minighosh [3] devised an
11 compartments mathematical model. They then employed an optimal control strategy
to reduce the disease fatality.

By taking into account all of the aforementioned discussions, We developed a
new SEAIQHRDP model by including a new class—hospitalization—to the SEAIQRDP
model in order to examine the transmission of COVID-19. Later an optimal control
strategy with three control variables was applied to the proposed model to moderate the
outspread of COVID-19 optimally.

The following sections in this manuscript were systematized as follows: SEAIQHRDP
model formulation was presented in section 2. In section 3 The elementary properties of
the recommended model such as positivity and boundedness, disease-free equilibrium’s
local stability, and R0 expression in various parameters were executed. Section 3 fin-
ished Parameter estimation, model fitting, and model justification. Sect.5 performed the
sensitive analysis concerning R0 and the impact of parameters on infected populations.
Section 6 implemented and solved an optimal control problem analytically. The work
ends with the conclusion in Section 7

2 Model formation

By considering all the above discussions, in this study, a new mathematical model
SEAIQHRDP was formulated. In this model, the class S(t) contained the susceptible
individuals at time t, the class E(t) contained exposed individuals (these were con-
taminated but does not contaminate others within the reaction time), the class A(t)
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contained asymptomatic infected individuals (despite no symptoms appeared in them
but capable to infect others), the class I(t) contains the symptomatic individuals (these
persons having symptoms and were capable to infect others ), the class Q(t) contained
the quarantined individuals (these were infected but isolated), the class H(t) contained
the hospitalization individuals (these were infected and undergo medical treatment), the
class R(t) contained the recovered individuals, the class D(t) contained the death indi-
viduals, and the class P(t) contained the insusceptible individuals those are incapable of
getting infected due to either pre-isolated or following the WHO rules strictly.

Let Λ and µ be the constant recruitment rate and normal death rate in the suscep-
tible population. Let β be the virus contact rate. Let ζa, ζq, and ζs be the adjustment
factors for asymptomatic infected, symptomatic infected, and quarantine populations.
βζa, βζq and βζh were the virus transmission factors of asymptomatic, symptomatic, and
quarantine populations to susceptible populations. These were time-dependent factors
in computations. This model has the potency of disease is △ =

ζaA+ζsI+ζqQ
N .

Let α be the protection rate at which the susceptible individuals move to insuscep-
tible individuals. This included the influence of control measures. Let θ be the fraction
at which the exposed individuals move to asymptomatic individuals. Then (1 − θ) is
the fraction at which exposed individuals move to symptomatic infected individuals at
a velocity ω. Let λa and λs be the quarantine rates at which the asymptomatically
infected individuals and symptomatically infected individuals were quarantined. Let ηs
and ηq hospitalization rates at which the symptomatic and quarantine populations had
certain complications due to severe symptoms shall be hospitalized. Let γa, γq, and γh
be the recovery rates at which the asymptomatic infected, quarantined, and hospitalized
individuals were recovered from the disease. There will be a possibility to die, in asymp-
tomatic individuals before getting symptoms and after admitting to the hospital. Let µa

and µh be the mortality rates of asymptomatic and hospitalized individuals. By using all
the above conditions, The relation between these nine compartments and corresponding
parameters were shown in Figure.1 and table 1
The arrangement of nonlinear differential equations for the proposed model in India was

ds

dt
= Λ− β △ S − (α+ µ)S (1.1)

dE

dt
= β △ S − (ω + µ)E (1.2)

dA

dt
= θωE − (λa + γa + µa + µ)A (1.3)

dI

dt
= (1− θ)ωE − (λs + ηs + µ)I (1.4)

dQ

dt
= λaA+ (λsI − (ηq + γq + µ)Q (1.5)

dH

dt
= ηsI + ηqQ− (γh+ µh + µ)H (1.6)

dR

dt
= γaA+ γqQ+ γhH − µR (1.7)

dD

dt
= µaA+ µhH (1.8)

dP

dt
= αS. (1.9)

with non negative primary conditions are S(0) = S0, E(0) = E0, A(0) = A0, I(0) == I0,
Q(0) = Q0, H(0) = H0 ,R(0) = R0, D(0) = D0and P (0) = P0.
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Table 1: SEAIQHRDP model parameter’s complete depiction.

parameter description

Λ Recruitment rate of human
θ Proportion of exposed individuals
ω Conversion rate of exposed to asymptomatically infected populace
α Protection rate of susceptible individuals to insusceptible populace
ζa,ζs,ζq Adjustment factor for asymptomatic, symptomatic and quarantine populace
β Transmission rate of virus
λa Quarantine rate of asymptomatic infected populace
λs Quarantine rate of symptomatic infected populace
ηs Hospitalization rate of symptomatic infected populace
ηq Hospitalization rate of quarantine infected populace
γa The rate of recovery from asymptomatic infected populace
γq The rate of recovery from quarantine populace
γh The rate of recovery from hospitalization populace
µa The rate of mortality from asymptomatic populace
µh The rate of mortality from hospitalization populace
µ Normal mortality rate of human populace

3 SEAIQHRDP model analysis

3.1 Positivity and boundedness

Theorem 1. All the solutions (S(t), E(t), A(t), I(t), Q(t), H(t), R(t), D(t), P (t)) ∈ R9
+

of the system (1) with primary conditions remain non negative and were uniformly
bounded in the region Ω for all time t ≥ 0.

Proof 1. Assumed that (S(t), E(t), A(t), I(t), Q(t), H(t), R(t), D(t), P (t)) ∈ R9
+ be a

solution of (1) for t ∈ [0, t0], where t0 ≥ 0.
From the equation (1.1),

ds
dt = Λ− (ζaA+ ζsI + ζqQ) S

N − (α+ µ)S ≥ Λ− ϕ(t)S

where ϕ(t) = β(ζaA+ ζsI + ζqQ) S
N + (α+ µ)

⇒ ds
dt ≥ Λ− ϕ(t)S

After integration, S(t) = S0 exp(−
∫ t

0
ϕ(s) ds)

∫ t

0
e
∫ s
0
ϕ(u) du) > 0.

Hence, for all t ∈ [0, t0), we get S(t) > 0
From the equation (1.2),

dE
dt = (ζaA+ ζsI + ζqQ) S

N − (ω + µ)E ≥ −(ω + µ)E

⇒dE
dt ≥ −(ω + µ)E

⇒ E(t) ≥ E0 exp(−
∫ t

0
(ω + µ) ds) ≥ 0

i.e, E(t) ≥ 0
From the equation (1.3),

dA
dt = θωE − (λa + γa + µa + µ)A ≥ −(λa + γa + µa + µ)A

⇒ dA
dt ≥ −(λa + γa + µa + µ)A

⇒ A(t) ≥ A0 exp(−
∫ t

0
(λa + γa + µa + µ) ds ≥ 0

i.e,A(t) ≥ 0
From the equation (1.4),

dI
dt = (1− θ)ωE − (λs + ηs + µ)I ≥ −(λs + ηs + µ)I

⇒ dI
dt ≥ −(λs + ηs + µ)I
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⇒ I(t) ≥ I0 exp(−
∫ t

0
(λs + ηs + µ) ds ≥ 0

i.e,I(t) ≥ 0
From the equation of (1.5),

dQ
dt = λaA+ (λsI − (ηq + γq + µ)Q ≥ −(ηq + γq + µ)Q

⇒dQ
dt ≥ −(ηq + γq + µ)Q

⇒ Q(t) ≥ Q0 exp(−
∫ t

0
(ηq + γq + µ) ds ≥ 0

i.e,Q(t) ≥ 0
From the equation (1.6),

dH
dt = ηsI + ηqQ− (γh + µh + µ)H ≥ −(γh + µh + µ)H

⇒ dH
dt ≥ −(γh + µh + µ)H

⇒ H(t) = H0 exp(−
∫ t

0
(γh + µh + µ) ds ≥ 0

i.e, H(t) ≥ 0
From the equation (1.7),

dR
dt = γaA+ γqQ+ γhH − µR ≥ µR

⇒dR
dt ≥ µR

⇒ R(t) ≥ R0 exp(−
∫ t

0
µ) ds ≥ 0

i.e,R(t) ≥ 0.
Similarly we can prove that D(t) ≥ 0 and P (t) ≥ 0.
Hence (S(t), E(t), A(t), I(t), Q(t), H(t), R(t), D(t), P (t)) of (1) with primary condi-

tions for all t ∈ [0, t0] are non negative solutions in Ω.
We prove that the boundedness of the solutions (S, E, A, I, Q, H, R,D,P) of system

(1).
The positivity of the solutions implies that dS

dt ≤ Λ− (α+ µ)S.
From the above equation, we can write that
limt→∞ supS ≤ Λ

(α+µ) and S ≤ Λ
(α+µ) .

consider the entire populationN = S + E +A+ I +Q+H +R+D + P .
By derivation of above equation gives dN

dt ≤ Λ− (α+ µ)N which leads to

limt→∞ supN ≤ Λ
(α+µ) .

This implies that N ≤ Λ
(α+µ) .

S + E +A+ I +Q+H +R+D + P ≤ Λ
(α+µ) .

Hence all the solution trajectories (S(t), E(t), A(t), I(t), Q(t), H(t), R(t), D(t), P (t)
with primary conditions were uniformly bounded in the region

Ω = (S(t), E(t), A(t), I(t), Q(t), H(t), R(t), D(t), P (t)) ∈ R9
+ : 0 ≤ (S,E,A, I,Q,H,R,D, P ) ≤ Λ

(α+µ) .

3.2 Basic reproduction number

The basic reproduction number, symbolized as R0, was a prominent parameter in the
analysis of contagious disease and it was defined as the total number of secondary cases
arising through a primary case in susceptible individuals. If R0 > 1 then the secondary
cases were more than one, so that disease will continue in the population and become an
epidemic. If R0 < 1 then the secondary cases were less than one, so that disease cannot
spread and die out as soon as possible. If R0 = 1 then there is only one secondary
case so that the disease is stable. Since at protection rate α population was protected,
the susceptible individuals became S = N(1 − α). The disease-free equilibrium point
E0 = (N(1− α), 0, 0, 0, 0, 0, 0, 0) of system (1) exists. Through Next Generation Matrix
O.Diekmann et al [29] P.van den Driessche & Watmough [32] and Khajanchi, S et al
[21], R0 value will be calculated mathematically.
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F =


βζa(1− α) + βζs(1− α) + βζq(1− α)

0
0
0
0

&V =


(ω + µ)E

−θωE + (λa + γa + µa + µ)Ia
−(1− θ)ωE + (λs + ηs + µ)Is
−λaIa − (λsIs + (ηq + γq + µ)Q


At disinfection state E = A = I = Q = H = 0,The Jacobian of two matrices F and V are

F =


0 βζa(1− α) βζs(1− α) βζq(1− α)
0 0 0 0
0 0 0 0
0 0 0 0



V =


ω + µ 0 0 0
−θω λa + γa + µa + µ 0 0

−(1− θ)ω 0 λs + ηs + µ 0
0 −λa −λs ηq + γq + µ


Therefore R0 was obtained from equation R0 = ρ(FV −1),where ρ represented the matrix
FV −1 spectral radius. Hence, the reproduction number was

R0 = (1−θ)βωζs(1−α)
(λs+ηs+µ)(ω+µ) + βθωζa(1−α)

(λa+γa+µa+µ)(ω+µ)+
βζq((1−θ)(λa+γa+µa+µ)ωλs+(λs+ηs+µ)θωλa)(1−α)

(λa+γa+µa+µ)(λs+ηs+µ)(ηq+γq+µ)(ω+µ)

(1)

3.3 Disease-free equilibrium Stability analysis

The Jacobian matrix JE0 of the classification of equations (1) at the equilibrium point
E0(∆µ , 0, 0, 0, 0, 0, 0, 0, 0) was
JE0 =

−(α+ µ) 0 −βζa(1− α) −βζs(1− α) −βζq(1− α) 0 0 0 0
0 ω + µ βζa(1− α) βζs(1− α) βζq(1− α) 0 0 0 0
0 θω −(λa + γa + µa + µ) 0 0 0 0 0 0
0 (1− θ)ω 0 −(λs + ηs + µ) 0 0 0 0 0
0 0 λa λs −(ηq + γq + µ) 0 0 0 0
0 0 0 ηs ηq −(γh + µh + µ) 0 0 0
0 0 γa 0 γq γh −µ 0 0
α 0 0 0 0 0 0 0 0
0 0 0 µa 0 µh 0 0 0


The characteristic equation of the matrix JE0 was | JE0 − λI |= 0
(λ+ µ)(λ+ (α+ µ))(λ9 + a1λ

8 + a2λ
7 + a3λ

6 + a4λ
5 + a5λ

4 + a6λ
3 + a7λ

2a8λ+ a9) = 0
where a1 = (A+G+ J +K + t+ E + I)
a2 = (G+ J +K)t+A(G+ J +K + t+E + I) + (G+ J +K + I + t)E + (G+ J +K +
E + t)I +BF + CH +G(J +K) + JK),
a3 = A(G+ J +K + E + I)µ+GE + JE +GI +KE + JI +KI + EI +BF + CH +
GJ +GK + JK) + ...+ I(J +K)µ,
a4 = A(GEI + JEI +KEI + BFJ + CGH + BFK + CHJ + CHK +GJK + (EI +
BF + CH)µ+ ...+BFKI +GJKE +GJKI,
a5 = A(FKλaD+GHλsD+HKλsD+ (BFI +GJE +GKE +GJI + JKE + JKI +
FλaD)µ+ ...+ CHJKt+ hµDII,
a6 = A(BFJKI+GHKλsD+(BFJI+BFKI+GJKE+GJKI+FKλaD+GHλsD)µ+
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...+ (FKλaDI +BFJKI)µ,
a7 = A(GJKEI + CGHJK + FKλaDI +BFJKI +GHKλsD)µ,
a8 = 0 and a9 = 0
Here A = (α + µ),B=βζa(1 − α) and C = βζs(1 − α), D = βζq(1 − α), E = (µ + ω),
F = θω,
G = (λa+γa+µa+µ), H = (1−θ), I = (λs+ηs+µ), J = (ηq+γq+µ), K = ((γh+µh+µ).
Hence JE0 is singular because one of the eigenvalues is zero. Therefore at the disease-free
equilibrium, the stability of the system (1) does not exists by using eigenvalues.

Theorem 2. The Disease-Free Equilibrium E0 = (Λµ , 0, 0, 0, 0, 0, 0) was locally asymp-
totically stable for R0 < 1 and unstable for R0 > 1

Since the JE0 has zero eigen value, according to Kermack WO [20] and singh HP[39],
the theorem was satisfied that is the Disease-Free Equilibrium E0 = (Λµ , 0, 0, 0, 0, 0, 0)
was locally asymptotically stable for R0 < 1 and unstable for R0 > 1.

Table 2: Fitted parameters and their sensitivity indices list of SEAIQHRDP model

parameter value References sensitivity indices

π varies - -
ζa 0.4 Gumel AB et al.[12] 0.4547
ζs 0.4 Nadim SS et al.[27] 0.2416
ζq 0.3 Biswas, Sudhanshu Kumar et al [4] 0.3037
θ 0.7 Fergusonm.N et al. [10] -0.0015
ω 0.1 R. Li et al. [36] -0.1048
β 0.9714 evaluated 1.0000
α 0.0016 evaluated -0.07158
λa 0.4614 evaluated -0.1764
λs 0.1143 evaluated -0.0997
ηs 0.1840 evaluated -0.1418
ηq 0.0742 evaluated -0.0948
γa 0.1302 evaluated -0.2757
γq 0.1661 evaluated -0.2088
γh 0.1777 evaluated -0.2278
µa 0.0035 evaluated -0.0207
µh 0.1544 evaluated -0.0233
µ 0.0000391 Worldmeter.info/coronavirus [16] -0.1070

4 Numerical simulation

In this sector, the numerical simulation of confirmed cases of COVID-19 for India was
performed and the simulation results were compared with actual data [21] from 30th,
January 2020 to 13th, January 2021. The SEAIQHRDP model fitted to daily and cu-
mulative confirmed coronavirus cases in India which illustrates a satisfactory estimation.
The model parameters β, α, λa, λs, ηs, ηq, γa, γq, γh, µa, µh and µ were estimated by
using a nonlinear least squares regression method (LSQNONLIN function) in MATLAB.
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Figure 2: The model fitting of reported (a) daily confirmed cases and (b) cumulative
confirmed cases of COVID-19 in India.

The minimizing error was

R(Φ) =
n∑

t=1

(Qt(Φ)− ¯Qt(Φ))
2 (2)

where Qt(Φ) and ¯Qt(Φ) were a cumulative number of confirmed cases through actual
data and model prediction. In Table 2, the values for the estimated and fixed parameters
were shown. The fundamental reproduction numberR0 was determined as 2.089 using
the fixed and model parameters in Table 2.

In Figure.2 the curve fitting was taken from 30th, January 2020 to 13th, January 2021
in apicovid19india.org [13] in India. The black curve represented the reported COVID-19
cases and the red curve denoted the model simulation COVID-19 cases.

5 Sensitivity analysis

Sensitivity analysis was used in defining the impact of different factors in the spread
of COVID-19. This analysis was used to identify the growth and reduction in basic
reproduction numbers concerning numerous parameters. A complete chapter on the
sensitivity analysis of the dengue virus was obtained in Rodrigues H et al. [37] and
Burattini, M.N et al [6]. Whenever the significant parameters were recognized, different
strategies will be executed to get optimum results. To identify such parameters, the
sensitivity index of R0 concerning various parameters was estimated. The normalized
sensitivity index of R0 is defined as

ΓR0
q =

∂R0

∂q
× q

R0
.

where q was the significant parameter, whose sensitivity on R0 obtained by using nor-
malized forward sensitivity index method Biswas, S et al [5].

The highest sensitive parameter on reproduction number was the parameter whose
index was high in magnitude. If the sensitivity of parameter q was positive, R0 was
increased whenever the parameter q increased. Similarly, the sensitivity of parameter
q was negative, R0 was decreased whenever the parameter q increased. From Figure.3
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Figure 3: Normalized local sensitivity indices ofR0 with respect to each model parameter.

it was observed the parameters θ, λa, λs, ηs, ηq, γa, γq, µa have negative indices with
R0 and the parameters ζa, ζs , ζq, β, ω, µ share positive indices with R0. So that R0

value increased as the parameters ζa, ζs and ζq increased and R0 value decreased as the
parameters θ, ηs, ηq and γq increased. Hence the sensitive analysis determined that the
parameters ζa, ζs, ζq, β, θ, ηs,γa and γq were more effective parameters. The sensitivity
indices of various parameters had been displayed in Table 2.

Figure.4(a) represented that R0 Contour Plot with respect to virus transmission
rate (β) and quarantine rate (λs) from symptomatic population. This figure described a
reduction in R0 with a decrease in virus transmission rate (β) and an increase in quar-
antine rate (λs) from the symptomatic population. Figure.4(b) explained R0 Contour
Plot with respect to virus transmission rate (β) and hospitalization rate (ηs) from symp-
tomatic population. This figure described a reduction in R0 with a decrease in virus
transmission rate β and an increase in hospitalization rate (ηs) from the symptomatic
population. Figure.4(c) displayed R0 Contour Plot with respect to quarantine rate (λa)
from asymptomatic population and recovery rate (γq) from quarantine population. This
figure demonstrated reduction in R0 with an increase in quarantine rate (λa) from an
asymptomatic population and an increase in recovery rate (γq) from quarantine pop-
ulation. Figure.4(d) expressed the Contour Plot of the Basic Reproduction Number
concerning hospitalization rate (ηs) from symptomatic population and hospitalization
rate (ηq) from quarantine population. This figure illustrated R0 rises with a decrease in
hospitalization rate (ηs) from the symptomatic population and hospitalization rate (ηq)
from the quarantine population.

5.1 COVID-19 Prevalence changes with various parameters

From Figure.5 to Figure.9, It was perceived that the asymptomatic infected and symp-
tomatic infected individuals were reduced if the protection rate (α) from susceptible
individuals, quarantine rate (λa) from asymptomatic individuals, quarantine rate (λs)
from symptomatic individuals, hospitalization rate (ηq) from quarantine individuals and
hospitalization rate (ηs) from symptomatic individuals increased.
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Figure 4: Contour plots of basic reproduction number R0 with respect to (a) (β, λs),
(b) (β ηs), (c) (λa, γq) and (d) (ηs, ηq).
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Figure 5: Effect of parameter α on (a) asymptomatic infected populace and (b) symp-
tomatic infected populace
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Figure 6: Effect of parameter λa on (a) asymptomatic infected populace and (b) symp-
tomatic infected populace
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Figure 7: Effect of parameter λs on (a) asymptomatic infected populace and (b) symp-
tomatic infected populace
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Figure 8: Effect of parameter ηq on (a) asymptomatic infected populace and (b) symp-
tomatic infected populace
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Figure 9: Effect of parameter ηs on (a) asymptomatic infected populace and (b) symp-
tomatic infected populace
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6 Optimal control

6.1 Optimal control problem

The effectiveness of control techniques was crucial in decreasing the spread of the
COVID-19 virus. It was essential to improve a policy that minimizes both the number
of infected populations and related costs. In this phase, the optimal control technique
was a tremendously useful tool for defining such a strategy. Now we study the impact
of pharmacological interventions to diminish the spread of the virus. To achieve this,
the system(1) can be extended by including three control variables u1(t), u2(t) and u3(t)
where
(a) Control u1(t) represented the degree of protection provided by government interven-
tions. The function of this control variable was to enhance the protection rate α.
(b) Control u2(t) described the treatment of asymptomatic infected individuals. The
function of this control variable was to develop the quarantine rate (λa) from asymp-
tomatic infected individuals.
(c) Control u3(t) characterized the treatment of symptomatic infected ( both quarantine
and hospitalization) individuals. The function of this control variable was to improve the
quarantine rate (λs) and hospitalization rate (ηs) from symptomatic infected individuals.
The three control variable values were assumed between 0 and 1.
There was no efforts made in these controls if u1 = u2 = u3 = 0 and maximum efforts
had been placed if u1 = u2 = u3 = 1
By considering all the above suppositions, the optimal control model was formulated as

ds
dt = π − β

(ζaA+ζsIs+ζqQ)S
N − (α+ u1 + µ)S

dE
dt = β

(ζaA+ζsIs+ζqQ)S
N − (ω + µ)E

dA
dt = θωE − (λa + u2)A+ γa + µa + µ)A
dI
dt = (1− θ)ωE − (λs + u3 + ηs + u3 + µ)I
dQ
dt = (λa + u2)A+ (λs + u3)I − (ηq + γq + µ)Q
dH
dt = (ηs + u3)I + ηqQ− (γh + µh + µ)H
dR
dt = γaA+ γqQ+ γhH − µR
dD
dt = µaA+ µhH
dP
dt = αS

Now we detect u1(t), u2(t) and u3(t) ’s optimal values that minimize the objective func-
tional
J (u1(t), u2(t), u3(t))=

∫ tf
0

(C1A+ C2I + C3Q+ C4H + 1
2 (C5u

2
1 + C6u

2
2 +C7u

2
3) dt

subject to the system (2), which contained the sum of asymptomatic infected, symp-
tomatic infected, quarantined, and hospitalized population, besides the optimal controls
u1(t), u2(t) and u3(t). These were bounded and Lebesgue integral functions Kirschner
D et al [9] and S. Lenhart and J.T.Workman [40]). Here The positive coefficients C1,
C2, C3, C4, C5, C6 and C7 were corresponding balancing weight constants parameters
of stated infected variables and optimal controls.
The main purpose was to determine the optimal controls variables u∗

1(t),u
∗
2(t),u

∗
3(t) such

that

J (u∗(t)) = min
u1,u2,u3∈U

J ((u1(t), u2(t), u3(t))

where Φ= {u1, u2, u3: u1, u2, u3/ u1, u2, u3 : [0, tf ] → [0, 1] are lebsegue integrable}.

Through Pontryagin’s maximum principle Pontryagin, L et al [31], we derived the
essential conditions for this optimal control problem. The Lagrangian function was given
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by
L(S,E,A, I,Q,H,R, u1(t), u2(t), u3(t)) = C1A+C2I+C3Q+C4H+ 1

2 (C4u
2
1+C5u

2
2+C5u

2
3

The Hamiltonian function H obtained as
H = C1A+C2I +C3Q+C4H + 1

2 (C4u
2
1 +C5u

2
2 +C5u

2
3 +λ1

dS
dt +λ2

dE
dt +λ3

dA
dt +λ4

dI
dt +

λ5
dQ
dt + λ6

dH
dt + λ7

dR
dt + λ8

dD
dt + λ9

dP
dt

where λ1 λ2, λ3 , λ4, λ5, λ6 and λ7 are the adjoint variables.
The of differential equation form of adjoint variables were as follows.
dλ1

dt = −∂H
∂S = (λ1 − λ2β(

(ζaA+ζsIs+ζqQ)
N + (λ1 − λ8(α+ u1) + λ1u1

dλ2

dt = −∂H
∂E = (ω + µ)λ2 − λ4 − λ3θω − λω

dλ3

dt = −∂H
∂A = −C1 + (λ1 − λ2)β

ζaS
N + (λ3 − λ5)(λa + u2) + ((λ3 − λ8)µa + µλ3

dλ4

dt = −∂H
∂I = −C2 + (λ1 − λ2)β

ζsS
N + (λ4 − λ5)(λs + u3) + (λ4 − λ6)(ηs + u3) + µλ4

dλ5

dt = −∂H
∂Q = −C3 + (λ1 − λ2)β

ζqS
N + (λ5 − λ6)ηq + (λ5 − λ7)γq + µλ5

dλ6

dt = − ∂H
∂H = −C4 + (λ6 − λ7)γh + (λ6 − λ8)µh + µ)

dλ7

dt = −∂H
∂R = µλ7

dλ8

dt = −∂H
∂D = 0

dλ9

dt = −∂H
∂P = 0

we minimize Hamilton function relating to control variables u∗
1(t),u

∗
2(t) and u∗

3(t) .
Using the optimal conditions ∂H

∂u1
= 0, ∂H

∂u2
= 0 and ∂H

∂u3
= 0, we get

∂H
∂u1

= C5u1 − αλ1 + αλ9S = 0 ⇒ u∗
1 = (λ1−λ9)αS

NC5

∂H
∂u2

= C6u2 − λ3A+ λ5A = 0 ⇒ u∗
2 = (λ3−λ5)A

C6

∂H
∂u3

= C7u3 − ((λ4 − λ5 + (λ4 − λ6)I = 0 ⇒u∗
3 = ((λ4−λ5)+(λ4−λ6))I

C7

6.2 Optimal control model simulation

With the values of the parameters mentioned in Table 2, numerical simulation was
conducted for the optimal control problem (2) in MATLAB by using an iterative fourth-
order Runge-Kutta method (Kamien, M et al [19] and Lukes, D.L.[24]) for the period
[0,400]. The baseline weight parameters were taken as C1 = 1, C2 = 1, C3 = 1, C4 =
1,C5 = 40, C6 = 40 and C7 = 45.

In Figure.10, variations of exposed, asymptomatic infected, symptomatic infected,
quarantine, hospitalization, and dead populace with and without control had performed.
This figure shows that, in comparison to the infected population without control, the
infected population decreased quickly under control.

In Figure.11, variations of recovered and insusceptible Populace with and without
control were executed. This graph demonstrates that the disinfected population under
control swiftly rose in comparison to the disinfected population without control.

According to Figure.12, the best controls, u1,u2 and u3 combined their efforts
extremely well to increase the protection rate (α) from susceptible individuals, the quar-
antine rates (λa, λs )from asymptomatic infected and symptomatic infected individuals,
and the hospitalization rates (ηq, ηs) from symptomatic and quarantine individuals.

From these figures we perceived that in the presence of optimal control strategy
the number of susceptible, exposed, asymptomatic infected, symptomatic infected, quar-
antined, hospitalized, and dead individuals were reduced rapidly while the number of
recovered and insusceptible individuals were increased swiftly comparing with the pop-
ulations without control strategy.
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Figure 10: Variations of (a) exposed (b) asymptomatic (c) symptomatic infected (d)
quarantine (e) hospitalization and (f) dead populations with and without control
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Figure 11: Variations of (a) recovered (b) insusceptible population with and without
control

Figure 12: Dynamics of Optimal Controls u1, u2 and u3
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7 Conclusion

Epidemiological models aid in understanding the dynamics of infectious illness trans-
mission. The deterministic mathematical model with 9 compartments was thoroughly
studied in this paper. First, the elementary properties of the model such as the posi-
tivity and boundedness of the SEAIQHRDP model, the expression of R0, and the local
stability of the disease-free equilibrium were performed. Our suggested model has 18 pa-
rameters, but we only calculated 11 of them based on the sensitivity analysis. Through
sensitivity analysis, it was observed that just eight parameters are very sensitive con-
cerning clinically unwell or infected patients. The time series behavior of the infected
populations for 400 days was examined concerning variations in parameters. From this,
the spread of infections can be slowed down by increasing the protection rate, hospital-
ization rate, and quarantine rate. The best optimal control analysis was then carried out
by including three control factors, one of which was increased protection, and the other
two were improved quarantine and medical facilities for both identified and unidentified
affected people. Through the Optimal control strategy, it was found that the infected
populations were reduced rapidly, and disinfected populations were increased compared
with the infected and disinfected populations without optimal control technique. When
the best control approach is used early in a pandemic, the intensity of epidemic peaks
tends to decline, spreading the maximum impact of an epidemic across a longer period.
Finally, this study leads to the conclusion the rising of infections can be controlled only
if the implementation of rapid testing, quarantine centers, and medical facilities. Addi-
tionally, we intend to increase the scope of our modeling work by including vaccination
and the impact of environmental contaminants in the future.
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Abstract

The classical Cantor’s intersection theorem states that in a complete
metric space X, intersection of every decreasing sequence of nonempty
closed bounded subsets, with diameter approaches zero, has exactly one
point. In this article, we deal with decreasing sequences {Kn} of nonempty
closed bounded subsets of a metric space X, for which the Hausdorff
distance H(Kn,Kn+1) tends to 0, as well as for which the excess of Kn

over X \Kn tends to 0. We achieve nonempty intersection properties in
metric spaces. The obtained results also provide partial generalizations of
Cantor’s theorem.

Keywords Metric space · Atsuji space · Hausdorff metric · Nested
sequence · Cantor’s intersection theorem
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1 Introduction

In metric spaces, there are some marvellous nonempty intersection theorems.
Cantor’s theorem (see [14]) asserts that in a complete metric space X, the inter-
section of every decreasing sequence {Kn} of nonempty closed subsets of X with
diameter δ(Kn)→ 0 has exactly one point. This intersection theorem is widely
used in the fields related to mathematical analysis. Kuratowski provided a gen-
eralization of Cantor’s theorem using Kuratowski measure of non-compactness,
α:

α(A) = inf {ε > 0 : ∃ Xi, i = 1, · · · , n,Xi ⊂ X, δ(Xi) < ε,A = ∪iXi} ,

where A is a subset of a complete metric space X. Kuratowski’s theorem (see
[6, 15]) states that for each decreasing sequence {Kn} of nonempty closed sub-

sets of a complete metric space X with lim
n→∞

α(Kn) → 0,
∞⋂
n=1

Kn is nonempty

∗Corresponding author. E-mail address: ajitkumar.gupta@nitm.ac.in
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and compact. Later, this theorem is further generalized by Horvath [3] using
the same measure of compactness α. In [9], Mitrovic et al. have studied the
generalization of Horvath’s results; and they applied this generalization for best
approximation in [10]. Recently, Souza and Alves [15] extended both Cantor’s
theorem and Kuratowski’s theorem from metric spaces to admissible spaces.

An Atsuji space, which is more general than compact spaces, has the prop-
erty that each continuous function on it is uniformly continuous. A metric space
X is said to be an Atsuji space if the set of limit points X ′ is compact in X
and for each ε > 0 the complement of the set Nε(X

′) :=
⋃

x∈X′
B(x, ε), in X,

is uniformly discrete, where B(x, ε) denotes the open ball centered at x and
with radius ε. For a metric space, the property of being an Atsuji space lies
in between the compactness and the completeness. A detailed study on Atsuji
spaces can be found in [4].

This article presents various results on nonempty intersection of decreasing
sequence of nonempty closed bounded subsets in metric spaces and in Atsuji
spaces using Hausdorff distance H(A,B) and the functional d̂, defined as d̂(A) =
sup
x∈A

d(x,X \ A), where A,B are subsets of a metric space X. These obtained

results are also compared with the Cantor’s intersection theorem.
The article is organized as follows. Some preliminary results, needed for the

rest part of the article, are discussed in Section 2. In Section 3 and Section 4,
we consider decreasing sequence {Kn} of nonempty closed bounded subsets of
a metric space X and discuss their nonempty intersection results in the cases
for which the Hausdorff distance Hn := H(Kn,Kn+1) → 0, and d̂(Kn) :=
sup
x∈Kn

d(x,X \Kn)→ 0, respectively.

2 Preliminaries

Given a metric space (X, d), we denote the set of all nonempty bounded sub-
sets of X and the set of all nonempty bounded closed subsets of X by B(X)
and Cb(X), respectively. Further given A ⊂ X, A′, Ao, Nε(A) and ∂A denote
the set of all limit points, interior points, ε-neighborhood and boundary of A,
respectively. The diameter of A is given by δ(A) = sup

x,y∈A
d(x, y).

Definition 2.1. [2] The Hausdorff distance, H, of two nonempty subsets A,B
of a metric space (X, d) is defined as

H(A,B) = max

{
sup
x∈A

d(x,B), sup
x∈B

d(x,A)

}
,

where d(x,A) = inf
y∈A

d(x, y).

It is well-known that the distance function H is a metric, provided A,B are
closed and bounded.

2
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Definition 2.2. [7] A sequence {xn} in a metric space (X, d) is said to be
absolutely convergent sequence if

∑∞
i=1 d(xi, xi+1) is finite.

Lemma 2.3. [7] In a metric space X, every Cauchy sequence {xn} contains an
absolutely convergent subsequence.

Theorem 2.4. [5] A metric space X is an Atsuji space if and only if each
sequence {xn} with lim

n→∞
I(xn) = 0, has a limit point in X, where I(x) =

d(x,X \ {x}), x ∈ X.

Definition 2.5. [8] A subset S of a metric space X is said to be metrically
convex if for any distinct points x, y ∈ S, there is a point z ∈ S \ {x, y} that
satisfies d(x, y) = d(x, z) + d(z, y).

Theorem 2.6. [8] Consider a complete and metrically convex metric space X.
Then, for any distinct points x, y ∈ X, there is a metric segment with the end
points x, y.

3 Nonempty intersection results using Hausdorff
distance

By a decreasing sequence {Kn} of subsets of a metric space X, we mean Kn+1 ⊂
Kn, ∀ n ∈ N, and we denote H(Kn,Kn+1) by Hn. Clearly Hn ≤ δ(Kn).
The following theorem furnishes a partial generalization of Cantor’s intersection
theorem, which we will discuss in Subsection 3.1. It is well known that, in a
metric space X, if for each decreasing sequence {Fn} ⊂ Cb(X) with δ(Fn)→ 0,
∞⋂
n=1

Fn 6= ∅, then X is complete.

Theorem 3.1. A metric space X is complete if and only if for every decreasing

sequence {Kn} ⊂ Cb(X) with
∑∞
n=1Hn converges,

∞⋂
n=1

Kn 6= ∅.

Proof. Let X be a complete metric space. For a1 ∈ K1, ε > 0, there exists
a2 ∈ K2 such that d(a1, a2) ≤ H(K1,K2) + ε. Again, for a2 ∈ K2 and ε > 0 as
above, there exists a3 ∈ K3 such that d(a2, a3) ≤ H(K2,K3) + ε2. Proceeding
this way, we get d(ar, ar+1) ≤ H(Kr,Kr+1) + εr, r ≥ 1. This implies, {ai} is a

Cauchy sequence. Let ai → a ∈ X. Then, a ∈
∞⋂
i=1

Kn.

For the converse, consider a decreasing sequence {Fn} ⊂ Cb(X) with δ(Fn)→
0. Then, the sequence {xn} ⊂ X with xn ∈ Fn is a Cauchy sequence. So, by
Lemma 2.3, it has an absolutely convergent subsequence, say, {xpi}∞i=1. Let
Ki be the closure of the set {xpi , xpi+1 , xpi+2 , ...}, i = 1, 2, 3, ... . Observing
Hi ≤ d(xpi , xpi+1

), we have
∑∞
i=1Hi <∞. Then, by the hypothesis,

⋂
i∈N

Ki 6= ∅.

And hence,
⋂
n∈N

Fn 6= ∅. This completes the proof.

Following examples validate the statement of the above theorem.

3

119

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO.1, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

A. Gupta 117-126



Example 3.2. Let Kn =
[
− 1
n ,

1
n

]
⊂ R. Then

∑∞
n=1Hn converges, and⋂

n∈N
Kn = {0}.

Example 3.3. Consider the sequence space X = (lp, ‖·‖p), for some p with
1 ≤ p ≤ ∞ and choose Kn = {ei}i≥n, where ei = (δij)

∞
j=1. Then {Kn} is a

decreasing sequence in Cb(X). It can be easily checked that
∑∞
n=1Hn doesn’t

converge and
∞⋂
n=1

Kn = ∅.

Example 3.4. Let X = Q with standard metric. Then X is not complete. Let
r be a fixed irrational. Define Kn = {x ∈ X : r − 1/n ≤ x ≤ r + 1/n}. Then

Kn ∈ Cb(X) and decreasing. Although
∑∞
n=1Hn converges,

∞⋂
n=1

Kn = ∅.

3.1 Comparison with Cantor’s theorem

It is worth noting that Examples 3.2-3.4 also validate the result of Cantor’s
intersection theorem. Therefore it is fairly natural to ask: What advantage
Theorem 3.1 provides over the Cantor’s theorem? The answer lies in the fact
that Hn ≤ δ(Kn).

In Cantor’s intersection theorem, δ(Kn) → 0 is the sufficient condition to
have nonempty intersection. But in the case when δ(Kn) 6→ 0, Cantor’s theorem

does not provide a conclusion whether
∞⋂
n=1

Kn is empty or nonempty. In such

case, if
∑∞
n=1Hn converges, then Theorem 3.1 ensures

∞⋂
n=1

Kn is nonempty. For

instance,

Example 3.5. Let Kn ⊂ R2 be the region (including boundaries) bounded by
the curves 4n(y− 1/n) = −x2, and 4n(y+ 1/n) = x2, n ∈ N. Then δ(Kn) 6→ 0,
and so Cantor’s theorem becomes inconclusive here. However,

∑∞
n=1Hn is

convergent, and
⋂
n∈N

Kn is the set {(x, 0) : −2 ≤ x ≤ 2}.

3.2 Nonempty intersection in Atsuji space

In Theorem 3.1, we see that the condition “
∑∞
n=1Hn < ∞”, is sufficient to

have
⋂
n∈N

Kn 6= ∅, in complete metric spaces. A more general condition, namely

“Hn → 0”, is not sufficient to have the nonempty intersection. For instance,

Example 3.6. The functions ei, defined as ei(t) = ti, t ∈ [0, 1], i ∈ N, are in
the normed space X = (C[0, 1], ‖·‖∞), and the sets Kn := {ei}∞i=n, n ∈ N, are

closed bounded subsets of X. Here, Hn = ‖en − en+1‖∞→ 0, but
∞⋂
n=1

Kn = ∅.

However, in Atsuji spaces, which are also complete, “Hn → 0” is sufficient
to have the nonempty intersection.
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Theorem 3.7. If X is an Atsuji space, then for each decreasing sequence

{Kn} ⊂ Cb(X) with Hn → 0,
∞⋂
n=1

Kn 6= ∅.

Proof. Given a decreasing sequence {Kn} ⊂ Cb(X) such that Hn → 0. For the
sequence {Kn}, there exists an ∈ Kn (as in the proof of Theorem 3.1) such that
for any fixed ε ∈ (0, 1) and for all n ≥ 1 we have, d(an, an+1) ≤ Hn+ εn → 0, as

n→∞. If an = c, for infinitely many values of n, then c ∈
∞⋂
n=1

Kn. Otherwise,

if the terms of the sequence {an} are distinct, except for at most finitely many
n, then this implies I(an) → 0. Therefore, by Theorem 2.4, {an} has a limit

point lying in
∞⋂
n=1

Kn.

The converse of Theorem 3.7, in general, is not true. That means if “Hn →
0” suffices to have the nonempty intersection property, the space is not neces-
sarily an Atsuji space. This is evident from the following example.

Example 3.8. Consider X = N ∪M with the standard Euclidean metric on
R, where M = {n + 1/2m : m,n ∈ N}. Let {Ki} ⊂ Cb(X) be a decreasing
sequence with Hi → 0. Then, as in the proof of Theorem 3.7, there exists
ai ∈ Ki such that |ai−ai+1|→ 0. It can be shown that either {ai} is eventually
constant, say p ∈ X, or {ai} converges to some positive integer k. In either

case
∞⋂
i=1

Ki 6= ∅, as it contains either p or k. Thus we get, for each decreasing

sequence {Ki} ⊂ Cb(X) with Hi → 0,
∞⋂
i=1

Ki 6= ∅, but the space X is not an

Atsuji space because X ′ = N.

We notice that Theorem 3.7 provides a generalization of Cantor’s intersection
theorem in Atsuji spaces.

4 Nonempty intersection results using d̂

Jain and Kundu, in [4], considered a functional I : X → R defined as, I(x) =

d(x,X \ {x}). Here we consider a more general functional, d̂, acting on the

subsets of a metric space X, defined by d̂(A) = sup
x∈A

d(x,X \ A), A ⊂ X. This

is also known as the excess of A over X \A. This functional gives the radius of
the inscribed ball inside a regular body in the Euclidean space R2. For subsets
A,B of a metric space X, we conclude the following as well:

1. d̂(A) ≤ d̂(B), if A ⊂ B, and A ∈ B(X),

2. d̂(A) = 0 if and only if A = ∅ or A ⊂ [X \A]′,

3. For an unbounded set A, d̂(A) can be finite or infinite. For example, in
the euclidean space R2, consider A1 = {(x, 0) : x ∈ R}, and A2 = {(x, y) :

x, y ≥ 0}, then d̂(A1) = 0, and d̂(A2) =∞,

5

121

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO.1, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

A. Gupta 117-126



4. If A = X, then d̂(A) is finite or infinite, depending on X is bounded or
unbounded, respectively. (We take d(x, ∅) = sup{d(x,A) : A ⊂ X}, x ∈
X.)

Proposition 4.1. Let A,B ∈ B(X). Then

(a) H(X \A,X \B) ≤ max{d̂(A), d̂(B)}.

(b) max{d̂(A), d̂(B)} ≤ H(A,B), provided A ∩B = ∅.

Proof. (a) For A,B ∈ B(X), we have

H(X \A,X \B)

= max{ sup
p∈X\A

d(p,X \B), sup
q∈X\B

d(X \A, q)}

= max{ sup
p∈B\A

d(p,X \B), sup
q∈A\B

d(q,X \A)} (4.1)

≤ max{sup
p∈B

d(p,X \B), sup
q∈A

d(q,X \A)}

= max{d̂(B), d̂(A)}. (4.2)

(b) Suppose A ∩B = ∅, then

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(A, y)}

≥ max{sup
x∈A

d(x,X \A), sup
y∈B

d(X \B, y)}

= max{d̂(A), d̂(B)}.

Remark 4.2. For two subsets A,B with A ⊂ B in a metric space X, in general,
d̂(B) and H(A,B) are not comparable, even in Atsuji spaces.

Theorem 4.3. Let X be an Atsuji space. Then, for each decreasing sequence

{Kn} ⊂ Cb(X) with d̂(Kn)→ 0,
∞⋂
n=1

Kn 6= ∅.

Proof. Consider xn ∈ Kn. Then, I(xn) = d(xn, X \ {xn}) ≤ d(xn, X \Kn) ≤
sup
x∈Kn

d(x,X \Kn) = d̂(Kn), which by the hypothesis tends to 0. Hence, using

Theorem 2.4, the sequence {xn} has a limit point lying in
∞⋂
i=1

Kn.

The converse of Theorem 4.3, in general, does not hold.

Example 4.4. Consider the set X as in Example 3.8, with the standard Eu-
clidean metric d on R. Let {Ki} ⊂ Cb(X) be a decreasing sequence with

d̂(Ki) → 0. Then, as in the proof of Theorem 4.3, there exists xi ∈ Ki \Ki+1

such that I(xi) → 0. If the range set, R = {xi}i≥1, is infinite and R ⊂ M ,

6
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consider xi = ni + 1/2mi. If {mi}i≥1 = {p1, p2, ..., pq}, a finite set, then
d(ni+1/2pj , X\{ni+1/2pj}) = d(ni+1/2pj , ni+1/2(pj+1)) = 1

2d(1/pj , 1/(pj+
1)) ≥ inf

1≤j≤q
1
2d(1/pj , 1/(pj + 1)) > 0, which is a contradiction to I(xi) → 0.

Hence, there is a subsequence {mti} of {mi} with mti →∞ as i→∞. And so,
it can be proved that in the case either R ⊂ M or R 6⊂ M ; the sequence {xi}
has a subsequence converging to some p ∈ N. Therefore p ∈

∞⋂
i=1

Ki. Thus we

get, for each decreasing sequence {Ki} ⊂ Cb(X) with d̂(Ki) → 0,
∞⋂
i=1

Ki 6= ∅.

Although, the space X is not an Atsuji space.

Theorem 4.5. If X is a metric space, and for each decreasing sequence {Kn} ⊂
Cb(X) with d̂(Kn)→ 0,

∞⋂
n=1

Kn 6= ∅, then X is complete.

Proof. Consider a decreasing sequence {Fn} ⊂ Cb(X) with δ(Fn) → 0. Then,
the sequence {xn} with xn ∈ Fn is a Cauchy sequence in X. Let Kn be the
closure of the set {xi}i≥n. Since {xn} is Cauchy, for each ε > 0, there is an
N ∈ N such that sup

n≥N+1
d(xN , xn) < ε, that is, sup

x∈KN+1

d(xN , x) < ε, which

further implies d̂(KN+1) = sup
x∈KN+1

d(x,X \ KN+1) < ε. Thus d̂(Kn) → 0.

So, by the hypothesis
∞⋂
n=1

Kn 6= ∅. Hence,
∞⋂
n=1

Fn 6= ∅ and this completes the

proof.

4.1 Comparison with Cantor’s theorem

We observe that, in general, d̂ and δ are not comparable. For instance,

Example 4.6. Consider a set X = {x, y}, x 6= y, equipped with a metric d.

Let A = {x}. Then, d̂(A) = d(x, y) > 0, and δ(A) = 0.
But if X = R2, with standard Euclidean metric, and A = B[0, r], then

d̂(A) = r < 2r = δ(A).

We shall show that in metrically convex metric spaces, d̂ is always dominated
by δ.

Lemma 4.7. Let (X, d) be a metric space. Then, for all x, y ∈ X and r ∈
[0, d(x, y)], B[x, r]∩B[y, d(x, y)− r] = S[x, r]∩S[y, d(x, y)− r], where S[x, r] :=
{z ∈ X : d(x, z) = r}.

Proof. Let us denote B[x, r] ∩ B[y, d(x, y) − r] and S[x, r] ∩ S[y, d(x, y) − r]
by B∩ and S∩, respectively. If B∩ is empty, there is nothing to prove. Let
B∩ 6= ∅ and z ∈ B∩. We claim z 6∈ B1 ∪ B2, where B1 = B[x, r] \ S[x, r],
B2 = B[y, d(x, y)− r] \ S[y, d(x, y)− r]. If possible, let z ∈ B1. Then d(x, y) ≤
d(x, z) + d(z, y) < r + d(x, y)− r = d(x, y), which is a contradiction. Similarly,
we prove z 6∈ B2. Thus, z ∈ B∩ ∩ [B1 ∪ B2]c = B∩ ∩ [B1

c ∩ B2
c], where Bc

7
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denotes the complement of a set B in X. This implies z ∈ S∩, and so B∩ ⊂ S∩.
Hence, B∩ = S∩.

Theorem 4.8. Let A be a nonempty bounded proper subset in a complete
metrically convex space X. Then d̂(A) ≤ δ(A).

Proof. Let (X, d) be an metrically convex space. By Theorem 2.6, X is a con-
nected metric space too. We shall achieve the conclusion in the following steps.

Step 1 : First we show that for each ε > 0 the set Nε(A) \A is not empty.
Step 2 : We show that for each ε > 0 we have B(a, r + ε) = Nε(B), where
B = B(a, r).

Step 3 : Finally we prove that d̂(A) ≤ δ(A).

Step 1. On the contrary, let us assume Nε(A) \ A = ∅. This implies, A
is open and for all x ∈ A, B(x, ε) ⊂ A. Since A is open, ∂A 6⊂ A. This
implies, “∃ b ∈ ∂A such that b 6∈ B(x, ε) for all x ∈ A”, which is a contradictory
statement in itself.

Step 2. Observe that, Nε(B) ⊂ B(a, r+ε) follows from the triangle inequal-
ity. Conversely, suppose y ∈ B(a, r + ε). If y ∈ B then y ∈ B(y, ε) ⊂ Nε(B).
Suppose y ∈ B(a, r+ ε) \B. Then, consider the ball B(y, ε). If B(y, ε)∩B = ∅,
then B(y, ε) ∩ ∂B = ∅. Therefore, d(q, y) ≥ ε, for all q ∈ ∂B. By Theorem 2.6
and Lemma 4.7, since r ∈ [0, d(a, y)], there is a u ∈ X such that ψ(r) = u ∈
B[a, r]∩B[y, d(a, y)−r] = S[a, r]∩S[y, d(a, y)−r] = ∂B∩S[y, d(a, y)−r], where
ψ is an isometry from [0, d(a, y)] to X. This implies d(a, y) = d(a, u)+d(u, y) ≥
r + ε, a contradiction. Hence, B(y, ε) ∩ B 6= ∅, and therefore y ∈ B(z, ε) for
some z ∈ B. Thus, B(a, r + ε) ⊂ Nε(B).

Step 3. Since ∂B 6= ∅, inf
p∈X\B

d(a, p) = d(a, q) = r, for some q ∈ ∂B.

Now, let x be an element in A. If x ∈ Ao, then consider a ball B(x, r′),
where r′ = sup{r > 0 : B(x, r) ⊂ A}. There must be a point in Nε(B(x, r′))
which lies in Nε(A) \ A. Hence, [Nε(B(x, r′)) \ B(x, r′)] ∩ [Nε(A) \ A] 6= ∅.
Therefore, d(x,X \ A) = r′ ≤ δ(A). On the other hand, if x ∈ ∂A, then

d(x,X \A) = 0 ≤ δ(A). Hence, d̂(A) ≤ δ(A).

Since the metric spaces with Takahashi’s convex strustures ([12]) and the
normed spaces are metrically convex metric spaces, so Theorem 4.8 is applicable
to these spaces too. Due to Theorem 4.8, Theorem 4.3 induces a generalization
of Cantor’s intersection theorem in metrically convex Atsuji spaces.

Example 4.9. Consider the metric space X = {(x, y) ∈ R2 : −3 ≤ x, y ≤ 3},
with standard Euclidean metric on R2. The space X is a metrically convex
Atsuji space. Let Kn ⊂ X be the region (including boundaries) bounded by the
curves n(1 + 1

n )2(y − 1/n) = −x2, and n(1 + 1
n )2(y + 1/n) = x2, n ∈ N. Here

δ(Kn) 6→ 0, and so Cantor’s theorem becomes indecisive. However, d̂(Kn)→ 0,
and

⋂
n∈N

Kn is the set {(x, 0) : −1 ≤ x ≤ 1}.

8
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5 Conclusion

For a pair of consecutive elements Kn, Kn+1 from a decreasing sequence {Kn}
of nonempty closed bounded subsets of a metric space, it is observed that Hn

is less than or equal to the diameter of Kn, where Hn is the Hausdorff distance
between Kn and Kn+1. Therefore, Hn → 0 is the necessary condition for
Cantor’s intersection theorem. However, the condition Hn → 0 in not sufficient
to have nonempty

⋂
n∈N

Kn in complete metric spaces; extra conditions on Hn is

required for that. We have shown that the condition
∑∞
n=1Hn <∞, is sufficient

to have nonempty intersection in complete metric spaces; while, Hn → 0 is
sufficient to have nonempty intersection in Atsuji spaces. Further, in Atsuji
spaces, we have provided sufficient condition for nonempty

⋂
n∈N

Kn using the

concept of excess of a set.

Nonempty intersection theorems, and the generalizations of such theorems
like Cantor’s theorem, Kuratowski’s theorem, Horvath’s theorem, etc. play
an important role to study the best approximations, fixed point results, etc.
(for example, see [3, 9, 10, 13]). In case of set-valued mappings, researchers
have been studying the fixed point results for mappings from a metric space to
the subspaces of the hyperspace of nonempty closed subsets endowed with the
Hausdorff distance (for example, see [1, 11]). Findings of this manuscript, can
further be applied in these directions.
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Abstract

In multi-objective transportation, due to the conflicting nature of ob-
jectives, no method is available to find the best compromise optimal solu-
tion. In this paper, we present a method to obtain a compromised solution
for multi-objective transportation problems under a weighted environ-
ment. In which, a modified weighted model is presented that provides us
with an efficient solution according to the priorities of the decision maker.
To measure the efficiency of the method, a numerical example is included
and the results are compared with previously reported work for the same
numerical problems to illustrate the feasibility and the applicability of the
proposed method.

Keywords- Multi-objective optimization; transportation problem; compro-
mise solution; goal programming

1 Introduction

With the growing population of this competitive world the demand for the goods
is growing day by day and to fulfil the demands, the businesses have to outper-
form themselves every time. Due to this, the management of the business faces
a lot of challenges and single objective transportation is not enough to meet
the needs of this competitive market. Just Minimizing the transportation cost
cannot be the only objective, they must take other factors into consideration
and solving such type of problem with multiple objectives which need to be
fulfilled simultaneously gives birth to a new branch of transportation problem
that we call multi-objective transportation problem (MOTP).
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In a classic transportation problem, a product is to be transported from m
sources to n destinations and there is a penalty pij associated with transport-
ing a unit of product. This penalty may be cost or delivery time or safety of
delivery, or something else depending upon the decision maker (DM). Over a
period of time, many algorithms have been developed to obtain initial basic fea-
sible solutions like the North-west corner rule, least cost method, and Vogel’s
approximation method. Veena Adlakha and Kowalski [2](1997) proposed a very
effective algorithm (Absolute point method) that can be used to directly obtain
optimal cost without using the MODI method. These methods are applicable
when all the decision parameters are given in a precise way, but as already dis-
cussed in real life situations, not all transportation problems are single-objective.

Past many years a lot of work has been done in developing an algorithm to
solve multi-objective transportation problems. Every algorithm gives varying
results and it is very difficult to say which is the best method to obtain a com-
promised solution (For multi-objective transportation, a compromised solution
is a feasible solution that is favoured more by the DM over all other feasible
solutions, taking into consideration all criteria contained in the multi-objective
function).The quality of the solution totally depends on the DM.

Lee and Moore [7](1973) inspected the optimization of transportation prob-
lems with multiple objectives. Isermann and Diaz [6] (1979) formulated different
algorithms for all the non-dominated solutions for linear multi-objective trans-
portation problems. The fuzzy programming technique was applied by Bit,
Biswal, and Alam [3] (1992) to solve the multi-objective transportation prob-
lem. For the first time in the early 1960s, Charnes and Cooper suggested the
concept of goal programming (GP) and a very good literature review was given.
It has been found extensive in various fields. Since 1960, numerous works have
been done and a lot of applications have been proposed. A review of GP formu-
lations and their applications was given by Lee and Olson [8](1999). Edward L.
Hannan [4] (1981) illustrated GP with fuzzy goals having a linear membership
function. Zangiabadi and Maleki [13](2013) presented the application of fuzzy
goal programming to linear MOTP using a non-linear membership function.
Despite its recognition and a huge variety of applications, there’s no assurance
that GP will offer Pareto an optimal solution.

In multi-objective problems, we can assign different weights to the objec-
tive according to the importance of the objective and obtain varying results
for different weights assigned by the DM. Due to the overlapping existence of
priorities, it is rare to find an optimal solution that optimizes all of them at the
same. Here in this paper, we have discussed the weighted sum method and the
algorithm proposed by Nomani [10](2016) and a comparison has been made with
the proposed model with the help of numerical examples. The proposed model
is a new weighted method that helps obtain compromised solutions according
to the priorities given by the DM for different goals.

2
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2 Multi-objective linear transportation problem
(MOLTP)

In today’s aggressive environment, a single-objective transportation assignment
is insufficient to deal with all real-life decision-making issues. So, to address all
real-life conditions on transportation problems, the DM regularly wishes to con-
sider more than one non-commensurable or conflicting objective in transporta-
tion problems. The problem wherein more than one target is optimized concur-
rently is referred to as a multi-objective transportation problem (MOTP). The
reason for defining the multi-objective transportation problem in the mathemat-
ical programming framework is to optimize numerous objectives concurrently
subject to a set of constraints Other than transportation expense the objec-
tives can include shipping time, degradation of goods, secure shipping of items,
energy consumption, etc

The mathematical model of MOTP is written as follows:

Min Fk(xij) =

m∑
i=1

n∑
j=1

pkijxij , k = 1, 2, . . . ,K

Subject to:
n∑

j=1

xij = si, i = 1, 2, 3, . . . ,m

m∑
i=1

xij = dj, j = 1, 2, 3, . . . , n

xij ≥ 0, i = 1, 2, 3, . . .m, and j = 1, 2, . . . , n

Where m is no. of source, n is no. of destination, dn is capacity of destination,
sm is capacity of sources, pkij is penalty of kth objective, Fk is kth objective and
xij is unknown qty to be shipped.

3 Methods for solving MOLTP

3.1 Weighted sum method

For solving a MOLTP the method of the weighted sum is highly used to obtain
varying results for different weights. The basic idea of this method is to assign

3
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weight nk ≥ 0 to each objective function Fk and minimize the new objective
function

∑K
k=1 nkFk with respect to problem constraints. This method is very

easy to use but the solution majorly depends on the weights given by the DM
and it should be decided beforehand. Using the weighted sum method, the
following normalized single-objective optimization problem is obtained:

Minimize F = n1F1 + n2F2 + . . .+ nKFK

Subject to:
n∑

j=1

xij = si, i = 1, 2, 3, . . . ,m

m∑
i=1

xij = dj, j = 1, 2, 3, . . . , n

xij ≥ 0, i = 1, 2, 3, . . .m, and j = 1, 2, . . . , n

Where the weights nk, k = 1, 2, . . .K, corresponding to the objective function
satisfy the following conditions n1 + n2 + . . .+ nk = 1 k = 1, 2, . . .K
Using the above method, single solution points are obtained for different weights
that reflect the preferences of the decision-maker. This method fails when DM
have no idea about preference.

3.2 Method proposed by Nomani(2016)

In 2016, Mohammad Asim Nomani, Irfan and Ahmed proposed a model to
obtain a compromised solution for a MOLTP. This model focuses on convert-
ing multiobjective optimization into a new single objective optimization where
the objective is to minimize µ

′
=

∑
µ(1 − nk), where µ is the general devia-

tion variable for all objectives and nk is the weight assigned to the kth objective.

Consider the following multi-objective optimization problem:

Minimize F (x) = [F1(x), F2(x), . . . , FK(x)]

Subject to x ∈ S

Where x is an n-dimensional decision maker variable and S is the set of feasible
solutions. Each objective is transformed into constraints with an upper bound
of F ∗

k + µ(1− nk), where F ∗
k is an ideal solution obtained when each objective

Fk, k = 1, 2, . . . ,K is solved independently of other objectives.
The problem reduces as:

Minimize µ
′
=

K∑
k=1

µ(1− nk)

Subject to:
Fk ≤ F ∗

k + µ(1− nk); xij ≥ 0

4
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In this model, instead of using a deviation variable alone, a factor (1− nk) has
been introduced. This method is capable of providing a solution even if DM has
no priority for objectives.

4 Proposed Method

In this section, we will discuss the proposed method and later we will see a com-
parison between the results obtained by these three methods. Let us consider a
multi-objective optimization problem:

Minimize F (x) = [F1(x), F2(x), . . . , FK(x)]

Like Nomani’s model, this model also focuses on converting the multi-objective
problem into a single objective problem. The main idea is to minimize the de-
viation of each objective from its ideal solution. To do so a deviation variable
µ was introduced.

The model is formulated as:

Minimize µ
′
=

K∑
k=1

µ(1− nk)

Subject to

m∑
i=1

n∑
j=1

pkijxij ≤ F ∗
k +

µ(1− nk

(F k
u − F k

l )
k = 1, 2, . . . ,K

n∑
j=1

xij = si, i = 1, 2, 3, . . . ,m

m∑
i=1

xij = dj, j = 1, 2, 3, . . . , n

0 ≤ nk ≤ 1, k = 1, 2, . . . ,K

xij ≥ 0, i = 1, 2, . . . ,m and j = 1, 2, 3, . . . , n

Here in this model a factor 1
(Fk

u−Fk
l )

is introduced alongside with existing µ(1−
nk). F k

u and F k
l represent upper and lower bounds in which the compromised

solution will lie. The solution cannot exceed this range. For a kth objective,
this range can be obtained by using the ideal allocation. For upper bound max
(Solution obtained by substituting others allocation in kth objective) and for
lower bound the optimal solution of kth objective is it’s lower bound and this
lower bound is the ideal solution F ∗

k .

Step by Step method:

5
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Step 1: Solve all the K objectives as a single objective problem without con-
sidering other objectives.
Step 2: Obtain the range for every objective as stated above.
Step 3: Now develop a model for the problem as described above and define
weights for the objectives if DM has any.
Now simply evaluate and a compromised solution will be obtained.

5 Numerical illustration

The first example that we will be considering is used by many authors and they
have obtained different solutions. Ringuest and Rinks [11](1987) used this prob-
lem to illustrate the MOLTP. In this paper, we have formulated the problem
like a real-life problem to make a better understanding of the problem.

Example 1: Let us consider a problem in which Jethalal wants to transport
TVs from its 3 Factories situated in Delhi, Mumbai and Bangalore, to the 4
warehouses at Bhopal, Dehradun, Kolkata and Chennai. The Factory capac-
ity of Delhi is 8 thousand TVs, Mumbai is 19 thousand TVs and Bangalore is
17 thousand TVs. The warehouse requirement at Bhopal is 11 thousand TVs,
Dehradun is 3 thousand TVs, Kolkata is 14 thousand TVs and Chennai is 16
thousand TVs. Jethalal wants to minimize the transportation cost as well as
the safety cost for the TVs. The cost of transportation and safety per unit is
given in the table below (in thousands)

Safety,Transportation Bhopal Dehradun Kolkata Chennai
Delhi 1,4 2,4 7,3 7,4

Mumbai 1,5 9,8 3,9 4,10
Banglore 8,6 9,2 4,5 6,1

Solution The first step is to obtain a solution for both the objectives separately
ignoring the other objective. The solution obtained is as follows:
X1 = (x11 = 5, x12 = 3, x21 = 6, x24 = 13, x33 = 14, x34 = 3)
F1(X

1) = 143(idealsolution), F1(X
2) = 208,

Upper and lower bounds of the objective function F1 is 143 ≤ F1 ≤ 208
X2 = (x13 = 8, x21 = 11, x22 = 2, x23 = 6, x32 = 1, x34 = 16)
F2(X

2) = 167(idealsolution), F2(X
1) = 265,

Upper and lower bounds of the objective function F2 is 167 ≤ F2 ≤ 265
Now since we have the bounds, we can formulate the mathematical model of
the problem using the proposed model.

Minimize µ
′
= µ(1− n1) + µ(1− n2)

Subject to:
3∑

i=1

4∑
j=1

p1ijxij ≤ 143 +
µ(1− n1)

(208− 143)

6
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3∑
i=1

4∑
j=1

p2ijxij ≤ 167 +
µ(1− n2)

(265− 167)

4∑
j=1

xij = si, i = 1, 2, 3

3∑
i=1

xij = dj , j = 1, 2, 3, 4

n1 + n2 = 1

0 ≤ nk ≤ 1

k = 1, 2; xij ≥ 0

Now simply allot the weight to the objective function and solve the LPP. Make
sure the weights are non-negative and their sum is exactly equal to 1. We have
used Lingo 19.0 to solve the LLP.

Weights (n1, n2) Proposed method Nomani Weighted sum
1 n1 = 0.1, n2 = 0.9 197;169 186;171 208;167
2 n1 = 0.2, n2 = 0.8 186;171 176;175 186;171
3 n1 = 0.3, n2 = 0.7 176;175 172;180 176;175
4 n1 = 0.4, n2 = 0.6 172;180 168;185 176;175
5 n1 = 0.5, n2 = 0.5 168;185 164;190 176;175
6 n1 = 0.6, n2 = 0.4 148;180 160;195 156;200
7 n1 = 0.7, n2 = 0.3 160;195 156;200 156;200
8 n1 = 0.8, n2 = 0.2 156;200 154;210 156;200
9 n1 = 0.9, n2 = 0.1 152;220 150;230 143;265

Comparison of solution of Example 1 by the proposed method, Nomani method,
weighted sum

7
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Figure 1 Graphical representation of solution with different priorities

Figure 2 Comparison of safety costs obtained by different methods

Figure 3 Comparison of TP cost obtained by different methods

Let us now consider a 3-objective problem. This example is already used by au-
thors to compare varying results. Diaz [6](1979) used this example to illustrate
the approach. Like the previous problem, we have formulated it like real life
problem for better understanding.
Example 2: Madhavi Bhide have a business selling Pickel and she wants to
deliver the pickle to various locations across India. She has manufacturing units
in Mumbai, Ahmedabad, Chandigarh, and Mirzapur and needs to supply at
Ratlam, Nagpur, Patna, Panji, and Kota. The supply capacity of Mumbai is
500 boxes, Ahmedabad is 400 boxes, Chandigarh is 200 boxes, and Mirzapur
is 900 boxes. Demand at Ratlam is 400 boxes, Nagpur is 400 boxes, Patna is
600 boxes, Panji is 200 boxes, and Kota is 400 boxes. She wants to minimize
the delivery time, transportation cost and packaging cost. The cost time and

8
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packing cost per unit are given below (in hundreds).

Cost,Time,Packing cost Ratlam Nagpur Patna Panji Kota
Mumbai 9,2,2 12,9,4 9,8,6 6,1,3 9,4,6

Ahmedabad 7,1,4 3,9,8 7,9,4 7,5,9 5,2,2
Chandigarh 6,8,5 5,1,3 9,8,5 11,4,3 3,5,6
Mirzapur 6,2,6 8,8,9 11,6,6 2,9,3 2,8,1

Solution: The first step is to obtain a solution for all three objectives sepa-
rately ignoring the other objectives. The solution obtained is as follows:
X1 = (x13 = 5, x22 = 3, x23 = 1, x31 = 1, x32 = 1, x41 = 3, x44 = 2, x45 = 4)
F1(X

1) = 102, F1(X
2) = 164, F1(X

3) = 134,
Upper bound = Max 164,134 = 164
Upper and lower bounds of the objective function F1 is 102 ≤ F1 ≤ 164
X2 = (x11 = 3, x14 = 2, x21 = 1, x25 = 4, x32 = 2, x41 = 1, x42 = 2, x43 = 6)
F2(X

2) = 72(idealsolution), F2(X
1) = 141, F2(X

3) = 122,
Upper bound = Max 141,122 = 141
Upper and lower bounds of the objective function F2 is 72 ≤ F2 ≤ 141
X3 = (x11 = 3, x12 = 2, x21 = 1, x23 = 3, x32 = 2, x43 = 3, x44 = 2, x45 = 4)
F3(X

3) = 64(idealsolution), F3(X
2) = 90, F3(X

1) = 94,
Upper bound = Max 90,94 = 94
Upper and lower bounds of the objective function F3 is 64 ≤ F2 ≤ 94
Now since we have the bounds, we can formulate the mathematical model of
the problem using the proposed model.

Minimize µ
′
= µ(1− n1) + µ(1− n2) + µ(1− n3)

Subject to:
4∑

i=1

5∑
j=1

p1ijxij ≤ 102 +
µ(1− n1)

(164− 102)

4∑
i=1

5∑
j=1

p2ijxij ≤ 72 +
µ(1− n2)

(141− 72)

4∑
i=1

5∑
j=1

p3ijxij ≤ 64 +
µ(1− n2)

(94− 64)

5∑
j=1

xij = si, i = 1, 2, 3, 4

4∑
i=1

xij = dj , j = 1, 2, 3, 4, 5

n1 + n2 + n3 = 1 0 ≤ nk ≤ 1 k = 1, 2, 3

9
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Now simply allot the weight to the objective function and solve the LPP. Make
sure the weights are non-negative and their sum is exactly equal to 1. We have
used Lingo 19.0 to solve the LLP.

Weights (n1, n2, n3) Proposed method Nomani Weighted sum
1 n1 = 0.1, n2 = 0.9, n3 = 0.0 147;76;94 147;76;94 157;72;86
2 n1 = 0.2, n2 = 0.8, n3 = 0.0 142;78;98 142;78;98 157;72;86
3 n1 = 0.3, n2 = 0.7, n3 = 0.0 134;85;96 134;85;96 142;78;98
4 n1 = 0.4, n2 = 0.0, n3 = 0.6 114;99;89 124;109;78 129;126;64
5 n1 = 0.5, n2 = 0.0, n3 = 0.5 119;101;91 118;110;83 105;128;84
6 n1 = 0.6, n2 = 0.0, n3 = 0.4 117;106;88 117;108;84 105;128;84
7 n1 = 0.0, n2 = 0.3, n3 = 0.7 134;93;83 139;99;74 153;89;75
8 n1 = 0.0, n2 = 0.2, n3 = 0.8 135;97;78 141;102;72 134;122;64
9 n1 = 0.0, n2 = 0.1, n3 = 0.9 141;102;72 140;110;68 134;122;64
10 n1 = 0.3, n2 = 0.3, n3 = 0.4 126;92;94 124;99;87 127;104;76
11 n1 = 0.3, n2 = 0.4, n3 = 0.3 126;92;94 129;95;87 141;86;82
12 n1 = 0.4, n2 = 0.3, n3 = 0.3 124;97;91 124;99;87 112;110;88

Comparison of solution of Example 2 by the proposed method, Nomani method,
weighted sum

Figure 4 Graphical representation of solution with different priorities
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Figure 5 Comparison of transportation costs obtained by different methods

Figure 6 Comparison of transportation time obtained by different methods
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Figure 7 Comparison of packaging cost obtained by different methods

6 Conclusion

In this paper, we discussed a new modified goal programming model and a
comparison was made with existing weighted models. The proposed model is
capable of providing varying results for a MOTP. LINGO 19.0 was used to solve
all the mathematical models. As further development, we plan to extend this
method for Fractional MOTP, Rough MOTP and Fixed charge MOTP.
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Abstract

In this paper, we have projected the theoretical and numerical investigation of the
mathematical model representing the yellow fever virus transmission from infected
mosquitoes to humans or vise-versa through mosquito bites in the framework of the
Caputo derivative. Theoretical aspects of the dynamics of susceptible individuals, ex-
posed individuals, infected individuals, toxic infected individuals, recovered and im-
mune individuals, and susceptible mosquitoes and infected mosquitoes have been ana-
lyzed by using the theory of fractional calculus such as boundedness, uniqueness and
existence of the solutions. Sufficient conditions for the global stability of the virus-free
point of equilibrium are inspected. T validate the theoretical results numerical analysis
is performed using the generalized Adams-Bashforth-Moultan method.
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1 Introduction

Infectious illness outbreaks have become the greatest threat to mankind over time, re-
sulting in the loss of many lives. They may also bring economic and political upheaval
if they are not handled properly. Yellow fever (YF) virus which belongs to a family
of about 70 viruses was the first human virus discovered. YF is an intense viral dis-
ease spread by infected female ’Aedes aegypti’ mosquitoes. These mosquitoes are also
the vector of Zika virus, dengue and chikungunya [1, 2]. In Africa, sylvatic and peri-
domestic Aedes species transmit rural and intermediate YF. The incubation period of
the virus on the infected individuals is generally 3 to 6 days [3]. Vomiting, nausea, lack
of appetite, muscle pain with backache, slight fever, headache, jaundice, and weariness
are some of the symptoms that patients experience [4]. Nonetheless, these symptoms
fade after four or five days, while other individuals may continue to the infection’s tox-
icity phase, in which 50 percent of instances lead to death within eight to ten days [5].
Although YF is compartmentalized as viral hemorrhagic fever, it causes 1000 times
more risk to death than the virus like Ebola [1].

Among the scientific community, the study of disease dynamics has remained a
popular issue [6, 7]. To help humankind in fighting against YF by understanding its
dynamics mathematically, a few mathematicians have contributed their expertise in
modeling this infection [8,9]. In the recent times, fractional derivatives namely the Ca-
puto, Riemann-Liouville, Grünwald Letnikov, Jumarie, and Caputo-Fabrizio are inves-
tigated by the researchers in search of new behavioral findings while representing real
world problems using such derivatives. Notably, many results associated with mem-
ory, hereditary, longrange memory, random walk, anomalous diffusion, non-Markovian
processes, and others made the concept of fractional derivatives a highly significant to
take into account [10–14]. Over the years, theories of these derivatives have also been
developed to a great extent [15–18]. Many phenomena related to mathematical biol-
ogy and their interdisciplinary fields [18, 19] have been studied using these fractional
derivatives [20, 21]. They have been used to model many complex phenomena of dis-
ease dynamics [22–24].

This work aims to examine the qualitative nature of the yellow fever virus math-
ematical model with interaction of seven categories of the population namely suscep-
tible , YF exposed, YF infected, toxic-infected individuals, recovered and immune
individuals, susceptible mosquitoes, and infected mosquitoes incorporating the Caputo
fractional derivative. Adams-Bashforth-Moulton method has been used to perform the
numerical simulation [25–29]. The rest of the paper is structured as follows: in Section
2, we provide some elementary definitions, theorems and lemmas of fractional calcu-
lus which is followed by the formulation of the model in Section 3. Sections 4, 5, 6

2
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dispense the existence and uniqueness, boundedness, the existence of various points
of equilibrium and their local stability respectively. Sections 7 depicts the numerical
method and simulation in detail. Finally, we discuss the concluding remarks in Section
8.

2 Some Essential Theorems

In the present work, we have used the Caputo fractional derivatives because it supports
the integer order initial condition. In this section, we have presented certain theorems
those have been applied to determine the theoretical results corresponding to the solu-
tion of the projected model. The Caputo fractional derivative is denoted by CD.

Definition 2.1. [15] (Caputo Fractional Derivative) Suppose g(t) is k times continu-
ously differentiable function and g(k)(t) is integrable in [t0,T ]. The fractional derivative
of the order α established by Caputo sense for g(t),is

C
t0

Dα
t g(t) =

1
Γ(k−α)

∫ t

t0

g(k)(τ)
(t− τ)α+1−k dτ

where Γ(·) refers to Gamma function, t> a and k is a positive integer with the property
that k−1 < α < k.

Lemma 1. [17] Consider the system

C
t0

Dα
t v(t) = g(t,v), t> t0, (1)

choosing the initial condition as v(t0), where 0 < α ≤ 1 and g : [t0,∞)×Ω → Rn,Ω ∈
Rn. When g(t,v) holds the locally Lipchitz conditions concerning to v, Eq.1 has a
unique solution on [t0,∞)×Ω.

Lemma 2. [18] We assume that g(t) is a continuous function on [t0,+∞) satisfying

C
t0

Dα
t g(t)≤−λg(t)+ξ , g(t0) = g0,

where t0 ≥ 0 is the initial time, 0 < α ≤ 1, λ ̸= 0, (λ ,ξ ) ∈ R2. Then,

g(t)≤ (g(t0)−
ξ

λ
)Eα [−λ (t− t0)

α ]+
ξ

λ

Lemma 3. [18] Let v(t) ∈ R+ be a derivable and continuous function. Then, at any
time t> t0,

C
t0

Dα
t (v(t)− v∗− v∗ln

v(t)
v∗

)≤ (1− v∗

v
)Ct0

Dα
t v(t), v∗ ∈ R+, ∀α ∈ (0,1).

3
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3 Model Formulation

Yusuf and Daniel’s [9] work has inspired the mathematical model described in this
study. We observe that fractional derivatives influence coexistence. When a new virus
emerges, it is never completely eradicated from the world. A fraction of humans will
always be infected by that virus in some part of the universe. This nature of the virus’s
existence prompts us to model YF infection by incorporating fractional derivatives. In
this paper, the YF virus mathematical model has been proposed within the population
of humans and mosquitoes. It has been assumed that both populations mix freely with-
out any barriers. Since there is a high risk of YF transmission from travelers, their
vaccination is essential. It is assumed that some portion of the travelers is vaccinated.
Again, a part of the infected population may become toxic. It is also assumed that
once an individual becomes toxic, he or she does not recover. In the present model,
the human population has been subdivided into five different compartments namely:
SH(t),EH(t), IH(t),TH(t),RH(t) which represents the density of susceptible, YF ex-
posed, YF infected, toxic-infected individuals, and recovered and immune individuals
respectively. In the same way, the mosquito population is divided into two categories:
SV (t), IV (t) represent the density of susceptible mosquitoes and infected mosquitoes
respectively. We have considered the Caputo sense fractional derivative to represent
the projected model. The present model is as follows:

C
t0Dα

t SH = r+(1−σ)λ −θβ1SH IV −ρSH −dSH , (2)
C
t0Dα

t EH = θβ1SH IV −µEH −dEH ,

C
t0Dα

t IH = (1−ξ )µEH −ψIH − (d +Λ)IH ,

C
t0Dα

t TH = ξ µEH − (d +Λ)TH

C
t0Dα

t RH = ψIH +σλ +ρSH −dRH ,

C
t0Dα

t SV = ν −θβ2SV IH −φSV ,

C
t0Dα

t IV = θβ2SV IH −φ IV .

with initial condition SH(t0)= SH(0), EH(t0)=EH(0), IH(t0)= IH(0), TH(t0)= TH(0),
RH(t0) = RH(0), where t0 is the initial time. All the parameters r,σ ,λ ,θ ,β1,ρ,d,µ,ξ ,
ψ,Λ,ν ,β2,φ are non-negative. Where, r is the birth rate of human, σ is the vaccinated
proportion of immigrants, λ is the arrival rate of immigrants per individual per time,
and θ is the daily biting rate. β1 and β2 represent the transmission probability of
YF from mosquitoes to human and from human to mosquitoes respectively. ρ is the
effective vaccination rate of susceptible humans, d is the natural death rate of human, µ

is the rate at which EH progresses to IH , ξ is the proportion of EH which converts to the
toxic case, ψ is the recovery rate of human, Λ is the death rate of human-induced due

4
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to YF, ν is the birth rate of mosquitoes, and φ is the natural death rate of the vectors.

4 Existence of the solutions

The existence of the solution of the model 2 is demonstrated using the Fixed-Point The-
orem. Due to the complex and non-local nature of the system 2, there are no precise
algorithms or approaches for evaluating the exact solutions. However, the existence of
the solution is assured if certain conditions are met. To initiate the process of establish-
ing the existence of the solution, the system 2 is rewritten as:

C
t0Dα

t [SH(t)] =P1(t,SH),
C
t0Dα

t [EH(t)] =P2(t,EH),
C
t0Dα

t [IH(t)] =P3(t, IH),

C
t0Dα

t [TH(t)] =P4(t,TH),
C
t0Dα

t [RH(t)] =P5(t,RH),
C
t0Dα

t [SV (t)] =P6(t,SV ),

C
t0Dα

t [IV (t)] =P7(t, IV ). (3)

The above system can be transformed into Volterra type integral equation as:

SH(t)−SH(0) =
1

Γ(α)

∫ t

0
P1(τ,SH(τ))(t − τ)α−1dτ,

EH(t)−EH(0) =
1

Γ(α)

∫ t

0
P2(τ,EH(τ))(t − τ)α−1dτ,

IH(t)− IH(0) =
1

Γ(α)

∫ t

0
P3(τ, IH(τ))(t − τ)α−1dτ,

TH(t)−TH(0) =
1

Γ(α)

∫ t

0
P4(τ,TH(τ))(t − τ)α−1dτ,

RH(t)−RH(0) =
1

Γ(α)

∫ t

0
P5(τ,RH(τ))(t − τ)α−1dτ,

SV (t)−SV (0) =
1

Γ(α)

∫ t

0
P6(τ,SV (τ))(t − τ)α−1dτ,

IV (t)− IV (0) =
1

Γ(α)

∫ t

0
P7(τ, IV (τ))(t − τ)α−1dτ. (4)

Theorem 4.1. In the region Ω× [t0,T ], where

Ω= {(SH , EH , IH , TH , RH , SV , IV )∈R7 : max{|SH |, |EH |, |IH |, |TH |, |RH |, |SV |, |IV |}≤M},

and T < +∞, the Lipschitz condition is satisfied and contraction occurs by the kernel
P1 if 0 ≤ θβ1M+ρ +d < 1.

Proof: We consider the two functions SH and S̄H such as:

||P1(t,SH)−P1(t, S̄H)||= ||(r+(1−σ)λ −θβ1SH IV −ρSH −dSH)

5
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− (r+(1−σ)λ −θβ1S̄H IV −ρ S̄H −dS̄H)||.

≤ (θβ1M+ρ +d)||SH(t)− S̄H(t)||

= ζ1||SH(t)− S̄H(t)||, (5)

where ζ1 = θβ1M+ρ + d. As a result, the Lipschitz condition is met for P1 and if
0 ≤ ζ1 < 1, then P1 follows contraction. Similarly, it can be shown and illustrated in
case of the other equations as follows:

||P2(t,EH)−P2(t, ĒH)|| ≤ ζ2||EH(t)− ĒH(t)||, ||P3(t, IH)−P3(t, ĪH)|| ≤ ζ3||IH(t)− ĪH(t)||,

||P4(t,TH)−P4(t, T̄H)|| ≤ ζ4||TH(t)− T̄H(t)||, ||P5(t,RH)−P5(t, R̄H)|| ≤ ζ5||RH(t)− R̄H(t)||,

||P6(t,SV )−P6(t, S̄V )|| ≤ ζ6||SV (t)− S̄V (t)||, ||P7(t, IV )−P7(t, ĪV )|| ≤ ζ7||IV (t)− ĪV (t)||,
(6)

where ζ2 = (µ +d), ζ3 = (ψ +d+Λ), ζ4 = (d+Λ), ζ5 = (ψ +d+Λ), ζ6 = (θβ2M+

φ) and ζ7 = φ . Pi, i = 2,3,4,5,6,7 are the contraction if 0 < ζi < 1, i = 2,3,4,5,6,7.
Using system 4, the recursive form can now be written as follows:

κ1,n(t) = SHn(t)−SHn−1(t) =
1

Γ(α)

∫ t

0
(P1(τ,SHn−1)−P1(τ,SHn−2))(t − τ)α−1dτ,

κ2,n(t) = EHn(t)−EHn−1(t) =
1

Γ(α)

∫ t

0
(P2(τ,EHn−1)−P2(τ,EHn−2))(t − τ)α−1dτ,

κ3,n(t) = IHn(t)− IHn−1(t) =
1

Γ(α)

∫ t

0
(P3(τ, IHn−1)−P3(τ, IHn−2))(t − τ)α−1dτ,

κ4,n(t) = THn(t)−THn−1(t) =
1

Γ(α)

∫ t

0
(P4(τ,THn−1)−P4(τ,THn−2))(t − τ)α−1dτ,

κ5,n(t) = RHn(t)−RHn−1(t) =
1

Γ(α)

∫ t

0
(P5(τ,RHn−1)−P5(τ,RHn−2))(t − τ)α−1dτ,

κ6,n(t) = SVn(t)−SVn−1(t) =
1

Γ(α)

∫ t

0
(P6(τ,SVn−1)−P6(τ,SVn−2))(t − τ)α−1dτ,

κ7,n(t) = IVn(t)− IVn−1(t) =
1

Γ(α)

∫ t

0
(P7(τ, IVn−1)−P7(τ, IVn−2))(t − τ)α−1dτ. (7)

The prerequisites are: SH0(t)= SH(0), EH0(t)=EH(0), IH0(t)= IH(0), TH0(t)=TH(0),
RH0(t) = RH(0), SV0(t) = SV (0), IV0(t) = IV (0).
By applying the norm to the first equation of the system 7, we obtained

||κ1,n(t)||= ||SHn(t)−SHn−1(t)||

= || 1
Γ(α)

∫ t

0
(P1(τ,SHn−1)−P1(τ,SHn−2))(t − τ)α−1dτ||

≤ 1
Γ(α)

∫ t

0
||(P1(τ,SHn−1)−P1(τ,SHn−2))(t − τ)α−1dτ||. (8)

6
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Using Lipchitz condition 5, we get

||κ1,n(t)|| ≤
1

Γ(α)
ζ1

∫ t

0
||κ1,n−1(τ)dτ||. (9)

Similarly,

||κ2,n(t)|| ≤
1

Γ(α)
ζ2

∫ t

0
||κ2,n−1(τ)dτ||, ||κ3,n(t)|| ≤

1
Γ(α)

ζ3

∫ t

0
||κ3,n−1(τ)dτ||,

||κ4,n(t)|| ≤
1

Γ(α)
ζ4

∫ t

0
||κ4,n−1(τ)dτ||, ||κ5,n(t)|| ≤

1
Γ(α)

ζ5

∫ t

0
||κ5,n−1(τ)dτ||,

||κ6,n(t)|| ≤
1

Γ(α)
ζ6

∫ t

0
||κ6,n−1(τ)dτ||, ||κ7,n(t)|| ≤

1
Γ(α)

ζ7

∫ t

0
||κ7,n−1(τ)dτ||.

(10)

As a result, it yields
SHn(t) = ∑

n
i=1 κ1,i, EHn(t) = ∑

n
i=1 κ2,i, IHn(t) = ∑

n
i=1 κ3,i, THn(t) = ∑

n
i=1 κ4,i,

RHn(t) = ∑
n
i=1 κ5,i, SVn(t) = ∑

n
i=1 κ6,i, IVn(t) = ∑

n
i=1 κ7,i.

This theorem will be used to illustrate the next theorem.

Theorem 4.2. The solution of the fractional model 2 exists and will be unique, if we
acquire some tα such that

1
Γ(α)

ζitα < 1, i = 1,2,3, ...,7.

Proof: Applying equations 9 and 10 recursively, we have

||κ1,n(t)|| ≤ ||SHn(0)||
[

1
Γ(α)

ζ1t
]n

, ||κ2,n(t)|| ≤ ||EHn(0)||
[

1
Γ(α)

ζ2t
]n

,

||κ3,n(t)|| ≤ ||IHn(0)||
[

1
Γ(α)

ζ3t
]n

, ||κ4,n(t)|| ≤ ||THn(0)||
[

1
Γ(α)

ζ4t
]n

,

||κ5,n(t)|| ≤ ||RHn(0)||
[

1
Γ(α)

ζ5t
]n

, ||κ6,n(t)|| ≤ ||SVn(0)||
[

1
Γ(α)

ζ6t
]n

,

||κ7,n(t)|| ≤ ||IVn(0)||
[

1
Γ(α)

ζ7t
]n

. (11)

As a result, the existence and continuity are established. To illustrate that the above
relations formulate the solution of the model 2, we assume the following:

SH(t)−SH0(t) = SHn(t)−∆1n(t), EH(t)−EH0(t) = EHn(t)−∆2n(t), (12)

IH(t)− IH0(t) = IHn(t)−∆3n(t), TH(t)−TH0(t) = THn(t)−∆4n(t), (13)

RH(t)−RH0(t) = RHn(t)−∆5n(t), SV (t)−SV0(t) = SVn(t)−∆6n(t), (14)
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IV (t)− IV0(t) = IVn(t)−∆7n(t). (15)

In order to achieve the desired outcomes, set that

||∆1n(t)||= || 1
Γ(α)

∫ t

0
(P1(τ,SH)−P1(τ,SHn−1))dτ|| (16)

This implies,

||∆1n(t)|| ≤
1

Γ(α)
ζ1||SH −SHn−1 ||t. (17)

Continuing the same procedure recursively, we get

||∆1n(t)|| ≤
(

1
Γ(α)

ζ1t
)n+1

M. (18)

At certain tα , we have

||∆1n(t)|| ≤
(

1
Γ(α)

ζ1tα

)n+1

M. (19)

From equation [?], we observe that ||∆1n(t)|| approaches to 0 as n tends to ∞, provided(
1

Γ(α)ζ1tα

)
< 1. Similarly, it may be demonstrated that

||∆2n(t)||, ||∆3n(t)||, ||∆4n(t)||, ||∆5n(t)||, ||∆6n(t)||, ||∆7n(t)|| tends to 0. Hence the proof.
We shall now demonstrate the uniqueness for the solution of the system 2. Let us as-
sume that there is a different set of solutions, namely ŜH , ÊH, ÎH , T̂H , R̂H , ŜV , ÎV for
the system 2. Then, as a result of the first equation, we have

SH(t)− ŜH(t) =
1

Γ(α)

∫ t

0
(P1(t,SH)−P1(t, ŜH))dτ. (20)

Using the norm, the equation above becomes:

||SH(t)− ŜH(t)||=
1

Γ(α)

∫ t

0
||(P1(t,SH)−P1(t, ŜH))dτ||. (21)

By applying the Lipschitz condition,

||SH(t)− ŜH(t)|| ≤
1

Γ(α)
ζ t||SH − ŜH ||.

This results in,

||SH(t)− ŜH(t)||
(

1− (1−α)

Γ(α)
ζ t
)
≤ 0.

Since
(

1 − 1
Γ(α)ζ1t

)
> 0, we much have ||SH(t)− ŜH(t)|| = 0. This implies

SH(t) = ŜH(t).

8
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5 Boundedness

In this Section, we have established the boundedness of the solution of the system 2.

Theorem 5.1. The solution of the system 2 is uniformly bounded.

Proof. Considering the function, L(t)= SH(t)+EH(t)+IH(t)+TH(t)+RH(t)+SV (t)+
IV (t).
and applying fractional derivative on it, we get

C
t0Dα

t L(t)+dL(t) = C
t0Dα

t [SH(t)+EH(t)+ IH(t)+TH(t)+RH(t)+SV (t)+ IV (t)]

+d[SH(t)+EH(t)+ IH(t)+TH(t)+RH(t)+SV (t)+ IV (t)]

= r+λ −Λ(IH +TH)+ν −φ(SV + IV )+d(SV + IV )

≤ r+λ +ν +dSV +dIV . (22)

The solution exists and is unique in
0= {(SH ,EH , IH ,TH ,RH ,SV , IV )/max{|SH |, |EH |, |IH |, |TH |, |RH |, |SV |, |IV |} ≤M}.
The above inequality yields,

C
t0Dα

t L(t)+dL(t)≤ r+λ +ν +2dM.

By the Lemma 2, we get

C
t0Dα

t L(t)≤ (L(t0)−
1
d
(r+λ +ν+2dM)Eα [−η(t−t0)α ]+

1
d
(r+λ +ν+2dM)→ r+λ +ν+2dM

as t → ∞. Therefore, all the solution of the system 2 that initiates in 0 remained
bounded in
Θ = {(SH ,EH , IH ,TH ,RH ,SV , IV ) ∈ 0+|L(t)≤ r+λ +ν +2dM+ ε, ε > 0}.

6 Existence of points of equilibrium

In this section, we find the points of equilibrium of the system 2. We have the following
points of equilibrium for the fractional order system 2:

1. The disease-free equilibrium point is ℑ̄ = ( r+λ (1−σ)
d+ρ

,0,0,0, ρ(r+λ )+dλσ

d2+dρ
, ν

φ
,0)

and it always exists.

2. The endemic equilibrium point ℑ̃=(S̃H , ẼH , ˜IH , T̃H , R̃H , S̃V , ĨV ) exists if νθ 2µβ1β2(1−
ξ )(r+λ (1−σ))> φ 2(d+µ)(d+ρ)(d+Λ+ψ). Coexistence equilibrium point
can be obtained by solving the algebraic equations given below:

r+(1−σ)λ −θβ1S̃H ĨV −ρ S̃H −dS̃H = 0, θβ1S̃H ĨV −µẼH −dẼH = 0,
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(1−ξ )µẼH −ψ ˜IH − (d +Λ) ˜IH = 0, ξ µẼH − (d +Λ)T̃H = 0,

ψ ˜IH +σλ +ρ S̃H −dR̃H = 0, ν −θβ2S̃V ˜IH −φ S̃V = 0,

θβ2S̃V ˜IH −φ ĨV = 0.

Solving these equations we obtain,

S̃H =
r+λ (1−σ)

d +ρ + ĨV θβ1
,

ẼH =
ĨV θβ1(r+λ (1−σ))

(d +µ)(d +ρ + ĨV θβ1)
,

T̃H =
ĨV θ µξ β1(r+λ (1−σ))

(d +µ)(d +Λ+ψ)(d +ρ + ĨV θβ1)
,

R̃H =
1
d

(
λσ +

ρ(r+λ (1−σ))

d +ρ + ĨV θβ1
+

ĨV φ 2ψ

θβ2(ν − ĨV φ)

)
,

˜IH =
ĨV φ 2

θβ2(ν − ĨV φ)
,

S̃V =
ν(ν − ĨV φ)

φ(ν − ĨV φ)+ ĨV φ 2 ,

ĨV =
−φ 2(d +µ)(d +ρ)(d +Λ+ψ)+νθ 2µβ1β2(1−ξ )(r+λ (1−σ))

θφ 2β1(d +µ)(d +Λ+ψ)+θ µβ2(1−ξ )(r+λ (1−σ))
.

Clearly, ĨV > 0 if νθ 2µβ1β2(1−ξ )(r+λ (1−σ))> φ 2(d+µ)(d+ρ)(d+Λ+

ψ) and hence the endemic equilibrium point exists if this condition is satisfied.

7 Numerical Simulation

Here, we have evaluated the model 2 numerically taking into consideration the influ-
ences of various parameters on the dynamics of YF transmission. We have considered
the initial values as: SH0(t)= 0.62, EH0(t)= 0.23, IH0(t)= 0.1, TH0(t)= 0.05, RH0(t)=
0, SV0(t) = 0.9, IV0(t) = 0.1. Values of the parameters are considered as:r = 4.94

105 , θ =

3, β1 = 0.6, β2 = 0.5, σ = 0.5
106 , λ = 1

106 , ρ = 0.01, d = 4.94
105 , µ = 0.31, ξ = 0.15, ψ =

0.143, Λ = 3.5
10 , ν = 0.051, φ = 0.051. It is assumed that 50 of the immigrants are

vaccinated. From the Figures 1 it is visible that, the daily biting rate θ influences the
infected human and infected mosquito population. For α = 1, these populations tends
to grow and reaches the peak, and thereafter they start to decrease and tend to extinc-
tion. As the fractional values are incorporated, it is notable that, there is a delay in
extinction of the IH and IV population. As the value of α further decreases, we notice
that infections in human and mosquitoes are never eradicated. In fact a small portion
of population are always with infection.
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Figure 1: Profile of IH and IV for distinct values of θ for (A) α = 1, (B) α = 0.65, (C)
α = 1, (D) α = 0.65
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Figure 2: Profile of IH and IV for distinct values of β1 for (A) α = 1, (B) α = 0.65, (C)
α = 1, (D) α = 0.65
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Figure 3: Profile of IH and IV for distinct values of β2 for (A) α = 1, (B) α = 0.65, (C)
α = 1, (D) α = 0.65
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Figure 4: Profile of IH and RH for distinct values of (A) ρ and α = 1, (B) ρ and
α = 0.65, (C) ψ and α = 1, (D)ψ and α = 0.65

The variations in the profiles of IH and IV for different values of β1 are depicted in
Figures 2. Figures 3 shows the variation in the profile of IH and IV for distinct values of
β2. From the above graphs it is visible that, as the value of β1 and β2 increases, the IH

and IV population tends to grow and attains maximum value. Subsequently, they start
decreasing and reach nullity which results in extinction of the IH and IV population. But
decrease in the value of fractional derivative results in existence of the infection among
the populations for longer duration. Figure 4 represents the varied profile of IH for
discrete values of effective vaccination rate of susceptible population. From the figure
it is notable that, as the vaccination rate increases, the infected host population keeps
on decreasing. Further, as the time progress, the infection extincts due to the influence
of vaccination. As the fractional values are introduced, a fall in the infected population
peak is notable. Figure 4 also depicts the profile of RH for different recovery rate ψ

and various fractional values. It may be observed that, as the value of recovery rate ψ

is increased, the total recovery population also increases and leads to reduction of the
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Figure 5: Profile of TH for distinct values of ξ for (A) α = 1, (B) α = 0.95, (C)
α = 0.85, (D) α = 0.65

epidemic in the host population.Figure 5 presents the dynamics of the toxic population
as the proportion of exposed population deteriorates into toxic case at the rate ξ . As
the value of ξ increases, the population of toxic ones grows. Further, since there is no
recovery in toxic population, they die and hence population tends to extinction.

8 Conclusion

The fractional dynamics of the YF model is investigated in the present work in Ca-
puto sense. Boundedness, existence, continuity, and uniqueness of the solution have
been established. In the figures we have demonstrated the profile of the infected hu-
man and infected vectors under the influence of the biting rate, transmission rate from
mosquitoes to human and human to mosquitoes, vaccination rate of susceptible popu-
lation, recovery rate, and toxicity rate in presence of the Caputo fractional derivatives.
We have observed that the Caputo derivative provides more realistic information than
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that of the classical derivative. The reseason behind this claim is that it does not show
the extinction of the infection from the environment. Graphical representations es-
tablish that the Adams-Bashfort-Moulton predictor-corrector method gives expected
depiction of the results for analyzing the dynamics of the projected model. Numerical
analysis of disease dynamics in the framework of various fractional derivatives can en-
rich the applications of mathematics for betterment of humankind as a future direction
of studies of fractional calculus.
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