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Asymptotic behavior of equilibrium point for a system of
fourth-order rational difference equations

Ping Liu 1, Changyou Wang 1, 2*, Yonghong Li 1*, Rui Li 3

1. College of Science, Chongqing University of Posts and Telecommunications,
Chongqing, 400065, People’s Republic of China

2. College of Applied Mathematics, Chengdu University of Information Technology,
Chengdu, Sichuan 610225, People’s Republic of China

3. College of Automation, Chongqing University of Posts and Telecommunications,
Chongqing 400065, People’s Republic of China

Abstract
Our aim in this paper is to investigate the dynamics of a system of fourth-order rational

difference equations

-3 -1 -3 -1
1 1

-3 -1 -3 -1

0,1,n n n n
n n

n n n n

x y y xx y n
A x y A y x 

 
  

 
， ， ,

where the parameter A is arbitrary positive real number and the initial conditions

3 2 1 0 3 2 1 0, , , , , , ,x x x x y y y y      are arbitrary nonnegative real numbers. By using new iteration

method for the more general nonlinear difference equations and inequality skills, we establish
some sufficient conditions which guarantee the existence, unstability and global asymptotic
stability of the equilibriums for this nonlinear system. Numerical examples to the difference
system are given to verify our theoretical results.

Keywords: difference system; equilibrium point; asymptotical stability; unstability

1. Introduction

Because of the necessity for some techniques that can be used in mathematical models
describing real situations, nonlinear difference equations have been studied in the fields of
population biology, economics, probability theory, genetics, psychology etc (see, e.g., [1-4]
and the references therein). In recent years, with the dramatically development of

*Corresponding authors at: College of Science, Chongqing University of Posts and
Telecommunications, Chongqing, 400065, People’s Republic of China
Email addresses: wangcy@cuit.edu.cn (C.Y. Wang), liyh@cqupt.edu.cn (Y.H. Li ).
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2

computer-based computational techniques, difference equations are found to be much
appropriate mathematical representations for computer simulation and experiment (see, e.g.,
[5-8]). However, it is more interesting to investigate the behavior of solutions of a system of
higher-order rational difference equations and to discuss the asymptotic stability of their
equilibrium points (for example, see [9-19]).
Recently, Bajo and Liz [20] described the asymptotic behavior and the stability properties

of the solution to the following nonlinear second-order difference equation

1
1

1

, 0,1, .n
n

n n

xx n
a bx x






 


 (1.1)

for all values of the real parameters , ,a b and any initial condition 2
1 0( , )x x R  .

In [21], Kurbanli, Cinar, and Yalcinkaya investigated the positive solutions of the following
difference equations

1 1
1 1

1 1

, , 0,1,
1 1

n n
n n

n n n n

x yx y n
y x x y

 
 

 

  
 

 , (1.2)

where ( , ) [0, )k kx y   for 1,0k   .

Moreover, Touafek and Elsayed [22] deal with the periodic nature and the form of the
solutions of the following systems of rational difference equations.

3 3
1 1

3 1 3 1

, , 0,1,
1 1

n n
n n

n n n n

x yx y n
x y y x
 

 
   

  
   

 , (1.3)

with a nonzero real number’s initial conditions.
As an extension of (1.3), Elsayed [23] continuously dealt with the existence of solutions

and the periodicity character of the following systems of rational difference equations

1 1
1 1

1 1

, , 0,1, ,
y ( 1) ( 1)

n n n n
n n

n n n n n n

x y y xx y n
x y x y x

 
 

 

  
 

 (1.4)

where the initial conditions 1 0 1, ,x x y  and 0y are nonzero real numbers.

More recently, Khan and Qureshi [24] study the equilibrium points, local asymptotic
stability of equilibrium point, unstability of equilibrium points, global character of
equilibrium point, periodicity behavior of positive solutions and rate of convergence of
positive solutions of the following systems

1 1 1
1 1

1 1 1 1

, , 0,1, ,n n
n n

n n n n

x yx y n
y y x x

 
   

 
 

 

  
 

 (1.5)

and
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1 1 1
1 1

1 1 1 1

, , 0,1, .n n
n n

n n n n

ay a xx y n
b cx x b c y y

 
 

 

  
 

 (1.6)

Especially, Yalçınkaya [25] investigated the sufficient condition for the global asymptotic
stability of the following systems of difference equations

1 1
1 1

1 1

, , 0,1, .
1 1

n n n n
n n

n n n n

x y y xx y n
x y y x

 
 

 

 
  

 
 (1.7)

where the initial conditions 1 0 1, ,x x y  and 0y are nonzero real numbers.

Motivated by works [20-25], our aim in this paper is to investigate the dynamics of a
system of fourth-order rational difference equations

-3 -1 -3 -1
1 1

-3 -1 -3 -1

, 0,1,n n n n
n n

n n n n

x y y xx y n
A x y A y x 

 
  

 
， , (1.8)

where (0, )A  and ( , ) [0, ) [0, )n nx y     for 3, 2, 1, 0,n      .

For more related work, one can refer to [26-35] and references therein.

2. Some preliminary results

To prove the main results in this paper we first give some definitions and preliminary
results [36-38] which are basically used throughout this paper.

Lemma 2.1 Let ,x yI I be some intervals of real numbers and let 1 1: k l
x y xf I I I   ,

1 1: k l
x y yg I I I   be continuously differentiable functions. Then for every set of initial

conditions ( , )i j x yx y I I  , ( , 1, , 0, , 1, , 0)i k k j l l         , the following system

of difference equations

1 -1 -k -1 -

1 -1 -k -1 -

( , , , , , , , ),
0,1, 2, ,

( , , , , , , , ),
n n n n n n n l

n n n n n n n l

x f x x x y y y
n

y g x x x y y y





 

 


 
(2.1)

has a unique solution ,
j ,{( , )}i i k j lx y  

  .

Definition 2.1 A point ( , ) x yx y I I  is called an equilibrium point of system (2.1) if

( , , , , , , , )x f x x x y y y   ,  . , , , , , ,y g x x x y y y   .

That is, ( , ) ( , )n nx y x y for 0n  is the solution of difference system (2.1), or equivalently,

( , )x y is a fixed point of the vector map ( , )f g .
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Definition 2.2Assume that ( , )x y be an equilibrium point of the system (2.1). Then, we have

(i) An equilibrium point ( , )x y is called locally stable if for every 0  , there exits

0  such that for any initial conditions ( , )i i x yx y I I  ( , ,0, , ,0)i k j l     , with

0
ii k
x x 


  , 0

jj l
y y 


  , we have ,n nx x y y     for any 0n  .

(ii) An equilibrium point ( , )x y is called attractor if ,n n n nlim x x lim y y   for any

initial conditions ( , )i i x yx y I I  ( , ,0, , ,0)i k j l     .

(iii) An equilibrium point ( , )x y is called asymptotically stable if it is stable, and ( , )x y

is also attractor.

(iv) An equilibrium point ( , )x y is called unstable if it is not locally stable.

Definition 2.3 Let ( , )x y be an equilibrium point of the vector map ( , , , , , , , )n n k n n lF f x x g y y    ,

where f and g are continuously differentiable functions at ( , )x y . The linearized system

of (1.8) about the equilibrium point ( , )x y is 1 ( )n n j nX F X F X    , where JF is the

Jacobian matrix of the system (1.8) about ( , )x y and ( , , , , , )Tn n n k n n lX x x y y    .

Definition 2.4 let , , ,p q s t be four nonnegative integers such that ,p q n s t m    . Splitting

1 2( , , , )nx x x x  into    ( , )
p q

x x x and 1 2( , , , )my y y y  into    ( , )
s t

y y y , where  x 
denotes

a vector with  -components of x . We say that the function 1 2 1 2( , , , , , , , )n mf x x x y y y 

possesses a mixed monotone property in subsets n m
x yI I of n mR R if ([ ] ,[ ] ,[ ] ,[ ] )p q s tf x x y y is

monotone non-decreasing in each component of ([ ] ,[ ] )p sx y , and is monotone non-increasing

in each component of  ( ,[ ] )tq
x y for ( , ) n m

x yx y I I  . In particular, if 0, 0q t  , then it is

said to be monotone non-decreasing in n m
x yI I .

Lemma 2.2 Assume that ( 1) ( ( )) , 0,1,X n F X n n    , is a system of difference equations

and X is the equilibrium point of this system i.e., ( )F X X . Then we have

(i) If all eigenvalues of the Jacobian matrix FJ about X lie inside the open unit disk
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1  , then X is locally asymptotically stable.

(ii) If one of eigenvalues of the Jacobian matrix FJ about X has norm greater than one,

then X is unstable.

Lemma 2.3 Assume that ( 1) ( ( )) , 0,1,X n F X n n    , is a system of difference equations

and X is the equilibrium point of this system, the characteristic polynomial of this system

about the equilibrium point X is -1
0 1 -1( ) 0n n

n nP a a a a         , with the real

coefficients and 0 0a  . Then all roots of the polynomial ( )P  lie inside the open unit disk

1  if and only if

0k  for 1,2, ,k n  , (2.2)

where k is the principal minor of order k of the n n matrix

1 3 5

0 2 4

1 3

0
0

0 0

0 0 0

n

n

a a a
a a a

a a

a

 
 
 
  
 
 
  





    


.

3. Main results and their proofs

In this section, we shall investigate the qualitative behavior of the system (1.8). Let

( , )x y be an equilibrium point of system (1.8), then the system (1.8) has a unique

equilibrium 0, 0（ ） when 0 2A  , and the system (1.8) has following three equilibrium

points 0 (0,0)P  , 1 ( 2, 2)P A A    , and 2 ( 2, 2)P A A    if 2A  .

To construct corresponding linearlized form of the nonlinear system (1.8), we consider the
transformation

1 2 3 1 2 3 1 2 3 1 2 3( , , , , , , , ) ( , , , , , , , )n n n n n n n nx x x x y y y y f f f f g g g g       , (3.1)

where

-3 -1 -3 -1
1 1

-3 -1 -3 -1

, , , , 1, 2, 3n n n n
i n i i n i

n n n n

x y y xf f x g g y i
A x y A y x   

 
    

 
.
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The Jacobian matrix about the equilibrium point ( , )x y under the transformation (3.1) is

given by

1 2

3 4

0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

( , )
0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

JF x y

 

 

 
 
 
 
 
   
 
 
 
 
  

,

where
2

1 2( )
A y
A x y

 



,

2

2 2( )
A x

A x y
  




,
2

2 2( )
A y
A x y

  



,

2

4 2( )
A x
A x y

 



.

Theorem 3.1 If 1A  , then the equilibrium point 0,0（ ） of the system (1.8) is locally

asymptotically stable.
Proof: We can easily obtain that the linearlized system of (1.8) about the equilibrium point

0,0（ ） is

1n nD   (3.2)

where

1

2

3

1

2

3

1 10 0 0 0 0 0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

,
1 10 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

n

n

n

n
n

n

n

n

n

x A A
x
x
x

D
y

A Ay
y
y















   
  
  
  
  
      
  
  
  
  
      

The characteristic equation of (3.2) is
4 21( ) ( ) 0f

A
    . (3.3)

In view of 1A  , it is clear that all roots of characteristic equation (3.3) lie inside unit disk.

Hence the equilibrium 0,0（ ） is locally asymptotically stable by Lemma 2.1.
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Theorem 3.2 Let ,x yI I be some intervals of real numbers and assume that 1 1: k l
x y xf I I I  

and 1 1: k l
x y yg I I I   be continuously differentiable functions satisfying mixed monotone

property. If there exits

0 0 0 0 0 0

0 0 0 0 0 0

min{ , , , , , } max{ , , , , , } ,
min{ , , , , , } max{ , , , , , } ,

k l k l

k l k l

m x x y y x x y y M
n x x y y x x y y N

   

   

  
   

   
   

(3.4)

such that

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

([ ] ,[ ] ,[ ] ,[ ] ) ([ ] ,[ ] ,[ ] ,[ ] ) ,

([ ] ,[ ] ,[ ] ,[ ] ) ([ ] ,[ ] ,[ ] ,[ ] ) ,
p q s t p q s t

p q s t p q s t

m f m M n N f M m N n M

n g m M n N g M m N n N

  
   

(3.5)

then there exit 2
0 0( , ) [ , ]m M m M and 2

0 0( , ) [ , ]n N n N satisfying

1 1 1 1 1 1 1 1

([ ] ,[ ] ,[ ] ,[ ] ), ([ ] ,[ ] ,[ ] ,[ ] ),

([ ] ,[ ] ,[ ] ,[ ] ), ([ ] ,[ ] ,[ ] ,[ ] ).
p q s t p q s t

p q s t p q s t

M f M m N n m f m M n N

N g M m N n n g m M n N

 
  

(3.6)

Moreover, if ,m M n N  , then equation (2.1) has a unique equilibrium point ( , )x y 

0 0 0 0[ , ] [ , ]m M n N and every solution of (2.1) converges to ( , )x y .

Proof. Using 0 0 0, ,m M n and 0N as two couples of initial iterations, we construct four

sequences { },{ }, { }i i im M n , and { } ( 1,2, )iN i   from the following equations

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

([ ] ,[ ] ,[ ] ,[ ] ), ([ ] ,[ ] ,[ ] ,[ ] ),

([ ] ,[ ] ,[ ] ,[ ] ), ([ ] ,[ ] ,[ ] ,[ ] ).
i i p i q i s i t i i p i q i s i t

i i p i q i s i t i i p i q i s i t

m f m M n N M f M m N n

n g m M n N N g M m N n
       

       

 
  

(3.7)

It is obvious from the mixed monotone property of f and g that the sequences { },{ }i im M ,

{ }in and { }iN possess the following monotone property

0 1 1 0

0 1 1 0

,
,

i i

i i

m m m M M M
n n n N N N

       
        

  
  

(3.8)

where =0,1, 2, ,i  and

,i u i i v im x M n y N    , for ( 1) 1, ( 1) 1, 0,1, 2, .u k i v l i i        (3.9)

Set

lim , lim , lim , limi i i ii i i i
m m M M n n N N

   
    . (3.10)

Then
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liminf limsup , liminf limsup .i i i ii i i i
m x x M n y y N

   
      (3.11)

By the continuity of f and g , one has

1 1 1 1 1 1 1 1

([ ] ,[ ] ,[ ] ,[ ] ), ([ ] ,[ ] , [ ] ,[ ] ),

([ ] ,[ ] , [ ] ,[ ] ), ([ ] ,[ ] , [ ] ,[ ] ).
p q s t p q s t

p q s t p q s t

M f M m N n m f m M n N

N g M m N n n g m M n N

 
  

(3.12)

Moreover, if ,m M n N  , then lim , limi ii i
m M x x n N y y

 
      , and then the proof

is complete.

Theorem 3.3 If 1 A , then the equilibrium point (0, 0) of the system (1.8) is global

attractor for any condition 8
3 2 1 0 3 2 1 0( , , , , , , ) (0, )x x x x y y y y        .

Proof: Let 4 4( , ) : (0, ) (0, ) (0, ) (0, )f g        be a function defined by

n-3 n-1
-1 -2 n-3 -1 -2 -3

n-3 n-1

( , , , , , , , )=n n n n n n n
x yf x x x x y y y y
A x y




, (3.13)

and

n-3 n-1
-1 -2 n-3 -1 -2 -3

1 n-3

( , , , , , , , )=n n n n n n n
n

y xg x x x x y y y y
A x y




. (3.14)

Set

= , =x y y xf g
A xy A xy
 
 

, (3.15)

we can obtain that
2 2

2 2

2 2

y 2 2

0, 0,
( ) ( )

0, 0,
( ) ( )

x x

x

A y A yf g
A xy A xy
A x A xf g
A xy A xy

  
   

 

  
   

 

(3.16)

which implies that f and g possess a mixed monotone property.

Let 0 0 3 2 1 0 3 2 1 0max{ , , , , , , }M N x x x x y y y y       and 0 0 0 0/ /(1 )A M m n M A     .

Thus, we have

0 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0 0 0 0 0

, .m N M n n M N mm M n N
A m N A M n A n M A N m

   
     

   
(3.17)

Moreover, from (1.8) and Theorem 3.2, one can derive that there exists 0 0, [ , ]m M m M ,
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0 0, [ , ]n N n N satisfying

, , ,m N n M M n N mm n M N
A mN A nM A nM A Nm

   
   

   
. (3.18)

Hence, we have
0M N m n    .

According to Lemma 2.2 and Theorem 3.2, If 1 A , the unique equilibrium 0,0（ ） is not

only locally asymptotically stable, but also a global attractor. The proof is complete.

Theorem 3.4 If 1A  , then the equilibrium point (0,0) is unstable.

Proof: It is easy to see that there exist roots of characteristic equation (3.3) lie outside unit
disk when 1A  . According to Lemma 2.2, the equilibrium point (0, 0) is unstable.

Theorem 3.5 The equilibrium points 1 ( 2, 2)p A A    , and 2 ( 2, 2)p A A   

of the system (1.8) are locally asymptotically stable when 2 3A  . And the equilibrium

points 1p and 2p of the system (1.8) are unstable when 3A  .

Proof: We can easily obtain that the linear equations of the system (1.8) about the

equilibrium point 1 ( 2, 2)p A A    is

*
1n nD   ,

where

1

2

3

1

2

3

1 10 0 0 0 0 0
2 2

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

,
1 10 0 0 0 0 0
2 2

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

n

n

n

n
n

n

n

n

n

A A
x
x
x
x

D
y A A
y
y
y















  
  
  
  
  
  
          
  
  
  
      

. (3.19)

The characteristic equation of (3.18) is
4 21( ) ( ) 0

2
Af   

   . (3.20)

Hence, we have that the equilibrium point 1p of the system (1.8) is locally asymptotically

stable when 2 3A  , and the equilibrium point 1p of the system (1.8) is unstable when
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3A  . The stability and unstability of the equilibrium point 2p can be proved similarly.

4. Numerical simulations

In this section some numerical examples are given in order to confirm the results of the
previous sections and to support our theoretical discussions. These examples represent
different types of qualitative behavior of solutions of the system (1.8). As examples, we
consider the following difference equations

-3 -1 -3 -1
1 1

-3 -1 -3 -1

0,1, ,
3 3
n n n n

n n
n n n n

x y y xx y n
x y y x 

 
  

 
， ， (4.1)

-3 -1 -3 -1
1 1

-3 -1 -3 -1

0,1, ,
5 5
n n n n

n n
n n n n

x y y xx y n
x y y x 

 
  

 
， ， (4.2)

and

-3 -1 -3 -1
1 1

-3 -1 -3 -1

0,1,
0.5 0.5

n n n n
n n

n n n n

x y y xx y n
x y y x 

 
  

 
， ， . (4.3)

By employing the software package MATLAB7.0, we can solve the numerical solutions
of the system (4.1), (4.2) and (4.3) which are shown respectively in Figures 4.1-Figure 4.4.
More precisely, it is obvious that the equations (4.1) satisfy the conditions of Theorems 3.1
and Figure 4.1 shows that the solution of the difference system (1.8) is local stability if 3A 

and the initial conditions 3 2 1 0 3 26, 4, 2, 8, 1, 4x x x x y y          , 1 2y  and 0 3y  .

We can also see that the equations (4.1) satisfy the conditions of Theorems 3.2 and Theorem
3.3, and Figure 4.2 shows that the solution of the difference system (1.8) is globally

asymptotically stable where 3A  , 0 0 0 00.9, 0.9n m N M     and the initial conditions

3 2 1 0 3 20.01, 0.02, 0.01, 0.03, 0.2, 0.4x x x x y y          , 1 0.8y  and 0 0.7y  . It can

be noticed that the equations (4.2) satisfy the conditions of Theorems 3.1, Theorems 3.2 and
Theorem 3.3, and Figure 4.3 shows that the solution of the difference system (1.8) is globally

asymptotically stable where 5A  , 0 0 0 00.3, 0.5n m N M     and the initial conditions

3 2 1 0 3 20.2, 0.06, 0.4, 0.08, 0.02, 0.04x x x x y y          , 1 0.01y  and 0 0.1y  . It is

clear that the equations (4.3) satisfy the conditions of Theorem 3.4, and Figure 4.4 shows that
the solution of the difference system (1.8) is unstable where 0.5A  , and the initial

conditions 3 2 1 0 3 21.6, 1, 1.5, 1.8, 1, 4x x x x y y          , 1 2y  and 0 3y  .
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-20 0 20 40 60 80 100
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0

1

2

3

4

5

6

7

8

n

x(
n)

/y
(n

)

x(n),A=3
y(n),A=3

Figure 4.1. Solutions of (4.1) with A=3 and the initial conditions

3 2 1 0 3 26, 4, 2, 8, 1, 4x x x x y y          , 1 2y  and 0 3y 

-20 0 20 40 60 80 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n

x(
n)

,y
(n

)

x(n),A=3
M(n),A=3
m(n),A=3
y(n),A=3

Figure 4.2. Solutions of (4.1) with 3A , 0 0 0 00.9, 0.9n m N M    and the initial conditions

3 2 1 0 3 20.01, 0.02, 0.01, 0.03, 0.2, 0.4x x x x y y          , 1 0.8y  and 0 0.7y 
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-20 0 20 40 60 80 100
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0.2
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0.4
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n

x(
n)

,y
(n

)

x(n) A=5
M(n) A=5
m(n) A=5
y(n)  A=5

Figure 4.3. Solutions of (4.2) with 5A  , 0 0 0 00.3, 0.5n m N M    and the initial conditions

3 2 1 0 3 20.2, 0.06, 0.4, 0.08, 0.02, 0.04x x x x y y          , 1 0.01y  and 0 0.1y 
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-50

0

50

100
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200

n

x(
n)

/y
(n

)

x(n)A=0.5
y(n)A=0.5

Figure 4.4. Solutions of (4.3) with 0.5A  , and the initial conditions

3 2 1 0 3 21.6, 1, 1.5, 1.8, 1, 4x x x x y y          , 1 2y  and 0 3y 
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5. Conclusions

This paper presents the use of a variational iteration method for systems of nonlinear
difference equations. This technique is a powerful tool for solving various difference
equations and can also be applied to other nonlinear differential equations in mathematical
physics. The numerical simulations show that this method is an effective and convenient one.
The variational iteration method provides an efficient method to handle the nonlinear
structure. Computations are performed using the software package MATLAB7.0.

We have dealt with the problem of global asymptotic stability analysis for a class of
nonlinear high order difference equations. The general sufficient conditions have been
obtained to ensure the existence, unstability and global asymptotic stability of the equilibrium
point for the nonlinear difference equations. These criteria generalize and improve some
known results. In particular, some illustrate examples are given to show the effectiveness of
the obtained results. In addition, the sufficient conditions that we obtained are very simple,
which provide flexibility for the application and analysis of nonlinear difference equation.
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Abstract

In this paper we are interested to give the Hadamard inequality for n-times differ-

entiable convex functions via Caputo fractional derivatives. We also find bounds of a

difference of this inequality.
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1 introduction

Fractional calculus was mainly a study kept for the finest minds in mathematics. The

history of fractional calculus is as old as the history of differential calculus. It does indeed

provide several potentially useful tools for solving differential and integral equations, and

various other problems involving special functions of mathematical physics as well as their

extensions and generalizations in one and more variables. Fourier, Eulern and Laplace

are among those mathematicians who showed a casual interest by fractional calculus and
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mathematical consequences. A lot of them established definitions by means of their own

notion and style. Most renowned of these definitions are the Grunwald-Letnikov and

Riemann-Liouville definitions [6–8].

In the following we give the definition of Caputo fractional derivatives [6].

Definition 1.1. Let α > 0 and α /∈ {1, 2, 3, ...}, n = [α] + 1, f ∈ ACn[a, b], the space

of functions having nth derivatives absolutely continuous. The right-sided and left-sided

Caputo fractional derivatives of order α are defined as follows:

(CDα
a+f)(x) =

1

Γ(n − α)

∫ x

a

f (n)(t)

(x − t)α−n+1
dt, x > a (1.1)

and

(CDα
b−f)(x) =

(−1)n

Γ(n − α)

∫ b

x

f (n)(t)

(t − x)α−n+1
dt, x < b. (1.2)

If α = n ∈ {1, 2, 3, ...} and usual derivative f (n)(x) of order n exists, then Caputo fractional

derivative (CDα
a+f)(x) coincides with f (n)(x), whereas (CDα

b−f)(x) coincides with f (n)(x)

with exactness to a constant multiplier (−1)n. In particular we have

(CD0
a+f)(x) = (CD0

b−f)(x) = f(x)

where n = 1 and α = 0.

Definition 1.2. ([7]) Let f ∈ L[a, b]. Then Riemann-Liouville fractional integrals of f of

order α are defined as follows

Iα
a+f(x) =

1

Γ(α)

∫ x

a

(x − t)α−1f(t)dt, x > a

and

Iα
b−f(x) =

1

Γ(α)

∫ b

x

(t − x)α−1f(t)dt, x < b.

In [10], Sarikaya et al. proved following Hadamard-type inequalities for Riemann-

Liouville fractional integrals:

Theorem 1.3. Let f : [a, b] → R be a positive function with 0 ≤ a < b and f ∈ L1[a, b]. If

f is a convex function on [a,b], then the following inequalities for fractional integrals hold

f

(

a + b

2

)

≤
2α−1Γ(α + 1)

(b − a)α

[

Iα
( a+b

2
)+

f(b) + Iα
( a+b

2
)−

f(a)
]

≤
f(a) + f(b)

2

(1.3)

with α > 0.
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Theorem 1.4. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If |f ′|q

is convex on [a, b] for q ≥ 1, then the following inequality for fractional integrals holds

∣

∣

∣

∣

2α−1Γ(α + 1)

(b − a)α
[Iα

( a+b
2

)+
f(b) + Iα

( a+b
2

)−
f(a)]− f

(

a + b

2

)
∣

∣

∣

∣

≤
b − a

4(α + 1)

(

1

2(α + 2)

)
1

q [
(

(α + 1)|f ′(a)|q + (α + 3)|f ′(b)|q
)

1

q

+
(

(α + 3)|f ′(a)|q + (α + 1)|f ′(b)|q
)

1

q

]

.

(1.4)

with α > 0.

Theorem 1.5. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If |f ′|q

is convex on [a, b] for q > 1, then the following inequality for fractional integral holds

∣

∣

∣

∣

2α−1Γ(α + 1)

(b − a)α
[Iα

( a+b
2

)+
f(b) + Iα

( a+b
2

)−
f(a)] − f

(

a + b

2

)
∣

∣

∣

∣

≤
b − a

4

(

1

αp + 1

)
1

p

(

(

|f ′(a)|q + 3|f ′(b)|q

4

)
1

q

+

(

3|f ′(a)|q + |f ′(b)|q

4

)
1

q

)

≤
b − a

4

(

4

αp + 1

)
1

p

[|f ′(a)|+ |f ′(b)|],

(1.5)

where 1
p + 1

q = 1.

In recent days many researchers have focused their attention in establishing inequalities

of Hadamard type via utilization of fractional integral operators, (see, [1–5, 9]) and refer-

ences therein. In this paper we are interested to give versions of inequalities (1.3), (1.4)

and (1.5) for n-times differentiable convex functions via Caputo fractional derivatives.

In the whole paper Cn[a, b] denotes the space of n-times differentiable functions such

that f (n) are continuous on [a, b].

2 Hadamard-type inequalities for Caputo fractional deriva-

tives

In this section we give a version of the Hadamard inequality via Caputo fractional deriva-

tives. First we prove the following lemma.

Lemma 2.1. Let g : [a, b] → R be a function such that g ∈ Cn[a, b], also let g(n) is

integrable and symmetric to a+b
2 . Then we have

(CDα
a+g)(b) = (−1)n(CDα

b−g)(a)

=
1

2
[(CDα

a+g)(b)+ (−1)n(CDα
b−g)(a)].
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Proof. By symmetricity of g(n) we have g(n)(a+b−x) = g(n)(x), where x ∈ [a, b]. Replacing

x with a + b − x in the following integral we have

(CDα
a+g)(b) =

1

Γ(n − α)

∫ b

a

g(n)(x)

(b − x)α−n+1
dx

=
1

Γ(n − α)

∫ b

a

g(n)(a + b − x)

(x − a)α−n+1
dx

=
1

Γ(n − α)

∫ b

a

g(n)(x)

(x − a)α−n+1
dx

= (−1)n(CDα
b−g)(a).

Theorem 2.2. Let f : [a, b] → R be a positive function with 0 ≤ a < b and f ∈ Cn[a, b].

If f (n) is a convex function on [a, b], then the following inequalities for Caputo fractional

derivatives hold

f (n)

(

a + b

2

)

≤
2n−α−1Γ(n − α + 1)

(b − a)n−α

[

(CDα

( a+b
2

)+
f)(b) + (−1)n(CDα

( a+b
2

)−
f)(a)

]

(2.1)

≤
f (n)(a) + f (n)(b)

2
.

Proof. From convexity of f (n) we have

f (n)

(

x + y

2

)

≤
f (n)(x) + f (n)(y)

2
.

Setting x = t
2a + (2−t)

2 b, y = (2−t)
2 a + t

2b for t ∈ [0, 1]. Then x, y ∈ [a, b] and above

inequality gives

2f (n)

(

a + b

2

)

≤ f (n)

(

t

2
a +

2 − t

2
b

)

+ f (n)

(

2 − t

2
a +

t

2
b

)

,

multiplying both sides of above inequality with tn−α−1 and integrating over [0, 1] we have

2f (n)

(

a + b

2

)
∫ 1

0

tn−α−1dt

≤

∫ 1

0
tn−α−1f (n)

(

t

2
a +

2 − t

2
b

)

dt +

∫ 1

0
tn−α−1f (n)

(

2 − t

2
a +

t

2
b

)

dt

=
2n−αΓ(α)

(b − a)n−α

[

(CDα
( a+b

2
)+

f)(b) + (−1)n(CDα
( a+b

2
)−

f)(a)
]

,

from which one can have

f (n)

(

a + b

2

)

≤
2n−α−1Γ(n − α + 1)

(b − a)n−α

[

(CDα

( a+b
2

)+
f)(b) + (−1)n(CDα

( a+b
2

)−
f)(a)

]

. (2.2)
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On the other hand convexity of f (n) gives

f (n)

(

t

2
a +

2 − t

2
b

)

+ f (n)

(

2 − t

2
a +

t

2
b

)

≤
t

2
f (n)(a) +

2 − t

2
f (n)(b) +

2 − t

2
f (n)(a) +

t

2
f (n)(b),

multiplying both sides of above inequality with tn−α−1 and integrating over [0, 1] we have

∫ 1

0
tn−α−1f (n)

(

t

2
a +

2 − t

2
b

)

dt +

∫ 1

0
tn−α−1f (n)

(

2 − t

2
a +

t

2
b

)

dt

≤
[

f (n)(a) + f (n)(b)
]

∫ 1

0
tn−α−1dt,

from which one can have

2n−α−1Γ(n − α + 1)

(b − a)n−α

[

(CDα
( a+b

2
)+

f)(b) + (−1)n(CDα
( a+b

2
)−

f)(a)
]

≤
f (n)(a) + f (n)(b)

2
.

(2.3)

Combining inequality (2.2) and inequality (2.3) we get inequality (2.1).

3 Caputo fractional inequalities related to the Hadamard

inequality

In this section we give the bounds of a difference of the Hadamard inequality proved in

previous section. For our results we use the following lemma.

Lemma 3.1. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If

f ∈ Cn+1 [a, b], then the following equality for Caputo fractional derivatives holds

2n−α−1Γ(n − α + 1)

(b − a)n−α

[

(CDα
( a+b

2
)+

f)(b) + (−1)n(CDα
( a+b

2
)−

f)(a)
]

− f (n)

(

a + b

2

)

=
b − a

4

[
∫ 1

0

tn−αf (n+1)

(

t

2
a +

2 − t

2
b

)

dt

−

∫ 1

0
tn−αf (n+1)

(

2 − t

2
a +

t

2
b

)

dt

]

.

(3.1)
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Proof. One can note that

b − a

4

[
∫ 1

0

tn−αf (n+1)

(

t

2
a +

2 − t

2
b

)

dt

]

=
b − a

4

[

tn−α 2

a − b
f (n)

(

t

2
a +

2 − t

2
b

)

|10

−

∫ 1

0
αtn−α−1 2

a − b
f (n)

(

t

2
a +

2− t

2
b

)]

=
b − a

4

[

−
2

b − a
f (n)

(

a + b

2

)

−
2α

(a − b)

∫ a+b
2

b

(

2

b − a
(b − x)

)n−α−1 2

a − b
f (n)(x)dx

]

=
b − a

4

[

−
2

b − a
f (n)

(

a + b

2

)

+
2n−α+1Γ(n − α + 1)

(b − a)n−α+1
(−1)n(CDα

( a+b
2

)−
f)(b)

]

.

(3.2)

Similarly

−
b − a

4

[
∫ 1

0
tn−αf (n+1)

(

2 − t

2
a +

t

2
b

)

dt

]

= −
b − a

4

[

2

b − a
f (n)

(

a + b

2

)

−
2n−α+1Γ(n − α + 1)

(b − a)n−α+1
(CDα

( a+b
2

)+
f)(a)

]

.

(3.3)

Combining (3.2) and (3.3) one can have (3.1).

Using the above lemma we give the following Caputo fractional Hadamard-type in-

equality.

Theorem 3.2. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b and

f ∈ Cn+1 [a, b]. If |f (n+1)|q is convex on [a, b] for q ≥ 1, then the following inequality for

Caputo fractional derivatives holds

∣

∣

∣

∣

2n−α−1Γ(n − α + 1)

(b − a)n−α

[

(CDα

( a+b
2

)+
f)(b) + (−1)n(CDα

( a+b
2

)−
f)(a)

]

−f (n)

(

a + b

2

)
∣

∣

∣

∣

≤
b − a

4(n − α + 1)

(

1

2(n− α + 2)

)
1

q [[

(n − α + 1) |f (n+1)(a)|q

+ (n − α + 3) |f (n+1)(b)|q
]

1

q
+
[

(n − α + 3) |f (n+1)(a)|q

+ (n − α + 1) |f (n+1)(b)|q
]

1

q

]

.
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Proof. From Lemma 3.1 and convexity of |f (n+1)| and for q = 1 we have

∣

∣

∣

∣

2n−α−1Γ(n − α + 1)

(b − a)n−α

[

(CDα
( a+b

2
)+

f)(b) + (CDα
( a+b

2
)−

f)(a)
]

−f (n)

(

a + b

2

)
∣

∣

∣

∣

≤
b − a

4

∫ 1

0
tn−α

(
∣

∣

∣

∣

f (n+1)

(

t

2
a +

2− t

2
b

)
∣

∣

∣

∣

dt +

∣

∣

∣

∣

f (n+1)

(

2 − t

2
a +

t

2
b

)
∣

∣

∣

∣

)

dt.

=
b − a

4 (n − α + 1)

[

|f (n+1)(a)| + |f (n+1)(b)|
]

.

For q > 1 using Lemma 3.1 we have

∣

∣

∣

∣

2n−α−1Γ(n − α + 1)

(b − a)n−α
[(CDα

( a+b
2

)+
f)(b) + (−1)n(CDα

( a+b
2

)−
f)(a)]

−f

(

a + b

2

)∣

∣

∣

∣

≤
b − a

4

[
∫ 1

0

tn−α

∣

∣

∣

∣

f (n+1)

(

t

2
a +

2− t

2
b

)∣

∣

∣

∣

dt

+

∫ 1

0

tn−α

∣

∣

∣

∣

f (n+1)

(

2− t

2
a +

t

2
b

)
∣

∣

∣

∣

dt

]

.

Using power mean inequality we get

∣

∣

∣

∣

2n−α−1Γ(n − α + 1)

(b − a)n−α

[

(cDα
( a+b

2
)+

f)(b) + (−1)n(CDα
( a+b

2
)−

f)(a)
]

−f (n)

(

a + b

2

)
∣

∣

∣

∣

≤
b − a

4

(

1

n − α + 1

)
1

p

[

[
∫ 1

0
tn−α

∣

∣

∣

∣

f (n+1)

(

t

2
a +

2 − t

2
b

)∣

∣

∣

∣

q

dt

]

1

q

+

[
∫ 1

0
tn−α

∣

∣

∣

∣

f (n+1)

(

2 − t

2
a +

t

2
b

)∣

∣

∣

∣

q

dt

]

1

q

]

.
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Convexity of |f (n+1)|q gives

∣

∣

∣

∣

2n−α−1Γ(n − α + 1)

(b − a)n−α

[

(CDα

( a+b
2

)+
f)(b) + (−1)n(CDα

( a+b
2

)−
f)(a)

]

−f (n)

(

a + b

2

)
∣

∣

∣

∣

≤
b − a

4

(

1

n − α + 1

)
1

p

[

[
∫ 1

0
tn−α

(

t

2
|f (n+1)(a)|q +

2 − t

2
|f (n+1)(b)|q

)

dt

]

1

q

+

[
∫ 1

0
tn−α

(

2 − t

2
|f (n+1)(a)|q +

t

2
|f (n+1)(b)|q

)

dt

]

1

q

]

=
b − a

4

(

1

n − α + 1

)
1

p





[

|f (n+1)(a)|q

2(n − α + 2)
+

|f (n+1)(b)|q

n − α
k

+ 1
−

|f (n+1)(b)|q

2(n − α + 2)

]
1

q

+

[

|f (n+1)(a)|q

n − α + 1
−

|f (n+1)(a)|q

2(n − α + 2)
+

|f (n+1)(b)|q

2(n − α + 2)

]
1

q



 ,

which after a little computation gives the required result.

Theorem 3.3. Let f : [a, b] → R be a function such that f ∈ Cn+1 [a, b], a < b. If |f (n+1)|q

is convex on [a, b] for q > 1, then the following inequality for Caputo fractional derivatives

holds

∣

∣

∣

∣

2n−α−1Γ(n − α + 1)

(b − a)n−α

[

(CDα

( a+b
2

)+
f)(b) + (−1)n(CDα

( a+b
2

)−
f)(a)

]

−f (n)

(

a + b

2

)∣

∣

∣

∣

≤
b − a

4

(

1

np − αp + 1

)
1

p





(

|f (n+1)(a)|q + 3|f (n+1)(b)|q

4

)
1

q

+

(

3|f (n+1)(a)|q + |f (n+1)(b)|q

4

)
1

q





≤
b − a

4

(

4

3(np − αp + 1)

)
1

p

[|f (n+1)(a)|+ |f (n+1)(b)|],

(3.4)

with 1
p

+ 1
q

= 1.
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Proof. From Lemma 3.1 we have

∣

∣

∣

∣

2n−α−1Γ(n − α + 1)

(b − a)n−α

[

(CDα

( a+b
2

)+
f)(b) + (−1)n(CDα

( a+b
2

)−
f)(a)

]

−f (n)

(

a + b

2

)
∣

∣

∣

∣

≤
b − a

4

[
∫ 1

0
tn−α

∣

∣

∣

∣

f (n+1)

(

t

2
a +

2 − t

2
b

)
∣

∣

∣

∣

dt

+

∫ 1

0
tn−α

∣

∣

∣

∣

f (n+1)

(

2 − t

2
a +

t

2
b

)
∣

∣

∣

∣

dt

]

.

From Hölder’s inequality we get

∣

∣

∣

∣

2n−α−1Γ(n − α + 1)

(b − a)n−α

[

(CDα

( a+b
2

)+
f)(b) + (−1)n(CDα

( a+b
2

)−
f)(a)

]

−f (n)

(

a + b

2

)
∣

∣

∣

∣

≤
b − a

4

[

[
∫ 1

0
tnp−αpdt

]

1

p
[
∫ 1

0

∣

∣

∣

∣

f (n+1)

(

t

2
a +

2 − t

2
b

)
∣

∣

∣

∣

q

dt

]

1

q

+

[
∫ 1

0
tnp−αpdt

]

1

p
[
∫ 1

0

∣

∣

∣

∣

f (n+1)

(

2 − t

2
a +

t

2
b

)
∣

∣

∣

∣

q

dt

]

1

q

]

.

Convexity of |f (n+1)|q gives

∣

∣

∣

∣

2n−α−1Γ(n − α + 1)

(b − a)n−α

[

(CDα
( a+b

2
)+

f)(b) + (−1)n(CDα
( a+b

2
)−

f)(a)
]

−f (n)

(

a + b

2

)
∣

∣

∣

∣

≤
b − a

4

(

1

np − αp + 1

)
1

p

[

[
∫ 1

0

(

t

2
|f (n+1)(a)|q +

2 − t

2
|f (n+1)(b)|q

)

dt

]

1

q

+

[
∫ 1

0

(

2− t

2
|f (n+1)(a)|q +

t

2
|f (n+1)(b)|q

)

dt

]

1

q

]

=
b − a

4

(

1

np − αp + 1

)
1

p





[

|f (n+1)(a)|q + 3|f (n+1)(b)|q

4

]
1

q

+

[

3|f (n+1)(a)|q + |f (n+1)(b)|q

4

]
1

q



 .
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For second inequality of (3.4) we use Minkowski’s inequality as follows
∣

∣

∣

∣

2n−α−1Γ(n − α + 1)

(b − a)n−α

[

(CDα
( a+b

2
)+

f)(b) + (−1)n(CDα
( a+b

2
)−

f)(a)
]

−f (n)

(

a + b

2

)
∣

∣

∣

∣

≤
b − a

16

(

4

np − αp + 1

)
1

p
[

[

|f (n+1)(a)|q + 3|f (n+1)(b)|q
]

1

q

+
[

3|f (n+1)(a)|q + |f (n+1)(b)|q
]

1

q

]

≤
b − a

16

(

4

np − αp + 1

)
1

p

(3
1

q + 1)(|f (n+1)(a)|+ |f (n+1)(b)|)

≤
b − a

4

(

4

3(np− αp + 1)

)
1

p

(|f (n+1)(a)|+ |f (n+1)(b)|).
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Abstract

Hesitant fuzzy information systems are generalized types of traditional information

systems. First, a dominance relation is defined by the score function of hesitant

fuzzy value in hesitant fuzzy information systems. By introducing the dominance

relation to hesitant fuzzy information systems, we then establish a dominance-based

rough set model by replacing the indiscernibility relation in classic rough set theory

with the dominance relation, and develop a ranking approach for all objects based

on dominance classes. Furthermore, to simplify the knowledge representation, we

provide an attribute reduction approach to eliminate the redundant information. And

an example is provided to illustrate the validity of this approach.

Key words: Dominance relation; Dominance-based rough set; Hesitant fuzzy in-

formation systems; Reduction

1 Introduction

As a mathematical approach to handle imprecision, vagueness and uncertainty in data

analysis, rough set theory introduced by Pawlak [22, 23] is a valid means of granular

computing [24]. In Pawlak’s rough set model, the equivalence relation is a key tool and

can represent information systems or decision tables. However, the equivalence relation

is a very stringent condition that may limit the application of rough sets in practical

problems. Therefore many researchers have generalized the notion of Pawlak’s rough

set by replacing the equivalence relation with other binary relations. It may be a fuzzy,

intuitionistic fuzzy, interval-valued fuzzy, hesitant fuzzy or other indiscernibility one within

the generalized rough sets [1, 3, 4, 15,21,27,31,34,39,40,42–51,54,55,59].

The aforementioned rough sets, such as fuzzy rough set [1,3,21,27,34,39], intuitionistic

fuzzy rough set [15, 54, 55], hesitant fuzzy rough set [4, 40, 46], and so on, do not consider

∗Corresponding author. Address: School of Mathematics and Computer Science Northwest MinZu
University, LanZhou, Gansu, 730030, P.R.China. E-mail:lingdianstar@163.com
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attributes with preference-ordered domains. However, in many real-life situations, we are

always faced with some problems in which the ordering of properties of the considered

attributes plays a key role. In such case, to take into consideration the ordering properties

of criteria, Greco et al. [8–11] generalized the notion of Pawlak’s rough set and initiated the

dominance-based rough sets approach (DRSA) by replacing the indiscernibility relation

with a dominance relation. In DRSA, the knowledge approximated is a collection of

upward and downward unions of classes and the dominance classes are sets of objects

defined by a dominance relation in which condition attributes are the criteria and classes

are preference ordered. Up to now, many fruitful results in DRSA have been achieved

[5, 12,13,25,29,30,52].

Hesitant fuzzy (HF) set theory, initiated by Torra and Narukawa [32] and Torra [33]

as one of the extensions of Zadeh’s fuzzy set [56], permits the membership degree of an

element to a set having several possible different values. Because HF set can express the

hesitant information more comprehensively than other extensions of fuzzy set, it has been

applied in dealing with lots of decision making problems successfully [2,6,17,18,28,35–38,

57]. Although rough sets and HF sets both capture particular facets of the same notion-

imprecision, studies on the combination of rough set theory and HF set theory are rare.

In [40], Yang et al. proposed the concept of HF rough sets by integrating HF sets with

rough sets. However, Zhang et al. [46] pointed out that hesitant fuzzy subset based on the

hesitant fuzzy rough sets is not necessarily antisymmetric. To remedy this defect, they

introduced an HF rough set over two universes and give a new decision making approach

in uncertainty environment using the model. Subsequently, Zhang et al. [47] extended

the rough set into interval-valued hesitant fuzzy environment and introduced the concept

of interval-valued hesitant fuzzy rough sets. In typical hesitant fuzzy background, Zhang

and Yang [53] studied the constructive approach to rough set approximation operators and

proposed a typical hesitant fuzzy rough set. By combining the hesitant fuzzy linguistic

term set and rough set, Zhang et al. [41] developed a general framework for the study of

hesitant fuzzy linguistic rough sets over two universes.

On the one hand, hybrid models integrating an HF set with a rough set are rarely

developed despite the above mentioned research efforts. Knowledge reduction is also an

important task in classic and generalized rough set theory. However, the issue has rarely

been discussed under the hesitant fuzzy environment. On the other hand, it is well known

that the rough set data analysis starts from information systems which contain data about

objects of interest, characterized by a finite set of attributes. As an important type of data

tables, information systems on decision problems have been widely studied [7, 14, 16, 19,

20, 25, 26]. However, in general, we may not have enough expertise or possess a sufficient

level of knowledge to precisely express our preferences over the objects by using a value or

a single term, and then, we may usually have a certain hesitancy between a few different

values. In such a case, the traditional information system can not express our preferences

or assessments by only a single term or value. Considering the facts, it is natural for
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us to investigate information systems in the context of hesitant fuzzy settings which is

called hesitant fuzzy information systems. So how to make a decision by a dominance

relation is an urgent need in hesitant fuzzy information systems. The aim of this paper is

to introduce a dominance relation to hesitant fuzzy information systems and establish a

rough set approach by replacing the indiscernibility relation with the dominance relation.

Then we develop a reduction approach in hesitant fuzzy ordered information systems for

eliminating redundant information from the perspective of the ordering of objects.

The rest of the paper is organized as follows. In Section 2, by reviewing some basic

concepts, a dominance relation is introduced to hesitant fuzzy information systems and

some properties are discussed. Section 3 establishes a dominance-based rough set approach

in hesitant fuzzy ordered information systems by replacing the indiscernibility relation with

a dominance relation. In Section 4, a ranking approach is established through the notions

of dominance degree and whole dominance degree. Section 5 proposes a reduction approach

in hesitant fuzzy ordered information system for eliminating redundant information from

the perspective of the ordering of objects. Finally, we conclude the paper in Section 6.

2 Dominance relation in hesitant fuzzy information systems

In [32,33], Torra and Narukawa introduced the notions related to HF sets.

Definition 2.1 ( [32,33]) Let U be a fixed set, a hesitant fuzzy set A on U is in terms

of a function hA(x) that when applied to U returns a subset of [0,1].

To be easily understood, Xia and Xu [35] denoted the HF set by a mathematical

symbol:

A = {< x, hA(x) > |x ∈ U},
where hA(x) is a set of some different values in [0,1], standing for the possible membership

degrees of the element x ∈ U to A.

For convenience, Xia and Xu [35] called hA(x) an HF element, and denoted the set of

all HF sets on U by HF (U).

To compare the HF elements, Xia and Xu [35] defined the following comparison laws:

Definition 2.2 ( [35]) For an HF element h, s(h) = 1
#h

∑
γ∈h γ is called the score func-

tion of h, where #h is the number of the elements in h. For two HF elements h1 and h2,

if s(h1) > s(h2), then h1 � h2; if s(h1) = s(h2), then h1 = h2.

An HF information system is a quadruple I = (U,AT, V, f), where

• U is a non-empty finite set of objects called the universe;

• AT is a non-empty finite set of attributes;

• V is the domain of all attributes, i.e., V = VAT =
⋃
a∈AT Va;

• f : U×AT −→ V is a total function such that f(x, a) ∈ Va for every a ∈ AT, x ∈ U , called
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Table 1: An HF information system
U a1 a2 a3 a4 a5
x1 {0.4,0.6,0.7} {0.4,0.5,0.6} {0.3,0.4,0.6} {0.1,0.3,0.4} {0.4,0.5,0.8}
x2 {0.4,0.5,0.6} {0.0,0.4,0.5} {0.5,0.6,0.7} {0.4,0.6,0.7} {0.2,0.3,0.4}
x3 {0.5,0.6,0.7} {0.5,0.7,0.8} {0.6,0.8,0.9} {0.5,0.7,0.8} {0.6,0.8,0.9}
x4 {0.4,0.7,0.8} {0.4,0.6,0.7} {0.5,0.7,0.8} {0.8,0.9,1.0} {0.7,0.8,0.9}
x5 {0.4,0.6,0.8} {0.4,0.5,0.8} {0.4,0.6,0.7} {0.5,0.7,0.8} {0.4,0.6,0.8}
x6 {0.2,0.3,0.4} {0.2,0.3,0.6} {0.3,0.4,0.5} {0.4,0.6,0.9} {0.3,0.6,0.7}
x7 {0.1,0.4,0.5} {0.5,0.6,0.7} {0.4,0.6,0.7} {0.3,0.7,0.8} {0.6,0.8,0.9}
x8 {0.2,0.5,0.7} {0.2,0.6,0.8} {0.3,0.4,0.5} {0.4,0.6,0.8} {0.4,0.5,0.8}

an information function, where Va is a set of HF elements. Denote as f(x, a) = ha(x),

then we call it the HF value of x under the attribute a. In particular, if the information

function f(x, a) contains only one real number, the HF information system degenerates

into a traditional information system [29].

Example 2.3 An HF information system is given in Table 1, where U = {x1, x2, x3, x4, x5,
x6, x7, x8}, AT = {a1, a2, a3, a4, a5}.

In practical decision analysis, we always consider a dominance relation between objects

that are possibly dominant in terms of values of an attributes set in an HF information

system. Generally, an increasing preference and a decreasing preference can be considered

by a decision maker. If the domain of an attribute is ordered by a decreasing or increasing

preference, then the attribute is a criterion.

Definition 2.4 An HF information system is called an HF ordered information system

(HFOIS) if all attributes are criterions.

On the basis of Definition 2.2, we develop an approach to rank two objects whose

attribute characters are described by HF values.

Definition 2.5 Let I = (U,AT, V, f) be an HFOIS. For x, y ∈ U , denote as

x �A y ⇐⇒ ∀a ∈ A, f(x, a) � f(y, a)⇐⇒ ∀a ∈ A, f(x, a) � f(y, a) ∨ f(x, a) = f(y, a),

then we say that x dominates y with respect to A ⊆ AT if x �A y, denoted by xR�Ay. Where

R�A = {(y, x) ∈ U × U |y �A x} is called a dominance relation in HFOIS. Analogously, we

call the relation R�A a dominated relation in HFOIS, which can be defined as follows:

R�A = {(y, x) ∈ U × U |x �A y}.

From Definitions 2.5 and 2.2, we can easily obtain the following theorem.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.6, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

976 Haidong Zhang ET AL 973-987



Theorem 2.6 Let I = (U,AT, V, f) be an HFOIS and A ⊆ AT , then

(1) R�A and R�A are reflexive, transitive and unsymmetric;

(2) R�A =
⋂
a∈AR�{a}, R

�
A =

⋂
a∈AR�{a}.

The dominance class induced by the dominance relation R�A is the set of objects dom-

inating x, i.e.,

[x]�A = {y ∈ U |f(y, a) � f(x, a) ∨ f(y, a) = f(x, a)(∀a ∈ A)}
= {y ∈ U |(y, x) ∈ R�A},

where [x]�A describes the set of objects that may dominate x and is called the A-dominating

set with respect to x ∈ U .

Similarly, the dominance class induced by the dominated relation R�A is the set of

objects dominated by x, i.e.,

[x]�A = {y ∈ U |f(x, a) � f(y, a) ∨ f(x, a) = f(y, a)(∀a ∈ A)}
= {y ∈ U |(y, x) ∈ R�A},

where [x]�A describes the set of objects that may be dominated by x and is called the

A-dominated set with respect to x ∈ U .

Let U/R�A denote classification on the universe, which is the family set {[x]�A|x ∈ U}.
Any element from U/R�A is called a dominance class with respect to A. Dominance classes

in U/R�A do not constitute a partition of U , but constitute a covering of U .

In the text that follows, without loss of generality, we adopt the dominance relation

R�A for investigating HFOIS and consider attributes with increasing preference.

Theorem 2.7 Let I = (U,AT, V, f) be an HFOIS and A,B ⊆ AT .

(1) If B ⊆ A ⊆ AT, then R�B ⊇ R�A ⊇ R�AT .

(2) If B ⊆ A ⊆ AT, then [x]�B ⊇ [x]�A ⊇ [x]�AT .

(3) If xj ∈ [xi]
�
A, then [xj ]

�
A ⊆ [xi]

�
A and [xi]

�
A =

⋃
{[xj ]�A : xj ∈ [xi]

�
A}.

(4) [xi]
�
A = [xj ]

�
A iff f(xi, a) = f(xj , a)(∀a ∈ A).

Proof. (1) and (2) are straightforward.

(3) If xj ∈ [xi]
�
A, by Definition 2.5, then f(xj , a) � f(xi, a) for all a ∈ A. Similarly, for

all x ∈ [xj ]
�
A, we have f(x, a) � f(xj , a). According to the transitivity of the dominance

relation R�A, then f(x, a) � f(xi, a), i.e. x ∈ [xi]
�
A. Thus [xj ]

�
A ⊆ [xi]

�
A. Consequently,

[xi]
�
A =

⋃
{[xj ]�A : xj ∈ [xi]

�
A}.

(4) “⇒” Assume that [xi]
�
A = [xj ]

�
A, then [xi]

�
A ⊆ [xj ]

�
A. Based on the result (3), for

all a ∈ A, we have f(xi, a) � f(xj , a). Similarly, we can conclude that f(xj , a) � f(xi, a).

Consequently, f(xi, a) = f(xj , a)(∀a ∈ A).

“⇐” It can be directly derived from the definition of the set of objects dominating x.

2
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Example 2.8 (Continued from Example 2.3). Compute the classification induced by the

dominance relation R�AT in Table 1.

From Table 1, we have

U/R�AT = {[x1]�AT , [x2]
�
AT , . . . , [x8]

�
AT },

where

[x1]
�
AT = {x1, x3, x4, x5}, [x2]

�
AT = {x2, x3, x4}, [x3]

�
AT = {x3}, [x4]

�
AT = {x4},

[x5]
�
AT = {x3, x4, x5}, [x6]

�
AT = {x3, x4, x5, x6}, [x7]

�
AT = {x3, x7}, [x8]

�
AT = {x3, x4, x5, x8}.

From Example 2.8, it is evident that dominance classes in U/R�AT do not constitute a

partition of U , but constitute a covering of U .

3 Rough set approach to HFOIS

In this section, we shall investigate the problems of set approximation and roughness

measure with respect to the dominance relation R�A in HFOIS.

Definition 3.1 Let I = (U,AT, V, f) be an HFOIS. For any X ⊆ U and A ⊆ AT , the

lower and upper approximations of the set X with respect to the dominance relation R�A
are defined as follows:

R�A(X) = {x ∈ U |[x]�A ⊆ X},

R�A(X) = {x ∈ U |[x]�A ∩X 6= ∅}.

From Definition 3.1, we can easily obtain the following theorem.

Theorem 3.2 Let I = (U,AT, V, f) be an HFOIS and X,Y ⊆ U , then

(1) R�A(X) =∼ R�A(∼ X), R�A(X) =∼ R�A(∼ X);

(2) R�A(X) ⊆ X ⊆ R�A(X);

(3) A ⊆ AT =⇒ R�A(X) ⊆ R�AT (X), R�A(X) ⊇ R�AT (X);

(4) X ⊆ Y =⇒ R�A(X) ⊆ R�A(Y ), R�A(X) ⊆ R�A(Y );

(5) R�A(X ∩ Y ) = R�A(X) ∩ R�A(Y ), R�A(X ∪ Y ) = R�A(X) ∪ R�A(Y );

(6) R�A(X ∪ Y ) ⊇ R�A(X) ∪ R�A(Y ), R�A(X ∩ Y ) ⊆ R�A(X) ∩ R�A(Y );

(7) R�A(∅) = R�A(∅) = ∅, R�A(U) = R�A(U) = U ;

(8) R�A(R�A(X)) = R�A(X), R�A(R�A(X)) = R�A(X).

Theorem 3.3 Let I = (U,AT, V, f) be an HFOIS and A ⊆ AT . If R�A = R�AT , then

R�A(X) = R�AT (X) and R�A(X) = R�AT (X).
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Proof. It is directly derived from Definitions 2.5 and 3.1.

2

Generally speaking, the uncertainty of a set is due to the existence of the borderline

region. The wider the borderline region of a set is, the lower the accuracy of the set is.

To express the idea precisely, some basic measures (accuracy and roughness) are defined

to depict the quality of the rough approximation of a set. In the following, we introduce

the concepts of roughness measure and accuracy measure to measure the imprecision of

rough sets induced by dominance relation R�A in HFOIS.

Definition 3.4 Let I = (U,AT, V, f) be an HFOIS, X ⊆ U and A ⊆ AT . Then the

roughness measure ρ
R�
A

X of the set X with respect to the dominance relation R�A is defined

as follows:

ρ
R�
A

X = 1−
|R�A(X)|

|R�A(X)|
,

where | · | denotes the cardinality of a set. If R�A(X) = ∅, we define ρ
R�
A

X = 0. η
R�
A

X =
|R�

A(X)|

|R�
A(X)|

is referred to as the accuracy measure of X with respect to the dominance relation R�A.

According to Definition 3.4 and Theorem 3.2(2), we observe that 0 ≤ ρ
R�
A

X ≤ 1 and

0 ≤ ηR
�
A

X ≤ 1.

Obviously, by Theorem 3.3 and Definition 3.4, we can draw the following conclusion.

Theorem 3.5 Let I = (U,AT, V, f) be an HFOIS and A ⊆ AT . If R�A = R�AT , then

ρ
R�
A

X = ρ
R�
AT

X and η
R�
A

X = η
R�
AT

X .

Theorem 3.6 Let I = (U,AT, V, f) be an HFOIS, X ⊆ U and A ⊆ AT , then the follow-

ing holds:

(1) ρ
R�
AT

X ≤ ρR
�
A

X ,

(2) η
R�
AT

X ≥ ηR
�
A

X .

Proof. (1) Since A ⊆ AT , by Theorem 3.2(3) we have R�A(X) ⊆ R�AT (X) and R�A(X) ⊇

R�AT (X). It implies that
|R�

A(X)|

|R�
A(X)|

≤
|R�

AT (X)|

|R�
AT (X)|

. According to Definition 3.4, then ρ
R�
A

X =

1−
|R�

A(X)|

|R�
A(X)|

≥ 1−
|R�

AT (X)|

|R�
AT (X)|

= ρ
R�
AT

X , i.e., ρ
R�
AT

X ≤ ρR
�
A

X .

(2) It is directly derived from the result (1) and Definition 3.4. 2

Example 3.7 Consider HFOIS in Table 1. Let A = {a1, a4, a5} ⊆ AT and X = {x2, x3, x5, x7}.
Now we compute the rough sets of X induced by U/R�AT and U/R�A, respectively.
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By Definition 3.1 and Example 2.8, the rough set (R�AT (X),R�AT (X)) can be obtained

as follows:

R�AT (X) = {x3, x7}, R�AT (X)) = {x1, x2, x3, x5, x6, x7, x8}.
Then we compute the classification set induced by the dominance relation U/R�A. By

Table 1, we have

U/R�A = {[x1]�A, [x2]
�
A, . . . , [x8]

�
A},

where

[x1]
�
A = {x1, x3, x4, x5}, [x2]

�
A = {x2, x3, x4, x5}, [x3]

�
A = {x3, x4}, [x4]

�
A = {x4},

[x5]
�
A = {x3, x4, x5}, [x6]

�
A = {x3, x4, x5, x6}, [x7]

�
A = {x3, x4, x7}, [x8]

�
A = {x3, x4, x5, x8}.

Similarly, by Definition 3.1, we calculate the rough set (R�A(X),R�A(X)) as follows:

R�A(X) = ∅, R�A(X)) = {x1, x2, x3, x5, x6, x7, x8}.
Therefore, we have

ρ
R�
A

X = 1−
|R�A(X)|

|R�A(X)|
= 1, ρ

R�
AT

X = 1−
|R�AT (X)|

|R�AT (X)|
= 1− 2

7
=

5

7
,

η
R�
A

X =
|R�A(X)|

|R�A(X)|
= 0, η

R�
AT

X =
|R�AT (X)|

|R�AT (X)|
=

2

7
.

Thus, ρ
R�
AT

X ≤ ρR
�
A

X and η
R�
AT

X ≥ ηR
�
A

X .

4 Ranking for all objects in HFOIS

In [58], Zhang et al. defined the concept of dominance degrees for ranking all objects

in classical ordered information systems. Inspired by the idea, we introduce a dominance

degree between two objects in HFOIS as follows:

Definition 4.1 Let I = (U,AT, V, f) be an HFOIS and A ⊆ AT . Dominance degree

between two objects with respect to the dominance relation R�A is defined as

DA(xi, xj) =
| ∼ [xi]

�
A ∪ [xj ]

�
A|

|U |
,

where | · | denotes the cardinality of a set, xi, xj ∈ U.

Theorem 4.2 Dominance degree DA(xi, xj) satisfies the following properties:

(1) 1
|U | ≤ DA(xi, xj) ≤ 1;

(2) if (xj , xk) ∈ R�A, then DA(xi, xj) ≤ DA(xi, xk) and DA(xj , xi) ≥ DA(xk, xi).

Proof. (1) It is straightforward.
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(2) Assume that (xj , xk) ∈ R�A. By Theorem 2.7, then [xj ]
�
A ⊆ [xk]

�
A. Therefore, we

have

DA(xi, xj)− DA(xi, xk) =
1

|U |
(| ∼ [xi]

�
A ∪ [xj ]

�
A| − | ∼ [xi]

�
A ∪ [xk]

�
A|)

≤ 1

|U |
(| ∼ [xi]

�
A ∪ [xk]

�
A| − | ∼ [xi]

�
A ∪ [xk]

�
A|)

= 0,

DA(xj , xi)− DA(xk, xi) =
1

|U |
(| ∼ [xj ]

�
A ∪ [xi]

�
A| − | ∼ [xk]

�
A ∪ [xi]

�
A|)

≥ 1

|U |
(| ∼ [xk]

�
A ∪ [xi]

�
A| − | ∼ [xk]

�
A ∪ [xi]

�
A|)

= 0.

That is, DA(xi, xj) ≤ DA(xi, xk) and DA(xj , xi) ≥ DA(xk, xi). 2

According to Definition 4.1, we may construct a dominance relation matrix with respect

to A induced by the dominance relation R�A. Based on the dominance relation matrix, the

whole dominance degree of each object can be calculated by the following formula

DA(xi) =
1

|U | − 1

∑
j 6=i

DA(xi, xj), xi, xj ∈ U. (1)

Obviously, by the concepts of dominance degree and whole dominance degree, the

following theorem holds.

Theorem 4.3 Let I = (U,AT, V, f) be an HFOIS and A ⊆ AT . If R�A = R�AT , then

DA(xi, xj) = DAT (xi, xj) and DA(xi) = DAT (xi).

By employing the whole dominance degree of each object on the universe, we may rank

all objects by the values of DA(xi). The following example is given to demonstrate the

application of this method.

Example 4.4 (Continued from Example 2.8). Rank all objects in U based on the domi-

nance relation R�AT . By the concept of dominance degree, we obtain the dominance relation

matrix as follows

1 0.75 0.625 0.625 0.875 0.875 0.625 0.875

0.875 1 0.75 0.75 0.875 0.875 0.75 0.875

1 1 1 0.875 1 1 1 1

1 1 0.875 1 1 1 0.875 1

1 0.875 0.75 0.75 1 1 0.75 1

0.875 0.75 0.625 0.625 0.875 1 0.625 0.875

0.875 0.875 0.875 0.75 0.875 0.875 1 0.875

0.875 0.875 0.625 0.625 0.875 0.875 0.625 1


.
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Therefore, by Equation 1, the whole dominance degree of each object xi can be calculated

as follows:

DAT (x1) = 0.75, DAT (x2) = 0.82, DAT (x3) = 0.98, DAT (x4) = 0.96,

DAT (x5) = 0.875, DAT (x6) = 0.75, DAT (x7) = 0.857, DAT (x8) = 0.768.

An object with larger value implies a better object. Therefore, based on the values of

DAT (xi), we can rank all objects as follows:

x3 � x4 � x5 � x7 � x8 �

(
x1
x6

)
.

5 Attribute reduction in HFOIS

In order to simplify knowledge representation in HFOIS, it is necessary for us to reduce

some dispensable attributes in the context of dominance relations. In this section, we will

develop an approach to attribute reduction in a given HFOIS.

Definition 5.1 Let I = (U,AT, V, f) be an HFOIS and A ⊆ AT . For any B ⊂ A, if

R�A = R�AT and R�B 6= R�AT , then we call A an attribute reduction of I.

By Definition 5.1, we can easily verify the following conclusion holds.

Theorem 5.2 Let I = (U,AT, V, f) be an HFOIS and A ⊆ AT . If A is an attribute

reduction of I, then DA(xi, xj) = DAT (xi, xj), xi, xj ∈ U.

In what follows we define several special attributes in HFOIS as follows:

Definition 5.3 Let I = (U,AT, V, f) be an HFOIS. If R�AT = R�(AT−{a}), an attribute

a ∈ AT is called dispensable with respect to the dominance relation R�AT ; otherwise, a is

called indispensable. The set of all indispensable attributes is called a core with respect to

the dominance relation R�AT .

Definition 5.4 Let I = (U,AT, V, f) be an HFOIS and A ⊆ AT . Denote by Dis(x, y) =

{a ∈ A|(x, y) /∈ R�{a}}, then we call Dis(x, y) a discernibility attribute set between x and y,

and DIS = (Dis(x, y) : x, y ∈ U) a discernibility matrix of the HFOIS.

Theorem 5.5 Let I = (U,AT, V, f) be an HFOIS and A ⊆ AT . Suppose that Dis(x, y) is

the discernibility attribute set of I; then R�AT = R�A iff A ∩Dis(x, y) 6= ∅ (Dis(x, y) 6= ∅).

Proof. “=⇒” Assume that R�AT = R�A, for any y ∈ U then [y]�AT = [y]�A. If some

x /∈ [y]�AT , then x /∈ [y]�A. Therefore, there exists a ∈ A such that (x, y) /∈ R�{a}. Thus,

a ∈ Dis(x, y). Consequently, if Dis(x, y) 6= ∅, we have A ∩Dis(x, y) 6= ∅.
“⇐=” Based on Definition 5.4, we can observe that if (x, y) /∈ R�AT for any (x, y) ∈ U×

U, then Dis(x, y) 6= ∅. Since A∩Dis(x, y) 6= ∅, there exists a ∈ A such that a ∈ Dis(x, y),

i.e., (x, y) /∈ R�{a}. Thus (x, y) /∈ R�A. Consequently, R�AT ⊇ R�A. On the other hand, note

that A ⊆ AT , then we have R�AT ⊆ R�A. Hence, R�AT = R�A. 2
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Table 2: The discernibility matrix of Table 1
U x1 x2 x3 x4 x5 x6 x7 x8
x1 ∅ a3a4 a1a2a3a4a5 a1a2a3a4a5 a1a2a3a4a5 a4 a2a3a4a5 a2a4
x2 a1a2a5 ∅ a1a2a3a4a5 a1a2a3a4a5 a1a2a4a5 a2a4a5 a2a4a5 a2a4a5
x3 ∅ ∅ ∅ a1a4a5 ∅ ∅ ∅ ∅
x4 ∅ ∅ a2a3 ∅ ∅ ∅ a2 ∅
x5 ∅ a3 a2a3a5 a1a3a4a5 ∅ ∅ a2a5 ∅
x6 a1a2a3a5 a1a3 a1a2a3a4a5 a1a2a3a4a5 a1a2a3a4a5 ∅ a1a2a3a5 a1a2a5
x7 a1 a1a3 a1a2a3a4 a1a3a4a5 a1a4 a4 ∅ a1
x8 a1a3 a1a3 a1a2a3a4a5 a1a2a3a4a5 a1a2a3a4a5 a4 a2a3a5 ∅

Definition 5.6 Let I = (U,AT, V, f) be an HFOIS, A ⊆ AT and Dis(x, y) the discerni-

bility attributes set of I with respect to R�AT . Denote as

M =
∧{∨

{a : a ∈ Dis(x, y)|x, y ∈ U}
}
,

then we call M a discernibility function.

From the definition of minimal disjunctive normal form of the discernibility function

and Theorem 5.5, we can easily verify the following conclusion.

Theorem 5.7 Let I = (U,AT, V, f) be an HFOIS. The minimal disjunctive normal form

of M is

M =

t∨
k=1

(
qk∧
s=1

ais

)
.

Denoted by Bk = {ais : s = 1, 2, . . . , qk}, then {Bk : k = 1, 2, . . . , t} are the family of all

attribute reductions of I.

By Theorem 5.7, a practical approach to attribute reductions of HFOIS is provided.

In the following, we shall illustrate how to obtain attribute reductions of an HFOIS by an

example.

Example 5.8 (Continued from Example 2.3). According to Definition 5.4, we obtain the

discernibility matrix of Table 1 (see Table 2). Thus, we have

M = (a1 ∨ a2 ∨ a5) ∧ (a1 ∨ a2 ∨ a3 ∨ a5) ∧ a1 ∧ (a1 ∨ a3) ∧ (a3 ∨ a4) ∧ a3
∧ (a1 ∨ a2 ∨ a3 ∨ a4 ∨ a5) ∧ (a2 ∨ a3) ∧ (a2 ∨ a3 ∨ a5) ∧ (a1 ∨ a2 ∨ a3 ∨ a4)
∧ (a1 ∨ a4 ∨ a5) ∧ (a1 ∨ a3 ∨ a4 ∨ a5) ∧ (a1 ∨ a2 ∨ a4 ∨ a5) ∧ (a1 ∨ a4) ∧ a4
∧ (a2 ∨ a4 ∨ a5) ∧ (a2 ∨ a3 ∨ a4 ∨ a5) ∧ a2 ∧ (a2 ∨ a5) ∧ (a2 ∨ a4)

= a1 ∧ a2 ∧ a3 ∧ a4
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Therefore, there is only one attribute reduction for the HFOIS, which is {a1, a2, a3, a4}.
From the perspective of the ordering of objects, the attributes a1, a2, a3 and a4 are indis-

pensable in Table 1.

6 Conclusions

Although the conventional rough set theory is a powerful and useful mathematical tool

to deal with uncertainty information, it can not deal with ordering objects instead of clas-

sifying objects. In this situation, we have investigated information systems in the context

of hesitant fuzzy settings, which is called hesitant fuzzy information systems. The hesitant

fuzzy information system is an important type of data tables, which is generalized from

the traditional information systems. First, based on the score function of hesitant fuzzy

value, a dominance relation has been introduced to hesitant fuzzy information systems.

Then we have established a rough set approach in HFOIS by replacing the indiscernibility

relation with the dominance relation, and given a ranking approach to all objects by em-

ploying the whole dominance degree of each object. Finally, from the perspective of the

ordering of objects, we have also developed a reduction approach in HFOIS for eliminating

redundant information.
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THE STABILITY OF CUBIC FUNCTIONAL EQUATIONS WITH

INVOLUTION IN MODULAR SPACES

CHANGIL KIM AND GILJUN HAN∗

Abstract. In this paper, we prove the generalized Hyers-Ulam stability for

the following cubic functional equation with involution

f(2x+ y) + f(2x+ σ(y))− 2f(x+ y)− 2f(x+ σ(y))− 12f(x) = 0

in modular spaces by using a fixed point theorem.

1. Introduction and preliminaries

In 1940, Ulam proposed the following stability problem (cf. [21]):

“Let G1 be a group and G2 a metric group with the metric d. Given a constant
δ > 0, does there exist a constant c > 0 such that if a mapping f : G1 −→
G2 satisfies d(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then there exists a unique
homomorphism h : G1 −→ G2 with d(f(x), h(x)) < δ for all x ∈ G1?”

In the next year, Hyers [6] gave the first affirmative partial answer to the ques-
tion of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki [2] for
additive mappings and by Rassias [17] for linear mappings by considering an un-
bounded Cauchy difference, the latter of which has influenced many developments
in the stability theory. This area is then referred to as the generalized Hyers-Ulam
stability. A generalization of the Rassias’ theorem was obtained by Gǎvruta [5]
by replasing the unbounded Cauchy difference by a general control function in the
spirit of Rassias’ approach.

A problem that mathematicians has dealt with is ”how to generalize the classical
function space Lp”. A first attempt was made by Birnhaum and Orlicz in 1931.
This generalization found many applications in differential and intergral equations
with kernls of nonpower types. The more abstract generalization was given by
Nakano [14] in 1950 based on replacing the particular integral form of the func-
tional by an abstract one that satisfies some good properties. This functional was
called modular. Since then, these have been thoroughly developed by several math-
ematicians, for example, Amemiya [1], Koshi and Shimogaki [9], Yamamuro [23],
Orlicz [15], Mazur [11], Musielak [12], Luxemburg [10], Turpin [20]. This idea was
refined and generalized by Musielak and Orlicz [13] in 1959.

Recently, Sadeghi [18] presented a fixed point method to prove the general-
ized Hyers-Ulam stability of functional equations in modular spaces with the 42-
condition, Wongkum, Chaipunya, and Kumam [22] proved the fixed point theorem
and the generalized Hyers-Ulam stability for quadratic mappings in a modular

2010 Mathematics Subject Classification. 39B52, 39B72, 47H09.
Key words and phrases. Fixed point theorem, Hyers-Ulam stability, cubic functional equations,

modular spaces.
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2 CHANGIL KIM AND GILJUN HAN

space whose modular is convex, lower semi-continuous but do not satisfy the 42-
condition, and Park, Bodaghi, and Kim [16] proved the generalized Hyers-Ulam
stability for additive mappings in a modular space with 42-conditions.

Let X and Y be real vector spaces. For an additive mapping σ : X −→ X with
σ(σ(x)) = x for all x ∈ X, σ is called an involution of X. For a given involution
σ : X −→ X, the functional equation

(1.1) f(x+ y) + f(x+ σ(y)) = 2f(x)

is called an additive functional equation with involution and a solution of (1.1) is
called an additive mapping with involution. For a given involution σ : X −→ X,
the functional equation

(1.2) f(x+ y) + f(x+ σ(y)) = 2f(x) + 2f(y)

is called the quadratic functional equation with involution and a solution of (1.2) is
called a quadratic mapping with involution. The functional equation (1.2) has been
studied by Stetkær [19] and the generalized Hyers-Ulam stability for (1.2) has been
obtained by Bouikhalene et al. [3, 4, 7].

In this paper, we prove the generalized Hyers-Ulam stability for the following
cubic functional equation with involution

(1.3) f(2x+ y) + f(2x+ σ(y))− 2f(x+ y)− 2f(x+ σ(y))− 12f(x) = 0

in modular spaces without the 42-condition and the convexity by using a fixed
point theorem. Unlike Banach spaces and F -spaces, due to the triangle inequlity
in modular spaces, we need subtle calculation in the proofs of Theorem 2.1 and
Theorem 2.2

Definition 1.1. Let X be a vector space over a field K(R, C, or N).
(1) A generalized functional ρ : X −→ [0,∞] is called a modular if

(M1) ρ(x) = 0 if and only if x = 0 ,
(M2) ρ(αx) = ρ(x) for every scalar α with |α| = 1, and
(M3) ρ(z) ≤ ρ(x) + ρ(y) whenever z is a convex combination of x and y.

(2) If (M3) is replaced by
(M4) ρ(αx+ βy) ≤ αρ(x) + βρ(y)

for all x, y ∈ V and for all nonnegative real numbers α, β with α+ β = 1, then we
say that ρ is convex.

For any modular ρ on X, the modular space Xρ is defined by

Xρ = {x ∈ X | ρ(λx)→ 0 as λ→ 0}
and the modular space Xρ can be equipped with a norm called the Luxemburg
norm, defined by

‖x‖ρ = inf
{
λ > 0 | ρ

(x
λ

)
≤ 1
}
.

Let Xρ be a modular space and {xn} a sequence in Xρ. Then (i) {xn} is called
ρ-Cauchy if for any ε > 0, one has ρ(xn − xm) < ε for sufficiently large m,n ∈ N,
(ii) {xn} is called ρ-convergent to a point x ∈ Xρ if ρ(xn − x)→ 0 as n→∞, and
(iii) a subset K of Xρ is called ρ-complete if each ρ-Cauchy sequence is ρ-convergent
to a point in K.

Another unnatural behavior one usually encounter is that the convergence of a
sequence {xn} to x does not imply that {cxn} converges to cx for some c ∈ K.
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THE STABILITY OF CUBIC FUNCTIONAL EQUATIONS WITH INVOLUTION... 3

Thus, many mathematicians imposed some additional conditions for a modular to
meet in order to make the multiples of {xn} converge naturally. Such preferences
are referred to mostly under the term related to 42-condition.

A modular space Xρ is said to satisfy the 42-condition if there exists k ≥ 2 such
that Xρ(2x) ≤ kXρ(x) for all x ∈ X. Some authors varied the notion so that only
k > 0 is required and called it the 42-type condition. In fact, one may see that
these two notions coincide. There are still a number of equivalent notions related to
the 42-condition. In [8], Khamsi proved a series of fixed point theorems in modular
spaces where the modulars do not satisfy 42-conditions. His results exploit one
unifying hypothesis in which the boundedness of an orbit is assumed.

Example 1.2. A convex function ζ defined on the interval [0,∞), nondecreasing
and continuous, such that ζ(0) = 0, ζ(α) > 0 for α > 0, ζ(α) → ∞ as α → ∞, is
called an Orlicz function. Let (Ω,Σ, µ) be a measure space and L0(µ) the set of
all measurable real valued (or complex valued) functions on Ω. Deine the Orlicz
modular ρζ on L0(µ) by the formula

ρζ(f) =

∫
Ω

ζ(|f |)dµ.

The associated modular space with respect to this modular is called an Orlicz space,
and will be denoted by (Lζ ,Ω, µ) or briefly Lζ . In other words,

Lζ = {f ∈ L0(µ) | ρζ(λf) <∞ for some λ > 0}.

It is known that the Orlicz space Lζ is ρζ-complete. Moreover, (Lζ , ‖ · ‖ρζ ) is a
Banach space, where the Luxemburg norm ‖ · ‖ρζ is defined as follows

‖f‖ρζ = inf
{
λ > 0

∣∣∣ ∫
Ω

ζ
( |f |
λ

)
dµ ≤ 1

}
.

Further, if µ is the Lebesgue measure on R and ζ(t) = et − 1, then ρζ does not
satisfy the 42-condition.

For a modular space Xρ, a nonempty subset C of Xρ, and a mapping T : C −→
C, the orbit of T at x ∈ C is the set

O(x) = {x, Tx, T 2x, · · ·}.

The quantity δρ(x) = sup{ρ(u − v) | u, v ∈ O(x)} is called the orbital diameter of
T at x and if δρ(x) <∞, then one says that T has a bounded orbit at x.

Khamsi [8] proved a series of fixed point theorems in modular spaces where the
modulars do not satisfy 42-conditions. His results exploit one unifying hypothesis
in which the boundedness of an orbit is assumed.

Lemma 1.3. [8] Let Xρ be a modular space whose induced modular is lower semi-
continuous and let C ⊆ Xρ be a ρ-complete subset. If T : C −→ C is a ρ-
contraction, that is, there is a constant L ∈ [0, 1) such that

ρ(Tx− Ty) ≤ Lρ(x− y), ∀x, y ∈ C

and T has a bounded orbit at a point x0 ∈ C, then the sequence {Tnx0} is ρ-
convergent to a point w ∈ C.
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4 CHANGIL KIM AND GILJUN HAN

For any modular ρ on X and any linear space V , we define a set M

M := {g : V −→ Xρ | g(0) = 0}

and the generalized function ρ̃ on M by for each g ∈M,

ρ̃(g) := inf{c > 0 | ρ(g(x)) ≤ cψ(x, 0), ∀x ∈ V },

where ψ : V 2 −→ [0,∞) is a mapping. The proof of the following lemma is similar
to the proof of Lemma 10 in [22].

Lemma 1.4. Let V be a linear space, Xρ a ρ-complete modular space where ρ is
lower semi-continuous and f : V −→ Xρ a mapping with f(0) = 0. Let ψ : V 2 −→
[0,∞) be a mapping such that

lim
n→∞

ψ(2nx, 2ny)

8n
= 0, ψ(2x, 2x) ≤ 8Lψ(x, x)(1.4)

for all x, y ∈ V and some L with 0 ≤ L < 1. Then we have the following :
(1) M is a linear space,
(2) ρ̃ is a modular on M,
(3) if ρ is convex, then ρ̃ is convex,
(4) Mρ̃ = M and Mρ̃ is ρ̃-complete, and
(5) ρ̃ is lower semi-continuous.

Proof. (1), (2), and (3) are trivial.
(4) By the definition of Mρ̃, Mρ̃ = M. Let ε > 0. Take any ρ̃-Cauchy sequence

{gn} in Mρ̃. Then there is an l ∈ N such that for n,m ∈ N with n,m ≥ l,

(1.5) ρ(gn(x)− gm(x)) ≤ εψ(x, 0)

for all x ∈ V . Hence {gn(x)} is a ρ-Cauchy sequence in Xρ for all x ∈ V . Since
Xρ is a ρ-complete modular space, there is a mapping g : V −→ Xρ such that
ρ(gn(x) − g(x)) −→ 0 as n → ∞ for all x ∈ V . Since each gn ∈ M, there is an
m ∈ N such that

ρ(gm(0)− g(0)) = ρ(g(0)) ≤ ε

and hence g ∈Mρ̃. Since ρ is lower semi-continuous, by (1.5), we have

ρ(gn(x)− g(x)) ≤ lim inf
m→∞

ρ(gn(x)− gm(x)) ≤ εψ(x, 0)

for all x ∈ V . Hence Mρ̃ is ρ̃-complete.
(5) Suppose that {gn} is a sequence in Mρ̃ which is ρ̃-convergent to g ∈Mρ̃. Let

ε > 0. Then for any n ∈ N, there is a positive real number cn such that

ρ̃(gn) ≤ cn ≤ ρ̃(gn) + ε

and so

ρ(g(x)) ≤ lim inf
n→∞

ρ(gn(x))

≤ lim inf
n→∞

cnψ(x, 0) ≤
(

lim inf
n→∞

ρ(gn(x)) + ε
)
ψ(x, 0)

(1.6)

for all x ∈ V . Hence ρ̃ is lower semi-continuous. �
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2. The generalized Hyers-Ulam stability for (1.3) in modular spaces

Throughout this section, we assume that every modular is lower semi-continuous.
In this section, we prove the generalized Hyers-Ulam stability for (1.3).

For any f : V −→ Xρ and any involution σ : V −→ V , let

Df(x, y) = f(2x+ y) + f(2x+ σ(y))− 2f(x+ y)− 2f(x+ σ(y))− 12f(x).

Theorem 2.1. Let V be a linear space, Xρ a ρ-complete modular space and f :
V −→ Xρ a mapping with f(0) = 0. Let φ : V 2 −→ [0,∞) be a mapping such that

(2.1) φ(2x, 2y) ≤ 8Lφ(x, y), φ(x+ σ(x), y + σ(y)) ≤ 8Lφ(x, y)

for all x, y ∈ V and some L with 0 < L < 1
16 and

(2.2) ρ(Df(x, y)) ≤ φ(x, y)

for all x, y ∈ V . Then there exists a unique cubic mapping F : V −→ Xρ with
involution such that

(2.3) ρ
(
F (x)− 1

4
f(x)

)
≤ 2

1− 8L
φ(x, 0)

for all x ∈ V .

Proof. Let ψ(x, y) = φ(x, y) + φ(y, x) for all x, y ∈ V . Then ψ satisfies (1.4) and
hence, by Lemma 1.4, ρ̃ is a lower semi-continuous convex modular on Mρ̃, Mρ̃ = M,
and Mρ̃ is ρ̃-complete. Define T : Mρ̃ −→Mρ̃ by

Tg(x) =
1

8

(
g(2x) + g(x+ σ(x))

)
for all g ∈ Mρ̃ and all x ∈ V . Let g, h ∈ Mρ̃. Suppose that ρ̃(g − h) ≤ c for some
nonnegative real number c. Then by (2.1), we have

ρ(Tg(x)− Th(x)) ≤ ρ
(1

4
[g(2x)− h(2x)]

)
+ ρ
(1

4
[g(x+ σ(x))− h(x+ σ(x))]

)
≤ 16Lcψ(x, 0)

for all x ∈ V and so ρ̃(Tg − Th) ≤ 16Lρ̃(g − h). Hence T is a ρ̃-contraction. By
(2.2), we get

(2.4) ρ(f(x) + f(σ(x))) ≤ φ(0, x)

and

(2.5) ρ
(
f(2x)− 8f(x)

)
≤ ρ(2f(2x)− 16f(x)) ≤ φ(x, 0)

for all x ∈ X. Letting x = x+ σ(x) in (2.4), by (M3), we have

(2.6) ρ(f(x+ σ(x))) ≤ ρ(2f(x+ σ(x))) ≤ φ(0, x+ σ(x)) ≤ 8Lφ(0, x),

for all x ∈ X and by (2.5) and (M3), we get

(2.7) ρ
( 1

23
f(2x)− f(x)

)
≤ ρ(f(2x)− 8f(x)) ≤ φ(x, 0)

for all x ∈ X.
Now, we claim that T has a bounded orbit at 1

4f . By the definition of T , we
have

(2.8) Tnf(x+ σ(x)) =
1

22n
f(2n(x+ σ(x)))

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.6, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

992 CHANGIL KIM ET AL 988-999



6 CHANGIL KIM AND GILJUN HAN

for all x ∈ V and for all n ∈ N. Hence by (2.1), (2.6), and (2.8), we have

ρ(Tnf(x+ σ(x))) ≤ ρ(f(2n(x+ σ(x)))) ≤ (8L)n+1φ(0, x)

for all x ∈ V and for all n ∈ N. By (2.7), for any nonnegative integer n, we obtain

ρ(
1

2
Tnf(x)− 1

2
f(x))

≤ ρ
(
Tnf(x)− 1

23
f(2x)

)
+ ρ(

1

23
f(2x)− f(x))

≤ ρ
(1

2
Tn−1f(2x)− 1

2
f(2x)

)
+ ρ
(
Tn−1f(x+ σ(x))

)
+ φ(x, 0)

≤ ρ
(1

2
Tn−1f(2x)− 1

2
f(2x)

)
+ (8L)nφ(0, x) + φ(x, 0)

for all x ∈ V and by induction, we have

ρ
(1

2
Tnf(x)− 1

2
f(x)

)
≤
n−1∑
i=0

(8L)n−iφ(0, 2ix) +
n−1∑
i=0

φ(2ix, 0)

≤ n(8L)nφ(0, x) +
1

1− 8L
φ(x, 0)

(2.9)

for all x ∈ V and all n ∈ N. Hence by (2.9), we get

(2.10) ρ
(1

4
Tnf(x)− 1

4
Tmf(x)

)
≤ 2

1− 8L
φ(x, 0) + [n(8L)n +m(8L)m]φ(0, x)

for all x ∈ V and all all nonnegative integers n,m and since 0 < L < 1
16 , by (2.10),

we have

ρ
(1

4
Tnf(x)− 1

4
Tmf(x)

)
≤ 4φ(x, 0) + φ(0, x) ≤ 4ψ(x, 0)

for all x ∈ V and all nonnegative integers n,m. Hence we have

ρ̃
(
Tn

1

4
f − Tm 1

4
f
)
≤ 4

all nonnegative integers n,m and thus T has a bounded orbit at 1
4f .

By Lemma 1.3, there is an F ∈ Mρ̃ such that {Tn 1
4f} is ρ̃-convergent to F .

Since ρ̃ is lower semi-continuous, we get

0 ≤ ρ̃(TF − F ) ≤ lim inf
n→∞

ρ̃
(
TF − Tn+1 1

4
f
)
≤ lim inf

n→∞
16Lρ̃

(
F − Tn 1

4
f
)

= 0

and hence F is a fixed point of T in Mρ̃. By induction, we can easily show that

Tnf(x) =
1

23n
f(2nx) +

1

23n

n−1∑
i=0

2if(2n−1(x+ σ(x)))

=
1

23n
f(2nx) +

2n − 1

23n
f(2n−1(x+ σ(x)))

for all x ∈ X and n ∈ N. Moreover, we have

(2.11) ρ
( 1

28
DF (x, y)

)
≤ ρ
( 1

27

[
DF (x, y)−Tn 1

4
Df(x, y)

])
+ρ
( 1

27
Tn

1

4
Df(x, y)

)
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for all x, y ∈ V and all n ∈ N. Note that

ρ
( 1

27

[
DF (x, y)− Tn 1

4
Df(x, y)

])
≤ ρ
( 1

26

[
F (2x+ y)− Tn 1

4
f(2x+ y)

])
+ ρ
( 1

24

[
F (2x+ σ(y))− Tn 1

4
f(2x+ σ(y))

])
+ ρ
( 1

24

[
2F (x+ y)− Tn 1

4
2f(x+ y)

])
+ ρ
( 1

24

[
2F (x+ σ(y))− Tn 1

4
2f(x+ σ(y))

])
+ ρ
( 1

24

[
12F (x)− Tn 1

4
12f(x)

])
for all x, y ∈ V and all n ∈ N. Since {Tn 1

4f} is ρ̃-convergent to F , we get

(2.12) lim
n→∞

ρ
( 1

27

[
DF (x, y)− Tn 1

4
Df(x, y)

])
= 0

for all x, y ∈ V . Further, we have

ρ
( 1

27
Tn

1

4
Df(x, y)

)
= ρ
( 1

29
TnDf(x, y)

)
≤ ρ
( 1

23n+8
Df(2nx, 2ny)

)
+ ρ
(2n − 1

23n+8
Df(2n−1(x+ σ(x)), 2n−1(y + σ(y)))

)
≤ φ(2nx, 2ny) + φ(2n−1(x+ σ(x)), 2n−1(y + σ(y)))

≤ 2(8L)nφ(x, y)

for all x, y ∈ V and all n ∈ N. Letting n→∞ in the last inequality, we get

(2.13) lim
n→∞

ρ
( 1

27
Tn

1

4
Df(x, y)

)
= 0

for all x, y ∈ V . By (2.11), (2.12), (2.13), and (M1), we obtain

DF (x, y) = 0

for all x, y ∈ V and hence F is a cubic mapping with involution. Moreover, since ρ
is lower semi-continuous, by (2.10), we get

ρ
(
F (x)− 1

4
f(x)

)
≤ 2

1− 8L
φ(x, 0)

for all x ∈ X. �

If ρ is covex, then Theorem 2.1 can replaced by the following theorem.

Theorem 2.2. All conditions of Theorem 2.1 are assumed. Further, suppose that
ρ is a convex modular and 0 < L < 1

2 . Then there exists a unique cubic mapping
F : V −→ Xρ with involution such that

(2.14) ρ
(
F (x)− 1

4
f(x)

)
≤ 1

24(1− L)
φ(x, 0)

for all x ∈ V .

Proof. Let ψ(x, y) = φ(x, y) + φ(y, x) for all x, y ∈ V . Then ψ satisfies (1.4) and
hence, by Lemma 1.4, ρ̃ is a lower semi-continuous convex modular on Mρ̃, Mρ̃ = M,
and Mρ̃ is ρ̃-complete. Define T : Mρ̃ −→Mρ̃ by

Tg(x) =
1

8

(
g(2x) + g(x+ σ(x))

)
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for all g ∈ Mρ̃ and all x ∈ V . Let g, h ∈ Mρ̃. Suppose that ρ̃(g − h) ≤ c for some
nonnegative real number c. Then by (2.1), we have

ρ(Tg(x)− Th(x)) ≤ 1

2
ρ
(1

4
[g(2x)− h(2x)]

)
+

1

2
ρ
(1

4
[g(x+ σ(x))− h(x+ σ(x))]

)
≤ 2Lcψ(x, 0)

for all x ∈ V and so ρ̃(Tg − Th) ≤ 2Lρ̃(g − h). Hence T is a ρ̃-contraction. By
(2.2), we get

(2.15) ρ(f(x) + f(σ(x))) ≤ φ(0, x)

and

(2.16) ρ
(
f(2x)− 8f(x)

)
≤ 1

2
ρ(2f(2x)− 16f(x)) ≤ 1

2
φ(x, 0)

for all x ∈ X. Letting x = x+ σ(x) in (2.15), by (M3), we have

(2.17) ρ(f(x+ σ(x))) ≤ 1

2
ρ(2f(x+ σ(x))) ≤ 1

2
φ(0, x+ σ(x)) ≤ 4Lφ(0, x),

for all x ∈ X and by (2.16) and (M3), we get

(2.18) ρ
( 1

23
f(2x)− f(x)

)
≤ 1

23
ρ(f(2x)− 8f(x)) ≤ 1

24
φ(x, 0)

for all x ∈ X.
Now, we claim that T has a bounded orbit at 1

4f . By the definition of T , we
have

(2.19) Tnf(x+ σ(x)) =
1

22n
f(2n(x+ σ(x)))

for all x ∈ V and for all n ∈ N. Hence by (2.1), (2.15), and (2.19), we have

ρ(Tnf(x+ σ(x))) ≤ 1

22n
ρ(f(2n(x+ σ(x)))) ≤ 2(2L)n+1φ(0, x)

for all x ∈ V and for all n ∈ N. By (2.18), for any nonnegative integer n, we obtain

ρ
(1

2
Tnf(x)− 1

2
f(x)

)
≤ 1

2
ρ
(
Tnf(x)− 1

23
f(2x)

)
+

1

2
ρ
( 1

23
f(2x)− f(x)

)
≤ 1

23
ρ
(1

2
Tn−1f(2x)− 1

2
f(2x)

)
+

1

24
ρ
(
Tn−1f(x+ σ(x))

)
+

1

25
φ(x, 0)

≤ 1

23
ρ
(1

2
Tn−1f(2x)− 1

2
f(2x)

)
+

(2L)n

23
φ(0, x) +

1

25
φ(x, 0)

for all x ∈ V and by induction, we have

ρ
(1

2
Tnf(x)− 1

2
f(x)

)
≤
n−1∑
i=0

(2L)n−i

23(i+1)
φ(0, 2ix) +

1

25

n−1∑
i=0

1

23i
φ(2ix, 0)

≤ (2L)n

4
φ(0, x) +

1

25(1− L)
φ(x, 0)

(2.20)

for all x ∈ V and all n ∈ N. Hence by (2.20), we get

(2.21) ρ
(1

4
Tnf(x)− 1

4
Tmf(x)

)
≤ 1

24(1− L)
φ(x, 0) +

1

4
[(2L)n + (2L)m]φ(0, x)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.6, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

995 CHANGIL KIM ET AL 988-999



THE STABILITY OF CUBIC FUNCTIONAL EQUATIONS WITH INVOLUTION... 9

for all x ∈ V and all all nonnegative integers n,m and since 0 < L < 1
2 , by (2.21),

we have

ρ
(1

4
Tnf(x)− 1

4
Tmf(x)

)
≤ 1

24(1− L)
φ(x, 0) +

1

2
φ(0, x)

≤ 1

8
φ(x, 0) +

1

2
φ(0, x)

≤ 1

2
ψ(x, 0)

for all x ∈ V and all nonnegative integers n,m. Hence we have

ρ̃
(
Tn

1

4
f − Tm 1

4
f
)
≤ 1

2

all nonnegative integers n,m and thus T has a bounded orbit at 1
4f .

By Lemma 1.3, there is an F ∈ Mρ̃ such that {Tn 1
4f} is ρ̃-convergent to F .

Since ρ̃ is lower semi-continuous, we get

0 ≤ ρ̃(TF − F ) ≤ lim inf
n→∞

ρ̃
(
TF − Tn+1 1

4
f
)
≤ lim inf

n→∞
2Lρ̃

(
F − Tn 1

4
f
)

= 0

and hence F is a fixed point of T in Mρ̃. By induction, we can easily show that

Tnf(x) =
1

23n
f(2nx) +

1

23n

n−1∑
i=0

2if(2n−1(x+ σ(x)))

=
1

23n
f(2nx) +

2n − 1

23n
f(2n−1(x+ σ(x)))

for all x ∈ X and n ∈ N. Moreover, we have
(2.22)

ρ
( 1

28
DF (x, y)

)
≤ 1

2
ρ
( 1

27

[
DF (x, y)− Tn 1

4
Df(x, y)

])
+

1

2
ρ
( 1

27
Tn

1

4
Df(x, y)

)
for all x, y ∈ V and all n ∈ N. Note that

ρ
( 1

27

[
DF (x, y)− Tn 1

4
Df(x, y)

])
≤ 1

2
ρ
( 1

26

[
F (2x+ y)− Tn 1

4
f(2x+ y)

])
+

1

23
ρ
( 1

24

[
F (2x+ σ(y))− Tn 1

4
f(2x+ σ(y))

])
+

1

23
ρ
( 1

24

[
2F (x+ y)− Tn 1

4
2f(x+ y)

])
+

1

23
ρ
( 1

24

[
2F (x+ σ(y))− Tn 1

4
2f(x+ σ(y))

])
+

1

23
ρ
( 1

24

[
12F (x)− Tn 1

4
12f(x)

])
for all x, y ∈ V and all n ∈ N. Since {Tn 1

4f} is ρ̃-convergent to F , we get

(2.23) lim
n→∞

ρ
( 1

27

[
DF (x, y)− Tn 1

4
Df(x, y)

])
= 0
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for all x, y ∈ V . Further, we have

ρ
( 1

27
Tn

1

4
Df(x, y)

)
= ρ
( 1

29
TnDf(x, y)

)
≤ 1

2
ρ
( 1

23n+8
Df(2nx, 2ny)

)
+

1

2
ρ
(2n − 1

23n+8
Df(2n−1(x+ σ(x)), 2n−1(y + σ(y)))

)
≤ 1

23n+9
φ(2nx, 2ny) +

2n − 1

23n+9
φ(2n−1(x+ σ(x)), 2n−1(y + σ(y)))

≤ (2L)n

29
φ(x, y)

for all x, y ∈ V and all n ∈ N. Letting n→∞ in the last inequality, we get

(2.24) lim
n→∞

ρ
( 1

27
Tn

1

4
Df(x, y)

)
= 0

for all x, y ∈ V . By (2.22), (2.23), (2.24), and (M1), we obtain

DF (x, y) = 0

for all x, y ∈ V and hence F is a cubic mapping with involution. Moreover, since ρ
is lower semi-continuous, by (2.21), we get

ρ
(
F (x)− 1

4
f(x)

)
≤ 1

24(1− L)
φ(x, 0)

for all x ∈ X. �

It is well-known that every normed space is a modular space with ρ(x) = ‖x‖.
Using Theorem 2.2, we have the following corollary.

Corollary 2.3. Let X and Y be normed spaces and ε, θ, and p be real numbers
with ε ≥ 0, θ ≥ 0, and 0 < p < 3

2 . Let f : X −→ Y be a mapping with involution σ
such that f(0) = 0 and

‖Df (x, y)‖ ≤ ε+ θ(‖x‖2p + ‖y‖2p + ‖x‖p‖y‖p)

and

‖x+ σ(x)‖ ≤ 2‖x‖

for all x, y ∈ X. Then there is a cubic mapping F : X −→ Y with involution such
that

‖F (x)− f(x)‖ ≤ 1

2(8− 22p)
(ε+ θ‖x‖2p)

for all x ∈ X.

Proof. Let ρ(z) = ‖z‖ for all y ∈ Y and φ(x, y) = ε+ θ(‖x‖2p + ‖y‖2p + ‖x‖p‖y‖p)
for all x, y ∈ V . Then ρ is a convex modular on a normed space Y , Y = Yρ, and

φ(2x, 2y) ≤ 22pφ(x, y), φ(x+ σ(x), y + σ(y)) ≤ 22pφ(x, y)

for all x, y ∈ V . By Theorem 2.2, we have the results. �

Using Example 1.3, we get the following example.
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Example 2.4. Let ε, θ, and p be real numbers with ε ≥ 0, θ ≥ 0, and 0 < p < 3
2 .

Let ζ be an Orlicz function and Lζ the Orlicz space. Let f : V −→ Lζ be a mapping
with involution σ such that f(0) = 0 and∫

Ω

ζ(|f(2x+ y) + f(2x+ σ(y))− 2f(x+ y)− 2f(x+ σ(y))− 12f(x)|)dµ

≤ ε+ θ(‖x‖2p + ‖y‖2p + ‖x‖p‖y‖p)
and

‖x+ σ(x)‖ ≤ 2‖x‖
for all x, y ∈ X. Then there is a cubic mapping F : X −→ Y with involution such
that ∫

Ω

ζ(|F (x)− 1

4
f(x)|)dµ ≤ 1

2(8− 22p)
(ε+ θ‖x‖2p)

for all x ∈ X.

Define a mapping ρ2 : R −→ R by ρ2(x) = |x| 12 . Then clearly, ρ2 is a modular
on R and Rρ2 = R. Note that∣∣∣1

2
× 2 +

1

2
× 4
∣∣∣ 12 =

√
3 >

√
2

2
+ 1 =

1

2
× |2| 12 +

1

2
× |4| 12 .

Hence ρ2 is not convex. Moreover, since (R, | · |) is a complete normed space, we can
easily show that (R, ρ2) is a complete modular space. Using these and Theorem 2.1,
we have the following example.

Example 2.5. Let ε, θ, and p be real numbers with ε ≥ 0, θ ≥ 0, and 0 < p < 3
2 .

Let f : V −→ R be a mapping with involution σ such that f(0) = 0 and

|f(2x+ y) + f(2x+ σ(y))− 2f(x+ y)− 2f(x+ σ(y))− 12f(x)| 12

≤ ε+ θ(‖x‖2p + ‖y‖2p + ‖x‖p‖y‖p)
and

‖x+ σ(x)‖ ≤ 2‖x‖
for all x, y ∈ X. Then there is a cubic mapping F : X −→ Y with involution such
that

|F (x)− 1

4
f(x)| 12 ≤ 2

1− 22p
(ε+ θ‖x‖2p)

for all x ∈ X.
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A nonstandard finite difference method applied to a
mathematical cholera model with spatial diffusion
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Abstract

In this paper, we propose a nonstandard finite difference (NSFD) scheme to solve
numerically a cholera epidemic model with spatial diffusion. Through constructing dis-
crete Lyapunov functions, we prove the globally asymptotical stabilities of the disease-
free equilibrium and the chronic infection equilibrium, which coincide with the corre-
sponding continuous model . Finally, numerical simulations are provided to illustrate
the theoretical results.

Cholera, partial differential equation, nonstandard finite difference scheme, Lyapunov
function, global stability.

1 Introduction

Cholera is an infection of the intestines caused by the bacterium called Vibrio cholerae and
can spread rapidly in areas with inadequate treatment of sewage and drinking water. The
World Health Organization (WHO) has warned that there are an estimated 3-5 million
infected cases and 28,800-130,000 deaths worldwide due to cholera every year. Since 1817,
seven cholera pandemics have spread in many places, with periodic outbreaks such as the
latest one in Yemen in October 2016, which is the worst cholera outbreak in the world. The
total cases in Yemen have exceeded half a million, with nearly 2,000 deaths reported, since
the outbreak began to spread rapidly at the end of April 2017 due to the deteriorating hygiene
and sanitation conditions and the disrupted water supply across the country. There have
been massive outbreaks of cholera in many developing countries of Africa and South-east
Asia, including Congo (2008), Iraq (2008), Zimbabwe (2008-2009), Vietnam (2009), Nigeria
(2010), Haiti (2010), Mexico (2013), South Sudan (2014), and Somalia (2017).

In recent years, many epidemic models have been proposed to a better understanding of
the transmission of cholera. In 2001, Codeço [1] proposed a SIRB epidemic model to study
the transmission of cholera in which B represents the V. cholerae concentration in water.
Hartley Morris and Smith [2] in 2006 discovered a representative hyperinfectious state of
the pathogen, which is the ’explosive’ infectivity of freshly shed V. cholerae based on the
laboratory results. Tien and Earn [3] proposed a water-borne disease model with multiple
transmission pathways: both direct human-to-human and indirect water-to-human transmis-
sions, and identified how these transmission routes influence disease dynamics. Mukandavire
et al. [4] simplified Hartley’s model to understand transmission dynamics of cholera outbreak
in Zimbabwe. Liao and Wang [5] in 2011 conducted a dynamical analysis of the Hartley’s
model to study the stability of both the disease-free and endemic equilibria so as to explore
the complex epidemic and endemic dynamics of the disease. Bertuzzo et al. [6] based on

1
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the Codeco’s work and developed a partial differential equation model for cholera epidemics.
Their results suggested that cholera outbreaks may be triggered by time scales of disease
dynamics. In a recently study, Safi et al. [7] designed a new two-strain model to assess the
impact of basic control measures and dose-structured mass vaccination on cholera transmis-
sion dynamics in a population. More papers in the field of cholera epidemic models are
presented in ( [8–11]).

Nowadays, more and more researchers consider to discretize the continuous models for
practical purposes. One of the reasons is that most numerical methods like traditional
Euler, Runge-Kutta and some standard procedures of MATLAB software will fail to solve
nonlinear systems generating oscillations, chaos, and unsteady states if the time step size
increases to a critical size. The other reason is that the results of the discrete time models
are more accurate and convenient to describe infectious diseases and can preserve as much as
possible the qualitative properties of the corresponding continuous models. The nonstandard
finite difference (NSFD) scheme developed by Mickens ( [12–14]) performs well and has
been applied to many articles. An NSFD discretization must satisfy one of the following
two conditions ( [15, 16]): nonlocal approximation is used and discretization of derivative
must be a denominator function. Cui et al. [17] employed an NSFD scheme to discuss a
class of SIR epidemic model with vaccination and treatment. The dynamical properties of
their discretized model were analysed to demonstrate that the discretized epidemic model
maintains essential properties of the corresponding continuous model, such as positivity
property, boundness of solutions, equilibrium points and their local stability properties.
Suryanto et al. [18] constructed an NSFD scheme to solve a SIR epidemic model with
modified saturated incidence rate. From their numerical simulations, the NSFD scheme
allowed large time step size to save the computational cost. Qin et al. [19] proposed an
NSFD method for an epidemic model which described the hepatitis B virus infection with
spatial dependence. They have shown that the NSFD method is unconditionally positive by
using the M-matrix theory. Moveover, asymptotical stabilities of the steady-state solutions
were fully determined by constructing discrete Lyapunov functions independent of the time
and space step sizes. Manna and Chakrabarty [20] analysed a spatiotemporal model for
HBV infection by using an NSFD scheme, and studied the global stability properties of
the discretized model. The simulation results demonstrated the advantages of the usage of
NSFD method over the other schemes. For more investigations on NSFD scheme can be
found in ( [21–24]).

In 2015, Wang and Wang [25] proposed a PDE model to simulate cholera infection with
spatial diffusion, taking multiple transmission ways into account among the human host, the
pathogen, and the environment. The model in their paper assumes that both the human
population and the bacteria undergo a diffusion process and is given by the following system
of PDEs:

∂S

dt
= Λ− βW

W (x, t)S(x, t)

κ+W (x, t)
− βhS(x, t)I(x, t)− µS(x, t) +D1△S, (1)

∂I

dt
= βW

W (x, t)S(x, t)

κ+W (x, t)
+ βhS(x, t)I(x, t)− (γ + µ+ u1)I(x, t) +D2△I, (2)

∂W

dt
= ξI(x, t)− δW (x, t) +D3△W, (3)

2
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∂R

dt
= γI(x, t)− µR(x, t) +D4△R, (4)

where S(x, t), I(x, t), R(x, t) and W (x, t) denote the susceptible, the infected, the recovered
populations and the density of V. cholerae at location x and time t, respectively. The param-
eters βh and βW denote the concentrations of the hyperinfectious (HI) and less-infectious (LI)
vibrios, respectively. µ represents the natural death rate that is not related to the disease,
u1 defines the rate of disease-related death, κ is the concentration of vibrios in contaminated
water, ξ the natural decay rate of V. cholerae, δ the bacterial death rate, γ the recovery
rate, and Di (i = 1, 2, 3, 4) are the diffusion coefficients.

Ω is a bounded domain in Rn with smooth boundary ∂Ω, △ is the Laplacian operator,
that is △ =

∑n
i=1

∂2

∂x2
i
with n is the number of spatial dimensions of the domain Ω. The

Neumann boundary conditions of the model system are:

∂S

dt
=
∂I

dt
=
∂W

dt
=
∂R

dt
= 0, x ∈ ∂Ω. (5)

In the case that the diffusion coefficients Di are all equal to zero, according to Wang and
Wang’s [25], we know that the basic reproduction number is given by:

R0 =
Λ

µδκ(γ + µ+ u1)
(ξβW + δκβh). (6)

And the disease-free equilibrium E0(S0, I0,W0, R0) is (Λ
µ
, 0, 0, 0), the endemic equilibrium

E∗(S∗, I∗,W ∗, R∗) is determined by:

S∗ =
Λ

µ
− (γ + µ+ u1)I

∗

µ
, I∗ =

βeS
∗

γ + µ+ u1 − βhS∗ − δκ

ξ
,W ∗ =

ξI∗

δ
, R∗ =

γI∗

µ
.

Wang and Wang’ paper [25] also established the following results:

Theorem 1 Assume Di = 0, then for model system (1-4), (1) the disease-free equilibrium
E0 is locally and globally asymptotically stable if R0 < 1; and (2) if R0 > 1, the unique
chronic infection equilibrium E∗ is globally asymptotically stable.

In this paper, we consider the cholera spatially dependent model proposed in Wang and
wang [25] and construct an NSFD scheme for this model. As far as we know, there are
few studies on the continuous cholera models designed as discrete equations. The rest of
the paper is organized as follows. In the next section, we construct a discretized cholera
model with diffusion from the continuous model by using the nonstandard finite difference
method. In Section 3 and Section 4, the global asymptotic stability analysis of the equilibria
is performed by using discrete Lyapunov functions. In Section 5, we carry out the numerical
study of the discrete model, which confirms our theoretical results. Finally, the conclusions
are summarized in Section 6.

2 A discretized model

Assume Ω = [a, b] with a, b ∈ R, let △t be the time step size and △x = (b−a)
N

be the space
step size, tk = k△t for k ∈ N be the time mesh point, where N is the set of all non-negative

3
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integers. The space mesh point is Xn = n∆x for n ∈ {0, 1, · · · , N}. At each point, we
denote approximations of S(xn, tk), I(xn, tk), W (xn, tk) and R(xn, tk) by S

k
n, I

k
n, W

k
n and Rk

n,
respectively. For the sake of convenience, a (N + 1)− dimensional vector

Uk = (Uk
0 , U

k
1 , · · · , Uk

N)
T (7)

is used to represent all the approximation solutions at the time tk. The notation (·)T denotes
the transposition of a vector, and all components of a vector U are non-negative.

We construct the following NSFD method for model system (1-4):

Sk+1
n − Sk

n

△t
= Λ− βW

Sk+1
n W k

n

κ+W k
n

− βhS
k+1
n Ikn − µSk+1

n +D1

Sk+1
n+1 − 2Sk+1

n + Sk+1
n−1

(△x)2
, (8)

Ik+1
n − Ikn
△t

= βW
Sk+1
n W k

n

κ+W k
n

+ βhS
k+1
n Ikn − (γ + µ+ u1)I

k+1
n +D2

Ik+1
n+1 − 2Ik+1

n + Ik+1
n−1

(△x)2
,(9)

W k+1
n −W k

n

△t
= ξIk+1

n − δW k+1
n +D3

W k+1
n+1 − 2W k+1

n +W k+1
n−1

(△x)2
, (10)

Rk+1
n −Rk

n

△t
= γIk+1

n − µRk+1
n +D4

Rk+1
n+1 − 2Rk+1

n +Rk+1
n−1

(△x)2
, (11)

with discrete initial value conditions

S0
n = ψ1(xn), I

0
n = ψ2(xn),W

0
n = ψ3(xn), R

0
n = ψ4(xn),

for n ∈ {0, 1, · · · , N}, and discrete boundary condition is given as:

Sk
−1 = Sk

0 , S
k
N = Sk

N+1, I
k
−1 = Ik0 , I

k
N = IkN+1,W

k
−1 = W k,W k

N =W k
N+1, R

k
−1 = Rk

0 , R
k
N = Rk

N+1.

It is easy to check that the solutions of the discrete system (8-11) are positive, and have the
disease-free equilibrium E0 and the chronic infection equilibrium E∗, which are the same as
that of the model (1-4).

3 Global stability of the disease-free equilibrium

Since R does not appear in the first three equations of the system (8-11), we only need to
study the system (8-10). In this section, we establish the global stability of the disease-free
equilibrium of system (8-10) by constructing a discrete Lyapunov function.

Theorem 2 If R0 < 1, the disease-free equilibrium E0 of the model system (8-10) is globally
asymptotically stable.

Proof Define a discrete Lyapunov function

Lk =
N∑

n=0

1

∆t
[S0g(

Sk
n

S0

) + Ikn +
(γ + µ+ u1)(1 + δ∆t)

ξ
W k

n ], (12)

4
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where the function g(x) = x− 1− lnx, x ∈ R+, clearly, g(x) ≥ 0 with equality only if x = 1.
Thus we have Lk ≥ 0 with equality if and only if Sk

n = S0, I
k
n = 0 and W k

n = 0 for all
n ∈ {0, 1, . . . , N}. Then, along the trajectory of (8-10), we have

Lk+1 − Lk =
N∑

n=0

1

∆t
[Sk+1

n − Sk
n + S0ln

Sk
n

Sk+1
n

+ Ik+1
n − Ikn +

γ + µ+ u1
ξ

(W k+1
n −W k

n )]

+
δ(γ + µ+ u1)

ξ
(W k+1

n −W k
n )

=
N∑

n=0

[2Λ− βWS
k+1
n W k

n

κ+W k
n

− βhS
k+1
n Ikn − µSk+1

n +D1

Sk+1
n+1 − 2Sk+1

n + Sk+1
n−1

(△x)2

− Λ2

µSk+1
n

+
ΛβWW

k
n

µ(κ+W k
n )

+
ΛβhI

k
n

µ
− ΛD1

µSk+1
n

Sk+1
n+1 − 2Sk+1

n + Sk+1
n−1

(△x)2

+
βWS

k+1
n W k

n

κ+W k
n

+ βhS
k+1
n Ikn − (γ + µ+ u1)I

k+1
n +D2

Ik+1
n+1 − 2Ik+1

n + Ik+1
n−1

(△x)2

+ (γ + µ+ u1)I
k+1
n − δ(γ + µ+ u1)

ξ
W k+1

n +D3
(γ + µ+ u1)

ξ

W k+1
n+1 − 2W k+1

n +W k+1
n−1

(△x)2
]

+
δ(γ + µ+ u1)

ξ
(W k+1

n −W k
n )

≤
N∑

n=0

[Λ(2− Λ

µSk+1
n

− µSk+1
n

Λ
) + (γ + µ+ u1)I

k
n(R0 − 1)]

+D1

Sk+1
N+1 − Sk+1

N

(△x)2
+D1

Sk+1
0 − Sk+1

−1

(△x)2
+D2

Ik+1
N+1 − Ik+1

N

(△x)2
+D2

Ik+1
0 − Ik+1

−1

(△x)2

+D3
(γ + µ+ u1)

ξ

W k+1
N+1 −W k+1

N

(△x)2
+D3

(γ + µ+ u1)

ξ

W k+1
0 −W k+1

−1

(△x)2

=
N∑

n=0

[Λ(2− Λ

µSk+1
n

− µSk+1
n

Λ
) + (γ + µ+ u1)I

k
n(R0 − 1)].

Since 2 − Λ

µSk+1
n

− µSk+1
n

Λ
≤ 0 by the arithmetic-geometric inequality, it then follows that if

R0 < 1, Lk+1 − Lk < 0, for all k ∈ N and the equality holds if and only if Sk+1
n = Λ

µ
.

This yields that {Lk} is a monotone decreasing sequence. Thus, there exists a constant L0

such that limk→+∞(Lk+1 − Lk) = 0. Therefore, we have limk→+∞S
k
n = Λ

µ
, limk→+∞I

k
n = 0,

limk→+∞W
k
n = 0, for all n ∈ {0, 1, . . . N}. Hence, E0 is globally asymptotically stable when

R0 < 1. This completes the proof.

4 Global Stability of the chronic infection equilibrium

In this section we concern with the global stability of the chronic infection steady state of
system (8-10) when R0 > 1.

5
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Theorem 3 If R0 > 1, the chronic infection equilibrium E∗ of the model system (8-10) is
globally asymptotically stable.

Using the expression for S∗ along with system (8-10) and discrete boundary conditions,
we first have

N∑
n=0

1

∆t
[g(
Sk+1
n

S∗ )− g(
Sk
n

S∗ )]

≤
N∑

n=0

1

∆t
[(Sk+1

n − Sk
n)(

Sk+1
n − S∗

S∗Sk+1
n

)]

=
N∑

n=0

1

S∗ [(Λ− βWS
k+1
n W k

n

κ+W k
n

+ βhS
k+1
n Ikn − µSk+1

n +D1

Sk+1
n+1 − 2Sk+1

n + Sk+1
n−1

(△x)2
)(1− S∗

Sk+1
n

)]

=
N∑

n=0

1

S∗ [(
βWS

∗W ∗

κ+W ∗ + βhS
∗I∗ + µS∗ − βWS

k+1
n W k

n

κ+W k
n

− βhS
k+1
n Ikn − µSk+1

n )(1− S∗

Sk+1
n

)]

+
N∑

n=0

1

S∗ [(D1

Sk+1
n+1 − 2Sk+1

n + Sk+1
n−1

(△x)2
)(1− S∗

Sk+1
n

)]

=
N∑

n=0

[−µ(S
k+1
n − S∗)2

S∗Sk+1
n

+
βWW

∗

κ+W ∗ (1−
S∗

Sk+1
n

)(1− (κ+W ∗)Sk+1
n W k

n

(κ+W k
n )S

∗W ∗ )

+ βhI
∗(1− S∗

Sk+1
n

)(1− Sk+1
n Ikn
S∗I∗

)]−D1

N−1∑
n=0

(Sk+1
n+1 − Sk+1

n )2

(△x)2Sk+1
n+1S

k+1
n

.

In the same way, we have

N∑
n=0

1

∆t
[g(
Ik+1
n

I∗
)− g(

Ikn
I∗

)]

≤
N∑

n=0

1

∆t
[(Ik+1

n − Ikn)(
Ik+1
n − I∗

I∗Ik+1
n

)]

=
N∑

n=0

1

I∗
[
βWS

k+1
n W k

n

κ+W k
n

+ βhS
k+1
n Ikn − (γ + µ+ u1)I

k+1
n

+D2(
Ik+1
n+1 − 2Ik+1

n + Ik+1
n−1

(△x)2
)(1− I∗

Ik+1
n

)]

=
N∑

n=0

[
βW
I∗

(1− I∗

Ik+1
n

)(
Sk+1
n W k

n

κ+W k
n

− Ik+1
n S∗W ∗

(κ+W ∗)I∗
) + βhS

∗(1− I∗

Ik+1
n

)(
Sk+1
n Ikn
S∗I∗

− Ik+1
n

I∗
)]

+
1

I∗

N∑
n=0

[(D2

Ik+1
n+1 − 2Ik+1

n + Ik+1
n−1

(△x)2
)(1− I∗

Ik+1
n

)]

=
N∑

n=0

[
βW
I∗

(1− I∗

Ik+1
n

)(
Sk+1
n W k

n

κ+W k
n

− Ik+1
n S∗W ∗

(κ+W ∗)I∗
) + βhS

∗(1− I∗

Ik+1
n

)(
Sk+1
n Ikn
S∗I∗

− Ik+1
n

I∗
)]

6

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.6, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1005 Shu Liao ET AL 1000-1012



−D2

N−1∑
n=0

(Ik+1
n+1 − Ik+1

n )2

(△x)2Ik+1
n+1I

k+1
n

.

Similarly, by letting ξI∗ = δW ∗, we obtain:

N∑
n=0

1

∆t
[g(
W k+1

n

W ∗ )− g(
W k

n

W ∗ )]

≤
N∑

n=0

1

∆t
[(W k+1

n −W k
n )(

W k+1
n −W ∗

W ∗W k+1
n

)]

=
N∑

n=0

1

W ∗ [(ξI
k+1
n − δW k+1

n +D3

W k+1
n+1 − 2W k+1

n +W k+1
n−1

(△x)2
)(1− W ∗

W k+1
n

)]

=
N∑

n=0

[
δ

W ∗ (1−
W ∗

W k+1
n

)(
W ∗Ik+1

n

I∗
−W k+1

n )] +
N∑

n=0

1

W ∗ [(
W k+1

n+1 − 2W k+1
n +W k+1

n−1

(△x)2
)(1− W ∗

W k+1
n

)]

=
N∑

n=0

[
δ

W ∗ (1−
W ∗

W k+1
n

)(
W ∗Ik+1

n

I∗
−W k+1

n )]−D3

N−1∑
n=0

(W k+1
n+1 −W k+1

n )2

(△x)2W k+1
n+1W

k+1
n

.

We then define the following Lyapunov function:

Hk =
N∑

n=0

1

∆t
[

1

βhI∗
g(
Sk
n

S∗ ) +
1

βhS∗ g(
Ikn
I∗

) +
βW
βhδI∗

g(
W k

n

W ∗ )]. (13)

Thus, Hk ≥ 0 for all k ∈ N, with equality if and only if Sk
n = S∗, Ikn = I∗ and W k

n = W ∗ for
all n ∈ {0, 1, . . . N}. The difference of Hk is:

Hk+1 −Hk =
N∑

n=0

[
1

βhI∗
(
Sk+1
n − Sk

n

S∗ + ln
Sk
n

Sk+1
n

) +
1

βhS∗ (
Ik+1
n − Ikn
I∗

+ ln
Ikn
Ik+1
n

)

+
βW
δβhI∗

(
W k+1

n −W k
n

W ∗ + ln
W k

n

W k+1
n

)]−D1

N−1∑
n=0

(Sk+1
n+1 − Sk+1

n )2

(∆x)2Sk+1
n+1S

k+1
n

−D2

N−1∑
n=0

(Ik+1
n+1 − Ik+1

n )2

(∆x)2Ik+1
n+1I

k+1
n

−D3

N−1∑
n=0

(W k+1
n+1 −W k+1

n )2

(∆x)2W k+1
n+1W

k+1
n

≤
N∑

n=0

{−µ(S
k+1
n − S∗)2

βhSk+1
n S∗I∗

+ (2− S∗

Sk+1
n

− Ik+1
n

I∗
− Sk+1

n Ikn
Ik+1
n S∗ +

Ik+1
n

I∗
)

− βWW
∗

βhI∗(κ+W ∗)
[
S∗

Sk+1
n

+
Ik+1
n

I∗
+
Sk+1
n W k

n I
∗(κ+W ∗)

Ik+1
n (κ+W k

n )S
∗W ∗ − W k

n (κ+W ∗)

(κ+W k
n )W

∗ − 2]

− βWW
∗

βhI∗(κ+W ∗)
(
W k+1

n

W ∗ +
Ik+1
n W ∗

W k+1
n I∗

− Ik+1
n

I∗
− 1)}

−D1

N−1∑
n=0

(Sk+1
n+1 − Sk+1

n )2

(∆x)2Sk+1
n+1S

k+1
n

−D2

N−1∑
n=0

(Ik+1
n+1 − Ik+1

n )2

(∆x)2Ik+1
n+1I

k+1
n

−D3

N−1∑
n=0

(W k+1
n+1 −W k+1

n )2

(∆x)2W k+1
n+1W

k+1
n
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≤
N∑

n=0

{−µ(S
k+1
n − S∗)2

βhSk+1
n S∗I∗

− [g(
S∗

Sk+1
n

) + g(
Sk+1
n Ikn
Ik+1
n S∗ ) +

Ik+1
n

I∗
− ln

Ik+1
n

Ikn
]

− βWW
∗

βhI∗(κ+W ∗)
[
S∗

Sk+1
n

+
Ik+1
n

I∗
+
Sk+1
n I∗(κ+W ∗)

Ik+1
n S∗W ∗ − κ+W ∗

W ∗ − 2]

− βWW
∗

βhI∗(κ+W ∗)
(
W k+1

n

W ∗ +
Ik+1
n W ∗

W k+1
n I∗

− Ik+1
n

I∗
− 1)}

−D1

N−1∑
n=0

(Sk+1
n+1 − Sk+1

n )2

(∆x)2Sk+1
n+1S

k+1
n

−D2

N−1∑
n=0

(Ik+1
n+1 − Ik+1

n )2

(∆x)2Ik+1
n+1I

k+1
n

−D3

N−1∑
n=0

(W k+1
n+1 −W k+1

n )2

(∆x)2W k+1
n+1W

k+1
n

≤
N∑

n=0

{−µ(S
k+1
n − S∗)2

βhSk+1
n S∗I∗

− g(
S∗

Sk+1
n

)− g(
Sk+1
n Ikn
Ik+1
n S∗ )

− βWW
∗

βhI∗(κ+W ∗)
[g(

S∗

Sk+1
n

) + g(
Sk+1
n Ik+1

n (κ+W ∗)

Ik+1
n S∗W ∗ ) + g(

W k+1
n

W ∗ ) + g(
Ik+1
n W ∗

W k+1
n I∗

)]}

−D1

N−1∑
n=0

(Sk+1
n+1 − Sk+1

n )2

(∆x)2Sk+1
n+1S

k+1
n

−D2

N−1∑
n=0

(Ik+1
n+1 − Ik+1

n )2

(∆x)2Ik+1
n+1I

k+1
n

−D3

N−1∑
n=0

(W k+1
n+1 −W k+1

n )2

(∆x)2W k+1
n+1W

k+1
n

.

It is easy to see Hk+1 −Hk ≤ 0 for all k ∈ N. Then there exists a constant H∗ such that
limk→+∞(Hk+1 −Hk) = 0, which implies limk→+∞S

k
n = S∗. Combined with system (8-10),

we have limk→+∞I
k
n = I∗ and limk→+∞W

k
n = W ∗ as well, for all n ∈ {0, 1, . . . N}. Hence,

E∗ is globally asymptotically stable when R0 > 1. This completes the proof.

5 Numerical results

In this section, we propose numerical simulations to verify the stability properties of the
NSFD scheme. We use the data regarding the course of the cholera in Zimbabwe during
2008-2009, which is the worst outbreak in Africa in the past 30 years with over 100,000
humans have been infected and more than 4,300 killed. The total population in Zimbabwe
is 12,347,240, for mathematical simplicity, we scale down all data numbers by a factor of
1,200. All epidemiological parameter values for cholera in literature are given as: Λ = 4.5,
µ = 0.000442, ξ = 70, δ = 0.2333, u1 = 0.04, γ = 1.4, κ = 1000000 ( [2, 4, 5, 9]). In
addition, the initial values are taken as I(x, 0) = 10 × exp(−x), S(x, 0) = 1000 × exp(−x),
W (x, 0) = 10× exp(−x), and R(x, 0) = 10× exp(−x), where x ∈ [0, 50].

Let the grid sizes used in the simulation are ∆x = 0.5 and ∆t = 0.1, respectively, and
the diffusion coefficients Di are all fixed as 0.01. The discussions in ( [2,4,5,9]) indicate that
parameters βW and βh are sensitive and vary from place to place, so we first set βW = 0.0001
and βh = 0.0001, which renders R0 = 0.7070 < 1. Hence, model system has a disease-
free equilibrium in this case, the number of infectious decreases quickly and the disease
dies out. It can be observed from Figure 1, where the steady state approaches to E0 =
(0.6, 0, 0). For the other case, we choose βW = 0.0001, βh = 0.000236 and do not change
the other parameter values, which gives R0 = 1.6683 > 1, the chronic infection steady state
is E∗ = (0.5135, 1899.14, 8200.46) by calculation, the infected steady state is stable as can

8
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be observed numerically in Figure 2. We then examine the case with different sets of initial
conditions when R0 > 1, also obtain almost the same patterns.

Figure 3 compares the profile when we choose two different combinations of Di, as,
(0.01, 0.05, 0.01, 0.05) and (0.05, 0.1, 0.05, 0.1) for R0 > 1. Only the distribution of the density
of I(x, t) is depicted, similar results for the other two variables S(x, t) and R(x, t) are not
presented here. Comparing Fig. 3 and Fig 1.(a), we can find that diffusion coefficients have
no effect on the convergence of solutions, but the larger diffusion coefficients will deduce
the number of infected population and speed up the arrived time at the chronic infection
equilibrium.

In a addition, we perform numerical simulations of a standard finite difference (SFD)
scheme to compare the results with NSFD scheme using the same discrete boundary condi-
tions and parameter values in Figure 4. The stronger competitiveness of NSFD scheme has
been proved by its succsess in preserving the global stability of equilibrium and the failure
of the SFD method.
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Figure 1: Graphs of the numerical solutions of the NSFD method when R0 < 1.
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6 Conclusions and discussions

In this article, we derive a discrete cholera infection model with spatial diffusion by using an
NSFD method. We show that the disease-free steady state of the discrete model is globally

0
60

20

40

50

60

N
um

be
rs

 In
fe

ct
io

us

40

80

40

t

100

30

x

120

20 20
10

0 0

(a)

0
60

2000

4000

50

S
us

ce
pt

ib
le

 N
um

be
rs

40

6000

40

t

8000

30

x

10000

20 20
10

0 0

(b)

0
60

2000

4000

50

R
ec

ov
er

ed
 N

um
be

rs

40

6000

40

t

8000

30

x

10000

20 20
10

0 0

(c)

Figure 2: Graphs of the numerical solutions of the NSFD method when R0 > 1.
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Figure 3: Dynamics of infected population when R0 > 1 for two different sets of Di.
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asymptotically stable if the basic reproduction number R0 < 1, and the chronic infection
equilibrium is globally asymptotically stable when R0 > 1. In a word, our results (Theorem
2 and Theorem 3) imply that the discretization scheme (8-11) is dynamically consistent with
the continuous system with respect to the globally asymptotical stability of the steady-state
solutions. Our simulation results also conclude that the diffusion coefficients have no relation
to the global stability of such cholera epidemic. Finally, numerical results show the advantage
of our method in comparison to an SFD method. Application of this method to the general
delayed discrete epidemic models is our future work.
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ABSTRACT

The main objective of this paper is to investigate the global stability of the solutions, the boundedness and the
periodic character of the nonlinear di¤erence equation

xn+1 = αxn + βxn¡l + γxn¡k +
axnxn¡k

bxn + cxn¡l + dxn¡k
, n = 0, 1, ...,

where the parameters α, β, γ, a, b, c and d are positive real numbers and the initial conditions x¡s, x¡s+1, ..., x¡1,
x0 are positive real numbers where s = maxfl, kg. Some numerical examples will be given to explicate our
results.

Keywords: Di¤erence equations, Stability, Global stability, Boundedness, Periodic solutions.

Mathematics Subject Classi…cation: 39A10

—————————————————

1. INTRODUCTION

Our goal is to study some qualitative behavior of the solutions of the di¤erence equation

xn+1 = αxn + βxn¡l + γxn¡k +
axnxn¡k

bxn + cxn¡l + dxn¡k
, n = 0, 1, ..., (1)

where the parameters α, β, γ, a, b, c and d are positive real numbers and the initial conditions x¡s, x¡s+1, ..., x¡1,
x0 are positive real numbers where s = maxfl, kg.

Recently there has been a great interest in studying the qualitative properties of rational di¤erence equations.
For the systematical studies of rational and nonrational di¤erence equations, one can refer to the papers [1-270]
and references therein.

Ibrahim [4] investigated the global attractivity of the positive solutions of the di¤erence equation

xn+1 =
xn¡(2k+1)

1+xn¡kxn¡(2k+1)
, n = 0, 1, ....

Zayed et al. et al. [5] studied the periodicity, the boundedness and the global stability of the positive solution
of the di¤erence equation,

xn+1 = αxn+βxn¡1+γxn¡2+δxn¡3

Axn+Bxn¡1+Cxn¡2+Dxn¡3
, n = 0, 1, ....

In [6] El-Dessoky investigated the global stability character and the periodicity of solutions of the recursive
sequence

xn+1 = axn¡l+bxn¡k

c+dxn¡lxn¡k
, n = 0, 1, ....

Guo-Mei Tang et al. [7] obtained the global behavior of solutions of the following nonlinear di¤erence equation

xn+1 = α+xn

A+Bxn+xn¡k
, n = 0, 1, ....
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Papaschinopoulos et al. [8] studied the asymptotic behavior and the periodicity of the positive solutions of
the nonautonomous di¤erence equation

xn+1 = An +
x

p
n¡1

xq
n

, n = 0, 1, ....

El-Dessoky [9] obtained the global stability, the boundedness and the periodicity of the nonlinear di¤erence
equation

xn+1 = axn + bxn¡k + cxn¡l ¡ dxn¡s

exn¡s¡αxn¡t
, n = 0, 1, ....

Nirmaladevi et al. [10] studied the periodicity solution and the global stability of nonlinear di¤erence equation

yn+1 = Pyn + Qyn¡k + Ryn¡l + byn¡k

dyn¡k¡eyn¡l
, n = 0, 1, ....

"Let I be some interval of real numbers and let

F : Is+1 ! I,

be a continuously di¤erentiable function. Then for every set of initial conditions x¡s, x¡s+1, ..., x0 2 I, the
di¤erence equation

xn+1 = F (xn, xn¡1, ..., xn¡s), n = 0, 1, ..., (2)

has a unique solution fxng1
n=¡s.

Definition 1.1. (Equilibrium Point)
A point x 2 I is called an equilibrium point of the di¤erence equation (2) if

x = F (x, x, ..., x).

That is, xn = x for n ¸ 0, is a solution of the di¤erence equation (2), or equivalently, x is a …xed point of F.

Definition 1.2. (Stability)
Let x 2 (0, 1) be an equilibrium point of the di¤erence equation (2). Then, we have
(i) The equilibrium point x of the di¤erence equation (2) is called locally stable if for every ε> 0, there exists
δ > 0 such that for all x¡s, ..., x¡1, x0 2 I with

jx¡t ¡ xj + ... + jx¡1 ¡ xj + jx0 ¡ xj < δ,

we have
jxn ¡ xj < ε for all n ¸ ¡t.

(ii) The equilibrium point x of the di¤erence equation (2) is called locally asymptotically stable if x is locally
stable solution of equation (2) and there exists γ> 0, such that for all x¡t, ..., x¡1, x0 2 I with

jx¡s ¡ xj + ... + jx¡1 ¡ xj + jx0 ¡ xj < γ,

we have
lim

n!1 xn = x.

(iii) The equilibrium point x of the di¤erence equation (2) is called global attractor if for all x¡s, ..., x¡1, x0 2
I, we have

lim
n!1 xn = x.

(iv) The equilibrium point x of the di¤erence equation (2) is called globally asymptotically stable if x is locally
stable, and x is also a global attractor of the di¤erence equation (2).

(v) The equilibrium point x of the di¤erence equation (2) is called unstable if x is not locally stable.
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Definition 1.3. (Periodicity)
A sequence fxng1

n=¡s is said to be periodic with period p if xn+p = xn for all n ¸ ¡t. A sequence fxng1
n=¡s is

said to be periodic with prime period p if p is the smallest positive integer having this property.

Definition 1.4. Equation (2) is called permanent and bounded if there exists numbers M and m with 0 < m <
M < 1 such that for any initial conditions x¡s, ..., x¡1, x0 2 (0, 1) there exists a positive integer N which
depends on these initial conditions such that

m · xn · M for all n > N.

Definition 1.5. The linearized equation of the di¤erence equation (2) about the equilibrium x is the linear
di¤erence equation

yn+1 =
sX

i=0

∂F (x, x, ..., x)

∂xn¡i
yn¡i. (3)

Now, assume that the characteristic equation associated with (3) is

p(λ) = p0λ
s + p1λ

s¡1 + ... + ps¡1λ+ ps = 0, (4)

where
pi = ∂F (x,x,...,x)

∂xn¡i
.

Theorem 1.6. [1]: Assume that pi 2 R, i = 1, 2, ..., s and s is non-negative integer. Then

sX
i=1

jpij < 1,

is a su¢cient condition for the asymptotic stability of the di¤erence equation

yn+s + p1yn+s¡1 + ... + psyn = 0, n = 0, 1, ... .

Theorem 1.7. [1]: Consider the the di¤erence equation (2) where F 2 C(It+1, R) and I is an open interval of
real numbers. Let x be an equilibrium point of the di¤erence equation (2). Finally, suppose that F satis…es the
following two conditions:

(i) F is nondecreasing in each of its argements.

(ii) F satis…es the negative feedback property

[F (x, x, ..., x) ¡ x] (x ¡ x) < 0, for all x 2 I ¡ f0g .

Then the equilibrium point x isa global attractor of all solutions of the di¤erence equation (2)."

2. LOCAL STABILITY

In this section, we study the local stability character of the equilibrium point of equation (1).

Equation (1) has equilibrium point and is given by

x = αx + βx + γx + ax2

bx+cx+dx ,

[(1 ¡ α¡ β¡ γ) (b + c + d) ¡ a]x2 = 0.

If (1 ¡ α¡ β¡ γ) (b + c + d) 6= a, then the equilibrium point of the di¤erence equation (1) is x = 0.
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Let f : (0, 1)3 ¡! (0, 1) be a continuous function de…ned by

f(u, v, w) = αu + βv + γw + auw
bu+cv+dw .

Therefore, it follows that

∂f(u, v, w)
∂u

= α+ aw(cv+dw)

(bu+cv+dw)2
, ∂f(u, v, w)

∂v
= β¡ acuw

(bu+cv+dw)2
and ∂f(u, v, w)

∂w
= γ+ au(bu+cv)

(bu+cv+dw)2
.

Theorem 2.1. The zero equilibrium x of the di¤erence equation (1) is locally asymptotically stable if

(α+ β+ γ) (b + c + d) + a < 1. (5)

Proof: So, we can write Eq. (6) at zero equilibrium point x = 0

∂f(x, x, x)
∂u = α+ a(c+d)

(b+c+d)2
= p1,

∂f(x, x, x)
∂v = β¡ ac

(b+c+d)2
= p2

and ∂f(x, x, x)
∂w = γ+ a(b+c)

(b+c+d)2
= p3.

Then the linearized equation of equation (1) about x is

yn+1 ¡ p1yn¡k ¡ p2yn¡l ¡ p3yn¡s = 0,

It follows by Theorem 1 that, equation (1) is asymptotically stable if and only if

jp1j + jp2j + jp3j < 1.

Thus, ¯̄̄
α+ a(c+d)

(b+c+d)2

¯̄̄
+

¯̄̄
β¡ ac

(b+c+d)2

¯̄̄
+

¯̄̄
γ+ a(b+c)

(b+c+d)2

¯̄̄
< 1,

and so
α+ a(c+d)

(b+c+d)2
+ β¡ ac

(b+c+d)2
+ γ+ a(b+c)

(b+c+d)2
< 1,

α+ β+ γ+ a(b+c+d)

(b+c+d)2
< 1,

(α+ β+ γ) (b + c + d) + a < 1.

The proof is complete.

Example 1. Consider l = 2, k = 3, α = 0.3, β = 0.02, γ= 0.01, a = 0.1, b = 0.2, c = 0.3 and d = 0.7 and
the initial conditions x¡3 = 0.2, x¡2 = 0.4, x¡1 = 0.6 and x0 = 0.1, the zero solution of the di¤erence equation
(1) is local stability (see Fig. 1).
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plot of x(n+1)= alfa X(n)+ beta X(n-l)+ gamma X(n-k)+(a X(n)X(n-k)/(b X(n)+ c X(n-l)+ d X(n-k)))

Figure 1. Sketch the behavior of zero solution of equation (1) is local stable.
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Example 2. The solution of the di¤erence equation (1) is unstable if l = 2, k = 3, α= 0.3, β= 0.2, γ= 0.1,
a = 0.5, b = 0.2, c = 0.3 and d = 0.7 and the initial conditions x¡3 = 0.2, x¡2 = 0.4, x¡1 = 0.6 and x0 = 0.1.
(See Fig. 2).
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plot of x(n+1)= alfa X(n)+ beta X(n-l)+ gamma X(n-k)+(a X(n)X(n-k)/(b X(n)+ c X(n-l)+ d X(n-k)))

Figure 2. Draw the behavior of the solution of equation (1) is unstable.

3. GLOBAL STABILITY

In this section, the global asymptotic stability of equation (1) is studied.

Theorem 3.1. The equilibrium point x is a global attractor of Eq. (1) if α+ β+ γ 6= 1.

Proof: Suppose that ζand ηare real numbers and assume that F : [ζ,η]3 ¡! [ζ,η] is a function de…ned by

F (x, y, z) = αx + βy + γz + axz
bx+cy+dz .

Then

∂F (x, y, z)
∂x = α+ az(cy+dz)

(bx+cy+dz)2
, ∂F (x, y, z)

∂y = β¡ acxz
(bx+cy+dz)2

and ∂F (x, y, z)
∂z = γ+ ax(bx+cy)

(bx+cy+dz)2
.

Now, we can see that the function F (x, y, z) nondecreasing in x, y and z. Then

[F (x, x, x) ¡ x] (x ¡ x) =
h
αx + βx + γx + ax2

bx+cx+dx
¡ x

i
(x ¡ x)

= ¡
·µ

1 ¡ α¡ β¡ γ¡ a

b + c + d

¶
x

¸
(x ¡ 0)

= ¡
µ

1 ¡ α¡ β¡ γ¡ a

b + c + d

¶
x2 < 0

If α+ β+ γ+ a
b+c+d

< 1, then F (x, y, z) satis…es the negative feedback property

[F (x, x, x) ¡ x] (x ¡ x0) < 0, for x0 = 0.

According to Theorem 2, then x is a global attractor of Eq. (1). This completes the proof.

Example 3. The solution of the di¤erence equation (1) is global stability when l = 2, k = 3, α = 0.03, β=
0.02, γ= 0.01, a = 0.1, b = 0.2, c = 0.3 and d = 0.7 and the initial conditions x¡3 = 0.2, x¡2 = 0.4, x¡1 = 0.6
and x0 = 0.1. (See Fig. 3).
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Figure 3. Plot the behavior of the solution of equation (1) is global stability.

4. BOUNDEDNESS OF THE SOLUTIONS

In this section, we investigate the boundedness nature of the positive solutions of equation (1).

Theorem 4.1. Every solution of Equation (1) is bounded if one of the following conditions holds:

(i) α+
a

d
< 1, β< 1 and γ< 1. (6)

(ii) α < 1, β< 1 and γ+
a

b
< 1. (7)

Proof: First we prove every solution of Equation (1) is bounded if α+ a
d

< 1, β< 1 and γ< 1. Let fxng1
n=¡s

be a solution of Equation (1). It follows from Equation (1) that

xn+1 = αxn + βxn¡l + γxn¡k + axnxn¡k

bxn+cxn¡l+dxn¡k
,

6 αxn + βxn¡l + γxn¡k + axnxn¡k

dxn¡k

=
¡
α+ a

d

¢
xn + βxn¡l + γxn¡k

< xn + xn¡l + xn¡k.

Then
xn+1 < xn + xn¡l + xn¡k for all n ¸ 0.

So every solution of Eq. (1) is bounded from above by M = x0 + x¡l + x¡k.

Second we prove every solution of Equation (1) is bounded if α< 1, β< 1 and γ+ a
b

< 1. Let fxng1
n=¡s be

a solution of Equation (1). It follows from Equation (1) that

xn+1 = αxn + βxn¡l + γxn¡k +
axnxn¡k

bxn+cxn¡l+dxn¡k
,

6 αxn + βxn¡l + γxn¡k + axnxn¡k

bxn

= αxn + βxn¡l +
¡
γ+ a

b

¢
xn¡k

< xn + xn¡l + xn¡k.

Then
xn+1 < xn + xn¡l + xn¡k for all n ¸ 0.

So every solution of Eq. (1) is bounded from above by M = x0 + x¡l + x¡k.

Theorem 4.2. Every solution of Equation (1) is unbounded if α> 1or β> 1 or γ> 1.
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Proof: Let fxng1
n=¡s be a solution of Equation (1).Then from Equation (1) we see that

xn+1 = αxn + βxn¡l + γxn¡k + axnxn¡k

bxn+cxn¡l+dxn¡k
> αxn for all n ¸ 0.

We see that the right hand side can be written as follows

zn+1 = αzn¡l.

then
zln+i = αnzl+i + const., i = 0, 1, ..., l,

and this equation is unstable because α > 1, and lim
n!1zn = 1.Then by using ratio test fxng1

n=¡s is unbounded

from above.

Similarly we can prof that every solution of Eq. (1) is unbounded if β> 1 or γ> 1. Thus, the proof is now
completed.

Example 4. We assume l = 2, k = 3, α = 1.3, β = 0.2, γ= 0.1, a = 0.1, b = 0.2, c = 0.3 and d = 0.7 and
the initial conditions x¡3 = 0.2, x¡2 = 0.4, x¡1 = 0.6 and x0 = 0.1, the solution of the di¤erence equation (1)
is unbounded (see Fig. 4).
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plot of x(n+1)= alfa X(n)+ beta X(n-l)+ gamma X(n-k)+(a X(n)X(n-k)/(b X(n)+ c X(n-l)+ d X(n-k)))

Figure 4. Plot the behavior of the solution of equation (1) is unbounded.

5. EXISTENCE OF PERIODIC SOLUTIONS

Theorem 5.1. Suppose that l and k are even positive integers, then equation (1) has no prime period two
solutions.

Proof: First suppose that there exists a prime period two solution

...P, Q, P, Q, ...,

of equation (1). We see from equation (1) when l and k are an even, then xn = xn¡l = xn¡k. It follows equation
(1) that

P = αQ + βQ + γQ + aQ2

bQ+cQ+dQ ,

and
Q = αP + βP + γP + aP 2

bP+cP+dP .

Therefore,
(b + c + d)P = (b + c + d) (α+ β+ γ)Q + aQ, (8)

(b + c + d)Q = (b + c + d) (α+ β+ γ)P + aP, (9)
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Subtracting (9) from (8) gives

(b + c + d) (P ¡ Q) = ((b + c + d) (α+ β+ γ) + a) (Q ¡ P )

(P ¡ Q) [(b + c + d) (1 + α+ β+ γ) + a] = 0

Since (b + c + d) (1 + α+ β+ γ) + a 6= 0, then p = q. This is a contradiction. Thus, the proof is completed.

Theorem 5.2. Let l is even and k is odd positive integers, then equation (1) has no positive prime period two
solutions.

Proof: First suppose that there exists a prime period two solution

...P, Q, P, Q, ...,

of equation (1). We see from equation (1) when l is an even and k is an odd, then xn = xn¡l and xn+1 = xn¡k.
It follows equation (1) that

P = αQ + βQ + γP + aQP
bQ+cQ+dP ,

and
Q = αP + βP + γQ + aP Q

bP+cP+dQ .

Therefore,
(b + c) (1 ¡ γ)PQ + dP 2 = (b + c) (α+ β)Q2 + d(α+ β)PQ + aQP, (10)

(b + c) (1 ¡ γ)PQ + dQ2 = (b + c) (α+ β)P 2 + d(α+ β)PQ + aPQ, (11)

Subtracting (11) from (10) gives

d(P 2 ¡ Q2) = (b + c) (α+ β)(Q2 ¡ P 2)

(P 2 ¡ Q2) (d + (b + c) (α+ β)) = 0

Then P = §Q. This is a contradiction. Thus, the proof is completed.

Theorem 5.3. Suppose that l is odd and k is even positive integers, then equation (1) has no positive prime
period two solutions.

Proof: First suppose that there exists a prime period two solution

...P, Q, P, Q, ...,

of equation (1). We see from equation (1) when k is an even and l is an odd, then xn = xn¡k and xn+1 = xn¡l.
It follows equation (1) that

P = αQ + βP + γQ + aQ2

bQ+cP+dQ ,

and
Q = αP + βQ + γP + aP 2

bP+cQ+dP .

Therefore,
(b + d) (1 ¡ β)PQ + cP 2 = (b + d) (α+ γ)Q2 + c(α+ γ)PQ + aQ2, (12)

(b + d) (1 ¡ β)PQ + cQ2 = (b + d) (α+ γ)P 2 + c(α+ γ)PQ + aP 2, (13)

Subtracting (13) from (12) gives

c(P 2 ¡ Q2) = ((b + d) (α+ γ) + a) (Q2 ¡ P 2)
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(P 2 ¡ Q2) [c ((b + d) (α+ γ) + a)] = 0

Then P = §Q. This is a contradiction. Thus, the proof is completed.

Theorem 5.4. Let l, k are odd positive integers. If

(1 + α¡ β¡ γ) (b + c + d) ¡ a 6= 0,

then Eq. (1) has no prime period two solution.

Proof: First suppose that there exists a prime period two solution

...P, Q, P, Q, ...,

of equation (1). We see from equation (1) when l and k are an odd, then xn+1 = xn¡l = xn¡k. It follows equation
(1) that

P = αQ + βP + γP + aP 2

bP+cP+dP ,

and
Q = αP + βQ + γQ + aQ2

bQ+cQ+dQ .

Therefore,
(1 ¡ β¡ γ) (b + c + d)P = α(b + c + d)Q + aP, (14)

(1 ¡ β¡ γ) (b + c + d)Q = α(b + c + d)P + aQ, (15)

Subtracting (15) from (14) gives

(1 ¡ β¡ γ) (b + c + d) (P ¡ Q) = α(b + c + d) (Q ¡ P ) + a(P ¡ Q)

(P ¡ Q) [(1 + α¡ β¡ γ) (b + c + d) ¡ a] = 0

Since (1 + α¡ β¡ γ) (b + c + d) ¡ a 6= 0, then p = q. This is a contradiction. Thus, the proof is completed.
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Abstract. The purpose of this article, we consider the existence of a unique best proximity

point x∗ ∈ A such that d(x∗, Tx∗) = dist(A,B) for generalized ϕ-weak contraction mapping

T : A → B, where A,B(6= ∅) are subsets of a metric space (X, d).

1. Introduction

Let (X, d) be a metric space. A mapping T : X → X is a contraction if
there exists a constant α ∈ (0, 1) such that

d(Tx, Ty) ≤ α · d(x, y), ∀x, y ∈ X.
A mapping T : X → X is a ϕ-weak contraction if there exists a continu-
ous and nondecreasing function ϕ : [0,∞) → [0,∞) with ϕ−1(0) = {0} and
limt→∞ ϕ(t) =∞ such that

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)), ∀x, y ∈ X. (1.1)

If X is bounded, then the infinity condition can be omitted.

The concept of the ϕ-weak contraction was introduced by Alber and Guerre-
Delabriere [1] in 1997, who proved the existence of fixed points in Hilbert
spaces. Later Rhoades [14] in 2001, who extended the results of [1] to metric
spaces.

Theorem 1.1. ([14]) Let (X, d) be a complete metric space, T : X → X be a
ϕ-weak contractive self-map on X. The T has a unique fixed point p in X.

Remark 1.2. Theorem 1.1 is one of generalizations of the Banach contrac-
tion principle because it takes ϕ(t) = (1 − α)t for α ∈ (0, 1), then ϕ-weak
contraction contains contraction as special cases.

Next, we present a brief discussion about best proximity point which is a
interesting topic in best proximity theory.

02010 Mathematics Subject Classification: 54H25, 47H09, 47H10, 41A65.
0Keywords: Optimal solution, best proximity point, P -property, generalized ϕ-weak con-

traction mapping, fixed point, metric space.
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2 Kyung Soo Kim

Let (X, d) be a metric space and A(6= ∅) be a subset of (X, d). Consider
a mapping T : A → X. The solutions to the fixed point equation Tx = x
are called fixed points of the mapping T. It is clear that T (A) ∩ A 6= ∅ is a
necessary (but not sufficient) condition for the existence of a fixed point for
the mapping T : A→ X. If the necessary condition fails, then

d(x, Tx) > 0,

for all x ∈ A. This means that the mapping T : A → X does not have any
fixed point, i.e., Tx = x has no solution. This point of view, it give us to think
of a point x ∈ A which is closest to Tx in some sense. Best approximation
theory and best proximity point theory are relevant in this perspective. One
of the most interesting best approximation theorem is due to Fan [3].

Theorem 1.3. ([3]) Let C(6= ∅) be a compact convex subset of a normed linear
space V and F : C → V be a continuous function. Then there exists a point
p ∈ C such that ‖p− Fp‖ = d(Fp,C) = inf{‖Fp− c‖ : c ∈ C}.

Such an element p ∈ C in Theorem 1.3 is called a best approximant point of
T in C.

Although a best approximation point acts as an approximate solution of
the equation Fp = p, the value ‖p−Fp‖ need not be the optimum, i.e., a best
approximant point is not an optimal solution in the sense that

min
p∈A
‖p− Fp‖.

Naturally, let us consider nonempty subsets A,B of a metric space (X, d) and
a mapping T : A→ B. Then one can think of finding an element x∗ ∈ A such
that

d(x∗, Tx∗) = min{d(x, Tx) : x ∈ A}.

Since

d(x, Tx) ≥ dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}

for all x ∈ A, the optimal solution of minx∈A d(x, Tx) is one for which the
value dist(A,B) is attained. A point x∗ ∈ A is said to be a best proximity
point of T : A→ B if

d(x∗, Tx∗) = dist(A,B).

So a best proximity point of the mapping T is an approximate solution of the
equation Tx = x which is optimal solution in the sense that

min
x∈A

d(x, Tx).
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Best proximity point of contraction type mapping in metric space 3

Remark 1.4. It is trivial that all best proximity point theorems work as
a natural generalization of fixed point theorems if the mapping T is a self-
mapping.

Recently Sultana and Vetrivel [15] obtained the following best proximity
point theorem for mapping satisfies (1.1).

Theorem 1.5. ([15], Theorem 3.4) Let A,B(6= ∅) be two closed subsets of a
complete metric space (X, d) such that the pair (A,B) has the P -property and
A0 6= ∅ and T : A → B be a mapping such that T (A0) ⊆ B0 and it satisfies
(1.1). Then there exists a unique p ∈ A such that d(p, Tp) = dist(A,B).

In 2016, Xue [16] introduced a new contraction type mapping as follows.

Definition 1.6. ([16]) A mapping T : X → X is a generalized ϕ-weak contrac-
tion if there exists a continuous and nondecreasing function ϕ : [0,∞)→ [0,∞)
with ϕ(0) = 0 such that

d(Tx, Ty) ≤ d(x, y)− ϕ(d(Tx, Ty)), ∀x, y ∈ X (1.2)

holds.

We notice immediately that if T : X → X is ϕ-weak contraction, then T
satisfies the following inequality

d(Tx, Ty) ≤ d(x, y)− ϕ(d(Tx, Ty)), ∀x, y ∈ X.
However, the converse is not true in general.

Example 1.7. Let X = (−∞,+∞) be endowed with the Euclidean metric
d(x, y) = |x−y| and let Tx = 2

5x for each x ∈ X. Define ϕ : [0,+∞)→ [0,+∞)

by ϕ(t) = 4
3 t. Then T satisfies (1.2), but T does not satisfy inequality (1.1).

Indeed,

d(Tx, Ty) =

∣∣∣∣25x− 2

5
y

∣∣∣∣
≤ |x− y| − 4

3
· 2

5
|x− y|

= d(x, y)− ϕ(d(Tx, Ty))

and

d(Tx, Ty) =

∣∣∣∣25x− 2

5
y

∣∣∣∣
≥ |x− y| − 4

3
|x− y|

= d(x, y)− ϕ(d(x, y))

for all x, y ∈ X.
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Example 1.8. ([16]) Let X = (−1,+∞) be endowed by d(x, y) = |x− y| and

let Tx = x
1+x for each x ∈ X. Define ϕ : [0,+∞) → [0,+∞) by ϕ(t) = t2

1+t .
Then

d(Tx, Ty) =

∣∣∣∣ x

1 + x
− y

1 + y

∣∣∣∣ =
|x− y|

(1 + x)(1 + y)

≤ |x− y|
1 + |x− y|

= |x− y| − |x− y|2

1 + |x− y|
= d(x, y)− ϕ(d(x, y))

holds for all x, y ∈ X. So T is a ϕ-weak contraction. However T is not a
contraction.

Remark 1.9. The above examples show that the class of generalized ϕ-weak
contractions properly includes the class of ϕ-weak contractions and the class
of ϕ-weak contractions properly includes the class of contractions.

In fact, let T : X → X be a contraction, there exists α ∈ (0, 1) such that

d(Tx, Ty) ≤ α · d(x, y), ∀x, y ∈ X.
Then

d(Tx, Ty) ≤ α · d(x, y) = d(x, y)− (1− α)d(x, y)

= d(x, y)− ϕ(d(x, y)),

where, ϕ(d(x, y)) = (1 − α)d(x, y). So, T is a ϕ-weak contraction. Moreover,
let T be a ϕ-weak contraction, from property of ϕ, we have d(Tx, Ty) ≤ d(x, y)
and

ϕ(d(Tx, Ty)) ≤ ϕ(d(x, y)).

From (1.1),

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y))

≤ d(x, y)− ϕ(d(Tx, Ty)), ∀x, y ∈ X.
Therefore, T is a generalized ϕ-weak contraction.

In the meantime, if T is a ϕ-weak contractive self mapping for one mapping
ϕ so we do not expect that the ϕ-weak contractivity should be satisfied with
the same function ϕ. Let us suppose that T is a ϕ-weak contractive self
mapping and consider

ϕ̃(x) = min {ϕ(x/2);x/2} .

Then, if d(Tx, Ty) > 1
2d(x, y), we have

d(Tx, Ty) ≤ d(x, y)− ϕ(d(Tx, Ty)) ≤ d(x, y)− ϕ
(

1

2
d(x, y)

)
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on account of monotonocity of ϕ and finally

d(Tx, Ty) ≤ d(x, y)− ϕ̃(d(x, y)).

On the other hand, if d(Tx, Ty) < 1
2d(x, y), we get

d(Tx, Ty) < d(x, y)− 1

2
d(x, y) ≤ d(x, y)− ϕ̃(d(x, y)).

So T is just the ϕ̃-weak contractive mapping. The continuity and monotonoc-
ity of ϕ̃ follows directly from properties of min function, ϕ and the metric.

For related results, please see [9], [10], [11] and the references therein ([5],
[6], [7], [8]).

The purpose of this article, we consider the existence of a unique best prox-
imity point x∗ ∈ A such that d(x∗, Tx∗) = dist(A,B) for generalized ϕ-weak
contraction mapping T : A → B, where A,B(6= ∅) are subsets of a metric
space (X, d).

2. Preliminaries

Let A,B be two nonempty subsets of a metric space (X, d). Let us define
the following notation which will be need throughout this article:

A0 = {x ∈ A : d(x, y) = dist(A,B) for some y ∈ B},
B0 = {y ∈ B : d(x, y) = dist(A,B) for some x ∈ A}.

In [12], the authors discussed sufficient conditions which guarantee the
nonemptiness of A0 and B0. Also, in [2], the authors proved that A0 is con-
tained in the boundary of A.

Let us define the notion of nonself generalized ϕ-weak contraction mapping
as follows.

Definition 2.1. Let A,B be two nonempty subsets of a metric space (X, d).
A mapping T : A→ B is said to be a generalized ϕ-weak contraction if

d(Tx, Ty) ≤ d(x, y)− ϕ(d(Tx, Ty)), ∀x, y ∈ A, (2.1)

where ϕ : [0,∞) → [0,∞) is a continuous and nondecreasing function such
that ϕ is positive on (0,∞), ϕ−1(0) = {0} and limt→∞ ϕ(t) = ∞. If A is
bounded, then the infinity condition can be omitted.

The notion called the P -property was introduced in [13].

Definition 2.2. ([13]) Let (A,B) be a pair of nonempty subsets of a metric
space (X, d) with A0 6= ∅. Then the pair (A,B) is said to be has the P -property
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if and only if for any x1, x2 ∈ A0 and y1, y2 ∈ B0,

d(x1, y1) = dist(A,B) = d(x2, y2) ⇒ d(x1, x2) = d(y1, y2).

Now we recall the following results from [4] and [15].

Lemma 2.3. ([15]) Let ϕ : [0,∞)→ [0,∞) be a function such that ϕ−1(0) =
{0} and ϕ is either nondecreasing or continuous. Then

ϕ(µn)→ 0 ⇒ µn → 0

for any bounded sequence {µn} of positive reals.

Lemma 2.4. ([4]) For a given subset D of {(x, y) ∈ R2 : x, y ≥ 0}, the
following statements are equivalent:

(i) for any ε > 0, there exist δ > 0 and γ ∈ (0, ε) such that

u < ε+ δ ⇒ v ≤ γ

for all (u, v) ∈ D,
(ii) there exist a continuous and nondecreasing function φ : [0,∞) →

[0,∞) such that

φ(u) < u, ∀u > 0 and v ≤ φ(u), ∀ (u, v) ∈ D.

3. Main results

Lemma 3.1. Let A and B be two nonempty subsets of a metric space (X, d)
and ϕ : [0,∞)→ [0,∞) be a function such that ϕ−1(0) = {0} and

ϕ(tn)→ 0 ⇒ tn → 0 (3.1)

for any bounded sequence {tn} of positive reals. Let T : A→ B be a genearlized
ϕ-weak contraction mapping satisfying (2.1). Then, for any ε > 0, there exist
δ > 0 and γ ∈ (0, ε) such that

d(x, y) < ε+ δ ⇒ d(Tx, Ty) ≤ γ

for all x, y ∈ A.

Proof. Suppose that there exists an ε0 > 0 such that for any δ > 0, γ ∈ (0, ε0)
and there exist x, y ∈ A such that

d(x, y) < ε0 + δ ⇒ d(Tx, Ty) > γ.

Let

δn =
1

n2
and γn =

n2

1 + n2
ε0, ∀n ∈ N.
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Then there exist {xn} and {yn} in A such that

d(xn, yn) < ε0 +
1

n2
⇒ d(Txn, T yn) >

n2

1 + n2
ε0. (3.2)

From (2.1), we have

n2

1 + n2
ε0 < d(Txn, T yn)

≤ d(xn, yn)− ϕ(d(Txn, T yn))

< ε0 +
1

n2
− ϕ(d(Txn, T yn)).

That is

ϕ(d(Txn, Tyn)) < ε0 +
1

n2
− n2

1 + n2
ε0 =

1

n2
+

ε0
1 + n2

.

Hence
ϕ(d(Txn, Tyn))→ 0 as n→∞.

Since d(Txn, Tyn) ≤ d(xn, yn) and {d(xn, yn)} is bounded, we get {d(Txn, Tyn)}
is bounded. By the given hypothesis (3.1),

d(Txn, Tyn)→ 0 as n→∞.
On the other hand, from (3.2),

lim
n→∞

d(Txn, T yn) ≥ ε0 > 0.

This is a contradiction. Thus Lemma 3.1 holds. �

The following theorem is main result which gives sufficient conditions for the
existence of a unique best proximity point for generalized ϕ-weak contraction
mapping.

Theorem 3.2. Let (A,B) be a pair of two nonempty closed subsets of a com-
plete metric space (X, d) such that A0 6= ∅. Let T : A → B be a generalized
ϕ-weak contraction mapping such that T (A0) ⊆ B0. Assume that the pair
(A,B) has the P -property. Then there exists a unique x∗ in A such that
d(x∗, Tx∗) = dist(A,B).

Proof. Let x0 ∈ A0. Since Tx0 ∈ T (A0) ⊆ B0, there exists x1 ∈ A0 such that

d(x1, Tx0) = dist(A,B).

Again, since Tx1 ∈ T (A0) ⊆ B0, there exists x2 ∈ A0 such that

d(x2, Tx1) = dist(A,B).

Continuing this process, we can find a sequence {xn} in A0 such that

d(xn+1, Txn) = dist(A,B), ∀n ∈ N. (3.3)
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Since (A,B) has the P -property, from (3.3), we obtain

d(xn, xn+1) = d(Txn−1, Txn), ∀n ∈ N. (3.4)

By the definition of T and (3.4), we have

d(xn, xn+1) = d(Txn−1, Txn)

≤ d(xn−1, xn)− ϕ(d(Txn−1, Txn))

≤ d(xn−1, xn), ∀ n ∈ N.

Therefore, the sequence {d(xn, xn+1)} is monotone nonincresing and bounded.
Hence it converges. If we set λn = d(xn, xn+1) and L be the limit of λn, i.e.,

lim
n→∞

λn = lim
n→∞

d(xn, xn+1) = L ≥ 0.

Now, we claim that L = 0. Suppose to the contrary that L > 0. Since {λn} is
nonincreasing sequence, i.e.,

λn ≥ λn+1 ≥ · · · ≥ L > 0, ∀n ∈ N
and ϕ is nondecreasing, we obtain

ϕ(λn) ≥ ϕ(L) > 0, ∀n ∈ N. (3.5)

From the inequality

λn = d(xn, xn+1) ≤ d(xn−1, x)− ϕ(d(Txn−1, Txn))

= λn−1 − ϕ(d(Txn−1, Txn)),

(3.4) and (3.5), we have

λn ≤ λn−1 − ϕ(d(xn, xn+1)) = λn−1 − ϕ(λn)

≤ λn−1 − ϕ(L), ∀n ∈ N.

Since ϕ is continuous, we get L ≤ L− ϕ(L). That is

ϕ(L) ≤ 0

which contradicts condition of ϕ. Hence

lim
n→∞

d(xn, xn+1) = L = 0.

Now we apply Lemma 2.3 and Lemma 2.4 to the setD = {(d(x, y), d(Tx, Ty)) :
x, y ∈ A} on Lemma 3.1, one knows that there exists a function φ : [0,∞)→
[0,∞) such that φ is continuous and nondecreasing with

φ(t) < t, ∀ t > 0 and d(Tx, Ty) ≤ φ(d(x, y)), ∀x, y ∈ A. (3.6)

Thus for a given ε > 0, there exists N ∈ N such that

d(xn, xn+1) ≤ ε− φ(ε), ∀n ≥ N. (3.7)

Next we show that {xn} is a Cauchy sequence.
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Denotes the closed ball with center x and radius ε by B[x, ε], we will claim
the following relations.

Claim I. T (B[xN , ε] ∩A) ⊆ B[TxN−1, ε].
Let x ∈ B[xN , ε] ∩A, i.e., d(xN , x) ≤ ε, from (3.4), (3.6) and (3.7), then

d(Tx, TxN−1) ≤ d(Tx, TxN ) + d(TxN , TxN−1)

≤ φ(d(x, xN )) + d(xN+1, xN )

≤ φ(ε) + {ε− φ(ε)} = ε,

which implies that Tx ∈ B[TxN−1, ε].

Claim II. y ∈ B[TxN−1, ε] with d(x, y) = dist(A,B) for some x ∈ A0 implies
x ∈ B[xN , ε] ∩A.

Let y ∈ B[TxN−1, ε] with d(x, y) = dist(A,B) for some x ∈ A0. From (3.3),
we have d(xN , TxN−1) = dist(A,B). Therefore, by using the P -property of
(A,B), we obtain that

d(xN , x) = d(TxN−1, y) ≤ ε.
Hence Claim II holds.

From (3.7), it is clear that

xN+1 ∈ B[xN , ε] ∩A.

And by Claim I, we have TxN+1 ∈ B[TxN−1, ε]. From (3.3), d(xN+2, TxN+1) =
dist(A,B) with xN+2 ∈ A0. From Claim II,

xN+2 ∈ B[xN , ε] ∩A.

Again by Claim I, TxN+2 ∈ B[TxN−1, ε] and by (3.3), d(xN+3, TxN+2) =
dist(A,B) with xN+3 ∈ A0. Again by Claim II,

xN+3 ∈ B[xN , ε] ∩A.
Continuing this process, we can conclude that

xN+m ∈ B[xN , ε] ∩A, ∀m ∈ N,

i.e., d(xN , xN+m) ≤ ε. Hence the sequence {xn} is a Cauchy sequence. Since
A is closed subset of the complete metric space (X, d), there exists an element
x∗ ∈ A such that limn→∞ xn = x∗. By the definition of T, we have d(Tx, Ty) ≤
d(x, y) for all x, y ∈ A which implies that T is continuous in A. Therefore we
obtain

lim
n→∞

Txn = Tx∗.

Also, from the continuity of the distance function d, we have

lim
n→∞

d(xn, Txn) = d(x∗, Tx∗).
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Equation (3.3), it means that the sequence {d(xn+1, Txn)} is a constant se-
quence with the value dist(A,B). Hence

d(x∗, Tx∗) = dist(A,B),

i.e., x∗ is a best proximity point of T.

Finally, we show that x∗ is unique best proximity point of T. Suppose that
x1 and x2 are two best proximity points of T in A with x1 6= x2. Since x1 and
x2 are two best proximity points of T, we have

d(x1, Tx1) = dist(A,B) = d(x2, Tx2).

By the P -property of (A,B), we obtain

d(x1, x2) = d(Tx1, Tx2).

Since x1 and x2 are distinct elements in A, one can have

ϕ(d(x1, x2)) > 0. (3.8)

From the definition of T and (3.8),

d(x1, x2) = d(Tx1, Tx2) ≤ d(x1, x2)− ϕ(d(Tx1, Tx2))

= d(x1, x2)− ϕ(d(x1, x2))

< d(x1, x2).

This is a contradiction. Therefore the uniqueness of the best proximity point
follows. �

The following example illustrates that Theorem 3.2 holds.

Example 3.3. Let X = (−∞,+∞) be endowed with the Euclidean metric
d(x, y) = |x− y|. Then (X, d) is a complete metric space. Let A = [−1, 1] and
B = [0, 2] be two subsets of (X, d). Define T : A→ B by

Tx =
2

5
x

for each x ∈ A. Define ϕ(t) : [0,+∞)→ [0,+∞) by

ϕ(t) =
4

3
t.

Then, by Example 1.7, T satisfies (1.2). It is easy to check that A and B
are closed subsets of complete metric space (X, d), ∅ 6= A0 = [0, 1] = B0 and
T (A0) = [0, 25 ] ⊆ [0, 1] = B0. Moreover (A,B) has the P -property. Indeed, let
d(x1, Tx1) = dist(A,B) = d(x2, Tx2). By

0 = dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},
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we have x1 = Tx1 and x2 = Tx2. Thus d(x1, x2) = d(Tx1, Tx2). Hence (A,B)
has the P -property. Therefore all the assumption of Theorem 3.2 hold and
note that x∗ = 0 is the unique best proximity point.
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Abstract

In this paper, we present a explicit viscosity technique of nonexpansive mappings

in the framework of CAT(0) spaces. The strong convergence theorem of the proposed

technique is proved under certain assumptions imposed on the sequence of parameters.

The results presented in this paper extend and improve some recent announced in the

current literature.

2010 Mathematics Subject Classification: 47J25, 47N20, 34G20, 65J15

Key words and phrases: viscosity rule, CAT(0) space, nonexpansive mapping, vari-

ational inequality.

1 Introduction

The study of spaces of nonpositive curvature originated with the discovery of hyperbolic

spaces, and flourished by pioneering works of Hadamard and Cartan, etc. in the first
decades of the twentieth century. The idea of nonpositive curvature geodesic metric spaces

could be traced back to the work of Busemann and Alexandrov, etc. in the 50’s. Later
on Gromov [9] restated some features of global Riemannian geometry solely based on the
so-called CAT(0) inequality. For through discussion of CAT(0) spaces and of fundamental

role they play in geometry, we refer the reader to Bridson and Haefliger [5].
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J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.6, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1034 Shin Min Kang ET AL 1034-1043



As we know, iterative methods for finding fixed points of nonexpansive mappings have

received vast investigations due to its extensive applications in a variety of applied areas of
inverse problem, partial differential equations, image recovery, and signal processing; see

[1–3,7,14–17] and the references therein. One of the difficulties in carrying out results from
Banach space to complete CAT(0) space setting lies in the heavy use of the linear structure
of the Banach spaces. Berg and Nikolaev [4] introduce the notion of an inner product-like

notion (quasi-linearization) in complete CAT(0) spaces to resolve these difficulties.
Fixed-point theory in CAT(0) spaces was first studied by Kirk [10,11]. He showed that

every nonexpansive (single-valued) mapping defined on a bounded closed convex subset of
a complete CAT(0) space always has a fixed point. Since then, the fixed-point theory for

single-valued and multivalued mappings in CAT(0) spaces has been rapidly developed.
In 2000, Moudaf’s [13] introduce viscosity approximation methods as following

Theorem 1.1. Let C be a nonempty closed convex subset of the real Hilbert space X . Let

T be a nonexpansive mapping of C into itself such that Fix(T ) is nonempty. Let f be a

contraction of C into itself with coefficient θ ∈ [0, 1). Pick any x0 ∈ [0, 1), let {xn} be a

sequence generated by

xn+1 =
γn

1 + γn
f(xn) +

1

1 + γn
T (xn), n ≥ 0,

where {γn} is a sequence in (0, 1) satisfying the following conditions:

(1) limn→∞ γn = 0,

(2)
∑∞

n=0 γn = ∞,

(3)
∑∞

n=0 |
1

γn+1
− 1

γn
| = 0.

Then {xn} converges strongly to a fixed point x∗ of the mapping T , which is also the

unique solution of the variational inequality

〈x− f(x), x− y〉 ≥ 0, ∀y ∈ Fix(T ).

In other words, x∗ is the unique fixed point of the contraction PFix(T )f , that is,

PFix(T )f(x∗) = x∗.

Shi and Chen [15] studied the convergence theorems of the following Moudaf’s viscosity
iterations for a nonexpansive mapping in CAT(0) spaces.

xn+1 = tf(xn)⊕ (1− t)T (xn), (1.1)

xn+1 = αnf(xn)⊕ (1− αn)T (xn). (1.2)

They proved that {xn} defned by (1.1) and {xn} defined by (1.2) converged strongly to a

fxed point of T in the framework of CAT(0) space.
Zhao et al. [18] applied viscosity approximation methods for the implicit midpoint rule

for nonexpansive mappings

xn+1 = αnf(xn) ⊕ (1− αn)T

(

xn ⊕ xn+1

2

)

, ∀n ≥ 0.

Motivated and inspired by the idea of Kwun et al. [12], in this paper, we extend and

study the explicit viscosity rules of nonexpansive mappings in CAT(0) spaces
{

xn+1 = (1 − αn)f(xn) ⊕ αnT (yn),

yn = (1− βn)xn ⊕ βnT (xn).
(1.3)
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2 Preliminaries

Let(X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a
geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0)= x,

c(l) = y, and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and
d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining x and y.
When it is unique, this geodesic segment is denoted by [x, y]. The space (X, d) is said to

be a geodesic space if every two points of X are joined by a geodesic, and X is said to
be uniquely geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X . A

subset Y ⊂ X is said to be convex if Y includes every geodesic segment joining any two
of its points. A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists

of three points x1, x2,and x3 in X (the vertices of 4) and a geodesic segment between
each pair of vertices (the edges of 4). A comparison triangle for the geodesic triangle

4(x1, x2, x3 in (X, d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in the Euclidean plane E
2

such that dE2d(xi, xj) = d(xi, xj)for i, j = 1, 2, 3.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the following
comparison axiom.

Let 4 be a geodesic triangle in X , and let 4 be a comparison triangle for 4 . Then,

4 is said to satisfy the CAT(0) inequality if for all x, y ∈ 4 and all comparison points
x, y ∈ 4,

d(x, y) = dE2(x, y) (2.1)

Let x, y ∈ X and by the Lemma 2.1(iv) of [8] for each t ∈ [0, 1], there exists a unique point

z ∈ [x, y] such that

d(x, z) = td(x, y), d(y, z) = (1 − t)d(x, y). (2.2)

From now on, we will use the notation (1− t)x⊕ ty for the unique fixed point z satisfying

the above equation.
We now collect some elementary facts about CAT(0) spaces which will be used in the

proofs of our main results.

Lemma 2.1. ([8]) Let X be a CAT(0) spaces.

(a) For any x, y, z ∈ X and t ∈ [0, 1],

d((1− t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z). (2.3)

(b) For any x, y, z ∈ X and t ∈ [0, 1],

d2((1− t)x ⊕ ty, z) ≤ (1− t)2d(x, z) + td2(y, z)− t(1− t)d2(x, y). (2.4)

Complete CAT(0) spaces are often called Hadamard spaces (see [5]). If x, y1, y2 are
points of a CAT(0) spaces and y0 is the midpoint of the segment [y1, y2], which we will

denoted by (y1⊕y2)
2 , then the CAT(0) inequality implies

d2

(

x,
y1 ⊕ y2

2

)

≤
1

2
d2(x, y1) +

1

2
d2(x, y2) −

1

4
d2(y1, y2). (2.5)

This inequality is the (CN) inequality of Bruhat and Tits [6]. In fact, a geodesic metric
space is a CAT(0) space if and only if it satisfies the (CN) inequality (cf. [5], page 163).
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Definition 2.2. Let X be a CAT(0) space and T : X → X be a mapping. Then T is

called nonexpensive if
d(T (x), T (y))≤ d(x, y), x, y ∈ C

Definition 2.3. Let X be a CAT(0) space and T : X → X be a mapping. Then T is

called contraction if

d(T (x), T (y))≤ θd(x, y), x, y ∈ C, θ ∈ [0, 1)

Berg and Nikolaev [4] introduce the concept of quasi-linearization as follow. Let us

denote the pair (a, b) ∈ X × X by the
−→
ab and call it a vector. Then, quasi-linearization is

defined as a mapping
〈·, ·〉 : (X × X)× (X × X) −→ R

defined as

〈
−→
ab,

−→
cd〉 =

1

2
(d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)) (2.6)

it is easy to see that 〈
−→
ab,

−→
cd〉 = 〈

−→
cd,

−→
ab〉, 〈

−→
ab,

−→
cd〉 = −〈

−→
ba,

−→
cd〉 and 〈−→ax,

−→
cd〉 + 〈

−→
xb,

−→
cd〉 =

〈
−→
ab,

−→
cd〉 for all a, b, c, d ∈ X . We say that X satisfies the Cauchy-Schwarz inequality if

〈
−→
ab,

−→
cd〉 ≤ d(a, b)d(a, c)

for all a, b, c, d ∈ X . It is well-known [4] that a geodesically connected metric space is a
CAT(0) space of and only if it satisfy the Cauchy-Schwarz inequality.

Let C be a non-empty closed convex subset of a complete CAT(0) space X . The metric
projection Pc : X → C is defined by

u = Pc(x) ⇐⇒ inf{d(y, x) : y ∈ C}, ∀x ∈ X

Definition 2.4. Let Pc : X → C is called the metric projection if for every x ∈ X there

exist a unique nearest point in C, denoted by Pcx, such that

d(x, Pcx) ≤ d(x, y), y ∈ C

The following theorem gives you the conditions for a projection mapping to be nonex-
pensive.

Theorem 2.5. Let C be a non-empty closed convex subset of a real CAT(0) space X and

Pc : X → X a metric projection. Then

(1) d(Pcx, Pcy) ≤ 〈−→xy,
−−−−→
PcxPcy〉 for all x, y ∈ X,

(2) Pc is nonexpensive mapping, that is, d(x, pcx) ≤ d(x, y) for all y ∈ C,

(3) 〈
−−−→
xPcx,

−−→
yPcy〉 ≤ 0 for all x ∈ X and y ∈ C.

Further if, in addition, C is bounded, then Fix(T ) is nonempty.

The following lemmas are very useful for proving our main results:

Lemma 2.6. (The demiclosedness principle) Let C be a nonempty closed convex subset

of the real CAT(0) space X and T : C → C such that

xn ⇀ x∗ ∈ C and (I − T )xn → 0.

Then x∗ = Tx∗. Here → and ⇀ denote strong and weak convergence, respectively.
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Moreover, the following result gives the conditions for the convergence of a nonnegative

real sequences.

Lemma 2.7. Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + δn, ∀n ≥ 0, where {βn} is a sequence in (0, 1) and {δn} is a sequence

with

(1)
∑∞

n=0 γn = ∞,

(2) limn→∞ sup δn

γn
≤ 0 or

∑∞
n=0 |δn| < ∞.

Then limn→∞ an → 0.

3 The main result

Theorem 3.1. Let C be a nonempty closed convex subset of a complete CAT(0) space X .

Let T : C → C be a nonexpansive mapping with F (T ) 6= φ and f : C → C be a contraction

with coefficient θ ∈ [0, 1). Pick any x0 ∈ C, let {xn} be a sequence generated by (1.3),

where{αn} and {βn} are the sequence in (0, 1) satisfying the following conditions:

(1) limn→∞ αn = 1 and limn→∞ βn = 1,

(2)
∑∞

n=0 αn = ∞ and
∑∞

n=0 βn = ∞,

(3)
∑

∞
n=0 |αn+1 − αn| < ∞ and

∑

∞
n=0 |βn+1 − βn| < ∞∀n ≥ 0,

(4) limn→∞ d(xn, T (xn)) = 0.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T which

is also the unique solution of the variational inequality

〈
−−−→
xf(x),−→yx〉 ≥ 0, ∀y ∈ F (T ).

In other words, x∗ is the unique fixed point of the contraction PFix(T )f, that is, PFix(T )f(x∗)

= x∗.

Proof. We divide the proof into the following five steps.

Step 1. First, we show that xn is bounded. Indeed, take p ∈ F (T ) arbitrarily, we have

d(xn+1, p) = d((1− αn)f(xn) ⊕ αnT (yn), p)

≤ (1 − αn)d(f(xn), p) + αnd(T (yn), p)

≤ (1 − αn)d(f(xn), f(p)) + (1− αn)d(f(p), p)+ αnd(yn, p)

≤ (1 − αn)θd(xn, p) + (1 − αn)d(f(p), p)+ αnd(yn, p).

(3.1)

Now consider

d(yn, p) = ((1 − βn)xn ⊕ βnT (xn), p)

≤ (1 − βn)d(xn, p) + βnd(T (xn), p)

≤ (1 − βn)d(xn, p) + βnd(xn, p)

≤ d(xn, p).
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Using this in (3.1) we have

d(xn+1, p) ≤ (1 − αn)θd(xn, p) + (1− αn)d(f(p), p) + αnd(xn, p)

= [(1− αn)θ + αn]d(xn, p) + (1 − αn)d(f(p), p)

= [1 − 1 + α + (1 − αn)θ]d(xn, p) + (1− αn)d(f(p), p)

= [1 − (1− α) + (1 − αn)θ]d(xn, p) + (1− αn)d(f(p), p)

= [1 − (1− αn)(1 − θ)]d(xn, p) + (1 − αn)(1− θ)

(

1

1− θ
d(f(p), p)

)

,

thus we have

d(xn+1, p) ≤ max

{

d(xn, p),

(

1

1 − θ
d(f(p), p)

)}

,

similarly

d(xn, p) ≤ max

{

d(xn−1, p),

(

1

1 − θ
d(f(p), p)

)}

.

From this

d(xn+1, p)

≤ max

{

d(xn, p),

(

1

1 − θ
d(f(p), p)

)}

≤ max

{

d(xn−1, p),

(

1

1 − θ
d(f(p), p)

)}

...

≤ max

{

d(x0, p),

(

1

1 − θ
d(f(p), p)

)}

,

which shows that {xn} is bounded. From this we deduce immediately that {f(xn)},

{T (xn)} are bounded.
Step 2. Next, we want to prove that limn→∞ d(xn+1, xn) = 0.

For this consider

d(xn+1, xn)

= d((1− αn)f(xn) ⊕ αnT (yn), (1− αn−1)f(xn−1) ⊕ αn−1T (yn−1))

≤ (1− αn)θd(xn, xn−1) + |αn − αn−1|d(T (yn−1), f(xn−1)) + αnd(yn, yn−1).

(3.2)

Now consider

d(yn, yn−1)

= d((1− βn)xn ⊕ βnT (xn), (1− βn−1)xn−1 ⊕ βn−1T (xn−1))

≤ (1 − βn)d(xn, xn−1) + |βn − βn−1|d(T (xn−1), xn−1) + βnd(xn, xn−1)

≤ d(xn, xn−1) + |βn − βn−1|d(T (xn−1), xn−1).

Using this in (3.2) we get

d(xn+1, xn)

≤ (1 − αn)θd(xn, xn−1) + |αn − αn−1|d(T (yn−1), f(xn−1))

+ αnd(xn, xn−1) + αn|βn − βn−1|d(T (xn−1), xn−1)

= [(1− αn)θ + αn]d(xn, xn−1) + |αn − αn−1|d(T (yn−1), f(xn−1))

+ αn|βn − βn−1|d(T (xn−1), xn−1).
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Let λn = (1 − αn) so λn ∈ (0, 1), since αn ∈ (0, 1)
∑∞

n=0 λ = ∞,
∑∞

n=0 |αn − αn−1| < ∞

and
∑∞

n=0 |βn − βn−1|. By using Lemma 2.7, we get limn→∞ d(xn+1, xn) = 0.

Step 3. Now, we want to prove thatlimn→∞ d(xn, T (yn)) → 0

d(xn, T (yn)) ≤ d(xn, T (xn)) + d(T (xn), T (yn))

≤ d(xn, T (xn)) + d(xn, yn)

= d(xn, T (xn)) + d(xn, (1− βn)xn ⊕ βnT (xn))

≤ d(xn, T (xn)) + βnd(xn, T (xn))

≤ (1 + βn)d(xn, T (xn))

→ 0 (n → ∞).

Step 4. In this step, we claim that lim supn→∞〈
−−−−−→
x∗f(x∗),

−−→
x∗xn〉 ≤ 0, where x∗ =

PF (T )f(x∗).

Indeed, we take a subsequence {xni
} of {xn} which converges weakly to a fixed point p

of T . Without loss of generality, we may assume that {xni
} ⇀ p. From limn→∞ d(xn, Txn)

= 0 and Lemma 2.6 we have p = T (p). This together with the property of the metric

projection implies that

lim
n→∞

sup〈
−−−−−→
x∗f(x∗),

−−→
x∗xn〉 = lim

n→∞
sup〈

−−−−−→
x∗f(x∗),

−−−→
x∗xni

〉 = 〈
−−−−−→
x∗f(x∗),

−→
x∗p〉 ≤ 0.

Step 5. Finally, we show that xn → x∗ as n → ∞. Here again x∗ ∈ Fix(T ) is the

unique fixed point of the contraction PFix(T )f . Consider

d2(xn+1, x
∗)

= d2((1− αn)f(xn) ⊕ αnT (yn), x∗)

= (1− αn)2nd2(f(xn), x∗) + (1− αn)d2(T (xn), x∗)

+ 2αn(1− αn)〈
−−−−−→
f(xn)x∗,

−−−−−→
T (yn)x∗〉

≤ α2
nd2(yn, x∗) + (1 − αn)2d2(f(xn), x∗) + 2αn(1− αn)〈

−−−−−−−→
f(xn)f(x∗),

−−−−−→
T (yn)x∗〉

+ 2αn(1− αn)〈
−−−−−→
f(x∗)x∗,

−−−−−→
T (yn)x∗〉

≤ α2
nd2(yn, x∗) + (1 − αn)2d2(f(xn), x∗) + 2αn(1− αn)d(f(xn), f(x∗))d(T (yn), x∗)

+ 2αn(1− αn)〈
−−−−−→
f(x∗)x∗,

−−−−−→
T (yn)x∗〉

≤ α2
nd2(yn, x∗) + 2αn(1− αn)θd(xn, x∗)d(yn, x∗) + (1 − αn)2d2(f(xn), x∗)

+ 2αn(1− αn)〈
−−−−−→
f(x∗)x∗,

−−−−−→
T (yn)x∗〉,

(3.3)

now consider

d(yn, x∗) = d((1− βn)xn ⊕ βnT (xn), x∗)

≤ (1 − βn)d(xn, x∗) + βnd(T (xn), x∗)

≤ (1 − βn)d(xn, x∗) + βnd(xn, x∗)

≤ d(xn, x∗),

(3.4)
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using (3.2) in (3.3) we get

d2(xn+1, x
∗)

≤ α2
nd2(xn, x∗) + 2αn(1− αn)θd(xn, x∗)d(xn, x∗) + (1 − αn)2d2(f(xn), x∗)

+ 2αn(1 − αn)〈
−−−−−→
f(x∗)x∗,

−−−−−→
T (yn)x∗〉

≤ α2
nd2(xn, x∗) + 2αn(1− αn)θd(xn, x∗)d(xn, x∗) + (1 − αn)2d2(f(xn), x∗)

+ 2αn(1 − αn)〈
−−−−−→
f(x∗)x∗,

−−−−−→
T (yn)x∗〉

≤ [α2
n + 2αn(1 − αn)θ]d2(xn, x∗) + (1− αn)2d2(f(xn), x∗)

+ 2αn(1 − αn)〈f(x∗)− x∗, T (yn) − x∗〉.

(3.5)

Note that αnθ < αn since αn ∈ (0, 1) and θ ∈ [0, 1)

2αnθ < 2αn,

which implies that

α2
n + 2αnθ(1 − αn) < α2

n + 2αn(1 − αn),

therefore, we have

d2(xn+1, x
∗)

≤ [α2
n + 2αn(1− αn)]d2(xn, x∗) + (1− αn)2d2(f(xn), x∗)

+ 2αn(1 − αn)〈
−−−−−→
f(x∗)x∗,

−−−−−→
T (yn)x∗〉

≤ [2αn − α2
n)]d2(xn, x∗) + (1 − αn)2d2(f(xn), x∗)

+ 2αn(1 − αn)〈
−−−−−→
f(x∗)x∗,

−−−−−→
T (yn)x∗〉

≤ 2αnd2(xn, x∗) + (1 − αn)2d2(f(xn), x∗)

+ 2αn(1 − αn)〈
−−−−−→
f(x∗)x∗,

−−−−−→
T (yn)x∗〉

≤ 2[1 − (1 − αn)]d2(xn, x∗) + (1− αn)2d2(f(xn), x∗)

+ 2αn(1 − αn)〈
−−−−−→
f(x∗)x∗,

−−−−−→
T (yn)x∗〉,

(3.6)

as by limn→∞ αn = 1 we have

lim
n→∞

sup
(1− αn)2d2(f(xn), x∗) + 2αn(1 − αn)〈

−−−−−→
f(x∗)x∗,

−−−−−→
T (yn)x∗〉

(1 − αn)

= lim
n→∞

sup[(1 − αn)d2(f(xn), x∗) + 2αn〈
−−−−−→
f(x∗)x∗,

−−−−−→
T (yn)x∗〉]

≤ 0.

(3.7)

From (3.6), (3.7), and Lemma 2.7 we have

lim
n→∞

d2(xn+1, xn) = 0,

which implies that xn → x∗ as n → ∞. This completes the proof.
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Abstract

In this paper, we establish the generalized viscosity implicit rules of asymptotically

nonexpansive mappings in CAT(0) spaces. The strong convergence theorems of the

implicit rules proposed are proved under certain assumptions imposed on the control

parameters. The results presented in this paper improve and extend some recent

corresponding results announced.
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1 Introduction

The study of spaces of nonpositive curvature originated with the discovery of hyperbolic
spaces, and flourished by pioneering works of Hadamard and Cartan, etc. in the first

decades of the twentieth century. The idea of nonpositive curvature geodesic metric spaces
could be traced back to the work of Busemann and Alexandrov, etc. in the 50’s. Later on
Gromov [11] restated some features of global Riemannian geometry solely based on the

so-called CAT(0) inequality. For through discussion of CAT(0) spaces and of fundamental
role they play in geometry, we refer the reader to Bridson and Haefliger [6].

∗ Corresponding author
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As we know, iterative methods for finding fixed points of nonexpansive mappings have

received vast investigations due to its extensive applications in a variety of applied areas
of inverse problem, partial differential equations, image recovery, and signal processing;

see [1–4, 8, 9, 16, 18–21] and the references therein. One of the difficulties in carrying out
results from Banach space to complete CAT(0) space setting lies in the heavy use of the
linear structure of the Banach spaces. Berg and Nikolaev [5] introduce the notion of an

inner product-like notion(quasilinearization) in complete CAT(0) spaces to resolve these
difficulties.

Fixed-point theory in CAT(0) spaces was frsc studied by Kirk [13,14]. He showed that
every nonexpansive (single-valued) mapping defined on a bounded closed convex subset of

a complete CAT(0) space always has a fxed point. Since then, the fxed-point theory for
single-valued and multivalued mappings in CAT(0) spaces has been rapidly developed.

In 2000, Moudaf’s [15] introduce viscosity approximation methods as following

Theorem 1.1. Let C be a nonempty closed convex subset of the real Hilbert space X .

Let T be a nonexpansive mapping of C into itself such that Fix(T ) = {x : T (x) = x}
is nonempty. Let f be a contraction of C into itself with coefficient θ ∈ [0, 1). Pick any

x0 ∈ [0, 1), let {xn} be a sequence generated by

xn+1 =
γn

1 + γn
f(xn) +

1

1 + γn
T (xn), n ≥ 0,

where {γn} is a sequence in (0, 1) satisfying the following conditions:

(1) limn→∞ γn = 0,

(2)
∑∞

n=0 γn = ∞,

(3)
∑∞

n=0

∣

∣

1
γn+1

− 1
γn

∣

∣ = 0.

Then {xn} converges strongly to a fixed point x∗ of the mapping T , which is also the

unique solution of the variational inequality

〈x− f(x), x− y〉 ≥ 0, ∀y ∈ Fix(T ).

In other words, x∗ is the unique fixed point of the contraction PFix(T )f , that is,

PFix(T )f(x∗) = x∗.

Shi and Chen [17] studied the convergence theorems of the following Moudaf’s viscosity
iterations for a nonexpansive mapping in CAT(0) spaces.

xn+1 = tf(xn)⊕ (1− t)T (xn), (1.1)

xn+1 = αnf(xn)⊕ (1− αn)T (xn). (1.2)

They proved that {xn} defned by (1.1) and {xn} defned by (1.2) converged strongly to a
fxed point of T in the framework of CAT(0) space.

Zhao et al. [22] applied viscosity approximation methods for the implicit midpoint rule
for nonexpansive mappings

xn+1 = αnf(xn) ⊕ (1 − αn)T

(

xn ⊕ xn+1

2

)

, ∀n ≥ 0.

Motivated by He et al. [12], in this paper, we study the generalized viscosity implicit
rules of asymptotically nonexpansive mappings in the framework of CAT(0) spaces.
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More precisely, we consider the following implicit iterative algorithm

xn+1 = αnf(xn) ⊕ (1 − αn)T n(βnxn ⊕ (1− βn)xn+1) (1.3)

under suitable conditions, we proved that the sequence {xn} converge strongly to a fixed
point of the asymptotically nonexpansive mapping T .

2 Preliminaries

Let(X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a

geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0)= x,
c(l) = y, and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and

d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining x and y.
When it is unique, this geodesic segment is denoted by [x, y]. The space (X, d) is said to

be a geodesic space if every two points of X are joined by a geodesic, and X is said to
be uniquely geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X . A

subset Y ⊂ X is said to be convex if Y includes every geodesic segment joining any two
of its points. A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists
of three points x1, x2,and x3 in X (the vertices of 4) and a geodesic segment between

each pair of vertices (the edges of 4). A comparison triangle for the geodesic triangle
4(x1, x2, x3 in (X, d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in the Euclidean plane E

2

such that dE2d(xi, xj) = d(xi, xj)for i, j = 1, 2, 3.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the

following comparison axiom.

Let 4 be a geodesic triangle in X , and let 4 be a comparison triangle for 4 . Then,
4 is said to satisfy the CAT(0) inequality if for all x, y ∈ 4 and all comparison points

x, y ∈ 4,

d(x, y) = dE2(x, y). (2.1)

Let x, y ∈ X and by the Lemma 2.1(iv) of [10] for each t ∈ [0, 1], there exist a unique
point z ∈ [x, y] such that

d(x, z) = td(x, y), d(y, z) = (1 − t)d(x, y). (2.2)

From now on, we will use the notation (1 − t)x ⊕ ty for the unique fixed point z

satisfying the above equation.

We now collect some elementary facts about CAT(0) spaces which will be used in the
proofs of our main results.

Lemma 2.1. ([10]) Let X be a CAT(0) spaces.

(a) For any x, y, z ∈ X and t ∈ [0, 1],

d((1− t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z). (2.3)

(b) For any x, y, z ∈ X and t ∈ [0, 1],

d2((1− t)x ⊕ ty, z) ≤ (1− t)2d(x, z) + td2(y, z)− t(1− t)d2(x, y). (2.4)
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Complete CAT(0) spaces are often called Hadamard spaces (see [6]). If x, y1, y2 are

points of a CAT(0) spaces and y0 is the midpoint of the segment [y1, y2], which we will
denoted by y1⊕y2

2 , then the CAT(0) inequality implies

d2

(

x,
y1 ⊕ y2

2

)

≤
1

2
d2(x, y1) +

1

2
d2(x, y2) −

1

4
d2(y1, y2). (2.5)

This inequality is the (CN) inequality of Bruhat and Tits [7]. In fact, a geodesic metric
space is a CAT(0) space if and only if it satisfies the (CN) inequality (cf. [6], page 163).

Definition 2.2. Let X be a CAT(0) space and T : X → X be a mapping. Then T is

called nonexpensive if
d(T (x), T (y))≤ d(x, y), x, y ∈ C.

Definition 2.3. Let X be a CAT(0) space and T : X → X be a mapping. Then T is
called contraction if

d(T (x), T (y))≤ θd(x, y), x, y ∈ C θ ∈ [0, 1).

Berg and Nikolaev [5] introduce the concept of quasi-linearization as follow. Let us

denote the pair (a, b) ∈ X × X by the
−→
ab and call it a vector. Then, quasi-linearization is

defined as a mapping
〈·, ·〉 : (x× X)× (X × X) −→ R

defined as

〈
−→
ab,

−→
cd〉 =

1

2
(d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)), (2.6)

it is easy to see that 〈
−→
ab,

−→
cd〉 = 〈

−→
cd,

−→
ab〉, 〈

−→
ab,

−→
cd〉 = −〈

−→
ba,

−→
cd〉 and 〈−→ax,

−→
cd〉 + 〈

−→
xb,

−→
cd〉 =

〈
−→
ab,

−→
cd〉 for all a, b, c, d ∈ X . We say that X satisfies the Cauchy-Schwarz inequality if

〈
−→
ab,

−→
cd〉 ≤ d(a, b)d(a, c)

for all a, b, c, d ∈ X . It is well-known [5] that a geodesically connected metric space is a

CAT(0) space of and only if it satisfy the Cauchy-Schwarz inequality.
Let C be a non-empty closed convex subset of a complete CAT(0) space X . The metric

projection Pc : X → C is defined by

u = Pc(x) ⇐⇒ inf{d(y, x) : y ∈ C}, ∀x ∈ X

Definition 2.4. Let Pc : X → C is called the metric projection if for every x ∈ X there

exist a unique nearest point in C, denoted by Pcx, such that

d(x, Pcx) ≤ d(x, y), y ∈ C.

The following theorem gives you the conditions for a projection mapping to be nonex-

pensive.

Theorem 2.5. Let C be a non-empty closed convex subset of a real CAT(0) space X and

Pc : X → X a metric projection. Then

(1) d(Pcx, Pcy) ≤ 〈−→xy,
−−−−→
PcxPcy〉 for all x, y ∈ X,

(2) Pc is nonexpensive mapping, that is, d(x, pcx) ≤ d(x, y) for all y ∈ C,

(3) 〈
−−−→
xPcx,

−−→
yPcy〉 ≤ 0 for all x ∈ X and y ∈ C.
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Definition 2.6. A mapping T : C → C is called asymptotically nonexpensive if there

exist a sequence a sequence {kn} ⊂ [0,∞) with limn→∞ kn = 1 such that

d(T nx − T ny) ≤ knd(x, y), ∀x, y ∈ C, n ≥ 1. (2.7)

It is well known that if T is an asymptotically nonexpansive, then Fix(T ) is always
closed and convex. Further if, in addition, C is bounded, then Fix(T ) is nonempty.

The following lemmas are very useful for proving our main results:

Lemma 2.7. (The demiclosedness principle) Let C be a nonempty closed convex subset

of the real CAT(0) space X and T : C → C such that

xn ⇀ x∗ ∈ C and (I − T )xn → 0.

Then x∗ = Tx∗. Here → and ⇀) denote strong and weak) convergence, respectively.

Moreover, the following result gives the conditions for the convergence of a nonnegative

real sequence.

Lemma 2.8. Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− βn)an + δn, ∀n ≥ 0, where {βn} is a sequence in (0, 1) and {δn} is a sequence

with

(1)
∑∞

n=0 βn = ∞,

(2) lim supn→∞ sup δn

βn
≤ 0 or

∑∞
n=0 |βn| < ∞.

Then limn→∞ an → 0.

3 The main results

Theorem 3.1. Let C be a non-empty closed convex subset of a complete CAT(0) space X

and T : C → C be an asymptotically nonexpensive mapping with sequence {kn} ⊂ [0, +∞)

with limn→∞ kn = 1 and Fix(T ) 6= ∅. Let f : C −→ C be a contraction with coefficient

θ ∈ [0, 1). For arbitrary initial point x0 ∈ C, let {xn} be a sequence generated by (1.3),

where {αn} and {βn} are the sequence in (0, 1) satisfying the following conditions:

(1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,

(2) limn→∞
k2

n
−1

αn
= 0,

(3) 0 < τ < βn < βn+1 < 1, for all n ≥ 0,

(4) limn→∞ d(T n(xn), (xn)) = 0.
Then {xn} converges strongly to the point x∗ = PFix(T )f(x∗) of the mapping T , which

is also the unique solution of the variational inequality

〈
−−−→
xf(x),−→xy〉 ≥ 0, ∀y ∈ Fix(T ).

In other words, x∗ is the unique fixed point of the contraction PFix(T )f , that is,

PFix(T )f(x∗) = x∗.

Proof. We have divided the proof into four steps.
Step 1: First, we show that the generalized viscosity implicit rule (??) is well-defined

Sn(x) = αnf(xn) ⊕ (1 − αn)T n(βnxn ⊕ (1 − βn)xn+1).
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Consider

d(Sn(x), Sn(y))

= d(αnf(xn)⊕ (1− αn)T n(βnxn ⊕ (1 − βn)x),

αnf(yn) ⊕ (1 − αn)T n(βnyn ⊕ (1− βn)y))

= (1 − αn)d(T n(βnxn ⊕ (1 − βn)x), T n(βnyn ⊕ (1 − βn)y))

≤ (1 − αn)kn(1− βn)d(x, y).

Since lim
n→∞

αn = 0 and
∑

∞
n=1 αn = ∞, limn→∞

k2
n−1
αn

= 0, or n ≥ 0. We may assume that

(1 − αn)kn(1 − βn) ≤ 1 − τ for all n ≥ 0. This implies that Sn is a contraction for each
n. Therefore there exists a unique fixed point for Sn by contraction principle, which also

implies that (1.3) is well-defined.

Step 2: Now, we show that the sequence {xn} is bounded. Indeed take p ∈ Fix(T )
arbitrary, we have

d(xn+1, p)

= d(αnf(xn) ⊕ (1 − αn)T n(βnxn ⊕ (1− βn)xn+1), p)

≤ αnd((f(xn), p) + (1− αn)d((βnxn ⊕ (1 − βn)xn+1), p)

≤ αnd((f(xn), f(p)) + αnd((f(p), p)+ (1− αn)knd((βnxn ⊕ (1 − βn)xn+1), p)

≤ αnθd(xn, p) + αnd((f(p), p)+ (1− αn)knβnd(xn, p)

+ (1 − βn)kn(1 − βn)d(xn+1, p)

≤ (αnθ + (1 − αn)knβn)d(xn, p) + αnd((f(p), p)

+ (1 − βn)kn(1 − βn)d(xn+1, p),

it follows that

[1− (1− αn)kn(1 − βn)]d(xn+1, p)

= (αnθ + (1− αn)knβn)d(xn, p) + αnd((f(p), p).
(3.1)

Since {αn} and {βn} are the sequence in (0, 1)

lim inf
n→∞

(1− αn)kn(1 − βn) ≤ 1

for any given positive number ε, 0 < ε < 1 − θ, there exists a sufficient large positive
integer n0, such that for any n > n0, we have

k2
n − 1 ≤ βnεαn

and

kn − 1 ≤
kn + 1

βn
(kn − 1) ≤

k2
n − 1

βn
≤ εαn.
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Moreover, by (3.1)

d(xn+1, p) =
αnθ + (1− αn)knβn

1− (1− αn)kn(1 − βn)
d(xn, p) +

αn

1 − (1 − αn)kn(1− βn)
d(f(p), p)

=

[

1−
αn(kn − θ) − (kn − 1)

1 − (1 − αn)kn(1 − βn)

]

d(xn, p)

+
αn

1 − (1 − αn)kn(1− βn)
d(f(p), p)

≤

[

1−
αn(kn − θ − ε)

1 − (1 − αn)kn(1 − βn)

]

d(xn, p)

+
αn(kn − θ − ε)

1 − (1 − αn)kn(1− βn)

(

1

(kn − θ − ε)
d(f(p), p)

)

≤ max

{

d(xn, p),
1

kn − θ − ε
d(f(p), p)

}

≤ max

{

d(xn, p),
1

1− θ − ε
d(f(p), p)

}

.

By applying induction, we obtain

d(xn+1, p) ≤ max

{

d(x0, p),
1

1 − θ − ε
d(f(p), p)

}

.

Hence, we conclude that {xn} is bounded. Consequently, we deduce immediately from it

that {f(xn)} and {T n(βnxn ⊕ (1 − βn)xn+1} are bounded.
Step 3: Now, we prove that lim

n→∞
d(xn+1, xn) = 0

d(xn+1, xn) ≤ d(xn+1, T
nxn) + d(T nxn, xn)

= d(αnf(xn) ⊕ (1− αn)T n(βnxn ⊕ (1 − βn)xn+1), T
nxn) + d(T nxn, xn)

≤ αnd((f(xn), T nxn) + (1 − αn)d(T n(xn(βnxn ⊕ (1− βn)xn+1)), T
nxn)

+ d(T nxn, xn)

≤ αnd((f(xn), T nxn) + (1 − αn)knd((βnxn ⊕ (1− βn)xn+1), xn)

+ d(T nxn, xn)

≤ αnd((f(xn), T nxn) + (1 − αn)kn(1 − βn)d(xn+1, xn) + d(T nxn, xn)

≤ αnM1 + (1 − αn)kn(1− βn)d(xn+1, xn) + d(T nxn, xn),

where M1 = sup{d((f(xn), T nxn), n ≥ 1} is constant such that

1 − (1 − αn)kn(1− βn)d(xn+1, xn) ≤ αnM1 + d(T nxn, xn)

It gives

d(xn+1, xn) ≤
αnM1

1 − (1 − αn)kn(1− βn)

+
1

1 − (1− αn)kn(1− βn)
d(T nxn, xn)

Since 1 − (1− αn)kn(1− βn) ≥ τ by virtue of the conditions (1) and (4), we have

lim
n→∞

d(xn+1, xn) = 0. (3.2)
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Step 4: Now we show that lim
n→∞

d(xn, Txn) = 0.

d(xn, T n−1xn)

= d(αn−1f(xn−1) ⊕ (1 − αn−1)T
n−1(βn−1xn−1 ⊕ (1 − βn−1)xn), T n−1xn)

≤ αn−1d((f(xn−1), T
n−1xn) + (1− αn−1)knd((βn−1xn−1 ⊕ (1− βn−1)xn), xn)

≤ αn−1d((f(xn−1), T
n−1xn) + (1− αn−1)knβn−1d(xn, xn−1)

≤ αn−1M1 + (1− αn−1)knβn−1d(xn, xn−1)

by condition (1) and (3.2) we have

lim
n→∞

d(xn, T n−1xn) = 0.

Hence we get

d(xn, Txn) ≤ d(xn, T nxn) + d(T nxn, Txn)

≤ d(xn, T nxn) + k1d(T n−1xn, xn)

→ 0 (n → ∞)

(3.3)

Then, it follows from (3.2) and (3.3) that

d(T n(βnxn ⊕ (1− βn)xn+1, xn) ≤ d(T n(βnxn ⊕ (1− βn)xn+1, Txn) + d(Txn, xn)

≤ knd((βnxn ⊕ (1− βn)xn+1, xn) + d(Txn, xn)

≤ kn(1 − βn)d(xn+1, xn) + d(Txn, xn)

≤ knd(xn+1, xn) + d(Txn, xn)

→ 0 (n → ∞).

Step 5: In this step, we claim that

lim sup
x→∞

〈
−−−−−→
x∗f(x∗),

−−→
x∗xn〉 ≤ 0,

where x∗ = PFix(T )f(x∗). Indeed, we take a subsequence {xni
} of {xn} which converges

weakly to a fixed point p of T . Without loss of generality, we may assume that {xni
} ⇀ p.

From limn→∞ d(xn, T (xn) = 0 and the Lemma 2.7 we have p = T (p). This together, with
the property of metric projection implies that

lim sup
x→∞

〈
−−−−−→
x∗f(x∗),

−−→
x∗xn〉 = lim sup

x→∞

〈
−−−−−→
x∗f(x∗),

−−−→
x∗xni

〉

= lim sup
x→∞

〈
−−−−−→
x∗f(x∗),

−→
x∗p〉

≤ 0.

Step 6: Finally, we show that xn → x∗ as n → ∞.
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Now, we prove that limn→∞ d(xn+1, xn) = 0. Now, we again take x∗ ∈ Fix(T ) is the

unique fixed point of the contraction PFix(T )f . Consider

d2(xn, xn) = d2(αnf(xn) ⊕ (1− αn)T n(βnxn ⊕ (1 − βn)xn+1), x
∗)

= α2
nd2(f(xn), x∗) + (1 − α2

n)d2(T n(βnxn ⊕ (1− βn)xn+1), x
∗)

+ 2αn(1 − αn)〈
−−−−−→
f(xn)x∗,

−−−−−−−−−−−−−−−−−−−−→
T n(βnxn ⊕ (1 − βn)xn+1)x

∗〉

≤ α2
nd2(f(xn), x∗) + (1 − α2

n)k2
nd2(βnxn ⊕ (1− βn)xn+1), x

∗)

+ 2αn(1 − αn)〈
−−−−−−−→
f(xn)f(x∗),

−−−−−−−−−−−−−−−−−−−−→
T n(βnxn ⊕ (1− βn)xn+1)x

∗〉

+ 2αn(1 − αn)〈
−−−−−→
f(x∗)x∗,

−−−−−−−−−−−−−−−−−−−−→
T n(βnxn ⊕ (1 − βn)xn+1)x

∗〉

≤ (1− α2
n)k2

nd2(βnxn ⊕ (1 − βn)xn+1), x
∗)

+ 2αn(1 − αn)d(f(xn)f(x∗))d(T n(βnxn ⊕ (1 − βn)xn+1)x
∗) + Kn

≤ (1− α2
n)k2

nd2(βnxn ⊕ (1 − βn)xn+1), x
∗)

+ 2θαn(1− αn)knd(xn, x∗)d(T n(βnxn ⊕ (1 − βn)xn+1)x
∗) + Kn,

where

Kn = α2
nd2(f(xn), x∗) + 2αn(1− αn)〈

−−−−−→
f(x∗)x∗,

−−−−−−−−−−−−−−−−−−−−→
T n(βnxn ⊕ (1− βn)xn+1)x

∗〉,

it becomes

(1 − α2
n)k2

nd2(βnxn ⊕ (1− βn)xn+1), x
∗)

+ 2θαn(1 − αn)knd(xn, x∗)d(T n(βnxn ⊕ (1− βn)xn+1)x
∗) + Kn + d2(xn, xn)

≥ 0.

Solving this quadratic inequality for d((βnxn ⊕ (1− βn)xn+1)x
∗) yields

d((βnxn ⊕ (1− βn)xn+1)x
∗)

≥
1

2(1− αn)2k2
n

{

− 2θαn(1− αn)knd(xn, x∗)

+
√

4θ2α2
n(1 − αn)2k2

nd2(xn, x∗) − 4(1− αn)2k2
n(Kn − d2(xn, x∗))

}

=
−θαnd(xn, x∗) +

√

θ2α2
nd2(xn, x∗) − Kn + d2(xn+1, x∗)

(1 − αn)kn
.

This implies that

βnd(xn, x∗) + (1 − βn)d(xn+1, x
∗)

≥
−θαnd(xn, x∗) +

√

θ2α2
nd2(xn, x∗) − Kn + d2(xn+1, x∗)

(1− αn)kn
,

namely,

[(1− αn)knβn]d(xn, x∗) + (1 − αn)kn(1− βn)d(xn+1, x
∗)

≥
√

θ2α2
nd2(xn, x∗) − Kn + d2(xn+1, x∗).
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Then

θ2α2
nd2(xn, x∗)− Kn + d2(xn+1, x

∗)

≤ [(1− αn)knβn + θαn]2d2(xn, x∗)

+ (1 − αn)2k2
n(1 − βn)2d2(xn+1, x

∗)

+ 2[(1− αn)knβn + θαn](1− αn)kn(1− βn)d(xn, x∗)d(xn+1, x
∗)

≤ [(1− αn)knβn + θαn]2d2(xn, x∗)

+ (1 − αn)2k2
n(1 − βn)2d2(xn+1, x

∗)

+ ((1 − αn)knβn + θαn)(1 − αn)kn(1 − βn)(d2(xn, x∗) + d2(xn+1, x
∗)),

which is reduced to the inequality

[1 − (1− αn)2k2
n(1 − βn)2 − ((1− αn)knβn + θαn)(1− αn)kn(1 − βn)]d2(xn+1, x

∗)

≤ [((1− αn)kn(1 − βn))2 + (1 − αn)kn(1 − βn)(1− αn)kn(1− βn)

− θ2α2
n]d2(xn, x∗) + Kn,

that is,

[1 − (kn + αn(θ − kn))(1− αn)(1− βn)kn]d2(xn+1, x
∗)

≤ [((1− αn)knβn + θαn)(kn + αn(θ − kn)) − θ2α2
n]d2(xn, x∗) + Kn

(3.4)

it follows from (3.4) that

d2(xn+1, x
∗)

≤
[((1− αn)knβn + θαn)(kn + αn(θ − kn))− θ2α2

n]d2(xn, x∗)

[1 − (kn + αn(θ − kn))(1− αn)(1− βn)kn]

+
Kn

[1 − (kn + αn(θ − kn))(1− αn)(1− βn)kn]
.

(3.5)

Let

wn =
1

αn

{

1 −
((1− αn)knβn + θαn)(kn + αn(θ − kn))− θ2α2

n

1 − (kn + αn(θ − kn))(1− αn)(1 − βn)kn

}

=
1

αn

1 − k2
n − 2αnkn(θ − kn) − α2

n(θ − kn) − θ2α2
n

1 − (kn + αn(θ − kn))(1− αn)(1− βn)kn

≤
−βnε − 2kn(θ − kn) − αn(θ − kn)2 + θ2αn

1 − (kn + αn(θ − kn))(1− αn)(1− βn)kn

since 0 < ε < 1 − θ and the sequence {βn} satisfies 0 < τ ≤ βn ≤ βn+1 < 1 for all n ≥ 0

and lim
n→∞

βn exists, assume that

lim
n→∞

βn = β∗ > 0.

Then

lim
n→∞

wn ≤
(2− β∗)(1 − θ)

β∗
> 0.
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Let 0 < λ1 <
(2−β∗)(1−θ)

β∗
. Then there exists an sufficiently large integer N1 such that

wn > λ1 for all n > N1. Hence, we have

((1− αn)knβn + θαn)(kn + αn(θ − kn)) − θ2α2
n

1 − (kn + αn(θ − kn))(1− αn)(1− βn)kn

≤ 1 − λ1αn, ∀n ≥ N1. (3.6)

It turns out from (3.5) that

d2(xn+1, x
∗) ≤ (1− λ1αn)d2(xn, x∗) +

Kn

[1− (kn + αn(θ − kn))(1− αn)(1− βn)kn]
. (3.7)

From (3.5), limn→∞ αn = 0 and Step 4 we have

lim sup
n→∞

Kn

αnλ1[1− (kn + αn(θ − kn))(1− αn)(1− βn)kn]

= lim sup
n→∞

α2
nd2(f(xn), x∗) + 2αn(1− αn)〈

−−−−−→
f(x∗)x∗,

−−−−−−−−−−−−−−−−−−−−→
T n(βnxn ⊕ (1 − βn)xn+1)x

∗〉

αnλ1[1− (kn + αn(θ − kn))(1− αn)(1− βn)kn]

= lim sup
n→∞

αnd2(f(xn), x∗) + 2(1− αn)〈
−−−−−→
f(x∗)x∗,

−−−−−−−−−−−−−−−−−−−−→
T n(βnxn ⊕ (1 − βn)xn+1)x

∗〉

λ1[1 − (kn + αn(θ − kn))(1− αn)(1− βn)kn]

≤ 0.

(3.8)

From (3.7) and (3.8) and the Lemma 2.8 we have

lim
n→∞

d(xn+1, x
∗) = 0.

This implies that xn → x∗ as n → ∞. This complete the proof.

The following result is an immediate consequence of the Theorem 3.1.

Theorem 3.2. Let C be a non-empty closed convex subset of a complete CAT(0) space

X and T : C → C be an nonexpensive mapping with Fix(T ) 6= ∅. Let f : C → C be a

contraction with coefficient θ ∈ [0, 1) and for arbitrary initial point x0 ∈ C. Let {xn} be a

sequence generated by

xn+1 = αnf(xn) ⊕ (1− αn)T (βnxn ⊕ (1− βn)xn+1), (3.9)

where {αn} and {βn} are the sequence in (0, 1) satisfying the condition of Theorem 3.1.

Then {xn} converges strongly to the point x∗ = PFix(T )f(x∗) of the mapping T , which

is also the unique solution of the variational inequality

〈
−−−→
xf(x),−→xy〉 ≥ 0, ∀y ∈ Fix(T ).

In other words, x∗ is the unique fixed point of the contraction PFix(T )f , that is,

PFix(T )f(x∗) = x∗.
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On some sixth-order rational recursive sequences

M. Folly-Gbetoula ∗ and D. Nyirenda †

Abstract

We study the sixth-order recursive sequences of the form

xn+1 =
xn−5xn

xn−4(an + bnxn−5xn)
,

where an and bn are sequences of real numbers, via the technique of
Lie group analysis. Symmetry generators associated with the group
of transformations that map solutions onto themselves are obtained
and exact solutions derived. The ‘final constraint’ when finding the
symmetries, is used to split the solution into different categories. The
result of this work generalizes a recent work by Elsayed et al.

Keywords Difference equation; Symmetry; Group invariant solutions
PACS 39A10; 39A13; 39A90

1 Introduction

Among the numerous well-known techniques for solving differential equa-
tions, is the powerful Lie symmetry approach. In the nineteenth century, the
Norwegian mathematician Sophus Lie [12] developed a systematic algorithm
based on the invariance of the ordinary differential equations under a group
of transformations (symmetry). In the twentieth century, Maeda [13, 14]
demonstrated that this approach can be extended to ordinary difference e-
quations and recently, Hydon [6] used a similar approach to come up with
some interesting results. It is now known that Lie’s method can be imple-
mented to find symmetries, first integrals (conservation laws) and closed form
solutions of difference equations, even in the context of variational equations.
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In this paper, we obtain symmetry generators admitted by the difference
equations of the form

xn+1 =
xn−5xn

xn−4(an + bnxn−5xn)
, (1)

where an and bn are random sequences, and then proceed to find the solutions
in closed form via the invariance of the group of transformations admitted by
(2). We first present the solutions in a unified manner and then split them
into different categories based on some properties of the ‘final constraint’.
This work generalizes the work by Elsayed et. al. [3], where the authors
obtained the formulas of the solutions of the difference equations

xn+1 =
xn−5xn

xn−4(±+±xn−5xn)
, n = 0, 1, . . . , (2)

in which the initial conditions x−5, x−4, x−3, x−2, x−1, x0 are arbitrary non-
zero real numbers.
For similar work on the symmetry approach, see [4, 5, 7, 15, 16] and on
different methods, see [1, 2, 8, 10, 19].

1.1 Preliminaries

In this section, we shortly present key elements of Lie group analysis of
difference equations. For more understanding of the concepts and notation,
we refer the reader to [6, 17] where our definitions and most of our notation
are taken from.
Let

x? = X(x; ε) (3)

be a one parameter Lie group of transformations.

Definition 1.1 An infinitely differentiable function F is an invariant func-
tion of the Lie group of point transformation (3) if and only if, for any group
transformations,

F (x) = F (x?). (4)

Definition 1.2 The infinitesimal generator of the one-parameter Lie group
of point transformation (3) is the operator

X = X(x) = ξ(x)×∆ =
n∑

i=1

ξi(x)
∂

∂xi
, (5)

where ∆ is the gradient operator.

2

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 27, NO.6, 2019, COPYRIGHT 2019 EUDOXUS PRESS, LLC

1058 Folly-Gbetoula ET AL 1057-1069



Theorem 1.1 F (x) is invariant under the Lie group of transformations (3)
if and only if

XF (x) = 0. (6)

Now, consider a general kth-order difference equation

un+k = ω(n, un, un+1, . . . , un+k−1) (7)

for some smooth function ω. We are seeking a one-parameter Lie group of
point transformations

n∗ =n, (8a)

u∗n =un + εξ(n, un)+)(ε2), (8b)

...

u∗n+k =un+k + εSkξ(n, un)+)(ε2), (8c)

where ξ denotes the characteristic, ε (ε is small enough) is the group param-
eter and S : n 7→ n+ 1 stands for the shift forward operator . The symmetry
criterion is given by

u∗n+k = ω(n, u∗n, u
∗
n+1, . . . , u

∗
n+k−1), (9)

whenever (7) holds, and further the substitution of (8) in (9) yields the
linearized symmetry condition:

Skξ(n, un)−Xω = 0 (10)

where X, the corresponding prolonged symmetry operator of the group of
transformations (8), is given by

X = ξ(n, un)
∂

∂un
+ Sξ(n, un)

∂

∂un+1

+ · · ·+ Sk−1ξ(n, un)
∂

∂un+k−1
. (11)

The characteristics are obtained by solving the functional equation (10). As
simple as (10) may look, its solution is found after a series of steps that
require a set of cumbersome calculations.
In this work, we employ the well-known choice of canonical coordinate [9]

Sn =

∫
dun

ξ(n, un)
(12)

to reduce the order of the difference equation under investigation.

3
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2 Main results

Consider the sixth-order difference equations of the form (2). Let

un+6 = ω =
unun+5

un+1(An +Bnunun+5)
, (13)

where An and Bn are random sequences, be the forward difference equation
equivalent to (2).
The linearized symmetry condition (10) imposed on (13) leads to

ξ(n+ 6, ω)− Anunξ(n+ 5, un+5)

un+1(An +Bnunun+5)2
+

unun+5ξ(n+ 1, un+1)

u2n+1(An +Bnunun+5)

− Anun+5ξ(n, un)

un+1(An +Bnunun+5)2
= 0. (14)

By the means of the first-order partial differential operator

L =
∂

∂un
− ωun

ωun+5

∂

∂un+5

,

we can get rid of the first term in (14). This yields the following:

Anun+5ξ
′ (n+ 5, un+5)

un+1(An +Bnunun+5)2
− Anun+5ξ

′ (n, un)

un+1(An +Bnunun+5)2
− Anξ (n+ 5, un+5)

un+1(An +Bnunun+5)2

+
Anun+5ξ (n, un)

unun+1(An +Bnunun+5)2
= 0. (15)

Here, it is important to simplify the equation in order to minimize the number
of derivations. Thus, we clear fractions in (15) and divide the resulting
equation by unun+5 to get

ξ′ (n+ 5, un+5)−
1

un+5

ξ (n+ 5, un+5)− ξ′(n, un) +
1

un
ξ (n, un) = 0. (16)

Differentiating (16) with respect to un, keeping un+5 fixed, leads to

d

dun

[
−ξ′ (n, un) +

1

un
ξ (n, un)

]
= 0. (17)

Clearly, the solution of (17) is

ξ (n, un) = f(n)un + g(n)un lnun (18)

4
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for some arbitrary functions f and g of n. To ease the computation we shall
assume that g is zero. Using the expression of the characteristic given in
(18), equation (14) becomes

Bnf(n+ 1)unun+5 +Bnf(n+ 6)unun+5 − Anf(n) + Anf(n+ 1)− Anf(n+ 5)

+ Anf(n+ 6) = 0. (19)

which splits into

1 : f(n) + f(n+ 5) = 0 (20)

unun+5 : f(n+ 1) + f(n+ 6) = 0. (21)

The system above reduces to the final constraint:

f(n) + f(n+ 5) = 0. (22)

Solving (22) for f , we obtain five independent solutions given by (−1)n,
exp(±nπ/5) and exp(±3nπ/5). Therefore, the characteristics are

ξ1 =(−1)nun, ξ2 = βnun, ξ3 = β̄nun, ξ4 = θnun, ξ5 = θ̄nun, (23)

and so the prolonged infinitesimal generators admitted by (13) are

X1 =(−1)nun∂un + (−1)n+1un+1∂un+1 + (−1)n+2un+2∂un+2+

(−1)n+3un+3∂un+3 + (−1)n+4un+4∂un+4 + (−1)n+5un+5∂un+5 , (24a)

X2 =βnun∂un + βn+1un+1∂un+1 + βn+2un+2∂un+2+

βn+3un+3∂un+3 + βn+4un+4∂un+4 + βn+5un+5∂un+5 , (24b)

X3 =β̄nun∂un + β̄n+1un+1∂un+1 + β̄n+2un+2∂un+2+

β̄n+3un+3∂un+3 + β̄n+4un+4∂un+4 + β̄n+5un+5∂un+5 , (24c)

X4 =θnun∂un + θn+1un+1∂un+1 + θn+2un+2∂un+2+

θn+3un+3∂un+3 + θn+4un+4∂un+4 + θn+5un+5∂un+5 , (24d)

X5 =θ̄nun∂un + θ̄n+1un+1∂un+1 + θ̄n+2un+2∂un+2+

θ̄n+3un+3∂un+3 + θ̄n+4un+4∂un+4 + θ̄n+5un+5∂un+5 . (24e)

5
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Note that β = exp(π/5) and θ = exp(3π/5) Using the generator X2, we have
the canonical coordinate

Sn =

∫
dun
βnun

=
1

βn
ln |un|. (25)

Taking advantage of the form of the relation (22), we construct the invariant
function Ṽn

Ṽn = Snβ
n + Sn+5β

n+5 (26)

in view of the fact that

X1Ṽn =(−1)n + (−1)n+5 = 0, (27a)

X2Ṽn =βn + βn+5 = 0, (27b)

X3Ṽn =β̄n + β̄n+5 = 0, (27c)

X4Ṽn =θn + θn+5 = 0, (27d)

(27e)

and

X5Ṽn = θ̄n + θ̄n+5 = 0. (27f)

For rational difference equations, it is convenience to use

|Vn| = exp{−Ṽn}, (28)

i.e., Vn = ±1/(unun+5) but we will be using the plus sign. Substituting (28)
into equation (13), we reduce it to

Vn+1 = AnVn +Bn. (29)

We iterate (29) to get its solution in closed form as

Vj =V0

(
j−1∏
k1=0

Ak1

)
+

j−1∑
l=0

(
Bl

j−1∏
k2=l+1

Ak2

)
. (30)

6
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From (25), (26) and (28), we have

|un| = exp (βnSn)

= exp

[
(−1)nc1 + βnc2 + β̄nc3 + θnc4 + θ̄nc5 −

1

5

n−1∑
k1=0

(−1)n−k1|Ṽk1 |

− 1

5

n−1∑
k2=0

βnβ̄k2|Ṽk2| −
1

5

n−1∑
k3=0

β̄nβk3 |Ṽk3 | −
1

5

n−1∑
k4=0

θnθ̄k4|Ṽk4|

− 1

5

n−1∑
k5=0

θ̄nθk5 |Ṽk5|

]

= exp

[
(−1)nc1 + βnc2 + β̄nc3 + θnc4 + θ̄nc5 +

1

5

n−1∑
k1=0

(−1)n−k1 ln |Vk1|

+
1

5

n−1∑
k2=0

βnβ̄k2 ln |Vk2|+
1

5

n−1∑
k3=0

β̄nβk3 ln |Vk3|+
1

5

n−1∑
k4=0

θnθ̄k4 ln |Vk4|

+
1

5

n−1∑
k5=0

θ̄nθk5 ln |Vk5|

]

= exp

[
Hn +

1

5

n−1∑
k=0

[
(−1)n−k + 2Re(γ1(n, k) + γ2(n, k))

]
ln |Vk|

]
, (31)

where Hn = (−1)nc1 + βnc2 + β̄nc3 + θnc4 + θ̄nc5, γ1(n, k) = βnβ̄k and
γ2(n, k) = θnθ̄k.
The following properties hold:

γ1(0, 1) = β̄, γ1(0, 3) = θ̄, γ1(0, 5) = −1, γ1(0, 7) = θ, γ1(1, 0) = β,

γ1(3, 0) = θ, γ1(5, 0) = −1, γ1(7, 0) = θ̄, γ1(n+ 9, k) = γ1(n, k + 1),

γ1(n, k + 9) = γ1(n+ 1, k), γ1(10n, k) = γ1(0, k), γ1(n, 10k) = γ1(n, 0);

γ2(0, 1) = θ̄, γ2(0, 3) = β, γ2(0, 5) = −1, γ2(0, 7) = β̄, γ2(1, 0) = θ,

γ2(3, 0) = β̄, γ2(5, 0) = −1, γ2(7, 0) = β, γ2(n+ 9, k) = γ2(n, k + 1),

γ2(n, k + 9) = γ2(n+ 1, k), γ2(10n, k) = γ2(0, k), γ2(n, 10k) = γ2(n, 0). (32)

From the expression of un given in (31) and from the above properties (32),
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it is clear that

|u10n+j| = exp

(
Hj +

1

5

10n+j−1∑
k1=0

[
(−1)k + 2Re(γ1(0, k) + γ2(0, k))

]
ln |Vk1|

)
.

(33)
For j = 0, we have that

|u10n| = exp(H0 + ln |V0| − ln |V5|+ . . .+ ln |V10n−10| − ln |V10n−5|)

= exp(H0)
n−1∏
s=0

∣∣∣∣ V10sV10s+5

∣∣∣∣ . (34)

By setting n = 0 in (31), we get exp(H0) = u0 and so

|u10n| =|u0|
n−1∏
s=0

∣∣∣∣ V10sV10s+5

∣∣∣∣ . (35)

It can be shown, using (28), that we need not the absolute value function in
(36). Similarly, for any j = 0, 1, . . . , 9, we obtain the following:

u10n+j =uj

n−1∏
s=0

V10s+j

V10s+j+5

. (36)

Thus, using (30),

u10n+j = uj

n−1∏
s=0

V0

(
10s+j−1∏
k1=0

Ak1

)
+

10s+j−1∑
l=0

(
Bl

10s+j−1∏
k2=l+1

Ak2

)
V0

(
10s+j+4∏
k1=0

Ak1

)
+

10s+j+4∑
l=0

(
Bl

10s+j+4∏
k2=l+1

Ak2

)

= uj

n−1∏
s=0

(
10s+j−1∏
k1=0

Ak1

)
+ u0u5

10s+j−1∑
l=0

(
Bl

10s+j−1∏
k2=l+1

Ak2

)
(

10s+j+4∏
k1=0

Ak1

)
+ u0u5

10s+j+4∑
l=0

(
Bl

10s+j+4∏
k2=l+1

Ak2

) .
Hence, the solution to our equation (2) is

x10n+j−5 = xj−5

n−1∏
s=0

(
10s+j−1∏
k1=0

ak1

)
+ x−5x0

10s+j−1∑
l=0

(
bl

10s+j−1∏
k2=l+1

ak2

)
(

10s+j+4∏
k1=0

ak1

)
+ x−5x0

10s+j+4∑
l=0

(
bl

10s+j+4∏
k2=l+1

ak2

) (37)
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where j = 0, 1, 2, . . . , 9, whenever the denominators do not vanish. In the
following section, we turn to the special case where an and bn are constant
sequences.

3 The case when an and bn are constant se-

quences

In this case, let an = a and bn = b where a, b ∈ R.

3.1 The case a 6= 1

Using (37), the solution is given by

x10n+j−5 = x̄j

n−1∏
s=0

a10s+j + bx−5x0
1−a10s+j

1−a

a10s+j+5 + bx−5x0
1−a10s+j+5

1−a

, (38)

where j = 0, 1, 2, 3, . . . , 9, x̄j is defined as

x̄j =

xj−5, 0 ≤ j ≤ 5;
x−5x0

xj−10

(
aj−5+x−5x0b

1−aj−5

1−a

) , 6 ≤ j ≤ 9,

and for all (j, s) ∈ {0, 1, 2, . . . , 9} × {0, 1, 2, . . . , n− 1},

(1− a)a10s+j + bx−5x0(1− a10s+j) 6= 0.

3.1.1 The case a = −1

In this case, we have

x10n+j−5 = x̄j

n−1∏
s=0

(−1)j + bx−5x0
1−(−1)j

2

(−1)j+1 + bx−5x0
1−(−1)j+1

2

,

where

x̄j =

xj−5, 0 ≤ j ≤ 5;
x−5x0

xj−10

(
(−1)j+1+x−5x0b

1−(−1)j+1

2

) , 6 ≤ j ≤ 9.
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Evaluating the above, we obtain the following solution which, for b = ±1,
appears in [3] (see Theorems 3.1 and 5.1).

x10n−5 = x−5(−1 + bx−5x0)
−n, x10n−4 = x−4(−1 + bx−5x0)

n,

x10n−3 = x−3(−1 + bx−5x0)
−n, x10n−2 = x−2(−1 + bx−5x0)

n,

x10n−1 = x−1(−1 + bx−5x0)
−n, x10n = x0(−1 + bx−5x0)

n,

x10n+1 =
x−5x0

x−4(−1 + bx−5x0)n+1
, x10n+2 =

x−5x0
x−3

(−1 + bx−5x0)
n,

x10n+3 =
x−5x0

x−2(−1 + x−5x0b)n+1
, x10n+4 =

x−5x0
x−1

(−1 + bx−5x0)
n,

where bx−5x0 6= 1.

However, the solution can be written in a more compact form, i.e.,

x10n−j+5 =

{
xj−5(−1 + bx−5x0)

(−1)j+1n, 0 ≤ j ≤ 5;
x−5x0

xj−10
(−1 + bx−5x0)

1−(−1)j

2
+(−1)j+1n, 6 ≤ j ≤ 9;

as long as bx−5x0 6= 1.

3.2 The case a = 1

Using (37), the solution, which for b = ±1 appears in [3] (see Theorems 2.1
and 4.1), is given by

x10n−5 = x−5

n−1∏
s=0

1 + 10sbx−5x0
1 + (10s+ 5)bx−5x0

, x10n−4 = x−4

n−1∏
s=0

1 + (10s+ 1)bx−5x0
1 + (10s+ 6)bx−5x0

,

x10n−3 = x−3

n−1∏
s=0

1 + (10s+ 2)bx−5x0
1 + (10s+ 7)bx−5x0

, x10n−2 = x−2

n−1∏
s=0

1 + (10s+ 3)bx−5x0
1 + (10s+ 8)bx−5x0

,
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x10n−1 = x−1

n−1∏
s=0

1 + (10s+ 4)bx−5x0
1 + (10s+ 9)bx−5x0

, x10n = x0

n−1∏
s=0

1 + (10s+ 5)bx−5x0
1 + (10s+ 10)bx−5x0

,

x10n+1 =
x−5x0

x−4(1 + bx−5x0)

n−1∏
s=0

1 + (10s+ 6)bx−5x0
1 + (10s+ 11)bx−5x0

,

x10n+2 =
x−5x0

x−3(1 + 2bx−5x0)

n−1∏
s=0

1 + (10s+ 7)bx−5x0
1 + (10s+ 12)bx−5x0

,

x10n+3 =
x−5x0

x−2(1 + 3bx−5x0)

n−1∏
s=0

1 + (10s+ 8)bx−5x0
1 + (10s+ 13)bx−5x0

,

x10n+4 =
x−5x0

x−1(1 + 4bx−5x0)

n−1∏
s=0

1 + (10s+ 9)bx−5x0
1 + (10s+ 14)bx−5x0

,

where jbx−5x0 6= −1 for all j = 5, 6, 7, . . . , 10n+ 4.

More compactly, the solution can be written as

x10n+j−5 =


xj−5

n−1∏
s=0

1+(10s+j)bx−5x0

1+(10s+j+5)bx−5x0
, 0 ≤ j ≤ 5;

x−5x0

xj−10(1+b(j−5)x−5x0)

n−1∏
s=0

1+(10s+j)bx−5x0

1+(10s+j+5)bx−5x0
, 6 ≤ j ≤ 9.

4 Conclusion

In this paper, we derived symmetry generators for the difference equations
(2) and explicit formulas for the solutions of the equations were obtained.
As a recent result, Theorems 2.1, 3.1, 4.1 and 5.1 of Elsayed et al. [3] were
generalized.
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