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On invariance and solutions of some fifth-order rational recursive sequences

M. Folly-Gbetoula ∗ and D. Nyirenda †

Abstract

We study the fifth-order difference equations of the form

xn+1 =
xn−4xn−2

xn−1(an + bnxn−4xn−2)
, n = 0, 1, . . . ,

where an and bn are real sequences, using the method of Lie group analysis. In par-
ticular, nontrivial vector fields associated with the group of point transformations are
derived and exact solutions obtained. Closed form formulas for the solutions to the
recursive sequences are given explicitly. This work is a generalization of a result by
Elsayed [E. M. Elsayed, Behavior and expression of the solutions of some rational dif-
ference equations, J. Computational Analysis and Applications, 15(1) (2013), 73–81].

Keywords: Difference equation; Symmetry; Reduction; Group invariant; Periodicity
Mathematics Subjet Classification: 39A10; 39A13; 39A90

1 Introduction

Over a century ago, Sophus Lie [7] developed an algorithm based on the invariance of the
ordinary differential equations under their symmetry group. Maeda [8, 9] observed that the
Lie Symmetry approach can be applied to ordinary difference equations. Recently, Hydon
[3] utilized a similar method to come up with some interest-provoking results. It is now a
foregone conclusion that Lie’s method can be used to find symmetries and conservation laws
of recursive sequences, even in the context of variational equations.
In this paper, we obtain the vector fields of

xn+1 =
xn−4xn−2

xn−1(an + bnxn−4xn−2)
, (1)

where an and bn are random real sequences, and then proceed to find the solutions in closed
form. Our work extends the work by Elsayed [1], where the formulas of the solutions of the
difference equations

xn+1 =
xn−4xn−2

xn−1(±± xn−4xn−2)
n = 0, 1, . . . , (2)

in which the initial conditions x−4, x−3, x−2, x−1, x0 are arbitrary non-zero real numbers, were
obtained.
For related work, see [2, 4, 10].

∗School of Mathematics, University of the Witwatersrand, Johannesburg, X3, Wits 2050, South Africa
Email: Mensah.Folly-Gbetoula@wits.ac.za
†School of Mathematics, University of the Witwatersrand, Johannesburg, X3, Wits 2050, South Africa

Email: Darlison.Nyirenda@wits.ac.za
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1.1 Background on Lie analysis

In this section, we briefly discuss some key ideas on Lie group analysis of difference equations.
For a broader comprehension of the concepts, refer to [3, 11]. The definitions and notation
are taken from the same source [3, 11].
Let

x? = X(x; ε) (3)

be a one parameter Lie group of transformations.

Definition 1.1 An infinitely differentiable function F is an invariant function of the Lie
group of point transformation (3) if and only if, for any group transformations,

F (x) = F (x?). (4)

Definition 1.2 The infinitesimal generator of the one-parameter Lie group of point trans-
formation (3) is the operator

X = X(x) = ξ(x)×∆ =
n∑

i=1

ξi(x)
∂

∂xi
, (5)

where ∆ is the gradient operator.

Theorem 1.1 F (x) is invariant under the Lie group of transformations (3) if and only if

XF (x) = 0. (6)

Consider the forward fifth-order recursive sequence

un+5 = Φ(n, un, . . . , un+4) (7)

for some smooth function Φ. Suppose the one-parameter Lie group of point transformations
is of the form

n∗ =n, u∗n+k = un+k + εSkξ(n, un)+)(ε2), k = 0, . . . , 5, (8)

where ξ denotes the characteristic, ε (ε is small enough) is the group parameter and S : n 7→
n+ 1 is the shift forward operator. The symmetry condition is given by

u∗n+5 = Φ(n, u∗n, . . . , u
∗
n+4), (9)

whenever (7) is true. The substitution of (8) in (9) yields the linearized symmetry condition:

S5ξ(n, un)−XΦ = 0 (10)

where X, the vector fields of (7), is given by

X =ξ(n, un)
∂

∂un
+ ξ(n+ 1, un+1)

∂

∂un+1

+ · · ·+ ξ(n+ 4, un+4)
∂

∂un+4

. (11)

Despite the fact that (10) looks simple, its solution finding process is highly involving.
In our work, we will use the canonical coordinate [5]

Sn =

∫
dun

ξ(n, un)
(12)

to lower the order of the difference equation under investigation.

2
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2 Main results

Let

un+5 = Φ =
unun+2

un+3(An +Bnunun+2)
, (13)

where An and Bn are random real sequences, be the forward recursive equation equivalent
to (2).
Substituting (13) in (10), we have that

S5ξ +
unun+2(S

3ξ)

u2n+3(An +Bnunun+2)
− Anun(Sξ)

un+3(An +Bnunun+2)2
− Anun+2ξ

un+3(An +Bnunun+2)2
= 0.

(14)

We act the differential operator

L =
∂

∂un
− Φun

Φun+3

∂

∂un+3

to eliminate the first term in (14). This leads to

(An +Bnunun+2)
[
(S3ξ)′ − (S3ξ)

]
+Bnun(Sξ)− (An +Bnunun+2)ξ

′ +
An

un
ξ = 0 (15)

after simplification. The differentiation of (15) with respect to un twice, keeping un+3 fixed,
yields

− (An +Bnunun+2)ξ
(3) +

An

un
ξ(2) − 2An

un2
ξ′ +

2An

un3
ξ = 0. (16)

Split (16) by comparing powers of un+2; we have

{
un+2 term : u3nξ

(3) − un2ξ(2) + 2unξ
′ − 2ξ = 0,

other terms : ξ(3) = 0.
(17)

Equations in (17) further simplify to

un
2ξ(2) − 2unξ

′ + 2ξ = 0. (18)

It is clear that the solution of (16) is

ξ (n, un) = fnun + gnun
2 (19)

for some arbitrary functions fn and gn of n. Using characteristic’s expression as given in
(19), we reduce equation (14) to the following difference equation

Bngn+3unun+2un+3
2 +Bn(fn+3 + fn+5)unun+2un+3 − Angnunun+3 + gn+5unun+2

− An(fn + fn+2 + fn+3 + fn+5)un+3 − Angn+1un+2un+3 + Angn+3un+3
2 = 0. (20)

3
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which then splits into a system (by comparing products of powers of shifts of un) as follows:

un+3 terms : fn + fn+2 + fn+3 + fn+5 = 0 (21a)

unun+2 terms : gn+5 = 0 (21b)

unun+3 terms : gn = 0 (21c)

unun+2un+3 terms : fn+3 + fn+5 = 0 (21d)

unun+2un+3
2 terms : gn+3 = 0 (21e)

un+2un+3 terms : gn+1 = 0 (21f)

un+3
2 terms : gn+3 = 0. (21g)

Thus, the ‘final constraint’ is given by:

fn + fn+2 = 0, (22a)

gn = 0. (22b)

Solving (22) for f , we obtain two independent solutions given by exp(±nπ/2). Therefore,
the characteristics are

ξ1 =αnun, ξ2 = ᾱnun, (23)

and so the prolonged infinitesimal generators admitted by (13) are

X1 =αnun∂un + αn+1un+1∂un+1 + αn+2un+2∂un+2 + αn+3un+3∂un+3 + αn+4un+4∂un+4 , (24a)

X2 =ᾱnun∂un + ᾱn+1un+1∂un+1 + ᾱn+2un+2∂un+2 + ᾱn+3un+3∂un+3 + ᾱn+4un+4∂un+4 . (24b)

Observe that α = exp(iπ/2) and ᾱ is its complex conjugate. Using the generator X1, we
have the canonical coordinate

Sn =

∫
dun
αnun

=
1

αn
ln |un|. (25)

Thanks to the form of (22), the invariant function Ṽn is constructed as follows

Ṽn = Snα
n + Sn+2α

n+2 (26)

since X1Ṽn = αn +αn+2 = 0 and X2Ṽn = ᾱn + ᾱn+2 = 0. For rational difference equations,
it is convenience to use

|Vn| = exp{−Ṽn}, (27)

i.e., Vn = ±1/(unun+2) but we will be using the one with plus sign: Vn = 1/unun+2. We
then substitute (27) into equation (13) to get the third-order linear difference equation

Vn+3 = AnVn +Bn. (28)

4
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The iteration of equation (28) leads to

V3n+j =Vj

(
n−1∏
k1=0

A3k1+j

)
+

n−1∑
l=0

(
B3l+j

n−1∏
k2=l+1

A3k2+j

)
, j = 0, 1, 2. (29)

Invoking (25), (26) and (27), we have that

|un| = exp (αnSn)

= exp

(
αnc1 + ᾱnc2 −

1

2

n−1∑
k1=0

αnᾱk1Ṽk1 −
1

2

n−1∑
k2=0

ᾱnαk2Ṽk2

)

= exp

(
αnc1 + ᾱnc2 +

1

2

n−1∑
k1=0

αnᾱk1 ln |Vk1|+
1

2

n−1∑
k2=0

ᾱnαk2 ln |Vk2|

)

= exp

(
Hn +

n−1∑
k1=0

Re(γ(n, k1)) ln |Vk1|

)
, (30)

in which Hn = αnc1 + ᾱnc2 and γ(n, k) = αnᾱk.
It is worthwhile to mention that the function γ satisfies the following:

γ(0, 1) = ᾱ, γ(1, 0) = α, γ(n, n) = 1, γ(n+ 2, k) = −γ(n, k),

γ(n, k + 2) = −γ(n, k), γ(4n, k) = γ(0, k), γ(n, 4k) = γ(n, 0).
(31)

From the expression of un given in (30) and from the above properties (31), note that

|u4n+j| = exp

(
Hj +

4n+j−1∑
k1=0

Re(γ(j, k1)) ln |Vk1 |

)
. (32)

For j = 0, we have

|u4n| = exp(H0 + ln |V0| − ln |V2|+ . . .+ ln |V4n−4| − ln |V4n−2|)

= exp(H0)
n−1∏
s=0

∣∣∣∣ V4sV4s+2

∣∣∣∣ . (33)

By setting n = 0 in (30), we get exp(H0) = u0 and so

u4n = u0

n−1∏
s=0

V4s
V4s+2

. (34)

We have omitted the absolute function because it can be shown, using (27), that there is no
need for it. In a similar way, we have that

u4n+j =uj

n−1∏
s=0

V4s+j

V4s+j+2

, for any j = 0, 1, 2, 3. (35)
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This equation implies that

u12n+j = uj

3n−1∏
s=0

V4s+j

V4s+j+2

= uj

n−1∏
s=0

V12s+j

V12s+j+2

V12s+4+j

V12s+j+6

V12s+j+8

V12s+j+10

which now holds for j = 0, 1, 2, . . . , 11.
For j = 0, we have

u12n = u0

n−1∏
s=0

V12s
V12s+2

V12s+4

V12s+6

V12s+8

V12s+10

. (36)

Using (29) in (36), we have that

u12n = u0

n−1∏
s=0

V0
4s−1∏
k1=0

A3k1 +
4s−1∑
l=0

B3l

4s−1∏
k2=l+1

A3k2

V2
4s−1∏
k1=0

A3k1+2 +
4s−1∑
l=0

B3l+2

4s−1∏
k2=l+1

A3k2+2

V1
4s∏

k1=0

A3k1+1 +
4s∑
l=0

B3l+1

4s∏
k2=l+1

A3k2+1

V0
4s+1∏
k1=0

A3k1 +
4s+1∑
l=0

B3l

4s+1∏
k2=l+1

A3k2

×
V2

4s+1∏
k1=0

A3k1+2 +
4s+1∑
l=0

(
B3l+2

4s+1∏
k2=l+1

A3k2+2

)
V1

4s+2∏
k1=0

A3k1+1 +
4s+2∑
l=0

(
B3l+1

4s+2∏
k2=l+1

A3k2+1

)

= u0

n−1∏
s=0

4s−1∏
k1=0

A3k1 + u0u2
4s−1∑
l=0

B3l

4s−1∏
k2=l+1

A3k2

4s−1∏
k1=0

A3k1+2 + u2u4
4s−1∑
l=0

B3l+2

4s−1∏
k2=l+1

A3k2+2

4s∏
k1=0

A3k1+1 + u1u3
4s∑
l=0

B3l+1

4s∏
k2=l+1

A3k2+1

4s+1∏
k1=0

A3k1 + u0u2
4s+1∑
l=0

B3l

4s+1∏
k2=l+1

A3k2

×

4s+1∏
k1=0

A3k1+2 + u2u4
4s+1∑
l=0

(
B3l+2

4s+1∏
k2=l+1

A3k2+2

)
4s+2∏
k1=0

A3k1+1 + u1u3
4s+2∑
l=0

(
B3l+1

4s+2∏
k2=l+1

A3k2+1

) .
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Hence x12n−4 is equal to

x−4

n−1∏
s=0

4s−1∏
k1=0

a3k1 + x−4x−2
4s−1∑
l=0

b3l
4s−1∏

k2=l+1

a3k2

4s−1∏
k1=0

a3k1+2 + x−2x0
4s−1∑
l=0

b3l+2

4s−1∏
k2=l+1

a3k2+2

4s∏
k1=0

a3k1+1 + x−3x−1
4s∑
l=0

b3l+1

4s∏
k2=l+1

a3k2+1

4s+1∏
k1=0

a3k1 + x−4x−2
4s+1∑
l=0

b3l
4s+1∏

k2=l+1

a3k2

×

4s+1∏
k1=0

a3k1+2 + x−2x0
4s+1∑
l=0

(
b3l+2

4s+1∏
k2=l+1

a3k2+2

)
4s+2∏
k1=0

a3k1+1 + x−3x−1
4s+2∑
l=0

(
b3l+1

4s+2∏
k2=l+1

a3k2+1

) .
For j = 1, we have

u12n+1 = u1

n−1∏
s=0

V1
4s−1∏
k1=0

A3k1+1 +
4s−1∑
l=0

B3l+1

4s−1∏
k2=l+1

A3k2+1

V0
4s∏

k1=0

A3k1 +
4s∑
l=0

B3l

4s∏
k2=l+1

A3k2

V2
4s∏

k1=0

A3k1+2 +
4s∑
l=0

B3l+2

4s∏
k2=l+1

A3k2+2

V1
4s+1∏
k1=0

A3k1+1 +
4s+1∑
l=0

B3l+1

4s+1∏
k2=l+1

A3k2+1

×
V0

4s+2∏
k1=0

A3k1 +
4s+2∑
l=0

B3l

4s+2∏
k2=l+1

A3k2

V2
4s+2∏
k1=0

A3k1+2 +
4s+2∑
l=0

B3l+2

4s+2∏
k2=l+1

A3k2+2

so that x12n−3 is equal to

x−3

n−1∏
s=0

4s−1∏
k1=0

a3k1+1 + x−3x−1
4s−1∑
l=0

b3l+1

4s−1∏
k2=l+1

a3k2+1

4s∏
k1=0

a3k1 + x−4x−2
4s∑
l=0

b3l
4s∏

k2=l+1

a3k2

4s∏
k1=0

a3k1+2 + x−2x0
4s∑
l=0

b3l+2

4s∏
k2=l+1

A3k2+2

4s+1∏
k1=0

A3k1+1 + x−3x−1
4s+1∑
l=0

b3l+1

4s+1∏
k2=l+1

a3k2+1

×

4s+2∏
k1=0

a3k1 + x−4x−2
4s+2∑
l=0

b3l
4s+2∏

k2=l+1

a3k2

4s+2∏
k1=0

a3k1+2 + x−2x0
4s+2∑
l=0

b3l+2

4s+2∏
k2=l+1

a3k2+2

.

For j = 2, we have

u12n+2 = u2

n−1∏
s=0

V2
4s−1∏
k1=0

A3k1+2 +
4s−1∑
l=0

B3l+2

4s−1∏
k2=l+1

A3k2+2

V1
4s∏

k1=0

A3k1+1 +
4s∑
l=0

B3l+1

4s∏
k2=l+1

A3k2+1

V0
4s+1∏
k1=0

A3k1 +
4s+1∑
l=0

B3l

4s+1∏
k2=l+1

A3k2

V2
4s+1∏
k1=0

A3k1+2 +
4s+1∑
l=0

B3l+2

4s+1∏
k2=l+1

A3k2+2

×
V1

4s+2∏
k1=0

A3k1+1 +
4s+2∑
l=0

B3l+2

4s+2∏
k2=l+1

A3k2+1

V0
4s+3∏
k1=0

A3k1 +
4s+3∑
l=0

B3l

4s+3∏
k2=l+1

A3k2
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so that

x12n−2 = x−2

n−1∏
s=0

4s−1∏
k1=0

a3k1+2 + x−2x0
4s−1∑
l=0

b3l+2

4s−1∏
k2=l+1

a3k2+2

4s∏
k1=0

a3k1+1 + x−3x−1
4s∑
l=0

b3l+1

4s∏
k2=l+1

a3k2+1

4s+1∏
k1=0

a3k1 + x−4x−2
4s+1∑
l=0

b3l
4s+1∏

k2=l+1

a3k2

4s+1∏
k1=0

a3k1+2 + x−2x0
4s+1∑
l=0

b3l+2

4s+1∏
k2=l+1

a3k2+2

×

4s+2∏
k1=0

a3k1+1 + x−3x−1
4s+2∑
l=0

b3l+2

4s+2∏
k2=l+1

a3k2+1

4s+3∏
k1=0

a3k1 + x−4x−2
4s+3∑
l=0

b3l
4s+3∏

k2=l+1

a3k2

.

Following similar substitutions as above where ui = xi−4 and Vi = 1
xi−4xi−2

, we deduce that

for x12n+j−4 with j = 3, 4, 5, . . . , 11;

x12n−1 =

x−1

n−1∏
s=0

4s∏
k1=0

a3k1 + x−4x−2
4s∑
l=0

b3l
4s∏

k2=l+1

a3k2

4s∏
k1=0

a3k1+2 + x−2x0
4s∑
l=0

b3l+2

4s∏
k2=l+1

a3k2+2

4s+1∏
k1=0

a3k1+1 + x−3x−1
4s+1∑
l=0

b3l+1

4s+1∏
k2=l+1

a3k2+1

4s+2∏
k1=0

a3k1 + x−4x−2
4s+2∑
l=0

b3l
4s+2∏

k2=l+1

a3k2

×

4s+2∏
k1=0

a3k1+2 + x−2x0
4s+2∑
l=0

b3l+2

4s+2∏
k2=l+1

a3k2+2

4s+3∏
k1=0

a3k1+1 + x−3x−1
4s+3∑
l=0

b3l+1

4s+3∏
k2=l+1

a3k2+1

,

x12n =

x0

n−1∏
s=0

4s∏
k1=0

a3k1+1 + x−3x−1
4s∑
l=0

b3l+1

4s∏
k2=l+1

a3k2+1

4s+1∏
k1=0

a3k1 + x−4x−2
4s+1∑
l=0

b3l
4s+1∏

k2=l+1

a3k2

4s+1∏
k1=0

a3k1+2 + x−2x0
4s+1∑
l=0

b3l+2

4s+1∏
k2=l+1

a3k2+2

4s+2∏
k1=0

a3k1+1 + x−3x−1
4s+2∑
l=0

b3l+1

4s+2∏
k2=l+1

a3k2+1

×

4s+3∏
k1=0

a3k1 + x−4x−2
4s+3∑
l=0

b3l
4s+3∏

k2=l+1

a3k2

4s+3∏
k1=0

a3k1+2 + x−2x0
4s+3∑
l=0

b3l+2

4s+3∏
k2=l+1

a3k2+2

,
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x12n+1 =

x1

n−1∏
s=0

4s∏
k1=0

a3k1+2 + x−2x0
4s∑
l=0

b3l+2

4s∏
k2=l+1

a3k2+2

4s+1∏
k1=0

a3k1+1 + x−3x−1
4s+1∑
l=0

b3l+1

4s+1∏
k2=l+1

a3k2+1

4s+2∏
k1=0

a3k1 + x−4x−2
4s+2∑
l=0

b3l
4s+2∏

k2=l+1

a3k2

4s+2∏
k1=0

a3k1+2 + x−2x0
4s+2∑
l=0

b3l+2

4s+2∏
k2=l+1

a3k2+2

×

4s+3∏
k1=0

a3k1+1 + x−3x−1
4s+3∑
l=0

b3l+1

4s+3∏
k2=l+1

a3k2+1

4s+4∏
k1=0

a3k1 + x−4x−2
4s+4∑
l=0

b3l
4s+4∏

k2=l+1

a3k2

,

x12n+2 =

x2

n−1∏
s=0

4s+1∏
k1=0

a3k1 + x−4x−2
4s+1∑
l=0

b3l
4s+1∏

k2=l+1

a3k2

4s+1∏
k1=0

a3k1+2 + x−2x0
4s+1∑
l=0

b3l+2

4s+1∏
k2=l+1

a3k2+2

4s+2∏
k1=0

a3k1+1 + x−3x−1
4s+2∑
l=0

b3l+1

4s+2∏
k2=l+1

a3k2+1

4s+3∏
k1=0

a3k1 + x−4x−2
4s+3∑
l=0

b3l
4s+3∏

k2=l+1

a3k2

×

4s+3∏
k1=0

a3k1+2 + x−2x0
4s+3∑
l=0

b3l+2

4s+3∏
k2=l+1

a3k2+2

4s+4∏
k1=0

a3k1+1 + x−3x−1
4s+4∑
l=0

b3l+1

4s+4∏
k2=l+1

a3k2+1

,

x12n+3 =

x3

n−1∏
s=0

4s+1∏
k1=0

a3k1+1 + x−3x−1
4s+1∑
l=0

b3l+1

4s+1∏
k2=l+1

a3k2+1

4s+2∏
k1=0

a3k1 + x−4x−2
4s+2∑
l=0

b3l
4s+2∏

k2=l+1

a3k2

4s+2∏
k1=0

a3k1+2 + x−2x0
4s+2∑
l=0

b3l+2

4s+2∏
k2=l+1

a3k2+2

4s+3∏
k1=0

a3k1+1 + x−3x−1
4s+3∑
l=0

b3l+1

4s+3∏
k2=l+1

a3k2+1

×

4s+4∏
k1=0

a3k1 + x−4x−2
4s+4∑
l=0

b3l
4s+4∏

k2=l+1

a3k2

4s+4∏
k1=0

a3k1+2 + x−2x0
4s+4∑
l=0

b3l+2

4s+4∏
k2=l+1

a3k2+2

,
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x12n+4 =

x4

n−1∏
s=0

4s+1∏
k1=0

a3k1+2 + x−2x0
4s+1∑
l=0

b3l+2

4s+1∏
k2=l+1

a3k2+2

4s+2∏
k1=0

a3k1+1 + x−3x−1
4s+2∑
l=0

b3l+1

4s+2∏
k2=l+1

a3k2+1

4s+3∏
k1=0

a3k1 + x−4x−2
4s+3∑
l=0

b3l
4s+3∏

k2=l+1

a3k2

4s+3∏
k1=0

a3k1+2 + x−2x0
4s+3∑
l=0

b3l+2

4s+3∏
k2=l+1

a3k2+2

×

4s+4∏
k1=0

a3k1+1 + x−3x−1
4s+4∑
l=0

b3l+1

4s+4∏
k2=l+1

a3k2+1

4s+5∏
k1=0

a3k1 + x−4x−2
4s+5∑
l=0

b3l
4s+5∏

k2=l+1

a3k2

,

x12n+5 =

x5

n−1∏
s=0

4s+2∏
k1=0

a3k1 + x−4x−2
4s+2∑
l=0

b3l
4s+2∏

k2=l+1

a3k2

4s+2∏
k1=0

a3k1+2 + x−2x0
4s+2∑
l=0

b3l+2

4s+2∏
k2=l+1

a3k2+2

4s+3∏
k1=0

a3k1+1 + x−3x−1
4s+3∑
l=0

b3l+1

4s+3∏
k2=l+1

a3k2+1

4s+4∏
k1=0

a3k1 + x−4x−2
4s+4∑
l=0

b3l
4s+4∏

k2=l+1

a3k2

×

4s+4∏
k1=0

a3k1+2 + x−2x0
4s+4∑
l=0

b3l+2

4s+4∏
k2=l+1

a3k2+2

4s+5∏
k1=0

a3k1+1 + x−3x−1
4s+5∑
l=0

b3l+1

4s+5∏
k2=l+1

a3k2+1

,

x12n+6 =

x6

n−1∏
s=0

4s+2∏
k1=0

a3k1+1 + x−3x−1
4s+2∑
l=0

b3l+1

4s+2∏
k2=l+1

a3k2+1

4s+3∏
k1=0

a3k1 + x−4x−2
4s+3∑
l=0

b3l
4s+3∏

k2=l+1

a3k2

4s+3∏
k1=0

a3k1+2 + x−2x0
4s+3∑
l=0

b3l+2

4s+3∏
k2=l+1

a3k2+2

4s+4∏
k1=0

a3k1+1 + x−3x−1
4s+4∑
l=0

b3l+1

4s+4∏
k2=l+1

a3k2+1

×

4s+5∏
k1=0

a3k1 + x−4x−2
4s+5∑
l=0

b3l
4s+5∏

k2=l+1

a3k2

4s+5∏
k1=0

a3k1+2 + x−2x0
4s+5∑
l=0

b3l+2

4s+5∏
k2=l+1

a3k2+2

,
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x12n+7 =

x7

n−1∏
s=0

4s+2∏
k1=0

a3k1+2 + x−2x0
4s+2∑
l=0

b3l+2

4s+2∏
k2=l+1

a3k2+2

4s+3∏
k1=0

a3k1+1 + x−3x−1
4s+3∑
l=0

b3l+1

4s+3∏
k2=l+1

a3k2+1

4s+4∏
k1=0

a3k1 + x−4x−2
4s+4∑
l=0

b3l
4s+4∏

k2=l+1

a3k2

4s+4∏
k1=0

a3k1+2 + x−2x0
4s+4∑
l=0

b3l+2

4s+4∏
k2=l+1

a3k2+2

×

4s+5∏
k1=0

a3k1+1 + x−3x−1
4s+5∑
l=0

b3l+1

4s+5∏
k2=l+1

a3k2+1

4s+6∏
k1=0

a3k1 + x−4x−2
4s+6∑
l=0

b3l
4s+6∏

k2=l+1

a3k2

,

where x1, x2, x3, x4, x5, x6 and x7 are given as follows:

x1 =
x−4x−2

x−1(a0 + b0x−4x−2)
, x2 =

x−3x−1
x0(a1 + b1x−3x−1)

, x3 =
x−1x0(a0 + b0x−4x−2)

x−4(a2 + b2x−2x0)
,

x4 =
x−4x−2x0(a1 + b1x−3x−1)

x−3x−1(a0a3 + (b0a3 + b3)x−4x−2)
, x5 =

x−3x−4(a2 + b2x−2x0)

x0(a0 + b0x−4x−2)(a1a4 + (b1a4 + b4)x−3x−1)
,

x6 =
x−3x−1(a0a3 + (b0a3 + b3)x−4x−2)

x−4(a1 + b1x−3x−1)(a5a2 + (b2a5 + b5)x−2x0)
,

and

x7 =
x−2x0(a0 + b0x−4x−2)(a1a4 + (b1a4 + b4)x−3x−1)

x−3(a2 + b2x−2x0)(a6a3a0 + (a6a3b0 + a6b3 + b6)x−4x−2)
.

We now turn our attention to special cases in the subsequent sections.

3 The case an and bn are 1-periodic

Let an = a and bn = b, where a, b ∈ R. We simply carry out a substitution and find the
following solution:

x12n−4 = x−4

n−1∏
s=0

a4s + bx−4x−2
4s−1∑
l=0

al

a4s + bx−2x0
4s−1∑
l=0

al

a4s+1 + bx−3x−1
4s∑
l=0

al

a4s+2 + bx−4x−2
4s+1∑
l=0

al

a4s+2 + bx−2x0
4s+1∑
l=0

al

a4s+3 + bx−3x−1
4s+2∑
l=0

al
,

x12n−3 = x−3

n−1∏
s=0

a4s + bx−3x−1
4s−1∑
l=0

al

a4s+1 + bx−4x−2
4s∑
l=0

al

a4s+1 + bx−2x0
4s∑
l=0

al

a4s+2 + bx−3x−1
4s+1∑
l=0

al

a4s+3 + bx−4x−2
4s+2∑
l=0

al

a4s+3 + bx−2x0
4s+2∑
l=0

al
,
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x12n−2 = x−2

n−1∏
s=0

a4s + bx−2x0
4s−1∑
l=0

al

a4s+1 + bx−3x−1
4s∑
l=0

al

a4s+2 + bx−4x−2
4s+1∑
l=0

al

a4s+2 + bx−2x0
4s+1∑
l=0

al

a4s+3 + bx−3x−1
4s+2∑
l=0

al

a4s+4 + bx−4x−2
4s+3∑
l=0

al
,

x12n−1 = x−1

n−1∏
s=0

a4s+1 + bx−4x−2
4s∑
l=0

al

a4s+1 + bx−2x0
4s∑
l=0

al

a4s+2 + bx−3x−1
4s+1∑
l=0

al

a4s+3 + bx−4x−2
4s+2∑
l=0

al

a4s+3 + bx−2x0
4s+2∑
l=0

al

a4s+4 + bx−3x−1
4s+3∑
l=0

al
,

x12n = x0

n−1∏
s=0

a4s+1 + bx−3x−1
4s∑
l=0

al

a4s+2 + bx−4x−2
4s+1∑
l=0

al

a4s+2 + bx−2x0
4s+1∑
l=0

al

a4s+3 + bx−3x−1
4s+2∑
l=0

al

a4s+4 + bx−4x−2
4s+3∑
l=0

al

a4s+4 + bx−2x0
4s+3∑
l=0

al
,

x12n+1 = x1

n−1∏
s=0

a4s+1 + bx−2x0
4s∑
l=0

al

a4s+2 + bx−3x−1
4s+1∑
l=0

al

a4s+3 + bx−4x−2
4s+2∑
l=0

al

a4s+3 + bx−2x0
4s+2∑
l=0

al

a4s+4 + bx−3x−1
4s+3∑
l=0

al

a4s+5 + bx−4x−2
4s+4∑
l=0

al
,

x12n+2 = x2

n−1∏
s=0

a4s+2 + bx−4x−2
4s+1∑
l=0

al

a4s+2 + bx−2x0
4s+1∑
l=0

al

a4s+3 + bx−3x−1
4s+2∑
l=0

al

a4s+4 + bx−4x−2
4s+3∑
l=0

al

a4s+4 + bx−2x0
4s+3∑
l=0

al

a4s+5 + bx−3x−1
4s+4∑
l=0

al
,

x12n+3 = x3

n−1∏
s=0

a4s+2 + bx−3x−1
4s+1∑
l=0

al

a4s+3 + bx−4x−2
4s+2∑
l=0

al

a4s+3 + bx−2x0
4s+2∑
l=0

al

a4s+4 + bx−3x−1
4s+3∑
l=0

al

a4s+5 + x−4x−2
4s+4∑
l=0

al

a4s+5 + bx−2x0
4s+4∑
l=0

al
,

x12n+4 = x4

n−1∏
s=0

a4s+2 + bx−2x0
4s+1∑
l=0

al

a4s+3 + bx−3x−1
4s+2∑
l=0

al

a4s+4 + bx−4x−2
4s+3∑
l=0

al

a4s+4 + bx−2x0
4s+3∑
l=0

al

a4s+5 + bx−3x−1
4s+4∑
l=0

al

a4s+6 + bx−4x−2
4s+5∑
l=0

al
,

x12n+5 = x5

n−1∏
s=0

a4s+3 + bx−4x−2
4s+2∑
l=0

al

a4s+3 + bx−2x0
4s+2∑
l=0

al

a4s+4 + bx−3x−1
4s+3∑
l=0

al

a4s+5 + bx−4x−2
4s+4∑
l=0

al

a4s+5 + bx−2x0
4s+4∑
l=0

al

a4s+6 + bx−3x−1
4s+5∑
l=0

al
,
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x12n+6 = x6

n−1∏
s=0

a4s+3 + bx−3x−1
4s+2∑
l=0

al

a4s+4 + bx−4x−2
4s+3∑
l=0

al

a4s+4 + bx−2x0
4s+3∑
l=0

al

a4s+5 + bx−3x−1
4s+4∑
l=0

al

a4s+6 + bx−4x−2
4s+5∑
l=0

al

a4s+6 + bx−2x0
4s+5∑
l=0

al
,

x12n+7 = x7

n−1∏
s=0

a4s+3 + bx−2x0
4s+2∑
l=0

al

a4s+4 + bx−3x−1
4s+3∑
l=0

al

a4s+5 + bx−4x−2
4s+4∑
l=0

al

a4s+5 + bx−2x0
4s+4∑
l=0

al

a4s+6 + bx−3x−1
4s+5∑
l=0

al

a4s+7 + bx−4x−2
4s+6∑
l=0

al
,

where x1, x2, x3, x4, x5, x6, x7 are given by

x1 =
x−4x−2

x−1(a+ bx−4x−2)
, x2 =

x−3x−1
x0(a+ bx−3x−1)

, x3 =
x−1x0(a+ bx−4x−2)

x−4(a+ bx−2x0)
,

x4 =
x−4x−2x0(a+ bx−3x−1)

x−3x−1(a2 + (ab+ b)x−4x−2)
, x5 =

x−4x−3(a+ bx−2x0)

x0(a+ bx−4x−2)(a2 + (ab+ b)x−3x−1)
,

x6 =
x−3x−1(a

2 + (ab+ b)x−4x−2)

x−4(a+ bx−3x−1)(a2 + (ab+ b)x−2x0)

and

x7 =
x−2x0(a+ bx−4x−2)(a

2 + (ab+ b)x−3x−1)

x−3(a+ bx−2x0)(a3 + (a2b+ ab+ b)x−4x−2)
.

3.1 The case a = 1

The solution, which appears for b = ±1 in Theorems 1 and 6 of [1], is given by

x12n−4 = x−4

n−1∏
s=0

1 + 4sbx−4x−2
1 + 4sbx−2x0

1 + (4s+ 1)bx−3x−1
1 + (4s+ 2)bx−4x−2

1 + (4s+ 2)bx−2x0
1 + (4s+ 3)bx−3x−1

,

x12n−3 = x−3

n−1∏
s=0

1 + 4sbx−3x−1
1 + (4s+ 1)bx−4x−2

1 + (4s+ 1)bx−2x0
1 + (4s+ 2)bx−3x−1

1 + (4s+ 3)bx−4x−2
1 + (4s+ 3)bx−2x0

,

x12n−2 = x−2

n−1∏
s=0

1 + 4sbx−2x0
1 + (4s+ 1)bx−3x−1

1 + (4s+ 2)bx−4x−2
1 + (4s+ 2)bx−2x0

1 + (4s+ 3)bx−3x−1
1 + (4s+ 4)bx−4x−2

,

x12n−1 = x−1

n−1∏
s=0

1 + (4s+ 1)bx−4x−2
1 + (4s+ 1)bx−2x0

1 + (4s+ 2)bx−3x−1
1 + (4s+ 3)bx−4x−2

1 + (4s+ 3)bx−2x0
1 + (4s+ 4)bx−3x−1

,
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x12n = x0

n−1∏
s=0

1 + (4s+ 1)bx−3x−1
1 + (4s+ 2)bx−4x−2

1 + (4s+ 2)bx−2x0
1 + (4s+ 3)bx−3x−1

1 + (4s+ 4)bx−4x−2
1 + (4s+ 4)bx−2x0

,

x12n+1 = x1

n−1∏
s=0

1 + (4s+ 1)bx−2x0
1 + (4s+ 2)bx−3x−1

1 + (4s+ 3)bx−4x−2
1 + (4s+ 3)bx−2x0

1 + (4s+ 4)bx−3x−1
1 + (4s+ 5)bx−4x−2

,

x12n+2 = x2

n−1∏
s=0

1 + (4s+ 2)bx−4x−2
1 + (4s+ 2)bx−2x0

1 + (4s+ 3)bx−3x−1
1 + (4s+ 4)bx−4x−2

1 + (4s+ 4)bx−2x0
1 + (4s+ 5)bx−3x−1

,

x12n+3 = x3

n−1∏
s=0

1 + (4s+ 2)bx−3x−1
1 + (4s+ 3)bx−4x−2

1 + (4s+ 3)bx−2x0
1 + (4s+ 4)bx−3x−1

1 + (4s+ 5)bx−4x−2
1 + (4s+ 5)bx−2x0

,

x12n+4 = x4

n−1∏
s=0

1 + (4s+ 2)bx−2x0
1 + (4s+ 3)bx−3x−1

1 + (4s+ 4)bx−4x−2
1 + (4s+ 4)bx−2x0

1 + (4s+ 5)bx−3x−1
1 + (4s+ 6)bx−4x−2

,

x12n+5 = x5

n−1∏
s=0

1 + (4s+ 3)bx−4x−2
1 + (4s+ 3)bx−2x0

1 + (4s+ 4)bx−3x−1
1 + (4s+ 5)bx−4x−2

1 + (4s+ 5)bx−2x0
1 + (4s+ 6)bx−3x−1

,

x12n+6 = x6

n−1∏
s=0

1 + (4s+ 3)bx−3x−1
1 + (4s+ 4)bx−4x−2

1 + (4s+ 4)bx−2x0
1 + (4s+ 5)bx−3x−1

1 + (4s+ 6)bx−4x−2
1 + (4s+ 6)bx−2x0

,

x12n+7 = x7

n−1∏
s=0

1 + (4s+ 3)bx−2x0
1 + (4s+ 4)bx−3x−1

1 + (4s+ 5)bx−4x−2
1 + (4s+ 5)bx−2x0

1 + (4s+ 6)bx−3x−1
1 + (4s+ 7)bx−4x−2

,

where x1, x2, x3, x4, x5, x6, x7 are given by

x1 =
x−4x−2

x−1(1 + bx−4x−2)
, x2 =

x−3x−1
x0(1 + bx−3x−1)

, x3 =
x−1x0(1 + bx−4x−2)

x−4(1 + bx−2x0)
,

x4 =
x−4x−2x0(1 + bx−3x−1)

x−3x−1(1 + 2bx−4x−2)
, x5 =

x−4x−3(1 + bx−2x0)

x0(1 + bx−4x−2)(1 + 2bx−3x−1)
,

x6 =
x−3x−1(1 + 2bx−4x−2)

x−4(1 + bx−3x−1)(1 + 2bx−2x0)
and x7 =

x−2x0(1 + bx−4x−2)(1 + 2bx−3x−1)

x−3(1 + bx−2x0)(1 + 3bx−4x−2)
.
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3.2 The case a = −1

The solution, which appears for b = ± in Theorems 3 and 8 of [1], is given by

x12n−4 = x−4, x12n−3 = x−3, x12n−2 = x−2, x12n−1 = x−1, x12n = x0,

x12n+1 =
x−4x−2

x−1(−1 + bx−4x−2)
, x12n+2 =

x−3x−1
x0(−1 + bx−3x−1)

, x12n+3 =
x−1x0(−1 + bx−4x−2)

x−4(−1 + bx−2x0)
,

x12n+4 =
x−4x−2x0(−1 + bx−3x−1)

x−3x−1
, x12n+5 =

x−4x−3(−1 + bx−2x0)

x0(−1 + bx−4x−2)
,

x12n+6 =
x−3x−1

x−4(−1 + bx−3x−1)
, x12n+7 =

x−2x0
x−3(−1 + bx−2x0)

.

4 The case an and bn are 3-periodic

The 3-periodicity of the sequences yields the following solution:

x12n−4 = x−4

n−1∏
s=0

a4s0 + b0x−4x−2
4s−1∑
l=0

al0

a4s2 + b2x−2x0
4s−1∑
l=0

al2

a4s+1
1 + b1x−3x−1

4s∑
l=0

al1

a4s+2
0 + b0x−4x−2

4s+1∑
l=0

al0

a4s+2
2 + b2x−2x0

4s+1∑
l=0

al2

a4s+3
1 + b1x−3x−1

4s+2∑
l=0

al1

,

x12n−3 = x−3

n−1∏
s=0

a4s1 + b1x−3x−1
4s−1∑
l=0

al1

a4s+1
0 + b0x−4x−2

4s∑
l=0

al0

a4s+1
2 + b2x−2x0

4s∑
l=0

al2

a4s+2
1 + b1x−3x−1

4s+1∑
l=0

al1

a4s+3
0 + b0x−4x−2

4s+2∑
l=0

al0

a4s+3
2 + b2x−2x0

4s+2∑
l=0

al2

,

x12n−2 = x−2

n−1∏
s=0

a4s2 + b2x−2x0
4s−1∑
l=0

al2

a4s+1
1 + b1x−3x−1

4s∑
l=0

al1

a4s+2
0 + b0x−4x−2

4s+1∑
l=0

al0

a4s+2
2 + b2x−2x0

4s+1∑
l=0

al2

a4s+3
1 + b1x−3x−1

4s+2∑
l=0

al1

a4s+4
0 + b0x−4x−2

4s+3∑
l=0

al0

,

x12n−1 = x−1

n−1∏
s=0

a4s+1
0 + b0x−4x−2

4s∑
l=0

al0

a4s+1
2 + b2x−2x0

4s∑
l=0

al2

a4s+2
1 + b1x−3x−1

4s+1∑
l=0

al1

a4s+3
0 + b0x−4x−2

4s+2∑
l=0

al0

a4s+3
2 + b2x−2x0

4s+2∑
l=0

al2

a4s+4
1 + b1x−3x−1

4s+3∑
l=0

al1

,

x12n = x0

n−1∏
s=0

a4s+1
1 + b1x−3x−1

4s∑
l=0

al1

a4s+2
0 + b0x−4x−2

4s+1∑
l=0

al0

a4s+2
2 + b2x−2x0

4s+1∑
l=0

al2

a4s+3
1 + b1x−3x−1

4s+2∑
l=0

al1

a4s+4
0 + b0x−4x−2

4s+3∑
l=0

al0

a4s+4
2 + b2x−2x0

4s+3∑
l=0

al2

,

15
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x12n+1 = x1

n−1∏
s=0

a4s+1
2 + b2x−2x0

4s∑
l=0

al2

a4s+2
1 + b1x−3x−1

4s+1∑
l=0

al1

a4s+3
0 + b0x−4x−2

4s+2∑
l=0

al0

a4s+3
2 + b2x−2x0

4s+2∑
l=0

al2

a4s+4
1 + b1x−3x−1

4s+3∑
l=0

al1

a4s+5
0 + b0x−4x−2

4s+4∑
l=0

al0

,

x12n+2 = x2

n−1∏
s=0

a4s+2
0 + b0x−4x−2

4s+1∑
l=0

al0

a4s+2
2 + b2x−2x0

4s+1∑
l=0

al2

a4s+3
1 + b1x−3x−1

4s+2∑
l=0

al1

a4s+4
0 + b0x−4x−2

4s+3∑
l=0

al0

a4s+4
2 + b2x−2x0

4s+3∑
l=0

al2

a4s+5
1 + b1x−3x−1

4s+4∑
l=0

al1

,

x12n+3 = x3

n−1∏
s=0

a4s+2
1 + b1x−3x−1

4s+1∑
l=0

al1

a4s+3
0 + b0x−4x−2

4s+2∑
l=0

al0

a4s+3
2 + b2x−2x0

4s+2∑
l=0

al2

a4s+4
1 + b1x−3x−1

4s+3∑
l=0

al1

a4s+5
0 + b0x−4x−2

4s+4∑
l=0

al0

a4s+5
2 + b2x−2x0

4s+4∑
l=0

al2

,

x12n+4 = x4

n−1∏
s=0

a4s+2
2 + b2x−2x0

4s+1∑
l=0

al2

a4s+3
1 + b1x−3x−1

4s+2∑
l=0

al1

a4s+4
0 + b0x−4x−2

4s+3∑
l=0

al0

a4s+4
2 + b2x−2x0

4s+3∑
l=0

al2

a4s+5
1 + b1x−3x−1

4s+4∑
l=0

al1

a4s+6
0 + b0x−4x−2

4s+5∑
l=0

al0

,

x12n+5 = x5

n−1∏
s=0

a4s+3
0 + b0x−4x−2

4s+2∑
l=0

al0

a4s+3
2 + b2x−2x0

4s+2∑
l=0

al2

a4s+4
1 + b1x−3x−1

4s+3∑
l=0

al1

a4s+5
0 + b0x−4x−2

4s+4∑
l=0

al0

a4s+5
2 + b2x−2x0

4s+4∑
l=0

al2

a4s+6
1 + b1x−3x−1

4s+5∑
l=0

al1

,

x12n+6 = x6

n−1∏
s=0

a4s+3
1 + b1x−3x−1

4s+2∑
l=0

al1

a4s+4
0 + b0x−4x−2

4s+3∑
l=0

al0

a4s+4
2 + b2x−2x0

4s+3∑
l=0

al2

a4s+5
1 + b1x−3x−1

4s+4∑
l=0

al1

a4s=6
0 + b0x−4x−2

4s+5∑
l=0

al0

a4s+6
2 + b0x−2x0

4s+5∑
l=0

al0

,

x12n+7 = x7

n−1∏
s=0

a4s+3
2 + b2x−2x0

4s+2∑
l=0

al2

a4s+4
1 + b1x−3x−1

4s+3∑
l=0

al1

a4s+5
0 + b0x−4x−2

4s+4∑
l=0

al0

a4s+5
2 + b2x−2x0

4s+4∑
l=0

al2

a4s+6
1 + b1x−3x−1

4s+5∑
l=0

al1

a4s+7
0 + b0x−4x−2

4s+6∑
l=0

al0

where x1, x2, x3, x4, x5, x6 and x7 are given as follows:
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x1 =
x−4x−2

x−1(a0 + b0x−4x−2)
, x2 =

x−3x−1
x0(a1 + b1x−3x−1)

, x3 =
x−1x0(a0 + b0x−4x−2)

x−4(a2 + b2x−2x0)
,

x4 =
x−4x−2x0(a1 + b1x−3x−1)

x−3x−1(a20 + (b0a0 + b0)x−4x−2)
, x5 =

x−3x−4(a2 + b2x−2x0)

x0(a0 + b0x−4x−2)(a21 + (b1a1 + b1)x−3x−1)
,

x6 =
x−3x−1(a

2
0 + (b0a0 + b0)x−4x−2)

x−4(a1 + b1x−3x−1)(a22 + (b2a2 + b2)x−2x0)
,

and

x7 =
x−2x0(a0 + b0x−4x−2)(a

2
1 + (b1a1 + b1)x−3x−1)

x−3(a2 + b2x−2x0)(a30 + (a20b0 + a0b0 + b0)x−4x−2)
.

5 Conclusion

In this paper, we derived symmetry generators for the difference equations (2) and explicit
formulas for the solutions of the equations were also obtained. Our solution generalised
Theorems 1, 3, 6 and 8 of Elsayed [1].
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Abstract

In this paper we consider analytic functions in the unit disc D such that |f (p)(z)| is
bounded in D. We present several sufficient conditions for function to be p-valent
starlike, convex or strongly starlike of a certain order.
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1. Introduction

A function f analytic in a domain D ∈ C is called p-valent in D, if for every complex number w,
the equation f(z) = w has at most p roots in D, so that there exists a complex number w0 such that
the equation f(z) = w0 has exactly p roots in D. We denote by H the class of functions f(z) which
are holomorphic in the open unit unit D = {z ∈ C : |z| < 1}. Denote by A(p), p ∈ N = {1, 2, . . .},
the class of functions f(z) ∈ H given by

f(z) = zp +
∞∑

n=p+1

anz
n, (z ∈ D).

Let A = A(1). Let S denote the class of all functions in A which are univalent. Also let S∗p(α) and
Cp(α) be the subclasses of A(p) consisting of all p-valent functions which are starlike and convex of
order α, 0 ≤ α < 1, defined as

S∗p(α) =

{
f(z) ∈ A(p) : Re

{
zf ′(z)

pf(z)

}
> α, z ∈ D

}
,

Cp(α) =
{
f(z) ∈ A(p) : zf ′(z)/p ∈ S∗p(α)

}
.

Note that S∗1 (0) = S∗ and C1(0) = C, where S∗ and C are usual classes of starlike and convex functions
respectively.

The well-known Noshiro-Warschawski theorem [1, 10], says that if f ∈ H satisfies

Re
{
eiαf ′(z)

}
> 0, (z ∈ D)(1.1)

for some real α, then f(z) is univalent in D. Ozaki [5], generalized the above theorem for f ∈ A(p):
if

Re
{
eiαf (p)(z)

}
> 0, (z ∈ D)(1.2)

for some real α, then f(z) is at most p-valent in D. Also in [3, 454] it was shown that if f ∈ A(p),
p ≥ 2, and

| arg{f (p)(z)}| < 3π

4
(z ∈ D),(1.3)

then f is at most p-valent in D.

The above results (1.1), (1.2) and (1.3) describe some consequences of a certain conditions on
Re{f (p)(z)}, or | arg{f (p)(z)}|. It is the purpose of this paper is to consider analytic functions with
bounded modulus of a certain order of derivative, like |f ′′(z)|, and to present some implications of
this hypothesis.
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2. Main results

A function f(z) ∈ H is said to subordinate a function g ∈ H in the unit disc E, written f ≺ g if
and only if there exits an analytic function w ∈ H such that w(0) = 0, |w(z)| < 1 and f(z) = g[w(z)]
for z ∈ E. Therefore f ≺ g in E implies f(E) ⊂ g(E). In particular if g is univalent in E then f ≺ g
if and only if f(0) = g(0) and f(E) ⊂ g(E). The idea of subordination was used for defining many
of the classes of functions studied in geometric function theory. In [9] Tuneski proved the following
theorem.

Theorem 2.1. If f(z) ∈ A, 0 < k ≤ 1

|f ′′(z)| ≤ k, (z ∈ D),

then
zf ′(z)

f(z)
≺ 1 +

kz

2− k
, (z ∈ D).

In [6] it was proved a weaker result

|f ′′(z)| ≤ 1, (z ∈ D)

implies that f(z) is univalent in D . Applying Theorem 2.1, Tuneski in [9] obtained the following
corollaries.

Corollary 2.2. If f(z) ∈ A, 0 ≤ α < 1 and

|f ′′(z)| ≤ 2(1− α)

2− α
, (z ∈ D),

then

Re

{
zf ′(z)

f(z)

}
> α, (z ∈ D).

The result is sharp.

Corollary 2.3. If f(z) ∈ A, 0 < α ≤ 1 and

|f ′′(z)| ≤ 2 sin(απ/2)

1 + sin(απ/2)
, (z ∈ D),

then ∣∣∣∣arg

{
zf ′(z)

f(z)

}∣∣∣∣ <
απ

2
, (z ∈ D).

The result is sharp.

In [9] Tuneski proved also the following result.

Theorem 2.4. If f(z) ∈ A, 0 < k ≤ 1

|f ′′(z)| ≤ k, (z ∈ D),

then
f ′(z) ≺ 1 + kz, (z ∈ D).

Theorem 2.4 implies the following corollary.

Corollary 2.5. If f(z) ∈ A, 0 ≤ α < 1 and

|f ′′(z)| ≤ 1− α

2− α
, (z ∈ D),

then

Re

{
1 +

zf ′′(z)

f ′(z)

}
> α, (z ∈ D).

The result is sharp.
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We also need the following result.

Theorem 2.6. [9] If f(z) ∈ A, 0 < λ ≤ 1

|f ′(z)− 1| ≤ λ, (z ∈ D),

then ∣∣∣∣arg

{
zf ′(z)

f(z)

}∣∣∣∣ <
απ

2
, (z ∈ D),

where

α =
2

π
sin−1

(
λ
√

1− (λ2/4) +
λ

2

√
1− λ2

)
.

In [2] it was proved the following result.

Theorem 2.7. [2] Let f(z) ∈ A(p). Suppose that there exists a positive integer j, 1 ≤ j ≤ p, such
that

j + Re

{
zf (j+1)(z)

f (j)(z)

}
> 0, (z ∈ D).

Then we have

j − 1 + Re

{
zf (j)(z)

f (j−1)(z)

}
> 0, (z ∈ D).

3. Main results

Now we are going to make use of Theorem 2.1, Corollary 2.2 and of Theorem 2.7 to obtain the
following theorem.

Theorem 3.1. [2] Let f(z) ∈ A(p). Suppose that

|f (p+1)(z)| < p!, (z ∈ D).

Then f(z) is p-valently convex and p-valently starlike in D.

Proof. If we put

g(z) =
1

p!
f (p−1)(z), g(0) = g′(0)− 1 = 0, (z ∈ D),

then it follows that

|g′′(z)| < |f (p+1)(z)|
p!

< 1, (z ∈ D).

From Theorem 2.1 and Corollary 2.2, we have

Re

{
zg′(z)

g(z)

}
= Re

{
zf (p)(z)

f (p−1)(z)

}
> 0, (z ∈ D)

and so, we have

p− 1 + Re

{
zf (p)(z)

f (p−1)(z)

}
> p− 1 ≥ 0, (z ∈ D).

From Theorem 2.7, it follows that

1 + Re

{
zf ′′(z)

f ′(z)

}
> 0 and Re

{
zf ′(z)

f(z)

}
> 0, (z ∈ D).

This shows that f(z) is p-valently convex and p-valently starlike in D. �

For real α, 0 ≤ α < 1, if f(z) ∈ A(p) satisfies∣∣∣∣arg

{
zf ′(z)

f(z)

}∣∣∣∣ <
απ

2
, (z ∈ D),

then f(z) is called a strongly starlike function of order α. Applying Corollary 2.3 and the method
of proving from [2, Th.5] give us the following theorems.
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Theorem 3.2. If f(z) ∈ A(p) and if there exists a α, 0 < α ≤ 1, such that

|f (p+1)(z)| ≤ 2 sin(απ/2)

1 + sin(απ/2)
, (z ∈ D),(3.1)

then ∣∣∣∣arg

{
zf (p)(z)

f (p−1)(z)

}∣∣∣∣ <
απ

2
, (z ∈ D),

or f (p−1)(z)/p! is strongly starlike of order α in D.

Proof. For the case p = 1 Theorem 3.2 becomes Tuneski’s result 2.3. Suppose that p ≥ 2.
If we put

g(z) =
1

p!
f (p−1)(z), g(0) = g′(0)− 1 = 0, (z ∈ D),

then it follows that
zg′(z)

g(z)
=

zf (p)(z)

f (p−1)(z)
, (z ∈ D).

From Corollary 2.3, we have ∣∣∣∣arg

{
zg′(z)

g(z)

}∣∣∣∣ <
απ

2
, (z ∈ D),

and so, we have ∣∣∣∣arg

{
zf (p)(z)

f (p−1)(z)

}∣∣∣∣ <
απ

2
, (z ∈ D),

This shows that f (p−1)(z)/p! is strongly starlike of order α in D. �

Again, applying [2, Th.5] yields us that if f(z) ∈ A(p), then for all z ∈ D, we have

Re

{
zf (p)(z)

f (p−1)(z)

}
> 0 ⇒ ∀k ∈ {1, . . . , p} : Re

{
zf (k)(z)

f (k−1)(z)

}
> 0.(3.2)

Therefore, if we put

2f (p−2)(z)

p!
:= G(z) = z2 + · · · ∈ A(2),

then
zG′(z)

G(z)
=

zf (p−1)(z)

f (p−2)(z)
, (z ∈ D)

and so (3.1) also implies that

Re

{
zG′(z)

G(z)

}
= Re

{
zf (p−1)(z)

f (p−2)(z)

}
> 0, (z ∈ D).

This shows that G(z) or 2f (p−2)(z)/p! is 2-valently starlike in D.

Theorem 3.3. If f(z) ∈ A(p), 0 < α ≤ 1, 1 ≤ p and

|f (p+1)(z)| ≤ 1

2
, (z ∈ D),

then

k + Re

{
zf (k+1)(z)

f (k)(z)

}
> 0, (z ∈ D)

for all k, k ∈ {1, 2, . . . , p− 1}.
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Proof. If we put

g(z) =
1

p!
f (p−1)(z), g(0) = g′(0)− 1 = 0, (z ∈ D),

then it follows that
zg′′(z)

g′(z)
=

zf (p+1)(z)

f (p)(z)
, (z ∈ D).

From Corollary 2.5, we have

1 + Re

{
zg′′(z)

g′(z)

}
= 1 + Re

{
zf (p+1)(z)

f (p)(z)

}
> 0, (z ∈ D)

and so, we have

p + Re

{
zf (p+1)(z)

f (p)(z)

}
> 0, (z ∈ D).

Applying Theorem 2.7 gives finally

k + Re

{
zf (k+1)(z)

f (k)(z)

}
> 0, (z ∈ D)

for all k, k ∈ {1, 2, . . . , p− 1}. It completes the proof.
�

From Theorem 3.3, we have

|f (p+1)(z)| ≤ 1

2
, (z ∈ D) ⇒ Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0, (z ∈ D),

this suggests the following question.
Open problem. What is the best value of α(p) such that

|f (p+1)(z)| ≤ 1

2
, (z ∈ D) ⇒ Re

{
1 +

zf ′′(z)

f ′(z)

}
> α(p), (z ∈ D).

If p = 1, then the function f(z) = z + z2/4 shows that the best value of α(p) is 0.

Theorem 3.4. If f(z) ∈ A(p), 0 < λ ≤ 1 and if

|f (p)(z)− p!| < p!λ, (z ∈ D),(3.3)

then ∣∣∣∣arg

{
zf ′(z)

f(z)

}∣∣∣∣ <
απ

2
, (z ∈ D),(3.4)

where

α =
2

π
sin−1

(
λ
√

1− (λ2/4) +
λ

2

√
1− λ2

)
.(3.5)

This means that f(z) is strongly starlike of order α in D.

Proof. If we put

g(z) =
1

p!
f (p−1)(z), g(0) = g′(0)− 1 = 0, (z ∈ D),

then from (3.3), we have

|g′(z)− 1| =
∣∣∣∣f (p)(z)

p!
− 1

∣∣∣∣ < λ, (z ∈ D).

From Theorem 2.6, we have ∣∣∣∣arg

{
zf (p)(z)

f (p−1)(z)

}∣∣∣∣ <
απ

2
, (z ∈ D),
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where α has the form (3.5). Let us put

p(z) =
zf (p−1)(z)

f (p−2)(z)
, (z ∈ D).

Then it follows that
zp′(z)

p(z)
= 1 +

zf (p)(z)

f (p−1)(z)
− zf (p−1)(z)

f (p−2)(z)
or

1 +
zf (p)(z)

f (p−1)(z)
= p(z) +

zp′(z)

p(z)
.

From Theorem 2.6, we have ∣∣∣∣arg

{
zf (p)(z)

f (p−1)(z)

}∣∣∣∣ <
απ

2
, (z ∈ D),

this gives ∣∣∣∣arg

{
1 +

zf (p)(z)

f (p−1)(z)

}∣∣∣∣ <

∣∣∣∣arg

{
zf (p)(z)

f (p−1)(z)

}∣∣∣∣ <
απ

2
, (z ∈ D).(3.6)

If there exists a point z0 ∈ D, such that

| arg {p(z)} | < απ

2
, (|z| < |z0|)

and

| arg {p(z0)} | =
απ

2
,

then from [4], we have
z0p

′(z0)

p(z0)
= iαk,

where k is a real number such that

k ≥ 1

2

(
a +

1

a

)
when p(z0) = ia, while for p(z0) = −ia, such that

k ≤ −1

2

(
a +

1

a

)
,

where p1/α(z0) = ±ia, a > 0. For the case p1/α(z0) = ia, we have

1 +
z0f

′′(z0)

f ′(z0)
= p(z0) +

z0p
′(z0)

p(z0)

= p(z0)

{
1 +

z0p
′(z0)

p2(z0)

}
= (ia)α

{
1 + iαk

1

(ia)α

}
= aαeiαπ/2

{
1 + eiπ(1−α)/2αk

1

aα

}
.

Thus, it is trivial that

arg

{
1 +

z0f
(p)(z0)

f (p−1)(z0)

}
≥ απ

2

since we have

arg

{
1 + eiπ(1−α)/2αk

1

aα

}
> 0,
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where

k ≥ 1

2

(
a +

1

a

)
.

This contradicts (3.6) and for the case p1/α(z0) = −ia, applying the same method as the above, we
would have

arg

{
1 +

z0f
(p)(z0)

f (p−1)(z0)

}
≤ −απ

2

which also contradicts (3.6). Applying the same method repeatedly once again, we can complete the
proof of Theorem 3.4. �

We now note that Pommerenke [7] and Sakaguchi [8] showed the following.

Lemma 3.5. [7] If f and h are analytic in D, and h is convex and univalent in D, with∣∣∣∣arg

{
f ′(z)

h′(z)

}∣∣∣∣ ≤ απ

2
, (z ∈ D),

for some real α, 0 ≤ α ≤ 1, then∣∣∣∣arg

{
f(z2)− f(z1)

h(z2)− h(z1)

}∣∣∣∣ ≤ απ

2
, (z ∈ D),

for all z1, z2 ∈ D.

Putting z1 = 0, z2 = z in Lemma 3.5 gives∣∣∣∣arg

{
f ′(z)

h′(z)

}∣∣∣∣ ≤ απ

2
, z ∈ D ⇒

∣∣∣∣arg

{
f(z)

h(z)

}∣∣∣∣ ≤ απ

2
, (z ∈ D).(3.7)

Therefore, applying Theorem 3.4 and (3.7) we can deduce the following corollary.

Corollary 3.6. If f(z) ∈ A(p) is such that ∫ z

0

f(t)

t
dt

is a convex function, and if
|f (p)(z)− p!| < p!λ, (z ∈ D),(3.8)

for some λ, 0 < λ ≤ 1, then ∣∣∣∣∣arg

{
f(z)∫ z

0
f(t)

t
dt

}∣∣∣∣∣ <
απ

2
, (z ∈ D),(3.9)

where α is given in (3.5).
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Abstract

In this paper we give general solution of fractional linear di¤erential equations
and fractional Cauchy Euler equation. Since there are many de�nitions for frac-
tional derivatives, we use the conformable derivative to get exact solutions. Factor-
izing polynomials of the fractional di¤erential operators is the key method to get
such solutions. Some speci�c examples on both types of equations are presented.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Key Words and Phrases:Conformable, Cauchy Euler, Conformable Linear Dif-

ferential equations, Conformable Cauchy Euler Equation.

AMS Classi�cation Number : 26A33

1. Introduction
Many authors have solved many well known di¤erential equations like the Con-

formable Fractional Heat equation, Bessel equation, Legendre equation and many
more. [1], [4], [5], [6], [7], [9] and [10]. The Cauchy Euler equation is a well
known important type of ordinary di¤erential equation. In This paper we give the
procedure and justi�cation of how to handle the Cauchy Euler equation, but the
fractional one.
However, there are many de�nitions available in the literature for fractional

derivatives. The main ones are the Riemann Liouville de�nition and the Caputo
de�nition, see [8] .

1
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2

(i) Riemann - Liouville De�nition. For � 2 [n� 1; n); the � derivative of f is

D�
a (f)(t) =

1

�(n� �)
dn

dtn

tZ
a

f(x)

(t� x)��n+1 dx:

(ii) Caputo De�nition. For � 2 [n� 1; n); the � derivative of f is

D�
a (f)(t)=

1

�(n� �)

tZ
a

f (n)(x)

(t� x)��n+1 dx:

Such de�nitions have many setbacks such as

(i) The Riemann-Liouville derivative does not satisfy D�
a (1) = 0 (D

�
a (1) = 0 for

the Caputo derivative), if � is not a natural number.

(ii) All fractional derivatives do not satisfy the known formula of the derivative
of the product of two functions:

D�
a (fg) = fD

�
a (g) + gD

�
a (f).

(iii) All fractional derivatives do not satisfy the known formula of the derivative of
the quotient of two functions:

D�
a (f=g) =

gD�
a (f)� fD

�
a (g)

g2
:

(iv) All fractional derivatives do not satisfy the chain rule:

D�
a (f � g)(t) =f (�)(g(t)) g(�)(t):

(v) All fractional derivatives do not satisfy: D�D�f = D�+�f , in general.

(vi) All fractional derivatives, specially Caputo de�nition, assumes that the func-
tion f is di¤erentiable.

We refer the reader to [3] for more results on Caputo and Riemann - Liouville
De�nitions.

Recently, the authors in [ 2 ], gave a new de�nition of fractional derivative which
is a natural extension to the usual �rst derivative. So many papers since then were
written, and many equations were solved using such de�nition. The de�nition goes
as follows:
Given a function f : [0;1) �! R. Then for all t > 0; � 2 (0; 1); let

T�(f)(t) = lim
"!0

f(t+ "t1��)� f(t)
"

;

T� is called the conformable fractional derivative of f of order �:
Let f (�)(t) stands for T�(f)(t):

If f is ��di¤erentiable in some (0; b); b > 0, and lim
t!0+

f (�)(t) exists; then

de�ne
f (�)(0) = lim

t!0+
f (�)(t):
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3

According to this de�nition, we have the following properties, [2 ],
1. T�(1) = 0,

2. T�(tp) = ptp�� for all p 2 R,

3. T�(sin at) = at1�� cos at; a 2 R,

4. T�(cos at) = �at1�� sin at; a 2 R

5. T�(eat) = at1��eat; a 2 R.

Further, many functions behave as in the usual derivative. Here are some for-
mulas

T�(
1

�
t�) = 1

T�(e
1
� t

�

) = e
1
� t

�

;

T�(sin
1

�
t�) = cos(

1

�
t�);

T�(cos
1

�
t�) = � sin( 1

�
t�):

We will use the conformable fractional derivative for the Cauchy Euler equation.
But �rst, we present the linear fractional case with constant coe¢ cients.

2. Conformable Linear Di¤erential equations
Let us write y(n�) to denote the ��derivative of y; n�times. That is y(n�) =

T�T�:::T�(y); n-times.

Theorem 1. Let

y(n�) + an�1y
(n�1)� + :::+ a1y

� + a0y = 0 (1)

Consider the equation

r(n�) + an�1r
(n�1)� + :::+ a1r

� + a0 = 0 (�)
If r�1 = �1; :::; r

�
n = �n are the real roots of (�) then yh = c1y1 + ::: + cnyn where

yk = e
r�k e

t�

� :

Proof. Let Tn� = T�T�:::T� n-times. Then equation (1) can be written in the
form

(T (n�) + an�1T
(n�1)� + :::+ a1r

� + a0I)y = 0 (2)

(where T� = d�

dx� ):
Now, if we let D = T� then (2) becomes

(Dn + an�1D
n�1 + :::+ a0I)y = 0

The polynomial (Dn + an�1D
n�1 + :::+ a0I)y = 0 , factorizes to

(D � �1)(D � �2):::(D � �n)y = 0 (3)
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Now, y will be a solution to (3) if y 2 ker(D��k)81 � k � n , noting that (D��i)
commutes with (D � �j) for all i and j . Thus y is the solution for (3) if

(D � �1)y = 0 or (D � �2)y = 0 or :::or (D � �n)y = 0
However (D � �k)y = 0 implies

Dy � �ky = 0
So y� � �ky = 0
Hence yk = e

�ke
t�

� if �k is real.

Consequently, yh = c1e�1e
t�

� + :::+cne
�ne

t�

� , if all the roots are real and distinct.
Now, replacing T� by r� we get

(r� � �1)y = 0 or (r� � �2)y = 0 or :::or (r� � �n)y = 0
Thus the roots are

r�1 = �1 , r
�
2 = �2 , :::, r�n = �n

and the general solution is

yh = c1e
r�1 e

t�

� + :::+ cne
r�ne

t�

�

There are two other cases for the roots to be considered:
(1) (i)If one of the root is repeated, say �1, 2-times. That is (T� � �1)2 is

a factor of (3). Then y1 = e�1e
t�

� ; y2 =
t�

� e
�1e

t�

� , are two independent
solutions for the di¤erential equation (3).
Proof. We have to show

(T� � �1)2
t�

�
e�1e

t�

� = 0

Indeed:

(T� � �1) (T� � �1)
t�

�
e�1e

t�

� = 0

= (T� � �1)
�
T�(

t�

�
e�1e

t�

� )� �1(
t�

�
e�1e

t�

� ) = 0

�
= (T� � �1)

�
e�1e

t�

� + �1(
t�

�
e�1e

t�

� )� �1(
t�

�
e�1e

t�

� ) = 0

�
= (T� � �1) e�1e

t�

� = 0

Similarly one can show that if �1 is repeated k-times then

y1 = e
�1e

t�

� ;
t�

�
y1; :::; (

t�

�
)k�1y1

are independent solutions.
(ii)There is a root, say �1 = a+ ib , a; b 2 R: Then

y1 = e
a t

�

� cos b
t�

�
and y2 = e

a t
�

� sin b
t�

�

are two solutions of (3) associated with �1.
Indeed:
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Since �1 = a+ ib is a root, then �1 = a� ib is a root.
Then

y1 = e
(a+ib) t

�

� and y2 = e
(a�ib) t�� are solutions of (3)

But

y1 = e
a t

�

� (cos b
t�

�
+ i sin b

t�

�
)

y2 = e
a t

�

� (cos b
t�

�
� i sin b

t�

�
)

Place y1 + y2 is a solution (the equation being homogenous) and y1 � y2 is
a solution too. So

ey1 = y1 + y2 = 2ea t�� cos b t�
�
and ey2 = y1 � y2 = 2iea t�� sin b t�

�

are solutions of the homogenous equation (3).

Consequentely

eey1 = 1

2
ey1 = ea t�� cos b t�

�
and eey2 = 1

2i
ey2 = ea t�� sin b t�

�

are two independent solutions for the equation.

Example 1

T 2�y + T�y � 2y = 0 (i)

Solution. Consider the associated equation

r2� + r� � 2 = 0

(r� � 2)(r� + 1) = 0

Hence �1 = 2; �2 = �1

Thus y1 = c1e
2 t

�

� and y2 = c2e
� t�

�

One can easily check that these are solutions of (i).See �gure (1)

53 .752 .51 .250

1 .5e+4

1 .25e+4

1e+4

7500

5000

2500

0

x

y

x

y

Fig.1 y = c1e2
t�

� + c2e
� t�

� ; � = 0:5; c1 > 0
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3. Conformable Cauchy Euler Equation
The standard form of the classical homogenous Cauchy Euler equation of order

2 is:

x2y00 + a1xy
0 + a0y = 0

Now the conformable Cauchy Euler equation of order 2 can be written as

x2�T 2�y + a1x
�T�y + a0y = 0 (1)

Now we will give the procedure how to solve (1):

Procedure
Put y = x�r

Then

T 2�y = T�(T�y)

= T�(T�x�r)

= T�(�rx�r��)

= �r(�r � �)x�r�2�

a1T
�y = a1(T

�x�r)

= a1�rx
�r��

Thus

x2�T 2�y = x2�(�2r(r � 1))x�rx�2�

a1x
�T�y = a1�rx

�(r�1)x�r

a0y = a0x
�r

Hence

x2�(�2r(r � 1))x�2�:x�r + a1�rx�rx�rx��x� + a0x�r = 0
So

x�r
�
�2r(r � 1) + a1�r + a0

�
= 0

Solve

�2r(r � 1) + a1�r + a0 = 0
to get r = r1; r = r2 . Assume r1; r2 are reals . Then

y1 = x
�r1 ; y2 = x

�r2 are two independent solutions of (1) and

yh = c1x
�r1 + c2x

�r2

Remark. The case of conformable Cauchy Euler Equation of any order can be
handled in the same way as the case of order 2:

Example 2. Solve

x2�y(2�) + x2�y(�) � y
2
= 0; y(1) = 1; y(�)(1) = 1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.2, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

231 Al-Horani et al 226-233



7

Solution. Put y = x�r and substitute in the equation to get

�2r(r � 1) + �r � 1
2
= 0

Take � =
1

2
we get

1

4
r(r � 1) + 1

2
r � 1

2
= 0

r(r�1)+2r�2 = 0
r2+r�2 = 0
(r+2)(r�1) = 0
r1 = 2; r2 = 1

y1 = x
� 2
2 ; y2 = x

1
2 (� =

1

2
)

yh = c1
1

x
+ c2

2
p
x

y(1) = c1+ c2

y
1
2 (x) = c1(�1)x�1�

1
2+ c2

1

2

So y
1
2 (1) = �c1 +

c2
2
= 1 . Hence

3

2
c2 = 2 =) c c1 = �

1

3

yh = �
1

3x
+
4

3
2
p
x . See �gure (2).

53.752.51.250
0

5

10

15

20

25

30

x
y

x
y

Fig.2 yh = � 1
3x+

4
3

2
p
x; � = 1

2

4. Conclusion
Conformable fractional derivative can be applied to solve linear di¤erential equa-

tion with variable coe¢ cients as an example Cauchy Euler equation.
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Applications of neutrosophic sets in B-algebras

Sun Shin Ahn

Department of Mathematics Education, Dongguk University, Seoul 04620, Korea

Abstract. The notions of a neutrosophic subalgebra and a neutrosophic normal subalgebra of a B-algebra

are introduced and characterizations of them are discussed. We show that the homomorphic preimage of a

neutrosophic subalgebra of a B-algebra is a neutrosophic subalgebra, and the onto homomorphic image of a

neutrosophic subalgebra of a B-algebra is a neutrosophic subalgebra.

1. Introduction

Zadeh [12] introduced the degree of membership/truth (t) in 1965 and defined the fuzzy set. As a general-

ization of fuzzy sets, Atanassov [2] introduced the degree of nonmembership/falsehood (f) in 1986 and defined

the intuitionistic fuzzy set. Smarandache introduced the degree of indeterminacy/neutrality (i) as independent

component in 1995 (published in 1998) and defined the neutrosophic set on three components (t, i, f) = (truth,

indeterminacy, falsehood). Y. B. Jun, E. H. Roh and H. S. Kim [4] introduced a new notion, called a BH-algebra.

J. Neggers and H. S. Kim [9] introduced a new notion, called a B-algebra. C. B. Kim and H. S. Kim [7] introduced

the notion of a BG-algebra which is a generalization of B-algebras. S. S. Ahn and H. D. Lee [1] classified the

subalgebras by their family of level subalgebras in BG-algebras.

In this paper, we introduce the notions of a neutrosophic subalgebra and a neutrosophic normal subalgebra of

a B-algebra and discuss characterizations of them. We show that the homomorphic preimage of a neutrosophic

subalgebra of a B-algebra is a neutrosophic subalgebra, and the onto homomorphic image of neutrosophic image

of a neutrosophic subalgebra of a B-algebra is a neutrosophic subalgebra.

2. Preliminaries

A B-algebra ([9]) is a non-empty set X with a constant 0 and a binary operation “ ∗ ” satisfying axioms:

(B1) x ∗ x = 0,

(B2) x ∗ 0 = x,

(B) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y))

for any x, y, z in X. For brevity we call X a B-algebra. In X we can define a binary relation “ ≤ ” by x ≤ y if

and only if x ∗ y = 0.

An algebra (X; ∗, 0) of type (2, 0) is called a BH-algebra if it satisfies (B1), (B2) and

(BH) x ∗ y = y ∗ x = 0 imply x = y for any x, y ∈ X.

0 2010 Mathematics Subject Classification: 06F35; 03G25; 03B52.
0 Keywords: B-algebra; (normal) subalgebra; neutrosophic subalgebra; neutrosophic normal subalgebra.
0E-mail: sunshine@dongguk.edu
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An algebra (X; ∗, 0) of type (2, 0) is called a BG-algebra if it satisfies (B1), (B2) and

(BG) (x ∗ y) ∗ (0 ∗ y) = x for any x, y ∈ X.

Proposition 2.1.([3, 9]) Let (X; ∗, 0) be a B-algebra. Then

(i) the left cancellation law holds in X, i.e., x ∗ y = x ∗ z implies y = z,

(ii) if x ∗ y = 0, then x = y for any x, y ∈ X,

(iii) if 0 ∗ x = 0 ∗ y, then x = y for any x, y ∈ X,

(iv) 0 ∗ (0 ∗ x) = x, for all x ∈ X,

(v) x ∗ (y ∗ z) = (x ∗ (0 ∗ z)) ∗ y for all x, y, z ∈ X.

Theorem 2.2.([7]) If (X; ∗, 0) is a B-algebra, then it is a BG-algebra.

Proposition 2.3.([7]) Every BG-algebra is a BH-algebra.

Let (X; ∗X , 0X) and (Y ; ∗Y , 0Y ) be B-algebras. A mapping φ : X → Y is called a homomorphism if φ(x∗X y) =

φ(x)∗Y φ(y) for any x, y ∈ X. A non-empty subset S of X is called a subalgebra of X if x∗y ∈ S for any x, y ∈ X.

A non-empty subset N of X is said to be normal if (x ∗ a) ∗ (y ∗ b) ∈ N for any x ∗ y, a ∗ b ∈ N . Then any normal

subset N of a B-algebra X is a subalgebra of X, but the converse need not be true ([10]). A non-empty subset X

of a B-algebra X is a called a normal subalgebra of X if it is both a subalgebra and a normal set.

Definition 2.4. Let X be a space of points (objects) with generic elements in X denoted by x. A simple valued

neutrosophic set A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership

function IA(x), and a falsity-membership function FA(x). Then a simple valued neutrosophic set A can be denoted

by

A := {⟨x, TA(x), IA(x), FA(x)⟩|x ∈ X},

where TA(x), IA(x), FA(x) ∈ [0, 1] for each point x in X. Therefore the sum of TA(x), IA(x), and FA(x) satisfies

the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

For convenience, “simple valued neutrosophic set” is abbreviated to “neutrosophic set” later.

Definition 2.5. Let A be a neutrosophic set in a B-algebra X and α, β, γ ∈ [0, 1] with 0 ≤ α+ β + γ ≤ 3 and an

(α, β, γ)-level set of X denoted by A(α,β,γ) is defined as

A(α,β,γ) = {x ∈ X|TA(x) ≤ α, IA(x) ≥ β, FA(x) ≤ γ}.

For any family {ai|i ∈ Λ}, we define∨
{ai|i ∈ Λ} :=

{
max{ai|i ∈ Λ} if Λ is finite,

sup{ai|i ∈ Λ} otherwise

and ∧
{ai|i ∈ Λ} :=

{
min{ai|i ∈ Λ} if Λ is finite,

inf{ai|i ∈ Λ} otherwise.
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3. Neutrosophic subalgebras in B-algebras

Definition 3.1. A neutrosophic set A in a B-algebra X is called a neutrosophic subalgebra of X if it satisfies:

(NSS) TA(x ∗ y) ≤ max{TA(x), TA(y)}, IA(x ∗ y) ≥ min{IA(x), IA(y)}, and FA(x ∗ y) ≤ max{FA(x), FA(y)}, for

any x, y ∈ X.

Proposition 3.2. Every neutrosophic subalgebra of a B-algebra X satisfies the following conditions:

(3.1) TA(0) ≤ TA(x), IA(0) ≥ IA(x), and FA(0) ≤ FA(x) for any x ∈ X.

Proof. Straightforward. □

Example 3.3. Let X := {0, 1, 2, 3} be a B-algebra with the following table:

∗ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

Define a neutrosophic set A in X as follows:

TA(x) =

{
0.13, if x ∈ {0, 2}
0.84, otherwise,

IA(x) =

{
0.82, if x ∈ {0, 2}
0.15, otherwise,

FA(x) =

{
0.13, if x ∈ {0, 2}
0.84, otherwise.

It is easy to check that A is a neutrosophic subalgebra of X.

Theorem 3.4. Let A be a neutrosophic set in a B-algebra X and let α, β, γ ∈ [0, 1] with 0 ≤ α + β + γ ≤ 3.

Then A is a neutrosophic subalgebra of X if and only if all of (α, β, γ)-level set A(α,β,γ) are subalgebras of X when

A(α,β,γ) ̸= ∅.

Proof. Assume that A is a neutrosophic subalgebra of X. Let α, β, γ ∈ [0, 1] be such that 0 ≤ α+ β + γ ≤ 3 and

A(α,β,γ) ̸= ∅. Let x, y ∈ A(α,β,γ). Then TA(x) ≤ α, TA(y) ≤ α, IA(x) ≥ β, IA(y) ≥ β and FA(x) ≤ γ, FA(y) ≤ γ.

Using (NSS), we have TA(x ∗ y) ≤ max{TA(x), TA(y)} ≤ α, IA(x ∗ y) ≥ min{IA(x), IA(y)} ≥ β, and FA(x ∗ y) ≤
max{FA(x), FA(y)} ≤ γ. Hence x ∗ y ∈ A(α,β,γ). Therefore A(α,β,γ) is a subalgebra of X.

Conversely, all of (α, β, γ)-level set A(α,β,γ) are subalgebras of X when A(α,β,γ) ̸= ∅. Assume that there exist

at, bt, ai, bi ∈ X and af , bf ∈ X such that TA(at ∗ bt) > max{TA(at), TA(bt)}, IA(ai ∗ bi) < min{IA(ai), IA(bi)}
and FA(af ∗ bf ) > max{FA(af ), FA(bf )}. Then TA(at ∗ bt) > α1 ≥ max{TA(at), TA(bt)}, IA(ai ∗ bi) < β1 ≤
min{IA(ai), IA(bi)} and FA(af ∗ bf ) > γ1 ≥ max{FA(af ), FA(bf )} for some α1, γ1 ∈ [0, 1) and β1 ∈ (0, 1]. Hence

at, bt, ai, bi ∈ A(α1,β1,γ1), and af , bf ∈ A(α1,β1,γ1). But at ∗ bt, ai ∗ bi /∈ A(α1,β1,γ1), and af ∗ bf /∈ A(α1,β1,γ1),

which is a contradiction. Hence TA(x ∗ y) ≤ max{TA(x), TA(y)}, IA(x ∗ y) ≥ min{IA(x), IA(y)}, and FA(x ∗ y) ≤
max{TA(x), TA(y)}, for any x, y ∈ X. Therefore A is a neutrosophic subalgebra of X. □
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Since [0, 1] is a completely distributive lattice with respect to the usual ordering, we have the following theorem.

Theorem 3.5. If {Ai|i ∈ N} is a family of neutrosopic subalgebras of a B-algebra X, then ({Ai|i ∈ N},⊆) forms

a complete distributive lattice.

Theorem 3.6. Let A be a neutrosophic subalgebra of a B-algebra X. If there exists a sequence {an} in X

such that limn→∞ TA(an) = 0, limn→∞ IA(an) = 1, and limn→∞ FA(an) = 0, then TA(0) = 0, IA(0) = 1, and

FA(0) = 0.

Proof. By Proposition 3.2, we have TA(0) ≤ TA(x), IA(0) ≥ IA(x), and FA(0) ≤ FA(x) for all x ∈ X. Hence we

have TA(0) ≤ TA(an), IA(0) ≥ IA(an), and FA(0) ≤ FA(an) for every positive integer n. Therefore 0 ≤ TA(0) ≤
limn→∞ TA(an) = 0, 1 = limn→∞ IA(an) ≤ IA(0) ≤ 1, and 0 ≤ FA(0) ≤ limn→∞ FA(an) = 0. Thus we have

TA(0) = 0, IA(0) = 1, and FA(0) = 0. □

Proposition 3.7. If every neutrosophic subalgebra A of a B-algebra X satisfies the condition

(3.2) TA(x ∗ y) ≤ TA(y), IA(x ∗ y) ≥ IA(y), FA(x ∗ y) ≤ FA(y), for any x, y ∈ X,

then TA, IA, and FA are constant functions.

Proof. It follows from (3.2) that TA(x) = TA(x ∗ 0) ≤ TA(0), IA(x) = IA(x ∗ 0) ≥ IA(0), and FA(x) = FA(x ∗ 0) ≤
FA(0) for any x ∈ X. By Proposition 3.2, we have TA(x) = TA(0), IA(x) = IA(0), and FA(x) = FA(0) for any

x ∈ X. Hence TA, IA, and FA are constant functions. □

Definition 3.8. A neutrosophic set A in a B-algebra X is said to be neutrosophic normal of X if it satisfies:

(NSN) TA((x∗a)∗(y∗b)) ≤ max{TA(x∗y), TA(a∗b)}, IA((x∗a)∗(y∗b)) ≥ min{IA(x∗y), IA(a∗b)}, and FA((x∗
a) ∗ (y ∗ b)) ≤ max{FA(x ∗ y), FA(a ∗ b)}, for any x, y, a, b ∈ X.

A neutrosophic set A in a B-algebra X is called a neutrosophic normal subalgebra of X if it satisfies (NSS) and

(NSN).

Example 3.9. Let X := {0, 1, 2, 3} be a B-algebra ([8]) with the following table:

∗ 0 1 2 3

0 0 2 1 3

1 1 0 3 2

2 2 3 0 1

3 3 1 2 0

Define a neutrosophic set A in X as follows:

TA(x) =

{
0.12, if x ∈ {0, 3}
0.76, otherwise,

IA(x) =

{
0.73, if x ∈ {0, 3}
0.14, otherwise,

FA(x) =

{
0.12, if x ∈ {0, 3}
0.76, otherwise.

It is easy to check that A is a neutrosophic normal subalgebra of X.
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Proposition 3.10. Every neutrosophic normal of a B-algebra X is a neutrosophic subalgebra of X.

Proof. Let A be neutrosophic normal of X. Put y := 0, b := 0 and a := y in (NSN). Then TA((x ∗ y) ∗ (0 ∗ 0)) ≤
max{TA(x∗0), TA(y∗0)}, IA((x∗y)∗(0∗0)) ≥ min{IA(x∗0), IA(y∗0)}, and FA((x∗y)∗(0∗0)) ≤ max{FA(x∗0), FA(y∗
0)}. Using (B2) and (B1), we have TA(x∗y) ≤ max{TA(x), TA(y)}, IA(x∗y) ≥ min{IA(x), IA(y)}, and FA(x∗y) ≤
max{FA(x), FA(y)}, for any x, y ∈ X. Hence A is a neutrosophic subalgebra of X. □

The converse of Proposition 3.10 may not be true in general (see Example 3.11).

Example 3.11. Let X = {0, 1, 2, 3, 4, 5} be a B-algebra ([10]) with the following table:

∗ 0 1 2 3 4 5

0 0 2 1 3 4 5

1 1 0 2 4 5 3

2 2 1 0 5 3 4

3 3 4 5 0 2 1

4 4 5 3 1 0 2

5 5 3 4 2 1 0

Define a neutrosophic set A in X as follows:

TA(x) =


0.12, if x = 0

0.23, if x = 5

0.52 otherwise,

IA(x) =


0.58, if x = 0

0.13, if x = 5

0.11, otherwise,

FA(x) =


0.12, if x = 0

0.23, if x = 5

0.52 otherwise.

It is easy to check that A is a neutrosophic subalgebra of X. But it is not neutrosophic normal of X, since

TA(1) = TA((1 ∗ 3) ∗ (4 ∗ 2)) = 0.52 ≰ max{TA(1 ∗ 4), TA(3 ∗ 2)} = max{TA(5), TA(5)} = 0.23, and/or IA(1) =

IA((1∗3)∗(4∗2)) = 0.11 ≱ min{IA(1∗4), IA(3∗2)} = min{IA(5), IA(5)} = 0.13, and/or FA(1) = FA((1∗3)∗(4∗2)) =

0.52 ≰ max{FA(1 ∗ 4), FA(3 ∗ 2)} = max{FA(5), FA(5)} = 0.23.

Theorem 3.12. Let A be a neutrosophic set in a B-algebra X and let α, β, γ ∈ [0, 1] with 0 ≤ α+β+γ ≤ 3. Then

A is a neutrosophic normal subalgebra of X if and only if all of (α, β, γ)-level set A(α,β,γ) are normal subalgebras

of X when A(α,β,γ) ̸= ∅.

Proof. Similar to Theorem 3.4. □

Proposition 3.13. Let A be a neutrosophic normal subalgebra of a B-algebra X. Denote that XT := {x ∈
X|TA(x) = TA(0)}, XI := {x ∈ X|IA(x) = IA(0)}, and XF := {x ∈ X|FA(x) = FA(0)}. Then XT , XI , and XF

are normal subalgebras of X.
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Proof. It is sufficient to show that XT , XI , and XF are normal. Let a, b, x, y ∈ X be such that x ∗ y, a ∗ b ∈ XT .

Then TA(x∗y) = TA(0) = TA(a∗b). Since A is a neutrosophic normal subalgebra of X, we have TA((x∗a)∗(y∗b)) ≤
max{TA(x∗y), TA(a∗b)} = TA(0). By Proposition 3.2, we get TA((x∗a)∗(y∗b)) = TA(0). Hence (x∗a)∗(y∗b) ∈ XT .

Therefore XT is a normal subalgebra of X. Similarly, XI , XF are normal subalgebras of X. This completes the

proof. □

Definition 3.14. Let A and B be neutrosophic sets of a set X. The union of A and B is defined to be a

neutrosophic set

A∪̃B := {⟨x, TA∪B(x), IA∪B(x), FA∪B(x)⟩|x ∈ X},

where TA∪B(x) = min{TA(x), TB(x)}, IA∪B(x) = max{IA(x), IB(x)}, FA∪B(x) = min{FA(x), FB(x)}, for all

x ∈ X. The intersection of A and B is defined to be a neutrosophic set

A∩̃B := {⟨x, TA∩B(x), IA∩B(x), FA∩B(x)⟩|x ∈ X},

where TA∩B(x) = max{TA(x), TB(x)}, IA∩B(x) = min{IA(x), IB(x)}, FA∩B(x) = max{FA(x), FB(x)}, for all

x ∈ X.

Theorem 3.15. The intersection of two neutrosophic subalgebras of a B-algebra X is a also a neutrosophic

subalgebra of X.

Proof. Let A and B be neutrosophic subalgebras of X. For any x, y ∈ X, we have

TA∩B(x ∗ y) = max{TA(x ∗ y), TB(x ∗ y)}

≤max{max{TA(x), TA(y)},max{TB(x), TB(y)}}

= max{max{TA(x), TB(x)},max{TA(y), TB(y)}}

= max{TA∩B(x), TA∩B(y)},

IA∩B(x ∗ y) = min{IA(x ∗ y), IB(x ∗ y)}

≥min{min{IA(x), IA(y)},min{IB(x), IB(y)}}

= min{min{IA(x), IB(x)},min{IA(y), IB(y)}}

= min{IA∩B(x), IA∩B(y)},
and

FA∩B(x ∗ y) = max{FA(x ∗ y), FB(x ∗ y)}

≤max{max{FA(x), FA(y)},max{FB(x), FB(y)}}

= max{max{FA(x), FB(x)},max{FA(y), FB(y)}}

= max{FA∩B(x), FA∩B(y)}.

Hence A∩̃B is a neutrosophic subalgebra of X. □

Corollary 3.16. If {Ai|i ∈ N} is a family of neutrosophic subalgebras of a B-algebra X, then so is ∩̃ı∈NAi.

The union of any set of neutrosophic subalgebras of a B-algebra X need not be a neutrosophic subalgebra of

X.
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Example 3.17. Let X = {0, 1, 2, 3, 4, 5} be a B-algebra as in Example 3.11. Define neutrosophic sets A and B

of X as follows:

TA(x) =

{
0.11, if x ∈ {0, 4}
0.73 otherwise,

IA(x) =

{
0.82, if x ∈ {0, 4}
0.12, otherwise,

FA(x) =

{
0.11, if x ∈ {0, 4}
0.73 otherwise,

TB(x) =

{
0.13, if x ∈ {0, 5}
0.74 otherwise,

IB(x) =

{
0.83, if x ∈ {0, 5}
0.13, otherwise,

and

FB(x) =

{
0.13, if x ∈ {0, 5}
0.74 otherwise.

It is easy to check that A and B are neutrosophic subalgebras of X. But A∪̃B is not a neutrosophic subalgebra

of X, since

TA∪B(4 ∗ 5) =TA∪B(2) = min{TA(2), TB(2)} = 0.73

≰ max{TA∪B(4), TA∪B(5)}

= max{min{TA(4), TB(4)},min{TA(5), TB(5)}} = 0.13,

and/or

IA∪B(4 ∗ 5) =IA∪B(2) = max{IA(2), IB(2)} = 0.13

≱ min{IA∪B(4), IA∪B(5)}

= min{max{IA(4), IB(4)},max{IA(5), IB(5)}} = 0.82,

and/or

FA∪B(4 ∗ 5) =FA∪B(2) = min{FA(2), FB(2)} = 0.73

≰max{FA∪B(4), FA∪B(5)}

= max{min{FA(4), FB(4)},min{FA(5), FB(5)}} = 0.13.

Let f : X → Y be a function of sets. If M = {⟨y, TM (y), IM (y), FM (y)⟩|y ∈ Y } is a neutrosophic set of a set

Y , then the preimage of M under f is defined to be a neutrosophic set

f−1(M) := {⟨x, f−1(TM )(x), f−1(IM )(x), f−1(FM )(x)⟩|x ∈ X}

of X, where f−1(TM )(x) = TM (f(x)), f−1(IM )(x) = IM (f(x)) and f−1(FM )(x) = FM (f(x)) for all x ∈ X.

Theorem 3.18. Let f : X → Y be a homomorphism of B-algebras. If M = {⟨y, TM (y), IM (y), FM (y)⟩|y ∈ Y } is
a neutrosophic subalgebra of Y , then the preimage of M under f is a neutrosophic subalgebra of X.
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Proof. Let f−1(M) be the preimage of M under f . For any x, y ∈ X, we have

f−1(TM (x ∗ y)) =TM (f(x ∗ y)) = TM (f(x) ∗ f(y))

≤max{TM (f(x)), TM (f(y))} = max{f−1(TM )(x), f−1(TM )(y)},

f−1(IM (x ∗ y)) =IM (f(x ∗ y)) = IM (f(x) ∗ f(y))

≥min{IM (f(x)), IM (f(y))} = min{f−1(IM )(x), f−1(IM )(y)},

and

f−1(FM (x ∗ y)) =FM (f(x ∗ y)) = FM (f(x) ∗ f(y))

≤max{FM (f(x)), FM (f(y))} = max{f−1(FM )(x), f−1(FM )(y)}.

Hence f−1(M) is a neutrosophic subalgebra of X. □

Let f : X → Y be an onto function of sets. If A is a neutrosophic set of X, then the image of A under f is

defined to be a neutrosophic set

f(A) := {⟨y, f(TA)(y), f(IA)(y), f(FA)(y)⟩|y ∈ Y }

of Y , where f(TA)(y) =
∧
x∈f−1(y) TA(x), f(IA)(y) =

∨
x∈f−1(y) IA(x), and f(FA)(y) =

∧
x∈f−1(y) FA(x).

Theorem 3.19. For an onto homomorphism f : X → Y of B-algebras, let A be a neutrosophic set of X such

that

(3.3) (∀C ⊆ X)(∃x0 ∈ C)(TA(x0) =
∧
z∈C TA(z), IA(x0) =

∨
z∈C IA(z), FA(x0) =

∧
z∈C FA(z)).

If A is a neutrosophic subalgebra of a B-algebra X, then the image of A under f is a neutrosophic subalgebra of

Y .

Proof. Let f(A) be the image of A under f . Let a, b ∈ Y . Then f−1(a) ̸= ∅ and f−1(b) ̸= ∅ in X. By (3.3), there

exist xa ∈ f−1(a) and xb ∈ f−1(b) such that

TA(xa) =
∧

z∈f−1(a)

TA(z), IA(xa) =
∨

z∈f−1(a)

IA(z), FA(xa) =
∧

z∈f−1(a)

FA(z),

TA(xb) =
∧

w∈f−1(b)

TA(w), IA(xb) =
∨

w∈f−1(b)

IA(w), FA(xb) =
∧

w∈f−1(b)

FA(w).

Thus

f(TA)(a ∗ b) =
∧

x∈f−1(a∗b)

TA(x) ≤ TA(xa ∗ xb) ≤ max{TA(xa), TA(xb)}

= max{
∧

z∈f−1(a)

TA(z),
∧

w∈f−1(b)

TA(w)} = max{f(TA)(a), f(TA)(b)},

f(IA)(a ∗ b) =
∨

x∈f−1(a∗b)

IA(x) ≥ IA(xa ∗ xb) ≥ min{IA(xa), IA(xb)}

= min{
∨

z∈f−1(a)

IA(z),
∨

w∈f−1(b)

IA(w)} = min{f(IA)(a), f(IA)(b)},
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and

f(FA)(a ∗ b) =
∧

x∈f−1(a∗b)

FA(x) ≤ FA(xa ∗ xb) ≤ max{FA(xa), FA(xb)}

= max{
∧

z∈f−1(a)

FA(z),
∧

w∈f−1(b)

FA(w)} = max{f(FA)(a), f(FA)(b)}.

Hence f(A) is a neutrosophic subalgebra of Y . □
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ABSTRACT

The principal purpose of this paper is to present some qualitative behavior of the following fourth order di¤erence
equation:

xn+1 = axn�1 �
bxn�1

cxn�1 � dxn�3
; n = 0; 1; :::;

where the parameters a; b; c and d are positive real numbers and the initial conditions x�3; x�2; x�1 and x0 are
arbitrary non zero real numbers.

Keywords: stability, periodicity, global attractor, di¤erence equations.

Mathematics Subject Classi�cation: 39A10.

� � � � � � � � � � � � � � � � � �

1. INTRODUCTION

This paper will provide a detailed study in terms of the local, global stability and obtain the form of the solutions
of the following di¤erence equation

xn+1 = axn�1 �
bxn�1

cxn�1 � dxn�3
; n = 0; 1; :::; (1)

where the initial conditions x�3; x�2; x�1 and x0 are arbitrary non zero real numbers and a; b; c; d are positive
constants:.

A huge number of researchers has concentrated on studying and investigating nonlinear di¤erence equations
in recent years. In particular, they have highlighted the boundedness, the global attractivity and the periodic
behaviour of some certain types of di¤erence equations. For instance: Elsayed et al.19 studied the global attractor,
local stability, periodic solutions and boundedness of the following recursive equation:

xn+1 =
axnxn�2

bxn + cxn�3
:

Cinar5 investigated the solution of the di¤erence equation

xn+1 =
axn�1

1 + bxnxn�1
:

Ibrahim24 presented some relevant results of the di¤erence equation

xn+1 =
xnxn�2

xn�1(a+ bxnxn�2)
:
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Elsayed16 analyzed the global stability and examined the periodic solution of the following di¤erence equation:

xn+1 = axn�l +
bxn�l

cxn�l � dxn�k
:

Elabbasy et al.8 investigated the global stability, periodicity character and gave the solution of special case of
the di¤erence equation

xn+1 = axn �
bxn

cxn � dxn�1
:

Yang et al.36 examined the global and local stability of the equilibrium points of the following recursive equation:

xn+1 =
axn�1 + bxn�2
c+ dxn�1xn�2

:

Simsek et al.33 obtained the solution of the following di¤erence equation

xn+1 =
xn�3

1 + xn�1
:

Abo-Zeid et al.1 gave a detailed study about the convergence and the periodicity of the solutions of the di¤erence
equation

xn+1 =
Axn�1

(B � Cxnxn�2)
:

Tolly et al.35 illustrated some properties of the solution of the following recursive equation:

yn+1 =
ayn�1

bynyn�1 + cyn�1yn�2 + d
:

Other relevant consequences of rational di¤erence equations can be obtained in refs.9-.12

Now, some relevant results and de�nitions will be introduced here to be used in our discussion.

Let I be some interval of real numbers and the function f has continuous partial derivatives on Ik+1 where
Ik+1 = I � I � � � � � I (k + 1� times): Then, for initial conditions x�k; x�k+1; :::; x0 2 I; it is easy to see that
the di¤erence equation

xn+1 = f(xn; xn�1; :::; xn�k); n = 0; 1; :::; (2)

has a unique solution fxng1n=�k:
A point x 2 I is called an equilibrium point of Eq.(2) if

x = f(x; x; :::; x).

That is, xn = x for n � 0; is a solution of Eq.(2), or equivalently, x is a �xed point of f .
Definition 1.1. (Stability)

(i) The equilibrium point x of Eq.(2) is locally stable if for every � > 0; there exists � > 0 such that for all
x�k; x�k+1; :::; x�1; x0 2 I with

jx�k � xj+ jx�k+1 � xj+ :::+ jx0 � xj < �;

we have
jxn � xj < � for all n � �k:

(ii) The equilibrium point x of Eq.(2) is locally asymptotically stable if x is locally stable solution of Eq.(2)
and there exists  > 0; such that for all x�k; x�k+1; :::; x�1; x0 2 I with

jx�k � xj+ jx�k+1 � xj+ :::+ jx0 � xj < ;
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we have
lim
n!1

xn = x:

(iii) The equilibrium point x of Eq.(2) is global attractor if for all x�k; x�k+1,..., x�1; x0 2 I; we have

lim
n!1

xn = x:

(iv) The equilibrium point x of Eq.(2) is globally asymptotically stable if x is locally stable, and x is also a
global attractor of Eq.(2).

(v) The equilibrium point x of Eq.(2) is unstable if x is not locally stable.

The linearized equation of Eq.(2) about the equilibrium x is the linear di¤erence equation

yn+1 =
kX
i=0

@f(x; x; :::; x)

@xn�i
yn�i: (3)

Now assume that the characteristic equation associated with Eq.(3) is

p(�) = p0�
k + p1�

k�1 + :::+ pk�1�+ pk = 0; (4)

where pi =
@f(x; x; :::; x)

@xn�i
:

Theorem A [12]: Assume that pi 2 R ; i = 1; 2; ::: and k 2 f0; 1; 2; :::g. Then

kX
i=1

jpij < 1;

is a su¢ cient condition for the asymptotic stability of the di¤erence equation

yn+k + p1yn+k�1 + :::+ pkyn = 0; n = 0; 1; :::

Next, we introduce a fundamental theorem to prove the global attractor of the �xed points.

Theorem B [26]: Let g : [a; b]k+1 ! [a; b], be a continuous function, where k is a positive integer, and where
[a; b] is an interval of real numbers. Consider the di¤erence equation

xn+1 = g(xn; xn�1; :::; xn�k); n = 0; 1; ::: : (5)

Suppose that g satis�es the following conditions.

(1) For each integer i with 1 � i � k + 1; the function g(z1; z2; :::; zk+1) is weakly monotonic in zi for �xed
z1; z2; :::; zi�1; zi+1; :::; zk+1:

(2) If m;M is a solution of the system

m = g(m1;m2; :::;mk+1); M = g(M1;M2; :::;Mk+1);

then m =M , where for each i = 1; 2; :::; k + 1; we set

mi =

�
m; if g is non-decreasing in zi;
M; if g is non-increasing in zi;

�
; Mi =

�
M; if g is non-decreasing in zi;
m; if g is non-increasing in zi.

�
:

Then there exists exactly one equilibrium point �x of Equation (5), and every solution of Equation (5) converges
to �x.
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2. LOCAL STABILITY OF THE EQUILIBRIUM POINT

This section is devoted to give a detailed description about the local stability of the �xed point.

The equilibrium point of Eq.(1) is given by the following equation:

x = ax� bx

cx� dx;

from which we have

x =
b

(a� 1) (c� d) ;

where a 6= 1 and c 6= d: Suppose that f : (0;1)2 �! (0;1) de�ned as following:

f(u; v) = au� bu

cu� dv : (6)

Then,

@f(u; v)

@u
= a� b(cu� dv)� bcu

(cu� dv)2 = a+
bdv

(cu� dv)2 ; (7)

@f(u; v)

@v
= � �bu(�d)

(cu� dv)2 = �
bdu

(cu� dv)2 : (8)

Next, we calculate equations (7) and (8) at the equilibrium point as follows:

@f(x; x)

@u
= a+

bdx

(cx� dx)2 = a+
bd

(c� d)2x = a+
d(a� 1)
(c� d) = �p0;

@f(x; x)

@v
= � bdx

(cx� dx)2 = �
bd

(c� d)2x = �
d(a� 1)
(c� d) = �p1:

Now, the linearized di¤erence equation of Eq.(1) about the �xed point is given by

yn+1 + p0yn�1 + p1yn�3 = 0:

Theorem 1. Assume that

jac� dj+ d ja� 1j < jc� dj :

Then the �xed point of Eq.(1) is locally asymptotically stable.

Proof. By using Theorem A we notice that Eq.(1) is asymptotically stable if

jp0j+ jp1j < 1:

Hence, we have ����a+ d(a� 1)(c� d)

����+ �����d(a� 1)(c� d)

���� < 1;
which can be rearranged as follows:
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ja(c� d) + d(a� 1)j+ j�d(a� 1)j < j(c� d)j :

Therefore,

jac� dj+ d ja� 1j < jc� dj :

This completes the proof.

3. GLOBAL STABILITY OF THE EQUILIBRIUM POINT

The global attractivity character of the considered equation will be presented in this section.

Theorem 2. The equilibrium point of Eq.(1) is a global attractor if a < 1:

Proof. Suppose that p and q are two real numbers and let f : [p; q]2 �! [p; q] be a function de�ned by Eq.(6).
Then, equations (7) and (8) tell us that f(u; v) is increasing in u and decreasing in v. Now, we assume that
(m;M) is a solution of the following system:

m = f(m;M), and M = f(M;m):

Substituting this into Eq.(6) gives

m = am� bm

cm� dM ;

M = aM � bM

cM � dm:

Then,

cm2 � dmM = acm2 � admM � bm; (9)

cM2 � dmM = acM2 � admM � bM: (10)

Subtracting Eq.(9) from Eq.(10) yields

c(m2 �M2) = ac(m2 �M2) + b (M �m) :

Hence, we obtain

(m�M) [c(1� a)(m+M) + b] = 0:

Thus, when a < 1, then we have

m =M:

We conclude from Theorem B that the equilibrium point is a global attractor of Eq.(1).
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4. PERIODICITY OF THE SOLUTION

This section will present a theorem which shows that Eq.(1) has no periodic solution.

Theorem 3. Eq.(1) has no prime period two solutions.

Proof. We will use contradiction to prove this theorem. Assume that Eq.(1) has a positive prime period two
solutions given as follows:

:::; p; q; p; q; ::::

Then,

p = ap� bp

cp� dp : (11)

q = aq � bq

cq � dq : (12)

Equations (11) and (12) can be written as follows:

p(a� 1) = b

c� d ;

q(a� 1) = b

c� d ;

which implies that p = q and this contradicts the fact that p 6= q:

5. SPECIAL CASE OF EQ.(1)

In this section we will study the solution of the following special case:

xn+1 = xn�1 �
xn�1

xn�1 � xn�3
; n = 0; 1; 2; :::; (13)

where the initial conditions x�3; x�2; x�1 and x0 are nonzero real numbers with x�3 6= x�1 and x�2 6= x0:
Theorem 4. Let fxng1n=�3 be the solution of Eq. (13) satisfying x�3 = r; x�2 = l; x�1 = k and x0 = h: Then
for n = 0; 1; :::

x4n�3 = nk � (n� 1)r � n(n� 1)� nk

k � r ;

x4n�2 = nh� (n� 1)l � n(n� 1)� nh

h� l ;

x4n�1 = (n+ 1)k � nr � n2 � nk

k � r ;

x4n = (n+ 1)h� nl � n2 � nh

h� l :

Proof. For n = 0 the result holds. Now, we assume that n > 0 and our assumption satis�es for n� 1: That is

x4n�7 = (n� 1)k � (n� 2)r � (n� 1)(n� 2)�
(n� 1)k
k � r ;

x4n�6 = (n� 1)h� (n� 2)l � (n� 1)(n� 2)�
(n� 1)h
h� l ;
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x4n�5 = nk � (n� 1)r � (n� 1)2 �
(n� 1)k
k � r ;

x4n�4 = nh� (n� 1)l � (n� 1)2 �
(n� 1)h
h� l :

Next, it follows form Eq. (13) that

x4n�3 = x4n�5 �
x4n�5

x4n�5 � x4n�7
;

= nk � (n� 1)r � (n� 1)2 � (n� 1)k
k � r

�
nk � (n� 1)r � (n� 1)2 � (n�1)k

k�r

nk � (n� 1)r � (n� 1)2 � (n�1)k
k�r � ((n� 1)k � (n� 2)r � (n� 1)(n� 2)� (n�1)k

k�r )
;

= nk � (n� 1)r � (n� 1)2 � (n� 1)k
k � r � (nk � nr + r)(k � n� r + 1)

(k � r)(k � n� r + 1) ;

= nk � (n� 1)r � (n� 1)2 � 2nk � k � nr + r
k � r ;

= nk � (n� 1)r � n(nk � rn+ r)
k � r ;

= nk � (n� 1)r � n(n� 1)� nk

k � r :

Also, we obtain from Eq. (13)

x4n�2 = x4n�4 �
x4n�4

x4n�4 � x4n�6
;

= nh� (n� 1)l � (n� 1)2 � (n� 1)h
h� l

�
nh� (n� 1)l � (n� 1)2 � (n�1)h

h�l

nh� (n� 1)l � (n� 1)2 � (n�1)h
h�l � (n� 1)h+ (n� 2)l + (n� 1)(n� 2) + (n�1)h

h�l

;

= nh� (n� 1)l � (n� 1)2 � (n� 1)h
h� l � (nh� nl + l)(h� l � n+ 1)

(h� l)(h� l � n+ 1) ;

= nh� (n� 1)l � (n� 1)2 � 2nh� h� nl + l
h� l ;

= nh� (n� 1)l � n(nh� nl + l)
h� l ;

= nh� (n� 1)l � n(n� 1)� nh

h� l :

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.2, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

249 Almatrafi et al 243-253



Next, we will prove the third part of the theorem. Eq.(13) gives

x4n�1 = x4n�3 �
x4n�3

x4n�3 � x4n�5
;

= nk � (n� 1)r � n(n� 1)� nk

k � r

�
nk � (n� 1)r � n(n� 1)� nk

k�r

[nk � (n� 1)r � n(n� 1)� nk
k�r ]� [nk � (n� 1)r � (n� 1)2 �

(n�1)k
k�r ]

;

= nk � (n� 1)r � n(n� 1)� nk

k � r +
(k � n� r)(nk � nr + r)(k � r)

(k � r)(nk � nr + r) ;

= nk � (n� 1)r � n(n� 1)� nk

k � r + k � n� r = (n+ 1)k � nr � n
2 � nk

k � r :

Finally, we prove the last part of the theorem. Eq.(13) leads to

x4n = x4n�2 �
x4n�2

x4n�2 � x4n�4
;

= nh� (n� 1)l � n(n� 1)� nh

h� l

�
nh� (n� 1)l � n(n� 1)� nh

h�l

[nh� (n� 1)l � n(n� 1)� nh
h�l ]� [nh� (n� 1)l � (n� 1)2 �

(n�1)h
h�l ]

;

= nh� (n� 1)l � n(n� 1)� nh

h� l +
(nh� nl + l)(h� l � n)(h� l)

(h� l)(nh� nl + 1) ;

= nh� (n� 1)l � n(n� 1)� nh

h� l + h� l � n = (n+ 1)h� nl � n
2 � nh

h� l :

Hence, the proof has done.

6. NUMERICAL SOLUTIONS
This section shows some numerical examples that con�rm the results we obtained in this paper.

Example 1. Let x�3 = 0:2; x�2 = 5; x�1 = 1; x0 = 2; a = 0:5; b = 1; c = 6 and d = 1: Then, the local
stability is shown as follows:
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x(
n)

plot of x(n+1)= ax(n1)(bx(n1))/(cx(n1)dx(n3))

Figure 1. This �gure shows the local stability of
Eq.(1).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.2, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

250 Almatrafi et al 243-253



Example 2. Assume that x�3 = 0:2; x�2 = 3; x�1 = 0:1; x0 = 2; a = 0:1; b = 1; c = 2 and d = 9: Then, the
global stability is illustrated as follows:
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x(
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plot of x(n+1)= ax(n1)(bx(n1))/(cx(n1)dx(n3))

Figure 2. This �gure presents a global stability
of Eq.(1).

Example 3. This example presents the solution of Eq.(1) when we suppose that x�3 = 0:2; x�2 = 3; x�1 =
1; x0 = 0:5; a = b = 1; c = 0:5 and d = 9: See Figure 3.
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plot of x(n+1)= ax(n1)(bx(n1))/(cx(n1)dx(n3))

Figure 3. This �gure shows the solutions of
Eq.(1) when x�3 = 0:2; x�2 = 3; x�1 =
1; x0 = 0:5; a = b = 1; c = 0:5 and d = 9:

Example 4. This example illustrates the solution of Eq.(13) when we assume that x�3 = �7; x�2 =
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5; x�1 = 0:5; x0 = 8. See Figure 4.
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Figure 4.
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Abstract

In this paper we consider the behavior of a special case of piecewise lin-
ear systems of difference equations with initial condition in first quadrant.
We found a necessary condition that the solutions become equilibrium
point or periodic with prime period 4 without using stability theorems.
We constructed inductive statement to represent the behavior of the sys-
tem and we apply useful lemmas in the proof of main theorem.
Key words: Difference equation, Periodic solution, Stability, Equilib-
rium point, Piecewise linear system of difference equation.
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1 Introduction

To investigate stability of system of difference equations requires theorems that
involve Jacobian matrix. So the functions of the system must are differentiable.
Unfortunately, piecewise linear systems of difference equations are the system
with absolute value. So we can not apply the stability theorem to the piecewise
linear systems. In 1978 Lozi [1] hypothesized a simplified version of Hénon’s
transformation by using system of difference equation with absolute value and
Lozi’s Piecewise Linear Model admits a strange attractor with a specific param-
eter and initial condition. Then, Devaney [2, 3] investigated Gingerbreadman
map and he was shown Gingerbreadman map, a map with absolute value, being
chaotic in certain regions. Moreover, Ladas’s open problem was mentioned an
in article [4] as the system of difference equations:

xn+1 = |xn|+ ayn + b, yn+1 = xn + c|yn|+ d, n = 0, 1, . . .

where the initial condition (x0, y0) ∈ R2 and the parameters a, b, c, and d ∈
{−1, 0, 1}. He suggests to investigate boundedness character of solutions, the
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global stability, and periodic nature of the solutions.There are several authors
studied this open problem such as Grove et. al [4] found that every solution
of a specific system is eventually periodic with period 3, Tikjha et. al [5, 6]
found that the character of system is eventually periodic with some period
and equilibrium point respectively. As mentioned above, we can not apply
the stability theorems to this open problem. The common idea of proofs of the
above systems of piecewise linear articles is to separate initial condition into few
regions and find some characters of solution to the system of each region and
then establishing lemmas and finally summarizing the behaviors of each system
to be a theorem. Our ultimate goals is to know complete global character of
system:

xn+1 = |xn| − yn − b, yn+1 = xn − |yn|+ 1, n = 0, 1, . . . (1)

where the initial condition (x0, y0) ∈ R2 and the parameters b is any positive
number. In this article we will focus to a special case of System(1) when b = 3
with initial condition are some points in the first quadrant.

2 Preliminaries

The following definitions [7] are used in this article. A system of difference
equations of the first order is a system of the form

xn+1 = f(xn, yn), yn+1 = g(xn, yn), n = 0, 1, ... (2)

where f and g are continuous functions which map R2 into R.
A solution of the System(2) is a sequence {(xn, yn)}∞n=0 which satisfies the

system for all n ≥ 0. If we prescribe an initial condition (x0, y0) ∈ R2 then

x1 = f(x0, y0), y1 = g(x0, y0)

x2 = f(x1, y1), y2 = g(x1, y1)

...

and so the solution {(xn, yn)}∞n=0 of the System(2) exists for all n ≥ 0 and is
uniquely determined by the initial condition (x0, y0).

A solution of the System(2) which is constant for all n ≥ 0 is called an
equilibrium solution. If

(xn, yn) = (x̄, ȳ) for all n ≥ 0

is an equilibrium solution of the System(2), then (x̄, ȳ) is called an equilibrium
point, or simply an equilibrium of the System(2).

A solution {(xn, yn)}∞n=0 of a system of difference equations is called even-
tually periodic with prime period p or eventually prime period p solution if

2
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there exists an integer N > 0 and p is the smallest positive integer such that
{(xn, yn)}∞n=0 is periodic with period p; that is,

(xn+p, yn+p) = (xn, yn) for all n ≥ N. (3)

The p consecutive point of the solution is called a p-cycle of System(2). We
denote 

x0, y0
x1, y1
x2, y2
x3, y3


as 4-cycle which consists of (x0, y0), (x1, y1), (x2, y2) and (x3, y3) in xy plain.

3 Main Results

In this section we will investigate behaviors of the following system:

xn+1 = |xn| − yn − 3, yn+1 = xn − |yn|+ 1, n = 0, 1, . . . . (4)

From System(4) and by simple calculations,

P4.1 =


−5, −1

3, −5
5, −1
3, 5

 and P4.2 =


1, −3
1, −1
−1, 1
−3, −1


are two 4-cycles of System(4) and equilibrium point is (−1,−1). For convenience
in the later part of the proof, we let S := {(x, y)|x + 1

2 ≤ y ≤ x + 1}, an :=
22n+3−1
22n+3 , un := 22n+2+1

22n+2 , ln := 22n+2−1
22n+2 , δn = 22n+4 − 1, Bn+2 := {(x, y)|x +

22n+3−1
22n+3 ≤ y < x+ 22n+4−1

22n+4 }. The proof of main theorem requires the following
two lemmas.

Lemma 1. Let {(xn, yn)}∞n=1 be a solution of System(4) If there is positive
integer N such that xN = −yN − 2 < 0 and yN < 0 then (xN+1, yN+1) is
equilibrium point (−1,−1).

Proof. The proof is obvious.

Lemma 2. Let {(xn, yn)}∞n=1 be a solution of System(4) If there is positive
integer N such that xN = yN − 2 ≥ 0 then {(xn, yn)}∞n=N+6 are in P4.1.

Proof. With condition xN = yN − 2 ≥ 0 by simple calculation, we have
(xN+1, yN+1) = (−5,−1) ∈ P4.1.

The following theorem provides a necessary condition of equilibrium point
or prime period 4 to System(4) with initial condition in first quadrant.

3

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.2, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

256 Tikjha-Piasu 254-260



Theorem 1. Let {(xn, yn)}∞n=0 be a solution of System(4) and x0, y0 ≥ 0. If

(x0, y0) ∈ S −Bn+2 (5)

for all integer n ≥ −1, then {(xn, yn)}∞n=0 is eventually equilibrium point or the
prime period 4 solution(P4.1 or P4.2).

Proof. Let (x0, y0) ∈ S − Bn+2 for all integer n ≥ −1. Then x0 + 1
2 ≤ y0 and

y0 ≤ x0 + 1, so we have x1 = x0 − y0 − 3 < 0 and y1 = x0 − y0 + 1 ≥ 0,
x2 = −2x0 + 2y0 − 1 ≥ 0 and y2 = −3, x3 = −2x0 + 2y0 − 1 ≥ 0 and
y3 = −2x0 + 2y0 − 3.

If y0 ≥ x0+ 3
2 then y3 ≥ 0 and so (x4, y4) = (−1, 3) and (x6, y6) = (−5,−1) ∈

P4.1. Suppose that y0 < x0+ 3
2 then y3 < 0 and so (x4, y4) = (−1,−4x0+4y0−3)

If y4 = −4x0 + 4y0 − 3 < 0 then we have (x5, y5) ∈ B1. This contradicts
Condition(5). Suppose that y4 ≥ 0, so x5 = 4x0 − 4y0 + 1 < 0 and y5 =
4x0 − 4y0 + 3 ≤ 0, x6 = −8x0 + 8y0 − 7 and y6 = 8x0 − 8y0 + 5 < 0.

If x6 < 0, that is x6 = −y6 − 2 < 0, then applying Lemma(1), we have
(x7, y7) = (−1,−1). Suppose that x6 ≥ 0, that is x0 + 7

8 ≤ y0 < x0 + 3
2 , then

(x7, y7) = (−16x0 + 16y0 − 15,−1).
If x7 < 0, then x0 + 7

8 ≤ y0 < x0 + 15
16 , and so (x8, y8) ∈ B2. This contradicts

Condition(5). Suppose that x7 ≥ 0. That is x0 + 15
16 ≤ y0 < x0 + 3

2 , so
x8 = −16x0 + 16y0 − 17 and y8 = −16x0 + 16y0 − 15 ≥ 0.

If x8 ≥ 0 that is x0 + 17
16 ≤ y0 < x0 + 3

2 . Applying Lemma(2), (x9, y9) ∈ P4.1.
Suppose that x8 < 0 that is x0+ 15

16 ≤ y0 < x0+ 17
16 . We have x9 = 32x0−32y0+

29 < 0 and y9 = −1, x10 = −32x0 + 32y0 − 31 and y10 = 32x0 − 32y0 + 29 < 0.
If x10 < 0 that is x0 + 15

16 ≤ y0 < x0 + 31
32 . We have (x11, y11) = (−1,−1).

Suppose that x10 ≥ 0 that is x0 + 31
32 ≤ y0 < x0 + 17

16 . We have a closed form of
inductive statement on n ≥ 1 and let P (n) be the following statement:
For (x0, y0) ∈ Rn = {(x, y)|x+ an ≤ y < x+ un}, then x4n+6 ≥ 0 and so

x4n+7 = −22n+4x0 + 22n+4y0 − δn
y4n+7 = −1.
If (x0, y0) ∈ Bn+2 = {(x, y)|x+ an ≤ y < x+ ln+1}, then x4n+7 < 0.
If (x0, y0) ∈ Rn − Bn+2 = {(x, y)|x + ln+1 ≤ y < x + un}, then x4n+7 ≥ 0

and so
x4n+8 = −22n+4x0 + 22n+4y0 − δn − 2
y4n+8 = −22n+4x0 + 22n+4y0 − δn ≥ 0.
If (x0, y0) ∈ R∗

n = {(x, y)|x+ un+1 ≤ y < x+ un}, then x4n+8 ≥ 0 and so
x4n+9 = −5
y4n+9 = −1.
If (x0, y0) ∈ (Rn − Bn+2) − R∗

n = {(x, y)|x + ln+1 ≤ y < x + un+1}, then
x4n+8 < 0 and so

x4n+9 = 22n+5x0 − 22n+5y0 + 2δn − 1 < 0
y4n+9 = −1
x4n+10 = −22n+5x0 + 22n+5y0 − 2δn − 1
y4n+10 = 22n+5x0 − 22n+5y0 + 2δn − 1 < 0.
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If (x0, y0) ∈ R̃n = {(x, y)|x+ ln+1 ≤ y < x+ an+1}, then x4n+10 < 0 and so
x4n+11 = −1
y4n+11 = −1.
If (x0, y0) ∈ Rn+1 = {(x, y)|x+ an+1 ≤ y < x+ un+1}, then x4n+10 ≥ 0.

We shall first show that P (1) is true. For (x0, y0) ∈ R1 = {(x, y)|x+ 31
32 ≤ y <

x+ 17
16} and δ1 = 63, we have x10 = −32x0 + 32y0 − 31 ≥ 0 and so

x4(1)+7 = x11 = −22(1)+4x0 + 22(1)+4y0 − δ1
y4(1)+7 = y11 = −1.

If (x0, y0) ∈ B3 = {(x, y)|x+ 31
32 ≤ y < x+ 63

64}, then x11 = −64x0 + 64y0 −
63 < 0.

If (x0, y0) ∈ R1 − B3 = {(x, y)|x + 63
64 ≤ y < x + 17

16}, then x11 = −64x0 +
64y0 − 63 ≥ 0 and so

x4(1)+8 = x12 = −64x0 + 64y0 − 65 = −22(1)+4x0 + 22(1)+4y0 − δ1 − 2

y4(1)+8 = y12 = −64x0 + 64y0 − 63 = −22(1)+4x0 + 22(1)+4y0 − δ1 ≥ 0.

If (x0, y0) ∈ R∗
1 = {(x, y)|x+ 65

64 ≤ y < x+ 17
16}, then x12 = −64x0 + 64y0 −

65 ≥ 0 and so
x4(1)+9 = x13 = −5
y4(1)+9 = y13 = −1.

If (x0, y0) ∈ (R1 − B3) − R∗
1 = {(x, y)|x + 63

64 ≤ y < x + 65
64}, then x12 =

−64x0 + 64y0 − 65 < 0 and so
x4(1)+9 = x13 = 128x0 − 128y0 + 125 = 22(1)+5x0 − 22(1)+5y0 + 2δ1 − 1 < 0
y4(1)+9 = y13 = −1

x4(1)+10 = x14 = −128x0 + 128y0 − 127 = −22(1)+5x0 + 22(1)+5y0 − 2δ1 − 1

y4(1)+10 = y14 = 128x0 − 128y0 + 125 = 22(1)+5x0 − 22(1)+5y0 + 2δ1 − 1 < 0.

If (x0, y0) ∈ R̃1 = {(x, y)|x + 63
64 ≤ y < x + 127

128}, then x14 = −128x0 +
128y0 − 127 < 0 and so

x4(1)+11 = x15 = −1
y4(1)+11 = y15 = −1.

If (x0, y0) ∈ R2 = {(x, y)|x+ 127
128 ≤ y < x+ 65

64}, then x4(1)+10 = −128x0 +
128y0 − 127 ≥ 0. Therefore P (1) is true, as required.

Suppose P (k) is true for a positive integer k. If (x0, y0) ∈ Rk+1 = {(x, y)|x+
22k+5−1
22k+5 ≤ y < x+ 22k+4+1

22k+4 }, then

x4k+10 = −22k+5x0+22k+5y0−2δk−1 ≥ 0 and y4k+10 = 22k+5x0−22k+5y0+
2δk − 1 < 0 and so

x4(k+1)+7 = x4k+11 = −22k+6x0 + 22k+6y0 − (4δk + 3)

= −22(k+1)+4x0 + 22(k+1)+4y0 − δk+1

y4(k+1)+7 = y4k+11 = −1.

If (x0, y0) ∈ Bk+3 =
{

(x, y)|x+ 22k+5−1
22k+5 ≤ y < x+ 22k+6−1

22k+6

}
, then

x4k+11 = −22k+6x0 + 22k+6y0 − δk+1 < 0.

If (x0, y0) ∈ (Rk+1 −Bk+3) =
{

(x, y)|x+ 22k+6−1
22k+6 ≤ y < x+ 22k+4+1

22k+4

}
, then

x4k+11 = −22k+6x0 + 22k+6y0 − δk+1 ≥ 0, and so
x4(k+1)+8 = x4k+12 = −22k+6x0 + 22k+6y0 − δk+1 − 2

= −22k+6x0 + 22k+6y0 − 22k+6 − 1

5
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y4(k+1)+8 = y4k+12 = −22k+6x0 + 22k+6y0 − δk+1

= −22(k+1)+4x0 + 22(k+1)+4y0 − 22(k+1)+4 + 1 ≥ 0.
If (x0, y0) ∈ R∗

k+1 = {(x, y)|x+ uk+2 ≤ y < x+ uk+1}
=
{

(x, y)|x+ 22k+6+1
22k+6 ≤ y < x+ 22k+4+1

22k+4

}
, then

x4k+12 = −22k+6x0 + 22k+6y0 − δk+1 − 2 ≥ 0, and so
x4(k+1)+9 = x4k+13 = −5
y4(k+1)+9 = x4k+13 = −1.

If (x0, y0) ∈ (Rk+1−Bk+3)−R∗
k+1 =

{
(x, y)|x+ 22k+6−1

22k+6 ≤ y < x+ 22k+6+1
22k+6

}
,

then
x4k+12 = −22k+6x0 + 22k+6y0 − δk+1 − 2 < 0, and so
x4(k+1)+9 = 2

(
22k+6x0

)
− 2

(
22k+6y0

)
+ 2δk+1 − 1

= 22k+7x0 − 22k+7y0 + 2δk+1 − 1
= 22(k+1)+5x0 − 22(k+1)+5y0 + 22(k+1)+5 − 3 < 0

y4(k+1)+9 = x4k+13 = −1

x4(k+1)+10 = −22k+7x0 + 22k+7y0 − 2δk+1 − 1

= −22(k+1)+5x0 + 22(k+1)+5y0 − 22(k+1)+5 + 1
y4(k+1)+10 = x4k+14 = 22k+7x0 − 22k+7y0 + 2δk+1 − 1

= 22(k+1)+5x0 − 22(k+1)+5y0 + 22(k+1)+5 − 3 < 0.

If (x0, y0) ∈ R̃k+1 =
{

(x, y)|x+ 22k+6−1
22k+6 ≤ y < x+ 22k+7−1

22k+7

}
, then

x4k+14 = −22k+7x0 + 22k+7y0 − 2δk+1 − 1 < 0,
and so

x4(k+1)+11 = x4k+15 = −1
y4(k+1)+11 = x4k+15 = −1.

If (x0, y0) ∈ Rk+2 = {(x, y)|x+ ak+2 ≤ y < x+ uk+2}
=
{

(x, y)|x+ 22k+7−1
22k+7 ≤ y < x+ 22k+6+1

22k+6

}
, then

x4k+14 = −22k+7x0 + 22k+7y0 − 2δk+1 − 1 ≥ 0.
Hence P (k + 1) is also true. By mathematical induction P (n) is true for any
positive integer n. Note that

lim
n→∞

an = lim
n→∞

ln = lim
n→∞

un = 1.

If y0 = x0 + 1, then (x1, y1) = (−4, 0) and so (x2, y2) = (1,−3) ∈ P4.2 and
the proof is complete.

4 Conclusion

In this paper we showed that solution of System(4) with initial condition being a
specific region in first quadrant is eventually equilibrium point or prime period
4. We described the behavior of solution to the system by using inductive
statement. If initial conditions are in R∗

n then the solution is eventually prime
period 4 (P4.1). If initial conditions are in R̃1 then the solution is eventually
equilibrium point. The limit of Rn tend to a line y = x + 1 and if we choose

6
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initial condition in the line y = x+ 1, then solution is eventually prime period
4 (P4.2).
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BI-UNIVALENT FUNCTIONS ASSOCIATED WITH WRIGHT

HYPERGEOMETRIC FUNCTIONS

E. ANALOUEI ADEGANI1, N. E. CHO2,∗, A. MOTAMEDNEZHAD1 AND M. JAFARI3

Abstract. In this work, using of the Faber polynomial expansions we find
upper bounds for |an| (n ≥ 3) coefficients of functions in subclasses Gl,mΣ (γ, λ, φ)

and Bl,m
Σ (γ, λ, φ), which were defined with Wright hypergeometric functions

and quasi-subordinate conditions in the open unit disk. Our results general-
ize and improve some of the previously known results.

1. Introduction and Preliminaries

Let A be the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n(1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. Denote
by S the class of all functions in A which are univalent in U.

Many derivative and integral operators can be written in terms of convolution
of certain analytic functions. This formalism facilitates further mathematical
explorations and helps deep understanding of the geometric properties of such
operators. For functions f, h ∈ A, where f(z) is given by (1.1) and h(z) =

z +
∞∑
n=2

cnz
n, Hadamard product (or convolution) of f(z) and h(z) is denoted

by f ∗ h and is defined by

(f ∗ h)(z) = z +

∞∑
n=2

ancnz
n = (h ∗ f)(z).

Now, we recall and state some concepts of the special functions and operators
as follows:

For complex parameters α1, . . . , α` (
αj

Aj
6= 0,−1, . . . ; j = 1, 2, . . . , `) and β1, . . . , βm

(
βj
Bj
6= 0,−1, . . . ; j = 1, 2, . . . ,m), Fox’s H-functions ( for details, see [19]) which

mean the Wright’s generalized hypergeometric functions `Ψm with Aj , Bj > 0,
give (rather general and typical examples of H-functions, not reducible to G-
functions):

`Ψm

(
(α1, A1), . . . , (α`, A`)

(β1, B1), . . . , (βm, Bm)
: z

)
=` Ψm

[
(αj , Aj)1,`; (βj , Bj)1,m; z

]
=

∞∑
n=0

Γ(α1 + nA1) . . .Γ(α` + nA`)

Γ(β1 + nB1) . . .Γ(βm + nBm)

zn

n!
,

2010 Mathematics Subject Classification: Primary 30C45, 30C50; Secondary 30C80
Key words and phrases: Coefficient estimates, Faber polynomial expansion, Wright hyper-

geometric functions, Subordinate
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where 1 +
m∑
n=1

Bn−
∑̀
n=1

An ≥ 0 (`,m ∈ N = {1, 2, . . .}) and for suitably bounded

values of |z|.
Now the linear operator is introduced comprising of the generalized hyperge-

ometric function from Srivastava [19] (see [7]) and Wright [24]. Let `,m ∈ N
and suppose that the parameters α1, A1, . . . , α`, A` and β1, B1, . . . , βm, Bm are
also positive real numbers. Then, corresponding to a function

`Φm

[
(αj , Aj)1,`; (βj , Bj)1,m; z

]
defined by

`Φm

[
(αj , Aj)1,`; (βj , Bj)1,m; z

]
= Ωz `Ψm

[
(αj , Aj)1,`; (βj , Bj)1,m; z

]
,

where Ω =

( ∏̀
j=1

Γ(αj)

)−1( m∏
j=1

Γ(βj)

)
, we consider a linear operator

W
[
(αj , Aj)1,`; (βj , Bj)1,m

]
: A −→ A

defined by the following Hadamard product

W
[
(αj , Aj)1,`; (βj , Bj)1,m

]
f(z) := z `Φm

[
(αj , Aj)1,`; (βj , Bj)1,m; z

]
∗ f(z).

We observe that, for f(z) of the form (1.1), we have

W
[
(αj , Aj)1,`; (βj , Bj)1,m

]
f(z) := z +

∞∑
n=2

ϕnanz
n,

where

ϕn =
Ω Γ(α1 +A1(n− 1)) . . .Γ(α` +A`(n− 1))

(n− 1)! Γ(β1 +B1(n− 1)) . . .Γ(βm +Bm(n− 1))
.

If, for convenience, we write

W`
mf(z) =W

[
(α1, A1), . . . , (α`, A`); (β1, B1), . . . , (βm, Bm)

]
f(z).

The Koebe one-quarter theorem [6] ensures that the image of U under every
univalent function f ∈ S contains a disk of radius 1/4. Therefore, every function
f ∈ S has an inverse f−1, which is defined by

f−1
(
f (z)

)
= z (z ∈ U) and f

(
f−1 (w)

)
= w

(
|w| < r0 (f) ; r0 (f) =

1

4

)
,

where

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · ·

(1.2)

=: w +

∞∑
n=2

bnw
n.

A function f ∈ S is said to be bi-univalent in U if both f and f−1 are univalent
in U. Let Σ denote the class of bi-univalent functions in U given by (1.1).

Determination of the bounds for the coefficients an is an important problem
in geometric function theory as they give information about the geometric prop-
erties of these functions. For a brief history and interesting examples in the class
Σ, see [13]. Recently, many researchers introduced and investigated subclasses
of bi-univalent functions and obtained bounds for the initial coefficients, see,
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for example, [4, 15, 20–22, 25, 27]. But the coefficient problem for each of the
Taylor-Maclaurin coefficients |an| (n ∈ N\{1, 2, 3}, is still an open problem.

A function f(z) is said to be quasi-subordinate to φ(z) in the open unit
disk U if there exist analytic functions ψ(z) and w(z), with w(0) = 0 such that
|ψ(z)| ≤ 1, |w(z)| < 1 and f(z) = ψ(z)φ(w(z)). Denote this quasi-subordination
by f(z) ≺q̃ φ(z). For ψ(z) = 1, the quasi-subordination reduces to the subordi-
nation (see [17, 18]).

Throughout this paper, we let φ(z) is analytic function in the unit disk U
with φ(0) = 1 such that

φ(z) = 1 + C1z + C2z
2 + C3z

3 + · · · (C1 > 0)

and assume that the function ψ(z) is analytic in the unit disk U and |ψ(z)| ≤ 1
such that

ψ(z) = D0 +D1z +D2z
2 +D3z

3 + · · · .

Recently, Cho et al., [5] introduced subclasses Gl,mΣ (γ, λ, φ) and Bl,mΣ (γ, λ, φ)
of Σ and only obtained estimates on the coefficients |a2| and |a3| for functions
in these subclasses.

Definition 1.1. [5] A function f ∈ Σ given by (1.1) is said to be in the class

Gl,mΣ (γ, λ, φ) if the following conditions are satisfied:

1

γ

(
z(W l

mf(z))′

(1− λ)W l
mf(z) + λz(W l

mf(z))′
− 1

)
≺q̃ (φ(z)− 1)

and

1

γ

(
w(W l

mg(w))′

(1− λ)W l
mg(w) + λw(W l

mg(w))′
− 1

)
≺q̃ (φ(w)− 1),

where γ ∈ C\{0}, 0 ≤ λ < 1, z, w ∈ U and the function g is given by (2.1).

Definition 1.2. [5] A function f ∈ Σ given by (1.1) is said to be in the class

Bl,mΣ (γ, λ, φ) if the following conditions are satisfied:

1

γ

(
z1−λ(W l

mf(z))′

[W l
mf(z)]1−λ

− 1

)
≺q̃ (φ(z)− 1)

and

1

γ

(
w1−λ(W l

mg(w))′

[W l
mg(w)]1−λ

− 1

)
≺q̃ (φ(w)− 1),

where γ ∈ C\{0}, λ ≥ 0, z, w ∈ U and the function g is given by (2.1).

Lemma 1.3. [6] Let u(z) be analytic in the unit disk U with u(0) = 0 and
|u(z)| < 1 and suppose that u(z) =

∑∞
n=1 pnz

n. Then |pn| 5 1 (n ∈ N).

Lemma 1.4. [9] Let the function w in the Schwarz function is given by w(z) =
∞∑
n=1

wnz
n, where z ∈ U. Then for every complex number s,

|w2 + sw2
1| ≤ 1 + (|s| − 1)|w2

1|.
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Faber [8] introduced the Faber polynomials, which play an important role in
various areas of mathematical sciences, especially in geometric function theory.
By using the Faber polynomial expansion of functions f ∈ S of the form (1.1),
the coefficients of its inverse map g = f−1 may be expressed, (see for details [1]
and [2]),

g(w) = f−1(w) = w +
∞∑
n=2

1

n
K−nn−1(a2, a3, · · · , an)wn,(1.3)

where bn = 1
nK
−n
n−1(a2, a3, . . . , an), and

K−nn−1 =
(−n)!

(−2n+ 1)!(n− 1)!
an−1

2 +
(−n)!

(2(−n+ 1))!(n− 3)!
an−3

2 a3

+
(−n)!

(−2n+ 3)!(n− 4)!
an−4

2 a4 +
(−n)!

(2(−n+ 2))!(n− 5)!
an−5

2

×[a5 + (−n+ 2)a2
3] +

(−n)!

(−2n+ 5)!(n− 6)!
an−6

2 [a6 + (−2n+ 5)a3a4]

+
∑
j≥7

an−j2 Vj

such that Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables
a2, a3, · · · , an, (see for details [2]). In particular, the first three terms of K−nn−1
are

1

2
K−2

1 = −a2,
1

3
K−3

2 = 2a2
2 − a3,

1

4
K−4

3 = −(5a3
2 − 5a2a3 + a4).

In general, for any p ∈ Z = {0,±1,±2, · · · }, an expansion of Kp
n is (see for

details [1, 23] or [2, page 349])

Kp
n = pan+1 +

p(p− 1)

2
D2
n +

p!

(p− 3)!3!
D3
n + · · ·+ p!

(p− n)!n!
Dn
n,

where

Dm
n (a2, a3, · · · , an) =

∞∑
n=1

m!(a2)µ1 · · · (an)µn

µ1! · · ·µn!
(1.4)

and the sum is taken over all nonnegative integers µ1, ..., µn satisfying{
µ1 + µ2 + · · ·+ µn = m,
µ1 + 2µ2 + · · ·+ nµn = n.

We noth that it is clear that Dn
n(a2, a3, · · · , an) = an2 .

Lemma 1.5. [2, Equation (1.6) and (1.7)] Let f(z) = z+a2z
2 +a3z

3 + · · · ∈ S,
and k ∈ Z then we have the following expansion

zf ′(z)

f(z)

(
f(z)

z

)k
= 1−

∞∑
n=1

Fn+k−1
n−1 (a2, a3, . . . , an)zn−1

= 1 +
∞∑
n=2

(
1 +

n− 1

k

)
Kk
n−1(a2, a3, . . . , an)zn−1,

where the first Faber polynomials Fn+k−1
n−1 (a2, a3, . . . , an) are given by

F k+1
1 (a2) = (1 + λ)a2, F k+2

2 (a2, a3) =
(λ− 1)(λ+ 2)

2
a2

2 + (λ+ 2)a3, . . . .
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Several researchers have solved coefficient estimates problem for various sub-
classes of bi-univalent functions by using Faber polynomial expansions, see for
example [10, 11, 20, 26]. In the present paper, by using the Faber polynomial
expansions we obtain estimates of coefficients |an| where n ≥ 3, of functions in

the subclasses Gl,mΣ (γ, λ, φ) and Bl,mΣ (γ, λ, φ) of Σ with various special cases.

2. Main results

First, we can write that the Faber polynomial expansion for f ∈ Gl,mΣ (γ, λ, φ)
given by (1.1) is in the form of

1

γ

(
z(W l

mf(z))′

(1− λ)W l
mf(z) + λz(W l

mf(z))′
− 1

)
=

1

γ

∞∑
n=2

Fn−1(ϕ2a2, ϕ3a3, · · · , ϕnan)zn−1,

(2.1)

where

F1(ϕ2a2) = (1− λ)ϕ2a2, F2(ϕ2a2, ϕ3a3) = (λ2 − 1)(ϕ2a2)2 + 2(1− λ)ϕ3a3.

In general,

Fn−1(ϕ2a2, ϕ3a3, · · · , ϕnan) = (1− λ)(n− 1)ϕnan

+
n−2∑
l=1

K−1l

(
(1 + λ)ϕ2a2, (1 + 2λ)ϕ3a3, · · · , (1 + lλ)ϕl+1al+1

)
(1− λ)(n− l − 1)ϕn−lan−l.

Then to simplify, we define:

F (z) ≺q̃ (φ(z)− 1) and G(w) ≺q̃ (φ(w)− 1),(2.2)

where

F (z) =
1

γ

(
z(Wl

mf(z))
′

(1−λ)Wl
mf(z)+λz(Wl

mf(z))
′ − 1

)
and G(w) =

1

γ

(
w(Wl

mg(w))′

(1−λ)Wl
mg(w)+λw(Wl

mg(w))′
− 1

)
,

F (z) =
1

γ

(
z1−λ(Wl

mf(z))
′

[Wl
mf(z)]

1−λ − 1

)
and G(w) =

1

γ

(
w1−λ(Wl

mg(w))′

[Wl
mg(w)]1−λ

− 1

)
.

In addition, by definition of quasi-subordinate there exist analytic functions ψ
and u, v : U→ U, where u(z) =

∑∞
n=1 pnz

n and v(z) =
∑∞

n=1 qnz
n, so that

F (z) = ψ(z)[φ(u(z))− 1] and G(w) = ψ(w)[φ(v(w))− 1],(2.3)

where by equation (1.4) we have

ψ(z)[φ(u(z))− 1] = [C1p1z + (C1p2 + C2p
2
1)z2 + · · · ][D0 +D1z +D2z

2 + · · · ]

(2.4)

=

( ∞∑
n=1

n∑
k=1

CkD
k
n(p1, p2, · · · , pn)zn

) ∞∑
n=0

Dnz
n

and

ϕ(w)h(v(w)) =

( ∞∑
n=1

n∑
k=1

CkD
k
n(q1, q2, · · · , qn)wn

) ∞∑
n=0

Dnw
n.(2.5)

Now, we obtain the following coefficient estimates for these subclasses.
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Theorem 2.1. Let the function f ∈ Gl,mΣ (γ, λ, φ) be given by (1.1) and D0 6= 0.
If ak = 0 for 2 ≤ k ≤ n− 1, then

|an| ≤
|γ|
(
C1 + |Dn−1|

)
(1− λ)(n− 1)ϕn

, n ≥ 3.

Theorem 2.2. Let the function f ∈ Bl,mΣ (γ, λ, φ) be given by (1.1) and D0 6= 0.
If ak = 0 for 2 ≤ k ≤ n− 1, then

|an| ≤
|γ|
(
C1 + |Dn−1|

)(
λ+ (n− 1)

)
ϕn

, n ≥ 3.

Theorem 2.3. Let the function f ∈ Gl,mΣ (γ, λ, φ) be given by (1.1) and C1 ≥
|C2|. Then

|a2| ≤
|γD0| C1

√
C1√

|γD0|C2
1

∣∣(λ2 − 1)ϕ2
2 + 2(1− λ)ϕ3

∣∣+ (C1 − |C2|)(1− λ)2ϕ2
2

.

Theorem 2.4. Let the function f ∈ Bl,mΣ (γ, λ, φ) be given by (1.1) and C1 ≥
|C2|. Then

|a2| ≤
|γD0|C1

√
2C1√

|γD0|C2
1

∣∣(λ− 1)(λ+ 2)ϕ2
2 + 2(λ+ 2)ϕ3

∣∣+ 2(C1 − |C2|)(1 + λ)2ϕ2
2

.

Remark 2.5. (1) If we take ψ(z) = 1 in Theorem 2.1, then we obtain
estimates of coefficients |an| (n ≥ 3) for subclass defined by Murugusun-
daramoorthy in [14, Theorem 2.2].

(2) If we take ψ(z) = 1 in Theorem 2.3, then we obtain an improvement
of the estimates obtained for |a2| by Murugusundaramoorthy in [14,
Theorem 2.2].

(3) By setting λ = 0, γ = 1 and ` = 2, m = 1 with A1 = A2 = B1 =
α1 = α2 = β1 = 1, in Theorem 2.3, we get ϕn = 1 and then we obtain
an improvement of the estimates obtained for |a2| by Algahtani in [3,
Theorem 2.5].

(4) By setting λ = γ = 1 and ` = 2, m = 1 with A1 = A2 = B1 =
α1 = α2 = β1 = 1, in Theorem 2.4, we get ϕn = 1 and then we obtain
an improvement of the estimates obtained for |a2| by Algahtani in [3,
Theorem 2.2].

(5) By setting λ = 0, γ = 1 and ` = 2, m = 1 with α1 = 2 and A1 = A2 =
B1 = α2 = β1 = 1, (W2

1f(z) = zf ′(z)) in Theorem 2.3, then we obtain
an improvement of the estimates obtained for |a2| by Algahtani in [3,
Theorem 2.8].

(6) By setting ψ(z) = 1, λ = 0, γ = 1 and ` = 2, m = 1 with α1 = 2
and A1 = A2 = B1 = α2 = β1 = 1, in Theorem 2.3, then we obtain
an improvement of the estimates obtained for |a2| by Algahtani in [3,
Theorem 2.9].

(7) By setting ψ(z) = 1, λ = 1, γ = 1 and ` = 2, m = 1 with α1 =
a, α2 = b, β1 = c, in Theorem 2.4, then we obtain an improvement of
the estimates obtained for |a2| by Omar et al., in [16, Theorem 1].

(8) By setting ψ(z) = 1, λ = 0, γ = 1 and ` = 2, m = 1 with A1 = A2 =
B1 = α1 = α2 = β1 = 1, in Theorem 2.3, we get ϕn = 1 and then we
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obtain an improvement of the estimates obtained for |a2| by Ali et al.,
in [4, Corollary 2.1].

(9) By setting ψ(z) = 1, λ = γ = 1 and ` = 2, m = 1 with A1 = A2 = B1 =
α1 = α2 = β1 = 1, in Theorem 2.4, we get ϕn = 1 and then we obtain
an improvement of the estimates obtained for |a2| by Ali et al., in [4,
Theorem 2.1].

(10) Theorem 2.3 and Theorem 2.4 are improvements of the results obtained
by Cho et al. [5], respectively.

3. Proof of Theorems

Proof of Theorem 2.1. For this work, let

F (z) =
1

γ

( z(W l
mf(z))′

(1− λ)W l
mf(z) + λz(W l

mf(z))′
− 1
)

and

G(w) =
1

γ

( w(W l
mg(w))′

(1− λ)W l
mg(w) + λw(W l

mg(w))′
− 1
)
.

For the function f ∈ Gl,mΣ (γ, λ, φ), we have the expansion (2.1) and for the
inverse map g = f−1, considering (1.2), we get that

G(w) =
1

γ

∞∑
n=2

Fn−1(ϕ2b2, ϕ3b3, · · · , ϕnbn)wn−1.(3.1)

Comparing the coefficients of (2.1) and (2.4), we conclude

1

γ

[
(1− λ)(n− 1)ϕnan +

n−2∑
l=1

K−1l

(
(1 + λ)ϕ2a2, (1 + 2λ)ϕ3a3, · · · , (1 + lλ)ϕl+1al+1

)(3.2)

× (1− λ)(n− l − 1)ϕn−lan−l

]
= Dn−1 +

n−1∑
t=1

t∑
k=1

CkD
k
t (p1, p2, · · · , pt)Dn−(t+1).

Similarly, from (3.1) and (2.5), we have

1

γ

[
(1− λ)(n− 1)ϕnbn +

n−2∑
l=1

K−1l

(
(1 + λ)ϕ2b2, (1 + 2λ)ϕ3b3, · · · , (1 + lλ)ϕl+1bl+1

)(3.3)

× (1− λ)(n− l − 1)ϕn−lbn−l

]
= Dn−1 +

n−1∑
t=1

t∑
k=1

CkD
k
t (q1, q2, · · · , qt)Dn−(t+1).

For ak = 0 where 2 ≤ k ≤ n− 1 and D0 6= 0, we have p2 = p3 = · · · = pn−2 = 0
and q2 = q3 = · · · = qn−2 = 0. So from (3.2) and also from equation (1.3) and
(3.3) we get, respectively,

1

γ
(1− λ)(n− 1)ϕnan = C1pn−1 +Dn−1(3.4)

and

1

γ
(1− λ)(n− 1)ϕnbn = −1

γ
(1 + λ)(n− 1)ϕnan = C1qn−1 +Dn−1.(3.5)
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By solving either of the equations (3.4) and (3.5) for an and using Lemma 1.3,
we obtain

|an| =
|γ||C1pn−1 +Dn−1|
(1− λ)(n− 1)ϕn

≤
|γ|
(
C1 + |Dn−1|

)
(1− λ)(n− 1)ϕn

and this completes the proof. �

Proof of Theorem 2.2. Let

F (z) =
1

γ

(z1−λ(W l
mf(z))′

[W l
mf(z)]1−λ

− 1
)

and

G(w) =
1

γ

(w1−λ(W l
mg(w))′

[W l
mg(w)]1−λ

− 1
)
.

For the function f ∈ Bl,mΣ (γ, λ, φ), by Lemma1.5 we have

F (z) =
1

γ

∞∑
n=2

(
1 +

n− 1

λ

)
Kλ
n−1(ϕ2a2, ϕ3a3, . . . , ϕnan)zn−1.(3.6)

For its inverse map g = f−1, regarding the equality (1.2) we have

G(w) =
1

γ

∞∑
n=2

(
1 +

n− 1

λ

)
Kλ
n−1(ϕ2b2, ϕ3b3, . . . , ϕnbn)wn−1.(3.7)

Comparing the coefficients of (3.6), and (2.4), we conclude that
(3.8)

1

γ

(
1 +

n− 1

λ

)
Kλ
n−1(ϕ2a2, ϕ3a3, . . . , ϕnan) = Dn−1+

n−1∑
t=1

t∑
k=1

CkD
k
t (p1, p2, · · · , pt)Dn−(t+1).

Similarly, from (3.7) and (2.5), we have

1

γ

(
1 +

n− 1

λ

)
Kλ
n−1(ϕ2b2, ϕ3b3, . . . , ϕnbn) = Dn−1 +

n−1∑
t=1

t∑
k=1

CkD
k
t (q1, q2, · · · , qt)Dn−(t+1).

(3.9)

Since ak = 0 where 2 ≤ k ≤ n − 1, and D0 6= 0 from (3.8) and (3.9) we get,
respectively,

1

γ

(
λ+ (n− 1)

)
ϕnan = C1pn−1 +Dn−1

and

− 1

γ

(
λ+ (n− 1)

)
ϕnan = C1qn−1 +Dn−1.

By solving either of the above equations for an and using Lemma 1.3, we con-
clude the desired results and this completes the proof. �
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Proof of Theorem 2.3. For n = 2 and n = 3 in (3.2) and (3.3), respectively,
we obtain

(1− λ)ϕ2a2 = γD0C1p1,(3.10)

(λ2 − 1)ϕ2
2a

2
2 + 2(1− λ)ϕ3a3 = γD0[C1p2 + C2p

2
1] + γD1C1p1,(3.11)

−(1− λ)ϕ2a2 = γD0C1q1,(3.12)

(λ2 − 1)ϕ2
2a

2
2 + 2(1− λ)ϕ3(2a2

2 − a3) = γD0[C1q2 + C2q
2
1] + γD1C1q1.(3.13)

From (3.10) and (3.12), we get

p1 = −q1.(3.14)

Adding (3.11) and (3.13) and using (3.14) we obtain[
2(λ2 − 1)ϕ2

2 + 4(1− λ)ϕ3

]
a2

2 = γD0C1

[
p2 +

C2

C1
p2

1 + q2 +
C2

C1
q2

1

]
.

By using Lemma 1.4 we have∣∣2(λ2 − 1)ϕ2
2 + 4(1− λ)ϕ3

∣∣|a2|2 ≤ |γD0|C1

[
|p2 +

|C2|
C1

p2
1|+ |q2 +

C2

C1
q2

1|
]

≤ |γD0|C1

[
2 + 2

( |C2| − C1

C1

)
|p2

1|
]

= |γD0|C1

[
2 + 2

(
(|C2| − C1)(1− λ)2ϕ2

2|a2
2|

|γD0|2C3
1

)]
.

After simplification we have(
|γD0|C2

1

∣∣∣∣2(λ2 − 1)ϕ2
2 + 4(1− λ)ϕ3

∣∣∣∣+ 2(C1 − |C2|)(1− λ)2ϕ2
2

)
|a2|2 ≤ 2|γD0|2C3

1 ,

which implies that

|a2|2 ≤
|γD0|2C3

1

|γD0|C2
1

∣∣(λ2 − 1)ϕ2
2 + 2(1− λ)ϕ3

∣∣+ (C1 − |C2|)(1− λ)2ϕ2
2

and this completes the proof. �

Proof of Theorem 2.4. For n = 2 and n = 3 in (3.8) and (3.9), respectively,
we obtain

(1 + λ)ϕ2a2 = γD0C1p1,

(λ− 1)(λ+ 2)

2
ϕ2

2a
2
2 + (λ+ 2)ϕ3a3 = γD0[C1p2 + C2p

2
1] + γD1C1p1,

−(1 + λ)ϕ2a2 = γD0C1q1,(
(λ− 1)(λ+ 2)

2
ϕ2

2 + 2(λ+ 2)ϕ3

)
a2

2 − (λ+ 2)ϕ3a3 = γD0[C1q2 + C2q
2
1] + γD1C1q1.

With similar method to Theorem 2.3 we get the desired results and this com-
pletes the proof. �
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Conformable Fractional Approximation by
Choquet integrals

George A. Anastassiou
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University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we present the conformable fractional quantitative approxima-
tion of positive sublinear operators to the unit operator. These are given
a precise Choquet integral interpretation. Initially we start with the study
of the conformable fractional rate of the convergence of the well-known
Bernstein-Kantorovich-Choquet and Bernstein-Durrweyer-Choquet poly-
nomial Choquet-integral operators. Then we study in the fractional sense
the very general comonotonic positive sublinear operators based on the
representation theorem of Schmeidler (1986) [11]. We continue with the
conformable fractional approximation by the very general direct Choquet-
integral form positive sublinear operators. The case of convexity is also
studied throughly and the estimates become much simpler. All approxi-
mations are given via inequalities involving the modulus of continuity of
the approximated function�s higher order conformable fractional deriva-
tive.

2010 AMSMathematics Subject Classi�cation: 26A33, 41A17, 41A25,
41A35, 41A36.
Keywords and Phrases: Jackson type inequality, Choquet integral, Con-

formable Fractional derivative, comonotonicity of functions and operators, Bernstein-
Kantorovich-Choquet and Bernstein-Durrmeyer-Choquet operators, convexity.

1 Introduction

G. Choquet (1953) ([4]), introduced the capacities and his integral. Initially
these were applied to statistical mechanics and potential theory, and they gave
rise to the study of non-additive measure theory. Slowly but steady these ideas
of Choquet started to attract economists especially after the very important

1
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work of Shapley (1953) ([13]) in the study of cooperative games. Capacities and
Choquet integrals became main stream to Decision theorists since 1989 when
D. Schmeidler ([12]) was the �rst to use them in an axiomatic model of choice
with non-additive beliefs. The expected utility results are strengthned by the
use of Choquet capacities instead of probability measures.
In now days Choquet integral has wide applications, among others, to deci-

sion making under risk and uncertainty, in �nance, in economics, in portofolio
problems and in insurance.
Our motivation also comes from the foundations of Bayesian decision theory

and subjective probability.
Because of the paramount importance of Choquet integral, we decided to

research the related positive sublinear operators approximation, part of it is
exhibited in this work in the conformable fractional sense.

2 Background - I

Next we present brie�y about the Choquet integral, see also [8].
We make

De�nition 1 Consider 
 6= ? and let C be a �-algebra of subsets in 
.
(i) (see, e.g., [14], p. 63) The set function � : C ! [0;+1] is called a

monotone set function (or capacity) if � (?) = 0 and � (A) � � (B) for all
A;B 2 C, with A � B. Also, � is called submodular if

� (A [B) + � (A \B) � � (A) + � (B) , for all A;B 2 C:

� is called bounded if � (
) < +1 and normalized if � (
) = 1:
(ii) (see, e.g., [14], p. 233, or [4]) If � is a monotone set function on C and

if f : 
 ! R is C-measurable (that is, for any Borel subset B � R it follows
f�1 (B) 2 C), then for any A 2 C, the Choquet integral is de�ned by

(C)

Z
A

fd� =

Z +1

0

� (F� (f) \A) d� +
Z 0

�1
[� (F� (f) \A)� � (A)] d�;

where we used the notation F� (f) = f! 2 
 : f (!) � �g. Notice that if f � 0
on A, then in the above formula we get

R 0
�1 = 0:

The integrals on the right-hand side are the usual Riemann integral.
The function f will be called Choquet integrable on A if (C)

R
A
fd� 2 R.

Next we list some well known properties of the Choquet integral.

Remark 2 If � : C ! [0;+1] is a monotone set function, then the following
properties hold:

2
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(i) For all a � 0 we have (C)
R
A
afd� = a � (C)

R
A
fd� (if f � 0 then see,

e.g., [14], Theorem 11.2, (5), p. 228 and if f is arbitrary sign, then see, e.g.,
[5], p. 64, Proposition 5.1, (ii)).
(ii) For all c 2 R and f of arbitrary sign, we have (see, e.g., [14], pp.

232-233, or [5], p. 65) (C)
R
A
(f + c) d� = (C)

R
A
fd�+ c � � (A) :

If � is submodular too, then for all f; g of arbitrary sign and lower bounded,
we have (see, e.g., [5], p. 75, Theorem 6.3)

(C)

Z
A

(f + g) d� � (C)
Z
A

fd�+ (C)

Z
A

gd�:

(iii) If f � g on A then (C)
R
A
fd� � (C)

R
A
gd� (see, e.g., [14], p. 228,

Theorem 11.2, (3) if f; g � 0 and p. 232 if f; g are of arbitrary sign).
(iv) Let f � 0. If A � B then (C)

R
A
fd� � (C)

R
B
fd�. In addition, if � is

�nitely subadditive, then

(C)

Z
A[B

fd� � (C)
Z
A

fd�+ (C)

Z
B

fd�:

(v) It is immediate that (C)
R
A
1 � d� (t) = � (A) :

(vi) The formula � (A) =  (M (A)), where  : [0; 1]! [0; 1] is an increasing
and concave function, with  (0) = 0,  (1) = 1 and M is a probability measure
(or only �nitely additive) on a �-algebra on 
 (that is, M (?) = 0, M (
) = 1

and M is countably additive), gives simple examples of normalized, monotone
and submodular set functions (see, e.g., [5], pp. 16-17, Example 2.1). Such
of set functions � are also called distorsions of countably normalized, additive
measures (or distorted measures). For a simple example, we can take  (t) =
2t
1+t ;  (t) =

p
t:

If the above  function is increasing, concave and satis�es only  (0) =
0, then for any bounded Borel measure m, � (A) =  (m (A)) gives a simple
example of bounded, monotone and submodular set function.
(vii) If � is a countably additive bounded measure, then the Choquet integral

(C)
R
A
fd� reduces to the usual Lebesgue type integral (see, e.g., [5], p. 62, or

[14], p. 226).
(viii) If f � 0, then (C)

R
A
fd� � 0.

(ix) Let � =
p
M , where M is the Lebesgue measure on [0;+1), then � is

a monotone and submodular set function, furthermore � is strictly positive, see
[7].
(x) If 
 = RN , N 2 N, we call � strictly positive if � (A) > 0, for any open

subset A � RN :

We need some possibility theory:

De�nition 3 ([6]) For the 
 6= ?, the power set P (
) denotes the family of
all subsets of 
:

3
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(i) A function � : 
 ! [0; 1] with the property sup f� (s) : s 2 
g = 1, is
called possibility distribution on 
:
(ii) P : P (
) ! [0; 1] is called possibility measure, if it satis�es P (?) = 0,

P (
) = 1, and P ([i2IAi) = supfP (Ai) : i 2 Ig for all Ai � 
, and any I,
an at most countable family of indices. Note that if A;B � 
, A � B, then the
last property implies P (A) � P (B) and that P (A [B) � P (A) + P (B).
Any possibility distribution � on 
, induces the possibility measure P� :

P (
) ! [0; 1] ; P� (A) = supf� (s) : s 2 Ag, A � 
. Also, if f : 
 ! R+,
then the possibilistic integral of f on A � 
 with respect to P� is de�ned by
(Pos)

R
A
fdP� = supff (t)� (t) : t 2 Ag (see [6], chapter 1).

Note that any possiblity measure � is normalized, monotone and submod-
ular. From � (A [B) = maxf� (A) ; � (B)g we get monotonicity, and from
� (A \B) � minf� (A) ; � (B)g we derive the submodularity.

3 Background - II

We make

De�nition 4 ([2]) Let f : [a; b] � [0;1)! R and � 2 (0; 1]. We say that f is
an �-fractional continuous function, i¤ 8 " > 0 9 � > 0 : for any x; y 2 [a; b]
such that jx� � y�j � � we get that jf (x)� f (y)j � ".

We mention

Theorem 5 ([2]) Over [a; b] � [0;1), � 2 [0; 1], an �-fractional continuous
function is a uniformly continuous function and vice versa, a uniformly contin-
uous function is an �-fractional continuous function.

We need

De�nition 6 ([2]) Let [a; b] � [0;1), � 2 [0; 1]. We de�ne the �-fractional
modulus of continuity:

!�1 (f; �) := sup
x;y2[a;b]:
jx��y�j��

jf (x)� f (y)j , � > 0: (1)

Properties ([2]):
1) !�1 (f; 0) = 0:
2) !�1 (f; �) ! 0 as � # 0, i¤ f is in the set of all �-fractional continuous

functions, denoted as f 2 C� ([a; b] ;R) (= C ([a; b] ;R)).
3) !�1 is � 0 and non-decreasing on R+:

4
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4) !�1 is subadditive:

!�1 (f; t1 + t2) � !�1 (f; t1) + !�1 (f; t2) : (2)

5) !�1 is continuous on R+:
6) Clearly it holds

!�1 (f; t1 + :::+ tn) � !�1 (f; t1) + :::+ !�1 (f; tn) ; (3)

for t = t1 = ::: = tn, we obtain

!�1 (f; nt) = n!
�
1 (f; t) : (4)

7) Let � � 0, � =2 N, we get

!�1 (f; �t) � (�+ 1)!�1 (f; t) : (5)

We notice that !�1 (f; �) is �nite when f is uniformly continuous on [a; b] �
[0;1).
We need

De�nition 7 ([9], [10]) Let f : [0;1) ! R. The conformable �-fractional
derivative for � 2 (0; 1] is given by

D�f (t) := lim
"!0

f
�
t+ "t1��

�
� f (t)

"
; (6)

D�f (0) = lim
t!0+

D�f (t) :

If f is di¤erentiable, then

D�f (t) = t
1��f 0 (t) ; (7)

where f 0 is the usual derivative.
We de�ne Dn

�f = D
n�1
� (D�f), D0

�f = f:

If f : [0;1)! R is �-di¤erentiable at t0 > 0, � 2 (0; 1], then f is continuous
at t0, see [10].
We need

De�nition 8 ([2]) Here C+ ([a; b]) := ff : [a; b] � [0;1) ! R+, continuous
functionsg: Let LN : C+ ([a; b])! C+ ([a; b]), operators, 8 N 2 N, such that
(i)

LN (�f) = �LN (f) ; 8� � 0;8f 2 C+ ([a; b]) ; (8)

(ii) if f; g 2 C+ ([a; b]) : f � g; then

LN (f) � LN (g) , 8N 2 N; (9)

(iii)
LN (f + g) � LN (f) + LN (g) ; 8 f; g 2 C+ ([a; b]) : (10)

We call fLNgN2N positive sublinear operators.

5
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We need

Theorem 9 ([2]) Let � 2 (0; 1], [a; b] � [0;1). Suppose f is �-conformable
fractional di¤erentiable on [a; b]. D�f is continuous on [a; b]. Let an x 2 [a; b]
such that D�f (x) = 0, and LN from C+ ([a; b]) into itself, positive sublinear op-

erators. Assume that LN (1) = 1 and LN
�
j� � xj�+1

�
(x) ; LN

�
(� � x)2(�+1)

�
(x) >

0, 8 N 2 N.
Then

jLN (f) (x)� f (x)j �
!�1

�
D�f;

�
LN

�
(� � x)2(�+1)

�
(x)
� �
2(�+1)

�
�

���
LN

�
j� � xj�+1

�
(x)
� �
�+1

+
1

2

�
LN

�
(� � x)2(�+1)

�
(x)
� �
2(�+1)

�
; 8 N 2 N:

(11)

We make

Remark 10 ([2]) By [2], we get that

LN

�
j� � xj�+1

�
(x) �

�
LN

�
(� � x)2(�+1)

�
(x)
� 1
2

: (12)

As N ! +1, by (11) and (12), and LN
�
(� � x)2(�+1)

�
(x)! 0, we obtain that

LN (f) (x)! f (x) :

We need

Theorem 11 ([2]) Let � 2 (0; 1], n 2 N. Suppose f is n times conformable
�-fractional di¤erentiable on [a; b] � [0;1), and Dn

�f is continuous on [a; b].
For a �xed x 2 [a; b] we have Dk

�f (x) = 0, k = 1; :::; n. Let positive sublin-
ear operators fLNgN2N from C+ ([a; b]) into itself, such that LN (1) = 1, and

LN

�
j� � xjn(�+1)

�
(x) ; LN

�
j� � xj(n+1)(�+1)

�
(x) > 0, 8 N 2 N. Then

jLN (f) (x)� f (x)j �
!�1

�
Dn
�f;
�
LN

�
j� � xj(n+1)(�+1)

�
(x)
� �
(n+1)(�+1)

�
�nn!

�
(13)��

LN

�
j� � xjn(�+1)

�
(x)
� �
�+1

+
1

(n+ 1)

�
LN

�
j� � xj(n+1)(�+1)

�
(x)
� n�
(n+1)(�+1)

�
;

8 N 2 N:

We make

6
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Remark 12 ([2]) By [2], we get that

LN

�
j� � xjn(�+1)

�
(x) �

�
LN

�
j� � xj(n+1)(�+1)

�
(x)
� n
n+1

: (14)

As N ! +1, by (13), (14), and LN
�
j� � xj(n+1)(�+1)

�
(x)! 0, we derive that

LN (f) (x)! f (x) :

We also need

De�nition 13 Let f 2 C ([a; b]). We de�ne the usual �rst modulus of continu-
ity of f as:

!1 (f; �) := sup
x;y2[a;b]:
jx�yj��

jf (x)� f (y)j , � > 0: (15)

We need

Theorem 14 ([3]) Let � 2 (0; 1] and n 2 N. Suppose f 2 C+ ([a; b]) is n
times conformable �-fractional di¤erentiable on [a; b] � [0;1), and x 2 (a; b),
and Dn

�f is continuous on [a; b]. Let 0 < h � min (x� a; b� x) and assume
jDn

�f j is convex over [a; b]. Furthermore assume that Dk
�f (x) = 0, k = 1; :::; n.

Let fLNgN2N from C+ ([a; b]) into itself, positive sublinear operators such that:
LN (1) = 1, 8 N 2 N: Then

jLN (f) (x)� f (x)j �
�
!1 (D

n
�f; h) b

1��

(n+ 1)!�n+1h

�
LN

�
j� � xj(n+1)�

�
(x) ; 8 N 2 N:

(16)

We have

Theorem 15 ([3]) All as in Theorem 14. Additionally assume that

LN

�
j� � xj(n+1)(�+1)

�
(x) > 0; 8 N 2 N. Then

jLN (f) (x)� f (x)j �
�
!1 (D

n
�f; h) b

1��

(n+ 1)!�n+1h

��
LN

�
j� � xj(n+1)(�+1)

�
(x)
� �
�+1

;

(17)
8 N 2 N:

An application of Theorem 15 follows:

Theorem 16 ([3])Let fLNgN2N from C+ ([a; b]) into itself, positive sublinear

operators: LN (1) = 1, 8 N 2 N: Also x 2 (a; b) and LN
�
j� � xj(n+1)(�+1)

�
(x) >

0; 8 N 2 N: Here � 2 (0; 1] and n 2 N. Suppose f 2 C+ ([a; b]) is n
times conformable �-fractional di¤erentiable on [a; b] � [0;1), and Dn

�f is

7
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continuous on [a; b]. Assume here that 0 <
�
LN

�
j� � xj(n+1)(�+1)

�
(x)
� �
�+1 �

min (x� a; b� x) ; 8 N 2 N : N � N� 2 N, and assume jDn
�f j is convex over

[a; b]. Furthermore assume that Dk
�f (x) = 0, k = 1; :::; n. Then

jLN (f) (x)� f (x)j �
b1��!1

�
Dn
�f;
�
LN

�
j� � xj(n+1)(�+1)

�
(x)
� �
�+1

�
(n+ 1)!�n+1

; (18)

8 N 2 N : N � N� 2 N:
If LN

�
j� � xj(n+1)(�+1)

�
(x)! 0, then LN (f) (x)! f (x), as N ! +1:

An application of Theorem 14 follows:

Theorem 17 ([3]) Let fLNgN2N from C+ ([a; b]) into itself, positive sublinear

operators: LN (1) = 1, 8 N 2 N: Also LN
�
j� � xj(n+1)�

�
(x) > 0; 8 N 2 N:

Here � 2 (0; 1]; n 2 N and x 2 (a; b); [a; b] � [0;1): Suppose f 2 C+ ([a; b]) is
n times conformable �-fractional di¤erentiable on [a; b], and Dn

�f is continuous

on [a; b]. Let 0 < LN

�
j� � xj(n+1)�

�
(x) � min (x� a; b� x) ; 8 N � N�; N;

N� 2 N, and assume jDn
�f j is convex over [a; b]. Furthermore assume that

Dk
�f (x) = 0, k = 1; :::; n. Then

jLN (f) (x)� f (x)j �
b1��!1

�
Dn
�f; LN

�
j� � xj(n+1)�

�
(x)
�

(n+ 1)!�n+1
; (19)

8 N � N�, where N;N� 2 N:
If LN

�
j� � xj(n+1)�

�
(x)! 0, then LN (f) (x)! f (x), as N ! +1:

4 Background - III

We mention

De�nition 18 ([7]) Let I = [0; 1], BI the �-algebra of all Borel measurable sub-
sets of I, (�N;x)N2N, x2I will be the collection of the family �N;x = f�N;k;xgNk=0;
of monotone, submodular and strictly positive set functions �N;k;x on BI :
Let f : [0; 1] ! R+ be a BI-measurable function which is bounded, and call

pN;k (x) =

�
N

k

�
xk (1� x)N�k, for any x 2 [0; 1].

The Bernstein-Kantorovich-Choquet operators are de�ned by the formula

KN;�N;x (f) (x) =
NX
k=0

pN;k (x)
(C)

R (k+1)
(N+1)

k
(N+1)

f (t) d�N;k;x (t)

�N;k;x

�h
k

(N+1) ;
(k+1)
(N+1)

i� ; 8 x 2 [0; 1] : (20)

If �N;k;x = �, for all N;x; k, we will denote KN;�N;x (f) := KN;� (f) :

8
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Theorem 19 ([7]) Suppose that �N;k;x = � :=
p
M , for all N; k and x, where

M is the Lebesgue measure on [0; 1] : Then

jKN;� (f) (x)� f (x)j � 2!1

 
f;

p
x (1� x)p
N

+
1

N

!
; (21)

8 N 2 N, x 2 [0; 1], f 2 C+ ([0; 1]), above !1 is over [0; 1] :

Remark 20 By [7] we have that

KN;� (j� � xj) (x) �
p
x (1� x)p
N

+
1

N
; 8 N 2 N: (22)

Let m > 1, notice that j� � xjm�1 � 1, therefore

j� � xjm = j� � xj j� � xjm�1 � j� � xj ;

hence
KN;� (j� � xjm) (x) � KN;� (j� � xj) (x) ;

that is

KN;� (j� � xjm) (x) �
p
x (1� x)p
N

+
1

N
; 8 x 2 [0; 1] ; N 2 N; m � 1: (23)

Notice that KN;� (1) = 1, 8 N 2 N.
Clearly KN;� operators are positive sublinear operators from C+ ([0; 1]) into

itself.

We mention

De�nition 21 ([8]) Here we consider measures of possibility. Denoting pN;k (x) =�
N

k

�
xk (1� x)N�k, let us de�ned

�N;k (t) :=
pN;k (t)

kkN�N (N � k)N�k
�
N

k

� = tk (1� t)N�k

kkN�N (N � k)N�k
; k = 0; :::; N:

(24)
By convention we assume that 00 = 1, so that the cases k = 0, and k = N make
sense. By considering the root k

N of p0N;k (x), it is clear that

maxfpN;k (t) : t 2 [0; 1]g = kkN�N (N � k)N�k
�
N

k

�
;

which implies that each �N;k is a possibility distribution on [0; 1] :

9

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.2, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

280 Anastassiou 272-293



Denoting by P�N;k the possibility measure induced by �N;k and �n;x := �N :=
fP�N;kgNk=0 (that is �N is independent of x), we de�ne the nonlinear Bernstein-
Durrmeyer-Choquet polynomial operators with respect to the set functions in �N
given by the formula

DN;�N (f) (x) :=
NX
k=0

pN;k (x)
(C)

R 1
0
f (t) tk (1� t)N�k dP�N;k (t)

(C)
R 1
0
tk (1� t)N�k dP�N;k (t)

; (25)

8 x 2 [0; 1], N 2 N, f 2 C+ ([0; 1]) :

Remark 22 Above P�N;k is bounded, monotone, submodular and strictly posi-
tive, N 2 N, k = 0; 1; :::; N . Notice that DN;�N (1) = 1, 8 N 2 N.
Clearly DN;�N operators are positive sublinear operators mapping C+ ([0; 1])

into itself.

We mention

Theorem 23 ([8]) For every f 2 C+ ([0; 1]), x 2 [0; 1] and N 2 N� f1g, we
have

jDN;�N (f) (x)� f (x)j � 2!1

 
f;

�
1 +

p
2
�p

x (1� x) +
p
2
p
x

p
N

+
1

N

!
; (26)

where !1 is on [0; 1] :

Remark 24 By [8] we have that

DN;�N (j� � xj) (x) �
�
1 +

p
2
�p

x (1� x) +
p
2
p
x

p
N

+
1

N
; 8 N 2 N� f1g:

(27)
Let m > 1, notice that j� � xjm�1 � 1, therefore

j� � xjm = j� � xj j� � xjm�1 � j� � xj ;

hence
DN;�N (j� � xj

m
) (x) � DN;�N (j� � xj) (x) ;

that is

DN;�N (j� � xj
m
) (x) �

�
1 +

p
2
�p

x (1� x) +
p
2
p
x

p
N

+
1

N
; (28)

8 N 2 N� f1g; 8 x 2 [0; 1], m � 1:

We make

10
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Remark 25 When x 2 [0; 1], then the max (x (1� x)) = 1
4 , at x =

1
2 . There-

fore it holds p
x (1� x)p
N

+
1

N
� 1

2
p
N
+
1

N
; (29)

8 x 2 [0; 1] ; 8 N 2 N.
Similarly, it holds�

1 +
p
2
�p

x (1� x) +
p
2
p
x

p
N

+
1

N
� 1 + 3

p
2

2
p
N

+
1

N
; (30)

8 x 2 [0; 1] ; 8 N 2 N� f1g.

Corollary 26 (to Theorem 19) It holds

kKN;� (f)� fk1 � 2!1
�
f;

1

2
p
N
+
1

N

�
; (31)

8 N 2 N, f 2 C+ ([0; 1]) :

Corollary 27 (to Theorem 23) It holds

kDN;�N (f)� fk1 � 2!1

 
f;
1 + 3

p
2

2
p
N

+
1

N

!
; (32)

8 N 2 N� f1g, f 2 C+ ([0; 1]) :

5 Main Results

Here �rst we apply some of the main theorems mentioned in section 3 to the
Bernstein-Kantorovich-Choquet operators KN;�, where � :=

p
M , with M the

Lebesgue measure on [0; 1]. More precisely here it is

KN;� (f) (x) =
NX
k=0

pN;k (x)
(C)

R (k+1)
(N+1)

k
(N+1)

f (t) d� (t)

�
�h

k
(N+1) ;

(k+1)
(N+1)

i� ; (33)

8 x 2 [0; 1] ; 8 N 2 N, f 2 C+ ([0; 1]) :
It follows applications to Bernstein-Durremeyer-Choquet operators DN;�N ,

see (25).
In particular we need (a variation of Theorem 11):

Theorem 28 ([2]) Let � 2 (0; 1] and n 2 N : n� � 1. That is 1
n � � � 1:

Suppose f is n times conformable �-fractional di¤erentiable on [a; b] � [0;1),
and Dn

�f is continuous on [a; b]. For a �xed x 2 [a; b] we have Dk
�f (x) = 0,

11
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k = 1; :::; n. Let positive sublinear operators fLNgN2N from C+ ([a; b]) into
itself, such that LN (1) = 1, 8 N 2 N; and � > 0. Then

jLN (f) (x)� f (x)j �
!�1 (D

n
�f; �)

�nn!
��

LN (j� � xjn�) (x) +
1

(n+ 1) �
LN

�
j� � xj(n+1)�

�
(x)

�
; (34)

8 N 2 N:

We present

Theorem 29 Let � 2 (0; 1] and n 2 N : n� � 1. Suppose f is n times
conformable �-fractional di¤erentiable on [0; 1], and Dn

�f is continuous on [0; 1].
For a �xed x 2 [0; 1] we have Dk

�f (x) = 0, k = 1; :::; n. Then

jKN;� (f) (x)� f (x)j �
!�1

 
Dn
�f;

�q
x(1�x)
N + 1

N

� 1
n+1

!
�nn!

�24 rx (1� x)
N

+
1

N

!
+

1

(n+ 1)

 r
x (1� x)
N

+
1

N

! n
n+1

35 �
!�1

�
Dn
�f;
�

1
2
p
N
+ 1

N

� 1
n+1

�
�nn!

"�
1

2
p
N
+
1

N

�
+

1

(n+ 1)

�
1

2
p
N
+
1

N

� n
n+1

#
;

(35)
8 N 2 N:
Notice that lim

N!1
KN;� (f) (x) = f (x) :

Proof. By (34) we have

jKN;� (f) (x)� f (x)j �
!�1 (D

n
�f; �)

�nn!
��

KN;� (j� � xjn�) (x) +
1

(n+ 1) �
KN;�

�
j� � xj(n+1)�

�
(x)

�
(23)
�

!�1 (D
n
�f; �)

�nn!

" r
x (1� x)
N

+
1

N

!
+

1

(n+ 1) �

 r
x (1� x)
N

+
1

N

!#
(36)

(choose � :=
�q

x(1�x)
N + 1

N

� 1
n+1

> 0, then �n+1 =
q

x(1�x)
N + 1

N , and �
n =�q

x(1�x)
N + 1

N

� n
n+1

)

=

!�1

 
Dn
�f;

�q
x(1�x)
N + 1

N

� 1
n+1

!
�nn!

�

12
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24 rx (1� x)
N

+
1

N

!
+

1

(n+ 1)

 r
x (1� x)
N

+
1

N

! n
n+1

35 (29)
�

!�1

�
Dn
�f;
�

1
2
p
N
+ 1

N

� 1
n+1

�
�nn!

"�
1

2
p
N
+
1

N

�
+

1

(n+ 1)

�
1

2
p
N
+
1

N

� n
n+1

#
;

(37)
proving the claim.
We continue with

Theorem 30 All as in Theorem 29. Then

j(DN;�N (f)) (x)� f (x)j �
!�1

 
Dn
�f;

�
(1+

p
2)
p
x(1�x)+

p
2x

p
N

+ 1
N

� 1
n+1

!
�nn!" �

1 +
p
2
�p

x (1� x) +
p
2x

p
N

+
1

N

!
+

1

(n+ 1)

"�
1 +

p
2
�p

x (1� x) +
p
2x

p
N

+
1

N

# n
n+1

35 �
!�1

�
Dn
�f;
�
1+3

p
2

2
p
N
+ 1

N

� 1
n+1

�
�nn!

� (38)24 1 + 3p2
2
p
N

+
1

N

!
+

1

(n+ 1)

"
1 + 3

p
2

2
p
N

+
1

N

# n
n+1

35 ;
8 N 2 N� f1g.
Notice that lim

N!+1
DN;�N (f) (x) = f (x) :

Proof. By (34) we have

jDN;�N (f) (x)� f (x)j �
!�1 (D

n
�f; �)

�nn!
��

DN;�N (j� � xj
n�
) (x) +

1

(n+ 1) �
DN;�N

�
j� � xj(n+1)�

�
(x)

�
(28)
�

!�1 (D
n
�f; �)

�nn!

" �
1 +

p
2
�p

x (1� x) +
p
2x

p
N

+
1

N

!
+

1

(n+ 1) �

 �
1 +

p
2
�p

x (1� x) +
p
2x

p
N

+
1

N

!#
(39)

13
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(choose � :=
�
(1+

p
2)
p
x(1�x)+

p
2x

p
N

+ 1
N

� 1
n+1

> 0, then

�n+1 =
(1+

p
2)
p
x(1�x)+

p
2x

p
N

+ 1
N , and �

n =

�
(1+

p
2)
p
x(1�x)+

p
2x

p
N

+ 1
N

� n
n+1

)

=

!�1

 
Dn
�f;

�
(1+

p
2)
p
x(1�x)+

p
2x

p
N

+ 1
N

� 1
n+1

!
�nn!

�" �
1 +

p
2
�p

x (1� x) +
p
2x

p
N

+
1

N

!
+

1

(n+ 1)

"�
1 +

p
2
�p

x (1� x) +
p
2x

p
N

+
1

N

# n
n+1

35 (30)
� (40)

!�1

�
Dn
�f;
�
1+3

p
2

2
p
N
+ 1

N

� 1
n+1

�
�nn!

�24 1 + 3p2
2
p
N

+
1

N

!
+

1

(n+ 1)

"
1 + 3

p
2

2
p
N

+
1

N

# n
n+1

35 ;
8 N 2 N� f1g, proving the claim.
Next we apply Theorem 14.
We give

Theorem 31 Let � 2 (0; 1] and n 2 N such that (n+ 1)� � 1, that is 1
n+1 �

� � 1. Suppose f 2 C+ ([0; 1]) is n times conformable �-fractional di¤erentiable
on [0; 1], and x 2 (0; 1), and Dn

�f is continuous on [0; 1]. Let N
� 2 N such that

1
2
p
N�+

1
N� � min (x; 1� x) and assume jDn

�f j is convex over [0; 1]. Furthermore
assume that Dk

�f (x) = 0, k = 1; :::; n. Then

j(KN;� (f)) (x)� f (x)j �
!1

�
Dn
�f;

1
2
p
N
+ 1

N

�
(n+ 1)!�n+1

; (41)

8 N � N�, N 2 N:
It holds lim

N!+1
KN;� (f) (x) = f (x) :

Proof. By (16) we get

jKN;� (f) (x)� f (x)j �
!1 (D

n
�f; h)

(n+ 1)!�n+1h
KN;�

�
j� � xj(n+1)�

�
(x)

(23)
�

!1 (D
n
�f; h)

(n+ 1)!�n+1h

 r
x (1� x)
N

+
1

N

!
(29)
�

14
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!1 (D
n
�f; h)

(n+ 1)!�n+1h

�
1

2
p
N
+
1

N

�
= (42)

(setting h := 1
2
p
N
+ 1

N > 0)

!1

�
Dn
�f;

1
2
p
N
+ 1

N

�
(n+ 1)!�n+1

;

proving the claim.
We continue with

Theorem 32 Let x 2 (0; 1) and N� 2 N�f1g : (1+3
p
2)

2
p
N� + 1

N� � min (x; 1� x).
The rest as in Theorem 31. Then

j(DN;�N (f)) (x)� f (x)j �
!1

�
Dn
�f;

(1+3
p
2)

2
p
N

+ 1
N

�
(n+ 1)!�n+1

; (43)

8 N � N�, N 2 N� f1g.
It holds lim

N!+1
DN;�N (f) (x) = f (x) :

Proof. We use Theorem 14:
By (16) we get

jDN;�N (f) (x)� f (x)j �
!1 (D

n
�f; h)

(n+ 1)!�n+1h
DN;�N

�
j� � xj(n+1)�

�
(x)

(28)
�

!1 (D
n
�f; h)

(n+ 1)!�n+1h

 �
1 +

p
2
�p

x (1� x) +
p
2x

p
N

+
1

N

!
(30)
�

!1 (D
n
�f; h)

(n+ 1)!�n+1h

 �
1 + 3

p
2
�

2
p
N

+
1

N

!
(44)

(setting h := (1+3
p
2)

2
p
N

+ 1
N > 0)

=

!1

�
Dn
�f;

(1+3
p
2)

2
p
N

+ 1
N

�
(n+ 1)!�n+1

;

proving the claim.
We need

De�nition 33 Let 
 be a set, and let f; g : 
 ! R be bounded functions. We
say that f and g are comonotonic, if for every !; !0 2 
,

(f (!)� f (!0)) (g (!)� g (!0)) � 0: (45)

15
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We also need the famous Schmeidler�s Representation Theorem (Schmeidler
1986)

Theorem 34 ([11]) Denote with L1 (A) the vector space of A-measurable bounded
real valued functions on 
, where A � 2
 is a �-algebra. Given a real functional
� : L1 (A)! R, assume that for f; g 2 L1 (A):
(i) � (cf) = c� (f), 8 c > 0;
(ii) f � g, implies � (f) � � (g),
and
(iii) � (f + g) = � (f) + � (g), for any comonotonic f; g:
Then  (A) := � (1A), 8 A 2 A, de�nes a �nite monotone set function on

A, and � is the Choquet integral with respect to , i.e.

� (f) = (C)

Z



f (t) d (t) ; 8 f 2 L1 (A) : (46)

Above 1A denotes the characteristic function on A.

Next we give nice interpretations of Theorems 9, 11, 16, 17 involving Choquet
integrals and based on Theorem 34.
We make

Remark 35 Consider here [a; b] � R+, B = B ([a; b]) is the Borel �-algebra
on [a; b], and L1 (B) is the vector space of B-measurable bounded real valued
functions on [a; b]. Let (LN )N2N be a sequence of positive sublinear operators
from L1 (B) into C+ ([a; b]), and x 2 [a; b]. That is here LN ful�lls the positive
homogenuity, monotonicity and subadditivity properties, see (8)-(10).
Assume LN (1) = 1, 8 N 2 N. Clearly here L1 (B) � C+ ([a; b]), where

[a; b] � [0;1): In particular we treat LN jC+([a;b]), just denoted for simplicity by
LN , 8 N 2 N.
It is clear that LN (�) (x) : L1 (B)! R is a functional, 8 N 2 N. It has the

properties:
(i)

LN (cf) (x) = cLN (f) (x) ; 8 c > 0; 8 f 2 L1 (B) ; (47)

(ii)

f � g, implies LN (f) (x) � LN (g) (x) ; where f; g 2 L1 (B) ; (48)

and
(iii)

LN (f + g) (x) � LN (f) (x) + LN (g) (x) ; 8 f; g 2 L1 (B) : (49)

For comonotonic f; g 2 L1 (B), we further assume that

LN (f + g) (x) = LN (f) (x) + LN (g) (x) : (50)

In that case LN is called comonotonic.
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By Theorem 34 we get that:

N;x (A) := LN (1A) (x) , 8 A 2 B, 8 N 2 N; (51)

de�nes a �nite monotone set function on B, and

LN (f) (x) = (C)

Z b

a

f (t) dN;x (t) ; (52)

8 f 2 L1 (B), 8 N 2 N.
In particular (52) is valid for any f 2 C+ ([a; b]). Furthermore N;x is nor-

malized, that is N;x ([a; b]) = 1, 8 N 2 N.
We give

Theorem 36 Let � 2 (0; 1], [a; b] � [0;1). Suppose f is R+ valued and is
�-conformable fractional di¤erentiable on [a; b], with D�f being continuous on
[a; b]. Let x 2 [a; b] such that D�f (x) = 0, and (LN )N2N be a sequence of posi-
tive sublinear comonotonic operators from L1 (B) into C+ ([a; b]). We assume
that LN (1) = 1, and (C)

R b
a
jt� xj�+1 dN;x (t) > 0, (C)

R b
a
(t� x)2(�+1) dN;x (t)

> 0, 8 N 2 N. Then

jLN (f) (x)� f (x)j �
!�1

�
D�f;

�
(C)

R b
a
(t� x)2(�+1) dN;x (t)

� �
2(�+1)

�
�

�24 (C)Z b

a

jt� xj�+1 dN;x (t)
! �

�+1

+
1

2

 
(C)

Z b

a

(t� x)2(�+1) dN;x (t)
! �

2(�+1)

35 ;
(53)

8 N 2 N.
As (C)

R b
a
(t� x)2(�+1) dN;x (t)! 0, N !1, we get that lim

N!+1
LN (f) (x) =

f (x) :

Proof. By Theorems 9, 34.

Theorem 37 Let � 2 (0; 1], n 2 N. Suppose f is R+ valued and is n times
conformable �-fractional di¤erentiable on [a; b] � [0;1), and Dn

�f is continuous
on [a; b]. For a �xed x 2 [a; b] we have Dk

�f (x) = 0, k = 1; :::; n: Let positive
sublinear comonotonic operators fLNgN2N from L1 (B) into C+ ([a; b]), such
that (C)

R b
a
jt� xjn(�+1) dN;x (t), (C)

R b
a
jt� xj(n+1)(�+1) dN;x (t) > 0, 8 N 2

N. Then

jLN (f) (x)� f (x)j �
!�1

�
Dn
�f;
�
(C)

R b
a
jt� xj(n+1)(�+1) dN;x (t)

� �
(n+1)(�+1)

�
�nn!

�
(54)
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24 (C)Z b

a

jt� xjn(�+1) dN;x (t)
! �

�+1

+

1

(n+ 1)

 
(C)

Z b

a

jt� xj(n+1)(�+1) dN;x (t)
! n�

(n+1)(�+1)

35 ;
8 N 2 N.
As (C)

R b
a
jt� xj(n+1)(�+1) dN;x (t)! 0, when N !1, we get that

lim
N!+1

LN (f) (x) = f (x) :

Proof. By Theorems 11, 34.
We continue with

Theorem 38 Let fLNgN2N from L1 (B) into C+ ([a; b]) positive sublinear
comonotonic operators, such that LN (1) = 1, 8 N 2 N. Additionally assume
that (C)

R b
a
jt� xj(n+1)(�+1) dN;x (t) > 0, 8 N 2 N; x 2 (a; b). Here � 2

(0; 1], and n 2 N. Suppose f 2 C+ ([a; b]) is n times conformable �-fractional
di¤erentiable on [a; b] � [0;1), and Dn

�f is continuous on [a; b]. Assume here

0 <
�
(C)

R b
a
jt� xj(n+1)(�+1) dN;x (t)

� �
�+1 � min (x� a; b� x), 8 N 2 N :

N � N� 2 N, and assume jDn
�f j is convex over [a; b]. Furthermore assume that

Dk
�f (x) = 0, k = 1; :::; n. Then

jLN (f) (x)� f (x)j �
b1��!1

�
Dn
�f;
�
(C)

R b
a
jt� xj(n+1)(�+1) dN;x (t)

� �
�+1

�
(n+ 1)!�n+1

;

(55)
8 N � N�; N;N� 2 N.
If (C)

R b
a
jt� xj(n+1)(�+1) dN;x (t) ! 0, then LN (f) (x) ! f (x) as N !

1.

Proof. By Theorems 16, 34.

Theorem 39 Let fLNgN2N from L1 (B) into C+ ([a; b]) positive sublinear
comonotonic operators, such that LN (1) = 1, 8 N 2 N. Additionally assume
that (C)

R b
a
jt� xj(n+1)� dN;x (t) > 0, 8 N 2 N; x 2 (a; b). Here � 2 (0; 1],

and n 2 N. Suppose f 2 C+ ([a; b]) is n times conformable �-fractional di¤er-
entiable on [a; b] � [0;1), and Dn

�f is continuous on [a; b]. Assume here 0 <�
(C)

R b
a
jt� xj(n+1)� dN;x (t)

�
� min (x� a; b� x), 8 N 2 N : N � N� 2 N,

and assume jDn
�f j is convex over [a; b]. Furthermore assume that Dk

�f (x) = 0,
k = 1; :::; n. Then

jLN (f) (x)� f (x)j �
b1��!1

�
Dn
�f; (C)

R b
a
jt� xj(n+1)� dN;x (t)

�
(n+ 1)!�n+1

; (56)
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8 N � N�; where N;N� 2 N.
If (C)

R b
a
jt� xj(n+1)� dN;x (t)! 0, then LN (f) (x)! f (x) as N !1.

Proof. By Theorems 17, 34.
We make

Remark 40 Consider again [a; b] � R+, B = B ([a; b]) the Borel �-algebra on
[a; b]. For each N 2 N and each x 2 [a; b] consider the monotone set functions
�N;x;B ! R+. We assume that all �N;x are normalized, that is �N;x ([a; b]) = 1,
and submodular. Here we consider the operators TN : C+ ([a; b]) ! C+ ([a; b])

given by the formula

TN (f) (x) = (C)

Z b

a

f (t) d�N;x (t) ; (57)

8 N 2 N; 8 x 2 [a; b] :
Infact here �N;x are chosen so that TN (C+ ([a; b])) � C+ ([a; b]) :
We notice here that hold:
(i)

TN (�f) (x) = �TN (f) (x) ; 8 � � 0; (58)

(ii)
f � g, implies TN (f) (x) � TN (g) (x) ; (59)

and
(iii)

TN (f + g) (x) � TN (f) (x) + TN (g) (x) ; (60)

8 N 2 N; 8 x 2 [a; b] ; 8 f; g 2 C+ ([a; b]) :
Clearly TN are positive sublinear operators, compare to (8)-(10). We also

have that TN (1) = 1, 8 N 2 N:

We give

Theorem 41 Let � 2 (0; 1], [a; b] � [0;1). Suppose f is �-conformable frac-
tional di¤erentiable on [a; b]. D�f is continuous on [a; b]. Let an x 2 [a; b] such
that D�f (x) = 0. Assume (C)

R b
a
jt� xj�+1 d�N;x (t), (C)

R b
a
(t� x)2(�+1) d�N;x (t) >

0, 8 N 2 N. Then

jTN (f) (x)� f (x)j �
!�1

�
D�f;

�
(C)

R b
a
(t� x)2(�+1) d�N;x (t)

� �
2(�+1)

�
�

�24 (C)Z b

a

jt� xj�+1 d�N;x (t)
! �

�+1

+
1

2

 
(C)

Z b

a

(t� x)2(�+1) d�N;x (t)
! �

2(�+1)

35 ;
(61)
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8 N 2 N.
As N !1, and (C)

R b
a
(t� x)2(�+1) d�N;x (t)! 0, we obtain TN (f) (x)!

f (x) :

Proof. By Theorem 9.

Theorem 42 Let � 2 (0; 1], n 2 N. Suppose f is n times conformable �-
fractional di¤erentiable on [a; b] � [0;1) and takes values on R+: Dn

�f is con-
tinuous on [a; b]. For a �xed x 2 [a; b] we have Dk

�f (x) = 0, k = 1; :::; n: As-
sume that (C)

R b
a
jt� xjn(�+1) d�N;x (t), (C)

R b
a
jt� xj(n+1)(�+1) d�N;x (t) > 0,

8 N 2 N. Then

jTN (f) (x)� f (x)j �
!�1

�
Dn
�f;
�
(C)

R b
a
jt� xj(n+1)(�+1) d�N;x (t)

� �
(n+1)(�+1)

�
�nn!

�24 (C)Z b

a

jt� xjn(�+1) d�N;x (t)
! �

�+1

+

1

(n+ 1)

 
(C)

Z b

a

jt� xj(n+1)(�+1) d�N;x (t)
! n�

(n+1)(�+1)

35 ; (62)

8 N 2 N.
As N !1, and (C)

R b
a
jt� xj(n+1)(�+1) d�N;x (t)! 0, we get TN (f) (x)!

f (x) :

Proof. By Theorem 11.
We continue with

Theorem 43 Assume (C)
R b
a
jt� xj(n+1)(�+1) d�N;x (t) > 0, 8 N 2 N; x 2

(a; b). Here � 2 (0; 1], and n 2 N. Suppose f 2 C+ ([a; b]) is n times
conformable �-fractional di¤erentiable on [a; b] � [0;1), and Dn

�f is contin-

uous on [a; b]. Assume here that 0 <
�
(C)

R b
a
jt� xj(n+1)(�+1) d�N;x (t)

� �
�+1 �

min (x� a; b� x), 8 N 2 N : N � N� 2 N, and assume jDn
�f j is convex over

[a; b]. Furthermore assume that Dk
�f (x) = 0, k = 1; :::; n. Then

jTN (f) (x)� f (x)j �
b1��!1

�
Dn
�f;
�
(C)

R b
a
jt� xj(n+1)(�+1) d�N;x (t)

� �
�+1

�
(n+ 1)!�n+1

;

(63)
8 N 2 N : N � N� 2 N.
If (C)

R b
a
jt� xj(n+1)(�+1) d�N;x (t)! 0, then TN (f) (x)! f (x) as N !1.

Proof. By Theorem 16.
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Theorem 44 Assume (C)
R b
a
jt� xj(n+1)� d�N;x (t) > 0, 8 N 2 N. Here � 2

(0; 1], n 2 N and x 2 (a; b); [a; b] � [0;1): Suppose f 2 C+ ([a; b]) is n times
conformable �-fractional di¤erentiable on [a; b], and Dn

�f is continuous on [a; b].
Let 0 < (C)

R b
a
jt� xj(n+1)� d�N;x (t) � min (x� a; b� x), 8 N � N�; N;N� 2

N, and assume jDn
�f j is convex over [a; b]. Furthermore assume that Dk

�f (x) =

0, k = 1; :::; n. Then

jTN (f) (x)� f (x)j �
b1��!1

�
Dn
�f; (C)

R b
a
jt� xj(n+1)� d�N;x (t)

�
(n+ 1)!�n+1

; (64)

8 N � N�; where N;N� 2 N.
If (C)

R b
a
jt� xj(n+1)� d�N;x (t)! 0, then TN (f) (x)! f (x) as N !1.

Proof. By Theorem 17.
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The Minkowski Inequality and the Brunn-Minkowski Inequality

for Dual Orlicz Mixed Affine Quermassintegrals

Tongyi Ma

(College of Mathematics and Statistics, Hexi University,

Zhangye, Gansu 734000, P.R.China)

Abstract

In this paper, the Orlicz version of the classical dual Cauchy-Kubota formula is given and the

concept of dual affine quermassintegrals is extended to dual Orlicz mixed affine quermassintegrals

in the framework of Orlicz Brunn-Minkowski theory. Some inequalities for dual Orlicz mixed affine

quermassintegrals are obtained, such as dual Orlicz-Minkowski inequality and dual Orlicz-Brunn-

Minkowski inequality.

Keywords: Orlicz Brunn-Minkowski theory, integral geometry, dual affine quermassintegral.

1 Introduction

We work in Euclidean space Rn, and use voli(·) to denote the i-dimensional volume. The unit
sphere in Rn is written by Sn−1. In the projection of convex body K, quermassintegrals are important
geometric invariants and have different definitions in many areas of mathematics. In the theory of mixed
volumes quermassintegrals are usually called simple mixed volumes. The reader should refer to [24] and

[26] for details. Lutwak [21] introduced the dual quermassintegrals, W̃n−i, of a star body K. Suppose

W̃0 = voln(K) and W̃n = ωn. If 0 < i < n, then

W̃n−i(K) =
ωn
ωi

∫
G(n,i)

voli(K ∩ ξ)dµi(ξ), (1.1)

where the Grassmann manifold G(n, i) is endowed with the probability Haar measure µi, voli(K ∩ ξ) is
the i-dimensional volume of slice of K by an i-dimensional subspace ξ ⊂ Rn and ωi = πi/2/Γ(1 + i/2)
denotes the i-dimensional volume of the unit ball in Ri.

The quermassintegrals are connected with the projections of convex bodies, while the dual quermass-
integrals are closely related to the cross sections of star bodies, which is proved in [11] that they are the
only rotation invariant continuous star valuations with the corresponding homogeneity. Zhang [28] showed
that the dual quermassintegrals have the same kind of kinematic formulas as the quermassintegrals.

Affine quermassintegrals [16] is an important geometric invariants in the projection of convex body.

Lutwak [15] introduced the dual affine quermassintegrals, Φ̃n−i(K), of a star body K containing the
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This work was Supported by the National Natural Science Foundation of China(Grant No. 11561020) and was partly

supported by the National Natural Science Foundation of China (Grant No. 11371224).

E-mail: matongyi@126.com, matongyi−123@163.com (Tongyi Ma).

1

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.2, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

294 Tongyi Ma 294-304



origin in its interior. Suppose Φ̃0(K) = voln(K) and Φ̃n(K) = ωn. If 0 < i < n, then

Φ̃n−i(K) =
ωn
ωi

(∫
G(n,i)

voli(K ∩ ξ)ndµi(ξ)

) 1
n

. (1.2)

Grinberg [6] showed that both the affine quermassintegrals and the dual affine quermassintegrals are
invariant under volume-preserving affine transformations. However, the dual affine quermassintegrals of
star bodies received more considerable attention, see [6, 2, 16, 26, 27]. The aim of this paper is to study
them further.

Some opened articles [9, 13, 17, 18, 23, 25], Gardner’ work [3] and the classical Brunn-Minkowski
theory of convex bodies (see, e.g., [4, 26]) were generalized to the Orlicz space, which is called the Orlicz
Brunn-Minkowski theory and further extend the Lp-Brunn-Minkowski theory (see, e.g., [19, 20, 12]). We
considers a non-zero convex function ϕ : [0,∞) → [0,∞) in this paper. It is strictly increasing with
ϕ(0) = 0. Suppose that C is the class of convex and strictly increasing functions ϕ : [0,∞) → [0,∞),
where lim

t→∞
ϕ(t) = +∞, and ϕ(0) = 0. Note that Sno denotes the set of star bodies in Rn containing the

origin in their interiors.
The dual Orlicz mixed volume, Ṽ−ϕ(K,L), of K,L ∈ Sno is defined by

Ṽ−ϕ(K,L) =
−ϕ′r(1)

n
lim
ε→0+

voln(K+̃−ϕε ⋄ L)− voln(K)

ε
, (1.3)

where ϕ′r(1) is the right derivative of a real-valued function ϕ at 1 and K+̃−ϕε ⋄ L denotes the Orlicz

radial harmonic combination of K and L. It follows from (1.3) that the dual Orlicz mixed volume Ṽ−ϕ
has the following integral representation:

Ṽ−ϕ(K,L) =
1

n

∫
Sn−1

ϕ

(
ρK
ρL

)
ρK(u)ndS(u), (1.4)

In [5, 10, 22, 31, 20], the dual mixed volume is extended to the dual Lp-mixed volume. If ϕ(t) =
tp, 1 ≤ p <∞, then

Ṽ−p(K,L) =
1

n

∫
Sn−1

(
ρK(u)

ρL(u)

)p
ρnK(u)dS(u). (1.5)

Recently, Zhao [30] introduced the notion of dual Orlicz mixed quermassintegrals for 0 ≤ i ≤ n and
established its integral representation. If K,L ∈ Sno and ϕ ∈ C, then

W̃−ϕ,i(K,L) =
−ϕ′r(1)

n− i
lim
ε→0+

W̃i(K+̃−ϕε ⋄ L)− W̃i(K)

ε
, and (1.6)

W̃−ϕ,i(K,L) =
1

n

∫
Sn−1

ϕ

(
ρK
ρL

)
ρK(u)n−idS(u), i = 0, 1, · · · , n. (1.7)

In this paper, we first established the Orlicz version of the classical dual Cauchy-Kubota formula (1.1)

W̃−ϕ,n−i(K,L) =
ωn
ωi

∫
G(n,i)

Ṽ
(i)
−ϕ(K ∩ ξ, L ∩ ξ)dµi(ξ), (1.8)

where Ṽ
(i)
−ϕ(K ∩ ξ, L ∩ ξ) is the dual Orlicz mixed volume of the (i)-dimensional star bodies K ∩ ξ and

L ∩ ξ in the subspace ξ ∈ G(n, i).
For i = 1, 2, · · · , n, we further consider the following formula.

Φ̃ϕ,n−i(K,L) =
ωn
ωi

[
E(Ṽ

(i)
−ϕ(K ∩ ξ, L ∩ ξ)n)

]1/n
=

ωn
ωi

[ ∫
G(n,i)

Ṽ
(i)
−ϕ(K ∩ ξ, L ∩ ξ)ndµi(ξ)

] 1
n

, (1.9)
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and Φ̃ϕ,n−i(K,L) is known as the dual Orlicz mixed affine quermassintegrals.
Let ϕ(t) = tp with p ≥ 1. Then

Φ̃p,n−i(K,L) =
ωn
ωi

[ ∫
G(n,i)

Ṽ
(i)
−p (K ∩ ξ, L ∩ ξ)ndµi(ξ)

] 1
n

, (1.10)

where Ṽ
(i)
−p (K∩ξ, L∩ξ) denotes the dual Lp-mixed volume of K∩ξ and L∩ξ in the subspace ξ ∈ G(n, i).

Taking L = K in (1.9), Φ̃ϕ,n−i(K,K)/ϕ(1) = Φ̃n−i(K) is just the classical dual affine quermassinte-
grals of K.

On the basis of the above concepts, one aim of this paper is to establish the following dual Orlicz-
Minkowski inequality for dual Orlicz mixed affine quermassintegrals.

Theorem1.1. Suppose K,L ∈ Sno , n ≥ 3 and ϕ ∈ C. Then for 2 ≤ i ≤ n,

Φ̃ϕ,n−i(K,L) ≥ Φ̃n−i(K)ϕ

((
Φ̃n−i(K)

Φ̃n−i(L)

) 1
i
)
. (1.11)

If K and L are convex bodies containing the origin in their interiors, then equality holds in the inequality

(1.11) if and only if K and L are dilations.

As an application of Theorem 1.1, we prove a uniqueness theorem of convex bodies.
The other aim of this paper is to prove Orlicz radial sum versions of the dual Brunn-Minkowski

inequality for dual Orlicz mixed affine quermassintegrals.

Theorem1.2. Suppose K,L ∈ Sno and ϕ ∈ C. Then for 2 ≤ i ≤ n,

ϕ

((
Φ̃n−i(K+̃−ϕL)

Φ̃n−i(K)

) 1
i
)

+ ϕ

((
Φ̃n−i(K+̃−ϕL)

Φ̃n−i(L)

) 1
i
)
≤ ϕ(1). (1.12)

If K and L are convex bodies containing the origin in their interiors, then equality holds in the inequality

(1.12) if and only if K and L are dilations.

In order to prove Theorems 1.1 and 1.2, we use the integral-geometric technique, motivated by Fursten-
berg and Tzkoni [1], Grinberg [7], Ma [22], Gardner and Hug, et al. [5] and Zhu et al. [31].

2 Preliminaries

Let Kn denote the set of convex bodies (compact, convex subsets with non-empty interiors) in Eu-
clidean space Rn. We write Kno for the set of convex bodies containing the origin in their interiors. The
support function of K ∈ Kno , hK = h(K, ·) : Rn\{o} → [0,∞), is defined by h(K,x) = max{⟨x, y⟩ : y ∈
K}, where x ∈ Rn\{o}.

For K ∈ Kno , its polar body, K∗ ∈ Kno , is defined by K∗ = {x ∈ Rn : ⟨x, y⟩ ≤ 1, for any y ∈ K}. It is
easily known that (K∗)∗ = K for K ∈ Kno , and for c > 0 we have (cK)∗ = c−1K∗.

If K is a compact set in Rn, then the radial function ρK of K is defined by ρK(x) = max{λ ≥ 0 :
λx ∈ K} for x ∈ Rn\{o}. If ρK is continuous then we call K a star body (about the origin).

Two star bodies K and L are dilates (of one another) if ρK(u)/ρL(u) is independent of u ∈ Sn−1.
It is easy to see that for K,L ∈ Sno , K ⊆ L if and only if ρK ≤ ρL and for c > 0 and x ∈ Rn\{o},
ρ(cK, x) = cρ(K,x). More generally, for T ∈ GL(n) the radial function of the image TK = {Ty : y ∈ K}
of K is given by (see [26])

ρ(TK, x) = ρ(K,T−1x), for x ∈ Rn\{o}, (2.1)

where GL(n) denotes the linear transformation group on Rn, and T−1 is the inverse of T .
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For K,L ∈ Sno , α, β ≥ 0 (not both zero) and ϕ ∈ C, the Orlicz radial combination α ⋄K+̃−ϕβ ⋄ L of
K and L is defined by (see [22])

ρ(α ⋄K+̃−ϕβ ⋄ L, u)−1 = inf

{
λ > 0 : αϕ

(
1

λρK(u)

)
+ βϕ

(
1

λρL(u)

)
≤ ϕ(1)

}
, u ∈ Sn−1. (2.2)

Note that for all u ∈ Sn−1, ρ(α ⋄K+̃−ϕβ ⋄ L, u) is defined by

αϕ

(
ρ(α ⋄K+̃−ϕβ ⋄ L, u)

ρK(u)

)
+ βϕ

(
ρ(α ⋄K+̃−ϕβ ⋄ L, u)

ρL(u)

)
= ϕ(1).

If ϕ(t) = tp with 1 ≤ p <∞, then α⋄K+̃−ϕβ⋄L is the Lp-radial harmonic combination α⋄K+̃−pβ⋄L,

and correspondingly Ṽ−ϕ(K,L) is the dual Lp-mixed volume Ṽ−p(K,L). See [20] for more details.

Lemma2.1. Let K,L ∈ Sno and α, β ≥ 0. If ϕ ∈ C, then for T ∈ GL(n),

T (α ⋄K+̃−ϕβ ⋄ L) = α ⋄ TK+̃−ϕβ ⋄ TL.

Proof. From (2.2) and (2.1), we have for u ∈ Sn−1,

ρ(α ⋄ TK+̃−ϕβ ⋄ TL, u)−1 = inf

{
λ > 0 : αϕ

(
1

λρTK(u)

)
+ βϕ

(
1

λρTL(u)

)
≤ ϕ(1)

}
= inf

{
λ > 0 : αϕ

(
1

λρK(T−1u)

)
+ βϕ

(
1

λρL(T−1u)

)
≤ ϕ(1)

}
= ρ(α ⋄K+̃−ϕβ ⋄ L, T−1u)−1

= ρ(T (α ⋄K+̃−ϕβ ⋄ L), u)−1.

Thus
T (α ⋄K+̃−ϕβ ⋄ L) = α ⋄ TK+̃−ϕβ ⋄ TL.

�

Lemma2.2. Let K,L ∈ Sno , ϕ ∈ C. Then for each ξ ∈ G(n, i), i = 1, · · · , n− 1 and ε > 0,

(K+̃−ϕε ⋄ L) ∩ ξ = (K ∩ ξ)+̃−ϕε ⋄ (L ∩ ξ).

Proof. Fixed ξ ∈ G(n, i), and let Si−1 = Sn−1 ∩ ξ. For any u ∈ Si−1 and Q ∈ Sno , we get ρQ(u) =
ρQ∩ξ(u). Applying the definition of K+̃−ϕε ⋄ L to u ∈ Si−1, it follows that

ϕ

(
ρ((K+̃−ϕε ⋄ L) ∩ ξ, u)

ρK∩ξ(u)

)
+ εϕ

(
ρ((K+̃−ϕε ⋄ L) ∩ ξ, u)

ρL∩ξ(u)

)
= ϕ(1).

On the other hand, from (K ∩ ξ)+̃−ϕε ⋄ (L ∩ ξ) defined in ξ, we have

ϕ

(
ρ((K ∩ ξ)+̃−ϕε ⋄ (L ∩ ξ), u)

ρK∩ξ(u)

)
+ εϕ

(
ρ((K ∩ ξ)+̃−ϕε ⋄ (L ∩ ξ), u)

ρL∩ξ(u)

)
= ϕ(1).

Thus, (K+̃−ϕε ⋄ L) ∩ ξ and (K ∩ ξ)+̃−ϕε ⋄ (L ∩ ξ) is a same star body in ξ. �

Lemma2.3. (see [22]) Suppose K,L ∈ Sno and ϕ ∈ C. Then

Ṽ−ϕ(K,L) ≥ voln(K)ϕ

((
voln(K)

voln(L)

) 1
n
)
, (2.3)

with equality if and only if K and L are dilates of each other.
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Taking ϕ(t) = tp with p ≥ 1. The above dual Orlicz-Minkowski inequality is Lutwak’s Lp-dual
Minkowski inequality (see [20]):

Ṽ−p(K,L) ≥ voln(K)
n+p
n voln(L)−

p
n , (2.4)

with equality holds if and only if K and L are dilations.

Lemma 2.4. (see [8]) Suppose that µ is a probability measure on a space X and f : X → I ⊂ R is a

µ-integrable function, where I is a possibly infinite interval. Jensen’s inequality states that if ϕ : I → R
is a convex function, then ∫

X

ϕ
(
f(x)

)
dµ(x) ≥ ϕ

(∫
X

f(x)dµ(x)

)
. (2.5)

If ϕ is strictly convex, the equality holds in every inequality if and only if f(x) is constant for µ-almost

all x ∈ X.

3 The generalized dual Cauchy-Kubota formula

In this section, we prove the probabilistic essence of dual Orlicz mixed quermassintegrals. We first
see the dual Cauchy-Kubota formula. For K ∈ Sno ,

W̃n−i(K) =
ωn
ωi

∫
G(n,i)

voli(K ∩ ξ)dµi(ξ), i = 1, · · · , n− 1. (3.1)

Theorem3.1. Suppose K,L ∈ Sno and ϕ ∈ C. Then for each i = 1, · · · , n− 1,

W̃−ϕ,n−i(K,L) =
ωn
ωi

∫
G(n,i)

Ṽ
(i)
−ϕ(K ∩ ξ, L ∩ ξ)dµi(ξ).

Proof. By (1.6), (3.1) and Lemma 2.2, we have

W̃−ϕ,n−i(K,L) =
−ϕ′r(1)

i
lim
ε→0+

W̃n−i(K+̃−ϕε ⋄ L)− W̃n−i(K)

ε

=
−ϕ′r(1)

i
· ωn
ωi

∫
G(n,i)

lim
ε→0+

voli((K+̃−ϕε ⋄ L) ∩ ξ)− voli(K ∩ ξ)
ε

dµi(u)

=
−ϕ′r(1)

i
· ωn
ωi

∫
G(n,i)

lim
ε→0+

voli((K ∩ ξ+̃−ϕε ⋄ L ∩ ξ))− voli(K ∩ ξ)
ε

dµi(u).

From (1.3), we have

W̃−ϕ,n−i(K,L) =
ωn
ωi

∫
G(n,i)

Ṽ
(i)
−ϕ(K ∩ ξ, L ∩ ξ)dµi(ξ).

�
Up to a constant, the quantity W̃−ϕ,i(K,L) is the expectation of the random variable

Ṽ
(i)
−ϕ(K ∩ ·, L ∩ ·) : G(n, i)→ (0,∞), ξ 7→ Ṽ

(i)
−ϕ(K ∩ ξ, L ∩ ξ),

which is defined on the probability space (G(n, i),B, µi) (where B is the Borel sigma-algebra on G(n, i)).
Taking ϕ(t) = tp with p > 0 in Theorem 3.1, we have the formula

W̃−p,n−i(K,L) =
ωn
ωi

∫
G(n,i)

Ṽ
(i)
−p (K ∩ ξ, L ∩ ξ)dµi(ξ).
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For K ∈ Sno , we extend the dual Cauchy-Kubota formula to 1 ≤ q ≤ i < n,

W̃i(K) =
ωn
ωn−q

∫
G(n,n−q)

W̃
(n−q)
i−q (K ∩ ξ)dµn−q(ξ), (3.2)

where W̃
(n−q)
i−q denotes the (i-q)th dual harmonic quermassintegral in the subspace ξ.

It follows from (3.2) and (1.6) that we have the following theorem.

Theorem3.2. Suppose K,L ∈ Sno and ϕ ∈ Φ1 or ϕ ∈ Φ2. Then for 1 ≤ q ≤ i < n,

W̃−ϕ,i(K,L) =
ωn
ωn−q

∫
G(n,n−q)

W̃
(n−q)
−ϕ,i−q(K ∩ ξ, L ∩ ξ)dµn−q(ξ),

where W̃
(n−q)
−ϕ,i−q(K ∩ ξ, L ∩ ξ) denotes the dual Orlicz harmonic mixed quermassintegral of the (n-q)-

dimensional star bodies K ∩ ξ and L ∩ ξ in the subspace ξ.

4 Inequalities of dual Orlicz mixed affine quermassintegrals

In this section, we first show that the quantities Φ̃ϕ,1(K,L), · · · , Φ̃ϕ,n(K,L) are SL(n)-invariant. Here,

E(Ṽ
(i)
−ϕ(K ∩ ·, L ∩ ·)n) is the expectation of Ṽ

(i)
−ϕ(K ∩ ·, L ∩ ·)n.

Theorem4.1. Suppose K,L ∈ Sno and ϕ ∈ C. Then for T ∈ SL(n), there holds

Φ̃ϕ,i(TK, TL) = Φ̃ϕ,i(K,L), i = 1, 2, · · · , n.

Proof. Suppose ξ ∈ G(n, n− i). For Sn−i−1 = Sn−1 ∩ ξ, if

T ∈ SL(n) = {T ∈ GL(n) : detT = 1},

then for u ∈ Sn−i−1 and Q ∈ Sno , we get ρTQ(u) = ρTQ∩ξ(u). For x ∈ Rn\{o}, let ⟨x⟩ = x/||x||. From
(1.4) and (2.1), we obtain

Ṽ
(n−i)
−ϕ (TK ∩ ξ, TL ∩ ξ) =

1

n− i

∫
Sn−1∩ξ

ϕ

(
ρTK∩ξ(u)

ρTL∩ξ(u)

)
ρn−iTK∩ξ(u)dSn−i−1(u)

=
1

n− i

∫
Sn−1∩ξ

ϕ

(
ρTK(u)

ρTL(u)

)
ρn−iTK (u)dSn−i−1(u)

=
1

n− i

∫
Sn−1∩ξ

ϕ

(
ρK(⟨T−1u⟩)
ρL(⟨T−1u⟩)

)
ρn−iK (⟨T−1u⟩)dSn−i−1(⟨T−1u⟩)

=
1

n− i

∫
Sn−1∩ξ

ϕ

(
ρK∩ξ(v)

ρL∩ξ(v)

)
ρn−iK∩ξ(v)dSn−i−1(v)

= Ṽ
(n−i)
−ϕ (K ∩ ξ, L ∩ ξ),

where Sn−i−1 denotes n − i − 1-dimensional spherical Lebesgue measure. Thus, from (1.9), it follows
that

Φ̃ϕ,i(TK, TL) =
ωn
ωn−i

(∫
G(n,n−i)

[
Ṽ

(n−i)
−ϕ (TK ∩ ξ, TL ∩ ξ)

]n
dµn−i(ξ)

) 1
n

=
ωn
ωn−i

(∫
G(n,n−i)

[
Ṽ

(n−i)
−ϕ (K ∩ ξ, L ∩ ξ)

]n
dµn−i(ξ)

) 1
n

= Φ̃ϕ,i(K,L).

�
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To prove Theorem 1.1 and Theorem 1.2, the next three lemmas are needed.

Lemma4.2. (see [14]) Suppose K ∈ Kno and ξ ∈ G(n, i), then K∗ ∩ ξ = (K|ξ)∗.

Lemma 4.3. (see [12]) Suppose K1,K2 ∈ Kno and 2 ≤ k ≤ n− 1. If K1|ξ and K1|ξ are dilations for

each ξ ∈ G(n, k), then K1 and K2 are dilations.

Lemma 4.4. Suppose K1,K2 ∈ Kno and 2 ≤ k ≤ n − 1. If K1 ∩ ξ and K1 ∩ ξ are dilations for each

ξ ∈ G(n, k), then K1 and K2 are dilations.

Proof. If both K1 ∩ ξ and K2 ∩ ξ are dilations for each ξ ∈ G(n, k), then K1 ∩ ξ = a(K2 ∩ ξ) for
a > 0. If follows from Lemma 4.2 that (K∗

1 |ξ)∗ = a(K∗
2 |ξ)∗ = (a−1K∗

2 |ξ)∗. Thus, K∗
1 |ξ = a−1K∗

2 |ξ. From
Lemma 4.3, we know K∗

1 = b
aK

∗
2 . Therefore, K1 = cK2 for some c > 0. �

The normalized dual affine quermassintegrals measure of K are defined by

dΦ̃∗
i (K, ·) =

(
ωn

ωiΦ̃n−i(K)

)n
[voli(K ∩ ·)]n dµi, (4.1)

where dµi is the normalized Haar measure on G(n, i). Obviously, Φ̃∗
i (K, ·) is a probability measure on

G(n, i).

Proof of Theorem 1.1. Note that Φ̃ϕ,0 = Ṽ−ϕ(K,L), Φ̃0(K) = voln(K), and Φ̃0(L) = voln(L). It
follows directly from Lemma 2.3 that the case when i = n.

Now, we consider the case when 2 ≤ i ≤ n− 1. By (1.9), (2.3), (4.1), (2.5) and Hölder’s inequality, it
follows that

Φ̃ϕ,n−i(K,L)

Φ̃n−i(K)

=
ωn

ωiΦ̃n−i(K)

[∫
G(n,i)

(
Ṽ

(i)
−ϕ(K ∩ ξ, L ∩ ξ)

)n
dµi(ξ)

] 1
n

≥ ωn

ωiΦ̃n−i(K)

[∫
G(n,i)

(voli(K ∩ ξ))n ϕn
((

voli(K ∩ ξ)
voli(L ∩ ξ)

) 1
i

)
dµi(ξ)

] 1
n

=

[∫
G(n,i)

ϕn

((
voli(L ∩ ξ)
voli(K ∩ ξ)

) 1
i

)
dΦ̃∗

i (K, ξ)

] 1
n

≥ ϕ

[∫
G(n,i)

(
voli(K ∩ ξ)
voli(L ∩ ξ)

) 1
i

dΦ̃∗
i (K, ξ)

]

= ϕ

[(
ωn

ωiΦ̃n−i(K)

)n ∫
G(n,i)

(voli(K ∩ ξ))n(ni+1
ni ) (voli(L ∩ ξ))n(− 1

ni ) dµi(ξ)

]

≥ ϕ

(
Φ̃n−i(K)

ni+1
i Φ̃n−i(L)−

1
i

Φ̃n−i(K)n

)

= ϕ

( Φ̃n−i(K)

Φ̃n−i(L)

) 1
i

 .

If K and L are dilations, then the equality holds in (1.11) is obvious. Conversely, let K,L ∈ Kno .
Together the equality conditions of the dual Brunn-Minkowski inequality (2.3), Jensen’s inequality (2.5)
with Hölder’s inequality, we know equality holds in inequality (1.11) if and only if K ∩ ξ and L ∩ ξ are
dilations for each ξ ∈ G(n, n− i). Therefore, Lemma 4.4 can reduce that K and L are dilations. �

Let ϕ(t) = tp with p ≥ 1. An immediate consequence of Theorem 1.1 is:

7
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Corolloary 4.5. Suppose K,L ∈ Sno . Then for p ≥ 1 and 2 ≤ i ≤ n,

Φ̃p,n−i(K,L) ≥ Φ̃n−i(K)1+
p
i Φ̃n−i(L)−

p
i . (4.2)

If K,L ∈ Kno , then equality holds in the inequality (4.2) if and only if K and L are dilations.

A direct consequence of the dual Orlicz-Minkowski inequality is the following uniqueness.

Corolloary 4.6. Suppose ϕ ∈ C with ϕ(1) = 1, and U ⊂ Kno (n ≥ 3) such that K,L ∈ U. If for

2 ≤ i ≤ n, there holds

Φ̃ϕ,n−i(M,K) = Φ̃ϕ,n−i(M,L), for all M ∈ U, (4.3)

or

Φ̃ϕ,n−i(K,M)

Φ̃n−i(K)
=

Φ̃ϕ,n−i(L,M)

Φ̃n−i(L)
, for all M ∈ U, (4.4)

then K = L.

Proof. Suppose (4.3) holds. If we take K for M , then by (1.9), (1.2), and ϕ(1) = 1, we have

Φ̃n−i(K) = ϕ(1)Φ̃n−i(K) = Φ̃ϕ,n−i(K,K) = Φ̃ϕ,n−i(K,L).

Thus

1 = ϕ(1) ≥ ϕ

( Φ̃n−i(K)

Φ̃n−i(L)

) 1
i

 ,

with equality if and only if K and L are dilates of each other. Since ϕ is strictly increasing on (0,∞), we

have Φ̃n−i(K) ≤ Φ̃n−i(L), with equality if and only if K and L are dilates of each other.

If let L for M we similarly get Φ̃n−i(K) ≥ Φ̃n−i(L). Therefore, Φ̃n−i(K) = Φ̃n−i(L), this obtains
voli(K ∩ ξ) = voli(L ∩ ξ), and from the equality conditions of the dual Orlicz-Minkowski inequality we
obtain that K and L are dilates of each other. Since K ∩ ξ and L∩ ξ have the same volume, this implies
K = L.

Further, suppose that (4.4) holds. Similarly, we get

1 = ϕ(1) =
Φ̃ϕ,n−i(K,K)

Φ̃n−i(K)
=

Φ̃ϕ,n−i(L,K)

Φ̃n−i(L)
.

Therefore,

1 = ϕ(1) ≤ ϕ

( Φ̃n−i(L)

Φ̃n−i(K)

) 1
i

 ,

with equality if and only if K and L are dilates of each other. Since ϕ is strictly increasing on (0,∞), we

have Φ̃n−i(L) ≥ Φ̃n−i(K), with equality if and only if K and L are dilates of each other.

Taking L for M , obviously Φ̃n−i(L) ≤ Φ̃n−i(K). Therefore, Φ̃n−i(L) = Φ̃n−i(K) can obtain that K
and L are dilates of each other. Since K ∩ ξ and L ∩ ξ have the same volume, this gets K = L. �

Proof of Theorem 1.2. For the convenience, define Kϕ = K+̃−ϕL. From Lemma 2.2, we have for
ξ ∈ G(n, n− i), Kϕ ∩ ξ = (K+̃−ϕL) ∩ ξ = (K ∩ ξ)+̃−ϕ(L ∩ ξ). Note that Kϕ ∩ ξ ∈ Sno implies that for
u ∈ Sn−i−1,

ϕ

(
ρKϕ∩ξ(u)

ρK∩ξ(u)

)
+ ϕ

(
ρKϕ∩ξ(u)

ρL∩ξ(u)

)
= ϕ(1). (4.5)
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Suppose λϕ = ωn/
[
ωiΦ̃n−i(Kϕ)

]
. By (1.2), (4.5), (1.4), (2.3), (4.1) and (2.5) we obtain

ϕ(1)

= λϕ

[∫
G(n,i)

(ϕ(1)voli(Kϕ ∩ ξ))n dµi(ξ)

] 1
n

= λϕ

[∫
G(n,i)

(
Ṽ

(i)
−ϕ(Kϕ ∩ ξ,K ∩ ξ) + Ṽ

(i)
−ϕ(Kϕ ∩ ξ, L ∩ ξ)

)n
dµi(ξ)

] 1
n

≥ λϕ

{∫
G(n,i)

voli(Kϕ ∩ ξ)n
[
ϕ

((
voli(Kϕ ∩ ξ)
voli(K ∩ ξ)

) 1
i

)
+ ϕ

((
voli(Kϕ ∩ ξ)
voli(L ∩ ξ)

) 1
i

)]n
dµi(ξ)

} 1
n

=

{∫
G(n,i)

[
ϕ

((
voli(Kϕ ∩ ξ)
voli(K ∩ ξ)

) 1
i

)
+ ϕ

((
voli(Kϕ ∩ ξ)
voli(L ∩ ξ)

) 1
i

)]n
dΦ̃∗

i (Kϕ, ξ)

} 1
n

≥
∫
G(n,i)

[
ϕ

((
voli(Kϕ ∩ ξ)
voli(K ∩ ξ)

) 1
i

)
+ ϕ

((
voli(Kϕ ∩ ξ)
voli(L ∩ ξ)

) 1
i

)]
dΦ̃∗

i (Kϕ, ξ)

=

∫
G(n,i)

ϕ

((
voli(Kϕ ∩ ξ)
voli(K ∩ ξ)

) 1
i

)
dΦ̃∗

i (Kϕ, ξ) +

∫
G(n,i)

ϕ

((
voli(Kϕ ∩ ξ)
voli(L ∩ ξ)

) 1
i

)
dΦ̃∗

i (Kϕ, ξ)

≥ ϕ

 ∫
G(n,i)

(
voli(Kϕ ∩ ξ)
voli(K ∩ ξ)

) 1
i

dΦ̃∗
i (Kϕ, ξ)

+ ϕ

 ∫
G(n,i)

(
voli(Kϕ ∩ ξ)
voli(L ∩ ξ)

) 1
i

dΦ̃∗
i (Kϕ, ξ)

 .

(4.6)

From Hölder inequality and (1.2), we get

ϕ

 ∫
G(n,i)

(
voli(Kϕ ∩ ξ)
voli(K ∩ ξ)

) 1
i

dΦ̃∗
i (Kϕ, ξ)


= ϕ

[(
ωn

ωiΦ̃n−i(Kϕ)

)n ∫
G(n,i)

(voli(Kϕ ∩ ξ))n(ni+1
ni ) (voli(K ∩ ξ))n(− 1

ni ) dµi(ξ)

]

≥ ϕ

[(
ωn

ωiΦ̃n−i(Kϕ)

)n(∫
G(n,i)

(voli(Kϕ ∩ ξ))n dµi(ξ)

)ni+1
ni

×

(∫
G(n,i)

(voli(K ∩ ξ))n dµi(ξ)

)− 1
ni
]

= ϕ

( Φ̃n−i(Kϕ)

Φ̃n−i(K)

) 1
i

 .

(4.7)

Similarly,

ϕ

 ∫
G(n,i)

(
voli(Kϕ ∩ ξ)
voli(L ∩ ξ)

) 1
i

dΦ̃∗
i (Kϕ, ξ)

 ≥ ϕ
( Φ̃n−i(Kϕ)

Φ̃n−i(L)

) 1
i

 . (4.8)

Together (4.6), (4.7) with (4.8), this yields

ϕ

( Φ̃n−i(Kϕ)

Φ̃n−i(K)

) 1
i

+ ϕ

( Φ̃n−i(Kϕ)

Φ̃n−i(L)

) 1
i

 ≤ ϕ(1).
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Finally, we give the equality conditions. Suppose that K and L are dilations. with equality in (1.12)
is obvious.

Conversely, Let K,L ∈ Kno . From the equality conditions of the dual Orlicz-Minkowski inequality of
star bodies, Jensen’s inequality (2.5) and Hölder’s inequality, we obtain that equality holds in inequality
(1.12) if and only if K ∩ ξ and L∩ ξ are dilations for each ξ ∈ G(n, n− i). Therefore, Lemma 4.4 can get
that K and L are dilations. �

If ϕ(t) = tp with p ≥ 1, then we get:

Corolloary 4.7. Let K,L ∈ Sno . If p ≥ 1 and 2 ≤ i ≤ n, then

Φ̃n−i(K+̃−pL)−
p
i ≥ Φ̃n−i(K)−

p
i + Φ̃n−i(L)−

p
i . (4.9)

If K,L ∈ Kno , then equality holds in the inequality (4.9) if and only if K and L are dilations.

An immediate consequence of the inequality (4.9) is:

Corolloary 4.8. Let K,L ∈ Sno . If p ≥ 1 and 2 ≤ i ≤ n, then

2Φ̃n−i(K+̃−pL)
p
i ≤

(
Φ̃n−i(K)Φ̃n−i(L)

) p
2i ≤ 1

2

(
Φ̃n−i(K)

p
i + Φ̃n−i(L)

p
i

)
. (4.10)

If K,L ∈ Kno , with equality in (4.10) if and only if K = L.

Proof. By (4.9) and the arithmetic-geometric-harmonic mean inequality, we have

2Φ̃n−i(K+̃−pL)
p
i ≤ 2

1

Φ̃n−i(K)
p
i

+ 1

Φ̃n−i(L)
p
i

≤
(

Φ̃n−i(K)Φ̃n−i(L)
) p

2i

≤ 1

2

(
Φ̃n−i(K)

p
i + Φ̃n−i(L)

p
i

)
.

We see easily that equality holds in the inequality (4.10) if and only if K = L. �
The next result is a relationship between Φ̃ϕ,i(K,L) and W̃−ϕ,i(K,L).

Theorem4.9. Suppose K,L ∈ Sno and i = 1, 2, · · · , n− 1. Then

Φ̃ϕ,i(K,L) ≥ W̃−ϕ,i(K,L), (4.11)

with equality if and only if Ṽ
(n−i)
−ϕ (K ∩ ξ, L ∩ ξ) is constant for all ξ ∈ G(n, n− i).

Proof. Notice that Ṽ
(n−i)
−ϕ (K∩·, L∩·) is positive on G(n, n−i) and that µn−i is a probability measure

on G(n, n− i). Hence, it follows from Jensen’s inequality (2.5) that(∫
G(n,n−i)

Ṽ
(n−i)
−ϕ (K ∩ ξ, L ∩ ξ)ndµn−i(ξ)

) 1
n

≥
∫
G(n,n−i)

Ṽ
(n−i)
−ϕ (K ∩ ξ, L ∩ ξ)dµn−i(ξ),

with equality if and only if Ṽ
(n−i)
−ϕ (K ∩ ξ, L ∩ ξ) is constant for all ξ ∈ G(n, n − i). This inequality and

the definitions of Φ̃ϕ,i(K,L) and W̃−ϕ,i(K,L) can easily yield the desired inequality. �
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Abstract

The purposes of this paper are to introduce and study some existence and convergence theorems for
fixed points of a strict pseudo-contraction in the framework of complete CAT(0) spaces. By using
available properties in the spaces together with some appropriate conditions of the mapping and
under certain assumptions, we can create some suitable sets to be used to construct an iterative
projection algorithm to guarantee the existence fixed points for a strict pseudo-contraction. The
method allows us to obtain a strong convergence iteration for finding some fixed points of a strict
pseudo-contraction in the framework of complete CAT(0) spaces.

Keywords: Strict pseudo-contraction; Iterative projection technique; CAT(0) space

1. Introduction

Let (X, d) be a metric space, and x, y ∈ X with l = d(x, y). A geodesic path from x to y is
an isometry γ : [0, l] → X such that γ(0) = x and γ(l) = y. The image of a geodesic path is
called a geodesic segment. When it is unique this geodesic segment is denoted by [x, y]. The space
(X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X

is to be uniquely geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X. A
geodesic triangle 4(x1, x2, x3) in a geodesic space X consists of three points x1, x2, x3 of X and
three geodesic segments joining each pair of vertices. A comparison triangle of a geodesic triangle
4(x1, x2, x3) is the triangle 4̄(x1, x2, x3) = 4(x̄1, x̄2, x̄3) in the Euclidean space E2 such that
d(xi, xj) = dE2(x̄i, x̄j) for all i, j = 1, 2, 3.

A geodesic space is said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy
the following comparison axiom.
CAT(0) : Let 4 be a geodesic triangle in X and let 4̄ be a comparison triangle for 4. Then 4 is
said to satisfy the CAT(0) inequality if for all x, y ∈ 4 and all comparison points x̄, ȳ ∈ 4̄,

d(x, y) ≤ dE2(x̄, ȳ).

If x, y1, y2 are points in a CAT(0) space and if y0 is the midpoint of the segment [y1, y2], then the
CAT(0) inequality implies that

d2(x, y0) ≤ 1
2
d2(x, y1) +

1
2
d2(x, y2)− 1

4
d2(y1, y2). (1.1)

∗Corresponding author. Tel.:+66 55963250; fax:+66 55963201.
Email addresses: kasamsuku@nu.ac.th (Kasamsuk Ungchittrakool), naputurong@gmail.com
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This is the (CN) - inequality of Bruhat and Tits [5]. In fact ([3] p.163), a geodesic space is a CAT(0)
space if and only if it satisfies the (CN) - inequality.

The study of CAT(0) spaces, Kirk [15, 16] first studied the fixed point theory in CAT(0) spaces.
Since then, many authors have developed the fixed point theory for single-valued and set-valued
mappings in the setting of CAT(0) spaces. Dhompongsa et al. [7] proved that a nonexpansive map-
ping from a nonempty bounded closed convex subset of a CAT(0) space to the family of nonempty
compact subsets of the CAT(0) space has a fixed point under suitable conditions. In 2008, Berg
and Nikolaev [2] introduced the concept of quasilinearization. In 2010, Kakavandi and Amini [13]
introduced the concept of dual space for CAT(0) spaces. In 2012, Dehghan and Rooin [6] presented
a characterization of metric projection in CAT(0) spaces. In 2014, Lu et al. [19] establish gener-
alized CAT(0) versions of the Fan-Browder fixed point theorem. In the same year, Ungchittrakool
[22] has discovered some significant inequalities for a strict pseudo-contraction in the framework of
Hilbert spaces that has resulted in creating the important sets and the iterative shrinking projection
technique to ensure the existence for fixed points of a strict pseudo-contraction in the terminology
of Browder and Petryshyn [4].

Inspired and motivated by the significance of the problems mentioned above, we will pay atten-
tion to investigate and establish the existence theorem for fixed points of the mapping called strict
pseudo-contraction mappings and some related mappings in complete CAT(0) spaces by employing
suitable structure of certain sets based on the shrinking projection technique.

2. Preliminaries

Recall that a metric space (X, d) is said to be a geodesic space if every two points of X are
joining by a geodesic and X is said to be uniquely geodesic if there is exactly one geodesic joining
x and y for each x, y ∈ X. We write (1 − t)x ⊕ ty for the unique point z in the geodesic segment
joining from x to y such that

d(z, x) = td(x, y) and d(z, y) = (1− t)d(x, y).

We also denote by [x, y] the geodesic segment joining from x to y, that is [x, y] = {(1− t)x⊕ ty : t ∈
[0, 1]}. A subset C of a CAT(0) space is convex if [x, y] ⊆ C for all x, y ∈ C. In 1976, Lim in [18]
introduced the concept of 4-convergence, and Kirk and Panyanak [17] has obtained some results
in CAT(0) spaces which is every similar for weak convergence in Banach space setting. Next , we
present the concept of 4-convergence and collect some basic properties.

Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X, we set
r(x, {xn}) = lim sup

n→∞
d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by
r({xn}) = inf{r(x, {xn}) : x ∈ X},

the asymptotic radius rC({xn}) of {xn} with respect to C ⊂ X is given by
rC({xn}) = inf{r(x, {xn}) : x ∈ C},

the asymptotic center A({xn}) of {xn} is the set
A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}

and the asymptotic center AC({xn}) of {xn} with respect to C ⊂ X is the set
AC({xn}) = {x ∈ C : r(x, {xn}) = rC({xn})}.

It is known from Proposition 7 of [8] that in a CAT(0) space, A({xn}) consists of exactly one
point.

A subset of a CAT(0) space equipped with the induced metric, is a CAT(0) space if and only if
it is convex ([3], p.167).
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Definition 2.1 ([17], Definition 3.1). A sequence {xn} in a CAT(0) space X is said to be 4-
converge to x ∈ X if x is the unique asymptotic center of {un} for every subsequence {un} of {xn}.
In this case, we write 4− lim

n→∞
xn = x and x is called the 4-limit of {xn}.

Lemma 2.2 ([17], Opial’s property). Let X be a complete CAT(0) space and a sequence {xn} in
X such that {xn} 4-converge to x and given y ∈ X with y 6= x. Then we have
lim sup

n→∞
d(xn, x) < lim sup

n→∞
d(xn, y).

It is known from [17] that, the uniqueness of asymtotic center implies that CAT(0) space X

satisfies Opial’s property.
Let X be a complete CAT(0) space. Bijan Ahmadi Kakavandi [12] introduced the properties of

4-convergence, i.e., every closed convex subset of X is 4-closed in the sense that it contains all
4-limit point of every 4-convergent sequence.

Lemma 2.3 ([20], Lemma 3.5). Every bounded closed convex set in a complete CAT(0) space always
has a 4-convergent subsequence.

Lemma 2.4 ([9], Proposition 2.1). If C is a closed convex subset of a complete CAT(0) space and
if {xn} is a bounded sequence in C, then the asymptotic center of {xn} is in C.

Recall that a subset K of a metric space X is said to be 4- compact if every sequence in K has
a 4- convergent subsequence.

Lemma 2.5 ([17], Proposition 3.6). Every bounded closed convex set in a complete CAT(0) space
is 4- compact.

Let C be a closed convex subset of a CAT(0) space X and {xn} be a bounded sequence in C.
We use the following notation

{xn} ⇀ w ⇐⇒ Φ(w) = infx∈C Φ(x) where Φ(x) = lim sup
n→∞

d(xn, x).

Also, we have {xn} ⇀ w ⇐⇒ AC({xn}) = {w}.
Lemma 2.6 ([20], Proposition 3.12). Let {xn} be a bounded sequence in a CAT(0) space X and
let C be a closed convex subset of X which contain {xn}. Then 4 − lim

n→∞
xn = x implies that

{xn} ⇀ x.

Berg and Nikolaev [2] have introduced the concept of quasilinearization as follows. Let us
formally denote a pair (a, b) ∈ X ×X by

−→
ab and call it a vector. Then quasilinearization is the map

〈·, ·〉 : (X ×X)× (X ×X) → R
defined by

〈−→
ab,

−→
cd

〉
=

1
2
{d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)} for all a, b, c, d ∈ X. (2.1)

It is easily seen that
〈−→
ab,

−→
cd

〉
=

〈−→
cd,

−→
ab

〉
,
〈−→
ab,

−→
cd

〉
= −

〈−→
ba,

−→
cd

〉
and

〈−→ax,
−→
cd

〉
+

〈−→
xb,

−→
cd

〉
=

〈−→
ab,

−→
cd

〉

for all a, b, c, d, x ∈ X.
We say that X satisfies the Cauchy - Schwarz inequality if

〈−→
ab,

−→
cd

〉
≤ d(a, b)d(c, d)

for all a, b, c, d ∈ X.
It is known ([2], Corollary 3) that a geodesically connected metric space is CAT(0) space if and

only if it satisfies the Cauchy- Schwarz inequality.

Definition 2.7 ([3], Proposition 2.4). Let (X, d) be a metric space and C ⊆ X. The distance
function d(x,C) : X → C is defined by d(x,C) = inf

c∈C
d(x, c) for any x ∈ X.
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Lemma 2.8 ([3], Proposition 2.4). Let C be a closed convex subset of a complete CAT(0) space X

and x ∈ X. Then there exists a unique point p ∈ C such that d(x,C) = d(x, p) = inf
y∈C

d(x, y).

Definition 2.9 ([3], Proposition 2.4). Let C be a closed convex subset of a complete CAT(0) space
X and PC : X → C is defined by PCx = p such that p satisfies Lemma 2.8. PC is said to be the
metric projection from X onto C.

Dehghan and Rooin [6] presented monotone and a characterization of metric projection in
CAT(0) spaces as follows:

A self-mapping T of C where C is a subset of CAT(0) space (X, d) is said to be monotone if〈−→xy,
−−−→
TxTy

〉
≥ 0 for all x, y ∈ C. Aslo, it is nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C.

Lemma 2.10 ([6], Lemma 2.1). Let X be a CAT(0) space, x, y ∈ X, λ ∈ [0, 1] and z = λx⊕(1−λ)y.
Then 〈−→zy,−→zw〉 ≤ λ 〈−→xy,−→zw〉 for all w ∈ X.

Lemma 2.11 ([6], Theorem 2.2). Let C be a nonempty convex subset of a CAT(0) space X, x ∈ X

and u ∈ C. Then u = PCx if and only if 〈−→xu,−→uy〉 ≥ 0 for all y ∈ C.

Lemma 2.12 ([6], Proposition 2.4). Let C be a nonempty closed convex subset of a complete
CAT(0) space X. Then PC : X → C is monotone and nonexpansive.

Lemma 2.13 ([23], Lemma 2.10). Let X be a CAT(0) space. For any u, v ∈ X and t ∈ [0, 1], let
ut = tu⊕ (1− t)v. Then, for all x, y ∈ X,

(1) 〈−→utx,−→uty〉 ≤ t 〈−→ux,−→uty〉+ (1− t) 〈−→vx,−→uty〉;
(2) 〈−→utx,−→uy〉 ≤ t 〈−→ux,−→uy〉+ (1− t) 〈−→vx,−→uy〉 and 〈−→utx,−→vy〉 ≤ t 〈−→ux,−→vy〉+ (1− t) 〈−→vx,−→vy〉.
Lemma 2.14 ([3], Proposition 2.2). Let X be a CAT(0) space, p, q, r, s ∈ X and λ ∈ [0, 1]. Then
d[λp⊕ (1− λ)q, λr ⊕ (1− λ)s] ≤ λd(p, r) + (1− λ)d(q, s).

Lemma 2.15 ([10], Lemma 2.5). Let X be a CAT(0) space, x, y, z ∈ X and λ ∈ [0, 1]. Then
d2(λx⊕ (1− λ)y, z) ≤ λd2(x, z) + (1− λ)d2(y, z)− λ(1− λ)d2(x, y).

Definition 2.16 ([1], Definition 3.2.2). Let X be a complete CAT(0) space and let f be a function
of X into (−∞,∞]. Then f is said to be weakly lower semicontinuous on X if and only if for any
x0 ∈ X, {xn} ⇀ x0 implies that f(x0) ≤ lim inf

n→∞
f(xn).

Lemma 2.17 ([1], Corollary 3.2.4). Let C be a nonempty closed convex subset of a complete
CAT(0) space X. The distance function d(x, C) as well as its square d2(x,C) are weakly lower
semicontinuous.

We first introduce the definition of k-strict pseudo-contraction in CAT(0) spaces.

Definition 2.18. Let (X, d) be a CAT(0) space and C be a nonempty subset of X. The mapping
T : C → C is said to be a k-strict pseudo-contraction in the terminology of Browder and Petryshyn
[4] if for all x, y ∈ C there exists k ∈ (−∞, 1) such that

d2(Tx, Ty) ≤ d2(x, y) + k{d2(x, Tx)− 2
〈−−→
xTx,

−−→
yTy

〉
+ d2(y, Ty)}.

Lemma 2.19. Let C be a nonempty closed convex subset of a CAT(0) space X,and T : C → C

be a k-strict pseudo-contraction, then T satisfies the Lipschitz condition with Lipschitz constant
L = max{ 1+k

1−k , 1} for all x, y ∈ C. That is
d(Tx, Ty) ≤ max{ 1+k

1−k , 1}d(x, y) for all x, y ∈ C.
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Proof. Let C be a nonempty closed convex subset of a CAT(0) space X. For T : C → C be a
k-strict pseudo-contraction, we have

d2(Tx, Ty) ≤ d2(x, y) + k{d2(x, Tx)− 2
〈−−→
xTx,

−−→
yTy

〉
+ d2(y, Ty)}

= d2(x, y) + k{d2(x, Tx)− d2(x, Ty)− d2(y, Tx) + d2(x, y) + d2(Tx, Ty) + d2(y, Ty)}
(2.2)

By simple calculation from (2.2) we have that

(1− k)d2(Tx, Ty) ≤ (1 + k)d2(x, y) + k{d2(x, Tx)− d2(x, Ty)− d2(y, Tx) + d2(y, Ty)}
= (1 + k)d2(x, y) + 2k

〈−→xy,
−−−→
TyTx

〉
. (2.3)

Since X satisfies the Cauchy-Schwarz inequality, it follows from (2.3), we get that

(1− k)d2(Tx, Ty)− 2kd(x, y)d(Tx, Ty)− (1 + k)d2(x, y) ≤ 0. (2.4)

Next, we will divide the proof into two cases.

Case 1. k ≤ 0.

Notice that k ≤ 0 ⇔ 2k ≤ 0 ⇔ 1 + k ≤ 1− k ⇔ 1+k
1−k ≤ 1 ⇔ max{ 1+k

1−k , 1} = 1. Since k ≤ 0, from
(2.4), we have

(1− k)d2(Tx, Ty) + 2kd(x, y)d(Tx, Ty)− (1 + k)d2(x, y)

≤ (1− k)d2(Tx, Ty)− 2kd(x, y)d(Tx, Ty)− (1 + k)d2(x, y) ≤ 0.

Thus (1− k)d2(Tx, Ty) + 2kd(x, y)d(Tx, Ty)− (1 + k)d2(x, y) ≤ 0.

Solving this quadratic inequality, we obtain
d(Tx, Ty) ≤ d(x, y) or d(Tx, Ty) ≤ { 1+k

1−k}d(x, y) for all x, y ∈ C. It implies that
d(Tx, Ty) ≤ d(x, y) = max{ 1+k

1−k , 1}d(x, y) for all x, y ∈ C.

Case 2. 0 ≤ k < 1.
We have 1− k > 0 and then k ≥ 0 ⇔ 2k ≥ 0 ⇔ 1 + k ≥ 1− k ⇔ 1+k

1−k ≥ 1 ⇔ max{ 1+k
1−k , 1} = 1+k

1−k .
Similarly case 1, we have (1− k)d2(Tx, Ty)− 2kd(x, y)d(Tx, Ty)− (1 + k)d2(x, y) ≤ 0.
It implies that d(Tx, Ty) ≤ { 1+k

1−k}d(x, y) = max{ 1+k
1−k , 1}d(x, y) for all x, y ∈ C.

Therefore, the desired result.

In this paper, we denote that Fix(T ) is the set of fixed point of T such that Fix(T ) = {x ∈ C :
Tx = x}.
Lemma 2.20 ([11], Theorem 2.3). Let C be a closed convex subset of a CAT(0) space X and
T : C → C be a k - strict pseudo-contraction mapping. If Fix(T ) 6= ∅, then Fix(T ) is closed and
convex so that the projection PFix(T ) is well defined.

Lemma 2.21 ([19], Lemma 2.2). Let (E, d) be a complete metric space. Then E is a geodesic space
if and only if for every x, y ∈ E, there exists z ∈ E such that d(x, z) = d(z, y) = 1

2d(x, y).

Lemma 2.22 ([3], p.163). A geodesic space is a CAT(0) space if and only if it satisfies the (CN)
inequality.

Let (E, d) be a CAT(0) space and D ⊆ E. Niculescu and Roventa [21] introduced the notion of
a convex hull of D as follows :

co(D) =
∞⋃

n=0

Dn where D0 = D and for n ≥ 1, the set Dn consists of all points in E which lie

on geodesics which start and end in Dn−1.
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c̄o(D) denote the closure of the convex hull. It is easy to see that in a CAT(0) space, the closure
of the convex hull will be convex and hence it is the smallest closed convex set containing D ([1],
p.31).

Definition 2.23 ([19], Definition 2.2). Let D be a nonempty subset of a CAT(0) space (E, d). A
set-valued mapping G : D → 2E is called to be a KKM mapping if co(F ) ⊂

⋃

x∈F

G(x) for every

F ∈ 〈D〉 where 〈D〉 denotes the class of all nonempty finite subsets of D.

Lemma 2.24 ([14], Lemma 1.8). Suppose X is a complete CAT(0) space and K is a nonempty
subset of X. Let G : K → 2K be a mapping such that for each x ∈ K, G(x) be 4-closed. Suppose
that

(1) each x1, ..., xm ∈ K, co({x1, ..., xm}) ⊂
m⋃

i=1

G(xi),

(2) there exists x0 ∈ K such that G(x0) is 4- compact.

Then
⋂

x∈K

G(x) 6= ∅.

Lemma 2.25. Let (E, d) be a complete CAT(0) space, K be a nonempty 4-compact subset of E,
and F, G : E → 2E be two set-valued mappings such that
(1) for every y ∈ E, F (y) ⊆ G(y) and G(y) is convex;
(2) for every x ∈ E, F−1(x) is open in E;
(3) for every y ∈ K, F (y) 6= ∅;
(4) there exists a point x0 ∈ E such that c̄o(E\G−1(x0)) ⊆ K.

Then, there exists ŷ ∈ E such that ŷ ∈ G(ŷ).

Proof. Suppose the contrary. Then, for every y ∈ E, y 6∈ G(y). Now let us define two set-valued
mappings G̃, F̃ : E → 2E by

G̃(x) = c̄o(E\G−1(x)) and F̃ (x) = co(E\F−1(x)) for all x ∈ E.

By using (1) and F (y) ⊆ G(y) for every y ∈ E, we have

F−1(x) = {y ∈ E : x ∈ F (y)} ⊆ {y ∈ E : x ∈ G(y)} = G−1(x).

Then, E\G−1(x) ⊆ E\F−1(x) for every x ∈ E. It implies that co(E\G−1(x)) ⊆ co(E\F−1(x)).
By using (2), we have co(E\F−1(x)) is closed in E. Since c̄o(E\G−1(x)) is the smallest closed
set containing co(E\G−1(x)). Then c̄o(E\G−1(x)) ⊆ co(E\F−1(x)). Therefore G̃(x) ⊆ F̃ (x) for
every x ∈ E.

We next show that G̃ is a KKM mapping. That is, for every A ∈ 〈E〉 , co(A) ⊆
⋃

x∈A

G̃(x). Other-

wise, there exist A ∈ 〈E〉 and a point y ∈ co(A) such that y 6∈
⋃

x∈A

G̃(x) =
⋃

x∈A

(c̄o(E\G−1(x))). For

(E\G−1(x)) ⊆ E, we have co(E\G−1(x)) =
∞⋃

n=0

(E\G−1(x))n where (E\G−1(x))0 = E\G−1(x)

and for n ≥ 1, (E\G−1(x))n consists of all points in E which lie on geodesics which start and end
in (E\G−1(x))n−1.

Let us consider, y 6∈
⋃

x∈A

G̃(x) =
⋃

x∈A

(c̄o(E\G−1(x))) =
⋃

x∈A

clE{
∞⋃

n=0

(E\G−1(x))n}. Since

⋃

x∈A

clE(E\G−1(x)) ⊆
⋃

x∈A

clE{
∞⋃

n=0

(E\G−1(x))n}. It implies that

y 6∈
⋃

x∈A

clE(E\G−1(x)) = E\
⋂

x∈A

intEG−1(x).
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It follows that y ∈
⋂

x∈A

G−1(x). Therefore A ⊆ G(y). Since G(y) is convex by (1), and co(A) is the

smallest convex set containing A. We get that y ∈ co(A) ⊆ G(y), which is a contradiction. Hence
G̃ is a KKM mapping. By the definition of G̃, G̃(x) is 4-closed in E for every x ∈ E. By using
(4), there exists a point x0 ∈ E such that G̃(x0) = c̄o(E\G−1(x0)) ⊆ K, it implies that G̃(x0) is
4-compact. Then, by Lemma 2.24, we get that ∅ 6=

⋂

x∈E

G̃(x) ⊆ G̃(x0) ⊆ K. Therefore, we have

∅ 6= K ∩ (
⋂

x∈E

G̃(x)) ⊆ K ∩ (
⋂

x∈E

F̃ (x)).

Taking y0 ∈ K ∩ (
⋂

x∈E

F̃ (x)), we have y0 ∈ K and x 6∈ F (y0) for every x ∈ E. Hence, we have

F (y0) = ∅ which contradicts (3). Therefore, there exists ŷ ∈ E such that ŷ ∈ G(ŷ). This completes
our proof.

Remark 2.26. If F = G, then (4) of Lemma 2.25 can be replaced by the following equivalent
condition:

(4)∗ there exists a point x0 ∈ E such that co(E\F−1(x0)) ⊆ K.

3. Main Results

In this section, motivated by Ungchittrakool [22]. We discuss the existence and convergence
for fixed point of a strict pseudo-contraction in the terminology of Browder and Petryshyn in the
framework of complete CAT(0) spaces.

Lemma 3.1. Let C be a bounded closed convex subset of a complete CAT(0) space (X, d). Then
(C, d) is a complete CAT(0) space.

Proof. Let C be a bounded closed convex subset of complete CAT(0) space (X, d). Notice that, a
subset of a CAT(0) space equipped with the induced metric, is a CAT(0) space if and only if it is
convex. This implies that (C, d) is a CAT(0) space. Since C is closed subset of complete metric
space (X, d), then (C, d) is complete metric space. Therefore, we have (C, d) is a complete CAT(0)
space.

Lemma 3.2. Let C be a bounded closed convex subset of a complete CAT(0) space X. Let T be
a k- strict pseudo-contraction in the terminology of Browder and Petryshyn. Then, there exists an
element x0 ∈ C such that

〈−−→xx0,
−−−→
xTx0

〉
≥ 0 for all x ∈ C.

Proof. Let C be a bounded closed convex subset of a complete CAT(0) space (X, d). We claim
that there exists an element x0 ∈ C such that

〈−−→xx0,
−−−→
xTx0

〉
≥ 0 for all x ∈ C. For any y ∈ C, we

assume that the set {x ∈ C :
〈−→xy,

−−→
xTy

〉
< 0} is nonempty. We also define two set-valued mappings

F,G : C → 2C by F (y) = G(y) = {x ∈ C :
〈−→xy,

−−→
xTy

〉
< 0}.

We first show that G(y) is convex and F−1(x) is an open set.
Step1. To show that G(y) is convex.
Let x1, x2 ∈ G(y) and ut = tx1⊕ (1− t)x2 such that t ∈ [0, 1]. So, we have x1, x2 ∈ C, that ut ∈ C.
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Let us consider
〈−→uty,

−−−→
utTy

〉
, by Lemma 2.13, we get that

〈−→uty,
−−−→
utTy

〉

≤ t
〈−→x1y,

−−−→
utTy

〉
+ (1− t)

〈−→x2y,
−−−→
utTy

〉
= t

〈−−−→
utTy,−→x1y

〉
+ (1− t)

〈−−−→
utTy,−→x2y

〉

≤ t{t
〈−−−→
x1Ty,−→x1y

〉
+ (1− t)

〈−−−→
x2Ty,−→x1y

〉
}+ (1− t){t

〈−−−→
x1Ty,−→x2y

〉
+ (1− t)

〈−−−→
x2Ty,−→x2y

〉
}

= t2
〈−−−→
x1Ty,−→x1y

〉
+ t(1− t)

〈−−−→
x2Ty,−→x1y

〉
+ (1− t)2

〈−−−→
x2Ty,−→x2y

〉
+ t(1− t)

〈−−−→
x1Ty,−→x2y

〉

= t2
〈−−−→
x1Ty,−→x1y

〉
+ t(1− t){〈−−→x2x1,

−→x1y〉+
〈−−−→
x1Ty,−→x1y

〉
}

+ (1− t)2
〈−−−→
x2Ty,−→x2y

〉
+ t(1− t){〈−−→x1x2,

−→x2y〉+
〈−−−→
x2Ty,−→x2y

〉
}

= t2
〈−−−→
x1Ty,−→x1y

〉
+ t(1− t)

〈−−−→
x1Ty,−→x1y

〉
+ (1− t)2

〈−−−→
x2Ty,−→x2y

〉
+ t(1− t)

〈−−−→
x2Ty,−→x2y

〉

+ t(1− t){〈−−→x2x1,
−−→x1x2〉+ 〈−−→x2x1,

−→x2y〉}+ t(1− t) 〈−−→x1x2,
−→x2y〉

= t
〈−−−→
x1Ty,−→x1y

〉
+ (1− t)

〈−−−→
x2Ty,−→x2y

〉
− t(1− t) 〈−−→x1x2,

−−→x1x2〉
− t(1− t) 〈−−→x1x2,

−→x2y〉+ t(1− t) 〈−−→x1x2,
−→x2y〉

≤ t
〈−−−→
x1Ty,−→x1y

〉
+ (1− t)

〈−−−→
x2Ty,−→x2y

〉

< 0.

Therefore ut ∈ G(y), that is G(y) is convex.
Step 2. To show that F−1(x) is an open set.
For F−1(x) = {y ∈ C :

〈−→xy,
−−→
xTy

〉
< 0}, we show that C\F−1(x) = {y ∈ C :

〈−→xy,
−−→
xTy

〉
≥ 0} is a

closed set. Let {yn} ⊆ C\F−1(x) such that yn → y0. Then
〈−−→xyn,

−−−→
xTyn

〉
≥ 0. We will show that

y0 ∈ C\F−1(x). By Lemma 2.19, T is a Lipschitzian map. Inparticular, T is continuous. It follows
that

0 ≤
〈−−→xyn,

−−−→
xTyn

〉
=

〈−→xy0,
−−−→
xTyn

〉
+

〈−−→y0yn,
−−−→
xTyn

〉
=

〈−→xy0,
−−−→
xTy0

〉
+

〈−→xy0,
−−−−−→
Ty0Tyn

〉
+

〈−−→y0yn,
−−−→
xTyn

〉

≤
〈−→xy0,

−−−→
xTy0

〉
+ d(x, y0)d(Ty0, T yn) + d(y0, yn)d(x, Tyn)

≤
〈−→xy0,

−−−→
xTy0

〉
+ max{1 + k

1− k
, 1}d(x, y0)d(y0, yn) + d(y0, yn)d(x, Tyn),

for all n ∈ N. Taking the limit in both sides, we get that
〈−→xy0,

−−−→
xTy0

〉
≥ 0.

That is y0 ∈ C\F−1(x). Hence C\F−1(x) is a closed set in C, therefore F−1(x) is an open set.
We next show that there exists an element x0 ∈ C such that

〈−−→xx0,
−−−→
xTx0

〉
≥ 0 for all x ∈ C.

By assumption, we have F (y) 6= ∅ for every y ∈ C, and by Lemma 2.5, we have C is 4- compact.
Notice that there exists a point z ∈ C such that C\F−1(z) ⊆ C. Also, co(C\F−1(z)) is the
smallest convex set containing C\F−1(z). Then, we get that there exists a point z ∈ C such that
co(C\F−1(z)) ⊆ C where C is a nonempty 4-compact subset of C. Also, by Lemma 3.1, we have
(C, d) is a complete CAT(0) space. By Lemma 2.25 and Remark 2.26, we have x0 ∈ C such that
x0 ∈ G(x0). This implies that 0 =

〈−−→x0x0,
−−−−→
x0Tx0

〉
< 0. This is a contradiction. We obtain that

{x ∈ C :
〈−−→xx0,

−−−→
xTx0

〉
< 0} = ∅. Therefore

〈−−→xx0,
−−−→
xTx0

〉
≥ 0 for all x ∈ C.

Lemma 3.3. Let C be a bounded closed convex subset of a complete CAT(0) space X. Let T be
a k- strict pseudo-contraction in the terminology of Browder and Petryshyn. Then, there exists an
element x0 ∈ C such that

〈−−→xx0,
−−−−→
x0Tx0

〉
≥ 0 for all x ∈ C.
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Proof. Let C be a bounded closed convex subset of complete CAT(0) space (X, d). By Lemma 3.1,
we have (C, d) is a complete CAT(0) space. By Lemma 3.2, we have

x0 ∈ C such that
〈−−→xx0,

−−−→
xTx0

〉
≥ 0 for all x ∈ C. (3.1)

Also, for any u, z ∈ C and 0 < t < 1 and since C is convex, we have yt = (1− t)u⊕ tz ∈ C. Then,
for x0 ∈ C we have

yt = (1− t)x0 ⊕ tz ∈ C. (3.2)

By using (3.1) and (3.2), we have 0 ≤
〈−−−−−−−−−−−−−→{(1− t)x0 ⊕ tz}x0,

−−−→
ytTx0

〉
. By Lemma 2.10, we have

0 ≤
〈−−−−−−−−−−−−−→{(1− t)x0 ⊕ tz}x0,

−−−→
ytTx0

〉
≤ t

〈−→zx0,
−−−→
ytTx0

〉
. Since t > 0, it follows that 0 ≤

〈−→zx0,
−−−→
ytTx0

〉
.

By Lemma 2.19, T is a Lipschitzian map. Inparticular, T is continuous. Also yt → x0 as t → 0. It
follows that

0 ≤
〈−→zx0,

−−−→
ytTx0

〉
= 〈−→zx0,

−−→ytx0〉+
〈−→zx0,

−−−−→
x0Tx0

〉
≤ d(z, x0)d(yt, x0) +

〈−→zx0,
−−−−→
x0Tx0

〉
,

for 0 < t < 1. Taking the limit in both sides, we get that
〈−→zx0,

−−−−→
x0Tx0

〉
≥ 0 as t → 0.

Therefore,
〈−−→xx0,

−−−−→
x0Tx0

〉
≥ 0 for all x ∈ C.

Lemma 3.4. Let (X, d) be a complete CAT(0) space and T be a k-strict pseudo-contraction in the
terminology of Browder and Petryshyn with domain D(T ) and range R(T ). Then for all x, y ∈ D(T )
the following inequalities hold and are equivalent :

(1) d2(x, Tx) + d2(y, Ty) ≤ 2
1−k

〈−→xy,
−−→
xTx

〉
− 2k

1−k

〈−→xy,
−−→
yTy

〉
− 2

〈−−→
Txy,

−−→
yTy

〉
;

(2) d2(x, Tx) + d2(y, Ty) ≤ 2
1−k

〈−→xy,
−−→
xTx

〉
− 2

1−k

〈−→xy,
−−→
yTy

〉
+ 2

〈−−→
xTx,

−−→
yTy

〉
;

(3) d2(x, Tx) + d2(y, Ty) ≤ 2
1−k

〈−−→
xTy,

−−→
xTx

〉
− 2

1−k

〈−−→
Txy,

−−→
yTy

〉
− 2( 1+k

1−k )
〈−−→
xTx,

−−→
yTy

〉
;

(4) d2(x, Tx) + d2(y, Ty)
≤

〈−−→
xTy,

−−→
xTx

〉
−

〈−−→
Txy,

−−→
yTy

〉
+ 1+k

2 {d2(x, Tx)− 2
〈−−→
xTx,

−−→
yTy

〉
+ d2(y, Ty)}.

Proof. We first show that (2) holds.

d2(x, Tx) + d2(y, Ty) = d2(x, Tx)− 2
〈−−→
xTx,

−−→
yTy

〉
+ d2(y, Ty) + 2

〈−−→
xTx,

−−→
yTy

〉

= d2(x, Tx)− d2(x, Ty)− d2(Tx, y) + d2(x, y) + d2(Tx, Ty)

+ d2(y, Ty) + 2
〈−−→
xTx,

−−→
yTy

〉

≤ d2(x, Tx)− d2(x, Ty)− d2(Tx, y) + d2(x, y) + d2(x, y)

+ kd2(x, Tx)− 2k
〈−−→
xTx,

−−→
yTy

〉
+ kd2(y, Ty) + d2(y, Ty) + 2

〈−−→
xTx,

−−→
yTy

〉
.

By simple calculation from the inequality above we get that

(1− k){d2(x, Tx) + d2(y, Ty)} ≤ d2(x, Tx) + d2(y, Ty) + d2(y, x) + d2(x, y)− d2(y, Tx)

− d2(x, Ty) + 2(1− k)
〈−−→
xTx,

−−→
yTy

〉
.

Dividing throughout with (1− k) we have that

d2(x, Tx) + d2(y, Ty) ≤ 1
1− k

{d2(x, Tx) + d2(y, Ty) + d2(y, x) + d2(x, y)

− d2(y, Tx)− d2(x, Ty)}+ 2
〈−−→
xTx,

−−→
yTy

〉

=
2

1− k

〈−→xy,
−−→
xTx

〉
− 2

1− k

〈−→xy,
−−→
yTy

〉
+ 2

〈−−→
xTx,

−−→
yTy

〉
. (3.3)
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Then, (2) is true. Next, we observe that

− 2
1− k

〈−→xy,
−−→
yTy

〉
+ 2

〈−−→
xTx,

−−→
yTy

〉
= − 2

1− k

〈−→xy,
−−→
yTy

〉
+ 2

〈−→xy,
−−→
yTy

〉
+ 2

〈−−→
yTx,

−−→
yTy

〉

= {2− 2
1− k

}
〈−→xy,

−−→
yTy

〉
− 2

〈−−→
Txy,

−−→
yTy

〉

=
−2k

1− k

〈−→xy,
−−→
yTy

〉
− 2

〈−−→
Txy,

−−→
yTy

〉
. (3.4)

Substituting (3.4) in (3.3), we get that (1) holds; that is
d2(x, Tx) + d2(y, Ty) ≤ 2

1−k

〈−→xy,
−−→
xTx

〉
− 2k

1−k

〈−→xy,
−−→
yTy

〉
− 2

〈−−→
Txy,

−−→
yTy

〉
,

and hence (1) and (2) are equivalent.
We next show that (3) is true. Let us consider

2
1− k

〈−→xy,
−−→
xTx

〉
=

2
1− k

{
〈−−→
xTy,

−−→
xTx

〉
+

〈−−→
Tyy,

−−→
xTx

〉
} =

2
1− k

〈−−→
xTy,

−−→
xTx

〉
− 2

1− k

〈−−→
xTx,

−−→
yTy

〉
.

(3.5)

− 2
1− k

〈−→xy,
−−→
yTy

〉
= − 2

1− k
{
〈−−→
Txy,

−−→
yTy

〉
+

〈−−→
xTx,

−−→
yTy

〉
} = − 2

1− k

〈−−→
Txy,

−−→
yTy

〉
− 2

1− k

〈−−→
xTx,

−−→
yTy

〉
.

(3.6)

Combining (3.5) and (3.6), we have

2
1− k

〈−→xy,
−−→
xTx

〉
− 2

1− k

〈−→xy,
−−→
yTy

〉
=

2
1− k

〈−−→
xTy,

−−→
xTx

〉
− 2

1− k

〈−−→
Txy,

−−→
yTy

〉
− 4

1− k

〈−−→
xTx,

−−→
yTy

〉
.

We get that

2
1− k

〈−→xy,
−−→
xTx

〉
− 2

1− k

〈−→xy,
−−→
yTy

〉
+ 2

〈−−→
xTx,

−−→
yTy

〉

=
2

1− k

〈−−→
xTy,

−−→
xTx

〉
− 2

1− k

〈−−→
Txy,

−−→
yTy

〉
− 4

1− k

〈−−→
xTx,

−−→
yTy

〉
+ 2

〈−−→
xTx,

−−→
yTy

〉

=
2

1− k

〈−−→
xTy,

−−→
xTx

〉
− 2

1− k

〈−−→
Txy,

−−→
yTy

〉
− 2(

1 + k

1− k
)
〈−−→
xTx,

−−→
yTy

〉
.

This shows that (3) is true. We get that (2) and (3) are equivalent. Next, we will show that (3)
and (4) are equivalent. We will show that (3) implies (4). Since 1−k

2 > 0, for (3) is true, we get
that

(
1− k

2
){d2(x, Tx) + d2(y, Ty)} ≤

〈−−→
xTy,

−−→
xTx

〉
−

〈−−→
Txy,

−−→
yTy

〉
− (1 + k)

〈−−→
xTx,

−−→
yTy

〉

[1− (
1 + k

2
)]{d2(x, Tx) + d2(y, Ty)} ≤

〈−−→
xTy,

−−→
xTx

〉
−

〈−−→
Txy,

−−→
yTy

〉
− (1 + k)

〈−−→
xTx,

−−→
yTy

〉

d2(x, Tx) + d2(y, Ty) ≤
〈−−→
xTy,

−−→
xTx

〉
−

〈−−→
Txy,

−−→
yTy

〉
− (1 + k)

〈−−→
xTx,

−−→
yTy

〉

+ (
1 + k

2
){d2(x, Tx) + d2(y, Ty)}

=
〈−−→
xTy,

−−→
xTx

〉
−

〈−−→
Txy,

−−→
yTy

〉

+ (
1 + k

2
){d2(x, Tx) + d2(y, Ty)− 2

〈−−→
xTx,

−−→
yTy

〉
}.

Then, we get that (4) holds. By using a similar method, we get that (4) implis (3). That is, we get
that (3) and (4) are equivalent. This completes our proof.
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Lemma 3.5. Let (X, d) be a complete CAT(0) space and T be a k-strict pseudo-contraction in the
terminology of Browder and Petryshyn with domain D(T ) and range R(T ). If, there exists u ∈ D(T )
such that

〈−→xu,
−−→
uTu

〉
≥ 0 and

〈−−→
Txu,

−−→
uTu

〉
≥ 0 for some x ∈ D(T ), the following inequalities hold :

d2(x, Tx) ≤





2
1−k

〈−→xu,
−−→
xTx

〉
,

{
if k ∈ [0, 1);

or if
〈−−→
xTx,

−−→
uTu

〉
≤ 0;




2
1−k

〈−→xu,
−−→
xTx

〉

2
1−k

〈−−→
xTu,

−−→
xTx

〉 , if
〈−−→
xTx,

−−→
uTu

〉
≥ 0 and k ∈ [0, 1);

2
1−k

〈−−→
xTu,

−−→
xTx

〉
, if

〈−−→
xTx,

−−→
uTu

〉
≥ 0 and k ∈ [−1, 0);

〈−−→
xTu,

−−→
xTx

〉
, if k ∈ (−∞,−1].

Proof. If k ∈ [0, 1), then k < 1 ⇔ 0 < 1− k and note that 0 ≤ 2k, so we have
2k

1−k ≥ 0 ⇔ − 2k
1−k ≤ 0. By Lemma 3.4(1),

〈−→xu,
−−→
uTu

〉
≥ 0 and

〈−−→
Txu,

−−→
uTu

〉
≥ 0, we get that

d2(x, Tx) ≤ d2(x, Tx) + d2(u, Tu) ≤ 2
1− k

〈−→xu,
−−→
xTx

〉
− 2k

1− k

〈−→xu,
−−→
uTu

〉
− 2

〈−−→
Txu,

−−→
uTu

〉

≤ 2
1− k

〈−→xu,
−−→
xTx

〉
. (3.7)

If
〈−−→
xTx,

−−→
uTu

〉
≤ 0, then by Lemma 3.4(2) and

〈−→xu,
−−→
uTu

〉
≥ 0, we get that

d2(x, Tx) ≤ d2(x, Tx) + d2(u, Tu) ≤ 2
1− k

〈−→xu,
−−→
xTx

〉
− 2

1− k

〈−→xu,
−−→
uTu

〉
+ 2

〈−−→
xTx,

−−→
uTu

〉

≤ 2
1− k

〈−→xu,
−−→
xTx

〉
.

Before we prove the next case, let us consider the following

k ∈ [−1, 1) ⇔ −1 ≤ k < 1

{
⇔ 0 ≤ 1 + k < 2.

⇔ 1 ≥ −k > −1 ⇔ 2 ≥ 1− k > 0 ⇔ 1
1−k ≥ 1

2 .

Therefore, we have 2( 1+k
1−k ) ≥ 1 + k ≥ 0 and then

−2(
1 + k

1− k
) ≤ 0 whenever k ∈ [−1, 1). (3.8)

If
〈−−→
xTx,

−−→
uTu

〉
≥ 0 and k ∈ [0, 1), then it follows from (3.8), Lemma 3.4(3) and

〈−−→
Txu,

−−→
uTu

〉
≥ 0,

we get that

d2(x, Tx) ≤ d2(x, Tx) + d2(u, Tu) ≤ 2
1− k

〈−−→
xTu,

−−→
xTx

〉
− 2

1− k

〈−−→
Txu,

−−→
uTu

〉
− 2(

1 + k

1− k
)
〈−−→
xTx,

−−→
uTu

〉

≤ 2
1− k

〈−−→
xTu,

−−→
xTx

〉
.

From (3.7), we can conclude in this case that d2(x, Tx) ≤




2
1−k

〈−→xu,
−−→
xTx

〉

2
1−k

〈−−→
xTu,

−−→
xTx

〉
.

If
〈−−→
xTx,

−−→
uTu

〉
≥

0 and k ∈ [−1, 0), then by (3.8), Lemma 3.4(3) and
〈−−→
Txu,

−−→
uTu

〉
≥ 0, we get that d2(x, Tx) ≤
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2
1−k

〈−−→
xTu,

−−→
xTx

〉
. Finally, if k ∈ (−∞,−1], then by using lemma 3.4(4) and

〈−−→
Txu,

−−→
uTu

〉
≥ 0, we

get that

d2(x, Tx) ≤ d2(x, Tx) + d2(u, Tu) ≤
〈−−→
xTu,

−−→
xTx

〉
−

〈−−→
Txu,

−−→
uTu

〉
+

1 + k

2
d2(xTx, uTu)

≤
〈−−→
xTu,

−−→
xTx

〉
.

This completes our proof.

Every iteration process generated by the shrinking projection method for a k-strict pseudo-
contraction T in the terminology of Browder and Petryshn is well defined even if T is fixed point
free.

Lemma 3.6. Let (X, d) be a complete CAT(0) space and C be nonempty closed and convex subset
of X. Let T : C → C be a k-strict pseudo-contraction in the terminology of Browder and Petryshyn,
that is for all x, y ∈ X there exists an element k ∈ (−∞, 1) such that

d2(Tx, Ty) ≤ d2(x, y) + k[d2(x, Tx)− 2
〈−−→
xTx,

−−→
yTy

〉
+ d2(y, Ty)].

Let x0 ∈ X, C1 = C and {xn} be a sequence in C generated by
{

xn = PCn(x0),

Cn+1 =
{

z ∈ Cn : d2(xn, Txn) ≤ max { 2
1−k , 1}

〈−−→xnz,
−−−−→
xnTxn

〉}
,

(3.9)

for all n ∈ N. Then, Cn is nonempty closed convex subsets of X and consequently, {xn} is well
defined for every n ∈ N.

Proof. Clearly, C1 is nonempty. Suppose that Cm is nonempty for some m ∈ N . We wish to show
that Cm+1 is nonempty. Since Cm ⊂ Cm−1 ⊂ ... ⊂ C1, we have that C1, C2, ..., Cm are nonempty.
Next, we will show that C1, C2, ..., Cm are closed and convex. It is sufficient to show that Cm is
closed and convex. It is not hard to show that for any {zk} ⊆ Cm such that zk → z0, we have
z0 ∈ Cm. We get that Cm is closed.

We next show that Cm is convex. Notice that a subset of a CAT(0) space, equipped with the
induced metric, is a CAT(0) space if and only if it is convex. Thus, we will show that (Cm, d)
is a complete CAT(0) space. Let each x, y ∈ Cm, we have x, y ∈ C. By Lemma 3.1, we have
(C, d) is a complete CAT(0) space and thus, it is a geodesic space, hence x, y are joined by a
geodesic. Since x, y are arbitrary, thus we have x, y ∈ Cm are joined by a geodesic. Hence Cm

is a geodesic space. Since Cm is closed subset of complete metric space (C, d), then (Cm, d) is a
complete metric space. It follows from Lemma 2.21 that, for every y, z ∈ Cm, there exists p ∈ Cm

such that d(y, p) = d(p, z) = 1
2d(y, z). Now, we claim that Cm satisfies the (CN) inequality. In

fact, let x, y, z ∈ Cm and p ∈ Cm with d(y, p) = d(p, z) = 1
2d(y, z). Let α and β be two numbers

satisfy α + β ≥ 1. Then α2 + β2 ≥ 1
2 (α + β)2 ≥ 1

2 with equality if and only if α = β= 1
2 .

By this fact and by the triangle inequality, we get that (
d(y, p)
d(y, z)

)2 + (
d(p, z)
d(y, z)

)2 ≥ 1
2
. That is,

1
2d2(y, z) ≤ d2(y, p) + d2(p, z). It follows from the above inequality that, setting x = p, we get that
d2(x, y) + d2(x, z) ≥ 2d2(x, p) + 1

2d2(y, z), this implies that Cm satisfies the (CN) inequality. By
Lemma 2.22, we know that (Cm, d) is a CAT(0) space. By above, we have (Cm, d) is a complete
metric space. Then (Cm, d) is a complete CAT(0) space. This implies that Cm is convex subset of X.
Thus, we have Cm is closed and convex. Finally, put r = max{d(x0, xi), d(x0, Txi) : i = 1, 2, ..., m}
and Br = {z ∈ X : d(x0, z) ≤ r}. Obviously C ∩ Br is a nonempty bounded closed convex subset
of X. It follows from Lemma 3.3 that there exists an element u ∈ C ∩Br such that

〈−→yu,
−−→
uTu

〉
≥ 0

for all y ∈ C ∩Br. In particular, we have
〈−→xiu,

−−→
uTu

〉
≥ 0 and

〈−−−→
Txiu,

−−→
uTu

〉
≥ 0 (3.10)
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for every i = 1, 2, ...,m.
Case I. max { 2

1−k , 1} = 2
1−k .

Notice that max { 2
1−k , 1} = 2

1−k ⇔ 1 ≤ 2
1−k ⇔ 1− k ≤ 2 ⇔ −1 ≤ k ⇔ k ∈ [−1, 1), it follows from

(3.10) and Lemma 3.5 that

d2(xi, Txi) ≤





2
1−k

〈−→xiu,
−−−→
xiTxi

〉
,

{
if k ∈ [0, 1);

or if
〈−−−→
xiTxi,

−−→
uTu

〉
≤ 0;




2
1−k

〈−→xiu,
−−−→
xiTxi

〉

2
1−k

〈−−−→
xiTu,

−−−→
xiTxi

〉 , if
〈−−−→
xiTxi,

−−→
uTu

〉
≥ 0 and k ∈ [0, 1);

2
1−k

〈−−−→
xiTu,

−−−→
xiTxi

〉
, if

〈−−−→
xiTxi,

−−→
uTu

〉
≥ 0 and k ∈ [−1, 0)

for every i = 1, 2, ...,m. This shows that u ∨ Tu ∈ Cm+1.
Case q. max { 2

1−k , 1} = 1.
Notice that max { 2

1−k , 1} = 2
1−k ≤ 1 ⇔ 2 ≤ 1− k ⇔ k ≤ −1 ⇔ k ∈ (−∞,−1], it follows from (3.9)

and Lemma 3.5 that d2(xi, Txi) ≤
〈−−−→
xiTu,

−−−→
xiTxi

〉
, if k ∈ (−∞,−1] for every i = 1, 2, ..., m. This

shows that Tu ∈ Cm+1. By Case I and Case q, we can conclude that u∨Tu ∈ Cm+1. Hence Cm+1

is nonempty. By induction on n, therefore the desired result.

Theorem 3.7. Let all the assumptions be the same as in Lemma 3.6. Then, the following are
equivalent :

(1)
∞⋂

n=1

Cn is nonempty;

(2) {xn} is bounded;
(3) Fix(T ) is nonempty.

Proof. [(1) ⇒ (2)] Let u ∈
∞⋂

n=1

Cn. By Lemma 2.12, it follows from the nonexpansiveness of PCn

that d(xn, u) = d(PCnx0, PCnu) ≤ d(x0, u). This shows that xn is bounded.
[(2) ⇒ (3)] Suppose that xn is bounded, we first claim that 0 ≤ d2(xn+1, xn) ≤ d2(xn+1, x0)−

d2(xn, x0). Since xn = PCnx0, by Lemma 2.11, we have 〈−−−→x0xn,−−−−−→xnxn+1〉 ≥ 0 for all xn+1 ∈
Cn. So, we have 〈−−−→x0xn,−−−−→x0xn+1〉 − 〈−−−→x0xn,−−−→x0xn〉 = 〈−−−→x0xn,−−−−−→xnxn+1〉 ≥ 0 and hence d2(x0, xn) =
〈−−−→x0xn,−−−→x0xn〉 ≤ 〈−−−→x0xn,−−−−→x0xn+1〉. By Lemma 2.14, 2.15 and using (2.1), we have

d2(xn, xn+1) ≤ 2d2(xn, xn+1) = 4d2(
1
2
x0 ⊕ 1

2
xn,

1
2
x0 ⊕ 1

2
xn+1)

≤ d2(xn, x0) + d2(xn+1, x0) + d2(x0, x0) + d2(xn, xn+1)− d2(x0, xn+1)− d2(x0, xn)

= d2(xn, x0) + d2(xn+1, x0) + 2 〈−−−−→xn+1x0,
−−−→x0xn〉

= d2(xn, x0) + d2(xn+1, x0)− 2 〈−−−−→x0xn+1,
−−−→x0xn〉

≤ d2(xn, x0) + d2(xn+1, x0)− 2d2(x0, xn). (3.11)

This shows that {d(xn, x0)} is nondecreasing and with is the bounded of {xn}, we have lim
n→∞

d(xn, x0)

exists. From (3.11), we get that d2(xn+1, xn) → 0 as n → ∞. Thus −−−−−→xnxn+1 = 0. Since xn+1 ∈
Cn+1, we have d2(xn, Txn) ≤ max{ 2

1−k , 1}
〈−−−−−→xnxn+1,

−−−−→
xnTxn

〉
≤ max{ 2

1−k , 1}d(xn, xn+1)d(xn, Txn).
Thus d(xn, Txn) → 0 as n → ∞. Since {xn} is bounded and by Lemma 2.3, we have
4− lim

j→∞
xnj = w. Since d(xnj , Txnj ) → 0 as j →∞, then we get that

Φ(x) = lim sup
j→∞

d(xnj , x) = lim sup
j→∞

d(Txnj , x) for all x ∈ C. (3.12)
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By taking x = Tw in (3.12), we have

Φ(Tw)2 = lim sup
j→∞

d2(Txnj , Tw)

≤ lim sup
j→∞

{d2(xnj , w) + k[d2(xnj , Txnj )− 2
〈−−−−−→
xnj Txnj ,

−−−→
wTw

〉
+ d2(w, Tw)]}

= lim sup
j→∞

d2(xnj , w) + k lim sup
j→∞

[d2(xnj , Txnj ) + 2
〈−−−−−→
Txnj xnj ,

−−−→
wTw

〉
+ d2(w, Tw)]

≤ lim sup
j→∞

d2(xnj , w) + k lim sup
j→∞

d2(xnj , Txnj )

+ 2k lim sup
j→∞

[d(Txnj , xnj )d(w, Tw)] + k lim sup
j→∞

d2(w, Tw)

= Φ(w)2 + k d2(w, Tw). (3.13)

Since −∞ < k < 1, we can choose a real number λ ∈ [0, 1] be such that max{0, k} < λ < 1. By
Lemma 2.15, we have

d2
(
xnj , λw ⊕ (1− λ)Tw

) ≤ λd2
(
xnj , w

)
+ (1− λ)d2

(
xnj , Tw

)− λ(1− λ)d2 (w, Tw)

Taking the superior limit on both sides of the above inequality, we get that

Φ(λw ⊕ (1− λ)Tw)2 ≤ λΦ(w)2 + (1− λ)Φ(Tw)2 − λ(1− λ)d2 (w, Tw)

Since 4− lim
j→∞

xnj = w. By using (3.13) and Lemma 2.2, we have

Φ(w)2 ≤ Φ(λw ⊕ (1− λ)Tw)2 ≤ λΦ(w)2 + (1− λ)Φ(Tw)2 − λ(1− λ)d2 (w, Tw)

≤ λΦ(w)2 + (1− λ)
(
Φ(w)2 + kd2 (w, Tw)

)
− λ(1− λ)d2 (w, Tw)

= λΦ(w)2 + (1− λ)Φ(w)2 + (1− λ)kd2 (w, Tw)− λ(1− λ)d2 (w, Tw)

= Φ(w)2 + (1− λ)(k − λ)d2 (w, Tw) .

This implies that (1−λ)(λ−k)d2 (w, Tw) ≤ 0. Since max{0, k} < λ < 1, we have (1−λ)(λ−k) > 0.
This implies that Tw = w, that is w ∈ Fix(T ) 6= ∅.

[(3) ⇒ (1)] Suppose that Fix(T ) 6= ∅. We claim that Fix(T ) ⊂ Cn for all n ∈ N . If w ∈ Fix(T ),
then we have

〈−→
ab,

−−−→
wTw

〉
= 0 for all a, b ∈ X. Taking u = w in the proof of Lemma 3.6, it is not

hard to observe that all inequalities are satisfied. This implies that w ∈ Cn for all n ∈ N . Therefore

Fix(T ) ⊂
∞⋂

n=1

Cn 6= ∅.

Theorem 3.8. Let all the assumptions be the same as in Theorem 3.7 Then, if
∞⋂

n=1

Cn 6= ∅ (⇔ {xn}
is bounded ⇔ Fix(T ) 6= ∅),then the sequence {xn} generated by (3.9) converges strongly to some
points of C and its strong limit point is a member of Fix(T ), that is lim

n→∞
xn = PFix(T )x0 ∈ Fix(T ).

Proof. If
∞⋂

n=1

Cn 6= ∅, then Theorem 3.7 ensures that {xn} is bounded sequence in C. By Lemma

2.3, we have {xnj} ⊆ {xn} such that 4− lim
j→∞

xnj = u. By the proof of Theorem 3.7[(2) ⇒ (3)], we

have u ∈ Fix(T ). By Lemma 2.20, we have PFix(T ) is well defined. Also, PFix(T )x0 ∈ Fix(T ) ⊂ Cn,
we observe that

d(xn, x0) = d(PCn
x0, x0) ≤ d(PFix(T )x0, x0) (3.14)
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for all n ∈ N . Since {d(xn, x0)} is nondecreasing, we get that lim
n→∞

d(xn, x0) exists. Since 4 −
lim

j→∞
xnj = u, by using Lemma 2.6, we have {xnj} ⇀ u. By Definition 2.16 and Lemma 2.17, we

get that d(u, {x0}) ≤ lim infj→∞ d(xnj , {x0}). By Lemma 2.8, there exists an x0 ∈ {x0} such that

d(u, x0) = d(u, {x0}) ≤ lim inf
j→∞

d(xnj , x0) (3.15)

By using (3.14) and (3.15), we get that

d(u, x0) ≤ lim inf
j→∞

d(xnj , x0) = lim
n→∞

d(xn, x0) ≤ d(PFix(T )x0, x0). (3.16)

Taking into account u ∈ Fix(T ), from (3.16), we have d(u, x0) ≤ d(PFix(T )x0, x0) ≤ d(u, x0). This
implies that d(u, x0) = d(PFix(T )x0, x0). By Lemma 2.8, we obtain that u = PFix(T )x0. Therefore
{xn} ⇀ PFix(T )x0 and d(xn, x0) → d(PFix(T )x0, x0). Consequently, from (3.11), we get that
d2(xn, PFix(T )x0) ≤ d2(PFix(T )x0, x0)− d2(xn, x0) → 0 as n →∞. This completes our proof.

Remark 3.9. The results in this section extend and improve the corresponding Theorem 3.4 and
3.5 in [22] in the case of an iterative projection technique in a Hilbert space.

4. Conclusion

In the present paper, we study some existence and convergence theorems for fixed points of a
strict pseudo-contraction by using an iterative projection technique with some suitable conditions.
We obtain the sufficient conditions for the existence and convergence theorem for the fixed points
of strict pseudo-contraction mappings in complete CAT(0) spaces.
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Abstract. Recently, we considered the Choquet integrals with respected to a fuzzy mea-
sure and the Choquet-expected utility(CEU)which was represented by preference function-

als. We note that the CEU provides a useful tool to calculate the subjective capacity of

trade values between Korea and some countries in Wood-Jang [4,10].
In this paper, by using the Choquet-expected utility in Wood-Jang [4] and the degree of

similarity in Biswas [1], we define the CEU-degree of the similarity related with the CEU

of trade values between Korea and some countries. In particular, we investigate some
applications of the CEU-degree of similarity related with the CEU of trade values.

1. Introduction

By using fuzzy sets and Choquet integrals in [1,2,4,5,6,10], many researchers have studied
the concept of Choquet intgeral expected utility and its related areas(see[3,4,8.9.11,12]). Re-
cently, Wood-Jang [6,7] studied some applications of the Choquet integral as imprecise market
premium functionals with respect to an imprecise set function which was an interval-valued
measure of risk and the Choquet integral with respect to a fuzzy measure of a utility function.
In 1995, Biswas [1] investigated a student’s evaluation on the space of fuzzy sets which include
data information for the students respective classes.

In this paper, by using the degree of similarity in Biswas [1], we define the CEU-degree
of the similarity which is related to the CEU for the trade values that exist between Korea
and some of its important trading partners (such as Korea-USA, Korea-New Zealand, Korea-
India, and Korea-Turkey). In particular, we investigate the evaluation of the CEU-degree of
similarity which is related with the CEU of trade values CEU(u(a)) of a utility u from an act
a on S for specified HS product codes for animal product exports between Korea and selected
trading partners for years 2010-2013. We note that we include the dates used in our previous
studies [4,10].

In particular, we investigate the following applications:

1991 Mathematics Subject Classification. 28E10, 28E20, 03E72, 26E50 11B68.
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(1) we calculate CEU-degree of contribution from an economic value perspective, for animal
exports with HS product code i = 1, 2, 3, 4, 5 between Korea and selected trading partners for
years 2010-2013 and

(2) we compare these values with the USA and other trading partners in terms of CEU-
degrees (13), (14), and (15) of the similarity which is related to the relationships and char-
acterizations involved in the value of international trade between Korea and each of the four
countries analyzed in this study(see[14]).

2. Preliminaries and definitions

Let S be a finite set of states of nature and F (S) be the set of all fuzzy sets A =
{(s,mA(s)) | s ∈ S, mA −→ [0, 1] is a function}. Recall that mA is called a membership
function of A.

Definition 2.1. ([4-7,9,10,11,13])
(1) A real-valued function µ on S the subsets of is called a fuzzy measure if it satisfies

(i) µ(∅) = 0, µ(S) = 1,
(ii) A ⊂ B ⇒ µ(A) ≤ µ(B). (1)

(2) The Choquet integrals with respect to a fuzzy measure µ of A ∈ F (S) is defined by

(C)

∫
fAdµ =

∫ 1

0

µ({s ∈ S|fA(s) ≥ α})dα, (2)

Definition 2.2. ([4-7,9,10,11,13]) (1) Let A ∈ F (S). The Choquet integrals with respect to
a fuzzy measure µ of a fuzzy set A = (S, fA) is defined by

where the integral on the right-hand side is an ordinary one.
(2) Let S = {s1, s2, · · · , sn} be a finite set. The discrete Choquet integral with respect to

a fuzzy measure µ is defined by

(C)

∫
mAdµ =

n∑
i=1

fA(s(i))
[
µ(E(i))− µ(E(i+1))

]
, (3)

where E(i) = {s ∈ S|mA(s) ≥ mA(si)} for i = 1, 2, · · · , n. By convention, let En+1 = ∅.

By using the Choquet integral, we consider the Choquet expected utility(CEU) of a utility
u from an act a as follows.

Definition 2.3. ([4]) Let u : X −→ [0, 1] be a utility and a be an act from S to X. The
Choquet expected utility(CEU) with respect to a fuzzy measure µ of utility u from act a is
defined by

CEU(u(a)) = (C)

∫
u(a(s))dµ(s). (4)
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We note that if mA(s) = u(a(s)) and A = (S,mA), then A ∈ F (S), that is, A is a fuzzy set.
From Definition 2.1(3) and Definition 2.2 with a finite set S, we get CEU(u(a)) as follows:

CEU(u(a)) =
n∑

i=1

u(a(s(i)))
[
µ(E(i))− µ(E(i+1))

]
. (5)

where E(i) = {s ∈ S|u(a(s)) ≥ u(a(s(i))} for all i = 1, 2, · · · , n.

3. CEU-fuzzy marks and CEU-degree of similarity

In this section, we consider the CEU of a utility on a set of trade values (in USD) that
represent the trading relationship that Korea shares with selected trading partners(i.e. Korea-
USA, Korea-New Zealand, Korea-India, and Korea-Turkey). We also examine these respective
trading relationships by incorporating a clearly defined set of Harmonized System (HS) prod-
uct code product categories (i.e. HS Codes i = 1, 2, 3, 4, 5) for each individual year that is
under review (i.e. 2010, 2011, 2012, 2013). We note that the product code definitions have
been provided by the UN Comtrade’s online database and the relevant categories are defined
as follows(see[14]):

1. Live animals; animal products.
2. Meat and edible meat offal.
3. Fish and crustaceans, mollusks and other aquatic invertebrates.
4. Dairy produce; birds’ eggs; natural honey; edible products of animal origin, not elsewhere

specified or included.
5. Products of animal origin, not elsewhere specified or included.

Firstly, we denote that HSPC=HS Product Code, s=Year, a(s)=Trade Value, u(a(s))=the
utility of a(s), CEU(u, a)=the Choquet Expected Utility of u from a. By using the trade
values in tables A1 A4, we can calculate the Choquet integral of an utility on the set of
trade values (in USD) that represent Korea’s trading relationship with a particular country
for years 2010, 2012, 2012, 2013. Let s1 = 2010, s2 = 2011, s3 = 2012, s4 = 2013. If we define
a fuzzy measure µ on S as follows(see[4]):

µ(E(4)) = µ1({s(4)}) = 0.1, µ(E(3)) = µ1({s(3), s(4)}) = 0.3,

µ(E(2)) = µ1({s(2), s(3), s(4)}) = 0.6, µ(E(1)) = µ1({s(4), s(3), s(2), s(1)}) = 1, (6)

and if a(s) is the trade value of s and u(a) =
√

a
100141401 , then we obtain the following

CEU(u(a)) as follows:

CEU(u(a)) =
4∑

i=1

u(a(s(i)))
(
µ(E(i))− (µ(E(i+1))

)
= 0.4u(a(s(1))) + 0.3u(a(s(2))) + 0.2u(a(s(3))) + 0.1u(a(s(4))). (7)

By using (5), we calculate the four tables A1 ∼ A4 as follows(see [4]): By using four tables,
we get the four X-fuzzy sets X : {1, 2, 3, 4, 5} → [0, 1] by X = {(i,mX(i))|i = 1, 2, 3, 4, 5}
(i.e., USA-fuzzy set U , NZ-fuzzy set N , IN-fuzzy set I, TR-fuzzy set T ) defined by

U = {(1, 0.05664), (2, 0.04483), (3, 0.93879), (4, 0.20821), (5, 0.04858)} (8)

N = {(1, 0.00533), (2, 0.00000), (3, 0.78873), (4, 0.15976), (5, 0.01557)} (9)
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I = {(1, 0.00154), (2, 0.00000), (3, 0.04570), (4, 0.00000), (5, 0.00000)} (10)

T = {(1, 0.00264), (2, 0.00887), (3, 0.00368), (4, 0.00470), (5, 0.00000)} (11)

Definition 3.1. ([1]) The degree of similarity between X-fuzzy set and Y -fuzzy set is defined
by

S(X,Y ) =
X̂ · Ŷ

max{X̂ · X̂, Ŷ · Ŷ }
(12)

where

X̂ =< mX(1),mX(2),mX(3),mX(4),mX(5) >,

Ŷ =< mY (1),mY (2),mY (3),mY (4),mY (5) >
(13)

are vectors and

X̂ · Ŷ
= mX(1) ·mY (1) +mX(2) ·mY (2) +mX(3) ·mY (3) +mX(4) ·mY (4) +mX(5) ·mY (5).

(14)

By using Definition 3.1, we define the degree of similarity between X-fuzzy set and Y -fuzzy
set is called the CEU-degree of similarity as follows.

Definition 3.2. If X and Y are elements of {U,N, I, T}, then the degree of similarity between
X-fuzzy set and Y -fuzzy set is called the CEU-degree of similarity.

From Definition 3.1 and Definition 3.2, we get the CEU-degree of similarity between X-
fuzzy set and Y -fuzzy set where X and Y are elements of {U,N, I, T}.

Example 3.1. (1) From Definition 3.1 and Definition 3.2, we get the CEU-degree of similarity
between U -fuzzy set and N -fuzzy set as follows:

S(U,N) =
Û · N̂

max{Û · Û , N̂ · N̂}
=

0.7747737841

max{0.932255903, 0.6478891043}
= 0.83174152. (15)

(2) From (8) and (10), we get the CEU-degree of similarity between U -fuzzy set and I-fuzzy
set as follows:

S(U, I) =
Û · Î

max{Û · Û , Î · Î}
=

0.0429899286

max{0.932255903, 0.0020908616}
= 0.0461138712. (16)

(3) From (8) and (11), we get the CEU-degree of similarity between U -fuzzy set and T -fuzzy
set as follows:

S(U, T ) =
Û · T̂

max{Û · Û , T̂ · T̂}
=

0.004979328

max{0.932255903, 0.0001219413}
= 0.0053411601. (17)

By using four information with those of the CEU-degrees of similarity (13), (14), and (15),
we understand the exact difference of similarity between the USA and each of the other three
trading partners. By using the CEU-degrees of similarity between USA and another country,
we are able to provide a useful plan to find a more effective method of improving the value of
international trade between Korea and each of the four countries analyzed in this study. We
provide information that may well be of interest to international business practitioners that
want a clearer understanding of the relationship and characterizations related to the value of
international trade between Korea and each of the four countries measured.
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Table A1: The CEU for animal product exports between Korea and the USA for years
2010-2013

HSPC s a(s)(USD) u(a(s)) CEU(i,USA)(u(a))

1

s1 286892 = a(s(1)) 0.05352

0.05664
s2 330299 = a(s(2)) 0.05743
s3 358496 = a(s(3)) 0.05983
s4 364918 = a(s(4)) 0.06037

2

s1 997539 = a(s(4)) 0.09981

0.04483
s2 376805 = a(s(3)) 0.06034
s3 30005 = a(s(1)) 0.01731
s4 272884 = a(s(2)) 0.05220

3

s1 74866073 = a(s(1)) 0.86464

0.93879
s2 95654573 = a(s(2)) 0.97734
s3 100141401 = a(s(4)) 1.00000
s4 99871717 = a(s(3)) 0.99865

4

s1 3722326 = a(s(1)) 0.19280

0.20821
s2 4323214 = a(s(2)) 0.20778
s3 5016833 = a(s(4)) 0.22382
s4 4910771 = a(s(3)) 0.22145

5

s1 235669 = a(s(2)) 0.04851

0.04858
s2 359747 = a(s(3)) 0.05994
s3 101795 = a(s(1)) 0.05994
s4 863858 = a(s(4)) 0.09088

Remark 3.1. As demonstrated in (13) (14) and (15) this study compares the similarities
that exist between Korea and its respective trading partners. As such, our study details the
following information:

Korea−USA : Korea−NZ : Korea− India : Korea− Turkey = 1 : 0.832 : 0.046 : 0.005

(18)

(2) Given a situation whereby Korea spends 10 million USD as a means of developing a
strong trading relationship between itself and its US trading partner, we are able to also as-
certain the level of support that is needed to develop effective trading ties with other countries,
for example:

NewZealand : 8, 320, 000USD

India : 460, 000USD

Turkey50, 000USD.

(19)
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Table A2: The CEU for animal product exports between Korea and New Zealand for years
2010-2013

HSPC s a(s)(USD) u(a(s)) CEU(i,NZ)(u(a))

1

s1 6650 = a(s(4)) 0.00815

0.00533
s2 4497 = a(s(3)) 0.00670
s3 1589 = a(s(1)) 0.00398
s4 2779 = a(s(2)) 0.00527

2

s1 0 = a(s(1)) 0.00000

0.00000
s2 0 = a(s(2)) 0.00000
s3 0 = a(s(3)) 0.00000
s4 0 = a(s(4)) 0.00000

3

s1 70759196 = a(s(2)) 0.84059

0.78873
s2 91263506 = a(s(4)) 0.95464
s3 70763937 = a(s(3)) 0.84062
s4 46632301 = a(s(1)) 0.68240

4

s1 165773 = a(s(3)) 0.04069

0.15976
s2 113751 = a(s(1)) 0.03370
s3 148756 = a(s(2)) 0.03854
s4 277350 = a(s(4)) 0.05263

5

s1 0 = a(s(1)) 0.00000

0.01557
s2 0 = a(s(2)) 0.00000
s3 218022 = a(s(3)) 0.04666
s4 393025 = a(s(4)) 0.00265

Table A3: the CEU for Animal product expert between Korea and India for years 2010-2013

HSPC s a(s)(USD) u(a(s)) CEU(u(a))

1

s1 1050 = a(s(3)) 0.00324

0.00264
s2 1300 = a(s(4)) 0.00360
s3 450 = a(s(1)) 0.00212
s4 700 = a(s(2)) 0.00264

2

s1 35432 = a(s(3)) 0.01881

0.00887
s2 50639 = a(s(4)) 0.02249
s3 2656 = a(s(1)) 0.00515
s4 8230 = a(s(2)) 0.00907

3

s1 8695 = a(s(4)) 0.009318

0.00368
s2 5247 = a(s(3)) 0.00724
s3 0 = a(s(1)) 0.00000
s4 1865 = a(s(2)) 0.00432

4

s1 0 = a(s(1)) 0.00000

0.00470
s2 21614 = a(s(3)) 0.01469
s3 30938 = a(s(4)) 0.01758
s4 0 = a(s(2)) 0.00000

5

s1 0 = a(s(1)) 0.00000

0.00000
s2 0 = a(s(2)) 0.00000
s3 0 = a(s(3)) 0.00000
s4 0 = a(s(4)) 0.00000
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Table A4: The CEU for animal product exports between Korea and Turkey for years
2010-2013

HSPC s a(s)(USD) u(a(s)) CEU(u(a))

1

s1 0 = a(s(1)) 0.00000

0.00154
s2 6900 = a(s(4)) 0.00830
s3 150 = a(s(2)) 0.00122
S4 300 = a(s(3)) 0.00173

2

s1 0 = a(s(1)) 0.00000

0.00000
s2 0 = a(s(2)) 0.00000
s3 0 = a(s(3)) 0.00000
s4 0 = a(s(4)) 0.00000

3

s1 0 = a(s(1)) 0.00000

0.04570
s2 672952 = a(s(3)) 0.08198
s3 2532837 = a(s(4)) 0.15904
s4 199874 = a(s(2)) 0.04468

4

s1 0 = a(s(1)) 0.00000

0.00000
s2 0 = a(s(2)) 0.00000
s3 0 = a(s(3)) 0.00000
s4 0 = a(s(4)) 0.00000

5

s1 0 = a(s(1)) 0.00000

0.00000
s2 0 = a(s(2)) 0.00000
s3 0 = a(s(3)) 0.00000
s4 0 = a(s(4)) 0.00000

4. Conclusions

The Choquet expected utility(see Definition 2.3) is a useful tool which can be used to
calculate the evaluation of the contribution of animal exports between Korea and selected
trading partners. By using the Choquet expected utility, we obtained Tables A1 ∼ A4 in
[10]. From these Tables A1 ∼ A4, we gave four X- fuzzy sets (8),(9),(10),(11) which are
representations of the evaluation of contribution to animal exports for HP product codes
i = 1, 2, 3, 4, 5 between Korea and selected trading partners for years 2010-2013.

By using these X-fuzzy sets, we obtained three CEU-degrees (13), (14), and (15) of simi-
larity. From three CEU-degrees (13), (14), and (15) of similarity, we can clearly understand
the difference of similarity that exists between the USA and each of three countries measured
in the study. By using CEU-degrees of similarity between the USA and a respective trading
partner, we are able to provide a more effective method of improving the value of interna-
tional trade between Korea and its trading partners. We also provide valuable information
that can be used to compare the USA and another countries as was the case with the three
CEU-degrees (13), (14), and (15) of similarity that is related with the relationship and char-
acterizations of the international trade values that exist between Korea and its respective
trading partner.
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Abstract In this paper, we consider the following new type cubic-quartic (CQ) functional equation

f(λx+ y) + f(λx− y) =
λ2 + λ

2
[f(x+ y) + f(x− y)] +

λ2 − λ
2

[f(−x− y) + f(y − x)]

+ (λ4 + λ3 − λ2 − λ)f(x) + (λ4 − λ3 − λ2 + λ)f(−x) + (1− λ2)[f(y) + f(−y)],

where λ ≥ 2 is a fixed integer. We investigate the general solution of the functional equation, and

then, using the fixed point method, we prove some stability results for this functional equation in

matrix fuzzy normed spaces.

Keywords Ulam stability; Cubic-quartic mapping; Cubic-quartic functional equation; Matrix fuzzy

normed spaces.

Mathematics Subject Classification(2010) 39B82; 39B52; 46H25.

1 Introduction

Throughout this paper, N stands for the set of all positive integers, R and C stand for the sets of reals and

complex numbers, respectively. N0 := N ∪ {0}, R+ := [0,∞), and Nm0
denotes the set of all positive integers

greater than or equal to a given m0 ∈ N.

The study of stability problems for functional equations is related to a question of Ulam [14] concerning the

stability of group homomorphisms. Subsequently, the partial result of Ulam’s problem was proved by Hyers [8],

The solution of Hyers was generalized by Rassias [13] for approximate linear mappings by allowing the Cauchy

difference ||f(x + y) − f(x) − f(y)|| to be controlled by ϵ (∥x∥p + ∥y∥p). In 1994, a further generalization was

obtained by Găvruţa [10], who replaced ϵ(∥x∥p + ∥y∥p) by a general control function φ(x, y). This new idea is

known as the Hyers-Ulam-Rassias stability of functional equations.

Park [7] considered the following cubic-quartic functional equation

f(2x+y) +f(2x−y) = 3f(x+y) + 3f(x−y) +f(−x−y) +f(y−x) + 18f(x) + 6f(−x)−3f(y)−3f(−y), (1.1)

and investigated the orthogonally stability of (1.1). Very recently, Song [5] proved Ulam stability of this equation

(1.1) in matrix intuitionistic fuzzy normed spaces. For more interesting discussions and generalizations of the

original problem of Ulam have been investigated, see for instance [1, 2, 9, 11,12,15] and the references therein.
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In the present paper, we introduce a new mixed type cubic and quartic functional equation:

f(λx+ y) + f(λx− y) =
λ2 + λ

2
[f(x+ y) + f(x− y)] +

λ2 − λ
2

[f(−x− y) + f(y − x)]

+ (λ4 + λ3 − λ2 − λ)f(x) + (λ4 − λ3 − λ2 + λ)f(−x) + (1− λ2)[f(y) + f(−y)],

(1.2)

where λ ≥ 2 is a fixed integer. One can see that the functional equation (1.1) is a special case of (1.2) when we

take the integer λ = 2. Every solution of the functional equation (1.2) is said to be a cubic-quartic mapping.

The aim of this paper is to discuss the general solution and then establish the Ulam stability of (1.2). More

precisely, we discuss the Ulam stability of (1.2) in matrix fuzzy normed spaces by applying the fixed point method.

2 Preliminaries

In this section, we recall some basic facts concerning fuzzy normed spaces, matrix fuzzy normed spaces and

some useful results.

Definition 2.1 ( [4]) Let X be a real vector space. A function N : X × R → [0, 1] is said to be a fuzzy norm

on X if for all x, y ∈ X and all s, t ∈ R:

(1) N(x, t) = 0 for t ≤ 0; (2) x = 0 if and only if N(x, t) = 1 for all t > 0; (3) N(cx, t) = N(x, t
|c| ) if c ̸= 0; (4)

N(x + y, s + t) ≥ min {N(x, s), N(y, t)}; (5) N(x, ·) is a non-decreasing function on R and limt→∞N(x, t) = 1;

(6) N(x, ·) is continuous on R for x ̸= 0.

In this case (X,N) is called a fuzzy normed vector space.

Definition 2.2 ( [4]) Let (X,N) be a fuzzy normed space. A sequence xn in X is said to be convergent if there

exists x ∈ X such that limn→∞N(xn−x, t) = 1(t > 0). A sequence xn in X is called Cauchy if for each ϵ > 0 and

t > 0, there exists n0 ∈ N such that N(xm − xn, t) > 1− ϵ (m,n ≥ n0). If each Cauchy sequence is convergent,

then the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

We will use the following notations: Mm,n(X) is the set of all m × n matrices in X; When m = n, the

matrix Mm,n(X) will be written as Mn(X); ej ∈ M1,n(R) denote the row vector whose jth component is 1 and

the other components are zero; Eij ∈ Mn(R) is that (i, j)-component is 1 and the other components are zero;

Eij ⊗ x ∈Mn(X) is that (i, j)-component is x and the other components are zero.

Let (X, ∥·∥) be a normed space. Note that (X, {∥·∥n}) is a matrix normed space if and only if (Mn(X), ∥·∥n)

is a normed space for each positive integer n and ∥AxB∥k ≤ ∥A∥ ∥B∥ ∥x∥n holds for A ∈ Mk,n(R), x = [xij ] ∈
Mn(X) and B ∈Mn,k(R), and that (X, {∥·∥n}) is a matrix Banach space if and only if X is a Banach space and

(X, {∥·∥n}) is a matrix normed space.

For x ∈Mn(X), y ∈Mk(X), x⊕ y :=

(
x 0

0 y

)
, we introduce the concept of matrix fuzzy normed spaces.

Let X,Y be vector space. For a given mapping h : X → Y and a given positive integer n, define hn :

Mn(X)→Mn(Y ) by hn([xij ]) := [h(xij)] for all [xij ] ∈Mn(X).

Definition 2.3 ( [6, 15]) Let (X,N) be a fuzzy normed space.

(1) (X, {Nn}) is called a matrix fuzzy normed space if for each positive integer n, (Mn(X), Nn) is a fuzzy

normed space and Nk(AxB, t) ≥ Nn(x, t
∥A∥·∥B∥ ) for all t > 0, A ∈Mk,n(R), x = [xij ] ∈Mn(X) and B ∈Mn,k(R)

with ||A|| · ||B|| ̸= 0.

(2) (X, {Nn}) is called a matrix fuzzy Banach space if (X,N) is a fuzzy Banach space and (X, {Nn}) is a

matrix fuzzy normed space.
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Lemma 2.1 ( [6]) Let (X, {Nn}) be a matrix fuzzy normed space. Then

(1) Nn(Ekl ⊗ x, t) = N(x, t) for all t > 0, x ∈ X,

(2) For all [xij ] ∈Mn(X) and t =
∑n
i,j=1 tij,

N(xkl, t) ≥ Nn([xij ], t) ≥ min {N(xij , tij) : i, j = 1, 2, . . . , n} ,

N(xkl, t) ≥ Nn([xij ], t) ≥ min

{
N(xij ,

t

n2
) : i, j = 1, 2, . . . , n

}
.

(3) limn→∞ xn = x if and only if limn→∞ xijn = xij for xn = [xijn], x = [xij ] ∈Mk(X).

Theorem 2.1 ( [3]) Let (E, d) be a complete generalized metric space and J : E → E be a strictly contractive

mapping, that is

d(Jx, Jy) ≤ Ld(x, y),∀x, y ∈ E

for some 0 < L < 1. Then, for each given element x ∈ E, either d(Jnx, Jn+1x) = +∞, ∀n ≥ 0 or d(Jnx, Jn+1x) <

∞,∀n ≥ n0, for some natural number n0. Moreover, if the second alternative holds, then

(1) The sequence {Jnx} is convergent to a fixed point y∗ of J ;

(2) y∗ is the unique fixed point of J in the set E′ = {y ∈ E|d(Jn0x, y) < +∞} and d(y, y∗) ≤ 1
1−Ld(y, Jy)

for all y ∈ E′.

3 General solution of the functional equation (1.2)

In this section, we investigate the general solution of the mixed cubic-quartic functional equation (1.2).

Throughout this section, let X be a vector space over Q, Y be a vector space, and λ ∈ N2. Some basic facts on

n-additive symmetric mappings can be found in [12].

Lemma 3.1 If an odd mapping f : X → Y satisfies (1.2), then f is of the form f(x) = A3(x) for all x ∈ X,

where A3(x) is the diagonal of the 3-additive symmetric map A3 : X3 → Y .

Proof. Using the oddness of f , we have f(0) = 0 and f(−x) = −f(x) for all x ∈ X. (1.2) with y = 0 yields

f(λx) = λ3f(x). (3.1)

Applying (3.1) to (1.2), we obtain

f(λx+ y) + f(λx− y) = λ[f(x+ y) + f(x− y)] + 2λ(λ2 − 1)f(x), (3.2)

From (3.2), by Theorems 3.4 and 3.5 in [12], f is a generalized polynomial function of degree at most 3:

f(x) = A3(x) +A2(x) +A1(x) +A0(x), (3.3)

where A0(x) = A0 is an arbitrary element of Y , and Ai is the diagonal of the i-additive symmetric map Ai :

Xi → Y for i = 1, 2, 3. By f(0) = 0 and f(−x) = −f(x) for all x ∈ X, we get A0(x) = A0 = 0 and A2(x) = 0

for all x ∈ X. By f(λx) = λ3f(x) and Ai(rx) = riAi(x) whenever x ∈ X and r ∈ Q, we obtain A1(x) = 0 for all

x ∈ X. Therefore, f(x) = A3(x) for all x ∈ X. �

Lemma 3.2 If an even mapping f : X → Y satisfies (1.2), then f is of the form f(x) = A4(x) for all x ∈ X,

where A4(x) is the diagonal of the 4-additive symmetric map A4 : X4 → Y .
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Proof. In view of the evenness of f , we have f(−x) = f(x) for all x ∈ X. Let y = 0 in (1.2), we obtain

f(λx) = λ4f(x). (3.4)

The rest of the proof is similar to the proof of Lemma 3.1.

�

Theorem 3.1 A mapping f : X → Y satisfies (1.2) for all x, y ∈ X if and only if f is the form

f(x) = A4(x) +A3(x), (3.5)

where Ai is the diagonal of the i-additive symmetric map Ai : Xi → Y for i = 3, 4.

Proof. Assume that f satisfies the functional equation (1.2), we decompose f into the odd part and the even

part by putting

fo(x) =
f(x)− f(−x)

2
, fe(x) =

f(x) + f(−x)

2
, (3.6)

then, f(x) = fo(x) + fe(x) for all x ∈ X. It is easy to show that the mapping fo and fe satisfy (1.2). Therefore

our assertion follows immediately from Lemmas 3.1 and 3.2. Conversely, assume that f(x) = A4(x) + A3(x) for

all x ∈ X, where Ai(x) is the diagonal of the i-additive symmetric map Ai : Xi → Y for i = 3, 4. Using

A4(x+ y) +A4(x− y) = 2A4(x) + 2A4(y) + 12A2,2(x, y),

A3(x+ y) +A3(x− y) = 2A3(x) + 6A1,2(x, y),

Ai(rx) = riAi(x), i ∈ {3, 4}, r ∈ Q,

Ai,j(rx, sy) = risjAi,j(x, y), i ∈ {1, 2}, r, s ∈ Q,

(3.7)

by a simple computation, one can see that f satisfies (1.2), which complete the proof of Theorem 3.1. �

4 Stability of the functional equation (1.2)

Throughout this section, let (X, {Nn}) be a matrix fuzzy normed space, (Y, {Nn}) be a matrix fuzzy Banach

space, λ ∈ N2 and n ∈ N. Using the fixed point method, we prove the Ulam stability of the CQ-functional

equation (1.2) in matrix fuzzy normed spaces.

Now before taking up the main subject, for a given mapping f : X → Y , we define the difference operator

Df : X2 → Y , and Dfn : Mn(X2)→Mn(Y ).

(Df)(a, b) :=f(λa+ b) + f(λa− b)− λ2 + λ

2
[f(a+ b) + f(a− b)]− λ2 − λ

2
[f(−a− b) + f(b− a)]

− (λ4 + λ3 − λ2 − λ)f(a)− (λ4 − λ3 − λ2 + λ)f(−a)− (1− λ2)[f(b) + f(−b)],

(Dfn)([xij ], [yij ]) :=fn(λ[xij ] + [yij ]) + fn(λ[xij ]− [yij ])−
λ2 + λ

2
[fn([xij ] + [yij ]) + fn([xij ]− [yij ])]

− λ2 − λ
2

[fn(−[xij ]− [yij ]) + fn([yij ]− [xij ])]− (λ4 + λ3 − λ2 − λ)fn([xij ])

− (λ4 − λ3 − λ2 + λ)fn(−[xij ])− (1− λ2)[fn([yij ]) + fn(−[yij ])]

for all a, b ∈ X,x = [xij ], y = [yij ] ∈Mn(X).

Theorem 4.1 Let φ1 : X2 → [0,∞) be a function such that for some real number α with 0 < α < 1,

φ1(
a

λ
,
b

λ
) ≤ α

λ4
φ1(a, b), a, b ∈ X. (4.1)
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Suppose that f : X → Y is an even function with f(0) = 0 and such that

Nn(Dfn([xij ], [yij ]), t) ≥
t

t+
∑n
i,j=1 φ1(xij , yij)

, t > 0, x = [xij ], y = [yij ] ∈Mn(X). (4.2)

Then there exists a unique quartic mapping Q : X → Y such that

Nn (fn([xij ])−Qn([xij ]), t) ≥
2λ4(1− α)t

2λ4(1− α)t+ αn2
∑n
i,j=1 φ1(xij , 0)

, t > 0, x = [xij ] ∈Mn(X).

Proof. When n = 1, (4.2) is equivalent to

N(Df(a, b), t) ≥ t

t+ φ1(a, b)
, t > 0, a, b ∈ X. (4.3)

Putting b = 0 in (4.3), we obtain that

N(2f(λa)− 2λ4f(a), t) ≥ t

t+ φ1(a, 0)
, t > 0, a ∈ X. (4.4)

Hence

N(f(a)− λ4f(
a

λ
),
t

2
) ≥ t

t+ φ1( aλ , 0)
, t > 0, a ∈ X. (4.5)

Using (4.1) we get

N(f(a)− λ4f(
a

λ
), t) ≥ t

t+ α
2λ4φ1(a, 0)

, t > 0, a ∈ X. (4.6)

Consider the set E1 = {g : X → Y, g(0) = 0}, and introduce the generalized metric d1:

d1(g, h) := inf

{
ϵ ∈ R+ : N(g(a)− h(a), ϵt) ≥ t

t+ φ1(a, 0)
, t > 0, a ∈ X

}
,

where, as usual, inf ∅ = +∞. It is easy to prove that (E1, d1) is a complete generalized metric space.

Now, let us consider the linear mapping J1 : E1 → E1 such that

J1g(a) = λ4g(
a

λ
), g ∈ E1, a ∈ X.

It is easy to see that J1 is a strictly contractive self-mapping of E1 with the Lipschitz constant L = α. Indeed,

given g, h ∈ E1, let ϵ ∈ (0,∞) be an arbitrary constant with d1(g, h) = ϵ. From the definition of d1, it follows

that

N(g(a)− h(a), ϵt) ≥ t

t+ φ1(a, 0)
, t > 0, a ∈ X.

Hence

N(J1g(a)− J1h(a), αϵt) = N(λ4g(
a

λ
)− λ4h(

a

λ
), αϵt) = N(g(

a

λ
)− h(

a

λ
),
αϵt

λ4
)

≥
α
λ4 t

α
λ4 t+ φ1( aλ , 0)

≥ t

t+ φ1(a, 0)
, t > 0, a ∈ X.

So, d1(g, h) = ϵ implies that d(J1g, J1h) ≤ αϵ. This means that d1(J1g, J1h) ≤ αd1(g, h) for all g, h ∈ E1, thus

J1 is a strictly contractive self-mapping, and the Lipschitz constant L = α.

It follows from (4.6) that

N(f(a)− J1f(a), t) ≥ t

t+ α
2λ4φ1(a, 0)

, t > 0, a ∈ X,

thus we have that d1(f, J1f) ≤ α
2λ4 < +∞.
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According to Theorem 2.1, we deduce the existence of a fixed point of J1, that is, the existence of a mapping

Q : X → Y such that Q(a) = J1Q(a) = λ4Q( aλ ), i.e., Q( aλ ) = 1
λ4Q(a) for each a ∈ X. Moreover, we have

d1(J l1f,Q)→ 0(l→ +∞), which implies

lim
l→+∞

N(J l1f(a)−Q(a), t) = 1, t > 0, a ∈ X. (4.7)

Also, d1(f,Q) ≤ 1
1−Ld1(J1f, f) implies the inequality d1(f,Q) ≤ α

2λ4(1−α) , which means that

N(f(a)−Q(a), t) ≥ 2λ4(1− α)t

2λ4(1− α)t+ αφ1(a, 0)
, t > 0, a ∈ X. (4.8)

Replacing a and b by a
λl and b

λl in (4.3), respectively, we have

N

(
λ4lDf(

a

λl
,
b

λl
), t

)
= N

(
Df(

a

λl
,
b

λl
),

t

λ4l

)
≥

t
λ4l

t
λ4l + φ1( a

λl ,
b
λl )

, t > 0, a, b ∈ X. (4.9)

It follows from (4.1) that

φ1(
a

λl
,
b

λl
) ≤ αl

λ4l
φ1(a, b), a, b ∈ X,

thus

N

(
λ4lDf(

a

λl
,
b

λl
), t

)
≥ t

t+ αlφ1(a, b)
, t > 0, a, b ∈ X. (4.10)

Letting l→ +∞ in (4.10), we obtain

N

(
λ4lDf(

a

λl
,
b

λl
), t

)
→ 1, t > 0, a, b ∈ X, (4.11)

which means

N (DQ(a, b), t) = 1, t > 0, a, b ∈ X. (4.12)

Thus, DQ(a, b) = 0 for all a, b ∈ X. By the definition of Q, it is clear that Q(−a) = Q(a) for all a ∈ X. Then

by Lemma 3.1, the mapping Q is quartic.

Assume that there exists another quartic function F : X → Y which satisfies (4.8). Then it is clear that

F ( aλ ) = 1
λ4F (a), and while a = 0, we have F (a) = 0, thus J1F (a) = λ4F ( aλ ) = F (a) for all a ∈ X, i.e., F is a

fixed point of J1. By (4.8) we get

N(f(a)− F (a), t) ≥ 2λ4(1− α)t

2λ4(1− α)t+ αφ1(a, 0)
, t > 0, a ∈ X.

Hence, d1(f, F ) ≤ α
2λ4(1−α) . So, F ∈ E′

1 = {g ∈ E1, d1(f, g) <∞}. By Theorem 2.1, Q is the unique fixed point

in E1, which means that Q = F .

By Lemma 2.1 and (4.8), we have

N (fn([xij ])−Qn([xij ]), t) ≥ min

{
N(f(xij)−Q(xij),

t

n2
) : i, j = 1, 2, ..., n

}
≥ min

{
2λ4(1− α)t

2λ4(1− α)t+ αn2φ1(xij , 0)
: i, j = 1, 2, ..., n

}
≥ 2λ4(1− α)t

2λ4(1− α)t+ αn2
∑n
i,j=1 φ1(xij , 0)

for all x = [xij ] ∈Mn(X), t > 0. This completes the proof. �

Theorem 4.2 Let φ2 : X2 → [0,∞) be a function such that for some real number α with 0 < α < λ,

φ2(
a

λ
,
b

λ
) ≤ α

λ4
φ2(a, b), a, b ∈ X. (4.13)
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Suppose that f : X → Y is an odd function such that

Nn(Dfn([xij ], [yij ]), t) ≥
t

t+
∑n
i,j=1 φ2(xij , yij)

, t > 0, x = [xij ], y = [yij ] ∈Mn(X). (4.14)

Then there exists a unique cubic mapping C : X → Y such that

Nn (fn([xij ])− Cn([xij ]), t) ≥
2λ3(λ− α)t

2λ3(λ− α)t+ αn2
∑n
i,j=1 φ2(xij , 0)

, t > 0, x = [xij ] ∈Mn(X).

Proof. The proof is similar to the proof of Theorem 4.1.

�

Theorem 4.3 Let φ : X2 → [0,∞) be a function such that for some real number α with 0 < α < 1,

φ(
a

λ
,
b

λ
) ≤ α

λ4
φ(a, b), a, b ∈ X. (4.15)

Suppose that f : X → Y is a function such that f(0) = 0, and for all x = [xij ], y = [yij ] ∈Mn(X), satisfying

Nn(Dfn([xij ], [yij ]), t) ≥
t

t+
∑n
i,j=1 φ(xij , yij)

, t > 0. (4.16)

Then there exist a unique cubic mapping C : X → Y and a unique quartic mapping Q : X → Y such that

Nn (fn([xij ])−Qn([xij ])− Cn([xij ]), t) ≥
λ4(1− α)t

λ4(1− α)t+ αn2
∑n
i,j=1 ψ(xij , 0)

,

where ψ(a, b) := φ(a, b) + φ(−a,−b) for all a, b ∈ X.

Proof. Let fe(a) = 1
2 (f(a) + f(−a)), it is easy to see that fe(0) = 0, fe(−a) = fe(a).

N(Dfe(a, b), t) = N(
1

2
Df(a, b) +

1

2
Df(−a,−b), t) = N(Df(a, b) +Df(−a,−b), 2t)

≥ min{N(Df(a, b), t), N(Df(−a,−b), t)} ≥ t

t+ ψ(a, b)
.

Let fo(a) = 1
2 (f(a) − f(−a)), we can get N(Dfo(a, b), t) ≥ t

t+ψ(a,b) . From (4.15), it follows that ψ( aλ ,
b
λ ) ≤

α
λ4ψ(a, b). It is easy to check that all conditions of Theorems 4.1 and 4.2 hold, by the proofs of Theorems 4.1

and 4.2, we know that there exist a quartic mapping Q : X → Y and a cubic mapping C : X → Y such that

N (fe(a)−Q(a), t) ≥ 2λ4(1− α)t

2λ4(1− α)t+ αψ(a, 0)
, t > 0, a ∈ X,

and

N (fo(a)− C(a), t) ≥ 2λ3(λ− α)t

2λ3(λ− α)t+ αψ(a, 0)
, t > 0, a ∈ X.

Therefore

N (f(a)− C(a)−Q(a), t) = N(fe(a)−Q(a) + fo(a)− C(a), t)

≥ min{N(fe(a)−Q(a),
t

2
), N(fo(a)− C(a),

t

2
)}

≥ min{ λ4(1− α)t

λ4(1− α)t+ αψ(a, 0)
,

λ3(λ− α)t

λ3(λ− α)t+ αψ(a, 0)
}

=
λ4(1− α)t

λ4(1− α)t+ αψ(a, 0)
, t > 0, a ∈ X.

(4.17)
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Using a proof method similar to Theorem 3.10 in [11], we can prove the uniqueness of C and Q. By Lemma

2.1 and (4.17), we have

N (fn([xij ])−Qn([xij ]− Cn([xij ]), t) ≥ min

{
N(f(xij)−Q(xij)− C(xij),

t

n2
) : i, j = 1, 2, ..., n

}
≥ min

{
λ4(1− α)t

λ4(1− α)t+ αn2ψ(xij , 0)
: i, j = 1, 2, ..., n

}
≥ λ4(1− α)t

λ4(1− α)t+ αn2
∑n
i,j=1 ψ(xij , 0)

for all x = [xij ] ∈Mn(X), t > 0. This completes the proof. �
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A High-Accuracy Collocation Method for Solving
Mixed Boundary Value Problems on Nonsmooth

Boundaries∗

Xin Luo † Chuan-Long Wang‡

Abstract

By potential theory, the mixed Dirichlet-Neumann boundary value problem
for the Laplacian is converted into the boundary integral equations (BIEs) with
logarithmic singularity. Then the resulting system of the integral equations is
solved by the Sidi-Israeli quadrature method (SIQM) with a Sigmoidal trans-
formation. The convergence of numerical solutions by SIQM is proved based on
Anselone’s collective compact theory. Furthermore, a convergence estimate of
the solution error is presented, which possesses high accuracy order O (h3

max),
where hmax is the mesh size. Finally, The efficiency of the method is illustrated
by examples.

Keyword : Boundary value problem, collective compact theory, singularity,
integral equations

1 Introduction

Consider the following mixed Dirichlet-Neumann boundary value problem for the
Laplacian 




∆u = 0, in Ω,

u|ΓDi
= fi, i = 1, 2, · · · , p,

∂u

∂n
|ΓNj

= gj, j = 1, 2, · · · , q,

(1.1)

where Ω is a simply connected region with the piecewise-smooth boundary Γ = ΓD ∪
ΓN , and ΓD = ∪p

i=1ΓDi
and ΓN = ∪q

j=1ΓNj
. Here, fi and gj are given on ΓDi

and
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Foundation of CUIT

†College of Applied Mathematics, Chengdu University of Information Technology, Chengdu
610225, P.R. China, corresponding author: luoxin919@163.com
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ΓNj
respectively, and ∂u/∂n denotes the derivative of u with respect to the outward

normal vector n.
By the potential theory [17], the solution of Eq. (1.1) can be represented as a

single-layer potential of the form

u(P ) = − 1

π

∫

Γ

ln |P −Q|z(Q)dSQ, P ∈ Ω, (1.2)

where z is an unknown function called the ”the single layer” density. From the jump
condition for the normal derivative of the single layer potential at the boundary, we
then have the following boundary integral equations (BIEs)





− 1

π

p∑
j=1

∫

ΓDj

ln |P −Q|zDj
(Q)dSQ

− 1

π

q∑
j=1

∫

ΓNj

ln |P −Q|zNj
(Q)dSQ = fi, P ∈ ΓDi

, i = 1, 2, · · · , p,

zNi
(P )− 1

π

p∑
j=1

∫

ΓDj

∂ ln |P −Q|
∂nP

zDj
(Q)dSQ

− 1

π

q∑
j=1

∫

ΓNj

∂ ln |P −Q|
∂nP

zNj
(Q)dSQ = gi, P ∈ ΓNi

, i = 1, 2, · · · , q,

(1.3)

where zDj
:= z|ΓDj

and zNj
:= z|ΓNj

are sought on ΓDi
and ΓNj

, respectively. Once

zDj
and zNj

are solved from the Eq. (1.3), the solution u(P ) can be computed by

u(P ) = − 1

π

p∑
j=1

∫

ΓDj

ln |P −Q|zDj
(Q)dSQ− 1

π

q∑
j=1

∫

ΓNj

ln |P −Q|zNj
(Q)dSQ, P ∈ Ω.

(1.4)
Even for the boundary data fi and gi are smooth, the solutions zDj

and zNj
may not

be smooth. We denote by Pi, i = 0, 1 of the two interface points of the boundary Γ
and by βi with 0 < βi < 2π, i = 0, 1 the interior angle of Γ at Pi. In fact, from [1, 2]
it follows that around Pi we have

u(P ) = c(Θ)rπ/(2βi) + smoother terms, P ∈ Ω, (1.5)

where (r, Θ) are the polar coordinates centered at Pi. Then , using (1.2) to define a
potential not only in Ω but also in R2\Ω̄, the single z is the difference between the
normal derivatives of u on Γ from inside and outside Γ. Therefore, near Pi, i = 0, 1,
we get

z(P ) = crmin{π/(2βi), π/(4π−2βi)}−1 + smoother terms, P ∈ Ω. (1.6)

Hence, zDj
and zNj

have this behavior near the corners Pi. To smooth these irreg-
ularities, in the next section we will introduce a smoothing parameterization ψγ(t),

2
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which improves the behavior of the unknown function z by incorporating the Jaco-
bian of the transformation. In fact, the new unknown function will be z(ψγ(t))|ψ′γ(t)|,
whose smoothness degree at the corner depends upon a smoothing parameter: the
larger its value, the smoother the transformed density. There exist numerical meth-
ods for approximately solving mixed value problems on polygonal domains by means
of boundary integral equations (see [18, 19]). They are based on the collocation
method, and in general no error estimates are available [20]. After that, the proof
of asymptotic error estimates for the finite element Galerkin approximation of the
boundary integral equations for a mixed Dirichlet-Neumann boundary value problem
for the Laplacian in a plane polygonal domain is given in [21]. This was a general-
ization of [22], where the case of a domain with a smooth boundary was treated. In
[6], the trigonometric collocation method which uses a mesh grading transformation
and a cosine approximating space is proposed for solving the mixed boundary value
problems on domains with curved polygonal boundaries, the complete stability and
solvability analysis of the transformed integral equations is given by use of a Mellin
transform technique, in which each arc of the polygon has associated with it a peri-
odic Sobolev space. Inspired by the technique developed in [6], A collocation method
using Chebyshev polynomial expansions as approximants and the zeros of Chebyshev
polynomials as collocation nodes is applied to solved (1.3) [2]. From [5], we know that
the Sidi transformation [3] is the important one of ”integral” sigmoidal transforma-
tions, which can yield fast convergence of the collocation solution by smoothing the
singularities of the exact solution. Hence, we apply Sidi-Israeli quadrature method [4]
and trapezoidal rule with Sidi transformation [3, 16] to calculate the integrals with
weakly singular kernels and continuous kernels in (1.3) respectively.

This paper is organized as follows: in Section 2, the convergence analysis is carried
out based on the theory of collectively compact operators [7, 8, 9, 10] for closed
curved polygons. in Section 3, a convergence estimate of the solution error is given.
Numerical examples are provided to verify the theoretical results in Section 4, and
conclusions are made in Section 5.

2 Collocation method for the boundary integral

equations

2.1 Discretization for integral operators

In [4], high-accuracy numerical quadrature methods based on the appropriate Euler-
Maclaurin expansions of trapezoidal rule approximations are proposed for the singular
and weakly singular Fredholm integral equations. These integral equations are used
in the solution of planar elliptic boundary value problems such as those that arise
in free surface flows, elasticity, potential theory, conformal mapping, etc. Let the
functions G(x, t) = log |x− t|g(x)+ g̃(x) are periodic with period T = b−a , and that
they are 2m times differentiable on R\{t+kT}∞k=−∞. Then the Sidi-Israeli quadrature

3
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formula [4] for integrals with kernel G(x, t) can be described by

Qn[G(x, t)] = h

{ n∑
j=1
xj 6=t

G(xj, t)+g̃(t)+log(
h

2π
)g(t)

}
, h = (b−a)/n, xj = a+jh, (2.1)

and

∫ b

a

G(x, t)dx−Qn[G(x, t)] = 2
m−1∑
µ=1

ζ
′
(−2µ)

(2µ)!
g(2µ)h2µ+1 + O (h2m), as h → 0,

where ζ(z) is a Riemann function.
Define the following boundary integral operators on ΓDj

and ΓNj

Uijzj(x) = − 1

π

∫

ΓDj

ln |x− y|zj(y)dsy, x ∈ ΓDi
, i, j = 1, · · · , p,

Mijzj(x) = − 1

π

∫

ΓNj

∂ ln |x− y|
∂nx

zj(y)dsy, x ∈ ΓNi
, i, j = 1, · · · , q,

Vijzj(x) = − 1

π

∫

ΓNj

ln |x− y|zj(y)dsy, x ∈ ΓDi
, i = 1, · · · , p, j = 1, · · · , q,

Wijzj(x) = − 1

π

∫

ΓDj

∂ ln |x− y|
∂nx

zj(y)dsy, x ∈ ΓNi
, i = 1, · · · , q, j = 1, · · · , p.

Assume that ΓDj
or ΓNj

can be described by the parameter mapping: xj(t) =

(xj1(t), xj2(t)) : [0, 1] → ΓDj
(or ΓNj

) with |x′j(t)| = [|x′j1(t)|2+ |x′j2(t)|2]1/2 > 0. In
order to degrade the singularities at corners, we apply the Sidi transformation [3, 16]
to the parameter mapping, which is defined by

ψγ(t) =

∫ t

0
(sinπτ)γdτ∫ 1

0
(sinπτ)γdτ

: [0, 1] → [0, 1], γ ≥ 1. (2.2)

Define the following ”smoothing parameterization”

α(t) =

{
α

(1)
i (t) = xi(ψγ(t)) ∈ ΓDi

t ∈ [−1, 1],

α
(2)
i (t) = xi(ψγ(t)) ∈ ΓNi

t ∈ [−1, 1],
(2.3)

Thus, we can rewrite equations (1.3) as a p× q matrix integral equation system




p∑
j=1

∫ 1

0

u(t, s)z̄
(1)
j (s)ds +

q∑
j=1

∫ 1

0

v(t, s)z̄
(2)
j (s)ds = fi(t), t ∈ [0, 1], i = 1, 2, · · · , p,

zi(t) +

p∑
j=1

∫ 1

0

w(t, s)z̄
(1)
j (s)ds +

q∑
j=1

∫ 1

0

m(t, s)z̄
(2)
j (s)ds = gi(t), i = 1, 2, · · · , q,

(2.4)

4
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where

u(t, s) = − 1

π
ln |α(1)

i (t)− α
(1)
j (s)|, (2.5)

v(t, s) = − 1

π
ln |α(1)

i (t)− α
(2)
j (s)|, (2.6)

w(t, s) = − 1

π

α
(2)

′

i2 (t)[α
(2)
i1 (t)− α

(1)
j1 (s)]− α

(2)
′

i1 (t)[α
(2)
i2 (t)− α

(1)
j2 (s)]

[α
(2)
i1 (t)− α

(1)
j1 (s)]2 + [α

(2)
i2 (t)− α

(1)
j2 (s)]2

, (2.7)

m(t, s) =





− 1
π

α
(2)
′

i2 (t)[α
(2)
i1 (t)−α

(2)
j1 (s)]−α

(2)
′

i1 (t)[α
(2)
i2 (t)−α

(2)
j2 (s)]

[α
(2)
i1 (t)−α

(2)
j1 (s)]2+[α

(2)
i2 (t)−α

(2)
j2 (s)]2

, as t 6= s,

− 1
2π

α
(2)
′′

i2 (t)α
(2)
′

i1 (t)−α
(2)
′′

i1 (t)α
(2)
′

i2 (t)

(α
(2)
′

i1 (t))2+(α
(2)
′

i2 (t))2
, as t = s.

(2.8)

and

z̄
(1)
j (s) = zDj

(xj(ψγ(s)))|x′j(ψγ(s))|ψ′γ(s),
z̄

(2)
j (s) = zNj

(xj(ψγ(s)))|x′j(ψγ(s))|ψ′γ(s),
fi(t) = f(α

(1)
i (t)), gi(t) = g(α

(2)
i (t)), α

(k)
i (t) = (α

(k)
i1 (t), α

(k)
i2 (t)), k = 1, 2.

Lemma 2.1. Although zDj
(s) and zNj

(s) have singularities at endpoints s = 0

and s = 1, z̄
(1)
j (s) and z̄

(2)
j (s) have no singularities by Sidi transformation at s = 0

and s = 1.
Proof. Let dj = min{π/(2βj), π/(4π − 2βj)} − 1 in (1.6), then we have −1/2 ≤

dj < 0. Suppose that zDN(s) = sdjϕj(s) near s = 0, where zDN = zDj
or zNj

, and
the function ϕj(s) is differentiable enough on [0, 1] with ϕj(0) 6= 0. Using Taylor’s
formula, we can obtain

zDN(s) =
l∑

i=0

ϕ
(i)
j (0)

i!
si+dj + O(sl+dj+1), as s → 0+. (2.9)

From [3], we have

ψγ(s) ∼
∞∑
i=0

εis
γ+2i+1, ψ′γ(s) ∼

∞∑
i=0

δis
γ+2i, as s → 0+, ε0, δ0 > 0. (2.10)

By substituting (2.9) and (2.10) into the expression of z̄
(k)
j (s), k = 1, 2, we have

z̄
(k)
j (s) = c1ϕj(0)s(γ+1)dj+γ(1 + O(s2)) as s → 0+, (2.11)

where c1 is a constant. Also assume that zDN(s) = (1−s)djϕj(s) near s = 1. Similarly,
we have

z̄
(k)
j (s) = c2ϕj(0)(1− s)(γ+1)dj+γ(1 + O((1− s)2)) as s → 1−, (2.12)

5
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where c2 is a constant independent of s. By (2.11), (2.12) and dj ≥ −1
2
, we can obtain

(γ + 1)(dj + 1)− 1 ≥ 0 for γ ≥ 1. The proof is completed. ¤
Now we can rewrite the Eqs. (2.4) as follows

[
U V
W I + M

] [
z(1)

z(2)

]
=

[
f
g

]
, (2.13)

where
f = (f1, f2, · · · , fp), g = (g1, g2, · · · , gq),

z(1) = (z̄
(1)
1 , z̄

(1)
2 , · · · , z̄

(1)
p )T , z(2) = (z̄

(2)
1 , z̄

(2)
2 , · · · , z̄

(2)
q )T ,

U = [Uij]
p,p
i,j=1, V = [Vij]

p,q
i,j=1, W = [Wij]

q,p
i,j=1, M = [Mij]

q,q
i,j=1.

Let U = A + B, where A = diag(A11, A22, · · · , App) and B = [Bij]
p,p
i,j=1, where

Aiiz̄
(1)
i (t) =

∫ 1

0

a(t, s)z̄
(1)
i (s)ds,

with the kernel

aii(t, s) = − 1

π
ln |2e−1/2 sin(π(t− s))|,

and

Bij z̄
(1)
j (t) =

∫ 1

0

b(t, s)z̄
(1)
j (s)ds,

with the kernel

bij(t, s) =




− 1

π
ln | α

(1)
i (t)−α

(1)
j (s)

2e−1/2 sin(π(t−s))
|, as i = j,

− 1
π

ln |α(1)
i (t)− α

(1)
j (s)|, as i 6= j.

(2.14)

In the subsequent analysis we will focus on the singularity of the kernels bij(t, s).
Obviously, if ΓDi

∩ ΓDj
= ∅, bij(t, s) are continuous in [0, 1]2, and if ΓDi

∩ ΓDj
6=

∅, bij(t, s) have singularities at the points (t, s) = (0, 1) and (t, s) = (1, 0). For
convenience of analysis, we only discuss the case in which (t, s) = (1, 0). Defining the
following function

b̃ij(t, s) = bij(t, s) sinγ(πt), γ ≥ 1, ΓDi
∩ ΓDj

6= ∅. (2.15)

Lemma 2.2. Let b̃ij(t, s) be defined by (2.15), then b̃ij(t, s) and
∂k b̃ij(t,s)

∂tk
(k = 1, 2)

are smooth on [0, 1]2.
Proof. By the continuity of b̃ii(t, s) in (2.14) and the boundness of sinγ(πt), we

can immediately complete the proof for the case i = j. Hence, we only consider the
case in which j − i = 1. Let ΓDi−1

∩ ΓDi
= Pi = (0, 0) and θi ∈ (0, 2π) be the

corresponding interior angle. Then we have

ln |α(1)
i (t)− α

(1)
i−1(s)| =

1

2
ln[(|α(1)

i (t)| − |α(1)
i−1(s)|)2 + 4|α(1)

i (t)||α(1)
i−1(s)|sin2(θi/2)]

(2.16)

6
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which shows the kernel bi−1,i(t, s) has a logarithmic singularity at (t, s) = (1, 0).

Suppose that a0(t) = |α(1)
i−1(t)| and a1(s) = |α(1)

i (s)|, we have a0(0) = a1(0) = 0. If
θi ∈ (0, π) ∪ (π, 2π), then bi−1,i(1, 0) = 0. If (t, s) 6= (1, 0), then we can obtain

b̃i−1,i(t, s) = − 1

2π
sinγ(πt) ln[a2

0(t) + a2
1(s)− 2a0(t)a1(s) cos θi−1] (2.17)

= − 1

2π
sinγ(πt) ln[a2

0(t) + a2
1(s)]

− 1

2π
sinγ(πt) ln[1− 2a0(t)a1(s) cos θi−1/(a

2
0(t) + a2

1(s))]

= $1(t, s) + $2(t, s).

Since
|2a0(t)a1(s) cos θi−1/(a

2
0(t) + a2

1(s))| ≤ | cos θi−1| < 1,

the function $2(t, s) and its second derivative are bounded. Noting that

ψ(k)
γ (0) = ψ(k)

γ (1) = 0, k = 0, · · · , γ,

we have
a

(k)

ī
(0) = a

(k)

ī
(1) = 0, ī = i− 1 or i, k = 1, · · · , γ.

Let (t, s) ∈ [ε/2, ε]× [1− ε, 1− ε/2] for all ε > 0, we have |$1(t, s)| = O(εγ| ln ε|), so
$1(t, s) is also bounded. In addition, we have

| ∂
∂t

$1(t, s)| ≤ 1

2π
| sinγ(πt)

2a0(s)|α(1)′
i−1(ψγ(s))|ψ′

γ(s)

a2
0(t) + a2

1(s)
|

= O(εγ)O(ε2γ)/O(ε2γ) = O(εγ)

and

| ∂
2

∂t2
$1(t, s)| = O(εγ−1).

This shows
∂k b̃ij(t,s)

∂tk
(k = 0, 1, 2) are also continuous in [0, 1]2. At last, if θi−1 = π,

then

b̃i−1,i(t, s) = − 1

π
sinγ(πt) ln(a0(t) + a1(s)), (2.18)

we can use the same method mentioned above to prove b̃i−1,i(t, s) and its second
derivative are bounded. The proof of Lemma 2.2 is completed. ¤

Let hj = 1/nj (nj ∈ N) and tj = sj = (j−1/2)hj (j = 1, ..., nj) be the mesh sizes
and nodes respectively. By the trapezoidal or the midpoint rule [11] we construct the

Nyström’s approximation operator B
hj

ij of the integral operator Bij, defined by

(B
hj

ij z̄
(1)
j )(t) = hj

nj∑
j=1

bij(t, sj)z̄
(1)
j (sj), t ∈ [0, 1], i = 1, ..., p, (2.19)

7
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which has the error bounds [3, 11]

(Bij z̄
(1)
j )(t)− (B

hj

ij z̄
(1)
j )(t) = O (h2`

j ), for ΓDi
∩ ΓDj

= ∅, ` ∈ N, (2.20)

and
(Bij z̄

(1)
j )(t)− (B

hj

ij z̄
(1)
j )(t) = O (hω

j ), for ΓDi
∩ ΓDj

∈ {Pj}, (2.21)

where (see [3])

ω =





min{(γ + 1)(dj + 1), γ + 1}, γ odd,

min{(γ + 1)(dj + 1), 2(γ + 1)}, γ even.
(2.22)

For the logarithmically singular operators Aii, by the Sidi-Israeli quadrature formula,
we can also construct the approximate operator Ahi

ii ,

(Ahi
ii z̄

(1)
j )(t) = −hi

π





nj∑
j=1
sj 6=t

ln
∣∣2e−1/2 sin π(t− sj)

∣∣z̄(1)
j (sj)





− hi

π

{
ln

(
2πe−1/2hi/(2π)

)
z̄

(1)
j (t)

}
(i = 1, ..., ni),

(2.23)

which has the error bounds [4]

(Ahi
ii z̄

(1)
j )(t)− (Aiiz̄

(1)
j )(t) = − 2

π

2`−1∑
µ=1

ζ ′(−2µ)

(2µ)!
[z̄

(1)
j ](2µ)h2µ+1

i + O(h2`
i ), t ∈ {ti},

where ζ ′(t) is the derivative of the Riemann zeta function.
By the trapezoidal or the midpoint rule, we can also construct the Nyström’s

approximation operators V
hj

ij , W
hj

ij and M
hj

ij for the continuous operators Vij, Wij and
Mij, that is,

(Ξ
hj

ij z̄j)(t) = hj

nj∑
j=1

χij(t, sj)z̄j(sj), t ∈ [0, 1], (2.24)

which have the error bounds O(h2`
j ) or O(hω

j ). Here, Ξij = Vij,Wij or Mij, χij(t, s) =
vij(t, s), wij(t, s) or mij(t, s).

Now we write the discrete equations for (2.13) are

[
Uh V h

W h Ih + Mh

] [
z(1)h

z(2)h

]
=

[
fh

gh

]
, (2.25)
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where

Uh = Ah + Bh, Ah = diag(Ah1
11 , ..., A

hp
pp), Ahi

ii = [a(ti, sj)]
np

i,j=1,

Bh = [B
hj

ij ]pi,j=1, B
hj

ij = [bij(ti, sj)]
np,np

i,j=1 , V h = [V
hj

ij ]p,q
i,j=1,

V
hj

ij = [vij(ti, sj)]
np,nq

i,j=1 , W h = [W
hj

ij ]q,p
i,j=1, W

hj

ij = [wij(ti, sj)]
nq ,np

i,j=1 ,

Mh = [M
hj

ij ]p,q
i,j=1, M

hj

ij = [mij(ti, sj)]
nq ,nq

i,j=1 ,

z(1)h = (z
(1)h1

1 (t1), ..., z
(1)h1

1 (tn1), ..., z
(1)hp
p (t1), ..., z

(1)hp
p (tnp))

T ,

z(2)h = (z
(2)h1

1 (t1), ..., z
(2)h1

1 (tn1), ..., z
(2)hq
q (t1), ..., z

(2)hq
q (tnq))

T ,

fh = (fh1
1 (t1), ..., f

h1
1 (tn1), ..., f

hp
p (t1), ..., f

hp
p (tnp))

T ,

gh = (gh1
1 (t1), ..., g

h1
1 (tn1), ..., g

hq
q (t1), ..., g

hq
q (tnq))

T .

Let [
Uh V h

W h Ih + Mh

]
=

[
Ah 0
0 Ih

]
+

[
Bh V h

W h Mh

]
, (2.26)

then (2.25) is equivalent to

([
Eh

1 0
0 Eh

2

]
+

[
(Ah)−1Bh (Ah)−1V h

W h Mh

])[
z(1)h

z(2)h

]
=

[
(Ah)−1fh

gh

]
. (2.27)

2.2 The collectively compact convergence

For the convenience of the analysis of the existence and convergence of numerical solu-
tions, we first introduce the subspaces and some special operators to be used. Define
the subspace C0[0, 1] = {v(t) ∈ C[0, 1] : v(t)(sinγ(πt))−1 ∈ C[0, 1]} of the space
C[0, 1] with the norm ||v||∗ = max0≤t≤1 |v(t)(sinγ(πt)))−1|. Let Shj = span{ej(t),
j = 1, ..., nj} ⊂ C0[0, 1] be a piecewise linear function subspace with the basis nodes
{ti}nj

i=1, where ej(t) are the basis functions satisfying ej(ti) = δji. Also define a prolon-

gation operator Π
hj

1 : <nj → Shj satisfying Π
hj

1 v =
nj∑

j=1

vjej(t),∀v = (v1, ..., vnj
) ∈ <nj ,

and a restricted operator Π
hj

2 : C0[0, 1] → <nj satisfying Π
hj

2 v = (v(t1), ..., v(tnj
)) ∈

<nj ,∀v ∈ C0[0, 1].
Lemma 2.3. Let Γ = ΓD ∪ ΓN satisfy CΓ 6= 1, and also let

B̄
hj

ij =

{
B

hj

ij , ΓDi
= ΓDj

or ΓDi
∩ ΓDj

= ∅,
B̃

hj

ij , ΓDi
∩ ΓDj

∈ {Pj},
where the kernel b̃ij(t, s) of B̃ij is defined by (2.15). Then under the transformation
(2.2), we have

‖(Aij)
−1B̄

hj

ij ‖2,0 ≤ M (2.28)

and
Πhi

1 (Ahi
ii )−1Π

hj

2 B̄
hj

ij
c.c→ (Aij)

−1Bij, in C[0, 1] → C[0, 1], (2.29)

where M is a constant and
c.c→ denotes the collectively compact convergence.

Proof. From [14] and by Lemma 2.2, bij(t, s) and b̃ij(t, s) are continuous on [0, 1]2,

9
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and then we have (2.28). Using the following result [14],

Πhi
1 (Ahi

ii )−1Πhi
2 Aii

p→ I, in C2[0, 1] → C[0, 1],

where I is the embedding operator and
p→ denotes the pointwisely convergence, and

by

‖Πhi
1 (Ahi

ii )−1Πhi
2 B̄

hj

ij ‖0,0 = ‖(Πhi
1 (Ahi

ij )−1Πhi
2 Aij)((Aij)

−1B̄
hj

ij )‖0,0

≤ ‖Πhi
1 (Ahi

ij )−1Πhi
2 Aij‖0,2‖(Aij)

−1B̄
hj

ij ‖2,0

≤ C,

where C is a constant. Thus, we complete the proof of Lemma 2.3. ¤
Replacing (Ahi

ii )−1 , B
hj

ij (i, j=1, ..., p), V
hj

ij (i = 1, ..., p, j = 1, ..., q), W
hj

ij (i =

1, ..., q, j = 1, ..., p) and M
hj

ij (i, j = 1, ..., q) by Πhi
1 (Ahi

ii )−1Πhi
2 , Πhi

1 B
hj

ij Π
hj

2 , Πhi
1 V

hj

ij Π
hj

2 ,

Πhi
1 W

hj

ij Π
hj

2 , and Πhi
1 M

hj

ij Π
hj

2 , respectively.
Define the following operators

(Âh)−1B̂h, Ŵ h : (C0[0, 1])p → ∪p
j=1S

hj , (Âh)−1V̂ h, M̂h : (C[0, 1])q → ∪q
j=1S

hj ,

where

(Âh)−1B̂h = Πh
11(A

h)−1Πh
21B

h, (Âh)−1V̂ h = Πh
11(A

h)−1Πh
22V

h,

Ŵ h = Πh
11(A

h)−1Πh
21W

h, M̂h = Πh
12(A

h)−1Πh
22M

h,

Πh
11 = diag(Πh1

1 , ..., Π
hp

1 ), Πh
12 = diag(Πh1

1 , ..., Π
hq

1 ),

Πh
21 = diag(Πh1

2 , ..., Π
hp

2 ), Πh
22 = diag(Πh1

2 , ..., Π
hq

2 ).

Hence, we can write (2.27) as the following operator equation

([
Eh

1 0
0 Eh

2

]
+

[
(Âh)−1B̂h (Âh)−1V̂ h

Ŵ h M̂h

])[
ẑ(1)h

ẑ(2)h

]
=

[
(Âh)−1f̂ (1)h

f̂ (2)h

]
.

Theorem 2.4. (see [12, 15]) Assume ΓD = ∪p
j=1ΓDj

satisfy CΓD
6= 1, and ΓDj

(j =

1, ..., p) are smooth curves. Then the operator sequence{(Âh)−1B̂h} is collectively
compact convergent to A−1B in V = (C0[0, 1])p. That is, we have

(Âh)−1B̂h c.c→ A−1B. (2.30)

Consider the integral

Q(g) =

∫

Ω

g(x)dx,

where Ω is the bounded domain. Supposed that the quadrature formulae for Q(g) is

Qn(g) =
n∑

j=1

ω
(n)
j g(x

(n)
j ),

10
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where the weights ω
(n)
j satisfy to the following condition

n∑
j=1

|ω(n)
j | ≤ C, (2.31)

where C is a constant.
Theorem 2.5. [8, 13] Assume that the kernel k(x, y) of K is continuous on Ω×Ω

and the Kn is the Nyström’s approximation operator for K, and the condition (2.31)
holds. Then we have

Kn
c.c→ K

By the Theorem 2.5, we can immediately obtain the following theorem.
Theorem 2.6. Let Γ = ΓD ∪ ΓN satisfy CΓ 6= 1, ΓDj

(j = 1, ..., p) and ΓNj

(j = 1, ..., q)are smooth curves, then we have

(Âh)−1V̂ h c.c→ A−1V, Ŵ h c.c→ W, M̂h c.c→ M. (2.32)

3 Errors analysis

In this section, we give the following theorem, which provides a convergence estimate
of the solution error.

Theorem 3.1. Assume Γ = ΓD ∪ ΓN satisfy CΓ 6= 1, fj = f |ΓDj
∈ C6(ΓDj

) and

gj = g|ΓNj
∈ C6(ΓNj

), then when we choose an appropriate number γ in (2.22) such

that ω > 3, the following estimate hold

‖ẑ(1)h − z(1)‖∞ = O(h3
max), ‖ẑ(2)h − z(2)‖∞ = O(h3

max) (3.1)

where hmax = max1≤j≤max{p,q} hj.
Proof. By the trapezoidal rule, the asymptotic expansion holds

[
Ûh V̂ h

Ŵ h Ih + M̂h

]([
ẑ(1)h

ẑ(2)h

]
−

[
z(1)

z(2)

])

=

[
Πh

11UΠh
21 Πh

12V Πh
22

Πh
11WΠh

21 Πh
21IΠh

22 + Πh
21MΠh

22

] [
z(1)

z(2)

]
−

[
Uh V h

W h Ih + Mh

] [
z(1)

z(2)

]

=

[
Πh

11Π
h
21Σ1ψ1 + Πh

12Π
h
22Σ2ψ2

Πh
11Π

h
21Σ1ψ3 + Πh

12Π
h
22Σ2ψ4

]
+ O(h3.5) · Ip+q

where Σ1 = diag(h3
1, · · · , h3

p), Σ2 = diag(h3
1, · · · , h3

q), ψ1 = (ψ11, ψ12, · · · , ψ1p)
T , ψ2 =

(ψ21, ψ22, · · · , ψ2q)
T , ψ3 = (ψ31, ψ32, · · · , ψ3p)

T and ψ4 = (ψ41, ψ42, · · · , ψ4q)
T . Hence,

we have ([
Eh

1 0
0 Eh

2

]
+

[
(Âh)−1B̂h (Âh)−1V̂ h

Ŵ h M̂h

])[
ẑ(1)h − z(1)

ẑ(2)h − z(2)

]

11
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=

[
Πh

11Π
h
21(Â

h)−1Σ1ψ1 + Πh
12Π

h
22(Â

h)−1Σ2ψ2

Πh
11Π

h
21Σ1ψ3 + Πh

12Π
h
22Σ2ψ4

]
+ o(h5) · Ip+q (3.2)

Define the auxiliary equation
([

Eh
1 0

0 Eh
2

]
+

[
(Ah)−1Bh (Ah)−1V h

W h Mh

])[
Φ1

Φ2

]
=

[
A−1ψ1 + A−1ψ2

ψ3 + ψ4

]
(3.3)

and its approximate equation
([

Eh
1 0

0 Eh
2

]
+

[
(Âh)−1B̂h (Âh)−1V̂ h

Ŵ h M̂h

])[
Φh

1

Φh
2

]

=

[
Πh

11Π
h
21(Â

h)−1Σ1ψ1 + Πh
12Π

h
22(Â

h)−1Σ2ψ2

Πh
11Π

h
21Σ1ψ3 + Πh

21Π
h
22Σ2ψ4

]
(3.4)

Substituting (3.4) into (3.2), we can obtain

([
Eh

1 0
0 Eh

2

]
+

[
(Âh)−1B̂h (Âh)−1V̂ h

Ŵ h M̂h

])

×
([

ẑ(1)h − z(1)

ẑ(2)h − z(2)

]
−

[
Σ1 Σ2

Σ3 Σ4

] [
Φh

1

Φh
2

])
= o(h5). (3.5)

Since ([
Eh

1 0
0 Eh

2

]
+

[
(Âh)−1B̂h (Âh)−1V̂ h

Ŵ h M̂h

])−1

is bounded. we have
[

ẑ(1)h − z(1)

ẑ(2)h − z(2)

]
−

[
Σ1 Σ2

Σ3 Σ4

] [
Φ̃h

1

Φ̃h
2

]
= o(h5)

that is
‖ẑ(1)h − z(1)‖∞ = O(h3

max), ‖ẑ(2)h − z(2)‖∞ = O(h3
max) (3.6)

where hmax = max1≤j≤max{p,q} hj. ¤

4 Numerical experiments

In this section, we will test the SIQM proposed in this paper for the numerical solution
of the mixed problem (1.1) via the boundary integral equations (1.3).

Let erru
n(P ) =

∣∣u(P ) − un(P )
∣∣ be the errors by SIQM using n boundary nodes,

and let EOC = log(errn/err2n)/ log 2 be the estimated order of convergence.
Example 1. [2] Ω is a domain with a re-entrant corner, enclosed by the curve:

Γ : (−1

2
sin(

3π

2
x), −sin(πx)), 0 ≤ x ≤ 2,
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and the Dirichlet and Neumman arcs ΓD and ΓN are parameterized by the interval
[0, 1] and [1, 2], respectively. Setting u(x1, x2) = x2

1 − x2
2. Because u is the real part

of an analytic function, u satisfies the Laplace equation in Ω. Let u = f̄1 on ΓD and
∂u/∂n = f̄2 on ΓN . Let each boundary be divided into 2k (k = 3, · · · , 8) segments.
The errors and error ratio of the interior points P1 = (0.4, 0), P2 = (0, 0.6) and
P3 = (0.1, 0.5) using n (= 2 × 2k, k = 3, · · · , 8) nodes by transformation ψ6(t) are
listed in Table 1. In addition, the numerical solution u of the interior points along the
line x2 = x1− 0.4 are computed, where x1 = −0.4 : 0.01 : 0.4. The plots of computed
errors are shown in Figure 1 (b) to Figure 2.

Table 1: The Errors of u.

n 2× 23 2× 24 2× 25 2× 26 2× 27 2× 28

erru
n(P1) 5.007-04 3.872-03 2.040-04 2.581-05 3.222-06 4.026-07

EOC(P1) − −2.951 4.246 2.982 3.002 3.000
erru

n(P2) 2.973-01 5.533-02 1.737-03 1.878-05 2.008-06 2.509-07
EOC(P2) − 2.426 4.993 6.531 3.226 3.000
erru

n(P3) 2.414-01 1.931-02 4.130-04 1.687-05 2.035-06 2.543-07
EOC(P3) − 3.644 5.547 4.613 3.052 3.000
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E
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Figure 1: Left: The contour Γ for Example 1; Right: Errors of u by
2× 24 boundary nodes.

Example 2. Consider the following problem where the domain is a quarter-circle.

∆u = 0 for x1 > 0, x2 > 0, and x2
1 + x2

2 < 1,

13
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Figure 2: Left: Errors of u by 2× 25 boundary nodes; Right: Errors of
u by 2× 26 boundary nodes.

subject to the boundary conditions

ΓD1 : u = 1, on x2
1 + x2

2 = 1, for x1 > 0, x2 > 0;

ΓD2 : u = 0, x2 = 0;

ΓN1 :
∂u

∂n
= 0, x1 = 0.

The analytical solution of this problem is u = 2
π
arctan( 2x2

1−x2
1−x2

2
).

Let each boundary be divided into 2k (k = 3, · · · , 8) segments. The errors and
error ratio of the interior points P1 = (0.1, 0.1), P2 = (0.8, 0.1) and P3 = (0.1, 0.7)
using n (= 3× 2k, k = 3, · · · , 8) nodes by transformation ψ6(t) are listed in Table 2.
In addition, the numerical solution u of the interior points along the curve segment
L : x1 = 0.7cos(π

2
t), x2 = 0.7sin(π

2
t) are computed, where t = 0.05 : 0.01 : 0.95. The

plots of computed errors are shown in Figure 3 (b) to Figure 4. From the numerical
results of Table 1 and Table 2 we can see that EOC ≈ 3.

Table 2: The Errors of u .

n 3× 23 3× 24 3× 25 3× 26 3× 27 3× 28

erru
n(P1) 1.167-03 1.223-04 1.341-05 1.675-06 2.093-07 2.617-08

EOC(P1) − 3.255 3.188 3.001 3.000 3.000
erru

n(P2) 7.409-03 9.133-04 1.691-05 2.421-06 3.025-07 3.781-08
EOC(P2) − 3.020 5.755 2.805 3.000 3.000
erru

n(P3) 1.997-02 1.694-03 3.282-05 1.062-06 1.313-07 1.641-08
EOC(P3) − 3.559 5.689 4.950 3.016 3.000
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Figure 3: Left: The contour Γ for Example 2; Right: Errors of u by
3× 26 boundary nodes.
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Figure 4: Left: Errors of u by 3× 27 boundary nodes; Right: Errors of
u by 3× 28 boundary nodes.

5 Conclusions

In this paper, the convergence and error of SIQM for the boundary integral equations
of the mixed Dirichlet-Neumann boundary value problem for the Laplacian are studied
on nonsmooth boundaries. Especially, in order to provide a good accuracy in the
solution near the singular points, the Sidi transformation is used for the boundary
integral equations of problems (1.1). The numerical results show that the presented
algorithm has a high accuracy of O (h3

max), which coincides with our theoretical
analysis.
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Abstract : This work present the adaptive modified function projective synchronization of two
systems with different order, which is a further extension of many existing synchronization schemes,
such as function projection synchronization, modified projective synchronization and so on. Based
on Lyapunov direct method of stability, an adaptive control is proposed to realize the modified func-
tion projective synchronization. Finally, numerical results are provided to illustrate the effectiveness
of the obtained result.

1 Introduction

In the last few years, control and synchronization of chaos have generate much interest according
to its application in secure communications [2]. Synchronization of chaotic systems means that two
or more systems adjust each other to a common dynamical behavior. Up to now, many different
kind of synchronization were studied such as: complete and anti synchronization, generalized syn-
chronization, projective synchronization [9]-[39]. Recently, projective synchronization has a lot of
attention because it obtain faster communication. Modifief projective synchronization is one of the
important projective synchronization methods. It means that the drive and response systems could
be synchronized up to constant scaling matrix [28]-[31] .Later, a new projective synchronization
method called function projective synchronization where the responses of the synchronized dynam-
ical states synchronize up to a scaling function [32]-[37]. More recently, researcher introduces a new
type of synchronization phenomenon, modified function projective synchronization ,where the drive
and response systems could be synchronized up to a desired scaling function matrix [38]-[39]. In
recent years, most of researches for the synchronization assumed that the drive and response are
identical or different systems with the same order. But in the real systems, especially in biology and
social systems the synchronization is applied even though the oscillators haven’t the same order.
Hence, studying the synchronization of two systems with different order plays significant role in
application.
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The rest of this paper is as the following: The Liu chaotic and hyperchaotic dynamical systems
are introduced in Section 2. Section 3 gives the definition of MFPS. In Section 4, an adaptive
modified projective synchronization of Liu chaotic and hyperchaotic systems is proposed based on
Lyapunov direct method of stability. Section 5 gives the numerical result and the conclusion is
obtained in the last Section.

2 The Liu (chaotic and hyperchaotic) systems

The Liu hyperchaotic system is defined by:
ẋ = a(y − x),

ẏ = bx+ kxz + ew,

ż = −cz − hx2 +mw,

ẇ = −dy,

(1)

where x, y, z and w are the state vectors, and a, b, c, d, e, k, h and m are constant parameters.It
can be generate a chaotic attractor for the parameters a = 10, b = 40, c = 2.5, d = 2.5, e = 1, k =
1, h = 4, and m = 1 in Figure 1 and the chaotic motions of Liu system are illustrated in Figure 2.

Figure 1: Liu hyperchaotic system at a=10, b=40, c=2.5, d=2.5, e=1, m=1, k=1 and h=4

The Liu chaotic system is given by:
ẋ = a(y − x),

ẏ = bx− kxz,
ż = −cz + hx2,

(2)

where x, y, and z are the state vectors, and the parameters a, b, c, h and k are positive real constants.
A chaotic attractor for the parameters a = 10, b = 40, c = 2.5, k = 1 and h = 4 is shown in Figure
3, and the system states responses in time domain are shown in Figure 4.

3 The modified function projective synchronization scheme

We define the drive and the response systems as follows:

ẋ = χ(x),

ẏ = Ψ(y) + U(t, x, y),

2
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Figure 2: The behavior of the trajectories of the Liu hyper chaotic system

Figure 3: Phase portrait of Liu chaotic system at a=10, b=40, c=2.5, k=1 and h=4.
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Figure 4: The behavior of the trajectories of the Liu chaotic system.

where x, y are the state variables, χ,Ψ : Rn → Rn are continuous nonlinear functions and U(t, x, y)
is a control function.

Let the error state be e = y − Λ(t)x where Λ(t) = diag{β1(t), β2(t), . . . , βn(t)} is n-order di-
agonal matrix where βi = ηi1x+ ηi2, (i = 1, 2, . . . , n), η ∈ R.

Definition 1. (MFPS)
We say that the drive system and the response system are modified function projective synchro-
nization (MFPS), if there is a scaling function Λ(t), such that

lim
t→+∞

‖e‖ = 0.

4 Modified function projective synchronization between Liu
chaotic and hyperchaotic systems

Following the scheme of Zheng in [39], we apply this scheme to achieve the MFPS between Liu
chaotic and hyperchaotic systems with different order. The Liu hyperchaotic system is defined
below as a drive (or master) system:

ẋ1 = a(y1 − x1),

ẏ1 = bx1 + kx1z1 + ew1,

ż1 = −cz1 − hx21 +mw1,

ẇ1 = −dy1,

(3)

where x1, y1, z1 and w1 are the state vectors. Moreover, the Liu system as the response (or slave)
system is given by:: 

ẋ2 = a(y2 − x2) + u1,

ẏ2 = bx2 − kx2z2 + u2,

ż2 = −cz2 + hx22 + u3,

(4)
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where x2, y2 and z2 are the state vectors, and ui, (i = 1, 2, 3) are the controller to be determined
later.

Since the order of the drive system is greater than the response system, we must increase the
order of the response system by structure a state vector. Based on the method in [39], we structure
a state variable w2 = 1

2x
2
2, then the response system become:

ẋ2 = a(y2 − x2) + u1,

ẏ2 = bx2 − kx2z2 + u2,

ż2 = −cz2 + hx22 + u3,

ẇ2 = a(y2 − x2)x2 + u4.

(5)

Let the error state vector be expressed by:
e1 = x2 − (η11x1 + η12)x1,

e2 = y2 − (η21y1 + η22)y1,

e3 = z2 − (η31z1 + η32)z1,

e4 = w2 − (η41w1 + η42)w1,

(6)

Moreover, the error dynamical system can be described by:
ė1 = ay2 − ax2 − 2η11ax1y1 + 2η11ax

2
1 − η21ay1 + η12ax1 + u1,

ė2 = bx2 − kx2z2 − 2η21bx1y1 − 2η21kx1y1z1 − 2η21ey1w1 − η22bx1 − η22kx1z1 − η22ew1 + u2,

ė3 = −cz2 + hx22 + 2η31cz
2
1 + 2η31hz1x

2
1 − 2η31mz1w1 + η32cz1 + η32hx

2
1 − η32mw1 + u3,

ė4 = ay2x2 − ax22 + 2η41dy1w1 + η42y1 + u4.

(7)

Now, the aim is to design the control function ui(t), (i = 1, 2, 3, 4) to achieve the MFPS.

Consider the following Lyapunov function:

V =
1

2
(e21 + e22 + e23 + e24),

which is a positive definite function, then the time derivative of the Lyapunov function is given as
follows:

V̇ = e1ė1 + e2ė2 + e3ė3 + e4ė4.

Moreover,

V̇ = e1(ay2 − ax2 − 2η11ax1y1 + 2η11ax
2
1 − η12ay1 + η12ax1 + u1),

+ e2(bx2 − kx2z2 − 2η21bx1y1 − 2η21kx1y1z1 − 2η21ey1w1 − η22bx1 − η22kx1z1 − η22ew1 + u2),

+ e3(−cz2 + hx22 + 2η31cz
2
1 + 2η31hz1x

2
1 − 2η31mz1w1 + η32cz1 + η32hx

2
1 − η32mw1 + u3),

+ e4(ay2x2 − ax22 + 2η41dy1w1 + η42y1 + u4).

(8)
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Thus, we choose the controller as the following:

u1 = −ay2 + 2η11ax1y1 − η11ax21 + η12ay1,

u2 = −bx2 + kx2z2 + 2η21bx1y1 + 2η21kx1y1z1 + 2η21ey1w1 + η22bx1 + η22kx1z1

+ η22ew1 − by2 + η21by
2
1 + η22by1,

u3 = −hx22 − η31cz21 − 2η31hz1x
2
1 + 2η31mz1w1 − η32hx21 + η32mw1,

u4 = −ay2x2 + ax22 − 2η41dy1w1 − η42y1 − dw2 + dη41w
2
1 + dη42w1,

(9)

by this choice, the time derivative of Lyapunov function is:

V̇ = e1(−ax2 + η11ax
2
1 + η12ax1) + e2(−by2 + η21by

2
1 + η22by1)

+ e3(−cz2 + η31cz
2
1 + η32cz1) + e4(−dw2 + η41dw

2
1 + η42dw1),

= −(ae21 + be22 + ce23 + de24),

= −eTPe,

(10)

where P = diag[a, b, c, d].

Obviously, the origin of the error dynamical system is asymptotically stable since V̇ is negative
definite. Thus, the drive and the response systems are achieving the MFPS.

5 Numerical results

In this section, we show a numerical simulation to verify the influence of the synchronization
controller (9). We assume that the initial states of the drive and the response systems are

[x1(0), y1(0), z1(0), w1(0)]T = [2.4, 2.2, 0.8, 0]T and [x2(0), y2(0), z2(0), w2(0)]T = [0.2, 0.1, 3, 6]T .

These numerical simulation are presented in Figure 5. Firstly, when the scaling functions are given
by:

β1 = 3x1 + 4, β2 = 1.5y1 + 2, β3 = 2z1 + 4 and β4 = w1 + 7,

we get adaptive modified function projective synchronization (MFPS) in Figure 5 (a) . Furthermore,
Figure 5 (b) shows the generalized function projective synchronization (GFPS) when the scaling
functions are given by β1 = 3x1, β2 = 1.5y1, β3 = 2z1, and β4 = w1. Also, we get the modified
projective synchronization (MPS) according to the constants β1 = 4, β2 = 2, β3 = 1, and β4 = 7
shown in Figure 5 (c) . The complete synchronization error of the drive and response systems are
displayed in Figure 5 (d) when the scaling function is simplified to βi = +1, (i = 1, 2, 3, 4) with
ηi1 = 0, ηi2 = +1, (i = 1, 2, 3, 4). Finally, if we choose the scaling function βi = −1, (i = 1, 2, 3, 4)
in which ηi1 = 0, and ηi2 = −1, (i = 1, 2, 3, 4) we gained the anti-phase synchronization between
the two systems in Figure 5 (e). From these results, they clearly show that the synchronization
errors e = [e1, e2, e3, e4]T are converge to zero as time goes to infinity.
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(a) (b)

(c) (d)

(e)

Figure 5: The errors between Liu (chaotic and hyperchaotic) systems for (a) MFPS (b) GFPS (c)
MPS (d) Complete synchronization (e) Anti-phase synchronization.
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6 Conclusion

In this paper, we have introduced a modified function projective synchronization between two
chaotic systems with different dimensional. The Liu chaotic system (third order) and Liu hyper-
chaotic system (fourth order) are chosen to illustrate the proposed technique. The results show
that we can apply the MFPS between the two systems if we increased the order. By using adaptive
control method, some conditions are derived for the stability of the error proved according to Lya-
punov direct method of stability. Finally, the graphical presentation of the numerical results with
error states tending to zero as time becomes large, clearly exhibit that the applied adaptive control
method is effective and convenient to achieve global synchronization among non identical chaotic
systems with different order.

Acknowledgement

This article was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University,
Jeddah. The authors, therefore, acknowledge with thanks DSR technical and financial support.

References

[1] L. Xin, A new hyperchaotic dynamical system, Chinese J. Phys., Vol 16 (11), (2007), 3279-3284.

[2] X. Xu, Generalized function projective synchronization of chaotic systems for secure communi-
cation, Advances in Signal Processing , Vol.2011 (1), (2011), 6180-6187.

[3] G. Chen, Chaos on some controllability conditions for chaotic dynamics control, Chaos,Solitons
and Fractals, Vol.8 (9), (1997), 1461-1470.

[4] E. Ott, C. Grebogi and J. Yorke, Controlling chaos, Physical Review Letters, Vol.64 (11), (1999),
1179-1184.

[5] H. N. Agiza, On the analysis of stability, bifurcation, chaos and chaos control of kopel map,
Chaos,Solitons and Fractals, Vol.10 (11), (1999), 1909-1916.

[6] A. Hegazi, H. N. Agiza and M. M. El-Dessoky, Controlling chaotic behaviour for spin generator
and Rossler dynamical systems with feedback control, Chaos, Solitons and Fractals, Vol.12 (4),
(2001), 631-658.

[7] S. Dadras and H. Momeni, Control of a fractional-order economical system via sliding mode,
Physica A, Vol.389 (12), (2010), 2434-2442

[8] A. Singh and S. Gakkhar, Controlling chaos in a food chain model, Mathematics and Computers
in Simulation, Vol.115 (C), (2015), 24-36.

[9] L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Physical Review Letters,Vol.
64 (8), (1990), 821-824.

[10] T. L. Carroll and L. M. Perora, Synchronizing a chaotic systems, IEEE Transactions on circuits
and systems,Vol.38 (4), (1991), 453-456.

8

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.2, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

361 M. M. El-Dessoky et al 354-363



[11] N. Rulkov, M. Sushchik, L. Tsimring and H. Abarbanel, Generalized synchronization of chaos
in directionally coupled chaotic systems, Physical Review Letters, Vol.51 (2), (1995), 980- 994.

[12] S. Yang and C. Duan, Generalized synchronization in chaotic systems, Chaos, Solitons and
Fractals, Vol.9 (10), (1998), 1703-1707.

[13] X. Yang, A framework for synchronization theory Chaos, Solitons and Fractals, Vol.11 (9),
(2000), 1365-1368.

[14] E. Bai and K. Lonngren, Sequential synchronization of two Lorenz system using active control,
Chaos, Solitons and Fractals, Vol.11 (7), (2000), 1041-1044.

[15] E. M. Elabbasy, H. N. Agiza and M. M. El-Dessoky, Global chaos synchronization for four-scroll
attractor by nonlinear control, Scientific Research and Essay, Vol.1 (3), (2006), 65-71.

[16] E. M. Elabbasy and M. M. El-Dessoky, Adaptive coupled synchronization of coupled chaotic
dynamical systems, Applied Sciences Research, Vol.2 (2), (2007), 88-102.

[17] E. M. Elabbasy and M. M. El-Dessoky, Synchronization of Van Der Pol oscillator and chen
chaotic dynamical system, Chaos,Solitons and Fractals, Vol.36 (5), (2008), 1425-1435.

[18] J. Huang, Adaptive synchronization between different hyperchaotic systems with fully uncertain
parameters Physics Letters A, Vol.372 (27-28), (2008), 4799-4804.

[19] G. Li, Generalized synchronization of chaos based on suitable separation, Chaos, Solitons and
Fractals, Vol.39 (5), (2009), 2056-2062.

[20] A. Loria, Master-slave synchronization of fourth order Lu chaotic oscillators via linear output
feadback IEEE Transactions on circuits and systems, Vol.57 (3), (2010), 213-217.

[21] M. M. El-Dessoky and M. T. Yassen, Adaptive feedback control for chaos control and synchro-
nization for new chaotic dynamical system, Mathematical Problems in Engineering, Vol. 2012,
(2012), Article ID 347210, 12 pages, doi:10.1155/2012/347210

[22] C. H. Yang and C. L. Wu, Nonlinear dynamic analysis and synchronization of four-dimensional
Lorenz-Stenflo system and its circuit experimental implementation, Abstract and Applied Anal-
ysis, Vol. 2014, (2014), Article ID 213694, 17 pages.

[23] K. Vishal and S. Agrawal, On the dynamics, existence of chaos, control and synchronization
of a novel complex chaotic system, Chinese Journal of Physics, Vol.55 (2), (2017), 519-532.

[24] J. Petereit and A. Pikovsky, Chaos synchronization by nonlinear coupling, Communications in
Nonlinear Science and Numerical Simulation, Vol.44 (C), (2017), 344-351.

[25] K. Ojo, S. Ogunjo and A. Olagundoye, Projective synchronization via active control of identical
chaotic oscillators with parametric and external excitation, International Journal of Nonlinear
Science, Vol.24 (2), (2017), 76-83.

[26] M. M. El-Dessoky, Synchronization and anti-synchronization of a hyperchaotic Chen system,
Chaos, Solitons and Fractals, Vol.39 (4), (2009), 1790-1797.

9

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.2, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

362 M. M. El-Dessoky et al 354-363



[27] M. M. El-Dessoky, Anti-synchronization of four scroll attractor with fully unknown parameters,
Nonlinear Analysis: Real World Applications, Vol. 11 (2), (2010), 778-783.

[28] G. Li, Modified projective synchronization of chaotic system, Chaos, Solitons and Fractals,
Vol.32 (5), (2007), 1786-1790.

[29] J. Park, Adaptive modified projective synchronization of a unified chaotic system with an un-
certain parameter, Chaos, Solitons and Fractals, Vol.34 (5), (2007), 1552-1559.

[30] Y. Tang and J. Fang, General method for modified projective synchronization of hyperchaotic
systems with known or unknown parameter, Physics Letters A, Vol.372 (11), (2008), 1816-1826.

[31] N. Cai, Y. Jing and S. Zhang, Modified projective synchronization of chaotic systems with
disturbances via active sliding mode control, Communications in Nonlinear Science and Numerical
Simulation, Vol.15 (6), (2010), 1613-1620.

[32] Y. Chen and X. Li, Function projective synchronization between two identical chaotic systems,
International Journal of Modern Physics C, Vol.18 (5), (2007), 883-888.

[33] H. Du, Q. Zeng and C. Wang, Function projective synchronization of different chaotic systems
with uncertain parameters, Physics Letters A, Vol.372 (33), (2008), 5402-5410.

[34] L. Runzi and W. Zhengmin, Adaptive function projective synchronization of unified chaotic
systems with uncertain parameters, Chaos, Solitons and Fractals, Vol.42 (2), (2009), 1266-1272.

[35] Y. Yua and H. Li, Adaptive generalized function projective synchronization of uncertain chaotic
systems, Nonlinear Analysis: Real World Applications, Vol.11 (4), (2010), 2456-2464.

[36] S. K. Agrawal and S. Das, Function projective synchronization between four dimensional chaotic
systems with uncertain parameters using modified adaptive control method, Journal of process
Control, Vol.24 (5), (2014), 517-530.

[37] M. M. El-Dessoky, E. O. Alzahrany, and N. A. Almohammadi. Function Projective Synchro-
nization for Four Scroll Attractor by Nonlinear Control, Applied Mathematical Sciences, Vol.11
(26), (2017), 1247-1259.

[38] S. Zheng, G. Dong and Q. Bi, Adaptive modified function projective synchronization of hyper-
chaotic systems with unknown parameters, Communications in Nonlinear Science and Numerical
Simulation, Vol.15 (11), (2010), 3547-3556.

[39] S. Zheng, Adaptive modified function projective synchronization of unknown chaotic systems
with different order, Applied Mathematics and Computation, Vol.218 (10), (2011), 5891-5899.

10

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.2, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

363 M. M. El-Dessoky et al 354-363



Dual log-Minkowski inequality for star bodies

Tongyi Ma
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Abstract

We validate a modified dual log-Minkowski inequality and prove some variants of the dual log-

Minkowski inequality for star bodies in Rn containing the origin in their interior. In addition, we

point out that the equivalence between the dual log-Minkowski inequality and the dual log-Brunn-

Minkowski inequality.

Keywords: Dual cone-volume measure, L0-Minkowski problem, dual log-Brunn-Minkowski in-

equality, dual log-Minkowski inequality.

1 Introduction

The classical Brunn-Minkowski theory of convex bodies was placed in a larger theory by Lutwak’s
Lp-Minkowski problem [13, 14]. Therefore, many classical results for convex bodies became a part of the
extended Lp-Brunn-Minkowski-Firey theory, while many other results of the extended theory bring new
and original insight in convex geometric analysis.

One such strikingly new behavior is due to the log-Brunn-Minkowski inequality [2]. That is, let K,L
be convex bodies that contain the origin in their interiors and 0 ≤ λ ≤ 1, the log-Minkowski combination
which is defined by

(1− λ) ·K +0 λ · L = ∩u∈Sn−1{x ∈ Rn : x · u ≤ hK(u)1−λhL(u)λ}, (1.1)

where, x · u denotes the standard inner product of x and u in Rn, Sn−1 denotes the unit sphere in Rn
and hK denotes the support function of convex body. Böröczky, Lutwak, Yang and Zhang [2] conjectured
that for origin-symmetric convex bodies K and L in Rn with 0 ≤ λ ≤ 1,

voln((1− λ) ·K +0 λ · L) ≥ voln(K)1−λvoln(L)λ, (1.2)

where voln(·) denotes the n-dimensional volume of body in Rn. They call (1.2) as the log-Brunn-
Minkowski inequality. Note that while the inequality (1.2) is not true for general convex bodies, it
implies the classical Brunn-Minkowski inequality for origin-symmetric convex bodies. In [2], Böröczky,
et al. proved the inequality (1.2) when n = 2 and showed that (1.2) is equivalent to the logarithmic
Minkowski inequality (log-Minkowski inequality) for all n, that is∫

Sn−1

ln

(
hK(u)

hL(u)

)
dv̄L(u) ≥ 1

n
ln

(
voln(K)

voln(L)

)
, (1.3)
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where dvL(u) = 1
nhL(u)dSL(u) is the cone-volume measure of L, dv̄L(u) = 1

voln(L)
dvL(u) and SL is

surface area measure of L on Sn−1.
In [23], Stancu proved some variants of the log-Minkowski inequality for general convex bodies without

the symmetry assumption.
The dual Lp-Brunn-Minkowski theory for star bodies developed by Lutwak [15, 16] and received

considerable attention, see [1, 4, 6, 10, 11, 17, 20, 21, 22, 25]. Recently, Gardner, et al. [7] established
dual log-Minkowski inequality as follows. If K and L be star bodies in Rn containing the origin in their
interior, then ∫

Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽK(u) ≤ 1

n
ln

(
voln(K)

voln(L)

)
, (1.4)

with equality if and only if K and L are dilatates, where dṽK is the dual cone-volume probability measure
of K (see definition (2.11)). In the present paper, we prove a modified dual log-Minkowski inequality
and obtain the double dual log-Minkowski inequality through the Gibbs’ inequality. Secondly, we prove
an analogue of the dual log-Minkowski inequality. In addition, we point out the equivalence between the
dual log-Minkowski inequality and the dual log-Brunn-Minkowski inequality.

Our first result is the following dual log-Minkowski inequality:

Theorem1.1. Let K and L be star bodies in Rn containing the origin in their interior. Then∫
Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽ−1(K,L;u) ≥ ln

(
Ṽ−1(K,L)

voln(K)

)
≥ 1

n
ln

(
voln(K)

voln(L)

)
, (1.5)

with equality if and only if K and L are dilates, where dṽ−1(K,L; ·) is the dual mixed volume measure

Ṽ−1(K,L) =
∫
Sn−1 dṽ−1(K,L;u) and dṽ−1(K,L;u) = 1

Ṽ−1(K,L)
dṽ−1(K,L;u).

Secondly, we obtain the following double log-Minkowski inequality.

Theorem1.2. Let K and L be star bodies in Rn containing the origin in their interior. Then∫
Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽK(u) ≤ ln

(
Ṽ−1(K,L)

voln(K)

)
≤
∫
Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽ−1(K,L;u), (1.6)

with equality in inequality if and only if K and L are dilates.

Further, we prove an analogue of the dual log-Minkowski inequality. In what follows, we will denote(
ρK
ρL

)
average

=

∫
Sn−1

ρK(u)
ρL(u) dṽK(u)∫

Sn−1 dṽK(u)
,

(
ρK
ρL

)
max

= max
u∈Sn−1

(
ρK(u)

ρL(u)

)
and

(
ρK
ρL

)
min

= min
u∈Sn−1

(
ρK(u)

ρL(u)

)
.

Theorem1.3. Let K and L be star bodies in Rn containing the origin in their interior with L ⊆ K.

Then

∫
Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽK(u) ≥

(
ρK
ρL

)
average(

ρK
ρL

)
max

· 1

n
ln

(
voln(K)

voln(L)

)
, (1.7)

with equality if and only if K = λL, where 0 < λ ≤ 1.
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In general, if K,L ∈ Sno , then

∫
Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽK(u) ≥

(
ρK
ρL

)
average(

ρK
ρL

)
max

· 1

n
ln

(
voln(K)

voln(L)

)

+ ln

[(
ρK
ρL

)
min

]
·

[
1−

(
ρK
ρL

)
average(

ρK
ρL

)
max

]
, (1.8)

with equality if and only if K is homothetic to L.

Finally, we point out the equivalence between the dual log-Minkowski inequality (1.4) and the dual
log-Brunn-Minkowski inequality (2.8). We give a different proof with Wang and Liu [24].

2 Notation and preliminaries

The support function hK : Rn → R, of a compact, convex set K ⊂ Rn is defined, for x ∈ Rn, by

hK(x) = max(x · y : y ∈ K), (2.1)

and uniquely determines the convex set. Let Kno be the set of convex bodies in Rn containing the origin
in their interior.

If L is a compact star-shaped (about the origin) in Rn, its radial function, ρL = ρ(L, ·) : Rn\{o} →
[0,+∞), is defined by

ρK(x) = max{λ ≥ 0 : λx ∈ L}, x ∈ Rn\{o}. (2.2)

If ρL is positive and continuous, then L will be called a star body (about the origin). Let Sno denotes the
set of star bodies in Rn containing the origin in their interior. Two star bodies K and L are said to be
dilates (of one another) if ρK(u)/ρL(u) is independent of u ∈ Sn−1. Obviously, for a pair K,L ∈ Sno , we
have

ρK ≤ ρL, if and only if, K ⊆ L. (2.3)

If K,L ∈ Sno and λ, µ ≥ 0 (not both zero), then, for p ≥ 1, the harmonic Lp-combination, λ ⋄K+̂pµ ⋄
L ∈ Sno is defined by (see [14])

ρ(λ ⋄K+̂pµ ⋄ L, ·)−p = λρ(K, ·)−p + µρ(L, ·)−p. (2.4)

For p ≥ 1 and K,L ∈ Sno , the dual mixed volume, Ṽ−p(K,L), is defined

−n
p
Ṽ−p(K,L) = lim

ε→0

voln(K+̂pε ⋄ L)− voln(K)

ε
.

The following integral representation for the dual mixed volume Ṽ−p is obtained (see [14]): If p ≥ 1 and
K,L ∈ Sno , then

Ṽ−p(K,L) =
1

n

∫
Sn−1

ρ(K,u)n+pρ(L, u)−pdS(u),

where dS is the spherical Lebesgue measure on Sn−1. This integral representation, together the Hölder
inequality with the polar coordinate formula, immediately gives the dual Lp-Minkowski inequality: If
p ≥ 1 and K,L ∈ Sno , then

Ṽ−p(K,L)n ≥ voln(K)n+pvoln(L)−p, (2.5)

with equality if and only if K and L are dilates.
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Using the dual Lp-Minkowski inequality, we can obtain the following dual Lp-Brunn-Minkowski in-
equality (see [14]). Suppose K,L ∈ Sno , λ, µ > 0 and p ≥ 1, then

voln(λ ⋄K+̂pµ ⋄ L)−p/n ≥ λvoln(K)−p/n + µvoln(L)−p/n, (2.6)

with equality if and only if K and L are dilates.
Note that definition (2.4) makes sense for all p > 0. The case p = 0 is the limiting case given by

ρ((1− λ) ⋄K+̂0λ ⋄ L, ·) = ρ(K, ·)1−λρ(L, ·)λ, 0 ≤ λ ≤ 1, (2.7)

it is called the radial log-Minkowski-combination.
Similarly, the inequality (2.6) makes sense for all p > 0. The case p = 0 is the limiting case given by

an dual log-Brunn-Minkowski inequality. Namely, if K,L ∈ Sno , then for all λ ∈ [0, 1],

voln((1− λ) ⋄K+̂0λ ⋄ L) ≤ voln(K)1−λvoln(L)λ, (2.8)

with equality if and only if K and L are dilates.
If K ∈ Sno , then

dṽK(u) =
1

n
ρnK(u)dS(u) (2.9)

is the dual cone-volume measure of K and

dṽ−1(K,L;u) =
1

n
ρn+1
K (u)ρ−1

L (u)dS(u) (2.10)

is the dual mixed volume measure with (n+ 1) copies of K and (−1) copies of L. Note that we usually

write Ṽ−1(K,L) =
∫
Sn−1 dṽ−1(K,L;u). The dual cone-volume measure of a star body K in Rn with

voln(K) is the Borel probability measure ṽK in Sn−1 defined by

dṽK =
ρnK(u)

nvoln(K)
dS(u). (2.11)

And the normalized dual mixed cone measure of a star bodies K,L in Rn with Ṽ−1(K,L) is the Borel
probability measure ṽ−1(K,L; ·) on Sn−1 defined by

dṽ−1(K,L;u) =
1

Ṽ−1(K,L)
dṽ−1(K,L;u). (2.12)

3 Proofs of dual log-Minkowski type results

In this section, we will prove the theorems mentioned in Section 1.

Proof of Theorem 1.1. Consider the function GK,L(p) : [1,∞]→ R defined by

GK,L(p) =
1

Ṽ−1(K,L)

∫
Sn−1

(
ρK(u)

ρL(u)

) p
n+p

dṽK(u).
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Through using L’Hôpital’s rule, we obtain

lim
p→∞

ln(GK,L(p))n+p = lim
p→∞

ln

(∫
Sn−1

(
ρK(u)
ρL(u)

) p
n+p

dṽK(u)

Ṽ−1(K,L)

)n+p

= lim
p→∞

ln

(∫
Sn−1 ρK(u)n+1ρL(u)−1

(
ρK(u)
ρL(u)

)− n
n+p

dS(u)∫
Sn−1 ρK(u)n+1ρL(u)−1dS(u)

)n+p

= ln exp

(∫
Sn−1 ρK(u)n+1ρL(u)−1 ln

(
ρK(u)
ρL(u)

)−n
dS(u)∫

Sn−1 ρK(u)n+1ρL(u)−1dS(u)

)

=

∫
Sn−1 ρK(u)n+1ρL(u)−1 ln

(
ρK(u)
ρL(u)

)−n
dS(u)∫

Sn−1 ρK(u)n+1ρL(u)−1dS(u)

= − n

Ṽ−1(K,L)

∫
Sn−1

ρK(u)

ρL(u)
ln

(
ρK(u)

ρL(u)

)
dṽK(u).

Thus, we have

exp

[
− n

Ṽ−1(K,L)

∫
Sn−1

ρK(u)

ρL(u)
ln

(
ρK(u)

ρL(u)

)
dṽK(u)

]

= lim
p→∞

[
1

Ṽ−1(K,L)

∫
Sn−1

(
ρK(u)

ρL(u)

) p
p+n

dṽK(u)

]p+n
, (3.1)

and it follows from Hölder’s inequality that(∫
Sn−1

(
ρK(u)

ρL(u)

) p
p+n

dṽK(u)

) p+n
p
(∫

Sn−1

dṽK(u)

)−n
p

≤
∫
Sn−1

ρK(u)

ρL(u)
dṽK(u) = Ṽ−1(K,L). (3.2)

Note that
∫
Sn−1 dṽK(u) = voln(K), (2.10) and (2.12), together (3.1) with (3.2), we have∫

Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽ−1(K,L;u) ≥ ln

(
Ṽ−1(K,L)

voln(K)

)
.

According to the condition of equality in Hölder’s inequality, we easily see that with equality in the
above inequality if and only if K and L are dilates.

Using dual Minkowski’s inequality (2.5), we have the second inequality in the theorem, this is,∫
Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽ−1(K,L;u) ≥ ln

(
Ṽ−1(K,L)

voln(K)

)
≥ 1

n
ln

(
voln(K)

voln(L)

)
. (3.3)

From the condition of equality in dual Minkowski’s inequality, we know that with equality if and only if
K and L are dilates. Which completes the proof of the theorem. �

Remark 3.1. Our first inequality in (1.5) can be written as∫
Sn−1

ρK(u)

ρL(u)
ln

(
ρK(u)

ρL(u)

)
dṽK(u) ≥ Ṽ−1(K,L)

voln(K)
ln

(
Ṽ−1(K,L)

voln(K)

)
. (3.4)

Use dual Minkowski’s inequality in (3.4), we have∫
Sn−1

ρK(u)

ρL(u)
ln

(
ρK(u)

ρL(u)

)
dṽK(u) ≥ 1

n

(
voln(K)

voln(L)

)1/n

ln

(
voln(K)

voln(L)

)
. (3.5)
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Proof of Theorem 1.2. We consider Gibbs’ inequality from information theory (see [3], (8.57), p.
252-253): If p and q are probability density functions on a measure space (X, ν), then∫

p ln pdν ≥
∫
p ln qdν, (3.6)

with equality if and only if p = q almost everywhere (a.e.).
By taking

pdν =
ρL(u)

ρK(u)
· 1

voln(K)
dṽ−1(K,L;u) and qdν =

1

Ṽ−1(K,L)
dṽ−1(K,L;u)

(and later reversing the two measures above so that the first is qdν and the second is pdν), we obtain the
double inequality as follows.∫

Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽK(u) ≤ ln

(
Ṽ−1(K,L)

voln(K)

)
≤
∫
Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽ−1(K,L;u). (3.7)

According to the condition of equality in Gibbs’ inequality (3.6), we obtain that with equality in
inequality (3.7) if and only if

ρL(u)

ρK(u)
=

voln(K)

Ṽ−1(K,L)
⇐⇒ 1

n
ρnL(u) =

1

n

(
voln(K)

Ṽ−1(K,L)

)n
ρnK(u)

almost everywhere (a.e.) on Sn−1. Integrating both sides of the last equation over Sn−1 with the sphere
Lebesgue measure dS(u), we get

voln(L)

voln(K)
=

(
voln(K)

Ṽ−1(K,L)

)n
.

From the condition of equality in the dual Lp-Minkowski inequality (2.5) (p = 1), we see that with
equality in inequality (3.7) if and only if K and L are dilates. �

Remark3.2. The proof of Theorem 1.2 can be seen that we provide a new proof for the dual Minkowski

inequality itself. In fact, it is consistent with the idea of splitting mentioned by Gardner, Hug and Weil

in [8] and [9].

A natural idea is to give a proof of the dual log-Minkowski inequality similar to the proof of the
Theorem 1.1. However, as such, we obtain again the left-hand side inequality of (1.6) due to the following
lemma:

Lemma3.3. Let K,L ∈ Sno , then

exp

(∫
Sn−1

ln
ρK(u)

ρL(u)
dṽK(u)

)
= lim
p→∞

(
1

voln(K)

∫
Sn−1

(
ρK(u)

ρL(u)

) 1
p+n

dṽK(u)

)p+n
. (3.8)

The proof follows the same idea used in deriving (3.1).
From Hölder’s inequality, we have(∫

Sn−1

(
ρK(u)

ρL(u)

) 1
p+n

dṽK(u)

)p+n(∫
Sn−1

dṽK(u)

)1−(p+n)

≤
∫
Sn−1

ρK(u)

ρL(u)
dṽK(u) = Ṽ−1(K,L). (3.9)
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Lemma 3.3, together with (3.9), implies that∫
Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽK(u) ≤ ln

(
Ṽ−1(K,L)

voln(K)

)
.

It will be convenient to invoke the logarithmic mean L(x, y) of two positive numbers x, y, which is
given by

L(x, y) =

{
x−y

lnx−ln y , for x ̸= y

x, for x = y.
(3.10)

To prove Theorem 1.3, the following Hadamard type inequality for positive log-convex functions will
be used [12].

Lemma3.4. Let f be a positive, integrable, log-convex function on [a, b]. Then

1

b− a

∫ b

a

f(t)dt ≤ L (f(a), f(b)) . (3.11)

Suppose f has two derivative. The equality holds in the inequality (3.11) if and only if f(t) = c almost

everywhere (a.e.) or f ′(t)
f(t) = c almost everywhere (a.e.), where c is the constant.

The condition of the equality holds in the inequality (3.11) is that we supplements. Indeed, since f is

log-convex function on [a, b], and then f(t) and f ′(t)
f(t) are monotonically increasing at the same time. So,

we have

L(f(a), f(b)) =
f(b)− f(a)

ln f(b)− ln f(b)
=

∫ b
a
f ′(x)dx∫ f(b)

f(a)
1
xdx

x=f(t)
=

∫ b
a
f ′(x)dx∫ b
a
f ′(t)
f(t) dt

≥ 1

b− a

∫ b

a

f(t)dx

=

∫ b
a
f(t)dt∫ b
a

1dt
. (3.12)

Thus, the inequality (3.11) is transformed into∫ b

a

f ′(x)dx

∫ b

a

1dx ≥
∫ b

a

f(t)dt

∫ b

a

f ′(t)

f(t)
dt. (3.13)

Note that f(t) and f ′(t)
f(t) are monotonically increasing at the same time, According to the condition of

equality in Chebyshev’s inequality, we see with equality in inequality (3.11) if and only if f(t) = c or
f ′(t)
f(t) = c. Namely, f(t) = c or f(t) = ect. �

Proof of Theorem 1.3. Consider the case L ⊆ K and the function

F (q) : q 7→
∫
Sn−1

(
ρK(u)

ρL(u)

)q
ln

(
ρK(u)

ρL(u)

)
dṽK(u), q ∈ R.

Apparently, F (q) is non-negative. If u 7→ ln
(
ρK(u)
ρL(u)

)
is zero on Sn−1, then F (q) is identically zero. Now,

we assume that this is not the case, which also implies F (1) ≥ F (0) > 0. If F (1) = F (0), the conclusion
is trivial (as using (3.7), K must be equal to L), and then, we assume F (1) > F (0).

A simple verification shows that F (q) is a log-convex function, this is because d2

dq2 lnF (q) ≥ 0. By

employing Hadamard type inequality (3.11) for positive log-convex functions [12], we have that

F (1)− F (0)

ln
(
F (1)/F (0)

) ≥ ∫ 1

0

[ ∫
Sn−1

(
ρK(u)

ρL(u)

)q
ln

(
ρK(u)

ρL(u)

)
dṽK(u)

]
dq. (3.14)
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Using Fubini-Tonelli’s theorem, the following inequality

F (0) ≥ F (1) · exp

[
− F (1)− F (0)∫

Sn−1

(
ρK(u)
ρL(u) − 1

)
dṽK(u)

]
(3.15)

is true. Note that

F (1)− F (0)∫
Sn−1

(
ρK(u)
ρL(u) − 1

)
dṽK(u)

=

∫
Sn−1 ln

(
ρK(u)
ρL(u) ·

)
·
(
ρK(u)
ρL(u) − 1

)
dṽK(u)∫

Sn−1

(
ρK(u)
ρL(u) − 1

)
dṽK(u)

≤ ln

(
ρK
ρL

)
max

, (3.16)

then combining (3.15) and (3.16), we have∫
Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽK(u)

≥ exp

[
− ln

(
ρK
ρL

)
max

]
· Ṽ−1(K,L)

voln(K)

∫
Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽ−1(K,L;u), (3.17)

it follows from (3.3) that

∫
Sn−1

ln

(
ρK
ρL

)
dṽK(u) ≥

(
ρK
ρL

)
average(

ρK
ρL

)
max

1

n
ln

(
voln(K)

voln(L)

)
.

Now we discuss the conditions of equality in inequality (1.7), and the discussion is split into two cases.
Assuming that F (q) is identically zero, then ρK(u) = ρL(u) for all u’s with respect to Sn−1 if and only
if K = L.

Case 1. According to the conditions of equality in Hadamard type inequality (3.11) and inequality
(3.3), we see with equality in inequality (1.7) if and only if{

F (q) = c for q ≥ 1,

K = λL for λ > 0.
(3.18)

From the definition of function F (q), (3.18) is equivalent to{
ρK(u)
ρL(u) = 1 for any u ∈ Sn−1,

K = λL for λ > 0.
(3.19)

Namely, K = L.
Case 2. According to the conditions of equality in Hadamard type inequality (3.11) and inequality

(3.3), we see with equality in inequality (1.7) if and only if{
F ′(q)
F (q) = c for q ≥ 1,

K = λL for λ > 0.
(3.20)

Using mean value theorem for multiple integral [5, 19], there is a u0 ∈ Sn−1, such that (3.18) is equivalent
to {

ρK(u0)
ρL(u0)

= cq for a u0 ∈ Sn−1,

K = λL for λ > 0.
(3.21)

Since L ⊆ K, K = λL with 0 < λ ≤ 1.
As mentioned above, we see with equality in inequality (1.7) if and only if K = λL with 0 < λ ≤ 1.
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Assume now that K and L are arbitrary star bodies. If L is not included in K, there exists a
λ, 0 < λ < 1, such that L̃ := λL ⊆ K. By using (1.7) for L̃ and K. Thus,

∫
Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽK(u)− lnλ ≥

(
ρK
ρL

)
average(

ρK
ρL

)
max

· 1

n
ln

(
voln(K)

λnvoln(L)

)
(3.22)

or

∫
Sn−1

ln

(
ρK(u)

ρL(u)

)
dṽK(u) ≥

(
ρK
ρL

)
average(

ρK
ρL

)
max

· 1

n
ln

(
voln(K)

voln(L)

)

+ lnλ ·

(
1−

(
ρK
ρL

)
average(

ρK
ρL

)
max

)
. (3.23)

Taking λ = minu∈Sn−1

(
ρK(u)
ρL(u)

)
will suffice, we now obtain the second inequality.

The claim that the homothety of K and L is the only case of equality follows from the first part. �

Remark3.5. Note that, if L ⊆ K then (1.8) implies (1.7). Also,
(
ρK
ρL

)
average

,
(
ρK
ρL

)
max

and
(
ρK
ρL

)
min

depend only on the values of the ratio
(
ρK(u)
ρL(u)

)
on Sn−1.

We conclude this paper by pointing out that the equivalence between inequalities (1.4) and (2.8). We
give a different proof with Wang and Liu [24]. For any K ∈ Sno , define the real numbers RK and rK by

RK = max
u∈Sn−1

ρK(u), rK = min
u∈Sn−1

ρK(u). (3.24)

Note that the definition of Sno is such that 0 < rK ≤ RK <∞, for all K ∈ Sno .

Theorem 3.6. For K,L ∈ Sno , the dual log-Brunn-Minkowski inequality (2.8) and the dual log-

Minkowski inequality (1.4) are equivalent.

Proof. Suppose that K and L are fixed star bodies in Sno . For 0 ≤ λ ≤ 1, let

Qλ = (1− λ) ⋄K+̂0λ ⋄ L,

i.e., the radial function of star body Qλ is qλ := ρQλ
= ρ1−λK ρλL. Since q0 and q1 are the radial functions

of star bodies, we have Q0 = K and Q1 = L.
Suppose that we have the dual log-Minkowski inequality (1.4) for K and L. Now ρQλ

= ρ1−λK ρλL a.e.
with respect to Sn−1, and thus

0 =
1

nvoln(Qλ)

∫
Sn−1

ρQλ
(u)n ln

ρK(u)1−λρL(u)λ

ρQλ
(u)

dS(u)

= (1− λ)
1

nvoln(Qλ)

∫
Sn−1

ρQλ
(u)n ln

ρK(u)

ρQλ
(u)

dS(u)

+ λ
1

nvoln(Qλ)

∫
Sn−1

ρQλ
(u)n ln

ρL(u)

ρQλ
(u)

dS(u)

= −(1− λ)

∫
Sn−1

ln
ρQλ

(u)

ρK(u)
dṽQλ

(u)− λ
∫
Sn−1

ln
ρQλ

(u)

ρL(u)
dṽQλ

(u)

≤ −(1− λ)
1

n
ln

voln(Qλ)

voln(K)
− λ 1

n
ln

voln(Qλ)

voln(L)

=
1

n
ln

voln(K)1−λvoln(L)λ

voln(Qλ)
. (3.25)
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This gives the dual log-Brunn-Minkowski inequality (2.8).
Suppose now that we have the dual log-Brunn-Minkowski inequality (2.8) for K and L. Namely,

voln((1− λ) ⋄K+̂0λ ⋄ L) ≤ voln(K)

(
voln(L)

voln(K)

)λ
. (3.26)

Using the polar coordinates formula of volume, the radial log-Minkowski-combination (2.7) and the Borel
probability measure (2.11), it follows from (3.26) that∫

Sn−1

(
ρL(u)

ρK(u)

)nλ
dṽK(u) ≤

(
voln(L)

voln(K)

)λ
. (3.27)

Therefore ∫
Sn−1

(
ρL(u)
ρK(u)

)nλ
dṽK(u)− 1

λ
≤

(
voln(L)
voln(K)

)λ
− 1

λ
.

Taking the limit on both sides of the last inequality as λ→ 0, we get

lim
λ→0

∫
Sn−1

(
ρL(u)
ρK(u)

)nλ
dṽK(u)− 1

λ
≤ lim
λ→0

(
voln(L)
voln(K)

)λ
− 1

λ
.

We are easy to prove the function f(x) = ax−1
x is uniformly continuous on (0,∞) for 0 < a ≤ 1, and

the Bernoulli’s inequality leads to the function f(x) = ax−1
x is uniform boundness for a > 1. From the

definition (3.24), we have (
ρL
ρK

)nλ
− 1

λ
≤

(
RL

rK

)nλ
− 1

λ
.

Using Lebesgue dominated convergence theorem we know that the order of the integral and the limit can
be changed. Therefore, we can obtain

∫
Sn−1

lim
λ→0

(
ρL(u)
ρK(u)

)nλ
− 1

λ
dṽK(u) ≤ lim

λ→0

(
voln(L)
voln(K)

)λ
− 1

λ
.

Since limx→0
ax−1
x = ln a, then∫

Sn−1

ln

(
ρL(u)

ρK(u)

)n
dṽK(u) ≤ ln

(
voln(L)

voln(K)

)
. (3.28)

This is the dual log-Minkowski inequality (1.4), which completes the proof.
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Subalgebra and ideal-type hyper values in BCK/BCI-algebras
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Abstract. The notions of subalgebra-type hyper value and ideal-type hyper value are introduced, and related

properties are investigated. The relation between subalgebra-type hyper value and ideal-type hyper value is

considered. Conditions for a pair (α, β) in [0, 1] × [0, 1] to be subalgebra-type hyper value and ideal-type hyper

value are discussed. For a hyperfuzzy structure, conditions for its level sets to be S-energetic, I-energetic, right

vanished and right stable are founded.

1. Introduction

Jun et al. [3] introduced the notion of energetic (resp. right vanish, right stable) subsets in BCK/BCI-algebras,

and investigated several related properties. Ghosh et al. [1] introduced the concept of hyperfuzzy sets which is a

generalization of fuzzy sets and interval-valued fuzzy sets. Jun et al. [4] and Song et al. [6] applied hyper structure

to BCK/BCI-algebras, and discussed hyperfuzzy subalgebras and hyperfuzzy ideals in BCK/BCI-algebras.

In this article, we introduce the concepts of subalgebra-type hyper value and ideal-type hyper value, and

investigate several properties. We discuss the relation between subalgebra-type hyper value and ideal-type hyper

value. We provide an example to show that any subalgebra-type hyper value is not an ideal-type hyper value. We

consider conditions for a pair (α, β) in [0, 1]× [0, 1] to be subalgebra-type hyper value and ideal-type hyper value.

Given a hyperfuzzy structure, we find conditions for its level sets to be S-energetic, I-energetic, right vanished

and right stable.

2. Preliminaries

By a BCI-algebra we mean a system X := (X, ∗, 0) in which the following axioms hold:

(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(II) (x ∗ (x ∗ y)) ∗ y = 0,

(III) x ∗ x = 0,

(IV) x ∗ y = y ∗ x = 0 ⇒ x = y

for all x, y, z ∈ X. If a BCI-algebra X satisfies 0 ∗ x = 0 for all x ∈ X, then we say that X is a BCK-algebra. We

can define a partial ordering ≤ by

(∀x, y ∈ X) (x ≤ y ⇐⇒ x ∗ y = 0).

0 2010 Mathematics Subject Classification: 08F35; 03G25; 03B52.
0 Keywords: hyperfuzzy subalgebra; hyperfuzzy ideal; subalgebra-type hyper value; ideal-type hyper value;

energetic subset; right vanished subset; right stable subset.
∗ Correspondence: Tel: +82 2 2260 3410, Fax: +82 2 2266 3409 (S. S. Ahn).

0E-mail: skywine@gmail.com (Y. B. Jun); sunshine@dongguk.edu (S. S. Ahn).
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In a BCK/BCI-algebra X, the following hold:

(∀x ∈ X) (x ∗ 0 = x), (2.1)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y). (2.2)

A non-empty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S.

A subset I of a BCK/BCI-algebra X is called an ideal of X if

0 ∈ I, (2.3)

(∀x ∈ X)(∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I) . (2.4)

We refer the reader to the books [2] and [5] for further information regarding BCK/BCI-algebras.

By a fuzzy structure over a nonempty set X we mean an ordered pair (X, ρ) of X and a fuzzy set ρ on X.

Let X be a nonempty set. A mapping µ̃ : X → P̃([0, 1]) is called a hyperfuzzy set over X (see [1]), where

P̃([0, 1]) is the family of all nonempty subsets of [0, 1]. An ordered pair (X, µ̃) is called a hyper structure over X.

Given a hyper structure (X, µ̃) over a nonempty set X, we consider two fuzzy structures (X, µ̃inf) and (X, µ̃sup)

over X in which

µ̃inf : X → [0, 1], x 7→ inf{µ̃(x)},

µ̃sup : X → [0, 1], x 7→ sup{µ̃(x)}.

Given a nonempty set X, let BK(X) and BI(X) denote the collection of all BCK-algebras and all BCI-algebras,

respectively. Also B(X) := BK(X) ∪ BI(X). In what follows, let (X, ∗, 0) ∈ B(X) unless otherwise specified.

Definition 2.1 ([4]). For any (X, ∗, 0) ∈ B(X), a fuzzy structure (X,µ) over (X, ∗, 0) is called a

• fuzzy subalgebra of (X, ∗, 0) with type 1 (briefly, 1-fuzzy subalgebra of (X, ∗, 0)) if

(∀x, y ∈ X) (µ(x ∗ y) ≥ min{µ(x), µ(y)}) , (2.5)

• fuzzy subalgebra of (X, ∗, 0) with type 2 (briefly, 2-fuzzy subalgebra of (X, ∗, 0)) if

(∀x, y ∈ X) (µ(x ∗ y) ≤ min{µ(x), µ(y)}) , (2.6)

• fuzzy subalgebra of (X, ∗, 0) with type 3 (briefly, 3-fuzzy subalgebra of (X, ∗, 0)) if

(∀x, y ∈ X) (µ(x ∗ y) ≥ max{µ(x), µ(y)}) , (2.7)

• fuzzy subalgebra of (X, ∗, 0) with type 4 (briefly, 4-fuzzy subalgebra of (X, ∗, 0)) if

(∀x, y ∈ X) (µ(x ∗ y) ≤ max{µ(x), µ(y)}) . (2.8)

It is clear that every 3-fuzzy subalgebra is a 1-fuzzy subalgebra and every 2-fuzzy subalgebra is a 4-fuzzy

subalgebra.

Definition 2.2 ([4]). For any (X, ∗, 0) ∈ B(X) and i, j ∈ {1, 2, 3, 4}, a hyper structure (X, µ̃) over (X, ∗, 0) is

called an (i, j)-hyperfuzzy subalgebra of (X, ∗, 0) if (X, µ̃inf) is an i-fuzzy subalgebra of (X, ∗, 0) and (X, µ̃sup) is a

j-fuzzy subalgebra of (X, ∗, 0).
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Given a hyper structure (X, µ̃) over X and α, β ∈ [0, 1], we consider the following sets (see [6]):

U(µ̃inf ;α) := {x ∈ X | µ̃inf(x) ≥ α},

L(µ̃inf ;α) := {x ∈ X | µ̃inf(x) ≤ α},

U(µ̃sup;β) := {x ∈ X | µ̃sup(x) ≥ β},

L(µ̃sup;β) := {x ∈ X | µ̃sup(x) ≤ β}.

Definition 2.3 ([6]). A fuzzy structure (X,µ) over (X, ∗, 0) is called a

• fuzzy ideal of (X, ∗, 0) with type 1 (briefly, 1-fuzzy ideal of (X, ∗, 0)) if

(∀x ∈ X) (µ(0) ≥ µ(x)) , (2.9)

(∀x, y ∈ X) (µ(x) ≥ min{µ(x ∗ y), µ(y)}) , (2.10)

• fuzzy ideal of (X, ∗, 0) with type 2 (briefly, 2-fuzzy ideal of (X, ∗, 0)) if

(∀x ∈ X) (µ(0) ≤ µ(x)) , (2.11)

(∀x, y ∈ X) (µ(x) ≤ min{µ(x ∗ y), µ(y)}) , (2.12)

• fuzzy ideal of (X, ∗, 0) with type 3 (briefly, 3-fuzzy ideal of (X, ∗, 0)) if it satisfies (2.9) and

(∀x, y ∈ X) (µ(x) ≥ max{µ(x ∗ y), µ(y)}) , (2.13)

• fuzzy ideal of (X, ∗, 0) with type 4 (briefly, 4-fuzzy ideal of (X, ∗, 0)) if it satisfies (2.11) and

(∀x, y ∈ X) (µ(x) ≤ max{µ(x ∗ y), µ(y)}) . (2.14)

It is clear that every 3-fuzzy ideal is a 1-fuzzy ideal and every 2-fuzzy ideal is a 4-fuzzy ideal.

Definition 2.4 ([6]). For any i, j ∈ {1, 2, 3, 4}, a hyper structure (X, µ̃) over (X, ∗, 0) is called an (i, j)-hyperfuzzy

ideal of (X, ∗, 0) if (X, µ̃inf) is an i-fuzzy ideal of (X, ∗, 0) and (X, µ̃sup) is a j-fuzzy ideal of (X, ∗, 0).

3. Subalgebra and ideal-type hyper values

Definition 3.1 ([3]). A nonempty subset A of (X, ∗, 0) is said to be S-energetic if it satisfies:

(∀a, b ∈ X) (a ∗ b ∈ A ⇒ {a, b} ∩A ̸= ∅) .

Let A be a proper subset of X containing 0. Then there exists a ∈ X \A, and so a ∗ a = 0 ∈ A but {a} and A

are disjoint. Thus every proper subset A of X containing 0 cannot be S-energetic.

Theorem 3.2. Given a hyper structure (X, µ̃) over (X, ∗, 0), if it is a (4, 1)-hyperfuzzy subalgebra of (X, ∗, 0), then

its nonempty level subsets U(µ̃inf ;α) and L(µ̃sup;β) are S-energetic subsets of (X, ∗, 0) for all (α, β) ∈ Λα×Λβ ⊆
[0, 1]× [0, 1].
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Proof. Assume that U(µ̃inf ;α) and L(µ̃sup;β) are nonempty for every (α, β) ∈ Λα × Λβ ⊆ [0, 1] × [0, 1]. If

x ∗ y ∈ U(µ̃inf ;α) and a ∗ b ∈ L(µ̃sup;β) for all x, y, a, b ∈ X, then

α ≤ µ̃inf(x ∗ y) ≤ max{µ̃inf(x), µ̃inf(y)}

and

β ≥ µ̃sup(a ∗ b) ≥ min{µ̃sup(a), µ̃sup(b)}.

It follows that

µ̃inf(x) ≥ α or µ̃inf(y) ≥ α, that is, x ∈ U(µ̃inf ;α) or y ∈ U(µ̃inf ;α)

and

µ̃sup(a) ≤ β or µ̃sup(b) ≤ β, that is, a ∈ L(µ̃sup;β) or b ∈ L(µ̃sup;β).

Hence {x, y} ∩ U(µ̃inf ;α) ̸= ∅ and {a, b} ∩ L(µ̃sup;β) ̸= ∅. Therefore U(µ̃inf ;α) and L(µ̃sup;β) are S-energetic

subsets of (X, ∗, 0) for all (α, β) ∈ Λα × Λβ ⊆ [0, 1]× [0, 1]. □

Corollary 3.3. Given a hyper structure (X, µ̃) over (X, ∗, 0), if it is a (2, 1)-hyperfuzzy (resp., (2, 3)-hyperfuzzy

and (4, 3)-hyperfuzzy ) subalgebra of (X, ∗, 0), then its nonempty level subsets U(µ̃inf ;α) and L(µ̃sup;β) are S-

energetic subsets of (X, ∗, 0) for all (α, β) ∈ Λα × Λβ ⊆ [0, 1]× [0, 1].

Proof. Straightforward. □

Definition 3.4 ([3]). A nonempty subset A of (X, ∗, 0) is said to be I-energetic if it satisfies:

(∀x, y ∈ X) (y ∈ A ⇒ {x, y ∗ x} ∩A ̸= ∅) .

Theorem 3.5. Given a hyper structure (X, µ̃) over (X, ∗, 0), if it is a (4, 1)-hyperfuzzy ideal of (X, ∗, 0), then its

nonempty level subsets U(µ̃inf ;α) and L(µ̃sup;β) are I-energetic subsets of (X, ∗, 0) for all (α, β) ∈ Λα × Λβ ⊆
[0, 1]× [0, 1].

Proof. Let (α, β) ∈ Λα×Λβ ⊆ [0, 1]× [0, 1] be such that U(µ̃inf ;α) and L(µ̃sup;β) are nonempty. Let x, y, a, b ∈ X
be such that y ∈ U(µ̃inf ;α) and b ∈ L(µ̃sup;β). Then

α ≤ µ̃inf(y) ≤ max{µ̃inf(y ∗ x), µ̃inf(x)}

and

β ≥ µ̃sup(b) ≥ min{µ̃sup(b ∗ a), µ̃sup(a)}.

Hence

µ̃inf(y ∗ x) ≥ α or µ̃inf(x) ≥ α, i.e., y ∗ x ∈ U(µ̃inf ;α) or x ∈ U(µ̃inf ;α)

and

µ̃sup(b ∗ a) ≤ β or µ̃sup(a) ≤ β, i.e., b ∗ a ∈ L(µ̃sup;β) or a ∈ L(µ̃sup;β).

It follows that {x, y ∗ x} ∩ U(µ̃inf ;α) ̸= ∅ and {a, b ∗ a} ∩ L(µ̃sup;β) ̸= ∅. Therefore U(µ̃inf ;α) and L(µ̃sup;β) are

I-energetic subsets of (X, ∗, 0) for all (α, β) ∈ Λα × Λβ ⊆ [0, 1]× [0, 1]. □
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Corollary 3.6. Given a hyper structure (X, µ̃) over (X, ∗, 0), if it is a (2, 1)-hyperfuzzy (resp., (2, 3)-hyperfuzzy

and (4, 3)-hyperfuzzy ) subalgebra of (X, ∗, 0), then its nonempty level subsets U(µ̃inf ;α) and L(µ̃sup;β) are I-

energetic subsets of (X, ∗, 0) for all (α, β) ∈ Λα × Λβ ⊆ [0, 1]× [0, 1].

Proof. Straightforward. □

Definition 3.7. Given a hyper structure (X, µ̃) over (X, ∗, 0), let (α, β) ∈ Λα × Λβ ⊆ [0, 1] × [0, 1] be such

that L(µ̃inf ;α) and U(µ̃sup;β) are nonempty. Then (α, β) is called a subalgebra-type hyper value for (X, µ̃) if the

following assertion is valid.

(∀x, y ∈ X)

(
µ̃inf(x ∗ y) ≤ α ⇒ min{µ̃inf(x), µ̃inf(y)} ≤ α,
µ̃sup(x ∗ y) ≥ β ⇒ max{µ̃sup(x), µ̃sup(y)} ≥ β

)
. (3.1)

Example 3.8. Let X = {0, 1, 2, 3, 4} be a set with the binary operation ∗ which is given in Table 1.

Table 1. Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 1 0

2 2 1 0 2 0

3 3 3 3 0 3

4 4 4 4 4 0

Then (X, ∗, 0) is a BCK-algebra (see [5]). Let (X, µ̃) be a hyper structure over (X, ∗, 0) in which µ̃ is given as

follows:

µ̃ : X → P̃([0, 1]), x 7→



[0.5, 0.53) if x = 0,

(0.3, 0.58] if x = 1,

[0.3, 0.44) ∪ [0.45, 0.58) if x = 2,

(0.4, 0.5] ∪ [0.60, 0.68] if x = 3,

[0.2, 0.63] if x = 4.

It is routine to verify that every pair (α, β) ∈ [0.2, 0.5]× [0.53, 0.68) is a subalgebra-type hyper value for (X, µ̃).

Theorem 3.9. For a hyper structure (X, µ̃) over (X, ∗, 0), let (α, β) ∈ Λα × Λβ ⊆ [0, 1] × [0, 1] be such that

L(µ̃inf ;α) and U(µ̃sup;β) are nonempty. If (X, µ̃) is a (1, 4)-hyperfuzzy subalgebra of (X, ∗, 0), then (α, β) is a

subalgebra-type hyper value for (X, µ̃).

Proof. Let x, y, a, b ∈ X be such that µ̃inf(x ∗ y) ≤ α and µ̃sup(a ∗ b) ≥ β. Since (X, µ̃) is a (1, 4)-hyperfuzzy

subalgebra of (X, ∗, 0), we have

α ≥ µ̃inf(x ∗ y) ≥ min{µ̃inf(x), µ̃inf(y)}

and

β ≤ µ̃sup(a ∗ b) ≤ max{µ̃sup(a), µ̃sup(b)}.

Hence (α, β) is a subalgebra-type hyper value for (X, µ̃). □
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Corollary 3.10. For a hyper structure (X, µ̃) over (X, ∗, 0), let (α, β) ∈ Λα × Λβ ⊆ [0, 1] × [0, 1] be such

that L(µ̃inf ;α) and U(µ̃sup;β) are nonempty. If (X, µ̃) is a (1, 2)-hyperfuzzy (resp., (3, 2)-hyperfuzzy and (3, 4)-

hyperfuzzy ) subalgebra of (X, ∗, 0), then (α, β) is a subalgebra-type hyper value for (X, µ̃).

Proof. Straightforward. □

Theorem 3.11. Let (X, µ̃) be a hyper structure over (X, ∗, 0). If (α, β) is a subalgebra-type hyper value for (X, µ̃),

then L(µ̃inf ;α) and U(µ̃sup;β) are S-energetic subsets of (X, ∗, 0).

Proof. Let x, y, a, b ∈ X be such that x∗y ∈ L(µ̃inf ;α) and a∗b ∈ U(µ̃sup;β). Then µ̃inf(x∗y) ≤ α and µ̃sup(a∗b) ≥
β. Since (α, β) is a subalgebra-type hyper value for (X, µ̃), it follows from (3.1) that min{µ̃inf(x), µ̃inf(y)} ≤ α

and max{µ̃sup(a), µ̃sup(b)} ≥ β. Hence

µ̃inf(x) ≤ α or µ̃inf(y) ≤ α

and

µ̃sup(a) ≥ β or µ̃sup(b) ≥ β,

that is,

x ∈ L(µ̃inf ;α) or y ∈ L(µ̃inf ;α)

and

a ∈ U(µ̃sup;β) or b ∈ U(µ̃sup;β).

Thus {x, y} ∩ L(µ̃inf ;α) ̸= ∅ and {a, b} ∩ U(µ̃sup;β) ̸= ∅, and therefore L(µ̃inf ;α) and U(µ̃sup;β) are S-energetic

subsets of (X, ∗, 0). □

Combining Theorems 3.9 and 3.11, we have the following corollary.

Corollary 3.12. For a hyper structure (X, µ̃) over (X, ∗, 0), let (α, β) ∈ Λα × Λβ ⊆ [0, 1] × [0, 1] be such that

L(µ̃inf ;α) and U(µ̃sup;β) are nonempty. If (X, µ̃) is a (1, 4)-hyperfuzzy subalgebra of (X, ∗, 0), then L(µ̃inf ;α) and

U(µ̃sup;β) are S-energetic subsets of (X, ∗, 0).

Definition 3.13. Given a hyper structure (X, µ̃) over (X, ∗, 0), let (α, β) ∈ Λα ×Λβ ⊆ [0, 1]× [0, 1] be such that

L(µ̃inf ;α) and U(µ̃sup;β) are nonempty. Then (α, β) is called an ideal-type hyper value for (X, µ̃) if the following

assertion is valid.

(∀x, y ∈ X)

(
µ̃inf(y) ≤ α ⇒ min{µ̃inf(y ∗ x), µ̃inf(x)} ≤ α,
µ̃sup(y) ≥ β ⇒ max{µ̃sup(y ∗ x), µ̃sup(x)} ≥ β

)
. (3.2)

Example 3.14. In Example 3.8, the pair (α, β) is an ideal-type hyper value for (X, µ̃).

Example 3.15. Let X = {0, 1, 2, a, b} be a set with the binary operation ∗ which is given in Table 2.
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Table 2. Cayley table for the binary operation “∗”

∗ 0 1 2 a b

0 0 0 0 a a

1 1 0 1 b a

2 2 2 0 a a

a a a a 0 0

b b a b 1 0

Then (X, ∗, 0) is a BCI-algebra (see [5]). Let (X, µ̃) be a hyper structure over (X, ∗, 0) in which µ̃ is given as

follows:

µ̃ : X → P̃([0, 1]), x 7→



[0.54, 0.72) if x = 0,

(0.58, 0.64] if x = 1,

[0.56, 0.72) if x = 2,

(0.60, 0.68] if x = a,

[0.60, 0.64) if x = b.

If we take (α, β) ∈ (0.54, 0.60]× [0.64, 0.72), then (α, β) is an ideal-type hyper value for (X, µ̃).

We consider a relation between subalgebra-type hyper value and ideal-type hyper value.

Theorem 3.16. Let (X, µ̃) be a hyper structure over (X, µ̃) ∈ BK(X) such that

(∀x ∈ X) (µ̃inf(0) ≥ µ̃inf(x), µ̃sup(0) ≤ µ̃sup(x)) . (3.3)

Then every ideal-type hyper value for (X, µ̃) is a subalgebra-type hyper value for (X, µ̃).

Proof. Let (α, β) be an ideal-type hyper value for (X, µ̃). Assume that µ̃inf(x ∗ y) ≤ α and µ̃sup(a ∗ b) ≥ β for

x, y, a, b ∈ X. Using (3.2), (2.2) and (3.3), we have

α ≥ min{µ̃inf((x ∗ y) ∗ x), µ̃inf(x)}

= min{µ̃inf((x ∗ x) ∗ y), µ̃inf(x)}

= min{µ̃inf(0 ∗ y), µ̃inf(x)}

= min{µ̃inf(0), µ̃inf(x)} = µ̃inf(x)

and

β ≤ max{µ̃sup((a ∗ b) ∗ a), µ̃sup(a)}

= max{µ̃sup((a ∗ a) ∗ b), µ̃sup(a)}

= max{µ̃sup(0 ∗ b), µ̃sup(a)}

= max{µ̃sup(0), µ̃sup(a)} = µ̃sup(a).

It follows that

min{µ̃inf(x), µ̃inf(y)} ≤ µ̃inf(x) ≤ α and max{µ̃sup(a), µ̃sup(b)} ≥ µ̃sup(a) ≥ β.

Therefore (α, β) is a subalgebra-type hyper value for (X, µ̃). □
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The converse of Theorem 3.16 is not true in general as seen in the following example.

Example 3.17. Let X = {0, 1, a, b, c} be a set with the binary operation ∗ which is given in Table 3.

Table 3. Cayley table for the binary operation “∗”

∗ 0 1 a b c

0 0 0 a a a

1 1 0 a a a

a a a 0 0 0

b b a 1 0 0

c c a 1 1 0

Then (X, ∗, 0) is a BCI-algebra (see [5]). Let (X, µ̃) be a hyper structure over (X, ∗, 0) in which µ̃ is given as

follows:

µ̃ : X → P̃([0, 1]), x 7→



[0.51, 0.55) if x = 0,

(0.48, 0.63] if x = 1,

[0.45, 0.58) if x = a,

(0.41, 0.5] ∪ [0.60, 0.63] if x = b,

[0.35, 0.65] if x = c.

If we take (α, β) ∈ (0.41, 0.45)× (0.63, 0.65], then (α, β) is a subalgebra-type hyper value for (X, µ̃), but it is not

an ideal-type hyper value for (X, µ̃) since

µ̃inf(b) = 0.41 ≤ α and min{µ̃inf(b ∗ a), µ̃inf(a)} = 0.45 ≰ α

and/or

µ̃sup(c) = 0.65 ≥ β and max{µ̃sup(c ∗ a), µ̃sup(a)} = 0.63 ≱ β.

We provide conditions for a pair (α, β) to be an ideal-type hyper value.

Theorem 3.18. Given a hyper structure (X, µ̃) over (X, ∗, 0), let (α, β) ∈ Λα × Λβ ⊆ [0, 1] × [0, 1] be such

that L(µ̃inf ;α) and U(µ̃sup;β) are nonempty. If (X, µ̃) is a (1, 4)-hyperfuzzy ideal of (X, ∗, 0), then (α, β) is an

ideal-type hyper value for (X, µ̃).

Proof. Let x, y, a, b ∈ X be such that µ̃inf(y) ≤ α and µ̃sup(b) ≥ β. Since (X, µ̃) is a (1, 4)-hyperfuzzy ideal of

(X, ∗, 0), it follows that

α ≥ µ̃inf(y) ≥ min{µ̃inf(y ∗ x), µ̃inf(x)}

and

β ≤ µ̃sup(b) ≤ max{µ̃sup(b ∗ a), µ̃sup(a)}.

Therefore (α, β) is an ideal-type hyper value for (X, µ̃). □
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Corollary 3.19. Given a hyper structure (X, µ̃) over (X, ∗, 0), let (α, β) ∈ Λα × Λβ ⊆ [0, 1] × [0, 1] be such

that L(µ̃inf ;α) and U(µ̃sup;β) are nonempty. If (X, µ̃) is a (1, 2)-hyperfuzzy (resp., (3, 2)-hyperfuzzy and (3, 4)-

hyperfuzzy ) ideal of (X, ∗, 0), then (α, β) is an ideal-type hyper value for (X, µ̃).

Proof. Straightforward. □

Theorem 3.20. Let (X, µ̃) be a hyper structure over (X, ∗, 0). If (α, β) is an ideal-type hyper value for (X, µ̃),

then L(µ̃inf ;α) and U(µ̃sup;β) are I-energetic subsets of (X, ∗, 0).

Proof. Let x, y, a, b ∈ X be such that y ∈ L(µ̃inf ;α) and b ∈ U(µ̃sup;β). Then µ̃inf(y) ≤ α and µ̃sup(b) ≥ β.

Since (α, β) is an ideal-type hyper value for (X, µ̃), it follows from (3.2) that min{µ̃inf(y ∗ x), µ̃inf(x)} ≤ α and

max{µ̃sup(b ∗ a), µ̃sup(a)} ≥ β. Hence

µ̃inf(y ∗ x) ≤ α or µ̃inf(x) ≤ α

and

µ̃sup(b ∗ a) ≥ β or µ̃sup(a) ≥ β,

that is,

y ∗ x ∈ L(µ̃inf ;α) or x ∈ L(µ̃inf ;α)

and

b ∗ a ∈ U(µ̃sup;β) or a ∈ U(µ̃sup;β).

Thus {y ∗ x, x} ∩ L(µ̃inf ;α) ̸= ∅ and {b ∗ a, a} ∩ U(µ̃sup;β) ̸= ∅, and therefore L(µ̃inf ;α) and U(µ̃sup;β) are

I-energetic subsets of (X, ∗, 0). □

Combining Theorems 3.18 and 3.20, we have the following corollary.

Corollary 3.21. Given a hyper structure (X, µ̃) over (X, ∗, 0), let (α, β) ∈ Λα × Λβ ⊆ [0, 1] × [0, 1] be such

that L(µ̃inf ;α) and U(µ̃sup;β) are nonempty. If (X, µ̃) is a (1, 4)-hyperfuzzy ideal of (X, ∗, 0), then L(µ̃inf ;α) and

U(µ̃sup;β) are I-energetic subsets of (X, ∗, 0).

Definition 3.22 ([3]). A nonempty subset A of (X, ∗, 0) is said to be right vanished if it satisfies:

(∀x, y ∈ X) (x ∗ y ∈ A ⇒ x ∈ A) . (3.4)

A is said to be right stable if A ∗X := {a ∗ x | a ∈ A, x ∈ X} ⊆ A.

Lemma 3.23 ([6]). If (X, µ̃) is a (4, 1)-hyperfuzzy ideal of (X, ∗, 0), then

(∀x, y ∈ X) (x ≤ y ⇒ µ̃inf(x) ≤ µ̃inf(y), µ̃sup(x) ≥ µ̃sup(y)) . (3.5)

Theorem 3.24. Given a hyper structure (X, µ̃) over (X, ∗, 0) ∈ BK(X) and (α, β) ∈ [0, 1] × [0, 1], if (X, µ̃) is

a (4, 1)-hyperfuzzy ideal of (X, ∗, 0), then L(µ̃inf ;α) and U(µ̃sup;β) are right stable subsets of (X, ∗, 0) whenever

they are nonempty.
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Proof. Let (α, β) ∈ [0, 1]× [0, 1] be such that L(µ̃inf ;α) and U(µ̃sup;β) are nonempty. Let x, a, b ∈ X be such that

a ∈ L(µ̃inf ;α) and b ∈ U(µ̃sup;β). Then µ̃inf(a) ≤ α and µ̃sup(b) ≥ β. Since a ∗ x ≤ a and b ∗ x ≤ b, it follows

from Lemma 3.23 that µ̃inf(a ∗ x) ≤ µ̃inf(a) ≤ α and µ̃sup(b ∗ x) ≥ µ̃sup(b) ≥ β, that is, a ∗ x ∈ L(µ̃inf ;α) and

b ∗ x ∈ U(µ̃sup;β). Hence L(µ̃inf ;α) ∗X ⊆ L(µ̃inf ;α) and U(µ̃sup;β) ∗X ⊆ U(µ̃sup;β). Therefore L(µ̃inf ;α) and

U(µ̃sup;β) are right stable subsets of (X, ∗, 0). □

Corollary 3.25. Given a hyper structure (X, µ̃) over (X, ∗, 0) ∈ BK(X) and (α, β) ∈ [0, 1]× [0, 1], if (X, µ̃) is a

(2, 1)-hyperfuzzy (resp., (2, 3)-hyperfuzzy and (4, 3)-hyperfuzzy ) ideal of (X, ∗, 0), then L(µ̃inf ;α) and U(µ̃sup;β)

are right stable subsets of (X, ∗, 0) whenever they are nonempty.

Proof. Straightforward. □

Theorem 3.26. Given a hyper structure (X, µ̃) over (X, ∗, 0) ∈ BK(X) and (α, β) ∈ [0, 1]× [0, 1], if (X, µ̃) is a

(4, 1)-hyperfuzzy ideal of (X, ∗, 0), then U(µ̃inf ;α) and L(µ̃sup;β) are right vanished subsets of (X, ∗, 0) whenever

they are nonempty.

Proof. Let (α, β) ∈ [0, 1]×[0, 1] be such that U(µ̃inf ;α) and L(µ̃sup;β) are nonempty. Assume that x∗y ∈ U(µ̃inf ;α)

and a ∗ b ∈ L(µ̃sup;β) for any x, y, a, b ∈ X. Using Lemma 3.23 implies that

α ≤ µ̃inf(x ∗ y) ≤ µ̃inf(x), that is, x ∈ U(µ̃inf ;α)

and

β ≥ µ̃sup(a ∗ b) ≥ µ̃sup(a), that is, a ∈ L(µ̃sup;β).

Hence U(µ̃inf ;α) and L(µ̃sup;β) are right vanished subsets of (X, ∗, 0). □

Corollary 3.27. Given a hyper structure (X, µ̃) over (X, ∗, 0) ∈ BK(X) and (α, β) ∈ [0, 1]× [0, 1], if (X, µ̃) is a

(2, 1)-hyperfuzzy (resp., (2, 3)-hyperfuzzy and (4, 3)-hyperfuzzy ) ideal of (X, ∗, 0), then U(µ̃inf ;α) and L(µ̃sup;β)

are right vanished subsets of (X, ∗, 0) whenever they are nonempty.

Proof. Straightforward. □
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