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Abstract : In this paper, we study differential equations arising from the generating functions of

generalized degenerate tangent polynomials. We give explicit identities for the generalized degenerate

tangent polynomials arising from differential equations.

Key words : Differential equations, tangent numbers, higher-order tangent numbers, degenerate
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2000 Mathematics Subject Classification : 05A19, 11B83, 34A30, 65L99.

1. Introduction

Recently, many mathematicians have studied in the area of the degenerate Euler numbers,

degenerate Bernoulli numbers, degenerate Genocchi numbers, and degenerate tangent numbers(see

[1, 2, 3, 5, 6, 7, 8, 9, 10, 11]).

We first give the definitions of the tangent numbers and polynomials. It should be mentioned

that the definition of tangent numbers Tn and polynomials Tn(x) can be found in [5, 6]. The tangent

numbers Tn and polynomials Tn(x) are defined by means of the generating functions:

2

e2t + 1
=

∞∑
n=0

Tn
tn

n!
,

(
2

e2t + 1

)
ext =

∞∑
n=0

Tn(x)
tn

n!
. (1.1)

Generalized tangent polynomials Tn(x)(n ≥ 0), were introduced by Ryoo. The generalized tangent

polynomials Tn(x) are defined by the generating function:(
2

e2t + 1

)x

=

∞∑
n=0

Tn(x)
tn

n!
. (1.2)

Degenerate tangent numbers Tn,λ and polynomials, Tn,λ(x)(n ≥ 0), were introduced by Ryoo(see

[8]). The degenerate tangent numbers Tn,λ are defined by the generating function:

2

(1 + λt)2/λ + 1
=

∞∑
n=0

Tn,λ
tn

n!
. (1.3)

The generalized degenerate tangent polynomials Tn,λ(x) are defined by means of the following gen-

erating function (
2

(1 + λt)2/λ + 1

)x

=

∞∑
n=0

Tn,λ(x)
tn

n!
. (1.4)

We recall that the classical Stirling numbers of the first kind S1(n, k) and S2(n, k) are defined by

the relations(see [11])

(x)n =
n∑

k=0

S1(n, k)x
k and xn =

n∑
k=0

S2(n, k)(x)k,
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respectively. Here (x)n = x(x− 1) · · · (x− n+1) denotes the falling factorial polynomial of order n.

The symbol < x >n is used for the rising factorial: < x >n= x(x+1) · · · (x+n−1). The generalized

falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =
n−1∏
k=0

(x− λk) (1.5)

for positive integer n, with the convention (x|λ)0 = 1. The generalized rising factorial < x|λ >(N)
n

is defined by

< x|λ >(N)
n =

n−1∏
k=0

(x+ (N − k)λ) (1.6)

for positive integer n, with the convention < x|λ >(N)
0 = 1. We also need the binomial theorem: for

a variable x,

(1 + λt)x/λ =
∞∑

n=0

(x|λ)n
tn

n!
. (1.7)

Many mathematicians have studied in the area of the linear and nonlinear differential equations

arising from the generating functions of special polynomials in order to give explicit identities for

special polynomials(see [3, 7, 9]). In this paper, we study differential equations arising from the

generating functions of generalized degenerate tangent polynomials. We give explicit identities for

the generalized degenerate tangent polynomials.

2. Differential equations associated with generalized degenerate tangent polynomials

In this section, we study differential equations arising from the generating functions of gener-

alized degenerate tangent polynomials. Let

F = F (t, x, λ) =

(
2

(1 + λt)2/λ + 1

)x

. (2.1)

Then, by (2.1), we have

F (1) =
∂

∂t
F (t, x, λ) =

∂

∂t

(
2

(1 + λt)2/λ + 1

)x

=
x

1 + λt

(
2

(1 + λt)2/λ + 1

)x−1( −4(1 + λt)2/λ

(1 + λt)2/λ + 1

)
=
xF (t, x+ 1, λ)− 2xF (t, x, λ)

1 + λt

(2.2)

and

F (2) =
∂

∂t
F (1) =

(
xF (1)(t, x+ 1, λ)− 2xF (1)(t, x, λ)

)
(1 + λt)−1

− λ (xF (t, x+ 1, λ)− 2xF (t, x, λ)) (1 + λt)−2

=
x(x+ 1)F (t, x+ 2, λ)

(1 + λt)2
− (4x2 + 2x+ λx)F (t, x, λ)

(1 + λt)2

+
(4x2 + 2xλ)F (t, x, i)

(1 + λt)2
,

(2.3)

Continuing this process, we can guess that

F (N) =

(
∂

∂t

)N

F (t, x, λ)

=
N∑
i=0

ai(N,x, λ)F (t, x+ i, λ)(1 + λt)−N , (N = 0, 1, 2, . . .).

(2.4)
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Taking the derivative with respect to t in (2.4), we have

F (N+1) =

(
∂

∂t

)N+1

F (t, x, λ)

=
N∑
i=0

ai(N,x, λ)(−Nλ)F (t, x+ i, λ)(1 + λt)−N−1

+
N∑
i=0

ai(N,x, λ)F
(1)(t, x+ i, λ)(1 + λt)−N

=
N∑
i=0

ai(N,x, λ)(−Nλ)(t, x+ i, λ)(1 + λt)−N−1

+
N∑
i=0

ai(N,x, λ) [(x+ i)F (t, x+ i+ 1, λ)− 2(x+ i)F (t, x+ i, λ)] (1 + λt)−N

=
N∑
i=0

(−2x− 2i−Nλ)ai(N, x, λ)F (t, x+ i, λ)(1 + λt)−N−1

+
N+1∑
i=1

(x+ i− 1)ai−1(N,x, λ)F (t, x+ i, λ)(1 + λt)−N−1.

(2.5)

On the other hand, by replacing N by N + 1 in (2.4), we get

F (N+1) =
N+1∑
i=0

ai(N + 1, x, λ)F (t, x+ i, λ)(1 + λt)−N−1. (2.6)

By (2.5) and (2.6), we have

N∑
i=0

(−2x− 2i−Nλ)ai(N,x, λ)F (t, x+ i, λ)(1 + λt)−N−1

+

N+1∑
i=1

(x+ i− 1)ai−1(N,x, λ)F (t, x+ i, λ)(1 + λt)−N−1

=
N+1∑
i=0

ai(N + 1, x, λ)F (t, x+ i, λ)(1 + λt)−N−1.

(2.7)

Comparing the coefficients on both sides of (2.7), we obtain

a0(N + 1, x, λ) = −(2x+Nλ)a0(N, x, λ),

aN+1(N + 1, x, λ) = (x+N)aN (N, x, λ),
(2.8)

and
ai(N + 1, x, λ) = (−1)(2x+ 2i+Nλ)ai(N, x, λ)

+ (x+ i− 1)ai−1(N, x, λ), (1 ≤ i ≤ N).
(2.9)

In addition, by (2.2) and (2.4), we get

F = F (0) = a0(0, x, λ)F (t, x, λ) = F (t, x, λ). (2.10)

Thus, by (2.10), we obtain

a0(0, x, λ) = 1. (2.11)

It is not difficult to show that

xF (t, x+ 1, λ)(1 + λt)
−1 − 2xF (t, x, λ)(1 + λt)

−1

=
1∑

i=0

ai(1, x, λ)F (t, x+ i, λ)(1 + λt)
−1

= a0(1, x, λ)F (t, x, λ)(1 + λt)
−1

+ a1(1, x, λ)F (t, x+ 1, λ)(1 + λt)
−1
.

(2.12)
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Thus, by (2.12), we also get

a0(1, x, λ) = −2x, a1(1, x, λ) = x. (2.13)

From (2.8), we note that

a0(N + 1, x, λ) = −(2x+Nλ)a0(N, x, λ) = · · · = (−1)N+1 < 2x|λ >(N)
N+1,

and

aN+1(N + 1, x, λ) = (x+N)aN (N,x, λ) = · · · = xa0(0, x, λ) =< x >N+1 . (2.14)

For i = 1, 2, 3 in (2.9), we get

a1(N + 1, α, x) = x
N∑

k=0

(−1)k < 2x+ 2|λ >(N)
k a0(N − k, x, λ),

a2(N + 1, x, λ) = (x+ 1)

N∑
k=0

(−1)k < 2x+ 4|λ >(N)
k a1(N − k, x, λ), and

a3(N + 1, x, λ) = (x+ 2)

N−2∑
k=0

(−1)k < 2x+ 6|λ) >(N)
k a2(N − k, x, λ).

Continuing this process, we can deduce that, for 1 ≤ i ≤ N,

ai(N + 1, x, λ) = (X + i− 1)

N−i+1∑
k=0

(−1)k < 2x+ 2i|λ) >(N)
k ai−1(N − k, x, λ). (2.15)

Note that, here the matrix ai(j, x, λ)0≤i,j≤N+1 is given by

1 −2x (2x)(2x+ λ) −(2x)(2x+ λ)(2x+ 2λ) · · · (−1)N+1 < 2x|λ >(N)
N+1

0 < x >1 · · · · · ·
0 0 < x >2 · · · · ·
0 0 0 < x >3 · · · ·
...

...
...

...
. . .

...

0 0 0 0 · · · < x >N+1


Now, we give explicit expressions for ai(N + 1, x, λ). By (2.14) and (2.15), we get

a1(N + 1, x, λ) = x
N∑

k1=0

(−1)k1 < 2x+ 2|λ >(N)
k1

a0(N − k1, x, λ)

= x

N∑
k1=0

(−1)N < 2x+ 2|λ >(N)
k1

< 2x|λ >(N−k1−1)
N−k1

=< x >1

N∑
k1=0

(−1)N < 2x+ 2|λ >(N)
k1

< 2x|λ >(N−k1−1)
N−k1

,

a2(N + 1, x, λ) = (x+ 1)
N−1∑
k2=0

(−1)k2 < 2x+ 4|λ >(N)
k2

a1(N − k2, x, λ)

=< x >2

N−1∑
k2=0

N−k2−1∑
k1=0

(−1)N−1 < 2x+ 4|λ >(N)
k2

× < 2x+ 2|λ >(N−k2−1)
k1

< 2x|λ >(N−k2−k1−2)
N−k2−k1−1 ,
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and

a3(N + 1, x, λ)

= (x+ 2)
N−2∑
k3=0

(−1)k3 < 2x+ 6|λ >(N)
k3

a2(N − k3, x, λ)

=< x >3

N−2∑
k3=0

N−k3−2∑
k2=0

N−k3−k2−2∑
k1=0

(−1)N−2 < 2x+ 6|λ >(N)
k3

× < 2x+ 4|λ >(N−k3−1)
k2

< 2x+ 2|λ >(N−k3−k2−2)
k1

< 2x|λ >(N−k3−k2−k1−3)
N−k3−k2−k1−2 .

Continuing this process, we obtain

ai(N + 1, x, λ)

=< x >i

N−i+1∑
ki=0

N−ki−i+1∑
ki−1=0

· · ·
N−ki−···−k2−i+1∑

k1=0

(−1)N−i+1 < 2x+ 2i|λ >(N)
ki

× < 2x+ 2(i− 1)|λ >(N−ki−1)
ki−1

· · · < 2x|λ >(N−ki−ki−1−···−k2−k1−i)
N−ki−ki−1−···−k2−k1−i+1 .

(2.16)

Therefore, by (2.16), we obtain the following theorem.

Theorem 1. For N = 0, 1, 2, . . . , the functional equation

F (N) =
N∑
i=0

ai(N, x, λ)F (t, x+ i, λ)(1 + λt)−N

has a solution

F = F (t, x, λ) =

(
2

(1 + λt)2/λ + 1

)x

,

where

a0(N, x, λ) = (−1)N < 2x|λ >(N−1)
N ,

aN (N,x, λ) =< x >N ,

ai(N, x, λ)

= (−1)i < α >i (ζq
h)i

N−i∑
ki=0

N−ki−i∑
ki−1=0

· · ·
N−ki−···−k2−i∑

k1=0

(−1)N−i < 2x+ 2i|λ >(N−1)
ki

× < 2x+ 2(i− 1)|λ >(N−ki−2)
ki−1

· · · < 2x|λ >(N−ki−ki−1−···−k2−k1−i−1)
N−ki−ki−1−···−k2−k1−i ,

(1 ≤ i ≤ N − 1).

Here is a plot of the surface for this solution. We choose λ = 1/10. The viewing windows is

{(t, x) : −4 ≤ t ≤ 10, 0 ≤ x ≤ 15}. In Figure 1(left), we plot of the surface for this solution. In

Figure 1(right), we shows a higher-resolution density plot of the solution.

From (1.1), we note that

F (N) =

(
∂

∂t

)N ∞∑
n=0

Tn,λ(x)
tn

n!
=

∞∑
k=0

Tn+N,λ(x)
tk

k!
. (2.17)

From Theorem 1, (1.3), and (2.17), we can derive the following equation:
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Figure 1: The surface for the solution F (t, x, λ)

∞∑
n=0

Tn+N,λ(x)
tn

n!
= F (N) =

N∑
i=0

ai(N, x, λ)F (t, x+ i, λ)(1 + λt)−N

=

N∑
i=0

ai(N,x, λ)(1 + λt)−N

(
2

(1 + λt)2/λ + 1

)x+i

=

N∑
i=0

ai(N,x, λ)

∞∑
n=0

(
n∑

l=0

(
n

l

)
(−λ)l

(
N + l − 1

N − 1

)
l!Tn−l,λ(x+ i)

)
tn

n!

=

∞∑
n=0

(
N∑
i=0

n∑
l=0

(
n

l

)(
N + l − 1

N − 1

)
(−λ)ll!ai(N, x, λ)Tn−l,λ(x+ i)

)
tn

n!
.

(2.18)

By comparing the coefficients on both sides of (2.18), we obtain the following theorem.

Theorem 2. For k = 0, 1, . . . , and N = 0, 1, 2, . . . , we have

Tn+N,λ(x) =
N∑
i=0

n∑
l=0

(
n

l

)(
N + l − 1

N − 1

)
(−λ)ll!ai(N, x, λ)Tn−l,λ(x+ i), (2.19)

where

a0(N, x, λ) = (−1)N < 2x|λ >(N−1)
N ,

aN (N,x, λ) =< x >N ,

ai(N, x, λ)

= (−1)i < α >i (ζq
h)i

N−i∑
ki=0

N−ki−i∑
ki−1=0

· · ·
N−ki−···−k2−i∑

k1=0

(−1)N−i < 2x+ 2i|λ >(N−1)
ki

× < 2x+ 2(i− 1)|λ >(N−ki−2)
ki−1

· · · < 2x|λ >(N−ki−ki−1−···−k2−k1−i−1)
N−ki−ki−1−···−k2−k1−i ,

(1 ≤ i ≤ N − 1).

Let us take n = 0 in (2.19). Then, we have the following corollary.

Corollary 3. For N = 0, 1, 2, . . . , we have

TN,λ(x) =
N∑
i=0

ai(N, x, λ)T0,λ(x+ i).
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3. Zeros of the generalized degenerate tangent polynomial

This section aims to demonstrate the benefit of using numerical investigation to support theo-

retical prediction and to discover new interesting pattern of the zeros of the generalized degenerate

tangent polynomial Tn,λ(x). By using computer, the generalized degenerate tangent polynomials

Tn,λ(x) can be determined explicitly. The first few of them are

T0,λ(x) = 1,

T1,λ(x) = −x,

T2,λ(x) = −x+ λx+ x2,

T3,λ(x) = 3λx− 2λ2x+ 3x2 − 3λx2 − x3,

T4,λ(x) = 2x− 11λ2x+ 6λ3x+ 3x2 − 18λx2 + 11λ2x2 − 6x3 + 6λx3 + x4,

T5,λ(x) = −20λx+ 50λ3x− 24λ4x− 10x2 − 30λx2 + 105λ2x2 − 50λ3x2

− 15x3 + 60λx3 − 35λ2x3 + 10x4 − 10λx4 − x5,

T6,λ(x) = −16x+ 170λ2x− 274λ4x+ 120λ5x− 30x2 + 150λx2 + 255λ2x2

− 675λ3x2 + 274λ4x2 + 15x3 + 225λx3 − 510λ2x3 + 225λ3x3

+ 45x4 − 150λx4 + 85λ2x4 − 15x5 + 15λx5 + x6.

We investigate the beautiful zeros of the generalized degenerate tangent polynomials Tn,λ(x) by

using a computer. We plot the zeros of the Tn,λ(x) for n = 20, λ = 15/10, 10/10, 5/10, 1/10, and

x ∈ C(Figure 2). In Figure 2(top-left), we choose n = 20 and λ = 15/10. In Figure 2(top-right),

we choose n = 20 and λ = 10/10. In Figure 2(bottom-left), we choose n = 20 and λ = 5/10. In

Figure 2(bottom-right), we choose n = 20and λ = 1/10. Prove that Tn,λ(x), x ∈ C, has Im(x) = 0

reflection symmetry analytic complex functions(see Figure 2).

Stacks of zeros of the generalized degenerate tangent polynomials Tn,λ(x) for 1 ≤ n ≤ 20, λ =

1/10 from a 3-D structure are presented(Figure 3).

Our numerical results for approximate solutions of real zeros of the generalized degenerate

tangent polynomials Tn,λ(x) = 0, λ = 15/10 are displayed(Tables 1, 2).

Table 1. Numbers of real and complex zeros of Tn,λ(x)

degree n real zeros complex zeros

1 1 0

2 2 0

3 3 0

4 4 0

5 3 2

6 4 2

7 3 4

8 4 4

9 3 6

10 4 6

11 3 8

12 4 8

13 3 10

14 4 10
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Figure 2: Zeros of Tn,λ(x)

Plot of real zeros of Tn,λ(x) for 1 ≤ n ≤ 20 structure are presented(Figure 4).

We observe a remarkably regular structure of the complex roots of the generalized degenerate

tangent polynomials Tn,λ(x). We hope to verify a remarkably regular structure of the complex

roots of the generalized degenerate tangent polynomials Tn,λ(x) (Table 1). Next, we calculated an
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Figure 3: Stacks of zeros of Tn,λ(x), 1 ≤ n ≤ 20

Figure 4: Real zeros of Tn,λ(x) for 1 ≤ n ≤ 20

approximate solution satisfying Tn,λ(x) = 0, λ = 15/10, x ∈ R. The results are given in Table 2.

Table 2. Approximate solutions of Tn,λ(x) = 0, x ∈ R

degree n x

1 0

2 −0.50000, 0

3 −1.5000, 0, 0

4 −2.0000, −1.7247, 0.7247, 0

5 −3.0000, 1.6113, 0

6 −3.5000, −3.3258, 2.6128, 0

7 −4.5000, 3.6997, 0

8 −5.0001, −4.8845, 4.8524, 0

9 6.0575, −6.0000, 0
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Finally, we shall consider the more general problems. How many zeros does Tn,λ(x) have?

Tn,λ(x) = 0 has not n distinct solutions(see Table 2). Find the numbers of complex zeros CTn,λ(x)

of Tn,λ(x), Im(x) ̸= 0. Since n is the degree of the polynomial Tn,λ(x), the number of real zeros

RTn,λ(x) lying on the real line Im(x) = 0 is then RTn,λ(x) = n − CTn,λ(x), where CTn,λ(x) denotes

complex zeros. See Table 1 for tabulated values of RTn,λ(x) and CTn,λ(x). The author has no doubt

that investigations along this line will lead to a new approach employing numerical method in the

research field of the generalized degenerate tangent polynomials Tn,λ(x) to appear in mathematics

and physics.
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1 Introduction

The following definitions are well known in the literature.

Definition 1.1. Let I be an interval in R = (−∞,∞). Then a function f : I → R is said to be
convex if f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) holds for all x, y ∈ I and t ∈ [0, 1].

It is famous that, for any convex function f defined on [a, b], the Hermite–Hadamard inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2

holds true.

Definition 1.2 ([3, 6]). Let s ∈ (0, 1] be a real number. A function f : R0 = [0,∞) → R0 is said
to be s-convex (in the second sense) if f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y) holds for all x, y ∈ I
and t ∈ [0, 1].

Definition 1.3 ([12]). A function f : R→ R is said to be extended s-convex if f(tx+ (1− t)y) ≤
tsf(x) + (1− t)sf(y) holds for all x, y ∈ I and t ∈ (0, 1) and for some fixed s ∈ [−1, 1].
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In recent decades, a lot of integral inequalities of the Hermite–Hadamard type for various kinds
of convex functions have been established. Some of them can be recited as follows.

Theorem 1.1 ([1, Theorem 6]). Let f : I ⊆ R→ R be a differentiable function on I◦ and a, b ∈ I◦
with a < b such that f ′ ∈ L1([a, b]). If |f ′|q is s-convex on [a, b] for s ∈ (0, 1], then∣∣∣∣f(a) + rf(b)

r + 1
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
(r + 1)(s+ 1)(s+ 2)

×
{[
s− r + 1 +

2rs+2

(r + 1)s+1

]
|f ′(a)|+

[
r(s+ 1)− 1 +

2

(r + 1)s+1

]
|f ′(b)|

}
. (1.1)

Theorem 1.2 ([4, Theorem 3.1]). Let f : I ⊆ R0 → R be differentiable on I◦, a, b ∈ I with a < b,
and f ′ ∈ L1([a, b]). If |f ′| is s-convex on [a, b] for some s ∈ (0, 1], then∣∣∣∣f(λa+(1−λ)b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
(s+ 1)(s+ 2)

{
(1−λ)2

[
|f ′(a)|+(s+1)

∣∣f ′(λa+(1−λ)b)
∣∣]

+ λ2
[
|f ′(b)|+ (s+ 1)

∣∣f ′(λa+ (1− λ)b)
∣∣]}. (1.2)

Theorem 1.3 ([5, Theorem 2.2]). Let f : I◦ ⊆ R → R be a differentiable mapping on I◦ and
a, b ∈ I◦ with a < b. If |f ′| is convex on [a, b], then∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ (b− a)(|f ′(a)|+ |f ′(b)|)
8

.

Theorem 1.4 ([7, Theorems 4]). Let f : I ⊆ R0 → R be differentiable on I◦, a, b ∈ I with a < b,
and f ′ ∈ L1([a, b]). If |f ′|q is s-convex on [a, b] for some fixed s ∈ (0, 1] and q > 1, then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

[
1

(s+ 1)(s+ 2)

]1/q(
1

2

)1/p

×
{[
|f ′(a)|q + (s+ 1)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q]1/q +

[
|f ′(b)|q + (s+ 1)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q]1/q},
where 1

p + 1
q = 1.

Theorem 1.5 ([8, Theorems 1 and 3]). Let f : I ⊆ R0 → R be differentiable on I◦ and a, b ∈ I
with a < b. If |f ′(x)|q is s-convex on [a, b] for some fixed s ∈ (0, 1] and q ≥ 1, then∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
2

(
1

2

)1−1/q[
2 + 1/2s

(s+ 1)(s+ 2)

]1/q[
|f ′(a)|q + |f ′(b)|q

]1/q
.

Theorem 1.6 ([9, Theorems 1 and 2]). Let f : I ⊆ R→ R be differentiable on I◦ and a, b ∈ I with
a < b. If |f ′|q is convex on [a, b] for q ≥ 1, then∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
|f ′(a)|q + |f ′(b)|q

2

)1/q

and ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
|f ′(a)|q + |f ′(b)|q

2

)1/q

.
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Theorem 1.7 ([12, Theorems 3.1(2) and 3.2]). Let 0 ≤ λ, µ ≤ 1 and f : I ⊆ R → R be a
differentiable function on I◦, a, b ∈ I with a < b, and f ′ ∈ L1[a, b] such that |f ′(x)|q for q ≥ 1 is
extended s-convex on [a, b] for some fixed s ∈ [−1, 1].

1. If −1 < s ≤ 1, then∣∣∣∣λf(a) + µf(b)

2
+

2− λ− µ
2

f

(
a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

[
1

(s+ 1)(s+ 2)

]1/q
×
{(

1

2
− λ+ λ2

)1−1/q[(
2(1− λ)s+2 + (s+ 2)λ− 1

)
|f ′(a)|q +

(
2λs+2 + s+ 1

− (s+ 2)λ
)∣∣∣∣f ′(a+ b

2

)∣∣∣∣q]1/q +

(
1

2
− µ+ µ2

)1−1/q[(
2µs+2 + s+ 1

− (s+ 2)µ
)∣∣∣∣f ′(a+ b

2

)∣∣∣∣q +
(
2(1− µ)s+2 + (s+ 2)µ− 1

)
|f ′(b)|q

]1/q}
; (1.3)

2. If s = −1, we have∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

23−2/q

{[
(2 ln 2− 1)|f ′(a)|q + |f ′(b)|q

]1/q
+
[
|f ′(a)|q + (2 ln 2− 1)|f ′(b)|q

]1/q}
. (1.4)

For recent generalizations of the Hermite–Hadamard type inequalities, please refer to [2, 10, 11,
13] and the references cited therein.

The main aim of this paper is to establish new inequalities of the Hermite–Hadamard type for
the class of functions whose derivatives to certain powers are extended s-convex functions.

2 Lemmas

In order to prove our main results, we need the following lemmas.

Lemma 2.1. Let f : I ⊆ R→ R be differentiable on I◦ and a, b ∈ I with a < b. If f ′ ∈ L1([a, b]),
λ, µ ∈ R, and ξ ∈ [0, 1], then

λf(a) + µf(b)

2
+

2− λ− µ
2

f(ξa+ (1− ξ)b)− 1

b− a

∫ b

a

f(x) dx

=
b− a

2

[
(1− ξ)

∫ 1

0

(2(1− ξ)t− λ)f ′(t(ξa+ (1− ξ)b) + (1− t)a) d t

+ ξ

∫ 1

0

(µ− 2ξt)f ′(t(ξa+ (1− ξ)b) + (1− t)b) d t

]
.

In particular, when ξ = 0, 1,

λf(a) + (1− λ)f(b)− 1

b− a

∫ b

a

f(x) dx = (b− a)

∫ 1

0

(t− λ)f ′((1− t)a+ tb) d t.
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Proof. Integrating by part and changing variables of integration yield

b− a
2

[
(1− ξ)

∫ 1

0

(2(1− ξ)t− λ)f ′(t(ξa+ (1− ξ)b) + (1− t)a) d t

+ ξ

∫ 1

0

(µ− 2ξt)f ′(t(ξa+ (1− ξ)b) + (1− t)b) d t

]
=

1

2

[
(2− 2ξ − λ)f(ξa+ (1− ξ)b) + λf(a)− 2

b− a

∫ ξa+(1−ξ)b

a

f(x) dx

+ (2ξ − µ)f(ξa+ (1− ξ)b) + µf(b)− 2

b− a

∫ b

ξa+(1−ξ)b
f(x) dx

]
=
λf(a) + µf(b)

2
+

2− λ− µ
2

f

(
ξa+ (1− ξ)b

)
− 1

b− a

∫ b

a

f(x) dx.

This completes the proof.

Lemma 2.2. Let λ ∈ R and s > −1. Then

∫ 1

0

|λ− t|ts d t =



(s+ 1)− (s+ 2)λ

(s+ 1)(s+ 2)
, λ ≤ 0,

2λs+2 − (s+ 2)λ+ (s+ 1)

(s+ 1)(s+ 2)
, 0 ≤ λ ≤ 1,

(s+ 2)λ− (s+ 1)

(s+ 1)(s+ 2)
, λ ≥ 1

and ∫ 1

0

|λ− t|s d t =
1

s+ 1


(1− λ)s+1 − (−λ)s+1, λ ≤ 0,

λs+1 + (1− λ)s+1, 0 ≤ λ ≤ 1,

λs+1 − (λ− 1)s+1, λ ≥ 1.

Proof. These follow from straightforward computation of definite integrals.

3 Main results

We are now in a position to establish some new integral inequalities of the Hermite–Hadamard type
for differentiable and extended s-convex functions.

Theorem 3.1. Let 0 ≤ λ, µ, ξ ≤ 1 and f : I ⊆ R → R be a differentiable function on I◦, a, b ∈ I
with a < b, and f ′ ∈ L1([a, b]) such that |f ′|q for q ≥ 1 is extended s-convex on [a, b] for some fixed
s ∈ [−1, 1].

1. If ξ ∈ (0, 1) and s ∈ (−1, 1], then∣∣∣∣λf(a) + µf(b)

2
+

2− λ− µ
2

f(ξa+ (1− ξ)b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
2

{
(1− ξ)

× [E(1− ξ, λ, 0)]1−1/q
[
E(1− ξ, 2− 2ξ − λ, s)|f ′(a)|q + E(1− ξ, λ, s)|f ′(ξa+ (1− ξ)b)|q

]1/q
+ ξ[E(ξ, µ, 0)]1−1/q

[
E(ξ, µ, s)|f ′(ξa+ (1− ξ)b)|q + E(ξ, 2ξ − µ, s)|f ′(b)|q

]1/q}
; (3.1)
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2. If ξ ∈ (0, 1) and s = −1, we have∣∣∣∣f(ξa+ (1− ξ)b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
21−1/q

{
(1− ξ)2−2/q

[
(ξ − 1− ln ξ)|f ′(a)|q

+ (1− ξ)|f ′(b)|q
]1/q

+ξ2−2/q
[
ξ|f ′(a)|q − (ξ + ln(1− ξ))|f ′(b)|q

]1/q}
; (3.2)

3. If ξ = 0, 1 and s 6= −1, we have∣∣∣∣λf(a) + (1− λ)f(b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
21−1/q

[
1

(s+ 1)(s+ 2)

]1/q
(2λ2 − 2λ+ 1)1−1/q

×
[(

2(1− λ)s+2 + (s+ 2)λ− 1
)
|f ′(a)|q +

(
2λs+2 − (s+ 2)λ+ s+ 1

)
|f ′(b)|q

]1/q
, (3.3)

where

E(ξ, λ, s) =

∫ 1

0

|2ξt− λ|ts d t.

Proof. For ξ ∈ (0, 1) and s ∈ (−1, 1], from Lemma 2.1, using Hölder’s integral inequality and
extended s-convexity of |f ′|q, we have∣∣∣∣λf(a) + µf(b)

2
+

2− λ− µ
2

f(ξa+ (1− ξ)b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

2

[
(1− ξ)

∫ 1

0

|2(1− ξ)t− λ||f ′(t(ξa+ (1− ξ)b) + (1− t)a)|d t

+ ξ

∫ 1

0

|µ− 2ξt||f ′(t(ξa+ (1− ξ)b) + (1− t)b)|d t
]

≤ b− a
2

{
(1− ξ)

(∫ 1

0

|2(1− ξ)t− λ| d t
)1−1/q

×
[∫ 1

0

|2(1− ξ)t− λ||f ′(t(ξa+ (1− ξ)b) + (1− t)a)|q d t

]1/q
+ ξ

(∫ 1

0

|µ− 2ξt|d t
)1−1/q[∫ 1

0

|µ− 2ξt||f ′(t(ξa+ (1− ξ)b) + (1− t)b)|q d t

]1/q}
≤ b− a

2

{
(1− ξ)

(∫ 1

0

|2(1− ξ)t− λ| d t
)1−1/q[∫ 1

0

|2(1− ξ)t− λ|

×
(
ts|f ′(ξa+ (1− ξ)b)|q + (1− t)s|f ′(a)|q

)
d t

]1/q
+ ξ

(∫ 1

0

|µ− 2ξt|d t
)1−1/q

×
[∫ 1

0

|µ− 2ξt|
(
ts|f ′(ξa+ (1− ξ)b)|q + (1− t)s|f ′(b)|q

)
d t

]1/q}
.

(3.4)

From Lemma 2.2, we have∫ 1

0

|2ξt− µ|d t = E(ξ, µ, 0),

∫ 1

0

|2ξt− µ|ts d t = E(ξ, µ, s), (3.5)
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and ∫ 1

0

|2ξt− µ|(1− t)s d t = E(ξ, 2ξ − µ, s). (3.6)

By virtue of (3.5) to (3.6) in (3.4), we obtain (3.1).
For ξ ∈ (0, 1) and s = −1, since |f ′|q is extended s-convex, by Lemma 2.1 and Hölder’s integral

inequality, we have∣∣∣∣f(ξa+ (1− ξ)b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ (b− a)(1− ξ)2

×
∫ 1

0

t|f ′((tξ + 1− t)a+ (t− tξ)b)|d t+ (b− a)ξ2
∫ 1

0

t|f ′(tξa+ (1− tξ)b)|d t

≤ (b− a)(1− ξ)2
(∫ 1

0

td t

)1−1/q[∫ 1

0

t|f ′((tξ + 1− t)a+ (t− tξ)b)|q d t

]1/q
+ (b− a)ξ2

(∫ 1

0

td t

)1−1/q[∫ 1

0

t|f ′(tξa+ (1− tξ)b)|q d t

]1/q
≤ b− a

21−1/q

{
(1− ξ)2

[∫ 1

0

(
t
(
tξ + 1− t)−1|f ′(a)|q + t

(
t− tξ)−1|f ′(b)|q

)
d t

]1/q
+ ξ2

[∫ 1

0

(
t
(
tξ)−1|f ′(a)|q + t(1− tξ)−1|f ′(b)|q

)
d t

]1/q}
.

We thus deduce the inequality (3.2).
For ξ = 0, 1 and s 6= −1, by Lemma 2.1, Hölder’s integral inequality, and extended s-convexity

of |f ′|q, we have∣∣∣∣λf(a) + (1− λ)f(b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ (b− a)

∫ 1

0

|t− λ||f ′((1− t)a+ tb)|d t

≤ (b− a)

(∫ 1

0

|t− λ|d t
)1−1/q(∫ 1

0

|t− λ||f ′((1− t)a+ tb)|q d t

)1/q

≤ (b− a)

(∫ 1

0

|t− λ| d t
)1−1/q(∫ 1

0

|t− λ|
(
(1− t)s|f ′(a)|q + ts|f ′(b)|q

)
d t

)1/q

.

We arrive at the inequality (3.3). Theorem 3.1 is proved.

Corollary 3.1.1. When ξ ∈ (0, 1) and q = 1 in Theorem 3.1,

1. if −1 < s ≤ 1, we have∣∣∣∣λf(a) + µf(b)

2
+

2− λ− µ
2

f(ξa+ (1− ξ)b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

2

{
(1− ξ)E(1− ξ, 2− 2ξ − λ, s)|f ′(a)|

+
[
(1− ξ)E(1− ξ, λ, s) + ξE(ξ, µ, s)

]
|f ′(ξa+ (1− ξ)b)|+ ξE(ξ, 2ξ − µ, s)|f ′(b)|

}
;
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2. if s = −1, we have∣∣∣∣f(ξa+ (1− ξ)b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ (b− a)[(2ξ − 1− ln ξ)|f ′(a)|+ (1− 2ξ − ln(1− ξ))|f ′(b)|].

Corollary 3.1.2. Under conditions of Theorem 3.1,

1. if −1 < s ≤ 1, then∣∣∣∣16
[
f(a) + 2f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
18(s+ 1)(s+ 2)

×
[
(s+ 5)|f ′(a)|+ (4s+ 5)

∣∣∣∣f ′(2a+ b

3

)∣∣∣∣+ (4s+ 5)

∣∣∣∣f ′(a+ 2b

3

)∣∣∣∣+ (s+ 5)|f ′(b)|
]
;

2. if s = −1, then∣∣∣∣12
[
f

(
2a+ b

3

)
+ f

(
a+ 2b

3

)]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
2

(2 ln 3− ln 2)(|f ′(a)|+ |f ′(b)|).

Proof. Since∣∣∣∣16
[
f(a) + 2f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ 1

2

∣∣∣∣13
[
f(a)

+ 2f

(
2a+ b

3

)]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣+
1

2

∣∣∣∣13
[
2f

(
a+ 2b

3

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤

(b− a)[(s+ 5)|f ′(a)|+ (4s+ 5)|f ′( 2a+b
3 )|+ (4s+ 5)|f ′(a+2b

3 )|+ (s+ 5)|f ′(b)|]
18(s+ 1)(s+ 2)

and∣∣∣∣12
[
f

(
2a+ b

3

)
+ f

(
a+ 2b

3

)]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ 1

2

∣∣∣∣f(2a+ b

3

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
+

1

2

∣∣∣∣f(a+ 2b

3

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
2

(2 ln 3− ln 2)(|f ′(a)|+ |f ′(b)|).

Corollary 3.1.2 is thus proved.

Remark 3.1. The inequality (1.2) can be deduced from (3.1) applied to λ = µ = 0, q = 1, and
0 < s ≤ 1. The inequalities (1.3) and (1.4) can be deduced from (3.1) and (3.3) applied to ξ = 2−1.
If we take q = 1 and λ = (r + 1)−1 for r ∈ [0, 1] in (3.3), then the inequality (3.3) becomes (1.1).
These show that Theorem 3.1 and its corollaries generalize some main results in [1, 4, 12].

Theorem 3.2. Let s ∈ (−1, 1], λ, µ, ξ ∈ [0, 1], f : I ⊆ R → R be a differentiable function on I◦,
a, b ∈ I with a < b, and f ′ ∈ L1([a, b]). When |f ′|q for q > 1 is extended s-convex on [a, b],
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1. if ξ ∈ (0, 1), then∣∣∣∣λf(a) + µf(b)

2
+

2− λ− µ
2

f(ξa+ (1− ξ)b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

2(s+ 1)1/q

{
(1− ξ)

[
F

(
1− ξ, λ, q

q − 1

)]1−1/q[
|f ′(a)|q + |f ′(ξa+ (1− ξ)b)|q

]1/q
+ ξ

[
F

(
ξ, µ,

q

q − 1

)]1−1/q[
|f ′(b)|q + |f ′(ξa+ (1− ξ)b)|q

]1/q}
; (3.7)

2. if ξ = 0, 1, then∣∣∣∣λf(a) + (1− λ)f(b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
(s+ 1)1/q

(
q − 1

2q − 1

)1−1/q

×
[
λ(2q−1)/(q−1) + (1− λ)(2q−1)/(q−1)

]1−1/q
[|f ′(a)|q + |f ′(b)|q]1/q, (3.8)

where

F (ξ, λ, s) =

∫ 1

0

|2ξt− λ|s d t.

Proof. For ξ ∈ (0, 1), by Lemma 2.1, Hölder’s integral inequality, and the extended s-convexity of
|f ′|q, we have∣∣∣∣λf(a) + µf(b)

2
+

2− λ− µ
2

f(ξa+ (1− ξ)b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

2

[
(1− ξ)

∫ 1

0

|2(1− ξ)t− λ||f ′(t(ξa+ (1− ξ)b) + (1− t)a)|d t

+ξ

∫ 1

0

|µ− 2ξt||f ′(t(ξa+ (1− ξ)b) + (1− t)b)|d t
]

≤ b− a
2

{
(1− ξ)

(∫ 1

0

|2t(1− ξ)− λ|q/(q−1) d t

)1−1/q[∫ 1

0

|f ′(t(ξa+ (1− ξ)b) + (1− t)a)|q d t

]1/q
+ ξ

(∫ 1

0

|µ− 2ξt|q/(q−1) d t

)1−1/q[∫ 1

0

|f ′(t(ξa+ (1− ξ)b) + (1− t)b)|q d t

]1/q}
≤ b− a

2

{
(1− ξ)

(∫ 1

0

|2t(1− ξ)− λ|q/(q−1) d t

)1−1/q

×
[∫ 1

0

(
ts|f ′(ξa+ (1− ξ)b)|q + (1− t)s|f ′(a)|q

)
d t

]1/q
+ ξ

(∫ 1

0

|µ− 2ξt|q/(q−1) d t

)1−1/q

×
[∫ 1

0

(
ts|f ′(ξa+ (1− ξ)b)|q + (1− t)s|f ′(b)|q

)
d t

]1/q}
.

From Lemma 2.2, we derive the inequality (3.7).
For ξ = 0, 1, since |f ′|q is extended s-convex, from Lemma 2.1 and by Hölder’s integral inequality,

we have
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∣∣∣∣λf(a) + (1− λ)f(b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ (b− a)

∫ 1

0

|t− λ||f ′((1− t)a+ tb)|d t

≤ (b− a)

(∫ 1

0

|t− λ|q/(q−1) d t

)1−1/q(∫ 1

0

|f ′((1− t)a+ tb)|q d t

)1/q

≤ (b− a)

(∫ 1

0

|t− λ|q/(q−1) d t

)1−1/q(∫ 1

0

(
(1− t)s|f ′(a)|q + ts|f ′(b)|q

)
d t

)1/q

=
b− a

(s+ 1)1/q

(
q − 1

2q − 1

)1−1/q(
λ(2q−1)/(q−1) + (1− λ)(2q−1)/(q−1)

)1−1/q
(|f ′(a)|q + |f ′(b)|q)1/q.

Hence, we acquire the inequality (3.8). The proof of Theorem 3.2 is complete.

Theorem 3.3. Let f : I ⊆ R → R be a differentiable function on I◦, a, b ∈ I with a < b, and
f ′ ∈ L1([a, b]). Let 0 ≤ ξ ≤ 1 and 0 ≤ `, r ≤ 1. If |f ′|q for q > 1 is extended s-convex on [a, b] for
s ∈ (−1, 1], then∣∣∣∣f(ξa+ (1− ξ)b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ (b− a)

{
(1− ξ)2

[
q − 1

(2− l)q − 1

]1−1/q
×
[
B(`q + 1, s+ 1)|f ′(a)|q + (`q + s+ 1)−1|f ′(ξa+ (1− ξ)b)|q

]1/q
+ ξ2

[
q − 1

(2− r)q − 1

]1−1/q
×
[
(rq + s+ 1)−1|f ′(ξa+ (1− ξ)b)|q +B(rq + 1, s+ 1)|f ′(b)|q

]1/q}
,

where

B(α, β) =

∫ 1

0

tα−1(1− t)β−1 d t, α, β > 0

is the noted beta function.

Proof. Since |f ′|q is extended s-convex, from Lemma 2.1, using Hölder’s integral inequality, we have∣∣∣∣f(ξa+ (1− ξ)b)− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ (b− a)(1− ξ)2

[∫ 1

0

t(1−`)q/(q−1) d t

]1−1/q[∫ 1

0

t`q|f ′(t(ξa+ (1− ξ)b) + (1− t)a)|q d t

]1/q
+ (b− a)ξ2

[∫ 1

0

t(1−r)q/(q−1) d t

]1−1/q[∫ 1

0

trq|f ′(t(ξa+ (1− ξ)b) + (1− t)b)|q d t

]1/q
≤ (b− a)(1− ξ)2

[
q − 1

(2− `)q − 1

]1−1/q[∫ 1

0

t`q
(
ts|f ′(ξa+ (1− ξ)b)|q + (1− t)s|f ′(a)|q

)
d t

]1/q
+ (b− a)ξ2

[
q − 1

(2− r)q − 1

]1−1/q[∫ 1

0

trq
(
ts|f ′(ξa+ (1− ξ)b)|q + (1− t)s|f ′(b)|q

)
d t

]1/q
.

Theorem 3.3 is thus proved.
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4 Applications to means

In this final section, we apply some inequalities of the Hermite–Hadamard type for extended s-
convex functions to construct some inequalities for means.

For two positive numbers a, b > 0 and s ∈ [−1, 1], define

A(a, b) =
a+ b

2
, Aξ(a, b) = ξa+ (1− ξ)b, ξ ∈ [0, 1]

and

Ls(a, b) =



[
bs+1 − as+1

(s+ 1)(b− a)

]1/s
, a 6= b, s 6= 0,−1;

b− a
ln b− ln a

, a 6= b, s = −1;

1

e

(
bb

aa

)1/(b−a)

, a 6= b, s = 0;

a, a = b.

These means are respectively called the arithmetic, weighted arithmetic, and generalized logarithmic
means of two positive number a and b.

Let f(x) = xs+1

s+1 for x > 0, −1 < s ≤ 1, and q ≥ 1. If 0 ≤ sq ≤ 1, we have

|f ′(λx+ (1− λ)y)|q ≤ λsqxsq + (1− λ)sqysq ≤ λs|f ′(x)|q + (1− λ)s|f ′(y)|q

for x, y > 0 and λ ∈ (0, 1). If −1 < sq ≤ 0, we have

|f ′(λx+ (1− λ)y)|q ≤ (xsq)λ(ysq)1−λ ≤ λs|f ′(x)|q + (1− λ)s|f ′(y)|q

for x, y > 0 and λ ∈ (0, 1). These mean that, when −1 < sq ≤ 1, the function |f ′(x)|q = xsq is
extended s-convex on R+ = (0,∞). Consequently, applying the inequality (3.3) to xsq yields

Theorem 4.1. Let b > a > 0, q ≥ 1, −1 < s ≤ 1, −1 < sq ≤ 1, and 0 ≤ ξ ≤ 1. Then

∣∣Aξ(as+1, bs+1
)
− Ls+1

s+1(a, b)
∣∣ ≤ b− a

21−1/q

(
1

s+ 2

)1/q[
(s+ 1)(2ξ2 − 2ξ + 1)

]1−1/q
×
[(

2(1− ξ)s+2 + (s+ 2)ξ − 1
)
asq +

(
2ξs+2 − (s+ 2)ξ + s+ 1

)
bsq
]1/q

.

In particular, if ξ = 1
2 , then

∣∣A(as+1, bs+1
)
− Ls+1

s+1(a, b)
∣∣ ≤ b− a

22+(s−2)/q

(
1

s+ 2

)1/q

(s + 1)1−1/q
[
(2ss+ 1)A(asq, bsq)

]1/q
.

Taking f(x) = xs+1

s+1 for x > 0, −1 < s ≤ 1 and q ≥ 1 in Corollary 3.1.2 derives the following
inequalities for means.

Theorem 4.2. Let b > a > 0 and −1 < s ≤ 1. Then∣∣∣∣A(as+1, bs+1
)

+ 2A

((
2a+ b

3

)s+1

,

(
a+ 2b

3

)s+1)
− 3Ls+1

s+1(a, b)

∣∣∣∣
≤ b− a

3(s+ 2)

[
(s+ 5)A(as, bs) + (4s+ 5)A

((
2a+ b

3

)s
,

(
a+ 2b

3

)s)]
.
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Applying the inequality (3.8) to xsq yields

Theorem 4.3. Let b > a > 0, q > 1, −1 < s ≤ 1, −1 < sq ≤ 1, and 0 ≤ ξ ≤ 1. Then

∣∣Aξ(as+1, bs+1
)
− Ls+1

s+1(a, b)
∣∣ ≤ 21/q(b− a)

(
(s+ 1)(q − 1)

2q − 1

)1−1/q

×
[
ξ(2q−1)/(q−1) + (1− ξ)(2q−1)/(q−1)

]1−1/q[
A(asq, bsq)

]1/q
.

Furthermore, if ξ = 1
2 , we have

∣∣A(as+1, bs+1
)
− Ls+1

s+1(a, b)
∣∣ ≤ (b− a)

(
(s+ 1)(q − 1)

2(2q − 1)

)1−1/q

[A(asq, bsq)]1/q.
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in topologischen linearen Räumen, Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13–20.

[4] F.-X. Chen and Y.-M. Feng, New inequalities of Hermite-Hadamard type for functions whose
first derivatives absolute values are s-convex, Ital. J. Pure Appl. Math. 32 (2014), 213–222.

[5] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications
to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), no. 5,
91–95; Available online at http://dx.doi.org/10.1016/S0893-9659(98)00086-X.

[6] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48
(1994), no. 1, 100–111; Available online at http://dx.doi.org/10.1007/BF01837981.

[7] S. Hussain, M. I. Bhatti, and M. Iqbal, Hadamard-type inequalities for s-convex functions, I,
Punjab Univ. J. Math. (Lahore) 41 (2009), 51–60.
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Abstract

We can find many convex iterative algorithms for common fixed points for a uni-

formly closed asymptotically family of countable quasi-Lipschitz mappings in the do-
mains of Hilbert spaces and there are only few non-convex iterative algorithms. In this
report, we present a new non-convex hybrid iteration algorithm concerning Suantai it-

erative scheme. We also establish strong convergence theorems of common fixed points
for a uniformly closed asymptotically family of countable quasi-Lipschitz mappings in
the domains of Hilbert spaces.

2010 Mathematics Subject Classification: 47H05, 47H09, 47H10

Key words and phrases: hybrid algorithm, nonexpansive mapping, quasi-Lipschitz

mapping, quasi-nonexpansive mapping

1 Introduction

Fixed point theory of special mappings like nonexpansive, asymptotically nonexpansive,
contractive and other mappings is an active area of interest and finds applications in many
related fields like image recovery, signal processing and geometry of objects. From time to
time, some versions of theorems relating to fixed points of functions of special nature keep
on appearing in almost in all branches of mathematics. Consequently, we apply them
in industry, toy making, finance, aircrafts and manufacturing of new model cars. For
example, a fixed-point iteration scheme has been applied in intensity modulated radiation

∗ Corresponding author
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therapy optimization to pre-compute dose-deposition coefficient matrix, see [21]. Because
of its vast range of applications almost in all directions, the research in it is moving rapidly
and an immense literature is present currently. The construction of fixed point theorems
(e.g., Banach fixed point theorem) which not only claim the existence of a fixed point
but yield an algorithm, too (in the Banach case fixed point iteration xn+1 = f(xn)).
Any equation that can be written as x = f(x) for some map f that is contracting with
respect to some (complete) metric on X will provide such a fixed point iteration. Mann’s
iteration method was the stepping stone in this regard and is invariably used in most
of the occasions see [11]. But it only ensures weak convergence, see [3] but, we require
strong convergence in many real world problems relating to Hilbert spaces, see [1]. So
mathematician are in search for the modifications of the Mann’s process to control and
ensure the strong convergence, (see [2, 5, 7–9, 14–19], and references therein).

Most probably the first noticeable modification of Mann’s Iteration process was pro-
posed by Nakajo and Takahashi [13] in 2003. They introduced this modification for only
one nonexpansive mapping in a Hilbert space where as Kim and Xu [6] introduced a mod-
ification for asymptotically nonexpansive mapping in the Hilbert space in 2006. In the
same year Martinez-Yanes and Xu [12] introduced a modification of the Ishikawa Iteration
process for a nonexpansive mapping for a Hilbert space. They also gave modification of
Halpern iteration method in Hilbert space. Su and Qin. [20] gave a monotone hybrid
iteration process for nonexpansive mapping in a Hilbert space. Liu et al. [10] gave a novel
iteration method for finite family of quasi-asymptotically pseudo-contractive mapping in
a Hilbert space. Hence, we can find many iterative methods for finding fixed point of
different type of mappings in literature. If we talk about the iterative algorithms for com-
mon fixed points of a uniformly closed asymptotically family of countable quasi-Lipschitz
mappings in the domains of Hilbert spaces,

Let H be the fixed notation for Hilbert space and C be nonempty, closed and convex
subset of it. First we recall some basic definitions that will accompany us throughout this
paper. Let Pc(·) be the metric projection onto C.

A mapping T : C → C is said to be non-expensive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all
x, y ∈ C. And T : C → C is said to be quasi-Lipschitz if Fix(T ) 6= φ and For all
p ∈ Fix(T ), ‖Tx − p‖ ≤ L‖x− p‖, where L is a constant 1 ≤ L < ∞.

If L = 1, then T is known as quasi-nonexpansive. It is well-known that T is said to be
closed if for n → ∞, xn → x and ‖Txn − xn‖ → 0 implies Tx = x. T is said to be weak

closed if xn ⇀ x and ‖Txn − xn‖ → 0 implies Tx = x. as n → ∞. It is admitted fact that
a mapping which is weak closed should be closed but converse is no longer true.

Let {Tn} be a sequence of mappings having a non-empty fixed points set F . Then {Tn}
is defined to be uniformly closed if for all convergent sequences {zn} ⊂ C with conditions
‖Tnzn − zn‖ → 0, n → ∞ implies the limit of {zn} belongs to F.

In 1953 [11], Mann proposed an iterative scheme given as:

xn+1 = (1− αn)xnn + αnT (xn), n = 0, 1, 2, . . . .

Guan et al. in [4] established the following non-convex hybrid iteration algorithm
corresponding to Mann iterative scheme:































x0 ∈ C = Q0, choosen arbitrarily,

yn = (1 − αn)xn + αnTnxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ (1 + (Ln − 1)αn)‖xn − z‖ ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0.
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In [4] Guan et al. established non-convex hybrid iteration algorithm and proved some
strong convergence results relating to common fixed points for a uniformly closed asymp-
totic family of countable quasi-Lipschitz mappings in H. They applied their results for
the finite case to obtain fixed points. In this article, we establish a non-convex hybrid
algorithms corresponding to Karakaya iteration scheme. Then we also establish strong
convergence theorems with proofs about common fixed points related to a uniformly closed
asymptotically family of countable quasi-Lipschitz mappings in the realm of Hilbert spaces.
An application of this algorithm is also given. We fix coCn for closed convex closure of
Cn for all n ≥ 1, A = {z ∈ H : ‖z − PF x0‖ ≤ 1}, Tn for countable quasi-Ln-Lipschitz
mappings from C into itself, and T be closed quasi-nonexpansive mapping from C into
itself to avoid redundancy. We also present an application of our algorithm.

2 Main results

In this part we formulate our main results. We start with some basic definitions.

Definition 2.1. Let {Tn} be a family of countable quasi-Ln-Lipschitz mappings from C

into itself, where C is a closed convex subset of a Hilbert space H . Then {Tn} is said to
be asymptotic if limn→∞ Ln = 1.

Proposition 2.2. Let C be a closed convex subset of a Hilbert space H . Then for x ∈ H

and z ∈ C, z = PCx if and only if we have 〈x − z, z − y〉 ≥ 0 for all y ∈ C.

Proposition 2.3. Let {Tn} be a family of countable quasi-Ln-Lipschitz mappings from C

into itself, where C is a closed convex subset of a Hilbert space H . Then the common fixed

point set F is closed and convex.

Proposition 2.4. Let C be a closed convex subset of a Hilbert space H . Then for any

given x0 ∈ H , we have p = PCx0 if and only if 〈p − z, x0 − p〉 ≥ 0, ∀z ∈ C.

Theorem 2.5. Let C be a closed convex subset of a Hilbert space H , and let {Tn} be

uniformly closed asymptotically family of countable quasi-Ln-Lipschitz mappings from C

into itself. Suppose that αn, βn, γn, an and bn ∈ [0, 1], αn +βn ∈ [0, 1] and an + bn ∈ [0, 1]
for all n ∈ N and

∑

∞

n=0(αn + βn) = ∞. Then {xn} generated by



































































x0 ∈ C = Q0, choosen arbitrarily,

yn = (1− αn − βn)xn + αnTnzn + βnTntn, n ≥ 0,

zn = (1− an − bn)xn + anTntn + bnTnxn, n ≥ 0,

tn = (1− γn)xn + γnTnxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ [1 + (Ln(1− an − bn)

+L2
n((1− γn)an + bn)anγnL3

n − 1)αn

+(Ln(1 − γn) − 1) + γnL2
n)βn]‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0

converges strongly to PF x0.

Proof. We give our proof in following steps.
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Step 1. We know that coCn and Qn are closed and convex for all n ≥ 0. Next, we
show that F ∩ A ⊂ coCn for all n ≥ 0. Indeed, for each p ∈ F ∩ A, we have

‖yn − p‖

= ‖(1 − αn − βn)xn + αnTnzn + βnTntn − p‖

= ‖(1 − αn − βn)xn + αnTn((1− an − bn)xn + anTntn + bnTnxn) + βnTntn − p‖

= ‖(1 − αn − βn)xn + αnTn[(1− an − bn)xn + anTn((1− γn)xn + γnTnxn) + bnTnxn]

+ βnTn[(1− γn)xn + γnTnxn] − p‖

= ‖(1 − αn − βn)(xn − p) + (αn − anαn − bnαn + βn − βnγn)(Tnxn − p)

+ (anαn − anαnγn + bnαn + βnγn)(T 2
nxn − p) + anαnγn)(T 3

nxn − p)‖

≤ (1 − αn − βn)‖xn − p‖ + (αn − anαn − bnαn + βn − βnγn)Ln‖Tnxn − p‖

+ (anαn − anαnγn + bnαn + βnγn)L2
n‖T

2
nxn − p‖+ anαnγn)L3

n‖T
3
nxn − p‖

= [1 + (Ln(1 − an − bn) + L2
n((1− γn)an + bn)anγnL3

n − 1)αn

+ (Ln(1− γn)− 1) + γnL2
n)βn]‖xn − p‖,

and p ∈ A, so p ∈ Cn which implies that F ∩A ⊂ Cn for all n ≥ 0. therefore, F ∩A ⊂ coCn

for all n ≥ 0.
Step 2. We show that F ∩ A ⊂ coCn ∩ Qn for all n ≥ 0. it suffices to show that

F ∩ A ⊂ Qn, for all n ≥ 0. We prove this by mathematical induction. For n = 0 we have
F ∩ A ⊂ C = Q0. Assume that F ∩ A ⊂ Qn. Since xn+1 is the projection of x0 onto
coCn ∩ Qn, from Proposition 2.2, we have

〈xn+1 − z, xn+1 − x0〉 ≤ 0, ∀z ∈ coCn ∩ Qn,

as
F ∩ A ⊂ coCn ∩ Qn,

the last inequality holds, in particular, for all z ∈ F ∩A. This together with the definition
of Qn+1 implies that F ∩ A ⊂ Qn+1. Hence the F ∩ A ⊂ coCn ∩ Qn holds for all n ≥ 0.

Step 3. We prove {xn} is bounded. Since F is a nonempty, closed, and convex subset
of C, there exists a unique element z0 ∈ F such that z0 = PF x0. From xn+1 = PcoCn∩Qn

x0,
we have

‖xn+1 − x0‖ ≤ ‖z − x0‖

for every z ∈ coCn ∩ Qn. As z0 ∈ F ∩ A ⊂ coCn ∩ Qn, we get

‖xn+1 − x0‖ ≤ ‖z0 − x0‖

for each n ≥ 0. This implies that {xn} is bounded.
Step 4. We show that {xn} converges strongly to a point of C (we show that {xn} is

a cauchy sequence). As xn+1 = PcoCn∩Qn
x0 ⊂ Qn and xn = PQn

x0 (Proposition 2.4), we
have

‖xn+1 − x0‖ ≥ ‖xn − x0‖

for every n ≥ 0, which together with the boundedness of ‖xn−x0‖ implies that there exsists
the limit of ‖xn−x0‖. On the other hand, from xn+m ∈ Qn, we have 〈xn−xn+m, xn−x0〉 ≤
0 and hence

‖xn+m − xn‖
2 = ‖(xn+m − x0)− (xn − x0)‖

2

≤ ‖xn+m − x0‖
2 − ‖xn − x0‖

2 − 2〈xn+m − xn, xn − x0〉

≤ ‖xn+m − x0‖
2 − ‖xn − x0‖

2 → 0, n → ∞
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for any m ≥ 1. Therefore {xn} is a cauchy sequence in C, then there exists a point q ∈ C

such that limn→∞ xn = q.
Step 5. We show that yn → q, as n → ∞. Let

Dn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + (L3
n + 2L2

n − Ln − 2)(L3
n + 2L2

n − Ln)}.

From the definition of Dn, we have

Dn = {z ∈ C : 〈yn − z, yn − z〉 ≤ 〈xn − z, xn − z〉

+ (L3
n + 2L2

n − Ln − 2)(L3
n + 2L2

n − Ln)}

= {z ∈ C : ‖yn‖
2 − 2〈yn, z〉+ ‖z‖2 ≤ ‖xn‖

2 − 2〈xn, z〉 + ‖z‖2

+ (L3
n + 2L2

n − Ln − 2)(L3
n + 2L2

n − Ln)}

= {z ∈ C : 2〈xn − yn, z〉 ≤ ‖xn‖
2 − ‖yn‖

2

+ (L3
n + 2L2

n − Ln − 2)(L3
n + 2L2

n − Ln)}.

This shows that Dn is convex and closed, n ∈ Z
+ ∪ {0}.

Next, we want to prove that Cn ⊂ Dn, n ≥ 0. In fact, for any z ∈ Cn, we have

‖yn − z‖2 ≤ [1 + (Ln(1 − an − bn) + L2
n((1− γn)an + bn)anγnL3

n − 1)αn

+ (Ln(1− γn)− 1) + γnL2
n)βn]2‖xn − z‖2

= ‖xn − z‖2 + 2[(Ln(1 − an − bn) + L2
n((1− γn)an + bn)anγnL3

n − 1)αn

+ (Ln(1− γn)− 1) + γnL2
n)βn] + [(Ln(1− an − bn)

+ L2
n((1− γn)an + bn)anγnL3

n − 1)αn

+ (Ln(1− γn)− 1) + γnL2
n)βn]2‖xn − z‖2

≤ ‖xn − z‖2 + [2(L3
n + 2L2

n − Ln − 2) + (L3
n + 2L2

n − Ln − 2)2]‖xn − z‖2

= ‖xn − z‖2 + (L3
n + 2L2

n − Ln − 2)(L3
n + 2L2

n − Ln)‖xn − z‖2.

From

Cn = {z ∈ C : ‖yn − z‖ ≤ [1 + (Ln(1 − an − bn) + L2
n((1− γn)an + bn)anγnL3

n − 1)αn

+ (Ln(1 − γn) − 1) + γnL2
n)βn]‖xn − z‖} ∩ A, n ≥ 0,

we have Cn ⊂ A, n ≥ 0. Since A is convex, we also have coCn ⊂ A, n ≥ 0. Consider
xn ∈ coCn−1, we know that

‖yn − z‖ ≤ ‖xn − z‖2 + (L3
n + 2L2

n − Ln − 2)(L3
n + 2L2

n − Ln)‖xn − z‖2

≤ ‖xn − z‖2 + (L3
n + 2L2

n − Ln − 2)(L3
n + 2L2

n − Ln).

This implies that z ∈ Dn and hence Cn ⊂ Dn, n ≥ 0. Sinnce Dn is convex, we have
co(Cn) ⊂ Dn, n ≥ 0. Therefore

‖yn − xn+1‖
2 ≤ ‖xn − xn+1‖

2 + (L3
n + 2L2

n − Ln − 2)(L3
n + 2L2

n − Ln) → 0

as n → ∞. That is, yn → q as n → ∞.
Step 6. We show that q ∈ F . From the definition of yn, we have

(αn + anαnTn + bnαnTn + βn + βnγnTn + anαnγnT 2
n)‖Tnxn − xn‖

= ‖yn − xn‖ → 0
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as n → ∞. Since αn ∈ (a, 1] ⊂ [0, 1], from the above limit we have

lim
n→∞

‖Tnxn − xn‖ = 0.

Since {Tn} is uniformly closed and xn → q, we have q ∈ F .
Step 7. We claim that q = z0 = PF x0, if not, we have that ‖x0 − p‖ > ‖x0 − z0‖.

There must exist a positive integer N , if n > N, then ‖x0 − xn‖ > ‖x0 − z0‖, which leads
to

‖z0 − xn‖
2 = ‖z0 − xn + xn − x0‖

2 = ‖z0 − xn‖
2 + ‖xn − x0‖

2 + 2〈z0 − xn, xn − x0〉.

It follows that 〈z0 − xn, xn − x0〉 < 0, which implies that z0 ∈ Qn, so that z0 ∈ F , this is
a contradiction. This completes the proof.

Now, we present an example of Cn which does not involve a convex subset.

Example 2.6. Take H = R2, and a sequence of mappings Tn : R2 → R2 given by

Tn : (t1, t2) 7→
(1

8
t1, t2

)

, ∀(t1, t2) ∈ R2, n ≥ 0.

It is clear that {Tn} satisfies the desired definition of with F = {(t1, 0) : t1 ∈ (−∞, +∞)}
common fixed point set. Take x0 = (4, 0), a0 = 6

7 , we have

y0 =
1

7
x0 +

6

7
T0x0 =

(

4 ×
1

7
+

4

8
×

6

7
, 0

)

= (1, 0).

Take 1 + (L0 − 1)a0 =
√

5
2 , we have

C0 =
{

z ∈ R2 : ‖y0 − z‖ ≤

√

5

2
‖x0 − z‖

}

.

It is easy to show that z1 = (1, 3), z2 = (−1, 3) ∈ C0. But

z′ =
1

2
z1 +

1

2
z2 = (0, 3)∈C0,

since ‖y0 − z‖ = 2, ‖x0 − z‖ = 1. Therefore C0 is not convex.

Corollary 2.7. Let C be a closed convex subset of a Hilbert space H , and let T be a

closed quasi-nonexpansive mapping from C into itself. Assume that αn, βn, γn, an and

bn ∈ [0, 1], αn + βn ∈ [0, 1] and an + bn ∈ [0, 1] for all n ∈ N and
∑

∞

n=0(αn + βn) = ∞.

Then {xn} generated by















































x0 ∈ C = Q0, choosen arbitrarily,

yn = (1 − αn − βn)xn + αnTzn + βnTtn, n ≥ 0,

zn = (1 − an − bn)xn + anTtn + bnTxn, n ≥ 0,

tn = (1 − γn)xn + γnTxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Qn
x0

converges strongly to PF x0.
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Proof. Take Tn = T , Ln = 1 in Theorem 2.5, in this case, Cn is convex and closed and ,
for all n ≥ 0, by using Theorem 2.5, we obtain Corollary 2.7.

Corollary 2.8. Let C be a closed convex subset of a Hilbert space H , and let T be a

nonexpansive mapping from C into itself. Assume that αn, βn, γn, an and bn ∈ [0, 1],
αn + βn ∈ [0, 1] and an + bn ∈ [0, 1] for all n ∈ N and

∑

∞

n=0(αn + βn) = ∞. Then {xn}
generated by















































x0 ∈ C = Q0, choosen arbitrarily,

yn = (1 − αn − βn)xn + αnTzn + βnTtn, n ≥ 0,

zn = (1 − an − bn)xn + anTtn + bnTxn, n ≥ 0,

tn = (1 − γn)xn + γnTxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Qn
x0

converges strongly to PF (T )x0.

3 Applications

Here, we give an application of our result for the following case of finite family of asymp-
totically quasi-nonexpansive mappings {Tn}

N−1
n=0 . Let

‖T j
i x − p‖ ≤ ki,j‖x− p‖, ∀x ∈ C, p ∈ F,

where F is common fixed point sets of {Tn}
N−1
n=0 and limj→∞ ki,j = 1 for all 0 ≤ i ≤ N −1.

The finite family of asymptotically quasi-nonexpansive mappings {Tn}
N−1
n=0 is uniformly

L-Lipschitz if
‖T j

i x − T
j
i y‖ ≤ Li,j‖x − y‖, ∀x, y ∈ C,

for all i ∈ {0, 1, 2, ..., N − 1}, j ≥ 1, where L ≥ 1.

Theorem 3.1. Let C be a closed convex subset of a Hilbert space H , and let {Tn}
N−1
n=0 be

a finite uniformly L-Lipschitz family of asymptotically quasi-nonexpansive mappings with

the nonempty common fixed point set F . Assume that αn, βn, γn, an and bn ∈ [0, 1],
αn + βn ∈ [0, 1] and an + bn ∈ [0, 1] for all n ∈ N and

∑

∞

n=0(αn + βn) = ∞. Then {xn}
generated by







































































x0 ∈ C = Q0, arbitrarily,

yn = (1− αn − βn)xn + αnT
j(n)
i(n) zn + βnT

j(n)
i(n) tn, n ≥ 0,

zn = (1− an − bn)xn + anT
j(n)
i(n) tn + bnT

j(n)
i(n) xn, n ≥ 0,

tn = (1− γn)xn + γnT
j(n)
i(n)

xn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ [1 + (ki(n),j(n)(1− an − bn)

+k2
i(n),j(n)((1− γn)an + bn)anγnk3

i(n),j(n) − 1)αn

+(ki(n),j(n)(1 − γn) − 1) + γnk2
i(n),j(n))βn]‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0

converges strongly to PF x0.
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Proof. We can drive the prove from the following two conclusions.
Conclusion 1 {TN−1

n=0 }∞n=0 is a uniformly closed asymptotically family of countable
quasi-Ln-Lipschitz mappings from C into itself.

Conclusion 2

F =
⋂N

n=0 F (Tn) =
⋂

∞

n=0 F (T
j(n)
i(n) ), where F (Tn) denotes the fixed point set of the map-

pings Tn.

Corollary 3.2. Let C be a closed convex subset of a Hilbert space H, and let T be a

L-Lipschitz asymptotically quasi-nonexpansive mapping with the nonempty common fixed

point set F . Assume that αn, βn, γn, an and bn ∈ [0, 1], αn+βn ∈ [0, 1] and an +bn ∈ [0, 1]
for all n ∈ N and

∑

∞

n=0(αn + βn) = ∞. Then {xn} generated by



































































x0 ∈ C = Q0, arbitrarily,

yn = (1 − αn − βn)xn + αnT nzn + βnT ntn, n ≥ 0,

zn = (1 − an − bn)xn + anT ntn + bnT nxn, n ≥ 0,

tn = (1 − γn)xn + γnT nxn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ [1 + (Kn(1− an − bn)

+K2
n((1− γn)an + bn)anγnK3

n − 1)αn

+(Kn(1 − γn) − 1) + γnK2
n)βn]‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,

xn+1 = PcoCn∩Qn
x0

converges strongly to PF x0.

Proof. Take Tn = T in Theorem 3.1, we get the desired result.
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Abstract

Let A be the family of functions f(z) = z + a2z
2 + ... which are analytic in the open unit

disc D = {z : |z| < 1}, and denote by P of functions p(z) = z + p1z + p2z
2 + ... analytic in D

such that p(z) is in P if and only if

p(z) ≺ 1 + z

1− z ⇔ p(z) =
1 + φ(z)

1− φ(z)
,

for some Schwarz function φ(z) and every z ∈ D.
Let f(z) be an element of A, and satisfies the condition

z
f ′(z)

f(z)
=

(
k

4
+

1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z)

where p1(z), p2(z) ∈ P and k ≥ 2, then f(z) is called function with bounded radius rotation.
The class of such functions is denoted by Rk. This class is generalization of starlike functions.

The main purpose is to give some properties of the class Rk.

1 Introduction

Let Ω be the family of functions φ(z) which are analytic in D and satisfy the conditions φ(0) = 0,
|φ(z)| < 1 for all z ∈ D. If f1(z) and f2(z) are analytic functions in D, then we say that f1(z) is
subordinate to f2(z), written as f1(z) ≺ f2(z) if there exists a Schwarz function φ ∈ Ω such that
f1(z) = f2(φ(z)), z ∈ D. We also note that if f2 univalent in D , then f1(z) ≺ f2(z) if and only if
f1(0) = f2(0), f1(D) ⊂ f2(D) implies f1(Dr) ⊂ f2(Dr), where Dr = {z : |z| < r, 0 < r < 1} (see [2]).
Denote by P the family of functions p(z) = 1 + p1z + p2z

2 + p3z
3 + · · · analytic in D such that p

is in P if and only if

p(z) ≺ 1 + z

1− z
⇔ p(z) =

1 + φ(z)

1− φ(z)
, z ∈ D (1.1)
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Key words and phrases: Bounded radius rotation, bounded boundary rotation, distortion theorem, growth theorem
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Let f(z) be an element of A. Then f(z) is called convex or starlike if it maps D onto a convex
or starlike region, respectively. Corresponding classes are denoted by C and S∗. It is well known
that C ⊂ S∗, that both are subclasses of the univalent functions and have the following analytical
representations.

f(z) ∈ C ⇐⇒ Re

(
1 + z

f ′′(z)

f ′(z)

)
> 0, z ∈ D (1.2)

and

f(z) ∈ S∗ ⇐⇒ Re

(
z
f ′(z)

f(z)

)
> 0, z ∈ D (1.3)

More on these classes can be found in [2]. Let f(z) be an element of A. If there is a function g(z)
in C such that

Re

(
f ′(z)

g′(z)

)
> 0, z ∈ D (1.4)

then f(z) is called close-to-convex function in D and the class of such functions are denoted by CC.
A function analytic and locally univalent in a given simply connected domain is said to be of

bounded boundary rotation if its range has bounded boundary rotation which is defined as the
total variation of the direction angle of the tangent to the boundary curve under a complete circuit.
Let Vk denote the class of functions f(z) ∈ A which maps D conformally onto an image domain of
boundary rotation at most kπ. The class of functions of bounded boundary rotation was introduced
by Loewner [3] in 1917 and was developed by Paatero [5, 6] who systematically developed their
properties and made an exhaustive study of the class Vk. Paatero has shown that f(z) ∈ Vk if and
only if

f ′(z) = Exp

[
−
∫ 2π

0

log
(
1− ze−it

)
dµ(t)

]
, (1.5)

where µ(t) is real-valued function of bounded variation for which∫ 2π

0

dµ(t) = 2 and

∫ 2π

0

|dµ(t)| ≤ k (1.6)

for fixed k ≥ 2 it can also be expressed as∫ 2π

0

∣∣∣∣Re (zf ′(z))′

f ′(z)

∣∣∣∣ dθ ≤ 2kπ, z = reiθ. (1.7)

Clearly, if k1 < k2 then Vk1 ⊂ Vk2 that is the class Vk obviously expands on k increases. V2 is
the class of C of convex univalent functions. Paatero showed that V4 ⊂ S, where S is the class of
normalized univalent functions. Later Pinchuk proved that Vk is close-to convex functions in D if
2 ≤ k ≤ 4 [7].

Let Rk denote the class of analytic functions f of the form f(z) = z + a2z
2 + a3z

3 + ... having
the representation

f(z) = zExp

[
−
∫ 2π

0

log
(
1− ze−it

)
dµ(t)

]
, (1.8)

where µ(t) is given in (1.6). We note that the class Rk was introduced by Pinchuk and Pinchuk
showed that Alexander type relation between the classes Vk and Rk exist,

f ∈ Vk ⇔ zf ′(z) ∈ Rk (1.9)

2
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Rk consists of those function f(z) which satisfy∫ 2π

0

∣∣∣∣Re(reiθ f ′(reiθ)f(reiθ)
)

∣∣∣∣ dθ ≤ kπ, z = reiθ. (1.10)

Geometrically, the condition is that the total variation of angle between radius vector f(reiθ) makes
with positive real axis is bounded kπ. Thus, Rk is the class of functions of bounded radius rotation
bounded by kπ, therefore Rk generalizes the starlike functions.

Pk denote the class of functions p(0) = 1 analytic in D and having representation

p(z) =
1

2

∫ 2π

0

1 + ze−it

1− ze−it
dµ(t) (1.11)

where µ(t) is given in (1.6). Clearly, P2 = P where P is the class of analytic functions with positive
real part. For more details see [7]. From (1.11), one can easily find that p(z) ∈ Pk can also written
by

p(z) =

(
k

4
+

1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z), z ∈ D (1.12)

where p1(z), p2(z) ∈ P. Pinchuk [7] has shown that the classes Vk and Rk can be defined by using
the class Pk as gives below

f ∈ Vk ⇔
(zf ′(z))′

f ′(z)
∈ Pk (1.13)

and

f ∈ Rk ⇔
zf ′(z)

f(z)
∈ Pk (1.14)

At the same time, we note that Vk generalizes of convex functions.

2 Main Results

Lemma 2.1. Let p(z) be an element of Pk, then∣∣∣∣p(z)− 1 + r2

1− r2

∣∣∣∣ ≤ kr

1− r2
(2.1)

Proof. Let f(z) be an element of Vk. Using (1.13), we can write

p(z) = 1 +
f ′′(z)

f ′(z)
, p(z) ∈ Pk (2.2)

On the other hand M.S. Robertson [8] proved that if f(z) ∈ Vk, then∣∣∣∣z f ′′(z)f ′(z)
− 2r2

1− r2

∣∣∣∣ ≤ kr

1− r2
(2.3)

Therefore the relation can be written in the following form,∣∣∣∣(1 + z
f ′′(z)

f ′(z)
)− 1 + r2

1− r2

∣∣∣∣ ≤ kr

1− r2
(2.4)

Using the definition of the class Vk, we obtain (2.1).

3
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Theorem 2.2. Let f(z) be an element of Rk, then

r

(1− r) 2−k
2 (1 + r)

2+k
2

≤ |f(z)| ≤ r

(1− r) 2+k
2 (1 + r)

2−k
2

(2.5)

1− kr + r2

(1− r)2− k
2 (1 + r)2+

k
2

≤ |f ′(z)| ≤ 1 + kr + r2

(1− r)2+ k
2 (1 + r)2−

k
2

(2.6)

Proof. Using the definition of Rk, then we can write∣∣∣∣z f ′(z)f(z)
− 1 + r2

1− r2

∣∣∣∣ ≤ kr

1− r2
(2.7)

This inequality can be written in the following form,

1− kr + r2

1− r2
≤ Rez f

′(z)

f(z)
≤ 1 + kr + r2

1− r2
(2.8)

On the other hand, we have

Rez
f ′(z)

f(z)
= r.

∂

∂r
log|f(z)| (2.9)

Thus we have
1− kr + r2

r(1− r2)
≤ ∂

∂r
log|f(z)| ≤ 1 + kr + r2

r(1− r2)
(2.10)

Integrating both sides (2.10), we get (2.5). The inequality (2.7) can be written in the form

1− kr + r2

1− r2
≤
∣∣∣∣z f ′(z)f(z)

∣∣∣∣ ≤ 1 + kr + r2

1− r2
(2.11)

In this step, if we use (2.5), we obtain (2.6).

Corollary 2.3. For k = 2 in (2.5), we obtain

r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2

This is well known growth theorem for starlike functions [2].

Corollary 2.4. For k = 2 in (2.6), we obtain

1− r
(1 + r)3

≤ |f ′(z)| ≤ 1 + r

(1− r)3

This is well known distortion theorem for starlike functions [2].

Corollary 2.5. The radius of starlikeness of Rk is

RS∗ =
k −
√
k2 − 4

2
, k ≥ 2 (2.12)

4
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Proof. Since

Re

(
z
f ′(z)

f(z)

)
>

1− kr + r2

1− r2

Hence for R < RS∗ the left hand side of the preceding inequality is positive which implies (2.12).
We note that all results are sharp because of extremal function is

f∗(z) =
z(1− z) k

2−1

(1 + z)
k
2+1

Indeed,

z
f ′∗(z)

f∗(z)
=

1− kz + z2

1− z2
=

(
k

4
+

1

2

)
1 + z

1− z
−
(
k

4
− 1

2

)
1− z
1 + z

Thus, f∗(z) ∈ Rk and f∗(z) is extremal function.

Lemma 2.6. Let p(z) = 1 + p1z + p2z
2 + ... be an element of Pk, then

|pn| ≤ k

Proof. Method I. Since p(z) ∈ Pk, then we have

p(z) =

(
k

4
+

1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z)

=

(
k

4
+

1

2

)
(1 + a1z + a2z

2 + ...)−
(
k

4
− 1

2

)
(1 + b1z + b2z

2 + ...)

Then we have

pn =

(
k

4
+

1

2

)
an −

(
k

4
− 1

2

)
bn

Thus

|pn| =
∣∣∣∣ (k4 +

1

2

)
an −

(
k

4
− 1

2

)
bn

∣∣∣∣
≤
(
k

4
+

1

2

)
|an|+

(
k

4
− 1

2

)
|bn|

≤
(
k

4
+

1

2

)
2 +

(
k

4
− 1

2

)
2

This shows that,
|pn| ≤ k

Method II. Since p(z) ∈ Pk, then p(z) can be written in the form

p(z) =
1

2π

∫ 2π

0

1 + ze−it

1− ze−it
dµ(t)

5
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and ∫ 2π

0

dµ(t) = 2π and

∫ 2π

0

|dµ(t)| ≤ kπ.

Then

p(z) = 1 + p1z + p2z
2 + ... =

1

2π

∫ 2π

0

1 + ze−it

1− ze−it
dµ(t)

=
1

2π

∫ 2π

0

1 + ze−it − ze−it + ze−it

1− ze−it
dµ(t)

=
1

2π

∫ 2π

0

(
1− 2ze−it

1− ze−it

)
dµ(t)

|pn| ≤
1

π

∫ 2π

0

|dµ(t)| ≤ k

is obtained.
We note that this lemma was proved first by K.I. Noor [4] (Method II).

Theorem 2.7. Let f(z) be an element of Rk, then

|an| ≤
1

(n− 1)!

n−2∏
ν=0

(k + ν) (2.13)

Proof. Since f(z) ∈ Rk, then we have

z
f ′(z)

f(z)
= p(z)

where p(z) ∈ Pk. Thus
zf ′(z) = f(z)p(z)

Comparing the coefficients in both sides of zf ′(z) = f(z)p(z), we obtain the recursion formula

an =
1

n− 1

n−1∑
ν=1

pn−νaν , n ≥ 2

and therefore by Lemma 2.6,

|an| =
k

n− 1

n−1∑
ν=1

|aν |

Induction shows that

|an| ≤
1

(n− 1)!

n−2∏
ν=0

(k + ν).

Corollary 2.8. For k = 2, we obtain |an| ≤ n. This inequality is well known coefficient inequality
for starlike functions.

6
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Indeed,

|an| ≤
1

(n− 1)!

n−2∏
ν=0

(k + ν) =
k(k + 1)(k + 2)...(k + (n− 2))

(n− 1)!
.

If we take k = 2,

|an| ≤
2.3.4...(n− 2).(n− 1).n

(n− 1)!
= n

Corollary 2.9. Let f(z) be an element of Vk, then

|an| ≤
1

n!

n−2∏
ν=0

(k + ν) (2.14)

Proof. Using the theorem of Pinchuk

f(z) ∈ Vk ⇔ zf ′(z) ∈ Rk

we get (2.14).

Corollary 2.10. For k = 2, we obtain |an| ≤ 1. This inequality is well known coefficient inequality
for convex functions.

We note that all these inequalities are sharp because extremal function is,

f∗(z) =
z(1− z) k

2−1

(1 + z)
k
2+1

.
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POLY-GENOCCHI POLYNOMIALS WITH UMBRAL CALCULUS

VIEWPOINT

TAEKYUN KIM1, DAE SAN KIM2, GWAN-WOO JANG3, AND JONGKYUM KWON4,∗

Abstract. In this paper, we would like to exploit umbral calculus in order to

derive explicit expressions, some properties, recurrence relations and identities

for poly-Genocchi polynomials.

1. Review on umbral calculus

The purpose of this paper is to use umbral calculus in order to derive some new
and interesting expressions, recurrence relations and identities for poly-Genocchi
polynomials. To do that we first recall the umbral calculus very briefly. For more
details, the reader may refer to [11, 12]. We denote the algebra of polynomials in a
single variable x over C by P and the vector space of all linear functionals on P by P∗.
The action of a linear functional L on a polynomial p(x) is denoted by 〈L|p(x)〉. We
define the vector space structure on P∗ by 〈cL+c′L′|p(x)〉 = c〈L|p(x)〉+c′〈L′|p(x)〉,
where c, c′ ∈ C. We define the algebra of formal power series in a single variable t
to be

F =

f(t) =
∑
k≥0

ak
tk

k!
| ak ∈ C

 . (1.1)

A power series f(t) ∈ F defines a linear functional on P by setting

〈f(t)|xn〉 = an, for all n ≥ 0. (1.2)

By (1.1) and (1.2), we have

〈tk|xn〉 = n!δn,k, for all n, k ≥ 0, (1.3)

where δn,k is the Kronecker’s symbol. Let fL(t) =
∑
n≥0〈L|xn〉

tn

n! . From (1.2), we

have 〈fL(t)|xn〉 = 〈L|xn〉. So, the map L 7→ fL(t) is a vector space isomorphism
from P∗ onto F . Thus, F is thought of as set of both formal power series and linear
functionals. We call F the umbral algebra. The umbral calculus is the study of
umbral algebra.

The order O(f(t)) of the non-zero power series f(t) ∈ F is the smallest integer
k for which the coefficient of tk does not vanish. Suppose that f(t), g(t) ∈ F such
that O(f(t)) = 1 and O(g(t)) = 0, then there exists a unique sequence sn(x) of
polynomials such that

〈g(t)(f(t))k|sn(x)〉 = n!δn,k, (1.4)

2010 Mathematics Subject Classification. 11B83, 42A16.
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2 Fourier series of finite products of Bernoulli and Genocchi functions

where n, k ≥ 0. The sequence sn(x) is called the Sheffer sequence for (g(t), f(t))
which is denoted by sn(x) ∼ (g(t), f(t)) (see [11, 12]). In particular, if sn(x) ∼
(g(t), t), then sn(x) is called the Appell sequence for g(t). For f(t) ∈ F and
p(x) ∈ P, we have 〈eyt|p(x)〉 = p(y), 〈f(t)g(t)|p(x)〉 = 〈g(t)|f(t)p(x)〉 and

f(t) =
∑
n≥0

〈f(t)|xn〉 t
n

n!
, p(x) =

∑
n≥0

〈tn|p(x)〉x
n

n!
. (1.5)

From (1.5), we obtain 〈tk|p(x)〉 = p(k)(0) and 〈1|p(k)(x)〉 = p(k)(0), where p(k)(0)
denotes the k-th derivative of p(x) with respect to x at x = 0. So, we get that

tkp(x) = p(k)(x) = dk

dxk p(x), for all k ≥ 0. Let sn(x) ∼ (g(t), f(t)). Then we have

1

g(f̄(t))
eyf̄(t) =

∑
n≥0

sn(y)
tn

n!
, (1.6)

for all y ∈ C, where f̄(t) is the compositional inverse of f(t) satisfying f(f̄(t)) =
f̄(f(t)) = t. Let sn(x) =

∑n
k=0 cn,krk(x), for sn(x) ∼ (g(t), f(t)) and rn(x) ∼

(h(t), `(t)). Then we have

cn,k =
1

k!

〈
h(f̄(t))

g(f̄(t))
(`(f̄(t)))k|xn

〉
, (1.7)

(see [11, 12]).
For sn(x) ∼ (g(t), f(t)), we have the recurrence relation

sn+1(x) =

(
x− g′(t)

g(t)

)
1

f ′(t)
sn(x). (1.8)

Finally, for any h(t) ∈ F and p(x) ∈ P, we have the following.

〈h(t)|xp(x)〉 = 〈∂th(t)|p(x)〉. (1.9)

2. Introduction

Let r be any integer. We recall here that

Lir(x) =
∞∑
n=1

xn

nr
, (2.1)

is the rth polylogarithm function for r ≥ 1, and a rational function for r ≤ 0. It is
immediate to see that

d

dx
(Lir+1(x)) =

1

x
Lir(x). (2.2)

The Poly-Genocchi polynomials G
(r)
n (x) of index r are given by

2Lir(1− e−t)
et + 1

ext =
∞∑
n=0

G(r)
n (x)

tn

n!
. (2.3)

For x = 0, G
(r)
n = G

(r)
n (0) are called poly-Genocchi numbers of index r. In

particular, if r = 1, G
(1)
n (x) = Gn are the ’classical’ Genocchi polynomials defined

by

2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
, (see [8]). (2.4)
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T. Kim, D. S. Kim, G.-W. Jang, J. Kwon 3

The Poly-Genocchi polynomials G
(r)
n (x) were first introduced in [3], even though

they were called poly-Euler polynomials and denoted by E(r)
n (x). For the obvious

reason, it seems more appropriate to call them poly-Genocchi polynomials rather
than poly-Euler polynomials. There are other definitions for poly-Euler numbers

and poly-Euler polynomials. Indeed, in [10, 13] the poly-Euler numbers E
(r)
m are

defined by

Lir(1− e−4t)

4t cosht
=
∞∑
m=0

E(r)
m

tm

m!
. (2.5)

For poly-Euler polynomials, see [2]. The poly-Bernoulli polynomials B
(r)
n (x) of

index r are given by

Lir(1− e−t)
et − 1

ext =
∞∑
n=0

B(r)
n (x)

tn

n!
, (see [1, 4, 6]). (2.6)

When x = 0, B
(r)
n = B

(r)
n (0) are called poly-Bernoulli numbers of index r. In

particular, if r = 1, B
(1)
n (x) = Bn are the Bernoulli polynomials defined by

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
. (2.7)

The Euler polynomials En(x) are given by

2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
. (2.8)

As is well knwon,

En(x) =
1

n+ 1
Gn+1(x), (n ≥ 0). (2.9)

Writing Lir(1 − e−t) =
∑∞
n=1 an

tn

n! = t +
∑∞
n=2 an

tn

n! , from (2.3) and (2.7) we
see that

∞∑
n=0

G(r)
n (x)

tn

n!
=

∞∑
n=1

(
n−1∑
l=0

(
n

l

)
an−lEl(x)

)
tn

n!
. (2.10)

This implies that

G
(r)
0 (x) = 0, G

(r)
1 (x) = 1, deg G(r)

n (x) = n− 1, (n ≥ 1). (2.11)

In this paper, we would like that to exploit umbral calculus in order to derive
explicit expressions, some properties, recurrence relations and identities for poly-
Genocchi polynomials.

3. Explicit expressions

It is important to observe that sometimes we can not directly apply the umbral
calculus techniques to the generating function (2.3) of poly-Genocchi polynomials,

since 2Lir(1−e−t)
et+1 is a delta series, and hence is not invertible. Instead, we have to

use the next generating function for Gn+1(x)
n+1 , (n ≥ 1), which follows from (2.3) and

(2.10).
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4 Fourier series of finite products of Bernoulli and Genocchi functions

2Lir(1− e−t)
t(et + 1)

ext =
∞∑
n=0

G
(r)
n+1(x)

n+ 1

tn

n!
. (3.1)

We see from (2.11) that
G

(r)
n+1(x)

n+1 is the Appell sequence for t(et+1)
2Lir(1−e−t) , namely

G
(r)
n+1(x)

n+ 1
∼
(
g(t) =

t(et + 1)

2Lir(1− e−t)
, f(t) = t

)
. (3.2)

We will compute
〈
Lir(1−e−t)

t | xn+1
〉

in four different ways in order to get inter-

esting identities. Firstly, we have〈
Lir(1− e−t)

t
|xn+1

〉
=

〈
1

t

∞∑
m=1

(−1)m
(e−t − 1)m

mr
|xn+1

〉

=
n+2∑
m=1

(−1)m
m!

mr

〈
1

t

1

m!
(e−t − 1)m|xn+1

〉

=

n+2∑
m=1

(−1)m
m!

mr

〈 ∞∑
j=m

S2(j,m)
(−1)j

j!
tj−1|xn+1

〉

=
n+2∑
m=1

(−1)m
m!

mr

n+2∑
j=m

S2(j,m)
(−1)j

j!
(n+ 1)!δn+1,j−1

=
1

n+ 2

n+2∑
m=1

(−1)m+nm!

mr
S2(n+ 2,m).

(3.3)

Secondly, we get 〈
Lir(1− e−t)

t
|xn+1

〉
=

〈
et − 1

t
|Lir(1− e

−t)

et − 1
xn+1

〉
=

〈
et − 1

t
|
∞∑
m=0

B(r)
m

tm

m!
xn+1

〉

=
n+1∑
m=0

(
n+ 1

m

)
B(r)
m

〈
et − 1

t
|xn−m+1

〉

=
n+1∑
m=0

(
n+ 1

m

)
B(r)
m

∫ 1

0

un−m+1du

=

n+1∑
m=0

(
n+ 1

m

)
B(r)
m

1

n−m+ 2
.

(3.4)
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Thirdly, we obtain 〈
Lir(1− e−t)

t
|xn+1

〉
=

〈
1

t

∫ t

0

(Lir(1− e−s))′ds|xn+1

〉
=

〈
1

t

∫ t

0

(Lir−1(1− e−s))
es − 1

ds|xn+1

〉

=

〈
1

t

∫ t

0

∞∑
m=0

B(r−1)
m

sm

m!
ds|xn+1

〉

=
∞∑
m=0

B(r−1)
m

1

m!

〈
1

t

∫ t

0

smds|xn+1

〉

=
∞∑
m=0

B(r−1)
m

1

(m+ 1)!

〈
tm|xn+1

〉
=
∞∑
m=0

B(r−1)
m

1

(m+ 1)!
(n+ 1)!δn+1,m

=
1

n+ 2
B

(r−1)
n+1 .

(3.5)

Lastly, in [7] we showed that

Lir(1− e−t) =

∞∑
j1=0

· · ·
∞∑

jr−1=0

tj1+···+jr−1+1

×
r−1∏
i=1

Bji
ji!(j1 + · · ·+ ji + 1)

, (r ≥ 2),

(3.6)

which follows from the well-known integral representation

Lik(1− e−t) =

∫ t

0

1

ey − 1

∫ y

0

1

ey − 1

∫ y

0

· · · 1

ey − 1

∫ y

0︸ ︷︷ ︸
(k−2) times

y

ey − 1
dy · · · dydydy, (3.7)

Now, 〈
Lir(1− e−t)

t
|xn+1

〉
=
∞∑
j1=0

· · ·
∞∑

jr−1=0

r−1∏
i=1

Bji
ji!(j1 + · · ·+ ji + 1)

〈
tj1+···+jr−1 |xn+1

〉
=
∞∑
j1=0

· · ·
∞∑

jr−1=0

r−1∏
i=1

Bji
ji!(j1 + · · ·+ ji + 1)

(n+ 1)!δn+1,j1+···+jr−1

=(n+ 1)!
∑

j1+···+jr−1=n+1

r−1∏
i=1

Bji
ji!(j1 + · · ·+ ji + 1)

.

(3.8)
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6 Fourier series of finite products of Bernoulli and Genocchi functions

Theorem 3.1. For all integers r ≥ 2, and n ≥ −1, we have the following.〈
Lir(1− e−t)

t
|xn+1

〉
=

1

n+ 2

n+2∑
m=1

(−1)m+nm!

mr
S2(n+ 2,m)

=
n+1∑
m=0

(
n+ 1

m

)
B(r)
m

1

n−m+ 2

=
1

n+ 2
B

(r−1)
n+1

=(n+ 1)!
∑

j1+···+jr−1=n+1

r−1∏
i=1

Bji
ji!(j1 + · · ·+ ji + 1)

.

Similarly, the following was derived in [7] except for the first one which is left as
an exercise to the reader.

Theorem 3.2. For all integers r ≥ 2, and n ≥ −1, we have the following.〈
Lir(1− e−t)|xn+1

〉
=

n+1∑
m=1

(−1)m+n+1 m!

mr
S2(n+ 1,m)

=

n∑
m=0

(
n+ 1

m

)
B(r)
m

=B(r−1)
n

=(n+ 1)!
∑

j1+···+jr−1=n

r−1∏
i=1

Bji
ji!(j1 + · · ·+ ji + 1)

.

The following is also immediate from (2.3). However, we derive it by using
umbral calculus.

G(r)
n (y) =

〈 ∞∑
m=0

G(r)
m (y)

tm

m!
|xn
〉

=

〈
2Lir(1− e−t)

et + 1
eyt|xn

〉
=

〈
2Lir(1− e−t)

et + 1
|
∞∑
l=0

yl

l!
tlxn

〉

=
n∑
l=0

(
n

l

)
yl
〈

2Lir(1− e−t)
et + 1

|xn−l
〉

=
n∑
l=0

(
n

l

)
ylG

(r)
n−l.

(3.9)
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Thus we have shown

G(r)
n (x) =

n∑
l=0

(
n

l

)
G

(r)
n−lx

l.

Next, in order to express poly-Genocchi polynomials in terms of Euler polyno-
mials, we first observe the following.

G(r)
n (y) =

〈
2Lir(1− e−t)

et + 1
eyt|xn

〉
=

〈
Lir(1− e−t)|

2

et + 1
eytxn

〉
=

〈
Lir(1− e−t)|

∞∑
l=0

El(y)
tl

l!
xn

〉

=
n∑
l=0

(
n

l

)
El(y)

〈
Lir(1− e−t)|xn−l

〉
(3.10)

From this and Theorem 1.2, after simple manipulations, we obtain the following

explicit expressions for G
(r)
n (x), as linear combinations of Euler polynomials.

Theorem 3.3. For any integer n ≥ 0, we have

G(r)
n (x) =

n∑
l=1

l∑
m=1

(
n

l

)
(−1)l+m

m!

mr
S2(l,m)En−l(x)

=

n∑
l=1

l−1∑
m=0

(
n

l

)(
l

m

)
B(r)
m En−l(x)

=
n∑
l=1

(
n

l

)
B

(r−1)
l−1 En−l(x)

=
n∑
l=1

∑
j1,··· ,jr−1≥0,j1+···+jr−1=l−1

(n)l

r−1∏
i=1

Bji
ji!(j1 + · · ·+ ji + 1)

En−l(x).

This time we want to express poly-Genocchi polynomials in terms of Genocchi
polynomials. For this, we first observe the following.

G(r)
n (y) =

〈
2Lir(1− e−t)

et + 1
eyt|xn

〉
=

〈
Lir(1− e−t)

t
| 2t

et + 1
eytxn

〉
=

〈
Lir(1− e−t)

t
|
∞∑
l=0

Gl(y)
tl

l!
xn

〉

=
n∑
l=0

(
n

l

)
Gl(y)

〈
Lir(1− e−t)

t
|xn−l

〉
(3.11)

From this and Theorem 1.1, after simple manipulations, we get the following

explicit expressions for G
(r)
n (x), as linear combinations of Genocchi polynomials.
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8 Fourier series of finite products of Bernoulli and Genocchi functions

Theorem 3.4. For any integer n ≥ 0, we have

G(r)
n (x) =

n−1∑
l=0

l+1∑
m=1

1

l + 1

(
n

l

)
(−1)l+m−1 m!

mr
S2(l + 1,m)Gn−l(x)

=
n−1∑
l=0

l∑
m=0

1

l −m+ 1

(
n

l

)(
l

m

)
B(r)
m Gn−l(x)

=
n−1∑
l=0

1

l + 1

(
n

l

)
B

(r−1)
l Gn−l(x)

=
n−1∑
l=0

∑
j1,··· ,jr−1≥0,j1+···+jr−1=l

(n)l

r−1∏
i=1

Bji
ji!(j1 + · · ·+ ji + 1)

Gn−l(x).

As a final remark in this section, we mention the following Appell identity.

B(r)
n (x+ y) =

n∑
j=0

(
n

j

)
B

(r)
j (y)xn−j . (3.12)

4. Recurrence relations

From (1.9), for sn(x) ∼ (g(t), t) we have

sn+1(x) =

(
x− g′(t)

g(t)

)
sn(x). (4.1)

Here we apply this recurrence relation to

G
(r)
n+1(x)

n+ 1
∼
(
g(t) =

t(et + 1)

2Lir(1− e−t)
, t

)
. (4.2)

Then

G
(r)
n+2(x)

n+ 2
=

1

n+ 1
xG

(r)
n+1(x)− g′(t)

g(t)

1

n+ 1
G

(r)
n+1(x). (4.3)

Observe first that

g′(t)

g(t)
= (log g(t))′

=
1

t
+

et

et + 1
− (Lir(1− e−t))′

Lir(1− e−t)

=
1

t
+

et

et + 1
− 1

Lir(1− e−t)
Lir−1(1− e−t)

et − 1

=
1

t

(
1 + t− t

et + 1
− t

Lir(1− e−t)
Lir−1(1− e−t)

et − 1

)
=

1

t

(2Lir(1− e−t)
t(et + 1)

+
2Lir(1− e−t)

et + 1
− 1

2

2

et + 1

2Lir(1− e−t)
et + 1

− 2

et + 1

Lir−1(1− e−t)
et − 1

) t(et + 1)

2Lir(1− e−t)
.

(4.4)
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Now,

g′(t)

g(t)

1

n+ 1
G

(r)
n+1(x)

=
1

t

(2Lir(1− e−t)
t(et + 1)

+
2Lir(1− e−t)

et + 1
− 1

2

2

et + 1

2Lir(1− e−t)
et + 1

− 2

et + 1

Lir−1(1− e−t)
et − 1

)
xn.

=
1

n+ 1

(2Lir(1− e−t)
t(et + 1)

+
2Lir(1− e−t)

et + 1
− 1

2

2

et + 1

2Lir(1− e−t)
et + 1

− 2

et + 1

Lir−1(1− e−t)
et − 1

)
xn+1.

(4.5)

Note here that the expression in bracket of (4.5) has order ≥ 1, and

xn =
t(et + 1)

2Lir(1− e−t)
G

(r)
n+1(x)

n+ 1
. (4.6)

We now compute the four pieces in the expression of (??):

2Lir(1− e−t)
t(et + 1)

xn+1 =
∞∑
l=0

G
(r)
l+1

l + 1

tl

l!
xn+1

=
n+1∑
l=0

1

l + 1

(
n+ 1

l

)
G

(r)
l+1x

n+1−l,

(4.7)

2Lir(1− e−t)
et + 1

xn+1 =
∞∑
l=0

G
(r)
l

tl

l!
xn+1

=
n+1∑
l=0

(
n+ 1

l

)
G

(r)
l xn+1−l,

(4.8)

2

et + 1

2Lir(1− e−t)
et + 1

xn+1 =
2

et + 1

n+1∑
l=0

(
n+ 1

l

)
G

(r)
l xn+1−l

=
n+1∑
l=0

(
n+ 1

l

)
G

(r)
l

2

et + 1
xn+1−l

=
n+1∑
l=0

(
n+ 1

l

)
G

(r)
l En+1−l(x),

(4.9)

2

et + 1

Lir−1(1− e−t)
et − 1

xn+1 =
2

et + 1

∞∑
l=0

B
(r−1)
l

tl

l!
xn+1

=
2

et + 1

n+1∑
l=0

(
n+ 1

l

)
B

(r−1)
l xn+1−l

=
n+1∑
l=0

(
n+ 1

l

)
B

(r−1)
l En+1−l(x).

(4.10)
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10 Fourier series of finite products of Bernoulli and Genocchi functions

Putting everything altogether, we arrive at the following theorem.

Theorem 4.1. For any integer n ≥ 0, we have

G
(r)
n+2(x)

n+ 2
=

1

n+ 1
xG

(r)
n+1(x) +

1

n+ 1

(n+1∑
l=0

(
n+ 1

l

)
(
1

2
G

(r)
l

+B
(r−1)
l )En+1−l(x)−

n+1∑
l=0

(
n+ 1

l

)
(
G

(r)
l+1

l + 1
+G

(r)
l )xn+1−l

)
.

Assume that n ≥ 1,

G(r)
n (y) =

〈
2Lir(1− e−t)

et + 1
eyt|xn

〉
=

〈(
∂t

2Lir(1− e−t)
et + 1

)
eyt|xn−1

〉
+

〈
2Lir(1− e−t)

et + 1
(∂te

yt)|xn−1

〉 (4.11)

It is easy to see that the second term in (4.11) is equal to yG
(r)
n (y). For the first

term, we observe that

∂t

(2Lir(1− e−t)
et + 1

)
=

2Lir−1(1−e−t)
1−e−t e−t(et + 1)− 2Lir(1− e−t)et

(et + 1)2

=
2

et + 1

Lir−1(1− e−t)
et − 1

− 2Lir(1− e−t)
et + 1

+
1

2

2

et + 1

2Lir(1− e−t)
et + 1

(4.12)

So the first term can be written as three sums:〈
2

et + 1

Lir−1(1− e−t)
et − 1

eyt|xn−1

〉
−
〈

2Lir(1− e−t)
et + 1

eyt | xn−1

〉
+

1

2

〈
2

et + 1

2Lir(1− e−t)
et + 1

eyt|xn−1

〉
.

(4.13)

We now compute the three terms in (4.13):〈
2

et + 1

Lir−1(1− e−t)
et − 1

eyt|xn−1

〉
=

〈
2

et + 1
|Lir−1(1− e−t)

et − 1
eytxn−1

〉
=

〈
2

et + 1
|
∞∑
l=0

B
(r−1)
l (y)

tl

l!
xn−1

〉

=
n−1∑
l=0

(
n− 1

l

)
B

(r−1)
l (y)

〈
2

et + 1
|xn−1−l

〉

=
n−1∑
l=0

(
n− 1

l

)
B

(r−1)
l (y)En−1−l,

(4.14)

〈
2Lir(1− e−t)

et + 1
eyt|xn−1

〉
= G

(r)
n−1(y), (4.15)
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〈
2

et + 1

2Lir(1− e−t)
et + 1

eyt|xn−1

〉
=

〈
2

et + 1
|2Lir(1− e

−t)

et + 1
eytxn−1

〉
=

〈
2

et + 1
|
∞∑
l=0

G
(r)
l (y)

tl

l!
xn−1

〉

=
n−1∑
l=0

(
n− 1

l

)
G

(r)
l (y)

〈
2

et + 1
|xn−1−l

〉

=
n−1∑
l=0

(
n− 1

l

)
G

(r)
l (y)En−1−l.

(4.16)

Putting everything altogether, we have the following theorem.

Theorem 4.2. For any integer n ≥ 1, we have the following recursive relation.

(1− x)G(r)
n (x) +G

(r)
n−1(x)

=
n−1∑
l=0

(
n− 1

l

)
En−1−l(B

(r−1)
l (x) +

1

2
G

(r)
l (x)).

5. Connections with other families of polynomials

In this section, we will exploit (1.7) in order to express poly-Genocchi polyno-
mials as linear combinations of well known families of polynomials. To express
poly-Genocchi polynomials in terms of Bernoulli polynomials, with noting that

G
(r)
n+1(x)

n+ 1
∼
(

t(et + 1)

2Lir(1− e−t)
, t

)
, Bn(x) ∼

(
et − 1

t
, t

)
, (5.1)

we let
G

(r)
n+1(x)

n+1 =
∑n
k=0 Cn,kBk(x). Then

Cn,k =
1

k!

〈
et − 1

t

2Lir(1− e−t)
t(et + 1)

tk|xn
〉

=

(
n

k

)〈
et − 1

t
|2Lir(1− e

−t)

t(et + 1)
xn−k

〉
=

(
n

k

)〈
et − 1

t
|
∞∑
l=0

G
(r)
l+1

l + 1

tl

l!
xn−k

〉

=

(
n

k

) n−k∑
l=0

1

l + 1

(
n− k
l

)
G

(r)
l+1

〈
et − 1

t
|xn−k−l

〉
(5.2)
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12 Fourier series of finite products of Bernoulli and Genocchi functions

=

(
n

k

) n−k∑
l=0

1

l + 1

(
n− k
l

)
G

(r)
l+1

∫ 1

0

un−k−ldu

=

(
n

k

) n−k∑
l=0

1

(l + 1)(n− k − l + 1)

(
n− k
l

)
G

(r)
l+1

=
1

(n+ 1)k

n−k∑
l=0

(
n+ 1

l + 1

)(
n− l
k − 1

)
G

(r)
l+1.

(5.3)

Thus we get the following result.

Theorem 5.1. For any integer n ≥ 0, we have the following.

G
(r)
n+1(x) =

n∑
k=0

n−k∑
l=0

1

k

(
n+ 1

l + 1

)(
n− l
k − 1

)
G

(r)
l+1Bk(x).

Write
G

(r)
n+1(x)

n+1 =
∑n
k=0 Cn,k(x)n, with

G
(r)
n+1(x)

n+ 1
∼
(

t(et + 1)

2Lir(1− e−t)
, t

)
, (x)n ∼

(
1, et − 1

)
, (5.4)

where (x)n are the lower factorial polynomials. Then

Cn,k =
1

k!

〈
2Lir(1− e−t)
t(et + 1)

(et − 1)k|xn
〉

=

〈
2Lir(1− e−t)
t(et + 1)

| 1
k!

(et − 1)kxn
〉

=

〈
2Lir(1− e−t)
t(et + 1)

|
∞∑
l=k

S2(l, k)
tl

l!
xn

〉

=
n∑
l=k

(
n

l

)
S2(l, k)

〈
2Lir(1− e−t)
t(et + 1)

|xn−l
〉

=
n∑
l=k

(
n

l

)
S2(l, k)

G
(r)
n−l+1

n− l + 1

=
1

n+ 1

n∑
l=k

(
n+ 1

l

)
S2(l, k)G

(r)
n−l+1.

(5.5)

Thus we obtain the following theorem.

Theorem 5.2. For any integer n ≥ 0, we have the following.

G
(r)
n+1(x) =

n∑
k=0

n∑
l=k

(
n+ 1

l

)
S2(l, k)G

(r)
n−l+1(x)k.

Let Obn(x) denote the ordered Bell polynomials given by

1

2− et
ext =

∞∑
n=0

Obn(x)
tn

n!
. (5.6)
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The ordered Bell polynomials have been of great use in number theory and enu-
merative combinatorics.

Here we would like to express the poly-Genocchi polynomials in terms of ordered
Bell polynomials. With observing that

G
(r)
n+1(x)

n+ 1
∼
(

t(et + 1)

2Lir(1− e−t)
, t

)
, Obn(x) ∼

(
2− et, t

)
, (5.7)

we let
G

(r)
n+1(x)

n+1 =
∑n
k=0 Cn,kObk(x). Then

Cn,k =
1

k!

〈
(2− et)2Lir(1− e−t)

t(et + 1)
tk|xn

〉
=

(
n

k

)〈
2− et|2Lir(1− e

−t)

t(et + 1)
xn−k

〉
=

(
n

k

)〈
2− et|

∞∑
l=0

G
(r)
l+1

l + 1

tl

l!
xn−k

〉

=

(
n

k

) n−k∑
l=0

G
(r)
l+1

l + 1

(
n− k
l

)〈
2− et|xn−k−l

〉
=

(
n

k

) n−k∑
l=0

G
(r)
l+1

l + 1

(
n− k
l

)
(2δn−k, l − 1)

=
1

n+ 1

n−k∑
l=0

(
n+ 1

l + 1

)(
n− l
k

)
G

(r)
l+1(2δn−k,l − 1).

(5.8)

Thus we get the following result.

Theorem 5.3. For any integer n ≥ 0, we have the following.

G
(r)
n+1(x) =

n∑
k=0

n−k∑
l=0

(
n+ 1

l + 1

)(
n− l
k

)
G

(r)
l+1(2δn−k,l − 1)Obk(x).

We recall here that the Bernoulli polynomials of the second kind bn(x) are given
by

t

log(1 + t)
(1 + t)x =

∞∑
n=0

bn(x)
tn

n!
, (see [9]). (5.9)

With noting that

G
(r)
n+1(x)

n+ 1
∼
(

t(et + 1)

2Lir(1− e−t)
, t

)
, bn(x) ∼

(
t

et − 1
, et − 1

)
, (5.10)
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14 Fourier series of finite products of Bernoulli and Genocchi functions

we let
G

(r)
n+1(x)

n+1 =
∑n
k=0 Cn,kbk(x). Then

Cn,k =
1

k!

〈
t

et − 1

2Lir(1− e−t)
t(et + 1)

(et − 1)k|xn
〉

=

〈
t

et − 1

2Lir(1− e−t)
t(et + 1)

| 1
k!

(et − 1)kxn
〉

=

〈
t

et − 1

2Lir(1− e−t)
t(et + 1)

|
∞∑
l=k

S2(l, k)
tl

l!
xn

〉

=
n∑
l=k

(
n

l

)
S2(l, k)

〈
t

et − 1
|2Lir(1− e

−t)

t(et + 1)
xn−l

〉

=
n∑
l=k

(
n

l

)
S2(l, k)

〈
t

et − 1
|
∞∑
m=0

G
(r)
m+1

m+ 1

tm

m!
xn−l

〉

=
n∑
l=k

(
n

l

)
S2(l, k)

n−l∑
m=0

G
(r)
m+1

m+ 1

(
n− l
m

)〈
t

et − 1
|xn−l−m

〉

=
1

n+ 1

n∑
l=k

n−l∑
m=0

(
n+ 1

m+ 1

)(
n−m
l

)
S2(l, k)G

(r)
m+1Bn−l−m.

(5.11)

Thus we deduced the following theorem.

Theorem 5.4. For any integer n ≥ 0, we have the following.

G
(r)
n+1(x) =

n∑
k=0

n∑
l=k

n−l∑
m=0

(
n+ 1

m+ 1

)(
n−m
l

)
S2(l, k)G

(r)
m+1Bn−l−mbk(x).

The exponential polynomials φn(x)(also called Bell or Touchard polynomials)
are given by

ex(et−1) =
∞∑
n=0

φn(x)
tn

n!
. (5.12)

With noting that

G
(r)
n+1(x)

n+ 1
∼
(

t(et + 1)

2Lir(1− e−t)
, t

)
, φn(x) ∼ (1, log(1 + t)) , (5.13)

we write
G

(r)
n+1(x)

n+1 =
∑n
k=0 Cn,kφk(x). Then

Cn,k =
1

k!

〈
2Lir(1− e−t)
t(et + 1)

(log(1 + t))k|xn
〉

=

〈
2Lir(1− e−t)
t(et + 1)

| 1
k!

(log(1 + t))kxn
〉

=

〈
2Lir(1− e−t)
t(et + 1)

|
∞∑
l=k

S1(l, k)
tl

l!
xn

〉 (5.14)
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=
n∑
l=k

(
n

l

)
S1(l, k)

〈
2Lir(1− e−t)
t(et + 1)

|xn−l
〉

=
n∑
l=k

(
n

l

)
S1(l, k)

G
(r)
n−l+1

n− l + 1

=
1

n+ 1

n∑
l=k

(
n+ 1

l

)
S1(l, k)G

(r)
n−l+1.

(5.15)

Thus we have the following result.

Theorem 5.5. For any integer n ≥ 0, we have the following.

G
(r)
n+1(x) =

n∑
k=0

n∑
l=k

(
n+ 1

l

)
S1(l, k)G

(r)
n−l+1φk(x).

The Daehee polynomials Dn(x) are given by

log(1 + t)

t
(1 + t)x =

∞∑
n=0

Dn(x)
tn

n!
. (5.16)

Let
G

(r)
n+1(x)

n+1 =
∑n
k=0 Cn,kDk(x), with noting that

G
(r)
n+1(x)

n+ 1
∼
(

t(et + 1)

2Lir(1− e−t)
, t

)
, Dn(x) ∼

(
et − 1

t
, et − 1

)
. (5.17)

Then we have

Cn,k =
1

k!

〈
et − 1

t

2Lir(1− e−t)
t(et + 1)

(et − 1)k|xn
〉

=

〈
et − 1

t

2Lir(1− e−t)
t(et + 1)

| 1
k!

(et − 1)kxn
〉

=

〈
et − 1

t

2Lir(1− e−t)
t(et + 1)

|
∞∑
l=k

S2(l, k)
tl

l!
xn

〉

=

n∑
l=k

(
n

l

)
S2(l, k)

〈
et − 1

t
|2Lir(1− e

−t)

t(et + 1)
xn−l

〉

=
n∑
l=k

(
n

l

)
S2(l, k)

〈
et − 1

t
|
∞∑
m=0

G
(r)
m+1

m+ 1

tm

m!
xn−l

〉

=
n∑
l=k

(
n

l

)
S2(l, k)

n−l∑
m=0

G
(r)
m+1

m+ 1

(
n− l
m

)〈
et − 1

t
|xn−l−m

〉

=
n∑
l=k

(
n

l

)
S2(l, k)

n−l∑
m=0

G
(r)
m+1

m+ 1

(
n− l
m

)∫ 1

0

un−l−mdu

(5.18)
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=
n∑
l=k

(
n

l

)
S2(l, k)

n−l∑
m=0

G
(r)
m+1

(m+ 1)(n− l −m+ 1)

(
n− l
m

)

=
1

n+ 1

n∑
l=k

n−l∑
m=0

1

m+ 1

(
n+ 1

m

)(
n−m+ 1

l

)
S2(l, k)G

(r)
m+1.

(5.19)

Thus we derived the following result.

Theorem 5.6. For any integer n ≥ 0, we have the following.

G
(r)
n+1(x) =

n∑
k=0

n∑
l=k

n−l∑
m=0

1

m+ 1

(
n+ 1

m

)(
n−m+ 1

l

)
S2(l, k)G

(r)
m+1Dk(x).

The Mittag-Leffler polynomials Mn(x) are given by(
1 + t

1− t

)x
=
∞∑
n=0

Mn(x)
tn

n!
. (5.20)

Write
G

(r)
n+1(x)

n+1 =
∑n
k=0 Cn,kMk(x), with observing that

G
(r)
n+1(x)

n+ 1
∼
(

t(et + 1)

2Lir(1− e−t)
, t

)
,Mn(x) ∼

(
1,
et − 1

et + 1

)
. (5.21)

Then we have

Cn,k =
1

k!

〈
2Lir(1− e−t)
t(et + 1)

(
et − 1

et + 1

)k
|xn
〉

=2−k
〈

(
2

et + 1
)k

2Lir(1− e−t)
t(et + 1)

| 1
k!

(et − 1)kxn
〉

=2−k

〈
(

2

et + 1
)k

2Lir(1− e−t)
t(et + 1)

|
∞∑
l=k

S2(l, k)
tl

l!
xn

〉

=2−k
n∑
l=k

(
n

l

)
S2(l, k)

〈
(

2

et + 1
)k|2Lir(1− e

−t)

t(et + 1)
xn−l

〉

=2−k
n∑
l=k

(
n

l

)
S2(l, k)

〈
(

2

et + 1
)k|

∞∑
m=0

G
(r)
m+1

m+ 1

tm

m!
xn−l

〉

=2−k
n∑
l=k

(
n

l

)
S2(l, k)

n−l∑
m=0

G
(r)
m+1

m+ 1

(
n− l
m

)〈
(

2

et + 1
)k|xn−l−m

〉

=2−k
n∑
l=k

(
n

l

)
S2(l, k)

n−l∑
m=0

G
(r)
m+1

m+ 1

(
n− l
m

)
E

(k)
n−l−m

=
2−k

n+ 1

n∑
l=k

n−l∑
m=0

(
n+ 1

m+ 1

)(
n−m
l

)
S2(l, k)G

(r)
m+1E

(k)
n−l−m.

(5.22)
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Here E
(k)
n are the Euler numbers of order k given by(

2

et + 1

)k
=
∞∑
n=0

E(k)
n

tn

n!
. (5.23)

Thus we deduced the following theorem.

Theorem 5.7. For any integer n ≥ 0, we have the following.

G
(r)
n+1(x) =

n∑
k=0

n∑
l=k

n−l∑
m=0

2−k
(
n+ 1

m+ 1

)(
n−m
l

)
S2(l, k)G

(r)
m+1E

(k)
n−l−mMk(x).

The Boole polynomials Bln(x) are given by

1

1 + (1 + t)λ
(1 + t)x =

∞∑
n=0

Bln(x)
tn

n!
. (5.24)

To express the poly-Genocchi polynomials in terms of Boole polynomials, we let
G

(r)
n+1(x)

n+1 =
∑n
k=0 Cn,kBlk(x), with noting that

G
(r)
n+1(x)

n+ 1
∼
(

t(et + 1)

2Lir(1− e−t)
, t

)
, Bln(x) ∼

(
1 + eλt, et − 1

)
. (5.25)

Then

Cn,k =
1

k!

〈
(1 + eλt)

2Lir(1− e−t)
t(et + 1)

(et − 1)k|xn
〉

=

〈
(1 + eλt)

2Lir(1− e−t)
t(et + 1)

| 1
k!

(et − 1)kxn
〉

=

〈
(1 + eλt)

2Lir(1− e−t)
t(et + 1)

|
∞∑
l=k

S2(l, k)
tl

l!
xn

〉

=
n∑
l=k

(
n

l

)
S2(l, k)

〈
1 + eλt|2Lir(1− e

−t)

t(et + 1)
xn−l

〉

=
n∑
l=k

(
n

l

)
S2(l, k)

〈
1 + eλt|

∞∑
m=0

G
(r)
m+1

m+ 1

tm

m!
xn−l

〉

=

n∑
l=k

(
n

l

)
S2(l, k)

n−l∑
m=0

G
(r)
m+1

m+ 1

(
n− l
m

)〈
1 + eλt|xn−l−m

〉
=

n∑
l=k

(
n

l

)
S2(l, k)

n−l∑
m=0

G
(r)
m+1

m+ 1

(
n− l
m

)
(δn−l,m + λn−l−m)

=
1

n+ 1

n∑
l=k

n−l∑
m=0

(
n+ 1

m+ 1

)(
n−m
l

)
S2(l, k)G

(r)
m+1(δn−l,m + λn−l−m).

(5.26)

So we obtained the following theorem.

Theorem 5.8. For any integer n ≥ 0, we have the following.

G
(r)
n+1(x) =

n∑
k=0

n∑
l=k

n−l∑
m=0

(
n+ 1

m+ 1

)(
n−m
l

)
S2(l, k)G

(r)
m+1(δn−l,m + λn−l−m)Blk(x).
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Abstract

The objective of this paper is to investigate and extend some Pach-
patte type dynamic inequalities on time scales in three independent
variables which provide explicit bounds on unknown functions and
their derivatives. Some applications are also discussed here in order
to illustrate the usefulness of our results.

Keywords and phrases: Time scales, integral inequality, dynamic inequal-
ity, explicit estimates .
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1 Introduction

The theory of time scales was created by Hilger [11] in order to unify the
theories of differential equations and of difference equations and in order to
extend those theories to other kinds of the so-called ”dynamic equations”.
The two main features of the calculus on time scales are unification and
extension of continuous and discrete analysis. Since then, many authors
have studied different aspects of dynamic and integral inequalities on time
scales by using various techniques(for example, see[1-22] and the references
therein).

Our work is related to the explicit bounds of Pachpatte [15], [19] in the
form of dynamic inequalities with three variables which can be used as handy

1
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tools to study the properties of certain differential and dynamic equations on
time scales. We hope the results given here will assure greater importance
in near future.

2 Notations and Preliminaries on Time Scales

Here, we begin by giving some necessary material for our study.
Throughout this paper, we assume that a time scale T is an arbitrary

nonempty closed subset of R where R denotes the set of real numbers and
R+ = [0,∞). Also T1 and T2 be two time scales with atleast two points and
Φ = T1 × T2 and N = Φ × I, where J = [a, b]. Furthermore f : T −→ R is
rd-continuous provided f is continuous right dense point T and has a finite
left sided limit at each left dense point of T and will be denoted by Crd. The
partial delta derivative of z(x, y) for (x, y) ∈ N with respect to x is denoted
by z41(x, y).

Before giving our main results, we introduce the following lemma which
is required in our theorems.

Lemma[8]: Let u, a, f ∈ Crd(T1 × T2, R) and a is nondecreasing in each
of the variables. If

u(x, y) ≤ a(x, y) +

∫ x

x0

∫ y

y0

f(s, t)u(s, t)4t4s, (2.1)

for (x, y) ∈ T1 × T2, then

u(x, y) ≤ a(x, y)eC(x,y)(x, x0), (2.2)

where

C(x, y) =

∫ y

y0

f(x, t)4t, (2.3)

for (x, y) ∈ T1 × T2.

3 Results and discussion

Our main results are based on the following theorems of integral inequalities
with three independent variables which can be used in certain situations.

Theorem 3.1. Let u(x, y, z), f(x, y, z) and g(x, y, z) ∈Crd(N,R+) and c be
a nonnegative constant. If

u2(x, y, z) ≤ c2+2

∫ x

x0

∫ y

y0

∫ b

a

[
f(s, t, r)u2(s, t, r)+g(s, t, r)u(s, t, r)

]
4r4t4s,

(3.1)

2
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for (x,y,z) ∈ N, then

u(x, y, z) ≤ p(x, y, z)eW (x,y)(x, x0), (3.2)

where

p(x, y, z) = c+

∫ x

x0

∫ y

y0

∫ b

a

g(s, t, r)4r4t4s, (3.3)

and

W (x, y) =

∫ y

y0

∫ b

a

f(x, t, r)4r4t, (3.4)

for (x, y, z) ∈ N .

Proof. Let c > 0 and define a function z(x, y) by the right hand side of (3.1),
then

z(x0, y) = c2, u(x, y, z) ≤
√
z(x, y), (3.5)

and

z(x, y) = c2 + 2

∫ x

x0

∫ y

y0

E(s, t)4t4s, (3.6)

where

E(x, y) =

∫ b

a

[
f(x, y, r)u2(x, y, r) + g(x, y, r)u(x, y, r)

]
4r. (3.7)

From (3.5), (3.6) and (3.7), we notice that

z41(x, y) = 2

∫ y

y0

E(x, t),

which implies

z41(x, y)√
z(x, y)

≤ 2

∫ y

y0

∫ b

a

[
f(x, t, r)

√
z(x, t) + g(x, t, r)

]
4r4t. (3.8)

Now from (3.8) above we have by taking delta integral

√
z(x, y) ≤ p(x, y, z) +

∫ x

x0

∫ y

y0

∫ b

a

f(s, t, r)
√
z(s, t)4r4t4s, (3.9)

where p(x, y, z) be defined as in (3.3). Clearly p(x, y, z) is nonnegative, con-
tinuous and nondecreasing (x, y, z) ∈ N . We assume that p(x, y, z) > 0 for
(x, y, z) ∈ N . From (3.9), it is easy to observe that

√
z(x, y)

p(x, y, z)
≤ 1 +

∫ x

x0

∫ y

y0

∫ b

a

f(s, t, r)

√
z(s, t)

p(s, t, r)
4r4t4s. (3.10)

3
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Define a function v(x, y) by

v(x, y) = 1 +

∫ x

x0

∫ y

y0

∫ b

a

f(s, t, r)

√
z(s, t)

p(s, t, r)
4r4t4s, (3.11)

it follows from (3.10) and (3.11) that

v(x0, y) = 1,
√
z(x, y) ≤ p(x, y, z)v(x, y), (3.12)

now from (3.11) and delta derivative with respect to x yields

v41(x, y)

v(x, y)
≤ W (x, y), (3.13)

where W (x, y) be defined as in (3.4). Keeping y fixed and set x = s and
delta integrate the resulting inequality with respect to s from x0 to x for
(x, y, z) ∈ N and using (3.12), we have

v(x, y) ≤ eW (x,y)(x, x0). (3.14)

The desired inequality in (3.2) follows by using (3.14) and (3.12) in (3.5).

Remark1: If we take f = 0 and T1 = T2 = R, then Theorem 3.1 reduces
to [18] Theorem 1(a3).

Remark2: It is interesting to note that the inequalities established in The-
orem 3.1 with three variables become the inequalities of Theorem 1 (a1)and

Theorem 4 (b1)withT1 = T2 = R and T1 = T2 = Z of one variable
respectively given in [19].

Remark3: Theorem 3.1 reduces to [18] Theorem 2 (b3) with T1 = T2 = Z
and f = 0.

Theorem 3.2. Let u(x, y, z), f(x, y, z), g(x, y, z), h(x, y, z) and m(x, y, z)
∈Crd(N,R+). If

u(x, y, z) ≤ g(x, y, z)+h(x, y, z)

∫ x

x0

∫ y

y0

∫ b

a

[
f(s, t, r)u(s, t, r)+m(s, t, r)

]
4r4t4s,

(3.15)
for (x, y, z) ∈ N , then

u(x, y, z) ≤ g(x, y, z) + h(x, y, z)p1(x, y, z)eW ?(x,y)(x, x0),

where

W ?(x, y) =

∫ y

y0

∫ b

a

f(x, t, r)h(x, t, r)4r4t, (3.16)
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p1(x, y, z) =

∫ x

x0

∫ y

y0

∫ b

a

[
f(s, t, r)g(s, t, r) +m(s, t, r)

]
4r4t4s, (3.17)

for (x, y, z) ∈ N .

Proof. Define a function z(x, y) by

z(x, y) =

∫ x

x0

∫ y

y0

∫ b

a

[
f(s, t, r)u(s, t, r) +m(s, t, r)

]
4r4t4s, (3.18)

then
z(x0, y) = 0, u(x, y, z) ≤ g(x, y, z) + h(x, y, z)z(x, y), (3.19)

and

z(x, y) =

∫ x

x0

∫ y

y0

E(s, t)4t4s, (3.20)

where

E(x, y) =

∫ b

a

[
f(x, y, r)u(x, y, r) +m(x, y, r)

]
4r. (3.21)

From (3.19), (3.20) and (3.21), we notice that

z41(x, y) = 2

∫ y

y0

E(x, t),

z41(x, y) ≤
∫ y

y0

∫ b

a

[
f(s, t, r)g(s, t, r) +m(s, t, r)

]
4r4t

+

∫ y

y0

∫ b

a

[
f(x, t, r)h(x, t, r)z(x, t)

]
4r4t,

which implies

z(x, y) ≤ p1(x, y, z) +

∫ x

x0

∫ y

y0

∫ b

a

[
f(s, t, r)h(s, t, r)z(s, t)

]
4r4t4s,

where p1(x, y, z) be defined as in (3.17). The remaining proof can be com-
pleted by following a suitable modifications at the proof of Theorem 3.1 given
above. Here we omit the details.

Remark4: By taking m=0, it is easy to observe that the bound obtained
in Theorem 3.2 reduces to the bound obtained in Theorem 2.1 given in [15].

Remark5: Theorem 3.2 with T1 = T2 = R and m=0 reduces to Theorem
1(a2) given in [18].

Remark6: If we take T1 = T2 = Z and m=0, then Theorem 3.2 takes the
form of Theorem 2(b2) given in [18].
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Theorem 3.3. Let u(x, y, z), f(x, y, z), g(x, y, z) and c be defined as in
Theorem 3.1. If

u2(x, y, z) ≤

c2 + 2

∫ x

x0

∫ y

y0

∫ b

a

[
f(s, t, r)u(s, t, r)

(
u(s, t, r)+

∫ s

s0

∫ t

t0

∫ d

c

g(σ, ς, τ)u(σ, ς, τ)4τ4ς4σ
)

+h(s, t, r)u(s, t, r)
]
4r4t4s,

(3.22)
for (x, y, z) ∈ N , then

u(x, y, z) ≤ p2(x, y, z)eW1(x,y)(x, x0), (3.23)

where

p2(x, y, z) = c+

∫ x

x0

∫ y

y0

∫ b

a

h(s, t, r)4r4t4s, (3.24)

and

W1(x, y) =

∫ y

y0

∫ b

a

[
f(x, t, r) + g(x, t, r)

]
4r4t, (3.25)

for (x, y, z) ∈ N .

Proof. Let c > 0 and define a function z(x, y) by the right hand side of (3.22),
then

z(x0, y) = c2, u(x, y, z) ≤
√
z(x, y), (3.26)

and

z(x, y) = c2 + 2

∫ x

x0

∫ y

y0

E(s, t)4t4s, (3.27)

where
E(x, y) =∫ b

a

[
f(x, y, r)u(x, y, r)

(
u(x, y, r) +

∫ x

x0

∫ y

y0

∫ d

c

g(s, t, τ)u(, t, τ)4τ4t4s
)

+h(x, y, r)u(x, y, r)
]
4r. (3.28)

From (3.26), (3.27) and (3.28), we notice that

z41(x, y) = 2

∫ y

y0

E(x, t),

6
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which implies

z41(x, y)√
z(x, y)

≤ 2

∫ y

y0

∫ b

a

[
f(x, t, r)

(√
z(x, t)

+

∫ x

x0

∫ t

t0

∫ d

c

g(s, ς, τ)
√
z(s, ς)4τ4ς4s

)
+ h(x, t, r)

]
4r4t, (3.29)

now from (3.29) above we have by taking delta integral
√
z(x, y) ≤ p2(x, y, z)

+

∫ x

x0

∫ y

y0

∫ b

a

[
f(s, t, r)

(√
z(s, t)+

∫ s

s0

∫ t

t0

∫ d

c

g(σ, ς, τ)
√
z(σ, ς)4τ4ς4σ

)]
4r4t4s,

(3.30)
where p2(x, y, z) be defined as in (3.24). Clearly p2(x, y, z) is nonnegative,
continuous and nondecreasing (x, y, z) ∈ N . We assume that p2(x, y, z) > 0
for (x, y, z) ∈ N . From (3.30), it is easy to observe that

√
z(x, y)

p2(x, y, z)
≤ 1 +

∫ x

x0

∫ y

y0

∫ b

a

[
f(s, t, r)

( √z(s, t)

p2(s, t, r)

+

∫ s

s0

∫ t

t0

∫ d

c

g(σ, ς, τ)

√
z(σ, ς)

p2(σ, ς, τ)
4τ4ς4σ

)]
4r4t4s. (3.31)

Define a function v(x, y) by

v(x, y) = 1 +

∫ x

x0

∫ y

y0

∫ b

a

[
f(s, t, r)

( √z(s, t)

p2(s, t, r)

+

∫ s

s0

∫ t

t0

∫ d

c

g(σ, ς, τ)

√
z(σ, ς)

p2(σ, ς, τ)
4τ4ς4σ

)]
4r4t4s, (3.32)

it follows from (3.31) and (3.32) that

v(x0, y) = 1,
√
z(x, y) ≤ p2(x, y, z)v(x, y). (3.33)

Now from (3.33) and delta derivative with respect to x yields

v41(x, y)

v(x, y)
≤ W1(x, y), (3.34)

where W1(x, y) be defined as in (3.25). Keeping y fixed and set x = s and
delta integrate the resulting inequality with respect to s from x0 to x for
(x, y, z) ∈ N and using (3.33), we have

v(x, y) ≤ eW1(x,y)(x, x0). (3.35)

The desired inequality in (3.23) follows by using (3.33) and (3.35) in (3.26).
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Remark7: We note that Theorem 3.3 is the further extension of Theorem
1(a2) given in [19] with three variables.

Remark8: Theorem 3.3 with f=0 and T1 = T2 = R converted into Theo-
rem 1(a3) given in [18].

Remark9: By taking g=0 and T1 = T2 = R in Theorem 3.3, it reduces to
Theorem 1(a1) given in [19] with three variables.

Remark10: If we put g=0 and T1 = T2 = Z in Theorem 3.3, then it
reduces to Theorem 4(b1) given in [19] with three variables.

Theorem 3.4. Let u(x, y, z), f(x, y, z), g(x, y, z) and c be defined as in
Theorem 3.1. Let L ∈ Crd(N,R+) which satisfies the condition

0 ≤ L(x, y, z, v)− L(x, y, z, w) ≤ k(x, y, z, w)(v − w), (3.36)

for (x, y, z) ∈ N and v ≥ w ≥ 0 where k ∈ Crd(N,R+). If

u2(x, y, z) ≤ c2 + 2

∫ x

x0

∫ y

y0

∫ b

a

[
f(s, t, r)u(s, t, r)L(s, t, r, u(s, t, r))

+g(s, t, r)u(s, t, r)
]
4r4t4s, (3.37)

for (x, y, z) ∈ N , then

u(x, y, z) ≤ p(x, y, z) + q(x, y, z)eW2(x,y)(x, x0), (3.38)

where p(x,y,z) be defined as in (3.3) and

q(x, y, z) = c+

∫ x

x0

∫ y

y0

∫ b

a

f(s, t, r)L(s, t, r, p(s, t, r))4r4t4s, (3.39)

W2(x, y) =

∫ y

y0

∫ b

a

f(x, t, r)k(x, t, r, p(x, t, r))4r4t, (3.40)

for (x, y, z) ∈ N .

Proof. Let c > 0 and define a function z(x, y) by the right hand side of (3.37),
then

z(x0, y) = c2, u(x, y, z) ≤
√
z(x, y), (3.41)

and

z(x, y) = c2 + 2

∫ x

x0

∫ y

y0

E(s, t)4t4s, (3.42)

8
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where

E(x, y) =

∫ b

a

[
f(x, y, r)u(x, y, r)L(x, y, r, u(x, y, r)) + g(x, y, r)u(x, y, r)

]
4r.

(3.43)
From (3.41), (3.42) and (3.43), we notice that

z41(x, y) = 2

∫ y

y0

E(x, t),

which implies

z41(x, y)√
z(x, y)

≤ 2

∫ y

y0

∫ b

a

[
f(x, t, r)L(x, t, r,

√
z(x, t)) + g(x, t, r)

]
4r4t. (3.44)

Now from (3.44) above we have by taking delta integral

√
z(x, y) ≤ p(x, y, z)+

∫ x

x0

∫ y

y0

∫ b

a

f(s, t, r)L(s, t, r
√
z(s, t))4r4t4s, (3.45)

where p(x, y, z) be defined as in (3.3). Let

v(x, y) =

∫ x

x0

∫ y

y0

∫ b

a

f(s, t, r)L(s, t, r,
√
z(s, t))4r4t4s, (3.46)

it follows from (3.45) and (3.46) that

v(x0, y) = 0,
√
z(x, y) ≤ p(x, y, z) + v(x, y). (3.47)

Now from (3.46), (3.47) and (3.36), we observe that

v(x, y) ≤ q(x, y, z) +

∫ x

x0

∫ y

y0

∫ b

a

f(s, t, r)k(s, t, r, p(s, t, r))v(s, t)4r4t4s,

(3.48)
where q(x, y, z) be defined as in (3.39). Clearly q(x, y, z) is nonnegative,
continuous and nondecreasing (x, y, z) ∈ N . We assume that q(x, y, z) > 0
for (x, y, z) ∈ N . From (3.48), it is easy to observe that

v(x, y)

q(x, y, z)
≤ R(x, y), (3.49)

where

R(x, y) ≤ 1+

∫ x

x0

∫ y

y0

∫ b

a

f(s, t, r)k(s, t, r, p(s, t, r))
v(s, t)

q(s, t, r)
4r4t4s, (3.50)

9
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and
R(x0, y) = 1. (3.51)

Now from (3.50) and delta derivative with respect to x yields

R41(x, y)

R(x, y)
≤ W2(x, y), (3.52)

where W2(x, y) be defined as in (3.40). Keeping y fixed and set x = s and
delta integrate the resulting inequality with respect to s from x0 to x for
(x, y, z) ∈ N and using (3.51), we have

R(x, y) ≤ eW2(x,y)(x, x0). (3.53)

The desired inequality in (3.38) follows by using (3.47), (3.49) and (3.53) in
(3.41).

4 Some Applications

In this section, we present some applications of the Theorem 3.2. Consider
the following dynamic integral equation of the form

u(x, y, z) = d(x, y, z) +

∫ x

x0

∫ y

y0

∫ b

a

F (x, y, z, s, t, r, u(s, t, r))4r4t4s, (4.1)

where (x, y, z) ∈ N and d ∈ Crd(N,R), F ∈ Crd(N
2 ×R,R).

First, we shall give the following theorem concerning the estimate on the
solution of (4.1).

Theorem 4.1. : Assume that the function F in (4.1) satisfies the condition

| F (x, y, z, s, t, r, u(s, t, r)) |≤ q(x, y, z)
[
f(s, t, r) | u | +h(s, t, r)

]
, (4.2)

where f, q, h ∈ Crd(N,R). If u(x, y, z) is a solution of (4.1), then

| u(x, y, z) |≤ d(x, y, z) + q(x, y, z)B(x, y, z)eM(x,y)(x, x0), (4.3)

B(x, y, z) =

∫ x

x0

∫ y

y0

∫ b

a

[
f(s, t, r) | d(s, t, r) + h(s, t, r) |

]
4r4t4s, (4.4)

M(x, y) =

∫ y

y0

∫ b

a

f(x, t, r)q(x, t, r)4r4t, (4.5)

for (x, y, z) ∈ N .

10
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Proof. Let u ∈ Crd(N,R) be a solution of (4.1). Then from the hypotheses,
we have

| u(x, y, z) |≤| d(x, y, z) | +
∫ x

x0

∫ y

y0

∫ b

a

| F (x, y, z, s, t, r, u(s, t, r)) | 4r4t4s

(4.6)

≤| d(x, y, z) | +q(x, y, z)

∫ x

x0

∫ y

y0

∫ b

a

[
f(s, t, r) | u(s, t, r) | +h(s, t, r)

]
4r4t4s,

(4.7)
for (x, y, z) ∈ N . Now an application of the inequality given in Theorem 3.2
to (4.7) yields the desired estimate in (4.3).

The next theorem gives the estimation on the solution of equation (4.1)
assuming that the function F in equation (4.1) satisfies the Lipschitz type
condition.

Theorem 4.2. : Assume that the function F in (4.1) satisfies the condition

| F (x, y, z, s, t, r, u)−F (x, y, z, s, t, r, v) |≤ q(x, y, z)
[
f(s, t, r) | u−v | +h(s, t, r)

]
,

(4.8)
where f, q, h ∈ Crd(N,R). If u(x, y, z) is a solution of (4.1), then

| u(x, y, z)− d(x, y, z) |≤ k(x, y, z) + q(x, y, z)B1(x, y, z)eM(x,y)(x, x0), (4.9)

where M(x, y) be defined as in (4.5) and

k(x, y, z) =

∫ x

x0

∫ y

y0

∫ b

a

| F (x, y, z, s, t, r, d(s, t, r)) | 4r4t4s, (4.10)

B1(x, y, z) =

∫ x

x0

∫ y

y0

∫ b

a

f(s, t, r)
[
| k(s, t, r) + h(s, t, r) |

]
4r4t4s, (4.11)

for (x, y, z) ∈ N .

Proof. Let u ∈ Crd(N,R) be a solution of (4.1). Then from the hypotheses,
we have

| u(x, y, z)− d(x, y, z) |≤
∫ x

x0

∫ y

y0

∫ b

a

| F (x, y, z, s, t, r, u(s, t, r)) | 4r4t4s

≤
∫ x

x0

∫ y

y0

∫ b

a

| F (x, y, z, s, t, r, u(s, t, r))−F (x, y, z, s, t, r, d(s, t, r)) | 4r4t4s
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+

∫ x

x0

∫ y

y0

∫ b

a

| F (x, y, z, s, t, r, d(s, t, r)) | 4r4t4s

≤ k(x, y, z)+q(x, y, z)

∫ x

x0

∫ y

y0

∫ b

a

[
f(s, t, r) | u(s, t, r)−d(s, t, r) | +h(s, t, r)

]
4r4t4s,

(4.12)
for (x, y, z) ∈ N . Now an application of the inequality given in Theorem 3.2
to (4.12) yields the desired estimate in (4.9).

We next consider the equation (4.1) and also the following integral equa-
tion

v(x, y, z) = g(x, y, z) +

∫ x

x0

∫ y

y0

∫ b

a

L(x, y, z, s, t, r, v(s, t, r))4r4t4s, (4.13)

for g ∈ Crd(N,R), L ∈ Crd(N
2 ×R,R).

Theorem 4.3. : Suppose that the function F in (4.1) satisfies the condition
(4.8). Then for every solution v ∈ Crd(N,R) of (4.13) and u ∈ Crd(N,R) a
solution of equation (4.1), we have the estimates

| u(x, y, z)−v(x, y, z) |≤ [d1(x, y, z)+k1(x, y, z)]+q(x, y, z)B2(x, y, z)eM(x,y)(x, x0),
(4.14)

where M(x, y) be defined as in (4.5) and

d1(x, y, z) =| d(x, y, z)− g(x, y, z) |, (4.15)

k1(x, y, z) =

∫ x

x0

∫ y

y0

∫ b

a

| F (x, y, z, s, t, r, v(s, t, r))−L(x, y, z, s, t, r, v(s, t, r)) | 4r4t4s,

(4.16)

B2(x, y, z) =

∫ x

x0

∫ y

y0

∫ b

a

f(s, t, r)
[
d(s, t, r) + k(s, t, r) + h(s, t, r)

]
4r4t4s,

(4.17)
for (x, y, z) ∈ N .

Proof. Since u(x, y, z) and v(x, y, z) are respectively solutions of (4.1) and
(4.13) we have

| u(x, y, z)− v(x, y, z) |≤| d(x, y, z)− g(x, y, z) |

+

∫ x

x0

∫ y

y0

∫ b

a

| F (x, y, z, s, t, r, u(s, t, r))−F (x, y, z, s, t, r, v(s, t, r)) | 4r4t4s

12
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+

∫ x

x0

∫ y

y0

∫ b

a

| F (x, y, z, s, t, r, v(s, t, r))−L(x, y, z, s, t, r, v(s, t, r)) | 4r4t4s,

(4.18)
| u(x, y, z)− v(x, y, z) |≤ d1(x, y, z) + k1(x, y, z)

+q(x, y, z)

∫ x

x0

∫ y

y0

∫ b

a

[
f(s, t, r) | u− v | +h(s, t, r)

]
4r4t4s, (4.19)

for (x, y, z) ∈ N . Now an application of Theorem 3.2 to (4.19) yields (4.14).
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Divisibility of Generalized Catalan Numbers and

Raney Numbers

Jacob Bobrowski ∗ Tian-Xiao He † and Peter J.-S. Shiue ‡

Abstract

The Raney numbers, also called Fuss-Catalan numbers, are defined by Rk(n, r) =
r
(
kn+r

n

)
/(kn + r). A generalized Lobb numbers is introduced. The relation-

ship between Raney numbers and generalized Lobb numbers and the relation-
ship between generalized Lobb numbers and generalized Catalan numbers are
given. Based on the relationships among Raney numbers, generalized Lobb
numbers, and generalized Catalan numbers, we present the divisibility of a
certain class of those numbers.

AMS Subject Classification: 05A15, 65B10, 33C45, 39A70, 41A80.

Key Words and Phrases: Raney numbers, Fuss-Catalan numbers, Lobb
numbers, generalized Lobb numbers, generalized Catalan numbers, Catalan
numbers, divisibility.

1 Introduction

The Fuss-Catalan numbers or Raney numbers are numbers of the form

Rk(n, r) :=
r

kn+ r

(
kn+ r

n

)
, (1)

which are named after N. I. Fuss and E. C. Catalan (see [5, 6, 13, 15, 17]) and initially
studied by Raney in [17]. The Fuss-Catalan numbers have several combinatorial
applications. They count for example (see, for instance, [8]):

(i) the number of ways of subdividing a convex polygon, with n(k − 1) + 2
vertices, into n disjoint k + 1-gons by means of nonintersecting diagonals,

(ii) the number of sequences (a1, a2, ..., ank), where ai ∈ {1, 1 − k}, with all
partial sums a1 + ...+ ak nonnegative and with a1 + ...+ ank = 0,

∗Department of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada,
89154-4020, USA.
†Department of Mathematics, Illinois Wesleyan University, Bloomington, Illinois 61702, USA
‡Department of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada,

89154-4020, USA. This work was completed while on sabbatical leave from University of Nevada,
Las Vegas, and the author would like to thank UNLV for its support.
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2 J. Bobrowski, T. X. He, and P. J.-S. Shiue

(iii) the number of noncrossing partitions π of 1, 2, ..., n(k − 1), such that k − 1
divides the cardinality of every block of π,

(iv) the number of k-cacti formed of n polygons, etc. See [1, 3, 4, 6, 16, 18, 19]
for more details and examples.

The generating function Rk(t) for the Fuss-Catalan numbers, {Rk(n, 1)}n≥0 is
called the generalized binomial series in [6], and it satisfies the function equation
Rk(t) = 1 + tRk(t)k. Hence, from the Lambert’s formula for the Taylor expansion
of the powers of Rk(t) (see [6]), we have

Rrk ≡ Rk(t)r =
∑
n≥0

r

mn+ r

(
kn+ r

n

)
tn (2)

for all r ∈ Z. Equation (2) implies the following formula of Rk(t):

Rk(t) = 1 + tRkk(t). (3)

Lobb [12] defines his Lobb numbers as

Ln,m :=
2n+ 1

m+ n+ 1

(
2n

m+ n

)
for n ≥ m ≥ 0, which have the following combinatorial interpretation: Let Ln,m be
the number of sequences of length 2n with n + m of the terms equal 1 and n −m
of the terms equal −1. It is natural to extend Lobb numbers to the number of
sequences with (k − 1)n+m terms equal to 1 and n−m terms equal to 1− k. We
denote the extended Lobb numbers by Lkm,n and define them as

Lkn,m :=
km+ 1

(k − 1)n+m+ 1

(
kn

n−m

)
. (4)

Generalized Lobb numbers include many number sequences as their special cases.
For instance, when k = 2, L2

n,m are classical Lobb numbers; when m = 0,

Lkn,0 =
1

(k − 1)n+ 1

(
kn

n

)
=: Ck(n) (5)

are the generalized Catalan numbers; when k = 2 and m = 0, then

L2
n,0 =

1

n+ 1

(
2n

n

)
=: C2(n) ≡ C(n) (6)

are the classical Catalan numbers; when k = 1, then

L1
n,m =

(
n

m

)
are the binomial numbers. Other special cases can be seen in [7, 8]. The following
relationship between generalized Lobb numbers and Raney numbers make us switch
our results between the generalized Lobb numbers and the Raney numbers (see, for
example, [9]):

Lkn,m = Rk(n−m, km+ 1), (7)
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Divisibility of Generalized Catalan Numbers and Raney Numbers 3

which can be proved below. From (1) and using the transformation n→ n−m and
r → km+ 1, we have

Rk(n−m, km+ 1) =
km+ 1

k(n−m) + km+ 1

(
k(n−m) + km+ 1

n−m

)
=

km+ 1

kn+ 1

(
kn+ 1

n−m

)
=
km+ 1

kn+ 1

(kn+ 1)!

((k − 1)n+m+ 1)!(n−m)!

=
km+ 1

(k − 1)n+m+ 1

(
kn

n−m

)
= Lkn,m,

or equivalently,

Lk
n+ r−1

k , r−1
k

= Rk(n, r). (8)

This paper is arranged as follows. In next section, we discuss the relationship
between the generalized Lobb numbers and Raney numbers and the relationship
between the generalized Lobb numbers and Ballot numbers. Some properties and
identities of the generalized Lobb numbers are given. In Section 3, we discuss
the divisibilities of the generalized Lobb numbers, Raney numbers, and generalized
Catalan numbers.

2 Properties of the generalized Lobb numbers and
Raney numbers

Proposition 2.1 Let Lkn,m be defined by (4). Then

Lkn,m =

(
kn

n−m

)
− (k − 1)

(
kn

n−m− 1

)
. (9)

Particularly,

L2
n,m =

2m+ 1

n+m+ 1

(
2n

n−m

)
=

(
2n

n−m

)
−
(

2n

n−m− 1

)
. (10)

For generalized Catalan numbers and Catalan numbers, there are

Lkn,0 = Ck(n) =

(
kn

n

)
− (k − 1)

(
kn

n− 1

)
and

L2
n,o = C2(n) =

(
2n

n

)
−
(

2n

n− 1

)
. (11)

Formula (9) also shows

L1
n,m =

(
n

m

)
.
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4 J. Bobrowski, T. X. He, and P. J.-S. Shiue

Proof. The right-hand side of (9) generates

RHS =

(
kn

n−m

)
− (k − 1)(n−m)

kn− n+m+ 1)

(
kn

n−m

)
=

[
1− (k − 1)(n−m)

kn− n+m+ 1)

](
kn

n−m

)
=

km+ 1

(k − 1)n+m+ 1

(
kn

n−m

)
= Lkn,m.

The results for special cases are straightforward from (9).

Proposition 2.2 Let Lkn,m be defined by (4). Then it can be written as

Lkn,m =
km+ 1

kn+ 1

(
kn+ 1

n−m

)
. (12)

Particularly,

L2
n,m =

2m+ 1

2n+ 1

(
2n+ 1

n−m

)
=

2m+ 1

n+m+ 1

(
2n

n−m

)
=

2m+ 1

n+m+ 1

(
2n

n+m

)
. (13)

Proof. The right-hand side of (12) can be changed to

RHS =
km+ 1

kn+ 1

(kn+ 1)!

(n−m)!(kn− n+m+ 1)!

=
km+ 1

(k − 1)n+m+ 1

(kn)!

(n−m)!((k − 1)n+m)!
= Lkn,m.

The special case (13) follows from (12).

Proposition 2.3 Let Lkn,m be defined by (4). Then

Lk
n−m, r−1

k

= Lk
n−m, r−2

k

+ Lk
n−m−1, r−2

k +1
. (14)

Proof. From Corollary 3 of [14], we have

Rk(n, r) = Rk(n, r − 1) +Rk(n− 1, r + k − 1), (15)

which implies (14) by using (8).

Lobb numbers L2
n,m are also related to Ballot numbers (see, for example, [6])

B(a, b) =
a− b
a+ b

(
a+ b

a

)
=
a− b
a+ b

(
a+ b

b

)
. (16)

Proposition 2.4 Let Lkn,m and B(a, b) be defined by (4) and (16), respectively.
Then

L2
n,m = B(n+m+ 1, n−m), (17)

or equivalently,
B(n,m) = L2

n+m−1
2 ,n−m−1

2

. (18)

Hence, L2
n,m is a special case of Ballot numbers.
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Proof. Substituting a = n+m+ 1 and b = n−m yields

B(n+m+ 1, n−m) =
2m+ 1

2n+ 1

(
2n+ 1

n−m

)
= L2

n,m,

where the last equation is from (12).

Corollary 2.5 Let Lkn,m be defined by (4). Then

L2
n,m = L2

2n−1
2 , 2m−1

2

+ L2
2n−1

2 , 2m+1
2

. (19)

Proof. From [6], we have

B(n, k) = B(n− 1, k) +B(n, k − 1).

Thus,

B(n+m+ 1, n−m) = B(n+m,n−m) +B(n+m+ 1, n−m− 1),

which implies (19) by using (18).

3 Divisibility of generalized Catalan numbers, gen-
eralized Lobb numbers, and Raney numbers

We now consider the divisibility properties of generalized Lobb numbers, generalized
Catalan numbers, and Raney numbers.

Theorem 3.1 Let Ck(n) :=
(
kn
n

)
/((k − 1)n+ 1) (k ≥ 2), and let n = (k + 1)t+ 1

(t = 0, 1, 2, . . .). Then
(a) If k is odd, then

((k − 1)t+ 1)|Ck(n). (20)

(b) If k is even and t is even, then

((k − 1)t+ 1)|Ck(n). (21)

(c) If k is even and t is odd, then

((k − 1)t+ 1)| 2Ck(n). (22)

Proof. First, we express Lobb numbers Lkn,m in terms of generalized Catalan num-
bers Ck(n):

Lkn,m =
km+ 1

(k − 1)n+m+ 1

(
kn

n−m

)
= (km+ 1)

(kn)!

(n−m)!((k − 1)n+m+ 1)!

= (km+ 1)
(kn)!

n!((k − 1)n+ 1)!
Πm
j=1

n− j + 1

(k − 1)n+ j + 1

= (km+ 1)Ck(n)Πm
j=1

n− j + 1

(k − 1)n+ j + 1
.
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6 J. Bobrowski, T. X. He, and P. J.-S. Shiue

Therefore, for non-negative integer t

Lk(k+1)t+1,1 = Ck((k + 1)t+ 1)
(k + 1)((k + 1)t+ 1)

(k − 1)((k + 1)t+ 1) + 2

= Ck((k + 1)t+ 1)
(k + 1)t+ 1

(k − 1)t+ 1
. (23)

Secondly, we consider different cases for k. In case (a), let k be odd, i.e., k = 2l+ 1,
l = 0, 1, 2, . . .. Then,

(k − 1)t+ 1 = 2lt+ 1

and

(k + 1)t+ 1 = 2(l + 1)t+ 1.

Noting (k + 1)t+ 1 = (k − 1)t+ 1 + 2t, we have

gcd [(k + 1)t+ 1, (k − 1)t+ 1] = gcd [2t, (k − 1)t+ 1] = 1

because (k−1)t+1 is an odd integer. From (23), we have proved ((k − 1)t+ 1)|Ck((k+
1)t + 1) when k is odd. In case (b), we assume k = 2l (l ∈ Z), an even number.
Then

(k − 1)t+ 1 = (2l − 1)t+ 1,

(k + 1)t+ 1 = (2l + 1)t+ 1 = (2l − 1)t+ 1 + 2t.

Thus,

gcd [(k + 1)t+ 1, (k − 1)t+ 1] = gcd [2t, (2l − 1)t+ 1].

If t is even, then gcd [2t, (2l − 1)t + 1] = 1, which implies ((k − 1)t+ 1)|Ck((k +
1)t+ 1). Finally, considering the case (c), where k is an even number 2l and t is an
odd number 2u+ 1 (l, u ∈ Z), we have

gcd [2t, (2l − 1)t+ 1] = gcd [2(2u+ 1), (2l − 1)(2u+ 1) + 1]

= gcd [2(2u+ 1),−2u] = 2

So that ((k − 1)t+ 1)| 2Ck((k + 1)t+ 1), which completes the proof.

Example 3.1 For k = 3 and t = 1, we have (k − 1)t+ 1 = 3 and (k + 1)t+ 1 = 5.
C3(5) = 273 and 3|C3(5). For k = 3 and t = 2, we have (k − 1)t + 1 = 5 and
(k+1)t+1 = 9. Thus 5|C3(9) = 246675. For k = 2 and t = 2, we have (k−1)t+1 = 3
and (k + 1)t+ 1 = 7, which implies 3|C2(7) = 429.

Example 3.2 For k = 3, from Theorem 3.1 there holds 2t+ 1|C3(4t+ 1). Thus,

1|C3(1), 3|C3(5), 5|C3(9), 7|C3(13), 9|C3(17), etc.

Here, {2t + 1 : t = 0, 1, 2, . . .} and {4t + 1 : t = 0, 1, 2, . . .} form arithmetical
sequences.
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Divisibility of Generalized Catalan Numbers and Raney Numbers 7

Remark From the expression of Lobb numbers Lkn,m in terms of generalized Catalan
numbers Ck(n), we have

Lkn,1 =
k + 1

(k − 1)n+ 2

(
kn

n− 1

)
= (k + 1)Ck(n)

n

(k − 1)n+ 2
. (24)

Hence, provided
gcd ((k + 1)n, (k − 1)n+ 2) = 1,

or equivalently,
gcd ((k + 1)n,−2(n− 1)) = 1, (25)

we have
((k − 1)n+ 2)|Ck(n). (26)

Note (25) implies that (k + 1)n must be odd, or equivalently, n is odd and k is
even. In other words, if k is even and t is even, Ck((k + 1)t + 1) has two divisors
(k − 1)t+ 1 and (k2 − 1)t+ k + 1, which are given by (21) and (26) respectively.

Example 3.3 If n = 3 and k = 2, then gcd ((k+ 1)n, (k− 1)n+ 2) = gcd (9.4) = 1.
From (26), 5|C2(3). Actually, C2(3) = 5. Similarly, if n = 3 and k = 4, then
gcd (11, 4) = 1, which implies 11|C4(3). Actually, C4(3) = 22. While n = 3 and
k = 6 yield 17|C6(3), where C6(3) = 51, and n = 5 and k = 2 yield 7|C2(5),
where C2(5) = 42. An non-example is given by n = 7 and k = 2, which yields
gcd (21,−12) = 3 6= 1. Since C2(7) = 429, which does not have divisor 21.

Sury [20] proves if n 6= (pl − 1)/(p− 1) for any prime p ≥ 3, then

p|Cp(n). (27)

A natural question is what is a divisor of Cp((p
l − 1)/(p − 1)). We now apply

Theorem 3.1 to answer this question.

Corollary 3.2 Let Ck(n) be the generalized Catalan numbers defined by (5). Then
for an odd integer l we have

pl + 1

p+ 1

∣∣∣∣Cp(pl − 1

p− 1

)
(p ≥ 3). (28)

Proof. If k = p ≥ 3 and n = (k + 1)t+ 1 = (pl − 1)/(p− 1), then

t =
1

k + 1

(
pl − 1

p− 1
− 1

)
=
pl − p
p2 − 1

,

where t is an integer because l is odd. Thus

(k − 1)t+ 1 = (k + 1)t+ 1− 2t =
pl − 1

p− 1
− 2

pl − p
p2 − 1

=
pl + 1

p+ 1
.

Substituting k = p, n = (k+1)t+1 = (pl−1)/(p−1), and (k−1)t+1 = (pl+1)/(p+1)
into (20) of Theorem 3.1, we obtain (28).
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In [11, 10], the following result is given

(2l+1 − 3)
∣∣C2(Ml),

where Ml are the Mersenne numbers, 2l − 1 (l = 0, 1, 2, . . .), and C2(n) = L2
n,0

are classical Catalan numbers. Thus, for l = 4 and 5, there are 29|C2(M4) and
61|C2(M5), respectively.

We obtain the following corollary from Theorem 3.1, which extends the results
shown in [11, 10].

Corollary 3.3 Let C2(n) be the Catalan numbers. Then

2l + 1

3

∣∣∣∣C2

(
2l − 1

)
(29)

for l = 1, 3, 5, 7, . . .. Combining [11], C2(Mk) has two different divisors, 2l+1 − 3
and (2l + 1)/3, when odd l > 1. Furthermore, if l is odd and not a prime, then all
of its divisors are divisors of C2(2l − 1).

Proof. Set (k + 1)t + 1 = 2l − 1. Then t = (2l − 2)/(k + 1). Let k = 2, we have
t = (2l − 2)/3. Here t is even because

3t = 2l − 2

is even. Thus,

(k − 1)t+ 1 = (2− 1)t+ 1 =
2l + 1

3
.

From Theorem 3.1 (b), for k = 2 and t = (2l − 2)/3 we obtain

2` + 1

3
= ((k − 1)t+ 1)

∣∣∣∣Ck((k + 1)t+ 1) = C
(
2l − 1

)
for l = 1, 3, 5, 7, . . .. To prove that C2(Ml) has two different divisors, 2l+1 − 3 and
(2l + 1)/3, when odd l > 1, we only need to show

2l+1 − 3 6= 2l + 1

3

when l > 1. This is clearly true, otherwise, there is a contradiction

3 · 2l − 2l−1 = 5

for l > 1. Finally, from [2], we know that (2l + 1)/3 is a prime only if l is a
prime. Hence, if l is not a prime number, then (2l + 1)/3 is a composite number.
Additionally, when l is odd and not a prime, then all of the divisors of such composite
number are also divisors of C2(2l − 1) because of (29).

Example 3.4 For l = 1, 3, 5, and 7, Corollary 3.3 generates 2l+1
3

∣∣∣C2

(
2l − 1

)
for

l = 1, 3, 5, and 7. For examples,

1|C2(1), 3|C2(7), 11|C2(31), and 43|C2(127).
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Divisibility of Generalized Catalan Numbers and Raney Numbers 9

Among the above results, the second and fourth are new. Actually, we may give
infinitely many new results from Corollary 3.3.

We now extend the result on Catalan numbers shown in Corollary 3.3 to gener-
alized Catalan numbers.

Theorem 3.4 Let Ck(n) := Lkn,0 be the generalized Catalan numbers defined by
(5). If k is even and ` ≡ 1 (mod φ(k + 1)), where φ(n) is Euler’s totient function,
then (

(k − 1)
2l − 2

k + 1
+ 1

)∣∣∣∣Ck(2l − 1). (30)

Proof. Let
(k + 1)t+ 1 = 2l − 1,

the Mersenne numbers. Then t = (2l−2)/(k+1), where t is even because k is even,
and

(k − 1)t+ 1 = (k − 1)
2l − 2

k + 1
+ 1.

To prove (30), we need to show the right-hand side of the above equation is an
integer, i.e.,

(k − 1)(2l − 2) ≡ 0 (mod k + 1).

The last equation is equivalent to

−4(2l−1 − 1) ≡ 0 (mod k + 1)

because
(k − 1)(2l − 2) = (k + 1)(2l − 2)− 4(2l−1 − 1).

Therefore, if gcd (4, k + 1) = 1, then we need

2l−1 ≡ 1 (mod k + 1). (31)

From Euler theorem, if gcd (2, k + 1) = 1; i.e., k is even, then

2φ(k+1) ≡ 1 (mod k + 1),

where φ(n) is Euler’s totient function, i.e., the number of the positive integers less
than or equal to n that are relatively prime to n. Comparing the above equation
and equation (31), we should have

l − 1 ≡ 0 (mod φ(k + 1)),

or equivalently,
` = uφ(k + 1) + 1

for some integer u. Now, we assume that k is even and ` ≡ 1 (mod φ(k+1)), where φ
is Euler’s totient function. Under the conditions, ((k−1)t+1 = (k−1)(2l−2)/(k+1)
is an integer when t = (2l−2)/(k+1). Now k is even and t is even. Then by Theorem
3.1 (b) (

(k − 1)
2l − 2

k + 1
+ 1

)∣∣∣∣Ck(2l − 1).
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10 J. Bobrowski, T. X. He, and P. J.-S. Shiue

Example 3.4 Let Ck(n) := Lkn,0 be the generalized Catalan numbers defined by (5).
Since k = 4 is even, and φ(k+ 1) = φ(5) = 4, from Theorem 3.4, for l ≡ 1 (mod 4),
i.e., ` = 1, 5, 9, . . ., we have(

(4− 1)
2l − 2

4 + 1
+ 1

)∣∣∣∣C4(2l − 1),

which implies
3 · 2l − 1

5

∣∣∣∣C4(2l − 1) (32)

for l = 1, 5, 9, . . ..

In Theorem 3.4, the condition l ≡ 1 (mod φ(k + 1)) can be replaced by l ≡
1 (mod k) when k+ 1 is a prime number greater than 3. In this case, the condition
of that k is even is automatically satisfied. Hence, we have the following corollary
of Theorem 3.4.

Corollary 3.5 Let Ck(n) := Lkn,0 be the generalized Catalan numbers defined by
(5). If k + 1 is a prime number greater than 3, and ` ≡ 1 (mod k), then(

(k − 1)
2l − 2

k + 1
+ 1

)∣∣∣∣Ck(2l − 1). (33)

Proof. It is sufficient to note that if k+ 1 is a prime number greater than 3, then k
is an even number and φ(k + 1) = k. Hence, Theorem 3.4 implies the corollary.

From the above discussion, the key to get divisibility of Ck(n) by using (23) is

((k − 1)t+ 1)| (k + 1)t+ 1.

Hence, we may have a special case of Theorem 3.1, which is more easier to be
applied.
Example 3.6 Let Ck(n) := Lkn,0 be the generalized Catalan numbers defined by
(5). If t is even, then

(t+ 1)|C2(3t+ 1) and (3t+ 1)|C4(5t+ 1). (34)

Thus,
1|C2(1), 3|C2(7), 5|C2(13), 7|C2(19), 9|C2(25), etc.

and
1|C4(1), 7|C4(11), 13|C4(21), 19|C4(31), 25|C4(41), etc.

In general, if t = 2m, then we have

(2m+ 1)|C2(6m+ 1), (6m+ 1)|C4(10m+ 1), (10m+ 1)|C6(14m+ 1), etc.

for k = 2, 4, 6, etc. More generally, for k = 2u and t = 2m, we have

(2(2u− 1)m+ 1)|C2u(2(2u+ 1)m+ 1),

where the sequences of {2(2u−1)m+1t = 0, 1, 2, . . .}, {2(2u−1)m+1m = 0, 1, 2, . . .},
{2(2u+1)m+1t = 0, 1, 2, . . .}, and {2(2u+1)m+1m = 0, 1, 2, . . .} are arithmetical
sequences.
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We now transfer the divisibility from the generalized Lobb numbers to Raney
numbers and Ballot numbers.

Theorem 3.6 Let Rk(n,m) be Raney numbers defined by (1). If k is an odd inte-
ger, then we have

((k − 1)t+ 1)|Rk((k + 1)t+ 1, 1). (35)

If k is an even integer and n = (k + 1)t + 1 is odd, then (35) holds. If both k and
n = (k + 1)t+ 1 are even, then

((k − 1)t+ 1)| 2Rk((k + 1)t+ 1, 1) (36)

holds.

Proof. By using the relationship (7) between the generalized Lobb numbers and
Raney numbers, we may establish Theorem 3.6 from Theorem 3.1.

Theorem 3.7 Let B(a, b) be Ballot numbers defined by (16). If n = 3t+ 1 is odd,
then we have

((k − 1)t+ 1)|B((k + 1)t+ 2, (k + 1)t+ 1). (37)

If n = 3t+ 1 is even, then t is odd and

((k − 1)t+ 1)| 2B((k + 1)t+ 2, (k + 1)t+ 1) (38)

holds.

Proof. From the relationship between L2
n,m and B(a, b) shown in (17) and Theorem

3.1, we may obtain (37) and (38).
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COUPLED FIXED POINT THEOREMS FOR TWO MAPS IN CONE
b-METRIC SPACES OVER BANACH ALGEBRAS

YOUNG-OH YANG* AND HONG JOON CHOI

Abstract. In this paper, we obtain some coupled fixed point results for two map-
pings satisfying some contractive conditions in cone b-metric spaces over Banach
algebras with a solid cone by virtue of the properties of spectral radius. Also we give
an example as an applications of one of the main results.

1. Introduction

In 2007 the concept of cone metric space was introduced by Huang and Zhang in

[4], where they generalized metric space by replacing the set of real numbers with an

ordering Banach space, investigated the convergence in cone metric space and proved

some fixed point theorems for contractive mappings on these spaces. Recently, in

([1],[3], [4], [6], [7], [8], [10], [11]) some common fixed point theorems have been proved

for contractive maps on cone metric spaces. Gnana Bhaskar and Lakshmikantham([2])

introduced the concept of coupled fixed point of a mapping F : X × X → X and

investigated some coupled fixed point theorems in partially ordered sets. Since then

this new concept is extended and used in various directions([2], [5]).

In 2013, in order to generalize the Banach contraction principle to more general form,

Liu and Xu([8]) introduced the concept of cone metric spaces over Banach algebras, by

replacing Banach spaces with Banach algebras as the underlying spaces of cone metric

spaces, and proved some fixed point theorems of generalized Lipschitz mappings with

weaker and natural conditions on generalized Lipschitz constants by means of spectral

radius. Furthermore, they gave an example to explain that the fixed point theorems in

cone metric spaces over Banach algebras are not equivalent to those in metric spaces.

Motivated by the above works, in this paper, we obtain some coupled fixed point

results for two mappings satisfying some contractive conditions in cone b-metric spaces

over Banach algebras without the assumption of normal cones by virtue of the prop-

erties of spectral radius. Our main results generalize the corresponding main results

1991 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. cone metric spaces over Banach algebras, coupled fixed point, spectral

radius.
*The corresponding author: yangyo@jejunu.ac.kr (Young-Oh Yang).
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2 YANG AND CHOI

in cone metric spaces obtained by H.K. Nashie, Y. Rohen and C. Thokchom([5]. Also

we give an example as an applications of one of the main results.

Let A always be a real Banach algebra. That is, A is a real Banach space in which

an operation of multiplication is defined, subject to the following properties (for all

x, y, z ∈ A, α ∈ R):

(1) (xy)z = x(yz);

(2) x(y + z) = xy + xz and (x + y)z = xz + yz;

(3) α(xy) = (αx)y = x(αy);

(4) ‖xy‖ ≤ ‖x‖‖y‖.
In this paper, we shall assume that A is a real Banach algebra with a unit (i.e.,

a multiplicative identity) e. An element x ∈ A is said to be invertible if there is an

inverse element y ∈ A such that xy = yx = e. The inverse of x is denoted by x−1.

Let A be a real Banach algebra with a unit e and θ the zero element of A. A

nonempty closed subset P of Banach algebra A is called a cone if

(i) {θ, e} ⊂ P ;

(ii) αP + βyP ⊂ P for all nonnegative real numbers α, β ;

(iii) P 2 = PP ⊂ P ;

(iv) P ∩ (−P ) = {θ} i.e, x ∈ P and −x ∈ P imply x = θ.

For any cone P ⊆ A, we can define a partial ordering ¹ with respect to P by x ¹ y

if and only if y − x ∈ P . x ≺ y stands for x ¹ y but x 6= y. Also, we use x ¿ y to

indicate that y − x ∈ int P where int P denotes the interior of P . If int P 6= ∅ then P

is called a solid cone.

Definition 1.1. Let X be a nonempty set, s ≥ 1 be a constant and A be a real Banach

algebra. Suppose the mapping d : X ×X → A satisfies the following conditions:

(1) θ ¹ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y ;

(2) d(x, y) = d(y, x) for all x, y ∈ X ;

(3) d(x, y) ¹ s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then d is called a cone b-metric on X, and (X, d) is called a cone b-metric space over

the Banach algebra A.

If s = 1,then every cone b-metric is a cone metric space.

Definition 1.2. Let (X, d) be a cone b-metric space over the Banach algebra A. Let

{xn} be a sequence in X and x ∈ X.

(1) If for every c ∈ A with θ ¿ c, there exists a natural number N such that

d(xn, x) ¿ c for all n > N , then {xn} is said to be convergent and {xn}
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COUPLED FIXED POINT THEOREMS FOR TWO MAPS IN CONE b-METRIC SPACES 3

converges to x, and the point x is the limit of {xn}. We denote this by

lim
n→∞xn = x or xn → x (n →∞).

(2) If for all c ∈ A with θ ¿ c, there exists a positive integer N such that

d(xn, xm) ¿ c for all m,n > N , then {xn} is called a Cauchy sequence in

X.

(3) A cone b-metric space (X, d) is said to be complete if every Cauchy sequence

in X is convergent.

Definition 1.3. Let E be a real Banach space with a solid cone P . A sequens

{xn} ⊂ P is called a c−sequence if for any c ∈ A with θ ¿ c, there exists a positive

integer N such that xn ¿ c for all n ≥ N .

Lemma 1.4. ([6], [8]) Let E be a real Banach space with a cone P . Then

(p1) If a ¿ b and b ¿ c, then a ¿ c.

(p2) If a ¹ b and b ¿ c, then a ¿ c.

(p3) If a ¹ b + c for each θ ¿ c, then a ¹ b.

(p4) If θ ¹ u ¿ c for each θ ¿ c, then u = θ.

(p5) If {xn}, {yn} are sequences in E such that xn → x, yn → y and xn ¹ yn for all

n ≥ 1, then x ¹ y.

We define the spectral radius of x ∈ A by

r(x) = lim
n→∞ ‖x

n‖1/n = inf
n≥1

‖xn‖1/n.

Lemma 1.5. ([8]) Let x, y be vectors in the Banach algebra A. If x and y commute,

then the spectral radius ρ satisfies the following properties :

(1) r(xy) ≤ r(x)r(y);

(2) r(x + y) ≤ r(x) + r(y);

(3) |r(x)− r(y)| ≤ r(x− y).

Lemma 1.6. ([8]) Let A ba a real Banach algebra with a unit e and x ∈ A. If

0 ≤ r(x) < 1, then

(1) e− x is invertible, (e− x)−1 =
∑∞

i=0 xi and

r((e− x)−1) ≤ (1− r(x))−1.

(2) ‖xn‖ → 0 as n →∞.

Lemma 1.7. ([6]) Let P be a solid cone in the Banach algebra A and ‖xn‖ → 0 as

n →∞, then {xn} is a c−sequence.
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Lemma 1.8. ([8]) Let P ba a solid cone in a Banach space A and and {xn} be a

sequence in P . If k ∈ P is an arbitrarily given vector and {xn} is c−sequence in P ,

then {kxn} is a c−sequence.

Lemma 1.9. ([8]) Let A be a Banach algebra with a unit e and let P be a solid cone

in A. The following assertions hold true:

(1) For any x, y ∈ A, a ∈ P with x ¹ y, we have ax ¹ ay.

(2) For any sequences {xn}, {yn} ⊂ A with xn → x (n →∞) and yn → y (n →∞)

where x, y ∈ A, we have xnyn → xy (n →∞).

Lemma 1.10. ([8]) Let (X, d) be a complete cone metric space over a Banach algebra

A and let P be a solid cone in A. Let {xn} be a sequence in X. If {xn} converges to

x ∈ X, then we have:

(1) {d(xn, x)} is a c-sequence.

(2) For any p ∈ N, {d(xn, xn+p)} is a c-sequence.

Lemma 1.11. ([8]) Let P be a solid cone in a real Banach algebra A and k ∈ P . If

r(k) < 1,then the following assertions hold true:

(1) If u ∈ P and u ¹ ku, then u = θ.

(2) If k º θ,then (e− k)−1 º θ.

Definition 1.12. Let (X, d) be a cone b-metric space over the Banach algebra A. An

element (x, y) ∈ X×X is called a coupled fixed point of F : X×X → X if x = F (x, y)

and y = F (y, x).

Note that if (x, y) is a coupled fixed point of F , then (y, x) is also a coupled fixed

point of F .

2. Main results

In the following, we always assume that (X, d) is a cone b-metric space over the

Banach algebra A. In this section, we establish a common coupled fixed point results

for two mappings S, T : X ×X → X satisfying certain contractive condition on cone

metric spaces over Banach algebras. The following results generalize the corresponding

results in cone metric spaces obtained by H.K. Nashie, Y. Rohen and C. Thokchom([5]).

Theorem 2.1. Let (X, d) be a complete cone b-metric space over the Banach algebra

A with the coefficient s ≥ 1 and let P be a solid cone in A. Suppose that S, T :
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X ×X → X are two mappings satisfying the condition

d(S(x, y), T (u, v)) ¹ a1d(x, u) + a2d(S(x, y), x) + a3d(y, v) (2.2.1)

+ a4d(T (u, v), u) + a5d(S(x, y), u) + a6d(T (u, v), x)

for all x, y, u, v ∈ X, where ai ∈ P and aiaj = ajai (i, j = 1, 2, 3, 4, 5, 6). If

s[r(a1) + r(a2) + r(a3)] + r(a4) + r(a5) + (s2 + s)r(a6) < 1,

then S and T have a common coupled fixed point in X.

Proof. Let x0 and y0 be any points X. Let

x2k+1 = S(x2k, y2k), y2k+1 = S(y2k, x2k)

and

x2k+2 = T (x2k+1, y2k+1), y2k+2 = T (y2k+1, x2k+1)

for k = 0, 1, 2, · · · . Then we have

d(x2k+1, x2k+2) = d(S(x2k, y2k), T (x2k+1, y2k+1))

¹ a1d(x2k, x2k+1) + a2d(S(x2k, y2k), x2k) + a3d(y2k, y2k+1)

+ a4d(T (x2k+1, y2k+1), x2k+1) + a5d(S(x2k, y2k), x2k+1)

+ a6d(T (x2k+1, y2k+1), x2k)

= a1d(x2k, x2k+1) + a2d(x2k+1, x2k) + a3d(y2k, y2k+1)

+ a4d(x2k+2, x2k+1) + a5d(x2k+1, x2k+1) + a6d(x2k+2, x2k)

¹ a1d(x2k, x2k+1) + a2d(x2k+1, x2k) + a3d(y2k, y2k+1)

+ a4d(x2k+2, x2k+1) + a5 · θ
+ sa6[d(x2k, x2k+1) + d(x2k+1, x2k+2)].

which implies that

(e− a4 − sa6)d(x2k+1, x2k+2) ¹ (a1 + a2 + sa6)d(x2k, x2k+1) + a3d(y2k, y2k+1).

By hypothesis and Lemma 1.8, e − (a4 + sa6) is invertible. Putting α = (e − a4 −
sa6)

−1(a1 + a2 + sa6), β = (e− a4 − sa6)
−1a3, we have

d(x2k+1, x2k+2) ¹ αd(x2k, x2k+1) + βd(y2k, y2k+1). (2.2.2)
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Similarly,

d(y2k+1, y2k+2) = d(S(y2k, x2k), T (y2k+1, x2k+1))

¹ a1d(y2k, y2k+1) + a2d(S(y2k, y2k), y2k) + a3d(x2k, x2k+1)

+ a4d(T (y2k+1, x2k+1), y2k+1) + a5d(S(y2k, x2k), y2k+1)

+ a6d(T (y2k+1, x2k+1), y2k)

= a1d(y2k, y2k+1) + a2d(y2k+1, y2k) + a3d(x2k, x2k+1)

+ a4d(y2k+2, y2k+1) + a5d(y2k+1, y2k+1) + a6d(y2k+2, y2k)

¹ a1d(y2k, y2k+1) + a2d(y2k+1, y2k) + a3d(x2k, x2k+1)

+ a4d(y2k+2, y2k+1) + a5 · θ
+ sa6[d(y2k, y2k+1) + d(y2k+1, y2k+2)].

which implies that

d(y2k+1, y2k+2) ¹ αd(y2k, y2k+1) + βd(x2k, x2k+1). (2.2.3)

Adding both inequalities, we have

d(x2k+1, x2k+2) + d(y2k+1, y2k+2) ¹ (α + β)[d(x2k, x2k+1) + d(y2k, y2k+1)]

= h[d(x2k, x2k+1) + d(y2k, y2k+1)]

where h = α + β = (e− a4 − sa6)
−1(a1 + a2 + a3 + sa6). Also we have

d(x2k+2, x2k+3) + d(y2k+2, y2k+3) = h[d(x2k+1, x2k+2) + d(y2k+1, y2k+2)].

Therefore

d(xn, xn+1) + d(yn, yn+1) ¹ h[d(xn−1, xn) + d(yn−1, yn)]

¹ · · · ¹ hn[d(x0, x1) + d(y0, y1)]

By hypothesis, Lemma 1.7 and Lemma 1.8, we have

r(h) ≤ r((e− a4 − sa6)
−1)r(a1 + a2 + a3 + sa6)

≤ r(a1) + r(a2) + r(a3) + sr(a6)

1− r(a4)− sr(a6)
<

1

s

which means that e− h is invertible, (e− h)−1 =
∑∞

i=0 hn and ‖hn‖ → 0 as n →∞.

Now if δn = d(xn, xn+1) + d(yn, yn+1), then the above relation implies

δn ¹ hδn−1 ¹ · · · ¹ hnδ0.
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For m > n, we have

d(xn, xm) + d(yn, ym) ¹ δm−1 + δm−2 + · · ·+ δn

¹ (hm−1 + hm−2 + · · ·+ hn)δ0

= hn(1 + h + · · ·+ hm−n−1)δ0

¹ hn(
∞∑

i=0

hi)δ0

= (e− h)−1hnδ0

since r(h) < 1 and P is closed. Since r(h) < 1, ‖(e − h)−1hnδ0‖ → 0 as n → ∞, and

so for any c ∈ A with θ ¿ c, there exists N ∈ N such that for any n > m > N , we

have

d(xn, xm) + d(yn, ym) ¹ (e− h)−1hnδ0 ¿ c.

Thus {d(xn, xm) + d(yn, ym)} is a c-sequence in P . Since

θ ¹ d(xn, xm), d(yn, ym) ¹ d(xn, xm) + d(yn, ym),

{d(xn, xm)} and {d(yn, ym)} are c-sequences and so Cauchy sequence in X. Since X

is complete, there exists x ∈ X and y ∈ X such that xn → x and yn → y as n →∞.

Now we show that x = S(x, y) and y = S(y, x). On the contrary, let us assume that

x 6= S(x, y) or y 6= S(y, x) so that d(x, S(x, y)) = k Â θ and d(y, S(y, x)) = l Â θ.

Then we have

k = d(x, S(x, y)) ¹ d(x, x2k+2) + d(x2k+2, S(x, y))

= d(x, x2k+2) + d(T (x2k+1, y2k+1), S(x, y))

¹ d(x, x2k+2) + a1d(x, x2k+1) + a2d(S(x, y), x) + a3d(y, y2k+1)

+ a4d(T (x2k+1, y2k+1), x2k+1) + a5d(S(x, y), x2k+1)

+ a6d(T (x2k+1, y2k+1), x)

= d(x, x2k+2) + a1d(x, x2k+1) + a2d(S(x, y), x) + a3d(y, y2k+1)

+ a4d(x2k+2, x2k+1) + a5d(S(x, y), x2k+1) + a6d(x2k+2, x)

which implies that

k = d(x, S(x, y)) ¹ (e + a6)d(x, x2k+2) + a1d(x, x2k+1) + a2d(x, S(x, y))

+ a3d(y, y2k+1) + a4d(x2k+2, x2k+1) + a5d(S(x, y), x2k+1).

Taking n →∞, by Lemma 1.6 and Lemma 1.10, we have

k = d(x, S(x, y)) ¹ (e + a6)θ + a1 · θ + a2d(S(x, y), x) + a3 · θ
+ a4 · θ + a5d(S(x, y), x) + a6 · θ

and so d(x, S(x, y)) ¹ (a2 + a5)d(x, S(x, y)). Since r(a2 + a5) < 1, by Lemma 1.11,

d(x, S(x, y)) = θ. Therefore x = S(x, y). Similarly we can prove that y = S(y, x). It
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follows similarly that

x = T (x, y) and y = T (y, x).

Therefore (x, y) is a common coupled fixed point of S and T .

In order to prove the uniqueness, let (x′, y′) ∈ X ×X be another common coupled

fixed point of S and T . Then

d(x, x′) = d(S(x, y), T (x′, y′))

¹ a1d(x, x′) + a2d(S(x, y), x) + a3d(y, y′)

+ a4d(T (x′, y′), x′) + a5d(S(x, y), x′) + a6d(T (x′, y′), x)

= a1d(x, x′) + a2d(x, x) + a3d(y, y′)

+ a4d(x′, x′) + a5d(x, x′) + a6d(x′, x)

= (a1 + a5 + a6)d(x′, x) + a3d(y, y′)

which implies that

(e− a1 − a5 − a6)d(x, x′) ¹ a3d(y, y′).

Since r(a1 + a5 + a6) < 1, e− (a1 + a5 + a6) is invertible and

d(x, x′) ¹ (e− a1 − a5 − a6)
−1a3d(y, y′).

Similarly we can prove that

d(y, y′) ¹ (e− a1 − a5 − a6)
−1a3d(x, x′).

Adding both sides, we get

d(x, x′) + d(y, y′) ¹ (e− a1 − a5 − a6)
−1a3[d(x, x′) + d(y, y′)],

Since r((e − a1 − a5 − a6)
−1a3) < 1, by Lemma 1.11, we have d(x, x′) + d(y, y′) = θ.

Therefore x = x′ and y = y′. ¤

The following results generalize the corresponding results in cone metric spaces

obtained by H.K. Nashie, Y. Rohen and C. Thokchom([5]).

Corollary 2.2. (Theorem 2.1 of [5]) Let (X, d) be a complete cone metric space with

a solid cone P . Suppose that S, T : X × X → X are two mappings satisfying the

condition

d(S(x, y), T (u, v)) ¹ a1d(x, u) + a2d(S(x, y), x) + a3d(y, v)

+ a4d(T (u, v), u) + a5d(S(x, y), u) + a6d(T (u, v), x)

for all x, y, u, v ∈ X, where ai (i = 1, 2, 3, 4, 5, 6) are non-negative real numbers such

that
∑5

i=1 ai + 2a6 < 1. Then S and T have a common coupled fixed point in X.

Proof. Taking s = 1 and letting A as a real Banach space in Theorem 2.1, we get the

required result. ¤
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Corollary 2.3. Let (X, d) be a complete cone metric space over the Banach algebra

A and let P be a solid cone in A. Suppose that S, T : X ×X → X are two mappings

satisfying the condition

d(S(x, y), T (u, v)) ¹ a1d(x, u) + a2d(S(x, y), x) + a3d(y, v) (2.2.4)

+ a4d(T (u, v), u) + a5d(S(x, y), u) + a6d(T (u, v), x)

for all x, y, u, v ∈ X, where ai ∈ P and aiaj = ajai (i, j = 1, 2, 3, 4, 5, 6). If

s(r(a1) + r(a2) + r(a3)) + r(a4) + r(a5) + (s2 + s)r(a6) < 1,

then S and T have a common coupled fixed point in X.

Proof. Taking s = 1 in Theorem 2.1, we get the required result. ¤

Corollary 2.4. Let (X, d) be a complete cone b-metric space over the Banach algebra

A with the coefficient s ≥ 1 and let P be a solid cone. Suppose that T : X ×X → X

is a mapping satisfying the condition

d(T (x, y), T (u, v)) ¹ a1d(x, u) + a2d(T (x, y), x) + a3d(y, v) + a4d(T (u, v), u)

+ a5d(T (x, y), u) + a6d(T (u, v), x)

for all x, y, u, v ∈ X, where ai ∈ P and aiaj = ajai (i, j = 1, 2, 3, 4, 5, 6). If

s(r(a1) + r(a2) + r(a3)) + r(a4) + r(a5) + (s2 + s)r(a6) < 1,

then T has a unique coupled fixed point in X.

Corollary 2.5. Let (X, d) be a complete cone b-metric space over the Banach algebra

A with the coefficient s ≥ 1 and let P be a solid cone. Suppose that S, T : X×X → X

are two mappings satisfying the condition

d(S(x, y), T (u, v)) ¹ ad(x, u) + bd(y, v) + c[d(S(x, y), x) + d(T (u, v), u)]

+ e[d(S(x, y), u) + d(T (u, v), x)]

for all x, y, u, v ∈ X, where a, b, c, e ∈ P are commuting. If

s(r(a) + r(b)) + (s + 1)r(c)) + (s2 + s + 1)r(e) < 1,

then S and T have a unique common coupled fixed point in X.

Corollary 2.6. Let (X, d) be a complete cone b-metric space over the Banach algebra

A with the coefficient s ≥ 1 and let P be a solid cone. Suppose that S, T : X×X → X

are two mappings satisfying the condition

d(T (x, y), T (u, v)) ¹ ad(x, u) + bd(y, v) + c[d(T (x, y), x) + d(T (u, v), u)]

+ e[d(T (x, y), u) + d(T (u, v), x)]
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for all x, y, u, v ∈ X, where a, b, c, e ∈ P are commuting. If

s(r(a) + r(b)) + (s + 1)r(c)) + (s2 + s + 1)r(e) < 1,

then T has a unique coupled fixed point in X.

Now we give an example showing that Theorem 2.1 is a proper extension of known

results. In this example, the conditions of Theorem 2.1 are fulfilled.

Example 2.7. Let A = C1
R[0, 1] and define a norm on A by ‖x‖ = ‖x‖∞ + ‖x′‖∞ for

x ∈ A. Define multiplication in A as just pointwise multiplication. Then A is a real

Banach algebra with unit e = 1(e(t) = 1 for all t ∈ [0, 1]). The set P = {x ∈ A : x ≥ 0}
is a cone in A. Moreover, P is not normal.

Let X = {1, 2, 3}. Define d : X × X → A by d(1, 2)(t) = d(2, 1)(t) = d(2, 3)(t) =

d(3, 2)(t) = et, d(1, 3)(t) = d(3, 1)(t) = 3et, d(x, x)(t) = θ for all t ∈ [0, 1] and for

each x ∈ X. Then (X, d) is a solid cone b-metric space over Banach algebra with the

coefficient s = 3
2
. But it is not a cone metric space over Banach algebra since it does

not satisfy the triangle inequality.

Define two mappings S, T : X×X → X by S(x, y) = 1 for any (x, y) ∈ X×X, and

T (x, y) =





2, (x, y) = (3, 1)

1, otherwise

Let a1, a2, a3, a4, a5, a6 ∈ P defined with a1(t) = a2(t) = a3(t) = 0.2, a4(t) = 0.1, a5(t) =

0.4, a6(t) = 0.05 for all t ∈ [0, 1]. Then, by definition of spectral radius, r(a1) = r(a2) =

r(a3) = 0.2, r(a4) = 0.1, r(a5) = 0.4, r(a6) = 0.05 and so

s[r(a1) + r(a2) + r(a3)] + r(a4) + r(a5) + (s2 + s)r(a6) = 0.9875 < 1.

Since d(S(x, y), T (3, 1))(t) = d(1, 2)(t)) = et for any x, y ∈ X, by careful calculations,

we can get that for any x, y, u, v ∈ X, S and T satisfy the contractive condition (2.2.4)

of Theorem 2.1. Hence the hypotheses are satisfied and so by Theorem 2.1, S and T

have a common coupled fixed point in X. Since S(1, 1) = 1 = T (1, 1), (1, 1) is the

unique coupled fixed point of S and T .
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FOURIER SERIES OF SUMS OF PRODUCTS OF

POLY-GENOCCHI FUNCTIONS

TAEKYUN KIM1, DAE SAN KIM2, DMITRY V. DOLGY3, AND JIN-WOO PARK4,∗

Abstract. Recently, some authors introduced poly-Genocchi polynomials as

an analogy to poly-Bernoulli polynomials. In this paper, we will consider three
types of sums of products of poly-Genocchi functions and derive their Fourier

expansions. In addition, we will express each of them in terms of Bernoulli

functions.

1. Introduction

The Bernoulli polynomials Bm(x) are given by the generating function

t

et − 1
ext =

∞∑
m=0

Bm(x)
tm

m!
.

When x = 0, Bm = Bm(0) are called Bernoulli numbers.
The Genocchi polynomials Gm(x) are defined by the generating function

2t

et + 1
ext =

∞∑
m=0

Gm(x)
tm

m!
.

For x = 0, Gm = Gm(0) are called Genocchi numbers.

Let r be any integer. The poly-Bernoulli polynomials B(r)
m (x) of index r are given

by

Lir(1− e−t)
et − 1

ext =
∞∑
m=0

B(r)
m (x)

tm

m!
,

where Lir(x) =
∑∞
m=1

xm

mr is the rth polylogarithm function for r ≥ 1, and a
rational function for r ≤ 0. We note here that this definition of poly-Bernoulli
polynomials are slightly different from the Kaneko’s original definition [1, 2, 3, 5].

Indeed, if B̃(r)
m (x) denotes the Kaneko’s poly-Bernoulli polynomial of index r, then

B(r)
m (x) = B̃(r)

m (x − 1). Also, for x = 0, B(r)
m = B(r)

m (0) are called poly-Bernoulli
numbers of index r. Clearly,

B(1)
m (x) = Bm(x), B(r)

0 (x) = 1, B(0)
m (x) = xm,

B(0)
m = δm,0,

d

dx
B(r)
m (x) = mB(r)

m−1(x), (m ≥ 1).

2010 Mathematics Subject Classification. 11B68, 11B83, 42A16.
Key words and phrases. Fourier series, Bernoulli polynomial, Euler function, Genocchi poly-

nomial, poly-Genocchi polynomial, poly-Bernoulli polynomial.
∗ Corresponding author.
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2 Fourier series of sums of products of poly-Genocchi functions

As an analogy to this construction of poly-Bernoulli polynomials, the poly-Genocchi

polynomials G(r)
m (x) of index r are given by

2Lir(1− e−t)
et + 1

ext =
∞∑
m=0

G(r)
m (x)

tm

m!
. (1.1)

When x = 0, G(r)
m = G(r)

m (0) are called poly-Genocchi numbers. Unfortunately,
the poly-Genocchi polynomials were named as poly-Euler polynomials. But, as

we clearly have G(1)
m (x) = Gm(x), it seems more appropriate to call them poly-

Genocchi polynomials (see [6]). There are other definitions for poly-Euler numbers

and polynomials. Indeed, in [7, 8], the poly-Euler numbers E
(r)
m are defined by

Lir(1− e−4t)
4t cosh t

=
∞∑
m=0

E(r)
m

tm

m!
.

For poly-Euler polynomials, see [4].
As is known or one can see,

d

dx
(Lir+1(x)) =

1

x
Lir(x).

In addition, since G(r)
m (x) are Appell polynomials,

d

dx
G(r)
m (x) = mG(r)

m−1(x), (m ≥ 1).

Here we claim that

G(r+1)
m (1) + G(r+1)

m (0) = 2B(r)
m−1, (m ≥ 1). (1.2)

From (1.1), we clearly have

∞∑
m=0

(
G(r+1)
m (1) + G(r+1)

m (0)
) tm
m!

= 2Lir+1(1− e−t). (1.3)

Differentiation of LHS of (1.3) with respect to t gives

∞∑
m=0

(
G(r+1)
m+1 (1) + G(r+1)

m+1 (0)
) tm
m!
.

On the other hahd, differentiation of RHS of (1.3) with respect to t yields

2Lir(1− e−t)
1− e−t

e−t = 2
∞∑
m=0

B(r)
m

tm

m!
.

From these, we get the desired result. Writing Lir(1 − e−t) =
∑∞
n=1 an

tn

n! =

t+
∑∞
n=2 an

tn

n! , from (1.1) we obtain

∞∑
m=0

G(r)
m (x)

tm

m!
=

∞∑
m=1

(
m−1∑
l=0

(
m

l

)
am−lEl(x)

)
tm

m!
,

where Em(x) are Euler polynomials given by

2

et + 1
ext =

∞∑
m=0

Em(x)
tm

m!
.
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In particular, this implies that

G(r)
0 (x) = 0, G(r)

1 (x) = 1, degG(r)
m (x) = m− 1, for m ≥ 1.

As a quick application of (1.2), we express G(r+1)
m (x) as a linear combination

of Euler polynomials. For this, we recall that, for a polynomial p(x) ∈ Q[x] with
deg p(x) = m,

p(x) =
m∑
j=0

bjEj(x), bj ∈ Q,

where

bj =
1

2j!

(
p(j)(1) + p(j)(0)

)
, j = 0, 1, . . . ,m.

We now apply this to the polynomial p(x) = G(r+1)
m (x), and let

G(r+1)
m (x) =

m∑
j=0

bjEj(x).

Then

bj =
(m)j
2j!

(
G(r+1)
m−j (1) + G(r+1)

m−j (0)
)

=

{ (
m
j

)
B(r)
m−j−1, for 0 ≤ j ≤ m− 1,

0, for j = m

Thus

G(r+1)
m (x) =

m−1∑
j=0

(
m

j

)
B(r)
m−j−1Ej(x), (m ≥ 1).

Also, for p(x) ∈ Q[x], with deg p(x) = m,

p(x) =

m+1∑
j=1

bjGj(x), bj ∈ Q,

where bj = 1
2j!

(
p(j−1)(1) + p(j−1)(0)

)
, for m = 1, . . . ,m+ 1.

Applying this to p(x) = G
(r+1)
m (x), we see that

bj =

{
1

m+1

(
m+1
j

)
B(r)
m−j , for 1 ≤ j ≤ m,

0, for j = m+ 1.

Thus we obtain

G(r+1)
m (x) =

1

m+ 1

m∑
j=1

(
m+ 1

j

)
B(r)
m−jGj(x), (m ≥ 1).

For any real number x, we let

〈x〉 = x− bxc ∈ [0, 1)

denote the fractional part of x.
Here we will consider the following three types of sums of products of poly-

Genocchi functions αm(〈x〉), βm(〈x〉), and γm(〈x〉) and derive their Fourier expan-
sions. In addition, we will express each of them in terms of Bernoulli functions.

(a) αm(〈x〉) =
∑m−1
k=1 G(r+1)

k (〈x〉)G(s+1)
m−k (〈x〉), (m ≥ 3);
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4 Fourier series of sums of products of poly-Genocchi functions

(b) βm(〈x〉) =
∑m−1
k=1

1
k!(m−k)!G

(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉) (m ≥ 3);

(c) γm(〈x〉) =
∑m−1
k=1

1
k(m−k)G

(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉), (m ≥ 3).

2. The sums of products of poly-Genocchi functions, type I

For integers r, s,m, with m ≥ 3, let

αm(x) =
m−1∑
k=1

G(r+1)
k (x)G(s+1)

m−k (x).

α′m(x) =
m−1∑
k=1

{
kG(r+1)

k−1 (x)G(s+1)
m−k (x) + (m− k)G(r+1)

k (x)G(s+1)
m−k−1(x)

}
=
m−1∑
k=2

kG(r+1)
k−1 (x)G(s+1)

m−k (x) +
m−2∑
k=1

(m− k)G(r+1)
k (x)G(s+1)

m−k−1(x)

=
m−2∑
k=1

(k + 1)G(r+1)
k (x)G(s+1)

m−k−1(x) +
m−2∑
k=1

(m− k)G(r+1)
k (x)G(s+1)

m−k−1(x)

=(m+ 1)αm−1(x).

From this, we have (
αm+1(x)

m+ 2

)′
= αm(x),∫ 1

0

αm(x)dx =
1

m+ 2
(αm+1(1)− αm+1(0)) .

For m ≥ 3, we put

∆m =∆m(r, s) = αm(1)− αm(0)

=
m−1∑
k=1

(
G(r+1)
k (1)G(s+1)

m−k (1)−G(r+1)
k G(s+1)

m−k

)
=
m−1∑
k=1

((
−G(r+1)

k + 2B(r)
k−1

)(
−G(s+1)

m−k + 2B(s)
m−k−1

)
−G(r+1)

k G(s+1)
m−k

)
=− 2

m−1∑
k=1

(
G(r+1)
k B(s)

m−k−1 + B(r)
k−1G

(s+1)
m−k − 2B(r)

k−1B
(s)
m−k−1

)
.

Thus

αm(0) = αm(1)

⇐⇒∆m = 0

⇐⇒
m−1∑
k=1

(
G(r+1)
k B(s)

m−k−1 + B(r)
k−1G

(s+1)
m−k − 2B(r)

k−1B
(s)
m−k−1

)
= 0,

∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1.
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We are now going to consider the function

αm(〈x〉) =
m−1∑
k=1

G(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉), (m ≥ 3),

defined on R, which is periodic with period 1.
The Fourier series of αm(〈x〉) is

∞∑
n=−∞

A(m)
n e2πinx,

where

A(m)
n =

∫ 1

0

αm(〈x〉)e−2πinxdx =

∫ 1

0

αm(x)e−2πinxdx.

Now, we would like to determine the Fourier coefficients A
(m)
n .

Case 1 : n 6= 0.

A(m)
n =

∫ 1

0

αm(x)e−2πinxdx

=− 1

2πin

[
αm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

α′m(x)e−2πinxdx

=− 1

2πin
(αm(1)− αm(0)) +

m+ 1

2πin

∫ 1

0

αm−1(x)e−2πnxdx

=
m+ 1

2πin
A(m−1)
n − 1

2πin
∆m,

from which we can easily deduce that

A(m)
n = − 1

m+ 2

m−2∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1.

Case 2 : n = 0.

A
(m)
0 =

∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1.

We recall the following facts about Bernoulli functions Bm(〈x〉):
(a) for m ≥ 2,

Bm(〈x〉) = −m!
∞∑

n=−∞
n6=0

e2πinx

(2πin)m
,

(b) for m = 1,

−
∞∑

n=−∞
n6=0

e2πinx

2πin
=

{
B1(〈x〉), for x /∈ Z,

0, for x ∈ Z.

αm(〈x〉), (m ≥ 3) is piecewise C∞. Moreover, αm(〈x〉) is continuous for those
integers m ≥ 3 with ∆m = 0, and discontinuous with jump discontinuities at
integers for those integers m ≥ 3 with ∆m 6= 0.
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6 Fourier series of sums of products of poly-Genocchi functions

Assume first that m is an integer ≥ 3 with ∆m = 0. Then αm(0) = αm(1).
Hence αm(〈x〉) is piecewise C∞, and continuous. Thus the Fourier series of αm(〈x〉)
converges uniformly to αm(〈x〉), and

αm(〈x〉)

=
1

m+ 2
∆m+1 +

∞∑
n=−∞
n6=0

− 1

m+ 2

m−2∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx

=
1

m+ 2
∆m+1 +

1

m+ 2

m−2∑
j=1

(
m+ 2

j

)
∆m−j+1

−j! ∞∑
n=−∞
n6=0

e2πinx

(2πin)j


=

1

m+ 2
∆m+1 +

1

m+ 2

m−2∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(〈x〉)

+∆m ×
{
B1(〈x〉), for x /∈ Z,

0, for x ∈ Z.

Now, we are ready to state our first theorem.

Theorem 2.1. For each integer l ≥ 3, let

∆l = ∆l(r, s) = −2
l−1∑
k=1

(
G(r+1)
k B(s)

l−k−1 + B(r)
k−1G

(s+1)
l−k − 2B(r)

k−1B
(s)
l−k−1

)
.

Assume that ∆m = 0, for an integer m ≥ 3. Then we have the following.

(a)
∑m−1
k=1 G(r+1)

k (〈x〉)G(s+1)
m−k (〈x〉) has the Fourier series expansion

m−1∑
k=1

G(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉)

=
1

m+ 2
∆m+1 +

∞∑
n=−∞
n6=0

− 1

m+ 2

m−2∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx,

for all x ∈ R, where the convergence is uniform.
(b)

m−1∑
k=1

G(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉) =
1

m+ 2

m−2∑
j=0
j 6=1

(
m+ 2

j

)
∆m−j+1Bj(〈x〉),

for all x ∈ R.

Assume next that m is an integer ≥ 3, with ∆m 6= 0. Then αm(0) 6= αm(1).
Hence αm(〈x〉) is piecewise C∞, and discontinuous with jump discontinuities at
integers. Thus the Foureir series of αm(〈x〉) converges pointwise to αm(〈x〉), for
x /∈ Z, and converges to

1

2
(αm(0) + αm(1)) = αm(0) +

1

2
∆m,

for x ∈ Z. We are now ready to state our second theorem.
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Theorem 2.2. For each integer l ≥ 3, we let

∆l = ∆l(r, s) = −2
l−1∑
k=1

(
G(r+1)
k B(s)

l−k−1 + B(r)
k−1G

(s+1)
l−k − 2B(r)

k−1B
(s)
l−k−1

)
.

Assume that ∆m 6= 0, for an integer m ≥ 3. Then we have the following

(a)

1

m+ 2
∆m+1 +

∞∑
n=−∞
n6=0

− 1

m+ 2

m−2∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

 e2πinx

=

{ ∑m−1
k=1 G(r+1)

k (〈x〉)G(s+1)
m−k (〈x〉), for x /∈ Z,∑m−1

k=1 G(r+1)
k G(s+1)

m−k + 1
2∆m, for x ∈ Z.

(b)

1

m+ 2

m−2∑
j=0

(
m+ 2

j

)
∆m−j+1Bj(〈x〉) =

m−1∑
k=1

G(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉), for x /∈ Z;

1

m+ 2

m−2∑
j=0
j 6=1

(
m+ 2

j

)
∆m−j+1Bj(〈x〉) =

m−1∑
k=1

G(r+1)
k G(s+1)

m−k +
1

2
∆m, for x ∈ Z.

3. The sums of products of poly-Genocchi functions, type II

Let

βm(x) =
m−1∑
k=1

1

k!(m− k)!
G(r+1)
k (x)G(s+1)

m−k (x), (m ≥ 3).

β′m(x) =
m−1∑
k=1

{
k

k!(m− k)!
G(r+1)
k−1 (x)G(s+1)

m−k (x) +
m− k

k!(m− k)!
G(r+1)
k (x)G(s+1)

m−k−1(x)

}

=
m−1∑
k=2

1

(k − 1)!(m− k)!
G(r+1)
k−1 (x)G(s+1)

m−k (x) +
m−2∑
k=1

1

k!(m− k − 1)!
G(r+1)
k (x)G(s+1)

m−k−1(x)

=
m−2∑
k=1

1

k!(m− k − 1)!
G(r+1)
k (x)G(s+1)

m−k−1(x) +
m−2∑
k=1

1

k!(m− k − 1)!
G(r+1)
k (x)G(s+1)

m−k−1(x)

=2βm−1(x).

From this, we obtain that (
βm+1(x)

2

)′
= βm(x)∫ 1

0

βm(x)dx =
1

2
(βm+1(1)− βm+1(0)) .
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8 Fourier series of sums of products of poly-Genocchi functions

For m ≥ 3, we let

Ωm = Ωm(r, s) = βm(1)− βm(0)

=
m−1∑
k=1

1

k!(m− k)!

(
G(r+1)
k (1)G(s+1)

m−k (1)−G(r+1)
k G(s+1)

m−k

)
=
m−1∑
k=1

1

k!(m− k)!

((
−G(r+1)

k + 2B(r)
k−1

)(
−G(s+1)

m−k + 2B(s)
m−k−1

)
−G(r+1)

k G(s+1)
m−k

)
=− 2

m−1∑
k=1

1

k!(m− k)!

(
G(r+1)
k B(s)

m−k−1 + B(r)
k−1G

(s+1)
m−k − 2B(r)

k−1B
(s)
m−k−1

)
.

Then

βm(0) = βm(1)⇐⇒ Ωm = 0

⇐⇒
m−1∑
k=1

1

k!(m− k)!

(
G(r+1)
k B(s)

m−k−1 + B(r)
k−1G

(s+1)
m−k − 2B(r)

k−1B
(s)
m−k−1

)
= 0,

∫ 1

0

βm(x)dx =
1

2
Ωm+1.

We now would like to consider the function

βm(〈x〉) =
m−1∑
k=1

1

k!(m− k)!
G(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉), (m ≥ 3),

defined on R, which is periodic with period 1.
The Fourier series of βm(〈x〉) is

∞∑
n=−∞

B(m)
n e2πinx,

where

B(m)
n =

∫ 1

0

βm(〈x〉)e−2πinxdx =

∫ 1

0

βm(x)e−2πinxdx.

Next, we want to determine the Fourier coefficients B
(m)
n .

Case 1 : n 6= 0.

B(m)
n =

∫ 1

0

βm(x)e−2πinxdx

=− 1

2πin

[
βm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

β′m(x)e−2πinxdx

=− 1

2πin
(βm(1)− βm(0)) +

2

2πin

∫ 1

0

βm−1(x)e−2πinxdx

=
2

2πin
B(m−1)
n − 1

2πin
Ωm,

from which by induction we can easily deduce that

B(m)
n = −1

2

m−2∑
j=1

2j

(2πin)j
Ωm−j+1.
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Case 2 : n = 0.

B
(m)
0 =

∫ 1

0

βm(x)dx =
1

2
Ωm+1.

βm(〈x〉), (m ≥ 3) is piecewise C∞. Moreover, it is continuous for those integers
m ≥ 3 with Ωm = 0, and discontinuous with jump discontinuities at integers for
those integers m ≥ 3 with Ωm 6= 0.

Assume first that m is an integer ≥ 3 with Ωm = 0. Then βm(0) = βm(1).
Hence βm(〈x〉) is piecewise C∞, and continuous. Thus the Fourier series of βm(〈x〉)
converges uniformly to βm(〈x〉), and

βm(〈x〉)

=
1

2
Ωm+1 +

∞∑
n=−∞
n6=0

−1

2

m−2∑
j=1

2j

(2πin)j
Ωm−j+1

 e2πinx

=
1

2
Ωm+1 +

1

2

m−2∑
j=1

2j

j!
Ωm−j+1

−j! ∞∑
n=−∞
n6=0

e2πinx

(2πin)j


=

1

2
Ωm+1 +

1

2

m−2∑
j=2

2j

j!
Ωm−j+1Bj(〈x〉) + Ωm ×

{
B1(〈x〉), for x /∈ Z,

0, for x ∈ Z.

Now, we are ready to state our first theorem.

Theorem 3.1. For each integer l ≥ 3, let

Ωl = Ωl(r, s) = −2

l−1∑
k=1

1

k!(l − k)!

(
G(r+1)
k B(s)

l−k−1 + B(r)
k−1G

(s+1)
l−k − 2B(r)

k−1B
(s)
l−k−1

)
.

Assume that Ωm = 0, for an integer m ≥ 3. Then we have the following.

(a)
∑m−1
k=1

1
k!(m−k)!G

(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉) has the Fourier series expansion

m−1∑
k=1

1

k!(m− k)!
G(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉)

=
1

2
Ωm+1 +

∞∑
n=−∞
n6=0

−1

2

m−2∑
j=1

2j

(2πin)j
Ωm−j+1

 e2πinx,

for all x ∈ R, where the convergence is uniform.
(b)

m−1∑
k=1

1

k!(m− k)!
G(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉) =
1

2

m−2∑
j=0
j 6=1

2j

j!
Ωm−j+1Bj(〈x〉),

for all x ∈ R.

Assume next that m is an integer ≥ 3 with Ωm 6= 0. Then βm(0) 6= βm(1),
and hence βm(〈x〉) is piecewise C∞, and discontinuous with jump discontinuities
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10 Fourier series of sums of products of poly-Genocchi functions

at integers. Thus the Fourier series of βm(〈x〉) converges pointwise to βm(〈x〉), for
x /∈ Z, and converges to

1

2
(βm(0) + βm(1)) = βm(0) +

1

2
Ωm,

for x ∈ Z.
We are now ready to state our second theorem.

Theorem 3.2. For each integer l ≥ 3, let

Ωl = Ωl(r, s) = −2
l−1∑
k=1

1

k!(l − k)!

(
G(r+1)
k B(s)

l−k−1 + B(r)
k−1G

(s+1)
l−k − 2B(r)

k−1B
(s)
l−k−1

)
.

Assume Ωm 6= 0, for an integer m ≥ 3. Then we have the following

(a)

1

2
Ωm+1 +

∞∑
n=−∞
n6=0

−1

2

m−2∑
j=1

2j

(2πin)j
Ωm−j+1

 e2πinx

=

{ ∑m−1
k=1

1
k!(m−k)!G

(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉), for x /∈ Z,∑m−1
k=1

1
k!(m−k)!G

(r+1)
k G(s+1)

m−k + 1
2Ωm, for x ∈ Z.

(b)

1

2

m−2∑
j=0

2j

j!
Ωm−j+1Bj(〈x〉) =

m−1∑
k=1

1

k!(m− k)!
G(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉), for x /∈ Z;

1

2

m−2∑
j=0
j 6=1

2j

j!
Ωm−j+1Bj(〈x〉) =

m−1∑
k=1

1

k!(m− k)!
G(r+1)
k G(s+1)

m−k +
1

2
Ωm, for x ∈ Z.

4. The sums of products of poly-Genocchi functions, type III

Let

γm(x) =
m−1∑
k=1

1

k(m− k)
G(r+1)
k (x)G(s+1)

m−k (x), (m ≥ 3).

γ′m(x) =
m−1∑
k=1

1

k(m− k)

{
kG(r+1)

k−1 (x)G(s+1)
m−k (x) + (m− k)G(r+1)

k (x)G(s+1)
m−k−1(x)

}
=
m−1∑
k=2

1

m− k
G(r+1)
k−1 (x)G(s+1)

m−k (x) +
m−2∑
k=1

1

k
G(r+1)
k (x)G(s+1)

m−1−k(x)

=
m−2∑
k=1

(
1

m− k − 1
+

1

k

)
G(r+1)
k (x)G(s+1)

m−k−1(x)

=(m− 1)
m−2∑
k=1

1

k(m− k − 1)
G(r+1)
k (x)G(s+1)

m−k−1(x)

=(m− 1)γm−1(x).
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From this, we have (
γm+1(x)

m

)′
= γm(x),

and ∫ 1

0

γm(x)dx =
1

m
(γm+1(1)− γm+1(0)) .

For m ≥ 3, we let

Λm = Λm(r, s) = γm(1)− γm(0)

=
m−1∑
k=1

1

k(m− k)

(
G(r+1)
k (1)G(s+1)

m−k (1)−G(r+1)
k G(s+1)

m−k

)
=
m−1∑
k=1

1

k(m− k)

((
−G(r+1)

k + 2B(r)
k−1

)(
−G(s+1)

m−k + 2B(s)
m−k−1

)
−G(r+1)

k G(s+1)
m−k

)
=− 2

m−1∑
k=1

1

k(m− k)

(
G(r+1)
k B(s)

m−k−1 + B(r)
k−1G

(s+1)
m−k − 2B(r)

k−1B
(s)
m−k−1

)
.

Then γm(0) = γm(1)⇐⇒ Λm = 0, and∫ 1

0

γm(x)dx =
1

m
Λm+1.

We are now going to consider

γm(〈x〉) =

m−1∑
k=1

1

k(m− k)
G(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉), (m ≥ 3),

defined on R, which is periodic with period 1.
The Fourier series of γm(〈x〉) is

∞∑
n=−∞

C(m)
n e2πinx,

where

C(m)
n =

∫ 1

0

γm(〈x〉)e−2πinxdx =

∫ 1

0

γm(x)e−2πinxdx.

Now, we want to determine the Fourier coefficients C
(m)
n .

Case 1 : n 6= 0.

C(m)
n =

∫ 1

0

γm(x)e−2πinxdx

=− 1

2πin

[
γm(x)e−2πinx

]1
0

+
1

2πin

∫ 1

0

γ′m(x)e−2πinxdx

=− 1

2πin
(γm(1)− γm(0)) +

m− 1

2πin

∫ 1

0

γm−1(x)e−2πinxdx

=
m− 1

2πin
C(m−1)
n − 1

2πin
Λm,
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12 Fourier series of sums of products of poly-Genocchi functions

from which by induction on m we can deduce that

C(m)
n = − 1

m

m−2∑
j=1

(m)j
(2πin)j

∧m−j+1 .

Case 2 : n = 0.

C
(m)
0 =

∫ 1

0

γm(x)dx =
1

m
Λm+1.

γm(〈x〉), (m ≥ 3) is piecewise C∞. Further, it is continuous for those integers
m ≥ 3 with Λm = 0, and discontinuous with jump discontinuities at integers for
those integers m ≥ 3 with Λm 6= 0.

Assume first that m is an integer ≥ 3 with Λm = 0. Then γm(0) = γm(1).
Hence γm(〈x〉) is piecewise C∞, and continuous. Thus the Fourier series of γm(〈x〉)
converges uniformly to γm(〈x〉), and

γm(〈x〉)

=
1

m
Λm+1 +

∞∑
n=−∞
n6=0

− 1

m

m−2∑
j=1

(m)j
(2πin)j

Λm−j+1

 e2πinx

=
1

m
Λm+1 +

1

m

m−2∑
j=1

(
m

j

)
Λm−j+1

−j! ∞∑
n=−∞
n6=0

e2πinx

(2πin)j


=

1

m
Λm+1 +

1

m

m−2∑
j=2

(
m

j

)
Λm−j+1Bj(〈x〉) + Λm ×

{
B1(〈x〉), for x /∈ Z,

0, for x ∈ Z.

Now, we can state our first theorem.

Theorem 4.1. For each integer l ≥ 3, let

Λl = Λl(r, s) = −2
l−1∑
k=1

1

k(l − k)

(
G(r+1)
k B(s)

l−k−1 + B(r)
k−1G

(s+1)
l−k − 2B(r)

k−1B
(s)
l−k−1

)
.

Assume that Λm = 0, for an integer m ≥ 3. Then we have the following

(a)
∑m−1
k=1

1
k(m−k)G

(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉) has the Fourier series expansion

m−1∑
k=1

1

k(m− k)
G(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉)

=
1

m
Λm+1 +

∞∑
n=−∞
n6=0

− 1

m

m−2∑
j=1

(m)j
(2πin)j

Λm−j+1

 e2πinx,

for all x ∈ R, where the convergence is uniform.
(b)

m−1∑
k=1

1

k(m− k)
G(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉) =
1

m

m−2∑
j=0
j 6=1

(
m

j

)
Λm−j+1Bj(〈x〉),

for all x ∈ R.
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Assume next that m is an integer ≥ 3 with ∧m 6= 0. Then γm(0) 6= γm(1),
and hence γm(〈x〉) is piecewise C∞, and discontinuous with jump discontinuities
at integers. Thus the Fourier series of γm(〈x〉) converges pointwise to γm(〈x〉), for
x /∈ Z, and converges to

1

2
(γm(0) + γm(1)) = γm(0) +

1

2
Λm.

We can now state our second theorem.

Theorem 4.2. For each integer l ≥ 3, let

Λl = Λl(r, s) = −2
l−1∑
k=1

1

k(l − k)

(
G(r+1)
k B(s)

l−k−1 + B(r)
k−1G

(s+1)
l−k − 2B(r)

k−1B
(s)
l−k−1

)
.

Assume that Λm 6= 0, for an integer m ≥ 3. Then we have the following

(a)

1

m
Λm+1 +

∞∑
n=−∞
n6=0

− 1

m

m−2∑
j=1

(m)j
(2πin)j

Λm−j+1

 e2πinx

=

{ ∑m−1
k=1

1
k(m−k)G

(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉), for x /∈ Z,∑m−1
k=1

1
k(m−k)G

(r+1)
k G(s+1)

m−k + 1
2Λm, for x ∈ Z.

(b)

1

m

m−2∑
j=0

(
m

j

)
Λm−j+1Bj(〈x〉)

=
m−1∑
k=1

1

k(m− k)
G(r+1)
k (〈x〉)G(s+1)

m−k (〈x〉), for x /∈ Z;

1

m

m−2∑
j=0
j 6=1

(
m

j

)
Λm−j+1Bj(〈x〉)

=
m−1∑
k=1

1

k(m− k)
G(r+1)
k G(s+1)

m−k +
1

2
Λm, for x ∈ Z.
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Hesitant fuzzy normal subalgebras in B-algebras
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Abstract. The notions of a hesitant fuzzy subalgebra and a hesitant fuzzy normal subalgebra of a B-algebra are

introduced, and related properties are investigated. A quotient structure of a B-algebra using a hesitant fuzzy

normal subalgebra is constructed. The fundamental homomorphism of a quotient B-algebra is established.

1. Introduction

The notions of Atanassov’s intuitionistic fuzzy sets, type 2 fuzzy sets and fuzzy multisets etc.

are a generalization of fuzzy sets. As another generalization of fuzzy sets, Torra [9] introduced

the notion of hesitant fuzzy sets which are a very useful to express peoples hesitancy in daily life.

The hesitant fuzzy set is a very useful tool to deal with uncertainty, which can be accurately and

perfectly described in terms of the opinions of decision makers. Also, hesitant fuzzy set theory is

used in decision making problem etc. [2, 3, 10, 11], and is applied to MTL-algebras [5]. On the

while, J. Neggers and H. S. Kim [7] introduced the notion of B-algebra and investigated several

properties. Y. B. Jun et al. [4] defined the notion of a fuzzy B-algebra and studied some related

properties of it.

In this paper, we discuss applications of a hesitant fuzzy set in a (normal) subalgebra of

a B-algebra. We introduce the notion of hesitant fuzzy (normal) subalgebra of a B-algebra,

and investigate some properties of it. Also we consider a new construction of a quotient B-

algebra induced by a hesitant fuzzy normal subalgebra. Finally, we establish the fundamental

homomorphism of B-algebra.

2. Preliminaries

A B-algebra ([7]) is a non-empty set X with a constant 0 and a binary operation “∗” satisfying

axioms:

(B1) x ∗ x = 0,

(B2) x ∗ 0 = x,

(B) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y))
02010 Mathematics Subject Classification: 06F35, 03G25, 06D72.
0Keywords: γ-inclusive set; hesitant fuzzy (normal) subalgebra; B-algebra.

∗ The corresponding author. Tel.: +82 2 2260 3410, Fax: +82 2 2266 3409 (S. S. Ahn).
0E-mail: jmko@gwnu.ac.kr (J. M. Ko); sunshine@dongguk.edu (S. S. Ahn).
0This study was supported by Gangneung-Wonju National University.
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for any x, y, z in X. For brevity we call X a B-algebra. In X we can define a binary relation

“ ≤ ” by x ≤ y if and only if x ∗ y = 0.

Proposition 2.1.([1, 7]) Let (X; ∗, 0) be a B-algebra. Then

(i) the left cancellation law holds in X, i.e., x ∗ y = x ∗ z implies y = z,

(ii) if x ∗ y = 0, then x = y for any x, y ∈ X,

(iii) if 0 ∗ x = 0 ∗ y, then x = y for any x, y ∈ X,

(iv) 0 ∗ (0 ∗ x) = x, for all x ∈ X,

(v) x ∗ (y ∗ z) = (x ∗ (0 ∗ z)) ∗ y for all x, y, z ∈ X.

Let (X; ∗X , 0X) and (Y ; ∗Y , 0Y ) be B-algebras. A mapping φ : X → Y is called a homomor-

phism if φ(x ∗X y) = φ(x) ∗Y φ(y) for any x, y ∈ X. A homomorphism φ : X → Y is called an

isomorphism if φ is a bijection, and denote it by X ∼= Y . Let φ : X → Y be a homomorphism.

Then the subset {x ∈ X|φ(x) = 0Y } of X is called the kernel of the homomorphism φ, and

denote it by Ker φ. A non-empty subset S of X is called a subalgebra of X if x ∗ y ∈ S for any

x, y ∈ X.

A non-empty subset N of X is said to be normal if (x ∗ a) ∗ (y ∗ b) ∈ N for any x ∗ y, a ∗ b ∈ N .

Then any normal subset N of a B-algebra X is a subalgebra of X, but the converse need not be

true ([8]). A non-empty subset X of a B-algebra X is a called a normal subalgebra of X if it is

both a subalgebra and normal.

Let X be a B-algebra and let N be a normal subalgebra of X. Define a relation ∼N on X

by x ∼N y if and only if x ∗ y ∈ N , where x, y ∈ X. Then it is a congruence relation on X

([13]). Denote the equivalence class containing x by [x]N , i.e., [x]N := {y ∈ X|x ∼N y} and let

X/N := {[x]N |x ∈ X}.

Theorem 2.2.([8]) Let N be a normal subalgebra of a BG-algebra X. Then X/N is a B-algebra.

The B-algebra X/N is discussed in Theorem 2.2 is called the quotient B-algebra of X by N .

Theorem 2.3.([8]) Let N be a normal subalgebra of a B-algebra X. Then the mapping γ : X →
X/N given by γ(x) := [x]N is a surjective homomorphism, and Kerγ = N .

Theorem 2.4.([8]) Let φ : X → Y be a homomorphism of B-algebras. Then Kerφ is a normal

subalgebra of X.

Theorem 2.5.([8]) Let φ : X → Y be a homomorphism of B-algebras. Then X/Kerφ ∼= Imφ.

In particular, if φ is surjective, then X/Kerφ ∼= Y .

Definition 2.6.([9]) Let E be a reference set. A hesitant fuzzy set on E is defined in terms of a

function that when applied to E returns a subset of [0, 1], which can be viewed as the following

mathematical representation: HE := {(e, hE(e))|e ∈ E} where hE : E → P([0, 1]).
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Definition 2.7.([2]) Given a non-empty subset A of a set X, a hesitant fuzzy set HX :=

{(x, hX(x))|x ∈ X} on satisfying the following condition: hX(x) = ∅ for all x /∈ A (briefly,

A-hesitant fuzzy set) on X, and is represented by HA := {(x, hA(x)) | x ∈ X}, where hA is a

mapping from X to P([0, 1]) with hA(x) = ∅ for all x /∈ A.

For a hesitant fuzzy set HX := {(x, hX(x)) | x ∈ X} of a set X and a subset γ of [0, 1], the

hesitant fuzzy γ-inclusive set of HX , denoted by HX(γ), is defined to be the set HX(γ) := {x ∈
X|γ ⊆ hX(x)}. For any hesitant fuzzy set HX = {(x, hX(x)|x ∈ X} and GX = {(x, gX(x))|x ∈
X}, we call HX a hesitant fuzzy subset of GX , denoted by HX⊆̃GX , if hX(x) ⊆ gX(x) for all

x ∈ X. The hesitant fuzzy union of HX and GX , denoted by HX∪̃GX , is defined to be the hesitant

fuzzy set (hX∪̃gX)(x) = hX(x) ∪ gX(x) for all x ∈ X. The hesitant fuzzy intersection of HX and

GX , denoted by HX∩̃GX , is defined to be the hesitant fuzzy set (hX∩̃gX)(x) = hX(x) ∩ gX(x)

for all x ∈ X.

3. Hesitant fuzzy normal subalgebra

In what follows let X denote a B-algebra X unless otherwise specified.

Definition 3.1. Let X be a B-algebra. Given a non-empty subset (subalgebra as much as

possible) A of X, let HA := {(x, hA(x)) | x ∈ X} be an A-hesitant fuzzy set on X. Then

HA := {(x, hA(x)) | x ∈ X} is called a hesitant fuzzy subalgebra of X related to A (briefly,

A-hesitant fuzzy subalgebra of X) if it satisfies the following condition:

(3.1) hA(x) ∩ hA(y) ⊆ hA(x ∗ y) for all x, y ∈ A.

An A-hesitant fuzzy subalgebra of X with A = X is called a hesitant fuzzy subalgebra of X.

Proposition 3.2. Every hesitant fuzzy subalgebra HX := {(x, hX(x))|x ∈ X} of a B-algebra X

satisfies the following inclusion:

(3.2) hX(x) ⊆ hX(0) for all x ∈ X.

Proof. Using (3.1) and (B1), we have hX(x) = hX(x) ∩ hX(x) ⊆ hX(x ∗ x) = hX(0) for all

x ∈ X. □

Example 3.3. Let X = {0, 1, 2, 3} is a B-algebra ([6]) with the following Cayley table:

∗ 0 1 2 3

0 0 2 1 3

1 1 0 3 2

2 2 3 0 1

3 3 1 2 0

Let HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy set on X defined by

HX =
{
(0, [0, 1]), (1, (3

8
, 5
8
)), (2, (3

8
, 5
8
), (3, (1

4
, 3
4
)))
}
.
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It is easy to verify that HX := {(x, hX(x)) | x ∈ X} is a hesitant fuzzy subalgebra of X.

Theorem 3.4. A hesitant fuzzy set HX := {(x, hX(x))|x ∈ X} of a B-algebra is a hesitant

fuzzy subalgebra of X if and only if HX(γ) := {x ∈ X|γ ⊆ hX(x)} is a subalgebra of X for all

γ ∈ P([0, 1]) whenever it is non-empty.

Proof. Assume that HX := {(x, hX(x))|x ∈ X} is a hesitant fuzzy subalgebra of X. Let x, y ∈ X

and γ ∈ P([0, 1]) be such that x, y ∈ HX(γ). Then γ ⊆ hX(x) and γ ⊆ hX(y). It follows from

(3.1) that γ ⊆ hX(x) ∩ hX(y) ⊆ hX(x ∗ y) Hence x ∗ y ∈ hX(γ). Thus HX(γ) is a subalgebra of

X.

Conversely, suppose that HX(γ) is a subalgebra X for all γ ∈ P([0, 1]) with HX(γ) ̸= ∅. Let
x, y ∈ X, be such that hX(x) = γx and hX(y) = γy. Take γ = γx ∩ γy. Then x, y ∈ HX(γ)

and so x ∗ y ∈ HX(γ) by assumption. Hence hX(x) ∩ hX(y) = γx ∩ γy = γ ⊆ hX(x ∗ y). Thus

HX := {(x, hX(x))|x ∈ X} is a hesitant fuzzy subalgebra of X. □

Theorem 3.5. Every subalgebra of a B-algebra can be represented as a γ-inclusive set of a

hesitant fuzzy subalgebra.

Proof. Let A be a subalgebra of a B-algebra X. For a subset γ of [0, 1], define a hesitant fuzzy

set HX on X by

hX : X → P([0, 1]), x 7→
{
γ if x ∈ A

∅ if x /∈ A

Obviously, A = HX(γ). We now prove that HX is a hesitant fuzzy subalgebra of X. Let x, y ∈ X.

If x, y ∈ A, then x∗y ∈ A because A is a subalgebra of X. Hence hX(x) = hX(y) = hX(x∗y) = γ,

and so hX(x) ∩ hX(y) ⊆ hX(x ∗ y). If x ∈ A and y /∈ A, then hX(x) = γ and hX(y) = ∅ which

imply that hX(x) ∩ hX(y) = γ ∩ ∅ = ∅ ⊆ hX(x ∗ y). Similarly, if x /∈ A and y ∈ A, then

hX(x) ∩ hX(y) ⊆ hX(x ∗ y). Obviously, if x /∈ A and y /∈ A, then hX(x) ∩ hX(y) ⊆ hX(x ∗ y).
Therefore HX is a hesitant fuzzy subalgebra of X. □

Any subalgebra of a B-algebra X may not be represented as a γ-inclusive set of a hesitant

fuzzy subalgebra of X in general (see Example 3.6).

Example 3.6. Let X = {0, 1, 2, 3} be a B-algebra with the following Cayley table:

∗ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

Let HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy set on X defined by

HX =
{
(0, [0, 1]), (1, (3

7
, 5
7
)), (2, (3

7
, 5
7
), (3, (3

7
, 5
7
)))
}
.
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It is easy to verify that HX := {(x, hX(x)) | x ∈ X} is a hesitant fuzzy subalgebra of X. The

γ-inclusive set of HX are described as follows:

HX(γ) =


{0} if γ ∈ {[0, 1]}
X if γ ∈ {S|∅ ⊆ S ⊆ (3

7
, 5
7
)}

∅ otherwise.

The subalgebra {0, 1} cannot be a γ-inclusive set HX(γ) since there is no γ ⊆ [0, 1] such that

HX(γ) = {0, 1}.

Definition 3.7. A hesitant fuzzy set HX := {(x, hX)|x ∈ X} on a B-algebra X is said to be

hesitant fuzzy normal if it satisfies:

(3.3) hX(x ∗ y) ∩ hX(a ∗ b) ⊆ hX((x ∗ a) ∗ (y ∗ b)) for all x, y, a, b ∈ X.

A hesitant fuzzy set HX on a B-algebra X is called a hesitant fuzzy normal subalgebra of X if it

satisfies (3.1) and (3.3).

Example 3.8. LetX = {0, 1, 2, 3} be a B-algebra as in Example 3.3. LetHX := {(x, hX)|x ∈ X}
be a hesitant fuzzy set on X defined by

HX =
{
(0, [0, 1]), (1, (1

4
, 3
4
)), (2, (1

4
, 3
4
)), (3, [0, 1])

}
.

It is easy to verify that HX := {(x, hX(x)) | x ∈ X} is hesitant fuzzy normal.

Proposition 3.9. Every hesitant fuzzy normal HX of a B-algebra X is a hesitant fuzzy subal-

gebra of X.

Proof. Put y := 0, b := 0 and a := y in (3.3). Then hX(x∗0)∩hX(y ∗0) ⊆ hX((x∗ y)∗ (0∗0)) for
any x, y ∈ X. Using (B2) and (B1), we have hX(x)∩ hX(y) ⊆ hX(x ∗ y). Hence HX is a hesitant

fuzzy subalgebra of X. □

The converse of Proposition 3.9 may not be true in general (see Example 3.10).

Example 3.10. Let X = {0, 1, 2, 3, 4, 5} be a B-algebra ([8]) with the following table:

∗ 0 1 2 3 4 5

0 0 2 1 3 4 5

1 1 0 2 4 5 3

2 2 1 0 5 3 4

3 3 4 5 0 2 1

4 4 5 3 1 0 2

5 5 3 4 2 1 0

Let HX be a hesitant fuzzy set defined by

HX = {(0, γ3), (1, γ1), (2, γ1), (3, γ1), (4, γ1), (5, γ2)} .
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where γ1, γ2 and γ3 are subsets of [0, 1] with γ1 ⊊ γ2 ⊊ γ3. It is easy to check that HX is a

hesitant fuzzy subalgebra of X. But it is not hesitant fuzzy normal since hX(1 ∗ 4)∩ hX(3 ∗ 2) =
hX(5) ∩ hX(5) = γ2 ⊈ γ1 = hX(1) = hX((1 ∗ 3) ∗ (4 ∗ 2)).

Theorem 3.11. A hesitant fuzzy set HX := {(x, hX(x))|x ∈ X} of a B-algebra is a hesitant

fuzzy normal subalgebra of X if and only if HX(γ) := {x ∈ X|γ ⊆ hX(x)} is a normal subalgebra

of X for all γ ∈ P([0, 1]) whenever it is non-empty.

Proof. Similar to Theorem 3.4. □

Proposition 3.12. Let a hesitant fuzzy set HX of a B-algebra X be hesitant fuzzy normal.

Then hX(x ∗ y) = hX(y ∗ x) for any x, y ∈ X.

Proof. Let x, y ∈ X. By (B1) and (B2), we have hX(x ∗ y) = hX((x ∗ y) ∗ (x ∗ x)) ⊇ hX(x ∗ x) ∩
hX(y∗x) = hX(0)∩hX(y∗x) = hX(y∗x). Interchanging x with y, we obtain hX(y∗x) ⊇ hX(x∗y),
which proves the proposition. □

Theorem 3.13. Let HX := {(x, hx(x))|x ∈ X} be a hesitant fuzzy normal subalgebra of a

B-algebra X. Then the set XhX
= {x ∈ X|hX(x) = hX(0)} is a normal subalgebra of X.

Proof. It is sufficient to show that XhX
is normal. Let a, b, x, y ∈ X be such that x ∗ y ∈ XhX

and a ∗ b ∈ XhX
. Then hX(x ∗ y) = hX(0) = hX(a ∗ b). Since HX is a hesitant fuzzy normal

subalgebra of X, it follows that hX((x ∗ a) ∗ (y ∗ b)) ⊇ hX(x ∗ y)∩hX(a ∗ b) = hX(0). Using (3.2),

we conclude that hX((x ∗ a) ∗ (y ∗ b)) = hX(0). Hence (x ∗ a) ∗ (y ∗ b) ∈ XhX
. This completes the

proof. □

Theorem 3.14. The intersection of any set of a hesitant fuzzy normal subalgebra of a B-algebra

X is also a hesitant fuzzy normal subalgebra.

Proof. Let {(HX)α|α ∈ Λ} be a family of hesitant fuzzy normal subalgebras of a B-algebra X

and let a, b, x, y ∈ X. Then

∩α∈Λ(hX)α((x ∗ a) ∗ (y ∗ b)) = inf
α∈Λ

(hX)α((x ∗ a) ∗ (y ∗ b))

≥ inf
α∈Λ

{(hX)α(x ∗ y) ∩ (hX)α(a ∗ b)}

=[inf
α∈Λ

(hX)α(x ∗ y)] ∩ [ inf
α∈Λ

(hX)α(a ∗ b)]

=((∩α∈Λ(hX)α)(x ∗ y)) ∩ ((∩α∈Λ(hX)α)(a ∗ b))

which shows that ∩α∈Λ(HX)α is hesitant fuzzy normal. By Proposition 3.9, ∩α∈Λ(HX)α is an

int-soft normal subalgebra of X. □

The union of any set of hesitant fuzzy normal subalgebra of a B-algebra X need not be a

hesitant fuzzy normal subalgebra of X.
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Example 3.15. Let X := {0, 1, 2, 3, 4, 5} be a B-algebra as in Example 3.10. Let HX :=

{(x, hX(x))|x ∈ X} and GX := {(x, gX(x))|x ∈ X} be hesitant fuzzy sets of X defined as follows:

hX : X → P([0, 1]), x 7→
{
γ3 if x ∈ {0, 4}
γ1 if x ∈ {1, 2, 3, 5}

gX : X → P([0, 1]), x 7→
{
γ3 if x ∈ {0, 5}
γ2 if x ∈ {1, 2, 3, 4}

where γ1 ⊊ γ2 ⊊ γ3 ⊆ [0, 1]. It is easy to check that HX and GX are hesitant fuzzy subalgebras

of X. But HX ∪GX is not a hesitant fuzzy subalgebra of X because

(hX ∪ gX)(4) ∩ (hX ∪ gX)(5) =(hX(4) ∪ gX(4)) ∩ (hX(5) ∪ gX(5))
=(γ3 ∪ γ2) ∩ (γ1 ∪ γ3) = γ3

⊈γ2 = γ1 ∪ γ2 = hX(2) ∪ gX(2)
=(hX ∪ gX)(2) = (hX ∪ gX)(4 ∗ 5).

Since every hesitant fuzzy normal subalgebra of a B-algebra X is a hesitant fuzzy subalgebra of

X, the union of hesitant fuzzy normal subalgebra need not be a hesitant fuzzy normal subalgebra

of a B-algebra.

4. Quotient B-algebras induced by a hesitant fuzzy normal subalgebra

Let HX := {(x, hX(x))|x ∈ X} be a hesitant fuzzy normal subalgebra of a B-algebra X. For

any x, y ∈ X, we define a binary operation “ ∼hX ” onX as follows: x ∼hX y ⇔ hX(x∗y) = hX(0).

Lemma 4.1. The operation ∼hX is an equivalence relation on a B-algebra X.

Proof. Obviously, it is reflexive. Let x ∼hX y. Then hX(x∗y) = hX(0). It follows from Proposition

3.12 that hX(0) = hX(x ∗ y) = hX(y ∗ x). Hence ∼hX is symmetric. Let x, y, z ∈ X be such that

x ∼hX y and y ∼hX z. Then hX(x ∗ y) = hX(0) and hX(y ∗ z) = hX(0). Using Proposition 3.12,

(3.3), (B1), (B2) and (3.2), we have hX(0) = hX(x ∗ y) ∩ hX(y ∗ z) = hX(x ∗ y) ∩ hX(z ∗ y) ⊆
hX((x ∗ z) ∗ (y ∗ y)) = hX((x ∗ z) ∗ 0) = hX(x ∗ z) ⊆ hX(0). Hence hX(x ∗ z) = hX(0), i.e., ∼hX is

transitive. Therefore “ ∼hX ” is an equivalence relation on X. □

Lemma 4.2. For any x, y, p, q ∈ X, if x ∼hX y and p ∼hX q, then x ∗ p ∼hX y ∗ q.

Proof. Let x, y, p, q ∈ X be such that x ∼hX y and p ∼hX q. Then hX(x ∗ y) = hX(y ∗x) = hX(0)

and hX(p∗q) = hX(q∗p) = hX(0). Using (3.3) and (3.2), we have hX(0) = hX(x∗y)∩hX(p∗q) ⊆
hX((x ∗ p) ∗ (y ∗ q)) ⊆ hX(0). Hence hX((x ∗ p) ∗ (y ∗ q)) = hX(0). By similar way, we get

hX((y ∗ q) ∗ (x ∗ p)) = hX(0). Therefore x ∗ p ∼hX y ∗ q. Thus “ ∼hX ” is a congruence relation

on X. □
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Denote (hX)x and X/hX the equivalence class containing x and the set of all equivalence classes

of X, respectively, i.e., (hX)x := {y ∈ X|y ∼hX x} and X/hX := {(hX)x|x ∈ X}. Define a binary

relation • on X/hX as follows: (hX)x • (hX)y = (hX)x∗y for all (hX)x, (hX)y ∈ X/hX . Then this

operation is well-defined by Lemma 4.2.

Theorem 4.3. If HX := {(x, hX(x))|x ∈ X} is a hesitant fuzzy normal subalgebra of a B-algebra

X, then the quotient algebra X/hX := (X/hX , •, (hX)0) is a B-algebra.

Proof. Straightforward. □

Proposition 4.4. Let µ : X → Y be a homomorphism of B-algebras. If HY := {(y, hY (y))|y ∈
Y } is a hesitant fuzzy normal subalgebra of Y , then (hY ◦ µ,X) is a hesitant fuzzy normal

subalgebra of X.

Proof. For any x, y, a, b ∈ X, we have

(hY ◦ µ)((x ∗X a) ∗X (y ∗X b)) =hY (µ((x ∗X a) ∗X (y ∗X b))

=hX((µ(x) ∗Y µ(a)) ∗Y (µ(y) ∗Y µ(b)))
⊇hY (µ(x) ∗Y µ(y)) ∩ hY (µ(a) ∗Y µ(b))
=hY (µ(x ∗X y)) ∩ hY (µ(a ∗X b))

=(hY ◦ µ)(x ∗X y) ∩ (hY ◦ µ)(a ∗X b).

Hence hY ◦µ is hesitant fuzzy normal. By Proposition 3.9, (hY ◦µ,X) is a hesitant fuzzy normal

subalgebra of X. □

Proposition 4.5. Let HX be a hesitant fuzzy normal subalgebra of a B-algebra X. The

mapping γ : X → X/hX , given by γ(x) := (hX)x, is a surjective homomorphism, and Kerγ =

{x ∈ X|γ(x) = (hX)0} = XhX
.

Proof. Let (hX)x ∈ X/hX . Then there exists an element x ∈ X such that γ(x) = (hX)x. Hence

γ is surjective. For any x, y ∈ X, we have γ(x ∗ y) = (hX)x∗y = (hX)x • (hX)y = γ(x) •γ(y). Thus
γ is a homomorphism. Moreover, Ker γ = {x ∈ X|γ(x) = (hX)0} = {x ∈ X|x ∼hX 0} = {x ∈
X|hX(x) = hX(0)} = XhX

. □

Example 4.6. Let X = {0, 1, 2, 3} be a B-algebra ([4]) with the following Cayley table:

∗ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 1 0 3

3 3 2 1 0
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Let HX be a hesitant fuzzy set defined by

hX : X → P(U), x 7→
{
γ2 if x ∈ {0, 2}
γ1 if x ∈ {1, 3}

where γ1 ⊊ γ2 ⊆ [0, 1]. It is easy to check that HX is a hesitant fuzzy normal subalgebras of X.

Then XhX
= {x ∈ X|hX(x) = hX(0)} = {0, 2}. Define x ∼hX y if and only if hX(x ∗ y) = hX(0).

Then (hX)0 = {x ∈ X|x ∼hX 0} = {x ∈ X|hX(x ∗ 0) = hX(0)} = {0, 2} and (hX)1 = {x ∈
X|x ∼hX 1} = {x ∈ X|hX(x ∗ 1) = hX(0)} = {1, 3} Hence X/hX = {(hX)0, (hX)1}. Let

φ : X → X/hX be a map defined by φ(0) = φ(2) = (hX)0 and φ(1) = φ(3) = (hX)1. It is easy

to check that φ is a homomorphism and Kerφ = {x ∈ X|φ(x) = (hX)0} = {x ∈ X|x ∼hX 0} =

{x ∈ X|hX(x) = hX(0)} = XhX
.

Theorem 4.7. Let X := (X; ∗X , 0X) be a B-algebra and Y := (Y ; ∗Y , 0Y ) be a B-algebra and let

µ : X → Y be an epimorphism. If HY := {(y, hY )|y ∈ Y } is a hesitant fuzzy normal subalgebra

of Y , then the quotient algebra X/(hY ◦ µ) := (X/(hY ◦ µ), •X , (hY ◦ µ)0X ) is isomorphic to the

quotient algebra Y/hX := (Y/hY , •Y , (hY )0Y ).

Proof. By Theorem 4.3 and Proposition 4.4, X/hY ◦µ : (X/(hY ◦µ), •X , (hY ◦µ)0X ) is a B-algebra

and Y/hY := (Y/hX , •Y , (hY )0Y ) is a B-algebra. Define a map

η : X/(hY ◦ µ) → Y/hY , (hY ◦ µ)x 7→ (hY )µ(x)

for all x ∈ X. Then the function η is well-defined. In fact, assume that (hY ◦ µ)x = (hY ◦ µ)y for

all x, y ∈ X. Then we have hY (µ(x)∗Y µ(y)) = hY (µ(x∗X y)) = (hY ◦µ)(x∗X y) = (hY ◦µ)(0X) =
hY (µ(0X)) = hY (0Y ). Hence (hY )µ(x) = (hY )µ(y).

For any (hY ◦µ)x, (hY ◦µ)y ∈ X/(hY ◦µ), we have η((hY ◦µ)x •X (hY ◦µ)y) = η((hY ◦µ)x∗y) =
(hY )µ(x∗Xy) = (hY )µ(x)∗Y µ(y) = (hY )µ(x) • (hY )µ(y) = η((hY ◦ µ)x) •Y η((hY ◦ µ)y). Therefore η is a

homomorphism.

Let (hY )a ∈ Y/hY . Then there exists x ∈ X such that µ(x) = a since µ is surjective. Hence

η((hX ◦ µ)x) = (hY )µ(x) = (hY )a and so η is surjective.

Let x, y ∈ X be such that (hY )µ(x) = (hY )µ(y). Then we have (hY ◦µ)(x∗X y) = hY (µ(x∗X y)) =
hY (µ(x) ∗Y µ(y)) = hY (0Y ) = hY (µ(0X)) = (hY ◦ µ)(0X). It follows that (hY ◦ µ)x = (hY ◦ µ)y.
Thus η is injective. □

The homomorphism π : X → X/hX , x → (hX)x, is called the natural homomorphism of

X onto X/hX . In Theorem 4.7, if we define natural homomorphisms πX : X → X/hY ◦ µ and

πY : Y → Y/hY then it is easy to show that η◦πX = πY ◦µ, i.e., the following diagram commutes.
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X
µ−−−→ Y

πX

y πY

y
X/(hY ◦ µ) η−−−→ Y/hY .

Proposition 4.8. Let HX be a hesitant fuzzy normal subalgebra of a B-algebras X. If J is a

normal subalgebra of X, then J/hX is a normal subalgebra of X/hX .

Proof. Let HX be a hesitant fuzzy normal subalgebra of a B-algebras X and let J be a normal

subalgebra ofX. Then for any x, y ∈ J , x∗y ∈ J . Let (hX)x, (hX)y ∈ J/hX . Then (hX)x•(hX)y =
(hX)x∗y ∈ J/hX . Hence J/hX = {(hX)x|x ∈ J} is a subalgebra of X/hX .

For any x ∗ y, a ∗ b ∈ J , (x ∗ a) ∗ (y ∗ b) ∈ J , so for any (hX)x • (hX)y, (hX)a • (hX)b ∈ J/hX , we

have ((hX)x • (hX)a) • ((hX)y • (hX)b) = (hX)x∗a • (hX)y∗b = (hX)(x∗a)∗(y∗b) ∈ J/hX . Thus J/hX
is a normal subalgebra of X/hX . □

Theorem 4.9. LetHX be a hesitant fuzzy normal subalgebra of a B-algebrasX. If J∗ is a normal

subalgebra of a B-algebra X/hX , then there exists a normal subalgebra J = {x ∈ X|(hX)x ∈ J∗}
in X such that J/hX = J∗.

Proof. Since J∗ is a normal subalgebra of X/hX , so (hX)x • (hX)y = (hX)x∗y ∈ J∗ for any

(hX)x, (hX)y ∈ J∗. Thus x ∗ y ∈ J for any x, y ∈ J . And (hX)x∗a • (hX)y∗b = (hX)(x∗a)∗(y∗b) ∈ J∗

for any (hX)x∗y, (hX)a∗b ∈ J∗. Thus (x ∗ a) ∗ (y ∗ b) ∈ J for any x ∗ y, a ∗ b ∈ J . Therefore J is a

normal subalgebra of X. By Proposition 4.5, we have

J/hX ={(hX)j|j ∈ J}
={(hX)j|∃(hX)x ∈ J∗ such that j ∼hX x}
={(hX)j|∃(hX)x ∈ J∗ such that (hX)x = (hX)j}
={(hX)j|(hX)j ∈ J∗} = J∗.

Theorem 4.10. Let HX be a hesitant fuzzy normal subalgebra of a B-algebra X. If J is a

normal subalgebra of X, then
X/hX
J/hX

∼= X/J .

Proof. Note that
X/hX
J/hX

= {[(hX)x]J/hX
|hX ∈ X/hX}. If we define φ :

X/hX
J/hX

→ X/J by

φ([(hX)x]J/hX
) = [x]J = {y ∈ X|x ∼J y}, then it is well defined. In fact, suppose that

[(hX)x]J/hX
= [(hX)y]J/hX

. Then (hX)x ∼J/hX (hX)y and so (hX)x∗y = (hX)x • (hX)y ∈ J/hX .

Hence x ∗ y ∈ J . Therefore x ∼J y, i.e., [x]J = [y]J . Given [(hX)x]J/hX
, [(hX)y]J/hX

∈ X/hX
J/hX

, we

have φ([(hX)x]J/hX
• [(hX)y]J/hX

) = φ([(hX)x • (hX)y]J/hX
) = [x ∗ y]J = [x]J ∗ [y]J

= φ([(hX)x]J/hX
) ∗ φ([(hX)y]J/hX

). Hence φ is a homomorphism.
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Obviously, φ is onto. Finally, we show that φ is one-to-one. If φ([(hX)x]J/hX
) = φ([(hX)y]J/hX

),

then [x]J = [y]J , i.e., x ∼J y. If (hX)a ∈ [(hX)x]J/hX
, then (hX)a ∼J/hX (hX)x and hence

(hX)a∗x ∈ J/hX . It follows that a ∗ x ∈ J , i.e., a ∼J x. Since ∼J is an equivalence relation,

a ∼J y and so Ja = Jy. Hence a ∗ y ∈ J and so (hX)a∗y ∈ J/hX . Therefore (hX)a ∼J/hX (hX)y.

Hence (hX)a ∈ [(hX)y]J/hX
. Thus [(hX)x]J/hX

⊆ [(hX)y]J/hX
. Similarly, we obtain [(hX)y]J/hX

⊆
[(hX)x]J/hX

. Therefore [(hX)x]J/hX
= [(hX)y]J/hX

. This completes the proof. □
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IMPULSIVE PERIODIC SOLUTIONS OF SECOND ORDER

DIFFERENTIAL EQUATIONS WITH SINGULARITY

SHENGJUN LI1,2, YANHUA WANG1

Abstract. In this paper, we study the impulsive periodic solutions of second

order singular ordinary differential equations. The proof of the main result

relies on a nonlinear alternative principle of Leray-Schauder, together with
a truncation technique and the result is applicable to the case of a strong

singularity as well as the case of a weak singularity.

1. Introduction

Impulsive effects occur widely in many evolution processes in which their states
are changed abruptly at certain moments of time, for example, in population bi-
ology, the radiation of electromagnetic waves, the spread of heat, the diffusion of
chemicals, the maintenance of a species through instantaneous stocking, harvesting.
The impulsive diffferential equation is also an adequate apparatus for the mathe-
matical simulation of such processes and phenomena. For the general aspects of
impulsive differential equations, we refer the reader to the classical monograph [9].

In this paper, we study the existence of positive solution for the periodic bound-
ary value problem with impulse effects:{

x′′ + a(t)x = f(t, x), t ∈ J′,
x(0)− x(T ) = x′(0)− x′(T ) = 0,

(1.1)

under the impulse conditions

−∆x′|t=tk = Ik(x(tk)), k = 1, 2, . . . , p,(1.2)

where J = [0, T ], t1, t2, . . . , tp ∈ J with 0 = t0 < t1 < · · · < tp < tp+1 = T ,
J′ = J \ {t1, t2, . . . , tp}; the nonlinearity f(t, x) is continuous in (t, x) ∈ J′ × R,
f(t+k , x), f(t−k , x) exist, f(t−k , x) = f(tk, x) and T−periodic in t; ∆x′|t=tk = x′(t+k )−
x′(t−k ) with x′(t±k ) = lim

t→t±k
x′(t); a(t) is continuous, T−periodic function; the impul-

sive Ik : R → R(k = 1, . . . , p) are continuous functions. We are mainly interested
in the case that f(t, x) presents a repulsive singularity at x = 0, which means that

lim
x→0+

f(t, x) = +∞, uniformly in t.

By an impulsive periodic solution of (1.1), we mean that x ∈ PC(J) satisfying
(1.1). PC(J) denotes the class of the maps x : J→ R such that x(t) is continuous at
t 6= tk, and left continuous at t = tk, the right limit x(t+k ) exists for k = 1, 2, . . . , p.
Note that PC(J) is a Banach space with the norm ‖x‖PC = supt∈J |x(t)|.

2010 Mathematics Subject Classification. 34C25.
Key words and phrases. Periodic solution; Impulse; Singularity; Leray-Schauder alternative

principle.
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Impulsive differential equations have been studied by many authors [3, 6, 16,
17, 20, 21, 22]. Some classical tools have been used to study such problems in the
literature. These classical techniques include the obtention of a priori bounds for
the possible solutions and then the applications of the coincidence degree theory
of Mawhin [18], the method of upper and lower solutions with monotone technique
[2] and some fixed point theorems [4] and variational methods [23, 24].

On the other hand, singular periodic problems without impulse effects have
also been investigated extensively in the literature by variational methods [15],
or topological methods [5, 8, 11, 12, 13], which were started with the pioneering
paper of Lazer and Solimini [10], in this paper, they proved that a necessary and
sufficient condition for the existence of a positive periodic solution for equation

x′′(t) =
1

xλ
+ e(t)

is that the mean value of e is negative, ē < 0, here λ ≥ 1, which is a strong force
condition in a terminology first introduced by Gordon [7]. Moreover, if 0 < λ < 1,
which corresponds to a weak force condition, they found example of functions e
with negative mean values and such that periodic solutions do not exist. Since
then, the strong force condition became standard in the related works; see, for
instance [26, 27]. The study of impulsive singular problems is more recent and
the number of references is much smaller [14, 21]. In this paper, we will apply a
nonlinear alternative principle of Leray-Schauder to study the impulsive periodic
solutions of second-order singular differential equations (1.1) and (1.2). Our main
aim is to obtain some new existence results for positive impulsive periodic solutions
of the singular problem

x′′(t) + a(t)x =
1

xα
+ µxβ ,(1.3)

−∆x′|t=tk = ckx, k = 1, . . . , p,

where α, β > 0 and µ ∈ R is a given parameter. Here we emphasize that new
results are applicable to the case of a strong singularity as well as the case of a
weak singularity.

The rest of this paper is organized as follows. In Section 2, some preliminary
results will be given. In Section 3, we will state and prove the main results. To
illustrate the new results, some applications are also given.

2. preliminaries

Let us consider the linear equation

x′′ + a(t)x = 0.(2.1)

When (2.1) is nonresonant, i.e., its unique T -periodic solution is the trivial one, as
a consequence of Fredholm’s alternative, the nonhomogeneous equation

x′′ + a(t)x = h(t)(2.2)

admits a unique T -periodic solution which can be written as

x(t) =

∫ T

0

G(t, s)h(s)ds,
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where G(t, s) is the Green’s function of (2.1) associated with periodic boundary
conditions

x(0) = x(T ), x′(0) = x′(T ).(2.3)

Throughout this paper, we always assume that the following standing hypothesis
is satisfied:

(H) a(t) is a continuous T -function and the Green’s function of (2.1) is positive
for all (t, s) ∈ [0, T ]× [0, T ].

In other words, the strict anti-maximum principle holds for (2.1)-(2.3). In order
to guarantee the positivity of G(t, s), it is prove in [25] that if a(t) satisfies a � 0
then the positivity of G(t, s) is equivalent to

λ1(a) > 0,

where the notation a � 0 means that a(t) ≥ 0 for all t ∈ [0, T ] and a(t) > 0 for t in
a subset of positive measure, λ1(a) denotes the first anti-periodic eigenvalue of

x′′ + (λ+ a(t))x = 0

subject to the anti-periodic boundary conditions

x(0) = −x(T ), x′(0) = −x′(T ).

Now we make condition (H) clear. When a(t) ≡ k2, condition (H) is equivalent
to saying that 0 < k2 ≤ λ1 = (π/T )2, where λ1 is the first eigenvalue of the
homogeneous equation x′′ + k2x = 0 with Dirichlet boundary conditions x(0) =
x(T ) = 0. For a non-constant function a(t), there is an Lp-criterion proved in [25].
To describe these, we use ‖ · ‖q to denote the usual Lq-norm over (0, T ) for any
given exponent q ∈ [1,∞]. The conjugate exponent of q is denoted by p : 1

p + 1
q = 1.

Let M(q) denote the best Sobolev constant in the following inequality

C‖u‖2q ≤ ‖u′‖22 for all u ∈ H1
0 (0, T ).

The explicit formula for M(q) is

M(q) =

{
2π

qT 1+2/q

(
2
q+2

)1−2/q (
Γ(1/q)

Γ(1/2+1/q)

)2

, for 1 ≤ q <∞,
4
T , for q =∞,

where Γ(·) is the Gamma function of Euler.
Lemma 2.1 [25] Assume that a � 0 and a ∈ Lp[0, T ] for some 1 ≤ p ≤ +∞. If

‖a‖p <M(2q),

then (2.1) satisfies the standing hypothesis (H), i.e, G(t, s) > 0 for all (t, s) ∈
[0, T ]× [0, T ].

When a(t) ≡ k2 and 0 < k ≤≤ π/T , we have

G(t, s) =

{
sin k(t−s)+sin k(T−t+s)

2k(1−cos kT ) , 0 ≤ s ≤ t ≤ T,
sin k(s−t)+sin k(T−s+t)

2k(1−cos kT ) , 0 ≤ t ≤ s ≤ T.

Under hypothesis (H), we always denote

M = max
0≤s,t≤T

G(t, s), m = min
0≤s,t≤T

G(t, s), σ =
m

M
.

Thus M > m > 0 and 0 < σ < 1.
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Now, we define the operator T : PC(J)→ PC(J) by

(Tx)(t) =

∫ T

0

G(t, s)f(s, x(s))ds+

p∑
k=1

G(t, tk)Ik(x(tk)).

Lemma 2.3 T is continuous and completely continuous. Moreover, x(t) is an
impulsive periodic solution of (1.1) and (1.2) if and only if x(t) is a fixed point of
T .
Proof. The proof is similar to that of [1], and therefore we omit the detail.

3. Main results

In this section, we state and prove the new existence results for (1.1). In order
to prove our main results, the following nonlinear alternative of Leray-Schauder is

need, which can be found in [19]. Let us define the function ω(x) =
∫ T

0
G(x, s)ds

and use ‖ · ‖1 denote the usual L1− norm over (0, T ), by ‖ · ‖ the supremum norm
of C[0, T ].
Lemma 3.1 Assume Ω is a relatively compact subset of a convex set E in a normed
space X. Let T : Ω→ E be a compact map with 0 ∈ Ω. Then one of the following
two conclusions holds:

(i) T has at least one fixed point in Ω.
(ii) There exist u ∈ ∂Ω and 0 < λ < 1 such that u = λTu.

Now we present our main existence result of positive solution to problem (1.1).
Theorem 3.2 Suppose that (1.1) satisfies (H). Furthermore, assume that there
exists a constant r > 0 such that

(H1) There exists a continuous function φr � 0 such that f(t, x) ≥ φr(t) for all
(t, x) ∈ [0, T ]× (0, r].

(H2) There exist continuous, non-negative functions g(x), h(x) and ψ(x) on
(0,∞) such that

f(t, x) ≤ g(x) + h(x), for all (t, x) ∈ [0, T ]× (0,∞),

Ik(x) > 0, k = 1, . . . , p,

p∑
k=1

Ik(x) ≤ ψ(x) for all x ∈ (0,∞),

where g(x) > 0 is non-increasing, h(x)/g(x) and ψ(x) is non-decreasing.

(H3) The following inequality holds

r −Mψ(r)

g(σr)
{

1 + h(r)
g(r)

} > ‖ω‖,

.

Then (1.1) has at least one positive T -periodic solution x with 0 < ‖x‖ ≤ r.
Proof. Since (H3) holds, let N0 = {n0, n0 + 1, · · · }, we can choose n0 ∈ {1, 2, · · · }
such that

1

n0
< σr and

‖ω‖g(σr)

{
1 +

h(r)

g(r)

}
+Mψ(r) +

1

n0
< r.

Consider the family of equations

(3.1) x′′(t) + a(t)x(t) = λfn(t, x(t)) +
a(t)

n
,
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associated with boundary conditions

(3.2) x′(t−k ) = x′(t+k ) + Ik,n(x(tk)), k = 1, . . . , p,

where λ ∈ [0, 1], n ∈ N0 and

fn(t, x) =

{
f(t, x) if x ≥ 1/n,
f(t, 1/n) if x ≤ 1/n.

and

Ik,n(x) =

{
Ik(x) if x ≥ 1/n,
Ik(1/n) if x ≤ 1/n.

Problem (3.1)-(3.2) is equivalent to the following fixed point of the operator equa-
tion

x(t) = λ

∫ T

0

G(t, s)fn(s, x(s))ds+

p∑
k=1

G(t, tk)Ik,n(x(tk)) +
1

n
(3.3)

= λ(Tnx)(t) +
1

n
.

Now we show ‖x‖ 6= r for any fixed point x of (3.3). If not, assume that x is a
fixed point of (3.3) for some λ ∈ [0, 1] such that ‖x‖ = r. Note that

x(t)− 1

n
= λ

∫ T

0

G(t, s)fn(s, x(s))ds+

p∑
k=1

G(t, tk)Ik,n(x(tk))

≥ λm

∫ T

0

fn(s, x(s))ds+m

p∑
k=1

Ik,n(x(tk))

= σMλ

∫ T

0

fn(s, x(s))ds+ σM

p∑
k=1

Ik,n(x(tk))

≥ σ max
t∈[0,T ]

{
λ

∫ T

0

G(t, s)fn(s, x(s))ds+

p∑
k=1

G(t, tk)Ik,n(x(tk))

}

= σ‖x− 1

n
‖.

By the choice of n0, 1/n ≤ 1/n0 < σr. Hence, we have

x(t) ≥ σ‖x− 1

n
‖+

1

n
≥ σ

(
‖x‖ − 1

n

)
+

1

n
≥ σr, for all 0 ≤ x ≤ T.
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Thus, from condition (H2) we have

x(t) = λ

∫ T

0

G(t, s)fn(s, x(s))ds+

p∑
k=1

G(t, tk)Ik,n(x(tk)) +
1

n

= λ

∫ T

0

G(t, s)f(s, x(s))ds+

p∑
k=1

G(t, tk)Ik(x(tk)) +
1

n

≤
∫ T

0

G(t, s)f(s, x(s))ds+

p∑
k=1

G(t, tk)Ik(x(tk)) +
1

n

≤
∫ T

0

G(x, s)g(x(s))

{
1 +

h(x(s))

g(x(s))

}
ds+Mψ(x(tk)) +

1

n

≤ g(σr)

{
1 +

h(r)

g(r)

}∫ T

0

G(t, s)ds+Mψ(r) +
1

n

≤ g(σr)

{
1 +

h(r)

g(r)

}
‖ω‖+Mψ(r) +

1

n0
.

Therefore,

r = ‖x‖ ≤ g(σr)

{
1 +

h(r)

g(r)

}
‖ω‖+

1

n0
.

This is a contradiction to the choice of n0, so ‖x‖ 6= r.
Using Lemma 3.1, we know that

x(t) = (Tnx)(t) +
1

n

has a fixed point, denoted by xn, in Br = {x ∈ PC(J) : ‖x‖ < r}, that is, the
equation

x′′(t) + a(t)x(t) = fn(t, x(t)) +
a(t)

n
,(3.4)

has a periodic solution xn with ‖xn‖ < r. Since xn(t) ≥ 1/n for all t ∈ [0, T ] and
xn is actually a positive solution of (3.4).

Next we claim that these solutions xn have a uniform positive lower bound, i.e.,
there exists a constant δ > 0, independent of n ∈ N0, such that

min
t∈[0,T ]

xn(t) ≥ δ

for all n ∈ N0. To see this, we know from (H1) that there exists a function φr � 0
such that f(t, x) ≥ φr(t) for (t, x) ∈ [0, T ] × (0, r]. Now let xr(t) be the unique
periodic solution to the problem (2.2) with h = φr(t). Then

xr(t) =

∫ T

0

G(t, s)φr(s)ds ≥M‖φr‖1 > 0.

Let

E =

{
t ∈ [0, T ] : xn(t) ≥ 1

n

}
, E′ = [0, T ]\E.
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So we have

x(t) =

∫ T

0

G(t, s)fn(s, xn(s))ds+

p∑
k=1

G(t, tk)Ik,n(x(tk)) +
1

n

=

∫
E
G(t, s)f(s, xn(s))ds+

∫
E′
G(t, s)f

(
s,

1

n

)
ds+

p∑
k=1

G(t, tk)Ik(x(tk)) +
1

n

≥
∫
E
G(t, s)φrds+

∫
E′
G(t, s)φrds

=

∫ T

0

G(t, s)φr(s)ds ≥M‖φr‖1 =: δ.

In order to pass the solutions of the truncation equation (3.1) (with λ = 1) to
that of the original equation (1.1), we need the fact ‖x′n‖ is bounded. Now we show
that

(3.5) ‖x′n‖ ≤ H

for some constant H > 0 and for all n ≥ n0.
Integrating (3.1) from 0 to T (with λ = 1), we obtain∫ T

0

a(t)xn(t)dt =

∫ T

0

[
fn(t, xn(t)) +

a(t)

n

]
dt.

Since x(0) = x(T ), there exists t0 ∈ [0, T ] such that x′n(t0) = 0, therefore

‖x′n‖ = max
0≤t≤T

|x′n(t)| = max
0≤t≤T

∣∣∣∣∫ t

t0

x′′n(s)ds

∣∣∣∣
= max

0≤t≤T

∣∣∣∣∫ t

t0

[
fn(s, xn(s)) +

a(s)

n
− a(s)xn(s)

]
ds

∣∣∣∣
≤
∫ T

0

[
fn(s, xn(s)) +

a(s)

n
ds+

∫ T

0

a(s)xn(s)

]
ds

= 2

∫ T

0

a(s)xn(s)ds = 2r‖a‖1 =: H.

The fact ‖xn‖ < r and ‖x′n‖ ≤ H show that {xn}n∈N0 is a bounded and
equi-continuous family on [0, T ]. Thus the Arzela-Ascoli Theorem guarantees that
{xn}n∈N0

has a subsequence {xni
}i∈N converging uniformly on [0, T ] to a function

x ∈ C[0, T ]. f is uniformly continuous since xn satisfies δ ≤ xn(t) ≤ r for all
t ∈ [0, T ]. Moreover, xni satisfies the integral equation

xni
(t) =

∫ T

0

G(t, s)f(s, xni
(s))ds+

p∑
i=1

G(t, ti)Ik(xni
(t)) +

1

ni
.

Letting i→∞, we arrive at

x(t) =

∫ T

0

G(t, s)f(s, x(s))ds+

p∑
i=1

G(t, ti)Ik(x(t)).

Therefore, x is a positive periodic solution of (1.1) and satisfies 0 < ‖x‖ ≤ r.

Corollary 3.3 Assume that α > 0, β ≥ 0, ck > 0, k = 1, 2, . . . , p,M
p∑
k=1

ck < 1.
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(i) if β < 1, then (1.3) has at least one positive periodic solution for each
µ > 0.

(ii) if β ≥ 1, then (1.3) has at least one positive periodic solution for each
0 < µ < µ∗, where µ∗ is some positive constant.

Proof. We will apply Theorem 3.2. To this end, the assumption (H1) is fulfilled
with φr(t) = r−α. If we take

g(x) = x−α, h(x) = µxβ , ψ(x) =

p∑
k=1

ckx,

then conditions (H2) is satisfied. Let ω(t) =
∫ T

0
G(t, s)ds. Now the existence con-

dition (H3) becomes

µ <

r

(
1−M

p∑
k=1

ck

)
−M

p∑
k=1

ck

‖ω‖rα+β(σr)−α
− 1

rα+β

for some r > 0. So (1.3) has at least one positive periodic solution for

0 < µ < µ∗ := sup
r>0

r

(
1−M

p∑
k=1

ck

)
−M

p∑
k=1

ck

‖ω‖rα+β(σr)−α
− 1

rα+β
.

Note that µ∗ =∞ if Since M
p∑
k=1

ck < 1, it is easy to see that µ∗ =∞ if β < 1 and

µ∗ <∞ if β ≥ 1. We have (i) and (ii).

Acknowledgment

This work is supported by the National Natural Science Foundation of Chi-
na (Grant No.11461016), Hainan Natural Science Foundation(Grant No.117005),
China Postdoctoral Science Foundation funded project (Grant No.2017M612577),
Young Foundation of Hainan University (Grant No.hdkyxj201718).

References

1. R.P.Agarwal, D. O’Regan, Multiple nonnegative solutions for second order impulsive differ-
ential equations, Appl. Math. Comput. 114(2000), 51-59.

2. D. D. Bainov, M. B. Dimitrova and A. B. Dishliev, Oscillation of the solutions of impul-

sive differential equations and inequalities with retarded argument, Rocky Mount. J. Math.
28(1998), 25-40.

3. D. Chen, B. Dai, Periodic solution of second order impulsive delay differential systems via

variational method, Appl. Math. Lett. 38 (2014), 61-66.
4. L. Chen, C. C. Tisdell, R. Yuan, On the solvability of periodic boundary value problems with

impulse. J. Math. Anal. Appl. 331(2007). 233-244.
5. J. Chu, S. Li, H. Zhu, Nontrivial periodic solutions of second order singular damped dynamical

systems, Rocky Mountain J. Math., 45 (2015), 457C474.

6. B. Dai, D. Zhang, The existence and multiplicity of solutions for second-order impulsive
differential equations on the half-line, Results Math. 63 (2013), 135-149.

7. W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math.
Soc. 204(1975), 113-135.

8. R. Hakl, P. J. Torres, On periodic solutions of second-order differential equations with
attractive-repulsive singularities. J. Differential Equations 248 (2010), 111-126.

9. V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of impulsive differential equa-
tions, World Scientific, Singapore, 1989.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.6, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1102 SHENGJUN LI ET AL 1095-1103



IMPULSIVE PERIODIC SOLUTIONS OF SECOND ORDER DIFFERENTIAL EQUATIONS 9

10. A.C. Lazer, S. Solimini, On periodic solutions of nonlinear differential equations with singu-
larities. Proc. Amer. Math. Soc. 99 (1987), 109-114.

11. S. Li, F. Liao, W. Xing, Periodic solutions of Liénard differential equations with singularity,

Electron. J. Differential Equations, 151 (2015), 1-12.
12. S. Li, W. Li, Y. Fu, Periodic orbits of singular radially symmetric systems, J. Comput. Anal.

Appl. 22 (2017), 393-401.

13. S. Li, Y. Zhu, Periodic orbits of radially symmetric Keplerian-like systems with a singularity,
J. Funct. Spaces, 2016, ID 7134135.

14. S. Li, X. Tian, H. Luo, Impulsive periodic solutions for a singular damped differential equation
via variational methods, J. Comput. Anal. Appl. 24 (2018), 848-858.

15. J. Li, S. Li, Z. Zhang, Periodic solutions for a singular damped differential equation, Bound.

Value Probl. 5 (2015).
16. R. Liang, Z. Liu, Nagumo type existence results of Sturm-Liouville BVP for impulsive differ-

ential equations, Nonlinear Anal. 74 (2011), 6676-6685.

17. J.J. Nieto, D. O’Regan, Variational approach to impulsive differential equations. Nonlinear
Anal. Real World Appl. 10 (2009) , 680-690.

18. D. Qian, X. Li, Periodic solutions for ordinary differential equations with sublinear impulsive

effects. J. Math. Anal. Appl. 303 (2005), 288-303.
19. D. O’Regan, Existence theory for nonlinear ordinary differential equations, Kluwer Academic,

Dordrecht, 1997.

20. H. Shi, H. Chen, Multiplicity results for a class of boundary value problems with impulsive
effects, Math. Nachr. 289 (2016), 718-726.

21. J. Sun, D. O’Regan, Impulsive periodic solutions for singular problems via variational meth-

ods. Bull. Aust. Math. Soc.86 (2012), 193-204.
22. J. Sun, H. Chen, J. J. Nieto, M. Otero-Novoa, Multiplicity of solutions for perturbed second-

order Hamiltonian systems with impulsive effects. Nonlinear Anal. 72 (2010), 4575-4586.
23. J. Sun, H. Chen, J. J. Nieto, Infinitely many solutions for second-order Hamiltonian system

with impulsive effects. Math. Comput. Modelling. 54 (2011), 544-555.

24. Y. Tian, W. Ge, Applications of variational methods to boundary value problem for impulsive
differential equation. Proc. Edin. Math. Soc. 51 (2008), 509-527.

25. P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equa-

tions via a Krasnoselskii fixed point theorem, J. Differential Equations, 190 (2003), 643-662.
26. P. Yan, M. Zhang, Higher order nonresonance for differential equations with singularities,

Math. Methods Appl. Sci. 26(2003), 1067-1074.

27. M. Zhang, Periodic solutions of equations of Ermakov-Pinney type, Adv. Nonlinear Stud.
6(2006), 57-67.

1 College of Information Sciences and Technology, Hainan University, Haikou,

570228, China

2 School of Mathematics and Statistics, Central South University, Changsha, Hu-

nan, 410083, China
E-mail address: shjli626@126.com (S. Li)

E-mail address: yanhuawang80@126.com (Y. Wang)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 26, NO.6, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1103 SHENGJUN LI ET AL 1095-1103



On Gauss diagrams of Knots: A modern approach

Young Chel Kwun1
, Abdul Rauf Nizami2, Waqas Nazeer3

,

Mobeen Munir4 and Shin Min Kang5,6,∗

1Department of Mathematics, Dong-A University, Busan 49315, Korea
e-mail: yckwun@dau.ac.kr

2Department of Mathematics, Faculty of Information Technology, University of Central Punjab,
Lahore 54000, Pakistan

e-mail: arnizami@ucp.edu.pk

3Division of Science and Technology, University of Education, Lahore 54000, Pakistan
e-mail: nazeer.waqas@ue.edu.pk

4Division of Science and Technology, University of Education, Lahore 54000, Pakistan
e-mail: mmunir@ue.edu.pk

5Department of Mathematics and RINS, Gyeongsang National University, Jinju 52828, Korea
e-mail: smkang@gnu.ac.kr

6Center for General Education, China Medical University, Taichung 40402, Taiwan

Abstract

Gauss diagrams were introduced by Polyak and Viro as an appropriate device to
describe finite-type invariants, which now appear as a very convenient way of coding
knots in computer-recognizable form.
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1 Introduction

Gauss diagrams were introduced by Polyak and Viro [14] as an appropriate device to
describe finite type invariants in 1994.

Planar diagrams are convenient for presenting knots graphically, while Gauss diagrams
are suited better for coding knots in a computer-recognizable form.

Goussarov [7] proved that any Vassiliev invariant can be calculated as a function of ar-
row polynomials on the knot diagram. Polyak used in [15] the notion of chord diagrams to

define their representations in Gauss diagrams of plane curves. He also obtained invariants
of generic plane and spherical curves in a systematic way via Gauss diagrams. Moreover,

he proved that any Gauss diagram invariants are of finite degree. Fiedler showed in [6]
that Gauss diagram invariants can be effectively used to show that a given knot is not
isotopic to any closed braid. (Actually, it a well-known theorem of Alexander that each

∗ Corresponding author
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link in R
3 is isotopic to a closed braid. But this is no longer the case for knots in the

solid torus.) Mortier introduced in [10] decorated Gauss diagram as an efficient tool for
recovering a knot diagram from it, and established characterization of the decorated Gauss

diagrams of closed braids. Kauffman [9] gave a formula for Vassiliev invariants of a knot
in terms of its chord diagram, which was related the Gauss diagram of the knot. Ochiai
showed in [17] that the Gauss diagram formulas for the Kontsevich integral agree with the

formulas for Vassiliev invariants which are introduced by Polyak and Viro [14]. Recently,
Nizami [12] studied Kauffman bracket 2 and 3-strand braid links.

Our main contribution in this regard is the answer to the question “What happens to

the Gauss diagram if a knot is mirrored and what happens to it if a knot is reversed ?” We
prove that the Gauss diagram remains unchanged if a knot is mirrored, and is mirrored if

the knot is reversed.

This paper is organized as follows: Section 2 includes basic, relevant material (including
knots, braids, Gauss codes, Gauss diagrams, and Reidemeister moves) which is necessary

to understand the results. We tried to make it interesting, particularly for a new reader.
The results we got are presented in Section 3.

2 Preliminary Notions

This section is devoted to basic notions, relevant to Gauss diagrams.

2.1 Knots

A knot is an embedding of the unit circle S1 in R
3. A link is an embedding of a disjoint

union of such circles; each circle in a link is called a component. A 1-component link is

actually a knot.

Knots are usually studied via projecting them on a plan; a projection with extra
information of overcrossing and undercrossing is called the knot diagram.

undercrossing

overcrossing

Trefoil knot Hopf link

Two knots are called isotopic if one of them can be transformed to the other by a
diffeomorphism of the ambient space onto itself. A fundamental result about the isotopic

knot diagrams is:

Theorem 2.1. [18] Two knots K1 and K2 are equivalent if and only if a diagram of K1

can be transformed into a diagram of K2 by a finite sequence of ambient isotopies of the

plane and local (Reidemeister) moves:

R1 R2
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R3

An oriented knot is an image of an embedding of S1 into R
3 together with the choice

of one of the two possible directions on it. Each crossing of an oriented knot is either
positive or negative:

positive crossing negative crossing

The local writhe of a crossing is defined as +1 or -1 for positive or negative crossing,
respectively. The writhe (or total writhe) of a diagram is the sum of all the local writhes,

or, equivalently, the difference between the number of positive and negative crossings.

1

2

3

4

*

+

+

-

-

A knot with total writhe 0

The set of all knots that are equivalent to a knot K is called a class of K.

Remark 2.2. By a knot K we shall always mean a class of the knot K.

2.2 Braids

An n-strand braid is a set of n non intersecting smooth paths connecting n points on a

horizontal plane to n points exactly below them on another horizontal plane in an arbitrary
order. The smooth paths are called strands of the braid.

2 31

1 2 3

A 3-strand braid

The product ab of two n-strand braids is defined by putting the braid b below the braid

a and then gluing their common end points.

A braid with only one crossing is called the elementary braid; the ith elementary braid
xi with n strands is:
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. . .. . .

i i+11

1

n

ni i+1

xi

A useful property of elementary braids is that every braid can be written as a product

of elementary braids. For instance, the above 3-strand braid is x1x2x1x2.

The closure of a braid b is the link ̂b obtained by connecting the lower ends of b with
the corresponding upper ends.

b
̂b

Remark 2.3. 1. All braids are oriented from top to bottom.

2. By a braid b we shall mean the link ̂b.

3. By a braid knot we shall mean a knot obtained as a closure of a braid.

An important result connecting knots and braids is by Alexander:

Theorem 2.4. ( [1]) Each link can be represented as the closure of a braid.

2.3 Gauss Diagram

Planar diagrams are convenient for presenting knots graphically, while Gauss diagrams

are suited better for coding knots in a computer-recognizable form.
A Gauss diagram is a diagrammatic representation of the classical Gauss code of the

knot. The Gauss code is obtained from the oriented knot diagram by first labelling each
crossing with a naming label (such as 1, 2, . . .) and also indicating the crossing type (+1 or

−1). Then choose a basepoint on the knot diagram and begin walking along the diagram,
recording the name of the crossings encountered, their sign and whether the walk takes

you over or under that crossing. For example, if you go under crossing 1 whose sign is +
then you will record it as U1+. You may see the following knot along with its Gauss:

1

2

3

4

*

+

+

-

-

Gauss code: U1 − O2 − U3 + O4 + U2 − O1 − U4 + O3+

To form a Gauss diagram from a Gauss code, take an oriented circle with a basepoint
chosen on the circle. Walk along the circle marking it with the labels for the crossings in

the order of the Gauss code. Now draw chords between the points on the circle that have
the same label. Orient each chord from overcrossing site to undercrossing site. Mark each
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chord with +1 or −1 according to the sign of the corresponding crossing in the Gauss

code. The resulting labelled and basepointed graph is the (based) Gauss diagram for the
knot. See, for instance, the knot and its Gauss diagram:

1

2

3

4

*

+

+

-

-

K

1

1 2

3

4

3

4

2

*

-

-

+

+

Gauss diagram of K

Remark 2.5. 1. A knot can be uniquely recovered from its Gauss diagrams and also

from Gauss code.

2. Gauss diagrams are considered up to orientation-preserving homeomorphisms of the

circle.

2.4 Reidemeister moves for Gauss diagrams

As we know, two oriented knot diagrams represent the same knot if and only if they are
related by a sequence of oriented Reidemeister moves. The corresponding moves translated

into the language of Gauss diagrams are:

V Ω1

A B

V Ω2

+

-+

+

+

-
C

V Ω3(I)

+

- + + -

-
D

-

V Ω3(II)

3 The results

In this section we shall prove that the Gauss diagram remains unchanged if a knot is
mirrored, and it is mirrored if the knot is reversed. Here we also show that the Reidemeister

move V Ω3 for Gauss diagrams is a combination of the moves V Ω2 and V Ω′

3
, and that the

move V Ω′

3
is a combination of the moves V Ω2 and V Ω3.
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Theorem 3.1. (a) The Gauss diagram remains the same if a knot is mirrored. In this

case all the crossings switch their signs.

(b) The Gauss diagram is mirrored if a knot is reversed.

Proof. (a) In the mirror image K of a knot K the overcrossings remain overcrossings and

undercrossings remain undercrossings. So, the sequence of over and under crossings in the
Guass code of K remains the same as in the knot K. However, since the positive crossings

change to negative and negative to positive in K, the signs of chords in the Gauss diagram
of K change accordingly. You may observe some examples:

1.

*
1

2

3

4

5

-

-

-

-

-

x5

1

*
1

2

3

4

5

1

2

3

4

5

-

-
-

-

-

Gauss diagram of x5

1

*

1

2

3

4

5+

+

+

+

+

x5

1

*
1

2

3

4

5

1

2

3

4

5

+

+

+

+
+

Gauss diagram x5

1

2.

*
1

2

3

4

5

6

-

-

-

-

-

-

x3

1
x3

2

*

1

3 4

52

6

1

2

3 4

5

6

-

-

--

-

Gauss diagram of x3

1
x3

2

*

1

2

3

4

5

6

+

+

+

+

+

+

x3
1
x3

2

*

1

3 4

52

6

1

2

3 4

5

6

+ +

+

++

Gauss diagram of x3
1
x3

2

3.
1

2

3

4

*

+

+

-

-

K: Figure-eight knot

1

1 2

3

4

3

4

2

*

-

-

+

+

Gauss diagram of K
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1 2

3

4

*

+ + -

-

K

1

1 2

3

4

3

4

2

*

+

+

-

-

Gauss diagram of K

(b) The proof will be finished with just two reasons: When a knot K is reversed,
the sign of each crossing remains unchanged, a positive crossing remains positive and a

negative crossing remains negative. However, the Gauss code of −K reverses. Just have
a look at the examples:

1.

*
1

2

3

4

5

-

-

-

-

-

x5
1

*
1

2

3

4

5

1

2

3

4

5

-

-
-

-

-

Gauss diagram of x5
1

*

1

2

3

4

5

-

-

-

-

-

−x5

1

*

1

2

3

4

5

1

2

4

3

-

-
-

-

-

5

Gauss diagram of −x5

1

2.

*
1

2

3

4

5

6

-

-

-

-

-

-

x3
1x

3
2

*

1

3 4

52

6

1

2

3 4

5

6

-

-

--

-

Gauss diagram of x3
1x

3
2

* 1

2

3

4

5

6

-

-

-

-

-

-

−x3
1x

3
2

*

1

3 4

52

6

1

2

3 4

5

6

-

-

--

-

Gauss diagram of −x3
1x

3
2

3.
1

2

3

4

*

+

+

-

-

K: Figure-eight knot

1

1 2

3

4

3

4

2

*

-

-

+

+

Gauss diagram of K
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1

2

3

4

*

+

+

-

-

−K

1

1 2

3

4

3

4

2

*

+

-

-

+

Gauss diagram of −K

We now show that in case of Gauss diagrams the second and third Reidemeister moves

are related to two special moves, which we shall denote by V Ω′

3
:

-

- - - -

-E

V Ω′

3(I)

+
+

+ +

+

+

F

V Ω′

3(II)

Theorem 3.2. (a) Each of the moves V Ω3 is a combination of the moves V Ω2 and V Ω′

3
.

(b) Each of the moves V Ω′

3
is a combination of the moves V Ω2 and V Ω3.

Proof. (a) Here is the proof of the first part (which is denoted by C) of the V Ω3:

+ -

+

2

B

+

A
+ -

+

+ -

+

B
+

- E
+

-

+

- B

+

-+

1

Now goes D:

+ -

-

4
B

-

A +-

-

+-

-

B
+-

F
+

-

+

- B

-

+-

3
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(b) Just see the step-by-step application of the concerned moves:

-

-

-

6

A
+

-

D
+

-
A

-

- -

5

F goes in a similar way:

+

+

+

8

A
+

+

C
+

-

A

+

+

+

7
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Abstract

We give the Jones polynomial of the alternating links that correspond to a family
of positive-signed connected planar graphs. We first find the general form of the Tutte
polynomial of the family of graphs and then specializes it to the Jones polynomial.
Then we recover the flow and chromatic polynomials from it as special cases. Finally,
we give useful combinatorial information about the graph by evaluating the Tutte
polynomial at some special points.

2010 Mathematics Subject Classification: 05C31, 57M27

Key words and phrases: Tutte polynomial, Jones polynomial, flow polynomial,
chromatic polynomial

1 Introduction

The Tutte polynomial was introduced by Tutte [21] in 1954 as a generalization of chro-
matic polynomials studied by Birkhoff [1] and Whitney [24]. This graph invariant became
popular because of its universal property that any multiplicative graph invariant with a
deletion/contraction reduction must be an evaluation of it, and because of its applications
in computer science, engineering, optimization, physics, biology, and knot theory.

In 1985, Jones [10] revolutionized knot theory by defining the Jones polynomial as a
knot invariant via Von Neumann algebras. However, in 1987 Kauffman introduced in [13]
a state-sum model construction of the Jones polynomial that was purely combinatorial
and remarkably simple; we follow this construction.

Our primary motivation to study the Tutte polynomial came from the remarkable con-
nection between the Tutte and the Jones polynomials that up to a sign and multiplication

∗ Corresponding author
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by a power of t the Jones polynomial VL(t) of an alternating link L is equal to the Tutte

polynomial TG(−t,−t−1). For detail study about knot theory, we refer [9,12,15,16,18,19].
This paper is organized as follows: In Section 2 we give some basic notions about graphs

and knots along with definitions of the Tutte and the Jones polynomials. Moreover, in
this section we give the relation between graphs and knots, and the relation between the
Tutte and the Jones polynomials. Then the main result is given in Section 3. Finally, in
Section 4 we specialize the Tutte polynomial to the Jones and the chromatic polynomials,
and in Section 5 we give interpretations of some evaluations of the Tutte polynomial.

2 Preliminary notions

2.1 Basic concepts of graphs

A graph G is an ordered pair of disjoint sets (V, E) such that E is a subset of the set V 2 of
unordered pairs of V . The set V is the set of vertices and E is the set of edges. If G is a
graph, then V = V (G) is the vertex set of G, and E = E(G) is the edge set. An edge x, y
is said to join the vertices x and y, and is denoted by xy; the vertices x and y are the end
vertices of this edge. If xy ∈ E(G), then x and y are adjacent, or neighboring, vertices of
G, and the vertices x and y are incident with the edge xy. Two edges are adjacent if they
have exactly one common end vertex.

We say that G′ = (V ′, E ′) is a subgraph of G = (V, E) if V ′ ⊂ V and E ′ ⊂ E. In this
case we write G′ ⊂ G. If G′ contains all edges of G that join two vertices in V ′ then G′

is said to be the subgraph induced or spanned by V ′, and is denoted by G[V ′]. Thus, a
subgraph G′ of G is an induced subgraph if G′ = G[V (G′)]. If V = V ′ then G′ is said to
be a spanning subgraph of G.

Two graphs are isomorphic if there is a correspondence between their vertex sets that
preserves adjacency. Thus, G = (V, E) is isomorphic to G′ = (V ′, E ′), denoted G ' G′, if
there is a bijection ϕ : V → V ′ such that xy ∈ E if and only if ϕ(xy) ∈ E ′.

The dual notion of a cycle is that of cut or cocycle. If {V 1, V 2} is a partition of the
vertex set, and the set C, consisting of those edges with one end in V1 and one end in V2,
is not empty, then C is called a cut. A cycle with one edge is called a loop and a cocycle
with one edge is called a bridge. We refer to an edge that is neither a loop nor a bridge
as ordinary.

A graph is connected if there is a path from one vertex to any other vertex of the graph.
A connected subgraph of a graph G is called the component of G. We denote by k(G) the
number of connected components of a graph G, and by c(G) the number of non-trivial
connected components, that is the number of connected components not counting isolated
vertices. A graph is k-connected if at least k vertices must be removed to disconnect the
graph.

A tree is a connected graph without cycles. A forest is a graph whose connected
components are all trees. (Spanning trees in connected graphs play a fundamental role in
the theory of the Tutte polynomial.) Observe that a loop in a connected graph can be
characterized as an edge that is in no spanning tree, while a bridge is an edge that is in
every spanning tree.

A graph is planar if it can be drawn in the plane without edges crossings. A drawing
of a graph in the plane separates the plane into regions called faces. Every plane graph
G has a dual graph, G∗, formed by assigning a vertex of G∗ to each face of G and joining
two vertices of G∗ by k edges if and only if the corresponding faces of G share k edges in
their boundaries. Note that G∗ is always connected. If G is connected, then (G∗)∗ = G.
If G is planar, it may have many dual graphs.
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A graph invariant is a function f on the collection of all graphs such that f(G1) =
f(G2) whenever G1

∼= G2. A graph polynomial is a graph invariant where the image lies
in some polynomial ring.

2.2 The Tutte polynomial

The following two operations are essential to understand the Tutte polynomial definition
for a graph G. These are: edge deletion denoted by G′ = G − e, and edge contraction

G′′ = G/e.

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

e e e
1

1 3
e

3

e
2

G - eG
2

G/e

ee
1 3

2

The deletion and contraction operations

Definition 2.1. ([21–23]) The Tutte polynomial of a graph G is a two-variable polynomial
TG(x, y) defined as follows:

TG(x, y) =



















1 if E is empty,

xT (G/e) if e is a bridge,

yT (G− e) if e is a loop,

T (G− e) + T (G/e) if e is neither a bridge nor a loop.

Example 2.2. Here is the Tutte polynomial of the graph G =
e

1
e

e

2

3 .

T (
e

1
e

e

2

3 ) = T (
e

1
e

2

) + T (
e

1 2
e

)

= xT (
e

1

) + T (
e

1

) + T (
e

1 )

= x2T ( ) + xT ( ) + y

= x2 + x + y.

Remark 2.3. The definition of the Tutte polynomial outlines a simple recursive procedure
to compute it, but the order of the rules applied is not fixed.

2.3 Basic concepts of Knots

A knot is a circle embedded in R3, and a link is an embedding of a union of such circles.
Since knots are special cases of links, we shall often use the term link for both knots and
links. Links are usually studied via projecting them on a plan; a projection with extra
information of overcrossing and undercrossing is called the link diagram.

undercrossing

overcrossing

Trefoil knot Hopf link

Two links are called isotopic if one of them can be transformed to the other by a
diffeomorphism of the ambient space onto itself. A fundamental result about the isotopic
link diagrams is: Two unoriented links L1 and L2 are equivalent if and only if a diagram

of L1 can be transformed into a diagram of L2 by a finite sequence of ambient isotopies of

the plane and local (Reidemeister) moves of the following three types:
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R1 R2

R3

The set of all links that are equivalent to a link L is called a class of L. By a link L
we shall always mean a class of the link L.

2.4 The Jones polynomial

The main question of knot theory is Which two links are equivalent and which are not?
To address this question one needs a knot invariant, a function that gives one value
on all links in a single class and gives different values (but not always) on links that
belong to different classes. In 1985, Jones revolutionized knot theory by defining the
Jones polynomial as a knot invariant via Von Neumann algebras [10]. However, in 1987
Kauffman introduced in [13] a state-sum model construction of the Jones polynomial that
was purely combinatorial and remarkably simple.

Definition 2.4. [10,11,13] The Jones polynomial VK(t) of an oriented link L is a Laurent
polynomial in the variable

√
t satisfying the skein relation

t−1VL+(t) − tVL−
(t) = (t1/2 − t−1/2)VL0(t),

and that the value of the unknot is 1. Here L+, L−, and L0 are three oriented links having
diagrams that are isotopic everywhere except at one crossing where they differ as in the
figure below:

L+ L− L0

Example 2.5. The Jones polynomials of the Hopf link and the trefoil knot are respectively

V ( ) = −t−5/2 − t−1/2 and V ( ) = −t−4 + t−3 + t.

2.5 A connection between Knots and graphs

Corresponding to every connected link diagram we can find a connected signed planar
graph and vice versa. The process is as follows: Suppose K is a knot and K ′ its projection.
The projection K ′ divides the plane into several regions. Starting with the outermost
region, we can color the regions either white or black. By our convention, we color the
outermost region white. Now, we color the regions so that on either side of an edge the
colors never agree.

K K G’

The graph G corresponding to the knot projection K′
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Next, choose a vertex in each black region. If two black regions R and R′ have common
crossing points c1, c2, . . . , cn, then we connect the selected vertices of R and R′ by simple
edges that pass through c1, c2, . . . , cn and lie in these two black regions. In this way, we
obtain from K ′ a plane graph G [17].

However, in order for the plane graph to embody some of the characteristics of the
knot, we need to use the regular diagram rather than the projection. So, we need to
consider the under - and over -crossings. To this end, we assign to each edge of G either
the sign + or − as you can see in the following figure.

+ -

K G(K)

_

_

_

A signed graph corresponding to a knot diagram

A signed plane graph that has been formed by means of the above process is said to be
the graph of the knot K [17].

Conversely, corresponding to a connected signed planar graph, we can find a connected
planar link diagram. The construction is clear from the following figure.

+ -

+

+

-

G K(G)

A knot diagram corresponding to a signed graph

The fundamental combinatorial result connecting knots and graphs is:

Theorem 2.6. ([15]) The collection of connected planar link diagrams is in one-to-one

correspondence with the collection of connected signed planar graphs.

2.6 Connection between the Tutte and the Jones polynomials

The primary motivation to study the Tutte polynomial came from the following remarkable
connection between the Tutte and the Jones polynomials.

Theorem 2.7. ([9, 15, 19]) (Thistlethwaite) Up to a sign and multiplication by a power

of t the Jones polynomial VL(t) of an alternating link L is equal to the Tutte polynomial

TG(−t,−t−1).

For positive-signed connected graphs, we have the precise connection:

Theorem 2.8. ([2]) Let G be the positive-signed connected planar graph of an alternating

oriented link diagram L. Then the Jones polynomial of the link L is

VL(t) = (−1)wr(L)t
b(L)−a(L)+3wr(L)

4 TG(−t,−t−1),

where a(L) is the number of vertices in G, b(L) is the number of vertices in the dual of G,

and wr(L) is the writhe of L.
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Remark 2.9. In this paper, we shall compute Jones polynomials of links that correspond
only to positive-signed graphs.

Example 2.10. Corresponding to the positive-signed graph G:
++

+ , we receive the right-

handed trefoil knot L: . It is easy to check, by definitions, that V ( ; t) = −t4 + t3 + t

and T (
++

+ ; x, y) = x2 +x+y. Further note that the number of vertices in G is 3, number

of vertices in the dual of G is 2, and withe of L is 3. Now notice that

V ( ; t) = (−)3t
2−3+3(3)

4 T (
++

+ ;−t,−t−1) = −t2(t2 − t − t−1),

which agrees with the known value.

3 The main result

In this section we give the general form of the Tutte polynomial of the following graph:

�	


 
� � �


n

G3,n

For reference purposes, we denote
this graph by G3,n, where n is the
number of edges parallel to one of
the edges, as you can observe in the
figure.

Theorem 3.1. The Tutte polynomial of the graph G3,n is

TG3,n
(x, y) = (x + x2) + (1 + x)

n
∑

i=1

yi + yn+1.

Proof. We prove it by induction on n. For n = 1, we have

vT (
��

��

��

) = T ( ) + T ( )

= x2 + x + y + T ( ) + T (
� �� �

)

= x2 + x + y + xy + y2

= x + x2 + (1 + x)y + y2

= (x + x2) + (1 + x)

1
∑

i=1

yi + y1+1.

Just for authentication, we check for two more values of n. So, for n = 2 we get

T (
��

��

��

) = T ( ) + T ( ���
�

����

)

= x2 + x + (x + 1)y + y2 + T (   ! !

" "" "
# ## #

) + T (

$%

)

= x2 + x + (x + 1)y + y2 + xy2 + y3

= x2 + x + (x + 1)(y + y2) + y3

= (x + x2) + (1 + x)

2
∑

i=1

yi + y2+1.
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Similarly, if we take n = 3, then

T (
&'

()

*+

) = x2 + x + (x + 1)(y + y2 + y3) + y4

= (x + x2) + (1 + x)

3
∑

i=1

yi + y3+1.

We now suppose the result holds for n = k, that is,

T (

k

) = (x + x2) + (1 + x)

k
∑

i=1

yi + yk+1. (3.1)

Now for n = k + 1 the Tutte polynomial becomes

T (

k+1

) = T (

k

) + T (

k+1

). (3.2)

Note that in the second term of equation (3.2) k + 1 loops are attached to the graph .
Now applying the inductive step on the first term and definition on the second term of
equation (3.2), we get

T (

k+1

) = [(x + x2) + (1 + x)
k

∑

i=1

yi + yk+1] + yk+1T ( )

= [(x + x2) + (1 + x)

k
∑

i=1

yi + yk+1] + yk+1[T ( ) + T ( )]

= [(x + x2) + (1 + x)

k
∑

i=1

yi + yk+1] + yk+1[x + y]

= (x + x2) + (1 + x)

k
∑

i=1

yi + yk+1 + xyk+1 + yk+2

= (x + x2) + (1 + x)

k
∑

i=1

yi + (1 + x)yk+1 + yk+2

= (x + x2) + (1 + x)

k+1
∑

i=1

yi + yk+2,

which is the desired result.

4 Specializations

In this section we specialize the Tutte polynomial TG3,n
(x, y) to the chromatic and the

Jones polynomials.
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4.1 The Jones polynomial

The alternating links L that correspond to the graphs G3,n are given in the following table.

n 1 2 3 4 5 6 · · ·

G
,-

./

01 2 23

4 45 5

6 67 7 8 89

: :; ;

< <= = > >? ? @ @A A

BC DE

F FG G H HI I

JK

L LM M N NO O

· · ·

L · · ·
a(L) 3 3 3 3 3 3 · · ·
b(L) 3 4 5 6 7 8 · · ·

wr(L) 0 5 2 7 4 9 · · ·

Lemma 4.1. The number of vertices b(L) in the dual of G3,n is n + 2.

Proof. Obvious from the table.

Lemma 4.2. The writhe of the link L corresponding to the graph G3,n is

wr(L) =

{

n + 3, n is even,

n − 1, n is odd.

Proof. It is also obvious from the table.

Proposition 4.3. The Jones polynomial of the alternating link L that corresponds to the

planar graph G3,n, when n is a even, is

VL(t) = −tn+4 + tn+3 − tn+2 − 2

n−1
∑

i=1

(−t)n+2−i − t2 + t.

Proof. We prove it by specializing the Tutte polynomial of the graph G3,n using Theorem
2.3, which says that

VL(t) = (−1)wr(L)t
b(L)−a(L)+3wr(L)

4 TG3,n
(−t,−t−1).

Observe that, from Lemmas 4.1 and 4.2, the factor (−1)wr(L)t
b(L)−a(L)+3wr(L)

4 reduces to
−tn+2. Now using this factor and substituting x = −t and y = −t−1 in Theorem 3.1, we
have

VL(t) = (−tn+2)
[

− t + t2 + (1− t)

n
∑

i=1

(−t)−i + (−t)−n−1
]

= tn+3 − tn+4 + (tn+3 − tn+2)

n
∑

i=1

(−t)−i + t

= −tn+4 + tn+3 + (tn+3 − tn+2)
[

− t−1 + t−2 − t−3 + · · ·+ t−n+2 − t−n+1 + t−n
]

+ t

= −tn+4 + tn+3 +
[

− tn+2 + tn+1 − tn + · · ·+ t5 − t4 + t3
]

×
[

tn+1 − tn + · · · − t4 + t3 − t2
]

+ t

= −tn+4 + tn+3 − tn+2 + 2
[

tn+1 − tn + · · ·+ t5 − t4 + t3
]

− t2 + t,

which finally reduces to the desired result.
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Proposition 4.4. The Jones polynomial of the alternating link L that corresponds to the

planar graph G3,n, when n is odd, is

VK(t) = tn+1 − tn + tn−1 + 2

n−1
∑

i=1

(−t)n−1−i − t−1 + t−2.

Proof. In this case, the factor (−1)wr(L)t
b(L)−a(L)+3wr(L)

4 reduces to tn−1. The proof is
however similar to the proof of Proposition 4.3.

With the understanding that span of VL(t) is the difference of the largest and smallest
exponents of t, we have:

Proposition 4.5. If L is the alternating link corresponding to the planar graph G3,n, then

spanVL(t) = n + 3 (n ∈ N) and deg VL(t) =

{

n + 4, n is even,

n + 1, n is odd.

Proof. Obvious from Propositions 4.3 and 4.4.

4.2 The flow polynomial

The flow polynomial was investigated by Tutte in 1947 in [20] as a function which could
count the number of flows in a connected graph.

Definition 4.6. Let G be a graph with an arbitrary but fixed orientation, and let K be
an Abelian group of order k and with 0 as its identity element. A K-flow is a mapping φ

of the oriented edges
−→
E (G) into the elements of the group K such that:

∑

−→e =u→v

φ(−→e ) +
∑

−→e =u←v

φ(−→e ) = 0 (4.1)

for every vertex v, and where the first sum is taken over all arcs towards v and the second
sum is over all arcs leaving v.

A K-flow is nowhere zero if φ never takes the value 0. The relation (4.1) is called the
conservation law (that is, the Kirchhoff’s law is satisfied at each vertex of G).

It is well known [2, 3, 5] that the number of proper K-flows does not depend on the
structure of the group, but rather only on its order, and this number is a polynomial
function of k that we refer to as the flow polynomial.

The following, due to Tutte [21], relates the Tutte polynomial of G with the number
of nowhere zero flows of G over a finite Abelian group (which, in our case, is Zk).

Theorem 4.7. ([21]) Let G = (V, E) be a graph and K a finite Abelian group. If FG(k)
denotes the number of nowhere zero K-flows then

FG(k) = (−1)|E|−|V |+k(G)T (0, 1− k),

where |E| is the number of edges, |V | is the number of vertices, and k(G) is the number

of connected components of G.

Proposition 4.8. The flow polynomial of the graph G3,n is

FG3,n
(k) =

(−1)n

k

[

(1 − k)
(

(1 − k)n+1 − 1
)]

.
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Proof. We prove it by specializing the Tutte polynomial to the flow polynomial by the
relation FG3,n

(k) = (−1)|E|−|V |+k(G)T (0, 1− k).

Observe that in the graph
G3,n, k(G) = 1, |E| = n +
3, and |V | = 3. Since

the factors (−1)|E|−|V |+k(G)

and T (0, 1 − k) reduces re-
spectively to (−1)n+1 and
∑n+1

i=1 (1 − k)i.

The sum of the geometric series
∑n+1

i=1 (1 − k)i (with first term (1 − k), common ratio

(1− k), and number of terms n + 1) is (1−k)
−k

(

(1− k)n+1 − 1
)

. Finally, applying Theorem
4.7, we receive the desired result.

4.3 The chromatic polynomial

The chromatic polynomial, because of its theoretical and applied importance, has gener-
ated a large body of work. Chia [4] provides an extensive bibliography on the chromatic
polynomial, and Dong, Koh, and Teo [6] give a comprehensive treatment.

For positive integer λ, a λ-coloring of a graph G is a mapping of V (G) into the set
{1, 2, 3, · · · , λ} of λ colors. Thus, there are exactly λn colorings for a graph on n vertices.
If φ is a λ-coloring such that φ(u) 6= φ(v) for all uv ∈ E, then φ is called a proper (or
admissible) coloring.

Definition 4.9. The chromatic polynomial PG(λ) of a graph G is a one-variable graph
invariant and is defined recursively by the following deletion-contraction relation:

PG(λ) = P (G − e) − P (G/e)

We wish to find the number of admissible λ-colorings of a graph G3,n. Since the
chromatic polynomial counts the number of distinct ways to color a graph with λ colors,
we recover it from the Tutte polynomial TG3,n

(x, y). The following theorem gives the
precise relation between these polynomials.

Theorem 4.10. [2] The chromatic polynomial of a graph G = (V, E) is

PG(λ) = (−1)|V |−k(G)λk(G)TG(1 − λ, 0),

where k(G) denote the number of connected components of G.

Proposition 4.11. The chromatic polynomial of the graph G3,n is

PG3,n
(λ) = λ3 − 3λ2 + 2λ.
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Proof. Although one can directly compute the chromatic polynomial of G3,n by definition,
we recover it from the Tutte polynomial.

Since |V | = 3 and k(G) = 1,

the factor (−1)|V |−k(G)λk(G)

reduces to λ. Also, the factor
TG(1− λ, 0) is λ2 − 3λ + 2 for
every n ∈ {0, 1, 2, · · ·}, and
the result is thus established.

5 Evaluations

In this section, we evaluate TG3,n
(x, y) at some points, and give the corresponding useful

combinatorial information about G3,n.

Theorem 5.1. ([7]) If G = (V, E) is a connected graph, then

1. TG(1, 1) is the number of spanning trees of G.

2. TG(2, 1) equals the number of spanning forests of G.

3. TG(1, 2) is the number of spanning connected subgraphs of G.

4. TG(2, 2) equals 2|E|, and is the number of subgraphs of G.

Proposition 5.2. The following statements hold for the connected, planar graph G3,n.

1. TG3,n
(1, 1) = 2n + 3.

2. TG3,n
(2, 1) = 3n + 7.

3. TG3,n
(2, 2) = 2n+3.

4. TG3,n
(1, 2) = 3 · 2n+1 − 2.

Proof. We prove it step by step using directly Theorem 3.1:
1. For different values of n, we get the following different values of T (1, 1).

n 1 2 3 4 · · ·
T (1, 1) 5 7 9 11 · · ·

It is now clear that TG3,n
(1, 1) = 2n + 3.

2. This result is similarly followed from the table:

n 1 2 3 4 · · ·
T (2, 1) 10 13 16 19 · · ·

3. Since for the graph G3,n we have |E| = n + 3, the result follows from the Theorem
5.1.
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4. Directly substituting x = 1 and y = 2 in Theorem 3.1 we receive

TG3,n
(1, 2) = 2 + 2

n
∑

i=1

2i + 2n+1

= (2 + 22 + 23 + · · ·+ 2n+1) + 2n+1

= 2

(

1 − 2n+1

1 − 2

)

+ 2n+1

= −2(1− 2n+1) + 2n+1,

which reduces to the desired result.
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FOURIER SERIES OF SUMS OF PRODUCT OF
POLY-BERNOULLI AND EULER FUNCTIONS AND THEIR

APPLICATIONS

TAEKYUN KIM,1 DAE SAN KIM,2 GWAN-WOO JANG,3 and JONGKYUM KWON4∗

Abstract. We consider three types of functions given by sums of products of
poly-Bernoulli and Euler functions and derive their Fourier series expansions.
In addition, we will express each of them in terms of Bernoulli and Euler
functions.

1. Introduction and preliminaries

As is well known, the Euler polynomials Em(x) are given by the generating
function

2

et + 1
ext =

∞∑
m=0

Em(x)
tm

m!
, (see [6,10,11,13,14,16,19]). (1.1)

For any integer r, the poly-Bernoulli polynomials B(r)
m (x) of index r are given

by the generating function

Lir(1− e−t)

et − 1
ext =

∞∑
m=0

B(r)
m (x)

tm

m!
, (see [1-3,5,7,9,12,15]), (1.2)

w here Lir(x) =
∑∞

m=0
xm

mr is the rth polylogarithmic function for r ≥ 1 and a
rational function for r ≤ 0.

Observe here that
d

dx
(Lir+1(x)) =

1

x
Lir(x). (1.3)

As to poly-Bernoulli polynomials, we note the following:

d

dx
B(r)

m (x) = mB
(r)
m−1(x), (m ≥ 1). (1.4)

B(1)
m (x) = Bm(x),B

(r)
0 (x) = 1,B(0)

m (x) = xm,

B(0)
m = δm,0,B

(r+1)
m (1)−B(r+1)

m (0) = B
(r)
m−1(0), (m ≥ 1).

(1.5)

For any real number x, we let

< x >= x− [x] ∈ [0, 1) (1.6)

denote the fractional part of x.

2010 Mathematics Subject Classification. 42A16, 11B68, 11B83.
Key words and phrases. Fourier series, poly-Bernoulli function, Euler function.
∗ corresponding author.
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2 TAEKYUN KIM, DAE SAN KIM, GWAN-WOO JANG, and JONGKYUM KWON

Here we consider three types of functions given by sums of products of poly-
Bernoulli and Euler functions and derive their Fourier series expansions. In ad-
dition, we will express each of them in terms of Bernoulli and Euler functions.

(1) αm(x) =
∑m

k=0B
(r+1)
k (x)Em−k(x), (m ≥ 1),

(2) βm(< x >) =
∑m

k=0
1

k!(m−k)!
B

(r+1)
k Em−k(< x >), (m ≥ 1),

(3) γm(< x >) =
∑m−1

k=1
1

k(m−k)
B

(r+1)
k Em−k(< x >), (m ≥ 2).

For elementary facts about Fourier analysis, the reader may refer to any book
(for example, see [4,18,20]). Some related works about Fourier series expansion
for higher-order Bernoulli functions can be found in the recent papers in [8,17].

2. The function αm(< x >)

For integers r,m with m ≥ 1, we let

αm(x) =
m∑
k=0

B
(r+1)
k (x)Em−k(x). (2.1)

α′
m(x) =

m∑
k=0

(
kB

(r+1)
k−1 (x)Em−k(x) + (m− k)B

(r+1)
k (x)Em−k−1(x)

)
=

m∑
k=1

kB
(r+1)
k−1 (x)Em−k(x) +

m−1∑
k=0

(m− k)B
(r+1)
k (x)Em−k−1(x)

=
m−1∑
k=0

(k + 1)B
(r+1)
k (x)Em−1−k(x) +

m−1∑
k=0

(m− k)B
(r+1)
k (x)Em−1−k(x)

= (m+ 1)
m−1∑
k=0

B
(r+1)
k (x)Em−1−k(x)

= (m+ 1)αm−1(x).
(2.2)(

αm+1(x)

m+ 2

)′

= αm(x).

∫ 1

0

αm(x)dx =
1

m+ 2
(αm+1(1)− αm+1(0)) . (2.3)

αm(1)− αm(0) =
m∑
k=0

(
B

(r+1)
k (1)Em−k(1)−B

(r+1)
k Em−k

)
=

m∑
k=1

((
B

(r+1)
k +B

(r)
k−1

)
(−Em−k + 2δm,k)−B

(r+1)
k Em−k

)
+B

(r+1)
0 (1)Em(1)−B

(r+1)
0 Em
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FOURIER SERIES FOR POLY-BERNOULLI AND EULER FUNCTIONS 3

=
m∑
k=1

(
−B

(r+1)
k Em−k + 2B

(r+1)
k δm,k −B

(r)
k−1Em−k + 2B

(r)
k−1δm,k −B

(r+1)
k Em−k

)
− 2Em + 2δm,0

= −2
m∑
k=1

B
(r+1)
k Em−k −

m∑
k=1

B
(r)
k−1Em−k + 2B(r+1)

m + 2B
(r)
m−1 − 2Em

= −2
m−1∑
k=0

B
(r+1)
k Em−k −

m−1∑
k=1

B
(r)
k−1Em−k +B

(r)
m−1

(2.4)

For m ≥ 1, we put,

∆m = αm(1)− αm(0)

= −2
m−1∑
k=0

B
(r+1)
k Em−k −

m−1∑
k=1

B
(r)
k−1Em−k +B

(r)
m−1.

(2.5)

Then αm(1) = αm(0) ⇐⇒ ∆m = 0, and

∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1. (2.6)

Now, we will consider the function

αm(< x >) =
∑m

k=0B
(r+1)
k (< x >)Em−k(< x >), (m ≥ 1)

defined on (−∞,∞), which is periodic with period 1.
The Fourier series of αm(< x >) is

∞∑
n=−∞

A(m)
n e2πinx,

where

A(m)
n =

∫ 1

0

αm(< x >)e−2πinxdx

=

∫ 1

0

αm(x)e
−2πinxdx.

(2.7)
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Now, we would like to determine the Fourier coefficients A
(m)
n .

Case1 : n ̸= 0.

A(m)
n =

∫ 1

0

αm(x)e
−2πinxdx

= − 1

2πin

[
αm(x)e

−2πinx
]1
0
+

1

2πin

∫ 1

0

α′
m(x)e

−2πinxdx

= − 1

2πin
(αm(1)− αm(0)) +

m+ 1

2πin

∫ 1

0

αm−1(x)e
−2πinxdx

=
m+ 1

2πin
A(m−1)

n − 1

2πin
∆m

=
m+ 1

2πin

(
m

2πin
A(m−2)

n − 1

2πin
∆m−1

)
− 1

2πin
∆m

=
(m+ 1)m

(2πin)2
A(m−2)

n − m+ 1

(2πin)2
∆m−1 −

1

2πin
∆m

=
(m+ 1)m

(2πin)2

(
m− 1

2πin
A(m−3)

n − 1

2πin
∆m−2

)
− m+ 1

(2πin)2
∆m−1 −

1

2πin
∆m

=
(m+ 1)3
(2πin)3

A(m−3)
n −

3∑
j=1

(m+ 1)j−1

(2πin)j
∆m−j+1

= · · ·

=
(m+ 1)m
(2πin)m

A(0)
n −

m∑
j=1

(m+ 1)j−1

(2πin)j
∆m−j+1

= − 1

m+ 2

m∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

(2.8)

where A
(0)
n =

∫ 1

0
e−2πinxdx = 0.

Case2 : n = 0.

A
(m)
0 =

∫ 1

0

αm(x)dx =
1

m+ 2
∆m+1. (2.9)

We recall the following facts about Bernoulli functions Bn(< x >) :
(a) for m ≥ 2,

Bm(< x >) = −m!
∞∑

n=−∞,n̸=0

e2πinx

(2πin)m
. (2.10)

(b) for m = 1,

−
∞∑

n=−∞,n̸=0

e2πinx

2πin
=

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(2.11)
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αm(< x >), (m ≥ 1) is piecewise C∞. Moreover, αm(< x >) is continuous for
those positive integers m with ∆m = 0 and discontinuous with jump discontinu-
ities at integers for those positive integers m with ∆m ̸= 0.

Assume first that m is a positive integer with ∆m = 0. Then αm(1) = αm(0).
αm(< x >) is piecewise C∞, and continuous. So the Fourier series of αm(< x >)
converges uniformly to αm(< x >), and

αm(< x >) =
1

m+ 2
∆m+1 +

∞∑
n=−∞,n̸=0

(
− 1

m+ 2

m∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

)
e2πinx

=
1

m+ 2
∆m+1 +

1

m+ 2

m∑
j=1

(
m+ 2

j

)
∆m−j+1

×

(
−j!

∞∑
n=−∞,n ̸=0

e2πinx

(2πin)j

)

=
1

m+ 2
∆m+1 +

1

m+ 2

m∑
j=1

(
m+ 2

j

)
∆m−j+1 ×Bj(< x >)

+ ∆m ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(2.12)

Now, we can state our first theorem.

Theorem 2.1. For each positive integer l, let

∆l = −2
l−1∑
k=0

B
(r+1)
k El−k −

l−1∑
k=1

B
(r)
k−1El−k +B

(r)
l−1.

Assume that ∆m = 0, for a positive integer m. Then we have the following.

(a)
∑m

k=0B
(r+1)
k (< x >)Em−k(< x >) has the Fourier series expansion

m∑
k=0

B
(r+1)
k (< x >)Em−k(< x >)

=
1

m+ 2
∆m+1 +

∞∑
n=−∞,n̸=0

(
− 1

m+ 2

m∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

)
e2πinx,

for all x ∈ (−∞,∞), where the convergence is uniform.

(b)
m∑
k=0

B
(r+1)
k (< x >)Em−k(< x >)

=
1

m+ 2
∆m+1 +

1

m+ 2

m∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(< x >),
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for all x ∈ (−∞,∞), where Bj(< x >) is the Bernoulli function.

Assume next that m is a positive integer with ∆m ̸= 0. Then αm(1) ̸= αm(0).
Thus αm(< x >) is piecewise C∞ , and discontinuous with jump discontinuities
at integers. The Fourier series of αm(< x >) converges pointwise to αm(< x >) ,
for x /∈ Z, and converges to

1

2
(αm(0) + αm(1)) = αm(0) +

1

2
∆m

=
m∑
k=0

B
(r+1)
k Em−k +

1

2
∆m,

(2.13)

for x ∈ Z.

Next, we can state the second theorem.

Theorem 2.2. For each positive integer l, let

∆l = −2
l−1∑
k=0

B
(r+1)
k El−k −

l−1∑
k=1

B
(r)
k−1El−k +B

(r)
l−1.

Assume that ∆m ̸= 0, for a positive integer m. Then we have the following.

(a)
1

m+ 2
∆m+1

+
∞∑

n=−∞,n ̸=0

(
− 1

m+ 2

m∑
j=1

(m+ 2)j
(2πin)j

∆m−j+1

)
e2πinx

=

{∑m
k=0B

(r+1)
k (< x >)Em−k(< x >), for x /∈ Z,∑m

k=0B
(r+1)
k Em−k +

1
2
∆m, for x ∈ Z.

(b)
1

m+ 2
∆m+1 +

1

m+ 2

m∑
j=1

(
m+ 2

j

)
∆m−j+1Bj(< x >)

=
m∑
k=0

B
(r+1)
k (< x >)Em−k(< x >), for x /∈ Z,

1

m+ 2
∆m+1 +

1

m+ 2

m∑
j=2

(
m+ 2

j

)
∆m−j+1Bj(< x >)

=
m∑
k=0

B
(r+1)
k Em−k +

1

2
∆m, for x ∈ Z.
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3. The function βm(< x >)

Let βm(x) =
∑m

k=0
1

k!(m−k)!
B

(r+1)
k (x)Em−k(x), (m ≥ 1).

β′
m(x) =

m∑
k=0

{
k

k!(m− k)!
B

(r+1)
k−1 (x)Em−k(x)

+
m− k

k!(m− k)!
B

(r+1)
k (x)Em−k−1(x)

}
=

m∑
k=1

1

(k − 1)!(m− k)!
B

(r+1)
k−1 (x)Em−k(x)

+
m−1∑
k=0

1

k!(m− k − 1)!
B

(r+1)
k (x)Em−k−1(x)

=
m−1∑
k=0

1

k!(m− 1− k)!
B

(r+1)
k (x)Em−1−k(x)

+
m−1∑
k=0

1

k!(m− 1− k)!
B

(r+1)
k (x)Em−1−k(x)

= 2βm−1(x).

(3.1)

So, β′
m(x) = 2βm−1(x), and from this we obtain

(
βm+1(x)

2

)′
= βm(x).∫ 1

0

βm(x)dx =
1

2

(
βm+1(1)− βm+1(0)

)
. (3.2)

For m ≥ 1, we have

Ωm = Ωm(r) = βm(1)− βm(0)

=
m∑
k=0

1

k!(m− k)!

(
B

(r+1)
k (1)Em−k(1)−B

(r+1)
k Em−k

)
=

m∑
k=1

1

k!(m− k)!

{
(B

(r+1)
k +B

(r)
k−1)(−Em−k + 2δm,k)−B

(r+1)
k Em−k

}
+

1

m!
(−2Em + 2δm,0)

= −2
m∑
k=1

B
(r+1)
k Em−k

k!(m− k)!
−

m∑
k=1

B
(r)
k−1Em−k

k!(m− k)!
+ 2

B(r+1)
m

m!
+ 2

B
(r)
m−1

m!
− 2

Em

m!

= −2
m−1∑
k=0

B
(r+1)
k Em−k

k!(m− k)!
−

m−1∑
k=1

B
(r)
k−1Em−k

k!(m− k)!
+

1

m!
B

(r)
m−1.

(3.3)

Then βm(1) = βm(0) ⇐⇒ Ωm = 0.
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Also, ∫ 1

0

βm(x)dx =
1

2
Ωm+1.

Now, we are going to consider the function

βm(< x >) =
m∑
k=0

1

k!(m− k)!
B

(r+1)
k (< x >)Em−k(< x >), (m ≥ 1)

which is defined on (−∞,∞), and periodic with period 1.
The Fourier series of βm(< x >) is

∞∑
n=−∞

B(m)
n e2πinx,

where

B(m)
n =

∫ 1

0

βm(< x >)e−2πinxdx =

∫ 1

0

βm(x)e
−2πinxdx.

We are going to determine the Fourier coefficients B
(m)
n .

Case 1: n ̸= 0.

B(m)
n =

∫ 1

0

βm(x)e
−2πinxdx

= − 1

2πin

[
βm(x)e

−2πinx
]1
0
+

1

2πin

∫ 1

0

β′
m(x)e

−2πinxdx

= − 1

2πin

(
βm(1)− βm(0)

)
+

2

2πin

∫ 1

0

βm−1(x)e
−2πinxdx

=
2

2πin
B(m−1)

n − 1

2πin
Ωm

=
2

2πin

( 2

2πin
B(m−2)

n − 1

2πin
Ωm−1

)
− 1

2πin
Ωm

=
( 2

2πin

)2
B(m−2)

n − 2

(2πin)2
Ωm−1 −

1

2πin
Ωm

= · · ·

=
( 2

2πin

)m
B(0)

n −
m∑
j=1

2j−1

(2πin)j
Ωm−j+1

= −
m∑
j=1

2j−1

(2πin)j
Ωm−j+1,

(3.4)

where B
(0)
n =

∫ 1

0
e−2πinxdx = 0.

Case 2: n = 0.
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B
(m)
0 =

∫ 1

0

βm(x) =
1

2
Ωm+1. (3.5)

βm(< x >), (m ≥ 1) is piecewise C∞. Moreover, βm(< x >) is continuous for
those positive integers m with Ωm = 0 and discontinuous with jump discontinu-
ities at integers for those positive integers m with Ωm ̸= 0.

Assume first that m is a positive integer with Ωm = 0. Then βm(1) = βm(0).
βm(< x >) is piecewise C∞, and continuous. Thus the Fourier series of βm(< x >)
converges uniformly to βm(< x >), and

βm(< x >)

=
1

2
Ωm+1 +

∞∑
n=−∞,n̸=0

(
−

m∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx

=
1

2
Ωm+1 +

m∑
j=1

2j−1

j!
Ωm−j+1 ×

(
−j!

∞∑
n=−∞,n̸=0

e2πinx

(2πin)j

)
=

1

2
Ωm+1 +

m∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >)

+ Ωm ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

(3.6)

Now, we are ready to state our first theorem.

Theorem 3.1. For each positive integer l, let

Ωl = −2
l−1∑
k=0

B
(r+1)
k El−k

k!(l − k)!
−

l−1∑
k=1

B
(r)
k−1El−k

k!(l − k)!
+

1

l!
B

(r)
l−1.

Assume that Ωm = 0, for a positive integer m. Then we have the following.

(a)
∑m

k=0
1

k!(m−k)!
B

(r+1)
k (< x >)Em−k(< x >) has the Fourier series expansion

m∑
k=0

1

k!(m− k)!
B

(r+1)
k (< x >)Em−k(< x >)

=
1

2
Ωm+1 +

∞∑
n=−∞,n̸=0

(
−

m∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx,

for all x ∈ (−∞,∞), where the convergence is uniform.

(b)
m∑
k=0

1

k!(m− k)!
B

(r+1)
k (< x >)Em−k(< x >) =

1

2
Ωm+1+

m∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >),

for all x ∈ (−∞,∞), where Bj(< x >) is the Bernoulli function.

Assume next that m is a positive integer with Ωm ̸= 0. Then, βm(1) ̸= βm(0).
Thus βm(< x >) is piecewise C∞ and discontinuous with jump discontinuities at
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integers. The Fourier series of βm(< x >) converges pointwise to βm(< x >), for
x /∈ Z, and converges to

1

2
(βm(0) + βm(1)) = βm(0) +

1

2
Ωm

=
m∑
k=0

1

k!(m− k)!
B

(r+1)
k Em−k +

1

2
Ωm,

(3.7)

for x ∈ Z.

Now, we can state our second theorem.

Theorem 3.2. For each positive integer l, let

Ωl = −2
l−1∑
k=0

B
(r+1)
k El−k

k!(l − k)!
−

l−1∑
k=1

B
(r)
k−1El−k

k!(l − k)!
+

1

l!
B

(r)
l−1.

Assume that Ωm ̸= 0, for a positive integer m. Then we have the following.

(a)
1

2
Ωm+1 +

∞∑
n=−∞,n ̸=0

(
−

m∑
j=1

2j−1

(2πin)j
Ωm−j+1

)
e2πinx

=

{∑m
k=0

1
k!(m−k)!

B
(r+1)
k (< x >)Em−k(< x >), for x /∈ Z,∑m

k=0
1

k!(m−k)!
B

(r+1)
k Em−k +

1
2
Ωm, for x ∈ Z.

Here the convergence is pointwise.
(b)

1

2
Ωm+1 +

m∑
j=1

2j−1

j!
Ωm−j+1Bj(< x >)

=
m∑
k=0

1

k!(m− k)!
B

(r+1)
k (< x >)Em−k(< x >), for x /∈ Z,

1

2
Ωm+1 +

m∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >)

=
m∑
k=0

1

k!(m− k)!
B

(r+1)
k Em−k +

1

2
Ωm, for x ∈ Z.

Here Bk(< x >) is the Bernoulli function.

4. The fuction γm(< x >)

Let γm(x) =
∑m−1

k=1
1

k(m−k)
B

(r+1)
k (x)Em−k(x), (m ≥ 2).
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γ′m(x) =
m−1∑
k=1

1

k(m− k)

(
kB

(r+1)
k−1 (x)Em−k(x) + (m− k)B

(r+1)
k (x)Em−k−1(x)

)
=

m−2∑
k=0

1

m− 1− k
B

(r+1)
k (x)Em−1−k(x) +

m−1∑
k=1

1

k
B

(r+1)
k (x)Em−1−k(x)

=
1

m− 1
Em−1(x) +

m−2∑
k=1

1

m− 1− k
B

(r+1)
k (x)Em−1−k(x)

+
1

m− 1
B

(r+1)
m−1 (x) +

m−2∑
k=1

1

k
B

(r+1)
k (x)Em−1−k(x)

= (m− 1)
m−2∑
k=1

1

k(m− 1− k)
B

(r+1)
k (x)Em−1−k(x) +

1

m− 1
Em−1(x) +

1

m− 1
B

(r+1)
m−1 (x)

=
1

m− 1

(
B

(r+1)
m−1 (x) + Em−1(x)

)
+ (m− 1)γm−1(x).

(4.1)
So,

γ′m(x) =
1

m− 1

(
B

(r+1)
m−1 (x) + Em−1(x)

)
+ (m− 1)γm−1(x).

From this, we obtain(
1

m

(
γm+1(x)−

1

m(m+ 1)
B

(r+1)
m+1 (x)−

1

m(m+ 1)
Em+1(x)

))′

= γm(x).

∫ 1

0

γm(x)dx

=
1

m

[
γm+1(x)−

1

m(m+ 1)
B

(r+1)
m+1 (x)−

1

m(m+ 1)
Em+1(x)

]1
0

=
1

m

(
γm+1(1)− γm+1(0)−

1

m(m+ 1)

(
B

(r+1)
m+1 (1)−B

(r+1)
m+1 (0)

)
− 1

m(m+ 1)

(
Em+1(1)− Em+1(0)

))
=

1

m

(
γm+1(1)− γm+1(0)−

1

m(m+ 1)
B(r)

m

− 1

m(m+ 1)

(
−2Em+1 + 2δm+1,0

))
=

1

m

(
γm+1(1)− γm+1(0)−

1

m(m+ 1)
B(r)

m +
2

m(m+ 1)
Em+1

)
.

(4.2)

For m ≥ 2, we let
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Λm = Λm(r) = γm(1)− γm(0)

=
m−1∑
k=1

1

k(m− k)

(
B

(r+1)
k (1)Em−k(1)−B

(r+1)
k Em−k

)
=

m−1∑
k=1

1

k(m− k)

(
(B

(r+1)
k +B

(r)
k−1)(−Em−k + 2δm,k)−B

(r+1)
k Em−k

)
=

m−1∑
k=1

1

k(m− k)

(
−2B

(r+1)
k Em−k −B

(r)
k−1Em−k

)
= −

m−1∑
k=1

1

k(m− k)

(
2B

(r+1)
k +B

(r)
k−1

)
Em−k.

(4.3)

So,

γm(1) = γm(0) ⇔ Λm = 0. (4.4)

Also,

∫ 1

0

γm(x)dx =
1

m

(
Λm+1 −

1

m(m+ 1)
B(r)

m +
2

m(m+ 1)
Em+1

)
. (4.5)

We are now going to consider

γm(< x >) =
m−1∑
k=1

1

k(m− k)
B

(r+1)
k (< x >)Em−k(< x >), (4.6)

which is defined on (−∞,∞), and periodic with period 1.
The Fourier series of γm(< x >) is

∞∑
n=−∞

C(m)
n e2πinx, (4.7)

where

C(m)
n =

∫ 1

0

γm(< x >)e−2πinxdx =

∫ 1

0

γm(x)e
−2πinxdx. (4.8)
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Now, we are ready to determine the Fourier coefficients C
(m)
n .

Case 1: n ̸= 0.

C(m)
n =

∫ 1

0

γm(x)e
−2πinxdx

= − 1

2πin

[
γm(x)e

−2πinx
]1
0
+

1

2πin

∫ 1

0

γ′m(x)e
−2πinxdx

= − 1

2πin

(
γm(1)− γm(0)

)
+

1

2πin

∫ 1

0

(
(m− 1)γm−1(x) +

1

m− 1
B

(r+1)
m−1 (x) +

1

m− 1
Em−1(x)

)
e−2πinxdx

= − 1

2πin
Λm +

m− 1

2πin
C(m−1)

n

+
1

2πin(m− 1)

∫ 1

0

B
(r+1)
m−1 (x)e

−2πinxdx

+
1

2πin(m− 1)

∫ 1

0

Em−1(x)e
−2πinxdx.

(4.9)
where, for l ≥ 1 and n ̸= 0,∫ 1

0

B
(r+1)
l (x)e−2πinxdx = −

l∑
k=1

(l)k−1

(2πin)k
B

(r)
l−k,

∫ 1

0

El(x)e
−2πinxdx = 2

l∑
k=1

(l)k−1

(2πin)k
El−k+1.

Thus

C(m)
n =

m− 1

2πin
C(m−1)

n − 1

2πin
Λm

− 1

2πin(m− 1)
Θm +

2

2πin(m− 1)
Φm,

(4.10)

where, for m ≥ 2,

Λm = γm(1)− γm(0) = −
m−1∑
k=1

1

k(m− k)

(
2B

(r+1)
k +B

(r)
k−1

)
Em−k,

Θm =
m−1∑
k=1

(m− 1)k−1

(2πin)k
B

(r)
m−k−1,

Φm =
m−1∑
k=1

(m− 1)k−1

(2πin)k
Em−k.

(4.11)
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C(m)
n =

m− 1

2πin
C(m−1)

n − 1

2πin
Λm − 1

2πin(m− 1)
Θm +

2

2πin(m− 1)
Φm

=
m− 1

2πin

(m− 2

2πin
C(m−2)

n − 1

2πin
Λm−1 −

1

2πin(m− 2)
Θm−1 +

2

2πin(m− 1)
Φm−1

)
− 1

2πin
Λm − 1

2πin(m− 1)
Θm +

2

2πin(m− 1)
Φm

=
(m− 1)(m− 2)

(2πin)2
C(m−2)

n − m− 1

(2πin)2
Λm−1 −

1

2πin
Λm − m− 1

(2πin)2(m− 2)
Θm−1

− 1

(2πin)(m− 1)
Θm +

2(m− 1)

(2πin)2(m− 2)
Φm−1 +

2

2πin(m− 1)
Φm

= · · ·

=
(m− 1)!

(2πin)m−2
C(1)

n −
m−1∑
j=1

(m− 1)j−1

(2πin)j
Λm−j+1 −

m−1∑
j=1

(m− 1)j−1

(2πin)j(m− j)
Θm−j+1

+
m−1∑
j=1

2(m− 1)j−1

(2πin)j(m− j)
Φm−j+1

= −
m−1∑
j=1

(m− 1)j−1

(2πin)j
Λm−j+1 −

m−1∑
j=1

(m− 1)j−1

(2πin)j(m− j)
Θm−j+1

+
m−1∑
j=1

2(m− 1)j−1

(2πin)j(m− j)
Φm−j+1,

(4.12)

where C
(1)
n = 0.

Before proceeding further, we note the following.

m−1∑
j=1

2(m− 1)j−1

(2πin)j(m− j)
Φm−j+1

=
m−1∑
j=1

2(m− 1)j−1

(2πin)j(m− j)

m−j∑
k=1

(m− j)k−1

(2πin)k
Em−j−k+1

=
m−1∑
j=1

m−j∑
k=1

2(m− 1)j+k−2

(2πin)j+k(m− j)
Em−j−k+1

=
m−1∑
j=1

1

m− j

m∑
s=j+1

2(m− 1)s−2

(2πin)s
Em−s+1

(4.13)
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=
m∑
s=2

2(m− 1)s−2

(2πin)s
Em−s+1

s−1∑
j=1

1

m− j

=
2

m

m∑
s=1

(m)s
(2πin)s

Hm−1 −Hm−s

m− s+ 1
Em−s+1.

m−1∑
j=1

(m− 1)j−1

(2πin)j(m− j)
Θm−j+1

=
m−1∑
j=1

(m− 1)j−1

(2πin)j(m− j)

m−j∑
k=1

(m− j)k−1

(2πin)k
B

(r)
m−j−k

=
m−1∑
j=1

m−j∑
k=1

(m− 1)j+k−2

(2πin)j+k(m− j)
B

(r)
m−j−k

=
m−1∑
j=1

1

m− j

m∑
s=j+1

(m− 1)s−2

(2πin)s
B

(r)
m−s

=
m∑
s=2

(m− 1)s−2

(2πin)s
B

(r)
m−s

s−1∑
j=1

1

m− j

=
1

m

m∑
s=1

(m)s
(2πin)s

Hm−1 −Hm−s

m− s+ 1
B

(r)
m−s.

(4.14)

Putting everything together, we obtain

C(m)
n = − 1

m

m∑
s=1

(m)s
(2πin)s

Λm−s+1

− 1

m

m∑
s=1

(m)s
(2πin)s

Hm−1 −Hm−s

m− s+ 1
B

(r)
m−s +

2

m

m∑
s=1

(m)s
(2πin)s

Hm−1 −Hm−s

m− s+ 1
Em−s+1

= − 1

m

m∑
s=1

(m)s
(2πin)s

(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s − 2Em−s+1)

)
.

(4.15)
Case 2: n = 0.

C
(m)
0 =

∫ 1

0

γm(x)dx =
1

m

(
Λm+1 −

1

m(m+ 1)
B(r)

m +
2

m(m+ 1)
Em+1

)
. (4.16)

γm(< x >), (m ≥ 2) is piecewise C∞. Moreover, γm(< x >) is continuous
for those positive integers m ≥ 2 with Λm = 0 and discontinuous with jump
discontinuities at integers for those positive integers m ≥ 2 with Λm ̸= 0.
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Assume first that Λm = 0. Then γm(1) = γm(0). γm(< x >) is piecewise
C∞ and continuous. So the Fourier series of γm(< x >) converges uniformly to
γm(< x >), and

γm(< x >)

=
1

m

(
Λm+1 −

1

m(m+ 1)
B(r)

m +
2

m(m+ 1)
Em+1

)
−

∞∑
n=−∞,n ̸=0

( 1

m

m∑
s=1

(m)s
(2πin)s

(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s − 2Em−s+1)

))
e2πinx

=
1

m

(
Λm+1 −

1

m(m+ 1)
B(r)

m +
2

m(m+ 1)
Em+1

)
+

1

m

m∑
s=1

(
m

s

)(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s − 2Em−s+1)

)
×
(
−s!

∞∑
n=−∞,n̸=0

e2πinx

(2πin)s

)
=

1

m

(
Λm+1 −

1

m(m+ 1)
B(r)

m +
2

m(m+ 1)
Em+1

)
+

1

m

m∑
s=2

(
m

s

)(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s − 2Em−s+1)

)
Bs(< x >)

+ Λm ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z,

(4.17)
where Hm =

∑m
k=1

1
k
.

Now, we are able to state our first theorem.

Theorem 4.1. For each integer l ≥ 2, let

Λl = −
l−1∑
k=1

1

k(l − k)

(
2B

(r+1)
k +B

(r)
k−1

)
El−k,

with Λ1 = 0.
Assume that Λm = 0, for the an integer m ≥ 2.

Then we have the following.
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(a)
∑m−1

k=1
1

k(m−k)
B

(r+1)
k (< x >)Em−k(< x >) has the Fourier series expansion

m−1∑
k=1

1

k(m− k)
B

(r+1)
k (< x >)Em−k(< x >)

=
1

m

(
Λm+1 −

1

m(m+ 1)
B(r)

m +
2

m(m+ 1)
Em+1

)
−

∞∑
n=−∞,n̸=0

( 1

m

m∑
s=1

(m)s
(2πin)s

(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s − 2Em−s+1)

))
e2πinx,

for all x ∈ (−∞,∞). Here the convergence is uniform.

(b)

m−1∑
k=1

1

k(m− k)
B

(r+1)
k (< x >)Em−k(< x >)

=
1

m

(
Λm+1 −

1

m(m+ 1)
B(r)

m +
2

m(m+ 1)
Em+1

)
+

1

m

m∑
s=2

(
m

s

)(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s − 2Em−s+1)

)
Bs(< x >),

for all x ∈ (−∞,∞). Here Bk(< x >) is the Bernoulli function.

Assume next that m is an integer ≥ 2 with Λm ̸= 0. Then, γm(1) ̸= γm(0).
Hence γm(< x >) is piecewise C∞ and discontinuous with jump discontinuities at
integers. Thus the Fourier series of γm(< x >) converges pointwise to γm(< x >),
for x /∈ Z, and converges to

1

2
(γm(0) + γm(1)) = γm(0) +

1

2
Λm =

m−1∑
k=1

1

k(m− k)
B

(r+1)
k Em−k +

1

2
Λm, (4.18)

for x ∈ Z.

Next, we can state our second theorem.

Theorem 4.2. For each integer l ≥ 2, let

Λl = −
l−1∑
k=1

1

k(l − k)

(
2B

(r+1)
k +B

(r)
k−1

)
El−k,

with Λ1 = 0.
Assume that Λm ̸= 0, for an integer m ≥ 2.

Then we have the following.
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(a)

1

m

(
Λm+1 −

1

m(m+ 1)
B(r)

m +
2

m(m+ 1)
Em+1

)
−

∞∑
n=−∞,n̸=0

( 1

m

m∑
s=1

(m)s
(2πin)s

(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s − 2Em−s+1)

))
e2πinx

=

{∑m−1
k=1

1
k(m−k)

B
(r+1)
k (< x >)Em−k(< x >), for x /∈ Z,∑m−1

k=1
1

k(m−k)
B

(r+1)
k Em−k +

1
2
Λm, for x ∈ Z.

Here the convergence is pointwise.
(b)

1

m

(
Λm+1 −

1

m(m+ 1)
B(r)

m +
2

m(m+ 1)
Em+1

)
+

1

m

m∑
s=2

(
m

s

)(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s − 2Em−s+1)

)
Bs(< x >)

=
m−1∑
k=1

1

k(m− k)
B

(r+1)
k (< x >)Em−k(< x >), for x /∈ Z,

1

m

(
Λm+1 −

1

m(m+ 1)
B(r)

m +
2

m(m+ 1)
Em+1

)
+

1

m

m∑
s=2

(
m

s

)(
Λm−s+1 +

Hm−1 −Hm−s

m− s+ 1
(B

(r)
m−s − 2Em−s+1)

)
Bs(< x >)

=
m−1∑
k=1

1

k(m− k)
B

(r+1)
k Em−k +

1

2
Λm, for x ∈ Z.
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Abstract

First we characterize a differential subcopmlex of de de Rham complex for lo-

cally conformally calibrated G̃2-manifolds. Then we give co-effective complex for G̃2-

manifolds and prove that in dimension different from 3 this complex is elliptic.

2010 Mathematics Subject Classification: 53C15, 53C10, 53C25, 53C30

Key words and phrases: locally conformally calibrated G̃2-manifolds, co-effective

complex, ellipticity of co-effective complex

1 Introduction

Recently, the theory of special G-structures on smooth manifolds has enjoyed a lot of

success among mathematicians and physicist as they exhibit some nice properties. For

example G2-structure can be geometric models in the theory of super strings with torsion

[16]. Also Donaldson and Segal [9] suggested recently that manifolds with non-vanishing

torsion G2-structure can be the right framework for guage theory in dimension 7. Main

computable models for manifolds with G2-structure are homogeneous spaces having co-

homogeneity one [8, 22, 26].

∗ Corresponding author
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In 1884 Killing exposed a vigorous proof of the presence of smallest of the remarkable

simple lie algebra gC
2 . In 1907, Reichel [25], a student of Engel [10], succeeded in achieving

the uniform geometric explanation of the Lie groups G2 and G̃2, which are two real forms

of GC
2 . In 1914, Cartan proved that G2 and G̃2 can be treated as the automorphism group

of octonions and split-octonions respectively. Later these groups appeared in the Bereger’s

celebrated list of potential holonomy of pseudo-Riemannian mertic see [1]. In 1989 Bryant

and Salamon [5] gave construction of first complete but non-compact Riemannian man-

ifolds having holonomy G2, while the first compact example was given by Joyce [17] in

1994. Fernández and Gray [13] classified all G2-structures in 16 classes in 1982 by decom-

posing the covariant derivative in 4 irreducible components. A lot has already been said

about these different classes. For example, in [24] Friedrich et all discussed special proper-

ties of nearly parallel G2-structures and prove that they carry Einstein metric. Kath [18]

initialized the study of psudo-Riemannian 7-manifolds with a G̃2-structure. Munir and

Nizami [24] gave classification of G̃2-structures using intrinsic torsion with sixteen classes

of algebraic types of G̃2-structures and also proved some strict inclusion relations among

the classes of these structures. Manifold with G̃2 are relatively less explained as compared

to those admitting G2-structures. To our knowledge there are only a few papers discussing

a few properties about them, see, for example, [4, 18–20, 22, 24].

We recall that a 7-dimensional smooth manifold M7 is said to admit a G̃2-structure if it

has a section of the bundle F (M7)/G̃2 on M7, where F (M7) is the frame bundle on M7. It

is noted that G̃2 is the automorphism group of a 3-form ϕ̃ over R
7 which is called a 3-form

of G̃2-type [21]. It is known that GL(R7)-orbit of ϕ̃ is an open orbit of the GL(R7)-action

on Λ3(R7). A 3-form in that open orbit is known as indefinite 3-form. The presence of a

G̃2-structure on a manifold M7 is equivalent to the presence of an indefinite differential

3-form ϕ̃ over M7. A manifold with a G̃2-structure is said to be parallel if ∇ϕ̃ = 0 or

dϕ̃ = d ∗ ϕ̃ = 0 and almost parallel or calibrated if dϕ̃ = 0, locally conformal calibrated if

dϕ̃ = θ ∧ ϕ̃ where θ is the differential 1-form on M and θ = 1
4 (∗(∗dϕ̃∧ ϕ̃) [3, 7, 11, 12].

In this paper, we study manifolds with a locally confromally calibrated G̃2-structure

which constitute the class W2 ⊕W4 of [24]. We first construct a differential sub-copmlex

of de Rham complex for locally conformally calibrated G̃2-manifolds, then we have a co-

effective complex and determine its ellipticity. Bouche [2] constructed similar complex

for symplectic manifolds where as Fernández and Ugrate [14] discussed the co-effective

complex for G2-manifolds. In Section 2 we describe some properties and representation of

the group G̃2 and construct the co-effective complex for locally conformal calibrated G̃2-

manifolds. We use this name as the complex is analogue to the complex developed by [2]

for the case of symplectic manifolds. In Section 3 we discuss the ellipticity of this complex.

However it is important to remark that we study these manifolds for two particular reasons.

First, they having striking similarities with those admitting a G2-structure and secondly,

because of their interesting class in pseudo-Riemannian geometry, see [6, 27].
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2 Co-effective complex for locally conformal calibrated G̃2-

manifolds

In this section first we introduce basic representations for G̃2-manifolds. Then we give

simple characterizations of locally conformal calibrated G̃2-manifolds in the form of a

complex.

Let Λq(M) be the space of differential q-forms on M . Our main purpose is the study

of those manifolds for which the sequence

· · · → Bq−1(M)
d̂
−→ Bq(M)

d̂
−→ Bq+1(M) → · · · (2.1)

is a differential complex. Here Bq(M) is the subspace of Λq(M) defined by

Bq(M) = {β ∈ Λq(M) | β ∧ ϕ̃ = 0}

and d̂ denotes the restriction to Bq(M) of the exterior differential d of M. A G̃2-manifold

is defined as a 7-dimensional Riemannian manifold M (in which a Riemannian metric

gϕ̃ = (1, 1, 1,−1,−1,−1,−1) is defined) endowed with a 2-fold vector cross product P

satisfying the following axioms

1. 〈P (X1, X2), X1〉 = 〈P (X1, X2), X2〉 = 0

2. ‖P (X1, X2)‖2 = ‖X1‖2‖X2‖2 − 〈X1, X2〉2

for X1, X2 ∈ X(M). The fundamental 3-form on M is then defined as

ϕ̃(X1, X2, X3) = 〈P (X1, X2), X3〉

for X1, X2, X3 ∈ X(M) and inner product for x, y ∈ ∧q(M) is defined as

〈x, y〉VM = x ∧ ∗y (2.2)

where VM is the volume form on M . It is proved that ∧q(M) splits orthogonally into G̃2-

irreducible components ∧q
l of dimension l [3]. An isometry known as Hodge star operator

defined as ∗ : ∧q(M) −→ ∧7−q(M) make two irreducible component isomorphic. For

example the representation of G̃2 on ∧1(M) and ∧7(M) are isomorphic. So it is sufficient

to describe the representation of G̃2 on ∧2(M) and ∧3(M) as follows



































∧2
7(M) = {∗(α∧ ∗ϕ̃) | α ∈ ∧1(M)}

∧2
14(M) = {β ∈ ∧2(M) | β ∧ ∗ϕ̃ = 0}

∧3
1(M) = {fϕ̃ | f ∈ F(M)}

∧3
7(M) = {∗(α∧ ϕ̃) | α ∈ ∧1(M)}

∧3
27(M) = {γ ∈ ∧3(M) | γ ∧ ϕ̃ = γ ∧ ∗ϕ̃ = 0.

(2.3)

From above, it is easy to compute

∧3
1(M)⊕ ∧3

27(M) = {γ ∈ ∧3(M)|γ ∧ ϕ̃ = 0}. (2.4)
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∧4
7(M) ⊕∧4

27(M) = {λ ∈ ∧4(M)|λ ∧ ϕ̃ = 0}. (2.5)

For a seven dimensional manifold M , a G̃2-structure on M can be distinguished by a

globally defined 3-form ϕ̃ which can be written at each point as

ϕ̃ = e123 + e145 + e167 + e246 − e257 + e347 + e356

with respect to some local co frame e1, e2, ..., e7 see [5]. It induces a Riemannian metric

gϕ̃ and volume form dVgϕ̃ on M given by

gϕ̃(X, Y ) =
1

6
iXϕ̃ ∧ iY ϕ̃ ∧ ϕ̃

for any pair of vector fields X, Y on M .

Now we have the following result [23].

Proposition 2.1. Let M be a G̃2-manifold with a fundamental 3-form ϕ̃. Then

(1) For any differential 1-form α on M , ∗(∗(α∧ ϕ̃) ∧ ϕ̃) = 4α.

(2) If there is a differential 1-form η on M such that dϕ̃ = η∧ϕ̃, then η = 1
4(∗(∗dϕ̃∧ϕ̃)

and M is locally conformal calibrated.

Definition 2.2. Let M be a G̃2 manifold having 3-form ϕ̃. For each l, 0 ≤ l ≤ 7, we

denote the space Bl(M) = {λ ∈ Λl(M)|λ ∧ ϕ̃ = 0}. Also, the orthogonal compliment of

Bl(M) in Λq(M) is denoted by Al(M).

Lemma 2.3. Let M be a G̃2-manifold. Then we have the following

Bl(M) = {0} for 0 ≤ l ≤ 2,

B3(M) = Λ3
1(M)⊕ Λ3

27(M),

B4(M) = Λ4
7(M)⊕ Λ4

27(M),

Bl(M) = Λl(M) for 5 ≤ l ≤ 7.

Therefore,

Al(M) = Λl(M) for 0 ≤ l ≤ 2,

A3(M) = Λ3
7(M),

A4(M) = Λ4
1(M),

Aq(M) = {0} for 5 ≤ l ≤ 7.

Proposition 2.4. Let M be a G̃2 manifold endowed with fundamental 3-form ϕ̃. Then

M is locally conformal calibrated if and only if for any differential 3-form ρ ∈ Λ3
1(M) ⊕

Λ3
27(M), the exterior differential dρ ∈ Λ4

7(M)⊕ Λ4
27(M).

In the following, we take B3(M) = Λ3
1(M)⊕ Λ3

27(M) and B4(M) = Λ4
7(M)⊕ Λ4

27(M).

Here we give the co-effective complex for locally conformal calibrated G̃2-manifold.

Theorem 2.5. Let M be a G̃2 -manifold. Then M is locally conformal calibrated iff there

exist the complex

0 → Λ3
1(M)⊕ Λ3

27(M)
d̂
−→ Λ4

7(M) ⊕ Λ4
27(M)

d̂
−→ Λ5(M)

d
−→ Λ6(M)

d
−→ Λ7(M) → 0, (2.6)

where d̂ denotes the restriction to Bq(M)(q = 3, 4) of the exterior differential d of M
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Proof. From Proposition 2.4 it is clear that (2.6) is a complex if M is locally conformal

calibrated. To prove the converse, let us first show that for any f ∈ =(M) and y ∈

B3(M) = Λ1
3(M)⊕ Λ3

27(M) we have

π4od(fy) = fπ4od(y), (2.7)

that is, the operator π4od : B3(M) → A4(M) is tensorial, where π4 denotes the orthogonal

projection of Λ4(M) onto A4(M) = Λ4
1(M). In fact, since y ∈ Λ3

1(M) ⊕ Λ3
27(M), from

equation (2.4) and equation (2.5) it follows that df ∧ y ∈ Λ4
7(M) ⊕ Λ4

27(M), that is,

π4(df ∧ y) = 0; thus

π4od(fy) = π4(df ∧ y) + π4(fdy) = fπ4(dy),

which shows equation (2.7) Now suppose that equation (2.6) is a complex, that is, d(d̂y) =

0 for any y ∈ B3(M). Since dy = π4od(y) + d̂y, applying d to this equality we get

d(π4od(y)) = 0 (2.8)

for any y ∈ B3(M). Therefore, if f is any function on M, from equation (2.7) and equation

(2.8) we get

0 = d(π4od(fy)) = d(fπ4od(y)) = df ∧ π4od(y)

. Since π4od(y) ∈ Λ4
1(M), there is hy ∈ =(M) such that π4od(y) = hy ∗ ϕ̃ and thus

hy(df ∧ ∗ϕ̃) = 0, for anyf ∈ =(M). But α ∧ ∗α = 0 iff α = 0, for α ∈ Λ1(M), which

implies that the function hy must be zero. Therefore, π4od(y) = 0 for any y ∈ B3(M),

that is, d(B3(M)) ⊂ B4(M), and Proposition 2.4 implies that M is locally calibrated.

Definition 2.6. Let M be a G̃2-manifold.For 0 ≤ q ≤ 3, the map d̆q : Aq(M) → Aq+1(M)

is defined by

d̆q = πq+1od (2.9)

where πq+1 : Λq+1(M) → Aq+1(M) is the orthogonal projection of Λq+1(M) ontoAq+1(M).

Theorem 2.7. Let M be a G̃2-manifold with fundamental 3-form ϕ. Then M is locally

conformal calibrated if and if the sequence

0 → Λ0(M)
d
−→ Λ1(M)

d
−→ Λ2(M)

d̆2−→ Λ3
7(M)

d̆3−→ Λ4
1(M) → 0 (2.10)

is a complex.

Proof. consider α ∈ Λ1(M). From equation (2.9) we see that d̆2(dα) = π3od(dα) = 0.

This proves that d̆2od = 0. Now, let us suppose that M is locally conformal calibrated,

and let β ∈ Λ2(M). Using the fact that

Λ3(M) = Λ3
1(M)⊕ Λ3

7(M)⊕ Λ3
27(M),

we have

dβ = d̆2β + y, (2.11)
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where d̆2β ∈ A3(M) = Λ3
7(M) and y ∈ Λ3

1(M) ⊕ Λ3
27(M). Proposition 2.4 implies that

dy ∈ Λ4
7(M) ⊕ Λ4

27(M). Then taking equation (2.11) the exterior differential d of M , we

obtain

0 = d(d̆2β) + dy

which means that d(d̆2β) ∈ Λ4
7(M) ⊕ Λ4

27(M). Thus d̆3(d̆2β) = 0 because d̆3(d̆2β) is the

image of d(d̆2β) by the orthogonal projection π4 : Λ4(M) → A4(M) = Λ4
1(M). To prove

the converse, let β be a 2-form on M . Therefore, the exterior differential dβ of β is

dβ = d̆2β + y, (2.12)

where d̆2β ∈ Λ3
7(M) and y ∈ Λ3

1(M) ⊕ Λ3
27(M). Appling exterior differential d of M on

equation (2.12),we get

0 = d(d̆2β) + dγ. (2.13)

Applying the projection π4 to equation (2.13) and using equation (2.9) together with

the hypothesis d̆3od̆2 = 0, we obtain

0 = π4(d(d̆2β)) + π4(dγ)

= d̆3od̆2(β) + π4(dγ)

= π4(dγ),

which implies that dγ ∈ Λ4
7(M) ⊕ Λ4

27(M). Moreover, using equation (2.7) we conclude

that

d(Λ3
1(M) ⊕ Λ3

27(M)) ⊂ Λ4
7(M) ⊕ Λ4

27(M).

From Proposition 2.4 it follows that M is locally conformal calibrated.

3 Ellipticity of the coeffective complex

In this section we determine the ellipticity of the complex given in (2.6) and (2.10)

Theorem 3.1. The complex given (A∗(M), d̆) in (2.10) is elliptic in degree q for any

q 6= 2.

Proof. It is obvious that the complex (A∗(M), d̆) is elliptic in degrees 0 and 1, because

the de Rham complex (Λ∗(M), d) of M is elliptic. The complex (A∗(M), d̆) is elliptic in

degrees 3 and 4 if for any point m ∈ M and for any 1-form µ non-zero at m, the complex

Λ2(T ∗

mM)
σµ(d̆2)
−−−−→ Λ3

7(T
∗

mM)
σµ(d̆3)
−−−−→ Λ4

1(T
∗

mM) → 0

is exact in the steps 3 and 4, where T ∗

mM is the cotangent space of M at m,and

σµ(d̆2)(β) = π3(µ ∧ β), (3.1)

σπ(d̆3(γ)) = π4(µ ∧ γ),
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for β ∈ Λ2(T ∗

mM) and γ ∈ Λ3
7(T

∗

mM). Therefore, to prove that the complex (A∗(M), d̆) is

elliptic in degree q = 3 it is sufficient to prove that

ker(σπ(d̆3)) ⊂ Im(σπ(d̆2)). (3.2)

Let γ ∈ Λ3
7(T

∗

mM) be such that γ ∈ Ker(σπ(d̆3)), or equivalently π4(µ ∧ γ) = 0. This

implies that µ ∧ γ ∈ Λ4
7(T

∗

mM) ⊕ Λ4
27(T

∗

mM), and so µ ∧ γ ∧ ϕ̃m = 0. Since γ ∧ ϕ̃m ∈

Λ6(T ∗

mM),from the ellipticity of the de Rham complex it follows that there is η ∈ Λ5(T ∗

mM)

satisfying

γ ∧ ϕ̃m = µ ∧ η. (3.3)

Now, we use the isomorphism Λϕ̃m : Λ2(T ∗

mM) → Λ5(T ∗

mM) given by Λϕ̃m(β) =

β ∧ ϕ̃m, for β ∈ Λ2(T ∗

mM). This isomorphism implies that there is ν ∈ Λ2(T ∗

mM) such

that η = ν ∧ ϕ̃m. Thus equation (3.2) becomes

γ ∧ ϕ̃m = µ ∧ ν ∧ ϕ̃m = π3(µ ∧ ν) ∧ ϕ̃m.

Therefore, we have

(γ − π3(µ ∧ ν)) ∧ ϕ̃m = 0. (3.4)

But the wedge product by ϕ̃m is also an isomorphism Λϕ̃m : Λ3
7(T

∗

mM) → Λ6(T ∗

mM) and

so, from equation (3.4), it follows that (γ − π3(µ ∧ ν)) = 0, using equation (3.1),

γ = π3(µ ∧ ν) = σπ(d̆2)(ν),

which proves equation (3.2). To prove the ellipticity of the complex (A∗(M), d̆) in degree

q = 4, we show

Λ4
1(T

∗

mM) ⊂ Im(σπ(d̆3))

Let λ ∈ Λ4
1(T

∗

mM). Then λ ∧ ϕ̃m ∈ Λ7(T ∗

mM). Now, from the ellipticity of the de Rham

Complex of M , we conclude that

µ ∧ ω = λ ∧ ϕ̃m, (3.5)

for some ω ∈ Λ6(T ∗

mM). Using the isomorphism Λϕ̃m : Λ3
7(T

∗

mM) → Λ6(T ∗

mM) again, we

obtain ω = γ ∧ ϕ̃m for some γ ∈ Λ3
7(T

∗

mM). Then equation (3.5) becomes

λ ∧ ϕ̃m = µ ∧ γ ∧ ϕ̃m = π4(µ ∧ γ) ∧ ϕ̃m,

which implies that

(λ − π4(µ ∧ γ)) ∧ ϕ̃m = 0. (3.6)

But Λϕ̃m : Λ4
1(T

∗

mM) → Λ7(T ∗

mM) is an isomorphism, and hence, from equation (3.6),

we have

λ = π4(µ ∧ γ) = σµ(d̆3)(γ).

Thus λ ∈ Im(σµ(d̆3)). This completes the proof.
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Remark 3.2. As
∑

q=0

(−1)qdim(Aq(T ∗

mM)) = 1 − 7 + 21 − 7 + 1 = 9

so the complex (A∗(M), d̆) is not elliptic in degree q = 2.

Theorem 3.3. The complex (B∗(M), d̂) given by (2.6) is elliptic in degree q for any q 6= 3.

Proof. It is obvious that the complex (B∗(M), d̂) is elliptic in degrees 6 and 7, because it

is the de Rham complex of M . Now we show that (B∗(M), d̂) is elliptic in degree q = 4,

we must prove that for m ∈ M and for non-zero µ ∈ T∗

m(M), the complex

Λ3
1(T

∗

mM) ⊕ Λ3
27(T

∗

mM)
µ∧
−−→ Λ4

7(T
∗

mM) ⊕ Λ4
27(T

∗

mM)
µ∧
−−→ Λ5(T ∗

mM) (3.7)

is exact in degree 4. λ ∈ Λ4
7(T

∗

mM) ⊕ Λ4
27(T

∗

mM) satisfy µ ∧ λ = 0. We must show that

there is η ∈ Λ3
1(T

∗

mM)⊕Λ3
27(T

∗

mM) such that λ = µ∧ η. By the definition of ellipticity of

the de Rham complex there exist η1 ∈ Λ3(T ∗

mM) such that

λ = µ ∧ η1, (3.8)

where η1 = η1
′+η1

′′ with η1
′ ∈ Λ3

7(T
∗

mM) and η1
′′ ∈ Λ3

1(T
∗

mM)⊕Λ3
27(T

∗

mM) Now equation

(3.8) becomes

λ = µ ∧ η1 = µ ∧ η1
′ + µ ∧ η1

′′. (3.9)

But λ and µ ∧ η1
′′ ∈ Λ4

7(T
∗

mM) ⊕ Λ4
27(T

∗

mM) hence π4(µ ∧ η1
′) = 0, which implies that

η1
′ ∈ Ker(σµ(ď3)). From Theorem 1.8 it follows that η1

′ ∈ Im(σµ(ď2). This means that

there exist ω ∈ Λ2(T ∗

mM) such that η1
′ ∈ π3(µ ∧ ω). Let ν ∈ Λ3

1(T
∗

mM) ⊕ Λ3
27(T

∗

mM) be

the image of µ∧ω by the orthogonal projection of Λ3(T ∗

mM) onto Λ3
1(T

∗

mM)⊕Λ3
27(T

∗

mM).

Then we get

0 = µ ∧ (µ ∧ ω) = µ ∧ η1
′ + µ ∧ α

and we obtain λ = µ ∧ (−α + η1
′′). Now implies that the form η = −α + η1

′′ is such that

η ∈ Λ3
1(T

∗

mM) ⊕ Λ3
27(T

∗

mM) and λ ∈= µ ∧ η. This proves that equation (3.7) is exact in

degree 4.

Finally, we must prove that the complex

Λ4
7(T

∗

mM) ⊕ Λ4
27(T

∗

mM)
µ∧
−−→ Λ5(T ∗

mM)
µ∧
−−→ Λ6(T ∗

mM)

is exact in degree 5. Let β ∈ Λ5(T ∗

mM) satisfy µ ∧ β = 0. We must find a 4-form

ξ ∈ Λ4
7(T

∗

mM) ⊕ Λ4
27(T

∗

mM) such that

β = µ ∧ ξ. (3.10)

By the ellipticity of the de Rham complex ofM we see that there is α = Λ4(T ∗

mM) such

that

β = µ ∧ α. (3.11)

Because Λ4(T ∗

mM) = Λ4
1(T

∗

mM) ⊕ Λ4
7(T

∗

mM) ⊕ Λ4
27(T

∗

mM) and α ∈ Λ4(T ∗

mM) we have

α = α′ + α′′, (3.12)
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where α′ ∈ Λ4
1(T

∗

mM) and α′′ ∈ Λ4
7(T

∗

mM) ⊕ Λ4
27(T

∗

mM). By Theorem 1.8 there exist

η ∈ Λ3
7(T

∗

mM) such that

α′ = π4(µ ∧ η) (3.13)

from equation (3.13) it follows that

0 = µ ∧ (µ ∧ η) = µ ∧ α′ + µ ∧ υ, (3.14)

where υ is the image of ν ∧ η by the orthogonal projection of Λ4(T ∗

mM) onto subspace

Λ4
7(T

∗

mM)⊕ Λ4
27(T

∗

mM). The identity equation (3.14) implies that µ ∧α′ = −µ ∧ υ. Thus

from equation (3.11) and equation (3.12) we conclude that

β = µ ∧ (−υ + α′′)

Consider η = −υ + α′′. Then ξ ∈ Λ4
7(T

∗

mM) ⊕ Λ4
27(T

∗

mM), and moreover β = µ ∧ η. This

proves equation (3.10) and completes the proof.

Remark 3.4.
7

∑

q=3

(−1)qdim(Bq(T ∗

mM)) = −28 + 34 − 21 + 7 − 1

so complex (B∗(M), d̂) is not elliptic in degree q = 3.
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