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NECESSARY AND SUFFICIENT CONDITIONS OF FIRST ORDER NEUTRAL

DIFFERENTIAL EQUATIONS

ABHAY KUMAR SETHI1∗ AND JUNG RYE LEE2∗

Abstract. In this work, we establish the necessary and sufficient conditions for oscillation of a
class of functional differential equations of the form

((x(t) + p(t)x(t− σ))′ + q(t)φ(x(t− τ)) + v(t)ψ(x(t− η)) = 0

of a neutral coefficient p(t), by using the Knaster-Tarski fixed point theorem and Banach’s fixed
point theorem.

1. Introduction

Consider a class of first-order nonlinear neutral differential equations of the form

((x(t) + p(t)x(t− σ)))′ + q(t)φ(x(t− τ)) + v(t)ψ(x(t− η)) = 0, (1.1)

where r, q, v, τ, σ, η ∈ C(R+,R+), p ∈ C(R+,R), φ ∈ C(R,R) such that xφ(x) > 0, xφ(x) > 0

for x 6= 0 and φ, ψ ∈ C(R,R) satisfying the property xφ(x) > 0, uψ(u) > 0 for x, u 6= 0.

In this work, our objective is to establish the necessary and sufficient condition results for oscil-

lation of all solutions of (1.1), where

(A0) p ∈ C([0,∞),R), f ∈ C(R,R), q, τ, σ, η ∈ C(R+,R+) such that t − τ < t, t − σ < t and

t− η < t;

(A1) φ, ψ ∈ C(R,R) are nondecreasing and satisfy uφ(u) > 0, uψ(u) > 0 for u, v 6= 0.

Fatima et al. [1] studied the nonlinear neutral differential equation (NDDE) of the form

[r(t)(x(t) + p(t)x(t− τ))]′ + q(t)x(t− σ) = 0, (1.2)

where p ∈ C[[t0,∞)],R], r, q ∈ C[[t0,∞),R+], τ, σ+ ∈ R+, and they obtained new sufficient

conditions for all solutions of NDDE (1.2) to be oscillatory.

Graef et al. [8] studied the first order neutral delay differential equations of the form

[x(t) + p(t)x(t− τ)]′ + q(t)f(x(t− σ)) = 0, (1.3)

under the conditions

(a) p ∈ R, τ and σ are positive constants;
(b) q : [t0,∞)→ R is a continuous function with q(t) > 0;

(c) f : R→ R is continuous with uf(u) > 0 for u 6= 0, and there is a positive constant

M such that f(u)uα ≥M > 0, where α is a ratio of odd positive integers. They established internal

conditions for all solutions of nonlinear first order neutral delay differential equations.

Grammatikopoulos et al. [9] studied first order neutral delay differential equations of the form

[x(t)− p(t)x(t− τ)]′ +Q(t)x(t− δ)) = 0, (1.4)

2010 Mathematics Subject Classification. Primary 34K40, 34K30, 34C10.
Key words and phrases. Oscillation; nonoscillation; nonlinear neutral delay differential equation.
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where p,Q, δ ∈ C([t0,∞)],R+), and lim
t→∞

(t− δ(t)) = ∞. They established sufficient conditions for

oscillation of all solutions of the the neutral delay differential equations.

The motivation of the present work comes from the above studies. In this work, an attempt is

made to establish the necessary and sufficient condition for asymptotic behaviour of solutions of

(1.1), under various ranges in the neutral coefficient p(t). Clearly, (1.2), (1.3) and (1.4) are special

cases of (1.1). However, there are few results to study the oscillation of (1.1). The purpose of

this work is to obtain some sufficient condition results for oscillation of (1.1). This work would be

interesting than the works of [15,19] as long as (1.1) is concerned.

Neutral delay differential equations find numerous applications in electric network. For example,

they are frequently used for the study of distributed networks containing lossless transmission lines

which arise in high speed computers where the lossless transmission lines are used to interconnect

switching circuits (see for example [12]). The problem of obtaining sufficient conditions to ensure

the second order differential equations which are special cases of (1.1) is oscillatory has received a

great attention. Since the first order equations have the applied applications, there is permanent

interest in obtaining new sufficient conditions for oscillation or nonoscillation of solutions of varietal

type of the first order equations (see [2–7,11,13,14,16–18,20]).

Definition 1.1. By a solution of (1.1), we mean a continuously differentiable function x(t) which

is defined for t ≥ T ∗ = min{(t− σ0), (t− τ0), (t− η0)} such that x(t) satisfies (1.1) for all t ≥ t0.

In the sequel, it will always be assumed that the solution of (1.1) exists on some half line [t1,∞),

t1 ≥ t0. A solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros; otherwise, it is

called nonoscillatory. Equation (1.1) is called oscillatory if all its solutions are oscillatory.

2. Oscillation results

This section deals with the oscillation results for necessary and sufficient conditions for oscil-

lation of all solutions of (1.1), Throughout our discussion, we use the following notation

z(t) = x(t) + p(t)x(t− σ).

Lemma 2.1. [10] Let p, x, z ∈ C([0,∞),R) be such that z(t) = x(t) + p(t)x(t − σ), t ≥ τ > 0,

x(t) > 0 for t ≥ t1 > τ , lim inft→∞ x(t) = 0 and lim
t→∞

z(t) = L exists. Let p(t) satisfy one of the

following conditions:

i) 0 ≤ p1 ≤ p(t) ≤ p2 < 1, ii) 1 < p3 ≤ p(t) ≤ p4 <∞, iii) −∞ < −p5 ≤ p(t) ≤ 0,

where ri > 0, 1 ≤ i ≤ 5.

Then L = 0.

Theorem 2.2. Assume that (A0) and (A1) hold and 0 ≤ a1 ≤ p(t) ≤ a2 < 1 for t ∈ R+. Let φ,

ψ be Lipschitzian on intervals of the form [α, β], 0 < α < β < ∞. Then every solution of (1.1)

converges to zero as t→∞ if and only if

(A2)
∫∞
t [q(s) + v(s)]ds =∞.

Proof. Assume that (A2) holds. Let x(t) be a solution of (1.1) on [tx,∞], tx ≥ 0. Let x(t) > 0 for

t ≥ tx. Set

z(t) = x(t) + p(t)x
(
t− σ

)
, t ≥ t0. (2.1)
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Then (1.1) becomes

z′(t) = −q(t)φ(x(t− τ))− v(t)ψ(x(t− η)) < 0, (2.2)

and hence z(t) is a decreasing function for t ≥ t1 > t0 +ρ. Since z(t) > 0 for t ≥ t2, lim
t→∞

z(t) exists.

Consequently, z(t) > x(t) implies that x(t) is bounded. Our aim is to show that lim
t→∞

x(t) = 0. For

this, we need to show that lim inft→∞ x(t) = 0. If lim inft→∞ x(t) 6= 0, then there exist t3 > t2 and

β > 0 such that x(t− σ) ≥ β > 0 for t ≥ t3. Ultimately,∫ t

t3

[φ(x(t− τ)) + v(t)ψ(x(t− η))] dt ≥ φ(β)[q(t)]dt+ ψ(β)

∫ t

t3

[v(t)]dt

→ +∞, as t→∞,

due to (A2).

On the other hand, we integrate (2.2) from t3 to t(> t3) to obtain∫ t

t3

[q(t)φ(x(t− τ)) + v(t)ψ(x(t− η))] dt ≤ −z(t) + z(t3)

<∞, as t→∞,

which is a contradiction. Therefore, lim inft→∞ x(t) = 0. Consequently, lim
t→∞

z(t) = 0 due to Lemma

2.1. Thus we obtain

0 = lim
t→∞

z(t) = lim sup
t→∞

(x(t) + p(t)x(t− σ))

≥ lim sup
t→∞

x(t),

which implies that lim supt→∞ x(t) = 0, that is, lim
t→∞

x(t) = 0.

Assume that x(t) < 0 for t ≥ t0. Setting y(t) = −x(t) for t ≥ t0 in (1.1), we obtain

((y(t) + p(t)y(t− σ)))′ + q(t)φ(y(t− τ)) + v(t)ψ(y(t− η)) = 0,

and proceeding as above it is easy to prove that limt→∞ y(t) = 0.

In order to prove the condition (A2) is necessary, we suppose that∫ ∞
t

[q(s) + v(s)] ds <∞ (2.3)

and we need to show that the equation (1.1) admits a nonoscillatory solution which does not tend

to zero as t→∞ when the limit exists. If possible, let there exist t1 > 0 such that∫ ∞
t

[q(s) + v(s)] ds <
1− a1

10c
,

where C = max{C1,
C2
L , φ(1), ψ(1)}, C1 is the Lipschitz constant of φ and C2 is the Lipschitz

constant of ψ on
[2(1−a1)

5 , 1]. For t2 > t1, set Y = BC([t2,∞),R), the space of real valued bounded

continuous functions on [t2,∞). Clearly, Y is a Banach space with respect to sup norm defined by

||Y || = sup{|Y (t)| : t ≥ t2}.

Let’s define

S =

{
u ∈ Y :

2(1− a1)
5

≤ u(t) ≤ 1, t ≥ t2
}
.
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Clearly, S is a closed and convex subspace of Y . Let T : S → S be defined by

Ty(t) =

{
Ty(t2 + ρ), t ∈ [t2, t2 + ρ]

−p(t)y(t− σ) + 2+3a1
5 +

∫∞
t [q(s)φ(y(t− τ)) + v(s)ψ(y(t− η))] ds, t ≥ t2 + ρ.

For every y ∈ S,

Ty(t) ≤ 2 + 3a1
5

+ φ(1)

∫ ∞
t

[q(s)]ds+ ψ(1)

∫ ∞
t

[v(s)]ds

<
2 + 3a1

5
+

1− a1
10

=
1 + a1

2
< 1

and

Ty(t) ≥ −p(t)y(t− τ) +
2 + 3a1

5

≥ −a1 +
2 + 3a1

5
=

2(1− a1)
5

which imply that Ty ∈ S. Now, for y1, y2 ∈ S,

|Ty1(t)− Ty2(t)| ≤ |p(t)||y1(t− τ)− y2(t− τ)|

+ C1

∫ ∞
t

q(s)|y1(s− σ)− y2(s− σ)|ds+ C2

∫ ∞
t

v(s)|y1(s− η)− y2(s− η)|ds,

that is,

|Ty1(t)− Ty2(t)| ≤ a2||y1 − y2||+ C1||y1 − y2||
∫ ∞
t

[q(s)]ds+ C2||y1 − y2||
∫ ∞
t

[v(s)]ds

<

(
a1 +

1− a1
10

)
||y1 − y2||,

which implies that

||Ty1 − Ty2|| ≤ µ||y1 − y2||,

that is, T is a contraction mapping, where µ = a1 + 1−a1
10 = 1+9a1

10 < 1. Since S is complete and T is

a contraction on S, by the Banach’s fixed point theorem, T has a unique fixed point on
[
2(1−a1)

5 , 1
]
.

Hence Ty = y and

y(t) =

{
y(t2 + ρ), t ∈ [t2, t2 + ρ]

−p(t)y(t− σ) + 2+3a1
5

[∫∞
t q(s)φ(y(s− τ)) +

∫∞
t v(s)ψ(y(s− η)))

]
ds, t ≥ t2 + ρ

is a nonoscillatory solution of (1.1). Therefore, (A2) is necessary. This completes the proof of the

theorem. �

Theorem 2.3. Assume that (A0) and (A1) hold and 1 < a3 ≤ p(t) ≤ a4 < ∞ such that a23 > a4
for t ∈ R+. Let φ, ψ be Lipschitzian on intervals of the form [α, β], 0 < α < β < ∞. Then every

solution of (1.1) converges to zero as t→∞ if and only if (A2) holds.

Proof. The sufficient part is the same as in the proof of Theorem 2.2.

For the necessary part, we suppose that (2.2) holds. It is possible to find a t1 > 0 such that∫ ∞
t

[q(s) + v(s)] ds <
a3 − 1

2K
,
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where K = max{K1,
K2
L }, K1, K2 are Lipschitz constants of φ and ψ on [a, b] and K2 = φ(a), ψ(b)

such that

a =
2λ(a3

2 − a4)− a4(a3 − 1)

2a32a4
,

b =
a3 − 1 + 2λ

2a3
, λ >

a4(a3 − 1)

2(a32 − a4)
> 0.

Let Y = BC([t2,∞),R) be the space of real valued bounded continuous functions on [t2,∞).

Clearly, Y is a Banach space with respect to sup norm defined by

||y|| = sup{|y(t)| : t ≥ t2}.

Define

S = {u ∈ Y : a ≤ u(t) ≤ b, t ≥ t2} .

It is easy to see that S is a closed convex subspace of Y . Let T : S → S be such that

Tx(t) =


Tx(t2 + ρ), t ∈ [t2, t2 + ρ]

− x
(
t+σ
)

p
(
t+σ)

) + λ

p
(
t+σ)

) + 1

p
(
t+σ)

) [∫∞
s+σ q(s)φ(x(s− τ))ds+

∫∞
s+σ v(s)ψ(x(s− η)))ds

]
, t ≥ t2 + ρ.

For every x ∈ S,

Tx(t) ≤ φ(b)

p
(
t+ σ)

) [∫ ∞
s+σ

q(s)ds+
ψ(b)

p
(
t+ σ)

) ∫ ∞
s+σ

v(s)ds

]
+

λ

p
(
s+ σ)

)
≤ 1

a3

[
a3 − 1

2
+ λ

]
= b

and

Tx(t) ≥ −
x
(
t+ τ)

)
p
(
t+ τ)

) +
λ

p
(
t+ τ)

)
> − b

a3
+
λ

a4

= −a3 − 1 + 2λ

2a23
+
λ

a4

=
2λ(a3

2 − a4)− a4(a3 − 1)

2a32a4
= a,

which imply that Tx ∈ S. For y1, y2 ∈ S,

|Ty1(t)− Ty2(t)| ≤
1

|p(t+ σ)|
|y1(t+ σ)− y2(t+ σ)|

+
K1

|p(t+ σ)|

[∫ ∞
s+σ

q(s)|y1(s− τ)− y2(s− τ)|
]
ds

+
K2

|p(t+ σ)|

[∫ ∞
s+σ

v(s)|y1(s− η)− y2(s− η)|
]
ds,

that is,

|Ty1(t)− Ty2(t)| ≤
1

p3
||y1 − y2||+

K1

a3
||y1 − y2||

∫ ∞
T

q(s)ds+
K2

a3
||y1 − y2||

∫ ∞
T

v(s)ds

<

(
1

a3
+
a3 − 1

2a3

)
||y1 − y2||,
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which implies that

||Ty1 − Ty2|| ≤ µ||y1 − y2||,

that is, T is a contraction, where µ =
(

1
a3

+ a3−1
2a3

)
< 1. Hence by the Banach’s fixed point theorem,

T has a unique fixed point which is a nonoscillatory solution of (1.1) on [a, b]. Thus the proof of

the theorem is complete. �

Theorem 2.4. Assume that (A0) and (A1) hold and −1 < −a5 ≤ p(t) ≤ 0, a5 > 0 for t ∈ R+.

Then every solution of (1.1) converges to zero as t→∞ if and only if (A2) holds.

Proof. Proceeding as in the proof of Theorem 2.2, we obtain (2.2). Hence r(t)z(t) is monotonic on

[t2,∞), t2 > t1. Let z(t) > 0 for t ≥ t2. Then limt→∞ z(t) exists. Let z(t) < 0 for t ≥ t2. We

claim that x(t) is bounded. If not, there exists {ηn} such that τ(ηn) ≤ τn and ηn →∞ as n→∞,

x(ηn)→∞ as n→∞ and

x(ηn) = max{x(s) : t2 ≤ s ≤ ηn}.

Therefore,

z(ηn) = x(ηn) + p(ηn)x(ηn − σ)

≥ (1− a5)x(ηn)

→ +∞, as n→∞,

which is a contradiction to the fact z(t) > 0. So our claim holds. Consequently, z(t) ≤ x(t) implies

that limt→∞ z(t) exists. Hence for any z(t), x(t) is bounded. Using the same type of argument

as in the proof of Theorem 2.2, it is easy to show that lim inft→∞ x(t) = 0 and by Lemma 2.1,

limt→∞ z(t) = 0. Indeed,

0 = lim
t→∞

z(t) = lim sup
t→∞

(
x(t) + p(t)x(t− σ))

)
≥ lim sup

t→∞
x(t) + lim inf

t→∞

(
−a5x(t− σ)

)
= (1− a5) lim sup

t→∞
x(t)

which implies that lim supt→∞ x(t) = 0. The rest of the proof follows from Theorem 2.2.

Next, we suppose that (2.2) holds. Then there exists t1 > 0 such that∫ ∞
s

[q(s) + v(s)] ds <
1− a5

5φ(1)ψ(1)
, t ≥ t1.

For t2 > t1, let Y = BC([t2,∞),R) be the space of all real valued bounded continuous functions

defined on [t2,∞). Clearly, Y is a Banach space with respect to sup norm defined by

||y|| = sup{|y(t)| : t ≥ t2}.

Let K = {y ∈ Y : y(t) ≥ 0, t ≥ t2}. Then Y is a partially ordered Banach space (see [8]). For

u, v ∈ Y , we define u ≤ v if and only if u− v ∈ K. Let

S =

{
X ∈ Y :

1− p5
5
≤ x(t) ≤ 1, t ≥ t2

}
.

If x0(t) = 1−a5
5 , then x0 ∈ S and x0 = g.l.b S. Further, if φ ⊂ S∗ ⊂ S, then

S∗ =

{
x ∈ Y : l1 ≤ x(t) ≤ l2,

1− a5
5
≤ l1, l2 ≤ 1

}
.
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Let v0(t) = l′2, t ≥ t3, where l′2 = sup{l2 : 1−a5
5 ≤ l2 ≤ 1}. Then v0 ∈ S and v0 = l.u.b S∗. For

t3 = t2 + ρ, define T : S → S by

Tx(t) =

{
Tx(t3), t ∈ [t2, t3]

−p(t)x(t− σ) + 1−a5
5

[∫∞
s q(η)φ(x(s− τ))ds+

∫∞
s v(s)ψ(x(s− η))ds

]
, t ≥ t3.

For every x ∈ S, Tx(t) ≥ 1−a5
5 and

Tx(t) ≤ a5 +
1− a5

5
+ φ(1)

∫ ∞
s

[q(s)]ds+ ψ(1)

∫ ∞
s

[v(s)]ds

<
2 + 3a5

5
< 1

which imply that Tx ∈ S. Now, for x1, x2 ∈ S, it is easy to verify that x1 ≤ x2 implies that

Tx1 ≤ Tx2. Hence by the Knaster-Tarski fixed point theorem ( [8, Theorem 1.7.3]), T has a unique

fixed point such that limt→∞ x(t) 6= 0. This completes the proof of the theorem. �

Theorem 2.5. Assume that (A0) and (A1) hold and −∞ < −a6 ≤ p(t) ≤ −a7 < −1, a6, a7 > 0

for t ∈ R+. Let φ, ψ be Lipschitzian on intervals of the form [α, β], 0 < α < β < ∞. Then every

bounded solution of (1.1) converges to zero as t→∞ if and only if (A2) holds.

Proof. The proof of the theorem follows from Theorem 2.2. For the necessary part, we need to

mention the following: ∫ ∞
s

[q(s) + v(s)] ds <
a7 − 1

2K
,

where K = max{K1,K2}, K1, K2 are Lipschitz constants of φ and ψ on [a, b], K2 = φ(a)ψ(b) such

that

a =
2λa7 − a6(a7 − 1)

2a6a7
, b =

λ

a7 − 1
for

λ >
a6(a7 − 1)

2a7
> 0,

and

Tx(t) =


Tx(t2 + ρ), t ∈ [t2, t2 + ρ]

−x
(
t+σ)

)
p
(
t+σ)

) − λ

p
(
t+σ)

) + 1

p
(
t+σ)

) [∫∞
s+σ q(s)φ(x(s− τ))ds+

∫∞
s+σ v(s)ψ(x(s− η))ds

]
,

where t ≥ t2 + ρ. This completes the proof of the theorem. �

Remark 2.6. In the above theorems, φ and ψ could be linear, sublinear or superlinear.

Remark 2.7. Lemma 2.1 does not include p(t) ≡ 1 for all t (see [8]). The present analysis does

not allow the case p(t) ≡ −1 for all t. Hence in our discussion, a necessary and sufficient condition

is established excluding p(t) = ±1 for all t. It seems that a different approach is necessary to study

the case p(t) = ±1.

3. An example

Example 3.1. Consider

((x(t) + x(t− π)))′ + etφ(x(t− 2π)) + etψ(x(t− 3π)) = 0, t ≥ 2π,

where φ(x) = ψ(x) = x3. Then all the conditions of Theorem 2.2 are satisfied for (1.1). Hence

every solution of (1.1) oscillates. In particular, x(t) = sint is one of such solution of (1.1).
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Clearly, all the conditions of Theorem 2.2 are satisfied. Hence, by Theorem 2.2 every solutions

of (1.1) oscillates.

4. Conclusion

In this work, we established the necessary and sufficient conditions for oscillation of a class of

functional differential equations of the form

((x(t) + p(t)x(t− σ))′ + q(t)φ(x(t− τ)) + v(t)ψ(x(t− η)) = 0

of a neutral coefficient p(t), by using the Knaster-Tarski fixed point theorem and Banach’s fixed

point theorem.
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On a class of k + 1 th-order difference equations with variable
coefficients

M. Folly-Gbetoula∗ , D. Nyirenda and N. Mnguni

School of Mathematics, University of the Witwatersrand, Johannesburg,
South Africa.

Abstract

A Lie point symmetry analysis of a class of higher order difference
equations with variable coefficients is considered and new symmetries
are found. These symmetries are utilized to investigate the existence
of solutions. The results in this paper generalize some results in the
literature.

Key words: Difference equation; symmetry; reduction; group invariant so-
lutions; periodicity

1 Introduction

Recently, rational difference equations have become a centre of interest of
many authors, see [1–4]. Many methods have been developed to solve dif-
ference equations in closed form, that is, when every solution can be written
in terms of the initial values and the indexing variable index n only. Among
others, is the Lie symmetry approach used for differential equations. This
differential equations method for difference equations was studied by P. Hy-
don and others (see [5–7, 9–11]). In [6], the author introduced an algorithm
for obtaining symmetries and conservation laws of second-order difference
equations. Now, it is known that these tools can be used to lower the order,
via the invariants of the Lie group of transformations, as it was established
for differential equations.
In this work, we aim to use the Lie symmetry approach to solve the following
difference equations:

xn+1 =
xn−k

βn + γn
k∏
i=0

xn+i

, (1)

∗Cooresponding author: Mensah.Folly-Gbetoula@wits.ac.za
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where βn and γn are real sequences. The definitions and notation in this
paper follow the ones used by Hydon in [6]. Therefore, we will have to shift
the equation k times and study

un+k+1 =
un

Bn + An
k∏
i=0

un+i

, (2)

instead.
Our work is a natural generalization of the results by Elabbasy, et. al. [1].
These authors used induction method to give solutions of

xn+1 =
αxn−k

β + γ
k∏
i=0

xn+i

, (3)

where the parameters α, β and γ are non-negative real numbers and the
initial values are positive numbers.

2 Definitions and algorithm

As mentioned earlier, the definitions and notation used in this paper follow
those adopted by Hydon in [6].

Definition 2.1 A parameterized set of point transformations,

Γε : x 7→ x̂(x; ε), (4)

where x = xi, i = 1, . . . , p are continuous variables, is a one-parameter local
Lie group of transformations if the following conditions are satisfied:

1. Γ0 is the identity map if x̂ = x when ε = 0

2. ΓaΓb = Γa+b for every a and b sufficiently close to 0

3. Each x̂i can be represented as a Taylor series (in a neighborhood of
ε = 0 that is determined by x), and therefore

x̂i(x : ε) = xi + εξi(x) +O(ε2), i = 1, ..., p. (5)

2
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Consider the k + 1th-order difference equation

un+k+1 = Ω(un, un+1, . . . , un+k), (6)

for some function Ω. We shall restrict our attention to Lie point symmetries
where ûn is a function of n and un only. In other words, we assume that the
Lie point symmetries are of the form

n̂ = n; ûn = un + εQ(n, un) (7)

and that the analogous prolonged infinitesimal symmetry generator takes the
form

X [k] =
k∑
i=0

Q(n+ i, un+i)
∂

∂un+i
, (8)

where Q = Q(n, un) is referred to as the characteristic. We define the sym-
metry condition as

ûn+k+1 = Ω(n, ûn, ûn+1, ..., ûn+k) (9)

whenever (6) holds. Substituting the Lie point symmetries (7) into the sym-
metry condition (9) leads to the linearized symmetry condition

Q(n+ k + 1, un+k+1)−X [k]Ω = 0, (10)

whenever (6) holds.
One can solve for the characteristic Q(n, un) using the method of elimination
and thereafter lower the order the difference equation (6) via the canonical
coordinate [8]

Sn =

∫
dun

Q(n, un)
. (11)

3 Main results

3.1 Symmetries

Consider the k + 1 th-order difference equations of the form (2), i.e.,

un+k+1 = Ω =
un

Bn + An
k∏
i=0

un+i

.

3
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We impose the symmetry condition (10) on (2) to get

Q(n+ k + 1, un+k+1)−
k∑
i=0

Ω,un+i
Q(n+ i, un+i) = 0, (12)

where Ω,y denotes the partial derivative of Ω with respect to y.
The characteristic in (12) takes different arguments and one can eliminate the
undesirable variable by implicit differentiation. In this optic, we differentiate
(12) with respect to un+1 ( keeping Ω fixed) and viewing un+2 as a function
of un, un+1, . . . , un+k and Ω, that is, we act the operator

L =
∂

∂un+1

+
∂un+2

∂un+1

∂

∂un+2

=
∂

∂un+1

−
Ω,un+1

Ω,un+2

∂

∂un+2

(13)

on (12). This yields

− Ω,un+1Q
′(n+ 1, un+1) + Ω,un+1Q

′(n+ 2, un+2)

−
k∑
i=0

[
Ω,un+iun+1 −

Ω,un+1

Ω,un+2

Ω,un+iun+2

]
Q(n+ i, un+i) = 0

(14)

which simplifies to

− un+1un+2Q
′(n+ 2, un+2) + un+1un+2Q

′(n+ 1, un+1)− un+2Q(n+ 1, un+1)

+ un+1Q(n+ 2, un+2) = 0 (15)

after a set of rather long calculations. Note that ′ stands for the derivative
with respect to the continuous variable. The differentiation of (15) with
respect to un+1 twice (keeping un+2 fixed) leads to

[un+1Q
′(n+ 1, un+1)−Q(n+ 1, un+1)]

′′
= 0 (16)

after simplification. The solution of (16) is given by

Q (n, un) = anun + bnun lnun + cn (17)

for some functions an, bn and cn of n. These functions are obtained by
substituting (17) in (12) and by splitting the resulting equations with respect
to product of shifts of un, since they are functions of n only. It turns out
that bn = cn = 0 and we are left with the following reduced system:

1 : an+k+1 − an = 0 (18a)

un . . . un+k : an+1 + an+2 + · · ·+ an+k + an+k+1 = 0, (18b)

4
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or equivalently

an + an+1 + an+2 + · · ·+ an+k = 0. (19)

We have found that

an = exp

(
2πns

k + 1
i

)
, 1 ≤ s ≤ k. (20)

Thus, the k infinitesimal generators are given by

Xs = exp

(
2πns

k + 1
i

)
un
∂

∂un
, 1 ≤ s ≤ k. (21)

3.2 Reduction and exact solutions

Let

θs = exp

(
2πs

k + 1
i

)
and Qs(n, un) = (θs)

nun. (22)

To lower the order of (2), we introduce the canonical coordinate defined in
(11). We have

Sn =

∫
dun

Qs(n, un)
=

1

(θs)n
ln |un|. (23)

Thanks to (19), we have proved that

Xs

[
(θs)

nSn + (θs)
n+1Sn+1 + · · ·+ (θs)

n+kSn+k

]
= 0, 1 ≤ s ≤ k. (24)

So,

rn = (θs)
nSn + (θs)

n+1Sn+1 + · · ·+ (θs)
n+kSn+k (25)

is an invariant function of Xs, s = 0, 1, 2, . . . , k. For convenience, we consider

|r̃n| = exp{−rn} = ± 1
k∏
i=0

un+i

, (26)

5
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instead. We choose r̃n = 1/
k∏
i=0

un+i and the reader can readily check that r̃n

satisfies

r̃n+1 = Bnr̃n + An (27)

and that

r̃n = r̃0

(
n−1∏
k1=0

Bk1

)
+

n−1∑
l=0

(
Al

n−1∏
k2=l+1

Bk2

)
. (28)

Thanks to (26) and (2), we have that

un+k+1 =
r̃n
r̃n+1

un (29)

and thus

u(k+1)n+j = uj

n−1∏
s=0

r̃(k+1)s+j

r̃(k+1)s+j+1

, j = 0, 1, . . . , k. (30)

We have

u(k+1)n+j =uj

n−1∏
s=0

r̃0

(
(k+1)s+j−1∏

k1=0

Bk1

)
+

(k+1)s+j−1∑
l=0

(
Al

(k+1)s+j−1∏
k2=l+1

Bk2

)

r̃0

(
(k+1)s+j∏
k1=0

Bk1

)
+

(k+1)s+j∑
l=0

(
Al

(k+1)s+j∏
k2=l+1

Bk2

)

=uj

n−1∏
s=0

(
(k+1)s+j−1∏

k1=0

Bk1

)
+

(
k∏
i=0

ui

)
(k+1)s+j−1∑

l=0

(
Al

(k+1)s+j−1∏
k2=l+1

Bk2

)
(

(k+1)s+j∏
k1=0

Bk1

)
+

(
k∏
i=0

ui

)
(k+1)s+j∑

l=0

(
Al

(k+1)s+j∏
k2=l+1

Bk2

)
(31)

for j = 0, 1, . . . , k. The solution to the sequence {xn} is then given by

x(k+1)n+j−k = xj−k

n−1∏
s=0

(
(k+1)s+j−1∏

k1=0

βk1

)
+ P

(k+1)s+j−1∑
l=0

(
γl

(k+1)s+j−1∏
k2=l+1

βk2

)
(

(k+1)s+j∏
k1=0

βk1

)
+ P

(k+1)s+j∑
l=0

(
γl

(k+1)s+j∏
k2=l+1

βk2

)

6
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where j = 0, 1, 2, . . . , k and P =
k∏
i=0

x−i. In the subsequent sections, we

investigate solutions to special cases of the difference equations.

4 The case when βn and γn are 1-periodic

In this case, we assume that β0 = βj for all j ≥ 1 and γ0 = γj for all j ≥ 1.

4.1 The case when β0 6= 1

The solution becomes

x(k+1)n+j−k = xj−k

n−1∏
s=0

β
(k+1)s+j
0 +

(
k∏
i=0

x−i

)
1−β(k+1)s+j

0

1−β0 γ0

β
(k+1)s+j+1
0 +

(
k∏
i=0

x−i

)
1−β(k+1)s+j+1

0

1−β0 γ0

, j = 0, 1, 2, . . . , k.

Set β0 = γ0 = 1
a

where a is a constant. Then the solution reduces to

x(k+1)n+j−k = xj−k

n−1∏
s=0

(a−1)(k+1)s+j +

(
k∏
i=0

x−i

)
1−(a−1)(k+1)s+j

1−a−1 a−1

(a−1)(k+1)s+j+1 +

(
k∏
i=0

x−i

)
1−(a−1)(k+1)s+j+1

1−a−1 a−1
,

which is equivalent to

x(k+1)n+j−k = xj−ka
n

n−1∏
s=0

1 +

(
k∏
i=0

x−i

)
(k+1)s+j−1∑

l=0

al

1 +

(
k∏
i=0

x−i

)
(k+1)s+j∑

l=0

al
.

More explicitly, we have

x(k+1)n−k = x−ka
n

n−1∏
s=0

1 +

(
k∏
i=0

x−i

)
(k+1)s−1∑

l=0

al

1 +

(
k∏
i=0

x−i

)
(k+1)s∑
l=0

al
,

7
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x(k+1)n+1−k = x1−ka
n

n−1∏
s=0

1 +

(
k∏
i=0

x−i

)
(k+1)s∑
l=0

al

1 +

(
k∏
i=0

x−i

)
(k+1)s+1∑

l=0

al
,

x(k+1)n+2−k = x2−ka
n

n−1∏
s=0

1 +

(
k∏
i=0

x−i

)
(k+1)s+1∑

l=0

al

1 +

(
k∏
i=0

x−i

)
(k+1)s+2∑

l=0

al
,

...

x(k+1)n−1 = x−1a
n

n−1∏
s=0

1 +

(
k∏
i=0

x−i

)
(k+1)s+k−2∑

l=0

al

1 +

(
k∏
i=0

x−i

)
(k+1)s+k−1∑

l=0

al

and

x(k+1)n = x0a
n

n−1∏
s=0

1 +

(
k∏
i=0

x−i

)
(k+1)s+k−1∑

l=0

al

1 +

(
k∏
i=0

x−i

)
(k+1)s+k∑

l=0

al
.

This solution has appeared in [1].

4.1.1 The special case β = −1 and k is odd

The solution simplifies to

x(k+1)n−k = x−k(−1 + (x−kx−k+1x−k+2 . . . x−1x0)γ0)
−n,

x(k+1)n+1−k = x1−k(−1 + (x−kx−k+1x−k+2 . . . x−1x0)γ0)
n,

x(k+1)n+2−k = x2−k(−1 + (x−kx−k+1x−k+2 . . . x−1x0)γ0)
−n,

8
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...

x(k+1)n−1 = x−1(−1 + (x−kx−k+1x−k+2 . . . x−1x0)γ0)
−n,

x(k+1)n = xj−k(−1 + (x−kx−k+1x−k+2 . . . x−1x0)γ0)
n,

as long as the denominator does not vanish.
However, the solution above can be written in compact form as

x(k+1)n+j−k = xj−k (−1 + (x−kx−k+1x−k+2 . . . x−1x0)γ0)
(−1)j+1n

for j = 0, 1, . . . , k.
This solution has appeared in [1] (See Theorem 9).

Remark 4.1 Note that if γ0
k∏
i=0

x−i = 2, the solution is periodic with period

k + 1.

4.1.2 The special case β = −1 and k is even

In this case, we have

x(k+1)n+j−k = xj−k

n−1∏
s=0

(−1)s+j +

(
k∏
i=0

x−i

)
1−(−1)s+j

2
γ0

(−1)s+j+1 +

(
k∏
i=0

x−i

)
1−(−1)s+j+1

2
γ0

= xj−k

n−1∏
s≥0,

s−j is even

1

−1 +

(
k∏
i=0

x−i

)
γ0

n−1∏
s≥0,

s−j is odd

(
−1 +

(
k∏
i=0

x−i

)
γ0

)
.

If j is even and n is odd,

x(k+1)n+j−k = xj−k

(
−1 + γ0

k∏
i=0

x−i

)−bn−1
2
c−1(

−1 + γ0

k∏
i=0

x−i

)bn−1
2
c

= xj−k

(
−1 + γ0

k∏
i=0

x−i

)−1
.

9
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If j is odd and n is odd,

x(k+1)n+j−k = xj−k

(
−1 + γ0

k∏
i=0

x−i

)−bn−1
2
c(
−1 + γ0

k∏
i=0

x−i

)bn−1
2
c+1

= xj−k

(
−1 + γ0

k∏
i=0

x−i

)
.

If j is even and n is even,

x(k+1)n+j−k = xj−k

(
−1 + γ0

k∏
i=0

x−i

)−bn−1
2
c−1(

−1 + γ0

k∏
i=0

x−i

)bn−1
2
c+1

= xj−k.

If j is odd and n is even,

x(k+1)n+j−k = xj−k

(
−1 + γ0

k∏
i=0

x−i

)−bn−1
2
c−1(

−1 + γ0

k∏
i=0

x−i

)bn−1
2
c+1

= xj−k.

In summary, and more compactly, the solution is

x(k+1)n+j−k =

xj−k
(
−1 + γ0

k∏
i=0

x−i

)(−1)j+1

, if n is odd

xj−k, if n is even.

This solution has appeared in [1] (See Theorem 8).

4.1.3 The case when β0 = 1

The solution is given by

x(k+1)n+j−k = xj−k

n−1∏
s=0

1 +

(
k∏
i=0

x−i

)
((k + 1)s+ j)γ0

1 +

(
k∏
i=0

x−i

)
((k + 1)s+ j + 1)γ0

, j = 0, 1, 2, . . . , k.
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5 Conclusion

We have utilized symmetry analysis to find point symmetries for certain
(k + 1) th-order difference equations. We performed the group reduction of
the equations using one of these symmetries and solutions were given in a
unified manner. Our results generalise those in [1] in the sense that (a) α,
β and γ need not necessarily be non-negative integers and (b) the constants
can be replaced with sequences (variable constants).
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Abstract. In this paper, we find solutions and investigate the superstability
bounded by function for the sine functional equation (S) from the approximate

inequality of the Pexider type functional equation:

f

(
x+ y

2

)2

− g

(
x− y

2

)2

= h(x)k(y).

Furthermore, the results are extended to Banach algebras. As a consequence,
we obtain the superstability for the exponential functional equations, the hy-

perbolic functional equations, and the jointed Pexider Lobacevski equation.

Keywords: stability, superstability, sine functional equation, cosine functional
equation.

MSC 2020: 39B82, 39B52.

1. Introduction

In 1979, Baker et al. [4] announced the superstability as the new concept as
follows: If f satisfies |f(x + y) − f(x)f(y)| ≤ ε for some fixed ε > 0, then either f
is bounded or f satisfies the exponential functional equation

f(x+ y) = f(x)f(y). (E)

D’Alembert, in 1769, introduced the cosine (d’Alembert) functional equation

f(x+ y) + f(x− y) = 2f(x)f(y), (C)

whose superstability was proved on Abelian group by Baker [3] in 1980.
The cosine (d’Alembert) functional equation (C) was generalized to the following:

f(x+ y) + f(x− y) = 2f(x)g(y), (W )

f(x+ y) + f(x− y) = 2g(x)f(y), (K)

in which (W ) is called the Wilson equation, and (K) was raised by Kim [9].
The superstability of the cosine (C), Wilson (W ) and Kim (K) was founded in

Badora [1], Ger [2], Kannappan and Kim [9], Kim [13, 15, 16, 20], and in [5, 7, 22].
In 1983, Cholewa [6] investigated the superstability of the sine functional equation

f
(x+ y

2

)2 − f
(x− y

2

)2
= f(x)f(y) (S)
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under the condition bounded by constant (Hyers sense). His result was improved to
the condition bounded by a function (Gǎvruta’s sense in [8]) in Badora and Ger [2].

Their results were also improved by Kim [11, 12, 14], which are the superstability
of the generalized sine functional equations:

f
(x+ y

2

)2 − f
(x− y

2

)2
= f(x)g(y) (Sfg)

f
(x+ y

2

)2 − f
(x− y

2

)2
= g(x)f(y) (Sgf )

f
(x+ y

2

)2 − f
(x− y

2

)2
= g(x)g(y) (Sgg)

f
(x+ y

2

)2 − f
(x− y

2

)2
= g(x)h(y) (Sgh)

under the condition bounded by a constant or a function.
The aim of this paper is to find solutions and to investigate the superstability

bounded by the function (Gǎvruta sense in [8]) for the sine functional equation (S)
from an approximate inequality of the Pexider type functional equation:

f

(
x+ y

2

)2

− g

(
x− y

2

)2

= h(x)k(y), (Sfghk)

which is represented by the exponential equations, hyperbolic cosine(sine) equations,
and the jointed Pexider Lobacevski equation (PL).

As corollaries, we obtain the superstability bounded by a constant or the function
for the sine functional equation (S) from an approximate inequality of the sine type
functional equations (Sfg), (Sgf ), (Sgg), (Sgh), and the Pexider type functional
equations:

f

(
x+ y

2

)2

− g

(
x− y

2

)2

= h(x)h(y) (Sfghh)

f

(
x+ y

2

)2

− g

(
x− y

2

)2

= h(x)f(y) (Sfghf )

f

(
x+ y

2

)2

− g

(
x− y

2

)2

= h(x)g(y) (Sfghg)

f

(
x+ y

2

)2

− g

(
x− y

2

)2

= f(x)h(y) (Sfgfh)

f

(
x+ y

2

)2

− g

(
x− y

2

)2

= f(x)g(y) (Sfgfg)

f

(
x+ y

2

)2

− g

(
x− y

2

)2

= f(x)f(y) (Sfgff )

f

(
x+ y

2

)2

− g

(
x− y

2

)2

= g(x)h(y) (Sfggh)

f

(
x+ y

2

)2

− g

(
x− y

2

)2

= g(x)g(y) (Sfggg)
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f

(
x+ y

2

)2

− g

(
x− y

2

)2

= g(x)f(y). (Sfggf )

Furthermore, the obtained results are extended to Banach algebras.
In this paper, let (G,+) be an uniquely 2-divisible Abelian group, C the field of

complex numbers, and G the field of real numbers. f, g, h, k are nonzero functions
and ε is a nonnegative real constant, φ : G → R be a mapping.

2. Creation of the equations and its solution.

The purpose of this chapter is to show the creation and the solution for the
frequently risen function equations dued by the trigonometric function.

Let us recall the trigonometric formula, except for (C), (W ) (K).

sin(x+ y) + cos(x− y) = [sin(x) + cos(x)][sin(y) + cos(y)] implies

f(x+ y) + g(x− y) = [f(x) + g(x)][f(y) + g(y)] = h(x)h(y). (fghh)

cos(x+ y) + sin(x− y) = [cos(x) + sin(x)][cos(y)− sin(y)] implies

f(x+ y) + g(x− y) = [f(x) + g(x)][f(y)− g(y)] = h(x)k(y). (fghk)

sin(x+ y)− sin(x− y) = 2 cos(x) sin(y) implies

f(x+ y)− f(x− y) = 2g(x)f(y). (Tgf )

cos(x+ y)− cos(x− y) = −2 sin(x) sin(y) implies

f(x+ y)− f(x− y) = −2g(x)g(y) = 2g(x)h(y). (Tgh)

cos(x+ y)− sin(x− y) = [cos(x)− sin(x)][cos(y) + sin(y)] implies

f(x+ y)− g(x− y) = [f(x)− g(x)][f(y) + g(y)] = h(x)k(y). (Tfghk)

sin(x+ y)− cos(x− y) = [sin(x)− cos(x)][cos(y)− sin(y)] implies

f(x+ y)− g(x− y) = [f(x)− g(x)][g(y)− f(y)] = h(x)k(y). (Tfghk)

f(x+ y)− f(x− y) = 2f(x)f(y). (T )

Like the cosine and the sine, the above functional equations are also derived
simultaneously by the hyperbolic cosine (sine), exponential equation, and Jensen
equation, as can be seen in the following relations:

cosh(x+ y)± cosh(x− y) = 2 cosh(x) cosh(y)
(
= −2 sinh(x) sinh(y)

)
sinh(x+ y)± sinh(x− y) = 2 sinh(x) cosh(y)

(
= 2 cosh(x) sinh(y)

)
ax+y ± ax−y = 2ax ay±a−y

2 ≈ 2ex ey±e−y

2 = 2ex cosh(y)
(
= 2ex sinh(y)

)
(n(x+ y) + c)± (n(x− y) + c) = 2(nx+ c)

(
= 2n(y)

)
: Jensen equation, for f(x) = nx+ c, g(y) = 1,

where the subtraction corresponds into parentheses ( ).
Since the trigonometric and hyperbolic functions are expressed by an exponential

function as following: sinx = eix−e−ix

2i and sinhx = ex−e−x

2 , respectively, all of the
above functional equations naturally have exponential and hyperbolic functions as
solution.
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Now, let’s bring the quadratic functional equation generated by a product or a
square of the above equations, which is the target of this paper.

It is well known that the sine functional equation (S) is derived as follows:

f
(
x+y
2

)2 − f
(
x−y
2

)2
= sin

(
x+y
2

)2 − sin
(
x−y
2

)2
= sin (x) sin (y) = f(x)f(y).

Eq. (S) has simultaneously an exponential solution as follows :(
1

2i

(
ei

x+y
2 − e−i x+y

2

))2

−
(

1

2i

(
ei

x−y
2 − e−i x−y

2

))2

=

(
eix − e−ix

2i

)(
eiy − e−iy

2i

)
.

Also, simultaneously, (S) is satisfied for the hyperbolic sine function as follows:

f
(
x+y
2

)2 − f
(
x−y
2

)2
= sinh

(
x+y
2

)2 − sinh
(
x−y
2

)2
=
(

1
2

(
e

x+y
2 − e−

x+y
2

))2
−
(

1
2

(
e

x−y
2 − e−

x−y
2

))2
=
(
1
2 (e

x − e−x)
) (

1
2 (e

y − e−y)
)

= sinh(x) sinh(y) = f(x)f(y),

which is added solutions as the hyperbolic sine, exponential function.
Also, the other examples of the Pexider type quadratic functional equations

f(x)f(y) =


(i) f

(
x+y
2

)2 − f
(
x−y
2

)2
(ii) g

(
x+y
2

)2 − g
(
x−y
2

)2
(iii) g

(
x+y
2

)2 − f
(
x−y
2

)2
(iv) −

(
f
(
x+y
2

)2 − g
(
x−y
2

)2)
have solutions to the hyperbolic sine(cosine) as follows:

sinh(x) sinh(y) =


(i) sinh2

(
x+y
2

)
− sinh2

(
x−y
2

)
(ii) cosh2

(
x+y
2

)
− cosh2

(
x−y
2

)
(iii) cosh2

(
x+y
2

)
− sinh2

(
x−y
2

)
(iv) −

(
sinh2

(
x+y
2

)
− cosh2

(
x−y
2

))
.

Next, the Lobacevski equation

f

(
x+ y

2

)2

= f(x)f(y) (L)

is considered to the exponential equation (E) by f
(
x+y
2

)2
=
(
e

x+y
2

)2
= ex+y =

exey = f(x)f(y).
The Lobacevski equation (L) was generalized by Kim [17, 18] Kim and Park [21]

to the Pexider type Lobacevski equations

f

(
x+ y

2

)2

= g(x)h(y), f
(x+ y

n

)m
= g(x)h(y). (PL)
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Hence (Sfghk) and all (S) type equations are also represented as joint of (L) and
(PL) as follows:

f

(
x+ y

m

)m

− g

(
x− y

n

)n

=
(

m
√
p
(
a

x+y
m

))m
−
(

n
√
q
(
a−

x−y
n

))n
= p (ax+y)− q (a−x+y) = (pax − qa−x) ay

= h(x)k(y),

where f(x) = m
√
p(ax), g(x) = n

√
q(a−x), h(x) = pax − qa−x, k(x) = ax.

As a result, the target function equation (Sfghk) has solutions as the trigonomet-
ric, exponential, hyperbolic function, jointed Pexider Lobacevski equation.

In the following, we show examples of solution applied to the trigonometric func-
tion for (Sgg), (Sgh), (Sfghk), (Sfghh). Of course, it is also natural to have the its so-
lutions as exponential function, hyperbolic sine(cosine) function, Pexider Lobacevski
equation. Their description will be skip.

Solution 1. The functions f, g, h : G −→ C satisfy (Sgh) if and only if f, g, h are
solutions with f(x) = cosx, g(x) = sinx, and h(x) = − sinx.

In particular, if the functions f, g : G −→ C satisfy the functional equation (Sgg)
if and only if f, g are solutions with f(x) = cosx and g(x) = i sinx.

Proof. f
(
x+y
2

)2−f
(
x−y
2

)2
= cos

(
x+y
2

)2−cos
(
x−y
2

)2
= − sinx sin y = g(x)h(y). In

particular case, it is established that f
(
x+y
2

)2−f
(
x−y
2

)2
= cos

(
x+y
2

)2−cos
(
x−y
2

)2
=

− sinx sin y = i2 sinx sin y = g(x)g(y). □

Solution 2. The functions f, g, h, k : G −→ C satisfy (Sfghk) if and only if f, g, h, k

are solutions with f(x) = sin(x), g(x) = cos(x), h(x) = (sin2 − cos2)(x), k(x) =
(cos2 − sin2)(x).

Proof. f
(
x+y
2

)2 − g
(
x−y
2

)2
= sin

(
x+y
2

)2 − cos
(
x−y
2

)2
= (sin2 x − cos2 x)(cos2 y −

sin2 y) = h(x)k(y). □

Solution 3. (i) The functions f, g, h : G −→ C satisfy (Sfghh) if and only if f, g, h

are solutions with f(x) = cos(2x), g(x) = sin(2x), h(x) = (cos2 − sin2)(x).
(ii) The functions f, g, h : G −→ C satisfy (Sfghh) if and only if f, g, h are

solutions with f(x) = sin(x), g(x) = cos(x), h(x) = i(sin2 − cos2)(x).

Proof. (i) f
(
x+y
2

)2−g
(
x−y
2

)2
= cos

(
2x+y

2

)2− sin
(
2x−y

2

)2
= cos

(
x+y

)2− sin
(
x−

y
)2

= (cos2 x− sin2 x)(cos2 y − sin2 y) = h(x)h(y).

(ii) f
(
x+y
2

)2 − g
(
x−y
2

)2
= sin

(
x+y
2

)2 − cos
(
x−y
2

)2
= (sin2 x − cos2 x)(cos2 y −

sin2 y) = i2(sin2 x− cos2 x)(sin2 y − cos2 y) = h(x)h(y). □

Remark 1. (i) It is trivial that all 1∼3 have solutions as an exponential functions,
hyperbolic sine (cosine) functions, and Lovachevsky equations.

(ii) The investigation of solutions associated with the generative method for (Sfghk)
can be further extended to that for the Pexider type function equation:

f

(
x+ y

2

)2

+ g

(
x− y

2

)2

= h(x)k(y). (Pfghk)
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3. Superstability of (S) from the approximate inequality of (Sfghk)

We investigate the superstability of the sine functional equation (S) from the
approximate inequality of the Pexider type functional equation (Sfghk) related to
(S). As a corollary, we obtain the superstability of the sine functional equation (S).

Theorem 1. Assume that f, g, h, k : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)k(y)

∣∣∣∣∣ ≤ φ(y) ∀x, y ∈ G, (3.1)

which satisfies one of the cases k(0) = 0, f(x)2 = g(x)2.
Then either h is bounded or k satisfies (S). In addition, if h satisfies (C), k and

h satisfy (Tgf ):= k (x+ y)− k (x− y) = 2h(x)k(y).

Proof. The inequality (3.1) may equivalently be written as

|f (x+ y)
2 − g (x− y)

2 − h(2x)k(2y)| ≤ φ(2y), ∀ x, y ∈ G. (3.2)

Let h be unbounded. Then we can choose a sequence {xn} in G such that

0 ̸= |h(2xn)| → ∞, as n → ∞. (3.3)

Taking x = xn in (3.2), we obtain∣∣∣∣∣f (xn + y)
2 − g (xn − y)

2

h(2xn)
− k(2y)

∣∣∣∣∣ ≤ φ(2y)

|h(2xn)|
,

and so by (3.3), we have

k(2y) = lim
n→∞

f (xn + y)
2 − g (xn − y)

2

h(2xn)
. (3.4)

Using (3.1) we have

2φ(y) ≥

∣∣∣∣∣h(2xn + x)k(y)− f

(
2xn + x+ y

2

)2

+ g

(
2xn + x− y

2

)2
∣∣∣∣∣

+

∣∣∣∣∣h(2xn − x)k(y)− f

(
2xn − x+ y

2

)2

+ g

(
2xn − x− y

2

)2
∣∣∣∣∣

≥ | (h(2xn + x) + h(2xn − x)) k(y)

−

(
f

(
xn +

x+ y

2

)2

− g

(
xn − x+ y

2

)2
)

−

(
f

(
xn +

−x+ y

2

)2

− g

(
xn − −x+ y

2

)2
)∣∣∣∣∣ (3.5)

for all x, y ∈ G and all n ∈ N. Consequently,
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2φ(y)

|h(2xn)|
≥
∣∣∣∣h(2xn + x) + h(2xn − x)

h(2xn)
k(y)

−
f
(
xn + x+y

2

)2 − g
(
xn − x+y

2

)2
h(2xn)

−
f
(
xn + −x+y

2

)2 − g
(
xn − −x+y

2

)2
h(2xn)

∣∣∣∣∣ (3.6)

for all x, y ∈ G and all n ∈ N.
Taking the limit as n −→ ∞ with the use of (3.4) and (3.6), we conclude that,

for every x ∈ G, there exists the limit function

L1(x) := lim
n→∞

h(2xn + x) + h(2xn − x)

h(2xn)
,

where the obtained function L1 : G → C satisfies the equation as even

k(x+ y) + k(−x+ y) = L1(x)k(y) ∀x, y ∈ G. (3.7)

First, let us consider the case k(0) = 0. Then it forces by (3.7) that k is odd. So
(3.7) is

k(x+ y)− k(x− y) = L1(x)k(y) ∀x, y ∈ G. (3.8)

By means of (3.8) and the oddness of k, we have the following

k(x+ y)2 − k(x− y)2 = [k(x+ y) + k(x− y)]L1(x)k(y) (3.9)

=
[
k(2x+ y) + k(2x− y)

]
k(y)

=
[
k(y + 2x)− k(y − 2x)

]
k(y)

= L1(y)k(2x)k(y).

Putting x = y in (3.8), we conclude that

k(2y) = L1(y)k(y) for all x, y ∈ G. (3.10)

The equation (3.9), in return, leads with (3.10) to the equation

k(x+ y)2 − k(x− y)2 = k(2x)k(2y), (3.11)

which, by 2-divisibility of G, states nothing else but (S).
In addition, if h satisfies (C), L1 forces 2h, so (3.8) forces that k and h satisfy

(Tgf ).

For the other case f(x)2 = g(x)2, it is enough to show that k(0) = 0. Suppose
that this is not the case. Then, we may assume that k(0) = c: constant.

Putting y = 0 in (3.1), from the above assumption, we obtain the inequality

|h(x)| ≤ φ(0)

c
∀ x ∈ G.

This inequality means that h is globally bounded, which is a contradiction by
unboundedness assumption. Thus the claimed k(0) = 0 holds, so the proof is com-
pleted. □
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Theorem 2. Suppose that f, g, h, k : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)k(y)

∣∣∣∣∣ ≤ φ(x) ∀x, y ∈ G, (3.12)

which satisfies one of the cases h(0) = 0, f(x)2 = g(−x)2.
Then either k is bounded or h satisfies (S). In addition, if k satisfies (C), h and

k satisfy the Wilson equation (W ):= h (x+ y) + h (x− y) = 2h(x)k(y).

Proof. Let k be unbounded. Then we can choose a sequence {yn} in G such that
k(2yn)| → ∞ as n → ∞. An obvious slight change in the proof steps applied in the
start of Theorem 1 gives us

h(2x) = lim
n→∞

f (x+ yn)
2 − g (x− yn)

2

k(2yn)
. (3.13)

Replacing y by y + 2yn and −y + 2yn in (3.12), the same procedure of (3.5) and
(3.6) allows, with an applying of (3.13), one to state the existence of a limit function

L2(y) := lim
n→∞

k(y + 2yn) + k(−y + 2yn)

k(2yn)
,

where L2 : G −→ C satisfies the equation

h(x+ y) + h(x− y) = h(x)L2(y) ∀x, y ∈ G. (3.14)

For the case h(0) = 0, it forces by (3.14) that h is odd.
Putting y = x in (3.14), we get

h(2x) = h(x)L2(x) ∀x,∈ G. (3.15)

From (3.14), the oddness of h and (3.15), we obtain the equation

h(x+ y)2 − h(x− y)2 = h(x)L2(y)[h(x+ y)− h(x− y)]

= h(x)[h(x+ 2y)− h(x− 2y)]

= h(x)[h(2y + x) + h(2y − x)]

= h(x)h(2y)L2(x)

= h(2x)h(2y),

which, by 2-divisibility of G, states (S).
In addition, if k satisfies (C), L2 forces 2k, so (3.14) forces that h and k satisfy

(W ).
The other case f(x)2 = g(−x)2 also is established h(0) = 0 for the same reason

as that of Theorem 1, so the proof is completed. □

From Theorems 1 and 2, we obtain the following result as a corollary.

Theorem 3. Suppose that f, g, h, k : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)k(y)

∣∣∣∣∣ ≤ min{φ(x), φ(y)} (3.16)

for all x, y ∈ G. Then
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(i) either h under the cases k(0) = 0 or f(x)2 = g(x)2 is bounded or k satisfies
(S). In addition, if h satisfies (C), k and h satisfy (Tgf ):= k(x+ y) − k(x− y) =
2h(x)k(y);

(ii) either k under the cases h(0) = 0 or f(x)2 = g(−x)2 is bounded, or h
satisfies (S). In addition, if k satisfies (C), h and k satisfy the Wilson equation
(W ):=h(x+ y) + h(x− y) = 2h(x)k(y).

As a corollary, we obtain the stability of the sine functional equation (S) from
Theorems 1, 2, 3.

Corollary 1. Assume that f : G −→ C satisfies the inequality∣∣∣∣∣f
(
x+ y

2

)2

− f

(
x− y

2

)2

− f(x)f(y)

∣∣∣∣∣ ≤

(i) φ(y),

(ii) φ(x),

(iii) min{φ(x), φ(y)}.

Then, either f is bounded or f satisfies (S).

Proof. Assumption f(0) = 0 in Theorems is simply eliminated (see [2, Theorem
5]). □

4. Application of the equations (Sfghh), (Sfghf ), (Sfgfh), (Sfgfg)

Replacing according to the location by f , g, or h for the functions k, h in Theorems
1, 2, and 3, as corollaries, we obtain the stability of the sine functional equation (S)
from the approximate inequalities of (Sfghh), (Sfghf ), (Sfgfh), (Sfgfg). Other cases
are skipped. All proofs follow from that of Theorems 1, 2, 3.

4.1. Stability of the equation (Sfghh).

Corollary 2. Suppose that f, g, h : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)h(y)

∣∣∣∣∣ ≤

(i) φ(y)

(ii) φ(x)

(iii) min{φ(x), φ(y)}
∀x, y ∈ G.

Then, either h is bounded or h satisfies (S) under one of the cases h(0) = 0,
f(x)2 = g(x)2, f(x)2 = g(−x)2, respectively.

4.2. Stability of the equation (Sfghf ).

Corollary 3. Assume that f, g, h : G → C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)f(y)

∣∣∣∣∣ ≤ φ(y), ∀x, y ∈ G

which satisfies one of the cases f(0) = 0, f(x)2 = g(x)2.
Then, either h is bounded or f satisfy (S). In addition, if h satisfies (C), then f

and h satisfy (Tgf ):= f (x+ y)− f (x− y) = 2h(x)f(y).

30

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

GWANG HUI KIM 22-36



Corollary 4. Suppose that f, g, h : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)f(y)

∣∣∣∣∣ ≤ φ(x), ∀x, y ∈ G

which satisfies one of the cases h(0) = 0, f(x)2 = g(−x)2.
Then, either f is bounded or h satisfies (S). In addition, if f satisfies (C), h and

f satisfy the Wilson equation (W ):=h (x+ y) + h (x− y) = 2h(x)f(y).

The following result follows from Corollaries 3 and 4.

Corollary 5. Suppose that f, g, h : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)f(y)

∣∣∣∣∣ ≤ min{φ(x), φ(y)}

for all x, y ∈ G. Then
(i) either h is bounded under one of the cases f(0) = 0, f(x)2 = g(x)2 or f satisfy

(S). In addition, if h satisfies (C), f and h satisfy (Tgf ):= f (x+ y)− f (x− y) =
2h(x)f(y);

(ii) either f is bounded under one of the cases h(0) = 0, f(x)2 = g(−x)2 or h
satisfies (S). In addition, if f satisfies (C), h and f satisfy the Wilson equation
(W ):=h (x+ y) + h (x− y) = 2h(x)f(y).

4.3. Stability of the equation (Sfgfh).

Corollary 6. Suppose that f, g, h : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− f(x)h(y)

∣∣∣∣∣ ≤ φ(y),

which satisfies one of the cases h(0) = 0, f(x)2 = g(x)2.
Then, either f is bounded or h satisfies (S). In addition, if f satisfies (C), h and

f satisfy (Tgf ):= h (x+ y)− h (x− y) = 2f(x)h(y).

Corollary 7. Suppose that f, g, h : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− f(x)h(y)

∣∣∣∣∣ ≤ φ(x),

which satisfies one of the cases f(0) = 0, f(x)2 = g(−x)2.
Then, either h is bounded or f satisfies (S). In addition, if h satisfies (C), f and

h satisfy the Wilson equation (W ):= f (x+ y) + f (x− y) = 2f(x)h(y).

Corollary 8. Suppose that f, g, h : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− f(x)h(y)

∣∣∣∣∣ ≤ min{φ(x), φ(y)}

for all x, y ∈ G. Then
(i) either f is bounded under one of the cases h(0) = 0, f(x)2 = g(x)2 or h

satisfies (S). In addition, if f satisfies (C), h and f satisfy (Tgf ):= h (x+ y) −
h (x− y) = 2f(x)h(y);
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(ii) either h is bounded under one of the cases f(0) = 0, f(x)2 = g(−x)2 or f
satisfies (S). In addition, if h satisfies (C), f and h satisfy the Wilson equation
(W ):=f (x+ y) + f (x− y) = 2f(x)h(y).

4.4. Stability of the equation (Sfgfg).

Corollary 9. Suppose that f, g : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− f(x)g(y)

∣∣∣∣∣ ≤ φ(y),

which satisfies one of the cases g(0) = 0, f(x)2 = g(x)2.
Then, either f is bounded or g satisfies (S). In addition, if f satisfies (C), g and

f satisfy (Tgf ):= g (x+ y)− g (x− y) = 2f(x)g(y).

Corollary 10. Suppose that f, g : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− f(x)g(y)

∣∣∣∣∣ ≤ φ(x),

which satisfies one of the cases f(0) = 0, f(x)2 = g(−x)2.
Then, either g is bounded or f satisfies (S). In addition, if g satisfies (C), then

f and g satisfy the Wilson equation (W ).

Corollary 11. Suppose that f, g : G −→ C satisfy the inequality∣∣∣∣∣f
(
x+ y

2

)2

− g

(
x− y

2

)2

− f(x)g(y)

∣∣∣∣∣ ≤ min{φ(x), φ(y)}

for all x, y ∈ G. Then
(i) either f is bounded under one of the cases g(0) = 0, f(x)2 = g(x)2 or g satisfies

(S). In addition, if f satisfies (C), g and f satisfy (Tgf ):= g (x+ y)− g (x− y) =
2f(x)g(y);

(ii) either g is bounded under one of the cases f(0) = 0, f(x)2 = g(−x)2 or f
satisfies (S). In addition, if g satisfies (C), then f and g satisfy the Wilson equation
(W ).

Remark 2. As corollaries, we obtain more stability results for the following reduced
equations of (Sfghk).

(i) The stability for the functional equations (Sfghg), (Sfggh), (Sfggf ), (Sfgff ),
(Sfggg), and (Sgh), (Sgf ), (Sfg), (Sgg) is skipped by same reason as the cases
(Sfghh), (Sfghf ), (Sfgfh), (Sfgfg). In particular, the stability for the equations
(Sgh), (Sgf ), (Sfg), (Sgg) is found in papers (see [11, 14, 19]).

(ii) Applying φ(x) = φ(y) = ε in all results containing (i), then it imply the
stability results.

5. Extension of the stability results to Banach algebras

All the results in Sections 3 and 4 can be also extended to Banach algebras. The
following theorem is an extension dued by Theorem 1, Theorem 2, and Theorem 3.
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Theorem 4. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume
that f, g, h, k : G −→ E satisfy the inequality∥∥∥∥∥f

(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)k(y)

∥∥∥∥∥ ≤


(i) φ(y),

(ii) φ(x),

(iii) min{φ(x), φ(y)}.

Then, for an arbitrary linear multiplicative functional x∗ ∈ E∗,
(i) either the superposition x∗ ◦ h under the cases k(0) = 0 or f(x)2 = g(x)2 is

bounded or k satisfies (S), In addition, if h satisfies (C), k and h satisfy (Tgf ):=
k (x+ y)− k (x− y) = 2h(x)k(y);

(ii) either the superposition x∗ ◦ k under the cases h(0) = 0 or f(x)2 = g(−x)2 is
bounded or h satisfies (S). In addition, if k satisfies (C), h and k satisfy the Wilson
equation (W ):= h (x+ y) + h (x− y) = 2h(x)k(y);

(iii) (i) and (ii) hold.

Proof. Assume that (i) holds and fix arbitrarily a linear multiplicative functional
x∗ ∈ E. As is well known we have ∥x∗∥ = 1 whence, for every x, y ∈ G, we have

φ(y) ≥

∥∥∥∥∥h(x)k(y)− f

(
x+ y

2

)2

+ g

(
x− y

2

)2
∥∥∥∥∥

= sup
∥y∗∥=1

∣∣∣∣∣y∗
(
h(x)k(y)− f

(
x+ y

2

)2

+ g

(
x− y

2

)2
)∣∣∣∣∣

≥

∣∣∣∣∣x∗(h(x)) · x∗(k(y))− x∗
(
f

(
x+ y

2

))
+ x∗

(
g

(
x− y

2

)2
)∣∣∣∣∣ ,

which states that the superpositions x∗ ◦ h and x∗ ◦ k yield a solution of stability
inequality (3.1) of Theorem 1. Since, by assumption, the superposition x∗ ◦ h is
unbounded, an appeal to Theorem 1 forces that the function x∗ ◦ k solves the sine
equation (S). In other words, bearing the linear multiplicativity of x∗ in mind, for
all x, y ∈ G, the difference DS : G −→ E defined by

DS(x, y) := k

(
x+ y

2

)2

− k

(
x− y

2

)2

− k(x)k(y)

falls into the kernel of x∗. Therefore, in view of the unrestricted choice of x∗, we
infer that

DS(x, y) ∈
⋂

{kerx∗ : x∗ is a multiplicative member of E∗}

for all x, y ∈ G. Since the algebra E has been assumed to be semisimple, the last
term of the above formula coincides with the singleton {0}, that is,

DS(x, y) = 0 for all x, y ∈ G,

as claimed. The cases(ii), (iii) also are the same. □
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Corollary 12. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume
that f, g, h : G −→ E satisfy the inequality∥∥∥∥∥f

(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)h(y)

∥∥∥∥∥ ≤


(i) φ(y),

(ii) φ(x),

(iii) min{φ(x), φ(y)}.
For an arbitrary linear multiplicative functional x∗ ∈ E∗, either the superposition

x∗ ◦ h is bounded or h satisfies (S) under one of the cases h(0) = 0, f(x)2 = g(x)2,
f(x)2 = g(−x)2, respectively.

Corollary 13. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume
that f, g : G −→ E satisfy the inequality∥∥∥∥∥f

(
x+ y

2

)2

− g

(
x− y

2

)2

− h(x)f(y)

∥∥∥∥∥ ≤


(i) φ(y),

(ii) φ(x),

(iii) min{φ(x), φ(y)}.
Then, for an arbitrary linear multiplicative functional x∗ ∈ E∗,
(i) either the superposition x∗ ◦ h under one of the cases f(0) = 0, f(x)2 = g(x)2

is bounded or f satisfies (S), In addition, if h satisfies (C), f and h satisfy (Tgf );
(ii) either the superposition x∗◦f under one of the cases h(0) = 0, f(x)2 = g(−x)2

is bounded or h satisfies (S). In addition, if f satisfies (C), h and f satisfy the
Wilson equation (W );

(iii) (i) and (ii) hold.

Corollary 14. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume
that f, g : G −→ E satisfy the inequality∥∥∥∥∥f

(
x+ y

2

)2

− g

(
x− y

2

)2

− f(x)h(y)

∥∥∥∥∥ ≤


(i) φ(y),

(ii) φ(x),

(iii) min{φ(x), φ(y)}.
Then, for an arbitrary linear multiplicative functional x∗ ∈ E∗,
(i)) either the superposition x∗ ◦f under one of the cases h(0) = 0, f(x)2 = g(x)2

is bounded or h satisfy (S);
In addition, if f satisfies (C), h and f satisfy (Tgf ):= h (x+ y) − h (x− y) =

2f(x)h(y).
(ii) either the superposition x∗ ◦ h under the cases f(0) = 0 or f(x)2 = f(−x)2 is

bounded or f satisfies (S). In addition, if h satisfies (C), f and h satisfy the Wilson
equation (W ):= f (x+ y) + f (x− y) = f(x)h(y);

(iii) (i) and (ii) hold.

Corollary 15. Let (E, ∥ · ∥) be a semisimple commutative Banach algebra. Assume
that f : G −→ E satisfies the inequality∥∥∥∥∥f

(
x+ y

2

)2

− f

(
x− y

2

)2

− f(x)f(y)

∥∥∥∥∥ ≤


(i) φ(y),

(ii) φ(x),

(iii) min{φ(x), φ(y)},
For an arbitrary linear multiplicative functional x∗ ∈ E∗, either the superposition

x∗ ◦ f is bounded or f satisfies (S).

34

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

GWANG HUI KIM 22-36



Remark 3. All items of Remark 2 also hold to same results for all functional
equations on Banach algebras.

6. Conclusion

We investigated the superstability bounded by function for the sine functional
equation (S) from the approximate inequality of the Pexider type functional equa-
tion (Sfghk), and we studied a creative process for the sine, cosine(d’Alembert),
Wilson, Kim’s, (S) type functional equations, which are a frequently arisen function
equations related for the sine functional equation (S) and the Pexider type functional
equation(Sfghk).

As a result, all (S) types functional equations related with (S) and (Sfghk) can be
represented by the trigonometric, exponential, hyperbolic function, jointed Pexider
Lobacevski equation. Furthermore, we showed the application of our results to a
myriad of equations and the results were extended to Banach algebra.
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TERNARY HOM-DERIVATION-HOMOMORPHISM

SAJJAD KHAN, JUNG RYE LEE∗, AND EON WHA SHIM

Abstract. In this paper, we introduce and solve the following additive-additive (s, t)-functional
inequality

‖g (x+ y + z)− g(x)− g(y)− g(z)‖
+‖h(x+ y + z) + h(x− 2y + z) + h(x+ y − 2z)− 3h(x)‖ (0.1)

≤
∥∥∥s(3g

(
x+ y + z

3

)
− g(x)− g(y)− g(z)

)∥∥∥
+

∥∥∥t(3h
(
x+ y + z

3

)
+ h(x− 2y + z) + h(x+ y − 2z)− 3h(x)

)∥∥∥ ,
where s and t are fixed nonzero complex numbers with |s| < 1 and |t| < 1. Using the
direct method and the fixed point method, we prove the Hyers-Ulam stability of ternary hom-
derivations and ternary homomorphisms in C∗-ternary algebras, associated to the additive-
additive (s, t)-functional inequality (0.1) and the following functional inequality

‖g([x, y, z])− [g(x), h(y), h(z)]− [h(x), g(y), h(z)]− [h(x), h(y), g(z)]‖ (0.2)

+‖h([x, y, z])− [h(x), h(y), h(z)]‖ ≤ ϕ(x, y, z).

1. Introduction and preliminaries

A C∗-ternary algebra is a complex Banach space A, equipped with a ternary product

(x, y, z) 7→ [x, y, z] of A3 into A, which is C-linear in the outer variables, conjugate C-linear

in the middle variable, and associative in the sense that [x, y, [z, w, v]] = [x, [w, z, y], v] =

[[x, y, z], w, v], and satisfies ‖[x, y, z]‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖[x, x, x]‖ = ‖x‖3 (see [33]).

Let A be a C∗-ternary algebra. A C-linear mapping g : A → A is a ternary derivation if

g : A→ A satisfies

g([x, y, z]) = [g(x), y, z] + [x, g(y), z] + [x, y, g(z)]

for all x, y, z ∈ A, and a C-linear mapping h : A→ A is a ternary homomorphism if h : A→ A

satisfies

h([x, y, z]) = [h(x), h(y), h(z)]

for all x, y, z ∈ A (see [1, 18]). For a ternary derivation g : A→ A and a ternary homomorphism

h : A→ A,

g ◦ h([x, y, z]) = [g ◦ h(x), h(y), h(z)] + [h(x), g ◦ h(y), h(z)] + [h(x), h(y), g ◦ h(z)]

for all x, y, z ∈ A. The C-linear mapping g ◦ h : A → A is called a ternary hom-derivation,

which is defined as follows:

2010 Mathematics Subject Classification. Primary 47B47, 17A40, 17B40, 39B72, 47H10, 39B62, 39B52.
Key words and phrases. Hyers-Ulam stability; direct method; fixed point method; ternary hom-derivation in

C∗-ternary algebra; ternary homomorphism in C∗-ternary algebra.
∗Corresponding author.
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Definition 1.1. Let A be a C∗-ternary algebra and H : A→ A be ternary homomorphism. A

C-linear mapping D : A→ A is called a ternary hom-derivation in A if D : A→ A satisfies

D([x, y, z]) = [D(x), H(y), H(z)] + [H(x), D(y), H(z)] + [H(x), H(y), D(z)]

for all x, y, z ∈ A.

The stability problem of functional equations originated from a question of Ulam [31] con-

cerning the stability of group homomorphisms. Hyers [15] gave a first affirmative partial answer

to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [2] for ad-

ditive mappings and by Rassias [26] for linear mappings by considering an unbounded Cauchy

difference. A generalization of the Rassias theorem was obtained by Găvruta [13] by replacing

the unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach.

Park [21, 22, 24] defined additive ρ-functional inequalities and proved the Hyers-Ulam stability

of the additive ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces.

The stability problems of various functional equations and functional inequalities have been

extensively investigated by a number of authors (see [8, 9, 10, 11, 12, 14, 19, 27, 28, 29, 30, 32]).

We recall a fundamental result in fixed point theory.

Theorem 1.2. [3, 6] Let (X, d) be a complete generalized metric space and let J : X → X

be a strictly contractive mapping with Lipschitz constant α < 1. Then for each given element

x ∈ X, either

d(Jnx, Jn+1x) =∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [16] were the first to provide applications of stability theory of

functional equations for the proof of new fixed point theorems with applications. By using

fixed point methods, the stability problems of several functional equations have been extensively

investigated by a number of authors (see [4, 5, 7, 23, 25]).

In this paper, we solve the additive-additive (s, t)-functional inequality (0.1). Furthermore,

we investigate ternary hom-derivations and ternary homomorphisms in C∗-ternary algebras

associated to the additive-additive (s, t)-functional inequality (0.1) and the functional inequality

(0.2) by using the direct method and by the fixed point method.

Throughout this paper, assume that A is a C∗-ternary algebra and that s and t are fixed

nonzero complex numbers with |s| < 1 and |t| < 1.
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2. Stability of additive-additive (s, t)-functional inequality (0.1): a direct

method

In this section, we solve and investigate the additive-additive (s, t)-functional inequality (0.1)

in C∗-ternary algebras.

Lemma 2.1. If mappings g, h : A→ A satisfy g(0) = h(0) = 0 and

‖g (x+ y + z)− g(x)− g(y)− g(z)‖

+‖h(x+ y + z) + h(x− 2y + z) + h(x+ y − 2z)− 3h(x)‖ (2.1)

≤
∥∥∥∥s(3g

(
x+ y + z

3

)
− g(x)− g(y)− g(z)

)∥∥∥∥
+

∥∥∥∥t(3h

(
x+ y + z

3

)
+ h(x− 2y + z) + h(x+ y − 2z)− 3h(x)

)∥∥∥∥
for all x, y, z ∈ A, then the mappings g, h : A→ A are additive.

Proof. Letting x = y = z in (2.1), we get

‖g(3x)− 3g(x)‖+ ‖h(3x)− 3h(x)‖ ≤ 0

for all x ∈ A. So g(3x) = 3g(x) and h(3x) = 3h(x) for all x ∈ A. It follows from (2.1) that

‖g (x+ y + z)− g(x)− g(y)− g(z)‖

+‖h(x+ y + z) + h(x− 2y + z) + h(x+ y − 2z)− 3h(x)‖

≤ ‖s (g (x+ y + z)− g(x)− g(y)− g(z))‖

+ ‖t (h(x+ y + z) + h(x− 2y + z) + h(x+ y − 2z)− 3h(x))‖

for all x, y, z ∈ A. Thus

g (x+ y + z) = g(x) + g(y) + g(z),

h(x+ y + z) + h(x− 2y + z) + h(x+ y − 2z) = 3h(x)

for all x, y, z ∈ A, since |s| < 1 and |t| < 1. So the mappings g, h : A→ A are additive. �

Lemma 2.2. [20, Theorem 2.1] Let f : A→ A be an additive mapping such that

f(λa) = λf(a)

for all λ ∈ T1 := {ξ ∈ C : |ξ| = 1} and all a ∈ A. Then the mapping f : A→ A is C-linear.

Using the direct method, we prove the Hyers-Ulam stability of pairs of ternary hom-derivations

and ternary homomorphisms in C∗-ternary algebras associated to the additive-additive (s, t)-

functional inequality (2.1).

Theorem 2.3. Let ϕ : A3 → [0,∞) be a function such that

∞∑
j=1

27jϕ

(
x

3j
,
y

3j
,
z

3j

)
<∞ (2.2)
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for all x, y, z ∈ A. Let g, h : A→ A be mappings satisfying g(0) = h(0) = 0 and

‖g (λ(x+ y + z))− λ(g(x) + g(y) + g(z))‖

+‖h(λ(x+ y + z)) + h(λ(x− 2y + z)) + h(λ(x+ y − 2z))− 3λh(x)‖ (2.3)

≤
∥∥∥∥s(3g

(
λ
x+ y + z

3

)
− λ(g(x) + g(y) + g(z))

)∥∥∥∥
+

∥∥∥∥t(3h

(
λ
x+ y + z

3

)
+ h(λ(x− 2y + z)) + h(λ(x+ y − 2z))− 3λh(x)

)∥∥∥∥+ ϕ(x, y, z)

for all λ ∈ T1 and all x, y, z ∈ A. If the mappings g, h : A→ A satisfy

‖g([x, y, z])− [g(x), h(y), h(z)]− [h(x), g(y), h(z)]− [h(x), h(y), g(z)]‖ (2.4)

+‖h([x, y, z])− [h(x), h(y), h(z)]‖ ≤ ϕ(x, y, z)

for all x, y, z ∈ A, then there exist a unique ternary hom-derivation D : A → A and a unique

ternary homomorphism H : A→ A such that

‖g(x)−D(x)‖+ ‖h(x)−H(x)‖ ≤
∞∑
j=1

3j−1ϕ

(
x

3j
,
y

3j
,
z

3j

)
(2.5)

for all x ∈ A.

Proof. Letting λ = 1 and y = z = x in (2.3), we get

‖g(3x)− 3g(x)‖+ ‖h(3x)− 3h(x)‖ ≤ ϕ(x, x, x) (2.6)

and so ∥∥∥∥g(x)− 3g

(
x

3

)∥∥∥∥+

∥∥∥∥h(x)− 3h

(
x

3

)∥∥∥∥ ≤ ϕ(x3 , x3 , x3
)

for all x ∈ A. Thus∥∥∥∥3lg ( x3l
)
− 3mg

(
x

3m

)∥∥∥∥+

∥∥∥∥3lh( x3l
)
− 3mh

(
x

3m

)∥∥∥∥ (2.7)

≤
m−1∑
j=l

∥∥∥∥3jg ( x3j
)
− 3j+1g

(
x

3j+1

)∥∥∥∥+
m−1∑
j=l

∥∥∥∥3jh( x3j
)
− 3j+1h

(
x

3j+1

)∥∥∥∥
≤

m∑
j=l+1

3j−1ϕ

(
x

3j
,
x

3j
,
x

3j

)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.7) that the

sequences {3kg( x
3k

)} and {3kh( x
3k

)} are Cauchy for all x ∈ A. Since Y is a Banach space, the

sequences {3kg( x
3k

)} and {3kh( x
3k

)} converge. So one can define the mappings D,H : A → A

by

D(x) := lim
k→∞

3kg

(
x

3k

)
, & H(x) := lim

k→∞
3kh

(
x

3k

)
for all x ∈ A. Moreover, letting l = 0 and passing to the limit m→∞ in (2.7), we get (2.5).
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It folllows from (2.3) that

‖D (λ(x+ y + z))− λ(D(x) +D(y) +D(z))‖

+‖H(λ(x+ y + z)) +H(λ(x− 2y + z)) +H(λ(x+ y − 2z))− 3λH(x)‖

= lim
n→∞

3n
∥∥∥∥g (λx+ y + z

3n

)
− λ

(
g

(
x

3n

)
+ g

(
y

3n

)
+ g

(
z

3n

))∥∥∥∥
+ lim
n→∞

3n
∥∥∥∥h(λx+ y + z

3n

)
+ h

(
λ
x− 2y + z

3n

)
+ h

(
λ
x+ y − 2z

3n

)
− 3λh

(
x

3n

)∥∥∥∥
≤ lim

n→∞
3n
∥∥∥∥s(3g

(
λ
x+ y + z

3n+1

)
− λ

(
g

(
x

3n

)
+ g

(
y

3n

)
+ g

(
z

3n

)))∥∥∥∥
+ lim
n→∞

3n
∥∥∥∥t(3h

(
λ
x+ y + z

3n+1

)
+ h

(
λ
x− 2y + z

3n

)
+ h

(
λ
x+ y − 2z

3n

)
− 3λh

(
x

3n

))∥∥∥∥
+ lim
n→∞

3nϕ

(
x

3n
,
y

3n
,
z

3n

)
=

∥∥∥∥s(3D

(
λ
x+ y + z

3

)
− λ(D(x) +D(y) +D(z))

)∥∥∥∥
+

∥∥∥∥t(3H

(
λ
x+ y + z

3

)
+H(λ(x− 2y + z)) +H(λ(x+ y − 2z))− 3λH(x)

)∥∥∥∥
for all λ ∈ T1 and all x, y, z ∈ A. So

‖D (λ(x+ y + z))− λ(D(x) +D(y) +D(z))‖

+‖H(λ(x+ y + z)) +H(λ(x− 2y + z)) +H(λ(x+ y − 2z))− 3λH(x)‖

≤
∥∥∥∥s(3D

(
λ
x+ y + z

3

)
− λ(D(x) +D(y) +D(z))

)∥∥∥∥ (2.8)

+

∥∥∥∥t(3H

(
λ
x+ y + z

3

)
+H(λ(x− 2y + z)) +H(λ(x+ y − 2z))− 3λH(x)

)∥∥∥∥
for all λ ∈ T1 and all x, y, z ∈ A.

Let λ = 1 in (2.8). By Lemma 2.1, the mappings D,H : A→ A are additive.

It follows from (2.8) and the additivity of D and H that

‖D (λ(x+ y + z))− λ(D(x) +D(y) +D(z))‖

+‖H(λ(x+ y + z)) +H(λ(x− 2y + z)) +H(λ(x+ y − 2z))− 3λH(x)‖

≤ ‖s (D (λ(x+ y + z))− λ(D(x) +D(y) +D(z)))‖

+ ‖t (H(λ(x+ y + z)) +H(λ(x− 2y + z)) +H(λ(x+ y − 2z))− 3λH(x))‖

for all λ ∈ T1 and all x, y, z ∈ A. Since |s| < 1 and |t| < 1,

D (λ(x+ y + z))− λ(D(x) +D(y) +D(z)) = 0,

H(λ(x+ y + z)) +H(λ(x− 2y + z)) +H(λ(x+ y − 2z))− 3λH(x) = 0

and so D(λx) = λD(x) and H(λx) = λH(x) for all λ ∈ T1 and all x, y, z ∈ A. Thus by Lemma

2.2, the additive mappings D,H : A→ A are C-linear.
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It follows from (2.4) and the additivity of D,H that

‖D([x, y, z])− [D(x), H(y), H(z)]− [H(x), D(y), H(z)]− [H(x), H(y), D(z)]‖

+‖H([x, y, z])− [H(x), H(y), H(z)]‖

= 27n
∥∥∥∥g ( [x, y, z]

27n

)
−
[
g

(
x

3n

)
, h

(
y

3n

)
, h

(
z

3n

)]
−
[
h

(
x

3n

)
, g

(
y

3n

)
, h

(
z

3n

)]
−
[
h

(
x

3n

)
, h

(
y

3n

)
, g

(
z

3n

)]∥∥∥∥
+27n

∥∥∥∥h( [x, y, z]

27n

)
−
[
h

(
x

3n

)
, h

(
y

3n

)
, h

(
z

3n

)]∥∥∥∥ ≤ 27nϕ

(
x

3n
,
y

3n
,
z

3n

)
,

which tends to zero as n→∞, by (2.2). So

D([x, y, z])− [D(x), H(y), H(z)]− [H(x), D(y), H(z)]− [H(x), H(y), D(z)] = 0,

H([x, y, z])− [H(x), H(y), H(z)] = 0

for all x, y, z ∈ A. Hence the mapping D : A→ A is a ternary hom-derivation and the mapping

H : A→ A is a ternary homomorphism. �

Corollary 2.4. Let r > 3 and θ be nonnegative real numbers and g, h : A → A be mappings

satisfying g(0) = h(0) = 0 and

‖g (λ(x+ y + z))− λ(g(x) + g(y) + g(z))‖

+‖h(λ(x+ y + z)) + h(λ(x− 2y + z)) + h(λ(x+ y − 2z))− 3λh(x)‖ (2.9)

≤
∥∥∥∥s(3g

(
λ
x+ y + z

3

)
− λ(g(x) + g(y) + g(z))

)∥∥∥∥
+

∥∥∥∥t(3h

(
λ
x+ y + z

3

)
+ h(λ(x− 2y + z)) + h(λ(x+ y − 2z))− 3λh(x)

)∥∥∥∥
+θ(‖x‖r + ‖y‖r)

for all λ ∈ T1 and all x, y, z ∈ A. If the mappings g, h : A→ A satisfy

‖g([x, y, z])− [g(x), h(y), h(z)]− [h(x), g(y), h(z)]− [h(x), h(y), g(z)]‖ (2.10)

+‖h([x, y, z])− [h(x), h(y), h(z)]‖ ≤ θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ A, then there exist a unique ternary hom-derivation D : A → A and a unique

ternary homomorphism H : A→ A such that

‖g(x)−D(x)‖+ ‖h(x)−H(x)‖ ≤ 3θ

3r − 3
‖x‖r

for all x ∈ A.

Proof. The proof follows from Theorem 2.3 by ϕ(x, y, z) = θ(‖x‖r+‖y‖r+‖z‖r) for all x, y, z ∈
A. �

Theorem 2.5. Let ϕ : A3 → [0,∞) be a function and g, h : A → A be mappings satisfying

g(0) = h(0) = 0, (2.3), (2.4) and

Φ(x, y, z) :=
∞∑
j=0

1

3j
ϕ(3jx, 3jy, 3jz) <∞ (2.11)
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for all x, y, z ∈ A. Then there exist a unique ternary hom-derivation D : A→ A and a unique

ternary homomorphism H : A→ A such that

‖g(x)−D(x)‖+ ‖h(x)−H(x)‖ ≤ 1

3
Φ(x, x, x) (2.12)

for all x ∈ A.

Proof. It follows from (2.6) that∥∥∥∥g(x)− 1

3
g(3x)

∥∥∥∥+

∥∥∥∥h(x)− 1

3
h(3x)

∥∥∥∥ ≤ 1

3
ϕ(x, x, x) (2.13)

for all x ∈ A. Thus∥∥∥∥ 1

3l
g

(
x

3l

)
− 1

3m
g (3mx)

∥∥∥∥+

∥∥∥∥ 1

3l
h
(
3lx
)
− 1

3m
h (3mx)

∥∥∥∥ (2.14)

≤
m−1∑
j=l

∥∥∥∥ 1

3j
g
(
3jx

)
− 1

3j+1
g
(
3j+1x

)∥∥∥∥+
m−1∑
j=l

∥∥∥∥ 1

3j
h
(
3jx

)
− 1

3j+1
h
(
3j+1x

)∥∥∥∥
≤ 1

3

m−1∑
j=l

1

3j
ϕ
(
3jx, 3jx, 3jx

)
for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.14) that the

sequences { 1
3k
g(3kx)} and { 1

3k
h(3kx)} are Cauchy for all x ∈ A. Since Y is a Banach space, the

sequences { 1
3k
g(3kx)} and { 1

3k
h(3kx)} converge. So one can define the mappings D,H : A→ A

by

D(x) := lim
k→∞

1

3k
g
(
3kx

)
,

H(x) := lim
k→∞

1

3k
h
(
3kx

)
for all x ∈ A. Moreover, letting l = 0 and passing to the limit m→∞ in (2.14), we get (2.12).

By the same reasoning as in the proof of Theorem 2.3, one can show that the mappings

D,H : A→ A are C-linear.

It follows from (2.4) and the additivity of D and H that

‖D([x, y, z])− [D(x), H(y), H(z)]− [H(x), D(y), H(z)]− [H(x), H(y), D(z)]‖

+‖H([x, y, z])− [H(x), H(y), H(z)]‖

=
1

27n
‖g (27n[x, y, z])− [g (3nx) , h(3ny), h(3nz)]

−[h (3nx) , g(3ny), h(3nz)]− [h (3nx) , h(3ny), g(3nz)]‖

+
1

27n
‖h (27n[x, y, z])− [h (3nx) , h (3ny) , h(3nz)]‖

≤ 1

27n
ϕ (3nx, 3ny, 3nz) ≤ 1

3n
ϕ (3nx, 3ny, 3nz) ,

which tends to zero as n→∞, by (2.11). So

D([x, y, z])− [D(x), H(y), H(z)]− [H(x), D(y), H(z)]− [H(x), H(y), D(z)] = 0,

H([x, y, z])− [H(x), H(y), H(z)] = 0

for all x, y, z ∈ A. Hence the mapping D : A→ A is a ternary hom-derivation and the mapping

H : A→ A is a ternary homomorphism. �
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Corollary 2.6. Let r < 1 and θ be nonnegative real numbers and g, h : A → A be mappings

satisfying g(0) = h(0) = 0, (2.9) and (2.10). Then there exist a unique ternary hom-derivation

D : A→ A and a unique ternary homomorphism H : A→ A such that

‖g(x)−D(x)‖+ ‖h(x)−H(x)‖ ≤ 3θ

3− 3r
‖x‖r

for all x ∈ A.

Proof. The proof follows from Theorem 2.5 by ϕ(x, y, z) = θ(‖x‖r+‖y‖r+‖z‖r) for all x, y, z ∈
A. �

3. Stability of additive-additive (s, t)-functional inequality (0.1): a fixed point

method

Using the fixed point method, we prove the Hyers-Ulam stability of pairs of hom-derivations

and homomorphisms in C∗-ternary algebras associated to the additive-additive (s, t)-functional

inequality (0.1).

Theorem 3.1. Let ϕ : A3 → [0,∞) be a function such that there exists an L < 1 with

ϕ

(
x

3
,
y

3
,
z

3

)
≤ L

27
ϕ (x, y, z) ≤ L

3
ϕ (x, y, z) (3.1)

for all x, y, z ∈ A. Let g, h : A → A be mappings satisfying g(0) = h(0) = 0, (2.3) and

(2.4). Then there exist a unique ternary hom-derivation D : A → A and a unique ternary

homomorphism H : A→ A such that

‖g(x)−D(x)‖+ ‖h(x)−H(x)‖ ≤ L

3(1− L)
ϕ (x, x, x) (3.2)

for all x ∈ A.

Proof. It follows from (3.1) that

∞∑
j=1

27jϕ

(
x

3j
,
y

3j
,
z

3j

)
≤
∞∑
j=1

27j
Lj

27j
ϕ(x, y) =

L

1− L
ϕ(x, y, z) <∞

for all x, y, z ∈ A. By Theorem 2.3, there exist a unique ternary hom-derivation D : A → A

and a unique ternary homomorphism H : A→ A satisfying (2.5).

Letting λ = 1 and y = z = x in (2.3), we get

‖g(3x)− 3g(x)‖+ ‖h(3x)− 3h(x)‖ ≤ ϕ(x, x, x) (3.3)

for all x ∈ A.

Consider the set

S := {(g, h) : (A,A)→ (A,A), g(0) = h(0) = 0}

and introduce the generalized metric on S:

d((g, h), (g1, h1)) = inf {µ ∈ R+ : ‖g(x)− g1(x)‖+ ‖h(x)− h1(x)‖ ≤ µϕ (x, x, x) , ∀x ∈ A} ,

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see [17]).
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Now we consider the linear mapping J : S → S such that

J(g, h)(x) :=

(
3g

(
x

3

)
, 3h

(
x

3

))
for all x ∈ A.

Let (g, h), (g1, h1) ∈ S be given such that d((g, h), (g1, h1)) = ε. Then

‖g(x)− g1(x)‖+ ‖h(x)− h1(x)‖ ≤ εϕ (x, x, x)

for all x ∈ A. Since ∥∥∥∥3g (x3
)
− 3g1

(
x

3

)∥∥∥∥+

∥∥∥∥3h(x3
)
− 3h1

(
x

3

)∥∥∥∥
≤ 3εϕ

(
x

3
,
x

3
,
x

3

)
≤ 3ε

L

3
ϕ (x, x, x) = Lεϕ (x, x, x)

for all x ∈ A, t d(J(g, h), J(g1, h1)) ≤ Lε. This means that

d(J(g, h), J(g1, h1)) ≤ Ld((g, h), (g1, h1))

for all (g, h), (g1, h1) ∈ S.

It follows from (3.3) that∥∥∥∥g(x)− 3g

(
x

3

)∥∥∥∥+

∥∥∥∥h(x)− 3h

(
x

3

)∥∥∥∥ ≤ ϕ(x3 , x3 , x3
)
≤ L

3
ϕ(x, x, x)

for all x ∈ A. So d((g, h), (Jg, Jh)) ≤ L
3 .

By Theorem 1.2, there exist mappings D,H : A→ A satisfying the following:

(1) (D,H) is a fixed point of J , i.e.,

D (x) = 3D

(
x

3

)
, H (x) = 3H

(
x

3

)
(3.4)

for all x ∈ A. The mapping (D,H) is a unique fixed point of J . This implies that (D,H) is a

unique mapping satisfying (3.4) such that there exists a µ ∈ (0,∞) satisfying

‖g(x)−D(x)‖+ ‖h(x)−H(x)‖ ≤ µϕ (x, x, x)

for all x ∈ A;

(2) d(J l(g, h), (D,H))→ 0 as l→∞. This implies the equality

lim
l→∞

3lg

(
x

3l

)
= D(x), lim

l→∞
3lh

(
x

3l

)
= H(x)

for all x ∈ A;

(3) d((g, h), (D,H)) ≤ 1
1−Ld((g, h), J(g, h)), which implies

‖g(x)−D(x)‖+ ‖h(x)−H(x)‖ ≤ L

3(1− L)
ϕ (x, x, x)

for all x ∈ A. Thus we get the inequality (3.2).

The rest of the proof is the same as in the proof of Theorem 2.3. �
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Corollary 3.2. Let r > 3 and θ be nonnegative real numbers and g, h : A → A be mappings

satisfying g(0) = h(0) = 0, (2.9) and (2.10). Then there exist a unique ternary hom-derivation

D : A→ A and a unique ternary homomorphism H : A→ A such that

‖g(x)−D(x)‖+ ‖h(x)−H(x)‖ ≤ 3θ

3r − 3
‖x‖r

for all x ∈ A.

Proof. The proof follows from Theorem 3.1 by taking L = 31−r and ϕ(x, y, z) = θ(‖x‖r+‖y‖r+

‖z‖r) for all x, y, z ∈ A. �

Theorem 3.3. Let ϕ : A3 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y, z) ≤ 27Lϕ

(
x

2
,
y

2
,
z

2

)
(3.5)

for all x, y, z ∈ A. Let g, h : A → A be mappings satisfying g(0) = h(0) = 0, (2.3) and

(2.4). Then there exist a unique ternary hom-derivation D : A → A and a unique ternary

homomorphism H : A→ A such that

‖g(x)−D(x)‖+ ‖h(x)−H(x)‖ ≤ 1

3(1− L)
ϕ (x, x, x) (3.6)

for all x ∈ A.

Proof. It follows from (3.5) that

∞∑
j=1

1

27j
ϕ
(
3jx, 3jy, 3jz

)
≤
∞∑
j=1

1

27j
(27L)jϕ(x, y, z) =

L

1− L
ϕ(x, y, z) <∞

for all x, y, z ∈ A. By Theorem 2.5, there exist a unique ternary hom-derivation D : A → A

and a unique ternary homomorphism H : A→ A satisfying (2.12).

Let (S, d) be the generalized metric space defined in the proof of Theorem 3.1.

Now we consider the linear mapping J : S → S such that

J(g, h)(x) :=

(
1

3
g (3x) ,

1

3
h (3x)

)
for all x ∈ A.

It follows from (3.3) that∥∥∥∥g(x)− 1

3
g(3x)

∥∥∥∥+

∥∥∥∥h(x)− 1

3
h(3x)

∥∥∥∥ ≤ 1

3
ϕ(x, x, x)

for all x ∈ A. Thus we get the inequality (3.6).

The rest of the proof is similar to the proof of Theorem 3.1. �

Corollary 3.4. Let r < 1 and θ be nonnegative real numbers and g, h : A → A be mappings

satisfying g(0) = h(0) = 0, (2.9) and (2.10). Then there exist a unique ternary hom-derivation

D : A→ A and a unique ternary homomorphism H : A→ A such that

‖g(x)−D(x)‖+ ‖h(x)−H(x)‖ ≤ 3θ

3− 3r
‖x‖r

for all x ∈ A.
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Proof. The proof follows from Theorem 3.3 by taking L = 3r−1 and ϕ(x, y, z) = θ(‖x‖r+‖y‖r+

‖z‖r) for all x, y, z ∈ A. �

4. Conclusions

We have introduced the additive-additive (s, t)-functional inequality (0.1), and using the

direct method and the fixed point method, we have proved the Hyers-Ulam stability of ternary

hom-derivations and ternary homomorphisms in C∗-ternary algebras, associated to the additive-

additive (s, t)-functional inequality (0.1) and the functional inequality (0.2).

Conflict of interests: All the authors declare that they have no conflict of interst.
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Abstract. In this article, we introduce a new generalized multifarious radical reciprocal func-

tional equation by generalizing the equation employed by Narasimman et al. in [5] and combining

three classical Pythagorean means arithmetic, geometric and harmonic. Also, we illustrate the

geometrical interpretation. Mainly, we find its general solution and stabilities related to Ulam

problem in modular spaces by using fixed point approach.

1. Introduction and preliminaries

In the development of broad field functional equations, we come acrossing various types like

additive, quadratic, cubic and so on. In recent research many researchers modeled functional
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equations from physical phenomena. In particular, by geometrical construction authors intro-

duced remarkable reciprocal type functional equations.

In 2010, Ravi and Senthil Kumar [6] introduced functional equation of reciprocal type

s(z + w) =
s(z)s(w)

s(z) + s(w)
. (1.1)

with solution s(z) = c
z .

In 2014, Bodaghi and Kim [1] introduced the quadratic reciprocal functional equation, which

was generalized by Song andSong citeAM.

In 2015, Narasimman, Ravi and Pinelas [5] introduced the radical reciprocal quadratic func-

tional equation

s
(

2
√
z2 + w2

)
=

s(z)s(w)

s(z) + s(w)
, z, w ∈ (0,∞), (1.2)

which is satisfied by s(z) = c
z2

. Also, they provided the solution and stability of (1.2) with

geometrical interpretation and application.

For the necessary introduction on stability related to Ulam problem and the notion of modular

spaces one can refer to [7, 8, 9, 10, 12].

2. Main results

Definition 2.1. A reciprocal functional equation is a functional equation with solution of the

form 1
s(z) . When s(z) = z, z2, z3 . . . we have various type of reciprocal functional equations like

reciprocal additive, reciprocal quadratic, reciprocal cubic and so on.

Definition 2.2. Pythagorean means [3] The three classical Pythagorean means are the arithmetic

mean (AM), the geometric mean (GM), and the harmonic mean (HM), which are defined by

AM(a1, a2, ..., an) =
1

n
(a1 + ...+ an),

GM(a1, a2, ..., an) = n
√
a1 + ...+ an,

HM(a1, a2, ..., an) =
n

1
a1

+ ...+ 1
an

.

Definition 2.3. A functional equations which are arisen from the relations between three Pythagorean

means (arithmetic, geometric and harmonic) are known as Pythagorean mean functional equa-

tions.

Definition 2.4. A reciprocal Pythagorean mean functional equation which shall possess the

nature of any type of functional equation like additive, quadratic, cubic and so on is said to be a

multifarious reciprocal Pythagorean mean functional equation.
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In this paper, using Pythagorean means, we introduce the new generalized 2−dimensional and

3−dimensional multifarious radical reciprocal functional equations.

The following 2−dimensional and 3−dimensional multifarious radical reciprocal functional

equations are obtained by generalizing (1.1) and (1.2)

s
(
m
√
zm + wm

)
=

s(z)s(w)

s(z) + s(w)
, (2.3)

s
(
m
√
zm1 + zm2 + zm3

)
=

s(z1)s(z2)s(z3)

s(z1)s(z2) + s(z2)s(z3) + s(z1)s(z3)
, (2.4)

which are satisfied by s(z) = c
zm , for all z, w, z1, z2, z3 ∈ (0,∞),m ∈ N. Observe that if m = 1

and m = 2 in (2.3), we have (1.1) and (1.2), respectively. Further, if m = 3, 4, · · · in (2.3), then

we have various type of functional equations. Hence the functional equation (2.3) is known as

two dimensional multifarious radical reciprocal functional equation. By similar argument, (2.4)

is known as three dimensional multifarious radical reciprocal functional equation.

2.1. Geometrical construction and geometrical interpretation of multifarious radical

reciprocal functional equations. Geometric construction of three Pythagorean means of two

variables can be constructed geometrically as showed in Figure 1. Geometric construction of

geometric mean of three variables are not possible but the other Pythagorean means can be

constructed for any number of variables, one can refer [4, 11].

Figure 1. Pythagorean means of a and b. A is the arithmetic mean, H is the

harmonic mean and G is the geometric mean.

The relations between three Pythagorean means of p−objects z1, z2, · · · , zp are represented by

the following equation

H (z1, z2, · · · , zp) =
G (z1, z2, · · · , zp)p

A
(

1
z1

∏p
i=1 zi,

1
z2

∏p
i=1 zi, · · · ,

1
zp

∏p
i=1 zi

) . (2.5)

Consider two spheres S1 and S2 of radii r1 and r2 with r1 > r2, which are located along the

x−axis centered at C1(0, 0, 0) and C2(d, 0, 0), respectively.

51

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

PACHAIYAPPAN et al 49-71



Figure 2. Intersecting two spheres S1 and S2.

We can show that the length of C2C1 is z1+z2
2 which is the arithmetic mean of z1 and z2. We

can find the length AC1, using Pythagoras’ theorem, is the geometric mean
√
z1z2 of z1 and z2.

Also, we can obtain the length HC1 is 2z1z2
z1+z2

, which is the harmonic mean of z1 and z2, since

C2AC1 and AHC1 are similar.

From Figure 2, we have the equality HC1 =
AC2

1
C2C1

, that is

H (z1, z2) =
G (z1, z2)

2

A
(

1
z1

∏2
i=1 zi,

1
z2

∏2
i=1 zi

) , (2.6)

which is the particular case of (2.5) by assuming p = 2 and which implies

1
1
z1

+ 1
z2

=
z1z2
z1 + z2

. (2.7)

Assuming z1 = 1
z and z2 = 1

w in (2.7), we obtain

1

z + w
=

1
z
1
w

1
z + 1

w

. (2.8)

In that case, (1.1) is valid by (2.8), which is satisfied by s(z) = c
z . Assuming z1 = 1

z2
and z2 = 1

w2

in (2.7) leads

1

z2 + w2
=

1
z2

1
w2

1
z2

+ 1
w2

. (2.9)

In that case (1.2) is valid by (2.9), which is satisfied by s(z) = c
z2

. In general, assuming z1 = 1
zm

and z2 = 1
wm in (2.7), we have

1

zm + wm
=

1
zm

1
wm

1
zm + 1

wm
. (2.10)

In that case, (2.3) is valid by (2.10), which is satisfied by s(z) = c
zm .
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In Figure 2, AB is the diameter of common circle. The common circle is the solution of the

system

z21 + z22 + z23 = r21, (2.11)

(z1 − d)2 + z22 + z23 = r22,

which implies

1

z21 + z22 + z23
=

1

r21
, (2.12)

1

(z1 − d)2 + z22 + z23
=

1

r22
.

The system (2.12) can be expressed by radical reciprocal quadratic functional equations of the

form

s
(
r21
)

=
s(z1)s(z2)s(z3)

s(z1)s(z2) + s(z2)s(z3) + s(z1)s(z3)
, (2.13)

s
(
r22
)

=
s(z1 − d)s(z2)s(z3)

s(z1 − d)s(z2) + s(z2)s(z3) + s(z1 − d)s(z3)
,

for z1, z2, z3, r1, r2 ∈ (0,∞), which is satisfied by s(z1) = c
z21

and the denominators are not equal

to zero. Also, observe that the equation (2.13) is the particular case of (2.4) for m = 2. By

assuming p = 3 in (2.5), we obtain

H (z1, z2, z3) =
G (z1, z2, z3)

3

A
(

1
z1

∏3
i=1 zi,

1
z2

∏3
i=1 zi,

1
z3

∏3
i=1 zi

) , (2.14)

which gives
1

1
z1

+ 1
z2

+ 1
z3

=
z1z2z3

z2z3 + z1z3 + z1z2
. (2.15)

Assuming z1 = 1
zm1

, z2 = 1
zm2

and z3 = 1
zm3

in (2.15), we have

1

zm1 + zm2 + zm3
=

1
zm1

1
zm2

1
zm3

1
zm1

+ 1
zm2

+ 1
zm3

. (2.16)

In that case (2.4) is valid by (2.16), which is satisfied by s(z1) = c
zm1

.

3. General solution of the multifarious radical reciprocal functional equations

The following theorems give the solution of (2.3) and (2.4) through motivated by the work of

Ger [?].

Theorem 3.1. A general solution of (2.3) is s(z) = c
zm ; z ∈ (0,∞) with s(z)

1
zm

a quotient at zero.
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Proof. Assuming z, w = z in (2.3), we have

s(
m
√

2z) =
1

2
s(z) (3.17)

for all z ∈ (0,∞). Assuming

g(z) =
s(z)
1

z
m
2

, (3.18)

for all z ∈ (0,∞), we have
lim

z → 0+
g(z)
1

z
m
2

=: c ∈ R

for all z ∈ (0,∞). Dividing (3.17) by 1

z
m
2

, we obtain

s( m
√

2z)
√
2√

2z
m
2

=
1
2s(z)

1

z
m
2

, (3.19)

for all z ∈ (0,∞). Using (3.18) in (3.19), we have

g(
m
√

2z) =
1√
2
g(z), (3.20)

for all z ∈ (0,∞). Replacing z by z
m√2 in (3.20), we get

√
2g(z) = g

(
z
m
√

2

)
. (3.21)

Again, replacing z by z
m√2 in (3.21), we have

(
√

2)2g(z) = g

(
z

( m
√

2)2

)
, (3.22)

for all z ∈ (0,∞). Continuing the same process k times, we obtain

(
√

2)kg(z) = g

(
z

( m
√

2)k

)
, (3.23)

for all z ∈ (0,∞).

Now,

g(z)
1

z
m
2

=
(
√

2)kg(z)

(
√

2)k 1

z
m
2

=
g
(

1
( m
√
2)k
z
)

(
√
2)k

z
m
2

→ c as k →∞,

for all z ∈ (0,∞). Eq. (3.18) implies that

s(z) =
1

z
m
2

g(z) =
1

z
m
2

1

z
m
2

c =
c

zm

for all z ∈ (0,∞). This completes the proof. �

Theorem 3.2. A general solution of (2.4) is s(z) = c
zm ; z ∈ (0,∞) with s(z)

1
zm

a quotient at zero.
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Proof. Assuming z1, z2, z3 = z in (2.4), we have

s(
m
√

3z) =
1

3
s(z), (3.24)

and assuming

h(z) =
s(z)
1

z
m
2

, (3.25)

we obtain

lim
z→0+

h(z)
1

z
m
2

=: c ∈ R.

Dividing (3.24) by 1

z
m
2

, we get

s( m
√

3z)
√
3√

3z
m
2

=
1
3s(z)

1

z
m
2

, (3.26)

and substituting (3.25) in (3.26), we obtain

h(
m
√

3z) =
1√
3
h(z), (3.27)

and replacing z by z
m√3 in (3.27), we have

√
3h(z) = h

(
z
m
√

3

)
. (3.28)

Again, replacing z by z
m√3 in (3.28), we get

(
√

3)2h(z) = h

(
z

( m
√

3)2

)
, (3.29)

for all z ∈ (0,∞). Continuing the same process k times, we have

(
√

3)kh(z) = h

(
z

( m
√

3)k

)
, (3.30)

for all z ∈ (0,∞). Now,

h(z)
1

z
m
2

=
(
√

3)kh(z)

(
√

3)k 1

z
m
2

=
h
(

1
( m
√
3)k
z
)

(
√
3)k

z
m
2

→ c as k →∞,

for all z ∈ (0,∞). Eqs. (3.25) and (3.30) imply that

s(z) =
1

z
m
2

h(z) =
1

z
m
2

1

z
m
2

c =
c

zm

for all z ∈ (0,∞). This completes the proof. �

In the following theorem, we obtain general solution of (2.3) and (2.4) by derivative method.
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Theorem 3.3. Let s : (0,∞) → R be a continuously differentiable function with nowhere van-

ishing derivatives s′. Then s yields a solution to the functional equation (2.3) if and only if there

exists a nonzero real constant c such that s(z) = c
zm , z ∈ (0,∞).

Proof. Differentiating (2.3) with respect to z on both side, we get

s′( m
√
zm + wm)

(z)m−1

( m
√
zm + wm)m−1

=

(
s′(z)s(w)

)[
s(z) + s(w)

]
−
(
s(z)s(w)

)[
s′(z)

]
(
s(z) + s(w)

)2 . (3.31)

Assuming z, w = z in (3.31), we obtain

s′(
m
√

2 z) =
1

2 m
√

2
s′(z), (3.32)

and setting z = m
√

2z and w = z in (3.31) and making use of (3.17) and (3.32), we get

s′(
m
√

3 z) =
1

(3) m
√

3
s′(z) (3.33)

for all z ∈ (0,∞). By making use of (3.32) and (3.33), we have

s′
(

(
m
√

2)k(
m
√

3)l z
)

=
1

2k( m
√

2)k
1

(3)l( m
√

3)l
s′(z)

for all integers k, l. We derive its linearity by assuming λ = ( m
√

2)k( m
√

3)l and z = 1,

s′(λ) = s′(1)
1

(λ)m+1

for λ ∈ (0,∞). Therefore, there exist real numbers c 6= 0, d such that s(z) = c
zm +d for z ∈ (0,∞).

Note that we have d = 0 because of the equality s( m
√

2z) = 1
2s(z) valid for all positive z. This

completes the proof. �

Theorem 3.4. Let s : (0,∞) → R be a continuously differentiable function with nowhere van-

ishing derivatives s′. Then s yields a solution to the functional equation (2.4) if and only if there

exists a nonzero real constant c such that s(z) = c
zm , z ∈ (0,∞).

Proof. Differentiating (2.4) with respect to z1 on both side, we obtain

s′( m
√
zm1 + zm2 )

(z1)
m−1

( m
√
zm1 + zm2 )m−1

+ s′( m

√
zm1 + zmp+1)

(z1)
m−1

( m
√
zm1 + zmp+1)

m−1 (3.34)

=
s′(z1) (s(z2))

2

(s(z1) + s(z2))
2 +

s′(z1) (s(zp+1))
2

(s(z1) + s(zp+1))
2 ,

and (3.24) implies

s′(
m
√

2z) =
1

2 m
√

2
s′(z). (3.35)
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Assuming z1 = z and z2 = zp+1 = m
√

2z in (3.34) and making use of (3.24) and (3.35), we get

s′(
m
√

3z) =
1

3 m
√

3
s′(z), (3.36)

and from (3.35) and (3.36), we get

s′
(

(
m
√

2)k(
m
√

3)lz
)

=
1

2k( m
√

2)k
1

3l( m
√

3)l
s′(z),

for all integers k, l. We derive its linearity by assuming λ = ( m
√

2)k( m
√

3)l and z = 1,

s′(λ) = s′(1)
1

(λ)m+1

for λ ∈ (0,∞). Therefore, there exist real numbers c 6= 0, d such that s(z) = c
zm +d for z ∈ (0,∞).

Note that we have to have d = 0 because of the equality s( m
√

2z) = 1
2s(z) exists. This completes

the proof. �

4. Generalized Hyers-Ulam stability of two dimensional multifarious functional

equation

This section deals the generalized Hyers-Ulam stability of two dimensional multifarious func-

tional equation (2.3) in modular spaces by making use of fixed point approach.

Theorem 4.1. Consider a mapping η : M2 → [0,+∞) with

lim
k→∞

1(
1
2

)k η ((2)
k
m z, (2)

k
mw
)

= 0, (4.37)

and

η
(

(2)
1
m z, (2)

1
mw
)

(4.38)

≤ 1

2
ψη{z, w},∀z, w ∈M,

for ψ < 1. Assume that s : M → Zξ fulfills

ξ (M1s(z, w)) ≤ η(z, w), (4.39)

for all z, w ∈M . In that case, there is a unique reciprocal mapping R : M → Zξ such that

ξ(R(z)− s(z)) ≤ 1
1
2(1− ψ)

η(z, z), ∀z ∈M. (4.40)
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Proof. Assume N = ξ′ and define ξ′ on N as,

ξ′(q) =: inf{(2)
1
m > 0 : ξ(h(j)) ≤ (2)

1
m η(z, w),∀z ∈M}.

One can easily prove that ξ′ is a convex modular with Fatou property on N and Nξ′ is ξ−complete,

see [2]. Consider the function σ : Nξ′ → Nξ′ defined by

σq(z) =
1

2
q(2

1
m z), (4.41)

for all z ∈ M and q ∈ Nξ′ . Let q, r ∈ Nξ′ and (2)
1
m ∈ [0, 1] with ξ′(q − r) < (2)

1
m . By definition

of ξ′, we get

ξ(q(z)− r(z)) ≤ (2)
1
m η(z, w),∀z, w ∈M. (4.42)

By making use of (4.38) and (4.42), we get

ξ

(
q((2)

1
m z)

1
2

− r((2)
1
m z)

1
2

)
≤ 1

1
2

ξ
(
q((2)

1
m z)− r((2)

1
m z)

)
≤ 1

1
2

(2)
1
m η
(

(2)
1
m z, (2)

1
mw
)
≤ (2)

1
mψη (z, w) ,

for all z, w ∈M . In that case, σ is a ξ′−contraction and (4.39) implies

ξ

(
s((2)

1
m z)

1
2

− s(z)

)
≤ 1

1
2

η(z, z),∀z ∈M, (4.43)

and replacing z by (2)
1
m z in (4.43), we get

ξ

(
s((2)

2
m z)

1
2

− s((2)
1
m z)

)
≤ η((2)

1
m z, (2)

1
m z)

1
2

, ∀z ∈M. (4.44)

By making use of (4.43) and (4.44), we get

ξ

(
s((2)

2
m z)

1
22

− s(z)

)
≤ 1

1
22

η((2)
1
m z, (2)

1
m z) +

1
1
p

η(z, z), (4.45)

for all z ∈M and by generalization, we get

ξ

(
s((2)

k
m z)

1
2k

− s(z)

)
≤

k∑
i=1

1
1
2i

η(((2)
1
m )i−1z, ((2)

1
m )i−1z)

≤ 1

ψ 1
2

η(z, z)

k∑
i=1

ψi

≤ 1
1
2(1− ψ)

η(z, z), ∀z ∈M. (4.46)
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We obtain from (4.46),

ξ

(
s((2)

k
m z)

1
2k

− s((2)
u
m z)

1
2u

)
(4.47)

≤ 1

2
ξ

(
2
s((2)

k
m z)

1
2k

− 2s(z)

)
+

1

2
ξ

(
2
s((2)

u
m z)

1
2u

− 2s(z)

)

≤ κ

2
ξ

(
s((2)

k
m z)

1
2k

− s(z)

)
+
κ

2
ξ

(
s((2)

u
m z)

1
2u

− s(z)

)
≤ κ

1
2(1− ψ)

η(z, z), ∀z ∈M

where k, u ∈ N. Thus

ξ′(σks− σus) ≤ κ
1
2(1− ψ)

,

and hence the boundedness of an orbit of σ at s is given. {τks} is ξ′−converges to R ∈ Nξ′ by

Theorem 1.5 in [2]. By ξ′−contractivity of σ, we get

ξ′(σks− σR) ≤ ψξ′(σk−1s−R).

Letting k →∞ and by Fatou property of ξ′, we get

ξ′(σR−R) ≤ lim
2→∞

inf ξ′(σR− σks)

≤ ψ lim
k→∞

inf ξ′(R− σk−1s) = 0.

Hence R is a fixed point of σ. In (4.39), replacing (z,W ) by
(

(2)
k
m z, (2)

k
mw
)

, we get

ξ

(
1
1
2k

M1s((2)
k
m z, (2)

k
mw)

)
≤ 1

1
2k

η((2)
k
m z, (2)

k
mw). (4.48)

By Theorems 3.1, 3.3 and letting k → ∞, we obtain that R is a reciprocal mapping and using

(4.46), we obtain (4.40). For the uniqueness of R, consider another multifarious type reciprocal

mapping T : M → Zξ satisfying (4.40). Then T is a fixed point of σ such that

ξ′(R− T ) = ξ′(σR− σT ) ≤ ψξ′(R− T ). (4.49)

From (4.49), we get R = T . This completes the proof. �

The proofs of the following corollaries 4.2 and 4.4 follow from the fact that, each normed space

implies a modular space with modular ξ(z) = ‖z‖.
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Corollary 4.2. Assume η is a function from M2 to [0,+∞) for

lim
k→∞

1
1
2k

η{(2
k
m )z, (2

k
m )w} = 0, (4.50)

and

η{(2
1
m )z, (2

1
m )w} ≤ 1

2
ψη{z, w}, ψ < 1. (4.51)

Assume that s : M → Z satisfies the condition, for a Banach space Z,

‖M1s(z, w)‖ ≤ η(z, w), (4.52)

for all z, w ∈M . Then there is a unique reciprocal mapping R : M → Z such that

‖R(z)− s(z)‖ ≤ η(z, z)
1
2(1− ψ)

, (4.53)

for all z ∈M .

Theorem 4.3. Assume η is a function from M2 to [0,+∞) with

lim
k→∞

1

κk
η

(
z

(2)
k
m

,
w

(2)
k
m

)
= 0, (4.54)

and

η

(
z

(2)
1
m

,
w

(2)
1
m

)
≤ ψ

1
2

ρ{z, w}, (4.55)

for all z, w ∈M,ψ < 1. Assume that s : M → Zξ fulfills

ξ (M1s(z, w)) ≤ η(z, w). (4.56)

Then there is a unique reciprocal mapping R : M → Zξ such that

ξ(R(z)− s(z)) ≤ pψ

1− ψ
η(z, z), ∀z ∈M. (4.57)

Proof. Replacing z by z

(2)
1
m

in (4.41) of Theorem 4.1 and using a similar method to that of

Theorem 4.1, we complete the proof. �

Corollary 4.4. Assume η is a function from M2 to [0,+∞) with

lim
k→∞

1

σk
η

(
z

(2)
k
m

,
w

(2)
k
m

)
= 0, (4.58)

and

η

(
z

(2)
1
m

,
w

(2)
1
m

)
≤ ψ

1
2

η{z, w}, ψ < 1. (4.59)
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Assume that s : M → Z fulfills

‖M1s(z, w)‖ ≤ η(z, w), (4.60)

for all z, w ∈M . Then there is a unique reciprocal mapping R : M → Z such that

‖R(z)− s(z)‖ ≤ pψ

1− ψ
η(z, z), (4.61)

for all z ∈M .

Using Corollaries 4.2 and 4.4, we obtain the following corollaries.

Corollary 4.5. Assume η is a function from M2 to [0,+∞), Z is a Banach space and ε ≥ 0 is

a real number such that

lim
k→∞

1
1
2k

η{(2)
k
m z, (2)

k
mw} = 0, (4.62)

and

η{(2)
1
m z, (2)

1
mw} ≤ 1

2
ψη{z, w}, ψ < 1. (4.63)

Assume that s : M → Z fulfills

‖M1s(z, w)‖ ≤ ε, (4.64)

for all z, w ∈ M . Then there is a unique reciprocal mapping R : M → Z, defined by R(z) =

limk→∞
s
(
(2)

k
m z

)
1

2k

, such that

‖R(z)− s(z)‖ ≤ 2ε, (4.65)

for all z ∈M .

Proof. Assume that η(z, w) = ε for all z, w ∈ Z. The Corollary 4.2 implies

‖R(z)− s(z)‖ ≤ 2ε,

for all z ∈ Z and making use of Corollary 4.4, we get

‖R(z)− s(z)‖ ≤ 2ε,

for all z ∈ Z. �
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Corollary 4.6. Assume that s : M → X fulfills the following, for a linear space M and a Banach

space Z , respectively,

‖M1s(z, w)‖ ≤ ε (‖z‖u + ‖w‖u) , (4.66)

for all z, w ∈M with 0 ≤ u < −m or u > −m for some ε ≥ 0. Then there is a reciprocal mapping

R : M → Z, defined by R(z) = limk→∞
s
(
(2)

k
m z

)
1

2k

, such that

‖R(z)− s(z)‖ ≤ 4ε∣∣∣1− 2
m+u
m

∣∣∣ ‖z‖u , ∀z ∈M. (4.67)

Proof. If we choose η(z, w) = ε
(
‖z‖u + ‖w‖u

)
, then Corollary 4.2 implies

‖R(z)− s(z)‖ ≤ 4ε

1− 2
m+u
m

‖z‖u,

for all z ∈ Z and u < −m. Using Corollary-4.4, we obtain

‖R(z)− s(z)‖ ≤ 4ε

2
m+u
m − 1

‖z‖u,

for all z ∈ Z and u > −m. �

The following is an example to elucidate (2.3), which is not stable for u = −m in Corollary

4.6.

Example 4.7. Define φ : R→ R with a > 0 as

φ(z) =

{
a
zm , if z ∈ (1,∞)

a , otherwise

and a function s : R→ R by s(z) =
∑∞

k=0
φ(2−kz)
2mk

. Then s fulfills

‖M1s(z, w)‖ ≤ a22m(3)

2(2m − 1)
×
(∣∣∣∣ 1

zm

∣∣∣∣+

∣∣∣∣ 1

wm

∣∣∣∣) (4.68)

for all z1, w ∈ R. In that case there does not exist a reciprocal mapping R : R→ R as

|s(z)−R(z)| ≤ β
∣∣∣∣ 1

zm

∣∣∣∣ , β > 0,∀z ∈ R. (4.69)

Corollary 4.8. Let s : Z1 → Z2 be a mapping. Assume that there exists ε ≥ 0 such that

‖M1s(z, w)‖ ≤ ε
(
‖z‖

u
2 ‖w‖

u
2

)
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for all z, w ∈ Z1. Then there exists a unique reciprocal mapping R : Z1 → Z2 satisfying (2.3) and

‖r(z)− s(z)‖ ≤


2ε

1−2
m+u
m
‖z‖u for u < −m

2ε

2
m+u
m −1

‖z‖u for u > −m

for all z ∈ Z1.

Proof. Replace η(z, w) by ε
(
‖z‖

u
2 ‖w‖

u
2

)
. Then Corollary 4.2 implies

‖R(z)− s(z)‖ ≤ 2ε

1− 2
m+u
m

‖z‖2,

for u < −m and for all z ∈ Z1 and making use of Corollary-4.4, we get

‖R(z)− s(z)‖ ≤ 2ε

2
m+u
m − 1

‖z‖2, (4.70)

for u > −m and for all z ∈ Z1. �

Corollary 4.9. Let ε > 0 and α < −m
2 or α > −m

2 be real numbers, and s : Z1 → Z2 be a

mapping satisfying the functional inequality

‖M1s(z, w)‖ ≤ ε
{
‖z‖2α + ‖w‖2α + (‖z‖α‖w‖α)

}
.

Then e there exists a unique reciprocal mapping R : Z1 → Z2 fulfilling (2.3) and

‖R(z)− s(z)‖ ≤


6ε

1−2
2α+m
m
‖z‖2α for α < −m

2

6ε

2
2α+m
m −1

‖z‖2α for α > −m
2

for all z ∈ Z1.

Proof. Set ε
{
‖z‖2α + ‖w‖2α + (‖z‖α‖w‖α)

}
instead of η(z, w). Then Corollary 4.4 implies

‖R(z)− s(z)‖ ≤ 6ε

1− 2
2α+m
m

‖z‖2α,

for α < −m
2 and for all z ∈ Z1 and making use of Corollary-4.4, we get

‖R(z)− s(z)‖ ≤ 6ε

2
2α+m
m − 1

‖z‖2α,

for α > −m
2 and for all z ∈ Z. �

The following is an example to elucidate (2.3), which is not stable for α = −m
2 in Corollary

4.9.
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Example 4.10. Define φ : R→ R with a constant l > 0 as

φ(z) =

{
l
zm , if z ∈ (1,∞)

l , otherwise

and a function s : R→ R by s(z) =
∑∞

k=0
φ(2−kz)
2mk

. Then s fulfills

‖M1s(z, w)‖ ≤ a22m(3)

2(2m − 1)
×
(∣∣∣∣ 1

zm

∣∣∣∣+

∣∣∣∣ 1

wm

∣∣∣∣+

∣∣∣∣ 1

zm

∣∣∣∣ ∣∣∣∣ 1

wm

∣∣∣∣) (4.71)

for all z, w ∈ R. In that case, there does not exist a reciprocal mapping R : R→ R as

|s(z)−R(z)| ≤ β
∣∣∣∣ 1

zm

∣∣∣∣ , β > 0,∀z ∈ R. (4.72)

5. Generalized Hyers-Ulam stability of three dimensional multifarious

functional equation

This section deals the Hyers-Ulam stability of the three dimensional multifarious functional

equation (2.4) in modular spaces by making use of fixed point approach.

Theorem 5.1. Consider a mapping η : M2 → [0,+∞) with

lim
k→∞

1(
1
3

)k η ((3)
k
m z1, (3)

k
m z2, (3)

k
m z3

)
= 0, (5.73)

and

η
(

(3)
1
m z1, (3)

1
m z2, (3)

1
m z3

)
≤ 1

3
ψη{z1, z2, z3},∀z1, z2, z3 ∈M, (5.74)

for ψ < 1. Assume that s : M → Zξ fulfills

ξ (M1s(z1, z2, z3)) ≤ η(z1, z2, z3), (5.75)

for all z1, z2, z3 ∈M . Then there is a unique reciprocal mapping R : M → Zξ such that

ξ(R(z)− s(z)) ≤ 1
1
3(1− ψ)

η(z, z, z), ∀z ∈M. (5.76)

Proof. Assume N = ξ′ and define ξ′ on N by

ξ′(q) =: inf{(3)
1
m > 0 : ξ(h(j)) ≤ (3)

1
m η(z1, z2, z3),∀z ∈M}.

One can easily prove that ξ′ is a convex modular with Fatou property on N and Nξ′ is ξ−complete,

see [2]. Consider the mapping σ : Nξ′ → Nξ′ defined by

σq(z) =
1

3
q(3

1
m z), (5.77)
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for all z ∈ M and q ∈ Nξ′ . Let q, r ∈ Nξ′ and (3)
1
m ∈ [0, 1] with ξ′(q − r) < (3)

1
m . By definition

of ξ′, we get

ξ(q(z)− r(z)) ≤ (3)
1
m η(z1, z2, z3),∀z1, z2, z3 ∈M. (5.78)

By making use of (5.74) and (5.78), we have

ξ

(
q((3)

1
m z)

1
3

− r((3)
1
m z)

1
3

)
≤ 1

1
3

ξ
(
q((3)

1
m z)− r((3)

1
m z)

)
≤ 1

1
3

(3)
1
m η
(

(3)
1
m z, (3)

1
m z2, (3)

1
m z3

)
≤ (3)

1
mψη (z1, z2, z3) ,

for all z1, z2, z3 ∈M . Then σ is a ξ′−contraction and (5.75) implies

ξ

(
s((3)

1
m z)

1
3

− s(z)

)
≤ 1

1
3

η(z, z, z),∀z ∈M, (5.79)

and replacing z by (3)
1
m z in (5.79), we get

ξ

(
s((3)

2
m z)

1
3

− s((3)
1
m z)

)
≤ η((3)

1
m z, (3)

1
m z, . . . , (3)

1
m z)

1
3

, ∀z ∈M (5.80)

and by making use of (5.79) and (5.80), we get

ξ

(
s((3)

2
m z)

1
9

− s(z)

)
≤ 1

1
9

η((3)
1
m z, (3)

1
m z, (3)

1
m z) +

1
1
3

η(z, z, z),

for all z ∈M and by generalization, we get

ξ

(
s((3)

k
m z)

1
3k

− s(z)

)
≤

k∑
i=1

1
1
3i

η(((3)
1
m )i−1z, ((3)

1
m )i−1z, ((3)

1
m )i−1z)

≤ 1

ψ 1
3

η(z, z, z)

k∑
i=1

ψi

≤ 1
1
3(1− ψ)

η(z, z, z), ∀z ∈M. (5.81)
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We obtain from (5.81),

ξ

(
s((3)

k
m 3)

1
3k

− s((3)
u
m z)

1
3u

)

≤ 1

2
ξ

(
2
s((3)

k
m z)

1
3k

− 2s(z)

)
+

1

2
ξ

(
2
s((3)

u
m z)

1
3u

− 2s(z)

)

≤ κ

2
ξ

(
s((3)

k
m z)

1
3k

− s(z)

)
+
κ

2
ξ

(
s((3)

u
m z)

1
3u

− s(z)

)
≤ κ

1
3(1− ψ)

η(z, z, z), ∀z ∈M

where k, u ∈ N. Thus

ξ′(σks− σus) ≤ κ
1
3(1− ψ)

,

and hence the boundedness of an orbit of σ at s is given. So {τks} is ξ′−convergent to R ∈ Nξ′

by Theorem 1.5 in [2]. By ξ′−contractivity of σ, we get

ξ′(σks− σR) ≤ ψξ′(σk−1s−R).

Taking k →∞ and by Fatou property of ξ′, we get

ξ′(σR−R) ≤ lim
k→∞

inf ξ′(σR− σks) ≤ ψ lim
k→∞

inf ξ′(R− σk−1s) = 0.

Hence R is a fixed point of σ. In (5.75), replacing (z1, z2, z3) by
(

(3)
k
m z1, (3)

k
m z2, (3)

k
m z3

)
, we

get

ξ

(
1
1
3k

M1s((3)
k
m z1, (3)

k
m z2, (3)

k
m z3)

)
≤ 1

1
3k

η((3)
k
m z1, (3)

k
m z2, (3)

k
m z3).

By Theorems 3.1, 3.3 and taking k → ∞, we obtain that R is a reciprocal mapping and using

(5.81), we have (5.76). For the uniqueness of R, consider another multi-type reciprocal mapping

T : M → Zξ satisfying (5.76). Then T is a fixed point of σ such that

ξ′(R− T ) = ξ′(σR− σT ) ≤ ψξ′(R− T ). (5.82)

From (5.82), we get R = T . This completes the proof. �

The proofs of Corollaries 5.2 and 5.4 follows from the fact that every normed space is a modular

space of modular ξ(z) = ‖z‖.

Corollary 5.2. Assume η is a function from M2 to [0,+∞) such that

lim
k→∞

1
1
3k

η{(3
k
m )z1, (3

k
m )z2, (3

k
m )z3} = 0,
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and

η{(3
1
m )z1, (3

1
m )z2, (3

1
m )z3} ≤

1

3
ψη{z1, z2, z3}, ψ < 1.

Assume that s : M → Z satisfies the following, for a Banach space Z,

‖M1s(z1, z2, z3)‖ ≤ η(z1, z2, z3),

for all z1, z2, z3 ∈M . Then there is a unique reciprocal mapping R : M → Z such that

‖R(z)− s(z)‖ ≤ η(z, z, z)
1
3(1− ψ)

,

for all z ∈M .

Theorem 5.3. Assume η is a function from M2 to [0,+∞) with

lim
k→∞

1

κk
η

(
z1

(3)
k
m

,
z2

(3)
k
m

,
z3

(3)
k
m

)
= 0,

and

η

(
z1

(3)
1
m

,
z2

(3)
1
m

,
z3

(3)
1
m

)
≤ ψ

1
3

ρ{z1, z2, z3},

for all z1, z2, z3 ∈M,ψ < 1. Assume that s : M → Zξ fulfills

ξ (M1s(z1, z2, z3)) ≤ η(z1, z2, z3).

Then there is a unique reciprocal mapping R : M → Zξ such that

ξ(R(z)− s(z)) ≤ pψ

1− ψ
η(z, z, z), ∀z ∈M.

Proof. Replacing z by z

(3)
1
m

in (5.77) of Theorem 5.1 and by a similar method to that of Theorem

5.1, we complete the proof. �

Corollary 5.4. Assume η is a function from M2 to [0,+∞) with

lim
k→∞

1

σk
η

(
z1

(3)
k
m

,
z2

(3)
k
m

,
z3

(3)
k
m

)
= 0,

and

η

(
z1

(3)
1
m

,
z2

(3)
1
m

,
z3

(3)
1
m

)
≤ ψ

1
3

η{z1, z2, z3}, ψ < 1.

Assume that s : M → Z fulfills

‖M1s(z1, z2, z3)‖ ≤ η(z1, z2, z3),
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for all z1, z2, z3 ∈M . Then there is a unique reciprocal mapping R : M → Z such that

‖R(z)− s(z)‖ ≤ pψ

1− ψ
η(z, z, z),

for all z ∈M .

Using Corollaries 5.2 and 5.4, we obtain the following corollaries.

Corollary 5.5. Assume η is a function from M2 to [0,+∞), Z is a Banach space and ε ≥ 0 is

a real number such that

lim
k→∞

1
1
3k

η{(3)
k
m z1, (3)

k
m z2, (3)

k
m z3} = 0,

and

η{(3)
1
m z1, (3)

1
m z2, (3)

1
m z3} ≤

1

3
ψη{z1, z2, z3}, ψ < 1.

Assume that s : M → Z fulfills

‖M1s(z1, z2, z3)‖ ≤ ε,

for all z1, z2, z3 ∈ M . Then there is a unique reciprocal mapping R : M → Z, defined by

R(z) = limk→∞
s
(
(3)

k
m z

)
1

3k

, such that

‖R(z)− s(z)‖ ≤ 3ε

2
,

for all z ∈M .

Proof. Assume that η(z1, z2, z3) = ε for all z1, z2, z3 ∈ Z. Then Corollary 5.2 implies

‖R(z)− s(z)‖ ≤ pε

2
,

for all z ∈ Z and p 6= 0,±1 and making use of Corollary 5.4, we get

‖R(z)− s(z)‖ ≤ 3ε

2
,

for all z ∈ Z. �

Corollary 5.6. If s : M → X fulfills the following inequality, for a linear space M and a Banach

space Z, respectively,

‖M1s(z1, z2, z3)‖ ≤ ε (‖z1‖u + ‖z2‖u + ‖x3‖u) ,
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for all z1, z2, z3 ∈ M with 0 ≤ u < −m or u > −m for some ε ≥ 0. Then there is a reciprocal

mapping R : M → Z, defined by R(z) = limk→∞
s
(
(3)

k
m z

)
1

3k

, such that

‖R(z)− s(z)‖ ≤ 9ε∣∣∣1− 3
m+u
m

∣∣∣ ‖z‖u , ∀z ∈M.

Proof. If we choose η(z1, z2, z3) = ε
(
‖z1‖u + ‖z2‖u + ‖z3‖u

)
, then Corollary 4.2 implies

‖R(z)− s(z)‖ ≤ 9ε

1− 3
m+u
m

‖z‖u,

for all z ∈ Z and u < −m. Using Corollary 4.4, we obtain

‖R(z)− s(z)‖ ≤ 9ε

3
m+u
m − 1

‖z‖u,

for all z ∈ Z and u > −m. �

The following is an example to elucidate (2.4), which is not stable for u = −m in Corollary

5.6.

Example 5.7. Define φ : R→ R with a > 0 as

φ(z) =

{
a
zm , if z ∈ (1,∞)

a , otherwise

and a function s : R→ R by s(z) =
∑∞

k=0
φ(3−kz)
3mk

. Then s fulfills

‖M1s(z1, z2, z3)‖ ≤
a32m(4)

3(3m − 1)
×
(∣∣∣∣ 1

zm1

∣∣∣∣+

∣∣∣∣ 1

zm2

∣∣∣∣+

∣∣∣∣ 1

zm3

∣∣∣∣)
for all z1, z2, z3 ∈ R. In that case, there does not exist a reciprocal mapping R : R→ R such that

|s(z)−R(z)| ≤ β
∣∣∣∣ 1

zm

∣∣∣∣ , β > 0,∀z ∈ R.

Corollary 5.8. Assume s : Z1 → Z2 is a mapping. Assume that there exists ε ≥ 0 such that

‖M1s(z1, z2, z3)‖ ≤ ε
(
‖z1‖

u
3 ‖z2‖

u
3 ‖z3‖

u
p

)
for all z1, z2, z3 ∈ Z1. Then there exists a unique reciprocal mapping R : Z1 → Z2 fulfilling (2.4)

and

‖r(z)− s(z)‖ ≤


3ε

1−3
m+u
m
‖z‖u for u < −m

3ε

3
m+u
m −1

‖z‖u for u > −m

for all z ∈ Z1.
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Proof. Replace η(z1, z2, z3) by ε
(
‖z1‖

u
3 ‖z2‖

u
3 ‖z3‖

u
3

)
. Then Corollary 5.2 implies

‖R(z)− s(z)‖ ≤ 3ε

1− 3
m+u
m

‖z‖3,

for u < −m and for all z ∈ Z1 and making use of Corollary 5.4, we get

‖R(z)− s(z)‖ ≤ 3ε

3
m+u
m − 1

‖z‖3,

for u > −m and for all z ∈ Z1. �

Corollary 5.9. Let ε > 0 and α < −m
3 or α > −m

3 be real numbers, and s : Z1 → Z2 be a

mapping satisfying the functional inequality

‖M1s(z1, z2, z3)‖ ≤ ε
{
‖z1‖3α + ‖z2‖3α + ‖z3‖3α + (‖z1‖α‖z2‖α‖z3‖α)

}
.

Then there exists a unique reciprocal mapping R : Z1 → Z2 fulfilling (2.4) and

‖R(z)− s(z)‖ ≤


12ε

1−3
3α+m
m
‖z‖3α for α < −m

3

12ε

3
3α+m
m −1

‖z‖3α for α > −m
3

for all z ∈ Z1.

Proof. Replace η(z1, z2, z3) by ε
{
‖z1‖3α+‖z2‖3α+‖z3‖3α+(‖z1‖α‖z2‖α‖z3‖α)

}
. Then Corollary

5.4 implies

‖R(z)− s(z)‖ ≤ 12ε

1− 3
3α+m
m

‖z‖3α,

for α < −m
3 and for all z ∈ Z1 and making use of Corollary 5.4, we get

‖R(z)− s(z)‖ ≤ 12ε

3
3α+m
m − 1

‖z‖3α,

for α > −m
3 and for all z ∈ Z. �

The following is an example to elucidate (2.4), which is not stable for α = −m
3 in Corollary

5.9.

Example 5.10. Define φ : R→ R with a constant l > 0 as

φ(z) =

{
l
zm , if z ∈ (1,∞)

l , otherwise

and a function s : R→ R by s(z) =
∑∞

k=0
φ(3−kz)
3mk

. Then s fulfills

‖M1s(z1, z2, z3)‖ ≤
a32m(4)

3(3m − 1)
×
(∣∣∣∣ 1

zm1

∣∣∣∣+

∣∣∣∣ 1

zm2

∣∣∣∣+

∣∣∣∣ 1

zm3

∣∣∣∣+

∣∣∣∣ 1

zm1

∣∣∣∣ ∣∣∣∣ 1

zm2

∣∣∣∣ ∣∣∣∣ 1

zm3

∣∣∣∣)
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for all z1, z2, z3 ∈ R. In that case, there does not exist a reciprocal mapping R : R→ R such that

|s(z)−R(z)| ≤ β
∣∣∣∣ 1

zm

∣∣∣∣ , β > 0,∀z ∈ R.

6. Conclusion

In this work, we introduced the new generalized multifarious type radical reciprocal functional

equations combining three classical Pythagorean means arithmetic, geometric and harmonic.

Importantly, we obtained their general solution and stabilities related to Ulam problem with

suitable counter examples in modular spaces by using fixed point approach. Furthermore, we

illustrated their geometrical interpretation.
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WEIGHTED DIFFERENTIATION SUPERPOSITION OPERATOR

FROM H∞ TO nth WEIGHTED-TYPE SPACE

CHENG-SHI HUANG AND ZHI-JIE JIANG*

Abstract. Let H(D) be the set of all analytic functions on the open unit disk D
of C, u ∈ H(D) and φ an entire function on C. In this paper, we characterize the
boundedness and compactness of the weighted differentiation superposition operator

Dmu Sφ from H∞ to the nth weighted-type space.

1. Introduction

Let N denote the set of all positive integers, N0 = N∪{0}, D = {z ∈ C : |z| < 1}, H(D)
the set of all analytic functions on D and S(D) the set of all analytic self-maps of D.

First, we present some of the most interesting linear operators studied on some sub-
spaces of H(D). Let z ∈ D, then the multiplication operator with symbol u ∈ H(D)
is defined by Mu(f)(z) = u(z)f(z), and composition operator with symbol ϕ ∈ S(D) is
defined by Cϕ(f)(z) = f(ϕ(z)).

Let m ∈ N0 and f ∈ H(D), then the mth differentiation operator is defined by

Dmf(z) = f (m)(z), z ∈ D, (1)

where f (0) = f . If m = 1, then it is the standard differentiation operator D. In recent
years, there has been a lot of interest in the study of products of differential operator and
others. For example, products DCϕ and CϕD, which are the most basic product-type
operators involving the differentiation operator, have been studied, for example, in [1–9].
Many other results have evolved from them, for example, the following six operators were
studied in [10]

DMuCϕ, DCϕMu, CϕDMu, CϕMuD, MuCϕD,MuDCϕ. (2)

An operator, namely including all the operators in (2), was introduced and investigated
in [11, 12]. In some studies, for example, Wang et al. in [13] generalized operators in (2)
and studied the following operators

DnMuCϕ, D
nCϕMu, CϕD

nMu, CϕMuD
n, MuCϕD

n, MuD
nCϕ. (3)

Some other product-type operators on subspaces of H(D) can be found (see, e.g., [14–17]
and the related references therein).

Next, we introduce the superposition operator (see, for example, [18] or [19]). Let φ be
a complex-valued function on C. Then the superposition operator Sφ on H(D) is defined
as

Sφf = φ(f(z)), z ∈ D.

2000 Mathematics Subject Classification. Primary 42A18; Secondary 47B33.
Key words and phrases. Superposition operator; weighted differentiation superposition operator; H∞;

nth weighted-type spaces; boundedness and compactness.
*Corresponding author.
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2 CHENG-SHI HUANG AND ZHI-JIE JIANG*

Assume that X and Y are two metric spaces of analytic functions on D and Sφ maps
X into Y . Note that if X contain the linear functions, then φ must be an entire function.
Recently, the boundedness and compactness of Sφ have been characterized on or between
some analytic function spaces (see, for example, [19–26]).

The following weighted differentiation superposition operator, which is introduced in
[27], is a class of nonlinear operators. Let m ∈ N0, u ∈ H(D) and φ be an entire function
on C. The weighted differentiation superposition operator denoted as Dm

u Sφ on some
subspaces of H(D) is defined by

(Dm
u Sφf)(z) = u(z)φ(m)(f(z)), z ∈ D.

Our goal of this paper is to improve results of Kamal and Eissa in [27]. Here, we rethink
the boundedness and compactness of this operator from H∞ space to nth weighted-type
space, which can be regarded as a continuation of our work (see, for example, [19]).

Now, we introduce the important Bell polynomial (see, for example, [13, 15]). Let
n, k ∈ N0. Then the Bell polynomial is defined as

Bn,k := Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!∏n−k−1

i=1 ji!

n−k−1∏
i=1

(xi
i!

)ji
, (4)

where the sum is taken over all non-negative integer sequences j1, j2, . . . , jn−k+1 satisfying∑n−k+1
i=1 ji = k and

∑n−k+1
i=1 iji = n. In particular, if k = 0, we have B0,0 = 1 and

Bn,0 = 0 for n ∈ N.
Next, we collect some needed spaces as follows (see [7]). The symbol H∞ denotes the

space of all bounded analytic functions f on D such that

‖f‖∞ = sup
z∈D
|f(z)| < +∞.

Let µ be a weight function (i.e. a positive continuous function on D) and n ∈ N0. Then

the nth weighted-type space W(n)
µ (D) :=W(n)

µ consists of all f ∈ H(D) such that

bW(n)
µ

(f) := sup
z∈D

µ(z)|f (n)(z)| < +∞.

If n = 0, it is the weighted-type space H∞µ (see, for example, [28–30]). If n = 1, the

Bloch-type space Bµ, and if n = 2 the Zygmund-type space Zµ. If µ(z) = 1 − |z|2, we
correspondingly get the classical weighted-type space, Bloch space and Zygmund space.
Some information on these classical function spaces and some operators on them can be
found, for example, in [31–37].

Let n ∈ N, then the quantity bW(n)
µ

(f) is a seminorm onW(n)
µ and a norm onW(n)

µ /Pn−1,

where Pn−1 is the class of all polynomials whose degrees are less than or equal to n − 1.

A natural norm on W(n)
µ can be introduced as follows

‖f‖W(n)
µ

=
n−1∑
j=0

|f (j)(0)|+ bW(n)
µ

(f).

The setW(n)
µ with this norm becomes a Banach space. The little nth weighted-type space

W(n)
µ,0 consists of all f ∈ H(D) such that

lim
|z|→1

µ(z)|f (n)(z)| = 0.
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WEIGHTED DIFFERENTIATION SUPERPOSITION OPERATOR 3

It is easy to see that W(n)
µ,0 is a closed subspace of W(n)

µ and the set of all polynomials is

dense in W(n)
µ,0 . If n = 1 and µ(z) = 1− |z|2, then it is the little Bloch space B0.

Finally, we will introduce the boundedness and compactness of a operator T . Let X
and Y be two Banach spaces, and T : X → Y be a operator. If there is a positive constant
K such that

‖Tf‖Y ≤ K‖f‖X
for all f ∈ X, we say that T is bounded. The operator T : X → Y is compact if it maps
bounded sets into relatively compact sets.

As usual, some positive constants are denoted by C, and they may differ from one
occurrence to another. The notation a . b (resp. a & b) means that there is a positive
constant C such that a ≤ Cb (resp. a ≥ Cb). When a . b and b & a, we write a � b.

2. Preliminary results

In this section, we need several auxiliary results for proving the main results. First, we
have the following useful result which can be found in [38].

Lemma 2.1. Let f ∈ H∞. Then for every n ∈ N, there exists a constant C > 0
independent of f such that

sup
z∈D

(1− |z|)n|f (n)(z)| ≤ C‖f‖∞.

The following lemma is introduced in [31].

Lemma 2.2. Let f ∈ B. Then for every n ∈ N

‖f‖B �
n−1∑
j=0

|f (j)(0)|+ sup
z∈D

(1− |z|2)n|f (n)(z)|.

The following lemma shows that any bounded analytic function on D is in Bloch space
(see Proposition 5.1.2 in [39]).

Lemma 2.3. H∞ ⊂ B. Moreover, ‖f‖B ≤ ‖f‖∞ for all f ∈ H∞.

The following gives an important test function (see [40]).

Lemma 2.4. For fixed t ≥ 0 and w ∈ C, the following function is in H∞

gw,t(z) =

(
1− |w|2

(1− 〈z, w〉)

)t+1

.

Moreover,

sup
w∈C
‖gw,t‖∞ . 1.

We construct some suitable linear combinations of the functions in Lemma 2.4, which
will be used in the proofs of the main results.

Lemma 2.5. Let w ∈ C. Then there are constants c0, c1, . . . , cn such that the function

hw(z) =
n∑
k=0

ckgw,k(z)
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satisfies

h(s)w (w) =
ws

(1− |w|2)s
, 0 ≤ s ≤ n and h(l)w (w) = 0, (5)

where l ∈ {0, 1, . . . , n}\{s}. Moreover,

sup
w∈C
‖hw‖∞ < +∞.

Proof. For the simplicity sake, we write dk = k + 1. By a direct calculation, it is easy to
see that the system (5) is equivalent to the following system

1 1 · · · 1
d0 d1 · · · dn
...

...
. . .

...
s−1∏
k=0

dk

s−1∏
k=0

dk+1 · · ·
s−1∏
k=0

dk+n

...
...

. . .
...

n−1∏
k=0

dk

n−1∏
k=0

dk+1 · · ·
n−1∏
k=0

dk+n





c0
c1
...

cs

...

cn


=



0
0
...

1

...

0


. (6)

Since dk > 0, k = 0, n, by Lemma 5 in [41], the determinant of system (6) is Dn+1(d0) =∏n
j=1 j!, which is different from zero. Therefore, there exist constants c0, c1, . . . , cn such

that the system (5) holds. Furthermore, we obtain supw∈C ‖hw‖∞ < +∞. �

Remark 2.1. In Lemma 2.5, it is clear that, if s = 0, then there are constants c0, c1, . . . , cn
such that the function hw(z) satisfies h

(0)
w (w) = hw(w) = 1 and h

(l)
w (w) = 0 for l = 1, n.

We also have the following characterization of compactness which can be proved similar
to that in [42] (Proposition 3.11), and so we omit the proof.

Lemma 2.6. Let m ∈ N0, n ∈ N, u ∈ H(D) and φ be an entire function. Then the

bounded operator Dm
u Sφ : H∞ →W(n)

µ is compact if and only if for each bounded sequence
{fk}(k ∈ N) ⊂ H∞ such that fk → 0 uniformly on any compact subsets of D as k → ∞,
it follows that

lim
k→∞

‖Dm
u Sφfk‖W(n)

µ
= 0.

Finally, we need the following result proved in [34]. So, the details are omitted.

Lemma 2.7. A closed set K in W(n)
µ,0 is compact if and only if it is bounded and satisfies

lim
|z|→1

sup
f∈K

µ(z)|f (n)(z)| = 0.
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3. Main results and proofs

Now, we begin to characterize the boundedness and compactness of the operatorDm
u Sφ :

H∞ →W(n)
µ (or W(n)

µ,0 ).

Theorem 3.1. Let m ∈ N0, n ∈ N, u ∈ H(D) and φ an entire function with φ(m)(1) 6= 0

and φ(m+1)(0) 6= 0. Then the operator Dm
u Sφ : H∞ →W(n)

µ is bounded if and only if

Mi := sup
z∈D

µ(z)|u(n−i)(z)|
(1− |z|2)i

< +∞ (7)

for i = 0, n.

Moreover, if the operator Dm
u Sφ : H∞ →W(n)

µ is bounded, then the following asymptotic
relationship holds

‖Dm
u Sφ‖H∞→W(n)

µ
�

n∑
i=0

Mi. (8)

Proof. Assume that condition (7) holds. Then for each z ∈ D and f ∈ H∞, we have

sup
z∈D

µ(z)
∣∣(Dm

u Sφf)(n)(z)
∣∣ = sup

z∈D
µ(z)

∣∣∣ n∑
j=0

( n∑
i=j

Cinu
(n−i)(z)Bi,j(f(z))

)
φ(m+j)(f(z))

∣∣∣
≤ sup
z∈D

µ(z)

n∑
j=0

( n∑
i=j

Cin
∣∣u(n−i)(z)∣∣∣∣Bi,j(f(z))

∣∣)∣∣φ(m+j)(f(z))
∣∣,

where

Bi,j(f(z)) := Bi,j

(
f ′(z), f ′′(z), . . . , f (i−j+1)(z)

)
, 0 ≤ j ≤ i ≤ n.

Applying formula (4) and Lemma 2.1, we obtain∣∣Bi,j(f(z))
∣∣ =

∣∣∣Bi,j (f ′(z), f ′′(z), . . . , f (i−j+1)(z)
) ∣∣∣

≤ Bi,j
(
‖f‖∞

1− |z|2
,
‖f‖∞

(1− |z|2)2
, . . . ,

‖f‖∞
(1− |z|2)i−j+1

)
. (9)

For the convenience, we write

B̂i,j(f, z) = Bi,j

(
‖f‖∞

1− |z|2
,
‖f‖∞

(1− |z|2)2
, . . . ,

‖f‖∞
(1− |z|2)i−j+1

)
. (10)

From (9) and (10), we get

sup
z∈D

µ(z)
∣∣(Dm

u Sφf)(n)(z)
∣∣ ≤ sup

z∈D
µ(z)

n∑
j=0

( n∑
i=j

Cin
∣∣u(n−i)(z)∣∣B̂i,j(f, z))∣∣φ(m+j)(f(z))

∣∣.
(11)

For i > j, we have B̂i,j(f, z) = 0. Let f ∈ H∞ and ‖f‖∞ ≤M . Then, we obtain

B̂i,j(f, z) .
1

(1− |z|2)i
, 0 ≤ j ≤ i, (12)
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where i = 0, n. From (11) and (12), we have

sup
z∈D

µ(z)
∣∣(Dm

u Sφf)(n)(z)
∣∣ ≤ sup

z∈D
µ(z)

n∑
j=0

( n∑
i=j

Cin
∣∣u(n−i)(z)∣∣B̂i,j(f, z))∣∣φ(m+j)(f(z))

∣∣
≤C sup

z∈D
µ(z)

(
|u(n)(z)||φ(m)(f(z))|

+
n∑
i=1

|u(n−i)(z)|
(1− |z|2)i

( i∑
j=1

∣∣φ(m+j)(f(z))
∣∣)). (13)

Since f ∈ H∞ and ‖f‖∞ ≤M and φ is an entire function, we obtain∣∣φ(m+j)(f(z))
∣∣ ≤ max

|w|=M

∣∣φ(m+j)(w)
∣∣ = Lj < +∞ (14)

for each z ∈ D and j = 0, n. From (13) and (14), we have

sup
z∈D

µ(z)
∣∣(Dm

u Sφf)(n)(z)
∣∣ ≤ C sup

z∈D

(
µ(z)|u(n)(z)|+

n∑
i=1

µ(z)|u(n−i)(z)|
(1− |z|2)i

)
. (15)

On the other hand, we also have that for every l = 0, n− 1∣∣(Dm
u Sφf)(l)(0)

∣∣ ≤ ∣∣∣ l∑
j=0

( l∑
i=j

Cilu
(l−i)(0)Bi,j(f(0))

)
φ(m+j)(f(0))

∣∣∣ < +∞. (16)

From Lemma 2.2, (7), (15) and (16), we see that the operator Dm
u Sφ : B → W(n)

µ is
bounded. By Lemma 2.3 (or (7) and (15)), it is obvious that the operator Dm

u Sφ : H∞ →
W(n)
µ is bounded. Moreover, it follows that

‖Dm
u Sφ‖H∞→W(n)

µ
≤ C

n∑
i=0

Mi. (17)

Now assume that the operator Dm
u Sφ : H∞ →W(n)

µ is bounded, then there is a positive
constant C independent of f such that

‖Dm
u Sφf‖W(n)

µ
≤ C‖f‖∞ (18)

for each f ∈ H∞. By Remark 2.1, there is a function hw ∈ H∞ such that

hw(w) = 1 and h(l)w (w) = 0 (19)

for l = 1, n. Let L0 = ‖hw‖∞. Then, from (18) and (19), we obtain

L0‖Dm
u Sφ‖H∞→W(n)

µ
≥‖Dm

u Sφhw‖W(n)
µ

= sup
z∈D

µ(z)
∣∣∣ n∑
j=0

( n∑
i=j

Cinu
(n−i)(z)Bi,j(hw(z))

)
φ(m+j)(hw(z))

∣∣∣
≥µ(w)

∣∣u(n)(w)
∣∣∣∣B0,0(hw(w))

∣∣∣∣φ(m)(1)
∣∣

=µ(w)
∣∣u(n)(w)

∣∣∣∣φ(m)(1)
∣∣. (20)

Since |φ(m)(1)| 6= 0, we have

L0‖Dm
u Sφ‖H∞→W(n)

µ
≥ ‖Dm

u Sφhw‖W(n)
µ
≥ Cµ(z)|u(n)(z)|, (21)

for each z ∈ D, which implies that M0 < +∞.
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By Lemma 2.4, there is a function h̃w ∈ H∞ such that

h̃(n)w (w) =
wn

(1− |w|2)n
and h̃(l)w (w) = 0 (22)

for l = 0, n− 1. Let Ln = ‖h̃w‖∞. Then, from (18) and (22), we have

Ln‖Dm
u Sφ‖H∞→W(n)

µ
≥‖Dm

u Sφh̃w‖W(n)
µ

= sup
z∈D

µ(z)
∣∣∣ n∑
j=0

( n∑
i=j

Cinu
(n−i)(z)Bi,j(h̃w(z))

)
φ(m+j)(h̃w(z))

∣∣∣
≥µ(w)

∣∣u(w)Bn,1(h̃w(w))φ(m+1)(0) + u(n)(w)B0,0(h̃w(w))φ(m)(0)
∣∣

=µ(w)
∣∣∣ u(w)wn

(1− |w|2)n
φ(m+1)(0) + u(n)(w)φ(m)(0)

∣∣∣
≥µ(w)

∣∣∣ u(w)wn

(1− |w|2)n
φ(m+1)(0)

∣∣∣− µ(w)
∣∣u(n)(w)φ(m)(0)

∣∣, (23)

where

Bi,j(h̃w(z)) := Bi,j

(
h̃′w(z), h̃′′w(z), . . . , h̃(i−j+1)

w (z)
)
.

From (21) and (23), we have

µ(w)
∣∣∣ u(w)wn

(1− |w|2)n
φ(m+1)(0)

∣∣∣ ≤ Ln‖Dm
u Sφ‖H∞→W(n)

µ
+ µ(w)

∣∣u(n)(w)φ(m)(0)
∣∣

≤ (Ln + CL0)‖Dm
u Sφ‖H∞→W(n)

µ
.

Since |φ(m+1)(0)| 6= 0, we have

(Ln + CL0)‖Dm
u Sφ‖H∞→W(n)

µ
≥ ‖Dm

u Sφh̃w‖W(n)
µ
≥ Cµ(z)|u(z)||z|n

(1− |z|2)n
. (24)

From (24), we have

(Ln + CL0)‖Dm
u Sφ‖H∞→W(n)

µ
≥ C sup

|z|>1/2

µ(z)|u(z)||z|n

(1− |z|2)n
≥ C

2n
sup
|z|>1/2

µ(z)|u(z)|
(1− |z|2)n

. (25)

One the other hand, we have

sup
|z|≤1/2

µ(z)|u(z)|
(1− |z|2)n

≤
(

4

3

)n
sup
|z|≤1/2

µ(z)|u(z)|. (26)

From (25) and (26), we get that Mn < +∞.

By Lemma 2.4, there is a function ĥw ∈ H∞ such that

ĥ(n−1)w (w) =
wn−1

(1− |w|2)n−1
and ĥ(l)w (w) = 0, (27)

where l ∈ {0, 1, . . . , n} \ {n− 1}. Let Ln−1 = ‖ĥw‖∞. From (18) and (27), we have
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Ln−1‖Dm
u Sφ‖H∞→W(n)

µ
≥‖Dm

u Sφĥw‖W(n)
µ

= sup
z∈D

µ(z)
∣∣∣ n∑
j=0

( n∑
i=j

Cinu
(n−i)(z)Bi,j(ĥw(z))

)
φ(m+j)(ĥw(z))

∣∣∣
≥µ(w)

∣∣∣Cn−1n u′(w)Bn−1,1(ĥw(w))φ(m+1)(0)

+
n∑
j=1

u(z)Bn,j(ĥw(w))φ(m+j)(0) + u(n)(w)φ(m)(0)
∣∣∣

≥µ(w)
∣∣∣Cn−1n u′(w)Bn−1,1(ĥw(w))φ(m+1)(0)

+
n∑
j=1

u(z)Bn,j(ĥw(w))φ(m+j)(0)
∣∣∣− µ(w)

∣∣u(n)(w)φ(m)(0)
∣∣,
(28)

where Bi,j(ĥw(z)) := Bi,j

(
ĥ′w(z), ĥ′′w(z), . . . , ĥ

(i−j+1)
w (z)

)
. From (21) and (28), by using

the triangle inequality, we obtain

(Ln−1 + CL0)‖Dm
u Sφ‖H∞→W(n)

µ

≥µ(w)
∣∣∣Cn−1n u′(w)Bn−1,1(ĥw(w))φ(m+1)(0) +

n∑
j=1

u(z)Bn,j(ĥw(w))φ(m+j)(0)
∣∣∣

≥µ(w)
∣∣∣u′(w)Bn−1,1(ĥw(w))φ(m+1)(0)

∣∣∣− µ(w)
∣∣∣ n∑
j=1

u(z)Bn,j(ĥw(w))φ(m+j)(0)
∣∣∣. (29)

From (29), we have

µ(w)
∣∣u′(w)Bn−1,1(ĥw)φ(m+1)(0)

∣∣
≤(Ln−1 + CL0)‖Dm

u Sφ‖H∞→W(n)
µ

+ µ(w)
∣∣∣ n∑
j=1

u(z)Bn,j(ĥw(w))φ(m+j)(0)
∣∣∣

≤(Ln−1 + CL0)‖Dm
u Sφ‖H∞→W(n)

µ
+
µ(w)|u(w)||w|n

(1− |w|2)n

( n∑
j=1

∣∣φ(m+j)(0)
∣∣). (30)

Since |φ(m+1)(0)| 6= 0, by using (24) and (30), we obtain

C
µ(z)|u′(z)||z|n−1

(1− |z|2)n−1
∣∣ ≤ (Ln−1 + CL0)‖Dm

u Sφ‖H∞→W(n)
µ

+ C
µ(z)|u(z)||z|n

(1− |z|2)n

≤ (Ln + Ln−1 + 2CL0)‖Dm
u Sφ‖H∞→W(n)

µ
. (31)

From (31), we have

(Ln + Ln−1 + 2CL0)‖Dm
u Sφ‖H∞→W(n)

µ
≥ C sup

|z|>1/2

µ(z)|u′(z)||z|n−1

(1− |z|2)n−1

≥ C

2n−1
sup
|z|>1/2

µ(z)|u′(z)|
(1− |z|2)n−1

. (32)
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One the other hand, we have

sup
|z|≤1/2

µ(z)|u′(z)|
(1− |z|2)n−1

≤
(

4

3

)n−1
sup
|z|≤1/2

µ(z)|u′(z)|. (33)

From (32) and (33), we get that Mn−1 < +∞.
Now, assume that (7) holds for k ≤ i ≤ n, where 1 ≤ k ≤ n − 2. Let Lk−1 = ‖hw‖∞.

By using the function in Lemma 2.4, we have

Lk−1‖Dm
u Sφ‖H∞→W(n)

µ
≥‖Dm

u Sφhw‖W(n)
µ

= sup
z∈D

µ(z)
∣∣∣ n∑
j=0

( n∑
i=j

Cinu
(n−i)(z)Bi,j(hw(z))

)
φ(m+j)(hw(z))

∣∣∣
≥µ(w)

∣∣∣Ck−1n u(n−(k−1))(w)Bk−1,1(hw(w))φ(m+1)(0)

+
n∑
i=k

i∑
j=1

Cinu
(n−i)(z)Bi,j(hw(w))φ(m+j)(0) + u(n)(w)φ(m)(0)

∣∣∣
≥µ(w)

∣∣∣Ck−1n u(n−(k−1))(w)Bk−1,1(hw(w))φ(m+1)(0)

+
n∑
i=k

i∑
j=1

Cinu
(n−i)(z)Bi,j(hw(w))φ(m+j)(0)

∣∣∣− µ(w)
∣∣u(n)(w)φ(m)(0)

∣∣
(34)

for each w ∈ D. From (21) and (34), we have

(Lk−1 + CL0)‖Dm
u Sφ‖H∞→W(n)

µ
≥µ(w)

∣∣∣Ck−1n u(n−(k−1))(w)Bk−1,1(hw(w))φ(m+1)(0)

+

n∑
i=k

i∑
j=1

Cinu
(n−i)(z)Bi,j(hw(w))φ(m+j)(0)

∣∣∣
≥µ(w)

∣∣∣Ck−1n u(n−(k−1))(w)Bk−1,1(hw(w))φ(m+1)(0)
∣∣∣

− µ(w)
∣∣∣ n∑
i=k

i∑
j=1

Cinu
(n−i)(z)Bi,j(hw(w))φ(m+j)(0)

∣∣∣.
Then, we have

µ(w)
∣∣∣Ck−1n u(n−(k−1))(w)Bk−1,1(hw(w))φ(m+1)(0)

∣∣∣
≤(Lk−1 + CL0)‖Dm

u Sφ‖H∞→W(n)
µ

+ µ(w)
∣∣∣ n∑
i=k

i∑
j=1

Cinu
(n−i)(z)Bi,j(hw(w))φ(m+j)(0)

∣∣∣
≤(Lk−1 + CL0)‖Dm

u Sφ‖H∞→W(n)
µ

+ C
n∑
i=k

i∑
j=1

µ(w)
∣∣∣u(n−i)(z)Bi,j(hw(w))φ(m+j)(0)

∣∣∣
≤(Lk−1 + CL0)‖Dm

u Sφ‖H∞→W(n)
µ
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+ C
n∑
i=k

µ(w)|u(n−i)(w)||w|i

(1− |w|2)i

( i∑
j=1

∣∣φ(m+j)(0)
∣∣) (35)

Since |φ(m+1)(0)| 6= 0, from (35) and the assumption (7), we have

C
µ(z)|u(n−(k−1))(z)||z|k−1

(1− |z|2)k−1

≤(Lk−1 + CL0)‖Dm
u Sφ‖H∞→W(n)

µ
+ C

n∑
i=k

µ(w)|u(n−i)(w)||w|i

(1− |w|2)i

≤
( n∑
t=k−1

Lt + (n− k + 2)CL0

)
‖Dm

u Sφ‖H∞→W(n)
µ
. (36)

From (36), we have( n∑
t=k−1

Lt + (n− k + 2)CL0

)
‖Dm

u Sφ‖H∞→W(n)
µ
≥ Cµ(z)|u(n−(k−1))(z)||z|k−1

(1− |z|2)k−1

≥ C

2k−1
µ(z)|u(n−(k−1))(z)|

(1− |z|2)k−1
(37)

One the other hand, we have

sup
|z|≤1/2

µ(z)|u(n−(k−1))(z)|
(1− |z|2)k−1

≤
(

4

3

)n−(k−1)
sup
|z|≤1/2

µ(z)|u(n−(k−1))(z)|. (38)

From (37) and (38), we get that Mk−1 < +∞. Hence, from the mathematical induction
it follows that (7) holds for every i = 0, n. Moreover, we also obtain

n∑
i=0

Mi ≤ C‖Dm
u Sφ‖H∞→W(n)

µ
. (39)

From (17) and (39), then the asymptotic relation (8) follows, as desired. �

Theorem 3.2. Let m ∈ N0, n ∈ N, u ∈ H(D) and φ an entire function with φ(m)(1) 6= 0

and φ(m+1)(0) 6= 0. Then the operator Dm
u Sφ : H∞ →W(n)

µ,0 is bounded if and only if the

operator Dm
u Sφ : H∞ →W(n)

µ is bounded and for each i ∈ {0, 1, . . . , n}

lim
|z|→1

µ(z)|u(n−i)(z)| = 0. (40)

Proof. Assume that Dm
u Sφ : H∞ →W(n)

µ,0 is bounded. Then for each f ∈ H∞, we have

lim
|z|→1

µ(z)|(Dm
u Sφf)(n)(z)| = 0. (41)

Clearly, the operator Dm
u Sφ : H∞ →W(n)

µ is bounded. Hence, from (24), we obtain

µ(z)|u(z)||z|n

(1− |z|2)n
≤ Cµ(z)|(Dm

u Sφh̃w)(n)(z)|. (42)

From (42), we obtain

µ(z)|u(z)||z|n ≤ Cµ(z)|(Dm
u Sφh̃w)(n)(z)| (43)

By taking |z| → 1 in (43) and using (41), it follows that (40) holds for i = n. Hence, by
the proof of Theorem 3.1, we get that (40) holds for each i = 0, n.
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Conversely, assume that Dm
u Sφ : H∞ → W(n)

µ is bounded and condition (40) holds.
Let p̂ ∈ H∞ and ‖p̂‖∞ ≤M . Then, we have∣∣φ(m+j)(p̂(z))

∣∣ < +∞.

For every polynomial p̂, we have

µ(z)
∣∣(Dm

u Sφp̂)
(n)(z)

∣∣ = sup
z∈D

µ(z)

∣∣∣∣ n∑
j=0

( n∑
i=j

Cinu
(n−i)(z)Bi,j(p̂(z))

)
φ(m+j)(p̂(z))

∣∣∣∣
≤ sup

z∈D
µ(z)

n∑
j=0

( n∑
i=j

Cin
∣∣u(n−i)(z)∣∣∣∣Bi,j(p̂(z))∣∣)∣∣φ(m+j)(p̂(z))

∣∣→ 0

as |z| → 1. From this, we have that for every polynomial p̂, Dm
u Sφp̂ ∈ W

(n)
µ,0 . Since the set

of all polynomials is dense in H∞, we have that for each f ∈ H∞ there exist a sequence
of polynomial {p̂k} such that

lim
k→∞

‖f − p̂k‖∞ = 0. (44)

From (44) and using the boundedness of Dm
u Sφ : H∞ →W(n)

µ , we obtain

‖Dm
u Sφf −Dm

u Sφp̂k‖W(n)
µ
≤ ‖Dm

u Sφ‖H∞→W(n)
µ
‖f − p̂k‖∞ → 0 (45)

as k →∞. Hence, Dm
u Sφ(H∞) ⊆ W(n)

µ,0 and the operator Dm
u Sφ : H∞ →W(n)

µ,0 is bounded.
The proof is finished. �

Theorem 3.3. Let m ∈ N0, n ∈ N, u ∈ H(D) and φ an entire function with φ(m)(1) 6= 0
and φ(m+1)(0) 6= 0. Then the following statements are equivalent:

(a) The operator Dm
u Sφ : H∞ →W(n)

µ is compact.

(b) The operator Dm
u Sφ : H∞ →W(n)

µ,0 is compact.

(c) For each i ∈ {0, 1, . . . , n}, it follows that

lim
|z|→1

µ(z)|u(n−i)(z)|
(1− |z|2)i

= 0. (46)

Proof. (c)⇒ (b). From (13) and using (46), we obtain

lim
|z|→1

sup
‖f‖∞≤1

µ(z)|(Dm
u Sφf)n(z)| = 0.

Obviously, the set is bounded. Hence, by Lemma 2.6 the compactness of the operator

Dm
u Sφ : H∞ →W(n)

µ,0 follows.

(b)⇒ (a) is obvious.

(a) ⇒ (c). Suppose that Dm
u Sφ : H∞ → W(n)

µ is compact. Then it is clear that the
operator is bounded. Let {zk} be a sequence in D such that |zk| → 1 as k → ∞. If such

a sequence does not exist, then condition (46) is vacuously satisfied. Let h̃k = h̃zk , where

h̃w is defined in the proof of the Theorem 3.1 (or Lemma 2.4). Since limk→∞ h̃zk = 0, we

have h̃k → 0 uniformly on any compact subset of D as k →∞. Hence, by Lemma 2.5 we
have

lim
k→∞

‖Dm
u Sφh̃k‖W(n)

µ
= 0. (47)
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On the other hand, from (25), for sufficiently large k it follows that

‖Dm
u Sφh̃k‖W(n)

µ
≥ µ(zk)|u(zk)|

(1− |zk|2)n
, (48)

which along with (47) and letting k →∞ in inequality (48) and since {zk} is an arbitrary
sequence such that |zk| → 1 as k →∞, implies that (46) holds for i = n. By the proof of
the Theorem 3.1, we get that equality (46) holds for each i ∈ {0, 1, ..., n}. This completes
the proof. �
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[12] S. Stević, A. K. Sharma, A. Bhat, Products of multiplication composition and differentiation operators

on weighted Bergman spaces, Appl. Math. Comput., 217, 8115-8125 (2011).
[13] S. Wang, M. F. Wang, X. Guo, Products of composition, multiplication and iterated differentiation

operators between Banach Spaces of holomorphic functions, Taiwan J. Math., 24, 355-376 (2020).
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Abstract.
In this paper, we introduce two iterative algorithms for finding the solution of the sum of two

monotone operators by using hybrid projection methods and shrinking projection methods. Under
some suitable conditions, we prove strong convergence theorems of such sequences to the solution
of the sum of an inverse-strongly monotone and a maximal monotone operator. Finally, we present
a numerical result of our algorithm which defined by the hybrid method.

Keywords: Hybrid projection methods, Shrinking projection methods, Monotone operators and
Resolvent.

AMS Classification: 47J25, 47H05, 65K10, 65K15, 90C25.

1 Introduction
In this work, we consider the problem is finding a zero point of the sum of three monotone operators�
that is,

find z ∈ H such that 0 ∈ (A+B + C)z, (1.1)
where A is a multi-valued maximal monotone operator and B,C are two single monotone operators.
In 2017, Davis and Yin [5] shown that the problem (1.1) can be related to a convex optimization
problem, that is,

minimizex∈HF (x) +G(x) +M(x),

where A = ∂R,B = ∂S and C = ∇P with ∂R and ∂S denote the subdiferentials of R and S,
respectively. The convex optimization problem involves several specific problems that have emerged
in material sciences, medical and image processing and signal and image processing (see more in
[6, 7]). Moreover, the monotone inclusion problems (1.1) includes some special cases. For example,
when B = 0, problem (1.1) becomes find x ∈ H, such that

0 ∈ Ax+ Cx. (1.2)

If C = 0, problem (1.1) reduces to find x ∈ H, such that

0 ∈ Ax+Bx. (1.3)

1
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If B = 0 and C = 0, problem (1.1) reduces to the simple monotone inclusion find x ∈ H such that

0 ∈ Ax. (1.4)

So, we have the problem (1.1) is very important. Many researcher study and develop algorithm
methods to solve the solution. Davis and Yin [5] introduced the fixed-point equation for solving
monotone inclusions with three operators. In 2018, Cevher et al. [8] extended the three-operator
splitting algorithm [5] from the determinist setting to the stochastic setting for solving the problem
(1.1). Similarly, Yurtsever et al. [9] introduced a stochastic three-composite minimization algo-
rithm to solve the convex minimization of the sum of three convex functions. In addition, Yu et
al. [10] introduced an outer reflected forward-backward splitting algorithm to solve this problem
as

xn+1 = JA
r (xn − λBxn − λCxn)− r(Bxn −Bxn−1). (1.5)

The sequence {xn} converges weakly to solution of the problem (1.1).
Motivated and inspired by all above contributions, in this work, we will introduce two iter-

ative algorithms for finding the solution of the sum of three monotone operators by using hybrid
projection method and shrinking projection method. Under some suitable conditions, we prove
strong convergence theorems of such sequences to the solution of the sum of three monotone op-
erators. Finally, we will present a numerical result of our algorithm which defined by the hybrid
method and applied to image inpainting.

2 Preliminaries
Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Denote that → and
⇀ are a weak and strong convergence, respectively. I denotes the identity operator on H. For a
given sequence, let ωw(xn) := {x : ∃xnk

⇀ x} denote the weak ω-limit set of {xn}.

Lemma 2.1. Let x ∈ H and z ∈ C. Then we have

(i) z = PC(x) if ⟨x− z, z − y⟩ ≥ 0, for all y ∈ C.

(ii) ∥PC(x)− PC(y)∥ ≤ ∥x− y∥, for all x, y ∈ H

(iii) ∥x− PC(x)∥2 ≤ ∥x− y∥2 − ∥y − PC(x)∥2 for all y ∈ C.

Definition 2.2. [1] Let T : H → H be a single-valued operator. Then

(i) T is said to be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, for all x, y ∈ H.

(ii) T is said to be firmly nonexpansive if

⟨Tx− Ty, x− y⟩ ≥ ∥Tx− Ty∥2, for all x, y ∈ H.

It is obvious that a firmly nonexpansive operator is nonexpansive.

(iii) T is said to be L-Lipschitz continuous, for some L > 0, if

∥Tx− Ty∥ ≤ L∥x− y∥, for all x, y ∈ H.

If L = 1, then T is nonexpansive.

2
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(iv) T is said to be c-cocoercive (or c-inverse strongly monotone), if

⟨x− y, Tx− Ty⟩ ≥ c∥Tx− Ty∥, for all x, y ∈ H,

where c > 0.

(v) T is said to be monotone if

⟨Tx− Ty, x− y⟩ ≥ 0, for all x, y ∈ H.

Remark 2.3. If C is c-cocoercive, then C is 1/c-Lipschitz continuous and monotone. By using
the L-Lipschitz continuity of B, we obtain that B+C is (L+1/c)-Lipschitz continuous. Moreover,
since C is c-cocoercive, we have C is monotone.

Definition 2.4. Let A : H → 2H be a set-valued operator and the domain of A be D(A) = {x ∈
H : Ax ̸= ∅}. The graph of A is denoted by Graph(A) = {(x, u) ∈ H × H : u ∈ Ax}. Then the
operator A is monotone if ⟨x1 − x2, z1 − z2⟩ ≥ 0 whenever z1 ∈ Ax1 and z2 ∈ Ax2.

A monotone operator A is maximal if for any (x, z) ∈ H ×H such that

⟨x− y, z − w⟩ ≥ 0

for all (y, w) ∈ Graph(A) implies z ∈ Ax.

Let A be a maximal monotone operator and r > 0. Then we can define the resolvent Jr :
R(I + rA) → D(A) by

JA
r = (I + rA)−1

where D(A) is the domain of A. We know that JA
r is nonexpensive and we can study the other

properties in references [12, 11, 13].

Lemma 2.5. [4] Let A : H → 2H be a maximal monotone mapping and let B : H → H be a
Lipschitz continuous and monotone mapping. Then A+B is maximally monotone.

Lemma 2.6. [2] Let C be a closed convex subset of a real Hilbert space H, x ∈ H and z = PCx.
If {xn} is a sequence in C such that ωw(xn) ⊂ C and

∥xn − x∥ ≤ ∥x− z∥,

for all n ≥ 1, then the sequence {xn} converges strongly to a point z.

Lemma 2.7. [3] Let C be a closed convex subset a real Hilbert space H, and x, y, z ∈ H. Then,
for given a ∈ R, the set

U = {v ∈ C : ∥y − v∥2 ≤ ∥x− v∥2 + ⟨z, v⟩+ a}

is convex and closed.

3 Hybrid Projection Methods
In this section, we introduce a intertial hybrid projection method and prove a strong convergence
theorem.

(A1) A : H → 2H is maximal monotone.

(A2) B : H → H is monotone and L-Lipchitz continuous, for some L > 0.

3
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(A3) C : H → H is c-cocoercive.

(A4) Ω := (A+B + C)−1(0) ̸= ∅.

The method is of the following form.

Algorithm 3.1 : Inertial hybrid projection algorithm (IHP Algorithm) Initializa-
tion : Choose x0, x1 ∈ H,αn ∈ [0, 1).

Iterative step : Compute xn+1 via

wn = xn + αn(xn + xn−1),
yn = JA

rn(wn − rnBwn − rnCwn),
zn = yn − rn(Byn −Bwn),
Cn = {z ∈ H : ∥zn − z∥2 ≤ ∥wn − z∥2 − (1− rn

2c − L2r2n)∥wn − yn∥2},
Qn = {z ∈ H : ⟨xn − z, xn − x0⟩ ≤ 0},
xn+1 = PCn∩Qn

(x0),

(3.1)

where
0 < rn < min{c, 1

2L
} and lim

n→∞
rn = 0.

Lemma 3.1. Let {zn} be a sequence generated by IHP Algorithm. If conditions (A1)− (A4) hold,
we have

∥zn − u∥2 ≤ ∥wn − u∥2 − (1− rn
2c

− L2r2n)∥wn − yn∥2, for all u ∈ Ω. (3.2)

Proof. Let an = r2n∥Byn −Bwn∥2 − 2rn⟨yn − u,Byn −Bwn⟩. Thus

∥zn − u∥2 = ∥yn − rn(Byn −Bwn)− u∥2

= ∥yn − u∥2 − 2rn⟨yn − u,Byn −Bwn⟩+ r2n∥Byn −Bwn∥2

= ∥wn − u∥2 + ∥yn − wn∥2 + 2⟨wn − u, yn − wn⟩+ an

= ∥wn − u∥2 + ∥yn − wn∥2 − 2⟨yn − wn, yn − wn⟩+ 2⟨yn − wn, yn − u⟩+ an

= ∥wn − u∥2 − ∥yn − wn∥2 − 2⟨yn − u,wn − yn + rn(Byn −Bwn)⟩
+r2n∥Byn −Bwn∥2. (3.3)

Since B is L-Lipchitz continuous, we have

∥Bwn −Byn∥ ≤ L∥wn − yn∥. (3.4)

By using (3.3) and (3.4), we have

∥zn − u∥2 ≤ ∥wn − u∥2 − (1− L2r2n)∥wn − yn∥2 − 2⟨yn − u,wn − yn + rn(Byn −Bwn)⟩. (3.5)

Since yn = JA
rn(wn − rnBwn − rnCwn), we have (I − rnB − rnC)wn ∈ (I + rnA)yn. So, we obtain

1

rn
(wn − rnBwn − rnCwn − yn) ∈ Ayn. (3.6)

Since 0 ∈ (A+B + C)u, we have
−Bu− Cu ∈ Au. (3.7)

Since the operator A is maximal monotone, one gets

1

rn
⟨wn − rnBwn − rnCwn − yn + rnBu+ rnCu, yn − u⟩ ≥ 0.

4
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This implies that

⟨wn − rnBwn − rnCwn − yn + rnBu+ rnCu, yn − u⟩ ≥ 0.

It follows that

⟨wn − yn + rn(Byn −Bwn), yn − u⟩ ≥ ⟨rnByn − rnBu− rnCu+ rnCwn, yn − u⟩
= ⟨rnByn − rnBu, yn − u⟩+ ⟨rnCwn − rnCu, yn − u⟩
≥ ⟨rnCwn − rnCu, yn − u⟩ (3.8)

and since C is c-cococercive, we have

2rn⟨Cwn − Cu, yn − u⟩ = 2rn⟨Cwn − Cu, yn − wn⟩+ 2rn⟨Cwn − Cu,wn − u⟩
≥ −2rn∥Cwn − Cu∥∥yn − wn∥+ 2crn∥Cwn − Cu∥2

≥ −2crn∥Cwn − Cu∥2 − rn
2c

∥yn − wn∥2 + 2crn∥Cwn − Cu∥2

= −rn
2c

∥yn − wn∥2. (3.9)

Combining the equation (3.8) and (3.9), we obtain

−2⟨wn − yn + rn(Byn −Bwn), yn − u⟩ ≤ rn
2c

∥yn − wn∥2. (3.10)

Combining the equation (3.5) and (3.10), we obtain

∥zn − u∥2 ≤ ∥wn − u∥2 − (1− rn
2c

− L2r2n)∥wn − yn∥2, for all u ∈ Ω.

This completed the proof.

Lemma 3.2. Let the operators A,B and C satisfies conditions (A1)− (A4). The three sequences
{xn}, {wn} and {yn} generated by IHP Algorithm. Assume that limn→∞ ∥wn−xn∥ = limn→∞ ∥wn−
yn∥ = 0. If a subsequence {xnk

} of {xn} converges weakly to some x∗ ∈ H, then x∗ ∈ Ω where
Ω := (A+B + C)−1(0).

Proof. Suppose that (u, v) ∈ Graph(A + B + C). Thus v − Bu − Cu ∈ Au. Since ynk
=

JA
rnk

(wnk
− rnk

Bwnk
− rnk

Cwnk
), we have (I − rn(B + C)) ∈ (I + rnk

A)ynk
. This implies that

1

rnk

(wnk
− ynk

− rnk
(B + C)wnk

) ∈ Aynk
.

By using the maximal monotonicity of A, we get

⟨u− ynk
, v −Bu− Cu− 1

rnk

(wnk
− ynk

− rnk
(B + C)wnk

)⟩ ≥ 0.

It follows that

⟨u− ynk
, v⟩ ≥ ⟨u− ynk

, (B + C)u+
1

rnk

(wnk
− ynk

− rnk
(B + C)wnk

)⟩

= ⟨u− ynk
, (B + C)u− (B + C)wnk

⟩+ 1

rnk

⟨u− ynk
, wnk

− ynk
⟩

= ⟨u− ynk
, (B + C)u− (B + C)ynk

⟩+ ⟨u− ynk
, (B + C)ynk

− (B + C)wnk
⟩

+
1

rnk

⟨u− ynk
, wnk

− ynk
⟩

≥ ⟨u− ynk
, (B + C)ynk

− (B + C)wnk
⟩+ 1

rnk

⟨u− ynk
, wnk

− ynk
⟩.
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Since limn→∞ ∥wn − xn∥ = limn→∞ ∥wn − yn∥ = 0 and B + C is Lipschitz continuous, we have
limn→∞ ∥(B + C)ynk

− (B + C)wnk
∥ = 0. From 0 < rn < min{c, 1

2L}, one get

lim
n→∞

⟨u− ynk
, v⟩ = ⟨u− x∗, v⟩ ≥ 0.

Since A+B+C is maximal monotone, we have 0 ∈ (A+B+C)x∗. We can conclude that x∗ ∈ Ω.
This completed the proof.

Theorem 3.3. Let the operators A,B and C satisfy conditions (A1)− (A4). Then, the sequence
{xn} generated by IHP Algorithm converges strongly to x∗ = PΩ(x0).

Proof. It is obvious that Cn and Qn are closed convex for every n ∈ N. First, we will prove that
Ω ⊂ Cn, for all n ∈ N. By using Lemma 3.1, we obtain Ω ⊂ Cn, for all n ∈ N. Next, we prove that
Ω ⊂ Qn for all n ∈ N by the mathematical induction. By the definition of Qn in IHP Algorithm,
we have Q1 = H. For n = 1 , we note that Ω ⊂ H = Q1. Suppose that Ω ⊂ Qk for some k ∈ N.
Since Ck ∩Qk is closed and convex, we can define

xk+1 = PCk∩Qk
(x0).

This implies that
⟨xk+1 − z, x0 − xk+1⟩ ≥ 0 for all z ∈ Ck ∩Qk.

Since Ω ⊂ Ck ∩ Qk, we have Ω ⊂ Qk+1. It follows that Ω ⊂ Qn, for all n ∈ N. So, {xn} is well
defined. Next, we show that {xn} is a bounded sequence and limn→∞ ∥wn − yn∥2 = 0. Since
Ω ⊂ Cn ∩Qn, for all n ∈ N, and xn+1 = PCn∩Qn(x0), we have

∥xn+1 − x0∥ ≤ ∥x∗ − x0∥.

This mean that {xn} is bounde, so {wn} is also bounded. From the definition of Qn, we obtain
xn = PQn

(x0). Since xn+1 ∈ Qn, we have

∥xn − x0∥ ≤ ∥xn+1 − x0∥, for alln ∈ N.

This implies that limn→∞ ∥xn − x0∥ exists. Therefore,

∥xn+1 − xn∥2 = ∥(xn+1 − x0)− (xn − x0)∥2

= ∥xn+1 − x0∥2 − ∥xn − x0∥2 − 2⟨xn+1 − xn, xn − x0⟩
≤ ∥xn+1 − x0∥2 − ∥xn − x0∥2.

It follows that limn→∞ ∥xn+1 − xn∥ = 0. Since xn+1 ∈ Cn ∩Qn ⊂ Cn, we have

∥zn − xn+1∥2 ≤ ∥wn − xn+1∥2 − (1− rn
2c

− L2r2n)∥wn − yn∥2.

Since 0 ≤ rn < min{c, 1
2L}, we have ∥zn − xn+1∥ ≤ ∥wn − xn+1∥. Moreover, by the definition of

{wn}, we get
∥wn − xn∥ = ∥xn + αn(xn − xn+1)− xn∥ = |αn|∥xn − xn+1∥

This implies that limn→∞ ∥wn − xn∥ = 0 and limn→∞ ∥xn − zn∥ = 0. Therefore,

(1− rn
2c

− L2r2n)∥wn − yn∥2 ≤ ∥wn − xn+1∥2 − ∥zn − xn+1∥2.

Since limn→∞ rn = 0, we have limn→∞(1− rn
2c −L2r2n) = 1. It follows that limn→∞ ∥wn− yn∥ = 0.

Finally, we show that {xn} converges strongly to x∗ = PΩ(x0). Let x∗ = PΩ(x0). Therefore,

∥xn − x0∥ ≤ ∥xn+1 − x0∥ ≤ ∥x0 − x∗∥.

By Lemma 3.2, we have every sequential weakcluster point of the sequence {xn} belong to Ω. That
is ωw(xn) ⊂ Ω. Hence by Lemma 2.6, we can conclude that the sequence {xn} converges strongly
to x∗ = PΩ(x0). This completes the proof. 2
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3 The Inertial Shrinking projection methods
In this section, we introduce a intertial shrinking projection method and prove a strong convergence
theorem.

Algorithm 3.2 : Inertial shrinking projection algorithm (ISP Algorithm) Initial-
ization : Choose x0, x1 ∈ H,αn ∈ [0, 1). Let C1 = H

Iterative step : Compute xn+1 via
wn = xn + αn(xn + xn−1),
yn = JA

rn(wn − rnBwn − rnCwn),
zn = yn − rn(Byn −Bwn),
Cn+1 = {z ∈ Cn : ∥zn − z∥2 ≤ ∥wn − z∥2 − (1− rn

2c − L2r2n)∥wn − yn∥2},
xn+1 = PCn+1

(x0),

(3.11)

where
0 < rn < min{c, 1

2L
} and lim

n→∞
rn = 0.

Theorem 3.4. Let the operators A,B and C satisfy conditions (A1)− (A4). Then, the sequence
{xn} generated by ISP Algorithm converges strongly to x∗ = PΩ(x0).

Proof. By Lemma 3.1, we obtain

∥zn − u∥2 ≤ ∥wn − u∥2 − (1− rn
2c

− L2r2n)∥wn − yn∥2, for all u ∈ Ω.

It follows from xn = PCn
(x0) and xn+1 = PCn+1

(x0) ∈ Cn+1 ⊂ Cn that

∥xn − x0∥ ≤ ∥xn+1 − x0∥.

On the other hand, since x∗ ∈ Ω ∈ Cn and xn = PCn
(x0), we have ∥xn − x0∥ ≤ ∥x∗ − x0∥. Thus

{xn} is bounded and limn→∞ ∥xn − x0∥ exists. Similarly proof of Theorem 3.3, we can proof that
limn→∞ ∥xn+1 − xn∥ = 0 and limn→∞ ∥wn − yn∥ = 0. By Lemma 2.6 and Lemma 3.2, we can
conclude that {xn} converges strongly to x∗ = PΩ(x0). This completes the proof. 2

4 Numerical results
In this section, we firstly present by following the ideas of He et al. [14] and Dong et al. [15]. For
C = H, we can write the algorithm 3.1 as in the following

x0, z0 ∈ H,
yn = αnzn + (1− αn)xn,
zn+1 = JA

rn(yn − rn(B + C)yn),
un = αnzn + (1− αn)xn − zn+1,
vn = (αn∥zn∥2 + (1− αn)∥xn∥2 − ∥zn+1∥2)/2,
Cn = {z ∈ C : ⟨un, z⟩ ≤ vn},
Qn = {z ∈ C : ⟨xn − z, xn − x0⟩ ≤ 0},
xn+1 = pn, if pn ∈ Qn,
xn+1 = qn, if pn /∈ Qn,

(4.1)
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where

pn = x0 −
⟨un, x0⟩ − vn

∥un∥2
un,

qn =

(
1− ⟨x0 − xn, xn − pn⟩

⟨x0 − xn, wn − pn⟩

)
pn +

⟨x0 − xn, xn − pn⟩
⟨x0 − xn, wn − pn⟩

wn,

wn = xn − ⟨un, xn⟩ − vn
∥un∥2

.

Next, we will applies the above to image inpainting. We consider the degradation model
that represents an actual image restoration problems or through the least useful mathematical
abstractions thereof.

y = Hx+ w

where y,H, x and w are the degraded image, degradation operator, or blurring operator; original
image; and noise operator, respectively.

The regularized least-squares problem can be solve to obtain the reconstructed image is the
following

min{1
2
∥H(x)− y∥22 + µφ(y)} (4.2)

where µ > 0 is the regularization parameter and φ(.) is the regularization functional. A well-known
regularization function used to remove noise in the restoration problem is the l1 norm, which is
called Tikhonov regularization [?]. The problem (4.2) can be written in the form of the following
problem as:

min
x∈Rk

{1
2
∥H(x)− y∥22 + µ∥x∥1} (4.3)

Note that problem (4.3) is a spacial case of the problem (1.1) by setting A = ∂f(.), B = 0,
and C = ∇L(.) where f(x) = ∥x∥1 and L(x) = 1

2∥Hx − y∥22 This setting we have that C(x) =
∇L(x) = H ′(Hx−y), where H ′ is a transpose of H. We begin the problem by choosing images and
degrade them by random noise and different types of blurring. The random noise in this study is
provided by Gaussian white noise of zero mean and 0.0001 variance. We solve the problem in (4.3)
by using the above algorithm. We set c = 70n2, L = 0.001 and rn = 1

100n+1 . All the experiments
were implemented in Matlab R2015 running on a Desktop with Intel(R) Core(TM) i5-7200u CPU
2.50 GHz, and 4 GB RAM. We obtain the following results.
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(a) Mandril (b) Gaussian blur (c) Our algorithm

Figure 1: Pictures of animals

(a) Lotus (b) Gaussian blur (c) Our algorithm

Figure 2: Pictures of lotus

(a) Fabric (b) Gaussian blur (c) Our algorithm

Figure 3: Pictures of Thai fabric
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Abstract

In this paper we study linear abstract Cauchy problem in two
variables. Theory of two-parameter semigroups of linear operators
and tensor product of Banach spaces is needed to study the solution
of such equation.
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1 Introduction

Ordinary and partial differential equations in which the unknown function
and its derivatives take values in some abstract space such as Hilbert space
or Banach space are called abstract differential equations. One of the most
powerful tools for solving linear abstract differential equations is the method
of semigroups of linear operators on Banach spaces. The basics of this method
was originated, independently, by both E. Hille in (1948) [1] and K. Yosida
in (1948) [2]. The power of the semigroup approach became clear through
contribution by W. Feller in (1952, 1954) [3]. One of the classical vector
valued differential equations that can be handled via semigroups of operators
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is the so called the abstract Cauchy problem which has the form:

du

dt
= Au(t), t ≥ 0,

u(0) = x,

where A : D(A) ⊆ X → X a linear operator of an appropriate type, x ∈ X
is given and u : [0,∞) → X is the unknown function. For both linear
and nonlinear abstract Cauchy problems, there are many applications in
engineering and applied sciences. For any abstract Cauchy problem, one can
associate a family of bounded linear operators that is known as a semigroup
of operators.

Let X be a Banach space, and L(X,X) be the space of all bounded linear
operators on X. A one-parameter semigroup is a family of linear operators,
namely, {T (t)}t≥0 ⊆ L(X,X) such that

(i) T (0) = I, the identity operator of X,
(ii) T (s+ t) = T (s)T (t) fore very t, s ≥ 0.

If, in addition, for each fixed x ∈ X, T (t)x → x as t → 0+, then the
semigroup is called c0-semigroup or strongly continuous semigroup.

The fact that every non-zero continuous real or complex function that
satisfies the fact g(s+ t) = g(s)g(t) for every t, s ≥ 0 has the form g(t) = eax,
and that g is determined by the number a = g′(0), reveals the association

of an operator A to {T (t)}t≥0 such that Ax := lim
t→0+

T (0+t)x−T (0)x
t

; x ∈ D(A)

and is called the infinitesimal generator of {T (t)}t≥0.
In 2004, Khalil etal presented the definition of the infinitesimal generator

for two parameter semigroups [4]. Recently, in 2019, M. Akkouchi et al.[5]
carried out a theoretical framework for two-parameter semigroups of bounded
linear operators on a Banach space. For more related works, we refer the
reader to [6, 7, 8, 9].

The object of this paper is study the abstract Cauchy problem in two
variables by considering two characteristics, namely, the concept of two-
parameter semigroup of linear operators and the theory of tensor product
of Banach spaces.

2
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2 Preliminaries

Definition 1 Let X be a Banach space, and L(X,X) be the space of all
bounded linear operators on X. A map defined by T : [0,∞) × [0,∞) →
L(X,X) is called a two-parameter semigroup or semigroup in two variables
if

(i) T (0, 0) = I, the identity operator of X,
(ii) T ((s1, t1) + (s2, t2)) = T (s1, t1)T (s2, t2) fore very t, s ≥ 0.

Remark 1 From the above definition, it follows that

T (s, t) = T ((s, 0) + (0, t))

= T (s, 0)T (0, t).

This implies that a semigroup in two variables is the product of two
semigroups in one variable.

Definition 2 The linear operator L(1, 1) defined by

L(1, 1)x = A1x+ A2x,

where
A1x := lim

s→0+

(T (s,0)−I)x
s

,

A2x := lim
t→0+

(T (0,t)−I)x
t

.

is the infinitesimal generator of the two-parameter semigroup {T (s, t)}t,s≥0,
A1 and, A2 are the generators of T (s, 0) and T (0, t), respectively. We write
L for L(1, 1)x.

Theorem 1 Let {T (s, t)}t,s≥0 be a two-parameter semigroup and L be its
infinitesimal generator. Then

DT (s, t)

(
1
1

)
x = (A1 + A2)T (s, t)x.

3 Main Results

3.1 Abstract Cauchy Problems in Two Variables

In this section, we provide the solution of the non-homogeneous abstract
Cauchy problems in two variables.

3
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Consider the abstract Cauchy problem in two variables:

∂u(s, t)

∂s
+

∂u(s, t)

∂t
= Lu(s, t) + f(s) + g(t), (1)

where L : X → X, closed linear operator with Dom(L) ⊆ Rang(u). Let us
assume the initial condition u(0, 0) = x◦.

Procedure
(1) Consider the semigroup of operators

T (s, t)x = e
(s+t)L

x, ∀s, t > 0 and x ∈ X. (2)

To make life easy, let us assume L to be of exponential order, in the sense:

(i) L is densely defined,

(ii)
∑n

i=m
(s+t)n

n!

∥∥Ln
x
∥∥ < ∞, ∀x ∈ Dom(L),

(iii) If x ∈ Dom(L), then C (x, L) =
{
x, Lx, L

2
x, · · ·

}
⊆ Dom(L).

(2) Let

u(s, t) = T (s, 0)x◦ + T (0, t)x◦

+

∫ s

0

T (s− θ, 0)f(θ) dθ

+

∫ t

0

T (0, t− w)g(w) dw. (3)

The claim is such u(s, t) is a solution of (1).
Indeed, using the form of T (s−θ, 0)x = esLe

−θL
x for any x in the domain

of L, and similarly forT (0, t− w) we get

∂u

∂s
= LT (s, 0)x◦ + L

∫ s

0

T (s− θ, 0)f(θ) dθ + f(s)

∂u

∂t
= LT (0, t)x◦ + L

∫ t

0

T (0, t− w)g(w) dw + g(t). (4)

4
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Hence,

∂u

∂s
+

∂u

∂t
= L [T (s, 0) + T (0, t)]x◦

+L

∫ s

0

T (s− θ, 0)f(θ) dθ + f(s)

+L

∫ t

0

T (0, t− w)g(w) dw + g(t)

= L [u(s, t)] + f(s) + g(t). (5)

Thus, such u(s, t) given in (ref A-3) satisfies equation (1).

3.2 Tensor Product Abstract Cauchy Problem in Two
Variables

Definition 3 Let X and Y be any two Banach spaces and X∗ is the dual
space of X. For x ∈ X and y ∈ Y , the operator T : X∗ → Y , defined by

T (x∗) = x∗(x)y = ⟨x, x∗⟩ y,

is a bounded one rank linear operator. We write x ⊗ y for such T . Such
operators are called atoms.

Atoms are used in theory of best approximation in Banach spaces [10]
and they are considered among the fundamental ingredients in the theory of
tensor product of Banach spaces. For more related work on tensor product
of Banach spaces, we refer reader to [10, 11, 12, 17] .

Definition 4 Let X and Y be Banach spaces and A : Dom(A) ⊆ X → Y
be linear. The operator A is called of exponential order if:

(i) If x ∈ Dom(A) then {x, Ax, A2x, · · · } ⊆ Dom(A),
(ii)

∑∞
n=1

tn

n!
Anx < ∞, ∀x ∈ Dom(A).

Clearly every bounded linear operator is of exponential order.
We will write etAx for

∑∞
n=1

tn

n!
∥Anx∥.

Now, consider the abstract Cauchy problem.

u′(s)⊗ υ′(t) = Au(s)⊗Bυ(t) + f(s)⊗Bυ(t)

+Au(s)⊗ g(t) + f(s)⊗ g(t) (6)

5
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where X and Y are Banach spaces, u : [0,∞) → X, υ : [0,∞) → Y ,
A : Dom(A) ⊆ X → X, Rang(u) ⊆ Dom(A), B : Dom(B) ⊆ Y → Y ,
Rang(υ) ⊆ Dom(B), A, B are closed operators of exponential order, and
both f : [0,∞) → X, g : [0,∞) → Y are given. Moreover, let us assume
u(0) = x◦ and υ(0) = y◦.

Procedure
Let

u(s) = e
sA

x◦ +

∫ s

0

e
(s−θ)A

f(θ) dθ, (7)

υ(s) = e
tB

y◦ +

∫ t

0

e
(t−ω)B

g(ω) dω. (8)

Then, using the same technique as in section 1 for differentiating the integral
we get:

u′(s) = Ae
sA

x◦ + A

∫ s

0

e
(s−θ)A

f(θ) dθ + f(s)

= Au(s) + f(s), (9)

υ′(s) = Be
tB

y◦ +B

∫ t

0

e
(t−ω)B

g(ω) dω + g(t)

= Bυ(s) + g(t). (10)

Compiling both (9) and (10) in tensor product form yields (6).

Remark 2 Both e
sA
x◦ and e

tB
y◦ have no meaning unless A and B are,

respectively, of exponential order. Thus, one can summarize the above result
as follows:

If A and B are of exponential order, then (6) has a unique solution where
u(0) = x◦ and υ(0) = y◦.

4 Conclusions

This paper has successfully introduced analytical methods for handling non-
homogeneous abstract Cauchy problem in two variables. The first method
is based on the new concept of two-parameter semigroup of linear operators

6
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and its infinitesimal generator. While the second method utilizes the theory
of tensor product of Banach spaces coupled with the tensor product proper-
ties to formulate a solution to a general tensor version of nonhomogeneous
abstract Cauchy problem. In both cases the obtained results seem to be
very interesting and promising in the sense that they could be extended for
further classes of abstract Cauchy problems.
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APPROXIMATE EULER–LAGRANGE QUADRATIC MAPPINGS
IN FUZZY BANACH SPACES ∗

ICK-SOON CHANG, HARK-MAHN KIM †, AND JOHN M. RASSIAS

Abstract. For any rational numbers k, l with kl(l− 1) ̸= 0, we prove the gener-
alized Hyers–Ulam stability of the Euler-Lagrange quadratic functional equation

f(kx+ ly) + f(kx− ly) + 2(l − 1)[k2f(x)− lf(y)] = l[f(kx+ y) + f(kx− y)]

using both the direct method and fixed point method in fuzzy Banach spaces.

1. Introduction.

Some mathematicians have established fuzzy spaces with fuzzy norms on linear
spaces from various points of view [2, 12, 18, 34]. Xiao and Zhu [34], Cheng and
Mordeson [6], and Bag and Samanta [2, 3] gave the idea of fuzzy norms over linear
spaces in such a manner that the corresponding fuzzy metric may be of Kramosil
and Michalek type [17] and investigated some properties of fuzzy linear operators
on fuzzy normed spaces.

Now, we introduce the definition of fuzzy normed spaces given in [2, 21, 22].

Definition 1.1 [2, 21, 22]. Let X be a real linear space. A function N : X ×R →
[0, 1] is said to be a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,
(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c|) for c ̸= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function on R and limt→∞ N(x, t) = 1;
(N6) for x ̸= 0, N(x, ·) is continuous on R.
The pair (X,N) is called a fuzzy normed (linear) space. The properties of fuzzy

normed linear spaces and examples of fuzzy norms are given in [21, 23].

Definition 1.2 [2, 21, 22]. Let (X,N) be a fuzzy normed linear space. A sequence
{xn} in X is said to be convergent or to converge to x if there exists an x ∈ X such
that limn→∞ N(xn − x, t) = 1 for all t > 0. In this case, x is called the limit of the
sequence {xn}, and we denote it by N -limn→∞ xn = x.

2000 Mathematics Subject Classification. 39B82, 39B72, 47L05.
Key words and phrases. Fuzzy Banach spaces; Generalized Hyers–Ulam stability; Euler–

Lagrange quadratic mappings; Fixed point method; Direct method.
∗ This work was supported by research fund of Chungnam National University.
† Corresponding author:hmkim@cnu.ac.kr.
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2 I.-S. CHANG, H.-M. KIM, AND JOHN M. RASSIAS

Definition 1.3 [2, 21, 22]. Let (X,N) be a fuzzy normed linear space. A sequence
{xn} in X is called Cauchy if for each ε > 0 and each t > 0, there exists an n0 ∈ N
such that for all n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It is well known that every convergent sequence in a fuzzy normed space is a
Cauchy sequence. If each Cauchy sequence is convergent, then the fuzzy norm is
said to be complete and the fuzzy normed space is called a fuzzy Banach space.
They say that a mapping f : X → Y between fuzzy normed spaces X and Y is
continuous at x0 ∈ X if for each sequence {xn} converging to each x0 ∈ X, the
sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X,
then f : X → Y is said to be continuous on X (see [3, 21]).

The stability problem of functional equations originated from a question of Ulam
[33] concerning the stability of group homomorphisms. Hyers [14] gave the first
affirmative partial answer to the question of Ulam for additive mappings on Ba-
nach spaces. Hyers’s theorem has been generalized by Aoki [1], Th.M. Rassias [28]
and Gǎvruta [13] by considering an unbounded Cauchy difference. The classical
functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y),

associated with the parallelogram equality ∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2 in
inner product spaces, is called a quadratic functional equation, and every solution
of the quadratic functional equation is said to be a quadratic mapping. First of all,
the Hyers-Ulam stability problem for the quadratic functional equation has been
established by Skof [32], Cholewa [7] and Czerwik [9]. In particular, Isac and Th.M
Rassias [15] have provided a new application of fixed point theorems to prove the
stability theory of functional equations. By using fixed point methods, the stability
problems of several functional equations have been extensively investigated by a
number of authors (see [4, 8, 31, 23, 27, 26]).

We recall the fixed point theorem from [19], which is needed in Section 3.

Theorem 1.4 [4, 19]. Let (X, d) be a complete generalized metric space and let
J : X → X be a strictly contractive mapping with the Lipschitz constant L < 1.
Then, for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Y .

On the other hand, J.M. Rassias investigated the Hyers–Ulam stability for the
relative Euler–Lagrange functional equation

f(ax+ by) + f(bx− ay) = (a2 + b2)[f(x) + f(y)]
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APPROXIMATE EULER–LAGRANGE QUADRATIC MAPPINGS 3

in [29, 30]. The stability problems of several quadratic functional equations have
been extensively investigated by a number of authors, and there are many interesting
results concerning this problem (see [5, 24, 10, 11]). In the paper [16], the authors
have proved the generalized Hyers–Ulam stability of the Euler–Lagrange quadratic
functional equation

f(kx+ ly) + f(kx− ly)(1.1)

= kl[f(x+ y) + f(x− y)] + 2(k − l)[kf(x)− lf(y)]

in fuzzy Banach spaces, where k, l are nonzero rational numbers with k ̸= l.
Motivated to research stability results of the Euler–Lagrange functional equation,

we investigate the generalized Hyers–Ulam stability of the following modified Euler–
Lagrange functional equation

f(kx+ ly) + f(kx− ly) + 2(l − 1)[k2f(x)− lf(y)](1.2)

= l[f(kx+ y) + f(kx− y)]

using both the fixed point method and the direct method in fuzzy Banach spaces in
the paper, where k, l are nonzero rational numbers with kl(l− 1) ̸= 0 . Throughout
the paper, we assume that X is a linear space, (Y,N) is a fuzzy Banach space and
(Z,N ′) is a fuzzy normed space.

2. General solution of (1.2).

The following lemma can be found in the paper [16].

Lemma 2.1. [16] A mapping f : X → Y between linear spaces satisfies the
functional equation

f(rx+ y) + f(rx− y) = r[f(x+ y) + f(x− y)] + 2(r − 1)[rf(x)− f(y)]

for any fixed rational numbers r with r ̸= 0, 1 if and only if f is quadratic.
Now, we present the general solution of the functional equation (1.2).

Theorem 2.2. A mapping f : X → Y between vector spaces satisfies the functional
equation (1.2) if and only if f−f(0) is quadratic, where f(0) = 0 whenever k2 ̸= l+1.

Proof. First of all, replacing (x, y) := (0, 0) in the functional equation (1.2), we
find f(0) = 0 whenever k2 ̸= l + 1. Substituting (x, y) := (x, 0) in (1.2), we get
f(kx) = k2f(x) for all x ∈ X. Putting (x, y) := (0, x) in (1.2), one has

f(lx) + f(−lx) = (2l2 − l)f(x) + lf(−x)(2.1)

for all x ∈ X. Replacing x by −x in (2.1), one gets

f(−lx) + f(lx) = (2l2 − l)f(−x) + lf(x)(2.2)

for all x ∈ X. Subtracting equation (2.1) from (2.2), we find f(−x) = f(x) and so
f(lx) = l2f(x) for all x ∈ X. Thus the equation (1.2) can be rewritten as

f(x+
ly

k
) + f(x− ly

k
) = l[f(x+

y

k
) + f(x− y

k
)]− 2(l − 1)[f(x)− lf(

y

k
)],
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4 I.-S. CHANG, H.-M. KIM, AND JOHN M. RASSIAS

which yields by switching (x, y) with (y, kx)

f(lx+ y) + f(lx− y) = l[f(x+ y) + f(x− y)] + 2(l − 1)[lf(x)− f(y)]

for all x, y ∈ X. Therefore, it follows from Lemma 2.1 that f is quadratic.
Conversely, if a mapping f is quadratic, then it is obvious that f satisfies the

equation (1.2).

3. Stability of equation (1.2) by fixed point method.

For notational convenience, we define the difference operator Dklf : X2 → Y of
the equation (1.2) for a given mapping f : X → Y as

Dklf(x, y) := f(kx+ ly) + f(kx− ly) + 2(l − 1)[k2f(x)− lf(y)]

−l[f(kx+ y) + f(kx− y)]

for all x, y ∈ X. Now, we are going to consider a stability problem concerning the
stability of equation (1.2) by using the fixed point theorem for contraction mappings
on generalized complete metric spaces.

Theorem 3.1. Assume that a mapping f : X → Y with f(0) = 0 satisfies the
functional inequality

N(Dklf(x, y), t1 + t2) ≥ min{N ′(φ(x), tq1), N
′(φ(y), tq2)}(3.1)

for all x, y ∈ X and all ti > 0 (i = 1, 2), and for some q > 0, and assume in addition

that there exists a constant s ∈ R with |s| ̸= 1, 0 < |s|
1
q < k2 such that a constrained

function φ : X → Z satisfies the inequality

N ′(φ(kx), t) ≥ N ′(sφ(x), t),(3.2)

for all x ∈ X and all t > 0. Then there exists a unique Euler–Lagrange quadratic
mapping Q : X → Y satisfying the equation DklQ(x, y) = 0 and the approximate
functional inequality

N(f(x)−Q(x), t) ≥ min
{
N ′

( φ(x)

|l − 1|q(k2 − |s|
1
q )q

, tq
)
,(3.3)

N ′
( φ(0)

|l − 1|q(k2 − |s|
1
q )q

, tq
)}

near f for all x ∈ X and all t > 0.

Proof. We consider the set of functions

Ω := {g : X → Y |g(0) = 0}
and define a generalized metric on Ω as follows:

dΩ(g, h) := inf
{
K ∈ [0,∞] : N(g(x)− h(x), Kt) ≥ min{N ′(φ(x), tq), N ′(φ(0), tq)},

∀x ∈ X, ∀t > 0
}
.

Then one can easily see that (Ω, dΩ) is a complete generalized metric space [20].
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APPROXIMATE EULER–LAGRANGE QUADRATIC MAPPINGS 5

Now, we define an operator J : Ω → Ω as

Jg(x) =
g(kx)

k2

for all g ∈ Ω, x ∈ X.
We first prove that J is strictly contractive on Ω. For any g, h ∈ Ω, let ε ∈ [0,∞)

be any constant with dΩ(g, h) ≤ ε. Then it follows from the use of (3.2) and the
definition of dΩ(g, h) ≤ ε that

N(g(x)− h(x), εt) ≥ min{N ′(φ(x), tq), N ′(φ(0), tq)},

⇒ N
(g(kx)

k2
− h(kx)

k2
,
|s|

1
q

k2
εt
)
≥ min{N ′(φ(kx), |s|tq), N ′(φ(0), |s|tq)},

⇒ N
(
Jg(x)− Jh(x),

|s|
1
q

k2
εt
)
≥ min{N ′(φ(x), tq), N ′(φ(0), tq)},

⇒ dΩ(Jg, Jh) ≤
|s|

1
q

k2
ε, ∀x ∈ X, t > 0.

Since ε is an arbitrary constant with dΩ(g, h) ≤ ε, we see that for any g, h ∈ Ω,

dΩ(Jg, Jh) ≤
|s|

1
q

k2
dΩ(g, h),

which implies J is strictly contractive with the constant |s|
1
q

k2
< 1 on Ω.

We now want to show that dΩ(f, Jf) < ∞. If we put y := 0, ti := t (i = 1, 2) in
(3.1), then we arrive at

N
(
f(x)− f(kx)

k2
,

t

|l − 1|k2

)
≥ min{N ′(φ(x), tq), N ′(φ(0), tq)},

which yields dΩ(f, Jf) ≤ 1
|l−1|k2 < ∞, and so

dΩ(J
nf, Jn+1f) ≤ dΩ(f, Jf) ≤

1

|l − 1|k2

for all n ∈ N. Now, applying the fixed point theorem of the alternative for con-
tractions on generalized complete metric spaces due to Margolis and Diaz [19], we
obtain the following approximate functional inequalities (a), (b) and (c):

(a) There is a mapping Q : X → Y with Q(0) = 0 such that

dΩ(f,Q) ≤ 1

1− |s|
1
q

k2

dΩ(f, Jf) ≤
1

|l − 1|(k2 − |s|
1
q )
,
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6 I.-S. CHANG, H.-M. KIM, AND JOHN M. RASSIAS

and thus Q is a fixed point of the operator J , that is, 1
k2
Q(kx) = JQ(x) = Q(x) for

all x ∈ X. Thus we arrive at

N
(
f(x)−Q(x),

t

|l − 1|(k2 − |s|
1
q )

)
≥ min{N ′(φ(x), tq), N ′(φ(0), tq)},

N(f(x)−Q(x), t) ≥ min
{
N ′

(
φ(x), |l − 1|q(k2 − |s|

1
q )q tq

)
,

N ′
(
φ(0), |l − 1|q(k2 − |s|

1
q )q tq

)}
for all t > 0 and all x ∈ X, which implies the approximation (3.3).
(b) Since dΩ(J

nf,Q) → 0 as n → ∞, we obtain

N
(f(knx)

k2n
−Q(x), t

)
= N(f(knx)−Q(knx), k2nt)

≥ min
{
N ′

( φ(knx)

|l − 1|q(k2 − |s|
1
q )q

, k2nqtq
)
, N ′

( φ(0)

|l − 1|q(k2 − |s|
1
q )q

, k2nqtq
)}

≥ min
{
N ′

( φ(x)

|l − 1|q(k2 − |s|
1
q )q

,
(k2q

|s|

)n

tq
)
, N ′

( φ(0)

|l − 1|q(k2 − |s|
1
q )q

,
(k2q

|s|

)n

tq
)}

→ 1 as n → ∞
(k2q

|s|
> 1

)

for all t > 0 and all x ∈ X, that is, the mapping Q : X → Y given by

N - lim
n→∞

f(knx)

k2n
= Q(x)(3.4)

is well defined for all x ∈ X. In addition, it follows from the conditions (3.1), (3.2)
and (N4) that

N
(Dklf(k

nx, kny)

k2n
, t
)

≥ min
{
N ′

(
φ(knx),

k2nqtq

2q

)
, N ′

(
φ(kny),

k2nqtq

2q

)}
≥ min

{
N ′

(
|s|nφ(x), k

2nqtq

2q

)
, N ′

(
|s|nφ(y), k

2nqtq

2q

)}
≥ min

{
N ′

(
φ(x),

(k2q

|s|

)n tq

2q

)
, N ′

(
φ(y),

(k2q

|s|

)n tq

2q

)}
→ 1 as n → ∞, t > 0,(3.5)
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APPROXIMATE EULER–LAGRANGE QUADRATIC MAPPINGS 7

for all x ∈ X. Therefore we obtain, by use of (N4), (3.4) and (3.5),

N(DklQ(x, y), t) ≥ min
{
N
(
DklQ(x, y)− Dklf(k

nx, kny)

k2n
,
t

2

)
,

N
(Dklf(k

nx, kny)

k2n
,
t

2

)}
= N

(Dklf(k
nx, kny)

k2n
,
t

2

)
, (for sufficiently large n)

≥ min
{
N ′

(
φ(x),

(k2q

|s|

)n tq

4q

)
, N ′

(
φ(y),

(k2q

|s|

)n tq

4q

)}
→ 1 as n → ∞, t > 0,

which implies DklQ(x, y) = 0 by (N2), and so the mapping Q is quadratic satisfying
equation (1.2).

(c) The mapping Q is a unique fixed point of the operator J in the set ∆ = {g ∈
Ω|dΩ(f, g) < ∞}. Thus, if we assume that there exists another Euler-Lagrange type
quadratic mapping Q′ : X → Y satisfying inequality (3.3), then

Q′(x) =
Q′(kx)

k2
= JQ′(x), dΩ(f,Q

′) ≤ 1

|l − 1|(k2 − |s|
1
q )

< ∞,

and so Q′ is a fixed point of the operator J and Q′ ∈ ∆ = {g ∈ Ω|dΩ(f, g) < ∞}.
By the uniqueness of the fixed point of J in ∆, we find that Q = Q′, which proves
the uniqueness of Q satisfying inequality (3.3). This ends the proof of the theorem.

We observe that if 0 < |s| < 1 in Theorem 3.1, then

min
{
N ′(φ(x), tq), N ′(φ(0), tq)

}
= N ′(φ(x), tq)

for all x ∈ X and all t > 0 since N ′(φ(0), tq) ≥ N ′
(
φ(0), tq

|s|n

)
→ 1 as n → ∞ by

the condition (3.2).

Theorem 3.2 Assume that a mapping f : X → Y with f(0) = 0 satisfies the
inequality

N(Dklf(x, y), t1 + t2) ≥ min{N ′(φ(x), tq1), N
′(φ(y), tq2)}

for all x, y ∈ X and all ti > 0 (i = 1, 2) and for some q > 0, and furthermore assume

that there exists a constant s ∈ R with |s| ̸= 1, |s|
1
q > k2 such that a constrained

function φ : X → Z satisfies

N ′
(
φ
(x
k

)
, t
)
≥ N ′

(1
s
φ(x), t

)
for all x ∈ X. Then there exists a unique Euler–Lagrange quadratic mapping
Q : X → Y satisfying the equation DklQ(x, y) = 0 and the approximate functional
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inequality

N(f(x)−Q(x), t) ≥ min
{
N ′

( φ(x)

|l − 1|q(|s|
1
q − k2)q

, tq
)
,(3.6)

N ′
( φ(0)

|l − 1|q(|s|
1
q − k2)q

, tq
)}

,

for all t > 0 and all x ∈ X.

Proof. Finally, applying the same argument as in the proof of Theorem 3.1, we can
find a mapping Q : X → Y defined by

N - lim
n→∞

k2nf(
x

kn
) = Q(x)

satisfying the equation DklQ(x, y) = 0 and the approximate functional inequality
(3.6) near f .

4. Stability of equation (1.2) by direct method.

In the following, we are going to investigate alternatively generalized Hyers–Ulam
stability of the Euler–Lagrange functional equation (1.2) via the direct method in
fuzzy Banach spaces.

Theorem 4.1. Assume that a mapping f : X → Y with f(0) = 0 satisfies the
inequality

N(Dklf(x, y), t) ≥ N ′(φ(x, y), t)(4.1)

and assume in addition that there exists a constant s ∈ R subject to 0 < |s| < k2

such that a constrained function φ : X2 → Z satisfies the functional inequality

N ′(φ(kx, ky), t) ≥ N ′(sφ(x, y), t)(4.2)

for all x ∈ X and all t > 0. Then there exists a unique Euler–Lagrange quadratic
mapping Q : X → Y satisfying the equation DklQ(x, y) = 0 and the approximate
inequality

N(f(x)−Q(x), t) ≥ N ′
( φ(x, 0)

2|l − 1|(k2 − |s|)
, t
)
, t > 0,(4.3)

for all x ∈ X.

Proof. It follows from the assumption (4.2) that

N ′(φ(knx, kny), t) ≥ N ′(snφ(x, y), t)

= N ′
(
φ(x, y),

t

|s|n
)
, t > 0,

which yields

N ′(φ(knx, kny), |s|nt) ≥ N ′(φ(x, y), t), t > 0,(4.4)

110

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

ICK-SOON CHANG et al 103-116



APPROXIMATE EULER–LAGRANGE QUADRATIC MAPPINGS 9

for all x, y ∈ X. Putting (x, y) := (x, 0) in (4.1), we have

N(2(l − 1)f(kx)− 2(l − 1)k2f(x), t) ≥ N ′(φ(x, 0), t),

or, N
(
f(x)− f(kx)

k2
,

t

2|l − 1|k2

)
≥ N ′(φ(x, 0), t)(4.5)

for all x ∈ X. Therefore it follows from (4.4), (4.5) that

N
(f(knx)

k2n
− f(kn+1x)

k2(n+1)
,

|s|nt
2|l − 1|k2(n+1)

)
≥ N ′(φ(knx, 0), |s|nt) ≥ N ′(φ(x, 0), t)

for all x ∈ X and any integer n ≥ 0. Thus, we deduce the functional inequality

N
(
f(x)− f(knx)

k2n
,
n−1∑
i=0

|s|it
2|l − 1|k2(i+1)

)
(4.6)

= N
( n−1∑

i=0

(f(kix)

k2i
− f(ki+1x)

k2(i+1)

)
,
n−1∑
i=0

|s|it
2|l − 1|k2(i+1)

)
≥ min

0≤i≤n−1

{
N
(f(kix)

k2i
− f(ki+1x)

k2(i+1)
,

|s|it
2|l − 1|k2(i+1)

)}
≥ N ′(φ(x, 0), t), t > 0,

which implies

N
(f(kmx)

k2m
− f(km+px)

k2(m+p)
,

m+p−1∑
i=m

|s|it
2|l − 1|k2(i+1)

)
= N

(m+p−1∑
i=m

(f(kix)

k2i
− f(ki+1x)

k2(i+1)

)
,

m+p−1∑
i=m

|s|it
2|l − 1|k2(i+1)

)
≥ min

m≤i≤m+p−1

{
N
(f(kix)

k2i
− f(ki+1x)

k2(n+1)
,

|s|it
2|l − 1|k2(i+1)

)}
≥ N ′(φ(x, 0), t), t > 0,

for all x ∈ X and any integers p > 0,m ≥ 0. Therefore, one concludes

N
(f(kmx)

k2m
− f(km+px)

k2(m+p)
, t
)
≥ N ′

(
φ(x, 0),

t∑m+p−1
i=m

|s|i
2|l−1|k2(i+1)

)
(4.7)

for all x ∈ X and any integers p > 0,m ≥ 0, t > 0. Since
∑m+p−1

i=m
|s|i
k2i

is a convergent

series, we know that the sequence {f(knx)
k2n

} is Cauchy in the fuzzy Banach space
(Y,N), and so it converges in Y . Therefore a mapping Q : X → Y defined by

Q(x) := N - lim
n→∞

f(knx)

k2n
⇔ lim

n→∞
N(

f(knx)

k2n
−Q(x), t) = 1, ∀t > 0,

is well defined for all x ∈ X. In addition, we see from (4.6) that

N
(
f(x)− f(knx)

k2n
, t
)
≥ N ′

(
φ(x, 0),

t∑n−1
i=0

|s|i
2|l−1|k2(i+1)

)
,(4.8)
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and thus for any ε with 0 < ε < 1 the following inequality

N(f(x)−Q(x), t) ≥ min
{
N
(
f(x)− f(knx)

k2n
, (1− ε)t

)
,(4.9)

N
(f(knx)

k2n
−Q(x), εt

)}
≥ N ′

(
φ(x, 0),

(1− ε)t∑n−1
i=0

|s|i
2|l−1|k2(i+1)

)
≥ N ′(φ(x, 0), 2|l − 1|(1− ε)(k2 − |s|)t),

holds good for sufficiently large n, and for all x ∈ X and all t > 0. Since ε is
arbitrary and N ′ is a left continuous function, we obtain

N(f(x)−Q(x), t) ≥ N ′(φ(x, 0), 2|l − 1|(k2 − |s|)t), t > 0,

for all x ∈ X, which yields the approximation (4.3).
On the other hand, it is clear from (4.1) and (N5) that the relation

N
(Dklf(k

nx, kny)

k2n
, t
)

≥ N ′(φ(knx, kny), k2nt)

≥ N ′
(
φ(x, y),

k2n

|s|n
t
)

→ 1 as n → ∞

holds for all x, y ∈ X and all t > 0. Therefore, we figure out by definition of

limn→∞ N(f(k
nx)

k2n
−Q(x), t) = 1 for all (t > 0) that

N(DklQ(x, y), t) ≥ min
{
N
(
DklQ(x, y)− Dklf(k

nx, kny)

k2n
,
t

2

)
,

N
(Dklf(k

nx, kny)

k2n
,
t

2

)}
= N

(Dklf(k
nx, kny)

k2n
,
t

2

)
(for sufficiently large n)

≥ N ′
(
φ(x, y),

k2n

2|s|n
t
)
, t > 0

→ 1 as n → ∞,

which implies DklQ(x, y) = 0 by (N2). Thus we find that Q is a quadratic map-
ping satisfying equation (1.2) and inequality (4.3) near the approximate quadratic
mapping f : X → Y .

To prove the uniqueness, we now assume that there is another quadratic mapping
Q′ : X → Y which satisfies the approximate inequality (4.3). Then it follows from
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the equality Q′(knx) = k2nQ′(x), Q(knx) = k2nQ(x) and (4.3) that

N(Q(x)−Q′(x), t) = N
(Q(knx)

k2n
− Q′(knx)

k2n
, t
)

≥ min
{
N
(Q(knx)

k2n
− f(knx)

k2n
,
t

2

)
, N

(f(knx)

k2n
− Q′(knx)

k2n
,
t

2

)}
≥ N ′(φ(knx, 0), (k2 − |s|)k2nt)

≥ N ′
(
φ(x, 0),

(k2 − |s|)k2nt

|s|n
)
, t > 0,

for all n ∈ N, which tends to 1 as n → ∞ by (N5). Therefore one obtains Q(x) =
Q′(x) for all x ∈ X, completing the proof of uniqueness. This completes the proof
of the theorem.

We remark that if k = 1 in Theorem 4.1, then

N ′(φ(x, y), t) ≥ N ′(φ(x, y), t

|s|n
)
→ 1

as n → ∞, and so φ(x, y) = 0 for all x, y ∈ X. Hence, Dklf(x, y) = 0 for all x, y ∈ X
and thus f is itself an Euler–Lagrange quadratic mapping.

Theorem 4.2. Assume that a mapping f : X → Y with f(0) = 0 satisfies the
inequality

N(Dklf(x, y), t) ≥ N ′(φ(x, y), t)(4.10)

and assume in addition that there exists a constant s ∈ R subject to |s| > k2 such
that a constrained function φ : X2 → Z satisfies the inequality

N ′
(
φ
(x
k
,
y

k

)
, t
)
≥ N ′

(1
s
φ(x, y), t

)
, t > 0,(4.11)

for all x ∈ X and all t > 0. Then there exists a unique Euler–Lagrange quadratic
mapping Q : X → Y satisfying the equation DklQ(x, y) = 0 and the approximate
inequality

N(f(x)−Q(x), t) ≥ N ′
( φ(x, 0)

2|l − 1|(|s| − k2)
, t
)
, t > 0,(4.12)

for all x ∈ X.

Proof. It follows from (4.5) and (4.11) that

N
(
f(x)− k2f

(x
k

)
,

t

2|l − 1||s|

)
≥ N ′(φ(x, 0), t), t > 0,

for all x ∈ X. Therefore it follows that

N
(
f(x)− k2nf

( x

kn

)
,
n−1∑
i=0

k2i

2|l − 1||s|i+1
t
)
≥ N ′(φ(x, 0), t), t > 0,
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for all x ∈ X and any integer n > 0. Thus we see from the last inequality that

N
(
f(x)− k2nf

( x

kn

)
, t
)

≥ N ′
(
φ(x, 0),

t∑n−1
i=0

k2i

2|l−1||s|i+1

)
≥ N ′(φ(x, 0), 2|l − 1|(|s| − k2)t), t > 0.

The remaining assertions go through the corresponding part of Theorem 4.1 by
the similar way.

We also observe that if k = 1 in Theorem 4.2, then

N ′(φ(x, y), t) ≥ N ′(φ(x, y), |s|nt) → 1

as n → ∞, and so φ(x, y) = 0 for all x, y ∈ X. Hence, Dklf = 0 and thus f is itself
an Euler–Lagrange quadratic mapping.

Corollary 4.3. Let X be a normed space and (R, N ′) be a fuzzy normed space.
Assume that there exist real numbers θ1 ≥ 0, θ2 ≥ 0 and that p is a real number
such that either 0 < p < 2 or p > 2. If a mapping f : X → Y with f(0) = 0 satisfies
the inequality

N(Dklf(x, y), t) ≥ N ′(θ1∥x∥p + θ2∥y∥p, t)

for all x, y ∈ X and all t > 0, then we can find a unique Euler–Lagrange quadratic
mapping Q : X → Y satisfying the equation DklQ(x, y) = 0 and the inequality

N(f(x)−Q(x), t) ≥

{
N ′( θ1∥x∥p

2|l−1|(k2−|k|p) , t
)
, if 0 < p < 2, |k| > 1, (p > 2, |k| < 1)

N ′( θ1∥x∥p
2|l−1|(|k|p−k2)

, t
)
, if p > 2, |k| > 1, (0 < p < 2, |k| < 1)

for all x ∈ X and all t > 0.

Proof. Taking φ(x, y) = θ1∥x∥p + θ2∥y∥p and applying Theorem 4.1 and Theorem
4.2, we obtain the desired approximations, respectively.

Corollary 4.4. Assume that for k ̸= 1, there exists a real number θ ≥ 0 such that
the mapping f : X → Y with f(0) = 0 satisfies the inequality

N(Dklf(x, y), t) ≥ N ′(θ, t)

for all x, y ∈ X and all t > 0. Then we can find a unique Euler–Lagrange quadratic
mapping Q : X → Y satisfying the equation DklQ(x, y) = 0 and the inequality

N(f(x)−Q(x), t) ≥ N ′
( θ

2|l − 1||k2 − 1|
, t
)

for all x ∈ X and all t > 0.

We remark that if θ = 0, then N(Dklf(x, y), t) ≥ N ′(0, t) = 1, and soDklf(x, y) =
0. Thus we get f = Q is itself an Euler–Lagrange quadratic mapping.
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On linear fuzzy real numbers
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Abstract. In this paper we introduce the notion of liner fuzzy real numbers, and show that the set of all positive

(or negative) symmetric linear fuzzy real numbers forms a semiring. Moreover, we discuss a complex transform

of linear fuzzy real numbers.

1. Introduction

A. Kaufmann and M. M. Gupta [2] introduced the notion of a trapezoidal fuzzy number, and

D. Dubois and H. Prade [1] generalized the notion of trapezoidal fuzzy numbers. X. F. Zhang

and G. W. Meng [12] introduced the notion of an isoceles triangular fuzzy number, and discussed

the simplification of addition and subtraction operations of fuzzy numbers. A. Kumar et al. [2]

studied an RM approach for ranking of generalized trapezoidal fuzzy numbers, and showed that

the ranking function satisfies all the reasonable properties of fuzzy quantities proposed by X.

Wang and E. E. Kerre [11]. Neggers and Kim researched fuzzy posets [7] and created Linear

Fuzzy Real numbers [8]. Linear Fuzzy Real numbers were used by Monk [4]. In [9], Rogers et al.

focused on linear fuzzy programming problems. Rogers [10] focused on solving and manipulating

Fuzzy Nonlinear problems in the Linear Fuzzy Real number system using the Gradient Descent.

In texts on fuzzy logic, fuzzy subsets of the real numbers may also be referred to as fuzzy real

numbers, thus obviating the needs to talk about fuzzy subsets of the real numbers. Actually,

equating these concepts may be a disadvantage since in some way we expect numbers, whether

fuzzy or not, to behave differently from (sub)sets, whether fuzzy or not. It is with this in mind

that we seek to introduce among several models of systems of fuzzy real numbers, the system of

linear fuzzy real numbers discussed below. For general concepts for fuzzy set theory we refer to

[5, 6].
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2. Linear fuzzy real numbers

A mapping µ : R → [0, 1] is called a linear fuzzy real number [8, 4] if there is a triple of real

numbers a, b, c (a ≤ b ≤ c) such that

(1) µ(b) = 1,

(2) µ(x) = 0 if x < a or x > c,

(3) µ(x) = x−a
b−a if a ≤ x < b,

(4) µ(x) = c−x
c−b if b < x ≤ c.

We denote such a linear fuzzy real number by a triple µ =< a, b, c > or µ = µ(a, b, c) where

a ≤ b ≤ c. Notice that the integral
∫∞
−∞ µ(t)dt = b−a

2
+ c−b

2
= c−a

2
, i.e., if the goodness of the fuzzy

subset µ : (−∞,∞)→ [0, 1] is defined by

G(µ) :=
eγ(µ) − 1

eγ(µ) + 1
, γ(µ) = [

∫ ∞
−∞

µ(t)dt]−1,

then in the case of a linear fuzzy real number µ =< a, b, c >, it follows that

G(µ) =
e

2
c−a − 1

e
2

c−a + 1

In particular, if we let c − a → 0+, then G(µ) → 1, so that for any µ =< a, a, a >, we set

G(µ) = 1. On the other hand, if c − a → ∞, then G(µ) → 0+, and 0 ≤ G(µ) ≤ 1. If

µ =< a, a, a >, then µ(t) = 0 if t 6= a, while µ(a) = 1, i.e., µ = δa, the characteristic function of

the real number a. For any two linear fuzzy real numbers µi =< ai, bi, ci > (i = 1, 2), we define

µ1 + µ2 :=< a1 + a2, b1 + b2, c1 + c2 >.

Theorem 2.1. If µi =< ai, bi, ci > (i = 1, 2) be linear fuzzy real numbers, then G(µ1 + µ2) ≤
min{G(µ1), G(µ2)}.

Proof. If we let F (x) := e
2
x−1
e
2
x+1

then

F ′(x) =
(e

2
x + 1)e

2
x (− 2

x2
)− (e

2
x − 1)e

2
x (− 2

x2
)

(e
2
x + 1)2

=
−4e

2
x

x2(e
2
x + 1)2

< 0.
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Hence, if x1 ≥ x2, then F (x1) ≤ F (x2). Since (c1 + c2)− (a1 + a2) ≥ ci − ai, (i = 1, 2),

G(µ1 + µ2) = F ((c1 + c2)− (a1 + a2))

≤ F (ci − ai)
= G(µi),

proving the theorem. �

Corollary 2.2. If G(µ1 + µ2) = G(µ1), then µ2 is the characteristic function of a real number.

Proof. If G(µ1 + µ2) = G(µ1), then (c1 + c2)− (a1 + a2) = c1 − a1 and hence c2 − a2 = 0, which

means that µ2 =< b2, b2, b2 >= δb2 for some b2 ∈ R. �

Proposition 2.3. Let µi =< ai, bi, ci >, (i = 1, 2, 3), be linear fuzzy real numbers and δ0 =<

0, 0, 0 >. Then

(i) µi + δ0 = µi,

(ii) µ1 + µ2 = µ2 + µ1,

(iii) (µ1 + µ2) + µ3 = µ1 + (µ2 + µ3),

(iv) If µ1 + µ2 = δ0, then µ1 = δb1 , µ2 = δb2 and b2 = −b1.

Proof. (iv). If we let µ1 + µ2 = δ0, then G(µ1 + µ2) = G(δ0) = 1 ≤ min{G(µ1), G(µ2)} by

Theorem 2.1. Hence G(µ1) = G(µ2) = 1, i.e., µ1 = δb1 and µ2 = δb2 for some b1, b2 ∈ R and

obviously b2 = −b1. �

By Proposition 2.3, we obtain the following theorem.

Theorem 2.4. If L is the collection of all linear fuzzy real numbers with the operation “+”, then

(L,+) is a commutative semigroup with a neutral element δ0.

Remark. In view of Theorem 2.1, there exists a function G : L → [0, 1] such that G(µ1 + µ2) ≤
min{G(µ1), G(µ2)}, denoting “the goodness” of the linear fuzzy real number.

Let µi :=< ai, bi, ci >, (i = 1, 2), be linear fuzzy real numbers. We define a new linear fuzzy

real number µ1 	 µ2 :=< a1 − a2, b1 − b2, c1 − c2 > when a1 − a2 ≤ b1 − b2 ≤ c1 − c2, which is

called the subtraction of µ1 by µ2.

Proposition 2.5. If µ1 	 µ2 = δb for some real number b, then G(µ1) = G(µ2).

Proof. If µ1	µ2 = δb, then a1−a2 = b1− b2 = c1− c2 = b, i.e., µ1 and µ2 have the same “shape”,

and G(µ1) = G(µ2). �

Proposition 2.6. If µ1 	 µ2 is defined, then G(µ1) ≤ min{G(µ1 	 µ2), G(µ2)}.

Proof. If µ1 	 µ2 is defined, then µ1 = (µ1 	 µ2) + µ2. By applying Theorem 2.1, we obtain the

result. �
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Remark. The fact G(µ1) ≤ G(µ2) is not sufficient to determine that µ1 	 µ2 is defined. For

example, consider µ1 =< 2, 3, 7 > and µ2 =< 1, 3, 4 >. Then G(µ1) = e2/5−1
e2/5+1

≤ e2/3−1
e2/3+1

= G(µ2),

but µ1 	 µ2 is not defined, since 2− 1 > 3− 3, 3− 3 < 7− 4.

3. Multiplcations of linear fuzzy real numbers

Let A be the set of all linear fuzzy real numbers µ =< a, b, c > with a 6= c. Given µi =<

ai, bi, ci >∈ A (i = 1, 2), we construct µ1 � µ2 as follows:

a = inf{t1t2 | ti ∈ [ai, ci], i = 1, 2},
c = sup{t1t2 | ti ∈ [ai, ci], i = 1, 2},

b =
a+ c

2
{b1 − a1
c1 − a1

+
b2 − a2
c2 − a2

}.

For example, < −3,−2,−1 > � < −5,−1, 4 >=< −12, b, 15 > where b = 3
2
{1
2

+ 4
9
} = 17

12
, and

< −3,−2, 2 > � < −5,−1, 4 >=< −12, 29
30
, 15 >.

Remark. The associative law for the product� fails for linear fuzzy real numbers. Consider µ1 =<

−10,−9,−1 >, µ2 =< −8, 1, 2 > and µ3 =< 1, 4, 5 >. Then (µ1 � µ2) � µ3 =< −20, 91
3
, 80 >

� < 1, 4, 5 >=< −100, 94, 400 >, but µ1 � (µ2 � µ3) =< −10,−9,−1 > � < −40,−94
5
, 10 >=<

−100, 1204
15
, 400 >. Hence (µ1 � µ2)� µ3 6= µ1 � (µ2 � µ3).

Consider a linear fuzzy real number µ =< a, a+c
2
, c > with a 6= c. We call such a fuzzy subset

µ a symmetric linear fuzzy real number. Let B be the set of all symmetric linear fuzzy real

numbers µ =< a, a+c
2
, c > with a 6= c. It is easy to show that if σ1, σ2 ∈ B, then σ1 + σ2 ∈ B,

and σ1 � σ2 ∈ B. Furthermore, it is easy to show that (σ1 � σ2) � σ3 = σ1 � (σ2 � σ3) and

σ1 � σ2 = σ2 � σ1. We summarize:

Theorem 3.1. Let B be the set of all symmetric linear fuzzy real numbers µ =< a, a+c
2
, c > with

a 6= c. Then (B,�) is a commutative semigroup. Moreover, µ� δ0 = δ0 for all µ ∈ B.

Remark. Given the symmetric linear fuzzy real numbers µ1 =< −2,−1.5,−1 >, µ2 =< −3,−0.5, 2 >

, µ3 =< −4,−1, 2 >∈ B, we have (µ1 + µ2) � µ3 =< −10, 5, 20 >, but µ1 � µ2 + µ2 � µ3 =<

−12, 4, 20 >. Hence the distributive law fails.

A linear fuzzy real number µ =< a, b, c > is said to be positive(negative, resp.) if a > 0 (c < 0,

resp.).

Proposition 3.2. Let µi ∈ B (i = 1, 2, 3). If µ3 is positive (or negative), then (µ1 + µ2)� µ3 =

µ1 � µ3 + µ2 � µ3. If µ1 is positive (or negative), then µ1 � (µ2 + µ3) = µ1 � µ2 + µ1 � µ3.
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Proof. Straightforward. �

Given µi =< ai, bi, ci >∈ A (i = 1, 2), we consider a “weighted product” µ1 ⊗ µ2 :=< a, b, c >

where

a = inf{t1t2 | ti ∈ [ai, ci], i = 1, 2},
c = sup{t1t2 | ti ∈ [ai, ci], i = 1, 2},

b = (a+ c)
[ b1−a1

(c1−a1)2 + b2−a2
(c2−a2)2

1
c1−a1 + 1

c2−a2

]
.

Thus, if c1 − a1 = c2 − a2, then we obtain for b the formula:

b = (a+ c)
(b1 − a1) + (b2 − a2)
(c1 − a1) + (c2 − a2)

If b1−a1
c1−a1 = b2−a2

c2−a2 = 1
2
, then

b = (a+ c)
1
2
( 1
c1−a1 ) + 1

2
( 1
c2−a2 )

1
c1−a1 + 1

c2−a2

=
a+ c

2

so that for µ1, µ2 ∈ B, we obtain µ1 ⊗ µ2 = µ1 � µ2. We summarize:

Proposition 3.3. If µ1, µ2 ∈ B, then µ1 ⊗ µ2 = µ1 � µ2.

Remark. The weighted product σ1 ⊗ σ2 is not associative in general. For example, let σ1 :=<

−10,−9,−1 >, σ2 :=< −8, 1, 2 > and σ3 :=< 1, 4, 5 >. Then σ1 ⊗ σ2 =< −20, 1,658
57
, 80 > and

σ2⊗ σ3 =< −40,−333
14
, 10 > and so (σ1⊗ σ2)⊗ σ3 =< −100, 109,673

494
, 400 > and σ1⊗ (σ2⊗ σ3) =<

−100, 106,774
2,478

, 400 >.

Actually, in general case, products µ1 � δb2 and µ1 ⊗ δb2 are troublesome to define in a simple

way since a2 = b2 = c2 produce singularities.

Theorem 3.4. Let C be the set of all positive (or negative) symmetric linear fuzzy real numbers.

Then (C,+,�) is a semiring.

Proof. It follows from Theorems 2.4 and 3.1, and Proposition 3.2. �
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4. Complex transforms of linear fuzzy real numbers

Given the linear fuzzy real number µ = µ(a, b, c) we may associate with it the complex transform

T (µ), where

(5) T (µ)(s) =

∫ ∞
−∞

s2estµ(a, b, c)(t)dt

By integration by parts we obtain

T (µ)(s) =

∫ c

a

s2estµ(a, b, c)(t)dt

=

∫ b

a

s2est
t− a
b− a

dt+

∫ c

b

s2est
c− t
c− b

dt

=
1

c− b
(esc − esb)− 1

b− a
(esb − esa)

We summarize:

Proposition 4.1. If µ = µ(a, b, c) is a linear fuzzy real number, then its associated complex

transformation T (µ) is

(6) T (µ)(s) =
1

c− b
(esc − esb)− 1

b− a
(esb − esa)

Example 4.2. If µ0 = µ(−1, 0, 1), then T (µ0)(s) = (es−1)−(1−e−s) = (es+e−s)−2 = 2 cosh s−2

or “inversely” cosh s = T (µ0)(s)+2
2

indicating that we may consider the functions T (µ)(s) to be

“pseudo-hyperbolic” in nature.

Proposition 4.3. If µ = µ(a, b, c) is a linear fuzzy real number and λ 6= 0, then

(7) T (µ)(λs) =
1

c− b
(eλsc − eλsb)− 1

b− a
(eλsb − eλsa)

Proof. If λ 6= 0, then

T (µ)(λs) =

∫ ∞
−∞

(λs)2eλstµ(a, b, c)(t)dt

= λ2
∫ b

a

s2eλst
t− a
b− a

dt+ λ2
∫ c

b

s2eλst
c− t
c− b

dt

By integration by parts, we obtain
∫ b
a
s2eλst t−a

b−adt = s
λ
eλsb− 1

b−a
1
λ2

(eλsb−eλsa) and
∫ c
b
s2eλst c−t

c−bdt =

− s
λ
eλsb + 1

c−b
1
λ2

(eλsc − eλsb), which proves the proposition. �
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Given a linear fuzzy real number µ = µ(a, b, c) and λ ∈ R, we define a new linear fuzzy real

number λµ as follows:

λµ(a, b, c) :=

{
µ(λa, λb, λc) if λ ≥ 0

µ(λc, λb, λa) otherwise

Proposition 4.4. If µ = µ(a, b, c) is a linear fuzzy real number and λ > 0, then

T (µ)(λs) = λT (λµ)(s)

Proof. If µ = µ(a, b, c) and λ > 0, then λµ = µ(λa, λb, λc) and hence

T (λµ)(s) =

∫ λc

λa

s2estµ(λa, λb, λc)(t)dt

=

∫ λb

λa

s2est
t− λa
λb− λa

dt+

∫ λc

λb

s2est
λc− t
λc− λb

dt

=
1

λ(c− b)
(esλc − esλb)− 1

λ(b− a)
(esλb − esλa)

By multiplying λ to both sides and by applying Proposition 4.3, we proves the proposition. �

Proposition 4.5. If µ = µ(a, b, c) is a linear fuzzy real number and λ < 0, then

T (µ)(λs) = (−λ)T (λµ)(s)

Proof. If µ = µ(a, b, c) is a linear fuzzy real number and λ < 0, then λµ = µ(−|λ|c,−|λ|b,−|λ|a).

By applying Proposition 4.1, we obtain

T (λµ)(s) =
1

(−|λ|a)− (−|λ|b)
(es(−|λ|a) − es(−|λ|b))− 1

(−|λ|b)− (−|λ|c)
(es(−|λ|b) − es(−|λ|c)).

Using Proposition 4.3 we obtain

λT (λµ)(s) = (−|λ|)T (λµ)(s)

=
1

a− b
(eλsa − eλsb)− 1

b− c
(eλsb − eλsc)

= −T (µ)(λs)

�

Combining Propositions 4.4 and 4.5 we obtain:

Theorem 4.6. If µ = µ(a, b, c) is a linear fuzzy real number and λ ∈ R, then

(8) T (µ)(λs) = |λ|T (λµ)(s)
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Proof. For non-zero real number λ, it was proved by Propositions 4.4 and 4.5. If λ = 0, then

T (µ)(0s) = 0, and so (8) holds trivially. �

Given a fuzzy real number µ = µ(a, b, c) and λ = −1, we have T (µ)(−s) = T (µ)((−1)s) =

| − 1|T ((−1)µ)(s) = T (µ(−c,−b,−a))(s), i.e.,

(9) T (µ(a, b, c))(−s) = T (µ(−c,−b,−a))(s)

If we let s := −s in (9), then we have

(10) T (µ(a, b, c))(s) = T (µ(−c,−b,−a))(−s)

For λ = 2, we obtain from (8) a “doubling formula”.

(11) T (µ)(2s) = 2T (2µ)(s)
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Abstract

Fuzzy number (FN) plays a vital role in decision making problems
as it is used to represent the uncertain terms. Researchers in the field of
decision-making analysis have used triangular and trapezoidal FN to solve
the problem in the uncertain environment. FN have also been extended
recently such as pentagonal, hexagonal, and heptagonal and so on. This
paper aims to generalize the Hexadecagonal fuzzy number (GHFN) which
contains set of 16-tuples. Membership functions and alpha cuts of lin-
ear and nonlinear GHFN with symmetry and asymmetry have also been
derived.

1 Introduction

Fuzzy sets have been presented by (Zadeh, 1965) to handle imprecision informa
tion, all things considered, issues [1]. In 2003 (Coxe & Reiter, 2003), utilized

1
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fuzzy automata on a hexagonal foundation utilizing straightforward number jug-
gling mixes of neighboring fuzzy qualities [2]. In 2013, (Rajarajeswari & Sudha,
2013) involved stretch math in another activity for expansion, deduction and
duplication of Hexagonal Fuzzy number based on alpha cut sets of fuzzy num-
bers [3]. (Rajarajeswari & Sudha, 2014) summed up hexagonal fuzzy numbers
by rank, mode, uniqueness and spreads to improve the independent direction,
estimate and chance investigation [4]. In the extended time of 2015, (Dhurai &
Karpagam, 2016) utilized span math to present another enrollment capability
and fulfilled the activity of expansion, deduction and duplication of hexagonal
fuzzy number based on alpha cut sets of fuzzy numbers [5].Hexagonal, heptago-
nal, nonagon, decagonal fuzzy numbers have additionally been acquainted with
tackle the dubiousness [6, 7, 13].Sankar and Manimohan embraced pentagonal
fuzzy number, determined direct and non-straight pentagonal fuzzy number and
add- ressed fuzzy conditions utilizing pentagonal fuzzy number [14].Karthik et.
al., proposed straight and nonlinear enrollment capabilities for the summed up
heptagonal fuzzy number and presented Haar positioning technique for hexag-
onal fuzzy number [9]. Malini and Kennedy tackled fuzzy transportation issue
by utilizing octagonal fuzzy numbers [10]. Felix et.al., proposed the nonagonal
fuzzy number and its math activities and determined alpha cuts for nonago-
nal fuzzy number [7]. Venkatesh and Britto presented a positioning technique
utilizing decagonal fuzzy number for diet control [15]. Nagadevi and Rosario
tackled transportation issue, in which decagonal fuzzy numbers are utilized to
address transportation expenses to find least transportation cost [11]. Naveena
and Rajkumar presented turn around request pentadecagonal, nonagonal and
decagonal fuzzy numbers and their math activities [12]. Necessary preliminaries
are cited therein [8–10].

2 Hexadecagonal Fuzzy Number(HFN) and It’s
Variation

Hexadecagonal Fuzzy Number: A HFN Ã =
(Ω1,Ω2,Ω3, Ω4, Ω5, Ω6, Ω7, Ω8, Ω9, Ω10, Ω11, Ω12, Ω13, Ω14, Ω15, Ω16)

where
Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7,Ω8,Ω9,Ω10,Ω11,Ω12,Ω13,Ω14,Ω15,Ω16 ∈ R must

hold the consequent conditions
•µÃ(θ) is a continuous function(breifly, cts.fn) in [0, 1].
•µÃ(θ) is strictly increasing and cts.fn on [Ω1,Ω2], [Ω2,Ω3], [Ω3, Ω4] and

[Ω4, Ω5], [Ω5, Ω6], [Ω6, Ω7] and [Ω7, Ω8].
•µÃ(θ) is strictly decreasing and cts.fn on [Ω9, Ω10], [Ω10, Ω11], [Ω11, Ω12],

[Ω12, Ω13], [Ω13, Ω14], [Ω14, Ω15] and [Ω15, Ω16].
3.1.1 Equality of two HFN’S: Two HFN’S Ã = (Ω1,Ω2,Ω3, Ω4, Ω5, Ω6, Ω7,

Ω8, Ω9, Ω10, Ω11, Ω12, Ω13, Ω14, Ω15, Ω16) and B̃ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7,
φ8, φ9, φ10, φ11, φ12, φ13, φ14, φ15, φ16) are equal iff Ω1 = φ1,Ω2 = φ2,Ω3 =
φ3, Ω4 = φ4, Ω5 = φ5, Ω6 = φ6, Ω8 = φ8, Ω9 = φ9, Ω10 = φ10, Ω11 =

2
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φ11, Ω12 = φ12, Ω13 = φ13, Ω14 = φ14, Ω15 = φ15, Ω16 = φ16

Linear Hexadecagonal Symmetry:

µx =



p
(

x−Ω1

Ω2−Ω1

)
,Ω1 ≤ x ≤ Ω2

p+ (q − p)
(

x−Ω2

Ω3−Ω2

)
,Ω2 ≤ x ≤ Ω3

q + (r − q)
(

x−Ω3

Ω4−Ω3

)
,Ω3 ≤ x ≤ Ω4

r + (s− r)
(

x−Ω4

Ω5−Ω4

)
,Ω4 ≤ x ≤ Ω5

s+ (t− s)
(

x−Ω5

Ω6−Ω5

)
,Ω5 ≤ x ≤ Ω6

t+ (u− t)
(

x−Ω6

Ω7−Ω6

)
,Ω6 ≤ x ≤ Ω7

u+ (1− u)
(

x−Ω7

Ω8−Ω7

)
,Ω7 ≤ x ≤ Ω8

1,Ω8 ≤ x ≤ Ω9

u− (u− 1)
(

Ω10−x
Ω10−Ω9

)
,Ω9 ≤ x ≤ Ω10

t− (t− u)
(

Ω11−x
Ω11−Ω10

)
,Ω10 ≤ x ≤ Ω11

s− (s− t)
(

Ω12−x
Ω12−Ω11

)
,Ω11 ≤ x ≤ Ω12

r − (r − s)
(

Ω13−x
Ω13−Ω12

)
,Ω12 ≤ x ≤ Ω13

q − (q − r)
(

Ω14−x
Ω14−Ω13

)
,Ω13 ≤ x ≤ Ω14

p− (p− q)
(

Ω15−x
Ω15−Ω14

)
,Ω14 ≤ x ≤ Ω15

p
(

Ω16−x
Ω16−Ω15

)
,Ω15 ≤ x ≤ Ω16

0, x ≤ Ω1 and x ≥ Ω16

Aα =



A1L(α) = Ω1 + (αp )(Ω2 − Ω1)forα ∈ [0, p]

A2L(α) = Ω2 + (α−p
q−p )(Ω3 − Ω2)forα ∈ [p, q]

A3L(α) = Ω3 + (α−q
r−q )(Ω4 − Ω3)forα ∈ [q, r]

A4L(α) = Ω4 + (α−r
s−r )(Ω5 − Ω4)forα ∈ [r, s]

A5L(α) = Ω5 + (α−s
t−s )(Ω6 − Ω5)forα ∈ [s, t]

A6L(α) = Ω6 + (α−t
u−t )(Ω7 − Ω6)forα ∈ [t, u]

A7L(α) = Ω7 + (α−u
1−u )(Ω8 − Ω7)forα ∈ [u, 1]

A7R(α) = Ω10 + (α−u
u−1 )(Ω10 − Ω9)forα ∈ [u, 1]

A6R(α) = Ω11 + (α−t
t−u )(Ω11 − Ω10)forα ∈ [t, u]

A5R(α) = Ω12 + (α−s
s−t )(Ω12 − Ω11)forα ∈ [s, t]

A4R(α) = Ω13 + (α−r
r−s )(Ω13 − Ω12)forα ∈ [r, s]

A3R(α) = Ω14 + (α−q
q−r )(Ω14 − Ω13)forα ∈ [q, r]

A2R(α) = Ω15 + (α−p
p−q )(Ω15 − Ω14)forα ∈ [p, q]

A1R(α) = Ω16 − (αp )(Ω16 − Ω15)forα ∈ [0, p]

Linear Haxadecagonal Asymmetry
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µx =



p
(

x−Ω1

Ω2−Ω1

)
,Ω1 ≤ x ≤ Ω2

p+ (q − p)
(

x−Ω2

Ω3−Ω2

)
,Ω2 ≤ x ≤ Ω3

q + (r − q)
(

x−Ω3

Ω4−Ω3

)
,Ω3 ≤ x ≤ Ω4

r + (s− r)
(

x−Ω4

Ω5−Ω4

)
,Ω4 ≤ x ≤ Ω5

s+ (t− s)
(

x−Ω5

Ω6−Ω5

)
,Ω5 ≤ x ≤ Ω6

t+ (u− t)
(

x−Ω6

Ω7−Ω6

)
,Ω6 ≤ x ≤ Ω7

u+ (1− u)
(

x−Ω7

Ω8−Ω7

)
,Ω7 ≤ x ≤ Ω8

1,Ω8 ≤ x ≤ Ω9

e− (e− 1)
(

Ω10−x
Ω10−Ω9

)
,Ω9 ≤ x ≤ Ω10

f − (f − e)
(

Ω11−x
Ω11−Ω10

)
,Ω10 ≤ x ≤ Ω11

g − (g − f)
(

Ω12−x
Ω12−Ω11

)
,Ω11 ≤ x ≤ Ω12

h− (h− g)
(

Ω13−x
Ω13−Ω12

)
,Ω12 ≤ x ≤ Ω13

i− (i− h)
(

Ω14−x
Ω14−Ω13

)
,Ω13 ≤ x ≤ Ω14

j − (j − i)
(

Ω15−x
Ω15−Ω14

)
,Ω14 ≤ x ≤ Ω15

j
(

Ω16−x
Ω16−Ω15

)
,Ω15 ≤ x ≤ Ω16

0, x ≤ Ω1andx ≥ Ω16

Aα =



A1L(α) = Ω1 + (αp )(Ω2 − Ω1)forα ∈ [0, p]

A2L(α) = Ω2 + (α−p
q−p )(Ω3 − Ω2)forα ∈ [p, q]

A3L(α) = Ω3 + (α−q
r−q )(Ω4 − Ω3)forα ∈ [q, r]

A4L(α) = Ω4 + (α−r
s−r )(Ω5 − Ω4)forα ∈ [r, s]

A5L(α) = Ω5 + (α−s
t−s )(Ω6 − Ω5)forα ∈ [s, t]

A6L(α) = Ω6 + (α−t
u−t )(Ω7 − Ω6)forα ∈ [t, u]

A7L(α) = Ω7 + (α−u
1−u )(Ω8 − Ω7)forα ∈ [u, 1]

A7R(α) = Ω10 + (α−e
e−1 )(Ω10 − Ω9)forα ∈ [e, 1]

A6R(α) = Ω11 + (α−f
f−e )(Ω11 − Ω10)forα ∈ [f, e]

A5R(α) = Ω12 + (α−g
g−f )(Ω12 − Ω11)forα ∈ [g, f ]

A4R(α) = Ω13 + (α−h
h−g )(Ω13 − Ω12)forα ∈ [h, g]

A3R(α) = Ω14 + (α−i
i−h )(Ω14 − Ω13)forα ∈ [i, h]

A2R(α) = Ω15 + (α−j
j−i )(Ω15 − Ω14)forα ∈ [j, i]

A1R(α) = Ω16 − (αj )(Ω16 − Ω15)forα ∈ [0, j]

Nonlinear Haxadecagonal Symmetry:
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µx =



p
(

x−Ω1

Ω2−Ω1

)S1

,Ω1 ≤ x ≤ Ω2

p+ (q − p)
(

x−Ω2

Ω3−Ω2

)S2

,Ω2 ≤ x ≤ Ω3

q + (r − q)
(

x−Ω3

Ω4−Ω3

)S3

,Ω3 ≤ x ≤ Ω4

r + (s− r)
(

x−Ω4

Ω5−Ω4

)S4

,Ω4 ≤ x ≤ Ω5

s+ (t− s)
(

x−Ω5

Ω6−Ω5

)S5

,Ω5 ≤ x ≤ Ω6

t+ (u− t)
(

x−Ω6

Ω7−Ω6

)S6

,Ω6 ≤ x ≤ Ω7

u+ (1− u)
(

x−Ω7

Ω8−Ω7

)S7

,Ω7 ≤ x ≤ Ω8

1,Ω8 ≤ x ≤ Ω9

u− (u− 1)
(

Ω10−x
Ω10−Ω9

)P1

,Ω9 ≤ x ≤ Ω10

t− (t− u)
(

Ω11−x
Ω11−Ω10

)P2

,Ω10 ≤ x ≤ Ω11

s− (s− t)
(

Ω12−x
Ω12−Ω11

)P3

,Ω11 ≤ x ≤ Ω12

r − (r − s)
(

Ω13−x
Ω13−Ω12

)P4

,Ω12 ≤ x ≤ Ω13

q − (q − r)
(

Ω14−x
Ω14−Ω13

)P5

,Ω13 ≤ x ≤ Ω14

p− (p− q)
(

Ω15−x
Ω15−Ω14

)P6

,Ω14 ≤ x ≤ Ω15

p
(

Ω16−x
Ω16−Ω15

)P7

,Ω15 ≤ x ≤ Ω16

0, x ≤ Ω1andx ≥ Ω16

Aα =



A1L(α) = Ω1 + (αp )(Ω2 − Ω1)forα ∈ [0, p]

A2L(α) = Ω2 + (α−p
q−p )(Ω3 − Ω2)forα ∈ [p, q]

A3L(α) = Ω3 + (α−q
r−q )(Ω4 − Ω3)forα ∈ [q, r]

A4L(α) = Ω4 + (α−r
s−r )(Ω5 − Ω4)forα ∈ [r, s]

A5L(α) = Ω5 + (α−s
t−s )(Ω6 − Ω5)forα ∈ [s, t]

A6L(α) = Ω6 + (α−t
u−t )(Ω7 − Ω6)forα ∈ [t, u]

A7L(α) = Ω7 + (α−u
1−u )(Ω8 − Ω7)forα ∈ [u, 1]

A7R(α) = Ω10 + (α−u
u−1 )(Ω10 − Ω9)forα ∈ [u, 1]

A6R(α) = Ω11 + (α−t
t−u )(Ω11 − Ω10)forα ∈ [t, u]

A5R(α) = Ω12 + (α−s
s−t )(Ω12 − Ω11)forα ∈ [s, t]

A4R(α) = Ω13 + (α−r
r−s )(Ω13 − Ω12)forα ∈ [r, s]

A3R(α) = Ω14 + (α−q
q−r )(Ω14 − Ω13)forα ∈ [q, r]

A2R(α) = Ω15 + (α−p
p−q )(Ω15 − Ω14)forα ∈ [p, q]

A1R(α) = Ω16 − (αp )(Ω16 − Ω15)forα ∈ [0, p]

Nonlinear Haxadecagonal Asymmetry:
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µx =



p
(

x−Ω1

Ω2−Ω1

)S1

,Ω1 ≤ x ≤ Ω2

p+ (q − p)
(

x−Ω2

Ω3−Ω2

)S2

,Ω2 ≤ x ≤ Ω3

q + (r − q)
(

x−Ω3

Ω4−Ω3

)S3

,Ω3 ≤ x ≤ Ω4

r + (s− r)
(

x−Ω4

Ω5−Ω4

)S4

,Ω4 ≤ x ≤ Ω5

s+ (t− s)
(

x−Ω5

Ω6−Ω5

)S5

,Ω5 ≤ x ≤ Ω6

t+ (u− t)
(

x−Ω6

Ω7−Ω6

)S6

,Ω6 ≤ x ≤ Ω7

u+ (1− u)
(

x−Ω7

Ω8−Ω7

)S7

,Ω7 ≤ x ≤ Ω8

1,Ω8 ≤ x ≤ Ω9

e− (e− 1)
(

Ω10−x
Ω10−Ω9

)P1

,Ω9 ≤ x ≤ Ω10

f − (f − e)
(

Ω11−x
Ω11−Ω10

)P2

,Ω10 ≤ x ≤ Ω11

g − (g − f)
(

Ω12−x
Ω12−Ω11

)P3

,Ω11 ≤ x ≤ Ω12

h− (h− g)
(

Ω13−x
Ω13−Ω12

)P4

,Ω12 ≤ x ≤ Ω13

i− (i− h)
(

Ω14−x
Ω14−Ω13

)P5

,Ω13 ≤ x ≤ Ω14

j − (j − i)
(

Ω15−x
Ω15−Ω14

)P6

,Ω14 ≤ x ≤ Ω15

j
(

Ω16−x
Ω16−Ω15

)P7

,Ω15 ≤ x ≤ Ω16

0, x ≤ Ω1andx ≥ Ω16

Aα =



A1L(α) = Ω1 + (αp )(Ω2 − Ω1)forα ∈ [0, p]

A2L(α) = Ω2 + (α−p
q−p )(Ω3 − Ω2)forα ∈ [p, q]

A3L(α) = Ω3 + (α−q
r−q )(Ω4 − Ω3)forα ∈ [q, r]

A4L(α) = Ω4 + (α−r
s−r )(Ω5 − Ω4)forα ∈ [r, s]

A5L(α) = Ω5 + (α−s
t−s )(Ω6 − Ω5)forα ∈ [s, t]

A6L(α) = Ω6 + (α−t
u−t )(Ω7 − Ω6)forα ∈ [t, u]

A7L(α) = Ω7 + (α−u
1−u )(Ω8 − Ω7)forα ∈ [u, 1]

A7R(α) = Ω10 + (α−e
e−1 )(Ω10 − Ω9)forα ∈ [e, 1]

A6R(α) = Ω11 + (α−f
f−e )(Ω11 − Ω10)forα ∈ [f, e]

A5R(α) = Ω12 + (α−g
g−f )(Ω12 − Ω11)forα ∈ [g, f ]

A4R(α) = Ω13 + (α−h
h−g )(Ω13 − Ω12)forα ∈ [h, g]

A3R(α) = Ω14 + (α−i
i−h )(Ω14 − Ω13)forα ∈ [i, h]

A2R(α) = Ω15 + (α−j
j−i )(Ω15 − Ω14)forα ∈ [j, i]

A1R(α) = Ω16 − (αj )(Ω16 − Ω15)forα ∈ [0, j]

1. Arithmetic operations on linear HFN with symmetry Let ÃLS =
(Ω1,Ω2,Ω3,Ω4, a5, a6, a7, a8, a9,Ω10,Ω11,Ω12,Ω13,Ω14,Ω15,Ω16;m1, n1) and

6
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B̃LS = (φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11, φ12, φ13, φ14, φ15, φ16;m2, n2)
be two linear heptagonal FN’s with symmetry, then

(i) The summation of two HFN’s is defined as C̃LS = ÃLS + B̃LS = (Ω1 +
φ1,Ω2+φ2,Ω3+φ3,Ω4+φ4,Ω5+φ5,Ω6+φ6,Ω7+φ7,Ω8+φ8,Ω9+φ9,Ω10+
φ10,Ω11+φ11,Ω12+φ12,Ω13+φ13,Ω14+φ14,Ω15+φ15,Ω16+φ16;m,n) Where
m = min{m1,m2} and n = min{n1, n2}.

Theorem 2.1.. Let H̃1 = (a1lu, a
2
lu, a

3
lu, a

4
lu, a

5
lu, a

6
lu, a

7
lu, a

8
lua

9
lu, a

10
lu , a

11
lu , a

12
lu , a

13
lu , a

14
lu , a

15
lu , a

16
lu )

and H̃2 = (a1αβ , a
2
αβ , a

3
αβ , a

4
αβ , a

5
αβ , a

6
αβ , a

7
αβ , a

8
αβ , a

9
αβ , a

10
αβ , a

11
αβ , a

12
αβ , a

13
αβ , a

14
αβ , a

15
αβ , a

16
αβ)

be two HFN’s; then the arithmetic operation of H̃1andH̃2, denoted as H̃1 ⊕
H̃2, H̃1ΘH̃2 and H̃1 ⊗ H̃2 an yield another HFN,

1.H̃1⊕H̃2 =

 a1
lu + a1

αβ, a2
lu + a2

αβ, a3
lu + a3

αβ, a4
lu + a4

αβ, a5
lu + a5

αβ, a6
lu + a6

αβ, a7
lu + a7

αβ, a8
lu + a8

αβ
a9
lu + a9

αβ, a10
lu + a10

αβ, a11
lu + a11

αβ, a12
lu + a12

αβ, a13
lu + a13

αβ, a14
lu + a14

αβ, a15
lu + a15

αβ, a16
lu + a16

αβ

 .

2.H̃1ΘH̃2 =

 a1
lu − a16

αβ, a2
lu − a15

αβ, a3
lu − a14

αβ, a4
lu − a13

αβ, a5
lu − a12

αβ, a6
lu − a11

αβ, a7
lu − a10

αβ, a8
lu − a9

αβ
a9
lu − a8

αβ, a10
lu − a7

αβ, a11
lu − a6

αβ, a12
lu − a5

αβ, a13
lu − a4

αβ, a14
lu − a3

αβ, a15
lu − a2

αβ, a16
lu − a1

αβ

 .

3.H̃1 ⊗ H̃2 =

 a1
lua1

αβ, a2
lua2

αβ, a3
lua3

αβ, a4
lua4

αβ, a5
lua5

αβ, a6
lua6

αβ, a7
lua7

αβ, a8
lua8

αβ
a9
lua9

αβ, a10
lua10

αβ, a11
lua11

αβ, a12
lua12

αβ, a13
lua13

αβ, a14
lua14

αβ, a15
lua15

αβ, a16
lua16

αβ

 .

λ ⊗ H̃1 = (λa
1
lu, λa

2
lu, λa

3
lu, λa

4
lu, λa

5
lu, λa

6
lu, λa

7
lu, λa

8
lu,

λa
9
lu, λa

10
lu, λa

11
lu, λa

12
lu, λa

13
lu, λa

14
lu, λa

15
lu, λa

16
lu) .

Haar Ranking method for Haxadecagonal Fuzzy Number:
Let Ã = (Ω1,Ω2,Ω3,Ω4, a5, a6, a7, a8, a9,Ω10,Ω11,Ω12,Ω13,Ω14,Ω15,Ω16) be

the HFN. Using HRM(Haar ranking method), the HFN is rewritten as ˜̃A =
(Ω1,Ω2,Ω3,Ω4, a5, a6, a7, a8, a9,Ω10,Ω11,Ω12,Ω13,Ω14,Ω15,Ω16) . The average
and elaborate coefficients namely the scaling and wavelet coefficients of HFN
can be calculated as follows.

Step-l: Group the HFN in pairs.

[Ω1,Ω2], [Ω3,Ω4], [a5, a6], [a7, a8], [a9,Ω10], [Ω11,Ω12], [Ω13,Ω14], [Ω15,Ω16]

Step-2: Replace the first 4 elements of approximation coefficient with the de-
tailed coefficient.

α1 = (
Ω1 +Ω2

2
), α2 = (

Ω3 +Ω4

2
), α3 = (

a5 + a6
2

), α4 = (
a7 + a8

2
) ,

α5 = (
a9 +Ω10

2
), α6 = (

Ω11 +Ω12

2
), α7 = (

Ω13 +Ω14

2
), α8 = (

Ω15 +Ω16

2
)

β1 = (
Ω1 − Ω2

2
), β2 = (

Ω3 − Ω4

2
), β3 = (

a5 − a6
2

), β4 = (
a7 − a8

2
)

β5 = (
a9 − Ω10

2
), β6 = (

Ω11 − Ω12

2
), β7 = (

Ω13 − Ω14

2
), β8 = (

Ω15 − Ω16

2
)

The˜̃A1 changed into˜̃A1 = (α1, α2, α3, α4, α5, α6, α7, α8, β1, β2, β3, β4, β5, β6, β7, β8)
Step-3: Group the pair of approximation coefficients of̃̃A1. Then, find the

new approximation coefficients and the detailed coefficients for the pair of ap-
proximation coefficient of˜̃A1

[α1, α2], [α3, α4], [α5, α6], [α7, α8]

γ1 = (
α1 + α2

2
), γ2 = (

α3 + α4

2
), γ3 = (

α5 + α6

2
), γ4 = (

α7 + α8

2
)

7
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η1 = (
α1 − α2

2
), η2 = (

α3 − α4

2
), η3 = (

α5 − α6

2
), η4 = (

α7 − α8

2
)

The˜̃A1 changed into˜̃A2 = (γ1, γ2, γ3, γ4, η1, η2, η3, η4, β1, β2, β3, β4, β5, β6, β7, β8)
Step-4: Determine the pair of approximation coefficient in ˜̃A2. Then, find

the new approximation and detailed coefficients for the pair of approximation
coefficient of̃̃A2.

[γ1, γ2, γ3, γ4]

δ1 = (
γ1 + γ2

2
), δ2 = (

γ3 + γ4
2

), E1 = (
γ1 − γ2

2
), E2 = (

γ3 − γ4
2

)

The˜̃A2 changed into˜̃A3 = (δ1, δ2, ϵ1, ϵ2, η1, η2, η3, η4, β1, β2, β3, β4, β5, β6, β7, β8)
Step-4: Determine the pair of approximation coefficient in ˜̃A3. Then, find

the new approximation and detailed coefficients for the pair of approximation
coefficient of̃̃A3.

[δ1, δ2]

µ8 = (
δ1 + δ2

2
), µ2 = (

δ1 − δ2
2

)

The˜̃A3 changed intoH (̃̃A) = (µ1, µ2, ϵ1, ϵ2, η1, η2, η3, η4, β1, β2, β3, β4, β5, β6, β7, β8)
Step-5: Determine the Rankingµ.
•Ã ≺ B̃, if the first element of the ordered tuple of H(Ã) is less than the

first element of the ordered tuple ofH(B̃) .
•Ã ≻ B̃, if the first element of the ordered tuple of H(Ã) is greater than the

first element of the ordered tuple ofH(B̃) .
•Ã ≈ B̃ if and only if all the elements of H(Ã) and H(B̃) are term wise

equal.

3 Fuzzy Assignment Problem(FAP)

FAP in general defines as follows

min (or)max X =
∑

j

∑m
i=1 P̃ijyij

Subject to

m∑
i=1

yij = 1for i = 1, 2, . . . ,m.

m∑
j=1

yij = 1forj = 1, 2, . . . ,m.

yij = 1, if the ith job is assigned to jth person
0, if the ith job is not assigned to jth person

8
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Example 4.1: A FAP with 4 machinesM1,M2,M3,M4 and 4 jobs J, J2, J3, J4
is premeditated. The cost matrix Cij∗ is whose values are depicted by HFN.
The problem is to find the minimum assignment cost. Here, the Hungarian
method.

After taking the averages of fuzzy cost matrix, the following is obtained

A =


5 8.2 9.4 7.2
8.3 7.1 15.1 8.3
10.5 9.4 10.5 10.6
13.8 8.3 12.5 7.5


Row wise subtraction,

A =


0 3.2 4.4 2.2
1.2 0 8 1.2
1.1 0 1.1 1.2
6.3 0.8 5 0


Column wise subtraction,

A =


0 3.2 3.3 2.2
1.2 0 6.9 1.2
1.1 0 0 1.2
6.3 0.8 3.9 0


Number of rows=Number of squares.

Therefore, the optimal cost is = 5 + 7.1 + 10.5 + 7.5 = 30.1.

4 Conclusion

In this present study, the GHFN’s have been derived under fuzzy environment
which may help to handle uncertainties in the decision-making problems.

These kinds of FN’s are helpful when decision maker needs to represent a
parameter at 16 different points. The following important outcomes have been
attained in this research,

• The membership curve of a generalized linear and nonlinear Haxadecagonal
fuzzy number with symmetry and asymmetry has been derived.

• Alpha cuts for all kinds of Haxadecagonal fuzzy number have also been
derived.

Generalized Haxadecagonal fuzzy numbers can be used to extend Multi Cri-
teria Decision Making (MCDM) models such as DEMATEL, TOPSIS, VIKOR,
and others. These numbers are helpful in transportation problems such fuzzy
assignment and transportation.
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Abstract

In this paper, we introduce a general composite iterative algorithm for finding a common element of the
set of solutions of variational inequality problem for a hemicontinuous monotone mapping and the set of
fixed points of a hemicontinuous pseudocontractive mapping in a Hilbert space. Under suitable control
conditions, we establish strong convergence of the sequence generated by the proposed iterative algorithm
to a common element of two sets, which is the unique solution of a certain variational inequality related
to a boundedly Lipschitzian and strongly monotone mapping. As a consequence, we obtain the unique
minimum-norm common point of two sets.
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Key words: Iterative algorithm, Hemicontinuous monotone mapping, Hemicontiunous
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1. Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and induced norm ∥ · ∥.
Let C be a nonempty closed convex subset of H and S : C → C be self-mapping
on C. We denote by Fix(S) the set of fixed points of S.

Let A be a nonlinear mapping of C into H. The variational inequality problem
(shortly, VIP) is to find a u ∈ C such that

⟨v − u,Au⟩ ≥ 0, ∀v ∈ C. (1.1)

We denote the set of solutions of the VIP (1.1) by V I(C,A). The variational
inequality problem has been extensively studied in the literature; see [4,14,15,24]
and the references therein.
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A fixed point problem (shortly, FPP) is to find a fixed point z of a nonlinear
mapping T : C → C with property:

z ∈ C, Tz = z. (1.2)

Fixed point theory is one of the most powerful and important tools of modern
mathematics and may be considered a core subject of nonlinear analysis.

The class of pseudocontractive mappings is one of the most important classes of
mappings among nonlinear mappings. We recall that a mapping T : C → H is
said to be pseudocontractive if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥(I − T )x− (I − T )y∥2, ∀x, y ∈ C,

and T is said to be k-strictly pseudocontractive ([3]) if there exists a constant
k ∈ [0, 1)such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2, ∀x, y ∈ C,

where I is the identity mapping. Note that the class of k-strictly pseudocontrac-
tive mappings includes the class of nonexpansive mappings as a subclass. That
is, T is nonexpansive (i.e., ∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C) if and only if T is
0-strictly pseudocontractive. Clearly, the class of pseudocontractive mappings in-
cludes the class of strictly pseudocontractive mappings as a subclass, and the class
of k-strictly pseudocontractive mappings falls into the one between the class of
nonexpansive mappings and the class of pseudocontractive mappings. Moreover,
this inclusion is strict due to Example 5.7.1 and Example 5.7.2 in [1].

Recently, in order to study the VIP (1.1) coupled with the FPP (1.2), many au-
thors have introduced some iterative algorithms for finding a common element of
the set of the solutions of the VIP (1.1) for an inverse-strongly monotone map-
ping A and the set of fixed points of a nonexpansive mapping T ; see [6,8,9,12,19]
and the references therein. Also, some iterative algorithms for finding a common
element of the set of the solutions of the VIP (1.1) for a continuous monotone
mapping A more general than an inverse-strongly monotone mapping and the set
of fixed points of a continuous pseudocontractive mapping T more general than a
nonexpansive mapping were considered by many authors: see [20,22,26] and the
references therein.

In 2001, Yamada [24] introduced the hybrid steepest descent method for the
nonexpansive mapping to solve a variational inequality related to a Lipschitzian
and strongly monotone mapping. Since then, in 2009, He and Xu [11] invented
a hybrid iterative algorithm for the nonexpansive mapping to obtain the unique
solution to the VIP (1.1) related to a boundedly Lipschitzian and strongly mono-
tone mapping. As the result, He and Xu [11] were able to relax the global Lips-
chitz condition on the mapping to the weaker bounded Lipschitz condition, and

2
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improved the Yamada’s result [24]. In 2010, He and Liang [10] considered the
hybrid steepest descent algorithm for the strict pseudocontractive mapping more
general than the nonexpansive mapping to solve a variational inequality related
to a boundedly Lipschitzian and strongly monotone mapping, and extended the
corresponding results in He and Xu [11].

On the other hand, by using ideas of Yamada [24], Tien [21] and Ceng et al. [5]
provided general iterative algorithms for finding a fixed point of the nonexpansive
mapping, which solves a certain variational inequality related to a Lipschitzian
and strongly monotone mapping. Jung [13] gave a general iterative algorithm for
finding a fixed point of the k-strictly pseudocontractive mapping.

In this paper, inspired and motivated by the above mentioned results, we in-
troduce a general composite iterative algorithm for finding a common point of
the set of solutions of the VIP (1.1) for a hemicontinuous monotone mapping
A and the set of fixed points of a hemicontinuous pseudocontractive mapping
T . We establish strong convergence of the sequence generated by the proposed
iterative algorithm to a common point of the above two sets, which solves a
certain variational inequality related to a boundedly Lipschitzian and strongly
monotone mapping. As a direct consequence, we find the unique solution of the
minimum-norm problem: find x∗ ∈ Fix(T ) ∩ V I(C,A) such that

∥x∗∥ = min{∥x∥ : x ∈ Fix(T ) ∩ V I(C,A)}.

Our results extend and unify the corresponding results of Ceng et al. [5], Chen et
al. [6], Iiduka and Takahashi [8], Jung [12], Su et al. [16], Tian [21], Wangkeeree
and Nammanee [22], Zegeye [25], Zegeye and Shahzad [26], and some recent results
in the literature.

2. Preliminaries and Lemmas

LetH be a real Hilbert space, and let C be a nonempty closed convex subset ofH.
We denote by S(x : R) the closed ball with center x ∈ H and radius R > 0. We
write xn ⇀ x to indicate that the sequence {xn} converges weakly to x. xn → x
implies that {xn} converges strongly to x.

For every point x ∈ H, there exists a unique nearest point in C, denoted by
PC(x), such that

∥x− PC(x)∥ ≤ ∥x− y∥, ∀y ∈ C.

PC is called the metric projection of H onto C. PC(x) is characterized by the
property:

u = PC(x) ⇐⇒ ⟨x− u, u− y⟩ ≥ 0, ∀x ∈ H, y ∈ C. (2.1)

We recall that a mapping A of H into H is called

3

138

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Jong Soo Jung 136-157



(i) monotone if ⟨x− y, Ax− Ay⟩ ≥ 0, ∀x, y ∈ H;
(ii) α-inverse-strongly monotone ([9,14]) if there exists a positive real number α

such that

⟨x− y,Ax− Ay⟩ ≥ α∥Ax− Ay∥2, ∀x, y ∈ H;

(iii) strongly monotone if there exists a positive real number η such that

⟨x− y, Ax− Ay⟩ ≥ η∥x− y∥2, ∀x, y ∈ H;

(iv) Lipschitzian continuous if there exists L > 0 such that

∥Ax− Ay∥ ≤ L∥x− y∥, ∀x, y ∈ H;

(v) hemicontinuous ([1,17]) if, for all x, y ∈ H, the mapping g : [0, 1] → H
defined by g(t) = A(tx+(1−t)y) is continuous, whereH has a weak topology;

(vi) boundedly Lipschitzian on C, if for each nonempty bounded subset S on C,
there exists a positive constant kS > 0 depending only on the set S such
that ∥Ax− Ay∥ ≤ kS∥x− y∥, ∀x, y ∈ S.

We note that (i) if A is a monotone mapping, then T = I−A is a pseudocontrac-
tive mapping, and (ii) the class of the Lipschitzian mappings is a proper subclass
of the class of the boundedly Lipschitzian mappings. It is easy to see that if
T : C → H is continuous on C, then T is hemicontinuous on C and bounded on
any line segment of C, but the converse is not true (see Example 1.10.14 in [1]).

The following lemmas can be easily proven, and therefore, we omit the proofs
(see [10,24]).

Lemma 2.1. Let H be a real Hilbert space. Let V : H → H be an l-Lipschitzian
mapping with constant l ≥ 0, and let F : H → H be a boundedly Lipschitzian
and η-strongly monotone mapping with constant η > 0. Take x0 ∈ H arbitrarily
and set Ĉ = S(x0, R) for some R > 0. Denote by κ̂ the Lipschitz constant of F
on Ĉ. Then for 0 ≤ γl < µη,

⟨(µF − γV )x− (µF − γV )y, x− y⟩ ≥ (µη − γl)∥x− y∥2, ∀x, y ∈ Ĉ.

That is, µF − γV is strongly monotone on Ĉ with constant µη − γl.

Lemma 2.2. Let H be a real Hilbert space H. Let F : H → H be a boundedly
Lipschitzian and η-strongly monotone mapping with constant η > 0. Take x0 ∈ H
arbitrarily and set Ĉ = S(x0, R) for some R > 0. Denote by κ̂ the Lipschitz
constant of F on Ĉ Let 0 < µ < 2η

κ̂2 and 0 < t < ρ ≤ 1. Then G := ρI − tµF

restricted to Ĉ is a contractive mapping with constant ρ − tτ , where τ = 1 −√
1− µ(2η − µκ̂2).

4
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By a similar arguments in [2], we obtain the following lemma for the hemicontin-
uous monotone mapping, which extends Lemma 2.3 of Zegeye [25].

Lemma 2.3. Let C be a closed convex subset of a real Hilbert space H. Let
A : C → H be a hemicontinuous monotone mapping. Suppose that for each
x, y ∈ C, there exists τxy > 0 such that A(tx + (1 − t)y) < τxy for all t ∈ [0, 1];
that is, A is bounded on any line segment on C. Then, for r > 0 and x ∈ H,
there exists z ∈ C such that

⟨y − z, Az⟩+ 1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.

Proof. Since A : C → H is a hemicontinuous mapping, for x, y ∈ C, the mapping
g : [0, 1] → H defined by g(t) = A(tx + (1 − t)y) is continuous, where H has a
weak topology, and so A is bounded on any line segment on C. Thus, by taking
f(z, y) = ⟨y − z, A(z)⟩ as a bifunction f : C × C → R in [2], the result follows
from a similar argument in [2].

Moreover, by a similar argument in [7,18] together with Lemma 2.3, we have the
following lemma, which improves Lemma 2.4 of Zegeye [25].

Lemma 2.4. Let C be a closed convex subset of a real Hilbert space H. Let
A : C → H be a hemicontinuous monotone mapping. Suppose that for each
x, y ∈ C, there exists τxy > 0 such that A(tx + (1 − t)y) < τxy for all t ∈ [0, 1];
that is, A is bounded on any line segment on C. For λ > 0 and x ∈ H, define
Aλ : H → C by

Aλx =

{
z ∈ C : ⟨y − z, Az⟩+ 1

λ
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
.

Then the following hold:

(i) Aλ is single-valued;
(ii) Aλ is firmly nonexpansive, that is,

∥Aλx− Aλy∥2 ≤ ⟨x− y, Aλx− Aλy⟩, ∀x, y ∈ H;

(iii) Fix(Aλ) = V I(C,A);
(iv) V I(C,A) is a closed convex subset of C

Proof. Let f(z, y) = ⟨y − z, Az⟩ as a bifunction f : C × C → R in [7]. Then the
result follows from similar arguments in [2] and [7].

Applying Lemma 2.3 and lemma 2.4, we get the following lemmas for the hemi-
continuous pseudocontractive mapping, which generalize Lemma 3.1 and Lemma
3.2 of Zegeye [25], respectively.
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Lemma 2.5. Let C be a closed convex subset of a real Hilbert space H. Let
T : C → H be a hemicontinuous pseudocontractive mapping. Suppose that T
is bounded on any line segment on C. Then, for r > 0 and x ∈ H, there exists
z ∈ C such that

⟨y − z, Tz⟩ − 1

r
⟨y − z, (1 + r)z − x⟩ ≤ 0, ∀y ∈ C.

Proof. Let A := I − T , where I is the identity mapping on C. Then, T is a
hemicontinuous pseudocontractive mapping and T is bounded on any line segment
of C, A is clearly hemicontinuous monotone mapping and bounded on any line
segment of C. Thus, by Lemma 2.3, there exists z ∈ C such that ⟨y − z, Az⟩ +
(1/r)⟨y − z, z − x⟩ ≥ 0 for all y ∈ C. But this is equivalent to ⟨y − z, Tz⟩ −
(1/r)⟨y − z, (1 + r)z − x⟩ ≤ 0 for all y ∈ C. Hence the result holds.

Lemma 2.6. Let C be a closed convex subset of a real Hilbert space H. Let
T : C → C be a hemicontinuous pseudocontractive mapping. Suppose that T is
bounded on any line segment on C. For r > 0 and x ∈ H, define Tr : H → C by

Trx =

{
z ∈ C : ⟨y − z, Tz⟩ − 1

r
⟨y − z, (1 + r)z − x⟩ ≤ 0, ∀y ∈ C

}
.

Then the following hold:

(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive, that is,

∥Trx− Try∥2 ≤ ⟨x− y, Trx− Try⟩, ∀x, y ∈ H;

(iii) Fix(Tr) = Fix(T );
(iv) Fix(T ) is a closed convex subset of C

Proof. We note that ⟨y − z, Tz⟩ − (1/r)⟨y − z, (1 + r)z − x⟩ ≤ 0, for all y ∈ C,
is equivalent to ⟨y − z, Az⟩ + (1/r)⟨y − z, z − x⟩ ≥ 0, for all y ∈ C, where
A := I−T is a hemicontinuous monotone mapping and I is the identity mapping
on C. Moreover, as T is a self-mapping, we get that V I(C,A) = Fix(T ). Thus,
by Lemma 2.4, the conclusions of (i)–(iv) hold.

We also need the following lemmas for the proof of our main results.

Lemma 2.7. In a real Hilbert space H, there holds the following inequality

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ H.

6
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Lemma 2.8. ([23]) Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1− λn)sn + βn + γn, ∀n ≥ 1,

where {λn} and {βn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and
∑∞

n=1 λn = ∞ or, equivalently,
∏∞

n=1(1− λn) = 0;
(ii) lim supn→∞

βn

λn
≤ 0 or

∑∞
n=1 |βn| < ∞;

(iii) γn ≥ 0 (n ≥ 1),
∑∞

n=1 γn < ∞.

Then limn→∞ sn = 0.

3. Main results

Throughout the rest of this paper, we always assume the following:

• H is a Hilbert space with the inner product ⟨·, ·⟩ and the induced norm ∥ · ∥;
• C is a nonempty closed convex subset of H;
• A : C → H is a hemicontinuous monotone mapping with V I(C,A) ̸= ∅ and
is bounded on any line segment of C;

• T : C → C is a hemicontinuous pseudocontractive mapping with Fix(T ) ̸= ∅
and is bounded on any line segment of C;

• Aλn : H → C is a mapping defined by

Aλnx =

{
z ∈ C : ⟨y − z, Az⟩+ 1

λn

⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
,

where {λn} ⊂ (0,∞);
• Trn : H → C is a mapping defined by

Trnx =

{
z ∈ C : ⟨y − z, Tz⟩ − 1

rn
⟨y − z, (1 + r)z − x⟩ ≤ 0, ∀y ∈ C

}
,

where {rn} ⊂ (0,∞);
• F : H → H is a boundedly Lipschitzian and η-strongly monotone mapping
with constant η > 0;

• V : H → H is an l-Lipschitzian mapping with constant l > 0;
• Ω := V I(C,A) ∩ Fix(T ) ̸= ∅

By Lemma 2.4 and Lemma 2.6, we note that Aλn and Trn are firmly nonexpansive
and so nonexpansive, and V I(C,A) = Fix(Aλn) and Fix(Trn) = Fix(T ).

Now, we present a new composite iterative algorithm for hemicontinuous mono-
tone mappings and hemicontinuous pseudocontractive mappings and establish
strong convergence of this algorithm.
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Theorem 3.1. Let x0 ∈ Ω be chosen arbitrarily. Set Ĉ = S(x0,
γ∥V x0∥+µ∥Fx0∥

τ−γl
)∩C

and denote by κ̂ the Lipschitz constant of F on Ĉ, where the constants µ, γ and τ

are such that 0 < µ < 2η
κ̂2 , 0 ≤ γl < τ and, τ = 1−

√
1− µ(2η − µκ̂2), respectively.

Let {xn} be a sequence generated byyn = αnγV xn + (I − αnµF )TrnAλnxn,

xn+1 = (1− βn)yn + βnTrnAλnyn, ∀n ≥ 0,
(3.1)

where {αn}, {βn} ⊂ [0, 1) and {λn}, {rn} ⊂ (0,∞). Let {αn}, {βn}, {λn} and
{rn} satisfy the conditions:

(C1) αn → 0 (n → ∞);
(C2)

∑∞
n=0 αn = ∞;

(C3)
∑∞

n=0 |αn+1 − αn| < ∞;
(C4) βn ⊂ [0, a) for all n ≥ 0 and for some a ∈ (0, 1) and

∑∞
n=0 |βn+1 − βn| < ∞;

(C5) lim infn→∞ λn > 0 and
∑∞

n=0 |λn+1 − λn| < ∞;
(C6) lim infn→∞ rn > 0, and

∑∞
n=0 |rn+1 − rn| < ∞.

Then {xn} converges strongly to q ∈ Ω, which is a solution of the following
variational inequality

⟨(γV − µF )q, q − p⟩ ≥ 0, ∀p ∈ Ω. (3.2)

Proof. Note that from the condition (C1), without loss of generality, we assume
that 2αn(τ −γl) < 1 and αn < 1−βn−αn for n ≥ 1. For K = PΩ, it follows that
K(I + γV − µF ) is a contractive mapping of Ĉ into Ω. In fact, from Lemma 2.2,
we have, for any x, y ∈ Ĉ,

∥K(I + γV − µF )x−(I + γV − µF )y∥
≤ ∥(I + γV − µF )x− (I + γV − µF )y∥
≤ γ∥V x− V y∥+ ∥(I − µF )x− (I − µF )y∥
≤ γl∥x− y∥+ (1− τ)∥x− y∥
= (1− (τ − γl))∥x− y∥.

This is, K(I + γV − µF ) is a contractive mapping with constant (1− (τ − γl)).
Since Ĉ is complete, there exists a unique element q ∈ Ĉ such that q = PΩ(I +
γV − µF )q. Equivalently, by (2.1), q is the unique solution of the variational
inequality:

⟨(γV − µF )q, q − p⟩ ≥ 0, ∀p ∈ Ω.

In fact, noting that 0 ≤ γl < τ and µη ≥ τ ⇐⇒ κ̂ ≥ η, it follows from Lemma
2.1 that

⟨(µF − γV )x− (µF − γV )y, x− y⟩ ≥ (µη − γl)∥x− y∥2.

8
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That is, µF − γV is strongly monotone on Ĉ for 0 ≤ γl < τ ≤ µη. Hence the
variational inequality (3.2) has only one solution. Below we use q ∈ Ω to denote
the unique solution of the variational inequality (3.2):

From now, put zn = Aλnxn, un = Trnzn, wn = Aλnyn, and vn = Trnwn for every
n ≥ 0.

Now, we divide the proof into several steps.

Step 1. We show that xn ∈ Ĉ for all n ≥ 0 by induction, and hence {xn} is
bounded. It is obvious that x0 ∈ Ĉ. First of all, from Lemma 2.4 (iii) and Lemma
2.6 (iii), we observe that V I(C,A) = Fix(Aλn) and Fix(T ) = Fix(Trn). Then, it
follows that

∥zn − x0∥ = ∥Aλnxn − x0∥ ≤ ∥xn − x0∥,
and

∥wn − x0∥ = ∥Aλnyn − x0∥ ≤ ∥yn − x0∥.
Now, suppose that we have proved xn ∈ Ĉ, that is,

∥xn − x0∥ ≤ γ∥V x0∥+ µ∥Fx0∥
τ − γl

.

Using lemma 2.2, Lemma 2.4 (ii), and Lemma 2.6 (ii), we derive that

∥yn − x0∥ = ∥αn(γV xn − µFx0) + (I − αnµF )TrnAλnxn − (I − αnµF )x0∥
≤ ∥(I − αnµF )Trnzn − (I − αnµF )x0∥+ ∥αn(γV xn − µFx0)∥
≤ (1− ταn)∥zn − x0∥+ αnγ∥V xn − V x0∥+ αn∥γV x0 − µFx0∥
≤ (1− ταn)∥xn − x0∥+ αnγl∥xn − x0∥+ αn∥γV x0 − µFx0∥

≤ (1− (τ − γl)αn)∥xn − x0∥+ (τ − γl)αn
γ∥V x0∥+ µ∥Fx0∥

τ − γl

≤ γ∥V x0∥+ µ∥Fx0∥
τ − γl

.

This implies yn ∈ Ĉ and

∥xn+1 − x0∥ = ∥(1− βn)(yn − x0) + βn(TrnAλnyn − x0)∥
≤ ∥(1− βn)∥yn − x0∥+ βn∥Trnwn − x0∥
≤ (1− βn)∥yn − x0∥+ βn∥wn − x0∥
≤ (1− βn)∥yn − x0∥+ βn∥yn − x0∥
= ∥yn − p∥

≤ γ∥V x0∥+ µ∥Fx0∥
τ − γl

.

It prove that xn+1 ∈ Ĉ. Therefore, xn ∈ Ĉ for all n ≥ 0. Thus, {xn} is bounded.

9
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It is not difficult to verify that that the sequences {yn}, {zn}, {wn}, {V xn},
{Fxn}, {Fyn}, {Fun}, are bounded. Moreover, since ∥un − x0∥ = ∥Trnzn − x0∥
≤ ∥xn − x0∥ and ∥vn − x0∥ = ∥Trnwn − x0∥ ≤ ∥yn − x0∥, {un} and {vn} are also
bounded. And, by the condition (C1), we have

∥yn − un∥ = ∥yn − Trnzn∥
= αn∥γV xn − µFTrnzn∥
≤ αn(γ∥V xn∥+ µ∥Fun∥) → 0 (as n → ∞).

(3.3)

Step 2. We show that limn→∞ ∥xn+1 − xn∥ = 0 and limn→∞ ∥yn+1 − yn∥ = 0.
Indeed, since zn = Aλnxn and zn−1 = Aλn−1xn−1, we have

⟨y − zn, Azn⟩+
1

λn

⟨y − zn, zn − xn⟩ ≥ 0, ∀y ∈ C, (3.4)

and

⟨y − zn−1, Azn−1⟩+
1

λn−1

⟨y − zn−1, zn−1 − xn−1⟩ ≥ 0, ∀y ∈ C, (3.5)

Putting y := zn−1 in (3.4) and y := zn in (3.5), we get

⟨zn−1 − zn, Azn⟩+
1

λn

⟨zn−1 − zn, zn − xn⟩ ≥ 0, (3.6)

and

⟨zn − zn−1, Azn−1⟩+
1

λn−1

⟨zn − zn−1, zn−1 − xn−1⟩ ≥ 0. (3.7)

Adding (3.6) and (3.7), we obtain

⟨zn − zn−1, Azn−1 − Azn⟩+
⟨
zn − zn−1,

zn−1 − xn−1

λn−1

− zn − xn

λn

⟩
≥ 0,

which implies

−⟨zn − zn−1, Azn − Azn−1⟩+
⟨
zn − zn−1,

zn−1 − xn−1

λn−1

− zn − xn

λn

⟩
≥ 0. (3.8)

Since A is monotone, from (3.8) we get⟨
zn − zn−1,

zn−1 − xn−1

λn−1

− zn − xn

λn

⟩
≥ 0,

and hence ⟨
zn − zn−1, zn−1 − zn + zn − xn−1 −

λn−1

λn

(zn − xn)

⟩
≥ 0.
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Without loss of generality, let us assume that there exists a real number λ such
that λn > λ > 0 for all n ≥ 0. Then we have

∥zn − zn−1∥2 ≤
⟨
zn − zn−1, xn − xn−1 +

(
1− λn−1

λn

)
(zn − xn)

⟩

≤ ∥zn − zn−1∥
{
∥xn − xn−1∥+

∣∣∣∣∣1− λn−1

λn

∣∣∣∣∣∥zn − xn∥
}
,

(3.9)

and hence from (3.9) we obtain

∥zn − zn−1∥ ≤ ∥xn − xn−1∥+
1

λn

|λn − λn−1|∥zn − xn∥

≤ ∥xn − xn−1∥+
1

λ
|λn − λn−1|L1,

(3.10)

where L1 = sup{∥zn − xn∥ : n ≥ 0} < ∞. Using the same method, we also get

∥wn − wn−1∥ ≤ ∥yn − yn−1∥+
1

λ
|λn − λn−1|L2, (3.11)

where L2 = sup{∥wn − yn∥ : n ≥ 0} < ∞.

Moreover, since un−1 = Trn−1zn−1 and un = Trnzn, we have

⟨y− un−1, Tun−1⟩−
1

rn−1

⟨y− un−1, (1+ rn−1)un−1 − zn−1⟩ ≤ 0, ∀y ∈ C, (3.12)

and

⟨y − un, Tun⟩ −
1

rn
⟨y − un, (1 + rn)un − zn⟩ ≤ 0, ∀y ∈ C, (3.13)

Putting y := un in (3.12) and y := un−1 in (3.13), we get

⟨un − un−1, Tun−1⟩ −
1

rn−1

⟨un − un−1, (1 + rn−1)un−1 − zn−1⟩ ≤ 0, (3.14)

and

⟨un−1 − un, Tun⟩ −
1

rn
⟨un−1 − un, (1 + rn)un − zn⟩ ≤ 0. (3.15)

Adding (3.14) and (3.15), we obtain

⟨un − un−1, Tun−1 − Tun⟩

−
⟨
un − un−1,

(1 + rn−1)un−1 − zn−1

rn−1

− (1 + rn)un − zn
rn

⟩
≤ 0,

which implies that

⟨un − un−1, (un − Tun)−(un−1 − Tun−1)⟩

−
⟨
un − un−1,

un−1 − zn−1

rn−1

− un − zn
rn

⟩
≤ 0.

11
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Now, since T is pseudocontractive, we obtain⟨
un − un−1,

un−1 − zn−1

rn−1

− un − zn
rn

⟩
≥ 0,

and hence

⟨un − un−1, un−1 − un + un − zn−1 −
rn−1

rn
(un − zn)⟩ ≥ 0.

Also, we can assume that rn > r > 0 for all n and for some r > 0. Thus, using
the method in (3.9) and (3.10), we deduce

∥un − un−1∥ ≤ ∥zn − zn−1∥+
1

r
|rn − rn−1|L3, (3.17)

where L3 = sup{∥un − zn∥ : n ≥ 0}. Also, using the same method, we have

∥vn − vn−1∥ ≤ ∥wn − wn−1∥+
1

r
|rn − rn−1|L4, (3.18)

where L4 = sup{∥vn − wn∥ : n ≥ 0}.

Now, simple calculations show that

yn − yn−1 = αnγV xn + (I − αnµF )TrnAλnxn − αn−1γV xn−1

− (I − αn−1µF )Trn−1Aλn−1xn−1

= αnγV xn + (I − αnµF )Trnzn − αn−1γV xn−1

− (I − αn−1µF )Trn−1zn−1

= (αn − αn−1)(γV xn−1 − µFun−1) + αnγ(V xn − V xn−1)

+ (I − αnµF )un − (I − αnµF )un−1.

By (3.17) and Lemma 2.2, we obtain

∥yn − yn−1∥ ≤ |αn − αn−1|(γ∥V xn−1∥+ µ∥Fun−1∥)
+ αnγl∥xn − xn−1∥+ (1− ταn)∥un − un−1∥

≤ |αn − αn−1|(γ∥V xn−1∥+ µ∥Fun−1∥) + αnγl∥xn − xn−1∥

+ (1− ταn)∥zn − zn−1∥+
1

r
|rn − rn−1|L3.

(3.19)

Also, observe that

xn+1 − xn = (1− βn)(yn − yn−1) + (βn − βn−1)(Trn−1wn−1 − yn−1)

+ βn(Trnwn − Trn−1wn−1)

= (1− βn)(yn − yn−1) + (βn − βn−1)(vrn−1 − yn−1)

+ βn(vn − vn−1).

(3.20)

12
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By (3.10), (3.11), (3.18), (3.19), and (3.20), we have

∥xn+1 − xn∥
≤ (1− βn)∥yn − yn−1∥+ |βn − βn−1|(∥vn−1∥+ ∥yn−1∥)

+ βn∥vn − vn−1∥
≤ (1− βn)∥yn − yn−1∥+ |βn − βn−1|(∥vn−1∥+ ∥yn−1∥)

+ βn∥wn − wn−1∥+
1

r
|rn − rn−1|L4

≤ (1− βn)∥yn − yn−1∥+ βn∥yn − yn−1∥+ |βn − βn−1|(∥vn−1∥+ ∥yn−1∥)

+
1

λ
|λn − λn−1|L2 +

1

r
|rn − rn−1|L4

= ∥yn − yn−1∥+ |βn − βn−1|(∥vn−1∥+ ∥yn−1∥)

+
1

λ
|λn − λn−1|L2 +

1

r
|rn − rn−1|L4

≤ γlαn∥xn − xn−1|+ (1− ταn)∥zn − zn−1∥
+ |αn − αn−1|(γ∥xn−1∥+ µ∥Fun−1∥) + |βn − βn−1|(∥vn−1∥+ ∥yn−1∥)

+
1

λ
|λn − λn−1|L2 +

1

r
|rn − rn−1|(L3 + L4)

≤ (1− (τ − γl)αn)∥xn − xn−1∥+ |αn − αn−1|(γ∥V xn−1∥+ µ∥Fun−1∥)
+ |βn − βn−1|(∥vn−1∥+ ∥yn−1∥)

+
1

λ
|λn − λn−1|(L1 + L2) +

1

r
|rn − rn−1|(L3 + L4)

≤ (1− (τ − γl)αn)∥xn − xn−1∥+M1|αn − αn−1|+M2|βn − βn−1|
+M3|λn − λn−1|+M4|rn − rn−1|,

(3.21)

where M1 = sup{γ∥V xn∥ + µ∥Fun∥ : n ≥ 0}, M2 = sup{∥vn∥ + ∥yn∥ : n ≥ 0},
M3 = 1

λ
(L1 + L2) and M4 = 1

r
(L3 + L4). From the conditions (C1) – (C6), it is

easy to see that

lim
n→∞

(τ − γl)αn = 0,
∞∑
n=1

(τ − γl)αn = ∞,

and

∞∑
n=2

(M1|αn − αn−1|+M2|βn − βn−1|+M3|λn − λn−1|+M4|rn − rn−1|) < ∞.

Applying Lemma 2.8 to (3.21), we obtain

lim
n→∞

∥xn+1 − xn∥ = 0.

Moreover, by (3.10) and (3.19), we also have

lim
n→∞

∥zn+1 − zn∥ = 0 and lim
n→∞

∥yn+1 − yn∥ = 0.

13
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Step 3. We show that limn→∞ ∥xn− yn∥ = 0 and limn→∞ ∥xn−un∥ = 0. Indeed,

∥xn+1 − yn∥ = βn∥vn − yn∥
≤ βn(∥vn − un∥+ ∥un − yn∥)
≤ a(∥wn − zn∥+ ∥un − yn∥)
≤ a(∥yn − xn∥+ ∥un − yn∥)
≤ a(∥yn − xn+1∥+ ∥xn+1 − xn∥+ ∥un − yn∥)

which implies that

∥xn+1 − yn∥ ≤ a

1− a
(∥xn+1 − xn∥+ ∥un − yn∥).

Obviously, by (3.3) and Step 2, we have ∥xn+1−yn∥ → 0 as n → ∞. This implies
that that

∥xn − yn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − yn∥ → 0 as n → ∞. (3.22)

By (3.2) and (3.22), we also have

∥xn − un∥ ≤ ∥xn − yn∥+ ∥yn − un∥ → 0 as n → ∞.

Step 4. We show that limn→∞ ∥xn − zn∥ = 0 and limn→∞ ∥yn − zn∥ = 0. To this
end, let p ∈ Ω. Since Fix(T ) = Fix(Trn) by Lemma 2.6 (iii), from Lemma 2.2,
we have

∥yn − p∥2

= ∥αn(γV xn − µFp) + (I − αnµF )TrnAλnxn − (I − αnµF )p∥2

≤ (αn∥γV xn − µFp∥+ ∥(I − αnµF )Trnzn − (I − αnµF )Trnp∥)2

≤ αn∥γV xn − µFp∥2 + (1− ταn)∥zn − p∥2

+ 2αn(1− ταn)∥γV xn − µFp∥∥zn − p∥.

(3.23)

Moreover, since V I(C,A) = Fix(Aλn) by Lemma 2.4 (iii), from Lemma 2.4 (ii),
we obtain

∥zn − p∥2 = ∥Aλnxn − p∥2

≤ ⟨Aλnxn − Aλnp, xn − p⟩2

= ⟨zn − p, xn − p⟩

=
1

2
(∥zn − p∥2 + ∥xn − p∥2 − ∥xn − zn∥2),

and hence

∥zn − p∥2 ≤ ∥xn − p∥2 − ∥xn − zn∥2. (3.24)
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Therefore, from (3.23) and (3.24), we deduce

∥yn − p∥2 ≤ αn∥γV xn − µFp∥2 + (1− ταn)(∥xn − p∥2 − ∥xn − zn∥2)
+ 2αn(1− ταn)∥γV xn − µFp∥∥zn − p∥,

and hence

(1− ταn)∥xn − zn∥2

≤αn∥γV xn − µFp∥2 + (∥xn − p∥+ ∥yn − p∥)(∥xn − p∥ − ∥yn − p∥)
+ 2αn∥γV xn − µFp∥∥zn − p∥

≤ αn∥γV xn − µFp∥2 + (∥xn − p∥+ ∥yn − p∥)∥xn − yn∥
+ 2αn∥γV xn − µFp∥∥zn − p∥.

Since αn → 0 by condition (C1) and ∥xn−yn∥ → 0 by (3.22), we get ∥xn−zn∥ →
0. Also, from (3.22), it follows that

∥yn − zn∥ ≤ ∥yn − xn∥+ ∥xn − zn∥ → 0 (n → ∞). (3.25)

Step 5. We show that limn→∞ ∥un − zn∥ = ∥Trnzn − zn∥ = 0. Indeed, from (3.3)
and (3.25), we get

∥un − zn∥ = ∥Trnzn − zn∥ ≤ ∥un − yn∥+ ∥yn − zn∥ → 0 as n → ∞.

Step 6. We show that

lim sup
n→∞

⟨(γV − µF ))q, yn − q⟩ ≤ 0,

where q is the unique solution of the variational inequality (3.2). First of all, from
(3.3) and Step 4, without of loss generality, we may assume that un, zn in Ĉ for
all n ≥ 0.

First we prove that

lim sup
n→∞

⟨(γV − µF )q, un − q⟩ ≤ 0.

To show this inequality, we choose a subsequence {uni
} of {un}

lim sup
n→∞

⟨(γV − µF )q, un − q⟩ = lim
i→∞

⟨(γV − µF )q, uni
− q⟩.

Since {uni
} is bounded, we can choose a subsequence {unij

} of {uni
} and z ∈ H

such that unij
⇀ z. Without loss of generality, we may assume that uni

⇀ z. Since

Ĉ is closed and convex, it is weakly closed and hence z ∈ Ĉ. Since un − zn → 0
as n → ∞ by Step 5, we have zni

⇀ z.
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Now, we show that z ∈ Ω. First we prove that z ∈ Fix(T ). In fact, from definition
zni

, we have

⟨y − uni
, Tuni

⟩ − 1

rni

⟨y − uni
, (1 + rni

)uni
− zni

⟩ ≤ 0, ∀y ∈ C. (3.26)

Put zt = tv + (1 − t)z for all t ∈ (0, 1] and v ∈ C. Then zt ∈ C and from (3.26)
and pseudocontractivity of T , it follows that

⟨uni
− zt, T zt⟩ ≥ ⟨uni

− zt, T zt⟩+ ⟨zt − uni
, Tuni

⟩

− 1

rni

⟨zt − uni
, (1 + rni

)uni
− zni

⟩

= − ⟨zt − uni
, T zt − Tuni

⟩ − 1

rni

⟨zt − uni
, uni

− zni
⟩

− ⟨zt − uni
, uni

⟩

≥ − ∥zt − uni
∥2 − 1

rni

⟨zt − uni
, uni

− zni
⟩

− ⟨zt − uni
, uni

⟩

= − ⟨zt − uni
, zt⟩ − ⟨zt − uni

,
uni

− zni

rni

⟩.

(3.27)

Since un − zn → 0 as n → ∞ by Step 5 and lim infn→∞ rn > 0 by condition (C6),
we have

uni−zni

rni
→ 0 as i → ∞. Therefore, as i → ∞ in (3.27), it follows that

⟨z − zt, T zt⟩ ≥ ⟨z − zt, zt⟩,

and hence

−⟨v − z, Tzt⟩ ≥ −⟨v − z, zt⟩, ∀v ∈ C.

Letting t → 0 and using the fact that T is hemicontinuous, we have

−⟨v − z, Tz⟩ ≥ −⟨v − z, z⟩, ∀v ∈ C.

Now, let v = Tz. Then we obtain that z = Tz and so z ∈ Fix(T ).

Next, let us show that z ∈ V I(C,A). From the definition of zn, we get that

⟨y − zni
, Azni

⟩+ ⟨y − zni
,
zni

− xni

λni

⟩ ≥ 0, ∀y ∈ C. (3.28)

Set vt = tv + (1 − t)z for all t ∈ (0, 1] and v ∈ C. Then, it follows that vt ∈ C.
From (3.28), we have

⟨vt − zni
, Avt⟩ ≥ ⟨vt − zni

, Avt⟩ − ⟨vt − zni
, Azni

⟩ − ⟨vt − zni
,
zni

− xni

λni

⟩

= ⟨vt − zni
, Avt − Azni

⟩ − ⟨vt − zni
,
zni

− xni

λni

⟩.
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From the fact that ∥zn − xn∥ → 0 in Step 4 and lim infn→∞ λn > 0 by condition
(C5), it follows that

zni−xni

λni
→ 0 as i → ∞.. Since A is monotone, we also have

⟨vt − zni
, Avt − Azni

⟩ ≥ 0. Thus, it follows that

0 ≤ lim
i→∞

⟨vt − zni
, Avt⟩ = ⟨vt − z, Avt⟩,

and hence

⟨v − z, Avt⟩ ≥ 0, ∀v ∈ C.

It t → 0, the hemicontinuity A yields that

⟨v − z, Az⟩ ≥ 0, ∀v ∈ C.

This implies that z ∈ V I(C,A). Therefore, z ∈ Ω.

Now, since q is the unique solution of the variational inequality (3.2), from Step
5, we obtain

lim sup
n→∞

⟨(γV − µF )q, un − q⟩

= lim
i→∞

⟨(γV − µF )q, uni
− zni

⟩+ lim
i→∞

⟨(γV − µF )q, zni
− q⟩

≤ lim
i→∞

∥(γV − µF )q∥∥uni
− zni

∥+ lim
i→∞

⟨(γV − µF )q, zni
− q⟩

= ⟨(γV − µF )q, z − q⟩ ≤ 0.

(3.29)

By (3.3) and (3.29) , we conclude that

lim sup
n→∞

⟨(γV − µF )q, yn − q⟩

≤ lim sup
n→∞

⟨(γV − µF )q, yn − un⟩+ lim sup
n→∞

⟨(γV − µF )q, un − q⟩

≤ lim sup
n→∞

∥(γV − µF )q∥∥yn − un∥+ lim sup
n→∞

⟨(γV − µF )q, un − q⟩ ≤ 0.

Step 7. We show that limn→∞ ∥xn − q∥ = 0, where q is the unique solution of
the variational inequality (3.2). Indeed, from (3.1), Lemma 2.2, and lemma 2.7,
we derive

∥xn+1 − q∥2 ≤ ∥yn − q∥2

= ∥αn(γV xn − µFq) + (I − αnµF )TrnAλnxn − (I − αnµF )q∥2

≤ ∥(I − αnµF )Trnzn − (I − αnµF )q∥2 + 2αn⟨γV xn − µFq, yn − q⟩
≤ (1− ταn)

2∥zn − q∥2 + 2αnγ⟨V xn − V q, yn − q⟩
+ 2αn⟨γV q − µFq, yn − q⟩)

≤ (1− ταn)
2∥xn − q∥2 + 2αnγl∥xn − q∥∥yn − q∥

+ 2αn⟨(γV − µF )q, yn − q⟩
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≤ (1− ταn)
2∥xn − q∥2 + 2αnγl∥xn − q∥(∥yn − xn∥+ ∥xn − q∥)

+ 2αn⟨(γV − µF )q, yn − q⟩
= (1− 2(τ − γl)αn)∥xn − q∥2

+ α2
nτ

2∥xn − q∥2 + 2αnγl∥xn − q∥∥yn − xn∥
+ 2αn⟨(γV − µF )q, yn − q⟩,

that is,

∥xn+1 − q∥2 ≤ (1− 2(τ − γl)αn)∥xn − q∥2 + α2
nτ

2M2
5 + 2αnγl∥yn − xn∥M5

+ 2αn⟨(γV − µF )q, yn − q⟩
= (1− αn)∥xn − q∥2 + βn,

where M5 = sup{∥xn − q∥ : n ≥ 1}, αn = 2(τ − γl)αn and

βn = αn[αnτ
2M2

5 + 2γl∥yn − xn∥M5 + 2⟨(γV − F )q, yn − q⟩].

From the conditions (C1) and (C2), ∥yn − xn∥ → 0 in Step 3, and Step 6, it

is easily seen that αn → 0,
∑∞

n=1 αn = ∞, and lim supn→∞
βn

αn
≤ 0. Hence, by

Lemma 2.8, we conclude xn → q as n → ∞. This completes the proof. �

By taking F ≡ I, V ≡ 0, µ = 1, τ = 1, and l = 0 in Theorem 3.1, we obtain the
following result.

Corollary 3.1. Let H, C, A, T , Trn and Aλn be as in Theorem 3.1. Let x0 ∈
Ω := Fix(T ) ∩ V I(C,A) be chosen arbitrarily and let Ĉ = S(x0, ∥x0∥) ∩ C. Let
{xn} be a sequence generated byyn = (1− αn)TrnAλnxn,

xn+1 = (1− βn)yn + βnTrnAλnyn, ∀n ≥ 0,
(3.30)

where {αn}, {βn} ⊂ [0, 1) and {λn}, {rn} ⊂ (0,∞). Let {αn}, {βn}, {λn} and
{rn} satisfy the conditions (C1) – (C6) in Theorem 3.1. Then {xn} converges
strongly to a point q ∈ Ω, which solves the following minimum-norm problem:
find x∗ ∈ Ω such that

∥x∗∥ = min
x∈Ω

∥x∥. (3.31)

Proof. Take F ≡ I, V ≡ 0, µ = 1, τ = 1, and l = 0 in Theorem 3.1. Then the
variational inequality (3.2) is reduced to the inequality

⟨q, q − p⟩ ≤ 0, ∀p ∈ Ω.

This obviously implies that

∥q∥2 ≤ ⟨q, p⟩ ≤ ∥q∥∥p∥, ∀p ∈ Ω.
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It turns out that ∥q∥ ≤ ∥p∥ for all p ∈ Ω. Therefore q is the minimum-norm point
of Ω. �

Taking βn = 0 for n ≥ 0 in Theorem 3.1 and Corollary 3.1, respectively, we derive
the following results.

Corollary 3.2. Let H, C, Ĉ, A, T , Trn, Aλn, F , V , γ, τ , κ̂, η, l and µ be as in
Theorem 3.1. Let {xn} be a sequence generated by x0 ∈ Ω and

xn+1 = αnγV xn + (I − αnµF )TrnAλnxn, ∀n ≥ 0,

where {αn} ⊂ [0, 1) and {λn}, {rn} ⊂ (0,∞). Let {αn}, {λn} and {rn} satisfy the
conditions (C1), (C2), (C3), (C5) and (C6) in Theorem 3.1. Then {xn} converges
strongly to q ∈ Ω, which is the unique solution of the variational inequality (3.2).

Corollary 3.3. Let H, C, A, T , Trn and Aλn be as in Theorem 3.1. Let x0 ∈ Ω be
chosen arbitrarily and let Ĉ = S(x0, ∥x0∥)∩C. Let {xn} be a sequence generated
by

xn+1 = (1− αn)TrnArnxn, ∀n ≥ 0,

where {αn} is a sequence in [0, 1). Let {αn} and {λn}, {rn} ⊂ (0,∞) satisfy the
conditions (C1), (C2), (C3), (C5) and C6) in Theorem 3.1. Then {xn} converges
strongly to a point q ∈ Ω, which solves the following minimum-norm problem
(3.31).

As direct consequences of Theorem 3.1 along with βn = 0 for n ≥ 0, we also have
the following results. First, if, in Theorem 3.1, we take that A ≡ I, the identity
mapping on C, then we obtain the following corollary.

Corollary 3.4. Let H, C, Ĉ, A, T , Trn, F , V , γ, τ , κ̂, η, l and µ be as in
Theorem 3.1. Let x0 ∈ Fix(T ) be chosen arbitrarily. Let {xn} be a sequence
generated by

xn+1 = αnγV xn + (I − αnµF )Trnxn, ∀n ≥ 0,

where {αn} ⊂ [0, 1) and {rn} ⊂ (0,∞). Let {αn} and {rn} satisfy the conditions
(C1), (C2), (C3) and (C6) in Theorem 3.1. Then {xn} converges strongly to
q ∈ Fix(T ), which is the unique solution of the variational inequality

⟨(γV − µF )q, q − p⟩ ≥ 0, ∀p ∈ Fix(T ).

Next, if, in Theorem 3.1, T ≡ I is the identity mapping on C along with βn = 0
for n ≥ 0, then we have the following corollary.

Corollary 3.5. Let H, C, Ĉ, A, Aλn, F , V , γ, τ , κ̂, η, l and µ be as in Theorem
3.1. Let x0 ∈ V I(C,A) be chosen arbitrarily, and let Ĉ = S(x0,

γ∥V x0∥+µ∥Fx0∥
τ−γl

)∩C.
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Let {xn} be a sequence generated by

xn+1 = αnγV xn + (I − αnµF )Aλnxn, ∀n ≥ 0,

where {αn} ⊂ [0, 1) and {λn} ⊂ (0,∞). Let {αn} and {λn} satisfy the conditions
(C1), (C2), (C3) and (C5) in Theorem 3.1. Then {xn} converges strongly to
q ∈ V I(C,A), which is the unique solution of the variational inequality

⟨(γV − µF )q, q − p⟩ ≥ 0, ∀p ∈ V I(C,A).

Remark 3.1.

1) Our results extend and unify most of the results that have been established
for these important classes of nonlinear mappings. In particular, Theorem
3.1 and Corollary 3.2 improve Theorem 3.1 of Jung [12] and Theorem 3.1 of
Wangkeeree and Nammanee [22] and Theorem 3.1 of Zegeye and Shahzad
[26], respectively, in the sense that our convergence is for more general classes
of nonlinear mappings such as hemicintinuos monotone mappings, hemicon-
tinuous pseudocontractive mappings, boundedly Lipschitzian and strongly
monotone mappings, and Lipschizian mappings.

2) It is worth pointing out that the variable parameters λn and rn in our it-
erative algorithms are used in comparison with the corresponding iterative
algorithms in [22,25,26].

3) Corollary 3.2 also includes Proposition 3.1 of Chen et al. [6], Theorem 3.1 of
Iiduka and Takahashi [8] and Corollary 3.2 of Su et al. [16] in the convergence
sense for more general classes of nonlinear mappings mentioned in 1).

4) Corollary 3.1 and Corollary 3.3 are new results for finding the minimum-
norm point of Fix(T ) ∩ V I(C,A).

5) Corollary 3.4 and Corollary 3.5 also improve the corresponding results of
Chen et al. [5], Tian [21], Wangkeeree and Nammanee [22] and Zegeye and
Shahzad [26] in the sense that our results are for more general classes of
nonlinear mappings.

6) As in Corollary 3.1, if we take F ≡ I, V ≡ 0, µ = 1, τ = 1, and l = 0 in
Corollary 3.4 and Corollary 3.5, then we can find the minimum-norm point
of Fix(T ) and V I(C,A), respectively.
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Abstract The purpose of this paper is to study by applying the makgeolli
structure to commutative ideal in BCK-algebras. The notion of commutative
makgeolli ideal is introduced, and their properties are investigated. The rela-
tionship between makgeolli ideal and commutative makgeolli ideal is discussed.
Example to show that a makgeolli ideal may not be a commutative makgeolli
ideal is provided, and then the conditions under which a makgeolli ideal can
be a commutative makgeolli ideal are explored. A new commutative makgeolli
ideal is established using the given commutative makgeolli ideal, and character-
izations of a commutative makgeolli ideal are displayed. Finally, the extension
property for a commutative makgeolli ideal is established.

Keywords: BCK-soft universe, makgeolli structure, makgeolli ideal, commuta-
tive makgeolli ideal.
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1 Introduction

Many of the problems that need to be solved in the real world often include
inherently inaccurate, uncertain, and ambiguous elements. The fuzzy set by
Zadeh [26, 27, 28] is useful tool as a means of effectively controlling uncer-
tainty, which is an attribute of information. Uncertainty is limited in handling
using traditional mathematical tools, but can be handled using a wide range
of theories such as probability theory, (intuitionistic) fuzzy set theory, theory
of interval mathematics, vague set theory, rough set theory, and soft set the-
ory etc. Molodtsov [21] introduced the concept of a soft set as a new tool
for dealing with uncertainties beyond the difficulties that plagued general the-
oretical approaches, and he suggested several directions for the application of
the soft set. Globally, interest in soft set theory and its application has been
growing rapidly in recent years. Following this trend, research in the field of
algebraic structure is also showing the use of soft sets. For example, groups,
rings, fields and modules etc. (see [1, 3, 4, 5, 12]), and BCK/BCI-algebras etc.
(see [9, 10, 11, 13, 14, 15, 16, 17, 22, 24]). In 2019, Ahn et al. [2] introduced the
notion of makgeolli structures as a hybrid structure based on fuzzy set and soft
set theory, and applied it to BCK/BCI-algebras. Kologani et al. [18] applied the
makgeolli structure to hoops, and Song et al. [25] studied positive implicative
makgeolli ideals of BCK-algebras.

In this paper, we apply the makgeolli structure to the commutative ideal of
BCK-algebras. We introduce the notion of commutative makgeolli ideal, and
investigate their properties. We discuss the relationship between makgeolli ideal
and commutative makgeolli ideal. We provide example to show that any mak-
geolli ideal may not be a commutative makgeolli ideal, and then we explore the
conditions under which makgeolli ideal can be commutative makgeolli ideal. We
make a new commutative makgeolli ideal using the given commutative makge-
olli ideal. We explore the characterization of commutative makgeolli ideal and
establish the extension property for commutative makgeolli ideal.

2 Preliminaries

2.1 Preliminaries on BCK-algebras

BCI/BCK-algebra is an important type of logical algebra introduced by K. Iséki
(see [7] and [8]), and it has been extensively investigated by several researchers.
See the books [6, 20] for further information regarding BCI-algebras and BCK-
algebras. In this section, we recall the definitions and basic results required in
this paper.

Let L be a set with a special element “0” and a binary operation “ ∗ ”. If it
satisfies the following conditions:
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(I1) (∀a, b, c ∈ L) (((a ∗ b) ∗ (a ∗ c)) ∗ (c ∗ b) = 0),

(I2) (∀a, b ∈ L) ((a ∗ (a ∗ b)) ∗ b = 0),

(I3) (∀a ∈ L) (a ∗ a = 0),

(I4) (∀a, b ∈ L) (a ∗ b = 0, b ∗ a = 0 ⇒ a = b),

(K) (∀a ∈ L) (0 ∗ a = 0),

then it is called a BCK-algebra, and it is denoted by (L, ∗, 0).
The order relation “ ≤ ” in a BCK-algebra (L, ∗, 0) is defined as follows:

(∀a, b ∈ L)(a ≤ b ⇔ a ∗ b = 0). (2.1)

Every BCK/BCI-algebra (L, ∗, 0) satisfies the following conditions (see [19,
20]):

(∀a ∈ L) (a ∗ 0 = a) , (2.2)

(∀a, b, c ∈ L) (a ≤ b ⇒ a ∗ c ≤ b ∗ c, c ∗ b ≤ c ∗ a) , (2.3)

(∀a, b, c ∈ L) ((a ∗ b) ∗ c = (a ∗ c) ∗ b) . (2.4)

Every BCI-algebra (L, ∗, 0) satisfies (see [6]):

(∀a, b ∈ L) (a ∗ (a ∗ (a ∗ b)) = a ∗ b) , (2.5)

(∀a, b ∈ L) (0 ∗ (a ∗ b) = (0 ∗ a) ∗ (0 ∗ b)) . (2.6)

A BCK-algebra (L, ∗, 0) is said to be commutative (see [20]) if it satisfies:

(∀a, b ∈ L)(a ∗ (a ∗ b) = b ∗ (b ∗ a)). (2.7)

A subset R of a BCK/BCI-algebra (L, ∗, 0) is called

• a subalgebra of (L, ∗, 0) (see [6, 20]) if it satisfies:

(∀a, b ∈ R)(a ∗ b ∈ R), (2.8)

• an ideal of (L, ∗, 0) (see [6, 20]) if it satisfies:

0 ∈ R, (2.9)

(∀a, b ∈ L)(a ∗ b ∈ R, b ∈ R ⇒ a ∈ R). (2.10)

A subsetR of a BCK-algebra (L, ∗, 0) is called a commutative ideal of (L, ∗, 0)
(see [20]) if it satisfies (2.9) and

(∀a, b, c ∈ L)((a ∗ b) ∗ c ∈ R, c ∈ R ⇒ a ∗ (b ∗ (b ∗ a)) ∈ R). (2.11)

Lemma 2.1 ([20]). A nonempty subset R of a BCK-algebra (L, ∗, 0) is a com-
mutative ideal of (L, ∗, 0) if and only if R is an ideal of (L, ∗, 0) that satisfies:

(∀a, b ∈ L)(a ∗ b ∈ R ⇒ a ∗ (b ∗ (b ∗ a)) ∈ R). (2.12)
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2.2 Preliminaries on makgeolli structures

Let L be a universal set and E a set of parameters. We say that the pair (L,E)
is a soft universe.

Definition 2.2 ([2]). Let (L,E) be a soft universe and let R and S be subsets
of E. A makgeolli structure over (L,E) (related to R and S) is a structure of
the form:

M(R,S,L) := {〈(a, b, z); fR(a), gS(b), ξ(z)〉 | (a, b, z) ∈ R× S × L} (2.13)

where fR := (f,R) and gS := (g,S) are soft sets over L and ξ is a fuzzy set in
L.

A fuzzy set ξ in a set L of the form

ξ(b) :=

{
t ∈ (0, 1] if b = a,
0 if b 6= a,

is said to be a fuzzy point with support a and value t and is denoted by 〈at〉.
For a fuzzy set ξ in a set L, we say that a fuzzy point 〈at〉 is

(i) contained in ξ, denoted by 〈at〉 ∈ ξ, (see [23]) if ξ(a) ≥ t.

(ii) quasi-coincident with ξ, denoted by 〈at〉 q ξ, (see [23]) if ξ(a) + t > 1.

For the sake of simplicity, the makgeolli structure in (2.13) will be denoted by
M(R,S,L) := (fR, gS , ξ). The makgeolli structure M(R,R,L) := (fR, gR, ξ) over
(L,E) related to a subset R of E is simply denoted by M(R,L) := (fR, gR, ξ). If
R = S = E, we use the notation M(L,E) := (fE, gE, ξ) as the makgeolli structure
over (L,E).

We say that a soft universe (L,E) is a BCK/BCI-soft universe if L and E
are BCK/BCI-algebras with binary operations “∗” and “�”, respectively.

Definition 2.3 ([2]). Let (L,E) be a BCK/BCI-soft universe. A makgeolli
structure M(L,E) := (fE, gE, ξ) is called a makgeolli ideal of (L,E) if it satisfies:{

(∀a ∈ E) (fE(0) ⊇ fE(a), gE(0) ⊆ gE(a)) .
(∀z ∈ L) (〈0/ξ(z)〉 ∈ ξ) . (2.14)
(∀a, b ∈ E)

(
fE(a) ⊇ fE(a� b) ∩ fE(b)

gE(a) ⊆ gE(a� b) ∪ gE(b)

)
.

(∀x, y ∈ L)(∀t, r ∈ (0, 1])

(
〈(x ∗ y)/t〉 ∈ ξ, 〈y/r〉 ∈ ξ
⇒ 〈x/min{t, r}〉 ∈ ξ

)
.

(2.15)

Lemma 2.4 ([2]). Let (L,E) be a BCK/BCI-soft universe. Every makgeolli
ideal M(L,E) := (fE, gE, ξ) of (L,E) satisfies the following assertions.

(i)

 (∀a, b ∈ E)

(
a ≤ b ⇒

{
fE(a) ⊇ fE(b)
gE(a) ⊆ gE(b)

)
.

(∀x, y ∈ L) (x ≤ y ⇒ ξ(x) ≥ ξ(y)) .

4
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(ii)

 (∀a, b, c ∈ E)

(
a� b ≤ c ⇒

{
fE(a) ⊇ fE(b) ∩ fE(c)
gE(a) ⊆ gE(b) ∪ gE(c)

)
.

(∀x, y, z ∈ L) (x ∗ y ≤ z ⇒ ξ(x) ≥ min{ξ(y), ξ(z)}) .

Let (L,E) be a BCK/BCI-soft universe. Given a makgeolli structureM(L,E) :=
(fE, gE, ξ) over (L,E), consider the following sets:

fE(E;α) := {a ∈ E | fE(a) ⊇ α},
gE(E; δ) := {b ∈ E | gE(b) ⊆ δ},
ξ(L; t) := {z ∈ L | ξ(z) ≥ t}

where α and δ are subsets of L and t ∈ [0, 1].

Lemma 2.5 ([2]). A makgeolli structure M(L,E) := (fE, gE, ξ) over a BCK/BCI-
soft universe (L,E) is a makgeolli ideal of (L,E) if and only if the nonempty
sets fE(E;α) and gE(E; δ) are ideals of (E,�, 0), and the nonempty set ξ(L; t)
is an ideal of (L, ∗, 0) for all subsets α and δ of L and t ∈ [0, 1].

3 Commutative makgeolli ideals

In what follows, let (Y,E) be a BCK-soft universe unless otherwise specified.

Definition 3.1. A makgeolli structure M(Y,E) := (fE, gE, ξ) is called a commu-
tative makgeolli ideal of (Y,E) if it satisfies (2.14) and

(∀x̌, y̌, ž ∈ E)

(
fE(x̌� (y̌ � (y̌ � x̌))) ⊇ fE((x̌� y̌)� ž) ∩ fE(ž)

gE(x̌� (y̌ � (y̌ � x̌))) ⊆ gE((x̌� y̌)� ž) ∪ gE(ž)

)
, (3.1)

(∀x, y, z ∈ Y )(∀t, r ∈ (0, 1])

(
〈((x ∗ y) ∗ z)/t〉 ∈ ξ, 〈z/r〉 ∈ ξ
⇒ 〈(x ∗ (y ∗ (y ∗ x)))/min{t, r}〉 ∈ ξ

)
. (3.2)

Example 3.2. Consider a BCK-soft universe (Y,E) where Y := {0, 1, 2, 3, 4}
and E := {0, 1, 2, 3} have binary operations “∗” and “�”, respectively, given by
Table 1.

Table 1: Cayley tables for the binary operations “∗” and “�”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 1
2 2 1 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

� 0 1 2 3
0 0 0 0 0
1 1 0 1 1
2 2 2 0 2
3 3 3 3 0

5
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Let M(Y,E) := (fE, gE, ξ) be a makgeolli structure over (Y,E) defined as follows:

fE : E→ P(Y ), x 7→


Y if x = 0,
{3, 4} if x = 1,
{1, 3, 4} if x = 2,
{1, 2, 3, 4} if x = 3,

gE : E→ P(Y ), x 7→


{4} if x = 0,
{0, 1, 4} if x = 1,
{1, 4} if x = 2,
{0, 1, 3, 4} if x = 3,

and

ξ : Y → [0, 1], y 7→


0.79 if y = 0,
0.62 if y = 1,
0.62 if y = 2,
0.45 if y = 3,
0.67 if y = 4.

It is routine to verify that M(Y,E) := (fE, gE, ξ) is a commutative makgeolli ideal
of (Y,E).

We discuss the relationship between the commutative makgeolli ideal and
the makgeolli ideal.

Theorem 3.3. Every commutative makgeolli ideal is a makgeolli ideal.

Proof. Let M(Y,E) := (fE, gE, ξ) be a commutative makgeolli ideal of (Y,E). If
we put y̌ = 0 = y in (3.1) and (3.2) and use (K) and (2.2), then we get (2.15).
Hence M(Y,E) := (fE, gE, ξ) is a makgeolli ideal of (Y,E).

The following example informs the existence of the makgeolli ideal, not the
commutative makgeolli ideal.

Example 3.4. Consider a BCK-soft universe (Y,E) in which Y = {0, 1, 2, 3, 4} =
E with binary operations “∗” and “�”, respectively, given by Table 2.

Table 2: Cayley tables for the binary operations “∗” and “�”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 4 4 3 0

� 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 2 0
3 3 1 3 0 1
4 4 4 4 4 0

6

163

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Seok-Zun Song et al 158-173



Let M(Y,E) := (fE, gE, ξ) be a makgeolli structure on (Y,E) defined as follows:

fE : E→ P(Y ), x 7→


Y if x = 0,
{1, 2, 4} if x = 1,
{0, 1, 3, 4} if x = 2,
{1, 4} if x = 3,
{0, 2} if x = 4,

gE : E→ P(Y ), x 7→


{4} if x = 0,
{0, 2, 4} if x = 1,
{1, 4} if x = 2,
{0, 2, 4} if x = 3,
{0, 1, 2, 4} if x = 4,

and

ξ : Y → [0, 1], y 7→


0.73 if y = 0,
0.63 if y = 1,
0.54 if y = 2,
0.42 if y = 3,
0.42 if y = 4.

It is routine to verify that M(Y,E) := (fE, gE, ξ) is a makgeolli ideal of (Y,E).
But it is not a commutative makgeolli ideal of (Y,E) since

fE(2� (4� (4� 2))) = fE(2) = {0, 1, 3, 4} + {1, 2, 4} = fE((2� 4)� 1) ∩ fE(1)

and/or 〈((2 ∗ 3) ∗ 0)/0.71〉 ∈ ξ and 〈0/0.65〉 ∈ ξ, but

〈(2 ∗ (3 ∗ (3 ∗ 2)))/min{0.71, 0.65} = 〈2/0.65〉 ∈ ξ.

We explore the conditions for the makgeolli ideal to be the commutative
makgeolli ideal.

Theorem 3.5. In a commutative BCK-algebra, every makgeolli ideal is a com-
mutative makgeolli ideal.

Proof. Let (Y,E) be a BCK-soft universe in which (Y, ∗, 0) and (E,�, 0) are
commutative BCK-algebras, and let M(Y,E) := (fE, gE, ξ) be a makgeolli ideal
of (Y,E). Using (I1), (I3), (2.1), (2.4) and the commutativity of Y and E, we
have

(∀x̌, y̌, ž ∈ E)((x̌� (y̌ � (y̌ � x̌)))� ((x̌� y̌)� ž) ≤ ž),
(∀x, y, z ∈ E)((x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z) ≤ z).

It follows from Lemma 2.4(ii) that

fE(x̌� (y̌ � (y̌ � x̌))) ⊇ fE((x̌� y̌)� ž) ∩ fE(ž),

gE(x̌� (y̌ � (y̌ � x̌))) ⊆ gE((x̌� y̌)� ž) ∪ gE(ž),

7
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and

ξ(x ∗ (y ∗ (y ∗ x))) ≥ min{ξ((x ∗ y) ∗ z), ξ(z)}. (3.3)

Let x, y, z ∈ Y and t, r ∈ (0, 1] be such that 〈((x ∗ y) ∗ z)/t〉 ∈ ξ and 〈z/r〉 ∈ ξ.
Then ξ((x ∗ y) ∗ z) ≥ t and ξ(z) ≥ r, and so

ξ(x ∗ (y ∗ (y ∗ x))) ≥ min{ξ((x ∗ y) ∗ z), ξ(z)} ≥ min{t, r}

by (3.3). Hence 〈(x ∗ (y ∗ (y ∗ x)))/min{t, r}〉 ∈ ξ. Therefore M(Y,E) := (fE, gE,
ξ) is a commutative makgeolli ideal of (Y,E).

Corollary 3.6. If a BCK-soft universe (Y,E) satisfies any one of the following
conditions: {

(∀x̌, y̌ ∈ E) (x̌� (x̌� y̌) ≤ y̌ � (y̌ � x̌)) ,
(∀x, y ∈ Y ) (x ∗ (x ∗ y) ≤ y ∗ (y ∗ x)) ,

(3.4){
(∀x̌, y̌ ∈ E) (x̌ ≤ y̌ ⇒ x̌ = y̌ � (y̌ � x̌)) ,
(∀x, y ∈ Y ) (x ≤ y ⇒ x = y ∗ (y ∗ x)) ,

(3.5){
(∀x̌, y̌, ž ∈ E) (x̌ ≤ ž, ž � y̌ ≤ ž � x̌ ⇒ x̌ ≤ y̌) ,
(∀x, y, z ∈ Y ) (x ≤ z, z ∗ y ≤ z ∗ x ⇒ x ≤ y) ,

(3.6)

then every makgeolli ideal is a commutative makgeolli ideal.

Proof. Straightforward.

Theorem 3.7. Let (Y,E) be a BCK-soft universe in which (Y, ∗, 0) and (E,�, 0)
are lower semilattices with respect to the order relation “≤”. Then every mak-
geolli ideal is a commutative makgeolli ideal.

Proof. Assume that (Y, ∗, 0) and (E,�, 0) are lower semilattices with respect
to the order relation “≤” in the BCK-soft universe (Y,E). Let x̌, y̌ ∈ E and
x, y ∈ Y . Then x̌� (x̌� y̌) is a common lower bound of x̌ and y̌; and x ∗ (x ∗ y)
is a common lower bound of x and y. Also, y̌ � (y̌ � x̌) is the greatest lower
bound of x̌ and y̌; and y ∗ (y ∗ x) is the greatest lower bound of x and y. Hence
x̌� (x̌� y̌) ≤ y̌� (y̌� x̌) and x ∗ (x ∗ y) ≤ y ∗ (y ∗ x). Therefore every makgeolli
ideal is a commutative makgeolli ideal by Corollary 3.6.

Theorem 3.8. If a makgeolli ideal M(Y,E) := (fE, gE, ξ) of (Y,E) satisfies:

(∀x̌, y̌, ž ∈ E)

(
fE((x̌� ž)� (y̌ � (y̌ � x̌))) ⊇ fE(((x̌� y̌)� ž)
gE((x̌� ž)� (y̌ � (y̌ � x̌))) ⊆ gE(((x̌� y̌)� ž)

)
, (3.7)

(∀x, y, z ∈ Y ) (ξ((x ∗ z) ∗ (y ∗ (y ∗ x))) ≥ ξ(((x ∗ y) ∗ z)) , (3.8)

then it is a commutative makgeolli ideal of (Y,E).

8
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Proof. Let M(Y,E) := (fE, gE, ξ) be a makgeolli ideal of (Y,E) that satisfies the
conditions (3.7) and (3.8). Using (2.4), (2.15) and (3.7), we have

fE(x̌� (y̌ � (y̌ � x̌))) ⊇ fE(x̌� (y̌ � (y̌ � x̌)))� ž) ∩ fE(ž)

= fE((x̌� ž)� (y̌ � (y̌ � x̌))) ∩ fE(ž)

⊇ fE(((x̌� y̌)� ž) ∩ fE(ž)

and

gE(x̌� (y̌ � (y̌ � x̌))) ⊆ gE(x̌� (y̌ � (y̌ � x̌)))� ž) ∪ gE(ž)

= gE((x̌� ž)� (y̌ � (y̌ � x̌))) ∪ fE(ž)

⊆ gE(((x̌� y̌)� ž) ∪ gE(ž).

Let x, y, z ∈ Y and t, r ∈ (0, 1] be such that 〈((x ∗ y) ∗ z)/t〉 ∈ ξ and 〈z/r〉 ∈ ξ.
Then

ξ((x ∗ (y ∗ (y ∗ x))) ∗ z) = ξ((x ∗ z) ∗ (y ∗ (y ∗ x))) ≥ ξ(((x ∗ y) ∗ z) ≥ t

by (2.4) and (3.8), that is, 〈((x ∗ (y ∗ (y ∗ x))) ∗ z)/t〉 ∈ ξ. It follows from (2.15)
that 〈(x ∗ (y ∗ (y ∗ x)))/min{t, r}〉 ∈ ξ. Therefore M(Y,E) := (fE, gE, ξ) is a
commutative makgeolli ideal of (Y,E).

Theorem 3.9. A makgeolli structure M(Y,E) := (fE, gE, ξ) over (Y,E) is a
commutative makgeolli ideal of (Y,E) if and only if it is a makgeolli ideal of
(Y,E) that satisfies:

(∀x̌, y̌ ∈ E)

(
fE(x̌� (y̌ � (y̌ � x̌))) ⊇ fE(x̌� y̌)

gE(x̌� (y̌ � (y̌ � x̌))) ⊆ gE(x̌� y̌)

)
, (3.9)

(∀x, y ∈ Y ) (ξ(x ∗ (y ∗ (y ∗ x))) ≥ ξ(x ∗ y)) . (3.10)

Proof. Assume that M(Y,E) := (fE, gE, ξ) is a commutative makgeolli ideal of
(Y,E). Then it is a makgeolli ideal of (Y,E) (see Theorem 3.3). If we put ž = 0
in (3.1) and use (2.2) and (2.14), then

fE(x̌� (y̌ � (y̌ � x̌))) ⊇ fE((x̌� y̌)� 0) ∩ fE(0) = fE(x̌� y̌),

gE(x̌� (y̌ � (y̌ � x̌))) ⊆ gE((x̌� y̌)� 0) ∪ gE(0) = gE(x̌� y̌).

Let t := ξ(x∗y) for all x, y ∈ Y . Then t := ξ((x∗y)∗0), i.e., 〈((x∗y)∗0)/t〉 ∈ ξ.
Since 〈0/t〉 ∈ ξ by (2.14), it follows from (3.2) that 〈(x ∗ (y ∗ (y ∗ x)))/t〉 ∈ ξ.
Hence ξ(x ∗ (y ∗ (y ∗ x))) ≥ t = ξ(x ∗ y). Therefore (3.9) and (3.10) are valid.

Conversely, let M(Y,E) := (fE, gE, ξ) be a makgeolli ideal of (Y,E) that
satisfies (3.9) and (3.10). For every x̌, y̌, x̌ ∈ E, we have

fE(x̌� (y̌ � (y̌ � x̌))) ⊇ fE((x̌� y̌) ⊇ fE((x̌� y̌)� ž) ∩ fE(ž),

gE(x̌� (y̌ � (y̌ � x̌))) ⊆ gE((x̌� y̌) ⊆ gE((x̌� y̌)� ž) ∪ gE(ž)

9
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by (3.9) and (2.15). Let x, y, z ∈ Y and t, r ∈ (0, 1] be such that 〈z/r〉 ∈ ξ and
〈((x ∗ y) ∗ z)/t〉 ∈ ξ. Then 〈(x ∗ y)/min{t, r}〉 ∈ ξ by (2.15). It follows from
(3.10) that

ξ((x ∗ (y ∗ (y ∗ x))) ≥ ξ(x ∗ y) ≥ min{t, r},

i.e., 〈((x ∗ (y ∗ (y ∗ x)))/min{t, r}〉 ∈ ξ. Consequently, M(Y,E) := (fE, gE, ξ) is a
commutative makgeolli ideal of (Y,E).

Theorem 3.10. A makgeolli structure M(Y,E) := (fE, gE, ξ) over (Y,E) is a
commutative makgeolli ideal of (Y,E) if and only if the nonempty sets fE(E;α)
and gE(E; δ) are commutative ideals of (E,�, 0) for all subsets α and δ of Y ,
and the nonempty set ξ(Y ; t) is a commutative ideal of (Y, ∗, 0) for all t ∈ [0, 1].

Proof. Let M(Y,E) := (fE, gE, ξ) be a commutative makgeolli ideal of (Y,E).
Then it is a makgeolli ideal of (Y,E) (see Theorem 3.3). Hence the nonempty
sets fE(E;α) and gE(E; δ) are ideals of (E,�, 0), and the nonempty set ξ(Y ; t)
is an ideal of (Y, ∗, 0) for all subsets α and δ of Y and t ∈ [0, 1] by Lemma 2.5.
Let x̌� y̌ ∈ fE(E;α) ∩ gE(E; δ) for all x̌, y̌ ∈ E and subsets α and δ of Y . Then
fE(x̌� y̌) ⊇ α and gE(x̌� y̌) ⊆ δ. It follows from (3.9) that

fE(x̌� (y̌ � (y̌ � x̌))) ⊇ fE(x̌� y̌) ⊇ α

and gE(x̌� (y̌� (y̌� x̌))) ⊆ gE(x̌� y̌) ⊆ δ. Hence x̌� (y̌� (y̌� x̌)) ∈ fE(E;α)∩
gE(E; δ), and therefore fE(E;α) and gE(E; δ) are commutative ideals of (E,�, 0)
by Lemma 2.1. Let x, y ∈ Y and t ∈ [0, 1] be such that x ∗ y ∈ ξ(Y ; t). Then
ξ(x ∗ y) ≥ t, and so ξ(x ∗ (y ∗ (y ∗ x))) ≥ ξ(x ∗ y) ≥ t by (3.10), that is,
x ∗ (y ∗ (y ∗ x)) ∈ ξ(Y ; t). Thus ξ(Y ; t) is a commutative iddeal of (Y, ∗, 0) by
Lemma 2.1.

Conversely, suppose that the nonempty sets fE(E;α) and gE(E; δ) are com-
mutative ideals of (E,�, 0) for all subsets α and δ of Y , and the nonempty
set ξ(Y ; t) is a commutative ideal of (Y, ∗, 0) for all t ∈ [0, 1]. Then fE(E;α)
and gE(E; δ) are ideals of (E,�, 0), and ξ(Y ; t) is an ideal of (Y, ∗, 0). Thus
M(Y,E) := (fE, gE, ξ) is a makgeolli ideal of (Y,E) by Lemma 2.5. Let x̌, y̌ ∈ E be
such that fE(x̌�y̌) = α and gE(x̌�y̌) = δ. Then x̌�y̌ ∈ fE(E;α)∩gE(E; δ), and so
x̌�(y̌�(y̌�x̌)) ∈ fE(E;α)∩gE(E; δ) by Lemma 2.1. Hence fE(x̌�(y̌�(y̌�x̌))) ⊇
α = fE(x� y) and gE(x̌� (y̌ � (y̌ � x̌))) ⊆ δ = fE(x� y). Let x, y ∈ Y be such
that ξ(x ∗ y) = t. Then x ∗ y) ∈ ξ(Y ; t), which implies from Lemma 2.1 that
x ∗ (y ∗ (y ∗ x)) ∈ ξ(Y ; t). Thus ξ(x ∗ (y ∗ (y ∗ x))) ≥ t = ξ(x ∗ y). Therefore
M(Y,E) := (fE, gE, ξ) is a commutative makgeolli ideal of (Y,E) by Theorem
3.9.

Corollary 3.11. If M(Y,E) := (fE, gE, ξ) is a commutative makgeolli ideal of
(Y,E), then fE(E;α) ∩ gE(E; δ) and ξ(Y ; t) are commutative ideals of (E,�, 0)
and (Y, ∗, 0), respectively, for all subsets α and δ of Y and t ∈ [0, 1].

Proof. Straightforward.

The converse of Corollary 3.11 is not true in general as seen in the following
example.

10
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Example 3.12. Consider a BCK-soft universe (Y,E) where Y = E := {0, 1, 2, 3, 4}
has binary operation “∗(= �)” given by Table 3.

Table 3: Cayley tables for the binary operations “∗(= �)”

∗(= �) 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 1 0
2 2 2 0 2 0
3 3 3 3 0 0
4 4 4 4 4 0

Let M(Y,E) := (fE, gE, ξ) be a makgeolli structure over (Y,E) defined as follows:

fE : E→ P(Y ), x 7→


Y if x = 0,
{3, 4} if x = 1,
{1, 3, 4} if x = 2,
{1, 2, 3, 4} if x = 3,
{4} if x = 4,

gE : E→ P(Y ), x 7→


{3} if x = 0,
{0, 3} if x = 1,
{0, 2, 3} if x = 2,
{0, 2, 3, 4} if x = 3,
Y if x = 4,

and

ξ : Y → [0, 1], y 7→


0.82 if y = 0,
0.54 if y = 1,
0.75 if y = 2,
0.65 if y = 3,
0.42 if y = 4.

It is routine to verify that M(Y,E) := (fE, gE, ξ) is a makgeolli ideal of (Y,E)
and the nonempty sets fE(E;α) ∩ gE(E; δ) and ξ(Y ; t) are commutative ideals
of (E,�, 0) and (Y, ∗, 0), respectively, for all subsets α and δ of Y and t ∈ [0, 1].
We have fE(2�(4�(4�2))) = fE(2) = {1, 3, 4} + Y = fE(0) = fE(2�4) and/or
ξ(1 ∗ (4 ∗ (4 ∗ 1))) = ξ(1) = 0.54 � 0.82 = ξ(0) = ξ(1 ∗ 4). Hence M(Y,E) := (fE,
gE, ξ) is not a commutative makgeolli ideal of (Y,E) by Theorem 3.9.

We make a new commutative makgeolli ideal using the given commutative
makgeolli ideal.

Theorem 3.13. Given a makgeolli structure M(Y,E) := (fE, gE, ξ) over (Y,E),
let M∗(Y,E) := (f∗E , g

∗
E, ξ

∗) be a new makgeolli structure over (Y,E) which is
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defined by

f∗E : E→ P(Y ), x̌ 7→
{
fE(x̌) if x̌ ∈ fE(E; fE(w)),
β otherwise,

g∗E : E→ P(Y ), x̌ 7→
{
gE(x̌) if x̌ ∈ gE(E; gE(w)),
γ otherwise,

ξ∗ : Y → [0, 1], x 7→
{
ξ(x) if x ∈ ξ(Y ; ξ(u)),
k otherwise,

where w ∈ E, u ∈ Y , k ∈ [0, 1] and β, γ ∈ P(Y ) with β ( fE(x̌), γ ) gE(x̌) and
ξ(x) > k. If M(Y,E) := (fE, gE, ξ) is a commutative makgeolli ideal of (Y,E),
then M∗(Y,E) := (f∗E , g

∗
E, ξ

∗) is a commutative makgeolli ideal of (Y,E).

Proof. Assume that M(Y,E) := (fE, gE, ξ) is a commutative makgeolli ideal
of (Y,E). Then the sets fE(E; fE(w)) and gE(E; gE(w)) are commutative ideals
of (E,�, 0) for all w ∈ E, and ξ(Y ; ξ(u)) is a commutative ideal of (Y, ∗, 0)
for all u ∈ Y . Hence 0 ∈ fE(E; fE(w)) ∩ gE(E; gE(w)) ∩ ξ(Y ; ξ(u)), and so
f∗E(0) = fE(0) ⊇ fE(x̌) ⊃ f∗E(x̌) and g∗E(0) = gE(0) ⊆ gE(x̌) ⊆ g∗E(x̌) for all
x̌ ∈ E. Also, we get ξ∗(0) = ξ(0) ≥ ξ(x) ≥ ξ∗(x), i.e., 〈0/ξ∗(x̌)〉 ∈ ξ∗ for all
x ∈ Y . Let x̌, y̌, ž ∈ E. If (x̌ � y̌) � ž ∈ fE(E; fE(w)) ∩ gE(E; gE(w)) and z ∈
fE(E; fE(w))∩gE(E; gE(w)), then x̌�(y̌�(y̌� x̌)) ∈ fE(E; fE(w))∩gE(E; gE(w)).
Thus

f∗E(x̌� (y̌ � (y̌ � x̌))) = fE(x̌� (y̌ � (y̌ � x̌)))

⊇ fE((x̌� y̌)� ž) ∩ fE(ž)

= f∗E((x̌� y̌)� ž) ∩ f∗E(ž)

and

g∗E(x̌� (y̌ � (y̌ � x̌))) = gE(x̌� (y̌ � (y̌ � x̌)))

⊆ gE((x̌� y̌)� ž) ∪ gE(ž)

= g∗E((x̌� y̌)� ž) ∪ g∗E(ž).

If (x̌ � y̌) � ž /∈ fE(E; fE(w)) or z /∈ fE(E; fE(w)), then f∗E((x̌ � y̌) � ž) = β
or f∗E(ž) = β. Hence f∗E(x̌ � (y̌ � (y̌ � x̌))) ⊇ β = f∗E((x̌ � y̌) � ž) ∩ f∗E(z). If
(x̌ � y̌) � ž /∈ gE(E; gE(w)) or z /∈ gE(E; gE(w)), then g∗E((x̌ � y̌) � ž) = γ or
g∗E(ž) = γ. Hence g∗E(x̌ � (y̌ � (y̌ � x̌))) ⊆ γ = g∗E((x̌ � y̌) � ž) ∪ g∗E(z). Let
x, y, z ∈ Y and t, r ∈ (0, 1] be such that 〈((x ∗ y) ∗ z)/t〉 ∈ ξ∗ and 〈z/r〉 ∈ ξ∗. If
(x ∗ y) ∗ z ∈ ξ(Y ; ξ(u)) and z ∈ ξ(Y ; ξ(u)), then x ∗ (y ∗ (y ∗x)) ∈ ξ(Y ; ξ(u)) and
thus

ξ∗(x ∗ (y ∗ (y ∗ x))) = ξ(x ∗ (y ∗ (y ∗ x)))

≥ min{ξ((x ∗ y) ∗ z), ξ(z)}
= min{ξ∗((x ∗ y) ∗ z), ξ∗(z)}
≥ min{t, r},
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that is, 〈(x ∗ (y ∗ (y ∗ x)))/min{t, r}〉 ∈ ξ∗. If (x ∗ y) ∗ z /∈ ξ(Y ; ξ(u)) or z /∈
ξ(Y ; ξ(u)), then ξ∗((x ∗ y) ∗ z) = k or ξ∗(z) = k. Thus

ξ∗(x ∗ (y ∗ (y ∗ x))) ≥ k = min{ξ∗((x ∗ y) ∗ z), ξ∗(z)} ≥ min{t, r},

and so 〈(x ∗ (y ∗ (y ∗ x)))/min{t, r}〉 ∈ ξ∗. Therefore M∗(Y,E) := (f∗E , g
∗
E, ξ

∗) is a

commutative makgeolli ideal of (Y,E).

Note that a makgeolli ideal might not be a commutative makgeolli ideal (see
Example 3.4). But we can consider the extension property for a commutative
makgeolli ideal.

Theorem 3.14. Let M(Y,E) := (fE, gE, ξ) and M̃(Y,E) := (f̃E, g̃E, ξ̃) be makgeolli

ideals of (Y,E) such that M(Y,E) b M̃(Y,E), that is,

(i) fE(0) = f̃E(0), gE(0) = g̃E(0), ξ(0) = ξ̃(0),

(ii) (∀x̌ ∈ E,∀x ∈ Y ) (f̃E(x̌) ⊇ fE(x̌), g̃E(x̌) ⊆ gE(x̌), ξ̃(x) ≥ ξ(x)).

If M(Y,E) := (fE, gE, ξ) is a commutative makgeolli ideal of (Y,E), then so is

M̃(Y,E) := (f̃E, g̃E, ξ̃).

Proof. Let M(Y,E) := (fE, gE, ξ) and M̃(Y,E) := (f̃E, g̃E, ξ̃) be makgeolli ideals of

(Y,E) such that M(Y,E) b M̃(Y,E). Then fE(E;α) ⊆ f̃E(E;α), gE(E; δ) ⊇ g̃E(E; δ)

and ξ(Y ; t) ⊆ ξ̃(Y ; t) for all subsets α and δ of Y and t ∈ (0, 1]. Assume that
M(Y,E) := (fE, gE, ξ) is a commutative makgeolli ideal of (Y,E). Then the
nonempty sets fE(E;α) and gE(E; δ) are commutative ideals of (E,�, 0) for all
subsets α and δ of Y , and the nonempty set ξ(Y ; t) is a commutative ideal
of (Y, ∗, 0) for all t ∈ (0, 1] by Theorem 3.10. Since M̃(Y,E) := (f̃E, g̃E, ξ̃) is
a makgeolli ideal of (Y,E), we know from Lemma 2.5 that the nonempty sets
f̃E(E;α) and g̃E(E; δ) are ideals of (E,�, 0) for all subsets α and δ of Y , and
the nonempty set ξ̃(Y ; t) is an ideal of (Y, ∗, 0) for all t ∈ (0, 1]. Let x, y ∈ Y
and t ∈ (0, 1] be such that x ∗ y ∈ ξ̃(Y ; t). Using (I3) and (2.4), we have
(x ∗ (x ∗ y)) ∗ y = (x ∗ y) ∗ (x ∗ y) = 0 ∈ ξ(Y ; t). Since ξ(Y ; t) is a commutative
ideal of (Y, ∗, 0), using (2.4) and Lemma 2.1 leads to

(x ∗ (y ∗ (y ∗ (x ∗ (x ∗ y))))) ∗ (x ∗ y)

= (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ (x ∗ (x ∗ y))))

∈ ξ(Y ; t) ⊆ ξ̃(Y ; t),

and so x ∗ (y ∗ (y ∗ (x ∗ (x ∗ y)))) ∈ ξ̃(Y ; t) bacause ξ̃(Y ; t) is an ideal of (Y, ∗, 0).
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Note that

(x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ (y ∗ (y ∗ (x ∗ (x ∗ y)))))

(I1)

≤ (y ∗ (y ∗ (x ∗ (x ∗ y)))) ∗ (y ∗ (y ∗ x))

(I1)

≤ (y ∗ x) ∗ (y ∗ (x ∗ (x ∗ y)))

(I1)

≤ (x ∗ (x ∗ y)) ∗ x
(2.4)
= (x ∗ x) ∗ (x ∗ y)

(I3)&(K)
= 0 ∈ ξ̃(Y ; t).

Hence x ∗ (y ∗ (y ∗ x)) ∈ ξ̃(Y ; t), and therefore ξ̃(Y ; t) is a commutative ideal of
(Y, ∗, 0). Let x̌, y̌ ∈ E be such that x̌� y̌ ∈ f̃E(E;α) ∩ g̃E(E; δ). Then

(x̌� (x̌� y̌))� y̌ = (x̌� y̌)� (x̌� y̌) = 0 ∈ fE(E;α) ∩ gE(E; δ)

by (I3) and (2.4), and so

(x̌� (y̌ � (y̌ � (x̌� (x̌� y̌)))))� (x̌� y̌)

= (x̌� (x̌� y̌))� (y̌ � (y̌ � (x̌� (x̌� y̌))))

∈ fE(E;α) ∩ gE(E; δ) ⊆ f̃E(E;α) ∩ g̃E(E; δ)

since fE(E;α) and gE(E; δ) are commutative ideals of (E,�, 0). Using (I1), (I3),
(K) and (2.4), we have

(x̌� (y̌ � (y̌ � x̌)))� (x̌� (y̌ � (y̌ � (x̌� (x̌� y̌))))) ≤ 0.

Since f̃E(E;α) and g̃E(E; δ) are ideals of (E,�, 0), it follows that

x̌� (y̌ � (y̌ � x̌)) ∈ f̃E(E;α) ∩ g̃E(E; δ).

Hence f̃E(E;α) and g̃E(E; δ) are commutative ideals of (E,�, 0) by Lemma 2.1.
Consequently, M̃(Y,E) := (f̃E, g̃E, ξ̃) is a commutative makgeolli ideal of (Y,E).
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Abstract

Existing Literature, Problem and Limitation: To address problems of fuzzy data in
various fields, Molodtsov presented soft set theory, a broad mathematical technique for ambi-
guity. This theory has been used in a variety of pure and practical mathematical fields. It is
evident in this theory that soft subsets and soft equal relations significantly contributed to soft
topology, lattices, soft groups, etc. Existing research is limited in that various features, such as
associative, distributive, etc., are not confirmed by some current soft subsets for soft product
operations. Purpose: While studying soft subsets, we observe that several algebraic properties
have not yet been investigated on various generalized soft subsets to enhance algebraic structures
in soft set theory. So, this article investigates some of these algebraic properties on different
generalized soft subsets on different soft operations. Contribution: This study demonstrates
a few counterexamples that some algebraic properties are unsatisfied by generalized soft sub-
sets. Based on this approach, we present some crucial theorems and results that show these
significant features on all soft subsets by employing additional conditions. A universal comple-
ment property in soft set theory in relation to soft complements (negation complement (c) and
relative complement (r)) is propounded. Limitation: The sole restriction of these results is
that two generalised soft subsets (soft J-subset and soft L-subset) do not satisfy the union and
intersection condition of classical mathematics as described in section 4.

Keywords: Soft sets, Soft M-subset, Soft L-subset, Soft F-subset, Soft J-subset, Soft Com-
plements etc.

1. Introduction

1.1. Problem Statement:

Most existing techniques for formal reasoning, computing, and modelling have a clear, deter-
ministic, and precise nature. But there are other challenging issues in fields, including economics,
engineering, environment etc., that can sometimes involve fuzzy data. Because these challenges
contain a variety of forms of uncertainty, we cannot effectively employ classical approaches to solve
them. Several theories can be viewed as a framework in mathematics to cope with ambiguities,
including the theory of interval mathematics, vague sets, fuzzy sets, and a few others. Molodtsov [1]
noted each of these theories includes deficiencies that are inherent to them. To address these issues
mathematically, Molodtsov developed the idea of soft set theory. Soft sets could be viewed as a
particular type of neighbourhood systems and context-dependent fuzzy sets. The problem of con-
structing the membership function as well as other related complications are essentially nonexistent
in this theory. As a result, it is extremely useful and has potential applications in various areas
of mathematics, as shown in [1]. In recent years, many authors [1, 6, 8, 10, 11, 19, 20] worked on
operations of soft sets and studied algebraic structures in soft set theory. But we observe that very
few works has been done on join(∨̃) and meet(∧̃) operations of soft sets. Therefore, for extending
algebraic structures in soft set theory, we studied these operators on generalized soft subsets, and
gives some algebraic properties in this research article.

1.2. Previous Research and Limitations:

∗ Corresponding Author.
Email address: rsingh7@amity.edu (Rashmi Singh)
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Maji et. al. [11] provided the first detailed explanation of the concept of soft subsets. A complete
theoretical examination on soft sets was also written by them, and asserted a few results regarding
soft distributive laws with respect to soft products (∧̃ and ∨̃) operations of soft sets, but they did
not present any supporting data (see 2.6 in [11]). Moreover, according to Ali et al. [6], the results
in [10] were inaccurate (see 2.8 in [10]). Therefore, the ideas of generalized soft subsets and soft
equal relations were also put forward by Jun and Yang [20]. In an effort to respond to Maji’s results
(Proposition 2.6 in [11]) and suggested generalized soft distribution laws, they also tried to apply
generalized soft equal relations. They started by defining soft J-equal and soft L-equal relations. It is
crucial to note that Jun and Yang in [20] and Liu et al. in [19] did not reach the same conclusion on
the applicability of distributive laws to all types of soft equal relations. Additionally, Feng and Li [3]
thoroughly examined soft product operations, conducted a systematic investigation of five different
kinds of soft subsets and developed the free soft algebraic quotient structures linked to soft product
operations. But no one study these soft product operations on different types of generalized soft
subsets. Therefore, we tried to attempt and explore some operations on various types of generalized
soft subsets.

1.3. Motivation:

Yadav and Singh [12] first studied El-algebra in soft sets and introduced the concept of soft El-
algebra as well as a number of noteworthy algebraic features. But while studying ES structure [13, 18]
on soft sets, we observed that the given structure does not make a lattice structure in the sense of
soft M-subsets. Therefore, we studied other generalized soft subsets [19, 20] and found that ES
structure makes a lattice structure with respect to soft J-subsets. Furthermore, for defining order
reversing involution operator on ES structure, we needed complement operation of soft sets. So, we
studied two types of complements [6, 11] in soft sets and observed that no one worked on generalized
soft sets on these complements. Therefore, in the present article, we derive some algebraic properties
of generalized soft subsets on these complement operations.

1.4. Contribution of the study:

Soft Set Theory is a mathematical framework that deals with ambiguities and vagueness in
real-world scenarios. In this research article, the researchers focused on the algebraic properties of
generalized soft subsets. They found that some of these algebraic properties were not satisfied by
any of generalized soft subsets, and demonstrated these findings with a few counterexamples.

To overcome this issue, the researchers proposed additional conditions on the elements of param-
eter set, that would satisfy these significant algebraic features on all soft subsets. They presented
some crucial theorems and results supported by real life example that showed how these conditions
could be used to achieve these algebraic features. Moreover, the researchers studied the universal
complement property on all generalized soft subsets in soft set theory. This property relates to two
types of soft complements, which include negation soft complement (c) and relative soft complement
(r). The researchers proposed a new approach to achieve this property, which can be used to define
soft complements more generally. Overall, this study contributes to the advances of soft set theory
by addressing some of the algebraic properties of generalized soft subsets and proposing new condi-
tions to satisfy these properties.

1.5. Paper Organization:

This work is divided into six components as: Section 1. provides research problem, previous
research, motivation, background etc. Section 2. summarise the fundamental definitions of soft
sets and their operations like soft unions (∪̃), soft intersections (∩̃), soft products (∨̃ and ∧̃) etc.
with some basic results. Section 3. gives a brief introduction to four types of soft subsets with an
important proposition about their interrelations. Section 4. is devoted to provide some important
outcomes on various soft subsets in terms of soft product, soft union and soft intersection operations.
In Section 5. we first give a general property of complement on classical sets in mathematics, and
then study this property on all generalized soft subsets in the sense of soft negation and soft relative
complements [6, 11]. Section 6. provides the conclusion and future work of present study.
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1.6. Background:

As we know that Molodtsov [1] presented the idea of soft sets as a unique mathematical tech-
nique to dealing with ambiguities. The implementation of this theory to a decision-making issue
involving rough sets is described by Maji et. al. [10] by utilizing soft sets in the form of a binary
information table, and defined first time parameter reduction on soft sets. Further, in [11], they
gave a few definitions and operations of soft sets like soft subset (⊆̃), soft superset (⊇̃), null soft set
(Φ̃), absolute soft sets (Ã), soft complement, soft union (∪̃), soft intersection (∩̃), “AND” and “OR”
(∧̃ and ∨̃) operations. Further, Feng et. al. [4] provided the definition of soft subset in a different
way. But, Cagman and Enginoglu [8] built a uni-int decision-making approach by redefining soft
sets operations to improve new results. Ali et. al. [6] also gave some new operations on soft sets like
extended and restricted intersection, difference and union, relative and negation complements, and
proved De-Morgan’s law on these operations. Moreover, in [6, 8], they proved that soft products
(∨̃-product and ∧̃-product) does not hold commutative and associative properties in the sense of soft
M-equal relation. For studying these algebraic properties, Jun and Yang [20] gave the definition of
generalized soft subset (Soft J-subset in [19]), and proved distributive property called it generalized
distributive law, with respect to soft J-equality and generalized interval-valued fuzzy soft equality.
After that Liu et. al. [19] combined fuzzy, rough and soft sets to provide four types of generalized
soft subsets with some basic properties. They found that the distributive property given in [20]
does holds with respect to soft J-equal, and provided a new generalized soft distributive law of soft
L-equal. Moreover, they amended the associative property of Maji [11] with respect to soft L-equal
and said that this property can be satisfied only by soft L-equality instead of other existing equality.

In literature, some authors [2, 7, 9] have explored above properties to topological spaces in soft
set theory and presented different kinds of soft topological spaces. A full and exhaustive overview
of the researches done in soft set theory and the advancements of topological spaces in soft sets was
provided by Yadav and Singh [14]. According to Bentley [5], topological spaces can be derived from
nearness spaces. Furthermore, Singh with others [15, 16, 17] studied the concepts of soft d-proximity,
soft binary heminearness spaces, and nearness of finite order Sn-merotopy respectively.

2. Preliminaries:

Some fundamental definitions of soft sets and associated operators are provided in this section.
Throughout the whole article, U and E are non-empty finite universal sets of objects and all possible
parameters/attributes respectively. The touple (U, E) or UE is referred to as a soft universe.

Definition 2.01([1]): Let P(U) be the power set of U and A ⊆ E. Then a couple (F, A) is said to
be soft set over U, if F is a representation defined as:

F : A −→ P(U).

Here, we writes a soft set (F, A) by FA, where FA = {(α, F(α)) | α ∈ A, F(α) ∈ P(U)}. Set F(α)
can be selected at random. Soft set is not a classical set. Then, a significant quantity of information
was provided in [1].

Definition 2.02([11]): 1. A null soft set Φ̃, is a soft set FA on U, if ∀ α ∈ A, F(α) = φ (null set).
2. An absolute soft set Ã, is a soft set FA on U, if ∀ α ∈ A, F(α) = U.

Definition 2.03([11]): Let F1
A1

and F2
A2

are two soft sets on U. Then Intersection of F1
A1

and F2
A2

over U is defined as: F1
A1
∩̃ F2

A2
= F3

A3
, where A3 = A1 ∩ A2, and F3(α) = F2(α) or F1(α), (as

both have similar approximation), ∀ α ∈ A3.

Definition 2.04([6]): The extended intersection of F1
A1

and F2
A2

over U is written as F1
A1
ũE F2

A2

and defined as: F1
A1
ũE F2

A2
= F3

A3
, where A3 = A1 ∪ A2, and ∀ α ∈ A3

3
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F 3(α) =


F 1(α) , α ∈ A1 −A2

F 2(α) , α ∈ A2 −A1

F 1(α) ∩ F 2(α) , α ∈ A1 ∩A2.

Definition 2.05([6]): Let F1
A1

and F2
A2

are soft sets on U such as A1 ∩ A2 6= φ. Then, the restricted
intersection of F1

A1
and F2

A2
is written as F1

A1
ẽ F2

A2
, described as F1

A1
ẽ F2

A2
= F3

A3
, where A3 =

A1 ∩ A2, and ∀ α ∈ A3, F3(α) = F1(α) ∩ F2(α).

Result 2.06: By the definitions 2.03, 2.04 and 2.05 we can conclude that intersection and extended
intersection of two non-null soft sets is a non-null soft set, either their approximations are similar
or not at the same attribute. However, their restricted intersection may be a null soft set, as shown
by below example.

Example 2.07: Consider U = {µ1, µ2, µ3, µ4, µ5} be the set of five canditates for an interview
in a company, and E = {%1, %2, %3, %4, %5} be the set of five types of jobs, where %1 stands for
Network Administrator (NA), %2 stands for User Experience Designer (UED), %3 stands for System
Analyst (SA), %4 stands for Database Administrator (DA) and %5 stands for Development Operations
Engineer (DOE). let F1

A1
and F2

A2
are two members in selection board, which provides the names

of capable canditates for respective jobs in sets A1 and A2 respectively. Here, we consider F1
A1

and
F2
A2

are two soft sets over universe set U, defined as:

F1
A1

= {(%1, {µ1, µ2}), (%2, {µ4, µ5})},
F2
A2

= {(%1, {µ3}), (%2, {µ1, µ2}), (%3, {µ4, µ5})}.
By definition 2.05, F1

A1
ẽ F2

A2
= F3

A3
, where A3 = A1 ∩ A2. Now, A3 = {%1, %2} and hence F3

A3

= {(%1, φ), (%2, φ)}. Here, F1
A1

ẽ F2
A2

provides the most suitable canditates for common jobs in
respect to the opinions of F1

A1
and F2

A2
.

Definition 2.08([11]): Let F1
A1

and F2
A2

are soft sets on U, then the soft union is provided as a
soft set FA, that satisfies the following criteria:

(i) A = A1 ∪ A2,
(ii) ∀ α ∈ A,

F (α) =


F 1(α) , α ∈ A1 −A2

F 2(α) , α ∈ A2 −A1

F 1(α) ∪ F 2(α) , α ∈ A1 ∩A2.

Definition 2.09([11]): Let F1
A1

and F2
A2

are soft sets described on U, where A1, A2 ⊆ E. Then
“AND” can be defined as: F1

A1
∧̃ F2

A2
= FA1×A2 , where ∀ (α, β) ∈ A1 × A2, F(α, β) = F1(α) ∩

F2(β).

Definition 2.10([11]): Let F1
A1

and F2
A2

are soft sets described on U, where A1, A2 ⊆ E. Then
“OR” can be defined as: F1

A1
∨̃ F2

A2
= FA1×A2

, where ∀ (α, β) ∈ A1 × A2, F(α, β) = F1(α) ∪
F2(β).

Result 2.11: Let F1
A1
6= Φ̃, F2

A2
6= Φ̃. Then, “AND” of F1

A1
and F2

A2
can be a null soft set i.e. F1

A1

∧̃ F2
A2

= Φ̃ (see example 2.12).

Example 2.12: Let U and E are universal sets as given in example 2.07, F1
A1

and F2
A2

are soft sets
defined as:

F1
A1

= {(%1, {µ1, µ2}), (%2, {µ5})},
F2
A2

= {(%1, {µ3}), (%3, {µ5})}.
Now, A3 = A1 × A2 = {(%1, %1), (%2, %1), (%1, %3), (%2, %3)}. Thus, F1

A1
∧̃ F2

A2
= F3

A3
= {((%1, %1),

φ), ((%2, %1), φ), ((%1, %3), φ), ((%2, %3), φ)}, where F1
A1
∧̃ F2

A2
provides most suitable candidates

for one or two perticular jobs at a time with respect to the opinion of F1
A1

and F2
A2

.
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3. Generalized Soft Subsets:

Maji et. al. [11] and Feng et. al. [4] gave two kinds of soft subsets and soft equal relations. Liu
et. al. [19] called it soft M-subset, soft F-subset and soft M-equal relation, soft F-equal relation. A
generalization of soft subsets was examined by Jun and Yang [20]. Furthermore, Liu et. al. [19] gave
the notions of soft J-subset and soft L-subset and demonstrated that soft M-equal and soft F-equal
relations are correlate with one another, while others are distinct in general. Here, we provide an
overview of four different soft subsets as:

Definition 3.01([11]): Let F1
A1

and F2
A2

are soft sets defined on U. Then F1
A1

is a soft subset
(renamed it a soft M-subset in [19]) of F2

A2
if:

(i) A1 ⊆ A2,
(ii) For each a1 ∈ A1, F1(a1) and F2(a1) are approximations that are similar.

Soft subset is represented by F1
A1
⊆̃ F2

A2
or F1

A1
⊆̃M F2

A2
. Also F1

A1
and F2

A2
are called soft M-equal

or soft equal, written as F1
A1

=M F2
A2

, if F1
A1
⊆̃M F2

A2
and F2

A2
⊆̃M F1

A1
.

Definition 3.02([4]): Let F1
A1

and F2
A2

are soft sets on U. Then F1
A1

is soft subset (renamed it a

soft F-subset in [19]) of F2
A2

, written as F1
A1
⊆̃F F2

A2
, iff A1 ⊆ A2 and F1(a1) ⊆ F2(a1) ∀ a1 ∈ A1.

Also, F1
A1

and F2
A2

are called soft F-equal, denoted as F1
A1

=F F2
A2

, if F1
A1
⊆̃F F2

A2
and F2

A2
⊆̃F

F1
A1

.

Definition 3.03([19]): Let F1
A1

and F2
A2

are non-empty soft sets. Then F1
A1

is called soft J-subset

of F2
A2

or F1
A1
⊆̃J F2

A2
if and only if for any a1 ∈ A1, ∃ a2 ∈ A2 such that F1(a1) ⊆ F2(a2) (see

example 3.04). Also, F1
A1

and F2
A2

are called soft J-equal, denoted as F1
A1

=J F2
A2

, if F1
A1
⊆̃J F2

A2

and F2
A2
⊆̃J F1

A1
.

Example 3.04: Consider U and E are universal sets of candidates and jobs respectively, as given
in example 2.07. Let,

F1
A1

= {(%1, {µ1, µ2}), (%2, {µ3}), (%3, {µ2, µ3})},
F2
A2

= {(%1, {µ1, µ2}), (%3, {µ2, µ3}), (%4, {µ2})} .

Since A1 6= A2, so F1
A1
6=M F2

A2
. But we can see that, F1

A1
⊆̃J F2

A2
and F2

A2
⊆̃J F1

A1
. Hence, F1

A1

=̃J F2
A2

.

Here, if F1
A1
⊆̃M F2

A2
, then from example 2.07 it indicates that both members (F1

A1
and F2

A2
)

of selection board selected same candidates for every job in A1. Similarly, if F1
A1
⊆̃J F2

A2
, then it

indicates that for every job in A1, the members selected by F1
A1

are also selected by F2
A2

for the
same or different job in A2.

Definition 3.05([19]): Let F1
A1

and F2
A2

are non-empty soft sets on U. Then, F1
A1

is soft L-subset

of F2
A2

or F1
A1
⊆̃L F2

A2
if and only if for any a1 ∈ A1, ∃ a2 ∈ A2 such that F1(a1) = F2(a2). Soft

sets F1
A1

and F2
A2

are called soft L-equal, denoted as F1
A1

=L F2
A2

, if F1
A1
⊆̃L F2

A2
and F2

A2
⊆̃L F1

A1
.

Proposition 3.06([19]): Let F1
A1
6= Φ̃ and F2

A2
6= Φ̃. Then,

(1) F1
A1
⊆̃M F2

A2
=⇒ F1

A1
⊆̃F F2

A2
=⇒ F1

A1
⊆̃J F2

A2
,

(2) F1
A1
⊆̃M F2

A2
=⇒ F1

A1
⊆̃L F2

A2
=⇒ F1

A1
⊆̃J F2

A2
,

(3) F1
A1

=M F2
A2

=⇒ F1
A1

=L F2
A2

=⇒ F1
A1

=J F2
A2

.

But generally, the converse of the aforementioned arguments does not exist (see examples 2.6, 2.9,
3.3 in [19]).

4. Generalized Soft Subsets on Soft Operations:

This section presents some characterizations of above given different types of soft subsets with
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respect to two properties given below. We can see that all soft subsets satisfy only property 4.01
(1); property 4.01 (2) could be satisfied by soft F-subset and soft M-subset instead of soft J-subset
and soft L-subset.

Property 4.01: Let P, Q, X and Y are four crisp subsets of the universe set U such as P ⊆ X and
Q ⊆ Y. Then we have,
(1). P ∨ Q ⊆ X ∨ Y, and P ∧ Q ⊆ X ∧ Y,
(2). P ∩ Q ⊆ X ∩ Y, and P ∪ Q ⊆ X ∪ Y.

Proposition 4.02: Let F1
A1

, F2
A2

, F3
A3

and F4
A4

are four soft sets defined on U. Then,

(1). If F1
A1
⊆̃F F2

A2
and F3

A3
⊆̃F F4

A4
, then F1

A1
∨̃ F3

A3
⊆̃F F2

A2
∨̃ F4

A4
and F1

A1
∧̃ F3

A3
⊆̃F F2

A2
∧̃

F4
A4

.

(2). If F1
A1
⊆̃M F2

A2
and F3

A3
⊆̃M F4

A4
, then F1

A1
∨̃ F3

A3
⊆̃M F2

A2
∨̃ F4

A4
and F1

A1
∧̃ F3

A3
⊆̃M F2

A2
∧̃

F4
A4

.

(3). If F1
A1
⊆̃J F2

A2
and F3

A3
⊆̃J F4

A4
, then F1

A1
∨̃ F3

A3
⊆̃J F2

A2
∨̃ F4

A4
and F1

A1
∧̃ F3

A3
⊆̃J F2

A2
∧̃

F4
A4

,

(4). If F1
A1
⊆̃L F2

A2
and F3

A3
⊆̃L F4

A4
, then F1

A1
∨̃ F3

A3
⊆̃L F2

A2
∨̃ F4

A4
and F1

A1
∧̃ F3

A3
⊆̃L F2

A2
∧̃

F4
A4

.

Proof: We simply demonstrate the correctness of (1) and (3); same method can be used to obtain
(2) and (4).

(1). Let F1
A1
∨̃ F3

A3
= FA1×A3

and F2
A2
∨̃ F4

A4
= GA2×A4

, where F(α, γ) = F1(α) ∪ F3(γ), ∀ (α,

γ) ∈ A1 × A3 and G(β, δ) = F2(β) ∪ F4(δ), ∀ (β, δ) ∈ A2 × A4. Since, F1
A1
⊆̃F F2

A2
and F3

A3
⊆̃F

F4
A4

. So, we have A1 ⊆ A2, A3 ⊆ A4, F1(α) ⊆ F2(α) ∀ α ∈ A1 and F3(γ) ⊆ F4(γ) ∀ γ ∈ A3. It
implies that, A1 × A3 ⊆ A2 × A4 and F1(α) ∪ F3(γ) ⊆ F2(α) ∪ F4(γ), ∀ (α, γ) ∈ A1 × A3. Hence,
F1
A1
∨̃ F3

A3
⊆̃F F2

A2
∨̃ F4

A4
. Similarly, we can prove that F1

A1
∧̃ F3

A3
⊆̃F F2

A2
∧̃ F4

A4
.

(3). Since, F1
A1
⊆̃J F2

A2
and F3

A3
⊆̃J F4

A4
, so for every α ∈ A1, ∃ β ∈ A2 such that F1(α) ⊆ F2(β).

Similarly, for every γ ∈ A3, ∃ δ ∈ A4 such that F3(γ) ⊆ F4(δ). Now, let F1
A1
∨̃ F3

A3
= FA1×A3

and
F2
A2
∨̃ F4

A4
= GA2×A4 . Then F(α, γ) = F1(α) ∪ F3(γ), ∀ (α, γ) ∈ A1 × A3 and G(β, δ) = F2(β) ∪

F4(δ), ∀ (β, δ) ∈ A2 × A4. But F1(α) ∪ F3(γ) ⊆ F2(β) ∪ F4(δ). This implies that, for any (α, γ)
∈ A1 × A3, ∃ (β, δ) ∈ A2 × A4 such that F1(α) ∪ F3(γ) ⊆ F2(β) ∪ F4(δ). Hence from definition
3.03, F1

A1
∨̃ F3

A3
⊆̃J F2

A2
∨̃ F4

A4
. Similarly, we can prove that F1

A1
∧̃ F3

A3
⊆̃J F2

A2
∧̃ F4

A4
.

Proposition 4.03: Let F1
A1

, F2
A2

, F3
A3

and F4
A4

are four soft sets over U. Then,

(1). F1
A1
⊆̃F F2

A2
and F3

A3
⊆̃F F4

A4
, implies F1

A1
∪̃ F3

A3
⊆̃F F2

A2
∪̃ F4

A4
and F1

A1
∩̃ F3

A3
⊆̃F F2

A2
∩̃

F4
A4

,

(2). If F1
A1
⊆̃M F2

A2
and F3

A3
⊆̃M F4

A4
, implies F1

A1
∪̃ F3

A3
⊆̃M F2

A2
∪̃ F4

A4
and F1

A1
∩̃ F3

A3
⊆̃M F2

A2

∩̃ F4
A4

.

Proof: We just varify the validity of (1); subsequent work could be use identical methods to estab-
lish (2). To this end, Let F1

A1
∪̃ F3

A3
= JḊ, where Ḋ = A1 ∪ A3, and F2

A2
∪̃ F4

A4
= J

′

D′ , where D
′

= A2 ∪ A4. By definition 2.08, we have

J(ḋ) =


F 1(ḋ) , ḋ ∈ A1 −A3

F 3(ḋ) , ḋ ∈ A3 −A1

F 1(ḋ) ∪ F 3(ḋ) , ḋ ∈ A1 ∩A3,

, ∀ ḋ ∈ Ḋ,

J
′
(d

′
) =


F 2(d

′
) , d

′ ∈ A2 −A4

F 4(d
′
) , d

′ ∈ A4 −A2

F 2(d
′
) ∪ F 4(d

′
) , d

′ ∈ A2 ∩A4.

, ∀ d
′ ∈ D

′

To prove JḊ ⊆̃F J
′

D′ , we show that Ḋ ⊆ D
′

and J(α) ⊆ J
′
(α), ∀ α ∈ Ḋ. Since F1

A1
⊆̃F F2

A2
and

F3
A3
⊆̃F F4

A4
, so A1 ⊆ A2, F1(α) ⊆ F2(α), ∀ α ∈ A1, and A3 ⊆ A4, F3(α) ⊆ F4(α), ∀ α ∈ A3. It

implies that Ḋ = A1 ∪ A3 ⊆ A2 ∪ A4 = D
′

and Ḋ ∩ D
′

= Ḋ. Now,
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Case 1. If α ∈ A1 - A3, then J(α) = F1(α) ⊆ F2(α) = J
′
(α).

Case 2. If α ∈ A3 - A1 then J(α) = F3(α) ⊆ F4(α) = J
′
(α).

Case 3. If α ∈ A1 ∩ A3, then J(α) = F1(α) ∪ F3(α) ⊆ F2(α) ∪ F4(α) = J
′
(α).

Hence, ∀ α ∈ Ḋ, J(α) ⊆ J
′
(α) and thus we finally conclude that F1

A1
∪̃ F3

A3
⊆̃F F2

A2
∪̃ F4

A4
. Similarly,

we can prove that F1
A1
∩̃ F3

A3
⊆̃F F2

A2
∩̃ F4

A4
.

The following examples provides an explanation to how the property 4.01 (2) need not be satisfied
by soft J-subsets and soft L-subsets, as we discussed above.

Example 4.04: Let U = {1, 2, 3, 4, 5} and E = {a, b, c, d, e} are the universe set and the essential
set of parameters. Consider, F1

A1
, F2

A2
, F3

A3
and F4

A4
are four soft sets defined over U as:

F1
A1

= {(a, {2, 3}), (b, {1, 3, 4})},
F2
A2

= {(c, {2, 3}), (d, {1, 3, 4, 5})},
F3
A3

= {(a, {3, 5})},
F4
A4

= {(c, {4}), (e, {1, 3, 5})}.
Then, it is clear that F1

A1
⊆̃J F2

A2
and F3

A3
⊆̃J F4

A4
, since F1(a) ⊆ F2(c), F1(b) ⊆ F2(d) and

F3(a) ⊆ F4(e) respectively. Now, let us write F1
A1
∪̃ F3

A3
= JD and F2

A2
∪̃ F4

A4
= J

′

D′ , where D =

{a, b} and D
′

= {c, d, e} such that JD = {(a, {2, 3, 5}), (b, {1, 3, 4})} and J
′

D′ = {(c, {2, 3, 4}),
(d, {1, 3, 4, 5}), (e, {1, 3, 5})}. Then, clearly we can see that J(b) ⊆ J

′
(d) but for a ∈ D there does

not exists any α
′ ∈ D

′
such as J(a) ⊆ J

′
(α

′
) which gives JD *̃

J
J

′

D′ or F1
A1
∪̃ F3

A3
*̃

J
F2
A2
∪̃ F4

A4
.

Also by definition 2.05, let us write F1
A1
∩̃ F3

A3
= JD and F2

A2
∩̃ F4

A4
= J

′

D′ , where D = {a} and

D
′

= {c} such that JD = {(a, {3})} and J
′

D′ = {(c, φ)}. Therefore, we have F1
A1
∩̃ F3

A3
*̃

J
F2
A2
∩̃

F4
A4

.

Example 4.05: Let U and E are universal sets as given in example 4.04. Consider, F1
A1

, F2
A2

, F3
A3

and F4
A4

are four soft sets defined over U as:
F1
A1

= {(a, {2}), (b, {1, 3, 4})},
F2
A2

= {(c, {2}), (d, {1, 3, 4}), (e, {5})},
F3
A3

= {(a, {3, 5})},
F4
A4

= {(c, {2, 4}), (e, {3, 5})}.
Then, clearly F1

A1
⊆̃L F2

A2
and F3

A3
⊆̃L F4

A4
, since F1(a) = F2(c), F1(b) = F2(d) and F3(a) =

F4(e) respectively. Now, let us write F1
A1
∪̃ F3

A3
= JD and F2

A2
∪̃ F4

A4
= J

′

D′ , where D = {a, b} and

D
′

= {c, d, e} such that JD = {(a, {2, 3, 5}), (b, {1, 3, 4})} and J
′

D′ = {(c, {2, 4}), (d, {1, 3, 4}),
(e, {3, 5})}. Therefore, we have J(b) = J

′
(d) but for a ∈ R @ α′ ∈ D

′
such as J(a) = J

′
(α

′
). Thus,

JD *̃
L

J
′

D′ or F1
A1
∪̃ F3

A3
*̃

L
F2
A2
∪̃ F4

A4
. Also by definition 2.05, let us write F1

A1
∩̃ F3

A3
= JD and

F2
A2
∩̃ F4

A4
= J

′

D′ , where D = {a} and D
′

= {c, e} such that JD = {(a, φ)} and J
′

D′ = {(c, {2}), (e,

{5})}. Therefore, we have F1
A1
∩̃ F3

A3
*̃

L
F2
A2
∩̃ F4

A4
.

5. Complement Property and Generalized Soft Subsets:

In this section, first we define a universal complement property on classical subsets and soft
complements (negation c and relative r complement) on soft sets. In soft set theory, it is obvious
that none of the soft subsets presented in section 4 satisfy the complement property 5.01. However,
by applying a restrictions on their parameter sets, we show the validity of the specified complement
property on all soft subsets.

Definition 5.01(Universal Complement Property): Let the universe set be X. If U ⊆ X and
V ⊆ X such as U ⊆ V, then V

′ ⊆ U
′
, where “

′
” is called complement operator defined as U

′
= X -

U.

Definition 5.02([11]): The soft set (FA)c is the complement of soft set FA, described as (FA)c =
Fc
eA, where Fc is a mapping as: Fc : eA −→ P(U), such that ∀ α ∈ eA, Fc(α) = U - F(¬α). Here, eA
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is read as “NOT set of a set A”; eA = {¬α1, ¬α2,....., ¬αn}, where ¬αi = not αi, ∀ i. (It should be
observed that the operators e and ¬ are distinct). This type of soft complement is called “negation
complement (neg-complement or pseudo-complement [6])”.

Definition 5.03([6]): The soft set (FA)r is the complement of soft set FA, defined as (FA)r = Fr
A,

where Fr is a mapping: Fr : A −→ P(U), such as ∀ α ∈ A, Fr(α) = U - F(α). This type of soft
complement is called “Relative Complement”.

Clearly, ((FA)c)c = FA and ((FA)r)r = FA. However, it is noted that the parameter set in relative
complement (FA)r is still the original set A of parameters, instead of eA in negation complement
(FA)c. The following theorem provides an important result that, if FA1

⊆̃ GA2
, then (FA1

)c ⊆̃
(GA2

)c and (FA1
)r ⊆̃ (GA2

)r with respect to soft M-subset and soft L-subset.

Theorem 5.04: Let FA1
and GA2

are soft sets defined on U. Then,
(1). FA1

⊆̃M GA2
⇐⇒ Fc

eA1
⊆̃M Gc

eA2
,

(2). FA1
⊆̃M GA2

⇐⇒ Fr
A1
⊆̃M Gr

A2
,

(3). FA1
⊆̃L GA2

⇐⇒ Fc
eA1
⊆̃L Gc

eA2
,

(4). FA1 ⊆̃L GA2 ⇐⇒ Fr
A1
⊆̃L Gr

A2
.

Proof: We only varify the correctness of (1) and (3); using similar techniques we can give the proof
of (2) and (4).

(1). Let FA1
⊆̃M GA2

. Then we have A1 ⊆ A2 and for all α ∈ A1, F(α) = G(α). Now by defintion
5.02, we write (FA1

)c = Fc
eA1

, where Fc(¬α) = U - F(α), ∀ ¬α ∈ eA1 or ∀ α ∈ A1. Since F(α) =

G(α), and F(α), G(α) are crisp subsets of universe set U, so we can find that U - F(α) = U - G(α),
for all α ∈ A1. Also, we know that A1 ⊆ A2 iff eA1 ⊆ eA2. It implies that, for any ¬α ∈ eA1,
Fc(¬α) = Gc(¬α). This shows that Fc

eA1
⊆̃M Gc

eA2
.

Conversely, let us take Fc
eA1
⊆̃M Gc

eA2
. It implies that eA1 ⊆ eA2 =⇒ A1 ⊆ A2, and ∀ ¬α ∈

eA1, Fc(¬α) = Gc(¬α). Thus, U - F(α) = U - G(α) which gives F(α) = G(α). So we have ∀ α ∈
A1, F(α) = G(α). Hence FA1 ⊆̃M GA2 .

(3). Let (FA1
)c = Fc

eA1
, where Fc(¬α) = U - F(α), ∀ ¬α ∈ eA1 or ∀ α ∈ A1. Since FA1

⊆̃L GA2
.

Therefore, for any α ∈ A1, ∃ β ∈ A2 such that F(α) = G(β). Consequently U - F(α) = U - G(β).
We also know that for any α ∈ A1, ¬α ∈ eA1. So, we can find that for any ¬α ∈ eA1 ∃ ¬β ∈ eA2

such that Fc(¬α) = U - F(α) = U - G(β) = Gc(¬β). Hence, we have Fc
eA1
⊆̃L Gc

eA2
.

Conversely, let Fc
eA1
⊆̃L Gc

eA2
. Then for any ¬α ∈ eA1, ∃ ¬β ∈ eA2 such that Fc(¬α) = Gc(¬β).

Thus, U - F(α) = U - G(β) which implies F(α) = G(β). Also, ¬α ∈ eA1 if and only if α ∈ A1.
Thus, for any α ∈ A1 ∃ β ∈ A2 such as F(α) = G(β). Therefore, FA1

⊆̃L GA2
.

Remark 5.05: From the theorem 5.04, we conclude that the property 5.01 is not satisfied by soft
L-subset. Whenever soft M-subset satisfies 5.01, the attribute sets should be equal. That is, if A1

= A2 and FA1
⊆̃M GA2

, then Gr
A2
⊆̃M Fr

A1
and Gc

eA2
⊆̃M Fc

eA1
(see theorem 5.09). We give the

following example only for soft L-subset. One can also see it for soft M-subsets, when A1 ⊂ A2.

Example 5.06: Let U and E are universal sets as given in example 4.04, FA1
6= Φ̃ and GA2

6= Φ̃
are defined as: FA1

= {(a, {2, 3}), (b, {1, 4, 5})}, GA2
= {(c, {2, 3}), (d, {3, 4}), (e, {1, 4, 5})}.

So, we can see that for a ∈ A1, ∃ c ∈ A2 such as F(a) = G(c), and for b ∈ A1, ∃ e ∈ A2 such that
F(b) = G(e). Therefore, FA1 ⊆̃L GA2 . Now by defintions 5.02 and 5.03, we have Fc

eA1
= {(¬a, {1,

4, 5}), (¬b, {2, 3})}, Gc
eA2

= {(¬c, {1, 4, 5}), (¬d, {1, 2, 5}), (¬e, {2, 3})}, Fr
A1

= {(a, {1, 4, 5}),
(b, {2, 3})} and Gr

A2
= {(c, {1, 4, 5}), (d, {1, 2, 5}), (e, {2, 3})}. So we can see that A2 * A1 and

for ¬e ∈ eA2 there does not exists any element ¬e
′ ∈ eA1 such that Gc(¬e) = Fc(¬e

′
). It implies

that Gc
eA2

*̃
L

Fc
eA1

. Similarly, we can find that Gr
A2

*̃
L

Fr
A1

.

Remark 5.07: The above properties given in the theorem 5.04 and definition 5.01 are not satisfied
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by soft F-subset and soft J-subset. Here, we give an example only for soft J-subset. Similarly, one
can give an example for soft F-subset.

Example 5.08: Let U and E are universal sets as given in example 4.04, FA1 and GA2 are soft sets
over U, defined as: FA1

= {(a, {2, 3}), (b, {1, 3, 4})}, GA2
= {(c, {1, 2, 3}), (d, {1, 3, 4, 5}), (e,

{2, 4})}. Clearly, we can see that FA1
⊆̃J GA2

. Now, we have Fr
A1

= {(a, {1, 4, 5}), (b, {2, 5})}
and Gr

A2
= {(c, {4, 5}), (d, {2}), (e, {1, 3, 5})}. It implies that neither Gr

A2
⊆̃J Fr

A1
nor Fr

A1
⊆̃J

Gr
A2

. Similarly, we can find that neither Gc
eA2
⊆̃J Fc

eA1
nor Fc

eA1
⊆̃J Gc

eA2
.

The following theorems proves the validity of the stated complement property 5.01 on all gener-
alized soft subsets by taking an onto mapping between sets of parameters/attributes.

Theorem 5.09: Let FA1 and GA2 are soft sets on U and A1 = A2. Then,
(1). FA1

⊆̃M GA2
⇐⇒ Gr

A2
⊆̃M Fr

A1
,

(2). FA1 ⊆̃M GA2 ⇐⇒ Gc
eA2
⊆̃M Fc

eA1
,

(3). FA1
⊆̃F GA2

⇐⇒ Gr
A2
⊆̃F Fr

A1
,

(4). FA1
⊆̃F GA2

⇐⇒ Gc
eA2
⊆̃F Fc

eA1
.

Proof: We give only the validity of argument (4); the proof of other statements (1), (2) and (3)
can be obtained by the same method. Let us take FA1

⊆̃F GA2
. Then A1 ⊆ A2 and for all α ∈ A1,

F(α) ⊆ G(α) which gives U - G(α) U - F(α). That is, Gc(¬α) ⊆ Fc(¬α). Since, A1 = A2 iff eA1 =
eA2, so we have ∀ ¬α ∈ eA1, Gc(¬α) ⊆ Fc(¬α). Hence Gc

eA2
⊆̃F Fc

eA1
.

Conversely, let Gc
eA2
⊆̃F Fc

eA1
. Then eA2 ⊆ eA1 and ∀ ¬β ∈ eA2, Gc(¬β) ⊆ Fc(¬β). Therefore,

U - G(β) ⊆ U - F(β) which implies F(β) ⊆ G(β). Since, A1 = A2 iff eA1 = eA2, hence ∀ α ∈ A1,
F(α) ⊆ G(α).

Theorem 5.10: Let FA1
and GA2

are soft sets on U. If there exists a surjective or onto mapping f
: A1 −→ A2 as; for any α ∈ A1, f(α) = β where β ∈ A2, such that F(α) ⊆ G(f(α)), then FA1 ⊆̃J

GA2 . Hence, Gc
eA2
⊆̃J Fc

eA1
and Gr

A2
⊆̃J Fr

A1
.

Proof: Since f is a mapping as, for any α ∈ A1, f(α) = β, such as F(α) ⊆ G(f(α)). So for any α
∈ A1, ∃ β = f(α) ∈ A1 such as F(α) ⊆ G(β). So we have FA1

⊆̃J GA2
. Now, for any α ∈ A1, ∃ β

∈ A2 such as F(α) ⊆ G(β). That is, U - G(β) ⊆ U - F(α). Consequently Gc(¬β) ⊆ Fc(¬α). We
also know that f is onto mapping, so for every β ∈ A2, ∃ α ∈ A1 such as β = f(α). Thus, ¬β =
f(¬α). Hence, for any ¬β ∈ eA2, ∃ ¬α ∈ eA1 such as Gc(¬β) ⊆ Fc(¬α). Therefore, we have Gc

eA2

⊆̃J Fc
eA1

. Similarly, we can prove Gr
A2
⊆̃J Fr

A1
.

Theorem 5.11: Let FA1
and GA2

are soft sets over U. If there exists a surjective or onto mapping
f : A1 −→ A2 as; for any α ∈ A1, f(α) = β where β ∈ A2, such as F(α) = G(f(α)), then FA1

⊆̃L

GA2
. Hence, Gc

eA2
⊆̃L Fc

eA1
and Gr

A2
⊆̃L Fr

A1
.

Proof: Due to similar proof to that of the Theorem 5.10, the proof is excluded.

The following real world example first makes two soft sets as soft J-subset using a mapping
between two different parameter sets and then show above given complement property (theorem
5.10) on them. Here, noted that these parameter sets may share common elements.

Example 5.12: Let U = {µ1, µ2, µ3, µ4, µ5} be the universal set of five canditates for an interview in
a company, and E = {%1, %2, %3, %4, %5, %̃1, %̃2, %̃3, %̃4} be the universal set of all attributes/parameters
defined on U, where all %i’s (i ∈ {1, 2, 3, 4, 5}) represents the name of jobs as given in example 2.07,
and all %̃j ’s (j ∈ {1, 2, 3, 4}) represents the required qualifications for respective jobs such as; %̃1
indicates bachelor in information technology (Bach. I.T.), %̃2 indicates bachelor in computer science
(Bach. C.S.), %̃3 indicates bachelor in information technology with course work in design and web
developer (Bach. I.T. + C.W. in Dgn and Web devl.), and %̃4 indicates bachelor in computer science
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with course work in business administration (Bach. C.S. + C.W. in B.A.). Below table provides the
connection between jobs and required qualifications for corresponding jobs.

Table 1: Data table for jobs and required qualifications

Attributes repre-
sentation of jobs

Name of jobs Required qualifi-
cations of corre-
sponding jobs

Representation
of required qual-
ifications in
attribute form

%1 Network Adminis-
trator (NA)

Bach. I.T. or Bach.
C.S.

%̃1 or %̃2

%2 User Experience
Designer (UED)

Bach. I.T. + C.W.
in Dgn and Web
devl.

%̃3

%3 System Analyst
(SA)

Bach. C.S. or re-
lated fields + C.W.
in B.A. or Manage-
ment or Finance

%̃4

%4 Database Adminis-
trator (DA)

Bach. C.S. %̃2

%5 Development Op-
erations Engineer
(DOE)

Bach. I.T. or Bach.
C.S.

%̃1 or %̃2

Now, consider two soft sets FA1
and GA2

, where FA1
provides the canditates for corresponding

jobs in A1 = {%1, %2, %3} and GA2
provides the canditates according to the qualifications in A2 =

{%̃1, %̃2}, defined as:

FA1
= {(%1, {µ1, µ3}), (%2, {µ2}), (%3, {µ3, µ5})},

GA2
= {(%̃1, {µ2, µ4}), (%̃2, {µ1, µ3, µ5})}.

From given table 1 and soft sets FA1 and GA2 , we can see that there exist an onto mapping f
defined as:
f : A1 −→ A2, where f(%1) = %̃2, f(%2) = %̃1, and f(%3) = %̃2, such as for every %i ∈ A1 ∃ %̃j ∈ A2,
F(%i) ⊆̃ G(f(%i)). So, clearly we have FA1

⊆̃J GA2
. Now,

Fc
eA1

= {(¬%1, {µ2, µ4, µ5}), (¬%2, {µ1, µ3, µ4, µ5}), (¬%3, {µ1, µ2, µ4})},
Gc
eA2

= {(¬%̃1, {µ1, µ3, µ5}), (¬%̃2, {µ2, µ4})}.
Therefore, Gc

eA2
⊆̃J Fc

eA1
. Similarly, we can see that Gr

A2
⊆̃J Fr

A1
.

By utilizing above results (5.01 - 5.11) of complements on all generalized soft subsets, we provide
here some more results on soft product operators. Proofs will be similar to above results. So, we
exclude their proofs.

Theorem 5.13:
(1). If F1

A1
∨̃ F3

A3
⊆̃M F2

A2
∨̃ F4

A4
, then F1c

eA1
∧̃ F3c

eA3
⊆̃M F2c

eA2
∧̃ F4c

eA4
. Similarly, if F1

A1
∧̃ F3

A3
⊆̃M

F2
A2
∧̃ F4

A4
, then F1c

eA1
∨̃ F3c

eA3
⊆̃M F2c

eA2
∨̃ F4c

eA4
. Also, it holds with respect to soft L-subset.

(2). Let A1×A3 = A2×A4. Then, F1
A1
∨̃ F3

A3
⊆̃M F2

A2
∨̃ F4

A4
, implies that F2c

eA2
∧̃ F4c

eA4
⊆̃M F1c

eA1

∧̃ F3c
eA3

. Similarly, F1
A1
∧̃ F3

A3
⊆̃M F2

A2
∧̃ F4

A4
, implies that F2c

eA2
∨̃ F4c

eA4
⊆̃M F1c

eA1
∨̃ F3c

eA3
. Also, it

holds with respect to soft F-subset.
Both points are also true for relative complement (r).
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Theorem 5.14: Let F1
A1
∨̃ F3

A3
= FA1×A3 , F2

A2
∨̃ F4

A4
= GA2×A4 and f be an onto mapping defined

as: f : A1×A3 −→ A2×A4; for any (α1, α3) ∈ A1×A3, f(α1, α3) = (α2, α4) where (α2, α4) ∈ A2,
A4, such as:
(1). If F(α1, α3) ⊆ G(f(α1, α3)), then FA1×A3

⊆̃J GA2×A4
. Hence, Gc

eA1×eA3
⊆̃J Gc

eA2×eA4
and

Gr
A1×A3

⊆̃J Gr
A2×A4

.

(2). If F(α1, α3) = G(f(α1, α3)), then FA1×A3 ⊆̃L GA2×A4 . Hence, Gc
eA1×eA3

⊆̃L Gc
eA2×eA4

and

Gr
A1×A3

⊆̃L Gr
A2×A4

.

6. CONCLUSION AND FUTURE WORK

Due to the non-availability of complement property on generalized soft subsets in soft set theory,
generalized soft subsets can not be used to study various algebraic structures. This research provides
a platform in this area. It presents crucial results on soft operations using various generalized soft
subsets. It is also shown here that the classical property of intersection and union (Property 4.01(2))
only holds with respect to soft M-subset and soft F-subset but not for soft J-subset and soft L-subset.
Further, we provide the complement property 5.01 for given soft subsets, and prove that the property
is not satisfied by any generalized soft subsets for which the relevant counterexamples are given. But,
this problem is solved in the given study by an onto mapping between the sets of parameters on all
generalized soft subsets.

In classical mathematics, subsets, operators and complements are very important concepts when
studying algebraic structures such as topology, lattices, and Boolean algebra. In soft set theory,
these concepts are also crucial for studying these structures. To achieve this, some researchers have
provided soft topological spaces in various forms using soft union, soft intersection, soft M-subsets,
soft F-subsets, and soft complement operators.

In addition, some researchers have focused on soft product operations to enhance algebraic
properties, and it has been found that these soft product operations can be utilized in soft lattice
structures. As such, it is suggested that future research can expand on these findings by investigating
various soft subsets in other algebraic properties to make lattice structures on various generalized
soft subsets. By studying these structures in soft set theory, researchers can gain a better under-
standing of how uncertainty and vagueness can affect the algebraic properties of subsets, operators,
and complements. The findings from this research can also have practical applications in various
fields such as decision-making, data analysis, and artificial intelligence.
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Abstract

Here based on trigonometric and hyperbolic type Taylor formulae we
derive Polya type inequalities in a number of cases.
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1 Main Results

We present a collection of Polya�s type inequalities.

Theorem 1 Let f 2 C2 ([a; b] ;K), where K = R or C, such that f (k) (a) =
f (k) (b) = 0, k = 0; 1; and p; q > 1 : 1p +

1
q = 1. We set

M1 := max
n
kf 00 + fk1;[a; a+b2 ]

; kf 00 + fk1;[ a+b2 ;b]

o
; (1)

M2 := max
n
kf 00 + fkL1([a; a+b2 ]) ; kf

00 + fkL1([ a+b2 ;b])

o
; (2)

and
M3 := max

n
kf 00 + fkLq([a; a+b2 ]) ; kf

00 + fkLq([ a+b2 ;b])

o
: (3)

Then

�����
Z b

a

f (x) dx

����� �
Z b

a

jf (x)j dx � min

8>>><>>>:
(b�a)3
8 M1;

(b�a)2
4 M2;

(b�a)2+
1
p

2
1+ 1

p (p+1)
1
p (2+ 1

p )
M3

9>>>=>>>; : (4)

1
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Proof. Here f 2 C2 ([a; b] ;K), such that f (k) (a) = f (k) (b) = 0, k = 0; 1:
By Corollary 3.4 of [1], we have

f (x) =

Z x

a

(f 00 (t) + f (t)) sin (x� t) dt; (5)

and

f (x) =

Z b

x

(f 00 (t) + f (t)) sin (x� t) dt: (6)

By using jsinxj � jxj, 8 x 2 R, we obtain

jf (x)j �
Z x

a

jf 00 (t) + f (t)j jsin (x� t)j dt �

Z x

a

jf 00 (t) + f (t)j (x� t) dt �
�Z x

a

(x� t) dt
�
kf 00 + fk1;[a; a+b2 ]

= (7)

(x� a)2

2
kf 00 + fk1;[a; a+b2 ]

, 8 x 2
�
a;
a+ b

2

�
:

Also it holds

jf (x)j � (x� a)
�Z x

a

jf 00 (t) + f (t)j dt
�
� (8)

(x� a) kf 00 + fkL1([a; a+b2 ]) , 8 x 2
�
a;
a+ b

2

�
:

Furthermore, by Hölder�s inequality, we have (p; q > 1 : 1p +
1
q = 1)

jf (x)j �
�Z x

a

jf 00 (t) + f (t)jq dt
� 1

q
�Z x

a

(x� t)p dt
� 1

p

� (9)

kf 00 + fkLq([a; a+b2 ])
(x� a)

p+1
p

(p+ 1)
1
p

; 8 x 2
�
a;
a+ b

2

�
:

We have found that

jf (x)j �

8>>><>>>:
(x�a)2

2 kf 00 + fk1;[a; a+b2 ]
;

(x� a) kf 00 + fkL1([a; a+b2 ]) ;
(x�a)1+

1
p

(p+1)
1
p
kf 00 + fkLq([a; a+b2 ]); p; q > 1 :

1
p +

1
q = 1

9>>>=>>>; ; (10)

8 x 2
�
a; a+b2

�
:

Similarly acting, we get that

jf (x)j =
�����
Z b

x

(f 00 (t) + f (t)) sin (x� t) dt
����� �

2
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Z b

x

jf 00 (t) + f (t)j jsin (t� x)j dt � (11)Z b

x

jf 00 (t) + f (t)j (t� x) dt;

and

jf (x)j �

8>>><>>>:
(b�x)2
2 kf 00 + fk1;[ a+b2 ;b] ;

(b� x) kf 00 + fkL1([ a+b2 ;b]) ;

(b�x)1+
1
p

(p+1)
1
p
kf 00 + fkLq([ a+b2 ;b]); p; q > 1 :

1
p +

1
q = 1

9>>>=>>>; ; (12)

8 x 2
�
a+b
2 ; b

�
:

Consequently, we obtain

Z a+b
2

a

jf (x)j dx �

8>>>><>>>>:
(b�a)3
16 kf 00 + fk1;[a; a+b2 ]

;

(b�a)2
8 kf 00 + fkL1([a; a+b2 ]) ;
(b�a)2+

1
p

2
2+ 1

p (p+1)
1
p (2+ 1

p )
kf 00 + fkLq([a; a+b2 ]) ; p; q > 1 :

1
p +

1
q = 1:

9>>>>=>>>>;
(13)

Similarly, we derive that

Z b

a+b
2

jf (x)j dx �

8>>>><>>>>:
(b�a)3
16 kf 00 + fk1;[ a+b2 ;b] ;

(b�a)2
8 kf 00 + fkL1([ a+b2 ;b]) ;

(b�a)2+
1
p

2
2+ 1

p (p+1)
1
p (2+ 1

p )
kf 00 + fkLq([ a+b2 ;b]); p; q > 1 :

1
p +

1
q = 1:

9>>>>=>>>>;
(14)

We have thatZ b

a

jf (x)j dx =
Z a+b

2

a

jf (x)j dx+
Z b

a+b
2

jf (x)j dx �

8>>>><>>>>:
(b�a)3
16

h
kf 00 + fk1;[a; a+b2 ]

+ kf 00 + fk1;[ a+b2 ;b]

i
;

(b�a)2
8

h
kf 00 + fkL1([a; a+b2 ]) + kf

00 + fkL1([ a+b2 ;b])

i
;

(b�a)2+
1
p

2
2+ 1

p (p+1)
1
p (2+ 1

p )

h
kf 00 + fkLq([a; a+b2 ]); + kf

00 + fkLq([ a+b2 ;b])

i
:

� (15)

8>>><>>>:
(b�a)3
8 M1;

(b�a)2
4 M2;

(b�a)2+
1
p

2
1+ 1

p (p+1)
1
p (2+ 1

p )
M3

9>>>=>>>; : (16)

The claim is proved.
We continue with
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Theorem 2 All as in Theorem 1. Denote

M�
1 := max

n
kf 00 � fk1;[a; a+b2 ]

; kf 00 � fk1;[ a+b2 ;b]

o
; (17)

M�
2 := max

n
kf 00 � fkL1([a; a+b2 ]) ; kf

00 � fkL1([ a+b2 ;b])

o
; (18)

and
M�
3 := max

n
kf 00 � fkLq([a; a+b2 ]) ; kf

00 � fkLq([ a+b2 ;b])

o
: (19)

Then

�����
Z b

a

f (x) dx

����� �
Z b

a

jf (x)j dx � min cosh (b� a)�

8>>><>>>:
(b�a)3
8 M�

1 ;
(b�a)2
4 M�

2 ;

(b�a)2+
1
p

2
1+ 1

p (p+1)
1
p (2+ 1

p )
M�
3

9>>>=>>>; :
(20)

Proof. As similar to Theorem 1 it is omitted. It based on Corollary 3.5 of
[1]. Also we use that jsinhxj � cosh (b� a) jxj, 8 x 2 [� (b� a) ; b� a] ; by the
mean value theorem.
It follows

Theorem 3 Let f 2 C4 ([a; b] ;K), where K = R or C, such that f (k) (a) =
f (k) (b) = 0, k = 0; 1; 2; 3; and p; q > 1 : 1p +

1
q = 1. We set

A1 := max

�


f (4) � f



1;[a; a+b2 ]

;



f (4) � f




1;[ a+b2 ;b]

�
; (21)

A2 := max

�


f (4) � f



L1([a; a+b2 ])

;



f (4) � f




L1([ a+b2 ;b])

�
; (22)

and

A3 := max

�


f (4) � f



Lq([a; a+b2 ])

;



f (4) � f




Lq([ a+b2 ;b])

�
: (23)

Then �����
Z b

a

f (x) dx

����� �
Z b

a

jf (x)j dx �

min
(cosh (b� a) + 1)

4
�

8>>><>>>:
(b�a)3
4 A1;

(b�a)2
2 A2;

(b�a)2+
1
p

2
1
p (p+1)

1
p (2+ 1

p )
A3

9>>>=>>>; : (24)

Proof. As similar to Theorem 1 it is omitted. It is based on Corollary 3.6
of [1].
We continue with
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Theorem 4 Let f 2 C4 ([a; b] ;K), where K = R or C, such that f (k) (a) =
f (k) (b) = 0, k = 0; 1; 2; 3; and p; q > 1 : 1p +

1
q = 1. Let also �; � 2 R with

��
�
�2 � �2

�
6= 0. We set

B1 := max

�


f (4) + ��2 + �2� f 00 + �2�2f



1;[a; a+b2 ]

;




f (4) + ��2 + �2� f 00 + �2�2f



1;[ a+b2 ;b]

�
; (25)

B2 := max

�


f (4) + ��2 + �2� f 00 + �2�2f



L1([a; a+b2 ])

;




f (4) + ��2 + �2� f 00 + �2�2f



L1([ a+b2 ;b])

�
; (26)

and

B3 := max

�


f (4) + ��2 + �2� f 00 + �2�2f



Lq([a; a+b2 ])

;




f (4) + ��2 + �2� f 00 + �2�2f



Lq([ a+b2 ;b])

�
: (27)

Then �����
Z b

a

f (x) dx

����� �
Z b

a

jf (x)j dx �

min
1���2 � �2�� �

8>>><>>>:
(b�a)3
4 B1;

(b�a)2
2 B2;

(b�a)2+
1
p

2
1
p (p+1)

1
p (2+ 1

p )
B3

: (28)

Proof. As similar to Theorem 1 it is omitted. It is based on Corollary 3.7
of [1].
We �nish with

Theorem 5 All as in Theorem 4, j�j; j�j < 1:However here, instead of B1; B2,
B3, we set

D1 := max

�


f (4) � ��2 + �2� f 00 + �2�2f



1;[a; a+b2 ]

;




f (4) � ��2 + �2� f 00 + �2�2f



1;[ a+b2 ;b]

�
; (29)

D2 := max

�


f (4) � ��2 + �2� f 00 + �2�2f



L1([a; a+b2 ])

;
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f (4) � ��2 + �2� f 00 + �2�2f



L1([ a+b2 ;b])

�
; (30)

and

D3 := max

�


f (4) � ��2 + �2� f 00 + �2�2f



Lq([a; a+b2 ])

;




f (4) � ��2 + �2� f 00 + �2�2f



Lq([ a+b2 ;b])

�
: (31)

Then �����
Z b

a

f (x) dx

����� �
Z b

a

jf (x)j dx �

min
cosh (b� a)���2 � �2�� �

8>>><>>>:
(b�a)3
4 D1;

(b�a)2
2 D2;

(b�a)2+
1
p

2
1
p (p+1)

1
p (2+ 1

p )
D3

: (32)

Proof. As similar to Theorem 1 it is omitted. It is based on Corollary 3.9
of [1].
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Abstract The notion of bipolar-valued fuzzy set is used to treat the filter
and deductive system in Sheffer stroke Hilbert algebras. The concepts of bipolar-
valued fuzzy filter and bipolar-valued fuzzy deductive system are introduced and
related properties are investigated. Conditions under which the bipolar-valued
fuzzy set can be a bipolar-valued fuzzy filter are explored. Characterizations
of the bipolar-valued fuzzy filter are examined. A bipolar-valued fuzzy filter is
built using a filter. To consider the nomality of bipolar-valued fuzzy filter, the
notion of normal bipolar-valued fuzzy filter is introduced and related properties
are investigated. The method of normalizing the bipolar-valued fuzzy filter is
addressed, and we will see what the normal bipolar-valued fuzzy filter looks like.
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system, (normal) bipolar-valued fuzzy filter.
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1 Introduction

The shaper stroke, denoted by the symbol ”|”, is a logical operation for two
inputs that produces false results only when both inputs are true, as shown in
Table 1.

Table 1: The truth table for the Sheffer stroke “|”

P Q P |Q
F F T
F T T
T F T
T T F

The Sheffer stroke has been applied to several algebraic structures, for ex-
ample, Boolean algebra, MV-algebra, BL-algebra, BCK-algebra, and ortho-
lattices, etc., and it is also being dealt with in the fuzzy environment (see
[3, 5, 7, 11, 12, 13, 14, 15]). In 2021, Oner et al. [12] applied the Sheffer
stroke to Hilbert algebras. They introduced Sheffer stroke Hilbert algebra and
investigated several properties. In [11], Oner et al. introduced the notion of de-
ductive system and filter of Sheffer stroke Hilbert algebras, and dealt with their
fuzzification. The bipolar-valued fuzzy set, which is introduced by Lee [9, 10]
is a type of fuzzy set where the degree of membership to a set is represented
by a value that can take on both positive and negative values, as opposed to
traditional fuzzy sets where the degree of membership is represented by a value
between 0 and 1. The value 0 in the bipolar-valued fuzzy set represents a lack
of information about membership or a neutral position. Also, the negative val-
ues represent the degree of non-membership, while the positive values represent
the degree of membership to the set. The bipolar-valued fuzzy set is useful for
methods such as modeling complex and uncertain situations beyond traditional
fuzzy sets. Therefore, the bipolar-valued fuzzy set has been applied in various
fields, such as pattern recognition, decision making, and control systems etc.
The bipolar-valued fuzzy set has also been widely applied in algebraic struc-
tures (see [1, 2, 4, 6, 8])

In this paper, we introduce the notion of the bipolar-valued fuzzy deductive
system and the bipolar-valued fuzzy filter in Sheffer stroke Hilbert algebras,
and investigate several properties. We first show that the bipolar-valued fuzzy
deductive system and the bipolar-valued fuzzy filter are equivalent each other.
We explore the conditions under which a bipolar-valued fuzzy set can be a
bipolar-valued fuzzy filter. We establish characterization of the bipolar-valued
fuzzy filter. Using the filter of Sheffer stroke Hilbert algebra, we make a bipolar-
valued fuzzy filter. We discuss the nomality of bipolar-valued fuzzy filter, and
we deal with how to normalize the bipolar-valued fuzzy filter. We look into
what the normal bipolar-valued fuzzy filter looks like.
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2 Preliminaries

Definition 2.1 ([16]). Let A := (A, |) be a groupoid. Then the operation “|”
is said to be Sheffer stroke or Sheffer operation if it satisfies:

(s1) (∀a, b ∈ A) (a|b = b|a),

(s2) (∀a, b ∈ A) ((a|a)|(a|b) = a),

(s3) (∀a, b, c ∈ A) (a|((b|c)|(b|c)) = ((a|b)|(a|b))|c),

(s4) (∀a, b, c ∈ A) ((a|((a|a)|(b|b)))|(a|((a|a)|(b|b))) = a).

Definition 2.2 ([12]). A Sheffer stroke Hilbert algebra is a groupoid L := (L, |)
with a Sheffer stroke “|” that satisfies:

(sH1) (a|((A)|(A)))|(((B)|((C)|(C)))|((B)|((C)|(C)))) = a|(a|a),
where A := b|(c|c), B := a|(b|b) and C := a|(c|c),

(sH2) a|(b|b) = b|(a|a) = a|(a|a) ⇒ a = b

for all a, b, c ∈ L.

Let L := (L, |) be a Sheffer stroke Hilbert algebra. Then the order relation
“ ≤L ” on L is defined as follows:

(∀a, b ∈ L)(a ≤L b ⇔ a|(b|b) = 1). (2.1)

We observe that the relation “ ≤L ” is a partial order in a Sheffer stroke
Hilbert algebra L := (L, |) (see [12]).

Proposition 2.3 ([12]). Every Sheffer stroke Hilbert algebra L := (L, |) satis-
fies:

(∀a ∈ L)(a|(a|a) = 1), (2.2)

(∀a ∈ L)(a|(1|1) = 1), (2.3)

(∀a ∈ L)(1|(a|a) = a), (2.4)

(∀a, b ∈ L)(a ≤L b|(a|a)), (2.5)

(∀a, b ∈ L)((a|(b|b))|(b|b) = (b|(a|a))|(a|a)), (2.6)

(∀a, b ∈ L) (((a|(b|b))|(b|b))|(b|b) = a|(b|b)) , (2.7)

(∀a, b, c ∈ L) (a|((b|(c|c))|(b|(c|c))) = b|((a|(c|c))|(a|(c|c)))) , (2.8)

Definition 2.4 ([11]). Let (L, |) be a Sheffer stroke Hilbert algebra. A subset
F of L is called

• a deductive system of (L, |) if it satisfies:

1 ∈ F, (2.9)

(∀a, b ∈ L)(a ∈ F, a|(b|b) ∈ F ⇒ b ∈ F ), (2.10)
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• a filter of (L, |) if it satisfies (2.9) and

(∀a, b ∈ L)(b ∈ F ⇒ a|(b|b) ∈ F ), (2.11)

(∀a, b, c ∈ L)(b, c ∈ F ⇒ (a|(b|c))|(b|c) ∈ F ). (2.12)

Definition 2.5 ([11]). Let (L, |) be a Sheffer stroke Hilbert algebra. A fuzzy
set f in L is called a fuzzy filter of (L, |) if it satisfies:

(∀a ∈ L)(f(1) ≥ f(a)), (2.13)

(∀a, b ∈ L)(f(a|(b|b)) ≥ f(b)), (2.14)

(∀a, b, c ∈ L)(f((a|(b|c))|(b|c)) ≥ min{f(b), f(c)}). (2.15)

Denote by FS(L) the collection of all fuzzy sets in L. Define a relation “ ⊆ ”
on FS(L) by

(∀f, g ∈ FS(L))(f ⊆ g ⇔ (∀a ∈ L)(f(a) ≤ g(a))).

Consider two maps f− and f+ on L (; a universe of discourse) as follows:

f− : L→ [−1, 0] and f+ : L→ [0, 1],

respectively. A structure

f := {(a; f−(a), f+(a)) | a ∈ L}

is called a bipolar-valued fuzzy set on L (see [9]), and is will be denoted by simply
f := (L; f−, f+).

For a BVF-set f := (L; f−, f+) in L and (s, t) ∈ [−1, 0]× [0, 1], we define

L(f−; s) := {a ∈ L | f−(a) ≤ s},

U(f+; t) := {a ∈ L | f+(a) ≥ t}

which are called the negative s-cut and the positive t-cut of f := (L; f−, f+),
respectively.

3 Bipolar-valued fuzzy deductive systems and
filters

In what follows, let L := (L, |) denote the Sheffer stroke Hilbert algebra unless
otherwise specified.

Definition 3.1. A bipolar-valued fuzzy set f := (L; f−, f+) in L is called

• a bipolar-valued fuzzy deductive system of L := (L, |) if it satisfies:

(∀x ∈ L)(f−(1) ≤ f−(x), f+(1) ≥ f+(x)), (3.1)

(∀x, y ∈ L)

(
f−(y) ≤ max{f−(x), f−(x|(y|y))}
f+(y) ≥ min{f+(x), f+(x|(y|y))}

)
. (3.2)
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• a bipolar-valued fuzzy filter of L := (L, |) if it satisfies (3.1) and

(∀x, y ∈ L)(f−(x|(y|y)) ≤ f−(y), f+(x|(y|y)) ≥ f+(y)), (3.3)

(∀x, y, z ∈ L)

(
f−((x|(y|z))|(y|z)) ≤ max{f−(y), f−(z)}
f+((x|(y|z))|(y|z)) ≥ min{f+(y), f+(z)}

)
. (3.4)

Example 3.2. Consider a set L = {0, 1, 2, 3, 4, 5, 6, 7}. The Hasse diagram and
the Sheffer stroke “|” on L are given by Figure 1 and Table 2, respectively.

Figure 1: Hasse Diagram
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Table 2: Cayley table for the Sheffer stroke “|”

| 0 2 3 4 5 6 7 1
0 1 1 1 1 1 1 1 1
2 1 7 1 1 7 7 1 7
3 1 1 6 1 6 1 6 6
4 1 1 1 5 1 5 5 5
5 1 7 6 1 4 7 6 4
6 1 7 1 5 7 3 5 3
7 1 1 6 5 6 5 2 2
1 1 7 6 5 4 3 2 0

Then L := (L, |) is a Sheffer stroke Hilbert algebra (see [12]). Let f := (L; f−,
f+) and g := (L; g−, g+) be BVF-sets in L given by Table 3.
It is routine to verify that f := (L; f−, f+) is a bipolar-valued fuzzy deductive
system of L := (L, |), and g := (L; g−, g+) is a bipolar-valued fuzzy filter of
L := (L, |).

Theorem 3.3. Given a bipolar-valued fuzzy set f := (L; f−, f+) in L, the
following are equivalent to each other.

(i) f := (L; f−, f+) is a bipolar-valued fuzzy deductive system of L := (L, |).
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Table 3: Tabular representation of f and g

L f−(x) f+(x) g−(x) g+(x)
0 −0.42 0.49 −0.48 0.33
2 −0.56 0.68 −0.62 0.33
3 −0.42 0.49 −0.48 0.46
4 −0.42 0.49 −0.48 0.33
5 −0.64 0.79 −0.75 0.46
6 −0.56 0.68 −0.62 0.33
7 −0.42 0.49 −0.48 0.61
1 −0.72 0.83 −0.79 0.67

(ii) f := (L; f−, f+) is a bipolar-valued fuzzy filter of L := (L, |).

Proof. Assume that f := (L; f−, f+) is a bipolar-valued fuzzy deductive system
of L := (L, |) and let x, y, z ∈ L. Note that y|((x|(y|y))|(x|(y|y))) = 1 by (2.1)
and (2.5). The use of (3.1) and (3.2) leads to

f−(x|(y|y)) ≤ max{f−(y), f−(y|((x|(y|y))|(x|(y|y))))}
= max{f−(y), f−(1)} = f−(y)

(3.5)

and

f+(x|(y|y)) ≥ min{f+(y), f+(y|((x|(y|y))|(x|(y|y))))}
= min{f+(y), f+(1)} = f+(y).

(3.6)

Note that

y|(((y|z)|z)|((y|z)|z))
(s2)
= y|(((y|z)|((z|z)|(z|z)))|((y|z)|((z|z)|(z|z))))

(2.8)
= (y|z)|((y|((z|z)|(z|z)))|(y|((z|z)|(z|z))))

(s2)
= (y|z)|((y|z)|(y|z))

(2.2)
= 1.

It follows from (3.1) and (3.2) that

f−((y|z)|z) ≤ max{f−(y), f−(y|(((y|z)|z)|((y|z)|z)))}
= max{f−(y), f−(1)} = f−(y)

(3.7)

and

f+((y|z)|z) ≥ min{f+(y), f+(y|(((y|z)|z)|((y|z)|z)))}
= min{f+(y), f+(1)} = f+(y).

(3.8)

6
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Since z|(((y|z)|(y|z))|((y|z)|(y|z)))
(s2)
= z|(y|z)

(s1)
= (y|z)|z, we obtain

g−((y|z)|(y|z)) ≤ max{g−(z), g−(z|(((y|z)|(y|z))|((y|z)|(y|z))))}
= max{g−(z), g−((y|z)|z)}
≤ max{g−(z), g−(y)}

(3.9)

and

f+((y|z)|(y|z)) ≥ min{f+(z), f+(z|(((y|z)|(y|z))|((y|z)|(y|z))))}
= min{f+(z), f+((y|z)|z)}
≥ min{f+(z), f+(y)}.

(3.10)

Hence

f−((x|(y|z))|(y|z))

(s2)
= f−((x|(((y|z)|(y|z))|((y|z)|(y|z))))|(((y|z)|(y|z))|((y|z)|(y|z))))

(3.5)

≤ f−((y|z)|(y|z))

(3.9)

≤ max{f−(z), f−(y)}

and

f+((x|(y|z))|(y|z))

(s2)
= f+((x|(((y|z)|(y|z))|((y|z)|(y|z))))|(((y|z)|(y|z))|((y|z)|(y|z))))

(3.6)

≥ f+((y|z)|(y|z))

(3.10)

≥ min{f+(z), f+(y)}.

Therefore f := (L; f−, f+) is a bipolar-valued fuzzy filter of L := (L, |).
Conversely, assume that f := (L; f−, f+) is a bipolar-valued fuzzy filter of

L := (L, |) and let x, y, z ∈ L. If we replace y, z, and x with x, x|(y|y), and y,
respectively, in (3.4), then

f−(y) = f−(((x|x)|(1|1))|(y|y))

= f−(((x|x)|((y|(y|y))|(y|(y|y))))|(y|y))

= f−(((((x|x)|y)|((x|x)|y))|(y|y))|(y|y))

= f−((y|((x|x)|y))|((x|x)|y))

= f−(((((x|x)|y)|y)|y)|(((x|x)|y)|y))

= f−((y|(x|(x|(y|y))))|(x|(x|(y|y))))

≤ max{f−(x), f−(x|(y|y))}
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and

f+(y) = f−(((x|x)|(1|1))|(y|y))

= f+(((x|x)|((y|(y|y))|(y|(y|y))))|(y|y))

= f+(((((x|x)|y)|((x|x)|y))|(y|y))|(y|y))

= f+((y|((x|x)|y))|((x|x)|y))

= f+(((((x|x)|y)|y)|y)|(((x|x)|y)|y))

= f+((y|(x|(x|(y|y))))|(x|(x|(y|y))))

≥ min{f+(x), f+(x|(y|y))}

by (s1), (s2), (s3), (2.2), (2.3), (2.4) (2.6) and (2.7). Consequently, f := (L; f−,
f+) is a bipolar-valued fuzzy deductive system of L := (L, |).

By Theorem 3.3, it can be seen that all the results for the bipolar-valued
fuzzy filter covered below can be handled in the same way using the bipolar-
valued fuzzy deductive system.

Proposition 3.4. Every bipolar-valued fuzzy filter f := (L; f−, f+) of L :=
(L, |) satisfies:

(∀x, y ∈ L)

(
f−((x|(y|y))|(y|y)) ≤ f−(x)

f+((x|(y|y))|(y|y)) ≥ f+(x)}

)
. (3.11)

(∀x, y ∈ L)

(
x ≤L y ⇒

{
f−(x) ≥ f−(y)
f+(x) ≤ f+(y)

)
. (3.12)

Proof. Let f := (L; f−, f+) be a bipolar-valued fuzzy filter of L := (L, |). Then

f−((x|(y|y))|(y|y)) = f−((y|(x|x))|(x|x)) ≤ max{f−(x), f−(x)} = f−(x),

f+((x|(y|y))|(y|y)) = f+((y|(x|x))|(x|x)) ≥ min{f+(x), f+(x)} = f+(x)

for all x, y ∈ L by (2.6) and (3.4). Therefore, (3.11) is valid. Let x, y ∈ L be
such that x ≤L y. Then x|(y|y) = 1, and so

f−(y) = f−(1|(y|y)) = f−((x|(y|y))|(y|y)) ≤ f−(x)

and
f+(y) = f+(1|(y|y)) = f+((x|(y|y))|(y|y)) ≥ f+(x)

by (2.4) and (3.11).

We consider a bipolar-valued fuzzy set f := (L; f−, f+) in L satisfying the
condition (3.12) and question whether it becomes a bipolar-valued fuzzy filter.
But the example below shows that the answer to that is negative.

8
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Figure 2: Hasse Diagram
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Table 4: Cayley table for the Sheffer stroke “|”

| 1 2 3 0
1 0 3 2 1
2 3 3 1 1
3 2 1 2 1
0 1 1 1 1

Table 5: Tabular representation of f := (L; f−, f+)

L f−(x) f+(x)
0 −0.12 0.09
2 −0.37 0.16
3 −0.54 0.28
1 −0.81 0.62

Example 3.5. Consider a set L = {0, 1, 2, 3}. The Hasse diagram and the
Sheffer stroke “|” on L are given by Figure 2 and Table 4, respectively.
Then L := (L, |) is a Sheffer stroke Hilbert algebra (see [12]). Let f := (L; f−,
f+) be a BVF-set in L given by Table 5.
Then f := (L; f−, f+) satisfies the condition (3.12). But it is not a bipolar-
valued fuzzy filter of L := (L, |) since

f−((0|(3|2))|(3|2)) = f−(0) = −0.12 � −0.37 = max{f−(3), f−(2)}

and/or f+((0|(3|2))|(3|2)) = f+(0) = 0.09 � 0.16 = min{f+(3), f+(2)}.

We explore the conditions under which a bipolar-valued fuzzy set can be a
bipolar-valued fuzzy filter.

Theorem 3.6. A bipolar-valued fuzzy set f := (L; f−, f+) in L is a bipolar-
valued fuzzy filter of L := (L, |) if and only if it satisfies the condition (3.12)
and

(∀x, y ∈ L)

(
f−((x|y)|(x|y)) ≤ max{f−(x), f−(y)}
f+((x|y)|(x|y)) ≥ min{f+(x), f+(y)}

)
. (3.13)
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Proof. Let f := (L; f−, f+) be a bipolar-valued fuzzy filter of L := (L, |). Then
the condition (3.12) is valid by Proposition 3.4. Using (s1), (s2), (2.3), (2.4) and
(3.4), we have f−((x|y)|(x|y)) = f−(((1|1)|(x|y))|(x|y)) ≤ max{f−(x), f−(y)}
and f+((x|y)|(x|y)) = f+(((1|1)|(x|y))|(x|y)) ≥ min{f+(x), f+(y)} for all x, y ∈
L.

Conversely, assume that f := (L; f−, f+) satisfies (3.12) and (3.13). Since
x ≤L 1 and y ≤L x|(y|y) for all x, y ∈ L, we have f−(1) ≤ f−(x), f+(1) ≥
f+(x), f−(x|(y|y)) ≤ f−(y), and f+(x|(y|y)) ≥ f+(y) by (3.12). Using (2.5),
(s2), (3.12) and (3.13), we have

f−((x|(y|z))|(y|z)) ≤ f−((y|z)|(y|z)) ≤ max{f−(y), f−(z)}

and f+((x|(y|z))|(y|z)) ≥ f+((y|z)|(y|z)) ≥ min{f+(y), f+(z)} for all x, y ∈ L.
Therefore f := (L; f−, f+) is a bipolar-valued fuzzy filter of L := (L, |).

Theorem 3.7. A bipolar-valued fuzzy set f := (L; f−, f+) in L is a bipolar-
valued fuzzy filter of L := (L, |) if and only if its negative s-cut and positive t-cut
are filters of L := (L, |) whenever they are nonempty for all (s, t) ∈ [−1, 0]×[0, 1].

Proof. Assume that f := (L; f−, f+) is a bipolar-valued fuzzy filter of L := (L, |)
and L(f−; s) 6= ∅ 6= U(f+; t) for all (s, t) ∈ [−1, 0] × [0, 1]. It is clear that 1 ∈
L(f−; s)∩U(f+; t). Let y, b ∈ L be such that (y, b) ∈ L(f−; s)×U(f+; t). Then
f−(y) ≤ s and f+(b) ≥ t. It follows from (3.3) that f−(x|(y|y)) ≤ f−(y) ≤
s and f+(a|(b|b)) ≥ f+(b) ≥ t for all x, a ∈ L. Hence (x|(y|y), a|(b|b)) ∈
L(f−; s)× U(f+; t). Let y, b, z, c ∈ L be such that (y, b) ∈ L(f−; s)× U(f+; t)
and (z, c) ∈ L(f−; s) × U(f+; t). Then f−(y) ≤ s, f−(z) ≤ s, f+(b) ≥ t, and
f+(c) ≥ t. Using (3.4), we get f−((x|(y|z))|(y|z)) ≤ max{f−(y), f−(z)} ≤ s
and f+((a|(b|c))|(b|c)) ≥ min{f+(b), f+(c)} ≥ t, and so

((x|(y|z))|(y|z), (a|(b|c))|(b|c)) ∈ L(f−; s)× U(f+; t).

Therefore L(f−; s) and U(f+; t) are filters of L := (L, |).
Conversely, let f := (L; f−, f+) be a bipolar-valued fuzzy set in L for which

its negative s-cut and positive t-cut are filters of L := (L, |) whenever they are
nonempty for all (s, t) ∈ [−1, 0] × [0, 1]. If f−(1) > f−(a) or f+(1) < f+(x)
for some x, a ∈ L, then a ∈ L(f−; f−(a)) and x ∈ U(f+; f+(x)), but 1 /∈
L(f−; f−(a)) ∩ U(f+; f+(x)). This is a contradiction, and thus f−(1) ≤ f−(x)
and f+(1) ≥ f+(x) for all x ∈ L. If f−(a|(b|b)) > f−(b) for some a, b ∈ L,
then b ∈ L(f−; f−(b)) but a|(b|b) /∈ L(f−; f−(b)) which is a contradiction.
Hence f−(x|(y|y)) ≤ f−(y) for all x, y ∈ L. If f+(x|(y|y)) < f+(y) for some
x, y ∈ L, then y ∈ U(f+; f+(y)) but x|(y|y) /∈ U(f+; f+(y)), a contadiction.
Thus f+(x|(y|y)) ≥ f+(y) for all x, y ∈ L. Suppose that

f−((a|(b|c))(b|c)) > max{f−(b), f−(c)}

or f+((x|(y|z))(y|z)) < min{f+(y), f+(z)} for some a, b, c, x, y, z ∈ L. Then
b, c ∈ L(f−; s) or y, z ∈ U(f+; t) where s := max{f−(b), f−(c)} and t :=
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min{f+(y), f+(z)}. But (a|(b|c))(b|c) /∈ L(f−; s) or (x|(y|z))(y|z) /∈ U(f+; t), a
contradiction. Therefore f−((x|(y|z))(y|z)) ≤ max{f−(y), f−(z)} and

f+((x|(y|z))(y|z)) ≥ min{f+(y), f+(z)}

for all x, y, z ∈ L. Consequently, f := (L; f−, f+) is a bipolar-valued fuzzy
filter of L := (L, |).

Theorem 3.8. A bipolar-valued fuzzy set f := (L; f−, f+) in L is a bipolar-
valued fuzzy filter of L := (L, |) if and only if the fuzzy sets f−

c and f+ are fuzzy
filters of L := (L, |), where f−

c : L→ [0, 1], x 7→ 1− f−(x).

Proof. Assume that f := (L; f−, f+) is is a bipolar-valued fuzzy filter of L :=
(L, |). It is clear that f+ is a fuzzy filter of L := (L, |). For every x, y, z ∈ L, we
have f−

c (1) = 1− f−(1) ≥ 1− f−(x) = f−
c (x),

f−
c (x|(y|y)) = 1− f−(x|(y|y)) ≥ 1− f−(y) = f−

c (y),

and

f−
c ((x|(y|z))|(y|z)) = 1− f−((x|(y|z))|(y|z))

≥ 1−max{f−(y), f−(z)}
= min{1− f−(y), 1− f−(z)}
= min{f−

c (y), f−
( z)}.

Hence f−
c is a fuzzy filter of L := (L, |).

Conversely, let f := (L; f−, f+) be a bipolar-valued fuzzy set in L for which
f−
c and f+ are fuzzy filters of L := (L, |). Then 1− f−(1) = f−

c (1) ≥ f−
c (x) =

1− f−(x),

1− f−(x|(y|y)) = f−
c (x|(y|y)) ≥ f−

c (y) = 1− f−(y)

and

1− f−((x|(y|z))|(y|z)) = f−
c ((x|(y|z))|(y|z))

≥ min{f−
c (y), f−

c (z)}
= min{1− f−(y), 1− f−(z)}
= 1−max{f−(y), f−(z)}

for all x, y, z ∈ L. Hence f−(1) ≤ f−(x), f−(x|(y|y)) ≤ f−(y) and

f−((x|(y|z))|(y|z)) ≤ max{f−(y), f−(z)}

for all x, y, z ∈ L. Therefore, f := (L; f−, f+) is a bipolar-valued fuzzy filter of
L := (L, |).
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Theorem 3.9. Given a nonempty subset F of L, let fF := (L; f−
F , f+

F ) be a
bipolar-valued fuzzy set in L defined as follows:

f−
F : L→ [−1, 0], a 7→

{
s− if a ∈ F,
t− otherwise,

and

f+
F : L→ [0, 1], x 7→

{
s+ if x ∈ F,
t+ otherwise,

where s− < t− in [−1, 0] and s+ > t+ in [0, 1]. Then fF := (L; f−
F , f+

F ) is a
bipolar-valued fuzzy filter of L := (L, |) if and only if F is a filter of L := (L, |).
Moreover, we have F = LfF := {x ∈ L | f−

F (x) = f−
F (1), f+

F (x) = f+
F (1)}.

Proof. Assume that fF := (L; f−
F , f+

F ) is a bipolar-valued fuzzy filter of L :=
(L, |). Then f−

F (1) = s− and f+
F (1) = s+, and so 1 ∈ F . Let x, y ∈ L be such

that y ∈ F . Then f−
F (y) = s− and f+

F (y) = s+. It follows from (3.3) that s− =
f−
F (y) ≥ f−

F (x|(y|y)) and s+ = f+
F (y) ≤ f+

F (x|(y|y)). Hence f−
F (x|(y|y)) = s−

and f+
F (x|(y|y)) = s+, from which x|(y|y) ∈ F is derived. Let x, y, z ∈ L be

such that y, z ∈ F . Using (3.4), we have:

f−
F ((x|(y|z))|(y|z)) ≤ max{f−

F (y), f−
F (z)} = s−,

f+
F ((x|(y|z))|(y|z)) ≥ min{f+

F (y), f+
F (z)} = s+,

and so f−
F ((x|(y|z))|(y|z)) = s− and f+

F ((x|(y|z))|(y|z)) = s+. This shows that
(x|(y|z))|(y|z) ∈ F . Therefore F is a filter of L := (L, |).

Conversely, let F be a filter of L := (L, |). Since 1 ∈ F , we get f−
F (1) = s− ≤

f−
F (a) and f+

F (1) = s+ ≥ f+
F (x) for all (a, x) ∈ L × L. Let x, y ∈ L. If y ∈ F ,

then x|(y|y) ∈ F , and thus f−
F (x|(y|y)) = s− = f−

F (y) and f+
F (x|(y|y)) = s+ =

f+
F (y). If y /∈ F , then f−

F (y) = t− > f−
F (x|(y|y)) and f+

F (y) = t+ < f+
F (x|(y|y)).

For every x, y, z ∈ L, if y, z ∈ F then (x|(y|z))|(y|z) ∈ F which implies that
f−
F ((x|(y|z))|(y|z)) = s− = max{f−

F (y), f−
F (z)} and f+

F ((x|(y|z))|(y|z)) = s+ =
min{f+

F (y), f+
F (z)}. If y /∈ F or z /∈ F , then

f−
F ((x|(y|z))|(y|z)) ≤ t− = max{f−

F (y), f−
F (z)},

f+
F ((x|(y|z))|(y|z)) ≥ t+ = min{f+

F (y), f+
F (z)}.

Therefore, fF := (L; f−
F , f+

F ) is a bipolar-valued fuzzy filter of L := (L, |). Since
F is a filter of L := (L, |), we get

LfF = {x ∈ L | f−
F (x) = f−

F (1), f+
F (x) = f+

F (1)}
= {x ∈ L | f−

F (x) = s−, f+
F (x) = s+}

= {x ∈ L | x ∈ F} = F.

This completes the proof.
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4 Normality of bipolar-valued fuzzy filters

Definition 4.1. A bipolar-valued fuzzy filter f := (L; f−, f+) of L := (L, |)
is said to be normal if there exists (a, x) ∈ L × L such that f−(a) = −1 and
f+(x) = 1.

Example 4.2. Consider the Sheffer stroke Hilbert algebra L := (L, |) in Ex-
ample 3.2. Let f := (L; f−, f+) be a BVF-set in L given by Table 6.

Table 6: Tabular representation of f := (L; f−, f+)

L f−(x) f+(x)
0 −0.42 0.36
2 −0.42 0.36
3 −0.42 0.76
4 −0.57 0.36
5 −0.42 1.00
6 −1.00 0.36
7 −0.57 0.76
1 −1.00 1.00

Then f := (L; f−, f+) is a normal bipolar-valued fuzzy filter of L := (L, |).

Theorem 4.3. A bipolar-valued fuzzy filter f := (L; f−, f+) of L := (L, |) is
normal if and only if f−(1) = −1 and f+(1) = 1.

Proof. Suppose that f := (L; f−, f+) is a normal bipolar-valued fuzzy filter
of L := (L, |). Then f−(a) = −1 and f+(x) = 1 for some (a, x) ∈ L × L. It
follows from (3.1) that f−(1) ≤ f−(a) = −1 and f+(1) ≥ f+(x) = 1. Hence
f−(1) = −1 and f+(1) = 1. The sufficiency is clear.

Given two bipolar-valued fuzzy sets f := (L; f−, f+) and g := (L; g−, g+)
in L, the inclusion “ b” between them is defined as follows:

f b g ⇔ (∀x ∈ L)(f−(x) ≥ g−(x), f+(x) ≤ g+(x)).

In this case we say that g := (L; g−, g+) is larger than f := (L; f−, f+).

Theorem 4.4. Given a bipolar-valued fuzzy set f := (L; f−, f+) in L, let
f∗ := (L; f−

∗ , f+
∗ ) be a bipolar-valued fuzzy set in L defined by f−

∗ (a) = f−(a)−
1− f−(1) and f+

∗ (x) = f+(x) + 1− f+(1) for all (a, x) ∈ L×L. Then f := (L;
f−, f+) is a bipolar-valued fuzzy filter of L := (L, |) if and only if f∗ := (L; f−

∗ ,
f+
∗ ) is a bipolar-valued fuzzy filter of L := (L, |). Moreover, f∗ := (L; f−

∗ , f+
∗ )

is normal which is larger than f := (L; f−, f+).

Proof. Assume that f := (L; f−, f+) is a bipolar-valued fuzzy filter of L := (L, |)
and let x, y ∈ L be such that x ≤L y. Then

f−
∗ (x) = f−(x)− 1− f−(1) ≥ f−(y)− 1− f−(1) = f−

∗ (y)
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and
f+
∗ (x) = f+(x) + 1− f+(1) ≤ f+(y) + 1− f+(1) = f+

∗ (y).

For every x, y ∈ L, we have:

f−
∗ ((x|y)|(x|y)) = f−((x|y)|(x|y))− 1− f−(1)

≤ max{f−(x), f−(y)} − 1− f−(1)

= max{f−(x)− 1− f−(1), f−(y)− 1− f−(1)}
= max{f−

∗ (x), f−
∗ (y)}

and

f+
∗ ((x|y)|(x|y)) = f+((x|y)|(x|y)) + 1− f+(1)

≥ min{f+(x), f+(y)}+ 1− f+(1)

= min{f+(x) + 1− f+(1), f+(y) + 1− f+(1)}
= min{f+

∗ (x), f+
∗ (y)}.

Hence f∗ := (L; f−
∗ , f+

∗ ) is a bipolar-valued fuzzy filter of L := (L, |) by Theorem
3.6. Suppose that f∗ := (L; f−

∗ , f+
∗ ) is a bipolar-valued fuzzy filter of L :=

(L, |). Since f−(1) − 1 − f−(1) = f−
∗ (1) ≤ f−

∗ (a) = f−(a) − 1 − f−(1) and
f+(1) + 1− f+(1) = f+

∗ (1) ≥ f+
∗ (x) = f+(x) + 1− f+(1) for all (a, x) ∈ L×L,

we have f−(1) ≤ f−(x) and f+(1) ≥ f+(x) for all x ∈ L. Since

f−(b)− 1− f−(1) = f−
∗ (b) ≥ f−

∗ (a|(b|b)) = f−(a|(b|b))− 1− f−(1)

and f+(y) + 1 − f+(1) = f+
∗ (y) ≤ f+

∗ (x|(y|y)) = f+(x|(y|y)) + 1 − f+(1) for
all (a, x), (b, y) ∈ L × L, it follows that f−(y) ≥ f−(x|(y|y)) and f+(y) ≤
f+(x|(y|y)) for all x, y ∈ L. Since

f−((a|(b|c))|(b|c))− 1− f−(1) = f−
∗ ((a|(b|c))|(b|c))

≤ max{f−
∗ (b), f−

∗ (c)}
= max{f−(b)− 1− f−(1), f−(c)− 1− f−(1)}
= max{f−(b), f−(c)} − 1− f−(1)

and

f+((x|(y|z))|(y|z)) + 1− f+(1) = f+
∗ ((x|(y|z))|(y|z))

≥ min{f+
∗ (y), f+

∗ (z)}
= min{f+(y) + 1− f+(1), f+(z) + 1− f+(1)}
= min{f+(y), f+(z)}+ 1− f+(1)

for all (a, x), (b, y), (c, z) ∈ L× L, we have

f−((x|(y|z))|(y|z)) ≤ max{f−(y), f−(z)}

14
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and f+((x|(y|z))|(y|z)) ≥ min{f+(y), f+(z)} for all x, y, z ∈ L. Therefore,
f := (L; f−, f+) is a bipolar-valued fuzzy filter of L := (L, |). Since f−

∗ (1) =
f−(1) − 1 − f−(1) = −1 and f+

∗ (1) = f+(1) + 1 − f+(1) = 1, we know that
f∗ := (L; f−

∗ , f+
∗ ) is normal. Also, we have f−

∗ (x) = f−(x)−1− f−(1) ≤ f−(x)
and f+

∗ (x) = f+(x)+1−f+(1) ≥ f+(x) for all x ∈ L. This shows that f∗ := (L;
f−
∗ , f+

∗ ) is larger than f := (L; f−, f+).

Theorem 4.5. Let f := (L; f−, f+) be a bipolar-valued fuzzy filter of L :=
(L, |). Then it is normal if and only if f∗ = f, that is, f−(x) = f−

∗ (x) and
f+(x) = f+

∗ (x) for all x ∈ L.

Proof. Let f := (L; f−, f+) be a bipolar-valued fuzzy filter of L := (L, |).
Then f∗ := (L; f−

∗ , f+
∗ ) is a normal bipolar-valued fuzzy filter of L := (L, |) by

Theorem 4.4. Hence it is clear that if f∗ = f, then f := (L; f−, f+) is normal.
Conversely, if f := (L; f−, f+) is normal, then f−

∗ (x) = f−(x)−1−f−(1) =
f−(x) and f+

∗ (x) = f+(x) + 1− f+(1) = f+(x) for all x ∈ L. Hence f∗ = f.

Proposition 4.6. Let f := (L; f−, f+) and g := (L; g−, g+) be bipolar-valued
fuzzy filters of L := (L, |) with f b g. If f−(1) = g−(1) and f+(1) = g+(1),
then LfF ⊆ LgF

.

Proof. Straightforward.

The example below shows that there are bipolar-valued fuzzy filters f := (L;
f−, f+) and g := (L; g−, g+) of L := (L, |) that satisfy LfF ⊆ LgF

and f 6b g.

Example 4.7. Consider the Sheffer stroke Hilbert algebra L := (L, |) in Ex-
ample 3.5. Let f := (L; f−, f+) and g := (L; g−, g+) be bipolar-valued fuzzy
sets in L defined by the Table 7.

Table 7: Tabular representation of f and g

L f−(x) f+(x) g−(x) g+(x)
0 −0.42 0.43 −0.36 0.33
2 −1.00 1.00 −1.00 1.00
3 −0.42 0.43 −0.36 0.33
1 −1.00 1.00 −1.00 1.00

Then LfF = {1, 2} = LgF
but f 6b g since f−(3) = −0.42 < −0.36 = g−(3)

and/or f+(0) = 0.43 > 0.33 = g+(0).

Theorem 4.8. Let f := (L; f−, f+) be a bipolar-valued fuzzy filter of L :=
(L, |). Then it is normal if and only if there is a bipolar-valued fuzzy filter
g := (L; g−, g+) of L := (L, |) such that g∗ b f.

Proof. The necessity is straightforward because if f := (L; f−, f+) is normal,
then f∗ = f.
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Conversely, assume that there is a bipolar-valued fuzzy filter g := (L; g−,
g+) of L := (L, |) such that g∗ b f. Then −1 = g−∗ (1) ≥ f−(1) and 1 = g+∗ (1) ≤
f+(1). Thus f−(1) = −1 and f+(1) = 1, and so f := (L; f−, f+) is normal.

Theorem 4.9. Given a bipolar-valued fuzzy set f := (L; f−, f+) in L, consider
an increasing mapping ` := (`−, `+) : [−1, f−(1)]× [0, f+(1)]→ [−1, 0]× [0, 1].
If f := (L; f−, f+) is a bipolar-valued fuzzy filter of L := (L, |), then the
bipolar-valued fuzzy set f` := (L; f−

` , f+
` ) in L defined by f−

` (a) = `−(f−(a))
and f+

` (x) = `+(f+(x)) for all (a, x) ∈ L × L is a bipolar-valued fuzzy filter of
L := (L, |). Moreover, if f−

` (1) = −1 and f+
` (1) = 1, then f` := (L; f−

` , f+
` ) is

normal, and

(∀(s, t) ∈ [−1, f−(1)]× [0, f+(1)])(`−(s) ≤ s, `+(t) ≥ t ⇒ f b f`).

Proof. Assume that f := (L; f−, f+) is a bipolar-valued fuzzy filter of L :=
(L, |). Let x, y ∈ L be such that x ≤L y. Then f−

` (x) = `−(f−(x)) ≥
`−(f−(y)) = f−

` (y) and f+
` (x) = `+(f+(x)) ≤ `+(f+(y)) = f+

` (y). For ev-
ery x, y, z ∈ L, we have

f−
` ((x|y)|(x|y)) = `−(f−((x|y)|(x|y)))

≤ `−(max{f−(x), f−(y)})
= max{`−(f−(x)), `−(f−(y))}
= max{f−

` (x), f−
` (y)}

and

f+
` ((x|y)|(x|y)) = `+(f+((x|y)|(x|y)))

≥ `+(min{f+(x), f+(y)})
= min{`+(f+(x)), `+(f+(y))}
= min{f+

` (x), f+
` (y)}.

Therefore, f` := (L; f−
` , f+

` ) is a bipolar-valued fuzzy filter of L := (L, |) by
Theorem 3.6. If f−

` (1) = −1 and f+
` (1) = 1, then f` := (L; f−

` , f+
` ) is normal

by Theorem 4.3. Let (s, t) ∈ [−1, f−(1)]× [0, f+(1)] be such that `−(s) ≤ s and
`+(t) ≥ t. Then f−

` (x) = `−(f−(x)) ≤ f−(x) and f+
` (x) = `+(f+(x)) ≥ f+(x)

for all x ∈ L. Hence f b f`.

Theorem 4.10. Let f := (L; f−, f+) be a normal bipolar-valued fuzzy filter of
L := (L, |) such that f−(a) 6= f−(1) and f+(x) 6= f+(1) for some (a, x) ∈ L×L.
If f := (L; f−, f+) is a maximal element of (NF (L),b), then it is described as
follows:

f− : L→ [−1, 0], a 7→
{
−1 if a = 1,
0 otherwise,

f+ : L→ [0, 1], x 7→
{

1 if x = 1,
0 otherwise,

(4.1)

where NF (L) is the set of all normal bipolar-valued fuzzy filters of L := (L, |).
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Proof. Clearly, (NF (L),b) is a poset. Assume that f := (L; f−, f+) is a
maximal element of (NF (L),b). It is clear that f−(1) = −1 and f+(1) = 1
since f := (L; f−, f+) is normal. Let (a, x) ∈ L×L be such that f−(a) 6= f−(1)
and f+(x) 6= f+(1). If f−(a) 6= 0 and f+(x) 6= 0, then −1 < f−(c) < 0 and
0 < f+(z) < 1 for some (c, z) ∈ L×L. Let g := (L; g−, g+) be a bipolar-valued
fuzzy set in L defined by

g− : L→ [−1, 0], a 7→ 1
2 (f−(a) + f−(c)),

g+ : L→ [0, 1], x 7→ 1
2 (f+(x) + f+(z)).

Let x, y ∈ L be such that x ≤L y. Then

g−(x) = 1
2 (f−(x) + f−(c)) ≥ 1

2 (f−(y) + f−(c)) = g−(y)

and g+(x) = 1
2 (f+(x)+f+(z)) ≤ 1

2 (f+(y)+f+(z)) = g+(y). For every x, y ∈ L,
we have

g−((x|y)|(x|y)) = 1
2 (f−((x|y)|(x|y)) + f−(c))

≤ 1
2 (max{f−(x), f−(y)}+ f−(c))

= 1
2 max{f−(x) + f−(c), f−(y) + f−(c)}

= max{ 12 (f−(x) + f−(c)), 1
2 (f−(y) + f−(c))}

= max{g−(x), g−(y)}

and

g+((x|y)|(x|y)) = 1
2 (f+((x|y)|(x|y)) + f+(z))

≥ 1
2 (min{f+(x), f+(y)}+ f+(z))

= 1
2 min{f+(x) + f+(z), f+(y) + f+(z)}

= min{ 12 (f+(x) + f+(z)), 1
2 (f+(y) + f+(z))}

= min{g+(x), g+(y)}.

Hence g := (L; g−, g+) is a bipolar-valued fuzzy filter of L := (L, |) by Theorem
3.6, and g∗ := (L; g−∗ , g

+
∗ ) is a normal bipolar-valued fuzzy filter of L := (L, |)

by Theorem 4.4. We can observe that

g−∗ (x) = g−(x)− 1− g−(1)

= 1
2 (f−(x) + f−(c))− 1− 1

2 (f−(1) + f−(c))

= 1
2 (f−(x)− 1) ≤ f−(x)

and

g+∗ (x) = g+(x) + 1− g+(1)

= 1
2 (f+(x) + f+(z)) + 1− 1

2 (f+(1) + f+(z))

= 1
2 (f+(x) + 1) ≥ f+(x)
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for all x ∈ L. Hence f b g∗, and so f := (L; f−, f+) is not a maximal element
of (NF (L),b). This is a contradiction, and therefore (f−(a), f+(x)) = (0, 0) for
all (a, x) ∈ L× L with f−(a) 6= −1 and f+(x) 6= 1. Consequently, f := (L; f−,
f+) is described as (4.1).
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(2022), 247–269. DOI:10.2478/auom-2022-0014

[15] T. Oner, T. Katican, A. Borumand Saeid and M. Terziler, Filters of
strong Sheffer stroke non-associative MV-algebras, Analele Ştiinţifice ale
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Abstract

Here we present general multivariate Opial and Polya type inequalities
over spherical shells. The proofs derive by the use of some estimates
coming out of some new trigonometric and hyperbolic Taylor�s formulae
([1], [2]) and reducing the multivariate problem to a univariate one via
general polar coordinates.

Mathematics Subject Classi�cation (2020): 26A24, 26D10, 26D15.
Keywords and phrases: Opial and Polya inequalities, polar coordinates,

spherical shell.

1 Background

We need

Remark 1 Let the spherical shell

A := B (0; R2)�B (0; R1);

0 < R1 < R2; A � RN , N � 2, x 2 A; r = jxj, r 2 [R1; R2], 8 x 2 A, j�j the
Euclidean norm. Here x can be written uniquely as x = r!, where r = jxj > 0
and ! = x

r 2 S
N�1, j!j = 1, see ([3], pp. 149-150 and [5], p. 421).

Furthermore for F : A! R a Lebesgue integrable function we have thatZ
A

F (x) dx =

Z
SN�1

 Z R2

R1

F (r!) rN�1dr

!
d!; (1)

where SN�1 :=
�
x 2 RN : jxj = 1

	
:

1
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Let d! be the element of surface measure on SN�1 with surface area

!N =

Z
SN�1

d! =
2�

N
2

�
�
N
2

� : (2)

Here it is volume of A,

vol (A) =
!N
�
RN2 �RN1

�
N

: (3)

Above it is B (0; r) :=
�
x 2 RN : jxj < r

	
, r > 0:

Here K is either R or C, and CnK (I) denotes functions n-times continuously
di¤erentiable on an interval I � R with values in K.
From [2] we need to mention the following Opial type inequalities.

Theorem 2 Let f 2 C2K (I), with interval I � R, a; x 2 I, a < x, and f (a) =
f 0 (a) = 0, with p; q > 1 : 1p +

1
q = 1. ThenZ x

a

jf (w)j jf 00 (w) + f (w)j dw �

2�
1
q

�Z x

a

�Z w

a

jsin (w � t)jp dt
�
dw

� 1
p
�Z x

a

jf 00 (w) + f (w)jq dw
� 2

q

: (4)

Theorem 3 Let f 2 C2K (I), a; x 2 I, a < x, and f (a) = f 0 (a) = 0, with
p; q > 1 : 1p +

1
q = 1. ThenZ x

a

jf (w)j jf 00 (w)� f (w)j dw �

2�
1
q

�Z x

a

�Z w

a

jsinh (w � t)jp dt
�
dw

� 1
p
�Z x

a

jf 00 (w)� f (w)jq dw
� 2

q

: (5)

Theorem 4 Let f 2 C4K (I), interval I � R, let a; x 2 I, a < x, f (a) =
f 0 (a) = f 00 (a) = f 000 (a) = 0, with p; q > 1 : 1p +

1
q = 1. ThenZ x

a

jf (w)j
���f (iv) (w)� f (w)��� dw �

2�(1+
1
q )
�Z x

a

�Z w

a

jsinh (w � t)� sin (w � t)jp dt
�
dw

� 1
p

(6)

�Z x

a

���f (iv) (w)� f (w)���q dw� 2
q

:

2

212

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Anastassiou 211-221



Theorem 5 All as in Theorem 4. Let �; � 2 R : ��
�
�2 � �2

�
6= 0. ThenZ x

a

jf (w)j
���f (4) (w) + ��2 + �2� f 00 (w) + �2�2f (w)��� dw �

1

2
1
q j��j

���2 � �2��
�Z x

a

�Z w

a

j� sin (� (w � t))� � sin (� (w � t))jp dt
�
dw

� 1
p

�Z x

a

���f (4) (w) + ��2 + �2� f 00 (w) + �2�2f (w)���q dw� 2
q

: (7)

Theorem 6 All as in Theorem 4. Let � 2 R; � 6= 0. ThenZ x

a

jf (w)j
���f (4) (w) + 2�2f 00 (w) + �4f (w)��� dw �

1

2
1
q+1 j�j3

�Z x

a

�Z w

a

jsin (� (w � t))� � (w � t) cos (� (w � t))jp dt
�
dw

� 1
p

(8)�Z x

a

���f (4) (w) + 2�2f 00 (w) + �4f (w)���q dw� 2
q

:

Theorem 7 All as in Theorem 5. ThenZ x

a

jf (w)j
���f (4) (w)� ��2 + �2� f 00 (w) + �2�2f (w)��� dw �

1

2
1
q j��j

���2 � �2��
�Z x

a

�Z w

a

j� sinh (� (w � t))� � sinh (� (w � t))jp dt
�
dw

� 1
p

(9)�Z x

a

���f (4) (w)� ��2 + �2� f 00 (w) + �2�2f (w)���q dw� 2
q

:

Theorem 8 All as in Theorem 6. ThenZ x

a

jf (w)j
���f (4) (w)� 2�2f 00 (w) + �4f (w)��� dw �

1

2
1
q+1 j�j3

�Z x

a

�Z w

a

j� (w � t) cosh (� (w � t))� sinh (� (w � t))jp dt
�
dw

� 1
p

(10)�Z x

a

���f (4) (w)� 2�2f 00 (w) + �4f (w)���q dw� 2
q

:

We will use the above Opial type inequalities in the case of p = q = 2.
The motivation came from the following famous Opial�s inequality

3
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Theorem 9 (Z. Opial, 1960, [4]) Let c > 0 and y (x) be real, continuously
di¤erentiable on [0; c], with y (0) = y (c) = 0. ThenZ c

0

jy (x) y0 (x)j dx � c

4

Z c

0

(y0 (x))
2
dx: (11)

Equality holds for the function y (x) = x on
�
0; c2
�
and y (x) = c� x on

�
c
2 ; c
�
:

2 Results

First we present a collection of Opial type inequalities on the spherical shell A.

Theorem 10 Let F : A! R Lebesgue integrable function with F (�!) 2 C2 ([R1; R2]),
with F (R1!) = @F

@r (R1!) = 0, 8 ! 2 S
N�1. ThenZ

A

jF (x)j
����F (x) + @2F (x)@r2

���� dx �
2�

1
2

�
R2
R1

�N�1 Z R2

R1

�Z r

R1

(sin (r � t))2 dt
�
dr

! 1
2 Z

A

�
F (x) +

@2F (x)

@r2

�2
dx:

(12)

Proof. Here we apply Theorem 2 to F (�!) for p = q = 2. So for every
! 2 SN�1 we have thatZ R2

R1

jF (r!)j
����@2F (r!)@r2

+ F (r!)

���� dr �
2�

1
2

 Z R2

R1

�Z r

R1

(sin (r � t))2 dt
�
dr

! 1
2
 Z R2

R1

�
@2F (r!)

@r2
+ F (r!)

�2
dr

!
:

(13)
We have R1 � r � R2 and R

N�1
1 � rN�1 � RN�12 , and R1�N2 � r1�N �

R1�N1 :

We observe the following

R1�N2

Z R2

R1

jF (r!)j
����@2F (r!)@r2

+ F (r!)

���� rN�1dr � (14)

Z R2

R1

jF (r!)j
����@2F (r!)@r2

+ F (r!)

���� rN�1r1�Ndr =Z R2

R1

jF (r!)j
����@2F (r!)@r2

+ F (r!)

���� dr (13)�

4
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2�
1
2

 Z R2

R1

�Z r

R1

(sin (r � t))2 dt
�
dr

! 1
2

 Z R2

R1

�
@2F (r!)

@r2
+ F (r!)

�2
rN�1r1�Ndr

!
�

R1�N1 2�
1
2

 Z R2

R1

�Z r

R1

(sin (r � t))2 dt
�
dr

! 1
2

(15) Z R2

R1

�
@2F (r!)

@r2
+ F (r!)

�2
rN�1dr

!
:

Therefore it holdsZ R2

R1

jF (r!)j
����@2F (r!)@r2

+ F (r!)

���� rN�1dr �
�
R1
R2

�1�N
2�

1
2

 Z R2

R1

�Z r

R1

(sin (r � t))2 dt
�
dr

! 1
2

(16) Z R2

R1

�
@2F (r!)

@r2
+ F (r!)

�2
rN�1dr

!
:

Consequently we obtainZ
SN�1

 Z R2

R1

jF (r!)j
����@2F (r!)@r2

+ F (r!)

���� rN�1dr
!
d! �

2�
1
2

�
R2
R1

�N�1 Z R2

R1

�Z r

R1

(sin (r � t))2 dt
�
dr

! 1
2

(17)

Z
SN�1

 Z R2

R1

�
@2F (r!)

@r2
+ F (r!)

�2
rN�1dr

!
d!:

Applying (1) we obtain (12).
Next, we present more Opial type inequalities on spherical shell. Their proofs

are similar to the proof of Theorem 10 and are based on Theorems 3-8. Use
also of (1).

Theorem 11 Same assumptions as in Theorem 10. ThenZ
A

jF (x)j
����F (x)� @2F (x)@r2

���� dx �
2�

1
2

�
R2
R1

�N�1 Z R2

R1

�Z r

R1

(sinh (r � t))2 dt
�
dr

! 1
2 Z

A

�
F (x)� @

2F (x)

@r2

�2
dx:

(18)

5
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Proof. Based on (5).

Theorem 12 Let F : A! R Lebesgue integrable function with F (�!) 2 C4 ([R1; R2]),
with F (R1!) = @(i)F

@r(i)
(R1!) = 0, i = 1; 2; 3; 8 ! 2 SN�1. ThenZ

A

jF (x)j
����@4F (x)@r4

� F (x)
���� dx �

2�
3
2

�
R2
R1

�N�1 Z R2

R1

�Z r

R1

(sinh (r � t)� sin (r � t))2 dt
�
dr

! 1
2

Z
A

�
@4F (x)

@r4
� F (x)

�2
dx: (19)

Proof. Based on (6).

Theorem 13 All as in Theorem 12. Let �; � 2 R : ��
�
�2 � �2

�
6= 0. ThenZ

A

jF (x)j
����@4F (x)@r4

+
�
�2 + �2

� @2F (x)
@r2

+ �2�2F (x)

���� dx �
1p

2
���� ��2 � �2���

�
R2
R1

�N�1
 Z R2

R1

�Z r

R1

(� sin (� (r � t))� � sin (� (r � t)))2 dt
�
dr

! 1
2

Z
A

�
@4F (x)

@r4
+
�
�2 + �2

� @2F (x)
@r2

+ �2�2F (x)

�2
dx: (20)

Proof. Based on (7).

Theorem 14 All as in Theorem 12. Let � 2 R, � 6= 0. ThenZ
A

jF (x)j
����@4F (x)@r4

+ 2�2
@2F (x)

@r2
+ �4F (x)

���� dx �
1

2
3
2 j�3j

�
R2
R1

�N�1 Z R2

R1

�Z r

R1

(sin (� (r � t))� � (r � t) cos (� (r � t)))2 dt
�
dr

! 1
2

Z
A

�
@4F (x)

@r4
+ 2�2

@2F (x)

@r2
+ �4F (x)

�2
dx: (21)

Proof. Based on (8).
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Theorem 15 All as in Theorem 13. ThenZ
A

jF (x)j
����@4F (x)@r4

�
�
�2 + �2

� @2F (x)
@r2

+ �2�2F (x)

���� dx �
1p

2
���� ��2 � �2���

�
R2
R1

�N�1
 Z R2

R1

�Z r

R1

(� sinh (� (r � t))� � sinh (� (r � t)))2 dt
�
dr

! 1
2

Z
A

�
@4F (x)

@r4
�
�
�2 + �2

� @2F (x)
@r2

+ �2�2F (x)

�2
dx: (22)

Proof. By (9).
Finally we give the following Opial type inequality.

Theorem 16 All as in Theorem 14. ThenZ
A

jF (x)j
����@4F (x)@r4

� 2�2 @
2F (x)

@r2
+ �4F (x)

���� dx �
1

2
3
2 j�j3

�
R2
R1

�N�1 Z R2

R1

�Z r

R1

(� (r � t) cosh (� (r � t))� sinh (� (r � t)))2 dt
�
dr

! 1
2

Z
A

�
@4F (x)

@r4
� 2�2 @

2F (x)

@r2
+ �4F (x)

�2
dx: (23)

Proof. Based on (10).
We need the following results.

Theorem 17 ([1]) For f 2 C2K ([a; b]) and x 2 [a; b] : f (a) = f 0 (a) = 0, we
have that

f (x) =

Z x

a

(f 00 (t) + f (t)) sin (x� t) dt; (24)

and

f (x) =

Z x

a

(f 00 (t)� f (t)) sinh (x� t) dt: (25)

Theorem 18 ([1]) For f 2 C4K ([a; b]) and x 2 [a; b] : f (a) = f 0 (a) = f 00 (a) =
f 000 (a) = 0, we have that

f (x) =

Z x

a

(f 0000 (t)� f (t))
�
sinh (x� t)� sin (x� t)

2

�
dt: (26)

7
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Theorem 19 ([1]) Let �; � 2 R with ��
�
�2 � �2

�
6= 0, and f 2 C4K ([a; b]) ;

x 2 [a; b] : f (a) = f 0 (a) = f 00 (a) = f 000 (a) = 0. Then

f (x) =
1

��
�
�2 � �2

� Z x

a

�
f 0000 (t) +

�
�2 + �2

�
f 00 (t) + �2�2f (t)

�
(� sin (� (x� t))� � sin (� (x� t))) dt: (27)

Theorem 20 ([1]) Let �; � 2 R with ��
�
�2 � �2

�
6= 0, and f 2 C4K ([a; b]) ;

x 2 [a; b] : f (a) = f 0 (a) = f 00 (a) = f 000 (a) = 0. Then

f (x) =
1

��
�
�2 � �2

� Z x

a

�
f 0000 (t)�

�
�2 + �2

�
f 00 (t) + �2�2f (t)

�
(� sinh (� (x� t))� � sinh (� (x� t))�) dt: (28)

We will use
jsinxj � jxj , 8 x 2 R; (29)

jsinhxj � cosh (b� a) jxj ; 8 x 2 [� (b� a) ; b� a] : (30)

Both of the above come by applications of mean value theorem.
We give the following Polya type univariate inequalities.

Theorem 21 For f 2 C2K ([a; b]) and x 2 [a; b] : f (a) = f 0 (a) = 0, it holdsZ b

a

jf (x)j dx � (b� a)2

2

Z b

a

jf 00 (t) + f (t)j dt; (31)

and Z b

a

jf (x)j dx � cosh (b� a) (b� a)
2

2

Z b

a

jf 00 (t)� f (t)j dt: (32)

Proof. (i) By (24) we have that

jf (x)j �
Z x

a

jf 00 (t) + f (t)j jsin (x� t)j dt �

Z x

a

jf 00 (t) + f (t)j (x� t) dt � (33)

(x� a)
Z x

a

jf 00 (t) + f (t)j dt � (x� a)
Z b

a

jf 00 (t) + f (t)j dt:

Therefore, it holdsZ b

a

jf (x)j dx �
 Z b

a

(x� a) dx
!Z b

a

jf 00 (t) + f (t)j dt = (34)

8

218

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Anastassiou 211-221



(b� a)2

2

Z b

a

jf 00 (t) + f (t)j dt:

(ii) By (25) we have that

jf (x)j �
Z x

a

jf 00 (t)� f (t)j jsinh (x� t)j dt �

cosh (b� a)
Z x

a

jf 00 (t)� f (t)j (x� t) dt � (35)

cosh (b� a) (x� a)
Z x

a

jf 00 (t)� f (t)j dt �

cosh (b� a) (x� a)
Z b

a

jf 00 (t)� f (t)j dt:

Therefore, we getZ b

a

jf (x)j dx � cosh (b� a)
 Z b

a

(x� a) dx
!Z b

a

jf 00 (t)� f (t)j dt = (36)

cosh (b� a) (b� a)
2

2

Z b

a

jf 00 (t)� f (t)j dt:

Theorem 22 All as in Theorem 18. ThenZ b

a

jf (x)j dx � (cosh (b� a) + 1) (b� a)
2

4

Z b

a

jf 0000 (t)� f (t)j dt: (37)

Theorem 23 All as in Theorem 19. ThenZ b

a

jf (x)j dx � (b� a)2���2 � �2��
Z b

a

��f 0000 (t) + ��2 + �2� f 00 (t) + �2�2f (t)�� dt: (38)
Theorem 24 All as in Theorem 20, plus j�j ; j�j < 1. ThenZ b

a

jf (x)j dx � cosh (b� a) (b� a)2���2 � �2��
Z b

a

��f 0000 (t)� ��2 + �2� f 00 (t) + �2�2f (t)�� dt:
(39)

Next comes a collection of Polya type inequalities on the spherical shell.
Their proofs are based on Theorems 21-24, (1) and they are similar to the proof
of Theorem 10, and as such details are omitted.

9
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Theorem 25 Same assumptions as in Theorem 10. ThenZ
A

jF (x)j �
�
R2
R1

�N�1
(R2 �R1)2

2

Z
A

����@2F (x)@r2
+ F (x)

���� dx; (40)

andZ
A

jF (x)j �
�
R2
R1

�N�1
cosh (R2 �R1)

(R2 �R1)2

2

Z
A

����@2F (x)@r2
� F (x)

���� dx:
(41)

Proof. Based on Theorem 21.

Theorem 26 Same assumptions as in Theorem 12. ThenZ
A

jF (x)j �
�
R2
R1

�N�1
(cosh (R2 �R1) + 1)

(R2 �R1)2

4Z
A

����@4F (x)@r4
� F (x)

���� dx: (42)

Proof. Based on Theorem 22.

Theorem 27 All as in Theorem 13. ThenZ
A

jF (x)j �
�
R2
R1

�N�1
(R2 �R1)2���2 � �2��Z

A

����@4F (x)@r4
+
�
�2 + �2

� @2F (x)
@r2

+ �2�2F (x)

���� dx: (43)

Proof. Based on Theorem 23.
We �nish with

Theorem 28 All as in Theorem 13, plus j�j ; j�j < 1. ThenZ
A

jF (x)j �
�
R2
R1

�N�1
cosh (R2 �R1) (R2 �R1)2���2 � �2��Z

A

����@4F (x)@r4
�
�
�2 + �2

� @2F (x)
@r2

+ �2�2F (x)

���� dx: (44)

Proof. Based on Theorem 24.

10
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Abstract

In this article we study the behaviors of a piecewise linear map with
initial condition in the second quadrant. There is a unique equilibrium
point and two 4-cycles of the map. We found regions of initial condition
that solutions become equilibrium point or 4-cycles. We divided the sec-
ond quadrant into sub-regions and identify behaviors of solutions in each
sub-region by direct calculations, and formulated inductive statements to
explain the behaviors of the map without using stability theorems.

Key words: Coexisting attractors, Periodic solution, Equilibrium point,
Piecewise linear map.
2010 Mathematics Subject Classification: 39A10 and 65Q10.

1 Introduction
Lozi map (Lozi, 1978) is a well known two dimensional piecewise linear map
which is a simplified version of Hénon map and has a strange attractor. There
are many applications of piecewise linear maps in models such as power elec-
tronic converters and switching circuits (Banerjee & Verghese, 2001; Zhusu
baliyev &Mosekilde, 2003). We know that multistability (Simpson, 2010; Zhusub-
aliyev et al., 2008) can be found in piecewise linear map. Bifurcations sequence
in a family of piecewise linear maps were cosidered in articles (Gardini & Tikjha,
2019; Tikjha & Gardini, 2020) and also a transition between invertibility and
non-invertibility of piecewise linear map were studied in article (Gardini &
Tikjha, 2020). A solution {(xn, yn)}∞n=0 of a map is called eventually peri-
odic with prime period-p (or minimal period-p) if there exists an integer N > 0

1

222

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Youtuam et al 222-235



and a smallest positive integer p such that {(xn, yn)}∞n=0 is periodic with period
p; that is,

(xn+p, yn+p) = (xn, yn) for all n ≥ N.

As we all known that piecewise linear function is not differentiable. In the case
of system that can reduce to equation (one-dimensional map), we are unable to
verify stability via stability theorem such as Schwazian derivative (D. Singer,
1978). An open problem about a piecewise linear map was mentioned in (Grove
et al.,2012): {

xn+1 = |xn|+ ayn + b

yn+1 = xn + c|yn|+ d
(1)

with initial condition (x0, y0) ∈ R2. Many papers studied the open problem
for example: Gove et al. (2012) found that every solution is eventually prime
period-3 solutions except for the unique equilibrium solution. In article (Tikjha
et al., 2010; 2015; 2017) and (Tikjha & Lapiere, 2020), they studied some
special cases of system (1), and showed that there are periodic attractors. They
showed that every solution is eventually either periodic attractors or equilibrium
point by using direct calculation and inductive statement. Recently in article
(Aiewcharoen et al. 2021; Laoharenoo et al. 2023), they investigated a family
of systems that contain absolute value similar to (1) and they showed that all
solutions become the equilibrium point. Moreover, they also showed that there
exist a prime period 5 when b ≤ −6. In article (Lapiere & Tikjha, 2021),
they also studied the special case of (1) with a = b = d = −1 and c = 1.
Our goal is to continue investigate the special case of (1) with a = c = −1,
b = −3 and d = 1 which Tikjha and Piasu (Tikjha & Piasu, 2020) reported the
condition of solutions becoming equilibrium point or periodic with prime period
4. They investigated initial point only in region of the first quadrant. We aim to
extend the initial condition in second quadrant and find all possible behaviors of
solutions for this map and then characterize the coexisting attractors between
equilibrium point and periodic with prime period 4 (4-cycle) and their basin of
attractions.

2 Main Results
In this section we will study the following two dimensional map:

xn+1 = |xn| − yn − 3, yn+1 = xn − |yn|+ 1 (2)

with initial condition belonging to second quadrant. This map has the unique
equilibrium point (−1,−1) that can be computed by solving the system:{

x̄ = |x̄| − ȳ − 3

ȳ = x̄− |ȳ|+ 1
.

As in (Tikjha & Piasu, 2020), there are 4-cycles of the system (2) given by P4.1 =
{((−5,−1), (3,−5), (5,−1), (3, 5))} and P4.2 = {((1,−3), (1,−1), (−1, 1), (−3,−1))}.
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The 4-cycles are found by numerical calculation. It is easy to verify that P4.1

and P4.2 are 4-cycles. Let (x0, y0) be in the second quadrant of xy plane,
Q2 := {(x, y) ∈ R2|x < 0 and y > 0}. We have the first iteration as the
following: {

x1 = |x0| − y0 − 3 = −x0 − y0 − 3

y1 = x0 − |y0|+ 1 = x0 − y0 + 1
(3)

Before we calculate the next iteration, we have to know the sign (negative or
non-negative) of x1 and y1 which are the function of x0 and y0. The sign of x1

will change when initial point (x0, y0) above or below the line f(x) = −x − 3
(resp. g(x) = x + 1 for y1). Now we divide the second quadrant into three
sub-regions as Fig. 1 that we will investigate in the next sub-section.

x

y

g(x) = x+ 1

f(x) = −x− 3

(−1,−1)

Figure 1: The second quadrant is separated into three sub-regions by the lines
f(x) and g(x). The red point is the equilibrium point of system (2).

2.1 Stable equilibrium point
In this section we will investigate rightmost region of second quadrant that is
when initial condition belonging to the green region as Fig.2 From (3), we have{

x2 = 2y0 − 1

y2 = −2x0 − 3 < 0.
(4)

Firstly, we will investigate when x2 ≥ 0 that is initial condition 1
2 ≤ y0 ≤ 1

as in Fig.3. So the next iteration can be written in the form:{
x3 = 2x0 + 2y0 − 1

y3 = −2x0 + 2y0 − 3 < 0.
(5)

3
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x

y

g(x) = x+ 1

Figure 2: The region of initial points such that x1 is negative and y1 is positive.

x

y

g(x) = x+ 1

h(x) = 1
2

Figure 3: The region of initial points such that x2 is non-negative.

Again we separate region in Fig.3 into two parts above and below a line i(x) =
−x + 1

2 as in Fig.4. For an initial condition above the line i(x) = −x + 1
2 , the

forth iteration is in the form:{
x4 = 4x0 − 1 < 0

y4 = 4y0 − 3.
(6)

If initial conditions are in green region in Fig.4 with above line i(x) and y0 ∈[
1
2 ,

3
4

]
, we have y4 ≤ 0. By direct calculations we have:{

x5 = −4x0 − 4y0 + 1 < 0
y5 = 4x0 + 4y0 − 3 < 0

, and
{

x6 = −1
y6 = −1

. The solution of this region is
eventually equilibrium point within sixth iteration. For initial conditions are in
green region in Fig. 4 with above line i(x) and y0 ∈

(
3
4 , 1
]
, we have the following

closed form of solution:
{

x5 = −4x0 − 4y0 + 1 < 0
y5 = 4x0 − 4y0 + 3 < 0

, and so

{
x6 = 8y0 − 7
y6 = −8y0 + 5 < 0

. (7)

Note that the closed form of the sixth iteration with this region is independent
from x0. It is easy to verify that when y0 ∈

(
3
4 ,

7
8

]
, x6 ≤ 0 and so x7 = y7 = −1.

4

225

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Youtuam et al 222-235



x

y

g(x) = x+ 1

h(x) = 1
2

i(x) = −x+ 1
2

Figure 4: The third iteration of (5) x3 change sign when initial point (x0, y0)
crosses the line i(x).

This means that the solution of this region is also eventually equilibrium point
within seventh iteration. The remain region is when y0 ∈

(
7
8 , 1
]

which we
have x6 > 0. The following inductive statement will be used to prove that
every solution is eventually equilibrium point for this remain region. Let an =
22n+1−1
22n+1 , bn = 22n+2−1

22n+2 , δn = 22n+2 − 1 and P (n) be the following statement :
“y0 ∈ (an, 1] , then{

x4n+3 = 22n+2y0 − δn
y4n+3 = −1

.

If y0 ∈ (an, bn] then x4n+3 ≤ 0 and so{
x4n+4 = −22n+2y0 + δn − 2 < 0
y4n+4 = 22n+2y0 − δn ≤ 0

,

{
x4n+5 = −1
y4n+5 = −1

.

If y0 ∈ (bn, 1] then x4n+3 > 0 and so{
x4n+4 = 22n+2y0 − δn − 2 < 0
y4n+4 = 22n+2y0 − δn > 0

,

{
x4n+5 = −22n+3y0 + 2δn − 1 < 0
y4n+5 = −1

,{
x4n+6 = 22n+3y0 − 2δn − 1
y4n+6 = −22n+3y0 + 2δn − 1 < 0

.

If y0 ∈ (bn, an+1] then x4n+6 ≤ 0, and so{
x4n+7 = −1
y4n+7 = −1

.

If y0 ∈ (an+1, 1] then x4n+6 > 0. ”
We shall show that P (1) is true. For y0 ∈ (a1, 1] =

(
7
8 , 1
]

and δ1 = 15,
we have x6 = 8y0 − 7 > 0, y6 = −8y0 + 5 < 0 and so{

x4(1)+3 = x7 = 16y0 − 15 = 22(1)+2y0 − δ1
y4(1)+3 = y7 = −1

.

If y0 ∈ (a1, b1] = ( 78 ,
15
16 ] then x7 ≤ 0 and so{

x4(1)+4 = x8 = −16y0 + 13 = −22(1)+2y0 + δ1 − 2 < 0
y4(1)+4 = y8 = 16y0 − 15 = 22(1)+2y0 − δ1 ≤ 0

,{
x4(1)+5 = x9 = −1
y4(1)+5 = y9 = −1

.

If y0 ∈ (b1, 1] =
(
15
16 , 1

]
then x7 > 0 and so

5
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{
x4(1)+4 = x8 = 16y0 − 17 = 22(1)+2y0 − δ1 − 2 < 0
y4(1)+4 = y8 = 16y0 − 15 = 22(1)+2y0 − δ1 > 0

,{
x4(1)+5 = x9 = −32y0 + 29 = −22(1)+3y0 + 2δ1 − 1 < 0
y4(1)+5 = y9 = −1

,{
x4(1)+6 = x10 = 32y0 − 31 = 22(1)+3y0 − 2δ1 − 1
y4(1)+6 = y10 = −32y0 + 29 = −22(1)+3y0 + 2δ1 − 1 < 0

.

If y0 ∈ (b1, a2] = ( 1516 ,
31
32 ] then x10 ≤ 0 and so{

x4(1)+7 = x11 = −1
y4(1)+7 = y11 = −1

.

If y0 ∈ (a2, 1] = ( 3132 , 1] then x4(1)+6 = x10 = 32y0 − 31 > 0. Therefore P (1) is
true. It means that for this region and initial condition y ∈

(
7
8 ,

31
32

]
, the solution

is eventually equilibrium point (−1,−1). Next Suppose P (k) is true. We shall
show that P (k + 1) is true. For y0 ∈ (ak+1, 1] =

(
22k+3−1
22k+3 , 1

]
, then{

x4k+6 = 22k+3y0 − 2δk − 1 > 0
y4k+6 = −22k+3y0 + 2δk − 1 < 0

. Then{
x4(k+1)+3 = 22(k+1)+2y0 − (22(k+1)+2 − 1) = 22(k+1)+2y0 − δk+1

y4(k+1)+3 = −1
.

If y0 ∈ (ak+1, bk+1] = ( 2
2k+3−1
22k+3 , 22k+4−1

22k+4 ] then x4k+7 = x4(k+1)+3 ≤ 0 (by substi-
tuting boundary of y0) and so{

x4(k+1)+4 = −22(k+1)+2y0 + δk+1 − 2 < 0
y4(k+1)+4 = 22(k+1)+2y0 − δk+1 ≤ 0

,{
x4(k+1)+5 = −1
y4(k+1)+5 = −1

.

If y0 ∈ (bk+1, 1] =
(

22k+4−1
22k+4 , 1

]
then x4k+7 = x4(k+1)+3 > 0 and so{

x4(k+1)+4 = 22(k+1)+2y0 − δk+1 − 2 < 0
y4(k+1)+4 = 22(k+1)+2y0 − δk+1 > 0

,{
x4(k+1)+5 = −22(k+1)+3y0 + 2δk+1 − 1 < 0
y4(k+1)+5 = −1

,{
x4(k+1)+6 = 22(k+1)+3y0 − 2δk+1 − 1
y4(k+1)+6 = −22(k+1)+3y0 + 2δk+1 − 1 < 0

.

If y0 ∈ (bk+1, ak+2] = ( 2
2k+4−1
22k+4 , 22k+5−1

22k+5 ] then x4(k+1)+6 ≤ 0 and so x4(k+1)+7 =
−1 and y4(k+1)+7 = −1.
If y0 ∈ (ak+2, 1] =

(
22k+5−1
22k+5 , 1

]
then x4(k+1)+6 = x4k+10 = 22(k+1)+3y0−2δk+1−

1 > 0. Hence P (k + 1) is also true. By mathematical induction P (n) is true
for any positive integer n. From the inductive statement we have that every
solution with initial condition y0 between an and bn is eventually equilibrium
point. It is easy to see that the limits of sequences an and bn are equal to 1.
Therefore we can confirm that with initial condition, the green region in Fig. 4
with above line i(x), the solution is eventually equilibrium point.

For an initial condition below or in the line i(x) = −x + 1
2 , the initial

condition satisfy x0 ≤ −y0 +
1
2 then x3 = 2x0 + 2y0 − 1 ≤ 0. We have the forth

iteration as x4 = −4x0 + 1 < 0 and y4 = 4y0 − 3. In this green region below

6
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i(x) of Fig. 4, y0 is at most 3
4 . Then y4 = 4y0 − 3 < 0 and so x5 = y5 = −1. So

we proved the following lemma.

Proposition 2.1. Let {(xn, yn)}∞n=0 be a solution of the map (2) and initial
condition (x0, y0) ∈ {(x, y) ∈ Q2|y ≤ x + 1 and 1

2 ≤ y ≤ 1} . Then every
solution is eventually equilibrium point.

Now we consider the below part of the Fig. 3, which (x0, y0) satisfies the
following conditions: x1 = −x0 − y0 − 3 < 0, y1 = x0 − y0 + 1 ≥ 0 and x0 <
0, y0 > 0. We have x2 = 2y0 − 1 and y2 = −2x0 − 3. In this case we consider
when 0 < y0 < 1

2 . So x2 < 0 and (x0, y0) belong to green portion of Fig. 5. The

x

y

g(x) = x+ 1

h(x) = 1
2

Figure 5: The green region of initial points such that x2 is negative.

next iteration can be written in the form:{
x3 = 2x0 − 2y0 + 1

y3 = −2x0 + 2y0 − 3 < 0.
(8)

We separate x3 into two cases, above and below line k(x) = x+ 1
2 as in Fig. 6,

when (x0, y0) is above k(x) then x3 < 0 while it is positive when (x0, y0) below
k(x).

x

y

g(x) = x+ 1

h(x) = 1
2

k(x) = x+ 1
2

Figure 6: The x3 of (8) change sign when initial point (x0, y0) crosses the line
k(x).

7
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In the case of x3 ≤ 0 (above k(x)), we immediately have x4 = y4 = −1. For
the case of x3 > 0, we have{

x4 = 4x0 − 4y0 + 1
y4 = −1

.

For x4 = 4x0 − 4y0 + 1 ≤ 0, we have{
x5 = −4x0 + 4y0 − 3 < 0
y5 = 4x0 − 4y0 + 1 ≤ 0

and so x6 = y6 = −1. In the case of x4 = 4x0 − 4y0 + 1 > 0, that is in remain
region of initial condition in ∆ = {(x0, y0) ∈ Q2|4x0 − 4y0 + 1 > 0} as Fig.7.
We will use an inductive statement to verify that the remain solution is even-

x

y

l(x) = x+ 1
4

1
4

Figure 7: The green region is the initial points belonging to ∆.

tually equilibrium point. Let ∆n = {(x, y) ∈ Q2 | 22nx − 22ny + 1 > 0}, Dn =
{(x, y) ∈ Q2 | 22n+1x − 22n+1y + 1 > 0} and Q(n) be the following statement:
“(x0, y0) ∈ ∆n then{

x4n+1 = 22nx0 − 22ny0 − 1 < 0
y4n+1 = 22nx0 − 22ny0 + 1 > 0

,

{
x4n+2 = −22n+1x0 + 22n+1y0 − 3 < 0
y4n+2 = −1

,{
x4n+3 = 22n+1x0 − 22n+1y0 + 1
y4n+3 = −22n+1x0 + 22n+1y0 − 3 < 0

.

If (x0, y0) ∈ ∆n −Dn then x4n+3 ≤ 0 and so x4n+4 = y4n+4 = −1.
If (x0, y0) ∈ Dn then x4n+3 > 0 and so{

x4n+4 = 22n+2x0 − 22n+2y0 + 1
y4n+4 = −1

.

If (x0, y0) ∈ Dn −∆n+1 then x4n+4 ≤ 0{
x4n+5 = −22n+2x0 + 22n+2y0 − 3 < 0
y4n+5 = 22n+2x0 − 22n+2y0 + 1 ≤ 0

, and so x4n+6 = y4n+6 = −1.

If (x0, y0) ∈ ∆n+1 then x4n+4 > 0.” We shall show that Q(1) is true. For
(x0, y0) ∈ ∆1 = {(x, y) ∈ Q2 | 4x− 4y + 1 > 0}. We have{

x4(1)+1 = 4x0 − 4y0 − 1 = 22(1)x0 − 22(1)y0 − 1 < 0
y4(1)+1 = 4x0 − 4y0 + 1 = 22(1)x0 − 22(1)y0 + 1 > 0

,{
x4(1)+2 = −8x0 + 8y0 − 3 = −22(1)+1x0 + 22(1)+1y0 − 3 < 0
y4(1)+2 = −1

,{
x4(1)+3 = 8x0 − 8y0 + 1 = 22(1)+1x0 − 22(1)+1y0 + 1
y4(1)+3 = −8x0 + 8y0 − 3 = −22(1)+1x0 + 22(1)+1y0 − 3 < 0

.

8
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If (x0, y0) ∈ ∆1 − D1 = {(x, y) ∈ Q2 | 0 < 4x − 4y + 1 and 8x − 8y + 1 ≤ 0}
then x7 ≤ 0 and so x4(1)+4 = y4(1)+4 = −1.
If (x0, y0) ∈ D1 = {(x, y) ∈ Q2 | 8x− 8y + 1 > 0} then x7 > 0 ans so{

x4(1)+4 = 16x0 − 16y0 + 1 = 22(1)+2x0 − 22(1)+2y0 + 1
y4(1)+4 = −1

.

If (x0, y0) ∈ D1 −∆2 = {(x, y) ∈ Q2 | 0 < 8x− 8y + 1 and 16x− 16y + 1 ≤ 0}
then x8 = 16x0 − 16y0 + 1 ≤ 0. Then{

x4(1)+5 = −16x0 + 16y0 − 3 = −22(1)+2x0 + 22(1)+2y0 − 3 < 0
y4(1)+5 = 16x0 − 16y0 + 1 = 22(1)+2x0 − 22(1)+2y0 + 1 ≤ 0

, and so x4(1)+6 =

y4(1)+6 = −1.
If (x0, y0) ∈ ∆2 = {(x0, y0) ∈ Q2 | 16x− 16y + 1 > 0} then x4(1)+4 > 0. Hence
Q(1) is true. Suppose Q(k) is true. Next, we show that Q(k+ 1) is true. Since
Q(k) is true, we have x4k+4 = 22k+2x0 − 22k+2y0 + 1 > 0 , and y4k+4 = −1
when (x0, y0) ∈ ∆k+1 = {(x, y) ∈ Q2 | 22k+2x− 22k+2y + 1 > 0} and so{

x4(k+1)+1 = 22(k+1)x0 − 22(k+1)y0 − 1 < 0
y4(k+1)+1 = 22k+1x0 − 22k+1y0 + 1 > 0

,{
x4(k+1)+2 = −22k+1+1x0 + 22k+1+1y0 − 3 < 0
x4(k+1)+2 = −1

,{
x4(k+1)+3 = 22(k+1)+1x0 − 22(k+1)+1y0 + 1
y4(k+1)+3 = −22(k+1)+1x0 + 22(k+1)+1y0 − 3 < 0

.

If (x0, y0) ∈ ∆k+1−Dk+1 = {(x, y) ∈ Q2 | 0 < −22k+2x+22k+2y+1 and 22(k+1)+1x−
22(k+1)+1y + 1 ≤ 0} then x4(k+1)+3 ≤ 0 and so{

x4(k+1)+4 = −1
y4(k+1)+4 = −1

.

If (x0, y0) ∈ Dk+1 = {(x, y) ∈ Q2 | 22(k+1)+1x − 22(k+1)+1y + 1 > 0} then
x4(k+1)+3 > 0 and so{

x4(k+1)+4 = 22(k+1)+2x0 − 22(k+1)+2y0 + 1
y4(k+1)+4 = −1

.

If (x0, y0) ∈ Dk+1 − ∆k+2 = {(x, y) ∈ Q2 | 0 < 22(k+1)+1x − 22(k+1)+1y +
1 and 22(k+1)+2x0 − 22(k+1)+2y0 + 1 ≤ 0} then x4(k+1)+4 ≤ 0 and so{

x4(k+1)+5 = −22(k+1)+2x0 + 22(k+1)+2y0 − 3 < 0
y4(k+1)+5 = 22(k+1)+2x0 − 22(k+1)+2y0 + 1 ≤ 0

.{
x4(k+1)+6 = −1
y4(k+1)+6 = −1

.

If (x0, y0) ∈ ∆k+2 = {(x, y) ∈ Q2 | 22(k+1)+2x − 22(k+1)+2y + 1 > 0} then
x4(k+1)+4 > 0. Hence Q(k+1) is also true. By mathematical induction Q(n) is
true for any positive integer n ≥ 1. So we proved the following lemma.

Proposition 2.2. Let {(xn, yn)}∞n=0 be a solution of the map (2) and initial
condition (x0, y0) ∈ {(x, y) ∈ Q2|y ≤ x + 1 and 0 < y < 1

2} . Then every
solution is eventually equilibrium point.

Now we complete the proof that every solution is eventually equilibrium
point with initial point in the green region of Fig.2.

9
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2.2 Coexisting attractors
This section we will consider the case that x1 = −x0 − y0 − 3 < 0 and
y1 = x0 − y0 + 1 < 0 which means that initial point belong to cyan region
of Fig.8. Then we have the next iteration in the form

x

y

g(x) = x+ 1

f(x) = −x− 3

Figure 8: The region that x1 and y1 are negative, that (x0, y0) is in cyan.

{
x2 = 2y0 − 1
y2 = −2y0 − 1 < 0

.

That is the second iteration and the remain solutions are independent from x0.
If y0 ≤ 1

2 then x2 ≤ 0 then x3 = y3 = −1. In the case of 1
2 < y0 ≤ 3

4 , we have
x2 > 0 and so{

x3 = 4y0 − 3 ≤ 0
y3 = −1

,

{
x4 = −4y0 + 1 < 0
y4 = 4y0 − 3 ≤ 0

,

{
x5 = −1
y5 = −1

.

If y0 ≥ 5
4 then{

x3 = 4y0 − 3 > 0
y3 = −1

,

{
x4 = 4y0 − 5 ≥ 0
y4 = 4y0 − 3 > 0

,

{
x5 = −5
y5 = −1

.

If 3
4 < y0 ≤ 7

8 then{
x3 = 4y0 − 3 > 0
y3 = −1

,

{
x4 = 4y0 − 5 < 0
y4 = 4y0 − 3 > 0

,

{
x5 = −8y + 5 < 0
y5 = −1

,{
x6 = 8y − 7 < 0
y6 = −8y + 5 < 0

,

{
x7 = −1
y7 = −1

.

Now we can conclude that solutions with initial point in green portion of Fig.
9 become equilibrium point within seventh iteration while solutions with initial
point in red portion of Fig. 9 become 4-cycle within fifth iteration. The remain
region, cyan region of Fig. 9, is 7

8 < y0 < 5
4 which we have third iteration to

fifth iteration are the same as in the case 3
4 < y0 ≤ 7

8 but the sixth iteration is
x6 = 8y0−7 > 0 and y6 = −8y0+5 < 0. The remain iterations can be proved to
become equilibrium point or 4-cycle by using induction. We will use the follow-
ing inductive statement to verify. Let An = 22n+2−1

22n+2 , ln = 22n+1−1
22n+1 , un = 22n+1

22n

10
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x

y

g(x) = x+ 1

f(x) = −x− 3
5
4

7
8

Figure 9: The red (green) region is initial points of solutions that are eventually
4-cycle P4.1 (equilibrium point) while the remain region is in cyan.

and γn = 22n+2 − 1 and R(n) be the following statement : “for y0 ∈ (ln, un),
then x4n+3 = 22n+2y0 − γn, y4n+3 = −1. If y0 ∈ (ln, An] then x4n+3 ≤ 0 and so{

x4n+4 = −22n+2y0 + γn − 2 < 0
y4n+4 = 22n+2y0 − γn ≤ 0

,

{
x4n+5 = −1
y4n+5 = −1

.

If y0 ∈ (An, un) then x4n+3 > 0 and so{
x4n+4 = 22n+2y0 − γn − 2
y4n+4 = 22n+2y0 − γn > 0

.

If y0 ∈ [un+1, un) then x4n+4 ≥ 0 and so x4n+5 = −5 and y4n+5 = −1.
If y0 ∈ (An, un+1) then x4n+4 < 0 and so{

x4n+5 = −22n+3y0 + 2γn − 1 < 0
y4n+5 = −1

,

{
x4n+6 = 22n+3y0 − 2γn − 1
y4n+6 = −22n+3y0 + 2γn − 1 < 0

If y0 ∈ (An, ln+1] then x4n+6 ≤ 0 and so x4n+7 = y4n+7 = −1
If y0 ∈ (ln+1, un+1) then x4n+6 > 0.”

We shall first show that P (1) is true. For y0 ∈ (l1, u1) = ( 78 ,
5
4 ) and γ1 = 15

we have x6 = 8y0 − 7 > 0, y6 = −8y0 + 5 < 0 and so{
x4(1)+3 = 16y0 − 15 = 22(1)+2y0 − γ1
y4(1)+3 = −1

If y0 ∈ (l1, A1] = ( 78 ,
15
16 ] then x7 ≤ 0 and so{

x4(1)+4 = −16y0 + 13 = −22(1)+2y0 + γ1 − 2 < 0
y4(1)+4 = 16y0 − 15 = 22(1)+2y0 − γ1 ≤ 0

,
{

x4(1)+5 = −1
y4(1)+5 = −1

.

If y0 ∈ (A1, u1) = ( 1516 ,
5
4 ) then x7 > 0 and so{

x4(1)+4 = 16y0 − 17 = 22(1)+2y0 − γ1 − 2
y4(1)+4 = 16y0 − 15 = 22(1)+2y0 − γ1 > 0

.

If y0 ∈ [u2, u1) = [ 1716 ,
5
4 ) then x8 ≥ 0 and so x4(1)+5 = −5, y4(1)+5 = −1.

If y0 ∈ (A1, u2) = ( 1516 ,
17
16 ) then x8 < 0 and so

11
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{
x4(1)+5 = −32y0 + 29 = −22(1)+3y0 + 2γ1 − 1 < 0
y4(1)+5 = −1

,{
x4(1)+6 = 32y0 − 31 = 22(1)+3y0 − 2γ1 − 1
y4(1)+6 = −32y0 + 29 = −22(1)+3y0 + 2γ1 − 1 < 0

.

If y0 ∈ (A1, l2] = ( 1516 ,
31
32 ] then x10 ≤ 0 and so x4(1)+7 = y4(1)+7 = −1.

If y0 ∈ (l2, u2) = ( 3132 ,
17
18 ) then x4(1)+6 = 32y0 − 31 = 22(1)+3y0 − 2γ1 − 1 > 0.

Thus R(1) is true. So the base case of induction is done. Similar to P (n),
one can prove that step case is also true. By mathematical induction R(n) is
true for any positive integer n ≥ 1. From inductive statement one can infer
that solution will become 4-cycle (P4.1) when y0 ∈ [un+1, un) while solution will
become equilibrium point when y0 ∈ (ln, An] and y0 ∈ (An, ln+1]. One can see
that limit of sequence An, ln, and un are 1. So the cyan region of Fig. 9 will
collapse into a single line L := {(x, 1)|x ∈ [−4, 0]}. For (x0, y0) ∈ L one can
verify that (x2, y2) = (1,−3) ∈ P4.2. It means the solution will become 4-cycle
(P4.2) when y0 ∈ L.

Proposition 2.3. Let {(xn, yn)}∞n=0 be a solution of the map (2) and initial
condition (x0, y0) ∈ {(x, y) ∈ Q2|y > x + 1 and y > −x − 3}. Then every
solution is eventually equilibrium point.

We can conclude that there are three attractors: equilibrium point, P4.1 and
P4.2. The basin of attraction of equilibrium point is green portion of Fig.10
while P4.1 has red portion of Fig. 10 and P4.2 has L being the basin.

x

y

g(x) = x+ 1

f(x) = −x− 3
5
4

7
8

Figure 10: �Basin of attraction of P4.1, P4.2 is in red and cyan respectively, while
the basin of attraction of equilibrium point is in green.
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3 Conclusion and discussion
We investigated the system of piecewise linear map (2) with initial condition in
the second quadrant. By separating the second quadrant into three sub-regions
as in Fig.1, we have the following behaviors of solutions. In the rightmost region
of second quadrant (initial point below the line g(x)), every solution is eventually
equilibrium point. For the middle region of second quadrant (initial point above
the lines f(x) and g(x)), the solution is eventually either equilibrium point or
4-cycle. We proved it by direct calculations and induction. For the last region
of second quadrant (below the line f(x)) x1 is positive and y1 is negative. The
behaviors of solution are more complicated than the other two sub-regions and
interesting to study that we leave for future work. The behaviors of the map (2)
are agree to Tikjha & Piasu (2020) that attractors are only equilibrium point
and 4-cycles. It is possible to have equilibrium point and 4-cycles as attractors.
But we do still not confirm that until knowing behaviors of solutions with initial
condition (x0, y0) completely in R2.
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Some properties of the higher-order

q-poly-tangent numbers and polynomials

Cheon Seoung Ryoo
Department of Mathematics, Hannam University, Daejeon 34430, Korea

June 27, 2023

In this paper, we construct higher-order q-poly-tangent numbers and polyno-
mials and give several properties, including addition formula and multiplication
formula. Finally, we explore the distribution of roots of higher-order q-poly-
tangent polynomials.

1 Introduction

In [7], we defined the tangent numbers and polynomials. The tangent polyno-
mials are defined as the following generating function(

2

e2t + 1

)
ext =

∞∑
n=0

Tn(x)
tn

n!
.

In [8], we constructed the poly-tangent numbers and polynomials. A modified
poly-tangent numbers and polynomials different from the poly-tangent numbers
and polynomials defined in [8] was introduced. In [9], we introduced tangent
numbers and tangent polynomials of higher order. We also obtain interesting
properties of these numbers and polynomials. For a nonnegative integer r, tan-
gent polynomials of higher order are defined as the following generating function(

2

e2t + 1

)r

ext =

∞∑
n=0

T(r)
n (x)

tn

n!
.

Definition 1.1. For any integer k, the modified poly-tangent polynomials are
defined as the following generating function(

2Lik(1− e−t)

t(e2t + 1)

)
ext =

∞∑
n=0

T (k)
n (x)

tn

n!
,

where Lik(t) =
∑∞

n=1
tn

nk is polylogarithm function.

T
(k)
n = T

(k)
n (0) are the called poly-tangent numbers when x = 0. If we set k =

1 in Definition 1.1, then the poly-tangent polynomials are reduced to classical

tangent polynomials because of Li1(1− e−t) = t. That is, T
(1)
n (x) = Tn(x).

1
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2 Some properties of the higher-order q-poly-
tangent numbers and polynomials

In this section, we define higher-order q-poly-tangent polynomials and study
several properties, including addition formula and multiplication formula.

In [3], [2], [8], the q-number is defined by

[x]q =
1− qx

1− q
, (q 6= 1).

We note that limq→1[x]q = x. The q-factorial of n of order k is defined as

[n](k)q = [n]q[n− 1]q · · · [n− k + 1]q, (k = 1, 2, 3, · · · ),

where [n]q is q-number. Specially, when k = n, it is reduced the q-factorial

[n]q! = [n]q[n− 1]q · · · [1]q.

For k ∈ Z, the q-analogue of polylogarithm function Lik,q is known by

Lik,q(x) =

∞∑
n=1

xn

[n]kq
.

Definition 2.1. For any integer k, a nonnegative integer r, higher-order q-poly-
tangent polynomials are defined as the following generating function(

2Lik,q(1− e−t)

t(e2t + 1)

)r

ext =

∞∑
n=0

T (k,r)
n,q (x)

tn

n!
.

T
(k,r)
n,q = T

(k,r)
n,q (0) are called higher-order q-poly-tangent numbers when x =

0. If we set k = 1, q → 1 in Definition 2.1, then the higher-order q-poly-tangent
polynomials are reduced to higher-order tangent polynomials.

Theorem 2.2. For any integer k and a nonnegative integer r, n, and m, we get

T (k,r)
n,q (mx) =

n∑
l=0

(
n

l

)
T

(k,r)
l,q mn−lxn−l.

Proof. From Definition 2.1, we have

∞∑
n=0

T (k,r)
n,q (mx)

tn

n!
=

(
2Lik,q(1− e−t)

t(e2t + 1)

)r

emxt

=

( ∞∑
n=0

T (k,r)
n,q

tn

n!

)( ∞∑
n=0

(mx)n
tn

n!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
T

(k,r)
l,q mn−lxn−l

)
tn

n!
.

(1)

Therefore, we finish the proof of Theorem 2.2 by comparing the coefficients of
tn

n! .
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If m = 1 in Theorem 2.2, then we get the following corollary.

Corollary 2.3. For any integer k and a nonnegative integer r and n, we have

T (k,r)
n,q (x) =

n∑
l=0

(
n

l

)
T

(k,r)
l,q xn−l.

Theorem 2.4. For any integer k and a nonnegative integer r and n, we get

(1) T (k,r)
n,q (x + y) =

n∑
l=0

(
n

l

)
T

(k,r)
l,q (x)yn−l.

(2) T (k,r+s)
n,q (x + y) =

n∑
l=0

(
n

l

)
T

(k,r)
l,q (x)T

(k,s)
n−l,q(y).

Proof. (1) Proof is omitted since it is a similar method of Theorem 2.2.
(2) From Definition 1.1, we have

∞∑
n=0

T (k,r+s)
n,q (x + y)

tn

n!

=

(
2Lik,q(1− e−t)

t(e2t + 1)

)r+s

e(x+y)t

=

( ∞∑
n=0

T (k,r)
n,q (x)

tn

n!

)( ∞∑
n=0

T (k,s)
n,q (y)

tn

n!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
T

(k,r)
l,q (x)T

(k,s)
n−l,q(y)

)
tn

n!
.

(2)

Therefore, we end the proof by comparing the coefficients of tn

n! on both sides
of the above equation (2).

Theorem 2.5. For any integer k and a nonnegative integer r, n, and m, we
obtain

T (k,r)
n,q (mx) =

n∑
l=0

(
n

l

)
T

(k,r)
l,q (x) (m− 1)n−lxn−l.

Proof. By utlizing Definition 2.1, we have

∞∑
n=0

T (k,r)
n,q (mx)

tn

n!
=

(
2Lik,q(1− e−t)

t(e2t + 1)

)r

exte(m−1)xt

=

( ∞∑
n=0

T (k,r)
n,q (x)

tn

n!

)( ∞∑
n=0

(m− 1)nxn t
n

n!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
T

(k,r)
l,q (x) (m− 1)n−lxn−l

)
tn

n!
.

(3)
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Therefore, we end the proof by comparing the coefficients of tn

n! on both sides
of the above equation (3).

Theorem 2.6. For any integer k, a nonnegative integer r, and a positive integer
n, we have

T (k,r)
n,q (x + 1)− T (k,r)

n,q (x) =
n−1∑
l=0

(
n

l

)
T

(k,r)
l,q (x).

Proof. By using Definition 2.1, we have

∞∑
n=0

T (k,r)
n,q (x + 1)

tn

n!
−
∞∑

n=0

T (k,r)
n,q (x)

tn

n!

=

(
2Lik,q(1− e−t)

t(e2t + 1)

)r

e(x+1)t −
(

2Lik,q(1− e−t)

t(e2t + 1)

)r

ext

=

(
2Lik,q(1− e−t)

t(e2t + 1)

)r

ext
(
et − 1

)
=

( ∞∑
n=0

T (k,r)
n,q (x)

tn

n!

)( ∞∑
n=0

tn

n!
− 1

)

=

( ∞∑
n=0

T (k,r)
n,q (x)

tn

n!

)( ∞∑
n=1

tn

n!

)

=

∞∑
n=0

n∑
l=0

(
n + 1

l

)
T

(k,r)
l,q (x)

tn+1

(n + 1)!

=

∞∑
n=1

(
n−1∑
l=0

(
n

l

)
T

(k,r)
l,q (x)

)
tn

n!
.

(4)

Then we compare the coefficients of tn

n! for n ≥ 1. The reason both sides of

the above equation (4) can be compared the coefficients is that T
(k,r)
0,q (x + 1)−

T
(k,r)
0,q (x) = 0. Thus, the proof is done.

3 Polynomials and numbers related to higher-
order q-poly-tangent polynomials and its symmtric
property

In this section, we examine the association between higher-order q-poly-tangent
numbers and poly-tangent polynomials using Cauchy product. We also explore
relation of higher-order q-poly-tangent polynomials and Stirling numbers of the
second kind. Furthermore, we study the symmetry properties of higher-order
q-poly-tangent polynomials.
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We recall a multinomial coefficient, which is(
n

m1,m2, · · · ,ml

)
=

n!

m1!m2! · · ·ml!
. (5)

Let us consider the following equation using the equation (5) above. This
equation is an equation expressed by applying Cauchy product continuously.

Theorem 3.1. For any integer k, a nonnegative integer n, and r ≥ 3, we get

T (k,r)
n,q (rx) =

n∑
mr−1=0

mr−1∑
mr−2=0

· · ·
m3∑

m2=0

m2∑
m1=0

×
(

n

m1,m2 −m1, · · · ,mr−1 −mr−2, n−mr−1

)
T (k)
m1,q(x)

×T
(k)
m2−m1,q(x) · · · T (k)

mr−1−mr−2,q(x)T
(k)
n−mr−1,q(x),

where
(

n
m1,m2,··· ,ml

)
is multinomial coefficient.

Generating function of the Stirling numbers of the second kind S2(n, k) is
defined as follows:

∞∑
n=k

S2(n, k)
tn

n!
=

(et − 1)k

k!
.

Theorem 3.2. For any integer k, a nonnegative integer r and a positive integer
n, we obtain

T (k,r)
n,q (x) =

n∑
l=0

l∑
m=0

(
n

l

)
(x)mS2(l,m)T

(k,r)
n−l,q,

where (x)m = x(x− 1) · · · (x−m + 1) is falling factorial.

Proof. From Definition 2.1, we have

∞∑
n=0

T (k,r)
n,q (x)

tn

n!
=

(
2Lik,q(1− e−t)

t(e2t + 1)

)r

ext

=

(
2Lik,q(1− e−t)

t(e2t + 1)

)r ∞∑
m=0

(x)m
(et − 1)m

m!

=

( ∞∑
n=0

T (k,r)
n,q

tn

n!

)( ∞∑
n=0

∞∑
m=0

(x)m S2(n,m)
tn

n!

)

=

( ∞∑
n=0

T (k,r)
n,q

tn

n!

)( ∞∑
n=0

n∑
m=0

(x)m S2(n,m)
tn

n!

)

=
∞∑

n=0

(
n∑

l=0

l∑
m=0

(
n

l

)
(x)mS2(l,m)T

(k,r)
n−l,q

)
tn

n!
.

(6)

Thus, we finish the proof by comparing the coefficients of tn

n! .
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Theorem 3.3. Let r and n be a nonnegative integer and w1, w2 > 0 (w1 6= w2).
Then we have

n∑
l=0

(
n

l

)
wl

1w
n−l
2 T

(k,r)
l,q (w2x)T

(k,r)
n−l,q(w1x)

=
n∑

l=0

(
n

l

)
wl

2w
n−l
1 T

(k,r)
l,q (w1x)T

(k,r)
n−l,q(w2x).

Proof. Let us consider the function

F (t) =

(
4Lik,q(1− e−w1t)Lik,q(1− e−w2t)

t2(e2w1t + 1)(e2w2t + 1)

)r

e2w1w2xt. (7)

Then we obtain

F (t) =

(
2Lik,q(1− e−w1t)

t(e2w1t + 1)

)r

ew1w2xt

(
2Lik,q(1− e−w2t)

t(e2w2t + 1)

)r

ew1w2xt

=

( ∞∑
n=0

wn+r
1 T (k,r)

n,q (w2x)
tn

n!

)( ∞∑
n=0

wn+r
2 T (k,r)

n,q (w1x)
tn

n!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
wl+r

1 wn−l+r
2 T

(k,r)
l,q (w2x)T

(k,r)
n−l,q(w1x)

)
tn

n!
.

(8)

By calculating in the same way as the above equation (8), we can get

F (t) =
∞∑

n=0

(
n∑

l=0

(
n

l

)
wl+r

2 wn−l+r
1 T

(k,r)
l,q (w1x)T

(k,r)
n−l,q(w2x)

)
tn

n!
. (9)

The proof is complete as a result of the equations (8) and (9).

Let w is an odd number. Then we can easily see

∞∑
n=0

Ãn(w)
tn

n!
=

ewt + 1

et + 1
, (10)

where Ãn(w) =
∑w−1

l=0 (−1)l ln is called alternating power sum.

Theorem 3.4. Let w1 and w2 be an odd number and n be a nonnegative
integer. Then we have

n∑
j=0

j∑
i=0

n−j∑
l=0

(
n

j

)(
n− j

l

)
2n−j−lwi+l+r

1 w2n−2j−i−l+r
2 T

(k,r)
i,q

× T
(k,r)
n−j−i,qTl(w2x)Ãn−j−l(w1)

=
n∑

j=0

j∑
i=0

n−j∑
l=0

(
n

j

)(
n− j

l

)
2n−j−lwi+l+r

2 w2n−2j−i−l+r
1 T

(k,r)
i,q

× T
(k,r)
n−j−i,qTl(w1x)Ãn−j−l(w2).
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Proof. First, let us assume that

G(t) = 2
4r(Lik,q(1− e−w1t))r(Lik,q(1− e−w2t))r(e2w1w2t + 1)

t2r (e2w1t + 1)
r

(e2w2t + 1)
r

(e2w1t + 1)(e2w2t + 1)
e2w1w2xt. (11)

Then we calculate

G(t) = 2

(
2Lik,q(1− e−w1t)

t(e2w1t + 1)

)r (
2Lik,q(1− e−w2t)

t(e2w2t + 1)

)r

× 2

(e2w1t + 1)
e2w1w2xt

e2w1w2t + 1

e2w2t + 1

=

( ∞∑
n=0

wn+r
1 T (k,r)

n,q

tn

n!

)( ∞∑
n=0

wn+r
2 T (k.r)

n,q

tn

n!

)

×

( ∞∑
n=0

wn
1Tn,q(w2x)

tn

n!

)( ∞∑
n=0

2nwn
2 Ãn(w1)

tn

n!

)

=

( ∞∑
n=0

wn+r
1 T (k,r)

n,q

tn

n!

)( ∞∑
n=0

wn+r
2 T (k,r)

n,q

tn

n!

)

×
∞∑

n=0

n∑
l=0

(
n

l

)
2n−lwl

1w
n−l
2 Tl(w2x)Ãn−l(w1)

tn

n!

=
∞∑

n=0

 n∑
j=0

j∑
i=0

n−j∑
l=0

(
n

j

)(
n− j

l

)
2n−j−lwi+l+r

1 w2n−2j−i−l+r
2

× T
(k,r)
i,q T

(k,r)
n−j−i,qTl(w2x)Ãn−j−l(w1)

) tn

n!
.

(12)

In a similar way to the above equation (12), we get

G(t) =

( ∞∑
n=0

wn+r
1 T (k,r)

n,q

tn

n!

)( ∞∑
n=0

wn+r
2 T (k,r)

n,q

tn

n!

)

×
∞∑

n=0

n∑
l=0

(
n

l

)
2n−lwl

2w
n−l
1 Tl(w1x)Ãn−l(w2)

tn

n!
.

(13)

Hence, by using Cauchy product, the proof is complete by comparing the coef-
ficients of tn

n! on both sides of the equations (12) and (13).

4 Distribution of zeros of the higher-order q-
poly-tangent polynomials

Using generating functions, the generalized forms of known polynomials such
as the Bernoulli, Euler, falling factorial and tangent polynomials are studied.
In particular, various properties of these polynomials were investigated through
numerical experiments, see for example [1] , [4], [6], [7], [8], [9], [10], [11], [12].
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In this section, we discover new interesting pattern of the zeros of the higher-

order q-poly-tangent polynomials T
(k,3)
n,q (x). We propose some conjectures by

numerical experiments. The higher-order q-poly-tangent polynomials T
(k,3)
n,q (x)

can be determined explicitly.
A few of them are

T
(k,3)
0,q (x) = 1,

T
(k,3)
1,q (x) = −9

2
+ 3

(
1− q2

1− q

)−k
+ x,

T
(k,3)
2,q (x) =

35

2
+ 6

(
1− q2

1− q

)−2k
− 30

(
1− q2

1− q

)−k
+ 6

(
1− q3

1− q

)−k
− 9x

+ 6

(
1− q2

1− q

)−k
x + x2,

T
(k,3)
3,q (x) = −54 + 6

(
1− q2

1− q

)−3k
− 99

(
1− q2

1− q

)−2k
+ 201

(
1− q2

1− q

)−k

− 99

(
1− q3

1− q

)−k
+ 36

(
1− q2

1− q

)−k (
1− q3

1− q

)−k
+ 18

(
1− q4

1− q

)−k

+
105x

2
+ 18

(
1− q2

1− q

)−2k
x− 90

(
1− q2

1− q

)−k
x

+ 18

(
1− q3

1− q

)−k
x− 27x2

2
+ 9

(
1− q2

1− q

)−k
x2 + x3,

8
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We investigate the beautiful zeros of the higher-order q-poly-tangent poly-

nomials T
(k,r)
n,q (x) by using a computer. We plot the zeros of higher-order q-

poly-tangent polynomials T
(k,r)
n,q (x) for n = 30, r = 3 and x ∈ C(Figure 1).
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Figure 1: Zeros of T
(k,r)
n,q (x)

In Figure 1(top-left), we choose n = 30, q = 1
10 and k = −3. In Figure

1(top-right), we choose n = 30, q = 9
10 and k = −3. In Figure 1(bottom-left),

we choose n = 30, q = 1
10 , and k = 3. In Figure 1(bottom-right), we choose

n = 30, q = 9
10 and k = 3.

9
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Stacks of zeros of T
(k,r)
n,q (x) for 1 ≤ n ≤ 30 from a 3-D structure are pre-

sented(Figure 2).

Figure 2: Stacks of zeros of T
(k,r)
n,q (x) for 1 ≤ n ≤ 30

In Figure 2(top-left), we choose r = 3, q = 1
10 and k = −3. In Figure 2(top-

right), we choose r = 3, q = 9
10 and k = −3. In Figure 2(bottom-left), we choose

r = 3, q = 1
10 , and k = 3. In Figure 2(bottom-right), we choose r = 3, q = 9

10
and k = 3.

10
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We plot the real zeros of the higher-order q-poly-tangent polynomials T
(k,r)
n,q (x)

and x ∈ C(Figure 3).

Figure 3: Real zeros of T
(k,r)
n,q (x) for 1 ≤ n ≤ 30

In Figure 3(top-left), we choose r = 3, q = 1
10 and k = −3. In Figure 3(top-

right), we choose r = 3, q = 9
10 and k = −3. In Figure 3(bottom-left), we choose

r = 3, q = 1
10 , and k = 3. In Figure 3(bottom-right), we choose r = 3, q = 9

10
and k = 3.

11
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Next, we calculated an approximate solution satisfying higher-order q-poly-

tangent polynomials T
(k,r)
n,q (x) for x ∈ R. The results are given in Table 1 and

Table 2.

Table 1. Approximate solutions of T
(k,r)
n,q (x) = 0, k = −3, r = 3, q = 1

10

degree n x

1 0.50700

2 −1.4556, 2.4696

3 −2.9508, 0.62706, 3.8447

4 −4.1946, −0.87747, 2.1935, 4.9066

5 −5.2759, −2.1561, 0.70762, 3.5182, 5.7412

6 −6.2440, −3.2614, −0.61966, 2.0917,

4.7059, 6.3694

7 −7.1317, −4.2202, −1.8162, 0.75900,

3.3518, 5.8907, 6.7156

8 −7.9630, −5.0461, −2.9002, −0.48398,

2.0429, 4.5281

Table 2. Approximate solutions of T
(k,r)
n,q (x) = 0, k = 3, r = 3, q = 1

10

degree n x

1 2.2461

2 0.72612, 3.7660

3 −0.38330, 2.2395, 4.8819

4 −1.2186, 0.89693, 3.5776, 5.7283

5 −1.8044, −0.32452, 2.2334, 4.7925, 6.3333

6 0.97798, 3.4837, 6.1347, 6.5052

7 −0.20813, 2.2289, 4.6632

8 −1.3362, 1.0256, 3.4282, 5.7835
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1. Introduction  

The basic features of the completely monotone functions constructed on some forms of white 

noise spaces are provided in this study. if for each       
   (  )| |   ( )     , then a 

function   is completely monotone on   
 ; see [3, 8, 12] for several features of completely 

monotone functions. According to Bernstein's theorem,   is completely monotone if and only if 

 ( )  ∫       

  

   ( )                                                           (   ) 

   is a positive measure that is based on a subset of   
 . Let   stand for a locally compact basis 

on the space      ( ) is a linear space of continuous bounded complex-valued functions which 

is a complete normed space compared to the norm 

‖ ‖       
   

| ( )|                                                                 (   ) 
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2 
 

  defined on  , where The space of infinitely differential and bounded functions on   will be 

denoted by   
 ( ),Moreover, by  ( ), the linear subspace of   

 ( ) created by the set which 

contains functions on  like that      ( )       , with         
 and a constant     .The 

space of tempered distributions is represented by   ( ) , Which is linear and continuous 

functional on  ( ). There are numerous works that explore white noise spaces. Using the 

Wiener-Itô-Segal isomorphism and other Fock space riggings, some of these works are devoted 

to the building of test spaces, generalized functions, and operators having to act in these spaces 

[1,9].The study of PDEs and quantum field theory, where quantum fields are characterized as 

operator valued distributions, both depend heavily on distributions [5,11]. The works of 

Berezanskyi and Samoilenko [2] and Hida [9] are where the modern theory of generalized 

functions of infinitely many variables is derived. As infinite tensor products of one-dimensional 

spaces, the test and generalized function spaces in [2] were created. The theory of generalized 

functions was constructed using the classical method in [9], but all functions were functions of a 

point in the infinite-dimensional space on which the Gaussian measure was defined, which 

served the same purpose as the Lebesgue measure in the classical theory of generalized 

functions. The structure of this paper is as follows: section 2, we devoted to introduce and give 

the main properties of the class of double monotone functions defined on  ( ). In section 3, the 

main properties of the class of weak monotone functions defined on  ( ) are given.Section 4 

introduces a novel method for creating spaces of generalized functions. Section 5 concludes by 

deriving the principal relationships between the creation of hypercomplex systems and the theory 

of white noise analysis. 

 

2. Double completely monotone functions on  ( ) 

Rabidly decreasing functions are the name given to the components of  ( ), which has a family 

of seminorms for each          
  

‖ ‖          
   

|     ( )|                                                               (   ) 

Let          be a continuous double completely monotone function, i.e.,             and 

        are two completely monotone functions. We define 

〈      〉     ( )     ( )     

by 

〈      〉   ∫ ∫  (   )  ( )
 

 ( )̅̅ ̅̅ ̅̅ ̅   ( )  ( )                     (   )
 

 

where         ( ), the space of Radon measure on  . The inner product 〈      〉  satisfies the 

following conditions:  
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3 
 

I. 〈      〉 in the first coordinate is complex linear and in the second conjugate 

complex linear i.e., for any          ( ) and any        

〈      〉      〈     〉 and〈      〉      ̅〈     〉  

 

II. 〈      〉  is conjugate symmetric i.e., for any          ( ) 

〈      〉    〈      〉̅̅ ̅̅ ̅̅ ̅̅ ̅
  

III. 〈      〉  is positive definite meaning that for any      ( ) 

 

〈     〉       ( )      

 

IV. For all      ( )such that 〈      〉      , then       

 

Theorem 2.1.  For any double completely monotone function   on  , the inner product space 

(  ( )  〈      〉  ) is a complex Hilbert space. 

Proof. We have that 〈   〉  is an inner product space and   ( ) is an infinite space so all we 

need to prove is the completeness for that space , so we assume that we have a Cauchy sequence 

*  + and should prove that this Cauchy sequence converges to a limit in (  ( ) 〈   〉 ) . 

Where 

〈   〉   ∫ ∫  (   )  ( )
 

 ( )̅̅ ̅̅ ̅̅ ̅   ( )  ( )
 

 

      ( ),      ( ) the space of Radon measure on  . 

  ‖     ‖  〈           〉

  ∫ ∫  (   )(     )( )
 

(     )( )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    ( )  ( )
 

 

          ∫ ∫  (   )|  ( )    ( )| 
 

   ( )  ( )
 

 

                                                    

        . This implies 

|  ( )    ( )|    

          So 

|  ( )    ( )|     

        .Since *  + is a Cauchy sequence and we have  that   ( ) is a complete space 

which means that                   i.e |  ( )   ( )|           , which tends to 

that   belongs to(  ( ) 〈   〉 ) , so this space is complete. 
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4 
 

Corollary 2.2. For any double completely monotone function   on  , the space     

 (  ( ) 〈   〉 )is a subspace of Hilbert space   ( ). 

Proof. We want to prove      ( ) so let         and we need to reach to these functions 

in   ( ).Assume that 

∫| (   )|

 

  ( )                    

and 

∫| (   )|

 

  ( )                    

and by using (   ) 

|〈   〉 |   |∫ ∫  (   )  ( )
 

 ( )̅̅ ̅̅ ̅̅ ̅   ( )  ( )
 

| 

Where by using (Cauchy – young inequality:   If 
 

 
 

 

 
           

  

 
 

  

 
           ) 

i.e., 

               | ( ) ( )̅̅ ̅̅ ̅̅ ̅|  
|  ( )| 

 
 

| ( )| 

 
 

                                      ∫ ∫
| (   )|

 
  ( )| ( )| 

 
  ( )

 
  ∫ ∫

| (   )|

 
  ( )| ( )| 

  
  ( ) 

                                      
  

 
‖ ‖  ( )

  
  

 
‖ ‖  ( )

  

So       ( ) . 

 

Let    stand for the set of all continuously real-valued functions   on    that fulfill the 

requirements listed below: 

1)      ( )     (   )     ( )   ( )          

2) ∫
 ( )

(  | |)   
   

      

3)   ( )            (  | |) for some constant     

4)  ( ) is radial.  

with the weight function   in    and open set        Bj ̈rck extend the Schwartz space by the 

space   of all     function       (  )  

    ( )      
     

   ( ) |   ( )|     

And 
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5 
 

    ( )      
     

   ( ) |   ̂( )|     

and    
  the dual space of   . Let   be a double completely monotone function and 

   ( )       (    | ( )|)                                     (   ) 

for     we denote by   
   

 the set of all generalized distributions        
   

 || || 
       , ∫      ( )| ̂( )|     

  

 - 
 
                     (   ) 

Theorem 2.3. The space   
   

is a Hilbert space with an inner product denoted by 

〈    〉 
       ∫      ( ) ̂( ) ̂( )̅̅ ̅̅ ̅̅   

  

                       (   ) 

Proof. We need to prove that the space   
   

 is complete, so we assume that we have a Cauchy 

sequence *  + in   
   

 and we want to prove that this Cauchy converges to a limit    in   
   

 , 

where norm defined as: 

‖ ‖ 
    [ ∫      ( )

  

| ̂( )|   ]

 
 

 

So 

‖    ‖ 
    [ ∫      ( )

  

| ̂ ( )   ̂( )|   ]

 
 

 

From (   ), we have  

‖    ‖ 
    [ ∫(  | ( )|)  

  

| ̂ ( )   ̂( )|   ]

 
 

 

      [ ∫(  | ( )|)   (   )

  

| ̂ ( )   ̂( )| (  | ( )|) (   )  ]

 
 

 

    (  | ( )|)  (   )  ⁄ | ̂ ( )   ̂( )| [ ∫(  | ( )|) (   )  

  

]

 
 

 

                       ‖ ̂   ̂‖  
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6 
 

                         ‖    ‖      

 

Where     (   )  ⁄  , we find that ‖    ‖    as           , which come from 

that   
  is dense in   , then     

   
 which proves the completeness in it and so   

   
 is a 

Hilbert space. 

 

Lemma 2.4.  Let      
   

 ,          
   

 is the conjugate linear functional on    which 

uniquely extends to conjugate linear functional on   
   

 satisfying  

1) 〈〈     〉〉 
       (  )  ∫      ( ) ̂( ) ̂( )̅̅ ̅̅ ̅̅   

    

2)  | 〈〈     〉〉 
   |    || || 

    || || 
            

          
    

 

3) 〈〈     〉〉 
      〈〈      〉〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 
   

 

 

Theorem 2.5. The space     is dense in   
   

for all     . 

Proof. To prove that    is dense in   
   

 we need to check two things the first is that      
   

 

and the second is that   
̅̅̅̅    

   
, for the first let we have a bijective map           ,  

      ( ) ̂. With (   ) and   is a continuous double completely monotone function. 

We have from the definition of map that       ( ) ̂         which leads to      
   

 . 

Secondly we want to prove that   
̅̅̅̅    

   
, so we must prove that   

  * +( orthogonal 

complement for    ). Where    
  {    

    〈〈     〉〉 
            } . We want to get to 

that    . i.e.     
   

 with     
   lead to 〈〈     〉〉 

             . We have 

〈〈     〉〉 
    〈    ( ) ̂     ( ) ̂〉  

 ,  

Since    is bijective ,       ,we find 〈    ( ) ̂  〉  
   , since   is dense in   ,     

 .which mean that     ( ) ̂   , So    , i.e.   
  * +,   so   

̅̅̅̅    
   

. Which complete the 

proof.  

 

Note that   is dense in    comes from that        .and that   
  is dense in   . 

 

Corollary 2.6    
       

   
for     , the inclusion is continuous and has dense image. 
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7 
 

3. Weak completely monotone functions 

The purpose of this section is to discuss the idea of Weak completely monotone functions on the 

Schwartz spaces. Let       be an open interval,       ( ̅) and      ( ), where 

  ( )    *      (    )       ( )    *    ( )    + ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅              + 

Using integration by parts, we will get 

∫  ́ ( ) ( )̅̅ ̅̅ ̅̅    

 

   ∫    ( ) ́( )̅̅ ̅̅ ̅̅    

 

 

Since,  ( )is the space of test functions which is dense in    ( ) for          , so we can 

rewrite the above equation using the scalar product of   ( ) as 

〈 ́ |  〉      〈  | ́〉 

We call a function   that satisfies 〈  |  〉     〈  | ́〉 a weak derivative of  . Let        

open,       ( ̅) and     ( ), then  

〈
 

    
  |  〉      〈  | 

 

    
  〉 

Applying Gauss Theorem, we similarly obtain  

〈    |  〉    (   )| |〈    |    〉 

 

Theorem 3.1. For any multi-index      the differential    is a continuous and linear operator 

from   
   

 to   
    | |

. 

Proof. Where the linearity of the operator is obvious, so all we need to prove is that  

‖   ‖ 
    | |

  ‖ ‖ 
                           (   ) 

From (   ), we have, 

‖ ‖ 
    | |

 [ ∫   (  | |)  ( )

  

| ̂( )|   ]

 
 

 

So 

‖   ‖ 
    | |

 [ ∫   (  | |)  ( )

  

|   ̂( )|
 
  ]

 
 

 

Which equivalent to                                 
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8 
 

‖   ‖ 
    | |

 ‖ (  | |)  ( )   ̂( )‖
  

 

For a particular case let     

‖ (   )  ( )  ̂( )‖
  

 ‖ (   )  ( )   ̂( )‖
  

 

                                                                               ‖    ( ) ̂( )‖
  

 

                     ‖ ‖ 
   

 

 
i.e., 

‖   ‖ 
       ‖ ‖ 

   
 

where  by using induction on | | we can generalize this for any multi index     .which follow 

from this that the linear operator    is  continuous from   
   

 to   
    | |

 . 

 

Theorem 3.2. The pairing 〈〈     〉〉 
   

 identifies   
    

isometrically with the antidual of   
   

. If 

   ́ 
 then     

   
 if and only if there is a constant   such that | ( )|   ‖ ‖ 

    
 for    

  

. 

proof. Let the anti-dual of   
   

 be (  
   )

 
 we will define a map     

     (  
   )

 
 as 

  ( )  〈   〉  (  )  ∫  ̂( )  ̂( )̅̅ ̅̅ ̅̅     

So we will show firstly that          is bijective. Let    ( )        〈   〉         

(  )  ∫  ̂( )  ̂( )̅̅ ̅̅ ̅̅      

This implies 

(  )  ∫      ( ) ̂( )     ( ) ̂( )̅̅ ̅̅ ̅̅       

and 

(  )  ∫      ( ) ̂( )  ( )                    

       in  ́         in   
    

. So,    is one to one. Then we will show that   is surjective. 

Let   (  
   )

 
           

   
 we need to reach to      

    
 such that    

   . So from 

Resize representation theorem we have,  ( )  〈〈    〉〉 
                

   
. From the 
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9 
 

continuous linear function on    then there exists      
    

such that  ̂ ( )       ( ) ̂ ( ) 

at most, so this leads to 

 ( )  〈〈    〉〉 
   

 

                                                    (  )  ∫      ( ) ̂ ( )  ̂( )̅̅ ̅̅ ̅̅     

                                                                          (  )  ∫      ( )       ( ) ̂ ( ) ̂( )̅̅ ̅̅ ̅̅     

                                                                          〈    〉     
( )                         

   
 

Hence, 

     
 

So   is surjective. Next we will show the isometry of  . Let     
   

 and     
    

 such that  

 ̂( )        ( ) ̂( ) 

and 

                                                            ( )  (  )  ∫  ̂( )  ̂( )̅̅ ̅̅ ̅̅     

                                                                      (  )  ∫       ( ) ̂( )  ̂( )̅̅ ̅̅ ̅̅     

                                                                      (  )  ∫       ( )| ̂( )|    

                                                                      [‖ ‖ 
   ]

 
 

              ‖ ‖ 
    ‖ ‖ 

   
 

Which means that   is isometry from   
    

 to  (  
   )

 
. 

The second part of the proof is that if    ́ 
  then     

                                 

such that  

| ( )|    ‖ ‖ 
    

. 

So we will assume that   ́ 
  , then     

   
 and we want to prove that  

| ( )|    ‖ ‖ 
    

. 

We have that  

|  ( )|  |〈   〉|   ‖ ‖ 
   ‖ ‖ 

       ‖ ‖ 
    

 

This implies 

| ( )|    ‖ ‖ 
    

. 
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Conversely, let    ́ 
  and | ( )|    ‖ ‖ 

    
 , we want to prove that     

   
. Where 

             
   the map    ( ̅) can be extended uniquely to an element of a conjugate 

linear functional on   
    

, with a bounded norm. So                  
   

in sense that 

  ( )   〈〈   〉〉    ( ̅)  〈   〉 . So                
   

  which complete the proof.  

 

4. Reproducing kernel Hilbert space    

Let   be a continuous double completely monotone function on   , set   ( )     (     ) for 

all          . Define:  

(   )( )    ∫  ( )  ( )  

  

                                             (   ) 

and  

〈          〉  
  ∫ ∫  (     ) ( ) ( )    

    

                  (   ) 

for all        . Then           forms a pre-Hilbert space    with inner-product 

〈      〉  
 

 

Lemma 4.1. A function       is in    if and only if   ̂     ( ) and  

‖   ‖  

    ∫| ̂( )|    ( )                                                           

  

(   ) 

where   is the tempered measure. 

Proof. The first statement is obvious from the previous definitions in section 4., so we will prove 

(   ) . Where we have that   is a continuous double completely monotone function, so we can 

use Bernstein’s theorem  

 ( )  ∫     

  

  ( ) 

So we have that, with      (Schwartz space on   ) 

∫  ( )

  

 ( )    ∫ ∫     

  

 ( )

  

  ( )    

                                                                      ∫ ∫     
   ( )  

    ( ) 

                                                                      ∫  ̂( )
    ( ) 
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And so we can conclude that  

‖   ‖  

  ∫ ∫  (   )

  

 ( ) ( )̅̅ ̅̅ ̅̅ ̅

  

       

                                                                    ∫| ̂( )|
 
  ( )

  

 

 

Theorem 4.2. Let      , and        and set     ∑      
         ; as a tempered 

completely monotone distribution, and let   
be the generalized RKHS of Schwartz. Then  

a function   on   is in    
if and only if it has a convolution factorization  

          

where   is a measurable function such that  ̂( )  exists for all      , and  ̂( ),       belongs 

to   ( ) and  

 

‖ ‖  

  ∑| ̂( )|
 

   

                                           (   ) 

Proof. We have that    ( )  ∑      
   ,      as a tempered completely monotone 

distributions , we will prove that  

‖    ‖  

  ∑| ̂( )|
 

   

 

Where     (the Schwartz space on   ) ,  ̂ is the standard Fourier transform , from (   ), 

(    )( )  ∫  ( )  (   )

  

   

                                                                     ∫  ( ) ∑     (   )
        

                                                                     ∑ ∫  ( )    (   )
        

                                                                     ∑ ∫  ( )
      

            

    ∑ ∫

  

 ( )     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

   

         

Hence 

(    )( )  ∑  ̂( )̅̅ ̅̅ ̅̅

   

      

272

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Ghany et al 262-275



12 
 

And so, 

‖    ‖  

  〈           〉   
 

                                                      ∫ ∫   (   )

  

 ( ) ( )̅̅ ̅̅ ̅̅ ̅

  

       

                                                                        ∫ ∫ ∑     (   )
      ( ) ( )̅̅ ̅̅ ̅̅ ̅

         

Using Fubini’s theorem:  

∑ ∫ ∫     (   )

  

 ( ) ( )̅̅ ̅̅ ̅̅ ̅

  

      

   

 ∑ [ ∫       ( )

  

    ∫      ( )̅̅ ̅̅ ̅̅ ̅

  

   ]

   

 

                                                                           ∑ [∫       ( )
      ∫       ( )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

     ]    

                                                                           ∑  ̂( )    ̂( )̅̅ ̅̅ ̅̅  

                                                                           ∑ | ̂( )|
 

    

So, 

‖    ‖  

  ∑| ̂( )|
 

   

 

 

 

 

5. Concluding Remarks 

In this work, we introduced and gave the main properties of the class of double monotone 

functions defined on  ( ). Moreover, the main properties of the class of weak monotone 

functions defined on  ( ) are given.Finally, a novel method for creating spaces of generalized 

functions are given. Tempered distributions refer to the set of all continuous linear functional on 

 ( ), and it is represented by the symbol  ́( ). suppose    ́( ) and      
  . The weak 

derivative     , often known as the derivative of the sense of distributions, is obtained by  

(    )( )    (  )   (   ) 

for   ( ). This corresponds to     * +     *    +. Noting thatdistributions are always 

weakly derivative. If assume that       . So,     (           )      . Let    be denote the 

product   
         

       
  represents a set of n-tuples.(           )where each    is an integer that 

is not negative , | |    ∑   
 
   and   denote the partial differential operator 

 | |

   
         

   .The 
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particular case, which follows the space of rapidly decreasing function on    is denoted as 

 ( )    (  ) (also known as the Schwartz space), and its dual space of a  tempered 

distribution on    is denoted as  ́( )   ́(  ). 
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Numerical investigation of zeros of the fully

modified (p, q)-poly-Euler polynomials

Cheon Seoung Ryoo
Department of Mathematics, Hannam University, Daejeon 34430, Korea

August 29, 2023

The aim of this paper is to introduce a fully modified (p,q)-poly-Euler poly-
nomials and numbers of the first type. We investigate some properties that
is related with (p, q)-Gaussian binomials coefficients. We also construct (p, q)-
analogue of the Stirling numbers of the second kind and fully modified (p,q)-
poly-Euler polynomials and numbers of the first type with two variables.

1 Introduction

Many researchers are interested in the applications of q-numbers and (p, q)-
numbers. In areas of quantum mechanics, physics and mathematics, the apply-
ing theory is studied and extended actively. Especially, Mathematicians in the
fields of combinatorics, number theory and special functions, frequently explorer
that(cf [2], [3], [4], [7], [8],[9], [10], [11], [12], [13]). We also obtain the general-
ization of poly Bernoulli polynomials and poly tangent polynomials involving
(p, q)-numbers. In this paper, we use the following notations. N denotes the set
of natural numbers, Z+ denotes the set of nonnegative integers, Z denotes the
set of integers, R denotes the set of all real numbers and C denotes the set of
complex numbers, respectively.

For 0 < q < p ≤ 1, the (p, q)-numbers are defined by

[n]p,q =
pn − qn

p− q
,

where p = 1, [n]p,q = [n]q and limq→1[n]q = n.
The (p, q)-factorial of n of order k is defined as

[n](k)p,q = [n]p,q[n− 1]p,q · · · [n− k + 1]p,q,

for k = 1, 2, 3, · · · . If k = n, it is denoted [n]p,q! = [n]p,q[n − 1]p,q · · · [1]p,q that
is called (p, q)-factorial of n.

1
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The (p, q)-Gaussian binomial formula is defined by

(x + a)np,q =
n∑

k=0

[
n
k

]
p,q

p(k
2)q(n−k

2 )an−kxk,

with the (p, q)-Gaussian binomial coefficient,

[
n
k

]
p,q

=
[n]p,q !

[k]p,q ![n−k]p,q ! (n ≥ k).

In [13] , two type of the (p, q)-exponential functions are given as below

ep,q(x) =
∞∑

n=0

p(n
2) xn

[n]p,q!
,

Ep,q(x) =
∞∑

n=0

q(n
2) xn

[n]p,q!
.

(1.1)

In [8], [10], the (p, q)-analogue of polylogarithm function Lik,p,q is known by

Lik,p,q(x) =
∞∑

n=1

xn

[n]kp,q
, (k ∈ Z).

In [5], we defined the fully modified q-poly-Bernoulli polynomials B̃
(k)
n,q(x) of

the first type and the fully modified q-poly-Euler polynomials Ẽ
(k)
n,q(x) of the

first type.

Definition 1.1. For n ∈ Z+, k ∈ Z and 0 < q < 1, we define fully modified

q-poly-Bernoulli polynomials B̃
(k)
n,q(x) of the first type and the fully modified

q-poly-tangent polynomials T̃
(k)
n,q (x) of the first type by

∞∑
n=0

B̃(k)
n,q(x)

tn

[n]q!
=

Lik,q(1− eq(−t))
(eq(t)− 1)

eq(xt),

∞∑
n=0

Ẽ(k)
n,q(x)

tn

[n]q!
=

[2]qLik,q(1− eq(−t))
t(eq(t) + 1)

eq(xt).

(1.2)

When x = 0, B̃
(k)
n,q = B̃

(k)
n,q(0), Ẽ

(k)
n,q = Ẽ

(k)
n,q(0) are called fully modified q-poly-

Bernoulli numbers of the first type and fully modified q-poly-Euler numbers of

the first type. If q → 1 in (1.2), we get the poly-Bernoulli polynomials B
(k)
n (x)

and poly-Euler polynomials E
(k)
n (x), respectively.

Substitute k = 1, q → 1 in (1.2), we have Bernoulli polynomials Bn(x)and
Euler polynomials En(x), respectively.

∞∑
n=0

Bn(x)
tn

n!
=

(
t

et − 1

)
ext,

∞∑
n=0

En(x)
tn

n!
=

(
2

et + 1

)
ext.

2
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2 Some properties of the fully modified (p, q)-
poly-Euler polynomials of the first type

In this section, we introduce fully modified (p, q)-poly-Euler numbers and poly-
nomials of the first type by the generating functions. We explore some identities
of the polynomials and find a relation connected with (p, q)-analogue of the
ordinary Euler polynomials.

Definition 2.1. For n ∈ Z+, k ∈ Z, p, q ∈ R such that 0 < q < p ≤ 1, we define

a fully modified (p, q)-poly-tangent polynomials Ẽ
(k)
n,p,q(x) of the first type by

∞∑
n=0

Ẽ(k)
n,p,q(x)

tn

[n]p,q!
=

[2]p,qLik,p,q(1− ep,q(−t))
t(ep,q(t) + 1)

ep,q(xt).

When x = 0, Ẽ
(k)
n,p,q = Ẽ

(k)
n,p,q(0) are called fully modified (p, q)-poly-Euler

numbers of the first type. Note that p = 1, [n]p,q = [n]q, and Ẽ
(k)
n,p,q(x) = Ẽ

(k)
n,q(x).

If we set k = 1, p = 1, q → 1 in Definition 2.1, then the Euler polynomials En(x).

Theorem 2.2. For n ∈ Z+, k ∈ Z and p, q ∈ R such that 0 < q < p ≤ 1, the
following result holds

Ẽ(k)
n,p,q(x) =

n∑
l=0

[
n
l

]
p,q

p(n−l
2 ) Ẽ

(k)
l,p,q xn−l.

In [5], the generating series of (p, q)-Stirling numbers of the second kind is
defined by

(ep,q(t)− 1)m

[m]p,q!
=
∞∑

n=m

Sp,q(n,m)
tn

[n]p,q!
.

We also ontain

Lik,p,q(1− ep,q(−t))
t

=
∞∑

n=0

n+1∑
l=1

[l]p,q!

[l]kp,q[n + 1]p,q
(−1)l+n+1Sp,q(n + 1, l)

tn

[n]p,q!
.

Using the above identity, we derive the following result which is connected with
(p, q)-Stirling numbers of the second kind and (p, q)-Euler polynomials.

Theorem 2.3. For n ∈ Z+, k ∈ Z and p, q ∈ R such that 0 < q < p ≤ 1, the
following identity holds

Ẽ(k)
n,p,q(x) =

n∑
a=0

a+1∑
l=1

[
n
a

]
p,q

[l]p,q!

[l]kp,q[a + 1]p,q
(−1)l+a+1Sp,q(a + 1, l)En−a,p,q(x).

3
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Proof. Let n ∈ Z+, k ∈ Z and 0 < q < p ≤ 1. By the recomposition of
(p, q)-polylogarithm function in (3.2), we have

∞∑
n=0

Ẽ(k)
n,p,q(x)

tn

n!
=

[2]p,qLik,p,q(1− ep,q(−t))
t(ep,q(t) + 1)

ep,q(xt)

=
∞∑

n=1

n+1∑
l=1

(−1)l+n+l[l]p,q!

[l]kp,q[n + 1]p,q
Sp,q(n + 1, l)

tn

[n]p,q!

∞∑
n=0

En,p,q(x)
tn

[n]p,q!

=
∞∑

n=0

n∑
a=0

a+1∑
l=1

[
n
a

]
p,q

(−1)l+a+1[l]p,q!

[l]kp,q[a + 1]p,q
Sp,q(a + 1, l)En−a,p,q(x)

tn

[n]p,q!
.

Comparing the coefficient both sides, we get

Ẽ(k)
n,p,q(x) =

n∑
a=0

a+1∑
l=1

[
n
a

]
p,q

[l]p,q!

[l]kp,q[a + 1]p,q
(−1)l+a+1Sp,q(a + 1, l)En−a,p,q(x).

Now, we introduce fully modified (p, q)-poly-Euler polynomials of the first
type with two variables by using two generating functions.

Definition 2.4. For n ∈ Z+, k ∈ Z, p, q ∈ R and 0 < q < p ≤ 1, the fully

modified (p, q)-poly-Euler polynomials Ẽ
(k)
n,p,q(x, y) of the first type with two

variables by

∞∑
n=0

Ẽ(k)
n,p,q(x, y)

tn

n!
=

[2]p,qLik,p,q(1− ep,q(−t))
t(ep,q(t) + 1)

ep,q(xt)Ep,q(yt).

Theorem 2.5. Let n ∈ Z+, k ∈ Z. Then we have the addition theorem.

Ẽ(k)
n,p,q(x, y) =

n∑
l=0

[
n
l

]
p,q

Ẽ
(k)
l,p,q(x)q(n−l

2 )yn−l.

Proof. Let n be a nonnegative integer and k ∈ Z. Then we get

∞∑
n=0

Ẽ(k)
n,p,q(x, y)

tn

n!
=

[2]p,qLik,p,q(1− ep,q(−t))
t(ep,q(t) + 1)

ep,q(xt)Ep,q(yt)

=
∞∑

n=0

(
n∑

l=0

[
n
l

]
p,q

Ẽ
(k)
l,p,q(x)q(n−l

2 )yn−l

)
tn

[n]p,q!
.

Thus, we have

Ẽ(k)
n,p,q(x, y) =

n∑
l=0

[
n
l

]
p,q

Ẽ
(k)
l,p,q(x)q(n−l

2 )yn−l.

Theorem 2.6. Let n ∈ N, k ∈ Z and p, q ∈ R such that 0 < q < p ≤ 1. We
have

Ẽ(k)
n,p,q(x, y)− Ẽ(k)

n,p,q(x) =
n−1∑
l=0

[
n
l

]
p,q

q(n−l
2 ) Ẽ

(k)
l,p,q(x) yn−1.

4
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3 Distribution of zeros of the fully modified (p, q)-
poly-Euler polynomials

This section aims to demonstrate the benefit of using numerical investigation
to support theoretical prediction and to discover new interesting pattern of the

zeros of the fully modified (p, q)-poly-Euler polynomials Ẽ
(k)
n,p,q(x). The fully

modified (p, q)-poly-Euler polynomials Ẽ
(k)
1,p,q(x) can be determined explicitly. A

few of them are

Ẽ
(k)
0,p,q(x) =

p + q

2
,

Ẽ
(k)
1,p,q(x) = −3p

4
− q

4
+

p + q

2[2]kp,q
+

px + qx

2
,

Ẽ
(k)
2,p,q(x) =

p3

8(p− q)
+

p2q

8(p− q)
− pq2

8(p− q)
− q3

8(p− q)

− p4

4(p− q)2[2]kp,q
+

p2q2

2(p− q)2[2]kp,q
− q4

4(p− q)2[2]kp,q
− p5

(p− q)2(p + q)[2]kp,q

+
2p3q2

(p− q)2(p + q)[2]kp,q
− pq4

(p− q)2(p + q)
+

p5

2(p− q)(p2 + pq + q2)

− p3q2

2(p− q)(p2 + pq + q2)
+

p7

2(p− q)3(p2 + pq + q2)[3]kp,q

− p5q2

(p− q)3(p2 + pq + q2)[3]kp,q
− p4q3

2(p− q)3(p2 + pq + q2)[3]kp,q

+
p3q4

2(p− q)3(p2 + pq + q2)[3]kp,q
+

p2q5

(p− q)3(p2 + pq + q2)[3]kp,q

− q7

2(p− q)3(p2 + pq + q2)[3]kp,q
− 3p3x

4(p− q)
− p2qx

4(p− q)

+
3pq2x

4(p− q)
+

q3x

4(p− q)
+

p4x

2(p− q)2[2]kp,q
− p2q2x

(p− q)2[2]kp,q

+
q4x

2(p− q)2)[2]kp,q
+

p3x2

2(p− q)
− pq2x2

2(p− q)
.

5
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We investigate the zeros of the fully modified (p, q)-poly-Euler polynomials

Ẽ
(k)
n,p,q(x) by using a computer. We plot the zeros of the (p, q)-poly-Euler poly-

nomials Ẽ
(k)
n,p,q(x) for n = 20 and x ∈ C(Figure 1). In Figure 1(top-left), we
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Figure 1: Zeros of Ẽ
(k)
n,p,q(x) = 0

choose n = 20, p = 9/10, q = 1/10, and k = 1. In Figure 1(top-right), we choose
n = 20, p = 9/10, q = 1/10, and k = 5. In Figure 1(bottom-left), we choose
n = 20, p = 9/10, q = 1/10, and k = −1. In Figure 1(bottom-right), we choose
n = 20, p = 9/10, q = 1/10, and k = −5.
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Stacks of zeros of Ẽ
(k)
n,p,q(x) = 0 for 1 ≤ n ≤ 20 from a 3-D structure are

presented(Figure 3). In Figure 3(top-left), we choose p = 9/10, q = 1/10, and

Figure 2: Stacks of zeros of Ẽ
(k)
n,p,q(x) = 0 for 1 ≤ n ≤ 20

k = 1. In Figure 3(top-right), we choose p = 9/10, q = 1/10, and k = 5. In
Figure 3(bottom-left), we choose p = 9/10, q = 1/10, and k = −1. In Figure
3(bottom-right), we choose p = 9/10, q = 1/10, and k = −5.
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The plot of real zeros of Ẽ
(k)
n,p,q(x) = 0 for 1 ≤ n ≤ 20 structure are pre-

sented(Figure 4).

Figure 3: Real zeros of Ẽ
(k)
n,p,q(x) = 0 for 1 ≤ n ≤ 20

In Figure 4(top-left), we choose p = 9/10, q = 1/10, and k = 1. In Figure
4(top-right), we choose p = 9/10, q = 1/10, and k = 5. In Figure 4(bottom-
left), we choose p = 9/10, q = 1/10, and k = −1. In Figure 4(bottom-right), we
choose p = 9/10, q = 1/10, and k = −5.
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Next, we calculated an approximate solution satisfying (p, q)-poly-Eulert

polynomials Ẽ
(k)
n,p,q(x) = 0 for x ∈ C. The results are given in Table 1 and

Table 2.

Table 1. Approximate solutions of Ẽ
(−5)
n,p,q(x) = 0, p = 9/10, q = 1/10

degree n x

1 0.40000

2 −0.64015, 1.0846

3 −0.97595, 0.71267− 0.32117i, 0.71267 + 0.32117i

4 −1.1619, 0.24937− 0.68250i, 0.24937 + 0.68250i,

1.1131

5 −1.2512, −0.01718− 0.76730i, −0.01718 + 0.76730i,

0.86775− 0.23513i, 0.86775 + 0.23513i

6 −1.2998, −0.22150− 0.76057i, −0.22150 + 0.76057i,

0.55131− 0.56698i, 0.55131 + 0.56698i, 1.0902

Table 2. Approximate solutions of Ẽ
(5)
n,p,q(x) = 0, p = 9/10, q = 1/10

degree n x

1 0.40000

2 0.22222− 0.58608i 0.22222 + 0.58608i

3 −0.11575− 0.76525i, −0.11575 + 0.76525i, 0.68089

4 −0.28591− 0.75902i, −0.28591 + 0.75902i,

0.51087− 0.33499i, 0.51087 + 0.33499i

5 −0.46789− 0.68975i, −0.46789 + 0.68975i,

0.28053− 0.71282i, 0.28053 + 0.71282i, 0.82471

6 −0.54973− 0.64739i, −0.54973 + 0.64739i,

0.15514− 0.78522i, 0.15514 + 0.78522i,

0.61959− 0.14392i, 0.61959 + 0.14392i
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Abstract

Here we examine the univariate quantitative approximation, ordinary
and fractional, of Banach space valued continuous functions on a compact
interval or all the real line by quasi-interpolation Banach space valued
neural network operators. These approximations are derived by estab-
lishing Jackson type inequalities involving the modulus of continuity of
the engaged function or its Banach space valued high order derivative
or fractional derivatives. Our operators are defined by using a density
function generated by a parametrized Gudermannian sigmoid function.
The approximations are pointwise and of the uniform norm. The related
Banach space valued feed-forward neural networks are with one hidden
layer.
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41A30, 46B25.
Keywords and Phrases: Parametrized Gudermannian sigmoid function, Ba-
nach space valued neural network approximation, Banach space valued quasi-
interpolation operator, modulus of continuity, Banach space valued Caputo frac-
tional derivative, Banach space valued fractional approximation.

1 Introduction

The author in [1] and [2], see Chapters 2-5, was the first to establish neural net-
work approximation to continuous functions with rates by very specifically de-
fined neural network operators of Cardaliagnet-Euvrard and ”Squashing”types,
by employing the modulus of continuity of the engaged function or its high order
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derivative, and producing very tight Jackson type inequalities. He treats there
both the univariate and multivariate cases. The defining these operators ”bell-
shaped”and ”squashing”functions are assumed to be of compact suport. Also
in [2] he gives the Nth order asymptotic expansion for the error of weak approx-
imation of these two operators to a special natural class of smooth functions,
see Chapters 4-5 there.
The author inspired by [15], continued his studies on neural networks ap-

proximation by introducing and using the proper quasi-interpolation operators
of sigmoidal and hyperbolic tangent type which resulted into [3] - [7], by treat-
ing both the univariate and multivariate cases. He did also the corresponding
fractional case [8].
In this article we are greatly inspired by the related works [16], [17].
The author here performs parametrized Gudermannian function based neural

network approximations to continuous functions over compact intervals of the
real line or over the whole R with values to an arbitrary Banach space (X, ‖·‖).
Finally he treats completely the related X-valued fractional approximation. All
convergences here are with rates expressed via the modulus of continuity of the
involved function or its X-valued high order derivative, or X-valued fractional
derivatives and given by very tight Jackson type inequalities.
Our compact intervals are not necessarily symmetric to the origin. Some of

our upper bounds to error quantity are very flexible and general. In preparation
to prove our results we establish important properties of the basic density func-
tion defining our operators which is induced by a parametrized Gudermannian
sigmoid function.
Feed-forward X-valued neural networks (FNNs) with one hidden layer, the

only type of networks we deal with in this article, are mathematically expressed
as

Nn (x) =
n∑
j=0

cjσ (〈aj · x〉+ bj) , x ∈ Rs, s ∈ N,

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ Rs are the connection
weights, cj ∈ X are the coeffi cients, 〈aj · x〉 is the inner product of aj and x,
and σ is the activation function of the network. In many fundamental neural
network models, the activation function is derived by the Gudermannian sigmoid
functions. About neural networks in general read [18], [19], [21]. See also [9] for
a complete study of real valued approximation by neural network operators.

2

287

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

Anastassiou 286-299



2 Background

Here we consider the Gudermannian function ([23]) gd (x) which is defined as
follows

gd (x) :=

∫ x

0

dt

cosh t
= 2 arctan

(
tanh

(x
2

))
, ∀ x ∈ R. (1)

Let λ > 0, then

gd (λx) =

∫ λx

0

dt

cosh t
= 2 arctan

(
tanh

(
λx

2

))
. (2)

We will use the following normalized and parametrized function

fλ (x) :=
2

π
gd (λx) =

4

π
arctan

(
tanh

(
λx

2

))
= (3)

2

π

∫ λx

0

dt

cosh t
=

4

π

∫ λx

0

dt

et + e−t
, x ∈ R

We will prove that fλ is a generator sigmoid function with the general properties
as in [14]. When 0 < λ < 1, fλ is expected to outperform ReLu and Leaky ReLu
activation functions.
We notice that (

2

π
gd (x)

)′
=

2

π coshx
> 0,

and

f ′λ (x) =

(
2

π
gd (λx)

)′
=

2λ

π coshλx
> 0, ∀ x ∈ R. (4)

Hence fλ is strictly increasing on R.
Furthermore we have

f ′′λ (x) = −2λ2

π

sinhλx

(coshλx)
2 , ∀ x ∈ R. (5)

Notice that
f ′′λ (x) > 0 for x < 0, and

f ′′λ (x) < 0 for x > 0, and

f ′′λ (0) = 0.

Therefore fλ is stritly concave up for x < 0, and fλ is striclty concave down for
x > 0, and fλ (0) = 0, with (0, 0) the inflection point.
Let x → +∞, then tanh

(
λx
2

)
→ 1 and arctan

(
tanh

(
λx
2

))
→ π

4 . Let x →
−∞, then tanh

(
λx
2

)
→ −1 and arctan

(
tanh

(
λx
2

))
→ −π4 .

Clearly, then fλ (+∞) = 1 and fλ (−∞) = −1, so that y = ±1 are horizontal
asymptotes for fλ.

3
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Also it is fλ (x) ≥ 0 for x ≥ 0, and fλ (x) < 0 for x < 0. Obviously then
fλ : R→ [−1, 1], with f ′′λ ∈ C (R) .

Notice that tanh (−x) = − tanhx and arctan (−x) = − arctanx, x ∈ R.
We have that

fλ (−x) =
4

π
arctan

(
tanh

(
−λx

2

))
=

4

π
arctan

(
− tanh

(
λx

2

))
=

− 4

π
arctan

(
tanh

(
λx

2

))
= −fλ (x) ,

proving
fλ (−x) = −fλ (x) , ∀ x ∈ R. (6)

So, indeed, fλ is a sigmoid function as in [14].
So, all the theory of [14] applies here for fλ, etc.
We consider the activation function

ψ (x) :=
1

4
(fλ (x+ 1)− fλ (x− 1)) , x ∈ R, (7)

As in [13], p. 285, and [14], we get that ψ (−x) = ψ (x) , thus ψ is an even
function. Since x + 1 > x − 1, then fλ (x+ 1) > fλ (x− 1), and ψ (x) > 0, all
x ∈ R.
We see that

ψ (0) =
fλ (1)

2
=
gd (λ)

π
. (8)

Let x > 1, we have that

ψ′ (x) =
1

4
(f ′λ (x+ 1)− f ′λ (x− 1)) < 0,

by f ′λ being strictly decreasing over [0,+∞).

Let now 0 < x < 1, then 1 − x > 0 and 0 < 1 − x < 1 + x. It holds
f ′λ (x− 1) = f ′λ (1− x) > f ′λ (x+ 1), so that again ψ′ (x) < 0. Consequently ψ
is stritly decreasing on (0,+∞) .

Clearly, ψ is strictly increasing on (−∞, 0), and ψ′ (0) = 0.

See that
lim

x→+∞
ψ (x) =

1

4
(fλ (+∞)− fλ (+∞)) = 0, (9)

and
lim

x→−∞
ψ (x) =

1

4
(fλ (−∞)− fλ (−∞)) = 0. (10)

That is the x-axis is the horizontal asymptote on ψ.
Conclusion, ψ is a bell symmetric function with maximum

ψ (0) =
gd (λ)

π
.

We need

4
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Theorem 1 (by [14]) We have that

∞∑
i=−∞

ψ (x− i) = 1, ∀ x ∈ R. (11)

Theorem 2 (by [14]) It holds∫ ∞
−∞

ψ (x) dx = 1. (12)

Thus ψ (x) is a density function on R.
We give

Theorem 3 (by [14]) Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞∑
k = −∞

: |nx− k| ≥ n1−α

ψ (nx− k) <

(
1− fλ

(
n1−α − 2

))
2

=

(
π − 2gd

(
λ
(
n1−α − 2

)))
2π

.

(13)
Notice that

lim
n→+∞

(
π − 2gd

(
λ
(
n1−α − 2

)))
2π

= 0.

Denote by b·c the integral part of the number and by d·e the ceiling of the
number.
We further give

Theorem 4 (by [14]) Let x ∈ [a, b] ⊂ R and n ∈ N so that dnae ≤ bnbc. It
holds

1∑bnbc
k=dnae ψ (nx− k)

<
1

ψ (1)
=

4

fλ (2)
=

2π

gd (2λ)
, ∀ x ∈ [a, b] . (14)

Remark 5 (by [14]) We have that

lim
n→∞

bnbc∑
k=dnae

ψ (nx− k) 6= 1, (15)

for at least some x ∈ [a, b] .

See also [13], p. 290, same reasoning.

Note 6 For large enough n we always obtain dnae ≤ bnbc. Also a ≤ k
n ≤ b, iff

dnae ≤ k ≤ bnbc. In general it holds (by (11))

bnbc∑
k=dnae

ψ (nx− k) ≤ 1. (16)

5
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Let (X, ‖·‖) be a Banach space.

Definition 7 Let f ∈ C ([a, b] , X) and n ∈ N : dnae ≤ bnbc. We introduce and
define the X-valued linear neural network operators

An (f, x) :=

∑bnbc
k=dnae f

(
k
n

)
ψ (nx− k)∑bnbc

k=dnae ψ (nx− k)
, x ∈ [a, b] . (17)

Clearly here An (f, x) ∈ C ([a, b] , X). For convenience we use the same An
for real valued function when needed. We study here the pointwise and uniform
convergence of An (f, x) to f (x) with rates.
For convenience also we call

A∗n (f, x) :=

bnbc∑
k=dnae

f

(
k

n

)
ψ (nx− k) , (18)

(similarly A∗n can be defined for real valued function) that is

An (f, x) =
A∗n (f, x)∑bnbc

k=dnae ψ (nx− k)
. (19)

So that

An (f, x)− f (x) =
A∗n (f, x)∑bnbc

k=dnae ψ (nx− k)
− f (x)

=
A∗n (f, x)− f (x)

(∑bnbc
k=dnae ψ (nx− k)

)
∑bnbc
k=dnae ψ (nx− k)

. (20)

Consequently we derive

‖An (f, x)− f (x)‖ ≤ 2π

gd (2λ)

∥∥∥∥∥∥A∗n (f, x)− f (x)

 bnbc∑
k=dnae

ψ (nx− k)

∥∥∥∥∥∥ . (21)

That is

‖An (f, x)− f (x)‖ ≤ 2π

gd (2λ)

∥∥∥∥∥∥
bnbc∑

k=dnae

(
f

(
k

n

)
− f (x)

)
ψ (nx− k)

∥∥∥∥∥∥ . (22)

We will estimate the right hand side of (22).
For that we need, for f ∈ C ([a, b] , X) the first modulus of continuity

ω1 (f, δ)[a,b] := ω1 (f, δ) := sup

x, y ∈ [a, b]

|x− y| ≤ δ

‖f (x)− f (y)‖ , δ > 0. (23)

6
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Similarly, it is defined ω1 for f ∈ CuB (R, X) (uniformly continuous and bounded
functions from R into X), for f ∈ CB (R, X) (continuous and bounded X-
valued) and for f ∈ Cu (R, X) (uniformly continuous).
The fact f ∈ C ([a, b] , X) or f ∈ Cu (R, X), is equivalent to lim

δ→0
ω1 (f, δ) = 0,

see [11].

Definition 8 When f ∈ CuB (R, X), or f ∈ CB (R, X), we define

An (f, x) :=
∞∑

k=−∞
f

(
k

n

)
ψ (nx− k) , n ∈ N, x ∈ R, (24)

the X-valued quasi-interpolation neural network operator.

Remark 9 (by [14]) We have that the series
∑∞
k=−∞ f

(
k
n

)
ψ (nx− k) is ab-

solutely convergent in X, hence it is convergent in X and An (f, x) ∈ X.

We denote by ‖f‖∞ := sup
x∈[a,b]

‖f (x)‖, for f ∈ C ([a, b] , X), similarly is

defined for f ∈ CB (R, X) .

3 Main Results

We present a series of X-valued neural network approximations to a function
given with rates.
We first give

Theorem 10 Let f ∈ C ([a, b] , X), 0 < α < 1, n ∈ N : n1−α > 2, x ∈ [a, b] .

Then
i)

‖An (f, x)− f (x)‖ ≤ 2π

gd (2λ)

[
ω1

(
f,

1

nα

)
+
(
1− fλ

(
n1−α − 2

))
‖f‖∞

]
=: ρ,

(25)
and
ii)

‖An (f)− f‖∞ ≤ ρ. (26)

We notice lim
n→∞

An (f) = f , pointwise and uniformly.

The speed of convergence is max
(
1
nα ,
(
1− fλ

(
n1−α − 2

)))
.

Proof. As similar to [13], p. 293 is omitted, see also [14].
Next we give

7
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Theorem 11 Let f ∈ CB (R, X), 0 < α < 1, n ∈ N : n1−α > 2, x ∈ R. Then
i)

∥∥An (f, x)− f (x)
∥∥ ≤ ω1(f, 1

nα

)
+
(
1− fλ

(
n1−α − 2

))
‖f‖∞ =: µ, (27)

and
ii) ∥∥An (f)− f

∥∥
∞ ≤ µ. (28)

For f ∈ CuB (R, X) we get lim
n→∞

An (f) = f , pointwise and uniformly.

The speed of convergence is max
(
1
nα ,
(
1− fλ

(
n1−α − 2

)))
.

Proof. As similar to [13], p. 294 is omitted, see also [14].
In the next we discuss high order neural network X-valued approximation

by using the smoothness of f .

Theorem 12 Let f ∈ CN ([a, b] , X), n,N ∈ N, 0 < α < 1, x ∈ [a, b] and
n1−α > 2. Then
i)

‖An (f, x)− f (x)‖ ≤ 2π

gd (2λ)


N∑
j=1

∥∥f (j) (x)
∥∥

j!

[
1

nαj
+

(
1− fλ

(
n1−α − 2

))
2

(b− a)
j

]
+

(29)[
ω1

(
f (N),

1

nα

)
1

nαNN !
+

(
1− fλ

(
n1−α − 2

)) ∥∥f (N)∥∥∞ (b− a)
N

N !

]}
,

ii) assume further f (j) (x0) = 0, j = 1, ..., N, for some x0 ∈ [a, b], it holds

‖An (f, x0)− f (x0)‖ ≤
2π

gd (2λ){
ω1

(
f (N),

1

nα

)
1

nαNN !
+

(
1− fλ

(
n1−α − 2

)) ∥∥f (N)∥∥∞ (b− a)
N

N !

}
, (30)

and
iii)

‖An (f)− f‖∞ ≤
2π

gd (2λ)


N∑
j=1

∥∥f (j)∥∥∞
j!

[
1

nαj
+

(
1− fλ

(
n1−α − 2

))
2

(b− a)
j

]
+

[
ω1

(
f (N),

1

nα

)
1

nαNN !
+

(
1− fλ

(
n1−α − 2

)) ∥∥f (N)∥∥∞ (b− a)
N

N !

]}
. (31)

Again we obtain lim
n→∞

An (f) = f , pointwise and uniformly.

8
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Proof. As similar to [13], pp. 296-301 is omitted, see also [14].
All integrals from now on are of Bochner type [20].
We need

Definition 13 ([12]) Let [a, b] ⊂ R, X be a Banach space, α > 0; m = dαe ∈ N,
(d·e is the ceiling of the number), f : [a, b] → X. We assume that f (m) ∈
L1 ([a, b] , X). We call the Caputo-Bochner left fractional derivative of order α:

(Dα
∗af) (x) :=

1

Γ (m− α)

∫ x

a

(x− t)m−α−1 f (m) (t) dt, ∀ x ∈ [a, b] . (32)

If α ∈ N, we set Dα
∗af := f (m) the ordinary X-valued derivative (defined similar

to numerical one, see [22], p. 83), and also set D0
∗af := f.

By [12], (Dα
∗af) (x) exists almost everywhere in x ∈ [a, b] and Dα

∗af ∈
L1 ([a, b] , X).
If
∥∥f (m)∥∥

L∞([a,b],X)
<∞, then by [12],Dα

∗af ∈ C ([a, b] , X) , hence ‖Dα
∗af‖ ∈

C ([a, b]) .

Definition 14 ([10]) Let [a, b] ⊂ R, X be a Banach space, α > 0, m := dαe.
We assume that f (m) ∈ L1 ([a, b] , X), where f : [a, b]→ X. We call the Caputo-
Bochner right fractional derivative of order α:

(
Dα
b−f

)
(x) :=

(−1)
m

Γ (m− α)

∫ b

x

(z − x)
m−α−1

f (m) (z) dz, ∀ x ∈ [a, b] . (33)

We observe that
(
Dm
b−f

)
(x) = (−1)

m
f (m) (x) , for m ∈ N, and

(
D0
b−f

)
(x) =

f (x) .

By [10],
(
Dα
b−f

)
(x) exists almost everywhere on [a, b] and

(
Dα
b−f

)
∈ L1 ([a, b] , X).

If
∥∥f (m)∥∥

L∞([a,b],X)
< ∞, and α /∈ N, by [10], Dα

b−f ∈ C ([a, b] , X) , hence∥∥Dα
b−f

∥∥ ∈ C ([a, b]) .

We present the following X-valued fractional approximation result by neural
networks.

Theorem 15 Let α > 0, N = dαe, α /∈ N, f ∈ CN ([a, b] , X), 0 < β < 1,
x ∈ [a, b], n ∈ N : n1−β > 2. Then
i) ∥∥∥∥∥∥An (f, x)−

N−1∑
j=1

f (j) (x)

j!
An

(
(· − x)

j
)

(x)− f (x)

∥∥∥∥∥∥ ≤
2π

gd (2λ) Γ (α+ 1)


(
ω1
(
Dα
x−f,

1
nβ

)
[a,x]

+ ω1
(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

9
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(
1− fλ

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x] (x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)}

,

(34)
ii) if f (j) (x) = 0, for j = 1, ..., N − 1, we have

‖An (f, x)− f (x)‖ ≤ 2π

gd (2λ) Γ (α+ 1)
(
ω1
(
Dα
x−f,

1
nβ

)
[a,x]

+ ω1
(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

(
1− fλ

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x] (x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)}

,

(35)
iii)

‖An (f, x)− f (x)‖ ≤ 2π

gd (2λ)
N−1∑
j=1

∥∥f (j) (x)
∥∥

j!

{
1

nβj
+ (b− a)

j

(
1− fλ

(
n1−β − 2

)
2

)}
+

1

Γ (α+ 1)


(
ω1
(
Dα
x−f,

1
nβ

)
[a,x]

+ ω1
(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

(
1− fλ

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x] (x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)}}

,

(36)
∀ x ∈ [a, b] ,

and
iv)

‖Anf − f‖∞ ≤
2π

gd (2λ)
N−1∑
j=1

∥∥f (j)∥∥∞
j!

{
1

nβj
+ (b− a)

j

(
1− fλ

(
n1−β − 2

)
2

)}
+

1

Γ (α+ 1)



(
sup
x∈[a,b]

ω1
(
Dα
x−f,

1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1
(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

10
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(
1− fλ

(
n1−β − 2

)
2

)
(b− a)

α

(
sup
x∈[a,b]

∥∥Dα
x−f

∥∥
∞,[a,x] + sup

x∈[a,b]
‖Dα
∗xf‖∞,[x,b]

)}}
.

(37)
Above, when N = 1 the sum

∑N−1
j=1 · = 0.

As we see here we obtain X-valued fractionally type pointwise and uniform
convergence with rates of An → I the unit operator, as n→∞.

Proof. It is very lengthy, as similar to [13], pp. 305-316, is omitted, see also
[14].
Next we apply Theorem 15 for N = 1.

Theorem 16 Let 0 < α, β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2.

Then
i)

‖An (f, x)− f (x)‖ ≤

2π

gd (2λ) Γ (α+ 1)


(
ω1
(
Dα
x−f,

1
nβ

)
[a,x]

+ ω1
(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

(
1− fλ

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x] (x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)}

,

(38)
and
ii)

‖Anf − f‖∞ ≤
2π

gd (2λ) Γ (α+ 1)

(
sup
x∈[a,b]

ω1
(
Dα
x−f,

1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1
(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

(
1− fλ

(
n1−β − 2

)
2

)
(b− a)

α

(
sup
x∈[a,b]

∥∥Dα
x−f

∥∥
∞,[a,x] + sup

x∈[a,b]
‖Dα
∗xf‖∞,[x,b]

)}
.

(39)

When α = 1
2 we derive

Corollary 17 Let 0 < β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2.

Then
i)

‖An (f, x)− f (x)‖ ≤

11
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4
√
π

gd (2λ)


(
ω1

(
D

1
2
x−f,

1
nβ

)
[a,x]

+ ω1

(
D

1
2∗xf,

1
nβ

)
[x,b]

)
n
β
2

+

(
1− fλ

(
n1−β − 2

)
2

)(∥∥∥D 1
2
x−f

∥∥∥
∞,[a,x]

√
(x− a) +

∥∥∥D 1
2∗xf
∥∥∥
∞,[x,b]

√
(b− x)

)}
,

(40)
and
ii)

‖Anf − f‖∞ ≤
4
√
π

gd (2λ)

(
sup
x∈[a,b]

ω1

(
D

1
2
x−f,

1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
D

1
2∗xf,

1
nβ

)
[x,b]

)
n
β
2

+

(
1− fλ

(
n1−β − 2

)
2

)√
(b− a)

(
sup
x∈[a,b]

∥∥∥D 1
2
x−f

∥∥∥
∞,[a,x]

+ sup
x∈[a,b]

∥∥∥D 1
2∗xf
∥∥∥
∞,[x,b]

)}
<∞.

(41)

We finish with

Remark 18 Some convergence analysis follows:
Let 0 < β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2. We elaborate

on (41). Assume that

ω1

(
D

1
2
x−f,

1

nβ

)
[a,x]

≤ K1

nβ
, (42)

and

ω1

(
D

1
2∗xf,

1

nβ

)
[x,b]

≤ K2

nβ
, (43)

∀ x ∈ [a, b], ∀ n ∈ N, where K1,K2 > 0.
Then it holds[

sup
x∈[a,b]

ω1

(
D

1
2
x−f,

1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
D

1
2∗xf,

1
nβ

)
[x,b]

]
n
β
2

≤

(K1+K2)
nβ

n
β
2

=
(K1 +K2)

n
3β
2

=
K

n
3β
2

, (44)

where K := K1 +K2 > 0.

12
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The other summand of the right hand side of (41), for large enough n, con-

verges to zero at the speed
(
1−fλ(n1−β−2)

2

)
.

Then, for large enough n ∈ N, by (41) and (44) and the last comment, we
obtain that

‖Anf − f‖∞ ≤M max

(
1

n
3β
2

,

(
1− fλ

(
n1−β − 2

)
2

))
, (45)

where M > 0.

If 1

n
3β
2

≥
(
1−fλ(n1−β−2)

2

)
, then 1

nβ
≥
(
1−fλ(n1−β−2)

2

)
, and consequently

‖Anf − f‖∞ in (45) converges to zero faster than in Theorem 10. This because
the differentiability of f .
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In this paper, we consider the problem of constructing new optimal explicit
and implicit Adams-type difference formulas for finding an approximate solution
to the Cauchy problem for an ordinary differential equation in a Hilbert space.
In this work, I minimize the norm of the error functional of the difference formula
with respect to the coefficients, we obtain a system of linear algebraic equations
for the coefficients of the difference formulas. This system of equations is reduced
to a system of equations in convolution and the system of equations is completely
solved using a discrete analog of a differential operator d2/dx2 − 1. Here we
present an algorithm for constructing optimal explicit and implicit difference
formulas in a specific Hilbert space. In addition, comparing the Euler method
with optimal explicit and implicit difference formulas, numerical experiments are
given. Experiments show that the optimal formulas give a good approximation
compared to the Euler method.

Keywords: Hilbert space; initial-value problem; multistep method; the
error functional; optimal difference formula.

1 Introduction

It is known that the solutions of many practical problems lead to solutions of
differential equations or their systems. Although differential equations have so

1
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many applications and only a small number of them can be solved exactly using
elementary functions and their combinations. Even in the analytical analysis
of differential equations, their application can be inconvenient due to the com-
plexity of the obtained solution. If it is very difficult to obtain or impossible to
find an analytic solution to a differential equation, one can find an approximate
solution.

In the present paper we consider the problem of approximate solution to the
first order linear ordinary differential equation

y′ = f(x, y), x ∈ [0, 1] (1)

with the initial condition
y(0) = y0. (2)

We assume that f(x, y) is a suitable function and the differential equation (1)
with the initial condition (2) has a unique solution on the interval [0, 1].

For approximate solution of problem (1)-(2) we divide the interval [0, 1] into
N pieces of the length h = 1

N and find approximate values yn of the function
y(x) for n = 0, 1, ..., N at nodes xn = nh.

A classic method of approximate solution of the initial-value problem (1)-
(2) is the Euler method. Using this method, the approximate solution of the
differential equation is calculated as follows: to find an approximate value yn+1

of the function at the node xn+1, it is used the approximate value yn at the
node xn:

yn+1 = yn + hy′n, (3)

where y′n = f(xn, yn), so that yn+1 is a linear combination of the values of the
unknown function y(x) and its first-order derivative at the node xn.

Everyone are known that there are many methods for solving the initial-value
problem for ordinary differential equation (1). For example, the initial-value
problem can be solved using the Euler, Runge-Kutta, Adams-Bashforth and
Adams-Moulton formulas of varying degrees [1]. In [2] by Ahmad Fadly Nurul-
lah Rasedee, et al., research they discussed the order and stepsize strategies of
the variable order stepsize algorithm. The stability and convergence estimations
of the method are also established. In the work [3] by Adekoya Odunayo M.
and Z.O.Ogunwobi, it was shown that the Adam-Bashforth-Moulton method
is better than the Milne Simpson method in solving a second-order differential
equation. Some studies have raised the question of whether Nordsieck’s tech-
nique for changing the step size in the Adams-Bashforth method is equivalent
to the explicit continuous Adams-Bashforth method. And in N.S.Hoang and
R.B.Sidje’s work [4] they provided a complete proof that the two approaches
are indeed equivalent. In the works [5] and [6] there were shown the potential
superiority of semi-explicit and semi-implicit methods over conventional linear
multi-step algorithms.

However, it is very important to choose the right one among these formulas
to solve the Initial-value problem and it is not always possible to do this. Also,
in this work, in contrast to the above-mentioned works, exact estimates of the
error of the formula is obtained.

2
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Our aim, in this paper, is to construct new difference formulas that are exact

for e−x and optimal in the Hilbert space W
(2,1)
2 (0, 1). Also these formulas can

be used to solve certain classes of problems with great accuracy.
The rest of the work is organized as follows. In the first paragraph, an

algorithm for constructing an explicit difference formula in the space is given.
The above algorithm is used to obtain an analytical formula for the optimal
coefficients of an explicit difference formula. In the second section, the same
algorithm is used to obtain an analytical formula for the optimal coefficients of
the implicit difference formula. In the third and fourth sections, respectively,
exact formulas are given for the square of the norm of the error functionals of
explicit and implicit difference formulas. Numerical experiments are presented
at the end of the work.

2 Optimal explicit difference formulas of Adams-
Bashforth type in the Hilbert space W

(2,1)
2 (0, 1)

We consider a difference formula of the following form for the approximate
solution of the problem (1)-(2) [7, 8]

k∑
β=0

C [β]ϕ [β]− h
k−1∑
β=0

C1 [β]ϕ′ [β] ∼= 0, (1)

where h = 1
N , N is a natural number, C[β] and C1[β] are the coefficients,

functions ϕ belong to the Hilbert space W
(2,1)
2 (0, 1). The space W

(2,1)
2 (0, 1) is

defined as follows

W
(2,1)
2 (0, 1) = {ϕ : [0, 1]→ R|ϕ′ is abs.contunuous, ϕ′′ ∈ L2(0, 1)}

equipped with the norm [9, 10]

‖ϕ|W (2,1)
2 ‖ =

{ 1∫
0

(
ϕ′′(x) + ϕ′(x)

)2

dx
}1/2

. (2)

The following difference between the sums given in the formula (1) is called the
error of the formula (1) [11]

(`, ϕ) =
k∑

β=0

C[β]ϕ (hβ)− h
k−1∑
β=0

C1[β]ϕ′ (hβ).

To this error corresponds the error functional [12]

`(x) =
k∑

β=0

C[β]δ(x− hβ) + h
k−1∑
β=0

C1[β]δ′(x− hβ), (3)

3
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where δ(x) is Dirac’s delta-function. We note that (`, ϕ) is the value of the error
functional ` at a function ϕ and it is defined as [13, 14]

(`, ϕ) =

∞∫
−∞

`(x)ϕ(x)dx.

It should be also noted that since the error functional ` is defined on the space

W
(2,1)
2 (0, 1) it satisfies the following conditions

(`, 1) = 0, (`, e−x) = 0.

These give us the following equations with respect to coefficients C[β] and C1[β]:

k∑
β=0

C[β] = 0, (4)

k∑
β=0

C[β]e−hβ + h
k−1∑
β=0

C1[β]e−hβ = 0. (5)

Based on the Cauchy-Schwartz inequality for the absolute value of the error
of the formula (1) we have the estimation

|(`, ϕ)| ≤ ‖ϕ|W (2,1)
2 ‖ · ‖`|W (2,1)∗

2 ‖.

Hence, the absolute error of the difference formula (1) in the space W
(2,1)
2 is

estimated by the norm of the error functional ` on the conjugate space W
(2,1)∗
2 .

From this we get the following[15].

Problem 1. Calculate the norm ‖`|W (2,1)∗
2 ‖ of the error functional `.

From the formula (3) one can see that the norm ‖`|W (2,1)∗
2 ‖ depends on the

coefficients C[β] and C1[β].
Problem 2. Find such coefficients C1[β] = C̊1[β] that satisfy the equality

‖˚̀|W (2,1)∗
2 ‖ = inf

C̊1[β]
sup

‖ϕ|W (2,1)
2 ‖6=0

|(`, ϕ)|
‖ϕ|W (2,1)

2 ‖
.

In this case C̊1[β] are called the optimal coefficients and the corresponding
difference formula (1) is called the optimal difference formula.

A function ψ` satisfying the following equation is called the extremal function
of the difference formula (1) [13]

(`, ψ`) = ‖`|W (2,1)∗
2 ‖ · ‖ψ`|W (2,1)

2 ‖. (6)

Since the space W
(2,1)
2 (0, 1) is a Hilbert space, then from the Riesz theorem on

the general form of a linear continuous functional on a Hilbert space there is a

4
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function ψ` (which is the extremal function) that satisfies the following equation
[16, 17]

(`, ϕ) = 〈ϕ,ψ`〉W (2,1)
2

(7)

and the equality ‖`|W (2,1)∗
2 ‖ = ‖ψ`|W (2,1)

2 ‖ holds, here 〈ϕ,ψ`〉W (2,1)
2

is the inner

product in the space W
(2,1)
2 (0, 1) and is defined as follows [18]

Theorem 2.1 The solution of equation (7) has the form

ψ`(x) = `(x) ∗G2(x) + de−x + p0 (8)

and it is an extremal function for the difference formula (1), where G2(x) =
sgn(x)

2

(
ex−e−x

2 − x
)

, d and p0 are real numbers.

According to the above mentioned Riesz’s theorem, the following equalities is
fulfilled

‖`|W (2,1)∗
2 ‖2 = (`, ψ`) = ‖`|W (2,1)∗

2 ‖ · ‖ψ`|W (2,1)
2 ‖.

By direct calculation from the last equality for the norm of the error functional
for the difference formula (1) we have the following result [18].

Theorem 2.2 For the norm of the error functional of the difference formula
(1) we have the following expression

‖`|W (2,1)∗
2 ‖2 =

k∑
γ=0

k∑
β=0

C[γ]C[β]G2(hγ−hβ)−2h
k−1∑
γ=0

C1[γ]
k∑

β=0

C[β]G′2(hγ−hβ)−

−h2
k−1∑
γ=0

k−1∑
β=0

C1[γ]C1[β]G′′2(hγ − hβ), (9)

where G′2(x) = sgn(x)
2

(
ex+e−x

2 − 1
)

and G′′2(x) = sgn(x)
2

(
ex−e−x

2

)
.

It is known that stability in the Dahlquist sense, just like strong stability,
is determined only by the coefficients C [β], β = 0, k. For this reason, our search
for the optimal formula is only related to finding C1 [β]. Therefore, in this
subsection we consider difference formulas of the Adams-Bashforth type, i.e.
C [k] = −C [k − 1] = 1 and C [k − i] = 0, i = 2, k, [19, 20]. Then is easy to
check, that the coefficients satisfy the condition (4).

In this work, we find the minimum of the norm (9) by the coefficients C1 [β]

under the condition (5) in the space W
(2,1)
2 (0, 1) [21]. Then using Lagrange

method of undetermined multipliers we get the following system of linear equa-
tions with respect to the coefficients C1[β]:

h
k−1∑
γ=0

C1 [γ]G′′2(hβ − hγ) + de−hβ = −
k∑
γ=0

C [γ]G′2(hβ − hγ), (10)

5
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β = 0, k − 1,

h
k−1∑
γ=0

C1 [γ] e−hγ = −
k∑
γ=0

C [γ] e−hγ . (11)

It is easy to prove that the solution of this system gives the minimum value to the

expression (9) under the condition (5). Here d is an unknown constant,
◦
C1 [β]

are optimal coefficient. Given that C [k] = 1, C [k − 1] = −1, C [k − i] = 0,
i = 2, k the system (10),(11) is reduced to the form,

h
k−1∑
γ=0

◦
C1 [γ]G′′2(hβ − hγ) + de−hβ = f [β] , β = 0, k − 1 (12)

h

k−1∑
γ=0

◦
C1 [γ] e−hγ = g , (13)

where

f [β] =
1− eh

4

(
ehβ−hk − e−hβ+hk−h) , (14)

g = e−hk+h − e−hk. (15)

Assuming that C1 [β] = 0, for β < 0 and β > k− 1, we rewrite the system (12),
(13) in the convolution form{

h
◦
C1 [β] ∗G′′2 (hβ) + de−hβ = f [β] for β = 0, k − 1,

h
∑k−1
γ=0

◦
C1 [γ] e−hγ = g.

(16)

We denote first equation of the system (16) by Uexp

Uexp [β] = h
◦
C1 [β] ∗G′′2 (hβ) + de−hβ . (17)

(12) implies that
Uexp [β] = f [β] for β = 0, k − 1. (18)

Now calculating the convolution we have

Uexp [β] =
◦
C1 [β] ∗G′′2 (hβ) + de−hβ = h

k−1∑
γ=0

◦
C1 [γ]G′′2 (hβ − hγ) + de−hβ .

For β < 0 we get

Uexp [β] = h
k−1∑
γ=0

◦
C1

sgn (hβ − hγ)

2

(
ehβ−hγ − e−hβ+hγ

2

)
+ de−hβ

= −e
hβ

4
h
k−1∑
γ=0

◦
C1 [γ] e−hγ+

e−hβ

4
h
k−1∑
γ=0

◦
C1 [γ] ehγ+de−hβ = −e

hβ

4
g+e−hβ (d+ b) .

6
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For β > k − 1

Uexp [β] =
ehβ

4
g + e−hβ (d− b) .

Then d+ = d+ b and d− = d− b the function Uexp [β] becomes

Uexp [β] =


− e

hβ

4 g + e−hβd+ for β > k − 1,

f [β] for β = 0, k − 1,
ehβ

4 g + e−hβd− for β < 0.

(19)

We use to find the unknowns d+ and d− from the discrete analogue of the

differential operator d2

dx2 − d
dx which is given below [22]

D1 [β] =
1

1− e2h

 −2eh for |β| = 1,
2(1 + e2h) for β = 0,
0 for |β| ≥ 2.

(20)

The unknowns d+ and d− are determined from the conditions

◦
C1 [β] = h−1D1 [β] ∗ Uexp [β] = 0 for β < 0 and β > k − 1. (21)

Calculate the convolution

h−1D1 [β] ∗ Uexp [β]

= h−1
∞∑
γ=1

D1 [β + γ]Uexp [−γ] + h−1
k−1∑
γ=0

D1 [β − γ]Uexp [γ]

+h−1
∞∑
γ=1

D1 [β − k − γ + 1]Uexp [k + γ − 1] .

From (19) with β = k and β = −1, we have{
h−1D1 [0]Uexp [−1] + h−1D1 [1]Uexp [−2] + h−1D1 [−1]Uexp [0] = 0,
h−1D1 [0]Uexp [k] + h−1D1 [1]Uexp [k − 1] + h−1D1 [−1]Uexp [k + 1] = 0.

Hence, due to (21), we get{
2
(
1 + e2h

) [
− 1

4e
−hg + ehd+

]
− 2eh

[
− 1

4e
−2hg + e2hd+

]
− 2ehf [0] = 0

2
(
1 + e2h

) [
1
4e
hkg + e−hkd−

]
− 2eh

[
1
4e
hk+hg + e−hk−hd−

]
− 2ehf [hk − h] = 0.

From the first equation d+ is equal to the following

d+ =
ehk − ehk−h

4
.

From the second equation d− is equal to the following

d− =
ehk − 3ehk−h + 2ehk−2h

4
.

7
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so

d =
d+

0 + d−0
2

=
ehk − 2ehk−h + ehk−2h

4
and b =

d+
0 − d

−
0

2
=
ehk−h − ehk−2h

4
.

Now we calculate the optimal coefficients
◦
C1 [β]

◦
C1 [β] = h−1D1 [β] ∗ Uexp [β] = h−1

∞∑
γ=−∞

D1 [β − γ]Uexp [γ] , β = 0, k − 1.

Let β = k − 1, then

◦
C1 [k − 1] = h−1

∞∑
γ=−∞

D1 [k − 1− γ]Uexp [γ]

= h−1 {D1 [0]Uexp [k − 1] +D1 [1]Uexp [k − 2] +D1 [−1]Uexp [k]}

=
h−1

(1− e2h)
·
{

1− e−h + eh − e2h
}

=
eh − 1

heh
,

thus,
◦
C1 [k − 1] = eh−1

heh
for β = k − 1.

Compute
◦
C1 [0]

◦
C1 [0] = h−1

∞∑
γ=−∞

D1 [−γ]Uexp [γ]

= h−1 {D1 [0]Uexp [0] +D1 [1]Uexp [−1] +D1 [−1]Uexp [1]}

=
h−1

2(1− e2h)
·
{

(1 + e2h)(e−hk − ehk−h − e−hk+h + ehk)

−e−h(−e−hk + e−hk−h − ehk+h − ehk)
}

− h−1

2(1− e2h)
·
{
e−h(e−hk+h − ehk−2h − e−hk+2h + ehk−h)

}
=

h−1

2(1− e2h)
· 0 = 0,

hence,
◦
C1 [0] = 0 for β = 0.

Now calculate
◦
C1 [β] for β = 1, k − 2

◦
C1 [β] = h−1

∞∑
γ=−∞

D1 [−γ]Uexp [γ]

= h−1 {D1 [0]Uexp [β] +D1 [1]Uexp [β − 1] +D1 [−1]Uexp [β + 1]}

=
h−1

2(1− e2h)
·
{

(1 + e2h)(1− eh)(e−hk+hβ − ehk−hβ−h)
}

− h−1

2(1− e2h)
·
{
e−h(1− eh)(e−hk+hβ−h − ehk−hβ)

}
8
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− h−1

2(1− e2h)
·
{
e−h(1− eh)(e−hk+hβ+h − ehk−hβ−2h)

}
=

h−1

2(1− e2h)
· 0 = 0,

thereby,
◦
C1 [β] = 0 for β = 1, k − 2.

Finally, we have proved the following theorem.

Theorem 2.3 In the Hilbert space W
(2,1)
2 (0, 1) there is a unique optimal ex-

plicit difference formula of the Adams-Bashforth type whose coefficients are de-
termined by following expressions

C [β] =


1 for β = k,
−1 for β = k − 1,

0 for β = 0, k − 2,
(22)

◦
C1 [β] =

{
eh−1
heh

for β = k − 1,

0 for β = 0, k − 2.
(23)

Thus, the optimal explicit difference formula in W
(2,1)
2 (0, 1) has the form

ϕn+k = ϕn+k−1 +
eh − 1

eh
ϕ′n+k−1, (24)

where n = 0, 1, ..., N − k, k ≥ 1.

3 Optimal implicit difference formulas of Adams-
Moulton type in the Hilbert space W

(2,1)
2 (0, 1)

Consider an implicit difference formula of the form

k∑
β=0

C[β]ϕ[β]− h
k∑

β=0

C1[β]ϕ′[β] ∼= 0 (1)

with the error function

`(x) =
k∑

β=0

C[β]δ(x− hβ) + h
k∑

β=0

C1[β]δ′(x− hβ) (2)

in the space W
(2,1)
2 (0, 1).

In this section, we also consider the case C[k] = −C[k−1] = 1, and C[k−i] = 0,
i = 2, k , i.e. Adams-Moulton type formula. Minimizing the norm of the error
functional (2) of an implicit difference formula of the form (1) with respect to

the coefficients C1[β] , β = 0, k in the space W
(2,1)
2 (0, 1) we obtain a system of

linear algebraic equations{
h
∑k
γ=0

◦
C1 [γ]G′′2(hβ − hγ) + de−hβ = f [β] , β = 0, k

h
∑k
γ=0

◦
C1 [γ] e−hγ = g.

9
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Here
◦
C1[β] are unknowns coefficients of the implicit difference formulas (1),

β = 0, k and d is an unknown constant,

f [β] = G′2(hβ − hk + h)−G′2(hβ − hk)

=

{
1
4

(
1− eh

) (
e−hk+hβ − ehk−hβ−h

)
, β = 0, k − 1,

1
4

(
eh + e−h − 2

)
, β = k,

(3)

g = e−hk+h − e−hk. (4)

Assuming, in general, that

◦
C1[β] = 0 , for β < 0 and β > k, (5)

rewrite the system in the convolution form{
h
◦
C1 [β] ∗G′′2 (hβ) + de−hβ = f [β] , β = 0, k,

h
∑k
γ=0

◦
C1 [γ] e−hγ = g.

Denote by Uimp[β] = h
◦
C1 [β] ∗G′′2 (hβ) + de−hβ . Shows that

Uimp[β] = f [β] for β = 0, k (6)

Now we find Uimp[β] for β < 0 and β > k. Let β < 0, then

Uimp [β] = h
k∑
γ=0

◦
C1 [γ]

sgn (hβ − hγ)

2

(
ehβ−hγ − e−hβ+hγ

2

)
+ de−hβ

= −e
hβ

4
h

k∑
γ=0

◦
C1 [γ] e−hγ +

e−hβ

4
h

k∑
γ=0

◦
C1 [γ] ehγ + de−hβ .

Here d+ is defined by the equality

d+ =
e−hβ

4
h

k∑
γ=0

◦
C1 [γ] ehγ + de−hβ . (7)

Similarly, for β > k we have

Uimp [β] = h
k∑
γ=0

◦
C1 [γ]

sgn (hβ − hγ)

2

(
ehβ−hγ − e−hβ+hγ

2

)
+ de−hβ

=
ehβ

4
h

k∑
γ=0

◦
C1 [γ] e−hγ − e−hβ

4
h

k∑
γ=0

◦
C1 [γ] ehγ + de−hβ .

10
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Here d− is defined by the equality

d− = −e
−hβ

4
h

k∑
γ=0

◦
C1 [γ] ehγ + de−hβ . (8)

(7) and (8) immediately imply that

d =
d+ + d−

2
. (9)

So Uimp[β] for any β ∈ Z is defined by the formula

Uimp [β] =


− e

hβ

4 g + e−hβd+ for β > k,

f [β] for β = 0, k,
ehβ

4 g + e−hβd− for β < 0.

(10)

If we operate operator (20) on expression Uimp[β], we get

◦
C1[β] = h−1D1[β] ∗ Uimp[β] , β ∈ Z. (11)

Assuming that
◦
C1[β] = 0 for β < 0 and β > k, we get a system of linear

equations for finding the unknowns d+ and d− in the formula (10). Indeed,
calculating the convolution, we have

h−1D1 [β] ∗ Uimp [β] = h−1
∞∑

γ=−∞
D1 [β − γ]Uimp [γ]

= h−1
−1∑

γ=−∞
D1 [β − γ]Uimp [γ] + h−1

k∑
γ=0

D1 [β − γ]Uimp [γ]

+h−1
∞∑

γ=k+1

D1 [β − γ]Uimp [γ]

= h−1
∞∑
γ=1

D1 [β + γ]Uimp [−γ] + h−1
k∑
γ=0

D1 [β − γ]Uimp [γ]

+h−1
∞∑
γ=1

D1 [β − k − γ]Uimp [k + γ] . (12)

Equating the expression (12) to zero with β = −1, β = k + 1 and using the
formulas (10), (20) we get{

h−1D1 [0]Uimp [−1] + h−1D1 [1]Uimp [−2] + h−1D1 [−1]Uimp [0] = 0,
h−1D1 [0]Uimp [k + 1] + h−1D1 [1]Uimp [k] + h−1D1 [−1]Uimp [k + 2] = 0

11
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or{
2
(
1 + e2h

) [
− 1

4e
−hg + ehd+

]
− 2eh

[
− 1

4e
−2hg + e2hd+

]
− 2ehf [0] = 0,

2
(
1 + e2h

) [
1
4e
hk+hg + e−hk−hd−

]
− 2eh

[
1
4e
hk+2hg + e−hk−2hd−

]
− 2ehf [hk] = 0.

By virtue of the formulas (3) and (4), finally, we find

d+ =
1

4

(
ehk − ehk−h

)
, (13)

d− =
1

4

(
ehk−h − ehk

)
. (14)

Then from (9) we find that d = 0.
As a result, we rewrite Uimp[β] through the (13) and (14) as follows

Uimp [β] =


− e

hβ

4 g + e−hβ

4

(
ehk − ehk−h

)
for β > k,

f [β] for β = 0, k,
ehβ

4 g + e−hβ

4

(
ehk−h − ehk

)
for β < 0.

(15)

Now we turn to calculating the optimal coefficients of implicit difference formulas
◦
C1[β] , β = 0, k according to the formula (11)

◦
C1[k] = h−1

∞∑
γ=−∞

D1[k − γ]Uimp[γ] =

= h−1 {D1[0]Uimp[k] +D1[1]Uimp[k − 1] +D1[−1]Uimp[k + 1]} =

=
h−1

2 (1− e2h)

(
−2e2h + 4eh − 2

)
=

eh − 1

h (eh + 1)
.

So
◦
C1[k] = eh−1

h(eh+1)
.

Calculate the next optimal coefficient

◦
C1[k − 1] = h−1

∞∑
γ=−∞

D1[k − γ − 1]Uimp[γ] =

= h−1 {D1[0]Uimp[k − 1] +D1[1]Uimp[k − 2] +D1[−1]Uimp[k]} =

=
h−1

2 (1− e2h)

(
−2e2h + 4eh − 2

)
=

eh − 1

h (eh + 1)
.

Thus
◦
C1[k − 1] = eh−1

h(eh+1)
.

Go to computed
◦
C1[β] when β = 1, k − 2

◦
C1[β] = h−1

∞∑
γ=−∞

D1[β − γ]Uimp[γ]

12
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= h−1 {D1[0]Uimp[β] +D1[1]Uimp[β − 1] +D1[−1]Uimp[β + 1]}

=
h−1

2 (1− e2h)

{(
1 + e2h

) (
e−hk+hβ − ehk−hβ−h − e−hk+hβ+h + ehk−hβ

)}
− h−1

2 (1− e2h)

{
eh
(
e−hk+hβ−h − ehk−hβ − e−hk+hβ + ehk−hβ+h

)}
− h−1

2 (1− e2h)

{
eh
(
e−hk+hβ+h − ehk−hβ−2h − e−hk+hβ+2h + ehk−hβ−h

)}
=

h−1

2 (1− e2h)
· 0 = 0 .

Thereby,
◦
C1[β] = 0 , for β = 1, k − 2.

Then calculate
◦
C1[0]

◦
C1[0] = h−1

∞∑
γ=−∞

D1[−γ]Uimp[γ]

= h−1 {D1[0]Uimp[0] +D1[1]Uimp[−1] +D1[−1]Uimp[1]}

=
h−1

2 (1− e2h)

{(
1 + e2h

) (
e−hk − ehk−h − e−hk+h + ehk

)}
− h−1

2 (1− e2h)

{
eh
(
−e−hk + e−hk−h + ehk+h − ehk

)}
− h−1

2 (1− e2h)

{
eh
(
e−hk+h − ehk−2h − e−hk+2h + ehk−h

)}
=

h−1

2 (1− e2h)
· 0 = 0.

hence
◦
C1[0] = 0.

Finally, we have proved the following.

Theorem 3.1 In the Hilbert space W
(2,1)
2 (0, 1), there exists a unique optimal

implicit difference formula, of Adams-Moulton type, whose coefficients are de-
termined by formulas

C[β] =


1 for β = k,
−1 for β = k − 1,

0 for β = 0, k − 2,
(16)

◦
C1[β] =


eh−1

h(eh+1)
for β = k,

eh−1
h(eh+1)

for β = k − 1,

0 for β = 0, k − 2 .

(17)

Consequently, the optimal implicit difference formula in W
(2,1)
2 (0, 1) has the

form

ϕn+k = ϕn+k−1 +
eh − 1

eh + 1

(
ϕ′n+k + ϕ′n+k−1

)
, (18)

where n = 0, 1, ..., N − k, k ≥ 1.

13
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4 Norm of the error functional of the optimal
explicit difference formula

The square of the norm of an explicit Adams-Bashforth type difference for-
mula is expressed by the equality

∥∥∥` ∣∣∣W (2,1)∗
2 (0, 1)

∥∥∥2

=
k∑
γ=0

k∑
β=0

C[γ]C[β]G2 [γ − β]−

−2h
k−1∑
γ=0

C1[γ]
k∑

β=0

C[β]G′2 [γ − β]− h2
k−1∑
γ=0

k−1∑
β=0

C1[γ]C1[β]G′′2 [γ − β] . (1)

In this section, we deal with the calculation of the squared norm (1) in the space

W
(2,1)
2 (0, 1). For this we use the coefficients C[β] and

◦
C1[β], which is detected

in the formulas (22) and (23).
Then we calculate (1) in sequence as follows.

∥∥∥◦` ∣∣∣W (2,1)∗
2 (0, 1)

∥∥∥2

=

k∑
γ=0

C[γ] {G2 [γ − k]−G2 [γ − k + 1]}

−2h
k−1∑
γ=0

◦
C1[γ] {G′2 [γ − k]−G′2 [γ − k + 1]}

−h2 e
h − 1

heh

k−1∑
γ=0

◦
C1[γ] {G′′2 [γ − k + 1]}

= G2 [0]−G2 [1]−G2 [−1]+G2 [0]−2(eh − 1)

eh
{G′2 [−1]−G′2 [0]}− (eh − 1)2

e2h
G′′2 [0]

= −2G2 [1] +
2(eh − 1)

eh
G′2 [1] =

2(eh − 1)

eh
· sgn(h)

2

(
eh + eh

2
− 1

)
−2 · sgn(h)

2

(
eh − eh

2
− h
)

=
eh − 1

eh
· e

2h − 2eh + 1

2eh
− e2h − 1

2eh
+ h

= h−
(
eh − 1

) (
3eh − 1

)
2e2h

.

As a result, we get the following outcome.

Theorem 4.1 The square of the norm of the optimal error functional of an

explicit difference formula of the form (1) in the quotient space W
(2,1)
2 (0, 1) is

expressed as formula∥∥∥◦` ∣∣∣W (2,1)∗
2 (0, 1)

∥∥∥2

= h−
(
eh − 1

) (
3eh − 1

)
2e2h

.

14
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5 Norm of the error functional of the implicit
optimal difference formula

In this case, the square of the norm of the error functional of an implicit
Adams-Moulton type difference formula of the form (1) is expressed by the
equality ∥∥∥` ∣∣∣W (2,1)∗

2 (0, 1)
∥∥∥2

=
k∑
γ=0

k∑
β=0

C[γ]C[β]G2 [γ − β]−

−2h
k∑
γ=0

C1[γ]
k∑

β=0

C[β]G′2 [γ − β]− h2
k∑
γ=0

k∑
β=0

C1[γ]C1[β]G′′2 [γ − β] . (1)

Here we use the optimal coefficients of an implicit difference formula of the form
(1), which is detected in the formulas (16) and (17).
Then, we calculate (1) as follows∥∥∥◦` ∣∣∣W (2,1)∗

2 (0, 1)
∥∥∥2

=
k∑
γ=0

C[γ] {G2 [γ − k]−G2 [γ − k + 1]}

−2h
k∑
γ=0

◦
C1[γ] {G′2 [γ − k]−G′2 [γ − k + 1]}

−h2 eh − 1

h (eh + 1)

k∑
γ=0

◦
C1[γ] {G′′2 [γ − k] +G′′2 [γ − k + 1]}

= G2 [0]−G2 [1]−G2 [−1]+G2 [0]−2h(eh − 1)

h (eh + 1)
{G′2 [0]−G′2 [1] +G′2 [−1]−G′2 [0]}

−
h2
(
eh − 1

)2
h2 (eh + 1)

{G′′2 [0] +G′′2 [1] +G′′2 [−1] +G′′2 [0]}

= −2G2 [1] +
4(eh − 1)

eh + 1
G′2 [1]− 2

(
eh − 1

)2
(eh + 1)

G′′2 [1]

=
4(eh − 1)

eh + 1
· sgn(h)

2

(
eh + eh

2
− 1

)
− 2 · sgn(h)

2

(
eh − eh

2
− h
)

−2

(
eh − 1

)2
(eh + 1)

· sgn(h)

2

(
eh − eh

2

)

= h− e2h − 1

2eh
+

2
(
eh − 1

)2 (
eh − 1

)
2eh (eh + 1)

−
(
eh − 1

)2 (
eh − 1

)
2eh (eh + 1)

= h+

(
eh − 1

)
2eh

((
eh − 1

)2
eh + 1

− eh − 1

)
= h−

2
(
eh − 1

)
eh + 1

.

Consequently, we get the following result.
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Theorem 5.1 Among all implicit difference formulas of the form (1) in the

Hilbert space W
(2,1)
2 (0, 1), there is a unique implicit optimal difference formula

square the norms of the error functional of which is determined by the equality∥∥∥◦` ∣∣∣W (2,1)∗
2 (0, 1)

∥∥∥2

= h−
2
(
eh − 1

)
eh + 1

.

6 Numerical results

In this section, we give some numerical results in order to show tables and
graphs of solutions and errors of our optimal explicit difference formulas (24) and
optimal implicit difference formulas (18), with coefficients given correspondingly
in Theorem 2.3 and Theorem 3.1. We show the results of the created formulas
in some examples in the form of tables and graphs. Here, of course, the results
presented in the table are then shown in the graph.

Figure 1:

Figure 2:

16
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Figure 3:

Figure 4:

The tables in Figures 1, 3, and 5 show the exact and approximate solutions
and the differences between the exact and approximate solutions.

According to the tables in Figures 1 and 3 on the left side of these Figures
2 and 4 are graphs of approximate and exact solutions, and on the right side of
these Figures 2 and 4 graphs of the difference between the actual and approxi-
mate solutions are shown. As can be seen from the results presented above, in a
certain sense, the optimal explicit formula gives better results than the classical
Euler formula.

In accordance with the table, shown in Figure 5, on the left side of these
Figure 6, graphs of approximate and exact solutions are shown, and on the
right side of these Figure 6, graphs of the difference between the authentic and
approximate solutions. As can be seen from the results presented above, in a
certain sense, optimal explicit and implicit difference formulas give better results
than the classical Euler formula.

It should also be noted that with the help of newly constructed difference
schemes, it is possible to obtain approximate solutions with good accuracy.

17
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Figure 5:

Figure 6:

Also, with the help of these methods, it is possible to solve problems in various
fields of mechanics. The cited numerical results were obtained using the Python
programming language.

7 Conclusion

In conclusion, In this paper, new Adams-type optimal difference formulas are
constructed and exact expressions for the exact estimation of their error are
obtained. Moreover, we have shown that the results obtained by the optimal

explicit difference formulas constructed in the W
(2,1)
2 (0, 1) Hilbert space are

better than the results obtained by the Euler formula. In addition, the optimal
implicit formula is more accurate than the optimal explicit formula and the
effectiveness of the new optimal difference formulas was shown in the numerical
results.

18
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Direct approach to the stability of various functional
equations in Felbin’s type non-archimedean fuzzy normed

spaces

JOHN MICHAEL RASSIAS, SHALU SHARMA, JYOTSANA JAKHAR AND
JAGJEET JAKHAR

Abstract. Using the direct approach, the authors find the Ulam
stability of the septic functional equation and octic functional equa-
tion in Felbin’s type non-Archimedean fuzzy normed space.

1. introduction and preliminaries

The emergence of functional equations coincided with the modern
formulation of the function concept. The first publications regarding
functional equations were authored by D’Alembert [1] during the pe-
riod between 1747 and 1750. Due to their apparent simplicity and
harmonic characteristics, functional equations have captured the in-
terest of numerous renowned mathematicians. Notable figures such as
Rassias [5], Aoki [4], Gǎvruta [6] and Jakhar [11, 12] have all engaged
with this area of study.

The foundational concept of Hyers-Ulam stability for functional equa-
tions traces back to a renowned problem centered on group homomor-
phisms(“Let G be a group and G′ be a metric group with metric d(., .).
Given ϵ > 0 does there exists a δ > 0 such that if a function f : G→ G′

satisfies the inequality d(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then
there exists homomorphism H : G → G′ with d(f(x), H(x)) < ϵ for
all x ∈ G?”), successfully addressed by Ulam [2] and Hyers [3]. Over
the past decades, a substantial volume of literature has been devoted
to addressing the stability problem in the context of functional equa-
tions, with significant focus on crucial issues within this domain (see
[7, 8, 9, 10, 11, 12]). Consequently, numerous effective techniques have
been detailed in various papers (such as [10, 18–24, 27]), encompassing
approaches like the direct method, fixed point method. Notably, the

2010 Mathematics Subject Classification. Primary: 39B52, 39B72.
Key words and phrases. Direct Method, Felbin’s type fuzzy normed space,

Hyers-Ulam stability, Octic functional equation, Septic functional equation.
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2JOHNMICHAEL RASSIAS, SHALU SHARMA, JYOTSANA JAKHARAND JAGJEET JAKHAR

direct method consistently emerges as the primary investigative tool
for exploring functional equations of diverse kinds.

The idea of fuzzy criteria on a set of data is used in the field of
fuzzy functional analysis. In 1984, Katsaras [13] was the first to sug-
gest this concept while researching fuzzy topological vector spaces, his
groundbreaking work [14, 15, 16] being a motivating factor for many
mathematicians. The authors Cheng & Mordsen [19] introduced an
alternative form of fuzzy norm for linear spaces utilizing a distinct
technique . In a related context, Michalek and Kramosil [20] further
investigated the associated fuzzy metric in 1994 . The concept of a
fuzzy real number’s criterion, as articulated by Gähler and Gähler [21],
quantifies the discrepancy between its negative and positive compo-
nents.

Interestingly, Samantha and Bag [22] identified an enigmatic crite-
rion that diverged somewhat from Mordsen & Cheng’s established cri-
terion. They subsequently demonstrated an applicable decomposition
theorem for this distinctive criterion. This concept has found utility in
the advancement and execution of fuzzy functional analysis, leading to
an array of publications from diverse researchers.

Of particular significance is the work conducted by Xiao and Zhu[26]
in this domain . They explored into various aspects of fuzzy norm lin-
ear spaces, encompassing the consideration of Felbin-type fuzzy norms
in their generalized manifestation. Bag and Samantha, in their contri-
bution [27], presented a minor alteration to Felbin’s concept of a fuzzy
standardized linear space.

The functional equation

g(u+ 4v)− 7g(u+ 3v) + 21g(u+ 2v)− 35g(u+ v)− 21g(u− v)

+7g(u− 2v)− g(u− 3v) + 35g(u) = 5040g(v)

is known as septic functional equation since cu7 is the solution.
Similarly, the functional equation

g(u+ 4v)− 8g(u+ 3v) + 28g(u+ 2v)− 56g(u+ v)

−56g(u− v) + 28g(u− 2v)− 8g(u− 3v) + g(u− 4v)

+70g(u) = 40320g(v)

is known as octic functional equation since cu8 is the solution. Each
solution to a octic functional equation in particular is referred to as a
octic mapping.

Now, the authors will address the definitions, notations, and funda-
mental characteristics of a non-Archimedean fuzzy normed linear space
in the Felbin’s type framework.
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Definition 1.1. [26] A function σ : R → [0, 1] is termed a fuzzy real
number if its α-level set is represented as [σ]α = {s : σ(s) ≥ α} and
function satisfies two conditions:

(1) there exist s0 ∈ R such as σ(s0) = 1.
(2) [σ]α = [σ1

α, σ
2
α] for each α ∈ (0, 1]

where −∞ < [σ1
α] ≤ [σ2

α] < +∞.

F denotes the set of all fuzzy real numbers.

Definition 1.2. [19] Let σ, ς ∈ F and [σ]α = [l1α,m
1
α], [ς]α = [l2α,m

2
α],

α ∈ (0, 1]. Then [ς ⊕ σ]α = [l1α + l2α,m
1
α +m2

α].

Definition 1.3. [17] A partial order denoted by ”⪯” is established
within the set F as follows: For any σ and ς in F , σ ⪯ ς holds if
and only if, for all α ∈ (0, 1], it satisfies σ1

α ≤ ς1α and σ2
α ≤ ς2α, where

[σ]α = [σ1
α, σ

2
α] and [ς]α = [ς1α, ς

2
α]. Furthermore, a stricter inequality,

denoted by “ < ”, is defined within F : σ < ς if and only if, for all
α ∈ (0, 1], the conditions σ1

α < ς1α and σ2
α < ς2α are satisfied.

Definition 1.4. [17] Consider a vector space U over R and ||.|| : U →
R∗(I)(set of all upper semi continuous normal convex fuzzy real num-
bers) and let the mappings L,R : [0, 1] × [0, 1] → [0, 1] be symmet-
ric, non-decreasing in both arguments and satisfy L(0, 0) = 0 and
R(1, 1) = 0. Write

[||u||]α = [||u||α1 , ||u||α2 ] ∀ u ∈ U & 0 < α ≤ 1

and suppose for all u ∈ U, u ̸= 0, there exists α0 ∈ (0, 1] independent
of u such that for all α ≤ α0

(I) ||u||α2 <∞,
(II) ||u||α2 > 0. The quadruple (U, ||.||,L,U) is called a fuzzy normed
linear space and ||.|| is a fuzzy norm if

(1) ||u|| = 0 ⇐⇒ u = 0.
(2) ||ru|| = |r|||u|| ∀ u ∈ U, r ∈ R.
(3) For all u, v ∈ U

(a) whenever

p ≤ ||u||11, q ≤ ||v||11 and p+ q ≤ ||u+ v||11,
||u+ v||(p+ q) ≥ L(||u||(p), ||v||(q)),

(b) whenever

p ≥ ||u||11, q ≥ ||v||11 and p+ q ≥ ||u+ v||11,
||u+ v||(p+ q) ≤ U(||u||(p), ||v||(q)).
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Fuzzy norm on a linear space is defined in [17] as stated by C. Felbin.
Now, as stated in [17], we define the fuzzy norm of modified Felbin’s
type on a linear space.

Definition 1.5. [17] Consider a linear space U over R. Let
|| || : U → F+ be a mapping satisfying

(1) ||u|| = 0 ⇐⇒ u = 0.
(2) ||ru|| = |r|||u|| ∀ u ∈ U, r ∈ R.
(3) ||v + u|| ⪯ ||v|| ⊕ ||u|| ∀ v, u ∈ U , and

u ̸= 0 ⇒ ||u||(s) = 0 ∀ s ≤ 0.

Then (U, || ||) is known as fuzzy normed linear space and || || is
known as fuzzy norm on U .

Definition 1.6. [12] Suppose K be a field. An absolute value on K is
classified as non-Archimedean field if it satisfies the following conditions
for any elements a and b in K:

(1) |a| ≥ 0 and |a| = 0 ⇐⇒ a = 0.
(2) |a+ b| ≤ max{|a|, |b|}.
(3) |ab| = |a||b|.
(4) There exists a0 ∈ K such that |a0| ̸= 0, 1.

The main objective of this study is to establish the generalized Hyers-
Ulam stability for septic and octic functional equations within a mod-
ified Felbin-type fuzzy normed linear space. The article is organized
into three sections. In section 2, we examine the stability analysis of
the septic functional equation within a non-Archimedean fuzzy normed
linear space of the Felbin type. Moving on to section 3, our focus shifts
to the generalized Hyers-Ulam stability of the octic functional equa-
tion. This investigation takes place within a non-Archimedean fuzzy
normed linear space of the Felbin type.

2. Stability of septic functional equation

The stability problems of various septic functional equations in sev-
eral spaces such as intuitionistic fuzzy normed spaces, random normed
spaces, non-Archimedean spaces, Banach spaces, orthogonal spaces and
many other spaces have been broadly investigated by a number of math-
ematicians. Motivated by the approach of research by various mathe-
maticians, an effort has been made in this paper to obtain the stability
of the following functional equations.

g(u+ 4v)− 7g(u+ 3v) + 21g(u+ 2v)− 35g(u+ v)− 21g(u− v)

+7g(u− 2v)− g(u− 3v) + 35g(u) = 5040g(v). (2.1)
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To simplify notation, let us introduce the “difference operator ”denoted
by ∆s′ .

∆s′g(u, v) = g(u+ 4v)− 7g(u+ 3v) + 21g(u+ 2v)− 35g(u+ v)

− 21g(u− v) + 7g(u− 2v)− g(u− 3v) + 35g(u)

− 5040g(v).

Theorem 2.1. Suppose that U is a linear space and (W, ||.||∼) is a
fuzzy normed space. Consider ψ : U2 → W be a mapping such that

lim
n→∞

||ψ(2nu, 2nv)||∼1
α

|27n|
= lim

n→∞

||ψ(2nu, 2nv)||∼2
α

|27n|
= 0, (2.2)

for all u, v ∈ U and α ∈ (0, 1]. Let (V, ||.||) is a non-Archimedean fuzzy
Banach space. If the mapping g : U → V is such that

||∆s′g(u, v)|| ⪯ ||ψ(u, v)||∼ (2.3)

for all u, v ∈ U , then there exists one and only one septic mapping
S : U → V fulfilling the given condition

||S(u)− g(u)|| ⪯ 1

27
max

{
H(2ku)

27k
; k ∈ N ∪ 0

}
, (2.4)

where

H(2ku) =

∣∣∣∣ 1

2520

∣∣∣∣[∣∣∣∣ 1

10080

∣∣∣∣(||ψ(0, 6.2ku)||∼ ⊕ ||ψ(6.2ku,−6.2ku)||∼
)

⊕
∣∣∣∣ 1

1440

∣∣∣∣(||ψ(0, 4.2ku)||∼ ⊕ ||ψ(4.2ku,−4.2ku)||∼
)

⊕ | 1

180
|
(
||ψ(0, 3.2ku)||∼ ⊕ ||ψ(3.2ku,−3.2ku)||∼

)
⊕

∣∣∣∣ 13288
∣∣∣∣(||ψ(0, 2.2ku)||∼ ⊕ ||ψ(2.2ku,−2.2ku)||∼

)
⊕

∣∣∣∣ 3732520

∣∣∣∣(||ψ(0, 2ku)||∼ ⊕ ||ψ(2ku,−2ku)||∼
)

⊕
∣∣∣∣12

∣∣∣∣||ψ(4.2ku, 2ku)||∼ ⊕
∣∣∣∣72

∣∣∣∣||ψ(3.2ku, 2ku)||∼
⊕ 11.||ψ(2.2ku, 2ku)||∼ ⊕ 21.||ψ(2ku, 2ku)||∼

⊕
∣∣∣∣12

∣∣∣∣||ψ(0, 2.2ku)||∼ ⊕ 28.||ψ(0, 2ku)||∼ ⊕
∣∣∣∣217720

∣∣∣∣||ψ(0, 0)||∼].
Proof. Taking u = 0 = v in (2.3), we obtain

||g(0)|| ⪯ ||ψ(0, 0)||∼

|5040|
. (2.5)
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Taking (u, v) = (0, u) in (2.3), the authors get

||g(4u)− 7g(3u) + 21g(2u)− 5075g(u) + 35g(0)− 21g(−u)
+7g(−2u)− g(−3u)|| ⪯ ||ψ(0, u)||∼. (2.6)

Putting (u, v) = (u,−u) in (2.3), we get

||g(−3u)− 7g(−2u)− 5019g(−u)− 35g(0) + 35g(u)− 21g(2u)

+7g(3u)− g(4u)|| ⪯ ||ψ(u,−u)||∼. (2.7)

By (2.6) and (2.7), we obtain

||g(u)− g(−u)|| ⪯ 1

|5040|
(||ψ(0, u)||∼ ⊕ ||ψ(u,−u)||∼). (2.8)

Putting (u, v) = (4u, u) in (2.3), we get

||g(8u)− 7g(7u) + 21g(6u)− 35g(5u) + 35g(4u)− 21g(3u)

+7g(2u)− 5041g(u)|| ⪯ ||ψ(4u, u)||∼. (2.9)

Taking (u, v) = (0, 2u) in (2.3), the authors get

||g(8u)− 7g(6u) + 21g(4u)− 5075g(2u) + 35g(0)− 21g(−2u)

+7g(−4u)− g(−6u)|| ⪯ ||ψ(0, 2u)||∼. (2.10)

By (2.9) and (2.10), we obtain

||7g(7u)− 28g(6u) + 35g(5u)− 14g(4u) + 21g(3u)

−5082g(2u) + 5041g(u) + 35g(0)− 21g(−2u)

+7g(−4u)− g(−6u)|| ⪯ (||ψ(4u, u)||∼ ⊕ ||ψ(0, 2u)||∼).(2.11)

Now, using (2.5), (2.8) and (2.11), we conclude

||7g(7u)− 27g(6u) + 35g(5u)− 21g(4u) + 21g(3u)− 5061g(2u)

+5041g(u)|| ⪯ 1

|5040|
(||ψ(0, 6u)||∼ ⊕ ||ψ(6u,−6u)||∼)

⊕ 1

|720|
(ψ(||0, 4u)||∼ ⊕ ||ψ(4u,−4u)||∼)⊕ 1

|240|
(||ψ(0, 2u)||∼

⊕||ψ(2u,−2u)||∼)⊕ ||ψ(4u, u)||∼ ⊕ ||ψ(0, 2u)||∼

⊕ 1

144
||ψ(0, 0)||∼. (2.12)

Putting (u, v) = (3u, u) in (2.3), we get

||g(7u)− 7g(6u) + 21g(5u)− 35g(4u) + 35g(3u)− 21g(2u)

−5033g(u)− g(0)|| ⪯ ||ψ(3u, u)||∼. (2.13)
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From (2.5), we obtain

||g(7u)− 7g(6u) + 21g(5u)− 35g(4u) + 35g(3u)− 21g(2u)

−5033g(u)|| ⪯ ||ψ(3u, u)||∼ ⊕ 1

|5040|
||ψ(0, 0)||∼. (2.14)

From (2.12) and (2.14), we obtain

||11g(6u)− 56g(5u) + 112g(4u)− 112g(3u)− 2457g(2u)

+20136g(u)|| ⪯ 1

|10080|
(||ψ(0, 6u)||∼ ⊕ ||ψ(6u,−6u)||∼)

⊕ 1

|1440|
(||ψ(0, 4u)||∼ ⊕ ||ψ(4u,−4u)||∼)⊕ 1

|480|
(||ψ(0, 2u)||∼

⊕||ψ(2u,−2u)||∼)⊕ 1

2
||ψ(4u, u)||∼ ⊕ 7

2
||ψ(3u, u)||∼

⊕1

2
||ψ(0, 2u)||∼ ⊕ 1

240
||ψ(0, 0)||∼. (2.15)

Putting (u, v) = (2u, u) in (2.3), we obtain

||g(6u)− 7g(5u) + 21g(4u)− 35g(3u) + 35g(2u)− 5061g(u)

−g(−u) + 7g(0)|| ⪯ ||ψ(2u, u)||∼. (2.16)

Now, by using (2.5), (2.8) and (2.16), we get

||g(6u)− 7g(5u) + 21g(4u)− 35g(3u) + 35g(2u)− 5060g(u)||

⪯ ||ψ(2u, u)||∼ ⊕ 1

|5040|
(||ψ(0, u)||∼ ⊕ ||ψ(u,−u)||∼)

⊕ 1

|720|
||ψ(0, 0)||∼. (2.17)

From (2.15)and (2.17), the authors obtain

||21g(5u)− 119g(4u) + 273g(3u)− 2842g(2u) + 75796g(u)||

⪯ 1

|10080|
(||ψ(0, 6u)||∼ ⊕ ||ψ(6u,−6u)||∼)⊕ 1

|1440|
(||ψ(0, 4u)||∼

⊕||ψ(4u,−4u)||∼)⊕ 1

|480|
(||ψ(0, 2u)||∼ ⊕ |ψ(2u,−2u)||∼)

⊕| 11

5040
|(||ψ(0, u)||∼ ⊕ |ψ(u,−u)||∼)⊕ 1

|2|
|ψ(4u, u)||∼

⊕|7
2
|ψ(3u, u)||∼ ⊕ 11||ψ(2u, u)||∼ ⊕ 1

|2|
|ψ(0, 2u)||∼

⊕| 7

360
|ψ(0, 0)||∼. (2.18)
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Putting (u, v) = (u, u) in (2.3), we get

||g(5u)− 7g(4u) + 21g(3u)− 35g(2u)− g(−2u)− 5005g(u)

+7g(−u)− 21g(0)|| ⪯ ||ψ(u, u)||∼. (2.19)

With the help of (2.5), (2.8) and (2.19), we get

||g(5u)− 7g(4u) + 21g(3u)− 34g(2u)− 5012g(u)|| ⪯ ||ψ(u, u)||∼

⊕||ψ(u, u)||∼ ⊕ 1

|5040|
(||ψ(0, 2u)||∼ ⊕ ||ψ(2u,−2u)||∼)

⊕ 1

|720|
(||ψ(0, u)||∼ ⊕ ||ψ(u,−u)||∼)⊕ 1

|240|
||ψ(0, 0)||∼). (2.20)

Now, from (2.18) and (2.20), we conclude

||28g(4u)− 168g(3u)− 21328g(2u) + 181048g(u)||

⪯ 1

|10080|
(||ψ(0, 6u)||∼ ⊕ |ψ(6u,−6u)||∼)⊕ 1

|1440|
(||ψ(0, 4u)||∼

⊕||ψ(4u,−4u)||∼)⊕ 1

|160|
(||ψ(0, 2u)||∼ ⊕ ||ψ(2u,−2u)||∼)

⊕ 79

2520
(||ψ(0, u)||∼ ⊕ ||ψ(u,−u)||∼)⊕ 1

2
||ψ(4u, u)||∼

⊕7

2
||ψ(3u, u)||∼ ⊕ 11||ψ(2u, u)||∼ ⊕ 21||ψ(u, u)||∼

⊕1

2
||ψ(0, 2u)||∼ ⊕ 77

720
||ψ(0, 0)||∼. (2.21)

Now, by using (2.5), (2.6) and (2.8), we obtain

||g(4u)− 6g(3u) + 14g(2u)− 5054g(u)|| ⪯ 1

|5040|
(||ψ(0, 3u)||∼

⊕||ψ(3u,−3u)||∼)⊕ 1

|720|
(||ψ(0, 2u)||∼ ⊕ ||ψ(2u,−2u)||∼)

⊕ 1

|240|
(||ψ(0, u)||∼ ⊕ ||ψ(u,−u)||∼)⊕ ||ψ(0, u)||∼

⊕ 1

|144|
||ψ(0, 0)||∼. (2.22)

Now, by (2.21) and (2.22), the authors conclude that

||g(2u)− 27g(u)|| ⪯ H(u) (2.23)

327

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

RASSIAS et al 320-352



9

where

H(u) =
1

2520

[
1

10080
(||ψ(0, 6u)||∼ ⊕ ||ψ(6u,−6u)||∼)

⊕ 1

1440
(||ψ(0, 4u)||∼ ⊕ ||ψ(4u,−4u)||∼)⊕ 1

180
(||ψ(0, 3u)||∼

⊕||ψ(3u,−3u)||∼)⊕ 13

288
(||ψ(0, 2u)||∼ ⊕ ||ψ(2u,−2u)||∼)

⊕ 373

2520
(||ψ(0, u)||∼ ⊕ ||ψ(u,−u)||∼)⊕ 1

2
||ψ(4u, u)||∼

⊕7

2
||ψ(3u, u)||∼ ⊕ 11||ψ(2u, u)||∼ ⊕ ||ψ(u, u)||∼ ⊕ 1

2
||ψ(0, 2u)||∼

⊕28||ψ(0, u)||∼ ⊕ 217

720
||ψ(0, 0)||∼

]
.

Hence from (2.23), we get

||g(2u)− 27g(u)||1α ≤ H1(u), (2.24)

and

||g(2u)− 27g(u)||2α ≤ H2(u), (2.25)

where for α ∈ (0, 1], then

H1(u) =
1

2520

[
1

10080
(||ψ(0, 6u)||1∼α ⊕ ||ψ(6u,−6u)||1∼α )

⊕ 1

1440
(||ψ(0, 4u)||1∼α ⊕ ||ψ(4u,−4u)||1∼α )⊕ 1

180
(||ψ(0, 3u)||1∼α

⊕||ψ(3u,−3u)||1∼α )⊕ 13

288
(||ψ(0, 2u)||1∼α ⊕ ||ψ(2u,−2u)||1∼α )

⊕ 373

2520
(||ψ(0, u)||1∼α ⊕ ||ψ(u,−u)||1∼α )⊕ 1

2
||ψ(4u, u)||1∼α

⊕7

2
||ψ(3u, u)||1∼α ⊕ 11||ψ(2u, u)||1∼α ⊕ ||ψ(u, u)||1∼α ⊕ 1

2
||ψ(0, 2u)||1∼α

⊕28||ψ(0, u)||1∼α ⊕ 217

720
||ψ(0, 0)||1∼α

]
(2.26)
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and

H2(u) =
1

2520

[
1

10080
(||ψ(0, 6u)||2∼α ⊕ ||ψ(6u,−6u)||2∼α )

⊕ 1

1440
(||ψ(0, 4u)||2∼α ⊕ ||ψ(4u,−4u)||2∼α )⊕ 1

180
(||ψ(0, 3u)||2∼α

⊕||ψ(3u,−3u)||2∼α )⊕ 13

288
(||ψ(0, 2u)||2∼α ⊕ ||ψ(2u,−2u)||2∼α )

⊕ 373

2520
(||ψ(0, u)||2∼α ⊕ ||ψ(u,−u)||2∼α )⊕ 1

2
||ψ(4u, u)||2∼α

⊕7

2
||ψ(3u, u)||2∼α ⊕ 11||ψ(2u, u)||2∼α ⊕ ||ψ(u, u)||2∼α ⊕ 1

2
||ψ(0, 2u)||2∼α

⊕28||ψ(0, u)||2∼α ⊕ 217

720
||ψ(0, 0)||2∼α

]
. (2.27)

From (2.25), we conclude

||g(2u)
27

− g(u)||1∼α ≤ H1(u)

|27|
. (2.28)

Replacing u by 2nu in (2.28) and dividing both side by 27n, we obtain∣∣∣∣∣∣∣∣g(2n+1u)

27(n+1)
− g(2nu)

27n

∣∣∣∣∣∣∣∣1
α

≤ H1(2
nu)

|27(n+1)|
(2.29)

for all non-negative integers n. Hence the sequence {g(2nu)
27n

} is Cauchy.
Every Cauchy sequence is convergent in Y , since Y is complete. So,
the authors construct a mapping S : U → V such that

S(u) = lim
n→∞

g(2nu)

27n
, (2.30)

i.e.,

lim
n→∞

∣∣∣∣∣∣∣∣g(2nu)27n
− S(u)

∣∣∣∣∣∣∣∣ = 0. (2.31)

Now for each non-negative integer n, the authors explore∣∣∣∣∣∣∣∣g(2nu)27n
− g(u)

∣∣∣∣∣∣∣∣1
α

=

∣∣∣∣∣∣∣∣ n−1∑
k=0

(
g(2k+1u)

27(n+1)
− g(2ku)

27n

)∣∣∣∣∣∣∣∣1
α

≤ max

{∣∣∣∣∣∣∣∣g(2k+1u)

27(n+1)
− g(2ku)

27n

∣∣∣∣∣∣∣∣1
α

: 0 ≤ k < n

}
≤ 1

27
max

{
H1(2

ku)

|27k|
: 0 ≤ k < n

}
. (2.32)
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Similarly, the authors can show that∣∣∣∣∣∣∣∣g(2nu)27n
− g(u)

∣∣∣∣∣∣∣∣2
α

≤ 1

27
max

{
H2(2

ku)

|27k|
: 0 ≤ k < n

}
. (2.33)

Taking n → ∞ in (2.32) and (2.33), the authors see that inequality
(2.4) holds. Next we prove that S : U → V is a cubic mapping.
Replacing (u, v) by (2nu, 2nv) and divide by |27n| in (2.3), we get

1

27n
||g(2n(u+ 4v))− 7g(2n(u+ 3v)) + 21g(2n(u+ 2v))

−35(2n(u+ v))− 21g(2n(u− v)) + 7g(2n(u− 2v))

−g(2n(u− 3v)) + 35g(2nu)− 5040g(2nv)||

⪯
∣∣∣∣∣∣∣∣ψ(2nu, 2nv)27n

∣∣∣∣∣∣∣∣∼ (2.34)

Taking n→ ∞ in the above inequality, we get

||S(u+ 4v)− 3S(u+ 3v) + 21S(u+ 2v)− 35S(u+ v)− 21S(u− v)

+7S(u− 2v)− S(u− 3v) + 35S(u)− 5040S(v)|| ⪯ 0

this implies that

S(u+ 4v)− 3S(u+ 3v) + 21S(u+ 2v)− 35S(u+ v)− 21S(u− v)

+7S(u− 2v)− S(u− 3v) + 35S(u)− 5040S(v) = 0.

□

Therefore, the mapping S : U → V is septic. Next we shall prove
uniqueness of mapping S. Now, consider another septic mapping S ′ :
U → V which satisfies (2.1) and (2.4). For fix u ∈ U , certainly
S(2nu) = 27nS(u) and S ′(2nu) = 27nS ′(u) for all n ∈ N . Therefore,

||S(u)− S ′(u)|| = lim
n→∞

1

27n
||S(2nu)− S ′(2nu)||

= lim
n→∞

1

27n
||S(2nu)− g(2nu) + g(2nu)− S ′(2nu)||

⪯ lim
n→∞

max

{
1

27n
||S(2nu)− g(2nu)||, 1

27n
||g(2nu)− S ′(2nu)||

}
⪯ lim

k→∞
lim
n→∞

max

{
max

{
1

27(n+1)

{
H(2k+nu)

27k
,
H(2k+nu)

27k

}}}
= 0.

Therefore, S(u)−S ′(u) = 0. So, S(u) = S ′(u) Hence, we deduced that
S is unique mapping.
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Corollary 2.2. Suppose that (U, ||.||) is a normed space, (W, || ||∼)
is a fuzzy normed space, and (V, || ||) is a non-Archimedean complete
fuzzy normed space. Let w0 ∈ W and p < 7 be non-negative real
numbers, respectively. If the mapping g : U → V is such that

||∆s′g(u, v)|| ⪯ ||(||v||p + ||u||p)w0||∼ (2.35)

for all u, v ∈ U , then there exists one and only one septic mapping
S : U → V fulfilling the given condition

||S(u)− g(u)|| ⪯ || ||u||pw0||∼

27

[∣∣∣∣ 1

2520

∣∣∣∣(∣∣∣∣50773840

∣∣∣∣⊕ ∣∣∣∣61|2|p96

∣∣∣∣⊕ ∣∣∣∣ |3|p60

∣∣∣∣
⊕

∣∣∣∣ |4|p480

∣∣∣∣⊕ ∣∣∣∣ |6|p3360

∣∣∣∣⊕ ∣∣∣∣ |4|p + 1

2

∣∣∣∣⊕ ∣∣∣∣7(|3|p + 1)

2

∣∣∣∣
⊕ |11(|2p|+ 1)|

)]
.

Corollary 2.3. Suppose that (U, ||.||) is a normed space, (W, || ||∼)
is a fuzzy normed space, and (V, || ||) is a non-Archimedean complete
fuzzy normed space. Let w0 ∈ W and p, q < 7 be non-negative real
numbers, respectively. If the mapping g : U → V is such that

||∆s′g(u, v)|| ⪯ ||(||v||p||u||q)w0||∼

for all u, v ∈ U , then there exists one and only one septic mapping
S : U → V fulfilling the given condition

||S(u)− g(u)|| ⪯ || ||u||p+qw0||∼

27

[∣∣∣∣ 1

2520

∣∣∣∣(∣∣∣∣529202520

∣∣∣∣⊕ ∣∣∣∣13|2|p+q

288

∣∣∣∣⊕ ∣∣∣∣ |3|p+q

180

∣∣∣∣
⊕

∣∣∣∣ |4|p+q

1440

∣∣∣∣⊕ ∣∣∣∣ |6|p+q

10080

∣∣∣∣⊕ ∣∣∣∣ |4|p2
∣∣∣∣⊕ ∣∣∣∣7(|3|p)2

∣∣∣∣
⊕ |11(|2p|)|

)]
.

Corollary 2.4. Suppose that (U, ||.||) is a normed space, (W, || ||∼)
is a fuzzy normed space, and (V, || ||) is a non-Archimedean complete
fuzzy normed space. Let w0 ∈ W and λ = s + r < 7 be non-negative
real numbers, respectively. If the mapping g : U → V is such that

||∆s′g(u, v)|| ⪯ ||[||v||s||u||r + (||u||s+r + ||v||s+r)]w0||∼ (2.36)
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for all u, v ∈ U , then there exists one and only one septic mapping
S : U → V fulfilling the given condition

||S(u)− g(u)|| ⪯ || ||u||λw0||∼

27

[∣∣∣∣ 1

2520

∣∣∣∣(∣∣∣∣6733630

∣∣∣∣⊕ ∣∣∣∣49|2|λ72

∣∣∣∣⊕ ∣∣∣∣ |3|λ45

∣∣∣∣
⊕

∣∣∣∣ |4|λ380

∣∣∣∣⊕ ∣∣∣∣ |6|λ2520

∣∣∣∣⊕ ∣∣∣∣7(|3|r + |3|λ + 1)

2

∣∣∣∣
⊕

∣∣∣∣ |4|r + |4|λ + 1

2

∣∣∣∣⊕ |11(|2|r + 2λ + 1)|
)]
.

Theorem 2.5. Suppose that U is a linear space and (W, ||.||∼) is a
fuzzy normed space. Consider ψ : U2 → W be a mapping such that

lim
n→∞

|27n|
∣∣∣∣∣∣∣∣ψ( u

2n
,
v

2n

)∣∣∣∣∣∣∣∣∼1

α

= lim
n→∞

|27n|
∣∣∣∣∣∣∣∣ψ( u

2n
,
v

2n

)∣∣∣∣∣∣∣∣∼2

α

= 0, (2.37)

for all u ∈ U and α ∈ (0, 1]. Let (V, ||.||) is a non-Archimedean fuzzy
Banach space. If the mapping g : U → V is such that

||∆s′g(u, v)|| ⪯ ||ψ(u, v)||∼ (2.38)

for all u, v ∈ U , then there exists one and only one septic mapping
S : U → V fulfilling the given condition

||S(u)− g(u)|| ⪯ 1

27
max

{
|27(k+1)|H

(
u

2k+1

)
, k ∈ N ∪ {0}

}
(2.39)
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where

H(
u

2k+1
) =

∣∣∣∣ 1

2520

∣∣∣∣[∣∣∣∣ 1

10080

∣∣∣∣(||ψ(0, 6u

2k+1

)
||∼ ⊕ ||ψ

(
6u

2k+1
,
−6u

2k+1

)
||∼

)
⊕

∣∣∣∣ 1

1440

∣∣∣∣(||ψ(0, 4u

2k+1

)
||∼ ⊕ ||ψ

(
4u

2k+1
,
−4u

2k+1

)
||∼

)
⊕ | 1

180
|
(
||ψ

(
0,

3u

2k+1

)
||∼ ⊕ ||ψ( 3u

2k+1
,
−3u

2k+1
)||∼

)
⊕

∣∣∣∣ 13288
∣∣∣∣(||ψ(0, 2u

2k+1

)
||∼ ⊕ ||ψ

(
2u

2k+1
,
−2u

2k+1

)
||∼

)
⊕

∣∣∣∣ 3732520

∣∣∣∣(||ψ(0, u

2k+1

)
||∼ ⊕ ||ψ

(
u

2k+1
,
−u
2k+1

)
||∼

)
⊕

∣∣∣∣12
∣∣∣∣||ψ( 4u

2k+1
,
u

2k+1

)
||∼ ⊕

∣∣∣∣72
∣∣∣∣||ψ( 3u

2k+1
,
u

2k+1

)
||∼

⊕ 11.||ψ
(

2u

2k+1
,
u

2k+1

)
||∼ ⊕ 21.||ψ

(
u

2k+1
,
u

2k+1

)
||∼

⊕
∣∣∣∣12

∣∣∣∣||ψ(0, 2u

2k+1

)
||∼ ⊕ 28.||ψ

(
0,

u

2k+1

)
||∼

⊕
∣∣∣∣217720

∣∣∣∣||ψ(0, 0)||∼].
Proof. From (2.24), the authors get∣∣∣∣∣∣∣∣g(u)− 27g

(
u

2

)∣∣∣∣∣∣∣∣1
α

≤ H1

(
u

2

)
(2.40)

for α ∈ (0, 1]. Replacing u by u
2n

and multiplying both side by |27n| in
(2.40), we get∣∣∣∣∣∣∣∣27ng( u

2n

)
− 27(n+1)g

(
u

2n+1

)∣∣∣∣∣∣∣∣1
α

≤ |27n|H1

(
u

2n+1

)
(2.41)

for all negative integer n. Hence the sequence g{27ng( u
2n
)} is Cauchy

by (2.37) and (2.41). Every Cauchy sequence is convergent in Y , since
Y is complete. So, the authors construct a mapping S : U → V such
that

S(u) = lim
n→∞

27ng

(
u

2n

)
for all u ∈ U . That is

lim
n→∞

||27ng
(
u

2n

)
− S(u)|| = 0
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for all u ∈ U . Now, for each positive integer n, the authors have∣∣∣∣∣∣∣∣27ng( u

2n

)
− g(u)

)∣∣∣∣∣∣∣∣1
α

=

∣∣∣∣∣∣∣∣ n−1∑
k=0

(
27(k+1)g

(
u

2k+1

)
− 27kg

(
u

2k

))∣∣∣∣∣∣∣∣1
α

≤ max

{∣∣∣∣∣∣∣∣(27(k+1)g

(
u

2k+1

)
− 27kg

(
u

2k

))∣∣∣∣∣∣∣∣1
α

; 0 ≤ k < n

}
≤ 1

|27|
max

{
|27(k+1)|H1

(
u

2k+1

)
: 0 ≤ k < n

}
. (2.42)

Similarly , it can be shown from (2.25)∣∣∣∣∣∣∣∣27ng( u

2n

)
− g(u)

)∣∣∣∣∣∣∣∣2
α

≤ 1

|27|
max

{
|27(k+1)|H2

(
u

2k+1

)
: 0 ≤ k < n

}
. (2.43)

Taking n → ∞ in (2.42) and (2.43), the authors see that inequality
(2.39) holds. The authors conclude that S(u) is a unique cubic mapping
holding (2.39) using the same procedure as in the demonstration of
theorem (2.1).

□

Corollary 2.6. Suppose that (U, ||.||) is a normed space, (W, || ||∼)
is a fuzzy normed space, and (V, || ||) is a non-Archimedean complete
fuzzy normed space. Let w0 ∈ W and p > 7 be non-negative real
numbers, respectively. If the mapping g : U → V is such that

||∆sg(u, v)|| ⪯ ||(||v||p + ||u||p)w0||∼ (2.44)

for all u, v ∈ U , then there exists one and only one septic mapping
S : U → V fulfilling the given condition

||S(u)− g(u)|| ⪯ || ||u||pw0||∼

|2p|

[∣∣∣∣ 1

2520

∣∣∣∣(∣∣∣∣50773840

∣∣∣∣⊕ ∣∣∣∣61|2|p96

∣∣∣∣⊕ ∣∣∣∣ |3|p60

∣∣∣∣
⊕

∣∣∣∣ |4|p480

∣∣∣∣⊕ ∣∣∣∣ |6|p3360

∣∣∣∣⊕ ∣∣∣∣ |4|p + 1

2

∣∣∣∣⊕ ∣∣∣∣7(|3|p + 1)

2

∣∣∣∣
⊕ |11(|2p|+ 1)|

)]
for all u ∈ U .

Corollary 2.7. Suppose that (U, ||.||) is a normed space, (W, || ||∼)
is a fuzzy normed space, and (V, || ||) is a non-Archimedean complete
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fuzzy normed space. Let w0 ∈ W and p, q > 7 be non-negative real
numbers, respectively. If the mapping g : U → V is such that

||∆s′g(u, v)|| ⪯ ||(||v||p||u||q)w0||∼

for all u, v ∈ U , then there exists one and only one septic mapping
S : U → V fulfilling the given condition

||S(u)− g(u)|| ⪯ || ||u||p+qw0||∼

27

[∣∣∣∣ 1

2520

∣∣∣∣(∣∣∣∣529202520

∣∣∣∣⊕ ∣∣∣∣13|2|p+q

288

∣∣∣∣⊕ ∣∣∣∣ |3|p+q

180

∣∣∣∣
⊕

∣∣∣∣ |4|p+q

1440

∣∣∣∣⊕ ∣∣∣∣ |6|p+q

10080

∣∣∣∣⊕ ∣∣∣∣ |4|p2
∣∣∣∣⊕ ∣∣∣∣7(|3|p)2

∣∣∣∣
⊕ |11(|2p|)|

)]
.

Corollary 2.8. Suppose that (U, ||.||) is a normed space, (W, || ||∼)
is a fuzzy normed space, and (V, || ||) is a non-Archimedean complete
fuzzy normed space. Let w0 ∈ W and λ = s + r > 7 be non-negative
real numbers, respectively. If the mapping g : U → V is such that

||∆s′g(u, v)|| ⪯ ||[||v||s||u||r + (||v||s+r + ||u||s+r)]w0||∼ (2.45)

for all u, v ∈ U , then there exists one and only one septic mapping
S : U → V fulfilling the given condition

||S(u)− g(u)|| ⪯ || ||u||λw0||∼

|2|λ

[∣∣∣∣ 1

2520

∣∣∣∣(∣∣∣∣6733630

∣∣∣∣⊕ ∣∣∣∣49|2|λ72

∣∣∣∣⊕ ∣∣∣∣ |3|λ45

∣∣∣∣
⊕

∣∣∣∣ |4|λ380

∣∣∣∣⊕ ∣∣∣∣ |6|λ2520

∣∣∣∣⊕ ∣∣∣∣7(|3|r + |3|λ + 1)

2

∣∣∣∣
⊕

∣∣∣∣ |4|r + |4|λ + 1

2

∣∣∣∣⊕ |11(|2|r + 2λ + 1)|
)]

for all u ∈ U .

Counterexample 2.9. Consider a real Banach algebra (U, ||.||) and a
non-Archimedean complete fuzzy norm space (U, || ||∼) in which

||u||∼(t) =


||u||7
t
, when ||u||7 < t, t ̸= 0

1, when ||u||7 = t = 0

0, otherwise.

whose α-level set is defined as [||u||∼]α = [||u||7, ||u||
7

α
]. Construct a

mapping g : U → U such that g(u) = u7 + ||u||7u0, where u0 is a unit
vector and

||∆og(u, v)||∼ ⪯ ||(128||u||7 + 42560||v||7)u0||∼,
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then there does not exist a septic mapping S : U → U fulfilling the
given condition

||S(u)− g(u)||∼ ⪯ 27||||u||7u0||∼.

3. Stability of octic functional equation

The stability problems of various octic functional equations in sev-
eral spaces such as intuitionistic fuzzy normed spaces, random normed
spaces, non-Archimedean spaces, Banach spaces, orthogonal spaces and
many other spaces have been broadly investigated by a number of math-
ematicians. Motivated by the approach of research by various mathe-
maticians, an effort has been made in this paper to obtain the stability
of the following functional equations.

g(u+ 4v)− 8g(u+ 3v) + 28g(u+ 2v)− 56g(u+ v)

−56g(u− v) + 28g(u− 2v)− 8g(u− 3v) + g(u− 4v)

+70g(u) = 40320g(v). (3.1)

To simplify notation, let us introduce the “difference operator ”denoted
by ∆o.

∆og(u, v) = g(u+ 4v)− 8g(u+ 3v) + 28g(u+ 2v)− 56g(u+ v)

− 56g(u− v) + 28g(u− 2v)− 8g(u− 3v) + g(u− 4v)

+ 70g(u)− 40320g(v).

Theorem 3.1. Suppose that U is a linear space and (W, ||.||∼) is a
fuzzy normed space. Consider ψ : U2 → W be a mapping such that

lim
n→∞

||ψ(2nu, 2nv)||∼1
α

|28n|
= lim

n→∞

||ψ(2nu, 2nv)||∼2
α

|28n|
= 0, (3.2)

for all u, v ∈ U and α ∈ (0, 1]. Let (V, ||.||) is a non-Archimedean fuzzy
Banach space. If the mapping g : U → V is such that

||∆og(u, v)|| ⪯ ||ψ(u, v)||∼ (3.3)

for all u, v ∈ U , then there exists one and only one octic mapping
O : U → V fulfilling the given condition

||O(u)− g(u)|| ⪯ 1

28
max

{
H(2ku)

28k
; k ∈ N ∪ 0

}
, (3.4)
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where

H(2ku) =

∣∣∣∣ 1

20160

∣∣∣∣[∣∣∣∣ 1

80640

∣∣∣∣(||ψ(8.2ku, 8.2ku)||∼ ⊕ ||ψ(8.2ku,−8.2ku)||∼
)

⊕
∣∣∣∣ 1

10080

∣∣∣∣(||ψ(6.2ku, 6.2ku)||∼ ⊕ ||ψ(6.2ku,−6.2ku)||∼
)

⊕ | 7

960
|
(
||ψ(4.2ku, 4.2ku)||∼ ⊕ ||ψ(4.2ku,−4.2ku)||∼

)
⊕

∣∣∣∣ 115
∣∣∣∣(||ψ(3.2k, 3.2ku)||∼ ⊕ ||ψ(3.2ku,−3.2ku)||∼

⊕
∣∣∣∣139480

∣∣∣∣(||ψ(2.2ku, 2.2ku)||∼ ⊕ ||ψ(2.2ku,−2.2ku)||∼
)

⊕
∣∣∣∣417560

∣∣∣∣((||ψ(2ku, 2ku)||∼ ⊕ ||ψ(2ku,−2ku)||∼
)

⊕ ||ψ(4.2ku, 2ku)||∼ ⊕ |8|.||ψ(3.2ku, 2ku)||∼ ⊕ |28|.||ψ(2.2ku, 2ku)||∼

⊕ |56|.||ψ(2ku, 2ku)||∼ ⊕ |35|.||ψ(0, 2ku)||∼ ⊕
∣∣∣∣851672

∣∣∣∣||ψ(0, 0||∼]
for all u ∈ U .

Proof. Taking u = 0 = v in (3.3), we have

||g(0)|| ⪯ 1

|40320|
||ψ(0, 0)||∼. (3.5)

Replacing (u, v) in (3.3) with (u,-v), we get

||g(u+ 4v)− 8g(u+ 3v) + 28g(u+ 2v)− 56g(u+ v)

−56g(u− v) + 28g(u− 2v)− 8g(u− 3v) + g(u− 4v)

+70g(u)− 40320g(−v)|| ⪯ ||ψ(u,−v)||∼. (3.6)

By using (3.3) and (3.6), we get

||g(u)− g(−u)|| ⪯ 1

|40320|
(||ψ(u, u)||∼ ⊕ ||ψ(u,−u)||∼) (3.7)

Replacing (u, v) in (3.3) with (0,2u), the authors get

||g(8u)− 8g(6u) + 28g(4u)− 40376g(2u) + 70g(0)− 56g(−2u)

+28g(−4u)− 8g(−6u) + g(−8u)|| ⪯ ||ψ(0, 2u)||∼. (3.8)
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Now, by using (3.5), (3.7) and (3.8), we obtain

||g(8u)− 8g(6u) + 28g(4u)− 20216g(2u)|| ⪯ 1

|80640|
(||ψ(8u, 8u)||∼

⊕||ψ(8u,−8u)||∼)⊕ 1

|10080|
(||ψ(6u, 6u)||∼ ⊕ ||ψ(6u,−6u)||∼)

⊕ 1

|2880|
(||ψ(4u, 4u)||∼ ⊕ ||ψ(4u,−4u)||∼) 1

|1440|
(||ψ(2u, 2u)||∼

⊕||ψ(2u,−2u)||∼)⊕ 1

|1152|
||ψ(0, 0)||∼. (3.9)

Replacing (u, v) in (3.3) with (4u,u), we get

||g(8u)− 8g(7u) + 28g(6u)− 56g(5u) + 70g(4u)− 56g(3u)

+28g(2u)− 40328g(u) + g(0)|| ⪯ ||ψ(4u, u)||∼. (3.10)

By using (3.5), (3.9) and (3.10), we obtain

||8g(7u)− 36g(6u) + 56g(5u)− 42g(4u) + 56g(3u)− 20244g(2u)

+40328g(u)|| ⪯ 1

|80640|
(||ψ(8u, 8u)||∼ ⊕ ||ψ(8u,−8u)||∼)

⊕ 1

|10080|
(||ψ(6u, 6u)||∼ ⊕ ||ψ(6u,−6u)||∼)⊕ 1

|2880|
(||ψ(4u, 4u)||∼

⊕||ψ(4u,−4u)||∼) 1

|1440|
(||ψ(2u, 2u)||∼ ⊕ ||ψ(2u,−2u)||∼)

⊕||ψ(4u, u)||∼ ⊕ 1

|1120|
||ψ(0, 0)||∼. (3.11)

Replacing (u, v) in (3.3) with (3u,u), we get

||g(7u)− 8g(6u) + 28g(5u)− 56g(2u)− 40292g(u)

+g(−u)− 8g(0)|| ⪯ ||ψ(3u, u)||∼. (3.12)

Now, by using (3.5), (3.7) and (3.12), we obtain

||g(7u)− 8g(6u) + 28g(5u)− 56g(4u) + 70g(3u)− 56g(2u)

−40291g(u)|| ⪯ 1

40320
(||ψ(u, u)||∼ ⊕ ||ψ(u,−u)||∼)⊕ ||ψ(3u, u)||∼

⊕ 1

5040
||ψ(0, 0)||∼. (3.13)
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By using (3.11) and (3.13), we get

||2g(6u)− 12g(5u) + 29g(4u)− 36g(3u)− 1414g(2u)

+25904g(u)|| ⪯ 1

14

[
1

80640
(||ψ(8u, 8u)||∼ ⊕ ||ψ(8u,−8u)||∼)

⊕ 1

10080
(||ψ(6u, 6u)||∼ ⊕ ||ψ(6u,−6u)||∼)⊕ 1

2880
(||ψ(4u, 4u)||∼

⊕||ψ(4u,−4u)||∼)⊕ 1

1440
(||ψ(2u, 2u)||∼ ⊕ ||ψ(2u,−2u)||∼)

⊕ 1

5040
(||ψ(u, u)||∼ ⊕ ||ψ(u,−u)||∼)⊕ ||ψ(4u, u)||∼ ⊕ 8||ψ(3u, u)||∼

⊕ 5

2016
||ψ(0, 0)||∼

]
. (3.14)

Replacing (u, v) in (3.3) with (2u,u), we get

||g(6u)− 8g(5u) + 28g(4u)− 56g(3u) + 70g(2u) + g(−2u)

−40376g(u)− 8g(−u) + 28g(0)|| ⪯ ||ψ(2u, u)||∼. (3.15)

By using (3.5), (3.7) and (3.15), we obtain

||g(6u)− 8g(5u) + 28g(4u)− 56g(3u) + 71g(2u)− 40384g(u)||

⪯ 1

5040
(||ψ(2u, 2u)||∼ ⊕ ||ψ(2u,−2u)||∼)⊕ 1

630
(||ψ(u, u)||∼

⊕||ψ(u,−u)||∼)⊕ ||ψ(2u, u)||∼ ⊕ 1

180
||ψ(0, 0)||∼. (3.16)

Now, from (3.14) and (3.16), we obtain

||4g(5u)− 27g(4u) + 76g(3u)− 1556g(2u) + 106672g(u)||

⪯ 1

14

[
1

80640
(||ψ(8u, 8u)||∼ ⊕ ||ψ(8u,−8u)||∼)

⊕ 1

10080
(||ψ(6u, 6u)||∼ ⊕ ||ψ(6u,−6u)||∼)⊕ 1

2880
(||ψ(4u, 4u)||∼

⊕||ψ(4u,−4u)||∼)⊕ 1

160
(||ψ(2u, 2u)||∼ ⊕ ||ψ(2u,−2u)||∼)

⊕ 5

112
(||ψ(u, u)||∼ ⊕ ||ψ(u,−u)||∼)⊕ ||ψ(4u, u)||∼ ⊕ 8||ψ(3u, u)||∼

⊕28||ψ(2u, u)||∼ ⊕ 177

1120
||ψ(0, 0)||∼

]
(3.17)

Replacing (u, v) in (3.3) with (u,u), we get

||g(5u)− 8g(4u) + 28g(3u) + g(−3u)− 56g(2u)− 8g(−2u)

−40250g(u) + 28g(−u)− 56g(0)|| ⪯ ||ψ(u, u)||∼. (3.18)
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With the help of (3.5), (3.7) and (3.18), we get

||g(5u)− 8g(4u) + 29g(3u)− 64g(2u)− 40222g(u)||

⪯ 1

5040
(||ψ(3u, 3u)||∼ ⊕ ||ψ(3u,−3u)||∼)⊕ 1

630
(||ψ(2u, 2u)||∼

⊕||ψ(2u,−2u)||∼)⊕ 1

180
(||ψ(u, u)||∼ ⊕ ||ψ(u,−u)||∼)

⊕||ψ(u, u)||∼ ⊕ 1

90
||ψ(0, 0)||∼. (3.19)

By using (3.19) and (3.17), we get

||g(4u)− 8g(3u)− 260g(2u) + 53512g(u)||

⪯ 1

70

[
1

80640
(||ψ(8u, 8u)||∼ ⊕ ||ψ(8u,−8u)||∼)

⊕ 1

10080
(||ψ(6u, 6u)||∼ ⊕ ||ψ(6u,−6u)||∼)⊕ 1

2880
(||ψ(4u, 4u)||∼

⊕||ψ(4u,−4u)||∼)⊕ 1

90
(||ψ(3u, 3u)||∼ ⊕ ||ψ(3u,−3u)||∼)

⊕ 137

1440
(||ψ(2u, 2u)||∼ ⊕ ||ψ(2u,−2u)||∼)

⊕1793

5040
(||ψ(u, u)||∼ ⊕ ||ψ(u,−u)||∼)⊕ ||ψ(4u, u)||∼ ⊕ 8||ψ(3u, u)||∼

⊕28||ψ(2u, u)||∼ ⊕ 56||ψ(u, u)||∼ ⊕ 1573

2016
||ψ(0, 0)||∼

]
. (3.20)

Replacing (u, v) in (3.3) with (0,u), we get

||g(4u) + g(−4u)− 8g(3u)− 8g(−3u) + 28g(2u) + 28g(−2u)

−40376g(u)− 56g(−u) + 70g(0)|| ⪯ ||ψ(0, u)||∼. (3.21)

Using (3.5), (3.7) and (3.21), we obtain

||g(4u)− 8g(3u) + 28g(2u)− 20216g(u)|| ⪯ 1

2

[
1

5040
(||ψ(4u, 4u)||∼

⊕||ψ(4u,−4u)||∼)⊕ 1

630
(||ψ(3u, 3u)||∼ ⊕ ||ψ(3u,−3u)||∼)

⊕ 1

180
(||ψ(2u, 2u)||∼ ⊕ ||ψ(2u,−2u)||∼)⊕ 1

90
(||ψ(u, u)||∼

⊕||ψ(u,−u)||∼)⊕ ||ψ(0, u)||∼ ⊕ 1

72
||ψ(0, 0)||∼

]
. (3.22)

By (3.20) and (3.22), the authors conclude that

||g(2u)− 28g(u)|| ⪯ H(u) (3.23)
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where,

H(u) =

∣∣∣∣ 1

20160

∣∣∣∣[∣∣∣∣ 1

80640

∣∣∣∣(||ψ(8u, 8u)||∼ ⊕ ||ψ(8u,−8u)||∼)

⊕
∣∣∣∣ 1

10080

∣∣∣∣(||ψ(6u, 6u)||∼ ⊕ ||ψ(6u,−6u)||∼)

⊕
∣∣∣∣ 7

960

∣∣∣∣(||ψ(4u, 4u)||∼ ⊕ ||ψ(4u,−4u)||∼)

⊕
∣∣∣∣ 115

∣∣∣∣(||ψ(3u, 3u)||∼ ⊕ ||ψ(3u,−3u)||∼)

⊕
∣∣∣∣139480

∣∣∣∣(||ψ(2u, 2u)||∼ ⊕ ||ψ(2u,−2u)||∼)

⊕
∣∣∣∣417560

∣∣∣∣(||ψ(u, u)||∼ ⊕ ||ψ(u,−u)||∼)⊕ ||ψ(4u, u)||∼

⊕ |8|.||ψ(3u, u)||∼ ⊕ |28|.||ψ(2u, u)||∼ ⊕ |56|.||ψ(u, u)||∼

⊕ |35|.||ψ(0, u)||∼ ⊕ 851

672
||ψ(0, 0)||∼

]
.

Hence from (3.23), we have

||g(2u)− 28g(u)||1α ≤ H1(u), (3.24)

and

||g(2u)− 28g(u)||2α ≤ H2(u), (3.25)
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where for α ∈ (0, 1]

H1(u) =

∣∣∣∣ 1

20160

∣∣∣∣[∣∣∣∣ 1

80640

∣∣∣∣(||ψ(8u, 8u)||1∼α ⊕ ||ψ(8u,−8u)||1∼α )

⊕
∣∣∣∣ 1

10080

∣∣∣∣(||ψ(6u, 6u)||1∼α ⊕ ||ψ(6u,−6u)||1∼α )

⊕
∣∣∣∣ 7

960

∣∣∣∣(||ψ(4u, 4u)||1∼α ⊕ ||ψ(4u,−4u)||1∼α )

⊕
∣∣∣∣ 115

∣∣∣∣(||ψ(3u, 3u)||1∼α ⊕ ||ψ(3u,−3u)||1∼α )

⊕
∣∣∣∣139480

∣∣∣∣(||ψ(2u, 2u)||1∼α ⊕ ||ψ(2u,−2u)||1∼α )

⊕
∣∣∣∣417560

∣∣∣∣(||ψ(u, u)||1∼α ⊕ ||ψ(u,−u)||1∼α )⊕ ||ψ(4u, u)||1∼α

⊕ |8|.||ψ(3u, u)||1∼α ⊕ |28|.||ψ(2u, u)||1∼α ⊕ |56|.||ψ(u, u)||1∼α

⊕ |35|.||ψ(0, u)||1∼α ⊕ 851

672
||ψ(0, 0)||1∼α

]
(3.26)

and

H2(u) =

∣∣∣∣ 1

20160

∣∣∣∣[∣∣∣∣ 1

80640

∣∣∣∣(||ψ(8u, 8u)||2∼α ⊕ ||ψ(8u,−8u)||2∼α )

⊕
∣∣∣∣ 1

10080

∣∣∣∣(||ψ(6u, 6u)||2∼α ⊕ ||ψ(6u,−6u)||2∼α )

⊕
∣∣∣∣ 7

960

∣∣∣∣(||ψ(4u, 4u)||2∼α ⊕ ||ψ(4u,−4u)||2∼α )

⊕
∣∣∣∣ 115

∣∣∣∣(||ψ(3u, 3u)||2∼α ⊕ ||ψ(3u,−3u)||2∼α )

⊕
∣∣∣∣139480

∣∣∣∣(||ψ(2u, 2u)||2∼α ⊕ ||ψ(2u,−2u)||2∼α )

⊕
∣∣∣∣417560

∣∣∣∣(||ψ(u, u)||2∼α ⊕ ||ψ(u,−u)||2∼α )⊕ ||ψ(4u, u)||2∼α

⊕ |8|.||ψ(3u, u)||2∼α ⊕ |28|.||ψ(2u, u)||2∼α ⊕ |56|.||ψ(u, u)||2∼α

⊕ |35|.||ψ(0, u)||2∼α ⊕ 851

672
||ψ(0, 0)||2∼α

]
. (3.27)

From (3.24), we conclude

||g(2u)
28

− g(u)||1∼α ≤ H1(u)

|28|
. (3.28)
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By substituting 2nu for u in (3.28), then dividing both sides by 28n, we
get ∣∣∣∣∣∣∣∣g(2n+1u)

28(n+1)
− g(2nu)

28n

∣∣∣∣∣∣∣∣1
α

≤ H1(2
nu)

|28(n+1)|
(3.29)

for all non-negative integers n. Hence the sequence {g(2nu)
28n

} is Cauchy
by (3.2) and (3.29). Since Y is complete therefore, every Cauchy se-
quence is convergent in Y . So, the authors define a mapping
O : U → V such that

O(u) = lim
n→∞

g(2nu)

28n
. (3.30)

i.e.,

lim
n→∞

∣∣∣∣∣∣∣∣g(2nu)28n
−O(u)

∣∣∣∣∣∣∣∣ = 0. (3.31)

Now for each non-negative integer n, the authors have∣∣∣∣∣∣∣∣g(2nu)28n
− g(u)

∣∣∣∣∣∣∣∣1
α

=

∣∣∣∣∣∣∣∣ n−1∑
k=0

(
g(2k+1u)

28(n+1)
− g(2ku)

28n

)∣∣∣∣∣∣∣∣1
α

≤ max

{∣∣∣∣∣∣∣∣g(2k+1u)

28(n+1)
− g(2ku)

28n

∣∣∣∣∣∣∣∣1
α

: 0 ≤ k < n

}
≤ 1

28
max

{
H1(2

ku)

|28k|
: 0 ≤ k < n

}
. (3.32)

Similarly, the authors can show that∣∣∣∣∣∣∣∣g(2nu)28n
− g(u)

∣∣∣∣∣∣∣∣2
α

≤ 1

28
max

{
H2(2

ku)

|28k|
: 0 ≤ k < n

}
. (3.33)

Taking n → ∞ in (3.32) and (3.33), the authors see that inequality
(3.4) holds. Next we prove that O : U → V is a octic mapping.
Replacing (u, v) by (2nu, 2nv) and divide by |28n| in (3.3), we get

1

|28n|
||g(2n(u+ 4v))− 8g(u+ 3v) + 28g(u+ 2v)− 56g(u+ v)

−56g(u− v) + 28g(u− 2v)− 8g(u− 3v) + g(u− 4v) + 70g(u)

−40320g(v)|| ⪯ ||ψ(2
nu, 2nv)

28n
||∼.

Taking n→ ∞ in the above inequality, we get

||O(u+ 4v)− 8O(u+ 3v) + 28O(u+ 2v)− 56O(u+ v)− 56O(u− v)

+28O(u− 2v)− 8O(u− 3v) +O(u− 4v) + 70O(u)− 40320O(v)|| ⪯ 0
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this implies that

O(u+ 4v)− 8O(u+ 3v) + 28O(u+ 2v)− 56O(u+ v)− 56O(u− v)

+28O(u− 2v)− 8O(u− 3v) +O(u− 4v) + 70O(u)− 40320O(v) = 0.

Therefore, the mapping O : U → V is octic. Next we shall prove
uniqueness of mapping O. Now, consider another octic mapping O′ :
U → V which satisfies (3.1) and (3.4). For fix u ∈ U , certainly
O(2nu) = 28nO(u) and O′(2nu) = 28nO′(u) for all n ∈ N . Therefore,

||O(u)−O′(u)|| = lim
n→∞

1

28n
||O(2nu)−O′(2nu)||

= lim
n→∞

1

28n
||O(2nu)− g(2nu) + g(2nu)−O′(2nu)||

⪯ lim
n→∞

max

{
1

28n
||O(2nu)− g(2nu)||, 1

28n
||g(2nu)−O′(2nu)||

}
⪯ lim

k→∞
lim
n→∞

max

{
max

{
1

28(n+1)

{
H(2k+nu)

28k
,
H(2k+nu)

28k

}}}
= 0.

Therefore, O(u) − O′(u) = 0. So, O′(u) = O(u). Hence we deduced
that O is unique mapping. □

Corollary 3.2. Suppose that (U, ||.||) is a normed space, (W, || ||∼)
is a fuzzy normed space, and (V, || ||) is a non-Archimedean complete
fuzzy normed space. Let w0 ∈ W and p < 8 be non-negative real
numbers. If the mapping g : U → V is such that

||∆og(u, v)|| ⪯ ||(||v||p + ||u||p)w0||∼ (3.34)

for all u, v ∈ U , then there exists one and only one octic mapping
O : U → V fulfilling the given condition

||O(u)− g(u)|| ⪯ || ||u||pw0||∼

28

[∣∣∣∣ 1

20160

∣∣∣∣(∣∣∣∣8089560

∣∣∣∣⊕ ∣∣∣∣139|2|p120

∣∣∣∣⊕ ∣∣∣∣4|3|p15

∣∣∣∣
⊕

∣∣∣∣7|4|p240

∣∣∣∣⊕ ∣∣∣∣ |6|p2520

∣∣∣∣⊕ ∣∣∣∣ |8|p

20160

∣∣∣∣⊕ ∣∣∣∣|4|p + 1

∣∣∣∣
⊕

∣∣∣∣8(|3|p + 1)

∣∣∣∣⊕ |28(|2p|+ 1)|
)]

for all u ∈ U .

Corollary 3.3. Suppose that (U, ||.||) is a normed space, (W, || ||∼)
is a fuzzy normed space, and (V, || ||) is a non-Archimedean complete

344

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO.1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

RASSIAS et al 320-352



26JOHNMICHAEL RASSIAS, SHALU SHARMA, JYOTSANA JAKHARAND JAGJEET JAKHAR

fuzzy normed space. Let w0 ∈ W and p, q < 8 be non-negative real
numbers, respectively. If the mapping g : U → V is such that

||∆s′g(u, v)|| ⪯ ||(||v||p||u||q)w0||∼

for all u, v ∈ U , then there exists one and only one octic mapping
O : U → V fulfilling the given condition

||O(u)− g(u)|| ⪯ || ||u||p+qw0||∼

28

[∣∣∣∣ 1

20160

∣∣∣∣(∣∣∣∣2|8|p+q

80640

∣∣∣∣⊕ ∣∣∣∣2|6|p+q

10080

∣∣∣∣⊕ ∣∣∣∣14|4|p+q

960

∣∣∣∣
⊕

∣∣∣∣2|3|p+q

15

∣∣∣∣⊕ ∣∣∣∣278|2|p+q

480

∣∣∣∣⊕ ∣∣∣∣32192560

∣∣∣∣⊕ |(|4p|)| ⊕ |8(|3p|)|

⊕ |28(|2p|)|
)]
.

Corollary 3.4. Assume that (U, ||.||) is a normed space, (W, || ||∼)
is a fuzzy normed space, and (V, || ||) is a non-Archimedean complete
fuzzy normed space. Let w0 ∈ W and λ = s + r < 8 be non-negative
real numbers. If the mapping g : U → V is such that

||∆og(u, v)|| ⪯ ||[||v||s||u||r + (||v||s+r + ||u||s+r)]w0||∼ (3.35)

for all u, v ∈ U , then there exists one and only one octic mapping
O : U → V fulfilling the given condition

||O(u)− g(u)|| ⪯ || ||u||λw0||∼

28

[∣∣∣∣ 1

20160

∣∣∣∣(|13440|8|λ| ⊕ |1680|6|λ|

⊕
∣∣∣∣7|4|λ160

∣∣∣∣⊕ ∣∣∣∣8|3|λ5

∣∣∣∣⊕ ∣∣∣∣139|2|λ130

∣∣∣∣⊕ ∣∣∣∣58091280

∣∣∣∣
⊕ |(|4|r + |4|λ + 1)| ⊕ |8(|3|r + |3|λ + 1)|

⊕ |(|2|r + |2|λ + 1)

)]
for all u ∈ U .

Theorem 3.5. Assume that U is a linear space and (W, ||.||∼) is a
fuzzy normed space. Consider ψ : U2 → W be a function such that

lim
n→∞

|28n|
∣∣∣∣∣∣∣∣ψ( u

2n
,
v

2n

)∣∣∣∣∣∣∣∣∼1

α

= lim
n→∞

|28n|
∣∣∣∣∣∣∣∣ψ( u

2n
,
v

2n

)∣∣∣∣∣∣∣∣∼2

α

= 0, (3.36)

for all u, v ∈ U and α ∈ (0, 1]. Let (V, ||.||) is a non-Archimedean fuzzy
Banach space. If the mapping g : U → V is such that

||∆og(u, v)|| ⪯ ||ψ(u, v)||∼ (3.37)
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for all u ∈ U , then there exists one and only one octic mapping
O : U → V fulfilling the given condition

||O(u)− g(u)|| ⪯ 1

28
max

{
|28(k+1)|H

(
u

2k+1

)
, k ∈ N ∪ {0}

}
(3.38)

where

H

(
u

2k+1

)
=

∣∣∣∣ 1

20160

∣∣∣∣[∣∣∣∣ 1

80640

∣∣∣∣(∣∣∣∣∣∣∣∣ψ( 8u

2k+1
,
8u

2k+1

)∣∣∣∣∣∣∣∣∼ ⊕
∣∣∣∣∣∣∣∣ψ( 8u

2k+1
,
−8u

2k+1

)∣∣∣∣∣∣∣∣∼)
⊕

∣∣∣∣ 1

10080

∣∣∣∣(∣∣∣∣∣∣∣∣ψ( 6u

2k+1
,
6u

2k+1

)∣∣∣∣∣∣∣∣∼ ⊕
∣∣∣∣∣∣∣∣ψ( 6u

2k+1
,
−6u

2k+1

)∣∣∣∣∣∣∣∣∼)
⊕

∣∣∣∣ 7

960

∣∣∣∣(∣∣∣∣∣∣∣∣ψ( 4u

2k+1
,
4u

2k+1

)∣∣∣∣∣∣∣∣∼ ⊕
∣∣∣∣∣∣∣∣ψ( 4u

2k+1
,
−4u

2k+1

)∣∣∣∣∣∣∣∣∼)
⊕

∣∣∣∣ 115
∣∣∣∣(∣∣∣∣∣∣∣∣ψ( 3u

2k+1
,
3u

2k+1

)∣∣∣∣∣∣∣∣∼ ⊕
∣∣∣∣∣∣∣∣ψ( 3u

2k+1
,
−3u

2k+1

)∣∣∣∣∣∣∣∣∼)
⊕

∣∣∣∣139480

∣∣∣∣(∣∣∣∣∣∣∣∣ψ( 2u

2k+1
,
2u

2k+1

)∣∣∣∣∣∣∣∣∼ ⊕
∣∣∣∣∣∣∣∣ψ( 2u

2k+1
,
−2u

2k+1

)∣∣∣∣∣∣∣∣∼)
⊕

∣∣∣∣417560

∣∣∣∣(∣∣∣∣∣∣∣∣ψ( u

2k+1
,
u

2k+1

)∣∣∣∣∣∣∣∣∼ ⊕
∣∣∣∣∣∣∣∣ψ( u

2k+1
,
−u
2k+1

)∣∣∣∣∣∣∣∣∼)
⊕

∣∣∣∣∣∣∣∣ψ( 4u

2k+1
,
u

2k+1

)∣∣∣∣∣∣∣∣∼ ⊕ |8|.
∣∣∣∣∣∣∣∣ψ( 3u

2k+1
,
u

2k+1

)∣∣∣∣∣∣∣∣∼
⊕ |28|.

∣∣∣∣∣∣∣∣ψ( 2u

2k+1
,
u

2k+1

)∣∣∣∣∣∣∣∣∼ ⊕ |56|.
∣∣∣∣∣∣∣∣ψ( u

2k+1
,
u

2k+1

)∣∣∣∣∣∣∣∣∼
⊕ |35|.

∣∣∣∣∣∣∣∣ψ(0, u

2k+1

)∣∣∣∣∣∣∣∣∼ ⊕
∣∣∣∣851672

∣∣∣∣||ψ(0, 0||∼]
for all u ∈ U .

Proof. From (3.24), the authors get∣∣∣∣∣∣∣∣g(u)− 28g

(
u

2

)∣∣∣∣∣∣∣∣1
α

≤ H1

(
u

2

)
(3.39)

for α ∈ (0, 1]. Replacing u by u
2n

and multiplying both side by |28n| in
(3.39), we get∣∣∣∣∣∣∣∣28ng( u

2n

)
− 28(n+1)g

(
u

2n+1

)∣∣∣∣∣∣∣∣1
α

≤ |28n|H1

(
u

2n+1

)
(3.40)

for all negative integer n. Hence the sequence g{28ng( u
2n
)} is Cauchy

by (3.36) and (3.40). Every Cauchy sequence is convergent in Y since
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Y is complete. So, the authors construct a mapping O : U → V such
that

O(u) = lim
n→∞

28ng

(
u

2n

)
for all u ∈ U . That is

lim
n→∞

||28ng
(
u

2n

)
−O(u)|| = 0

for all u ∈ U . Now, for each positive integer n, the authors have∣∣∣∣∣∣∣∣28ng( u

2n

)
− g(u)

)∣∣∣∣∣∣∣∣1
α

=

∣∣∣∣∣∣∣∣ n−1∑
k=0

(
28(k+1)g

(
u

2k+1

)
− 28kg

(
u

2k

))∣∣∣∣∣∣∣∣1
α

≤ max

{∣∣∣∣∣∣∣∣(28(k+1)g

(
u

2k+1

)
− 28kg

(
u

2k

))∣∣∣∣∣∣∣∣1
α

; 0 ≤ k < n

}
≤ 1

|28|
max

{
|28(k+1)|H1

(
u

2k+1

)
: 0 ≤ k < n

}
. (3.41)

Similarly , it can be shown from (3.25)∣∣∣∣∣∣∣∣28ng( u

2n

)
− g(u)

)∣∣∣∣∣∣∣∣2
α

≤ 1

|28|
max

{
|28(k+1)|H2

(
u

2k+1

)
; 0 ≤ k < n

}
.(3.42)

Taking n → ∞ in (3.41) and (3.42), the authors see that inequality
(3.39) holds. The authors conclude that O(u) is a unique cubic map-
ping holding (3.38) using same procedure as in the demonstration of
theorem (3.1).

□

Corollary 3.6. Assume that (U, ||.||) is a normed space, (W, || ||∼)
is a fuzzy normed space, and (V, || ||) is a non-Archimedean complete
fuzzy normed space. Let w0 ∈ W and p > 8 be non-negative real
numbers. If the mapping g : U → V is such that

||∆og(u, v)|| ⪯ ||(||v||p + ||u||p)w0||∼ (3.43)

for all u, v ∈ U , then there exists one and only one octic mapping
O : U → V fulfilling the given condition

||O(u)− g(u)|| ⪯ || ||u||pw0||∼

|2p|

[∣∣∣∣ 1

20160

∣∣∣∣(∣∣∣∣8089560

∣∣∣∣⊕ ∣∣∣∣139|2|p120

∣∣∣∣⊕ ∣∣∣∣4|3|p15

∣∣∣∣
⊕

∣∣∣∣7|4|p240

∣∣∣∣⊕ ∣∣∣∣ |6|p2520

∣∣∣∣⊕ ∣∣∣∣ |8|p

20160

∣∣∣∣⊕ ∣∣∣∣|4|p + 1

∣∣∣∣
⊕

∣∣∣∣8(|3|p + 1)

∣∣∣∣⊕ |28(|2p|+ 1)|
)]
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for all u ∈ U .

Corollary 3.7. Suppose that (U, ||.||) is a normed space, (W, || ||∼)
is a fuzzy normed space, and (V, || ||) is a non-Archimedean complete
fuzzy normed space. Let w0 ∈ W and p, q > 8 be non-negative real
numbers, respectively. If the mapping g : U → V is such that

||∆s′g(u, v)|| ⪯ ||(||v||p||u||q)w0||∼

for all u, v ∈ U , then there exists one and only one octic mapping
O : U → V fulfilling the given condition

||O(u)− g(u)|| ⪯ || ||u||p+qw0||∼

28

[∣∣∣∣ 1

20160

∣∣∣∣(∣∣∣∣2|8|p+q

80640

∣∣∣∣⊕ ∣∣∣∣2|6|p+q

10080

∣∣∣∣⊕ ∣∣∣∣14|4|p+q

960

∣∣∣∣
⊕

∣∣∣∣2|3|p+q

15

∣∣∣∣⊕ ∣∣∣∣278|2|p+q

480

∣∣∣∣⊕ ∣∣∣∣32192560

∣∣∣∣⊕ |(|4p|)| ⊕ |8(|3p|)|

⊕ |28(|2p|)|
)]
.

Corollary 3.8. Suppose that (U, ||.||) is a normed space, (W, || ||∼)
is a fuzzy normed space, and (V, || ||) is a non-Archimedean complete
fuzzy normed space. Let w0 ∈ W and λ = s + r > 8 be non-negative
real numbers. If the mapping g : U → V is such that

||∆og(u, v)|| ⪯ ||[||v||s||u||r + (||v||s+r + ||u||s+r)]w0||∼ (3.44)

for all u, v ∈ U , then there exists one and only one octic mapping
O : U → V fulfilling the given condition

||O(u)− g(u)|| ⪯ || ||u||λw0||∼

|2|λ

[∣∣∣∣ 1

20160

∣∣∣∣(|13440|8|λ| ⊕ |1680|6|λ|

⊕
∣∣∣∣7|4|λ160

∣∣∣∣⊕ ∣∣∣∣8|3|λ5

∣∣∣∣⊕ ∣∣∣∣139|2|λ130

∣∣∣∣⊕ ∣∣∣∣58091280

∣∣∣∣
⊕ |(|4|r + |4|λ + 1)| ⊕ |8(|3|r + |3|λ + 1)|

⊕ |(|2|r + |2|λ + 1)

)]
for all u ∈ U .

Counterexample 3.9. Consider a real Banach algebra (U, ||.||) and a
non-Archimedean complete fuzzy norm space (U, || ||∼) in which

||u||∼(t) =


||u||8
t
, when ||u||8 < t, t ̸= 0

1, when ||u||8 = t = 0

0, otherwise.
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whose α-level set is defined as [||u||∼]α = [||u||8, ||u||
8

α
]. Construct a

mapping g : U → U such that g(u) = u8 + ||u||8u0, where u0 is a unit
vector and

||∆og(u, v)||∼ ⪯ ||(256||u||8 + 290816||v||8)u0||∼,

then there does not exist an octic mapping O : U → U fulfilling the
given condition

||O(u)− g(u)||∼ ⪯ 28||||u||8u0||∼.
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General sigmoid based Banach space valued
neural network multivariate approximations
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Abstract

Here we expose multivariate quantitative approximations of Banach
space valued continuous multivariate functions on a box or RN ; N 2 N,
by the multivariate normalized, quasi-interpolation, Kantorovich type and
quadrature type neural network operators. We treat also the case of ap-
proximation by iterated operators of the last four types. These approx-
imations are derived by establishing multidimensional Jackson type in-
equalities involving the multivariate modulus of continuity of the engaged
function or its high order Fréchet derivatives. Our multivariate operators
are de�ned by using a multidimensional density function induced by a
general sigmoid function. The approximations are pointwise and uniform.
The related feed-forward neural network is with one hidden layer.

2020 AMSMathematics Subject Classi�cation: 41A17, 41A25, 41A30,
41A36.
Keywords and Phrases: General sigmoid function, multivariate neural

network approximation, quasi-interpolation operator, Kantorovich type oper-
ator, quadrature type operator, multivariate modulus of continuity, abstract
approximation, iterated approximation.

1 Introduction

The author in [2] and [3], see chapters 2-5, was the �rst to establish neural net-
work approximations to continuous functions with rates by very speci�cally de-
�ned neural network operators of Cardaliagnet-Euvrard and �Squashing�types,
by employing the modulus of continuity of the engaged function or its high or-
der derivative, and producing very tight Jackson type inequalities. He treats
there both the univariate and multivariate cases. The de�ning these operators

1
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�bell-shaped� and �squashing� functions are assumed to be of compact sup-
port. Also in [3] he gives the Nth order asymptotic expansion for the error of
weak approximation of these two operators to a special natural class of smooth
functions, see chapters 4-5 there.
For this article the author is motivated by the article [13] of Z. Chen and F.

Cao, also by [4], [5], [6], [7], [8], [9], [10], [11], [12], [15], [16].
The author here performs multivariate general sigmoid function based neural

network approximations to continuous functions over boxes or over the whole
RN , N 2 N. Also he does iterated approximation. All convergences here are
with rates expressed via the multivariate modulus of continuity of the involved
function or its high order Fréchet derivative and given by very tight multidi-
mensional Jackson type inequalities.
The author here comes up with the �right� precisely de�ned multivariate

normalized, quasi-interpolation neural network operators related to boxes or
RN , as well as Kantorovich type and quadrature type related operators on RN .
Our boxes are not necessarily symmetric to the origin. In preparation to prove
our results we establish important properties of the basic multivariate density
function induced by a general sigmoid function and de�ning our operators.
Feed-forward neural networks (FNNs) with one hidden layer, the only type

of networks we deal with in this article, are mathematically expressed as

Nn (x) =
nX
j=0

cj� (haj � xi+ bj) ; x 2 Rs, s 2 N,

where for 0 � j � n, bj 2 R are the thresholds, aj 2 Rs are the connection
weights, cj 2 R are the coe¢ cients, haj � xi is the inner product of aj and x,
and � is the activation function of the network. In many fundamental network
models, the activation function is a general sigmoid function. About neural
networks read [17], [18], [19].

2 Basics

Let h : R ! [�1; 1] be a general sigmoid function, such that it is strictly
increasing, h (0) = 0, h (�x) = �h (x), h (+1) = 1, h (�1) = �1. Also h
is strictly convex over (�1; 0] and striclty concave over [0;+1), with h(2) 2
C (R).
We consider the activation function

 (x) :=
1

4
(h (x+ 1)� h (x� 1)) , x 2 R; (1)

As in [11], p. 285, we get that  (�x) =  (x) ; thus  is an even function. Since
x+ 1 > x� 1, then h (x+ 1) > h (x� 1), and  (x) > 0, all x 2 R.

2
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We see that

 (0) =
h (1)

2
: (2)

Let x > 1, we have that

 0 (x) =
1

4
(h0 (x+ 1)� h0 (x� 1)) < 0;

by h0 being strictly decreasing over [0;+1):
Let now 0 < x < 1, then 1 � x > 0 and 0 < 1 � x < 1 + x. It holds

h0 (x� 1) = h0 (1� x) > h0 (x+ 1), so that again  0 (x) < 0: Consequently  is
stritly decreasing on (0;+1) :
Clearly,  is strictly increasing on (�1; 0), and  0 (0) = 0:
See that

lim
x!+1

 (x) =
1

4
(h (+1)� h (+1)) = 0; (3)

and
lim

x!�1
 (x) =

1

4
(h (�1)� h (�1)) = 0: (4)

That is the x-axis is the horizontal asymptote on  .
Conclusion,  is a bell symmetric function with maximum

 (0) =
h (1)

2
:

We need

Theorem 1 We have that
1X

i=�1
 (x� i) = 1, 8 x 2 R: (5)

Proof. As exactly the same as in [11], p. 286 is omitted.

Theorem 2 It holds Z 1

�1
 (x) dx = 1: (6)

Proof. Similar to [11], p. 287. It is omitted.
Thus  (x) is a density function on R:
We give

Theorem 3 Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<:k = �1: jnx� kj � n1��

 (nx� k) <
�
1� h

�
n1�� � 2

��
2

: (7)

3
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Notice that

lim
n!+1

�
1� h

�
n1�� � 2

��
2

= 0:

Proof. Let x � 1. That is 0 � x � 1 < x + 1. Applying the mean value
theorem we get

 (x)
(1)
=
1

4
� 2 � h0 (�) = h0 (�)

2
; (8)

for some x� 1 < � < x+ 1:

Since h0 is strictly decreasing we obtain h0 (�) < h0 (x� 1) and

 (x) <
h0 (x� 1)

2
, 8 x � 1: (9)

Therefore we have

1X
8<:k = �1: jnx� kj � n1��

 (nx� k) =
1X

8<:k = �1: jnx� kj � n1��

 (jnx� kj) <

1

2

1X
8<:k = �1: jnx� kj � n1��

h0 (jnx� kj � 1) � 1

2

Z +1

(n1���1)
h0 (x� 1) d (x� 1) =

1

2

�
h (x� 1) j+1(n1���1)

�
=
1

2

�
h (+1)� h

�
n1�� � 2

��
=
1

2

�
1� h

�
n1�� � 2

��
:

(10)
The claim is proved.
Denote by b�c the integral part of the number and by d�e the ceiling of the

number.
We further give

Theorem 4 Let x 2 [a; b] � R and n 2 N so that dnae � bnbc. It holds

1Pbnbc
k=dnae  (nx� k)

<
1

 (1)
; 8 x 2 [a; b] : (11)

Proof. As similar to [11], p. 289 is omitted.

Remark 5 ([11], pp. 290-291)
i) We have that

lim
n!1

bnbcX
k=dnae

 (nx� k) 6= 1; (12)

for at least some x 2 [a; b] :

4
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ii) For large enough n 2 N we always obtain dnae � bnbc. Also a � k
n � b,

i¤ dnae � k � bnbc.
In general, by Theorem 1, it holds

bnbcX
k=dnae

 (nx� k) � 1: (13)

We introduce

Z (x1; :::; xN ) := Z (x) :=
NY
i=1

 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (14)

It has the properties:
(i) Z (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z (x� k) :=
1X

k1=�1

1X
k2=�1

:::

1X
kN=�1

Z (x1 � k1; :::; xN � kN ) = 1; (15)

where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z (nx� k) = 1; (16)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z (x) dx = 1; (17)

that is Z is a multivariate density function.
Here denote kxk1 := max fjx1j ; :::; jxN jg, x 2 RN , also set1 := (1; :::;1),

�1 := (�1; :::;�1) upon the multivariate context, and

dnae := (dna1e ; :::; dnaNe) ;

bnbc := (bnb1c ; :::; bnbNc) ;
(18)

where a := (a1; :::; aN ), b := (b1; :::; bN ) :
We obviously see that

bnbcX
k=dnae

Z (nx� k) =
bnbcX

k=dnae

 
NY
i=1

 (nxi � ki)
!
=

5
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bnb1cX
k1=dna1e

:::

bnbNcX
kN=dnaNe

 
NY
i=1

 (nxi � ki)
!
=

NY
i=1

0@ bnbicX
ki=dnaie

 (nxi � ki)

1A : (19)

For 0 < � < 1 and n 2 N, a �xed x 2 RN , we have that

bnbcX
k=dnae

Z (nx� k) =

bnbcX
8<: k = dnae

 k

n � x



1 � 1

n�

Z (nx� k) +
bnbcX

8<: k = dnae

 k
n � x




1 > 1

n�

Z (nx� k) : (20)

In the last two sums the counting is over disjoint vector sets of k�s, because the
condition



 k
n � x




1 > 1

n�
implies that there exists at least one

��kr
n � xr

�� > 1
n�
,

where r 2 f1; :::; Ng :
(v) As in [10], pp. 379-380, we derive that

bnbcX
8<: k = dnae

 k

n � x



1 > 1

n�

Z (nx� k)
(7)
<
1� h

�
n1�� � 2

�
2

, 0 < � < 1; (21)

with n 2 N : n1�� > 2, x 2
QN
i=1 [ai; bi] :

(vi) By Theorem 4 we get that

0 <
1Pbnbc

k=dnae Z (nx� k)
<

1

( (1))
N
; (22)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N.

It is also clear that
(vii)

1X
8<: k = �1

 k

n � x



1 > 1

n�

Z (nx� k) <
1� h

�
n1�� � 2

�
2

; (23)

0 < � < 1, n 2 N : n1�� > 2, x 2 RN :
Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z (nx� k) 6= 1; (24)

for at least some x 2
�QN

i=1 [ai; bi]
�
:

6
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Here
�
X; k�k


�
is a Banach space.

Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; x = (x1; :::; xN ) 2

QN
i=1 [ai; bi] ; n 2 N such

that dnaie � bnbic, i = 1; :::; N:
We introduce and de�ne the following multivariate linear normalized neural

network operator (x := (x1; :::; xN ) 2
�QN

i=1 [ai; bi]
�
):

An (f; x1; :::; xN ) := An (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
Z (nx� k)Pbnbc

k=dnae Z (nx� k)
=

Pbnb1c
k1=dna1e

Pbnb2c
k2=dna2e :::

PbnbNc
kN=dnaNe f

�
k1
n ; :::;

kN
n

� �QN
i=1  (nxi � ki)

�
QN
i=1

�Pbnbic
ki=dnaie  (nxi � ki)

� : (25)

For large enough n 2 N we always obtain dnaie � bnbic, i = 1; :::; N . Also
ai � ki

n � bi, i¤ dnaie � ki � bnbic, i = 1; :::; N .
When g 2 C

�QN
i=1 [ai; bi]

�
we de�ne the companion operator

eAn (g; x) := Pbnbc
k=dnae g

�
k
n

�
Z (nx� k)Pbnbc

k=dnae Z (nx� k)
: (26)

Clearly eAn is a positive linear operator. We have that
eAn (1; x) = 1, 8 x 2  NY

i=1

[ai; bi]

!
:

Notice that An (f) 2 C
�QN

i=1 [ai; bi] ; X
�
and eAn (g) 2 C �QN

i=1 [ai; bi]
�
:

Furthermore it holds

kAn (f; x)k
 �
Pbnbc

k=dnae


f � kn�


 Z (nx� k)Pbnbc

k=dnae Z (nx� k)
= eAn �kfk
 ; x� ; (27)

8 x 2
QN
i=1 [ai; bi] :

Clearly kfk
 2 C
�QN

i=1 [ai; bi]
�
:

So, we have that

kAn (f; x)k
 � eAn �kfk
 ; x� ; (28)

8 x 2
QN
i=1 [ai; bi], 8 n 2 N, 8 f 2 C

�QN
i=1 [ai; bi] ; X

�
:

Let c 2 X and g 2 C
�QN

i=1 [ai; bi]
�
, then cg 2 C

�QN
i=1 [ai; bi] ; X

�
:

7
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Furthermore it holds

An (cg; x) = c eAn (g; x) , 8 x 2 NY
i=1

[ai; bi] : (29)

Since eAn (1) = 1, we get that
An (c) = c, 8 c 2 X. (30)

We call eAn the companion operator of An.
For convinience we call

A�n (f; x) :=

bnbcX
k=dnae

f

�
k

n

�
Z (nx� k) =

bnb1cX
k1=dna1e

bnb2cX
k2=dna2e

:::

bnbNcX
kN=dnaNe

f

�
k1
n
; :::;

kN
n

� NY
i=1

 (nxi � ki)
!
; (31)

8 x 2
�QN

i=1 [ai; bi]
�
:

That is

An (f; x) :=
A�n (f; x)Pbnbc

k=dnae Z (nx� k)
; (32)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N:

Hence

An (f; x)� f (x) =
A�n (f; x)� f (x)

�Pbnbc
k=dnae Z (nx� k)

�
Pbnbc

k=dnae Z (nx� k)
: (33)

Consequently we derive

kAn (f; x)� f (x)k

(22)
� 1

( (1))
N







A�n (f; x)� f (x)
bnbcX

k=dnae

Z (nx� k)











; (34)

8 x 2
�QN

i=1 [ai; bi]
�
:

We will estimate the right hand side of (34).
For the last and others we need

De�nition 6 ([11], p. 274) LetM be a convex and compact subset of
�
RN ; k�kp

�
,

p 2 [1;1], and
�
X; k�k


�
be a Banach space. Let f 2 C (M;X) : We de�ne the

�rst modulus of continuity of f as

!1 (f; �) := sup

x; y 2M :

kx� ykp � �

kf (x)� f (y)k
 , 0 < � � diam (M) : (35)

8
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If � > diam (M), then

!1 (f; �) = !1 (f; diam (M)) : (36)

Notice !1 (f; �) is increasing in � > 0. For f 2 CB (M;X) (continuous and
bounded functions) !1 (f; �) is de�ned similarly.

Lemma 7 ([11], p. 274) We have !1 (f; �) ! 0 as � # 0, i¤ f 2 C (M;X),

where M is a convex compact subset of
�
RN ; k�kp

�
, p 2 [1;1] :

Clearly we have also: f 2 CU
�
RN ; X

�
(uniformly continuous functions),

i¤ !1 (f; �) ! 0 as � # 0, where !1 is de�ned similarly to (35). The space
CB
�
RN ; X

�
denotes the continuous and bounded functions on RN :

When f 2 CB
�
RN ; X

�
we de�ne,

Bn (f; x) := Bn (f; x1; :::; xN ) :=

1X
k=�1

f

�
k

n

�
Z (nx� k) :=

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
f

�
k1
n
;
k2
n
; :::;

kN
n

� NY
i=1

 (nxi � ki)
!
; (37)

n 2 N, 8 x 2 RN ; N 2 N, the multivariate quasi-interpolation neural network
operator.
Also for f 2 CB

�
RN ; X

�
we de�ne the multivariate Kantorovich type neural

network operator

Cn (f; x) := Cn (f; x1; :::; xN ) :=
1X

k=�1

 
nN
Z k+1

n

k
n

f (t) dt

!
Z (nx� k) =

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1

 
nN
Z k1+1

n

k1
n

Z k2+1
n

k2
n

:::

Z kN+1

n

kN
n

f (t1; :::; tN ) dt1:::dtN

!

�
 

NY
i=1

 (nxi � ki)
!
; (38)

n 2 N; 8 x 2 RN :
Again for f 2 CB

�
RN ; X

�
; N 2 N; we de�ne the multivariate neural net-

work operator of quadrature type Dn (f; x), n 2 N; as follows.
Let � = (�1; :::; �N ) 2 NN ; r = (r1; :::; rN ) 2 ZN+ , wr = wr1;r2;:::rN � 0, such

that
�P
r=0

wr =
�1P
r1=0

�2P
r2=0

:::
�NP
rN=0

wr1;r2;:::rN = 1; k 2 ZN and

�nk (f) := �n;k1;k2;:::;kN (f) :=
�X
r=0

wrf

�
k

n
+

r

n�

�
=

9
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�1X
r1=0

�2X
r2=0

:::

�NX
rN=0

wr1;r2;:::rN f

�
k1
n
+

r1
n�1

;
k2
n
+

r2
n�2

; :::;
kN
n
+

rN
n�N

�
; (39)

where r
� :=

�
r1
�1
; r2�2 ; :::;

rN
�N

�
:

We set

Dn (f; x) := Dn (f; x1; :::; xN ) :=
1X

k=�1
�nk (f)Z (nx� k) = (40)

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
�n;k1;k2;:::;kN (f)

 
NY
i=1

 (nxi � ki)
!
;

8 x 2 RN :
In this article we study the approximation properties of An; Bn; Cn; Dn

neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.

3 Multivariate general sigmoid Neural Network
Approximations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

Theorem 8 Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; 0 < � < 1, x 2

�QN
i=1 [ai; bi]

�
;

N; n 2 N with n1�� > 2. Then
1)

kAn (f; x)� f (x)k
 �

1

( (1))
N

�
!1

�
f;
1

n�

�
+
�
1� h

�
n1�� � 2

�� 


kfk



1
�
=: �1 (n) ; (41)

and
2) 


kAn (f)� fk



1 � �1 (n) : (42)

We notice that lim
n!1

An (f)
k�k

= f , pointwise and uniformly.

Above !1 is with respect to p =1 and the speed of convergnece is
max

�
1
n�
;
�
1� h

�
n1�� � 2

���
:

Proof. As similar to [12] is omitted.
We make

10
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Remark 9 ([11], pp. 263-266) Let
�
RN ; k�kp

�
, N 2 N; where k�kp is the Lp-

norm, 1 � p � 1. RN is a Banach space, and
�
RN
�j
denotes the j-fold product

space RN�:::�RN endowed with the max-norm kxk(RN )j := max
1���j

kx�kp, where

x := (x1; :::; xj) 2
�
RN
�j
:

Let
�
X; k�k


�
be a general Banach space. Then the space Lj := Lj

��
RN
�j
;X
�

of all j-multilinear continuous maps g :
�
RN
�j ! X, j = 1; :::;m, is a Banach

space with norm

kgk := kgkLj := sup�
kxk

(RN )j
=1

� kg (x)k
 = sup kg (x)k

kx1kp ::: kxjkp

: (43)

Let M be a non-empty convex and compact subset of Rk and x0 2M is �xed.
Let O be an open subset of RN : M � O. Let f : O ! X be a continuous

function, whose Fréchet derivatives (see [20]) f (j) : O ! Lj = Lj

��
RN
�j
;X
�

exist and are continuous for 1 � j � m, m 2 N.
Call (x� x0)j := (x� x0; :::; x� x0) 2

�
RN
�j
, x 2M .

We will work with f jM :
Then, by Taylor�s formula ([13]), ([20], p. 124), we get

f (x) =
mX
j=0

f (j) (x0) (x� x0)j

j!
+Rm (x; x0) , all x 2M; (44)

where the remainder is the Riemann integral

Rm (x; x0) :=

Z 1

0

(1� u)m�1

(m� 1)!

�
f (m) (x0 + u (x� x0))� f (m) (x0)

�
(x� x0)m du;

(45)
here we set f (0) (x0) (x� x0)0 = f (x0) :

We consider

w := !1

�
f (m); h

�
:= sup

x;y2M :

kx�ykp�h




f (m) (x)� f (m) (y)


 ; (46)

h > 0:

We obtain


�f (m) (x0 + u (x� x0))� f (m) (x0)� (x� x0)m





�


f (m) (x0 + u (x� x0))� f (m) (x0)


 � kx� x0kmp �

w kx� x0kmp
�
u kx� x0kp

h

�
; (47)

11
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by Lemma 7.1.1, [1], p. 208, where d�e is the ceiling.
Therefore for all x 2M (see [1], pp. 121-122):

kRm (x; x0)k
 � w kx� x0kmp
Z 1

0

�
u kx� x0kp

h

�
(1� u)m�1

(m� 1)! du

= w�m

�
kx� x0kp

�
(48)

by a change of variable, where

�m (t) :=

Z jtj

0

l s
h

m (jtj � s)m�1
(m� 1)! ds =

1

m!

0@ 1X
j=0

(jtj � jh)m+

1A , 8 t 2 R; (49)

is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

�m (t) �
 

jtjm+1

(m+ 1)!h
+
jtjm

2m!
+

h jtjm�1

8 (m� 1)!

!
; 8 t 2 R; (50)

with equality true only at t = 0.
Therefore it holds

kRm (x; x0)k
 � w

 
kx� x0km+1p

(m+ 1)!h
+
kx� x0kmp
2m!

+
h kx� x0km�1p

8 (m� 1)!

!
; 8 x 2M:

(51)
We have found that 





f (x)�

mX
j=0

f (j) (x0) (x� x0)j

j!











�

!1

�
f (m); h

� kx� x0km+1p

(m+ 1)!h
+
kx� x0kmp
2m!

+
h kx� x0km�1p

8 (m� 1)!

!
<1; (52)

8 x; x0 2M:

Here 0 < !1
�
f (m); h

�
<1, by M being compact and f (m) being continuous

on M .
One can rewrite (52) as follows:





f (�)�

mX
j=0

f (j) (x0) (� � x0)j

j!











�

!1

�
f (m); h

� k� � x0km+1p

(m+ 1)!h
+
k� � x0kmp
2m!

+
h k� � x0km�1p

8 (m� 1)!

!
; 8 x0 2M; (53)

12
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a pointwise functional inequality on M .
Here (� � x0)j maps M into

�
RN
�j
and it is continuous, also f (j) (x0) maps�

RN
�j
into X and it is continuous. Hence their composition f (j) (x0) (� � x0)j

is continuous from M into X.

Clearly f (�)�
Pm

j=0
f(j)(x0)(��x0)j

j! 2 C (M;X), hence



f (�)�Pm

j=0
f(j)(x0)(��x0)j

j!







2

C (M).

Let
neLNo

N2N
be a sequence of positive linear operators mapping C (M) into

C (M) :

Therefore we obtain0@eLN
0@





f (�)�

mX
j=0

f (j) (x0) (� � x0)j

j!











1A1A (x0) �

!1

�
f (m); h

�24
�eLN �k� � x0km+1p

��
(x0)

(m+ 1)!h
+

�eLN �k� � x0kmp �� (x0)
2m!

+
h
�eLN �k� � x0km�1p

��
(x0)

8 (m� 1)!

35 ; (54)

8 N 2 N, 8 x0 2M .

Clearly (54) is valid when M =
NQ
i=1

[ai; bi] and eLn = eAn, see (26).
All the above is preparation for the following theorem, where we assume

Fréchet di¤erentiability of functions.
This will be a direct application of Theorem 10.2, [11], pp. 268-270. The

operators An; eAn ful�ll its assumptions, see (25), (26), (28), (29) and (30).
We present the following high order approximation results.

Theorem 10 Let O open subset of
�
RN ; k�kp

�
, p 2 [1;1], such that

NQ
i=1

[ai; bi] �

O � RN , and let
�
X; k�k


�
be a general Banach space. Let m 2 N and f 2

Cm (O;X), the space of m-times continuously Fréchet di¤erentiable functions

from O into X. We study the approximation of f j NQ
i=1

[ai;bi]
: Let x0 2

�
NQ
i=1

[ai; bi]

�
and r > 0. Then
1) 





(An (f)) (x0)�

mX
j=0

1

j!

�
An

�
f (j) (x0) (� � x0)j

��
(x0)











�

13
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!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (55)

2) additionally if f (j) (x0) = 0, j = 1; :::;m, we have

k(An (f)) (x0)� f (x0)k
 �

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

(56)�
1

(m+ 1)
+
r

2
+
mr2

8

�
;

3)

k(An (f)) (x0)� f (x0)k
 �
mX
j=1

1

j!




�An �f (j) (x0) (� � x0)j�� (x0)





+

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

(57)�
1

(m+ 1)
+
r

2
+
mr2

8

�
;

and
4) 


kAn (f)� fk



1;

NQ
i=1

[ai;bi]
�

mX
j=1

1

j!








�An �f (j) (x0) (� � x0)j�� (x0)









1;x02

NQ
i=1

[ai;bi]

+

!1

0@f (m); r 


� eAn �k� � x0km+1p

��
(x0)




 1
m+1

1;x02
NQ
i=1

[ai;bi]

1A
rm!


� eAn �k� � x0km+1p

��
(x0)




( m
m+1 )

1;x02
NQ
i=1

[ai;bi]
(58)

�
1

(m+ 1)
+
r

2
+
mr2

8

�
:

14
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We need

Lemma 11 The function
� eAn �k� � x0kmp �� (x0) is continuous in x0 2 � NQ

i=1

[ai; bi]

�
,

m 2 N.

Proof. By Lemma 10.3, [11], p. 272.
We make

Remark 12 By Remark 10.4, [11], p. 273, we get that


� eAn �k� � x0kkp�� (x0)


1;x02
NQ
i=1

[ai;bi]
�




� eAn �k� � x0km+1p

��
(x0)




( k
m+1 )

1;x02
NQ
i=1

[ai;bi]
; (59)

for all k = 1; :::;m:

We give

Corollary 13 (to Theorem 10, case of m = 1) Then
1)

k(An (f)) (x0)� f (x0)k
 �



�An �f (1) (x0) (� � x0)�� (x0)






+

1

2r
!1

�
f (1); r

�� eAn �k� � x0k2p�� (x0)� 1
2

��� eAn �k� � x0k2p�� (x0)� 1
2

(60)�
1 + r +

r2

4

�
;

and
2) 


k(An (f))� fk



1;

NQ
i=1

[ai;bi]
�








�An �f (1) (x0) (� � x0)�� (x0)









1;x02

NQ
i=1

[ai;bi]

+

1

2r
!1

0@f (1); r 


� eAn �k� � x0k2p�� (x0)


 1
2

1;x02
NQ
i=1

[ai;bi]

1A



� eAn �k� � x0k2p�� (x0)


 1

2

1;x02
NQ
i=1

[ai;bi]

�
1 + r +

r2

4

�
; (61)

r > 0:

15
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We make

Remark 14 We estimate (0 < � < 1, m;n 2 N : n1�� > 2),

eAn �k� � x0km+11

�
(x0) =

Pbnbc
k=dnae



 k
n � x0



m+1
1 Z (nx0 � k)Pbnbc

k=dnae Z (nx0 � k)
(22)
<

1

( (1))
N

bnbcX
k=dnae





kn � x0




m+1
1

Z (nx0 � k) = (62)

1

( (1))
N

8>>>>>><>>>>>>:
bnbcX

8<: k = dnae
:


 k
n � x0




1 � 1

n�





kn � x0




m+1
1

Z (nx0 � k)+

bnbcX
8<: k = dnae
:


 k
n � x0




1 > 1

n�





kn � x0




m+1
1

Z (nx0 � k)

9>>>>>>=>>>>>>;
(23)
�

1

( (1))
N

(
1

n�(m+1)
+

 
1� h

�
n1�� � 2

�
2

!
kb� akm+11

)
; (63)

(where b� a = (b1 � a1; :::; bN � aN )).

We have proved that (8 x0 2
NQ
i=1

[ai; bi])

eAn �k� � x0km+11

�
(x0) <

1

( (1))
N

(
1

n�(m+1)
+

 
1� h

�
n1�� � 2

�
2

!
kb� akm+11

)
=: '1 (n) (64)

(0 < � < 1, m;n 2 N : n1�� > 2).
And, consequently it holds


 eAn �k� � x0km+11

�
(x0)





1;x02

NQ
i=1

[ai;bi]
<

1

( (1))
N

(
1

n�(m+1)
+

 
1� h

�
n1�� � 2

�
2

!
kb� akm+11

)
= '1 (n)! 0; as n! +1:

(65)

16
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So, we have that '1 (n) ! 0, as n ! +1. Thus, when p 2 [1;1], from
Theorem 10 we have the convergence to zero in the right hand sides of parts (1),
(2).

Next we estimate



� eAn �f (j) (x0) (� � x0)j�� (x0)






:

We have that

� eAn �f (j) (x0) (� � x0)j�� (x0) = Pbnbc
k=dnae f

(j) (x0)
�
k
n � x0

�j
Z (nx0 � k)Pbnbc

k=dnae Z (nx0 � k)
:

(66)
When p =1, j = 1; :::;m; we obtain




f (j) (x0)

�
k

n
� x0

�j








�



f (j) (x0)






kn � x0





j
1
: (67)

We further have that


� eAn �f (j) (x0) (� � x0)j�� (x0)






(22)
<

1

( (1))
N

0@ bnbcX
k=dnae






f (j) (x0)
�
k

n
� x0

�j








Z (nx0 � k)

1A �

1

( (1))
N

0@ bnbcX
k=dnae




f (j) (x0)






kn � x0




j
1
Z (nx0 � k)

1A = (68)

1

( (1))
N




f (j) (x0)



0@ bnbcX
k=dnae





kn � x0




j
1
Z (nx0 � k)

1A =

1

( (1))
N




f (j) (x0)



8>>>>>><>>>>>>:

bnbcX
8<: k = dnae
:


 k
n � x0




1 � 1

n�





kn � x0




j
1
Z (nx0 � k)

+

bnbcX
8<: k = dnae
:


 k
n � x0




1 > 1

n�





kn � x0




j
1
Z (nx0 � k)

9>>>>>>=>>>>>>;
(23)
� (69)

1

( (1))
N




f (j) (x0)


( 1

n�j
+

 
1� h

�
n1�� � 2

�
2

!
kb� akj1

)
! 0, as n!1:

17
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That is 


� eAn �f (j) (x0) (� � x0)j�� (x0)





! 0, as n!1:

Therefore when p =1, for j = 1; :::;m, we have proved:


� eAn �f (j) (x0) (� � x0)j�� (x0)





<

1

( (1))
N




f (j) (x0)


( 1

n�j
+

 
1� h

�
n1�� � 2

�
2

!
kb� akj1

)
� (70)

1

( (1))
N




f (j)



1

(
1

n�j
+

 
1� h

�
n1�� � 2

�
2

!
kb� akj1

)
=: '2j (n) <1;

and converges to zero, as n!1:

We conclude:
In Theorem 10, the right hand sides of (57) and (58) converge to zero as

n!1, for any p 2 [1;1].
Also in Corollary 13, the right hand sides of (60) and (61) converge to zero

as n!1, for any p 2 [1;1] :

Conclusion 15 We have proved that the left hand sides of (55), (56), (57),
(58) and (60), (61) converge to zero as n ! 1, for p 2 [1;1]. Consequently
An ! I (unit operator) pointwise and uniformly, as n ! 1, where p 2 [1;1].
In the presence of initial conditions we achieve a higher speed of convergence,
see (56). Higher speed of convergence happens also to the left hand side of (55).

We give

Corollary 16 (to Theorem 10) Let O open subset of
�
RN ; k�k1

�
, such that

NQ
i=1

[ai; bi] � O � RN , and let
�
X; k�k


�
be a general Banach space. Let m 2 N

and f 2 Cm (O;X), the space of m-times continuously Fréchet di¤erentiable
functions from O into X. We study the approximation of f j NQ

i=1

[ai;bi]
: Let x0 2�

NQ
i=1

[ai; bi]

�
and r > 0. Here '1 (n) as in (65) and '2j (n) as in (70), where

n 2 N : n1�� > 2, 0 < � < 1, j = 1; :::;m: Then
1) 





(An (f)) (x0)�

mX
j=0

1

j!

�
An

�
f (j) (x0) (� � x0)j

��
(x0)











�

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (71)
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2) additionally, if f (j) (x0) = 0, j = 1; :::;m, we have

k(An (f)) (x0)� f (x0)k
 �

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (72)

3) 


kAn (f)� fk



1;
NQ
i=1

[ai;bi]
�

mX
j=1

'2j (n)

j!
+

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 ) (73)�

1

(m+ 1)
+
r

2
+
mr2

8

�
=: '3 (n)! 0, as n!1:

We continue with

Theorem 17 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; N; n 2 N with

n1�� > 2, !1 is for p =1. Then
1)

kBn (f; x)� f (x)k
 � !1

�
f;
1

n�

�
+
�
1� h

�
n1�� � 2

�� 


kfk



1 =: �2 (n) ;

(74)
2) 


kBn (f)� fk



1 � �2 (n) : (75)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
, we obtain lim

n!1
Bn (f) = f , uni-

formly. The speed of convergence above is max
�
1
n�
;
�
1� h

�
n1�� � 2

���
:

Proof. As similar to [12] is omitted.
We give

Theorem 18 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; N; n 2 N with

n1�� > 2, !1 is for p =1. Then
1)

kCn (f; x)� f (x)k
 � !1

�
f;
1

n
+
1

n�

�
+
�
1� h

�
n1�� � 2

�� 


kfk



1 =: �3 (n) ;

(76)
2) 


kCn (f)� fk



1 � �3 (n) : (77)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Cn (f) = f , uni-

formly.
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Proof. As similar to [12] is omitted.
We also present

Theorem 19 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; N; n 2 N with

n1�� > 2, !1 is for p =1: Then
1)

kDn (f; x)� f (x)k
 � !1

�
f;
1

n
+
1

n�

�
+
�
1� h

�
n1�� � 2

�� 


kfk



1 = �4 (n) ;

(78)
2) 


kDn (f)� fk






1
� �4 (n) : (79)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Dn (f) = f ,

uniformly.

Proof. As similar to [12] is omitted.
We make

De�nition 20 Let f 2 CB
�
RN ; X

�
, N 2 N, where

�
X; k�k


�
is a Banach

space. We de�ne the general neural network operator

Fn (f; x) :=
1X

k=�1
lnk (f)Z (nx� k) =

8><>:
Bn (f; x) , if lnk (f) = f

�
k
n

�
;

Cn (f; x) , if lnk (f) = nN
R k+1

n
k
n

f (t) dt;

Dn (f; x) , if lnk (f) = �nk (f) :

(80)

Clearly lnk (f) is anX-valued bounded linear functional such that klnk (f)k
 �


kfk



1 :

Hence Fn (f) is a bounded linear operator with



kFn (f)k



1 �




kfk



1.
We need

Theorem 21 Let f 2 CB
�
RN ; X

�
, N � 1. Then Fn (f) 2 CB

�
RN ; X

�
:

Proof. Very lengthy and as similar to [12] is omitted.

Remark 22 By (25) it is obvious that



kAn (f)k



1 �




kfk



1 < 1, and

An (f) 2 C
�
NQ
i=1

[ai; bi] ; X

�
, given that f 2 C

�
NQ
i=1

[ai; bi] ; X

�
:

Call Ln any of the operators An; Bn; Cn; Dn:
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Clearly then




L2n (f)





1 =



kLn (Ln (f))k



1 �




kLn (f)k



1 �



kfk



1 ; (81)

etc.
Therefore we get




Lkn (f)





1 �




kfk



1 , 8 k 2 N, (82)

the contraction property.
Also we see that




Lkn (f)





1 �






Lk�1n (f)










1
� ::: �




kLn (f)k



1 �



kfk



1 : (83)

Here Lkn are bounded linear operators.

Notation 23 Here N 2 N, 0 < � < 1: Denote by

cN :=

(
( (1))

�N , if Ln = An;

1, if Ln = Bn; Cn; Dn;
(84)

' (n) :=

�
1
n�
, if Ln = An, Bn;

1
n +

1
n�
, if Ln = Cn; Dn;

(85)


 :=

8<:C

�
NQ
i=1

[ai; bi] ; X

�
, if Ln = An,

CB
�
RN ; X

�
, if Ln = Bn; Cn; Dn;

(86)

and

Y :=

8<:
NQ
i=1

[ai; bi] , if Ln = An,

RN , if Ln = Bn; Cn; Dn:

(87)

We give the condensed

Theorem 24 Let f 2 
, 0 < � < 1, x 2 Y ; n; N 2 N with n1�� > 2. Then
(i)

kLn (f; x)� f (x)k
 � cN

h
!1 (f; ' (n)) +

�
1� h

�
n1�� � 2

�� 


kfk



1i =: � (n) ;
(88)

where !1 is for p =1;
and
(ii) 


kLn (f)� fk



1 � � (n)! 0, as n!1: (89)

For f uniformly continuous and in 
 we obtain

lim
n!1

Ln (f) = f;

pointwise and uniformly.
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Proof. By Theorems 8, 17, 18, 19.
Next we do iterated neural network approximation (see also [9]).
We make

Remark 25 Let r 2 N and Ln as above. We observe that

Lrnf � f =
�
Lrnf � Lr�1n f

�
+
�
Lr�1n f � Lr�2n f

�
+�

Lr�2n f � Lr�3n f
�
+ :::+

�
L2nf � Lnf

�
+ (Lnf � f) :

Then


kLrnf � fk



1 �





Lrnf � Lr�1n f











1
+





Lr�1n f � Lr�2n f











1
+




Lr�2n f � Lr�3n f











1
+ :::+






L2nf � Lnf





1 +



kLnf � fk



1 =




Lr�1n (Lnf � f)











1
+





Lr�2n (Lnf � f)











1
+





Lr�3n (Lnf � f)











1

+:::+



kLn (Lnf � f)k



1 +




kLnf � fk



1 � r



kLnf � fk



1 : (90)

That is 


kLrnf � fk



1 � r



kLnf � fk



1 : (91)

We give

Theorem 26 All here as in Theorem 24 and r 2 N, � (n) as in (88). Then


kLrnf � fk



1 � r� (n) : (92)

So that the speed of convergence to the unit operator of Lrn is not worse than of
Ln:

Proof. By (91) and (89).
We make

Remark 27 Let m1; :::;mr 2 N : m1 � m2 � ::: � mr, 0 < � < 1, f 2 
.
Then ' (m1) � ' (m2) � ::: � ' (mr), ' as in (85).
Therefore

!1 (f; ' (m1)) � !1 (f; ' (m2)) � ::: � !1 (f; ' (mr)) : (93)

Assume further that m1��
i > 2, i = 1; :::; r. Then

1� h
�
m1��
1 � 2

�
2

�
1� h

�
m1��
2 � 2

�
2

� ::: �
1� h

�
m1��
r � 2

�
2

: (94)
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Let Lmi as above, i = 1; :::; r; all of the same kind.
We write

Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f =

Lmr

�
Lmr�1 (:::Lm2 (Lm1f))

�
� Lmr

�
Lmr�1 (:::Lm2f)

�
+

Lmr

�
Lmr�1 (:::Lm2

f)
�
� Lmr

�
Lmr�1 (:::Lm3

f)
�
+

Lmr

�
Lmr�1 (:::Lm3

f)
�
� Lmr

�
Lmr�1 (:::Lm4

f)
�
+ :::+ (95)

Lmr

�
Lmr�1f

�
� Lmrf + Lmrf � f =

Lmr

�
Lmr�1 (:::Lm2

)
�
(Lm1

f � f) + Lmr

�
Lmr�1 (:::Lm3

)
�
(Lm2

f � f)+

Lmr

�
Lmr�1 (:::Lm4

)
�
(Lm3

f � f) + :::+ Lmr

�
Lmr�1f � f

�
+ Lmr

f � f:

Hence by the triangle inequality property of



k�k



1 we get




Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f











1
�




Lmr

�
Lmr�1 (:::Lm2

)
�
(Lm1

f � f)










1
+




Lmr

�
Lmr�1 (:::Lm3

)
�
(Lm2

f � f)










1
+




Lmr

�
Lmr�1 (:::Lm4

)
�
(Lm3

f � f)










1
+ :::+




Lmr

�
Lmr�1f � f

�









1
+



kLmr

f � fk





1

(repeatedly applying (81))

�



kLm1

f � fk





1
+



kLm2

f � fk





1
+



kLm3

f � fk





1
+ :::+






Lmr�1f � f










1
+



kLmr

f � fk





1
=

rX
i=1




kLmi
f � fk






1
: (96)

That is, we proved




Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f











1
�

rX
i=1




kLmi
f � fk






1
: (97)

We give

Theorem 28 Let f 2 
; N; m1;m2; :::;mr 2 N : m1 � m2 � ::: � mr; 0 <

� < 1; m1��
i > 2, i = 1; :::; r; x 2 Y; and let (Lm1

; :::; Lmr
) as (Am1

; :::; Amr
)

or (Bm1 ; :::; Bmr ) or (Cm1 ; :::; Cmr ) or (Dm1 ; :::; Dmr ), p =1: Then

Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
(x)� f (x)






�
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Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f











1
�

rX
i=1




kLmi
f � fk






1
�

cN

rX
i=1

h
!1 (f; ' (mi)) +

�
1� h

�
m1��
i � 2

��


kfk



1i �
rcN

h
!1 (f; ' (m1)) +

�
1� h

�
m1��
1 � 2

��


kfk



1i : (98)

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated operator is not worse than the speed of Lm1

:

Proof. Using (97), (93), (94) and (88), (89).
We continue with

Theorem 29 Let all as in Corollary 16, and r 2 N. Here '3 (n) is as in (73).
Then 


kArnf � fk



1 � r




kAnf � fk



1 � r'3 (n) : (99)

Proof. By (91) and (73).

Application 30 A typical application of all of our results is when
�
X; k�k


�
=

(C; j�j), where C are the complex numbers.
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