
Volume 28, Number 1                                                                      January 2020
ISSN:1521-1398 PRINT,1572-9206 ONLINE

                               Journal of
     
          Computational

          Analysis and 

          Applications

             EUDOXUS PRESS,LLC



               Journal of Computational Analysis and Applications
                 ISSNno.’s:1521-1398 PRINT,1572-9206 ONLINE
                                     SCOPE OF THE JOURNAL
                An international publication of Eudoxus Press, LLC
                (six times annually)
                      Editor in Chief: George Anastassiou
                      Department of Mathematical Sciences, 
                      University of Memphis, Memphis, TN 38152-3240, U.S.A
                         ganastss@memphis.edu

http://www.msci.memphis.edu/~ganastss/jocaaa
                 The main purpose of "J.Computational Analysis and Applications" 
            is to publish high quality research articles from all subareas of 
            Computational Mathematical Analysis and its many potential 
            applications and connections to other areas of Mathematical 
            Sciences. Any paper whose approach and proofs are computational,using 
            methods from Mathematical Analysis in the broadest sense is suitable 
            and welcome for consideration in our journal, except from Applied 
            Numerical Analysis articles. Also plain word articles without formulas and
            proofs are excluded. The list of possibly connected 
            mathematical areas with this publication includes, but is not 
            restricted to: Applied Analysis, Applied Functional Analysis, 
            Approximation Theory, Asymptotic Analysis, Difference Equations, 
            Differential Equations, Partial Differential Equations, Fourier 
            Analysis, Fractals, Fuzzy Sets, Harmonic Analysis, Inequalities, 
            Integral Equations, Measure Theory, Moment Theory, Neural Networks, 
            Numerical Functional Analysis, Potential Theory, Probability Theory, 
            Real and Complex Analysis, Signal Analysis, Special Functions, 
            Splines, Stochastic Analysis, Stochastic Processes, Summability, 
            Tomography, Wavelets, any combination of the above, e.t.c. 
              "J.Computational Analysis and Applications" is a 
            peer-reviewed Journal. See the instructions for preparation and submission
         of articles to JoCAAA. Assistant to the Editor: 
Dr.Razvan Mezei,mezei_razvan@yahoo.com, St.Martin Univ.,Olympia,WA,USA. 
Journal of Computational Analysis and Applications(JoCAAA) is published by 
EUDOXUS PRESS,LLC,1424 Beaver Trail 
Drive,Cordova,TN38016,USA,anastassioug@yahoo.com
http://www.eudoxuspress.com. Annual Subscription Prices:For USA and 
Canada,Institutional:Print $800, Electronic OPEN ACCESS. Individual:Print $400. For 
any other part of the world add $160 more(handling and postages) to the above prices for 
Print. No credit card payments.
Copyright©2020 by Eudoxus Press,LLC,all rights reserved.JoCAAA is printed in USA. 
JoCAAA is reviewed and abstracted by AMS Mathematical                   
Reviews,MATHSCI,and Zentralblaat MATH.
It is strictly prohibited the reproduction and transmission of any part of JoCAAA and in 
any form and by any means without the written permission of the publisher.It is only 
allowed to educators to Xerox articles for educational purposes.The publisher assumes no
responsibility for the content of published papers.

2

mailto:mezei_razvan@yahoo.com


 
Editorial Board  

Associate Editors of Journal of Computational Analysis and Applications 
 

Francesco Altomare 
Dipartimento di Matematica 
Universita' di Bari 
Via E.Orabona, 4 
70125 Bari, ITALY 
Tel+39-080-5442690 office 
   +39-080-3944046 home 
   +39-080-5963612 Fax 
altomare@dm.uniba.it 
Approximation Theory, Functional 
Analysis, Semigroups and Partial 
Differential Equations, Positive 
Operators. 
 
Ravi P. Agarwal 
Department of Mathematics 
Texas A&M University - Kingsville 
700 University Blvd. 
Kingsville, TX 78363-8202 
tel: 361-593-2600 
Agarwal@tamuk.edu 
Differential Equations, Difference 
Equations, Inequalities 
 
George A. Anastassiou 
Department of Mathematical Sciences 
The University of Memphis 
Memphis, TN 38152,U.S.A 
Tel.901-678-3144 
e-mail: ganastss@memphis.edu 
Approximation Theory, Real 
Analysis, 
Wavelets, Neural Networks, 
Probability, Inequalities. 
 
J. Marshall Ash 
Department of Mathematics 
De Paul University 
2219 North Kenmore Ave. 
Chicago, IL 60614-3504 
773-325-4216 
e-mail: mash@math.depaul.edu 
Real and Harmonic Analysis 
 
Dumitru Baleanu 
Department of Mathematics and 
Computer Sciences,  
Cankaya University, Faculty of Art 
and  Sciences, 
06530 Balgat, Ankara,  
Turkey, dumitru@cankaya.edu.tr  

Fractional Differential Equations 
Nonlinear Analysis, Fractional  
Dynamics 
 
Carlo Bardaro 
Dipartimento di Matematica e  
Informatica 
Universita di Perugia 
Via Vanvitelli 1 
06123 Perugia, ITALY 
TEL+390755853822 
   +390755855034 
FAX+390755855024 
E-mail carlo.bardaro@unipg.it 
Web site:   
http://www.unipg.it/~bardaro/ 
Functional Analysis and 
Approximation Theory, Signal 
Analysis, Measure Theory, Real 
Analysis. 

Martin Bohner 
Department of Mathematics and  
Statistics, Missouri S&T 
Rolla, MO 65409-0020, USA 
bohner@mst.edu  
web.mst.edu/~bohner 
Difference equations, differential  
equations, dynamic equations on 
time scale, applications in 
economics, finance, biology. 
 
Jerry L. Bona 
Department of Mathematics 
The University of Illinois at 
Chicago 
851 S. Morgan St. CS 249 
Chicago, IL 60601 
e-mail:bona@math.uic.edu 
Partial Differential Equations, 
Fluid Dynamics 
    
Luis A. Caffarelli 
Department of Mathematics 
The University of Texas at Austin 
Austin, Texas 78712-1082 
512-471-3160 
e-mail: caffarel@math.utexas.edu 
Partial Differential Equations 
George Cybenko 
Thayer School of Engineering 

3



Dartmouth College 
8000 Cummings Hall, 
Hanover, NH 03755-8000 
603-646-3843 (X 3546 Secr.) 
e-mail:george.cybenko@dartmouth.edu 
Approximation Theory and Neural  
Networks 
 
Sever S. Dragomir 
School of Computer Science and  
Mathematics, Victoria University, 
PO Box 14428, 
Melbourne City, 
MC 8001, AUSTRALIA 
Tel. +61 3 9688 4437 
Fax  +61 3 9688 4050 
sever.dragomir@vu.edu.au 
Inequalities, Functional Analysis, 
Numerical Analysis, Approximations, 
Information Theory, Stochastics. 
 
Oktay Duman 
TOBB University of Economics and  
Technology, 
Department of Mathematics, TR-
06530,  
Ankara, Turkey,  
oduman@etu.edu.tr                  
Classical Approximation Theory, 
Summability Theory, Statistical 
Convergence and its Applications 
  
Saber N. Elaydi 
Department Of Mathematics 
Trinity University 
715 Stadium Dr. 
San Antonio, TX 78212-7200 
210-736-8246 
e-mail: selaydi@trinity.edu 
Ordinary Differential Equations, 
Difference Equations 
  
   
J .A. Goldstein 
Department of Mathematical Sciences 
The University of Memphis 
Memphis, TN 38152 
901-678-3130 
jgoldste@memphis.edu 
Partial Differential Equations, 
Semigroups of Operators 
   
H. H. Gonska 
Department of Mathematics 
University of Duisburg 
Duisburg, D-47048 
Germany 

011-49-203-379-3542 
e-mail: heiner.gonska@uni-due.de 
Approximation Theory, Computer 
Aided Geometric Design 
  
John R. Graef 
Department of Mathematics 
University of Tennessee at 
Chattanooga 
Chattanooga, TN 37304 USA 
John-Graef@utc.edu 
Ordinary and functional 
differential equations, difference 
equations, impulsive systems, 
differential inclusions, dynamic 
equations on time scales, control 
theory and their applications 
 
Weimin Han 
Department of Mathematics 
University of Iowa 
Iowa City, IA 52242-1419 
319-335-0770 
e-mail: whan@math.uiowa.edu 
Numerical analysis, Finite element  
method, Numerical PDE, Variational  
inequalities, Computational 
mechanics   
 
Tian-Xiao He 
Department of Mathematics and  
Computer Science 
P.O. Box 2900, Illinois Wesleyan 
University 
Bloomington, IL 61702-2900, USA 
Tel (309)556-3089 
Fax (309)556-3864 
the@iwu.edu 
Approximations, Wavelet, 
Integration Theory, Numerical 
Analysis, Analytic Combinatorics 
 
Margareta Heilmann 
Faculty of Mathematics and Natural       
Sciences, University of Wuppertal 
Gaußstraße 20 
D-42119 Wuppertal, Germany,  
heilmann@math.uni-wuppertal.de       
Approximation Theory (Positive 
Linear Operators) 
 
Xing-Biao Hu 
Institute of Computational 
Mathematics 
AMSS, Chinese Academy of Sciences 
Beijing, 100190, CHINA 
hxb@lsec.cc.ac.cn 

4



Computational Mathematics 
 
Jong Kyu Kim 
Department of Mathematics 
Kyungnam University 
Masan Kyungnam,631-701,Korea 
Tel  82-(55)-249-2211 
Fax  82-(55)-243-8609 
jongkyuk@kyungnam.ac.kr 
Nonlinear Functional Analysis, 
Variational Inequalities, Nonlinear 
Ergodic Theory, ODE, PDE, 
Functional Equations. 
 
Robert Kozma 
Department of Mathematical Sciences 
The University of Memphis 
Memphis, TN 38152, USA 
rkozma@memphis.edu 
Neural Networks, Reproducing Kernel 
Hilbert Spaces, 
Neural Percolation Theory 
  
Mustafa Kulenovic 
Department of Mathematics 
University of Rhode Island 
Kingston, RI 02881,USA 
kulenm@math.uri.edu 
Differential and Difference 
Equations 
 
Irena Lasiecka 
Department of Mathematical Sciences 
University of Memphis 
Memphis, TN 38152 
PDE, Control Theory, Functional    
Analysis, lasiecka@memphis.edu 

Burkhard Lenze 
Fachbereich Informatik 
Fachhochschule Dortmund 
University of Applied Sciences 
Postfach 105018 
D-44047 Dortmund, Germany 
e-mail: lenze@fh-dortmund.de 
Real Networks, Fourier Analysis, 
Approximation Theory 
   
Hrushikesh N. Mhaskar 
Department Of Mathematics 
California State University 
Los Angeles, CA 90032 
626-914-7002 
e-mail: hmhaska@gmail.com 
Orthogonal Polynomials, 
Approximation Theory, Splines, 
Wavelets, Neural Networks 

 
Ram N. Mohapatra 
Department of Mathematics 
University of Central Florida 
Orlando, FL 32816-1364 
tel.407-823-5080  
ram.mohapatra@ucf.edu 
Real and Complex Analysis, 
Approximation Th., Fourier 
Analysis, Fuzzy Sets and Systems 
  
Gaston M. N'Guerekata 
Department of Mathematics 
Morgan State University 
Baltimore, MD 21251, USA 
tel: 1-443-885-4373 
Fax 1-443-885-8216 
Gaston.N'Guerekata@morgan.edu  
nguerekata@aol.com 
Nonlinear Evolution Equations, 
Abstract Harmonic Analysis, 
Fractional Differential Equations, 
Almost Periodicity & Almost 
Automorphy 
 
M.Zuhair Nashed 
Department Of Mathematics 
University of Central Florida 
PO Box 161364 
Orlando, FL  32816-1364 
e-mail: znashed@mail.ucf.edu 
Inverse and Ill-Posed problems, 
Numerical Functional Analysis, 
Integral Equations, Optimization, 
Signal Analysis 
   
Mubenga N. Nkashama 
Department OF Mathematics 
University of Alabama at Birmingham 
Birmingham, AL 35294-1170 
205-934-2154 
e-mail: nkashama@math.uab.edu 
Ordinary Differential Equations, 
Partial Differential Equations 
 
Vassilis Papanicolaou 
Department of Mathematics 
National Technical University of 
Athens 
Zografou campus, 157 80 
Athens, Greece 
tel:: +30(210) 772 1722 
Fax   +30(210) 772 1775 
papanico@math.ntua.gr 
Partial Differential Equations, 
Probability 
 

5



Choonkil Park 
Department of Mathematics 
Hanyang University 
Seoul 133-791 
S. Korea, baak@hanyang.ac.kr 
Functional Equations 
 
Svetlozar (Zari) Rachev,  
Professor of Finance, College of 
Business, and Director of 
Quantitative Finance Program, 
Department of Applied Mathematics & 
Statistics 
Stonybrook University 
312 Harriman Hall, Stony Brook, NY 
11794-3775 
tel: +1-631-632-1998, 
svetlozar.rachev@stonybrook.edu 
 
Alexander G. Ramm 
Mathematics Department  
Kansas State University 
Manhattan, KS 66506-2602 
e-mail: ramm@math.ksu.edu  
Inverse and Ill-posed Problems,  
Scattering Theory, Operator Theory,  
Theoretical Numerical Analysis, 
Wave Propagation, Signal Processing 
and Tomography 
 
Tomasz Rychlik 
Polish Academy of Sciences 
Instytut Matematyczny PAN 
00-956 Warszawa, skr. poczt. 21 
ul. Śniadeckich 8 
Poland  
trychlik@impan.pl 
Mathematical Statistics, 
Probabilistic Inequalities 
 
Boris Shekhtman 
Department of Mathematics 
University of South Florida 
Tampa, FL 33620, USA 
Tel  813-974-9710  
shekhtma@usf.edu 
Approximation Theory, Banach 
spaces, Classical Analysis 
 
T. E. Simos 
Department of Computer 
Science and Technology 
Faculty of Sciences and Technology 
University of Peloponnese 
GR-221 00 Tripolis, Greece 
Postal Address: 
26 Menelaou St. 

Anfithea - Paleon Faliron 
GR-175 64 Athens, Greece 
tsimos@mail.ariadne-t.gr 
Numerical Analysis 
 
H. M. Srivastava 
Department of Mathematics and 
Statistics 
University of Victoria 
Victoria, British Columbia V8W 3R4 
Canada 
tel.250-472-5313; office,250-477-
6960 home, fax 250-721-8962 
harimsri@math.uvic.ca 
Real and Complex Analysis, 
Fractional Calculus and Appl., 
Integral Equations and Transforms, 
Higher Transcendental Functions and 
Appl.,q-Series and q-Polynomials, 
Analytic Number Th. 
 
I. P. Stavroulakis 
Department of Mathematics 
University of Ioannina 
451-10 Ioannina, Greece 
ipstav@cc.uoi.gr 
Differential Equations 
Phone  +3-065-109-8283 
 
Manfred Tasche 
Department of Mathematics 
University of Rostock 
D-18051 Rostock, Germany 
manfred.tasche@mathematik.uni-  
rostock.de 
Numerical Fourier Analysis, Fourier  
Analysis, Harmonic Analysis, Signal  
Analysis, Spectral Methods, 
Wavelets, Splines, Approximation 
Theory 
 
Roberto Triggiani 
Department of Mathematical Sciences 
University of Memphis 
Memphis, TN 38152 
PDE, Control Theory, Functional    
Analysis, rtrggani@memphis.edu   
 

Juan J. Trujillo 
University of La Laguna 
Departamento de Analisis Matematico 
C/Astr.Fco.Sanchez s/n 
38271. LaLaguna. Tenerife. 
SPAIN 
Tel/Fax 34-922-318209 
Juan.Trujillo@ull.es 

6



Fractional: Differential Equations-
Operators-Fourier Transforms, 
Special functions, Approximations, 
and Applications 
 
Ram Verma 
International Publications 
1200 Dallas Drive #824 Denton, 
TX 76205, USA 
Verma99@msn.com 
Applied Nonlinear Analysis, 
Numerical Analysis, Variational 
Inequalities, Optimization Theory, 
Computational Mathematics, Operator 
Theory 

Xiang Ming Yu 
Department of Mathematical Sciences 
Southwest Missouri State University 
Springfield, MO 65804-0094 
417-836-5931 
xmy944f@missouristate.edu 
Classical Approximation Theory,  
Wavelets 
  
Xiao-Jun Yang 
State Key Laboratory for Geomechanics 
 and Deep Underground Engineering, 
China University of Mining and Technology, 
 Xuzhou 221116, China 
Local Fractional Calculus and Applications, 
 Fractional Calculus and Applications, 
 General Fractional Calculus and 
Applications, 
 Variable-order Calculus and Applications, 
 Viscoelasticity and Computational methods 
 for Mathematical 
Physics.dyangxiaojun@163.com 
 

 
 
 
Richard A. Zalik 
Department of Mathematics 
Auburn University 
Auburn University, AL 36849-5310 
USA. 
Tel 334-844-6557 office 
      678-642-8703 home 
Fax 334-844-6555 
zalik@auburn.edu 
Approximation Theory, Chebychev 
Systems, Wavelet Theory 
 

Ahmed I. Zayed 
Department of Mathematical Sciences 
DePaul University 
2320 N. Kenmore Ave. 
Chicago, IL 60614-3250 
773-325-7808 
e-mail: azayed@condor.depaul.edu 
Shannon sampling theory, Harmonic  
analysis and wavelets, Special  
functions and orthogonal 
polynomials, Integral transforms 
 
Ding-Xuan Zhou 
Department Of Mathematics 
City University of Hong Kong 
83 Tat Chee Avenue 
Kowloon, Hong Kong 
852-2788 9708,Fax:852-2788 8561 
e-mail: mazhou@cityu.edu.hk 
Approximation Theory, Spline 
functions, Wavelets 
 
Xin-long Zhou 
Fachbereich Mathematik, Fachgebiet  
Informatik 
Gerhard-Mercator-Universitat 
Duisburg 
Lotharstr.65, D-47048 Duisburg, 
Germany 
e-mail:Xzhou@informatik.uni- 
duisburg.de 
Fourier Analysis, Computer-Aided  
Geometric Design, Computational  
Complexity, Multivariate  
Approximation Theory, Approximation 
and Interpolation Theory 
 
Jessada  Tariboon 
Department of Mathematics, 
King Mongkut's University of 
Technology N. Bangkok 
1518 Pracharat 1 Rd., Wongsawang, 
Bangsue, Bangkok, Thailand 10800 
 jessada.t@sci.kmutnb.ac.th, Time scales, 
Differential/Difference Equations, 
Fractional Differential Equations 
 

7

mailto:Verma99@msn.com
mailto:dyangxiaojun@163.com


 
Instructions to Contributors 

 Journal of Computational Analysis and Applications 
  An international publication of Eudoxus Press, LLC, of TN.  

  
Editor in Chief: George Anastassiou 

Department of Mathematical Sciences  
University of Memphis 

Memphis, TN 38152-3240, U.S.A. 
 
       

 
      1. Manuscripts files in Latex and PDF and in English, should be submitted via 
email to the Editor-in-Chief: 
 
      Prof.George A. Anastassiou  
      Department of Mathematical Sciences  
      The University of Memphis  
      Memphis,TN 38152, USA.  
      Tel. 901.678.3144  
      e-mail: ganastss@memphis.edu  
 
Authors may want to recommend an associate editor the most related to the 
submission to possibly handle it. 
 
      Also authors may want to submit a list of six possible referees, to be used in case we 
cannot find related referees by ourselves. 
 
 
2. Manuscripts should be typed using any of TEX,LaTEX,AMS-TEX,or AMS-LaTEX 
and according to EUDOXUS PRESS, LLC. LATEX STYLE FILE. (Click HERE to 
save a copy of the style file.)They should be carefully prepared in all respects. 
Submitted articles should be brightly typed (not dot-matrix), double spaced, in ten 
point type size and in 8(1/2)x11 inch area per page. Manuscripts should have generous 
margins on all sides and should not exceed 24 pages. 
 
3. Submission is a representation that the manuscript has not been published 
previously in this or any other similar form and is not currently under consideration 
for publication elsewhere. A statement transferring from the authors(or their 
employers,if they hold the copyright) to Eudoxus Press, LLC, will be required before 
the manuscript can be accepted for publication.The Editor-in-Chief will supply the 
necessary forms for this transfer.Such a written transfer of copyright,which previously 
was assumed to be implicit in the act of submitting a manuscript,is necessary under the 
U.S.Copyright Law in order for the publisher to carry through the dissemination of 
research results and reviews as widely and effective as possible. 
 

8

mailto:ganastss@memphis.edu?subject=JCAAM%20inquirey
http://www.msci.memphis.edu/%7Eganastss/jcaam/EUDOXStyle.tex


4. The paper starts with the title of the article, author's name(s) (no titles or degrees), 
author's affiliation(s) and e-mail addresses. The affiliation should comprise the 
department, institution (usually university or company), city, state (and/or nation) and 
mail code. 
 
      The following items, 5 and 6, should be on page no. 1 of the paper. 
 
5. An abstract is to be provided, preferably no longer than 150 words. 
 
6. A list of 5 key words is to be provided directly below the abstract. Key words should 
express the precise content of the manuscript, as they are used for indexing purposes. 
 
      The main body of the paper should begin on page no. 1, if possible. 
 
7. All sections should be numbered with Arabic numerals (such as: 1. 
INTRODUCTION) .  
Subsections should be identified with section and subsection numbers (such as 6.1. 
Second-Value Subheading). 
If applicable, an independent single-number system (one for each category) should be 
used to label all theorems, lemmas, propositions, corollaries, definitions, remarks, 
examples, etc. The label (such as Lemma 7) should be typed with paragraph 
indentation, followed by a period and the lemma itself. 
 
8. Mathematical notation must be typeset. Equations should be numbered 
consecutively with Arabic numerals in parentheses placed flush right, and should be 
thusly referred to in the text [such as Eqs.(2) and (5)]. The running title must be placed 
at the top of even numbered pages and the first author's name, et al., must be placed at 
the top of the odd numbed pages. 
 
9. Illustrations (photographs, drawings, diagrams, and charts) are to be numbered in 
one consecutive series of Arabic numerals. The captions for illustrations should be 
typed double space. All illustrations, charts, tables, etc., must be embedded in the body 
of the manuscript in proper, final, print position. In particular, manuscript, source, 
and PDF file version must be at camera ready stage for publication or they cannot be 
considered. 
 
    Tables are to be numbered (with Roman numerals) and referred to by number in 
the text. Center the title above the table, and type explanatory footnotes (indicated by 
superscript lowercase letters) below the table.  
 
10. List references alphabetically at the end of the paper and number them 
consecutively. Each must be cited in the text by the appropriate Arabic numeral in 
square brackets on the baseline.  
      References should include (in the following order):  
     initials of first and middle name, last name of author(s)  
      title of article,  

9



      name of publication, volume number, inclusive pages, and year of publication.  
 
      Authors should follow these examples: 
 
          Journal Article  
 
          1. H.H.Gonska,Degree of simultaneous approximation of bivariate functions by Gordon operators, 
(journal name in italics) J. Approx. Theory, 62,170-191(1990).  
 
          Book  
 
          2. G.G.Lorentz, (title of book in italics) Bernstein Polynomials (2nd ed.), Chelsea,New York,1986.  
 
          Contribution to a Book  
 
          3. M.K.Khan, Approximation properties of beta operators,in(title of book in italics) Progress in 
Approximation Theory (P.Nevai and A.Pinkus,eds.), Academic Press, New York,1991,pp.483-495. 
 
     11. All acknowledgements (including those for a grant and financial support) should 
occur in one paragraph that directly precedes the References section. 
 
     12. Footnotes should be avoided. When their use is absolutely necessary, footnotes 
should be numbered consecutively using Arabic numerals and should be typed at the 
bottom of the page to which they refer. Place a line above the footnote, so that it is set 
off from the text. Use the appropriate superscript numeral for citation in the text. 
 
     13. After each revision is made please again submit via email Latex and PDF files  
of the revised manuscript, including the final one. 
       
    14. Effective 1 Nov. 2009 for current journal page charges, contact the Editor in 
Chief. Upon acceptance of the paper an invoice will be sent to the contact author. The 
fee payment will be due one month from the invoice date. The article will proceed to 
publication only after the fee is paid. The charges are to be sent, by money order or 
certified check, in US dollars, payable to Eudoxus Press, LLC, to the address shown on 
the Eudoxus homepage.  
 
      No galleys will be sent and the contact author will receive one (1) electronic copy of 
the journal issue in which the article appears. 
 
 
     15. This journal will consider for publication only papers that contain proofs for 
their listed results. 

 
       
   
   

 

10

http://www.eudoxuspress.com/


GEHRING INEQUALITIES ON TIME SCALES

MARTIN BOHNER AND SAMIR H. SAKER

Abstract. In this paper, we first prove a new dynamic inequality based on an
application of the time scales version of a Hardy-type inequality. Second, by
employing the obtained inequality, we prove several Gehring-type inequalities
on time scales. As an application of our Gehring-type inequalities, we present
some interpolation and higher integrability theorems on time scales. The
results as special cases, when the time scale is equal to the set of all real
numbers, contain some known results, and when the time scale is equal to the
set of all integers, the results are essentially new.

1. Introduction

Let I be a fixed cube with sides parallel to the coordinate axes and let f and g
be nonnegative measurable functions defined on I. The classical integral Hölder
inequality ∫

I
|f(x)g(x)|dx ≤

[∫
I
|f(x)|pdx

] 1
p
[∫

I
|g(x)|qdx

] 1
q

,

where 1/p + 1/q = 1, shows that there is a natural scale of inclusion for the
Lp(I)-spaces, when the underlying space I has a finite measure |I|.

In 1972, Muckenhoupt [14] proved the first simplest reverse integral (mean)
inequality, which can be considered as a reverse inclusion, of the form

(1.1)
1

|I|

∫
I
w(x)dx ≤ κ essinfx∈I w(x),

where w is a nonnegative measurable function defined on I. A function verifying
(1.1) is called an A1-weight Muckenhoupt function. In [14] (see also [13]), it is
proved that any A1-weight Muckenhoupt function belongs to Lr(I), for 1 ≤ r < s
and s depending on κ and the dimension of the space.

In 1973, Gehring [8] extended the result of Muckenhoupt for reverse mean
inequalities. We say that w satisfies a Gehring condition (or a reverse Hölder
inequality) if there exists p > 1 and a constant κ > 0 such that for every cube I
with sides parallel to the coordinate axes, we have(

1

|I|

∫
I
wp(x)dx

)1/p

≤ κ

|I|

∫
I
w(x)dx.

In this case we write w ∈ RHp. A well known result obtained by Gehring [8]
states that if w ∈ RHp, then w satisfies a higher integrability condition, namely

1991 Mathematics Subject Classification. 26D07, 42B25, 42C10, 34N05.
Key words and phrases. Gehring’s inequality, reversed Hölder inequality, Hardy-type inequal-

ity, interpolation, higher integrability, time scales.
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for sufficiently small ε > 0, q = p+ ε, we have for any cube I,

(
1

|I|

∫
I
wq(x)dx

)1/q

≤
(
κ

|I|

∫
I
wp(x)dx

)1/p

.

In other words, Gehring’s result states that w ∈ RHp implies that there exists
ε > 0 such that w ∈ RHp+ε. The proof of Gehring’s inequality is based on
the use of the Calderón–Zygmund decomposition and the scale structure of Lp-
spaces. In [12], the author extended Gehring’s inequality by means of connecting
it to the real method of interpolation by considering maximal operators, and
via rearrangements reinterpreted the underlying estimates through the use of K-
functionals. This technique allowed to quantify in a precise way, via reiteration,
how Calderón–Zygmund decompositions have to be reparameterized in order to
characterize different Lp-spaces.

Reverse integral inequalities (cf. [8, 9]) and its many variants and extensions
are important in qualitative analysis of nonlinear PDEs, in the study of weighted
norm inequalities for classical operators of harmonic analysis, as well as in func-
tional analysis. These inequalities also appear in different fields of analysis such as
quasiconformal mappings, weighted Sobolev embedding theorems, and regularity
theory of variational problems (see [11]).

In recent years, the study of dynamic inequalities on time scales has received
a lot of attention. For details, we refer to the books [2, 3, 5, 6] and the recent
paper [1] and the references cited therein. The general idea in studying dynamic
inequalities on time scales is to prove a result for an inequality, where the do-
main of the unknown function is a so-called time scale T, which is an arbitrary
nonempty closed subset of the real numbers R. This idea goes back to its founder
Stefan Hilger [10]. The three most popular examples of calculus on time scales
are differential calculus, difference calculus, and quantum calculus, i.e., when
T = R, T = N, and T = qN0 = {qt : t ∈ N0} with q > 1. The study of dynamic
inequalities on time scales helps avoid proving results twice – once for differential
inequalities and once again for difference inequalities.

Following this trend and to develop the study of dynamic inequalities on time
scales, we aim in this paper to prove Gehring-type inequalities on time scales,
which contain the classical integral inequalities of Gehring’s type and their dis-
crete versions as special cases. We believe that the reverse dynamic inequalities
on time scales will be, just like in the classical case, similarly important for the
analysis of dynamic equations on time scales.

The rest of the paper is organized as follows: In Section 2, we recall some
definitions and notations related to time scales which will be used throughout
the paper. Section 3 features some auxiliary results, in particular, a time scales
version of Hardy’s inequality. In Section 4, we present the proofs of our Gehring-
type inequalities on time scales and give some interpolation results as well as
some higher integrability theorems for monotone nonincreasing functions on time
scales, see Section 5. As special cases, we offer discrete versions of the Gehring
inequalities. To the best of the authors’ knowledge, nothing is known regarding
the discrete analogues of Gehring inequalities or even their extensions, and thus
the presented discrete inequalities are essentially new.
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GEHRING INEQUALITIES ON TIME SCALES 3

2. Time Scales Preliminaries

We assume that the reader is familiar with time scales as presented in the
monographs [5, 6]. For concepts concerning general measure and integration on
time scales, see [6, Chapter 5] and [4, 7]. Here, we only state four facts that are
essentially used in the proofs of our results. For a function f : T → R, where
T is a time scale, we denote the delta derivative by f∆ and the forward shift by
fσ = f ◦σ, where σ is the time scales jump operator. The time scales product rule
says that for two differentiable functions f and g, the product fg is differentiable
with

(2.1) (fg)∆ = f∆g + fσg∆.

On the other hand, the time scales integration by parts rule says that for two
integrable functions f, g : T→ R and a, b ∈ T, we have

(2.2)

∫ b

a
f∆(t)g(σ(t))∆t = f(b)g(b)− f(a)g(a)−

∫ b

a
f(t)g∆(t)∆t.

We also need the time scales chain rule which says that if f : R → R is contin-
uously differentiable and g : T → R is delta differentiable, then f ◦ g : T → R is
delta differentiable with

(2.3) (f ◦ g)∆ = g∆

∫ 1

0
f ′(hgσ + (1− h)g)dh.

Finally, we need the time scales Hölder inequality which says that for two non-
negative integrable functions f, g : T → R and a, b ∈ T and p, q > 1 with
1/p+ 1/q = 1, we have

(2.4)

∫ b

a
f(t)g(t)∆t ≤

[∫ b

a
fp(t)∆t

]1/p [∫ b

a
f q(t)∆t

]1/q

,

and p, q are called the corresponding exponents.
Throughout this paper, we assume that the functions in the statements of

the theorems are nonnegative and rd-continuous functions, delta differentiable,
locally delta integrable, and the integrals considered are assumed to exist (finite,
i.e., convergent).

3. Auxiliary Results

In this section, we give some auxiliary results that are used in the proofs of
our main results.

Definition 3.1. Throughout this paper, we suppose that T is a time scale with
0 ∈ T, and we let T > 0 with T ∈ T. For any function f : (0, T ] → R which
is ∆-integrable, nonnegative, and nonincreasing, we define the average function
Af : (0, T ]→ R by

(3.1) Af(t) :=
1

t

∫ t

0
f(s)∆s for all t ∈ (0, T ].

Some simple facts about Af are given next.

Lemma 3.2. If f : (0, T ] → R is ∆-integrable, nonnegative, and nonincreasing,
then

(3.2) Af ≥ f.
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Proof. Due to

Af(t) =
1

t

∫ t

0
f(s)∆s ≥ 1

t

∫ t

0
f(t)∆s = f(t),

(3.2) follows immediately. �

Lemma 3.3. If f : (0, T ] → R is ∆-integrable, nonnegative, and nonincreasing,
then so is Af .

Proof. In this proof, we write F = Af for brevity. We show that F inherits the
nonincreasing nature of f . Let t1 < t2. Then

F (t1)− F (t2) =
1

t1

∫ t1

0
f(s)∆s− 1

t2

[∫ t1

0
f(s)∆s+

∫ t2

t1

f(s)∆s

]
=

t2 − t1
t2

[
1

t1

∫ t1

0
f(s)∆s− 1

t2 − t1

∫ t2

t1

f(s)∆s

]
≥ t2 − t1

t2

[
1

t1

∫ t1

0
f(t1)∆s− 1

t2 − t1

∫ t2

t1

f(t1)∆s

]
= 0,

completing the proof. �

Now we present a Hardy inequality (see also [3, Corollary 1.5.1]) which, for
completeness, we prove in our special setting.

Theorem 3.4. If q > 1 and f : (0, T ] → R is ∆-integrable, nonnegative, and
nonincreasing, then

(3.3) A [(Af)σ]q ≤
(

q

q − 1

)q
Af q.

Proof. In this proof, we write F = Af for brevity. Using Lemma 3.3, the chain
rule shows that

(3.4)

(F q)∆ (2.3)
= qF∆

∫ 1

0
(hF σ + (1− h)F )q−1 dh

≤ qF∆

∫ 1

0
(hF σ + (1− h)F σ)q−1 dh = qF∆(F σ)q−1.

Moreover, since

tF (t) =

∫ t

0
f(s)∆s,

the product rule yields

(3.5) f(t)
(2.1)
= F (σ(t)) + tF∆(t).

Now, putting u(t) = t and v(t) = F q(t), we use integration by parts to find∫ t

0
(F (σ(s)))q∆s =

∫ t

0
u∆(s)v(σ(s))∆s

(2.2)
= u(t)v(t)− lim

s→0+
u(s)v(s)−

∫ t

0
u(s)v∆(s)∆s

= tF q(t)−
∫ t

0
sv∆(s)∆s
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≥ −
∫ t

0
sv∆(s)∆s

(3.4)

≥ −q
∫ t

0
sF∆(s)F q−1(σ(s))∆s

(3.5)
= −q

∫ t

0
[f(s)− F (σ(s))]F q−1(σ(s))∆s

= −q
∫ t

0
f(s)F q−1(σ(s))∆s+ q

∫ t

0
(F (σ(s)))q∆s

so that, by using Hölder’s inequality with exponents q and q/(q − 1),

(q − 1)

∫ t

0
(F (σ(s)))q∆s ≤ q

∫ t

0
f(s)(F (σ(s)))q−1∆s

(2.4)

≤ q

[∫ t

0
(f(s))q∆s

]1/q [∫ t

0
(F (σ(s)))q∆s

](q−1)/q

,

resulting in (3.3). �

In the main results of this paper, we assume that there exists a constant λ ≥ 1
such that

(3.6) σ(t) ≤ λt for all t ∈ T.
We now apply the time scales chain rule to obtain some estimates that will be

used later.

Lemma 3.5. Let x(t) = t. If 0 < γ < 1, then

(3.7)
(
x1−γ)∆ ≥ 1− γ

σγ
,

and if γ > 1 and (3.6) holds, then

(3.8)
(
x1−γ)∆ ≥ (1− γ)λγ

σγ
.

Proof. By the chain rule, we obtain(
x1−γ)∆ (t)

(2.3)
= (1− γ)x∆(t)

∫ 1

0

dh

(hx(σ(t)) + (1− h)x(t))γ

= (1− γ)

∫ 1

0

dh

(hσ(t) + (1− h)t)γ
.

Thus, if 0 < γ < 1, then(
x1−γ)∆ (t) ≥ (1− γ)

∫ 1

0

dh

(hσ(t) + (1− h)σ(t))γ
=

1− γ
(σ(t))γ

,

which is (3.7), and if γ > 1 and (3.6) holds, then(
x1−γ)∆ (t) ≥ (1− γ)

∫ 1

0

dh

(ht+ (1− h)t)γ
=

1− γ
tγ

(3.6)

≥ (1− γ)λγ

(σ(t))γ
,

which is (3.8). �

Lemma 3.6. If F is nonnegative and nondecreasing and γ > 1, then

(3.9) (F γ)∆ ≥ γF∆F γ−1.
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Proof. Again we apply the chain rule to see that

(F γ)∆ (2.3)
= γF∆

∫ 1

0
(hF σ + (1− h)F )γ−1dh

≥ γF∆

∫ 1

0
(hF + (1− h)F )γ−1dh

= γF∆F γ−1,

which shows (3.9). �

4. Main Results

We say that f : (0, T ]→ R belongs to Lp∆(0, T ] provided
∫ T

0 |f(t)|p∆t <∞.
The first theorem will be used later in the proof of the Gehring inequality.

Theorem 4.1. If f ∈ Lp∆(0, T ] for p > 1 is nonnegative and nonincreasing, then,
for any q ∈ (0, p), we have

(4.1) Afp ≤ q

p
[Af q]p/q +

(p− q)λp/q

p
A [(Af q)σ]p/q.

Proof. From the Hardy inequality, see (3.3), we see that the second integral on
the right-hand side of (4.1) is finite. Now, we consider this integral. Then, for
0 < q < p, we put

γ =
p

q
> 1 and F (t) =

∫ t

0
f q(s)∆s.

Using the notation from Lemma 3.5, we have

(p− q)λp/q

pt

∫ t

0

[
1

σ(s)

∫ σ(s)

0
f q(τ)∆τ

]p/q
∆s

=
(γ − 1)λγ

γt

∫ t

0

[
1

σ(s)

∫ σ(s)

0
f q(τ)∆τ

]γ
∆s

=
(γ − 1)λγ

γt

∫ t

0

[
F (σ(s))

σ(s)

]γ
∆s

= − 1

γt

∫ t

0
F γ(σ(s))

(1− γ)λγ

(σ(s))γ
∆s

(3.8)

≥ − 1

γt

∫ t

0
F γ(σ(s))

(
x1−γ)∆ (s)∆s

(2.2)
= lim

s→0+

F γ(s)x1−γ(s)

γt
− F γ(t)x1−γ(t)

γt
+

1

γt

∫ t

0
(F γ)∆ (s)x1−γ(s)∆s

=
1

γt

∫ t

0
s1−γ (F γ)∆ (s)∆s+

1

γt
lim
s→0+

[
s

(
F (s)

s

)γ]
− 1

γ

(
F (t)

t

)γ
(3.9)

≥ 1

γt

∫ t

0

γF∆(s)F γ−1(s)

sγ−1
∆s− 1

γ

(
F (t)

t

)γ
=

1

t

∫ t

0
f q(s) [Af q(s)]γ−1 ∆s− 1

γ
[Af q(t)]γ
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(3.2)

≥ 1

t

∫ t

0
f q(s) [f q(s)]γ−1 ∆s− 1

γ
[Af q(t)]γ

=
1

t

∫ t

0
[f q(s)]γ ∆s− 1

γ
[Af q(t)]γ

= Afp(t)− q

p
[Af q(t)]p/q

from which (4.1) follows. �

Now, we are ready to state and prove our first time scales version of Gehring’s
mean inequality for monotone functions.

Theorem 4.2 (Gehring Inequality I). Assume (3.6). If f ∈ Lq∆(0, T ] for q > 1
is nonnegative and nonincreasing such that

(4.2) Af q ≤ κ [Af ]q for some κ > 0,

then f ∈ Lp∆(0, T ] for any p > q satisfying

(4.3) κ̃ :=
qκp/q

p− (p− q)(λκ)p/q
(

p
p−1

)p > 0,

and in this case,

(4.4) Afp ≤ κ̃ [Af ]p .

Proof. Assuming (4.2), we find

1

t

∫ t

0
fp(s)∆s

(4.1)

≤ q

p

[
1

t

∫ t

0
f q(s)∆s

]p/q
+

(p− q)λp/q

pt

∫ t

0

[
1

σ(s)

∫ σ(s)

0
f q(τ)∆τ

]p/q
∆s

(4.2)

≤ q

p
κp/q

[
1

t

∫ t

0
f(s)∆s

]p
+

(p− q)λp/q

pt

∫ t

0
κp/q

[
1

σ(s)

∫ σ(s)

0
f(τ)∆τ

]p
∆s

(3.3)

≤ q

p
κp/q

[
1

t

∫ t

0
f(s)∆s

]p
+

(p− q)(λκ)p/q

pt

(
p

p− 1

)p ∫ t

0
fp(s)∆s

so that, due to (4.3),

1

t

∫ t

0
fp(s)∆s ≤ κ̃

[
1

t

∫ t

0
f(s)∆s

]p
,

from which (4.4) follows. �

As a special case of Theorem 4.2 when T = R, we get the classical Gehring
inequality (see Section 1) with λ = 1. In the case when T = N, we have the
following result with λ = 2.

Corollary 4.3 (Discrete Gehring Inequality I). Let q > 1 and {an}n∈N0 be a
nonnegative and nonincreasing sequence such that

1

n

n−1∑
i=0

aqi ≤ κ

(
1

n

n−1∑
i=0

ai

)q
.
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Then, for p > q, we have

1

n

n−1∑
i=0

api ≤ κ̃

(
1

n

n−1∑
i=0

ai

)p
,

provided

κ̃ :=
qκp/q

p− (p− q)(2κ)p/q
(

p
p−1

)p > 0.

It is natural to ask what happens if in (4.4) we fix p > 1 and consider the
improvement to this inequality that would result from lowering the exponent on
the right-hand side. The following result gives an answer.

Theorem 4.4. Suppose that the assumptions of Theorem 4.2 hold and define κ̃
as in (4.3). Then, for all 0 < r < 1, we have

(4.5) Afp ≤ κ [Af r]p/r , where κ := κ̃1/θ with θ :=
1− 1

p
1
r −

1
p

.

Proof. Note first that θ ∈ (0, 1) and

1− θ
p

+
θ

r
= 1.

Then, by the Hölder inequality with exponents p/(1− θ) and r/θ, we have[
1

t

∫ t

0
fp(s)∆s

]1/p (4.4)

≤ κ̃1/p

t

∫ t

0
f(s)∆s

=
κ̃1/p

t

∫ t

0
f1−θ(s)fθ(s)∆s

(2.4)

≤ κ̃1/p

t

[∫ t

0
fp(s)∆s

](1−θ)/p [∫ t

0
f r(s)∆s

)θ/r
= κ̃1/p

[
1

t

∫ t

0
fp(s)∆s

](1−θ)/p [
1

t

∫ t

0
f r(s)∆s

]θ/r
so that, by dividing, we find[

1

t

∫ t

0
fp(s)∆s

]θ/p
≤ κ̃1/p

[
1

t

∫ t

0
f r(s)∆s

]θ/r
,

i.e., (4.5). �

By Theorem 4.4, under the assumptions of Theorem 4.2, if f ∈ Lr∆(0, T ] for
0 < r < 1, then f ∈ Lp∆(0, T ] for p > 1. But in the general case when p 6= r,
Lp∆(0, T ] neither includes nor is included in Lr∆(0, T ]. The following theorem gives
some results for Lp∆(0, T ]-interpolation.

Theorem 4.5. Suppose that 0 < p0 < p1 <∞ and that 0 < θ < 1.

(i) If p = (1−θ)p0 +θp1 and f ∈ Lp0∆ (0, T ]∩Lp1∆ (0, T ], then f ∈ Lp∆(0, T ] and

Afp ≤ [Afp0 ]1−θ [Afp1 ]θ .
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(ii) If p = 1
1−θ
p0

+ θ
p1

and f ∈ Lp0∆ (0, T ] ∩ Lp1∆ (0, T ], then f ∈ Lp∆(0, T ] and

Afp ≤ [Afp0 ](1−θ)p/p0 [Afp1 ]θp/p1 .

Proof. For (i), we apply the Hölder inequality with exponents 1/(1− θ) and 1/θ
to see that

1

t

∫ t

0
fp(s)∆s =

1

t

∫ t

0
f (1−θ)p0(s)fθp1(s)∆s

(2.4)

≤
[

1

t

∫ t

0
fp0(s)∆s

]1−θ [
1

t

∫ t

0
fp1(s)∆s

]θ
,

which shows (i). For (ii), we apply the Hölder inequality with exponents 1/(1−γ)
and 1/γ, where

γ :=
θp

p1
so that 1− γ =

(1− θ)p
p0

,

to see that

1

t

∫ t

0
fp(s)∆s =

1

t

∫ t

0
f (1−θ)p(s)fθp(s)∆s

(2.4)

≤
[

1

t

∫ t

0
f (1−θ)p/(1−γ)(s)∆s

]1−γ [
1

t

∫ t

0
fθp/γ(s)∆s

]γ
=

[
1

t

∫ t

0
fp0(s)∆s

](1−θ)p/p0 [1

t

∫ t

0
fp1(s)∆s

]θp/p1
,

which shows (ii). �

In the following, we give a new proof of Gehring’s mean inequality on time
scales. The inequality will be proved by using a condition similar to the condition
(1.1) due to Muckenhoupt. In fact, we do not assume that the reverse Hölder
inequality holds.

Theorem 4.6 (Gehring Inequality II). Assume (3.6). If f : (0, T ] → T is
nonnegative and nonincreasing such that

(4.6) Afσ ≤ νf for some ν > 1,

then f ∈ Lp∆(0, T ] for p ∈ [1, α/(α− 1)), where α = λν, and we have

(4.7) A(fp)σ ≤ ν̃ [Afσ]p , where ν̃ :=
α

α− p(α− 1)
> 0.

Proof. For this proof, we put

F (t) :=

∫ t

0
fσ(s)∆s, l(t) = log(t), L(t) = log(F (t)).

By the chain rule, we get

1

α
l∆(t)

(2.3)
=

1

λν

∫ 1

0

dh

hσ(t) + (1− h)t

(3.6)

≤ 1

λν

∫ 1

0

dh

hσ(t) + (1− h)σ(t)
λ

≤ 1

λν
· λ

σ(t)
=

1

νσ(t)
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(4.6)

≤ f(σ(t))

F (σ(t))
=

F∆(t)

F (σ(t))

= F∆(t)

∫ 1

0

dh

hF (σ(t)) + (1− h)F (σ(t))

≤ F∆(t)

∫ 1

0

dh

hF (σ(t)) + (1− h)F (t)

(2.3)
= L∆(t),

and hence, by integrating,

log

(
t

σ(s)

)1/α

=
1

α
l(t)− 1

α
l(σ(s)) ≤ L(t)− L(σ(s)) = log

(
F (t)

F (σ(s))

)
so that

f(σ(s)) ≤ 1

σ(s)

∫ σ(s)

0
f(σ(τ))∆τ =

F (σ(s)

σ(s)
≤
(
σ(s)

t

)1/α F (t)

σ(s)
,

and by integrating again, putting γ := p(1−1/α) ∈ (0, 1), and using the notation
from Lemma 3.5, we obtain

1

t

∫ t

0
fp(σ(s))∆s ≤ F p(t)

t1+p/α

∫ t

0

∆s

(σ(s))p(1−1/α)

(3.7)

≤ F p(t)

(1− γ)t1+p/α

∫ t

0

(
x1−γ)∆ (s)∆s

=
t1−γF p(t)

(1− γ)t1+p/α
=

1

1− γ

(
F (t)

t

)p
,

proving (4.7). �

As a special case of Theorem 4.6 when T = N, we have the following result.

Corollary 4.7 (Discrete Gehring Inequality II). Let {an}n∈N0 be a nonnegative
and nonincreasing sequence. If there exists a constant ν > 1 such that

1

n

n∑
i=1

ai ≤ νan,

then, for p ∈ [1, α/(α− 1)], where α = 2ν, we have

1

n

n∑
i=1

api ≤ ν̃

[
1

n

n∑
i=1

ai

]p
, where ν̃ :=

α

α− p(α− 1)
.

5. Higher Integrability

In the following, as an application of Gehring’s inequality (4.7), we prove a
higher integrability theorem for monotone nonincreasing functions. First notice
that for all nonnegative and nonincreasing functions f ∈ Lq∆(0, T ] with q > 1, we
always have

(5.1) Af q(t) =
1

t

∫ t

0
f q(s)∆s =

1

t

∫ t

0
f q−1(s)f(s)∆s ≥ f q−1(t)

t

∫ t

0
f(s)∆s.
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Let us now consider the class of nonnegative and nonincreasing functions f ∈
Lq∆(0, T ] that satisfy the reverse of (5.1), namely

(5.2) Af q ≤ ηf q−1Af for some η > 1.

Theorem 5.1. Assume (3.6). If f ∈ Lq∆(0, T ] for q > 1 is nonnegative and
nonincreasing such that (5.2) holds, then f ∈ Lp∆(0, T ] for p ∈ [q, q+c], c ∈ (q, η),
and we have
(5.3)

A(fp)σ ≤ η̃ [Af q]p/q , where η̃ :=
ληq

1+p/q

ληq − p
q (ληq − 1)

with ηq =
ηq

q − 1
.

Proof. In this proof, we write F = Af q for brevity. By using the Hölder inequality
with exponents q/(q − 1) and q, we obtain

1

t

∫ t

0
F (σ(s))∆s

(5.2)

≤ η

t

∫ t

0
(f(σ(s)))q−1 · 1

σ(s)

∫ σ(s)

0
f(τ)∆τ∆s

(2.4)

≤ η

t

[∫ t

0
(f(σ(s)))q∆s

](q−1)/q
[∫ t

0

(
1

σ(s)

∫ σ(s)

0
f(τ)∆τ

)q
∆s

]1/q

(3.3)

≤ ηq

(q − 1)t

[∫ t

0
(f(s))q∆s

](q−1)/q [∫ t

0
(f(s))q∆s

]1/q

=
ηq
t

∫ t

0
f q(s)∆s = ηqF (t),

i.e.,

(5.4) AF σ ≤ ηqF.
Since F is also nonnegative and nonincreasing (see Lemma 3.3), it satisfies the
assumptions of Theorem 4.6, and thus

(5.5)
1

t

∫ t

0
[F (σ(s))]r ∆s ≤ η̃q

[
1

t

∫ t

0
F (σ(s))∆s

]r
with

η̃q =
αq

αq − r(αq − 1)
and αq = ληq for r =

p

q
∈
[
1,

αq
αq − 1

)
.

Noting that

(5.6) F (t) =
1

t

∫ t

0
f q(s)∆s ≥ f q(t),

we obtain

1

t

∫ t

0
(f(σ(s)))p∆s =

1

t

∫ t

0
(f q(σ(s)))r∆s

(5.6)

≤ 1

t

∫ t

0
(F (σ(s)))r∆s

(5.5)

≤ η̃q

(
1

t

∫ t

0
F σ(s)∆s

)r
(5.4)

≤ η̃qηq
r [F (t)]r = η̃ [F (t)]r

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

21 BOHNER-SAKER 11-23



12 MARTIN BOHNER AND SAMIR H. SAKER

= η̃

[
1

t

∫ t

0
f q(s)∆s

]p/q
,

proving (5.3). �

In Theorem 5.1, if T = R, then we have that σ(t) = t, αq = ηq, and we get the
following result.

Corollary 5.2. Let η > 1 and q > 1. Then every nonnegative nonincreasing
function f satisfying ∫ t

0
f q(x)dx ≤ ηf q−1(t)

∫ t

0
f(x)dx

belongs to Lp∆(0, T ](0, T ] for p ∈ [q, q + c] and c ∈ (q, η), and we have

1

t

∫ t

0
fp(x)dx ≤ η̃

(
1

t

∫ t

0
f q(x)dx

)p/q
,

where

η̃ :=

(
ηq
q−1

) p
q

+1

ηq
q−1 −

p
q ( ηq
q−1 − 1)

.

In Theorem 5.1, if T = N, then we have that σ(t) = t + 1, and by choosing
λ = 2, we get the following result.

Corollary 5.3. Let η > 1 and q > 1. Suppose {an}n∈N0 is a nonnegative and
nonincreasing sequence satisfying

n−1∑
i=0

aqi ≤ ηa
q−1
n

n−1∑
i=0

ai.

Then, for p ∈ [q, q + c], c ∈ (q, η), we have

1

n

n−1∑
i=0

api ≤ η̃

(
1

n

n−1∑
i=0

aqi

)p/q
,

where

η̃ :=
2
(
ηq
q−1

) p
q

+1

2 ηq
q−1 −

p
q (2 ηq

q−1 − 1)
.
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Birkhäuser Boston, Inc., Boston, MA, 2003.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

22 BOHNER-SAKER 11-23



GEHRING INEQUALITIES ON TIME SCALES 13

[7] Alberto Cabada and Dolores R. Vivero. Expression of the Lebesgue ∆-integral on time
scales as a usual Lebesgue integral: application to the calculus of ∆-antiderivatives. Math.
Comput. Modelling, 43(1-2):194–207, 2006.

[8] Frederick W. Gehring. The Lp-integrability of the partial derivatives of a quasiconformal
mapping. Acta Math., 130:265–277, 1973.

[9] Frederick W. Gehring. The Lp-integrability of the partial derivatives of quasiconformal
mapping. Bull. Amer. Math. Soc., 79:465–466, 1973.

[10] Stefan Hilger. Analysis on measure chains—a unified approach to continuous and discrete
calculus. Results Math., 18(1-2):18–56, 1990.

[11] Tadeusz Iwaniec. On Lp-integrability in PDEs and quasiregular mappings for large expo-
nents. Ann. Acad. Sci. Fenn. Ser. A I Math., 7(2):301–322, 1982.

[12] Mario Milman. A note on Gehring’s lemma. Ann. Acad. Sci. Fenn. Math., 21(2):389–398,
1996.

[13] Benjamin Muckenhoupt. Hardy’s inequality with weights. Studia Math., 44:31–38, 1972.
Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific
activity, I.

[14] Benjamin Muckenhoupt. Weighted norm inequalities for the Hardy maximal function.
Trans. Amer. Math. Soc., 165:207–226, 1972.

Missouri University of Science and Technology, Department of Mathematics
and Statistics, Rolla, Missouri 65409-0020, USA

E-mail address: bohner@mst.edu

Department of Mathematics, Faculty of Science, Mansoura University, Man-
soura, Egypt

E-mail address: shsaker@mans.edu.eg

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

23 BOHNER-SAKER 11-23



Basin of attraction of the fixed point and period-two solutions of a

certain anti-competitive map
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Abstract

We investigate the periodic nature, the boundedness character, and the global asymptotic stability
of solutions of the difference equation

xn+1 =
γx2n−1

Cx2n−1 + xn

where the parameters γ,C are positive numbers and the initial conditions x−1 and x0 are arbitrary
nonnegative numbers such that x−1 + x0 > 0. We determine the basin of attraction of fixed point and
period-two solutions. The associated map is not defined at the (0, 0). However, we show that there exist
period two solutions on the axis that are locally asymptotically stable and two continuous invariant
curves passing through the point (0, 0), which are boundaries of the basins of attractions of these period
two solutions, such that every solution starting on these two curves or in the region between these two
curves is attracted to the point (0, 0).

Key Words: Basin of attraction; difference equation; global attractivity; global stable manifold; mono-
tonicity;
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1 Introduction and Preliminaries

In this paper we consider the following quadratic rational difference equation of second order

xn+1 =
γx2n−1

Cx2n−1 + xn
(1)

We assume that γ,C > 0 and initial conditions x−1, x0 are positive real numbers, such that x0 + x−1 > 0.
Notice that the map associated to this equation is not defined at the point (0, 0). The second iterate of the
map associated to Equation (1) is competitive map. We call such map anti-competitive. See [7, 8]. Theory
of competitive systems and maps in the plane have been extensively developed and main results are given
in [2, 6, 11, 13, 14]. Equation (1) is a special case of the difference equation

xn+1 =
βxnxn−1 + γx2n−1 + δxn

Bxnxn−1 + Cx2n−1 +Dxn
, n = 0, 1, 2, . . . (2)

where the parameters β, γ, δ, B,C,D are nonnegative numbers which satisfy B + C +D > 0 and the initial
conditions x−1 and x0 are arbitrary nonnegative numbers such that Bxnxn−1 + Cx2n−1 + Dxn > 0 for all
n ≥ 0. Locally stability of the equilibrium points of (2) has been studied in [10]. In this paper we describe
global behavior of solutions of Equation (1).

Equation (1) is related to the difference equation

xn+1 =
γxn−1

Bxn + Cxn−1
, n = 0, 1, . . . (3)

where the parameters γ, B and C are positive real numbers and the initial conditions x−1, x0 are arbitrary
nonnegative numbers such that x−1 + x0 > 0, see [1, 9].

As we will see in this paper Equation (1) has very different behaviour than Equation (3) showing that
introduction of quadratic terms can significantly change behaviour of the equation. We prove that parametric
space splits into four regions given by 0 < γ < 1, 1 < γ < 3, γ = 3 and γ > 3. By using results from [3, 13] we
obtain global result in each of these four regions, different than global results for Equation (3). For example
in Section 3 we show that there exist two increasing continues invariant curves passing through the point
(0, 0) which are the boundaries of basins of attractions of the period-two solutions such that every solution
that starts on these two curves or in the region between these two curves is attracted to the point (0, 0).

We now present some basic notation about competitive map in the plane.
Consider a first order system of difference equations of the form{

xn+1 = f(xn, yn)
yn+1 = g(xn, yn)

, n = 0, 1, 2, . . . , (x−1, x0) ∈ I × I (4)

where f, g : I ×I → I are continuous functions on an interval I ⊂ R, f(x, y) is non-decreasing in x and non-
increasing in y, and g(x, y) is non-increasing in x and non-decreasing in y. Such system is called competitive.
One may associate a competitive map T to a competitive system (4) by setting T = (f, g) and considering
T on B = I × I.

A point x ∈ B is a fixed point of T if T (x) = x, and a minimal period-two point if T 2(x) = x and
T (x) 6= x. A period-two point is either a fixed point or a minimal period-two point. In a similar fashion one
can define a minimal period p point. The orbit of x ∈ B is the sequence {T `(x)}∞`=0. A minimal period-two
orbit is an orbit {x`}∞`=0 for which x0 6= x1 and x0 = x2. The basin of attraction of a fixed point x is the
set of all y such that Tn(y) → x. A fixed point x is a global attractor on a set A if A is a subset of the
basin of attraction of x. A fixed point x is a saddle point if T is differentiable at x, and the eigenvalues of
the Jacobian matrix of T at x are such that one of them lies in the interior of the unit circle in R2, while
the other eigenvalue lies in the exterior of the unit circle. If T = (T1, T2) is a map on R ⊂ R2, define the
sets RT (−,+) := {(x, y) ∈ R : T1(x, y) ≤ x, T2(x, y) ≥ y } and RT (+,−) := {(x, y) ∈ R : T1(x, y) ≥
x, T2(x, y) ≤ y }.

If v = (u, v) ∈ R2, we denote with Q`(v), ` ∈ {1, 2, 3, 4}, the four quadrants in R2 relative to v, i.e.,
Q1(v) = {(x, y) ∈ R2 : x ≥ u, y ≥ v}, Q2(v) = {(x, y) ∈ R2 : x ≤ u, y ≥ v}, and so on. Define the
South-East partial order �se on R2 by (x, y) �se (s, t) if and only if x ≤ s and y ≥ t. Similarly, we define the
North-East partial order �ne on R2 by (x, y) �ne (s, t) if and only if x ≤ s and y ≤ t. A stronger inequality

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

25 BESO ET AL 24-34



February 26, 2019 3

may be defined as v = (v1, v2) � w = (w1, w2) if v � w with v1 6= w1 and v2 6= w2. For u, v in R2, the
order interval Ju,vK is the set of all x ∈ R2 such that u � x � v.

A map T is competitive if T (x) �se T (y) whenever x �se y, and T is strongly competitive if x �se y
implies T (x)−T (y) ∈ {(u, v) : u > 0, v < 0}. If T is differentiable, a sufficient condition for T to be strongly
competitive is that the Jacobian matrix of T at any x ∈ B has the sign configuration(

+ −
− +

)
.

For additional definitions and results (e.g., repeller, hyperbolic fixed points, stability, asymptotic stability,
stable and unstable manifolds) see [6, 14] for competitive maps, and [9, 11] for difference equations.

This paper is structured as follows. In Section 2 we prove linearized stability results. Depending on
parameter γ we determine the nature of equilibrium point and period-two solutions and then we prove
convergence result for period-two solution. In Section 3 we describe completely global behaviour of Equation
(1).

2 Linearized stability analysis and convergence result

In this section we prove linearized stability and convergence results for Equation(1).

Theorem 1 If γ > 1 then Equation (1) has the unique equilibrium point x̄ which is given by

x̄ =
γ − 1

C

and x̄ is

a) locally asymptotically stable if γ > 3.

b) a non-hyperbolic point if γ = 3;

c) a saddle point if 1 < γ < 3;

Proof. The proof follows from the well known linearized stability theorem, see [10].
2

Theorem 2 For the Equation (1) the following holds:

(a) For all values of parameters Equation (1) has prime period-two solution{
0,
γ

C

}
which is locally asymptotically stable.

(b) If γ > 3 then Equation (1) has prime period-two solution{
γ −

√
(γ − 3)(γ + 1) + 1

2C
,
γ +

√
(γ − 3)(γ + 1) + 1

2C

}

which is a saddle point.

Proof.

(a) It is easy to check that {0, γC } is period two solution for all values of parameters. This period two
solution always exists.
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(b) Assume that γ > 3. If . . . a, b, a, a, b, . . . is a period two solution, then this solution satisfies the following
system of algebraic equations

b =
γb2

Cb2 + a

a =
γa2

Ca2 + b
.

Straightforward calculations shows that under the condition γ > 3 the unique solution of this system
is given by

a =
γ −

√
(γ − 3)(γ + 1) + 1

2C
, b =

γ +
√

(γ − 3)(γ + 1) + 1

2C
.

By using linearized stability theorem, it is easy to see that this period two solution is a saddle point,
see [10].

Note that it is not possible to obtain period two solution {0, γC } by solving the previous system of algebraic
equations.

2

Now, we show that every solution of Equation (1) converges to a period-two solution (not necessarily
minimal).
Let

F (u, v) =
γv2

Cv2 + u
.

It is easy to see that

F ′x = − γv2

(Cv2 + u)
2 and F ′y =

2γuv

(Cv2 + u)
2

Set

un = xn−1 and vn = xn for n = 0, 1, . . . (5)

We can rewrite Equation (1) in the equivalent form:

un+1 = vn (6)

vn+1 =
γu2n

Cu2n + vn

for n = 0, 1, . . . .
Let T be the map associated to Equation (1):

T (u, v) = (v, F (v, u)) =

(
v,

γu2

Cu2 + v

)
. (7)

then

(un+1, vn+1) = T (un, vn) (8)

It is easy to see that

T 2(u, v) = T (T (u, v)) = (T21(u, v), T22(u, v))

(
γu2

Cu2 + v
,

γv2
(
Cu2 + v

)
C2u2v2 + Cv3 + γu2

)
from which it follows that

(u2n+2, v2n+2) = T 2(u2n, v2n) (9)
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which is equivalent to
(x2n+1, x2n+2) = T 2(x2n−1, x2n).

The Jacobian matrix of the map T has the form:

JT (u, v) =

(
0 1

2uvγ
(cu2+v)2

− u2γ
(cu2+v)2

)
(10)

The determinant of (10) is given by

detJT (u, v) = − 2γuv

(cu2 + v)
2 (11)

The Jacobian matrix of the map T 2 has the form:

JT 2(u, v) =

 2uvγ
(Cu2+v)2

− u2γ
(Cu2+v)2

− 2uv3γ2

(γu2+Cv2(Cu2+v))2
u2v(2Cu2+3v)γ2

(γu2+V v2(Cu2+v))2

 (12)

The determinant of (12) is given by

detJT 2(u, v) =
4γ3u3v2

(Cu2 + v) (Cv2 (Cu2 + v) + γu2)
2 (13)

The equilibrium curves of the map T 2 are given by

C1 :=
{

(x, y) ∈ [0,∞)2 : T21(x, y) = x
}

=
{

(x, y) ∈ [0,∞)2 : y = γx− Cx2
}

and

C2 :=
{

(x, y) ∈ [0,∞)2 : T22(x, y) = y
}

=

{
(x, y) ∈ [0,∞)2 : x =

y
√
γ − Cy√

Cy(Cy − γ) + γ

}
By direct inspection of Equation (13) we obtain the following result:

Lemma 1 The map T 2 is competitive on [0,∞)2 \ {(0, 0)} and strongly competitive on (0,∞)2.

It is easy to see that the following holds.

Lemma 2 For all x−1, x0 ∈ [0,∞), such that x−1 + x0 > 0, the following holds xn ≤ γ
C for n ≥ 1.

By using very powerful Theorem 1.5 from [4] and Lemma 2, we obtain the following convergence result.

Theorem 3 Every solution of Equation (1) converges to a period-two solution or to zeros.

3 Global behavior

In this section we consider the following four parametric regions γ > 3, 1 < γ < 3, γ = 3 and 0 < γ < 1. We
completely describe the global behaviour of Equation (1) in these regions.

The following theorem details the case γ > 3.

Theorem 4 Assume that
γ > 3.

Then system (8) has a unique equilibrium point E(ū, ū) which is locally asymptotically stable and there
exist two prime period-two solutions: {P1(ū1, v̄1), P2(v̄1, ū1)} which is locally asymptotically stable and
{P3(ū2, v̄2), P4(v̄2, ū2)} which is a saddle point, where

ū1 = 0, v̄1 =
γ

C
and ū =

γ − 1

C
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and

ū2 =
γ + 1−

√
(γ − 3)(γ + 1)

2C
and v̄2 =

γ + 1 +
√

(γ − 3)(γ + 1)

2C

Furthermore, global stable manifold of the periodic solution {P3, P4} is given by Ws({P3, P4}) = Ws(P3) ∪
Ws(P4) where Ws(P3) and Ws(P4) are continuous increasing curves, invariant under the map T 2 and
T (Ws(P3)) =Ws(P4), and divide the first quadrant into two connected components, namely

W−1 := {x ∈ R \Ws(P3) : ∃y ∈ Ws(P3) with y �se x}
W+

1 := {x ∈ R \Ws(P3) : ∃y ∈ Ws(P3) with x �se y}

and

W−2 := {x ∈ R \Ws(P4) : ∃y ∈ Ws(P4) with y �se x}
W+

2 := {x ∈ R \Ws(P4) : ∃y ∈ Ws(P4) with x �se y}

respectively. In addition, Ws(P3) is passing through the point P3 and Ws(P4) is passing through the point
P4 and the following holds:

i) If (u0, v0) ∈ Ws(P3) then the subsequence of even-indexed terms {(u2n, v2n)} is attracted to P3, and
the subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P4.

ii) If (u0, v0) ∈ Ws(P4) then the subsequence of even-indexed terms {(u2n, v2n)} is attracted to P4, and
the subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P3.

iii) If (u0, v0) ∈ W+
1 (the region above Ws(P3)) then the subsequence of even-indexed terms {(u2n, v2n)}

is attracted to P1, and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P2.

iv) If (u0, v0) ∈ W−2 (the region below Ws(P4)) then the subsequence of even-indexed terms {(u2n, v2n)} is
attracted to P2, and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P1.

v) If (u0, v0) ∈ W−1 ∩W
+
2 (the region between W−1 and W+

2 ) then the sequence {(un, vn)} is attracted to
E.

See Figure 1.

Proof. Theorem 1 implies that there exists a unique equilibrium point E(x̄, x̄) which is locally asymp-
totically stable. Theorem 2 implies that the periodic solution {P1, P2} is locally asymptotically stable and
{P3, P4} is a saddle point. In view of (12) the map T 2(u, v) = T (T (u, v)) is competitive on R = R2

+ \{(0, 0)}
and strongly competitive on int(R). It is easy to see that at each point, the Jacobian matrix of T 2 has
two real and distinct eigenvalues, the larger one in absolute value being positive, and that corresponding
eigenvectors may be chosen to point in the direction of the second and first quadrant, respectively.

Figure 1: Visual illustration of Theorem 4.
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In view of Theorem 3 we have that all solutions converge to period-two solution. Hence, all conditions of
Theorem 4 in [13] are satisfied, which yields the existence of the global stable manifoldsWs(P3) andWs(P4)
which are the graphs of the strictly decreasing functions of the first coordinate on an interval.

By Theorem 4 in [13], we have that if (u0, v0) ∈ Ws(P3) then (u2n, v2n) = T 2n(u0, v0) → P3 as n → ∞
which implies that (u2n+1, v2n+1) = T (T 2n(u0, v0)) → T (P3) = P4 as n → ∞ from which it follows the
statement i). The proof of the statement ii) is similar to the proof of the statement i).

Take (u0, v0) ∈ W+
1 ∩R. By Theorem 4 in [13], we have that there exists n0 > 0 such that, T 2n(u0, v0) ∈

int(Q2(P3) ∩ R), n > n0. In view of Theorem 1 in [11], since P3 is a saddle point, we obtain that for all
(u0, v0) ∈ int(Q2(P3) ∩ R), there exists r0 > 0 such that (u0, v0) �se P3 − r0v1 and T 2(P3 − r0v1) �se
P3 − r0v1. By monotonicity T 2n+2(P3 − r0v1) �se T 2n(P3 − r0v1)� P3. In view of Lemma 2 we have that

T
(
[0,∞)2 \ {(0, 0)}

)
⊂
[
0,
γ

C

)2
\ {(0, 0)}.

From this and the fact that P1 � P3 � E � P4 � P2 we have that T 2n(P3 − r0v1) → P1 as n → ∞. By
monotonicity we have that P1 �se T 2n(u0, v0) �se T 2n(P3−r0v1)� P3 which implies that T 2n(u0, v0)→ P1

and T 2n+1(u0, v0) = T (T 2n(u0, v0))→ T (P1) = P2 as n→∞ which proves the statement iii).
Take (u0, v0) ∈ W−2 ∩R. By Theorem 4 in [13], we have that there exists n1 > 0 such that, T 2n(u0, v0) ∈

int(Q4(P4) ∩ R), n > n1. In view of Theorem 1 in [11], since P4 is a saddle point, we obtain that for
all (u0, v0) ∈ int(Q4(P4) ∩ R), there exists r1 > 0 such that P4 + r1v1 �se (u0, v0) and P4 + r1v1 �se
T 2(P4 + r1v1). The rest of the proof of the statement iv) is similar to the proof of the statement iii) and we
skip it here.

Now, we show that each orbit starting in the regionW−1 ∩W
+
2 converges to E. Take (u0, v0) ∈ W−1 ∩W

+
2 .

By Theorem 4 in [13],we have that there exists n2 > 0 such that, T 2n(u0, v0) ∈ int(Q4(P3)∩Q2(P4)∩R) =
[[P3, P4]], for n > n2. Since P3 and P4 are the saddle points and E is locally asymptotically stable, in view
of Corollary 2 [12] we have that T 2n(u′, v′)→ E and T 2n+1(u′, v′) = T (T 2n(u′, v′))→ T (E) = E as n→∞
for all (u′, v′) ∈ [[P3, E]] and that T 2n(u′′, v′′) → E and T 2n+1(u′′, v′′) = T (T 2n(u′′, v′′)) → T (E) = E as
n→∞ for all (u′′, v′′) ∈ [[E,P4]]. Then there exist the points (u′0, v

′
0) ∈ [[P3, E]] and (u′′0 , v

′′
0 ) ∈ [[E,P4]] such

that (u′0, v
′
0) �se T 2n2+2(u0, v0) �se (u′′0 , v

′′
0 ). By monotonicity of the map T 2 we have that T 2n(u0, v0)→ E

and T 2n+1(u0, v0) = T (T 2n(u0, v0))→ T (E) = E as n→∞ for all (u0, v0) ∈ W−1 ∩W
+
2 . This completes the

proof of statement v) of the Theorem.
2

The following theorem considers the case 1 < γ < 3.

Theorem 5 Assume that
1 < γ < 3.

Then system (8) has a unique equilibrium point E(ū, ū) which is a saddle point and prime period-two solution
{P1(ū1, v̄1), P2(v̄1, ū1)} which is locally asymptotically stable, where

ū1 = 0, v̄1 =
γ

C
and ū =

γ − 1

C
.

Global stable manifold Ws(E), which is continuous increasing curve, divides the first quadrant into two
connected components

W−(E) := {x ∈ R \Ws(E) : ∃y ∈ Ws(E) with y �se x}
W+(E) := {x ∈ R \Ws(E) : ∃y ∈ Ws(E) with x �se y}

such that
R2

+ =W−(E) ∪W+(E) ∪Ws(E).

In addition, Ws(E) passing through the point E and the following holds:

i) Every initial point (u0, v0) in Ws(E) is attracted to E.

ii) If (u0, v0) ∈ W+(E) (the region below Ws(E)) then the subsequence of even-indexed terms {(u2n, v2n)}
is attracted to P2, and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P1.
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iii) If (u0, v0) ∈ W−(E) (the region above Ws(E)) then the subsequence of even-indexed terms {(x2n, v2n)}
is attracted to P1, and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P2.

See Figure 1.

Figure 2: Visual illustration of Theorem 5 .

Proof. Theorem 1 implies that there exists a unique equilibrium point E(x̄, x̄) which is a saddle point.
Theorem 2 implies that the period-two solution {P1, P2} is locally asymptotically stable. Similar as in the
proof of Theorem 4 all conditions of Theorem 4 in [13] are satisfied, which yields the existence of the global
stable manifold Ws(E) which is the graph of the strictly increasing function.

Take (u0, v0) ∈ W+ ∩R. By Theorem 4 in [13], we have that there exists n0 > 0 such that, T 2n(u0, v0) ∈
int(Q2(E) ∩ R), n > n0. In view of Theorem 1 in [11], since E is a saddle point, we obtain that for all
(u0, v0) ∈ int(Q2(E) ∩R), there exists r0 > 0 such that (u0, v0) �se E − r0v1 �se E and T 2(E − r0v1) �se
E − r0v1. By monotonicity T 2n+2(E − r0v1) �se T 2n(E − r0v1) � E. In view of Lemma 2 we have that
Tn(u, v) ∈ [0, γ/C)2 \ {(0, 0)}. From this and the fact that P1 � E � P2 we have that T 2n(E − r0v1)→ P1

as n→∞. By monotonicity, P1 �se T 2n(u0, v0) �se T 2n(E−r0v1)� E which implies that T 2n(u0, v0)→ E
and T 2n+1(u0, v0) = T (T 2n(u0, v0))→ T (E) = E as n→∞ which proves the statement ii).

The proof of the statement iii) is similar and we skip it here.
2

Now, we assume that γ = 3. The following theorem holds.

Theorem 6 Assume that
γ = 3.

Then System (8) has a unique equilibrium point E(ū, ū) which is a non-hyperbolic and prime period-two
solution {P1(ū1, v̄1), P2(v̄1, ū1)} which is locally asymptotically stable, where

ū1 = 0, v̄1 =
3

C
and ū =

2

C
.

There exists a continuous increasing curve CE which is a subset of the basin of attraction of E and it divides
the first quadrant into two connected invariant components

W−(E) := {x ∈ R \ CE : ∃y ∈ CE with y �se x}
W+(E) := {x ∈ R \ CE : ∃y ∈ CE with x �se y}

such that the following holds:

i) Every initial point (u0, v0) in CE is attracted to E.

ii) If (u0, v0) ∈ W+(E) (the region above CE) then the subsequence of even-indexed terms {(u2n, v2n)} is
attracted to P1, and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P2.
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ii) If (u0, v0) ∈ W−(E) (the region below CE) then the subsequence of even-indexed terms {(x2n, v2n)} is
attracted to P2, and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P1.

See Figure 3.

Figure 3: Visual illustration of Theorem 6 .

Proof. Theorem 1 implies that there exists a unique equilibrium point E(x̄, x̄) which is non-hyperbolic.
Theorem 1(c) implies that the periodic solution {P1, P2} is locally asymptotically stable. Similar as in the
proof of Theorem 4 all conditions of Theorem 4 in [13] are satisfied, which yields the existence a continuous
increasing curve CE which is a subset of the basin of attraction of E and for every x ∈ W+ there exists
n0 ∈ N such that Tn(x) ∈ intQ2(E) for n ≥ n0 and for every x ∈ W− there exists n1 ∈ N such that
Tn(x) ∈ intQ4(E) for n ≥ n1.

Set U(t) = t(3− Ct). It is easy to see that (t, U(t)) �se E if t ∈ [ 3
2C , ū] and E �se (t, U(t)) if t ∈ [ū, 3

C ]
and U(ū) = ū. In view of Lemma 2 we have that

T
(
[0,∞)2 \ {(0, 0)}

)
⊂
[
0,
γ

C

)2
\ {(0, 0)}.

One can show that

T 2(t, U(t))− (t, U(t)) =

(
0,
t(Ct− 3)(Ct− 2)3

Ct(Ct− 3)2 + 1

)
which implies that T 2(t, U(t)) �se (t, U(t)) if t < ū and (t, U(t)) �se T 2(t, U(t)) if t > ū. By monotonicity
if t < ū then we obtain that T 2n(t, U(t))→ P1 as n→∞ and if t > ū then we have that T 2n(t, U(t))→ P2

as n→∞.
If (u′, v′) ∈ intQ2(E) then there exists t1 such that P1 �se (u′, v′) �se (t1, U(t1))�se E. By monotonicity

of the map T 2 we obtain that P1 �se T 2n(u′, v′) �se T 2n(t1, U(t1))�se E which implies that T 2n(u′, v′)→
P1 and T 2n+1(u′, v′)→ T (P1) = P2 as n→∞ which proves the statement ii).

If (u′′, v′′) ∈ intQ4(E) then there exists t1 such that E � (t2, U(t2)) �se (u′′, v′′) �se P2. By monotonicity
of the map T 2 we obtain that E �se T 2n(t2, U(t2)) �se T 2n(u′′, v′′)�se P2 which implies that T 2n(u′′, v′′)→
P2 and T 2n+1(u′′, v′′)→ T (P2) = P1 as n→∞ which proves the statement iii), and completes the proof of
the Theorem.

2

First we notice the following. Theorem 3 and Lemma 2 imply that T 2n(x0, y0) is asymptotic to either
P1 = (0, γC ) or P2 = ( γC , 0) or (0, 0), for all (x0, y0) ∈ R\ {(0, 0)}. Let B(P1) be the basin of attraction of P1

and B(P2) be the basin of attraction of P2 with respect to the map T 2. Let C+ denote the boundary of B(P1)
considered as a subset of int Q1(0, 0) (the first quadrant relative to (0, 0)) and C− denote the boundary of
B(P2) considered as a subset of int Q1(0, 0). It is easy to see that (0, 0) ∈ C+ and (0, 0) ∈ C−.

Now, similarly to the proof of the of Claim 1 and Claim 2 in [5], one can prove that the following lemma
holds.
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Lemma 3 Let C+ and C− be the sets defined above. Then the sets C+ and C− are invariant under the map
T 2 and they are the graphs of continuous strictly increasing functions. Further, C+ ∪ C− ⊂ B(0, 0).

The following theorem details the existence two invariant strictly increasing curves passing through the
point (0, 0), such that every solution that stars on these two curves or in the region between these two curves
is attracted to the point (0, 0).

Theorem 7 Assume that
0 < γ < 1.

Then there exists prime period-two solution {P1(ū1, v̄1), P2(v̄1, ū1)} which is locally asymptotically stable,
where

ū1 = 0, v̄1 =
γ

C

Furthermore, there exist sets C+ and C− which are continuous increasing curves, invariant under the map
T 2 and T (C+) = C−, and divide the first quadrant into two connected components, namely

W−1 := {x ∈ R \ C+ : ∃y ∈ C+ with y �se x} and W+
1 := {x ∈ R \ C+ : ∃y ∈ C+ with x �se y}

and

W−2 := {x ∈ R \ C− : ∃y ∈ C− with y �se x} and W+
2 := {x ∈ R \ C− : ∃y ∈ C− with x �se y}

respectively. In addition, C+ and C− passing through the point (0, 0) and the following holds:

i) If (u0, v0) ∈ W+
1 (the region above C+) then the subsequence of even-indexed terms {(u2n, v2n)} is

attracted to P1, and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P2.

ii) If (u0, v0) ∈ W−2 (the region below C−) then the subsequence of even-indexed terms {(u2n, v2n)} is
attracted to P2, and the subsequence of odd-indexed terms {(u2n+1, v2n+1)} is attracted to P1.

iii) If (u0, v0) ∈ (C+ ∪ C+) ∪ (W−1 ∩W
+
2 ) (the region between C+ and C−) then the sequence {(un, vn)} is

attracted to (0, 0).

Proof. The proof follows from Lemma 3, and it is similar to the proof of Theorem 4, so we skip it.
2

Based on a series of numerical simulations we pose the following hypothesis.

Conjecture 1 Suppose that all assumptions of the Theorem 7 are satisfied, then the following holds: C+ =
C−.
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Abstract

The pseudo-hyperbolic equation with cubic nonlinearity and additive

space-time noise is discussed. The space-time noise is assumed to be

Gaussian in time and possesses a Fourier series expansion in space. First,

we prove the existence and uniqueness of the approximate strong solu-

tions of the equation and show that the truncated Fourier solution which

can be approximated by the truncated finite-dimensional system, is an

approximate solution. Second, a new transformation is used to convert

pseudo-hyperbolic equation into a system of equations, which can con-

struct an infinitesimal generator with good properties. After analyzing

the related total energy evolution, we obtain that the energy growth will

not blow-up in the limited time. Finally, we present a Fourier scheme of

a procedure for its numerical approximation and give the stability and

convergence analysis of the scheme.

keyword: thermal convection equation, Fourier coefficients, cubic-type non-

linearities; stochastic; energy

1 Introduction

Stochastic differential equations (SDEs) can model many natural phenomena

with white noise and engineering applications, such as epidemiology, economics

and so on [15, 1, 14, 3, 43, 23, 22]. SDEs hold for the important original work

∗Corresponding author. E-mail address: zhangzhiyue@njnu.edu.cn.
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of Ito [12] as well as books [7, 27]. The shorter accounts of stochastic dynamic

systems on stability, filtering, and control [18, 13] are rather unsuited for the

study. Stability of SDEs has been well studied by researchers [25, 16, 19]. Since

the analytical solution is difficult to obtain, different numerical methods have

been introduced such as [30, 33, 8, 29]. The common theoretical basis is the

stochastic Ito-Taylor expansion in terms of multiple Wiener integrals [15].

The analysis of the linear SDEs is well investigated such as [20, 6, 28, 24].

In the recent past, the nonlinear SDEs are researched. In [21] a class of fully

nonlinear SDEs is studied by using the stochastic characteristic method. In [11]

a strong convergence result under less restrictive conditions is proved by using

Euler-Maruyama method. In [10], the exponential stability of the multidimen-

sional nonlinear SDEs with variable delays is investigated. Nonlinear filtering

equations have developed based on a classification where the measure term is

either deterministic or random [39].

Consider the semi-linear stochastic pseudo-hyperbolic equation with cubic-

type nonlinearities perturbed by additive space-time random noise W [40]:
d(u+ ut) = σ2 ∂

2(u+ ut)

∂2x
dt+B(u+ ut)dt+ b·dW (t, x),

u(0, x) = u0, ut(0, x) = ut0 , 0 < x < L,

u(t, 0) = u(t, L) = 0, ut(t, 0) = ut(t, L) = 0, 0 < t < T,

(1.1)

where b ∈ R1 is an overall noise intensity parameter. B(u) = u(a1 − a2‖u‖2L2)

is cubic-type with real parameters a2 > 0 and a1 [38]. The space-time Q-regular

noise W (t, x) is as follows:

W (t, x) =

+∞∑
n=1

αnWn(t)

√
2

L
sin
(nπx
L

)
=

+∞∑
n=1

αnWn(t)en(x) (1.2)

with independent and identically distributed Wiener process Wn ∈ N (0, t),

where trace(Q) =
∑+∞
n=1 α

2
n < +∞. We know that en(x) =

√
2
L sin

(
nπx
L

)
, n ≥

1 are the eigenfunctions of the Laplace operator which form an orthonormal

system in H = L2(0, L) and satisfy in one-dimensional, ∆en(x) = −n
2π2

L2 en.

The main contribution of this paper is to discuss the Fourier solution u(t, x)

and its numerical approximations by truncated Fourier series [41]. We construct

an infinitesimal generator with good properties and convert into the equations

which can be easily solved.

The rest of the paper is organized as follows. In section 2, we verify the

existence and uniqueness of solution and give a finite-dimensional system of the

SDEs. In section 3, we estimate the truncated total energy. In section 4 we

show numerical methods to find those Fourier coefficients. In the last section 5

numerical experiments are provided which support our results.

2
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2 Existence and Uniqueness of Approximate Strong

Solutions and Fourier-Series Solutions

In general, it is difficult to solve nonlinear equations. However, taking the

equations into system of equations can avoid lots of complex calculations in in-

finitesimal generators and energy estimation. Let v = u+ut, Eqs (1.1) becomes
v = u+ ut,

dv

dt
=

[
σ2 ∂

2v

∂x2
+ v

(
a1 − a2‖v‖2L2

)]
+ b·dW (t, x)

dt
.

(2.1)

It can be rewritten as

d

dt

(
u

v

)
=

(
−1 1

0 σ2∂2

∂x2

)(
u

v

)
+

(
0

v

)
(a1−a2

∥∥∥∥∥
(

0

v

)∥∥∥∥∥
2

L2

)+

(
0

b

)
dW

dt
. (2.2)

From the definitions of strong solution and approximate strong solution[36],

we obtain that conditions of the strong solutions of (2.1) exist and the unique-

ness is that all operators are globally Lipschitz-continuous. Under conditions

weaker than global Lipschitz-continuity, we can also achieve a result of the

strong solutions.

Lemma 2.1. For all a2 ≥ 0, the mapping v ∈ H 7→ B(v) = v(a1 − a2‖v‖2L2)

satisfies the angle condition on H. In other words, for all u, v ∈ H, we have

F (u, v) :=< B(u)−B(v), u− v >H≤ a1‖u− v‖2H , (2.3)

specially

< B(v), v >H≤
(
a1 − a2

‖v‖2H
2

)
‖v‖2H ≤ a1‖v‖2H .

Proof. Denoting f(u) := ‖u‖2Hu and g(u, v) :=< f(u) − f(v), u − v >H which

is symmetric. Then we obtain that

2g(u, v) =
(
‖u‖2H+‖v‖2H

)
‖u−v‖2H+

(
‖u‖2H−‖v‖2H

)2 (‖u‖2H + ‖v‖2H
)
‖u− v‖2H ,

g(u, v) ≥ ‖u‖
2
H + ‖v‖2H

2
‖u− v‖2H .

Now using (2.3), the above inequality and the definition of B, we have

F (u, v) ≤ −a2
‖u‖2H + ‖v‖2H

2
‖u− v‖2H + a1‖u− v‖2H ≤ a1‖u− v‖2H ,

< B(v), v >H≤ −a2
‖v‖2H

2
‖v‖2H + a1‖v‖2H ≤ a1‖v‖2H ,by setting u = (0, 0).

Then the proof is completed.
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From Lemma 2.1 and Theorem 3 in [36], the unique approximate strong and

continuous solution of Eqs (2.2) exists.

Theorem 2.2. Assumptions of definitions of strong and approximate strong so-

lution [36] are satisfied with E‖v(0, ·)‖2H<∞, for B(0, L)×F0-measurable initial

data v(0, ·)∈H. The approximate strong global solution v of Eqs (2.2) exists.

Next, we propose our method to solve the SDEs. There are many methods

such as Galerkin-type method [9, 26, 5], Monte-Carlo [4, 31], collocation method

[42], projection methods [32]. The method presented in this paper is Fourier-

series solutions. The existence of separated solutions is established in [17].

Solutions of this type are used in [2]. The difficulty lies in computing Fourier-

series solutions and in finding a good infinitesimal generator to estimate the

energy of the system.

Using the principle of linear superposition, the Fourier series is

u(t, x) =
+∞∑
n=1

cun(t)en(x), v(t, x) =
+∞∑
n=1

cvn(t)en(x). (2.4)

We truncate the series as follows:

ũ(t, x) =
N∑
n=1

cun(t)en(x), ṽ(t, x) =
N∑
n=1

cvn(t)en(x). (2.5)

which form the strong solutions of Eqs (2.2).

Theorem 2.3. The Fourier coefficients of Eqs (2.4) satisfy (P-a.s.) the infinite-

dimensional system, for k = 1, 2, · · · and bk = bαk,
c′uk(t) = cvk(t)− cuk(t),

dcvk =

(
−σ2 k

2π2

L2
+ a1 − a2

+∞∑
n=1

c2vn(t)

)
cvkdt+ bkdWk,

(2.6)

Proof. By plugging Eqs (2.4) into Eqs (2.1), we achieve that for 0 ≤ t ≤ T ,∫ L

0

u′(t, x)ek(x)dx =
+∞∑
n=1

c′un(t)

∫ L

0

en(x)ek(x)dx = cvk(t)− cuk(t),

∫ L

0

dv(t, x)ek(x)dx = cvk

(
−σ

2k2π2

L2
+ a1 − a2

+∞∑
n=1

[cvn(t)]
2

)
dt+ bkdWk(t).

As we know that the u, v is the unique strong solution of (2.1) with

‖u(t, ·)‖2H =
∞∑
k=1

[cuk(t)]
2
<∞, ‖v(t, ·)‖2H =

∞∑
k=1

[cvk(t)]
2
<∞,

and have Fourier coefficient cuk, cvk which can be approximated by the trun-

cated finite-dimensional system. So the above computations work.

4
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We note that for stochastic systems with additive noise, the stochastic inte-

gration leads to the same type of stochastic integral. See more details in [37].

Therefore, we can calculate each cuk, cvk and ũ(t, x) =
∑N
n=1 cun(t)en(x).

3 Total Energy Evolution

For the case of sufficiently strong diffusion with σ2π2 > L2(a1+1), we investigate

the behavior of related energy functional, which is defined at time t ≥ 0 by

E(t) =
σ2

2
‖vx(t, ·)‖2H −

a1 + 1

2
‖v(t, ·)‖2H +

a2
4
‖v(t, ·)‖4H . (3.1)

This energy functional is indeed nonnegative and finite almost surely (a.s.) as

one can see from the following theorem. For its proof, we take the functional in

terms of its Fourier coefficients ck by

V (t) := V (cvk(t) :k ∈ N) =
1

2

+∞∑
n=1

(
σ2n2π2

L2
−a1−1

)
c2vn(t)+

a2
4

(
+∞∑
n=1

c2vn(t)

)2

,

for t ≥ 0. It is easy to know that V ≥ 0 for all sequences (cvk(t))k and acts as

a Lyapunov functional. Besides, E(t) = V (t) for all t ≥ 0.

Theorem 3.1. Assume that e(0) = EV (cvk(0) : k ∈ N) < ∞, σ2π2 ≥
L2(a1 + 1) and trace(Q) =

∑∞
n=1 α

2
n <∞. Then, the total expected energy

of the original system (2.1) is linearly bounded in time by

e(t) = EV (cvk(t) : k ∈ N) ≤ e(0)+2

[
+∞∑
n=1

[
σ2n2π2

L2
−a1−1]c2vn(t)+

√
a2(b2β2)2

]
t,

where β2 =
∑∞
n=1 α

2
n + 2 max

n∈N
α2
n.

Proof. The truncated infinitesimal generator can be rewritten

L =
N∑
n=1

[cvn−cun]
∂

∂cun
+
b2

2

N∑
n=1

α2
n

∂2

∂c2vn
+

N∑
n=1

[
−σ

2n2π2

L
+ a1−a2

N∑
k=1

c2vk

]
cvn

∂

∂cvn
.

We express Eqs (3.1) in terms of its truncated Fourier coefficients cvk by

Ṽ (t) : = Ṽ (cvk(t) : k ∈ N) =
1

2

N∑
n=1

[
σ2n2π2

L2
−a1−1]c2vn(t) +

a2
4

(
N∑
n=1

c2vn(t)

)2

,

for t ≥ 0. Then, after calculating the infinitesimal generator, we estimate the

5
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energy of the system (3.1) as follow:

LṼ = LṼ1 + LṼ2 =
N∑
n=1

(cvn − cun) cun −

[
N∑
n=1

(
σ2n2π2

L2
− a1 + a2

N∑
k=1

c2vk

)
cvn

]2

+
1

2

N∑
n=1

α2
n

N∑
n=1

(
σ2n2π2

L2
− a1

)
+
b2

2

N∑
n=1

α2
na2

N∑
n=1

c2vn(t) + 2c2vn(t).

LṼ1 ≤
N∑
n=1

1

4

(
c
′

un + cun

)2
≤ 5b2

12
√

3a2

+∞∑
n=1

α2
n

(
σ2n2π2

L2
− a1 + a2

(
b2β2

N

) 3
2

)
.

From the estimate in [38] and denoting β2 =
∑+∞
n=1 α

2
n + 2 max

n∈N
α2
n, we obtain

LṼ2 ≤ b2
+∞∑
n=1

α2
n

(
σ2n2π2

L2
− a1 + a2

(
b2β2

N

) 3
2

)(
1

12a2

) 1
2 5

6
.

Consequently, Dynkin formula says that

eN (t) =E
[
Ṽ (t)

]
≤e(0)+ 2b2

+∞∑
n=1

α2
n

(
σ2n2π2

L2
− a1

)
+2a2

(
b2β2

N

) 3
2

(
1

12a2

) 1
2 5

6
,

for t ≥ 0. Since eN ≥ 0 is increasing in N and uniformly bounded in time t for

any t ∈ [0, T ], we know that limN→+∞en(t) = e(t), and

0 ≤ e(t) ≤e(0) + 2b2
+∞∑
n=1

α2
n

(
σ2n2π2

L2
− a1

)
t+ 2a2

(
b2β2

N

) 3
2

(
1

12a2

) 1
2 5

6
t,

as e(0) <∞, σ2π2 ≥ L2(a1 + 1) and trace(Q) =
∑∞
n=1 α

2
n <∞.

More precisely, for T <∞,∀ 0 ≤ t ≤ T, ∃ K1,K2 ≥ 0

(E‖v(t, ·)‖2H +K0)eK1T ≥ E‖v(t, ·)‖2H ≥ E‖u(t, ·)‖2H .

In fact, if σ2π2 > L2(a1+1), we can know that the following mentioned estimates

of second moments have linearly bounded ones (in time). For T < ∞, ∃ c ≥
0, 0 ≤ t ≤ T , E‖u(t, ·)‖2H ≤ E‖v(t, ·)‖2H ≤ E‖v(0, ·)‖2H + ct.

4 Numerical Methods for Fourier Coefficients

The truncated Fourier series ũ, ṽ in Eqs (2.5) satisfy the Eqs (2.1). Since the

explicit solution is unknown, we take advantage of numerical approximations.

Along partitions 0 = t0 < t1 < t2 < · · · < tnT
= T of interval [0, T ] with the

step sizes hn = tn+1 − tn, and 0 = x0 < x1 < x2 < · · · < xnL
= L of interval

[0, L] with the step sizes dn = xn+1 − xn.

6
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For each fixed xm, let us consider the forward Euler method for cvk

cvk(n+ 1) =hncvk(n)

(
−σ2k2π2

L2
+ a1 − a2

N∑
l=1

c2vl(n)

)
+ cvk(n) + bk4W k

n ,

(4.1)

where 4W k
n = Wk(tn+1) −Wk(tn) ∈ N (0, hn). Other one is backward Euler

method

cvk(n+1) =hncvk(n+1)

(
−σ2k2π2

L2
+a1−a2

N∑
l=1

c2vl(n+1)

)
+ cvk(n) + bk4W k

n .

(4.2)

In our opinion, the best approach is linear-implicit Euler-type method

cvk(n+1) =hncvk(n+1)

(
−σ2k2π2

L2
+ a1 − a2

N∑
l=1

c2vl(n)

)
+ cvk(n) + bk4W k

n .

(4.3)

After calculating the cvk, we can obtain ṽ(tn+1, xm) =
∑N
n=1 cvn(t)en(x). Then

uN can be calculated

ũ(tn+1, xm+1) =dn (ṽ(tn+1, xm)− ũ(tn+1, xm)) + ũ(tn+1, xm).

We note that Eqs (4.1) has a disadvantage that is lacking of stability and mono-

tonicity deficits. A slight disadvantage of Eqs (4.2) is that we have to solve

locally implicit algebraic equations at each iteration step n, which results in a

lot of calculation and time. An advantage of methods (4.2) and (4.3) is very well

stability and moment dissipativity behavior, and they keep some monotonicity

properties [34, 35].

Theorem 4.1. Consider the forward Euler method that

cvk(n+ 1) =
cvk(n) + bk4W k

n

1 + hn

(
σ2k2π2

L2 − a1 + a2
∑N
l=1 c

2
vl(n)

) , (4.4)

where n ∈ N, bk = bαk and 4wkn ∈ N(0, hn). If σ2π2 ≥ L2(a1 + 1), their second

moments is linearly bounded in time,

E
[
‖u(tn, ·)‖2H

]
< +∞.

Proof. Suppose that 1 + hn

[
σ2π2

L2 − (a1 + 1)
]
> 0. The Eqs (4.4) is finite due

to the linear-implicit character of method (4.3). From Eqs (2.6), it follows
cuk(n+ 1)− cuk(n)

hn
= [cvk(t)− cuk(t)] ,

cvk(n+ 1)− cvk(n)

hn
=

[
−σ2k2π2

L2
+a1−a2

+∞∑
l=1

c2vl(t)

]
cvk + bk

Wk(tn + 1)−Wk(tn)

hn
.

7
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It remains to consider the second moments. We estimate cvk by Eqs (4.4)

cvk(n+ 1) =
cvk(n) + bk4wkn

1 + hn

[
σ2k2π2

L2 − a1 + a2
∑N
l=1 c

2
vl(n)

] ,

E [ck(n+1)]
2

= E

 [ck(n)]
2

+ b2khn[
1 + hn

(
σ2k2π2

L2 − a1 + a2
∑N
l=1 c

2
vl(n)

)]2
 .

Since denominator is less than one, we have

E [cvk(n+ 1)]
2 ≤E [cvk(n)]

2
+ (bk)2hn ≤ E [cvk(0)]

2
+ (bk)2tn+1.

From Eqs (2.5), we obtain

N∑
k=1

E
[
‖cvk(n)‖2

]
≤

N∑
k=1

E
[
‖cvk(0)‖2

]
+ b2

N∑
k=1

α2
ktn.

Since
∑+∞
k=1 α

2
k,
∑+∞
k=1 ‖cvk(0)‖2 <∞, we obtain that, as N →∞ and h→ 0

E
[
‖v(tn, ·)‖2H

]
=

+∞∑
k=1

E
[
‖cvk(n)‖2

]
≤

+∞∑
k=1

E
[
‖cvk(0)‖2

]
+ b2

+∞∑
k=1

α2
ktn <∞.

Recall the definition in [38], let chk denote the numerical approximation of the

k-th Fourier coefficients ck. The numerical approximation ch = (chk)k=1,2,···,N is

said to be mean consistent with rate r0 iff there are a constant C0 = C0(T ) and

a positive continuous function or functional V such that

∀n=0,1, · · ·, nT − 1:‖E[c(n+ 1)]−E[ch(n+ 1)]‖N≤C0V (c(n))hr0n

along any (nonrandom) partitions with sufficiently small step sizes hn ≤ δ ≤ 1,

where ‖·‖ is the Euclidean vector norm in RN , provided that one has nonrandom

data c(n) = ch(n).

Lemma 4.2. The method (LIM) governed by Eqs (4.3) is mean consistent with

rate r0 = 1.5.

The similar results may be found in [38].

5 Numerical Experiments

Under the condition that σ2π2 > L2(a1 + 1), we present the results of sys-

tematic numerical simulations for solutions of the SDEs. The order is de-

fined by order = lg
(
‖E[c(n+ 1)]− E[ch(n+ 1)]‖N

)
. The ratio is defined by

8
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ratio =
∣∣∣1− ‖E‖

‖E+ε‖

∣∣∣, where E is the total energy of the system at t = 0 and ε is

the noise.

Case 5.1. We consider the simple initial data with

u(0, x) =


x, x <

1

2
L,

L− x, x >
1

2
L.
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Figure 1: The numerical results at the

times t = 2 with ratio ≈ 1%
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Figure 2: The numerical results at the

times t = 2 with ratio≈ 5%
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Figure 3: The numerical results at the

times t = 2 with ratio > 10%
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Figure 4: The total energy with differ-

ent random terms at t = 10 with ratio

≈ 1%
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Figure 5: The total energy with dif-

ferent random terms at t = 10 with

ratio≈ 5%
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Figure 6: The total energy with differ-

ent random terms at t = 10 with ratio

> 10%

The parameters T = 2, ∆t = 0.05, ∆x = 0.01, L = 1, a1 = 0.1, a2 = 1

and σ = 9 are chosen over the region [0, 1]. In Figure 1, 2 and 3, the lines of

”·” and ”◦” respectively denote the initial value u(0, x) and the terminal value

u(2, x). Figure 1 shows that the wave dissipates at time t = 2. Figure 2, 3 show

9
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Figure 7: The numerical results at the

times t = 10 with ratio ≈ 1%
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Figure 8: The numerical results at the

times t = 10 with ratio≈ 5%
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Figure 9: The numerical results at the

times t = 10 with ratio > 10%
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Figure 10: The total energy with d-

ifferent random terms at t = 10 with

ratio ≈ 1%
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Figure 11: The total energy with d-

ifferent random terms at t = 10 with

ratio≈ 5%

0 50 100 150 200
2

3

4

5

6

7

8

9

10
x 10

4

Figure 12: The total energy with d-

ifferent random terms at t = 10 with

ratio > 10%

Table 1: Order of convergence in space and time for the Euclidean vector norm

∆x ∆t ratio order ratio order

0.01 0.05 1% 4.1677 5% 3.0281

0.01 0.1 1% 4.014 5% 2.6964

0.05 0.05 1% 4.5498 5% 3.4972

0.05 0.1 1% 4.9379 5% 2.6441
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the influence of noise enhancement on waveform. When the ratio > 10% , the

waveform was destroyed. Figure 4, 5 and 6 present the total energy evolution

and show that the total energy stablely declines. However the total energy is

linearly bounded in time. These results are in good agreement with the Theo-

rem 3.1. Similarly, Table 1 presents the numerical results of the linear-implicit

Euler-type schemes, which are in good agreement with Lemma 4.2.

Case 5.2. In the second case, the initial data is same to the case 1. Using

L = 1, a1 = 1, a2 = 1, b = 1 and σ = 9, we present the numerical solution at

the terminal time T = 10.

Table 2: Order of convergence in space and time for the Euclidean vector norm

∆x ∆t ratio order ratio order

0.01 0.05 1% 4.5093 5% 3.3822

0.01 0.1 1% 4.1886 5% 2.5853

0.05 0.05 1% 4.0957 5% 3.8375

0.05 0.1 1% 4.4245 5% 3.2689

Figure 7 shows that the wave dissipates at time t = 10. Figure 8, 9 show

the influence of noise enhancement on waveform. When the ratio > 10% , the

waveform was destroyed. Figure 11, 10 and 12 present the numerical results

of the total energy evolution and show that the total energy stablely declines.

With the increase of the noise, the downward trend is not significant but vibrate.

These results are in good agreement with the Theorem 4.2. Similarly, Table 2

presents the numerical results of the linear-implicit Euler-type schemes, which

are in good agreement with Lemma 4.2.
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Abstract

In this paper, we introduce an iterative process for approximation of a common fixed point for a finite

family of multi-valued Bregman relatively nonexpansive mappings with a solution of the split feasibility

problems in p-uniformly convex and uniformly smooth Banach spaces. We prove the strong convergence

theorems of the proposed iterative process in p-uniformly convex and uniformly smooth Banach spaces

and present the numerical results to verify the efficiency and implementation of our results.

Keywords: Bregman relatively nonexpansive mappings; strong convergence theorems; uniformly convex

Banach spaces; uniformly smooth Banach spaces; split feasibility problems.

1 Introduction

Let E1 and E2 be two p-uniformly convex real Banach spaces which are also uniformly smooth. Let C and

Q be nonempty closed convex subsets of E1 and E2 respectively, A : E1 → E2 be a bounded linear operator

and A∗ : E∗
2 → E∗

1 be the adjoint of A. The split feasibility problem (SFP) is to find a point

x ∈ C such that Ax ∈ Q. (1.1)

Note that the inverse image of the set Q under A is a convex set. Hence the problem 1.1 can be written in

case that the intersection C ∩ A−1(Q) is nonempty. We will denote the nonempty solution set of (1.1) by

Ω = C ∩A−1(Q). Therefore Ω is a closed convex subset of E1.

In 1994, Censor and Elfving [8] introduced the SFP (1.1) in finite-dimensional Hilbert spaces for mod-

elling inverse problems which arise from phase retrievals, medical image reconstruction. Various algorithms

∗Corresponding author.

1
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have been invented to solve the SFP (1.1) ( see [2, 6, 11, 25, 28, 29] and the references therein). In particu-

lar, Byrne [6] introduced a so-called CQ algorithm, taking an initial point x0 arbitrarily and construct the

sequence {xn} by

xn+1 = PC(xn − γA∗(I − PQ)Axn), n ≥ 1,

where 0 < γ < 2
∥A∥2 , and PC denotes the projection onto a set C. That is, PC(x) = arg miny∈C ∥x − y∥.

Recently, Schöpfer et al. [19] solved the SFP (1.1) in p-uniformly convex real Banach spaces which are also

uniformly smooth using the following algorithm: for x1 ∈ E1 and n ≥ 1, set

xn+1 = ΠCJ
q
E∗

1
[JpE1

xn − tnA∗JpE2
(Axn − PQ(Axn))], (1.2)

where ΠC denotes the the Bregman projection and J the duality mapping. Clearly the above algorithm

covers the Byrne’ CQ algorithm [6]. They used algorithm (1.2) for obtaining the weak convergence result

in a p-uniformly convex real Banach spaces which are uniformly smooth with the condition that the duality

mapping of E is sequentially weak-to-weak-continuous. In 2014, Wang [26] studied the following multiple-sets

split feasibility problem (MSSFP) (see [11]): find x ∈ E1 satisfying

x ∈
r∩
i=1

Ci, Ax ∈
r+s∩
j=r+1

Qj (1.3)

where r, s are two given integers, Ci, i = 1, ..., r, is a closed convex subset of E1, and Qj , j = r+1, ..., r+s, is a

closed convex subset in E2. Wang [26] modified the above algorithm (1.2) and proved the strong convergence

theorem using an idea appeared in [13] and the following algorithm: for any initial guess x0, define {xn}
recursively by 

yn = Tnxn

Dn = {u ∈ E : ∆p(yn, u) ≤ ∆p(xn, u)}
En = {u ∈ E : ⟨xn − u, JpE(x0)− JpE(xn)⟩ ≥ 0}
xn+1 = ΠDn∩En(x0),

(1.4)

where Tn is defined, for each n ∈ N, by

Tnx =

{
ΠCi(n)

(x), 1 ≤ i(n) ≤ r
JqE∗

1
[JpE1

(x)− tnA∗JpE2
(I − PQi(n)

)Ax], r + 1 ≤ i(n) ≤ r + s,
(1.5)

i : N→ I is the cyclic control mapping

i(n) = n mod (r + s) + 1,

and tn satisfies

0 < t ≤ tn ≤
( q

Cq∥A∥q
)

1
q−1 .

For better comparison of (1.5) with (1.2), we state a version of (1.2) for solving problem (1.3):

xn+1 = ΠCi(n)
JqE∗

1
[JpE1

(xn)− tnA∗JpE2
(Axn − PQi(n)

(Axn))], (1.6)

where i : N→ I is the cyclic control mapping

i(n) = n mod (r + s) + 1.

In 1967, Bregman [3] has discovered an elegant and effective technique for the use of the Bregman

distance function ∆p in the process of designing and analyzing feasibility and optimization algorithms.
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This opened a growing area of research in which Bregman’s technique is applied in various ways in order

to design and analyze iterative algorithms for solving not only feasibility and optimization problems, but

also algorithms for solving variational inequality problems, equilibrium problems, fixed point problems for

nonlinear mappings, and so on (see [16, 4, 17] , and the references therein).

Recently, Shehu et al. [22] studied split feasibility problems and fixed point problems concerning left

Bregman strongly nonexpansive mappings: find an element x ∈ E1 satisfying

x ∈ C ∩ F (T ) such that Ax ∈ Q. (1.7)

Shehu et al. [22] proposed the following algorithm: for a fixed u ∈ E1, let {xn}∞n=1 be iteratively generated

by u1 ∈ E1, {
xn = ΠCJ

q
E∗

1
[JpE1

(un)− tnA∗JpE2
(Aun − PQ(Aun))]

un+1 = ΠCJ
q
E∗

1
(αnJ

p
E1

(u) + (1− αn)JpE1
(Txn)), n ≥ 1,

(1.8)

where {αn} is a sequence in (0, 1). Moreover Shehu et al. [22] proved the strong convergence of the sequence

generated by (1.8) for solving problem (1.7) in p-uniformly convex real Banach spaces which are also uniformly

smooth.

In 2014, Pang et al. [9] showed that the class of Bregman relatively nonexpansive mappings embraces

properly the class of Bregman strongly nonexpansive mappings. Very recently, Shahzad and Zegeye [21]

introduced the class of multi-valued Bregman relatively nonexpansive mappings which includes the class

of single-valued Bregman relatively nonexpansive mappings. Hence, the class of multi-valued Bregman

relatively nonexpansive mappings is a more general class of mappings and gave a example of a multi-valued

Bregman relatively nonexpansive mappings. Moreover, Shahzad and Zegeye [21] proved that if C is a

nonempty closed convex subset of int(domf) where f : E → R is a uniformly Frechet differentiable and

totally convex on bounded subsets of E and T : C → CB(C) is a Bregman relatively nonexpansive mapping,

then F (T ) is closed and convex.

Our aim in this paper is to construct an iterative scheme for solving problem (1.7) which is also a

fixed point of a multi-valued Bregman relatively nonexpansive mapping T in p-uniformly convex real Banach

spaces which are also uniformly smooth and then prove the strong convergence theorems of the sequences

generated by our scheme under some suitable assumptions.

2 Preliminaries

Let 1 < q ≤ 2 ≤ p with 1
p + 1

q = 1. The modulus of smoothness of E is the function ρE(τ) : [0,∞)→ [0,∞)

defined by

ρE(τ) = sup
{1

2
(∥x+ y∥+ ∥x− y∥)− 1 : ∥x∥ ≤ 1, ∥y∥ ≤ 1

}
.

E is called to be uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0

and E is called to be q-uniformly smooth if there exists a Cq > 0 such that ρE(τ) ≤ Cqτ q for any τ > 0.

The modulus of convexity of E is the function δE : (0, 2]→ [0, 1] defined by

δE(ϵ) := inf
{

1− ∥x+ y

2
∥ : ∥x∥ = ∥y∥ = 1; ϵ = ∥x− y∥

}
.
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E is called to be uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2] and p-uniformly convex if there is a Cp > 0

so that δE(ε) ≥ Cpε
p for any ε ∈ (0, 2]. The Lp space is 2-uniformly convex for 1 < p ≤ 2 and p-uniformly

convex for p ≥ 2.

Lemma 2.1. [27] Let x, y ∈ E. If E is q-uniformly smooth, then there exists a Cq > 0 such that

∥x− y|∥q ≤ ∥x∥q − q⟨y, JqE(x)⟩+ Cq∥y∥q.

It is known that if E is p-uniformly convex and uniformly smooth, then its dual E∗ is q-uniformly smooth

and uniformly convex. Moreover the duality mapping JpE is one-to-one, single-valued and JpE = (JqE∗)−1

where JqE∗ is the duality mapping of E∗ (see [10, 14]).

Definition 2.2. The duality mapping JpE : E → 2E
∗

is defined by

JpE(x) = {x̄ ∈ E∗ : ⟨x, x̄⟩ = ∥x∥p, ∥x̄∥p = ∥x∥p−1}.

The duality mapping JpE is said to be weak-to-weak continuous if

xn ⇀ x⇒ ⟨JpExn, y⟩ → ⟨J
p
Ex, y⟩

holds for any y ∈ E. We observe that lp(p > 1) has such a property, but Lp(p > 2) does not have this

property.

Let f : E → (−∞,+∞] be a convex function and x ∈ int(dom)f . The function f is said to be Gâteaux

differentiable at x if

lim
t→0+

f(x+ ty)− f(x)

t
exists for any y ∈ E.

Definition 2.3. Let f : E → R be a Gâteaux differentiable convex function. The Bregman distance with

respect to f is defined as:

∆f (x, y) = f(y)− f(x)− ⟨f
′
(x), y − x⟩, x, y ∈ E.

It is worth noting that the duality mapping JpE is in fact the derivative of the function fp(x) = ( 1
p )∥x∥p.

Then the Bregman distance with respect to fp is given by

∆p(x, y) =
1

q
∥x∥p − ⟨JpEx, y⟩+

1

p
∥y∥p

=
1

p
(∥y∥p − ∥x∥p) + ⟨JpEx, x− y⟩

=
1

q
(∥x∥p − ∥y∥p)− ⟨JpEx− J

p
Ey, x⟩.

In general, the Bregman distance is not a metric due to the absence of symmetry, but it has some distance-

like properties.

The following are some of important properties of the Bregman distance which are needed in the sequel

∆p(x, y) = ∆p(x, z) + ∆p(z, y) + ⟨z − y, JpEx− J
p
Ez⟩, (2.1)

and

∆p(x, y) + ∆p(y, x) = ⟨x− y, JpEx− J
p
Ey⟩. (2.2)
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For the p-uniformly convex space, the metric and Bregman distance has the following relation (see [20]):

τ∥x− y∥p ≤ ∆p(x, y) ≤ ⟨x− y, JpEx− J
p
Ey⟩, (2.3)

where τ > 0 is some fixed number.

Let C be a nonempty closed convex subset of E. The metric projection

PCx = arg min
y∈C
∥x− y∥, x ∈ E,

is the unique minimizer of the norm distance which can be characterized by a variational inequality:

⟨JpE(x− PCx), z − PCx⟩ ≤ 0, ∀z ∈ C. (2.4)

Similar to the metric projection, the Bregman projection is defined as

ΠCx = arg min
y∈C

∆p(x, y), x ∈ E,

which is well-defined and the minimizer of it is unique (for more details see [19]). The Bregman projection

can also be characterized by a variational inequality:

⟨JpE(x)− JpE(ΠCx), z −ΠCx⟩ ≤ 0, ∀z ∈ C, (2.5)

from which one has

∆p(ΠCx, z) ≤ ∆p(x, z)−∆p(x,ΠCx), ∀z ∈ C. (2.6)

Following [1] and [7], we use of the function Vp : E∗×E → [0,+∞) associated with fp which is defined

by

Vp(x̄, x) =
1

q
∥x̄∥q − ⟨x̄, x⟩+

1

p
∥x∥p, ∀x ∈ E, x̄ ∈ E∗.

Then Vp is nonnegative and Vp(x̄, x) = ∆p(J
q
E∗(x̄), x) for all x ∈ E∗ and y ∈ E.

Moreover, by the subdifferential inequality,

⟨f
′
(x̄), x− x̄⟩ ≤ f(x̄)− f(x). (2.7)

With f(x) = 1
q∥x∥

q, x ∈ E∗, then f
′
(x) = JqE∗ , we have

⟨JqE∗(x), y⟩ ≤ 1

q
∥x− y∥q − 1

q
∥x∥q, ∀x, y ∈ E∗. (2.8)

Using (2.8), we have for all x̄, ȳ ∈ E∗ and x ∈ E that

Vp(x̄+ ȳ, x) =
1

q
∥x̄+ ȳ∥q − ⟨x̄+ ȳ, x⟩+

1

p
∥x∥p

≥ 1

q
∥x̄∥q + ⟨ȳ, JqE∗(x̄)⟩ − ⟨x̄+ ȳ, x⟩+

1

p
∥x∥p

=
1

q
∥x̄∥q − ⟨x̄, x⟩+

1

p
∥x∥p + ⟨ȳ, JqE∗(x̄)⟩

+ ⟨ȳ, JqE∗(x̄)⟩ − ⟨ȳ, x⟩

=
1

q
∥x̄∥q − ⟨x̄, x⟩+

1

p
∥x∥p + ⟨ȳ, JqE∗(x̄)− x⟩

= Vp(x̄, x) + ⟨ȳ, JqE∗(x̄)− x⟩.
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In other words,

Vp(x̄, x) + ⟨ȳ, JqE∗(x̄)− x⟩ ≤ Vp(x̄+ ȳ, x), (2.9)

for all x ∈ E and x̄, ȳ ∈ E∗ (see, for example, [23],[24]).

Let C be a nonempty closed convex subset of a smooth Banach space E and let T be a mapping from C

into itself. A point p ∈ C is said to be an asymptotic fixed point [16] of T if there exists a sequence {xn}n∈N

in C which converges weakly to p and limn→∞ ∥xn − Txn∥ = 0. We denote the set of all asymptotic fixed

points of T by F̂ (T ).

Definition 2.4. Let C be a nonempty convex subset of int(domf). A mapping T : C → int(domf) with

F (T ) ̸= ∅ is called to be

(i) Bregman quasi-nonexpansive if

∆p(Tx, x̄) ≤ ∆p(x, x̄), ∀x ∈ C, x̄ ∈ F (T );

(ii) Bregman relatively nonexpansive if F (T ) = F̂ (T ),

∆p(Tx, x̄) ≤ ∆p(x, x̄), ∀x ∈ C, x̄ ∈ F (T );

(iii) left Bregman strongly nonexpansive with respect to a nonempty F̂ (T ) if

∆p(Tx, x̄) ≤ ∆p(x, x̄), ∀x ∈ C, x̄ ∈ F̂ (T ),

and if whenever {xn} ⊂ C is bounded, x̄ ∈ F̂ (T ) and

lim
n→∞

(∆p(xn, x̄)−∆p(Txn, x̄)) = 0,

it follows that

lim
n→∞

∆p(xn, Txn) = 0.

It is obvious that any left Bregman strongly nonexpansive mapping is a Bregman relatively nonexpansive

mapping, but the converse is not true in general. Pang et al. [9] showed that there exists a Bregman relatively

nonexpansive mapping which is not a Bregman strongly nonexpansive mapping.

Let N(C) and CB(C) denote the families of nonempty subsets and nonempty closed bounded subsets

of C, respectively. The Hausdorff metric on CB(C) is defined by

H(A,B) = max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)},

for all A,B ∈ CB(C) where dist(x,B) = inf{∥x− y∥ : y ∈ B} is the distance from a point x to a subset B.

Recall that a multi-valued mapping T : C → CB(C) is said to be

(i) nonexpansive if H(Tx, Ty) ≤ ∥x− y∥, for all x, y ∈ C;

(ii) quasi-nonexpansive if F (T ) ̸= ∅ and H(Tx, Tp) ≤ ∥x− p∥, for all x ∈ C and p ∈ F (T ).
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Let T : C → CB(C). A point p ∈ C is said to be a fixed point of T if p ∈ F (T ) where F (T ) = {p ∈ T : p ∈
Tp}. A point p ∈ C is said to be an asymptotic fixed point [16] of T if there exists a sequence {xn}n∈N in

C which converges weakly to p and limn→∞ dist(xn, Txn) = 0.

Definition 2.5. [21] Let T : C → CB(C) is said to be Bregman relatively nonexpansive if the following

conditions are satisfied:

(A1) F (T ) is nonempty;

(A2) ∆p(z, x̄) ≤ ∆p(x, x̄) for z ∈ Tx, x ∈ C and x̄ ∈ F (T );

(A3) F (T ) = F̂ (T ).

The following is the example of a multi-valued Bregman relatively nonexpansive mapping appeared in

[21]:

Example 2.6. [21] Let I = [0, 1], X = Lp(I), 1 < p < ∞ and C = {f ∈ X : f(x) ≥ 0, ∀x ∈ I}. Let

T : C → CB(C) be defined by{
{h ∈ C : f(x)− 1

2 ≤ h(x) ≤ f(x)− 1
4 ,∀x ∈ I} if f(x) > 1, ∀x ∈ I

{0}, otherwise.
(2.10)

Then T is defined by (2.10) is a multi-valued Bregman relatively nonexpansive mapping.

We next state the following lemmas which will be used in the sequel.

Lemma 2.7. [5] Let E be a Banach space and f : E → R a Gâteaux differentiable function which is locally

uniformly convex on E. Let {xn}n∈N and {yn}n∈N be bounded sequences in E. Then the following assertions

are equivalent

(i) limn→∞Df (xn, yn) = 0;

(ii) limn→∞ ∥xn − yn∥ = 0.

Lemma 2.8. [12] Let E be a Banach space, let r > 0 be a constant, and let f : E → R be a uniformly

convex function on bounded subsets of E. Then

f
( n∑
k=0

αkxk

)
≤

n∑
k=0

αkf(xk)− αiαjρr(∥xi − yi∥),

for all i, j ∈ {0, 1, 2, ..., n}, xk ∈ Br, αk ∈ (0, 1), and k = 0, 1, 2, ..., n with
∑n
k=0 αk = 1,where ρr is the

gauge of uniform convexity of f .

Lemma 2.9. [27] Let {an} be a sequence of nonnegative real numbers satisfying

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 1,

where (i) {αn} ⊂ [0, 1],
∑
αn = ∞; (ii) lim supσn ≤ 0; (iii) γn ≥ 0; (n ≥ 1),

∑
γn < 0. Then, an → 0 as

n→∞.
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3 Main results

In this section, we introduce an iterative process for approximation of a common fixed point for a finite family

of multi-valued Bregman relatively nonexpansive mappings with a solution of the split feasibility problems

in p-uniformly convex and uniformly smooth Banach spaces and prove the strong convergence theorems of

the proposed iterative process in p-uniformly convex and uniformly smooth Banach spaces

Theorem 3.1. Let E1 and E2 be two p-uniformly convex real Banach spaces which are also uniformly

smooth. Let C and Q be nonempty closed convex subsets of E1 and E2, respectively, A : E1 → E2 be a

bounded linear operator and A∗ : E∗
2 → E∗

1 be the adjoint of A. Suppose that SFP has a nonempty solution

set Ω. Let {Ti}Ni=1 be a finite family of multi-valued bregman relative nonexpansive mappings of C into

CB(C) such that F = ∩Ni=1F (Ti) ∩ Ω ̸= ∅. Let u1 ∈ E1 and the sequence {xn} be generated by{
xn = ΠcJ

q
E∗

1
[JpE1

(un)− tnA∗JpE2
(Aun − PQ(Aun))]

un+1 = ΠcJ
q
E∗

1
(α

(0)
n JpE1

(xn) +
∑N
i=1 α

(i)
n JpE1

(z
(i)
n )) , z

(i)
n ∈ Tixn,

(3.1)

where {α(i)
n } ⊂ [a.b] ⊂ (0, 1) for all i = 0, 1, ..., N such that

∑N
i=0 α

(i)
n = 1. Suppose the following conditions

are satisfied:

(i) Σ∞
n=1α

(i)
n = 0 for all i = 0, 1, ..., N.

(ii) 0 < t ≤ tn ≤ k <
(

q
Cq∥A∥q )

1
q−1 .

Then the sequence {xn}∞n=1 converges strongly to an element x∗ ∈ F .

Proof. Let x∗ ∈ Ω. Suppose that wn = Aun−PQ(Aun) and vn = JqE∗
1
[JpE1

(un)− tnA∗JpE2
(Aun−PQ(Aun))],

∀n ≥ 1. Therefore xn = Πcvn, ∀n ≥ 1. It follows that

⟨JpE2
(wn), Aun −Ax∗⟩ = ∥Aun − PQ(Aun)∥p + ⟨JpE2

(wn), PQ(Aun)−Ax∗⟩

≥ ∥Aun − PQ(Aun)∥p = ∥wn∥p. (3.2)

By Lemma 2.1, we obtain that

∆p(xn, x
∗) ≤ ∆p(vn, x

∗)

= ∆p(J
q
E∗

1
[JpE1

(un)− tnA∗JpE2
(wn)], x∗)

=
1

q
∥JpE1

(un)− tnA∗JpE2
(wn)∥q − ⟨JpE1

(un), x∗⟩+ tn⟨JpE2
(wn), Ax∗⟩+

1

p
∥x∗∥p

≤ 1

q
∥JpE1

(un)∥q − tn⟨Aun, JpE2
(wn)⟩+

Cq(tn∥A∥)q

q
∥JpE2

(wn)∥q

− ⟨JpE1
(un), x∗⟩+ tn⟨JpE2

(wn), Ax∗⟩+
1

p
∥x∗∥p

=
1

q
∥un∥p − ⟨JpE1

(un), x∗⟩+
1

p
∥x∗∥p + tn⟨Aun, JpE2

(wn)⟩

+
Cq(tn∥A∥)q

q
∥JpE2

(wn)∥q

= ∆p(un, x
∗) + tn⟨JpE2

(wn), Ax∗ −Aun⟩+
Cq(tn∥A∥)q

q
∥JpE2

(wn)∥q

= ∆p(un, x
∗) +

(
tn −

Cq(tn∥A∥)q

q

)
∥wn∥p. (3.3)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

56 P. Chuasuk et al 49-66



Using the condition(ii), we have

∆p(xn, x
∗) ≤ ∆p(un, x

∗) ∀n ≥ 1.

Now, using (3.1), we have

∆p(xn+1, x
∗) ≤ ∆p(un+1, x

∗) ≤ α(0)
n ∆p(xn, x

∗) +

N∑
i=1

α(i)
n ∆p(z

(i)
n , x∗)

≤ α(0)
n ∆p(xn, x

∗) +

N∑
i=1

α(i)
n ∆p(xn, x

∗)

= ∆p(xn, x
∗). (3.4)

This shows that {∆p(xn, x
∗)} is a bounded decreasing sequence. Hence the limn→∞ ∆p(xn, x

∗) exists and

thus limn→∞(∆p(xn, x
∗) − ∆p(xn+1, x

∗)) = 0. Let yn = JqE∗
1
(α

(0)
n JpE1

(xn) +
∑N
i=1 α

(i)
n JpE1

(z
(i)
n )), n ≥ 1.

Therefore

∆p(xn+1, x
∗) ≤ ∆p(un+1, x

∗)

= Vp(α
(0)
n JpE1

(xn) +
N∑
i=1

α(i)
n JpE1

(z(i)n ), x∗)

≤ Vp(α(0)
n JpE1

(xn) +
N∑
i=1

α(i)
n JpE1

(z(i)n )− α(0)
n (JpE1

(xn)− JpE1
(x∗)), x∗)

+ α(0)
n ⟨J

p
E1

(xn)− JpE1
(x∗), yn − x∗⟩

= Vp(α
(0)
n JpE1

(x∗) +
N∑
i=1

α(i)
n JpE1

(z(i)n ), x∗) + α(i)
n ⟨J

p
E1

(xn)− JpE1
(x∗), yn − x∗⟩

= α(0)
n Vp(J

p
E1

(x∗), x∗) +
N∑
i=1

α(i)
n Vp(J

p
E1

(z(i)n ), x∗)

+ α(0)
n ⟨J

p
E1

(xn)− JpE1
(x∗), yn − x∗⟩

=

N∑
i=1

α(i)
n ∆p(z

(i)
n , x∗) + α(0)

n ⟨J
p
E1

(xn)− JpE1
(x∗), yn − x∗⟩

≤
N∑
i=1

α(i)
n ∆p(xn, x

∗) + α(0)
n ⟨J

p
E1

(xn)− JpE1
(x∗), yn − x∗⟩. (3.5)
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By Lemma 2.8, we obtain that

∆p(xn+1, x
∗) ≤ ∆p(un+1, x

∗)

= Vp(α
(0)
n JpE1

(xn) +

N∑
i=1

α(i)
n JpE1

(z(i)n ), x∗)

=
1

q
∥x∗∥q − ⟨α(0)

n JpE1
(xn) +

N∑
i=1

α(i)
n JpE1

(z(i)n ), x∗⟩

+
1

p
∥α(0)

n JpE1
(xn) +

N∑
i=1

α(i)
n JpE1

(z(i)n )∥p

=
1

q
∥x∗∥q − α(0)

n ⟨J
p
E1

(xn), x∗⟩ −
N∑
i=1

α(i)
n ⟨J

p
E1

(z(i)n ), x∗⟩

+
1

p
∥α(0)

n JpE1
(xn) +

N∑
i=1

α(i)
n JpE1

(z(i)n )∥p

≤ 1

q
∥x∗∥q − α(0)

n ⟨J
p
E1

(xn), x∗⟩ −
N∑
i=1

α(i)
n ⟨J

p
E1

(z(i)n ), x∗⟩

+ α(0)
n

1

p
∥JpE1

(xn)∥p +
N∑
i=1

α(i)
n

1

p
∥JpE1

(z(i)n )∥p − α(i)
n α(j)

n ρr(∥JpE1
(xn)− JpE1

(z(i)n )∥)

= α(0)
n Vp(J

p
E1

(xn), x∗) +
N∑
i=1

α(i)
n Vp(J

p
E1

(z(i)n ), x∗)− α(i)
n α(j)

n ρr(∥JpE1
(xn)− JpE1

(z(i)n )∥)

= α(0)
n ∆p(xn, x

∗) +
N∑
i=1

α(i)
n ∆p(z

(i)
n , x∗)− α(i)

n α(j)
n ρr(∥JpE1

(xn)− JpE1
(z(i)n )∥)

≤ α(0)
n ∆p(xn, x

∗) +

N∑
i=1

α(i)
n ∆p(xn, x

∗)− α(i)
n α(j)

n ρr(∥JpE1
(xn)− JpE1

(z(i)n )∥)

= ∆p(xn, x
∗)− α(i)

n α(j)
n ρr(∥JpE1

(xn)p − JpE1
(z(i)n )∥).

Thus

α(i)
n α(j)

n ρr(∥JpE1
(xn)∥p − JpE1

(z(i)n )∥) ≤ ∆p(xn, x
∗)−∆p(xn+1, x

∗). (3.6)

Then, from (3.6), we have

α(i)
n α(j)

n ρr(∥JpE1
(xn)− JpE1

(z(i)n )∥)→ 0, n→∞.

By the property of ρr, we have

lim
n→∞

∥JpE1
(xn)− JpE1

(z(i)n )∥ = 0.

Since JqE∗
1

is norm-to-norm uniformly continuous on bounded subsets of E∗
1 , we have

lim
n→∞

∥xn − z(i)n ∥ = 0.

Since d(xn, Tixn) ≤ ∥xn − z(i)n ∥, we have

lim
n→∞

d(xn, Tixn) = 0,
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for each i = {1, 2, ..., N}. Since {xn} is bounded, there exists a subsequence {xnj} of {xn} that converges

weakly to z. Since Ti is a multi-valued Bregman relative nonexpansive mapping, we obtain z ∈ F (Ti), for

each i ∈ {1, 2, ..., N} and hence z ∈ ∩Ni=1F (Ti).

We now show that z ∈ Ω. From (3.3), we obtain that(Cq(tn∥A∥)q
q

)
∥Aun − PQ(Aun)∥p ≤ ∆p(un, x

∗)−∆p(xn, x
∗). (3.7)

From (3.4), we have

∆p(un+1, x
∗) ≤ ∆p(xn, x

∗). (3.8)

Putting (3.7) into (3.8), we have

(Cq(tn∥A∥)q
q

)
∥Aun − PQ(Aun)∥p ≤ ∆p(xn−1, x

∗)−∆p(xn, x
∗). (3.9)

By condition (ii) and (3.9), we have

0 < t
(

1− Cqk
q−1∥A∥q

q

)
∥Aun − PQ(Aun)∥p

≤
(
tn −

Cq(tn∥A∥)q

q

)
∥Aun − PQ(Aun)∥p

≤ ∆p(xn−1, x
∗)−∆p(xn, x

∗).

Hence, we obtain that

lim
n→∞

∥Aun − PQ(Aun)∥ = 0. (3.10)

Since vn = JqE∗
1
[JpE1

(un)− tnA∗JpE2
(Aun − PQ(Aun))], ∀n ≥ 1, then we have

0 ≤ ∥JpE1
(vn)− JpE1

(un)∥ ≤ tn∥A∗∥∥JpE2
(Aun − PQ(Aun))∥

≤
( q

Cq∥A∥q
)q−1

∥A∗∥∥Aun − PQ(Aun)∥p−1. (3.11)

It follows that

lim
n→∞

∥JpE1
(vn)− JpE1

(un)∥ = 0.

Since JqE∗
1

is norm-to-norm uniformly continuous on bounded subsets of E∗
1 , we have

lim
n→∞

∥vn − un∥ = 0.

Furthermore,

∥JqE∗
1
[JpE1

(un)− tnA∗JpE2
(Aun − PQ(Aun))]− un∥ = ∥vn − un∥ → 0, n→∞.

Since JE1
is norm-to-norm uniformly continuous on bounded subsets of E1, then

t∥A∗JpE2
(Aun − PQ(Aun))∥ ≤ tn∥A∗JpE2

(Aun − PQ(Aun))∥

= ∥JpE1
(un)− tnA∗JpE2

(Aun − PQ(Aun))− JpE1
(un)∥.

Thus

lim
n→∞

∥A∗JpE2
(Aun − PQ(Aun))∥ = 0.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

59 P. Chuasuk et al 49-66



From (2.6) and (3.4), we obtain that

∆p(vn, xn) = ∆p(vn,Πcvn)

≤ ∆p(vn, x
∗)−∆p(xn, x

∗)

≤ ∆p(un, x
∗)−∆p(xn, x

∗)

≤ ∆p(xn−1, x
∗)−∆p(xn, x

∗).

This implies that

lim
n→∞

∥vn − xn∥ = 0.

Hence

∥xn − un∥ = ∥vn − un∥+ ∥vn − xn∥ → 0 as n→∞.

Since {xn} is bounded, there exists {xnj
} of {xn} such that xnj

⇀ z ∈ ωω(xn). Since xnj
⇀ z and

limn→∞ ∥xn − un∥ = 0, we obtain that unj ⇀ z. From (2.2), (2.5) and (2.3), we have

∆p(z,Πcz) ≤ ⟨JpE1
(z)− JpE1

(Πcz), z −Πcz⟩

= ⟨JpE1
(z)− JpE1

(Πcz), z − unj
⟩+ ⟨JpE1

(z)− JpE1
(Πcz), unj −Πcunj ⟩

+ ⟨JpE1
(z)− JpE1

(Πcz),Πcunj −Πcz⟩

≤ ⟨JpE1
(z)− JpE1

(Πcz), z − unj ⟩+ ⟨JpE1
(z)− JpE1

(Πcz), unj −Πcunj ⟩.

As j →∞, we obtain that ∆p(z,Πcz) = 0. Thus z ∈ C. Let us now fix x ∈ C. Then Ax ∈ Q and

∥(I − PQ)Aunj∥p = ⟨JpE2
(Axn − PQ(Aunj )), Axn − PQ(Aunj )⟩

= ⟨JpE2
(Axn − PQ(Aunj )), Axn −Ax⟩+ ⟨JpE2

(Axn − PQ(Aunj )), Axn − PQ(Aunj )⟩

≤ ⟨JpE2
(Axn − PQ(Aunj )), Aunj −Ax⟩

≤M∥A∗(I − PQ)Aunj∥p−1 → 0, n→∞,

where M > 0 is sufficiently large number. It then follows from (2.4) that

∥(I − PQ)Az∥p = ⟨JpE2
(Az − PQ(Az)), Az − PQ(Az)⟩

= ⟨JpE2
(Az − PQ(Az)), Az −Aunj ⟩+ ⟨JpE2

(Az − PQ(Az)), Aunj − PQ(Aunj )⟩

+ ⟨JpE2
(Az − PQ(Az)), PQ(Aunj )− PQ(Az)⟩

≤ ⟨JpE2
(Az − PQ(Az)), Az −Aunj ⟩+ ⟨JpE2

(Az − PQ(Az)), Aunj − PQ(Aunj )⟩.

Also, since Aunj ⇀ Az, we have that

lim
n→∞

∥(I − PQ)Az∥ = 0.

Thus Az ∈ Q. This implies that z ∈ Ω and hence z ∈ F (T ) ∩ Ω.Furthermore, we have

∆p(xn, yn) ≤ α(0)
n ∆p(xn, xn) +

N∑
i=1

α(i)
n ∆p(xn, z

(i)
n ). (3.12)

Since ∥xn − z(i)n ∥ → 0 as n→∞ and {zin} is a bounded sequence. By Lemma 2.7, we obtain that

limn→∞ ∆p(xn, z
(i)
n ) = 0. From (3.12), it follows that ∥xn − yn∥ → 0, n→∞.
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Let p ∈ F (T ) ∩ Ω. We next show that lim supn→∞⟨J
p
E1

(xn) − JpE1
(p), yn − p⟩ ≤ 0. To show the inequality

lim supn→∞⟨J
p
E1

(xn)− JpE1
(p), yn − p⟩ ≤ 0, we choose a subsequence {xnj} of {xn} such that

lim sup
n→∞

⟨JpE1
(xn)− JpE1

(p), xn − p⟩ = lim
n→∞

⟨JpE1
(xn)− JpE1

(p), xnj − p⟩ = 0.

Since ∥xn − yn∥ → 0 as n→∞ and (2.5), we obtain that

lim sup
n→∞

⟨JpE1
(xn)− JpE1

(p), yn − p⟩ ≤ lim sup
n→∞

⟨JpE1
(xn)− JpE1

(p), xn − p⟩ = 0. (3.13)

Using (3.13), (3.5) and Lemma 2.9, we obtain that ∆p(xn, p)→ 0, n→∞. Hence, xn → p as n→∞.

Corollary 3.2. Let E1 and E2 be two Lp spaces with 2 ≤ p <∞. Let C and Q be nonempty closed convex

subsets of E1 and E2, respectively, A : E1 → E2 be a bounded linear operator and A∗ : E∗
2 → E∗

1 be the

adjoint of A. Suppose that SFP has a nonempty solution set Ω. Let {Ti}Ni=1 be a finite family of multi-valued

Bregman relative nonexpansive mappings of C into CB(C) such that F = ∩Ni=1F (Ti) ∩ Ω ̸= ∅. Let u1 ∈ E1

and the sequence {xn} be generated by{
xn = ΠcJ

q
E∗

1
[JpE1

(un)− tnA∗JpE2
(Aun − PQ(Aun))]

un+1 = ΠcJ
q
E∗

1
(α

(0)
n JpE1

(xn) +
∑N
i=1 α

(i)
n JpE1

(z
(i)
n )) , z

(i)
n ∈ Tixn,

(3.14)

where {α(i)
n } ⊂ [a.b] ⊂ (0, 1) for all i = 0, 1, ..., N such that

∑N
i=0 α

(i)
n = 1. Suppose the following conditions

are satisfied:

(i) Σ∞
n=1α

(i)
n = 0 for all i = 0, 1, ..., N

(ii) 0 < t ≤ tn ≤ k <
(

q
Cq∥A∥q )

1
q−1 .

Then the sequence {xn}∞n=1 converges strongly to an element x∗ ∈ F .

If we assume that each Ti, i = 1, 2, ..., N, in Theorem 3.1 is a Bregman relative nonexpansive single-

valued mapping, we obtain the following corollary:

Corollary 3.3. Let E1 and E2 be two p-uniformly convex real Banach spaces which are also uniformly

smooth. Let C and Q be nonempty closed convex subsets of E1 and E2, respectively, A : E1 → E2 be a

bounded linear operator and A∗ : E∗
2 → E∗

1 be the adjoint of A. Suppose that SFP has a nonempty solution

set Ω. Let {Ti}Ni=1 be a finite family of single-valued Bregman relative nonexpansive mappings of C into C

such that F = ∩Ni=1F (Ti) ∩ Ω ̸= ∅. Let u1 ∈ E1 and the sequence {xn} be generated by{
xn = ΠcJ

q
E∗

1
[JpE1

(un)− tnA∗JpE2
(Aun − PQ(Aun))]

un+1 = ΠcJ
q
E∗

1
(α

(0)
n JpE1

(xn) +
∑N
i=1 α

(i)
n JpE1

(Tixn)),
(3.15)

where {α(i)
n } ⊂ [a.b] ⊂ (0, 1) for all i = 0, 1, ..., N such that

∑N
i=0 α

(i)
n = 1. Suppose the following conditions

are satisfied:

(i) Σ∞
n=1α

(i)
n = 0 for all i = 0, 1, ..., N

(ii) 0 < t ≤ tn ≤ k <
(

q
Cq∥A∥q )

1
q−1 .

Then the sequence {xn}∞n=1 converges strongly to an element x∗ ∈ F .
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4 Numerical Example

In this section, we present the numerical example supporting our main result. All codes are written in

Matlab2013b.

Example 4.1. Let E1 = L2([0, 1]) = E2 with the inner product given by

⟨f, g⟩ =

∫ 1

0

f(t)(g(t)dt.

Suppose that

C := {x ∈ L2([0, 1]) : ⟨x, a⟩ = b},

where a = 2t2 and b = 0. Therefore

PC(x) = max
{

0,
b− ⟨a, x⟩
∥a∥22

}
a+ x.

Let

Q := {x ∈ L2([0, 1]) : ⟨x, c⟩ ≥ d},

where c = t
3 and d = −2. It follows that

PQ(x) :=
d− ⟨c, x⟩
∥c∥22

c+ x.

Define

A : L2([0, 1]→ L2([0, 1] by (Ax)(t) =
x(t)

2
.

Then A is a bounded linear operator with ∥A∥ = 2 and A∗ = A. Suppose that

T1(f)

{
{h ∈ C : f(x)− 3

4 ≤ h(x) ≤ f(x)− 1
3 , ∀x ∈ I} if f(x) > 1, ∀x ∈ I

{0}, otherwise,
(4.1)

and

T2(f)

{
{g ∈ C : f(x)− 1

2 ≤ g(x) ≤ f(x)− 1
4 , ∀x ∈ I} if f(x) > 1, ∀x ∈ I

{0}, otherwise.
(4.2)

In [21], we obtain that T1 and T2 are multi-valued Bregman relative nonexpansive mappings. Consider the

problem:

find x ∈ F (T ) ∩ C such that Ax ∈ Q. (4.3)

We see that the set of solutions of problem (4.3) is nonempty, since x = 0 is in the set of solutions. Let

α
(0)
n = 1

12n , α
(1)
n = 12n−1

36n , and α
(2)
n = 12n−1

18n for all n ≥ 1. Put z
(1)
n = xn − 3

4 and z
(2)
n = xn − 1

2 . Using the

iterative method (3.1), we obtain that{
xn = Πc[un − tnA∗(Aun − PQ(Aun))]

un+1 = Πc(
1

12n (xn) + 12n−1
36n (xn − 3

4 ) + 12n−1
18n (xn − 1

2 )), n ≥ 1.
(4.4)

We make different choices of u1 and tn and take ∥xn+1−xn∥
∥x2−x1∥ < 10−6 as our stopping criterion.
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Case 1 tn = 0.001 and u1 = t. We have the numerical analysis tabulated in Table 1 and show in Figure

1.

Table 1 Example 4.1: Case 1

No.of iteration ∥xn+1 − xn∥2 ∥un+1 − un∥2
2 0.45960659 0.45871914

3 0.03706339 0.03979071

4 0.00089775 0.00150921

5 0.00002339 0.00002339

6 0.00000070 0.00000210

7 0.00000043 0.00000141

8 0.00000030 0.00000100

9 0.00000023 0.00000075

Figure 1. Example 4.1: Case 1.
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Case 2 tn = 0.0002 and u1 = t2. We have the numerical analysis tabulated in Table 2 and show in

Figure 2.

Table 2 Example 4.1: Case 2

No.of iteration ∥xn+1 − xn∥2 ∥un+1 − un∥2
2 0.30581518 0.30563219

3 0.02659138 0.02659287

4 0.0008344 0.00110931

5 0.00002409 0.00002388

6 0.00000053 0.00000064

7 0.00000009 0.00000028

8 0.00000006 0.00000020

9 0.00000005 0.00000015

4.jpg 4.bb

Figure 2. Example 4.1: Case 2.
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ABSTRACT

In this paper, we study the qualitative behavior of the rational recursive sequences

xn+1 =
xn−11

±1± xn−2xn−5xn−8xn−11
, n = 0, 1, 2, ...,

where the initial conditions are arbitrary real numbers. Also, we give the numerical examples of some cases of
difference equations and obtained some related graphs and figures using by Matlab.

Keywords: Difference Equation, Recursive sequence, Local stability, Periodicity.
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–––––––––––––––––––

1. INTRODUCTION

Difference equations and dynamic equations on time scales have an immense possibility for applications in engi-
neering, physics, biology, economics, etc. Lately, considerable attentiveness has been devoted to the oscillation
theory of the various classes of equations,see e.g. [1]-[42] and the references cited therein.

In this study, we are interested with the behavior of the solution of difference equations

xn+1 =
xn−11

±1± xn−2xn−5xn−8xn−11
, n = 0, 1, 2, ..., (1)

where the initial conditions are arbitrary real numbers. For some outcome in this study for examples: Cinar
[8-10] obtained the solutions of the difference equations

xn+1 =
xn−1

1 + xnxn−1
, xn+1 =

xn−1
−1 + xnxn−1

, xn+1 =
axn−1

1 + bxnxn−1
.

Cinar et al. [11] gave the form of the solution of the difference equation

xn+1 =
xn−3

−1 + xnxn−1xn−2xn−3
.

Elabbasy et al. [13] solved the following problem

xn+1 =
αxn−k

β + γ
k
Π
i=0

xn−i

.
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In [14] Elsayed studied the difference equation

xn+1 =
xn−5

−1 + xn−2xn−5
.

Elsayed [21-22] obtained the solutions of the following difference equations

xn+1 =
xn−7

±1± xn−1xn−3xn−5xn−7
, xn+1 =

xn−9
±1± xn−4xn−9

.

Elsayed [23] investigated the Solution of difference equations

xn+1 =
xn−3

±1± xn−1xn−3
.

Elsayed and Iricanin [24] has got the solution of the difference equation

xn+1 = max {An/xn, xn−1} .

Ibrahim [26] studied the third order rational difference equation

xn+1 =
xnxn−2

xn−1 (a+ bxnxn−2)
.

In [30] Kent et al studied the Behavior of solutions of the difference equation

xn+1 = xnxn−2 − 1.

Let I be some interval of real numbers and let F : Ik+1 → I, be a continuously differentiable function. Then for
every set of initial condition x−k, x−k+1, ..., x0 ∈ I, the difference equation

xn+1 = F (xn, xn−1, xn−2, ..., xn−k), n = 0, 1, ..., (2)

has a unique solution {xn}∞n=−k.
Definition 1. A point x ∈ I is called an equilibrium point of Eq.(2) if x = F (x), that is,

xn = x for all n ≥ −k.

is a solution of Eq.(2), or equivalently, x is a fixed point of F.

Definition 2. (Periodicity) A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for all
n ≥ −k.
Linearized Stability Analysis

Suppose that the function F is continuously differentiable in some open neighborhood of an equilibrium point
x∗. Let

pi =
∂F

∂ui
(x, x, ..., x) for i = 0, 1, ..., k,

denote the partial derivatives of F (u0, u1, ....uk) evaluated at the equilibrium x of Eq.(2).

Then the equation
yn+1 = p0yn + p1yn−1 + ...+ pkyn−k , n = 0, 1, ..., (3)
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is called the linearized equation associated of Eq.(2) about the equilibrium point x and the equation

λk+1 − p0λ
k − ...− pk−1λ− pk = 0, (4)

is called the characteristic equation of Eq.(3) about x.

The following result known as the Linear Stability Theorem is very useful in determining the local stability
character of the equilibrium point x of Eq.(2).

Definition 3. The equilibrium point x is said to be hyperbolic if |F (x)| 6= 1.
If |F (x)| = 1, x is non hyperbolic.

Theorem A. [31] Assume that p0, p2, ..., pk are real numbers such that

|p0|+ |p1|+ ...+ |pk| < 1, or
kX
i=1

|pi| < 1.

Then all roots of Eq.(4) lie inside the unit disk.

2. THE FIRST EQUATION XN+1 =
XN−11

1+XN−2XN−5XN−8XN−11

In this part, we obtain the following special case of Eq.(1) in the form:

xn+1 =
xn−11

1 + xn−2xn−5xn−8xn−11
, (5)

where the initial values are arbitrary real numbers.

Theorem 2.1. Let {xn}∞n=−11 be a solution of difference equation (5). Then for n = 0, 1, ...

x12n−11 = p
n−1Y
i=0

1 + 4ipkfc

1 + (4i+ 1) pkfc
, x12n−10 = m

n−1Y
i=0

1 + 4imheb

1 + (4i+ 1)mheb
, x12n−9 = l

n−1Y
i=0

1 + 4ildga

1 + (4i+ 1) ldga
,

x12n−8 = k
n−1Y
i=0

1 + (4i+ 1) pkfc

1 + (4i+ 2) pkfc
, x12n−7 = h

n−1Y
i=0

1 + (4i+ 1)mheb

1 + (4i+ 2)mheb
, x12n−6 = g

n−1Y
i=0

1 + (4i+ 1) ldga

1 + (4i+ 2) ldga
,

x12n−5 = f
n−1Y
i=0

1 + (4i+ 2) pkfc

1 + (4i+ 3) pkfc
, x12n−4 = e

n−1Y
i=0

1 + (4i+ 2)mheb

1 + (4i+ 3)mheb
, x12n−3 = d

n−1Y
i=0

1 + (4i+ 2) ldga

1 + (4i+ 3) ldga
,

x12n−2 = c
n−1Y
i=0

1 + (4i+ 3) pkfc

1 + (4i+ 4) pkfc
, x12n−1 = b

n−1Y
i=0

1 + (4i+ 3)mheb

1 + (4i+ 4)mheb
, x12n = a

n−1Y
i=0

1 + (4i+ 3) ldga

1 + (4i+ 4) ldga
,

where x−11 = p, x−10 = m, x−9 = l, x−8 = k, x−7 = h, x−6 = g, x5 = f, x−4 = e, x−3 = d, x−2 = c,

x−1 = b, x0 = a and
−1Y
i=0

αi = 1.

Proof. For n = 0, the result holds. Now, assume that n > 0 and that our assumption holds for n− 1. That is,

x12n−23 = p
n−2Y
i=0

1 + 4ipkfc

1 + (4i+ 1) pkfc
, x12n−22 = m

n−2Y
i=0

1 + 4imheb

1 + (4i+ 1)mheb
, x12n−21 = l

n−2Y
i=0

1 + 4ildga

1 + (4i+ 1) ldga
,

x12n−20 = k
n−2Y
i=0

1 + (4i+ 1) pkfc

1 + (4i+ 2) pkfc
, x12n−19 = h

n−2Y
i=0

1 + (4i+ 1)mheb

1 + (4i+ 2)mheb
, x12n−18 = g

n−2Y
i=0

1 + (4i+ 1) ldga

1 + (4i+ 2) ldga
,

x12n−17 = f
n−2Y
i=0

1 + (4i+ 2) pkfc

1 + (4i+ 3) pkfc
, x12n−16 = e

n−2Y
i=0

1 + (4i+ 2)mheb

1 + (4i+ 3)mheb
, x12n−15 = d

n−2Y
i=0

1 + (4i+ 2) ldga

1 + (4i+ 3) ldga
,
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x12n−14 = c
n−2Y
i=0

1 + (4i+ 3) pkfc

1 + (4i+ 4) pkfc
, x12n−13 = b

n−2Y
i=0

1 + (4i+ 3)mheb

1 + (4i+ 4)mheb
, x12n−12 = a

n−2Y
i=0

1 + (4i+ 3) ldga

1 + (4i+ 4) ldga
.

Now, it follows from Eq. (5) that

x12n−11 =
x12n−23

1 + x12n−14x12n−17x12n−20x12n−23

=

p

n−2Y
i=0

1+4ipkfc
1+(4i+1)pkfc

1+c

n−2Y
i=0

1+(4i+3)pkfc
1+(4i+4)pkfc f

n−2Y
i=0

1+(4i+2)pkfc
1+(4i+3)pkfck

n−2Y
i=0

1+(4i+1)pkfc
1+(4i+2)pkfcp

n−2Y
i=0

1+4ipkfc
1+(4i+1)pkfc

=

p
n−2Y
i=0

1+4ipkfc
1+(4i+1)pkfc

1 + pkfc
n−2Y
i=0

1+4ipkfc
1+(4i+4)pkfc

= p
n−2Y
i=0

1+4ipkfc
1+(4i+1)pkfc

µ
1

1+ pkfc
1+(4n−4)pkfc

¶

= p
n−2Y
i=0

1 + 4ipkfc

1 + (4i+ 1) pkfc

µ
1 + (4n− 4) pkfc
1 + (4n− 3) pkfc

¶
Therefore, we have

x12n−11 = p
n−1Y
i=0

1 + 4ipkfc

1 + (4i+ 1) pkfc
.

Similarly

x12n−7 =
x12n−19

1 + x12n−10x12n−13x12n−16x12n−19

=

h

n−2Y
i=0

1+(4i+1)mheb
1+(4i+2)mheb

1+m

n−1Y
i=0

1+4imheb
1+(4i+1)mheb b

n−2Y
i=0

1+(4i+3)mheb
1+(4i+4)mheb e

n−2Y
i=0

1+(4i+2)mheb
1+(4i+3)mhebh

n−2Y
i=0

1+(4i+1)mheb
1+(4i+2)mheb

=

h
n−2Y
i=0

1+(4i+1)mheb
1+(4i+2)mheb

1 +mheb
n−1Y
i=0

1+4imheb
1+(4i+1)mheb

n−2Y
i=0

1+(4i+1)mheb
1+(4i+4)mheb

= h
n−2Y
i=0

1 + (4i+ 1)mheb

1 + (4i+ 2)mheb

Ã
1

1 + mheb
1+(4n−3)mheb

!

= h
n−2Y
i=0

1 + (4i+ 1)mheb

1 + (4i+ 2)mheb

µ
1 + (4n− 3)mheb

1 + (4n− 2)mheb

¶
.

Hence, we have

x12n−7 = h
n−1Y
i=0

1 + (4i+ 1)mheb

1 + (4i+ 2)mheb
.

Similarly, other relations can be obtained and thus, the proof has been proved.
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Theorem 2.2. Eq.(5) has unique equilibrium point which is the number zero and this equilibrium is not locally
asymptotically stable. Also, x is non hyperbolic.

Proof. For the equilibrium points of Eq.(5), we can write

x =
x

1 + x4
,

Then
x+ x5 = x,

or x5 = 0. Then the unique equilibrium point of Eq.(5) is x = 0.

Let f : (0,∞)4 → (0,∞) be a function defined by

F (u, v, w, t) =
u

1 + uvwt
.

Then it follows that,

Fu(u, v, w, t) =
1

(1 + uvwt)
2 , Fv(u, v, w, t) =

−u2wt
(1 + uvwt)

2 ,

Fw(u, v, w, t) =
−u2vt

(1 + uvwt)2
, Ft(u, v,w, t) =

−u2vw
(1 + uvwt)2

,

we see that

Fu(x, x, x, x) = 1, Fv(x, x, x, x) = 0, Fw(x, x, x, x) = 0, Ft(x, x, x, x) = 0.

The proof follows by using Theorem A. By Definition 3, x is non hyperbolic.

Theorem 2.3. Every positive solution of Eq.(5) is bounded and lim
n→∞

xn = 0.

Proof. It is following by Eq.(5) that

xn+1 =
xn−11

1 + xn−2xn−5xn−8xn−11
≤ xn−11.

Then
xn+1 < xn−11, for all n ≥ 0

Then the subsequences {x12n−11}∞n=0 , {x12n−10}
∞
n=0 , {x12n−9}

∞
n=0 , ..., {x12n}

∞
n=0 are decreasing and so are

bounded from above by

M = max {x−11, x−10, x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0} .

3. THE SECOND EQUATION XN+1 =
XN−11

−1+XN−2XN−5XN−8XN−11

In this part, we give the solution of the recursive equation in the form:

xn+1 =
xn−11

−1 + xn−2xn−5xn−8xn−11
, (6)

where the initial values are arbitrary real numbers with x−2x−5x−8x−11 6= 1, x−1x−4x−7x−10 6= 1, x0x−3x−6x−9 6=
1.
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Theorem 3.1. Let {xn}∞n=−11 be a solution of difference equation (6). Then for n = 0, 1, ...

x12n−11 =
p

(−1 + pkfc)
n , x12n−10 =

m

(−1 +mheb)
n , x12n−9 =

l

(−1 + ldga)
n ,

x12n−8 = k (−1 + pkfc)n , x12n−7 = h (−1 +mheb)n , x12n−6 = g (−1 + ldga)n ,

x12n−5 =
f

(−1 + pkfc)
n , x12n−4 =

e

(−1 +mheb)
n , x12n−3 =

d

(−1 + ldga)
n ,

x12n−2 = c (−1 + pkfc)n , x12n−1 = b (−1 +mheb)n , x12n = a (−1 + ldga)n ,

where x−11 = p, x−10 = m, x−9 = l, x−8 = k, x−7 = h, x−6 = g, x5 = f, x−4 = e, x−3 = d, x−2 = c,
x−1 = b, x0 = a.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds for n− 1. That is

x12n−23 =
p

(−1 + pkfc)n−1
, x12n−22 =

m

(−1 +mheb)n−1
, x12n−21 =

l

(−1 + ldga)n−1
,

x12n−20 = k (−1 + pkfc)
n−1

, x12n−19 = h (−1 +mheb)
n−1

, x12n−18 = g (−1 + ldga)
n−1

,

x12n−17 =
f

(−1 + pkfc)n−1
, x12n−116 =

e

(−1 +mheb)n−1
, x12n−15 =

d

(−1 + ldga)n−1
,

x12n−14 = c (−1 + pkfc)
n−1

, x12n−13 = b (−1 +mheb)
n−1

, x12n−12 = a (−1 + ldga)
n−1

.

Now, it follows from Eq.(6) that

x12n−11 =
x12n−23

−1 + x12n−14x12n−17x12n−20x12n−23

=

p
(−1+pkfc)n−1

−1 + c (−1 + pkfc)n−1 f
(−1+pkfc)n−1 k (−1 + pkfc)n−1 p

(−1+pkfc)n−1

=
p

(−1 + pkfc)n−1 (−1 + pkfc)
.

Then
x12n−11 =

p

(−1 + pkfc)
n .

Similarly

x12n−6 =
x12n−18

−1 + x12n−9x12n−12x12n−15x12n−18

=
g (−1 + ldga)n−1

−1 + l
(−1+ldga)n a (−1 + ldga)

n−1 d
(−1+ldga)n−1 g (−1 + ldga)

n−1

=
g (−1 + ldga)

n−1

−1 + ldga (−1 + ldga)−1
.

Therefore, we have
x12n−6 = g (−1 + ldga)n .

The same other relations can be proved and thus, the proof has been completed.

Theorem 3.2. Eq.(6) has three equilibrium points which are 0,± 4
√
2 and these equilibrium points are not

locally asymptotically stable.

Proof. The proof is the same as Theorem 2.2.
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Theorem 3.3. Eq.(6) has a periodic solutions of period twelve iff pkfc = mheb = ldga = 2 and will be take
the form

{p,m, l, k, h, g, f, e, d, c, b, a, p,m, l, k, h, g, f, e, d, c, b, a, ...} .

Proof. Assume that there exists a prime twelve solutions

p,m, l, k, h, g, f, e, d, c, b, a, p,m, l, k, h, g, f, e, d, c, b, a, ...,

of Eq.(6) ,we have from Eq.(6) that

p =
p

(−1 + pkfc)n
, m =

m

(−1 +mheb)n
, l =

l

(−1 + ldga)n
,

k = k (−1 + pkfc)
n
, h = h (−1 +mheb)

n
, g = g (−1 + ldga)

n
,

f =
f

(−1 + pkfc)
n , e =

e

(−1 +mheb)
n , d =

d

(−1 + ldga)
n ,

c = c (−1 + pkfc)n , b = b (−1 +mheb)n , a = a (−1 + ldga)n ,

or
(−1 + pkfc)n = 1, (−1 +mheb)n = 1, (−1 + ldga)n = 1

Then

pkfc = mheb = ldga = 2.

Second let pkfc = mheb = ldga = 2. Then we have from Eq.(6) that

x12n−11 = p, x12n−10 = m, x12n−9 = l, x12n−8 = k,

x12n−7 = h, x12n−6 = g, x12n−5 = f, x12n−4 = e,

x12n−3 = d, x12n−2 = c, x12n−1 = b, x12n = a.

Therefore we have a period twelve solutions and the proof is complete.

4. THE THIRD EQUATION XN+1 =
XN−11

1−XN−2XN−5XN−8XN−11

In this section we examine the following equation

xn+1 =
xn−11

1− xn−2xn−5xn−8xn−11
, (7)

where the initial conditions are arbitrary positive real numbers.

Theorem 4.1. Let {xn}∞n=−11 be a solution of difference equation (7). Then for n = 0, 1, ...

x12n−11 = p
n−1Y
i=0

1− 4ipkfc
1− (4i+ 1) pkfc , x12n−10 = m

n−1Y
i=0

1− 4imheb

1− (4i+ 1)mheb
, x12n−9 = l

n−1Y
i=0

1− 4ildga
1− (4i+ 1) ldga,

x12n−8 = k
n−1Y
i=0

1− (4i+ 1) pkfc
1− (4i+ 2) pkfc , x12n−7 = h

n−1Y
i=0

1− (4i+ 1)mheb

1− (4i+ 2)mheb
, x12n−6 = g

n−1Y
i=0

1− (4i+ 1) ldga
1− (4i+ 2) ldga ,

x12n−5 = f
n−1Y
i=0

1− (4i+ 2) pkfc
1− (4i+ 3) pkfc , x12n−4 = e

n−1Y
i=0

1− (4i+ 2)mheb

1− (4i+ 3)mheb
, x12n−3 = d

n−1Y
i=0

1− (4i+ 2) ldga
1− (4i+ 3) ldga ,

x12n−2 = c
n−1Y
i=0

1− (4i+ 3) pkfc
1− (4i+ 4) pkfc , x12n−1 = b

n−1Y
i=0

1− (4i+ 3)mheb

1− (4i+ 4)mheb
, x12n = a

n−1Y
i=0

1− (4i+ 3) ldga
1− (4i+ 4) ldga ,
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where x−11 = p, x−10 = m,x−9 = l, x−8 = k, x−7 = h, x−6 = g , x5 = f, x−4 = e, x−3 = d, x−2 = c,
x−1 = b, x0 = a and δpkfc 6= 1, δmheb 6= 1, δldga 6= 1 for δ = 1, 2, 3, ....
Proof. The proof is similar as the proof of the Theorem 2.1.

Theorem 4.2. Eq.(7) has unique equilibrium point which is the number zero and this equilibrium is not locally
asymptotically stable.

5. THE FOURTH EQUATION XN+1 =
XN−11

−1−XN−2XN−5XN−8XN−11

Here we obtain a form of the solutions of the equation

xn+1 =
xn−11

−1− xn−2xn−5xn−8xn−11
(8)

where the initial values are arbitrary non zero real numbers with x−2x−5x−8x−11 6= −1, x−1x−4x−7x−10 6= −1,
x0x−3x−6x−9 6= −1.
Theorem 5.1. Suppose {xn}∞n=−11 be a solution of difference equation xn+1 =

xn−11
−1−xn−2xn−5xn−8xn−11 ,Then for

n = 0, 1, ...

x12n−11 =
p

(−1− pkfc)n
, x12n−10 =

m

(−1−mheb)n
, x12n−9 =

l

(−1− ldga)n
,

x12n−8 = k (−1− pkfc)
n
, x12n−7 = h (−1−mheb)

n
, x12n−6 = g (−1− ldga)

n
,

x12n−5 =
f

(−1− pkfc)
n , x12n−4 =

e

(−1−mheb)
n , x12n−3 =

d

(−1− ldga)
n ,

x12n−2 = c (−1− pkfc)n , x12n−1 = b (−1−mheb)n , x12n = a (−1− ldga)n ,

where x−11 = p, x−10 = m,x−9 = l, x−8 = k, x−7 = h, x−6 = g , x5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 = b,
and x0 = a.

Theorem 5.2 Eq.(8) has three equilibrium points which are 0,± 4
√
−2 and these equilibrium points are not

locally asymptotically stable.

Proof. The proof as the proof of Theorem 3.3.

Theorem 5.3. Eq.(8) has a periodic solutions of period twelve iff pkfc = mheb = ldga = −2 and will be take
the form

{p,m, l, k, h, g, f, e, d, c, b, a, p,m, l, k, h, g, f, e, d, c, b, a, ...} .

6. NUMERICAL EXAMPLES
To verify the results of this paper, we consider some numerical examples as follows.

Example 6.1 The graph of the difference equation (5) and the case when x−11 = 3.3, x−10 = 1.7, x−9 = 2.6,
x−8 = 5, x−7 = 3, x−6 = 11, x5 = 6, x−4 = 2, x−3 = 7, x−2 = 9, x−1 = 4.6 and x0 = 1.6.shown in Figure 1.

n
0 10 20 30 40 50 60 70 80

x
(n

)

0

2

4

6

8

10

12
plot of x(n+1)=x(n-11)/(1+x(n-2)x(n-5)x(n-8)x(n-11)

Figure 1.
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Example 6.2. In Figure 2, we show that for Eq.(5) that x−11 = 4.1, x−10 = 2, x−9 = 3.2, x−8 = 6, x−7 = −1,
x−6 = 2.4, x5 = 1, x−4 = 4.2, x−3 = 7, x−2 = 11, x−1 = 4 and x0 = −2.

n
0 10 20 30 40 50 60 70 80

x
(n

)

-2

0

2

4

6

8

10

12
plot of x(n+1)=x(n-11)/(1+x(n-2)x(n-5)x(n-8)x(n-11)

Figure 2.

Example 6.3. The graph is shown of the solutions of Eq.(6) where x−11 = 3, x−10 = −2, x−9 = 9, x−8 = −5,
x−7 = 8, x−6 = 2, x5 = 4, x−4 = 4, x−3 = −4, x−2 = −1/30, x−1 = −1/32 and x0 = −1/36.in Figure 3.

n
0 10 20 30 40 50 60 70 80

x
(n

)

-5

0

5

10
plot of x(n+1)=x(n-11)/(-1+x(n-2)x(n-5)x(n-8)x(n-11)

Figure 3.

Example 6.4. Figure 4 shows the behavior of difference equation.(6) when we choose x−11 = 5, x−10 =
−2, x−9 = 6, x−8 = −1, x−7 = 4, x−6 = −11, x5 = 6, x−4 = 2, x−3 = 7, x−2 = −1/15, x−1 = −1/8 and
x0 = −1/231.

n
0 10 20 30 40 50 60 70 80

x
(n

)

-15

-10

-5

0

5

10
plot of x(n+1)=x(n-11)/(-1+x(n-2)x(n-5)x(n-8)x(n-11)

Figure 4.
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Example 6.5. The diagram of the difference equation defined by xn+1 =
xn−11

1−xn−2xn−5xn−8xn−11 shows the period
thirty six solutions since x−11 = 1, x−10 = 3.5, x−9 = −4, x−8 = 6, x−7 = −2, x−6 = 2.4, x5 = −1, x−4 = 1.2,
x−3 = 8, x−2 = 10, x−1 = −3 and x0 = 4. in Figure 5

n
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x
(n

)

-4

-2

0

2

4

6
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10
plot of x(n+1)=x(n-11)/(1-x(n-2)x(n-5)x(n-8)x(n-11)

Figure 5.

Example 6.6. See Figure 6, we suppose for Eq.(7), that x−11 = 4.3, x−10 = 8.1, x−9 = −3, x−8 = 2.7,
x−7 = −1, x−6 = 2.4, x5 = 3, x−4 = 1.5, x−3 = 11, x−2 = −2, x−1 = 5 and x0 = −2.

n
0 10 20 30 40 50 60 70 80

x
(n

)

-5

0

5

10

15
plot of x(n+1)=x(n-11)/(1-x(n-2)x(n-5)x(n-8)x(n-11)

Figure 6.

Example 6.7.(see Figure 7) shows the period thirty six solutions of Eq.(8) since x−11 = 3, x−10 = 9, x−9 = −6,
x−8 = 2, x−7 = 1, x−6 = 4, x5 = 5, x−4 = −4, x−3 = 3, x−2 = −1/15, x−1 = 1/18 and x0 = 1/36.

n
0 10 20 30 40 50 60 70 80

x
(n

)

-10

-5

0

5

10
plot of x(n+1)=x(n-11)/(-1-x(n-2)x(n-5)x(n-8)x(n-11)

Figure 7.
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Example 6.8. (See Figure 8) , we suppose for difference equation (8), that x−11 = 11, x−10 = 3, x−9 = −5,
x−8 = −2, x−7 = 4, x−6 = 2, x5 = 9, x−4 = −2, x−3 = 7, x−2 = 1/99, x−1 = 1/12 and x0 = 1/35.

n
0 10 20 30 40 50 60 70 80

x
(n

)

-10

-5

0

5

10

15
plot of x(n+1)=x(n-11)/(-1-x(n-2)x(n-5)x(n-8)x(n-11)

Figure 8.
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Some fixed point theorems of non-self contractive
mappings in complete metric spaces

Dangdang Wang, Chuanxi Zhu
∗
, Zhaoqi Wu
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Abstract In this paper, we establish some fixed point theorems for non-self mappings, which solve

the problem 1 in [1], satisfying special contractive conditions in complete metric spaces.

Keyword Fixed point; non-self mapping; contractive mapping; complete metric spaces

1 Introduction

The aim of this paper is to answer an open problem of Rus [1]. We give a non-self mapping T satisfying

receptively four contractive conditions such that T has a unique fixed point. This is a solution for the open

problem.

An open problem in [1] as following:

Let (X, d) be a metric space, Y a non-empty bounded and closed subset of X and T : Y → X a non-self

operator. We suppose that there exists a sequence (xn)n∈N∗ such that Tn(xn) is defined for all n ∈ N∗. In

which additional conditions on T we have:

(a) FT ̸= ∅?

(b) FT = {x∗}?
where FT := {x ∈ X|x = Tx}.

In this paper, we give following marks.

(1) MT (Y ) = sup{d(x, y)|x, y ∈ Y };

(2) ET (Y ) = sup{d(x, Tx)|x ∈ Y };

(3) NT (y) = sup{d(x, Ty)|x, y ∈ Y }.

In (2), we can easy to obtain: i) if X ⊂ Y , then ET (X) ≤ ET (Y ); ii) ET (Y ) = ET (Y ).

Lemma 1 [4] Let an, bn ∈ R+, n ∈ N . We suppose that:

(i)Σ∞
k=0ak <∞;

(ii)bn → 0 as n→∞.

Then

Σ∞
k=0an−kbk → 0 as n→∞.

1∗Correspondence author. Chuanxi Zhu. Email address: chuanxizhu@126.com. Tel:+8613970815298.
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2 Fixed point theorems

In this section, we give some non-self contractions as follows.

Let (X, d) be a metric space, Y be a non-empty bounded and closed subset of X. Suppose that T : Y → X

be a non-self mapping satisfied following condition:

(W1) d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty), for all x, y ∈ Y , where a, b, c ∈ R+ and a+ b+ c < 1;

(W2) d(Tx, Ty) ≤ bd(x, Ty) + cd(y, Tx), for all x, y ∈ Y , where b, c ∈ R+;

(W3) d(Tx, Ty) ≤ ad(x, y) + bd(x, Ty) + cd(y, Tx), for all x, y ∈ Y , where a, b, c ∈ R+ and a < 1;

(W4) d(Tx, Ty) ≤ a1d(x, y)+a2d(x, Tx)+a3d(y, Ty)+a4d(x, Ty), for all x, y ∈ Y , where a1, a2, a3, a4 ∈ R+

and a1 + a2 + a3 < 1.

Lemma 2 Let (X, d) be a metric space, Y be a bounded and non-empty closed subset of X. If T : Y → X

satisfying (W1), then T is a non-self α-graphic contraction with α = a+ c.

Proof Let x ∈ Y such that Tx ∈ Y , we get

d(T 2x, Tx) ≤ ad(Tx, x) + bd(Tx, T 2x) + cd(x, Tx),

so

d(T 2x, Tx) ≤ a+ c

1− b
d(x, Tx).

Theorem 1 Let (X, d) be a metric space, Y be a non-empty bounded and closed subset of X. T : Y → X

be a non-self mapping satisfying (W1). We suppose that there exists a sequence (xn)n∈N∗ such that Tn(xn) is

defined for all n ∈ N∗. Then

(i) T has a unique fixed point;

(ii) Tn−1(xn)→ x∗ and Tn(xn)→ x∗ as n→ +∞;

(iii) d(x, x∗) ≤ 1+b
1−ad(x, Tx), ∀ x ∈ Y , i.e. MT (Y ) ≤ 1+b

1−aET (Y ).

Proof (i)+(ii) Let Y1 := T (Y ), Y2 := T (Y1 ∩ Y ), · · · , Yn+1 := T (Yn ∩ Y ), n ∈ N∗. We remark that:

(1) Yn+1 ⊂ Yn, ∀ n ∈ N∗;

(2) Tn(xn) ∈ Yn, ∀ n ∈ N∗, so Yn ̸= ∅.

Since T satisfying (W1), we have that:

M(Yn+1) = M(T (Yn ∩ Y )) = M(T (Yn ∩ Y ))

≤ aM(Yn ∩ Y ) + (b+ c)ET (Yn ∩ Y ) ≤ · · ·

≤ an+1M(Y ) + an(b+ c)ET (Y ) + · · ·+ a(b+ c)ET (Yn−1 ∩ Y ) + (b+ c)ET (Yn ∩ Y ).

(2.1)

2
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On the other hand, from Lemma 2, we get

ET (Yn ∩ Y ) = ET (T (Yn−1 ∩ Y ∩ Y ) = ET (T (Yn−1 ∩ Y ) ∩ Y )

= sup{d(Tx, T 2x)|x ∈ Yn−1 ∩ Y, Tx ∈ Y } ≤
a+ c

1− b
ET (Yn−1 ∩ Y )

≤ · · · ≤ (
a+ c

1− b
)nET (Y ), n ∈ N∗.

Because of a+ b+ c < 1, so (a+c1−b )n → 0, n→ +∞, i.e. ET (Yn ∩ Y )→ 0, n→ +∞.

Let an = an and bn = (b+ c)ET (Yn ∩ Y ), by lemma 1, we have

M(Yn+1)→ 0 as n→ +∞.

From Cantor intersection lemma, we get

Y∞ := ∩n∈NYn ̸= ∅, M(Y∞) = 0 and T (Y∞ ∩ Y ) ⊂ Y∞.

From Y∞ ̸= ∅ and M(Y∞) = 0, we have that Y∞ = x∗, i.e. Y∞ be a single point set. Otherwise, Tn(xn) ∈ Yn
and Tn−1(xn) ∈ Yn−1 ∩ Y , this implies that {Tn(xn)}n∈N and {Tn−1(xn)}n∈N are fundamental sequences.

Since Yn, n ∈ N are closed, so we get

Tn−1(xn)→ x∗ and Tn(xn)→ x∗ as n→ +∞.

Also because of T is continuous, then Tn(xn)→ T (x∗). Therefore, T (x∗) = x∗.

(iii) Let x ∈ Y , by using (W1) we have

d(x, x∗) ≤ d(x, Tx) + d(Tx, x∗) ≤ d(x, Tx) + ad(x, x∗) + bd(x, Tx) + cd(d(x, Tx), Td(x, Tx)),

so

d(x, x∗) ≤ 1 + b

1− a
d(x, Tx), ∀ x ∈ Y.

Remark 1 Let b = c in Theorem 1, then T is a non-self Ćirić−Reich−Rus operator. And then, Theorem 1

generalizes Theorem 5 in Rus [1]. At the same time, this theorem gives an answer to the Problem 1 of [1].

For (W4), we give a Lemma as following:

Lemma 3 Let (X, d) be a metric space, Y be a non-empty bounded and closed subset of X. Define T : Y → X

be a non-self mapping. Then NT (Yn ∩ Y )→ 0, as n→∞, where Yn = T (Yn−1 ∩ Y ).

Proof From the definitions of NT and Yn, we have

sup{d(x, Ty)|x, y ∈ Yn ∩ Y } = NT (Yn ∩ Y ) = NT (T (Yn−1 ∩ Y ) ∩ Y )

= NT (T (Yn−1 ∩ Y ) ∩ Y ) = sup{d(Tx, T 2y)|x, y ∈ Yn−1 ∩ Y }.

Since Yn−1∩Y ⊂ Yn∩Y , so d(Tx, T 2y) ≤ d(x, Ty), for all x, y ∈ Yn−1∩Y . Hence, NT (Yn∩Y ) ≤ NT (Yn−1∩Y ).

3
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By the density of real numbers we can get, there exists k ∈ R+ and k < 1, such that NT (Yn ∩ Y ) ≤
kNT (Yn−1 ∩ Y ).

And then,

NT (Yn ∩ Y ) ≤ kNT (Yn−1 ∩ Y ) ≤ · · · ≤ knNT (Y )→ 0, as n→ +∞.

Theorem 2 Let (X, d) be a metric space, Y be a non-empty bounded and closed subset of X. T : Y → X

be a non-self mapping satisfying (W3). We suppose that there exists a sequence (xn)n∈N∗ such that Tn(xn) is

defined for all n ∈ N∗. Then

(i) T has a unique fixed point;

(ii) Tn−1(xn)→ x∗ and Tn(xn)→ x∗ as n→ +∞.

Proof Let Y1 := T (Y ), Y2 := T (Y1 ∩ Y ), · · · , Yn+1 := T (Yn ∩ Y ), n ∈ N∗. We remark that:

(1) Yn+1 ⊂ Yn, ∀ n ∈ N∗;

(2) Tn(xn) ∈ Yn, ∀ n ∈ N∗, so Yn ̸= ∅.

Since T satisfying (W3), we have that:

M(Yn+1) = M(T (Yn ∩ Y )) = M(T (Yn ∩ Y ))

≤ aM(Yn ∩ Y ) + (b+ c)NT (Yn ∩ Y )

≤ aM(Yn) + (b+ c)NT (Yn ∩ Y ) ≤ · · ·

≤ an+1M(Y ) + an(b+ c)NT (Y ) + · · ·+ a(b+ c)NT (Yn−1 ∩ Y ) + (b+ c)NT (Yn ∩ Y ).

Let an = an and bn = (b+ c)NT (Yn ∩ Y ), by lemma 3 we have

M(Yn+1)→ 0 as n→ +∞,

and the proof is similar with the proof of Theorem 1. This is the complete proof.

For (W3), when a = 0, it becomes condition (W2). Thence, we have the following Corollary:

Corollary 1 Let (X, d) be a metric space, Y be a non-empty bounded and closed subset of X. Define T : Y →
X be a non-self mapping satisfying (W3), the conclusions of Theorem 2 remain holds.

Theorem 3 Let (X, d) be a metric space, Y be a non-empty bounded and closed subset of X. T : Y → X

be a non-self mapping satisfying (W4). We suppose that there exists a sequence (xn)n∈N∗ such that Tn(xn) is

defined for all n ∈ N∗. Then

(i) T has a unique fixed point;

(ii) Tn−1(xn)→ x∗ and Tn(xn)→ x∗ as n→ +∞;

(iii) d(x, x∗) ≤ 1+b
1−ad(x, Tx), ∀ x ∈ Y , i.e. MT (Y ) ≤ 1+b

1−aET (Y ).

4
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Proof (i)+(ii) Let Y1 := T (Y ), Y2 := T (Y1 ∩ Y ), · · · , Yn+1 := T (Yn ∩ Y ), n ∈ N∗. We remark that:

(1) Yn+1 ⊂ Yn, ∀ n ∈ N∗;

(2) Tn(xn) ∈ Yn, ∀ n ∈ N∗, so Yn ̸= ∅.

Since T satisfying (W1), we have that:

M(Yn+1) = M(T (Yn ∩ Y )) = M(T (Yn ∩ Y ))

≤ a1M(Yn ∩ Y ) + (a2 + a3)ET (Yn ∩ Y ) + a4NT (Yn ∩ Y )

≤ · · · ≤

≤ an+1
1 M(Y ) + [an1 (a2 + a3)ET (Y ) + · · ·+ a1(a2 + a3)ET (Yn−1 ∩ Y ) + (a2 + a3)ET (Yn ∩ Y )]

+ [an1 · a4NT (Y ) + · · ·+ a1 · a4NT (Yn−1 ∩ Y ) + a4NT (Yn ∩ Y )]

= an+1
1 M(Y ) + ΦET + ΦNT ,

where ΦET
= an1 (a2 + a3)ET (Y ) + · · ·+ a1(a2 + a3)ET (Yn−1 ∩ Y ) + (a2 + a3)ET (Yn ∩ Y ),

ΦNT = an1 · a4NT (Y ) + · · ·+ a1 · a4NT (Yn−1 ∩ Y ) + a4NT (Yn ∩ Y ).

For x ∈ Y , such that Tx ∈ T (Y ), we have

d(T 2x, Tx) ≤ a1d(Tx, x) + a2d(Tx, T 2x) + a3d(x, Tx) + a4d(Tx, Tx),

so

d(T 2x, Tx) ≤ a1 + a3
1− a2

d(x, Tx). (2.2)

Thence

ET (Yn ∩ Y ) = ET (T (Yn−1 ∩ Y ∩ Y ) = ET (T (Yn−1 ∩ Y ) ∩ Y )

= sup{d(Tx, T 2x)|x ∈ Yn−1 ∩ Y, Tx ∈ Y } ≤
a1 + a3
1− a2

ET (Yn−1 ∩ Y )

≤ · · · ≤ (
a1 + a3
1− a2

)nET (Y ), n ∈ N∗.

Because of a+ b+ c < 1, so (a1+a31−a2 )n → 0, n→ +∞, i.e. ET (Yn ∩ Y )→ 0, n→ +∞.

Let an = an1 and bn = (a2 + a3)ET (Yn ∩ Y ), by lemma 1 we have ΦET
→ 0 as n→ +∞.

From Lemma 3, we know, NT (Yn ∩ Y )→ 0 as n→ +∞.

Let a
′

n = an1 and b
′

n = a4NT (Yn ∩ Y ), by lemma 1 we obtain ΦNT → 0 as n→ +∞.

In summary, we get M(Yn+1)→ 0 as n→ +∞, and the proof is similar with the proof of Theorem 1.

Although let a = 0 in (W4), it becomes (W2), because different proof process details of the transformation,

so we give separately the proof of Theorem 1 and Theorem 3.
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Double-framed soft sets in B-algebras
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Abstract. The notion of a double-framed soft (normal) subalgebra in a B-algebra is introduced and related prop-

erties are investigated. We consider characterizations of a double-framed soft (normal) subalgebra and establish a

new double-framed soft subalgebra from old one. Also, we show that the int-uni double-framed soft of two double

framed soft subalgebras is a double framed soft subalgebra.

1. Introduction

Molodtsov [11] introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that

is free from the difficulties that have troubled the usual theoretical approaches. Molodtsov pointed out several

directions for the applications of soft sets. Worldwide, there has been a rapid growth in interest in soft set theory

and its applications in recent years. Evidence of this can be found in the increasing number of high-quality articles

on soft sets and related topics that have been published in a variety of international journals, symposia, workshops,

and international conferences in recent years. Maji et al. [10] described the application of soft set theory to a

decision making problem. Jun [5] discussed the union soft sets with applications in BCK/BCI-algebras. Jun et

al. [6] introduced the notion of double-framed soft sets, and applied it to BCK/BCI-algebras. They discussed

double-frame soft algebras and investigated some related properties.

We refer the reader to the papers [3, 4, 14] for further information regarding algebraic structures/properties

of soft set theory. On the while, Y. B. Jun, E. H. Roh and H. S. Kim [7] introduced a new notion, called a

BH-algebra. J. Neggers and H. S. Kim [12] introduced a new notion, called a B-algebra. C. B. Kim and H. S.

Kim [9] introduced the notion of a BG-algebra which is a generalization of B-algebras. S. S. Ahn and H. D. Lee

[1] classified the subalgebras by their family of level subalgebras in BG-algebras.

In this paper, we introduce the notion of a double-framed soft (normal) subalgebra in aB-algebra and investigate

some related properties. We consider characterizations of a double-framed soft (normal) subalgebra and establish

a new double-framed soft subalgebra from old one. Also, we show that the int-uni double-framed soft of two

double framed soft subalgebras is a double framed soft subalgebra.

2. Preliminaries

A B-algebra [12] is a non-empty set X with a constant 0 and a binary operation “ ∗ ” satisfying axioms:
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0Keywords: γ-exclusive set, double-framed soft (normal) subalgebra, B-algebra.
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(B1) x ∗ x = 0,

(B2) x ∗ 0 = x,

(B) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y))

for any x, y, z in X. For brevity we call X a B-algebra. In X we can define a binary relation “ ≤ ” by x ≤ y if

and only if x ∗ y = 0.

An algebra (X; ∗, 0) of type (2, 0) is called a BH-algebra if it satisfies (B1), (B2) and

(BH) x ∗ y = y ∗ x = 0 imply x = y for any x, y ∈ X.

An algebra (X; ∗, 0) of type (2, 0) is called a BG-algebra if it satisfies (B1), (B2) and

(BG) (x ∗ y) ∗ (0 ∗ y) = x for any x, y ∈ X.

Proposition 2.1. [2, 12] Let (X; ∗, 0) be a B-algebra. Then

(i) the left cancellation law holds in X, i.e., x ∗ y = x ∗ z implies y = z,

(ii) if x ∗ y = 0, then x = y for any x, y ∈ X,

(iii) if 0 ∗ x = 0 ∗ y, then x = y for any x, y ∈ X,

(iv) 0 ∗ (0 ∗ x) = x, for all x ∈ X,

(v) x ∗ (y ∗ z) = (x ∗ (0 ∗ z)) ∗ y for all x, y, z ∈ X.

A non-empty subset S of a B-algebra X is called a subalgebra of X if x ∗ y ∈ S for any x, y ∈ S. A non-empty

subset N of X is said to be normal if (x ∗ a) ∗ (y ∗ b) ∈ N for any x ∗ y, a ∗ b ∈ N . Then any normal subset N of a

B-algebra X is a subalgebra of X, but the converse need not be true ([13]). A non-empty subset X of a B-algebra

X is a called a normal subalgebra of X if it is both a subalgebra and normal.

Molodtsov [11] defined the soft set in the following way: Let U be an initial universe set and let E be a

set of parameters. We say that the pair (U,E) is a soft universe. Let P(U) denotes the power set of U and

A,B,C, · · · ⊆ E.
A fair (f̃ , A) is called a soft set over U , where f̃ is a mapping given by f̃ : X →P(U). In other words, a soft

set over U is parameterized family of subsets of the universe U . For ε ∈ A, f̃(ε) may be considered as the set of

ε-approximate elements of the set (f̃ , A). A soft set over U can be represented by the set of ordered pairs:

(f̃ , A) = {(x, f̃(x))|x ∈ A, f̃(x) ∈P(U)},

where f̃ : X →P(U) such that f̃(x) = ∅ if x /∈ A. Clearly, a soft set is not a set.

3. Double-framed soft normal subalgebras

In what follows let X denote a B-algebra unless otherwise specified.

Definition 3.1. A double-framed pair ⟨(α, β);X⟩ is called a double-framed soft set over U, where α and β are

mappings from X to P(U).

Definition 3.2. A double-framed soft set ⟨(α, β);X⟩ over U is called a double-framed soft subalgebra over U if it

satisfies :
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(3.1) (∀x, y ∈ X) (α(x ∗ y) ⊇ α(x) ∩ α(y), β(x ∗ y) ⊆ β(x) ∪ β(y)) .

Example 3.3. Let X be the set of parameters where X := {0, 1, 2, 3} is a B-algebra with the following Cayley

table:
∗ 0 1 2 3

0 0 2 1 3

1 1 0 3 2

2 2 3 0 1

3 3 1 2 0

Let ⟨(α, β);X⟩ be a double-framed soft set over U defined as follows:

α : X →P(U), x 7→


τ3 if x = 0,

τ1 if x = 3,

τ2 if x = {1, 2},
and

β : X →P(U), x 7→


γ3 if x = 0,

γ2 if x = 3,

γ1 if x = {1, 2}
where τ1, τ2, τ3, γ1, γ2 and γ3 are subsets of U with τ1 ⊊ τ2 ⊊ τ3 and γ1 ⊋ γ2 ⊋ γ3 It is easy to show that

⟨(α, β);X⟩ is a double-framed soft subalgebra over U.

Lemma 3.4. Every double-framed soft subalgebra ⟨(α, β);X⟩ over U satisfies the following condition:

(3.2) (∀x ∈ X) (α(x) ⊆ α(0), β(x) ⊇ β(0)) .

Proof. Straightforward. □

Proposition 3.5. For a double-framed soft subalgebra ⟨(α, β);X⟩ over U, the following are equivalent:

(i) (∀x ∈ X) (α(x) = α(0), β(x) = β(0)) .

(ii) (∀x, y ∈ X) (α(y) ⊆ α(x ∗ y), β(y) ⊇ β(x ∗ y)) .

Proof. Assume that (ii) is valid. Taking y := 0 in (ii) and using (B2), we have α(0) ⊆ α(x ∗ 0) = α(x) and

β(0) ⊇ β(x ∗ 0) = β(x). It follows from Lemma 3.4 that α(x) = α(0) and β(x) = β(0).

Conversely, suppose that α(x) = α(0) and β(x) = β(0) for all x ∈ X. Using (3.1), we have

α(y) = α(0) ∩ α(y) = α(x) ∩ α(y) ⊆ α(x ∗ y),

β(y) = β(0) ∪ β(y) = β(x) ∪ β(y) ⊇ β(x ∗ y)

for all x, y ∈ X. This completes the proof. □

For two double-framed soft sets ⟨(α, β);X⟩ and ⟨(f, g);X⟩ over U, the double-framed soft int-uni set of ⟨(α, β);X⟩
and ⟨(f, g);X⟩ is defined to be a double-framed soft set ⟨(α∩̃f, β∪̃g);X⟩ where

α∩̃f : X →P(U), x 7→ α(x) ∩ f(x),

β∪̃g : X →P(U), x 7→ β(x) ∪ g(x).

It is denoted by ⟨(α, β);X⟩ ⊓ ⟨(f, g);X⟩ = ⟨(α∩̃f, β∪̃g);X⟩ .
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Theorem 3.6. The double-framed soft int-uni set of two double-framed soft subalgebras ⟨(α, β);X⟩ and ⟨(f, g);X⟩
over U is a double-framed soft subalgebra over U.

Proof. For any x, y ∈ X, we have

(α∩̃f)(x ∗ y) =α(x ∗ y) ∩ f(x ∗ y) ⊇ (α(x) ∩ α(y)) ∩ (f(x) ∩ f(y))

=(α(x) ∩ f(x)) ∩ (α(y) ∩ f(y)) = (α∩̃f)(x) ∩ (α∩̃f)(y)

and

(β∪̃g)(x ∗ y) =β(x ∗ y) ∪ g(x ∗ y) ⊆ (β(x) ∪ β(y)) ∪ (g(x) ∪ g(y))

=(β(x) ∪ g(x)) ∪ (β(y) ∪ g(y)) = (β∪̃g)(x) ∪ (β∪̃g)(y).

Therefore ⟨(α, β);X⟩ ⊓ ⟨(f, g);X⟩ is a double-framed soft subalgebra over U. □

For two double-framed soft sets ⟨(α, β);X⟩ and ⟨(f, g);X⟩ over U, the double-framed soft uni-int set of ⟨(α, β);X⟩
and ⟨(f, g);X⟩ is defined to be a double-framed soft set ⟨(α∪̃f, β∩̃g);X⟩ where

α∪̃f : X →P(U), x 7→ α(x) ∪ f(x),

β∩̃g : X →P(U), x 7→ β(x) ∩ g(x).

It is denoted by ⟨(α, β);X⟩ ⊔ ⟨(f, g);X⟩ = ⟨(α∪̃f, β∩̃g);X⟩ .

The following example shows that the double-framed soft uni-int set of two double-framed soft subalgebras

⟨(α, β);X⟩ and ⟨(f, g);X⟩ over U may not be a double-framed soft subalgebra over U.

Example 3.7. Let E = X be the set of parameters, and let U = Z be the initial universe set, where X =

{0, 1, 2, 3, 4, 5} is a B-algebra [12] with the following table:

∗ 0 1 2 3 4 5

0 0 2 1 3 4 5

1 1 0 2 4 5 3

2 2 1 0 5 3 4

3 3 4 5 0 2 1

4 4 5 3 1 0 2

5 5 3 4 2 1 0

Let ⟨(α, β);X⟩ and ⟨(f, g);X⟩ be double-framed soft sets over U defined, respectively, as follows:

α : X →P(U), x 7→
{

Z if x ∈ {0, 4},
9Z if x ∈ {1, 2, 3, 5},

β : X →P(U), x 7→
{

7Z if x ∈ {0, 4},
Z if x ∈ {1, 2, 3, 5},

f : X →P(U), x 7→
{

Z if x ∈ {0, 5},
3Z if x ∈ {1, 2, 3, 4},

and

g : X →P(U), x 7→
{

2Z if x ∈ {0, 5},
Z if x ∈ {1, 2, 3, 4},
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It is routine to verify that ⟨(α, β);X⟩ and ⟨(f, g);X⟩ are double-framed soft subalgebras over U. But ⟨(α, β);X⟩ ⊔
⟨(f, g);X⟩ = ⟨(α∪̃f, β∩̃g);X⟩ is not a double-framed soft subalgebra over U , since (α∪̃f)(4 ∗ 5) = (α∪̃f)(2) =

α(2)∪ f(2) = 9Z∪3Z = 3Z ⊉ Z = (α∪̃f)(4)∩ (α∪̃f)(5) and/or (β∩̃g)(4∗5) = (β∩̃g)(2) = Z∩Z = Z ⊈ 7Z∪2Z =

(β∩̃g)(4) ∪ (β∩̃g)(5).

Let ⟨(α, β);A⟩ and ⟨(f, g);B⟩ be double-framed soft sets over a common universe U. Then ⟨(α, β);A⟩ is called

a double-framed soft subset of ⟨(f, g);B⟩ , denoted by ⟨(α, β);A⟩ ⊆̃ ⟨(f, g);B⟩ , if

(i) A ⊆ B,

(ii) (∀e ∈ A)

(
α(e) and f(e) are identical approximations,

β(e) and g(e) are identical approximations.

)
.

Theorem 3.8. Let ⟨(α, β);A⟩ be a double-framed soft subset of a double-framed soft set ⟨(f, g);B⟩ . If ⟨(f, g);B⟩
is a double-framed soft subalgebra over U , then so is ⟨(α, β);A⟩.

Proof. Let x, y ∈ A. Then x, y ∈ B, and so

α(x) ∩ α(y) = f(x) ∩ f(y) ⊆ f(x ∗ y) = α(x ∗ y),

β(x) ∪ β(y) = g(x) ∪ g(y) ⊇ g(x ∗ y) = β(x ∗ y).

Hence ⟨(α, β);A⟩ is a double-framed soft subalgebra over U. □

The converse of Theorem 3.8 is not true as seen in the following example.

Example 3.9. Let (U = Z, X) where X = {0, 1, 2, 3} is a B-algebra as in Example 3.3. For a subalgebra {0, 3},
define a double-framed soft set ⟨(α, β); {0, 3}⟩ over U as follows:

α : {0, 3} →P(U), x 7→
{

Z if x = 0,

2Z if x = 3,

and

β : {0, 3} →P(U), x 7→
{

27Z if x = 0,

9Z if x = 3,

Then ⟨(α, β); {0, 3}⟩ is a double-framed soft subalgebra over U . Take B := X and define a double-framed soft set

⟨(f, g);B⟩ over U as follows:

f : B →P(U), x 7→


Z if x = 0,

72Z if x = 1,

4Z if x = 2,

2Z if x = 3,

and

g : B →P(U), x 7→


27Z if x = 0,

3Z if x = 1,

Z if x = 2,

9Z if x = 3.

Then ⟨(f, g);B⟩ is not a double-framed soft subalgebra over U since f(0 ∗ 2) = f(1) = 72Z ⊉ f(0) ∩ f(2) =

Z ∩ 4Z = 4Z and/or g(1 ∗ 3) = g(2) = Z ⊈ g(1) ∪ g(3) = 3Z ∪ 9Z = 3Z.
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For a double-framed soft set ⟨(α, β);X⟩ over U and two subsets γ and δ of U, the γ-inclusive set and the

δ-exclusive set of ⟨(α, β);X⟩, denoted by iX(α; γ) and eX(β; δ), respectively, are defined as follows: iX(α; γ) :=

{x ∈ X | γ ⊆ α(x)} and eX(β; δ) := {x ∈ X | δ ⊇ β(x)} , respectively. The setDFX (α, β)(γ,δ) := {x ∈ X | γ ⊆ α(x), δ ⊇ β(x)}
is called a double-framed including set of ⟨(α, β);X⟩ . It is clear that DFX (α, β)(γ,δ) = iX(α; γ) ∩ eX(β; δ).

Theorem 3.10. For a double-framed soft set ⟨(α, β);X⟩ over U, the following are equivalent:

(i) ⟨(α, β);X⟩ is a double-framed soft subalgebra over U.

(ii) For every subsets γ and δ of U with γ ∈ Im(α) and δ ∈ Im(β), the γ-inclusive set and the δ-exclusive

set of ⟨(α, β);X⟩ are subalgebras of X.

Proof. Assume that ⟨(α, β);X⟩ is a double-framed soft subalgebra over U. Let x, y ∈ X be such that x, y ∈ iX(α; γ)

and x, y ∈ eX(β; δ) for every subsets γ and δ of U with γ ∈ Im(α) and δ ∈ Im(β). It follows from (3.1) that

α(x ∗ y) ⊇ α(x) ∩ α(y) ⊇ γ and β(x ∗ y) ⊆ β(x) ∪ β(y) ⊆ δ.

Hence x ∗ y ∈ iX(α; γ) and x ∗ y ∈ eX(β; δ), and therefore iX(α; γ) and eX(β; δ) are subalgebras of X.

Conversely, suppose that (ii) is valid. Let x, y ∈ X be such that α(x) = γx, α(y) = γy, β(x) = δx and β(y) = δy.

Taking γ = γx ∩ γy and δ = δx ∪ δy imply that x, y ∈ iX(α; γ) and x, y ∈ eX(β; δ). Hence x ∗ y ∈ iX(α; γ) and

x ∗ y ∈ eX(β; δ), which imply that α(x ∗ y) ⊇ γ = γx ∩ γy = α(x)∩α(y) and β(x ∗ y) ⊆ δ = δx ∪ δy = β(x)∪ β(y).

Therefore ⟨(α, β);X⟩ is a double-framed soft subalgebra over U. □

Corollary 3.11. If ⟨(α, β);X⟩ is a double-framed soft algebra over U, then the double-framed including set of

⟨(α, β);X⟩ is a subalgebra X.

For any double-framed soft set ⟨(α, β);X⟩ over U, let ⟨(α∗, β∗);X⟩ be a double-framed soft set over U defined

by

α∗ : X →P(U), x 7→
{
α(x) if x ∈ iX(α; γ),

η otherwise,

β∗ : X →P(U), x 7→
{
β(x) if x ∈ eX(β; δ),

ρ otherwise,

where γ, δ, η and ρ are subsets of U with η ⊊ α(x) and ρ ⊋ β(x).

Theorem 3.12. If ⟨(α, β);X⟩ is a double-framed soft subalgebra over U, then so is ⟨(α∗, β∗);X⟩ .

Proof. Assume that ⟨(α, β);X⟩ is a double-framed soft subalgebra over U. Then iX(α; γ) and eX(β; δ) are subal-

gebras of X for every subsets γ and δ of U with γ ∈ Im(α) and δ ∈ Im(β), by Theorem 3.10. Let x, y ∈ X. If

x, y ∈ iX(α; γ), then x ∗ y ∈ iX(α; γ). Thus

α∗(x ∗ y) = α(x ∗ y) ⊇ α(x) ∩ α(y) = α∗(x) ∩ α∗(y).

If x /∈ iX(α; γ) or y /∈ iX(α; γ), then α∗(x) = η or α∗(y) = η. Hence

α∗(x ∗ y) ⊇ η = α∗(x) ∩ α∗(y).
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Now, if x, y ∈ eX(β; δ), then x ∗ y ∈ eX(β; δ). Thus

β∗(x ∗ y) = β(x ∗ y) ⊆ β(x) ∪ β(y) = β∗(x) ∪ β∗(y).

If x /∈ eX(β; δ) or y /∈ eX(β; δ), then β∗(x) = ρ or β∗(y) = ρ. Hence

β∗(x ∗ y) ⊆ ρ = β∗(x) ∪ β∗(y).

Therefore ⟨(α∗, β∗);X⟩ is a double-framed soft subalgebra over U. □

Let ⟨(α, β);X⟩ and ⟨(α, β);Y ⟩ be double-framed soft sets over U, where X,Y are B-algebras. The (α∧, β∨)-

product of ⟨(α, β);X⟩ and ⟨(α, β);Y ⟩ is defined to be a double-framed soft set ⟨(αX∧Y , βX∨Y );X × Y ⟩ over U in

which

αX∧Y : X × Y →P(U), (x, y) 7→ α(x) ∩ α(y),

βX∨Y : X × Y →P(U), (x, y) 7→ β(x) ∪ β(y).

Theorem 3.13. For any B-algebras X and Y as sets of parameters, let ⟨(α, β);X⟩ and ⟨(α, β);Y ⟩ be double-

framed soft subalgebras over U. Then the (α∧, β∨)-product of ⟨(α, β);X⟩ and ⟨(α, β);Y ⟩ is also a double-framed

soft subalgebra over U.

Proof. Note that (X × Y, ⊛, (0, 0)) is a B-algebra. For any (x, y), (a, b) ∈ X × Y, we have

αX∧Y ((x, y) ⊛ (a, b)) = αX∧Y (x ∗ a, y ∗ b)

= α(x ∗ a) ∩ α(y ∗ b) ⊇ (α(x) ∩ α(a)) ∩ (α(y) ∩ α(b))

= (α(x) ∩ α(y)) ∩ (α(a) ∩ α(b))

= αX∧Y (x, y) ∩ αX∧Y (a, b)

and

βX∨Y ((x, y) ⊛ (a, b)) = βX∨Y (x ∗ a, y ∗ b)

= β(x ∗ a) ∪ β(y ∗ b) ⊆ (β(x) ∪ β(a)) ∪ (β(y) ∪ β(b))

= (β(x) ∪ β(y)) ∪ (β(a) ∪ β(b))

= βX∨Y (x, y) ∪ βX∨Y (a, b)

Hence ⟨(αX∧Y , βX∨Y );E × F ⟩ is a double-framed soft subalgebra over U. □

Definition 3.14. A double-framed soft set ⟨(α, β);X⟩ over U is said to be double-framed soft normal of a

B-algebra X if it satisfies:

(3.3) (∀x, y, a, b ∈ X)(α((x ∗ a) ∗ (y ∗ b)) ⊇ α(x ∗ y) ∩ α(a ∗ b), β((x ∗ a) ∗ (y ∗ b)) ⊆ β(x ∗ y) ∪ β(a ∗ b)).

A double-framed soft ⟨(α, β);X⟩ over U is called a double-framed soft normal subalgebra of a B-algebra X if it

satisfies (3.1) and (3.3).
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Example 3.15. Let (U = Z, X) where X = {0, 1, 2, 3} is a B-algebra as in Example 3.3. Let ⟨(α, β);X⟩ be a

double-framed soft set over U defined as follows:

α : X →P(U), x 7→
{

Z if x ∈ {0, 3},
2Z if x ∈ {1, 2},

and

β : X →P(U), x 7→
{

3Z if x ∈ {0, 3},
Z if x ∈ {1, 2},

It is easy to check that ⟨(α, β);X⟩ is a double-framed soft normal over U.

Proposition 3.16. Every double-framed soft normal (f̃ , X) of a B-algebra X is a double-framed soft subalgebra

of X.

Proof. Put y := 0, b := 0 and a := y in (3.3). Then α((x ∗ y) ∗ (0 ∗ 0)) ⊇ α(x ∗ 0)∩α(y ∗ 0) and β((x ∗ y) ∗ (0 ∗ 0)) ⊆
β(x∗0)∪β(y∗0) for any x, y ∈ X. Using (B2) and (B1), we have α(x∗y) ⊇ α(x)∩α(y) and β(x∗y) ⊆ β(x)∪β(y).

Hence ⟨(α, β);X⟩ is a double-framed soft subalgebra over U . □

The converse of Proposition 3.16 may not be true in general (Example 3.17).

Example 3.17. Let E = X be the set of parameters, and let U = X be the initial universe set, where

X = {0, 1, 2, 3, 4, 5} is a B-algebra as in Example 3.7. Let ⟨(α, β);X⟩ be double-framed soft set over U defined as

follows:

α : X →P(U), x 7→


γ3 if x = 0,

γ2 if x = 5,

γ1 if x ∈ {1, 2, 3, 4},

and

β : X →P(U), x 7→


τ1 if x = 0,

τ2 if x = 5,

τ3 if x ∈ {1, 2, 3, 4},

where γ1, γ2, γ3, τ1, τ2 and τ3 are subsets of U with γ1 ⊊ γ2 ⊊ γ3 and τ1 ⊊ τ2 ⊊ τ3. It is routine to verify that

⟨(α, β);X⟩ is a double-framed soft subalgebra over U. But it is not double-framed soft normal over U since since

α(1) = α((1 ∗ 3) ∗ (4 ∗ 2)) = γ1 ⊉ α(1 ∗ 4) ∩ α(3 ∗ 2) = α(5) ∩ α(5) = γ2 and/or β(1) = β((1 ∗ 3) ∗ (4 ∗ 2)) = τ3 ⊈
β(1 ∗ 4) ∪ β(3 ∗ 2) = β(5) ∪ β(5) = τ2.

Theorem 3.18. For a double-framed soft set ⟨(α, β);X⟩ over U, the following are equivalent:

(i) ⟨(α, β);X⟩ is a double-framed soft normal subalgebra over U.

(ii) For every subsets γ and δ of U with γ ∈ Im(α) and δ ∈ Im(β), the γ-inclusive set and the δ-exclusive

set of ⟨(α, β);X⟩ are normal subalgebras of X.

Proof. Similar to Theorem 3.10. □

Proposition 3.19. Let a double-framed soft set ⟨(α, β);X⟩ over U of a B-algebra X be double-framed soft

normal. Then α(x ∗ y) = α(y ∗ x) and β(x ∗ y) = β(y ∗ x) for any x, y ∈ X.
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Proof. Let x, y ∈ X. By (B1) and (B2), we have α(x∗y) = α((x∗y)∗(x∗x)) ⊇ α(x∗x)∩α(y∗x) = α(0)∩α(y∗x) =

α(y ∗ x). Interchanging x with y, we obtain α(y ∗ x) ⊇ α(x ∗ y).

By (B1) and (B2), we have β(x ∗ y) = β((x ∗ y) ∗ (x ∗ x)) ⊆ β(x ∗ x) ∪ β(y ∗ x) = β(0) ∪ β(y ∗ x) = β(y ∗ x).

Interchanging x with y, we obtain β(y ∗ x) ⊆ β(x ∗ y). □

Theorem 3.20. Let ⟨(α, β);X⟩ be a double-framed soft normal subalgebra of a B-algebra X. Then the set

X(α,β) := {x ∈ X|α(x) = α(0), β(x) = β(0)} is a normal subalgebra of X.

Proof. It is sufficient to show that X(α,β) is normal. Let a, b, x, y ∈ X be such that x∗y ∈ X(α,β) and a∗b ∈ X(α,β).

Then α(x ∗ y) = α(0) = α(a ∗ b), β(x ∗ y) = β(0) = β(a ∗ b). Since ⟨(α, β);X⟩ is a double-framed soft normal

subalgebra of X, we have α((x∗a)∗(y∗b)) ⊇ α(x∗y)∩α(a∗b) = α(0) and β((x∗a)∗(y∗b)) ⊆ β(x∗y)∪β(a∗b) = β(0).

Using (3.2), we conclude that α((x∗a)∗(y∗b)) = α(0) and β((x∗a)∗(y∗b)) = β(0). Hence (x∗a)∗(y∗b) ∈ X(α,β).

This completes the proof. □
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APPLICATIONS OF DOUBLE DIFFERENCE FRACTIONAL ORDER

OPERATORS TO ORIGINATE SOME SPACES OF SEQUENCES

ANU CHOUDHARY AND KULDIP RAJ

Abstract. In the present article, we introduce and study some sequence spaces by

means of double difference fractional order operators, Orlicz function and four dimen-
sional bounded regular matrix. We make an effort to study some topological and

algebraic properties of these sequence spaces. Some inclusion relations between newly

formed sequence spaces are also establish. Finally, we study several results under the
suitable choice of order γ.

1. Introduction and Preliminaries

Let ($k,l, νk,l) be a double sequence of seminormed spaces such that $k−1,l−1 ⊆ $k,l for
all non-negative integers k and l. A sequence space X is called solid or normal if and
only if it contains all such sequences y = (yk,l) corresponding to each of which there is a
sequence x = (xk,l) ∈ X such that |yk,l| ≤ |xk,l| for all non negative integers k and l. Let
Q be a normal sequence space and Ω2 denotes the set of all double complex sequences.
Define a linear space

Ω2($k,l) = {x = (xk,l) ∈ Ω2 : xk,l ∈ $k,l for all non-negative integers k and l}.

Let ν and ν′ be seminorms on a linear space X. Then ν is said to be stronger than ν′

if whenever (xk,l) is a sequence such that ν(xk,l) → 0, then also ν′(xk,l) → 0. If each is
stronger than the other, then ν and ν′ are said to be equivalent.
A double sequence has Pringsheim limit L (denoted by P − limx = L) provided that given
ε > 0 there exist n ∈ N such that |xk,l − L| < ε whenever k, l > n (see [11]). A double
sequence x = (xk,l) is bounded if there exists a positive number n such that |xk,l| < n for
all k and l.
Some initial works on double sequences is due to Bromwich [5]. Later on, the double
sequences were studied in (see [12], [13]) and operators on sequence spaces were studied
in (see [1], [9]).
The fractional difference operator ∆(γ) for a positive proper fraction γ on single sequence
is defined as

∆(γ)(xk) =
∞∑
m=0

(−1)m
Γ(γ + 1)

m!Γ(γ −m+ 1)
xk−m,

where Γ(γ) denotes the Euler gamma function of a real number γ or generalized factorial
function (see [2], [3]). For γ /∈ {0,−1,−2,−3, · · · }, Γ(γ) can be expressed as an improper
integral,

Γ(γ) =

∫ ∞
0

e−ssγ−1ds.

2010 Mathematics Subject Classification. 40A05, 40A30.
Key words and phrases. Orlicz function, fractional double difference operator, double sequence, para-

normed space.
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For x ∈ Ω2 and a positive proper fraction γ, the double difference operator of fractional
order γ is defined as

(1.1) ∆
(γ)
2 (xk,l) =

∞∑
m=0

∞∑
n=0

(−1)m+n Γ(γ + 1)2

m!n!Γ(γ −m+ 1)Γ(γ − n+ 1)
xk−m,l−n.

The above defined infinite series can be reduced to finite series if γ is a positive integer
(see [4]). Throughout the text it is assumed that (xk,l) = 0 for any negative integers k
and l.
An Orlicz function M is a function, which is continuous, non-decreasing and convex with
M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞ as x −→ ∞. An Orlicz function
M is said to satisfy ∆2-condition for all values of u, if there exists R > 0 such that
M(2u) ≤ RM(u), u ≥ 0.
The idea of Orlicz function was used by Lindenstrauss and Tzafriri [7] to define the fol-
lowing sequence space:

`M =
{
x = (xk) ∈ w :

∞∑
k=1

M
( |xk|
ρ

)
<∞, for some ρ > 0

}
known as an Orlicz sequence space. The space lM is a Banach space with the norm,

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

A sequence M = (Mk) of Orlicz functions is called a Musielak-Orlicz function (see [8],
[10]).

Remark 1.1. (1) Let M = (Mk,l) be a Musielak Orlicz function and q be a non-negative
integer. Then for a real number d ∈ [0,∞), we have
(i)M(qx) ≤ qM(x)
(ii) M(dx) ≤ (1 + bdc)M(x), where b.c denotes the greatest integer function.
(2) For a complex number α,

|α|pk,l ≤ max{1, |α|L}
and

|ak,l + bk,l|pk,l ≤ D(|ak,l|pk,l + |bk,l|pk,l),

where L = sup
k,l

pk,l <∞ and D = max(1, 2L−1).

Let A = (aijkl) be a four-dimensional infinite matrix of scalars. For all i, j ∈ N0, where
N0 = N ∪ {0}, the sum

yi,j =

∞,∞∑
k,l=0,0

aijklxk,l

is called the A-means of the double sequence (xk,l). A double sequence (xk,l) is said to
be A-summable to the limit L if the A-means exist for all i, j in the sense of Pringsheim’s
convergence

P - lim
p,q→∞

p,q∑
k,l=0,0

aijklxk,l = yi,j and P - lim
i,j→∞

yi,j = L.

A four-dimensional matrixA is said to be bounded-regular (or RH-regular) if every bounded
P -convergent sequence isA-summable to the same limit and theA-means are also bounded.

Theorem 1.2. (Robison [14] and Hamilton [6]) The four dimensional matrix A is RH-
regular if and only if

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

95 CHOUDHARY-RAJ 94-103



APPLICATIONS OF DOUBLE DIFFERENCE FRACTIONAL ORDER OPERATORS 3

(RH1) P - lim
i,j

aijkl = 0 for each k and l,

(RH2) P - lim
i,j

∞,∞∑
k,l=1,1

|aijkl| = 1,

(RH3) P - lim
i,j

∞∑
k=1

|aijkl| = 0 for each l,

(RH4) P - lim
i,j

∞∑
l=1

|aijkl| = 0 for each k,

(RH5)

∞,∞∑
k,l=1,1

|aijkl| <∞ for all i, j ∈ N.

A real valued function g defined on a linear space X is called a paranorm, if it satisfies
the following conditions for all x, y ∈ X and for all scalars β
(i) g(λ) = 0, where λ is the zero element of X
(ii) g(−x) = g(x)
(iii) g(x+ y) ≤ g(x) + g(y)
(iv) If (βn) is a sequence of scalars with βn → 0 as n→ 0 and xn is a sequence in X such
that g(xn − x)→ 0 as n→∞ for some x ∈ X, then g(βnxn − βx)→ 0 as n→∞.
Let M = (Mk,l) be a Musielak Orlicz function, A = (aijkl) be a nonnegative four-
dimensional bounded-regular matrix, u = (uk,l) be any double sequence of strictly positive

real numbers, p = (pk,l) be a bounded double sequence of positive real numbers, ∆
(γ)
2 de-

notes the double difference operator of fractional order γ. In this paper we define the
following sequence space

Q[∆
(γ)
2 , p, ν, u,A,M] =

{
x = (xk,l) ∈ Ω2($k,l) :

( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]pk,l
)
i,j

∈ Q, for some ρ > 0

}
.

Remark 1.3. (1) Let M = (Mk,l) be a Musielak Orlicz function and ρ = ρ1 + ρ2. Then

for x = (xk,l) and y = (yk,l) ∈ Q[∆
(γ)
2 , p, ν, u,A,M], we have

∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 (xk,l) + uk,l∆

(γ)
2 (yk,l)

ρ

))]pk,l

≤ D

( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ1

))]pk,l

+

∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 yk,l
ρ2

))]pk,l
)

for all non-negative integers i and j and for some ρ1, ρ2 > 0.

(2) LetM = (Mk,l) be a Musielak Orlicz function and d ∈ C. Then for L = sup
k,l

pk,l <∞,

we have
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∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 (dxk,l)

ρ

))]pk,l

≤ max{1, (1 + b|d|c)L}
( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 (xk,l)

ρ

))]pk,l
)

for all non-negative integers i and j and for some ρ > 0.

(3) Let M = (Mk,l) and M′ = (M ′k,l) be two Musielak Orlicz functions. Then
∞,∞∑
k,l=0,0

aijkl

[
(Mk,l +M ′k,l)

(
νk,l

(
uk,l∆

(γ)
2 (xk,l)

ρ

))]pk,l

≤ D

( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 (xk,l)

ρ

))]pk,l

+

∞,∞∑
k,l=0,0

aijkl

[
M ′k,l

(
νk,l

(
uk,l∆

(γ)
2 (xk,l)

ρ

))]pk,l
)

for all non-negative integers i and j and for some ρ > 0.

(4) Let M = (Mk,l) be a Musielak Orlicz function. Let ν = (νk,l) and ν′ = (ν′k,l) be
two sequences of seminorms. Then
∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
(νk,l + ν′k,l)

(
uk,l∆

(γ)
2 (xk,l)

ρ

))]pk,l

≤ D

( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 (xk,l)

ρ

))]pk,l

+

∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
ν′k,l

(
uk,l∆

(γ)
2 (xk,l)

ρ

))]pk,l
)

for all non-negative integers i and j and for some ρ > 0.

The main goal of this paper is to introduce the double difference operator ∆
(γ)
2 of frac-

tional order γ. In this study, being an application of double difference operator ∆
(γ)
2 , some

new difference double sequence spaces of fractional order have been introduced and sub-
sequently, their topological and algebraic properties have been discussed in detail. Infact,
this study involves new results obtained under different suitable choice of γ.

2. Main Results

Theorem 2.1. Let M = (Mk,l) be a Musielak Orlicz function, ν = (νk,l) be a sequence
of seminorms and u = (uk,l) be a double sequence of strictly positive real numbers. Then

the sequence space Q[∆
(γ)
2 , p, ν, u,A,M] is a linear space over the complex field C.

Proof. This is a routine matter, so we omit it. �

Theorem 2.2. Let M = (Mk,l) be a Musielak Orlicz function, ν = (νk,l) be a sequence of
seminorms and u = (uk,l) be a double sequence of strictly positive real numbers. Then the
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sequence space Q[∆
(γ)
2 , p, ν, u,A,M] is a paranormed space with paranorm g defined by

g(x) = inf

{
(ρ)

pk,l
L :

( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 (xk,l)

ρ

))]pk,l
) 1

N

≤ 1, for some ρ > 0

}
,

where N = max{1, L} and L = sup
k,l

pk,l <∞.

Proof. (i) Clearly g(x) ≥ 0, for x = (xk,l) ∈ Q[∆
(γ)
2 , p, ν, u,A,M]. Since Mk,l(0) = 0, we

get g(0) = 0.
(ii) g(−x) = g(x).

(iii) Let x = (xk,l), y = (yk,l) ∈ Q[∆
(γ)
2 , p, ν, u,A,M], then there exist ρ1 > 0 and ρ2 > 0

such that ( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 (xk,l)

ρ1

))]pk,l
) 1

N

≤ 1

and ( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 (yk,l)

ρ2

))]pk,l
) 1

N

≤ 1.

Now for ρ = ρ1 + ρ2 and by using Minkowski’s inequality, we have( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 (xk,l) + uk,l∆

(γ)
2 (yk,l)

ρ1 + ρ2

))]pk,l
) 1

N

≤
(

ρ1
ρ1 + ρ2

)( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ1

))]pk,l
) 1

N

+

(
ρ2

ρ1 + ρ2

)( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 yk,l
ρ2

))]pk,l
) 1

N

≤ 1.

Hence, g(x+ y)

= inf

{
(ρ1+ρ2)

pk,l
L :

( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 (xk,l) + uk,l∆

(γ)
2 (yk,l)

ρ

))]pk,l
) 1

N

≤

1, for some ρ > 0

}

≤ inf

{
(ρ1)

pk,l
L :

( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 (xk,l)

ρ1

))]pk,l
) 1

N

≤ 1, for some ρ1 > 0

}

+ inf

{
(ρ2)

pk,l
L :

( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 (yk,l)

ρ2

))]pk,l
) 1

N

≤ 1, for some ρ2 > 0

}
= g(x) + g(y).

(iv) Finally, we show that scalar multiplication is continuous. In order to show this, let
us consider a complex number σ. Then by definition we have
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g(σx)

= inf

{
(ρ)

pk,l
L :

( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
σuk,l∆

(γ)
2 (xk,l)

ρ

))]pk,l
) 1

N

≤ 1, ρ > 0

}
,

= inf

{
(|σ|t)

pk,l
L :

( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 (xk,l)

t

))]pk,l
) 1

N

≤ 1, t > 0

}
,

where t = ρ
|σ| . Hence the proof. �

Theorem 2.3. Let M = (Mk,l) and M′ = (M ′k,l) be two Musielak Orlicz functions,

u = (uk,l) be a double sequence of strictly positive real numbers and A = (aijkl) be a
nonnegative four-dimensional bounded-regular matrix. Then

Q[∆
(γ)
2 , p, ν, u,A,M] ∩Q[∆

(γ)
2 , p, ν, u,A,M′] ⊆ Q[∆

(γ)
2 , p, ν, u,A,M+M′].

Proof. Suppose x = (xk,l) ∈ Q[∆
(γ)
2 , p, ν, u,A,M] ∩ Q[∆

(γ)
2 , p, ν, u,A,M′]. This implies

that ( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]pk,l
)
i,j

and ( ∞,∞∑
k,l=0,0

aijkl

[
M ′k,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]pk,l
)
i,j

both are in Q. Now by using part (3) of Remark 1.3, we have
∞,∞∑
k,l=0,0

aijkl

[
(Mk,l +M ′k,l)

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]pk,l

≤ D

{ ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]pk,l

+

∞,∞∑
k,l=0,0

aijkl

[
M ′k,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]pk,l
}
.

Since Q is normal,

( ∞,∞∑
k,l=0,0

aijkl

[
(Mk,l +M ′k,l)

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]pk,l
)
i,j

∈ Q.

Then x = (xk,l) ∈ Q[∆
(γ)
2 , p, ν, u,A,M+M′]. Hence the proof. �

Theorem 2.4. Suppose that M = (Mk,l) be a Musielak Orlicz function, ν = (νk,l) and
ν′ = (ν′k,l) be two double sequences of seminorms. Then

Q[∆
(γ)
2 , p, ν, u,A,M] ∩Q[∆

(γ)
2 , p, ν′, u,A,M] ⊆ Q[∆

(γ)
2 , p, ν + ν′, u,A,M].

Proof. One can easily obtain the proof by using part (4) of Remark 1.3. So, we omit it. �

Theorem 2.5. LetM = (Mk,l) be a Musielak Orlicz function. If ν = (νk,l) and ν′ = (ν′k,l)

be two double sequences of seminorms such that (νk,l) is stronger than (ν′k,l) for each k

and l, then Q[∆
(γ)
2 , p, ν, u,A,M] ⊆ Q[∆

(γ)
2 , p, ν′, u,A,M].
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Proof. Consider a double sequence x = (xk,l) ∈ Q[∆
(γ)
2 , p, ν, u,A,M]. Then( ∞,∞∑

k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]pk,l
)
i,j

∈ Q.

Since each νk,l is stronger than corresponding ν′k,l, we have a natural number Nk,l corre-

sponding to each pair of non-negative integer k and l such that ν′k,l(w) ≤ Nk,lνk,l(w). Let

N = max{Nk,l}. Then ν′k,l(w) ≤ Nνk,l(w) for all non-negative integers k and l. Thus,

ν′k,l

(
uk,l∆

(γ)
2 xk,l
ρ

)
≤ Nνk,l

(
uk,l∆

(γ)
2 xk,l
ρ

)
.

From Remark 1.1, we have
∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
ν′k,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]pk,l

≤ max{1, NL}
∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]pk,l

.

Since Q is normal,

( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
ν′k,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]pk,l
)
i,j

∈ Q.

This implies x = (xk,l) ∈ Q[∆
(γ)
2 , p, ν′, u,A,M]. �

Corollary 2.6. Let M = (Mk,l) be a Musielak Orlicz function. If ν = (νk,l) and ν′ =
(ν′k,l) be two double sequences of seminorms such that (νk,l) is equivalent to (ν′k,l) for each
k and l. Then

Q[∆
(γ)
2 , p, ν, u,A,M] = Q[∆

(γ)
2 , p, ν′, u,A,M].

Theorem 2.7. Suppose M = (Mk,l) and M′ = (M ′k,l) be two Musielak Orlicz func-

tion such that Mk,l(1) is finite for each k and l. Let A = (aijkl) be a nonnegative four-
dimensional bounded-regular matrix. Then

Q[∆
(γ)
2 , p, ν, u,A,M′] ⊆ Q[∆

(γ)
2 , p, ν, u,A,M◦M′].

Proof. Consider x = (xk,l) ∈ Q[∆
(γ)
2 , p, ν, u,A,M′]. So,( ∞,∞∑

k,l=0,0

aijkl

[
M ′k,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]pk,l
)
i,j

∈ Q.

Since each (Mk,l) is continuous and Mk,l(0) = 0 for each k and l, we choose ς ∈ (0, 1)
corresponding to an arbitrary ε > 0 such that Mk,l(s) < ε for 0 ≤ s ≤ ς. Let us take

sk,l = M ′k,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))
and

(2.1)

∞,∞∑
k,l=1,1

aijkl

[
Mk,l

(
sk,l
)]pk,l

=
∑
1

aijkl

[
Mk,l

(
sk,l
)]pk,l

+
∑
2

aijkl

[
Mk,l

(
sk,l
)]pk,l

,

where the first summation is over sk,l ≤ ς and the second is taken over sk,l > ς. For
sk,l ≤ ς, we have Mk,l(sk,l) < ε and hence∑

1

aijkl

[
Mk,l

(
sk,l
)]pk,l

<
∑
1

aijkl[ε]
pk,l .
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Now by using Part (2) of Remark 1.1, we have

(2.2)
∑
1

aijkl

[
Mk,l

(
sk,l
)]pk,l

< max{1, εL}
∑
1

aijkl ≤ max{1, εL}
∞,∞∑
k,l=0,0

aijkl.

For sk,l > ς, we have sk,l <

(
sk,l

ς

)
. So, from Part (1) of Remark 1.1, we have

Mk,l(sk,l) < Mk,l

(
sk,l
ς

)
≤
(

1 +

⌊
sk,l
ς

⌋)
Mk,l(1) ≤ 2Mk,l(1)

sk,l
ς
.

Let ξ = max
k,l

(Mk,l(1)), then Mk,l(sk,l) < 2ξ
sk,l

ς . By using Part (2) of Remark 1.1, we get

(2.3)
∑
2

aijkl

[
Mk,l

(
sk,l
)]pk,l

≤ max

(
1,

(
2ξ

ς

)L) ∞,∞∑
k,l=0,0

aijkl[sk,l]
pk,l .

From (2.1), (2.2) and (2.3), we have

∞,∞∑
k,l=1,1

aijkl[Mk,l(sk,l)]
pk,l ≤ max(1, εL)

∞,∞∑
k,l=0,0

aijkl

+ max

(
1,

(
2ξ

ς

)L) ∞,∞∑
k,l=0,0

aijkl[sk,l]
pk,l .

Since Q is normal,( ∞,∞∑
k,l=1,1

aijkl[Mk,l(sk,l)]
pk,l

)
i,j

=

( ∞,∞∑
k,l=1,1

aijkl

[
(Mk,l ◦M ′k,l)

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]pk,l
)
i,j

∈ Q.

Thus, x = (xk,l) ∈ Q[∆
(γ)
2 , p, ν, u,A,M◦M′]. Hence the proof. �

Theorem 2.8. Let M = (Mk,l) be a Musielak Orlicz function such that Mk,l(s) ≤
Mk−1,l−1(s) for all s ∈ [0,∞), ν = (νk,l) be a double sequence of seminorm such that
νk,l(s) ≤ νk−1,l−1(s) for all s. Let A = (aijkl) be a nonnegative four-dimensional bounded-
regular matrix such that aijkl ≤ aij(k−1)(l−1) for all non-negative integers i, j, k and l and
suppose p = (pk,l ≡ p) is a constant sequence of positive real number. Then

Q[∆
(γ−1)
2 , p, ν, u,A,M] ⊂ Q[∆

(γ)
2 , p, ν, u,A,M].

Proof. Suppose x = (xk,l) is a double sequence in Q[∆
(γ−1)
2 , p, ν, u,A,M]. Then( ∞,∞∑

k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ−1)
2 xk,l
ρ

))]p)
i,j

∈ Q.
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Since Mk,l(s) ≤Mk−1,l−1(s), νk,l(s) ≤ νk−1,l−1(s) and aijkl ≤ aij(k−1)(l−1), we have
∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ−1)
2 xk−1,l−1

ρ

))]p

≤
∞,∞∑
k,l=0,0

aij(k−1)(l−1)

[
Mk−1,l−1

(
νk−1,l−1

(
uk−1,l−1∆

(γ−1)
2 xk−1,l−1
ρ

))]p

=

∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ−1)
2 xk,l
ρ

))]p
.

Since Q is normal ,

( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ−1)
2 xk−1,l−1

ρ

))]p)
i,j

∈ Q. Now,

∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]p

=

∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ−1)
2 (xk,l − xk−1,l−1)

ρ

))]p

≤ D

{ ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ−1)
2 xk,l
ρ

))]p

+

∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ−1)
2 xk−1,l−1

ρ

))]p}
.

Again Q is normal. So,

( ∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]p)
i,j

∈ Q.

Thus, x = (xk,l) ∈ Q[∆
(γ)
2 , p, ν, u,A,M]. �

In order to show the strictness of the above inclusion let us consider the following example.

Example 2.9. Consider M = (Mk,l) be a Musielak Orlicz function with Mk,l(x) =
x, (νk,l) be a sequence of seminorm with νk,l(x) = |x|, pk,l = 1,A = I be an identity matrix
of infinite order, ρ = 1, uk,l(x) = x and (xk,l) = 1 for all non-negative integers k and l.
Then

sup
i,j

∞,∞∑
k,l=0,0

aijkl

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]pk,l

= sup
i,j
|Ji,j(γ)| (say),

where Ji,j(γ) is the expansion of the series (1.1) for xk,l = 1. For γ = 1
2 , sup

i,j
|Ji,j(γ)| <∞

whereas for γ = − 1
2 , sup

i,j
|Ji,j(γ)| = ∞. Thus, x = (xk,l) ∈ `∞[∆

(1/2)
2 , p, ν, u, I,M] but

x = (xk,l) /∈ `∞[∆
(−1/2)
2 , p, ν, u, I,M]. Therefore, the inclusion relation is strict in general.

Theorem 2.10. Let M = (Mk,l) be a Musielak Orlicz function and P be a nonnegative
four-dimensional bounded-regular matrix whose all entries are 1. If 0 < inf

k,l
hk,l < hk,l ≤

ck,l < sup
k,l

ck,l <∞ for all non-negative integers k and l. Then

`∞[∆
(γ)
2 , h, ν, u, P,M] ⊆ `∞[∆

(γ)
2 , c, ν, u, P,M].
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Proof. Consider that x = (xk,l) ∈ `∞[∆
(γ)
2 , h, ν, u, P,M]. This implies

sup
i,j

∞,∞∑
k,l=0,0

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]hk,l

=

∞,∞∑
k,l=0,0

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]hk,l

< ∞.
Then for sufficiently large k say k0 and sufficiently large l say l0, we have[

Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]hk,l

≤ 1

for all k ≥ k0 and l ≥ l0. Hence,{[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]hk,l
} ck,l

hk,l

≤
[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]hk,l

for all k ≥ k0 and l ≥ l0. Now by taking summation from k0 to ∞ and l0 to ∞ on both
sides, we have
∞,∞∑

k,l=k0,l0

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]ck,l

≤
∞,∞∑

k,l=k0,l0

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]hk,l

< ∞.

Thus, sup
i,j

∞,∞∑
k,l=0,0

[
Mk,l

(
νk,l

(
uk,l∆

(γ)
2 xk,l
ρ

))]ck,l

<∞.

Therefore, x = (xk,l) ∈ `∞[∆
(γ)
2 , c, ν, u, P,M]. Hence the proof. �
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On the dynamics of higher-order anti-competitive system:

xn+1 = A + yn
k∑

i=1

xn−i

, yn+1 = B + xn
k∑

i=1

yn−i

A. Q. Khan∗ M. A. El-Moneam† E. S. Aly‡ M. A. Aiyashi§

Abstract

We study the boundedness and persistence, asymptotic stability, existence and uniqueness of positive equilibrium
point, and rate of convergence of an anti-competitive system of higher-order difference equations. The proposed work
is considerably extended and improve some existing results in the literature.

Keywords: difference equations; boundedness; persistence; asymptotic stability; rate of convergence
2010 AMS Mathematics subject classifications: 39A10, 40A05.

1 Introduction

Difference equations or systems of difference equations play a vital role in the development of different sciences ranging
from life to decision sciences (see [1–7] and references cited therein). DeVault et al. [5] have investigated that every
positive solution of the difference equation: xn+1 = A

xn
+ 1

xn−2
, n = 0, 1, · · · , converges to a period two solution.

Abu-Saris and DeVault [6] have investigated the global stability of the positive equilibrium of the difference equation:
xn+1 = A + xn

xn−k
, n = 0, 1, · · · . Zhang et al. [7] have studied the global dynamics of the difference equation: xn+1 =

A + xn

2∑
i=1

yn−i

, yn+1 = B + yn

2∑
i=1

xn−i

, n = 0, 1, · · · . In this paper, our goal is to investigate the dynamics of following

higher-order anti-competitive system of difference equations:

xn+1 = A+
yn

k∑
i=1

xn−i

, yn+1 = B +
xn

k∑
i=1

yn−i

, n = 0, 1, · · · , (1)

where initial conditions x−p, y−p, p = k, k − 1, k − 2, · · · , 1, 0 and A, B are positive.

2 Main results

Hereafter we will prove main results for under consideration system.

Theorem 1. If ABk2 > 1, then the following statements holds:

(i) Every positive solution {(xn, yn)} of (1) is bounded and persists.

(ii) The interval

[
A,

kB(kA2+B)
k2AB−1

]
×
[
B,

kA(kB2+A)
k2AB−1

]
is invariant set for (1).
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Proof. (i) If {(xn, yn)} be a positive solution of (1) then

xn ≥ A, yn ≥ B, n = 0, 1, · · · . (2)

From (1) and (2), one gets

xn+1 ≤ A+
1

kA
yn, yn+1 ≤ B +

1

kB
xn. (3)

Moreover, from (3), one gets

xn+1 ≤ A+
B

kA
+

1

k2AB
xn−1, yn+1 ≤ B +

A

kB
+

1

k2AB
yn−1. (4)

Now consider

ςn+1 = A+
B

kA
+

1

k2AB
ςn−1, %n+1 = B +

A

kB
+

1

k2AB
%n−1. (5)

Therefore, solution {(ςn, %n)} of (5) is given by

ςn = c1

(√
1

k2AB

)n

+ c2

(
−
√

1

k2AB

)n

+
kB
(
kA2 +B

)
k2AB − 1

,

%n = d1

(√
1

k2AB

)n

+ d2

(
−
√

1

k2AB

)n

+
kA
(
kB2 +A

)
k2AB − 1

,

(6)

where c1, c2, d1, d2 depend upon ς−1, ς0, %−1, %0. Assuming ABk2 > 1, then (6) implies that {ςn} and {%n} are
bounded. Now considering solution {(ςn, %n)} of (6) for which

ς−1 = x−1, ς0 = x0, %−1 = y−1, %0 = y0, (7)

where x−1, x0 ∈
[
A,

kB(kA2+B)
k2AB−1

]
and y−1, y0 ∈

[
B,

kA(kB2+A)
k2AB−1

]
. From (4) and (7) one gets

xn ≤
kB
(
kA2 +B

)
k2AB − 1

, yn ≤
kA
(
kB2 +A

)
k2AB − 1

. (8)

From (2) and (8), we get

A ≤ xn ≤
kB
(
kA2 +B

)
k2AB − 1

, B ≤ yn ≤
kA
(
kB2 +A

)
k2AB − 1

, n = 0, 1, · · · .

Proof. (ii) Follows from induction.

Theorem 2. System (1) has a unique positive equilibrium point (x̄, ȳ) ∈
[
A,

kB(kA2+B)
k2AB−1

]
×
[
B,

kA(kB2+A)
k2AB−1

]
if

k2

(
2k2B(kA2 +B)

k2AB − 1

(
kB(kA2 +B)

k2AB − 1
−A

)
−B

)(
2kB(kA2 +B)

k2AB − 1
−A

)
< 1. (9)

Proof. Consider

x = A+
y

kx
, y = B +

x

ky
. (10)

From (10),
y = kx(x−A), x = ky(y −B).

Defining
S(x) = ks(x)(s(x)−B)− x, (11)

where
s(x) = kx(x−A), (12)
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and x ∈
[
A,

kB(kA2+B)
k2AB−1

]
. We claim that S(x) = 0 has a unique solution x ∈

[
A,

kB(kA2+B)
k2AB−1

]
. From (11) and (12) one

gets
S′(x) = 2ks(x)s′(x)− kBs′(x)− 1, (13)

and
s′(x) = 2kx− kA. (14)

Now if x̄ ∈
[
A,

kB(kA2+B)
k2AB−1

]
be a solution of S(x) = 0 then from (11) and (12) one gets

ks(x̄)(s(x̄)−B) = x̄, (15)

where
s(x̄) = kx̄(x̄−A). (16)

In view of (14), (15) and (16), equation (13) becomes

S′(x) = k2 (2kx(x−A)−B) (2x−A)− 1,

≤ k2

(
2k2B(kA2 +B)

k2AB − 1

(
kB(kA2 +B)

k2AB − 1
−A

)
−B

)(
2kB(kA2 +B)

k2AB − 1
−A

)
− 1. (17)

Now assume that (9) hold then from (17) one gets S′(x) < 0. Hence S(x) = 0 has a unique positive solution x̄ ∈[
A,

kB(kA2+B)
k2AB−1

]
.

Theorem 3. If
1

kA
+

kB2 +A

A(k2AB − 1)
< 1,

1

kB
+

kA2 +B

B(k2AB − 1)
< 1, (18)

then equilibrium (x̄, ȳ) ∈
[
A,

kB(kA2+B)
k2AB−1

]
×
[
B,

kA(kB2+A)
k2AB−1

]
of the system (1) is locally asymptotically stable.

Proof. The linearized system of (1) about (x̄, ȳ) is

Φn+1 = EΦn,

where

Φn =



xn
xn−1

...
xn−k
yn
yn−1

...
yn−k


, E =



0 − ȳ
k2x̄2 . . . − ȳ

k2x̄2 − ȳ
k2x̄2

1
kx̄ 0 . . . 0 0

1 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 1 0 0 0 . . . 0 0
1
kȳ 0 . . . 0 0 0 − x̄

k2ȳ2 . . . − x̄
k2ȳ2 − x̄

k2ȳ2

0 0 . . . 0 0 1 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 0 0 0 0 . . . 1 0


.

Let us denote 2k + 2 eigenvalues of E as κ1, κ2, . . . , κ2k+2 and D = diag(m1, m2, . . . , m2k+2) be a diagonal matrix,
where m1 = mk+2 = 1, mi = mk+1+i = 1− iε, i = 2, 3, · · · , k + 1, and

0 < ε < min

{
1

k + 1

(
1− 1

kA
− kB2 +A

A(K2AB − 1)

)
,

1

k + 1

(
1− 1

kB
− kA2 +B

B(K2AB − 1)

)}
< 1.

Since D is invertible and by computing DED−1, one gets
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DED−1 =



0 − ȳ
k2x̄2m1m

−1
2 . . . − ȳ

k2x̄2m1m
−1
k − ȳ

k2x̄2m1m
−1
k+1

m2m
−1
1 0 . . . 0 0

...
... . . .

...
...

0 0 . . . mk+1m
−1
k 0

1
kȳmk+2m

−1
1 0 . . . 0 0

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
1
kx̄m1m

−1
k+2 0 . . . 0 0

0 0 . . . 0 0
...

. . .
...

...
...

0 0 . . . 0 0
0 − x̄

k2ȳ2mk+2m
−1
k+3 . . . − x̄

k2ȳ2mk+2m
−1
2k+1 − x̄

k2ȳ2mk+2m
−1
2k+2

mk+3m
−1
k+2 0 . . . 0 0

...
. . .

...
...

...
0 0 . . . m2k+2m

−1
2k+1 0



. (19)

From m1 > m2 > · · · > mk+1 > 0 and mk+2 > mk+3 > · · · > m2k+2 > 0, one has

m2m
−1
1 < 1, m3m

−1
2 < 1, · · · , mk+1m

−1
k < 1,mk+3m

−1
k+2 < 1, mk+4m

−1
k+3 < 1, · · · , m2k+2m

−1
2k+1 < 1.

Also,

ȳ

k2x̄2
m1m

−1
2 + · · ·+ ȳ

k2x̄2
m1m

−1
k+1 +

1

kx̄
m1m

−1
k+2 =

1

kx̄
+

ȳ

k2x̄2

(
1

1− 2ε
+ · · ·+ 1

1− (k + 1)ε

)
,

<

(
1

kx̄
+

ȳ

kx̄2

)
1

1− (k + 1)ε
,

<

(
1

kA
+

kB2 +A

A (k2AB − 1)

)
1

1− (k + 1)ε
< 1.

And

1

kȳ
mk+2m

−1
1 +

x̄

k2ȳ2
mk+2m

−1
k+3 + · · ·+ x̄

k2ȳ2
mk+2m

−1
2k+2 =

1

kȳ
+

x̄

k2ȳ2

(
1

1− 2ε
+ · · ·+ 1

1− (k + 1)ε

)
,

<

(
1

kȳ
+

x̄

kȳ2

)
1

1− (k + 1)ε
,

<

(
1

kB
+

kA2 +B

B (k2AB − 1)

)
1

1− (k + 1)ε
< 1.

Since E has the same eigenvalues as DED−1 and hence

max
1≤n≤2k+2

|κn| ≤ ‖DED−1‖∞ = max{m2m
−1
1 , · · · ,mk+1m

−1
k ,mk+3m

−1
k+2, · · · ,m2k+2m

−1
2k+1,

1

kx̄
+

ȳ

k2x̄2

(
1

1− 2ε
+ · · ·+ 1

1− (k + 1)ε

)
,

1

kȳ
+

x̄

k2ȳ2

(
1

1− 2ε
+ · · ·+ 1

1− (k + 1)ε

)
} < 1. (20)

Thus equation (20) implies that (x̄, ȳ) ∈
[
A,

kB(kA2+B)
k2AB−1

]
×
[
B,

kA(kB2+A)
k2AB−1

]
of (1) is locally asymptotically stable.

Theorem 4. Equilibrium (x̄, ȳ) ∈
[
A,

kB(kA2+B)
k2AB−1

]
×
[
B,

kA(kB2+A)
k2AB−1

]
of (1) is globally asymptotically stable.

Proof. Let {(xn, yn)} be arbitrary solution of (1). Also let lim
n→∞

supxn = L1, lim
n→∞

infxn = l1, lim
n→∞

supyn = L2, lim
n→∞

infyn =

l2 where li, Li ∈ (0,∞), i = 1, 2. Then from (1) one gets

L1 ≤ A+
L2

kl1
, l1 ≥ A+

l2
kL1

. (21)
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And

L2 ≤ B +
L1

kl2
, l2 ≥ B +

l1
kL2

. (22)

From (21), we have

Ak(L1 − l1) ≤ L2 − l2. (23)

From (22), we get

Bk(L2 − l2) ≤ L1 − l1. (24)

From (23) and (24), we get

(ABk2 − 1)(L1 − l1) ≤ 0,

which implies that l1 = L1. Similarly it is easy to prove that l2 = L2.

Theorem 5. Assuming {(xn, yn)} be a positive solution of (1) such that (xn, yn) → (x̄, ȳ) as n → ∞, where (x̄, ȳ) ∈[
A,

kB(kA2+B)
k2AB−1

]
×
[
B,

kA(kB2+A)
k2AB−1

]
. Then, the error vector ξn satisfying

lim
n→∞

n
√
‖ξn‖ = |κE|, lim

n→∞

‖ξn+1‖
‖ξn‖

= |κE|,

where κE are the characteristic roots of E.

Proof. If {(xn, yn)} be any solution of (1) such that (xn, yn)→ (x̄, ȳ) as n→∞. To find error term one has

xn+1 − x̄ =
yn

k∑
i=1

xn−i

− ȳ

kx̄
= −

k∑
i=1

ȳ

kx̄

(
k∑

i=1

xn−i

) (xn−i − x̄) +
1

k∑
i=1

xn−i

(yn − ȳ) ,

yn+1 − ȳ =
xn

k∑
i=1

yn−i

− x̄

kȳ
=

1
k∑

i=1

yn−i

(xn − x̄)−
k∑

i=1

x̄

kȳ

(
k∑

i=1

yn−i

) (yn−i − ȳ) .

Denote ε1n = xn − x̄ and ε2n = yn − ȳ, one has

ε1n+1 =
k∑

i=1

Aniε
1
n−i +Bnε

2
n, ε

2
n+1 = Cnε

1
n +

k∑
i=1

Dniε
2
n−i,

where

An1 = An2 = · · · = Ank = − ȳ

kx̄

(
k∑

i=1

xn−i

) , Bn =
1

k∑
i=1

xn−i

,

Cn =
1

k∑
i=1

yn−i

, Dn1 = Dn2 = · · · = Dnk = −
k∑

i=1

x̄

kȳ

(
k∑

i=1

yn−i

) .
Taking the limits, we obtain

lim
n→∞

An1 = lim
n→∞

An2 = · · · = lim
n→∞

Ank = − ȳ

k2x̄2
, lim

n→∞
Bn =

1

kx̄
,

lim
n→∞

Cn =
1

kȳ
, lim

n→∞
Dn1 = lim

n→∞
Dn2 = · · · = lim

n→∞
Dnk = − x̄

k2ȳ2
.
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Hence we have system (1.10) of [8] where
ξn+1 = Eξn, (25)

where ξn =



ε1n
ε1n−1

...
ε1n−k
ε2n
ε2n−1

...
ε2n−k


, E =



0 − ȳ
k2x̄2 . . . − ȳ

k2x̄2 − ȳ
k2x̄2

1
kx̄ 0 . . . 0 0

1 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 1 0 0 0 . . . 0 0
1
kȳ 0 . . . 0 0 0 − x̄

k2ȳ2 . . . − x̄
k2ȳ2 − x̄

k2ȳ2

0 0 . . . 0 0 1 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 0 0 0 0 . . . 1 0


. This is similar

to linearized system of (1) about (x̄, ȳ).

3 Conclusion

In the present work, dynamics of following higher-order anti-competitive system is studied:

xn+1 = A+
yn

k∑
i=1

xn−i

, yn+1 = B +
xn

k∑
i=1

yn−i

.

Our investigations reveal that if ABk2 > 1, then {(xn, yn)} of this system is bounded and persists and the region[
A,

kB(kA2+B)
k2AB−1

]
×
[
B,

kA(kB2+A)
k2AB−1

]
is invariant set. It is proved that if 1

kA + kB2+A
A(k2AB−1) < 1 and 1

kB + kA2+B
B(k2AB−1) < 1

then equilibrium (x̄, ȳ) ∈
[
A,

kB(kA2+B)
k2AB−1

]
×
[
B,

kA(kB2+A)
k2AB−1

]
of the system is locally asymptotically stable. Finally

global dynamics and rate of convergence that converges to (x̄, ȳ) ∈
[
A,

kB(kA2+B)
k2AB−1

]
×
[
B,

kA(kB2+A)
k2AB−1

]
of (1) are also

demonstrated.
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Abstract

We investigate a modified HIV infection model with antibodies and latency. The model consider saturated

HIV-CD4+ T cells and HIV-macrophages incidence rates. We show that the solutions of the proposed model

are nonnegative and bounded. We established that the global stability of the three steady states of the model

depend on threshold parameters R0 and R1. Using Lyapunov function, we established the global stability of

the steady states of the model. The theoretical results are confirmed by numerical simulations. The results

show that antibodies can reduce the HIV infection.

1 Introduction

Constructing and analyzing of within-host human immunodeficiency virus (HIV) dynamics models have become

one of the hot topics during the last decades [1]-[18]. These works can help researchers for better understanding

the HIV dynamical behavior and providing new suggestions for clinical treatment. A vast of the mathematical

models presented in the literature have focused on modeling the interaction between three main compartments,

uninfected CD4+ T cells (s), infected cells (u) and free HIV particles (p). Other models have differentiated

between latent and active infected cells [19]-[23], an HIV mathematical model has been presented by inroducing

a new variable (w) for the latently infected cells as:

ṡ = ρ− δs− λsp, (1)

ẇ = λsp− (α+ β)w, (2)

u̇ = βw − au, (3)

ṗ = ku− gp, (4)

where, ρ is the creation rate of the uninfected CD4+ T cells, δ, α, a and g are the death rate constants of the four

compartments s, w, u and p, respectively. The term βw represents the activation rate of the latently infected

cells. The HIV-CD4+T cell incidence rate is given by λsp. Parameter k represents the rate constant of free

virus production. Sun et. al. [24] have modified the above model by considering the saturated infection rate
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λsp
s+p as:

ṡ = ρ− δs− λsp

s+ p
, (5)

ẇ =
λsp

s+ p
− (α+ β)w, (6)

u̇ = βw − au, (7)

ṗ = ku− gp, (8)

Model (5)-(8) consider one type of target cells (CD4+ T cells). Moreover, the model does not acount the

presence of the antibodies which are important in reducing the HIV infection. To have more accurate HIV

model we improve model (5)-(8) by taking into account the dynamics of HIV with two target cells, CD4+T cells

and macrophages and antibodies. The global stability of the model is proven by using Lyapunov method.

2 The modified HIV

We propose the following model:

ṡi = ρi − δisi −
λisip

si + p
, i = 1, 2, (9)

ẇi =
λisip

si + p
− (αi + βi)wi, i = 1, 2, (10)

u̇i = βiwi − aiui, i = 1, 2, (11)

ṗ =

2∑
i=1

kiui − gp− µpz, (12)

ż = rpz − ζz. (13)

where, z (t) represents the populations of the antibody immune cells. The antibodies are proliferated and die

at rates rpz and ζz, respectively. The HIV particles are killed by antibodies at rate µpz.

2.1 Preliminaries.

Lemma 1. The solutions of model (9)-(13) with the initial conditions si (0) , wi (0) , ui (0) , p (0) and z (0) are

nonnegativite and bounded for t ≥ 0.

Proof. We have

ṡi |si=0= ρi > 0, ẇi |wi=0=
λisip

si + p
≥ 0 ∀ si ≥ 0, p ≥ 0, u̇i |ui=0= βiwi ≥ 0 ∀ wi ≥ 0, i = 1, 2

ṗ |p=0=
2∑
i=1

kiui ≥ 0 ∀ ui ≥ 0, ż |z=0= 0.

This shows the nonnegativity of the model’s solutions. Now we let Gi (t) = si (t) + wi (t) + ui (t), then

Ġi = ρi − δisi − αiwi − aiui ≤ ρi − κi (si + wi + ui) = ρi − κiGi,

where κi = min {δi, αi, ai} , i = 1, 2. Hence 0 ≤ Gi (t) ≤ Mi where, Mi = ρi
κi

. therefore si (t) , wi (t) and ui (t)

are all bonded. Let G3 (t) = p (t) + µ
r z (t), then

Ġ3 (t) =
2∑
i=1

kiui − gp−
µζ

r
z ≤

2∑
i=1

kiMi − κ3

(
p+

µ

r
z
)

=
2∑
i=1

kiMi − κ3G3 (t) ,
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where κ3 = min {g, ζ}. Hence p (t) ≤M3 and z (t) ≤M4 for t ≥ 0 where, M3 = 1
κ3

2∑
i=1

kiMi and M4 = rM3

µ . So

that, there is a bounded subset of D

Γ = {(s1, s2, w1, w2, u1, u2, p, z) ∈ H : 0 ≤ si + wi + ui ≤Mi, 0 ≤ p ≤M3, 0 ≤ w ≤M4} .

is positively invariant with respect to system (9)-(13).

Lemma 2. For system (9)-(13) there exist two bifurcation parameters R0 and R1 with R0 > R1 such that

(i) if R0 ≤ 1, then the system has only one steady state Π0,

(ii) if R1 ≤ 1 < R0, then the system has only two steady states Π0 and Π1,

(iii) if R1 > 1, then the system has three steady states Π0,Π1and Π2.

Proof. Let

ρi − δisi −
λisip

si + p
= 0, (14)

λisip

si + p
− (αi + βi)wi = 0, (15)

βiwi − aiui = 0, (16)

2∑
i=1

kiui − gp− µpz = 0, (17)

rpz − ζz = 0. (18)

Eq. (18) we obtain two possible solutions, z = 0 or p = ζ
r . First, we consider the case z = 0, then from Eqs.

(15)-(16) we can get:

wi =
λisip

(αi + βi) (si + p)
, ui =

λiβisip

ai (αi + βi) (si + p)
, (19)

where s0
i = ρi

δi
. From Eq. (17) we obtain(

2∑
i=1

kiλiβisi
aig (αi + βi) (si + p)

− 1

)
gp = 0. (20)

Eq. (20) has two possible solutions p = 0 or
2∑
i=1

kiλiβisi
aig(αi+βi)(si+p)

= 1.

If p = 0, then substituting it in Eq. (19) leads to the uninfected steady state Π0 = (s0
1, s

0
2, 0, 0, 0, 0, 0, 0). If

p 6= 0, we have
2∑
i=1

kiλiβisi
aig (αi + βi) (si + p)

− 1 = 0. (21)

Eq. (14) implies that

s±i =
1

2

((
s0
i − ϕip

)
±
√

(ϕip− s0
i )

2
+ 4s0

i p

)
,

where, s0
i = ρi

δi
, ϕi = λi

δi
+ 1, i = 1, 2. Clearly if p > 0 then s−i < 0 and s+

i > 0, then we choose si = s+
i

si =
1

2

((
s0
i − ϕip

)
+

√
(ϕip− s0

i )
2

+ 4s0
i p

)
. (22)

Substituting from Eqs. (14) and (19) into Eq. (17) we get

2∑
i=1

kiβi
d3i (αi + βi)

(ρi − δisi)− gp = 0. (23)
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Since si is a function of p then from Eq. (23) we can define a function H1 (p) as:

H1 (p) =
2∑
i=1

kiβi
ai (αi + βi)

(ρi − δisi (p))− gp = 0. (24)

We need to show that there exists a p > 0 such that H1 (p) = 0. It is clear that, if p = 0, then si = s0
i and

H1 (0) = 0 and when p = p̂ =
2∑
i=1

kiρiβi

aig(αi+βi)
> 0, we have ŝi = si (p̂) > 0 and

H1 (p̂) = −
2∑
i=1

kiβiδiŝi
aig (αi + βi)

< 0.

Since H1 (p) is continuous for all p ≥ 0, we obtain

H
′

1 (0) = g

(
2∑
i=1

kiλiβi
aig (αi + βi)

− 1

)
.

Therefore, H
′

1 (0) > 0, if
2∑
i=1

kiλiβi
aig (αi + βi)

> 1 (25)

It means that if condition (25) is satisfied, then there exists p̃ ∈ (0, p̂) such that H1 (p̃) = 0. From Eqs. (19) and

(22), we have s̃i, w̃i, ũi, p̃ > 0. Thus, an infection steady state without antibodies Π1 = (s̃1, s̃2, w̃1, w̃2, ũ1, ũ2, p̃, 0)

exists when

2∑
i=1

kiλiβi

aig(αi+βi)
> 1.Now we can define

R0 =

2∑
i=1

R0i =

2∑
i=1

kiλiβi
aig (αi + βi)

,

Now if z 6= 0, then from Eqs. Eqs. (14)-(16),

s̄i =
1

2

(s0
i − ϕi

ζ

r

)
+

√(
ϕi
ζ

r
− s0

i

)2

+
4ζs0

i

r

 , w̄i =
λis̄ip̄

(αi + βi) (s̄i + p̄)
,

ūi =
λiβis̄ip̄

ai (αi + βi) (s̄i + p̄)
, z̄ =

g

µ

(
2∑
i=1

kiλiβis̄i
aig (αi + βi) (s̄i + p̄)

− 1

)
,

Thus, z̄ > 0 when

2∑
i=1

kiλiβis̄i
aig(αi+βi)(s̄i+p̄)

> 1. Let us define the parameter R1 as:

R1 =
2∑
i=1

kiλiβis̄i
aig (αi + βi) (s̄i + p̄)

,

If R1 > 1, then z̄ = g
µ (R1 − 1) > 0 and exists an infection steady state with antibodies Π2 =

(s̄1, s̄2, w̄1, w̄2, ū1, ū2, p̄, z̄) if R1 > 1.

2.2 Global properties

We will use the following function throughout the paper, F : (0,∞) −→ [0,∞) as F (q) = q − 1− ln q.

Theorem 1. The steady state Π0 is globally asymptotically stable when R0 ≤ 1.
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Proof. Define

W01 =
2∑
i=1

γi

[
wi +

(αi + βi)

βi
ui

]
+ p+

ζ

r
z,

where, γi = kiβi

ai(αi+βi)
. We evaluate dW01

dt along the solutions of system (9)-(13) as:

dW01

dt
=

2∑
i=1

γi

[
ẇi +

(αi + βi)

βi
u̇i

]
+ ṗ+

µ

r
ż

=
2∑
i=1

γi

[
λisip

si + p
− (αi + βi)wi +

(αi + βi)

βi
(βiwi − aiui)

]
+

2∑
i=1

kiui − gp− µpz +
µ

r
(rpz − ζz) . (26)

Eq. (26) can be simplified as

dW01

dt
=

2∑
i=1

γi
λisip

si + p
− gp− µζ

r
z ≤

2∑
i=1

γiλip− gp−
µζ

r
z

= g

(
2∑
i=1

kiλiβi
aig (αi + βi)

− 1

)
p− µζ

r
z = g (R0 − 1) p− µζ

r
z.

If R0 ≤ 1, then dW01

dt ≤ 0 holds in Γ. Moreover, dW01

dt = 0 when p = 0 and z = 0. Hence the largest compact

invariant set in Γ is

Q1 =

{
(s1, s2, w1, w2, u1, u2, p, z) ∈ Γ | dW01

dt
= 0

}
= {(s1, s2, w1, w2, u1, u2, p, z) ∈ Γ | p = 0, z = 0} .

LaSalle’s invariance principle yields limt→+∞ p (t) = 0 and limt→+∞ z (t) = 0. One can get limit equations:

ṡi = ρi − δisi, (27)

ẇi = − (αi + βi)wi, (28)

u̇i = βiwi − aiui. (29)

Define a function W02 by

W02 =
2∑
i=1

γi

[
s0
iF

(
si
s0
i

)
+ wi +

(αi + βi)

βi
ui

]
.

Then

dW02

dt
=

2∑
i=1

γi

[(
1− s0

i

si

)
ṡi + ẇi +

(αi + βi)

βi
u̇i

]

=
2∑
i=1

γi

[(
1− s0

i

si

)
(ρi − δisi)− (αi + βi)wi +

(αi + βi)

βi
(βiwi − aiui)

]

= −
2∑
i=1

γiδi

(
si − s0

i

)2
si

−
2∑
i=1

kiui.

Therefore, dW02

dt ≤ 0 holds in Q1 and dW02

dt = 0 if and only if si = s0
i and ui = 0. There is the largest compact

invariant set in Q1:

Q2 =

{
(s1, s2, w1, w2, u1, u2, p, z) ∈ Q1 |

dW02

dt
= 0

}
=
{

(s1, s2, w1, w2, u1, u2, p, z) ∈ Q1 | si = s0
i , wi ≥ 0, ui = 0

}
.
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In Q2, from Eq. (29) we get βiwi − ai (0) = 0, and then wi = 0. So

Q2 =

{
(s1, s2, w1, w2, u1, u2, p, z) ∈ Q1 |

dW02

dt
= 0

}
=
{

(s1, s2, w1, w2, u1, u2, p, z) ∈ Q1 | si = s0
i , wi = 0, ui = 0

}
= {Π0} .

Hence, if R0 ≤ 1, all solution trajectories in Γ approach the uninfected steady state Π0.

Theorem 2. The steady state Π1 is globally asymptotically stable when R1 ≤ 1 < R0.

Proof. We introduce

W1 =
2∑
i=1

γi

si − s̃i − si∫
s̃i

(αi + βi) w̃i (τ + p̃)

λiτ p̃
dτ + w̃iF

(
wi
w̃i

)
+

(αi + βi)

βi
ũiF

(
ui
ũi

)+ p̃F

(
p

p̃

)
+
µ

r
z.

Evaluating dW1

dt along the trajectories of system (9)-(13):

dW1

dt
=

2∑
i=1

γi

[(
1− (αi + βi) w̃i (si + p̃)

λisip̃

)
ṡi +

(
1− w̃i

wi

)
ẇi +

(αi + βi)

βi

(
1− ũi

ui

)
u̇i

]
+

(
1− p̃

p

)
ṗ+

µ

r
ż

=
2∑
i=1

γi

[(
1− (αi + βi) w̃i (si + p̃)

λisip̃

)(
ρi − δisi −

λisip

si + p

)
+

(
1− w̃i

wi

)(
λisip

si + p
− (αi + βi)wi

)

+
(αi + βi)

βi

(
1− ũi

ui

)
(βiwi − aiui)

]
+

(
1− p̃

p

)( 2∑
i=1

kiui − gp− µpz

)
+
µ

r
(rpz − ζz) . (30)

Simplify Eq. (30) as:

dW1

dt
=

2∑
i=1

γi

[
ρi − δisi −

(αi + βi) w̃i (si + p̃)

λisip̃

(
ρi − δisi −

λisip

si + p

)
− λisip

si + p

w̃i
wi

+ (αi + βi) w̃i

− (αi + βi)wi
ũi
ui

+
ai (αi + βi)

βi
ũi −

ai (αi + βi)

βi
ui
p̃

p

]
− gp+ gp̃+ µ

(
p̃− ζ

r

)
z. (31)

From the conditions of Π1, we obtain

ρi = δis̃i + (αi + βi) w̃i,
λis̃ip̃

s̃i + p̃
= (αi + βi) w̃i,

ai (αi + βi)

βi
ũi = (αi + βi) w̃i,

gp̃ =
2∑
i=1

kiũi, λi =
(αi + βi) w̃i (s̃i + p̃)

s̃ip̃
,

(αi + βi) w̃i (si + p̃)

λisip̃
=
s̃i (si + p̃)

si (s̃i + p̃)
,

then, we have

dW1

dt
=

2∑
i=1

γi

[
δis̃i

(
1− si

s̃i
− s̃i (si + p̃)

si (s̃i + p̃)
+
si + p̃

s̃i + p̃

)
+ (αi + βi) w̃i

(
−1− p

p̃
+
p (si + p̃)

p̃ (si + p)
+
si + p

si + p̃

)
+ (αi + βi) w̃i

(
5− s̃i (si + p̃)

si (s̃i + p̃)
− siw̃ip (s̃i + p̃)

s̃iwip̃ (si + p)
− wiũi
w̃iui

− uip̃

ũip
− si + p

si + p̃

)]
+ µ (p̃− p̄) z. (32)

Eq. (32) becomes

dW1

dt
=

2∑
i=1

γi

[
−δip̃ (si − s̃i)2

si (si + p)
− (αi + βi) w̃i

si (p− p̃)2

p̃ (si + p) (si + p̃)

+ (αi + βi) w̃i

(
5− s̃i (si + p̃)

si (s̃i + p̃)
− siw̃ip (s̃i + p̃)

s̃iwip̃ (si + p)
− wiũi
w̃iui

− uip̃

ũip
− si + p

si + p̃

)]
+ µ (p̃− p̄) z.
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Using the rule

1

n

n∑
i=1

ai ≥ n

√√√√ n∏
i=1

ai,

we obtain
s̃i (si + p̃)

si (s̃i + p̃)
+
siw̃ip (s̃i + p̃)

s̃iwip̃ (si + p)
+
wiũi
w̃iui

+
uip̃

ũip
+
si + p

si + p̃
− 5 ≥ 0.

Now we show that if R1 ≤ 1 then p̃ ≤ ζ
r = p̄. This can be shown if we prove that

sgn (s̄i − s̃i) = sgn (p̃− p̄) = sgn (R1 − 1) .

Suppose that, sgn (p̄− p̃) = sgn (s̄i − s̃i).

(ρi − δis̄i)− (ρi − δis̃i) =
λis̄ip̄

s̄i + p̄
− λis̃ip̃

s̃i + p̃
= λi

[
(p̄− p̃) s2

i

(s̄i + p̄) (s̄i + p̃)
+

(s̄i − s̃i) p̃2

(s̄i + p̃) (s̃i + p̃)

]
.

This yields, sgn (s̃i − s̄i) = sgn (s̄i − s̃i), which leads to contradiction and then sgn (p̃− p̄) = sgn (s̄i − s̃i) .

Using the condition for the steady state Π1 we have
2∑
i=1

kiλiβis̃i
aig(αi+βi)(s̃i+p̃)

= 1, then

R1 − 1 =
2∑
i=1

kiλiβis̄i
aig (αi + βi) (s̄i + p̄)

−
2∑
i=1

kiλiβis̃i
aig (αi + βi) (s̃i + p̃)

=
2∑
i=1

kiλiβi
aig (αi + βi)

(
(s̄i − s̃i) p̃+ (p̃− p̄) s̃i

(s̄i + p̄) (s̃i + p̃)

)
. (33)

From (33) we get sgn (R1 − 1) = sgn (p̃− p̄). So that, if R1 ≤ 1 then p̃ ≤ ζ
r = p̄. So that, if R1 ≤ 1 then

dW1

dt ≤ 0 holds in Γ and dW1

dt = 0 when si = s̃i, wi = w̃i, ui = ũi, p = p̃, z = 0. Hence the largest compact

invariant subset in Γ is

Q3 =

{
(s1, s2, w1, w2, u1, u2, p, z) ∈ Γ | dW1

dt
= 0

}
= {(s1, s2, w1, w2, u1, u2, p, z) ∈ Γ | si = s̃i, wi = w̃i, ui = ũi, p = p̃, z = 0}

= {Π1} .

It follows that, if R1 ≤ 1 then Π1 is GAS in Γ by LIP.

Theorem 3. The steady state Π2 is globally asymptotically stable when R1 > 1.

Proof. Define

W2 =
2∑
i=1

γi

si − s̄i − si∫
s̄i

(αi + βi) w̄i (τ + p̄)

λiτ p̄
dτ + w̄iF

(
wi
w̄i

)
+

(αi + βi)

βi
ūiF

(
ui
ūi

)+ p̄F

(
p

p̄

)
+
µ

r
z̄F
(z
z̄

)
.

Then dW2

dt is given as:

dW2

dt
=

2∑
i=1

γi

[(
1− (αi + βi) w̄i (si + p̄)

λisip̄

)
ṡi +

(
1− w̄i

wi

)
ẇi +

(αi + βi)

βi

(
1− ūi

ui

)
u̇i

]
+

(
1− p̄

p

)
ṗ+

µ

r

(
1− z̄

z

)
ż

=
2∑
i=1

γi

[(
1− (αi + βi) w̄i (si + p̄)

λisip̄

)(
ρi − δisi −

λisip

si + p

)
+

(
1− w̄i

wi

)(
λisip

si + p
− (αi + βi)wi

)

+
(αi + βi)

βi

(
1− ūi

ui

)
(βiwi − aiui)

]
+

(
1− p̄

p

)( 2∑
i=1

kiui − gp− µpz

)
+
µ

r

(
1− z̄

z

)
(rpz − ζz) . (34)
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Eq. (34) can be simplified as:

dW2

dt
=

2∑
i=1

γi

[
ρi − δisi −

(αi + βi) w̄i (si + p̄)

λisip̄

(
ρi − δisi −

λisip

si + p

)
− λisip

si + p

w̄i
wi

+ (αi + βi) w̄i

− (αi + βi)wi
ūi
ui

+
ai (αi + βi)

βi
ūi −

ai (αi + βi)

βi
ui
p̄

p

]
− gp+ gp̄− µpz̄ +

µζ

r
z̄.

Using conditions of Π2 we get

ρi = δis̄i + (αi + βi) w̄i,
ai (αi + βi)

βi
ūi = (αi + βi) w̄i,

(αi + βi) w̄i (si + p̄)

λisip̄
=
s̄i (si + p̄)

si (s̄i + p̄)
,

λi =
(αi + βi) w̄i (s̄i + p̄)

s̄ip̄
, gp̄ =

2∑
i=1

kiūi − µp̄z̄, gp =
p

p̄

2∑
i=1

kiūi − µpz̄

Then, we have

dW2

dt
=

2∑
i=1

γi

[
δis̄i

(
1− si

s̄i
− s̄i (si + p̄)

si (s̄i + p̄)
+
si + p̄

s̄i + p̄

)
+ (αi + βi) w̄i

(
−1− p

p̄
+
p (si + p̄)

p̄ (si + p)
+
si + p

si + p̄

)
+ (αi + βi) w̄i

(
5− s̄i (si + p̄)

si (s̄i + p̄)
− w̄isip (s̄i + p̄)

wis̄ip̄ (si + p)
− wiūi
w̄iui

− p̄ui
pūi
− si + p

si + p̄

)]
. (35)

Eq. (35) becomes

dW2

dt
=

2∑
i=1

γi

[
−δip̄ (si − s̄i)2

si (s̄i + p̄)
− (αi + βi) w̄i

si (p− p̄)2

p̄ (si + p) (si + p̄)

+ (αi + βi) w̄i

(
5− s̄i (si + p̄)

si (s̄i + p̄)
− siw̄ip (s̄i + p̄)

s̄iwip̄ (si + p)
− wiūi
w̄iui

− uip̄

ūip
− si + p

si + p̄

)]
.

It follows that, dW2

dt ≤ 0 for all si, wi, ui, p, z > 0 and dW2

dt = 0 when si = s̄i, wi = w̄i, ui = ūi, p = p̄, z = z̄.

Hence

Q4 =

{
(s1, s2, w1, w2, u1, u2, p, z) ∈ Γ | dW2

dt
= 0

}
= {(s1, s2, w1, w2, u1, u2, p, z) ∈ Γ | si = s̄i, wi = w̄i, ui = ūi, p = p̄, z = z̄}

= {Π2} .

It follows that, if R1 > 1 then Π2 is GAS in Γ by LIP.

3 Simulations

We support our results by numerical simulations using the values of the parameters given in Table 1.

For the parameters λ̄1, λ̄2 and r we have three cases to show its effect on the stability of the system.

We assume that ε1 = ε2 = 0 (there is no treatment). The initial condtions are considered to be: s1 (0) =

500, s2 (0) = 20, w1 (0) = 1, w2 (0) = 0.3, u1 (0) = 20, u2 (0) = 0.2, p (0) = 90, z (0) = 40.

Case (I) R0 ≤ 1. We consider λ̄1 = 0.002, λ̄2 = 0.00001 and r = 0.0001. Then, R0 = 0.2469 < 1 and

R1 = 0.1062 < 1. This means that Π0 is GAS. From Figures 1-8 we can see that the trajectory of the system

converges the steady state Π0(830, 24.6, 0, 0, 0, 0, 0, 0).

Case (II) R1 ≤ 1 < R0. Choosing λ̄1 = 0.02, λ̄2 = 0.0005 and r = 0.0001. In this case, R0 = 2.5694 and

R1 = 0.7141 < 1 and Π1 exists with Π1 = (448.116, 17.9, 2.949, 0.436, 32.439, 0.218, 650.956, 0). According to

Theorem 2, Π1 is GAS. Figures 1-8 show the validity of the theoretical results of Theorem 2.
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Table 1: The values of parameters of the models.

Parameter Value Parameter Value Parameter Value Parameter Value

ρ1 11.537 ρ2 0.03198 k1 10 k2 5

δ1 0.0139 δ2 0.001 g 0.5 µ 0.01

α1 0.57 α2 0.5 ζ 0.05 f 0.5

a1 0.1 a2 0.02 h 0.5 λ1 varied

β1 1.1 β2 0.01 λ2 varied r varied

Case (III) R1 > 1. We take λ̄1 = 0.02, λ̄2 = 0.0005 and r = 0.002. Then we get R0 = 2.5694 > 1 and R1 =

2.3288 > 1. Figures 1-8 show that, the steady state Π2(762.485, 19.254, 0.521, 0.348, 5.735, 0.174, 50, 66.438) is

GAS which confirm the results of Theorem 3.
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Figure 1: The concentration of uninfected CD4+T

cells.
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Figure 2: The concentration of uninfected

macrophages.
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Figure 3: The concentration of latently infected

CD4+T cells.
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Figure 4: The concentration of latently infected

macrophages.
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Case (II)

Case (III)

Figure 5: The concentration of productively in-

fected CD4+T cells.
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Figure 6: The concentration of productively in-

fected macrophages.
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Figure 7: The concentration of HIV.
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Figure 8: The concentration of B cells.

References

[1] D. Wodarz and M. A. Nowak, Mathematical models of HIV pathogenesis and treatment, BioEssays, 24,

(2002), 1178-1187.

[2] L. Rong and A. S. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, Journal of

Theoretical Biology, 260 (2009), 308-331.

[3] M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses,

Science, 272 (1996) 74-79.

[4] M. A. Nowak, and R. M. May, Virus dynamics: Mathematical Principles of Immunology and Virology,

Oxford Uni., Oxford, 2000.

[5] A. M. Elaiw, A. M. Althiabi, M. A. Alghamdi and N. Bellomo, Dynamical behavior of a general HIV-1

infection model with HAART and cellular reservoirs, Journal of Computational Analysis and Applications,

24(4) (2018), 728-743.

[6] A. M. Elaiw, A. A. Raezah and A. S. Alofi, Stability of delay-distributed virus dynamics model with cell-to-

cell transmission and CTL immune response, Journal of Computational Analysis and Applications, 25(8)

(2018), 1518-1531.

[7] A. S. Perelson, and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999),

3-44.

[8] P. K. Roy, A. N. Chatterjee, D. Greenhalgh, and Q. J.A. Khan, Long term dynamics in a mathematical

model of HIV-1 infection with delay in different variants of the basic drug therapy model, Nonlinear Anal.

Real World Appl., 14 (2013), 1621-1633.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

119 Ali Al-Qahtani et al 110-120



[9] Huang, Y., S. L. Rosenkranz, H.Wu, Modeling HIV dynamic and antiviral response with consideration of

time-varying drug exposures, adherence and phenotypic sensitivity, Mathematical Biosciences, 184(2), pp.

165-186, 2003.

[10] G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral

infections, SIAM J. Appl. Math., 70(7) (2010), 2693-2708.

[11] A.M. Elaiw and S.A. Azoz, Global properties of a class of HIV infection models with Beddington-DeAngelis

functional response, Mathematical Methods in the Applied Sciences, 36 (2013), 383-394.

[12] A.M. Elaiw, Global properties of a class of HIV models, Nonlinear Analysis: Real World Applications, 11

(2010), 2253-2263.

[13] C. Monica and M. Pitchaimani, Analysis of stability and Hopf bifurcation for HIV-1 dynamics with PI and

three intracellular delays, Nonlinear Analysis: Real World Applications, 27 (2016), 55-69.

[14] M. Y. Li and L. Wang, Backward bifurcation in a mathematical model for HIV infection in vivo with

anti-retroviral treatment, Nonlinear Analysis: Real World Applications, 17 (2014), 147-160.

[15] S. Liu, and L. Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combi-

nation therapy, Mathematical Biosciences and Engineering, 7(3) (2010), 675-685.

[16] A. M. Elaiw and N. H. AlShamrani, Stability of a general delay-distributed virus dynamics model with

multi-staged infected progression and immune response, Mathematical Methods in the Applied Sciences,

40(3) (2017), 699-719.

[17] A.M. Elaiw and N.A. Almuallem, Global dynamics of delay-distributed HIV infection models with differential

drug efficacy in cocirculating target cells. Mathematical Methods in the Applied Sciences 2016; 39:4-31.

[18] X. Wang, A. M. Elaiw, X. Song, Global properties of a delayed HIV infection model with CTL immune

response, Applied Mathematics and Computation, 218 (2012), 9405-9414.

[19] D.S. Callaway, and A.S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64

(2002), 29-64.

[20] B. Buonomo, and C. Vargas-De-Le, Global stability for an HIV-1 infection model including an eclipse stage

of infected cells, Journal of Mathematical Analysis and Applications, 385 (2012), 709-720.

[21] H. Wang, R. Xu, Z. Wang, H. Chen, Global dynamics of a class of HIV-1 infection models with latently

infected cells, Nonlinear Analysis: Modelling and Control, 20 (1) (2012), 21-37.

[22] A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol. 66, (2004), 879-883.

[23] A. M. Elaiw and N. H. AlShamrani, Global stability of humoral immunity virus dynamics models with

nonlinear infection rate and removal, Nonlinear Analysis: Real World Applications, 26, (2015), 161-190.

[24] Q. Sun, L. Min and Y. Kuang,“ Global stability of infection-free state and endemic infection state of a

modified human immunodeficiency virus infection model,” IET Systems Biology, vol. 9, pp. 95 -103, 2015.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

120 Ali Al-Qahtani et al 110-120



FOURIER SERIES OF TWO VARIABLE HIGHER-ORDER FUBINI FUNCTIONS

LEE CHAE JANG, GWAN-WOO JANG, DAE SAN KIM, AND TAEKYUN KIM

Abstract. In this paper, we consider the two variable higher-order Fubini functions and investigate

their Fourier series expansions. In addition, we will express those functions in terms of Bernoulli functions

and obtain as a consequence the corresponding polynomial identities for the two variable higher-order
Fubini polynomials.

1. Introduction

For each nonnegative integer r, the two variable Fubini polynomials F
(r)
m (x; y) of order r are defined

by

ext

(1− y(et − 1))
r =

∞∑
m=0

F (r)
m (x; y)

tm

m!
, (see [4, 7]). (1.1)

However, in this paper y will be an arbitrary but fixed nonzero real number, and hence F
(r)
m (x; y) are

polynomials in x, for each 0 6= y ∈ R.

In the case of r = 1, Fm(x; y) = F
(1)
m (x; y) are called two variable Fubini polynomials and they were

introduced by Kilar and Simsek in [4]. For x = 0, F
(r)
m (y) = F

(r)
m (0; y) are called Fubini polynomials of

order r, and F
(r)
m = F

(r)
m (1) = F

(r)
m (0; 1) Fubini numbers of order r. Further, F

(r)
m (x; 1) are called ordered

Bell polynomials of order r and they are denoted by Ob
(r)
m (x); F

(r)
m (1) = F

(r)
m (0; 1) are also called ordered

Bell numbers of order r and they are also denoted by Ob
(r)
m . Thus Ob

(r)
m (x) and Ob

(r)
m are respectively

given by

ext

(2− et)r
=
∞∑
m=0

Ob(r)m (x)
tm

m!
, (1.2)

1

(2− et)r
=

∞∑
m=0

Ob(r)m
tm

m!
, (1.3)

(see [1, 3, 5]).

As we see from (1.1), F
(r)
m (x; y) are Appell polynomials and hence

d

dx
F (r)
m (x; y) = mF

(r)
m−1(x; y), (m ≥ 1). (1.4)

Also, we have

yF (r)
m (x+ 1; y) = (y + 1)F (r)

m (x; y)− F (r−1)
m (x; y), (m ≥ 0). (1.5)

2010 Mathematics Subject Classification. 11B83, 42A16.
Key words and phrases. Fourier series, two variable higher-order Fubini function, two variable higher-order Fubini

polynomial, Bernoulli function.
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2 Fourier series of two variable higher-order Fubini functions

Indeed,
∞∑
m=0

(
F (r)
m (x+ 1; y)− F (r)

m (x; y)
) tm
m!

=
ext(et − 1)

(1− y(et − 1))
r

=
1

y

(
ext

(1− y(et − 1))
r −

ext

(1− y(et − 1))
r−1

)

=
1

y

∞∑
m=0

(
F (r)
m (x; y)− F (r−1)

m (x; y)
) tm
m!
.

(1.6)

The identity (1.5) follows from this. In turn, from (1.4) and (1.5), we obtain

F (r)
m (1; y)− F (r)

m (y) =
1

y

(
F (r)
m (y)− F (r−1)

m (y)
)
, (1.7)∫ 1

0

F (r)
m (x; y)dx =

1

m+ 1

(
F

(r)
m+1(1; y)− F (r)

m+1(y)
)

=
1

(m+ 1)y

(
F

(r)
m+1(y)− F (r−1)

m+1 (y)
)
.

(1.8)

As is well-known, the Bernoulli polynomials Bm(x) are given by

t

et − 1
ext =

∞∑
m=0

Bm(x)
tm

m!
, (see [2]). (1.9)

For any real number x, the fractional part of x is denoted by < x >= x − [x] ∈ [0, 1). We also need
the following facts about Bernoulli functions Bm(< x >):

(a) for m ≥ 2,

Bm(< x >) = −m!
∞∑

n=−∞,n6=0

e2πinx

(2πin)m
, (1.10)

(b) for m = 1,

−
∞∑

n=−∞,n6=0

e2πinx

2πin
=

{
B1(< x >), for x ∈ R− Z,
0, for x ∈ Z. (1.11)

In this paper, we will consider the two variable higher-order Fubini functions F
(r)
m (< x >; y), for each

0 6= y ∈ R, and derive their Fourier series expansions. In addition, we will express those functions in
terms of Bernoulli functions and obtain as a consequence the corresponding polynomial identities for the
two variable higher-order Fubini polynomials. For some related to Fourier series, we refer the reader
to [5, 6, 8].

2. Main results

In this section, we assume that m ≥ 1, r ≥ 1, and 0 6= y ∈ R. For convenience, we set

∆(r)
m (y) = F (r)

m (1; y)− F (r)
m (y) =

1

y

(
F (r)
m (y)− F (r−1)

m (y)
)
. (2.1)
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We note here that

F (r)
m (1; y) = F (r)

m (y) ⇔ ∆(r)
m (y) = 0

⇔ F (r)
m (y) = F (r−1)

m (y),
(2.2)

and ∫ 1

0

F (r)
m (x; y)dx =

1

m+ 1
∆

(r)
m+1(y). (2.3)

Before we move on our discussion for Fourier series expansions of F
(r)
m (< x >; y), in passing we note

the following:

1

(1− y)r
F (r)
m (

y

1− y
) =

∞∑
k=0

(
r + k − 1

k

)
kmyk, (2.4)

from which, by letting y = 1
2 , we get

Ob(r)m = F (r)
m (1) =

1

2r

∞∑
k=0

(
r + k − 1

k

)
km

2k
. (2.5)

Indeed, we may see (2.4) from

1

(1− y)r

∞∑
m=0

F (r)
m

(
y

1− y

)
tm

m!
= (1− yet)−r

=

∞∑
k=0

(
r + k − 1

k

)
ykekt

=
∞∑
k=0

(
r + k − 1

k

)
yk

∞∑
m=0

km
tm

m!

=
∞∑
m=0

( ∞∑
k=0

(
r + k − 1

k

)
kmyk

)
tm

m!
.

(2.6)

F
(r)
m (< x >; y) is a periodic function on R with period 1 and piecewise C∞. Further, in view of (2.2),

F
(r)
m (< x >; y) is continuous from those (r,m) with ∆

(r)
m (y) = 0 (or equivalently F

(r)
m (y) = F

(r−1)
m (y)), and

is discontinuous with jump disconitinuities at integers for those (r,m) with ∆
(r)
m (y) 6= 0 (or equivalently

F
(r)
m (y) 6= F

(r−1)
m (y)).

The Fourier series of F
(r)
m (< x >; y) is

∞∑
n=−∞

C(m,r,y)
n e2πinx (2.7)

where

C(m)
n = C(m,r,y)

n =

∫ 1

0

F (r)
m (< x >; y)e−2πinxdx

=

∫ 1

0

F (r)
m (x; y)e−2πinxdx.

(2.8)

Now, we would like to determine the Fourier coefficients C
(m)
n .
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4 Fourier series of two variable higher-order Fubini functions

Case 1 : n 6= 0.

C(m)
n =

∫ 1

0

F (r)
m (x; y)e−2πinxdx

= − 1

2πin

[
F (r)
m (x; y)e−2πinx

]1
0

+
1

2πin

∫ 1

0

(
∂

∂x
F (r)
m (x; y)

)
e−2πinxdx

= − 1

2πin
(F (r)
m (1; y)− F (r)

m (y)) +
m

2πin

∫ 1

0

F
(r)
m−1(x; y)e−2πinxdx

=
m

2πin
C(m−1)
n − 1

2πin
∆(r)
m (y).

(2.9)

Thus we have shown that

C(m)
n =

m

2πin
C(m−1)
n − 1

2πin
∆(r)
m (y), (2.10)

from which by induction on m we get

C(m)
n = − 1

m+ 1

m∑
j=1

(m+ 1)j
(2πin)j

∆
(r)
m−j+1(y). (2.11)

Case 2: n = 0.

C
(m)
0 =

∫ 1

0

F (r)
m (x; y)dx =

1

m+ 1
∆

(r)
m+1(y). (2.12)

Assume first that ∆
(r)
m (y) = 0. Then F

(r)
m (1; y) = F

(r)
m (y). As F

(r)
m (< x >; y) is piecewise C∞ and

continuous, the Fourier series of F
(r)
m (< x >; y) converges uniformly to F

(r)
m (< x >; y), and

F (r)
m (< x >; y)

=
1

m+ 1
∆

(r)
m+1(y) +

∞∑
n=−∞,n6=0

− 1

m+ 1

m∑
j=1

(m+ 1)j
(2πin)j

∆
(r)
m−j+1(y)

 e2πinx

=
1

m+ 1
∆

(r)
m+1(y) +

1

m+ 1

m∑
j=1

(
m+ 1

j

)
∆

(r)
m−j+1(y)

−j! ∞∑
n=−∞,n6=0

e2πinx

(2πin)j


=

1

m+ 1

m∑
j=0,j 6=1

(
m+ 1

j

)
∆

(r)
m−j+1(y)Bj(< x >)

+ ∆(r)
m (y)×

{
B1(< x >), for x ∈ R− Z,
0, for x ∈ Z.

(2.13)

We are ready to state our first result.

Theorem 2.1. For positive integers r, l, and 0 6= y ∈ R, we let

∆
(r)
l (y) = F

(r)
l (1; y)− F (r)

l (y) =
1

y

(
F

(r)
l (y)− F (r−1)

l (y)
)
. (2.14)

Assume that ∆
(r)
m (y) = 0. Then we have the following.
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(a) F
(r)
m (< x >; y) has the Fourier series expansion

F (r)
m (< x >; y)

=
1

m+ 1
∆

(r)
m+1(y) +

∞∑
n=−∞,n6=0

− 1

m+ 1

m∑
j=1

(m+ 1)j
(2πin)j

∆
(r)
m−j+1(y)

 e2πinx,
(2.15)

for all x ∈ R, where the convergence is uniform.
(b)

F (r)
m (< x >; y) =

1

m+ 1

m∑
j=0,j 6=1

(
m+ 1

j

)
∆

(r)
m−j+1(y)Bj(< x >), (2.16)

for all x ∈ R.

Assume next that ∆
(r)
m (y) 6= 0. Then F

(r)
m (1; y) 6= F

(r)
m (y). Hence F

(r)
m (< x >; y) is piecewise C∞, and

discontinuous with jump discontinuities at integers. Thus the Fourier series of F
(r)
m (< x >; y) converges

pointwise to F
(r)
m (< x >; y), for x ∈ R− Z, and converges to

1

2
(F (r)
m (y) + F (r)

m (1; y)) = F (r)
m (y) +

1

2
∆(r)
m (y), (2.17)

for x ∈ Z. We are now ready to state our second result.

Theorem 2.2. For positive integers r, l, and 0 6= y ∈ R, we let

∆
(r)
l (y) = F

(r)
l (1; y)− F (r)

l (y) =
1

y

(
F

(r)
l (y)− F (r−1)

l (y)
)
. (2.18)

Assume that ∆
(r)
m (y) 6= 0. Then we have the following.

(a)

1

m+ 1
∆

(r)
m+1(y) +

∞∑
n=−∞,n6=0

− 1

m+ 1

m∑
j=1

(m+ 1)j
(2πin)j

∆
(r)
m−j+1(y)

 e2πinx

=

{
F

(r)
m (< x >; y), for x ∈ R− Z,
F

(r)
m (y) + 1

2∆
(r)
m (y), for x ∈ Z.

(2.19)

(b)

1

m+ 1

m∑
j=0

(
m+ 1

j

)
∆

(r)
m−j+1(y)Bj(< x >) = F (r)

m (< x >; y) (2.20)

for all x ∈ R− Z;

1

m+ 1

m∑
j=0,j 6=1

(
m+ 1

j

)
∆

(r)
m−j+1(y)Bj(< x >) = F (r)

m (y) +
1

2
∆(r)
m (y) (2.21)

for all x ∈ Z.

We remark that the case of y = 1 had been treated in the previous paper [?]. From Theorems 2.1 and
2.2, we have

F (r)
m (< x >; y) =

1

m+ 1

m∑
j=0

(
m+ 1

j

)
∆

(r)
m−j+1(y)Bj(< x >), (2.22)
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6 Fourier series of two variable higher-order Fubini functions

for all x ∈ R − Z and 0 6= y ∈ R. We immediately obtain the following polynomial identities from this
observation.

Corollary 2.3. We have the following polynomial identities for two variable higher-order Fubini polyno-
mials

(a) F
(r)
m (x; y) = 1

m+1

∑m
j=0

(
m+1
j

) (
F

(r)
m−j+1(1; y)− F (r)

m−j+1(0; y)
)
Bj(x),

(b) yF
(r)
m (x; y) = 1

m+1

∑m
j=0

(
m+1
j

) (
F

(r)
m−j+1(y)− F (r−1)

m−j+1(y)
)
Bj(x).

For x = 0, we have the following identities for higher-order Fubini polynomials.

Corollary 2.4. We have the following polynomial identities for higher-order Fubini polynomials

(a) F
(r)
m (y) = 1

m+1

∑m
j=0

(
m+1
j

)
Bj

(
F

(r)
m−j+1(1; y)− F (r)

m−j+1(0; y)
)
,

(b) yF
(r)
m (y) = 1

m+1

∑m
j=0

(
m+1
j

)
Bj

(
F

(r)
m−j+1(y)− F (r−1)

m−j+1(y)
)
.

Finally, for y = 1, we get the following identities for higher-order ordered Bell polynomials.

Corollary 2.5. We have the following polynomial identities for higher-order ordered Bell polynomials

(a) Ob
(r)
m (x) = 1

m+1

∑m
j=0

(
m+1
j

) (
Ob

(r)
m−j+1(1)−Ob(r)m−j+1

)
Bj(x),

(b) Ob
(r)
m (x) = 1

m+1

∑m
j=0

(
m+1
j

) (
Ob

(r)
m−j+1 −Ob

(r−1)
m−j+1

)
Bj(x),
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WEIGHTED COMPOSITION OPERATORS FROM DIRICHLET TYPE

SPACES TO SOME WEIGHTED-TYPE SPACES

MANISHA DEVI, AJAY K. SHARMA AND KULDIP RAJ

Abstract. Let K : [0,∞) → [0,∞) be a right continuous increasing function and

ν : D → (0,∞) be any continuous function. In this paper by considering K and ν

as weight functions, we characterize the boundedness and compactness of weighted

composition operators from Dirichlet type spaces to some weighted-type spaces.

1. Introduction and Preliminaries

Let D be the open unit disk and ∂D be its boundary in the complex plane C. Let H(D)

denotes the class of all holomorphic functions on D, S(D) be the class of all holomorphic

self-maps of D and H∞ be the space of all bounded analytic functions on D. Let dA(z) =
dxdy
π = r drdθπ be the normalized area measure on D.

A continuous function ν : D −→ (0,∞) is called weight. For ν(z) = ν(|z|), z ∈ D, weight

is radial and weight is a standard weight if lim
|z|→1−

ν(z) = 0.

For weight ν, the Bers-type space Aν is the collection of all f ∈ H(D) such that

sup
z∈D

ν(z)|f(z)| <∞

and with the norm

‖f‖Aν = sup
z∈D

ν(z)|f(z)|,

it is a non-separable Banach space. The closure of the set of polynomials in Aν forms a

separable Banach space. This set is denoted by Aν,0 and contains exactly of those f ∈ Aν
such that

lim
|z|→1−

ν(z)|f(z)| = 0.

The Bloch-type space Bν on D with the weight ν is the space of all holomorphic functions

f on D such that

sup
z∈D

ν(z)|f ′(z)| <∞.

2010 Mathematics Subject Classification. 47B33, 30D55, 30H05, 30E05.

Key words and phrases. Weighted composition operator, Dirichlet type space, Bloch-type space, Bers-

type spaces, boundedness, compactness.
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The little Bloch-type space Bν,0 is the closure of the set of polynomials in Bν and contains

all those f ∈ Bν such that

lim
|z|→1

ν(z)|f ′(z)| = 0

and with the norm

‖f‖Bν = |f(0)|+ sup
z∈D

ν(z)|f ′(z)| <∞,

both Bν and Bν,0 form Banach spaces.

For more information about these spaces one may refer [20] and references therein.

Let ϕ ∈ S(D) and ψ be an analytic map on D. The operator Cϕ so called as the composi-

tion operator and is defined as Cϕf = f ◦ ϕ, f ∈ H(D). The operator Mψ which is called

as the multiplication operator is defined by Mψf = ψ · f , f ∈ H(D). For f ∈ H(D), the

weighted composition operator on H(D) is defined by

(Wψ,ϕf)(z) = ψ(z)f(ϕ(z)),

where ψ ∈ H(D), ϕ ∈ S(D) and z ∈ D.

It can be easily seen that for ψ ≡ 1, the operator reduced to Cϕ. If ϕ(z) = z, opera-

tor get reduced to Mψ. This operator is basically a linear transformation of H(D) defined

by (Wψ,ϕf)(z) = ψ(z)f(ϕ(z)) = (MψCϕf)(z), for f in H(D) and z in D. The basic

problem is to give the function-theoretic characterization when between various function

spaces ψ and ϕ induce bounded or compact weighted composition operator. Various holo-

morphic functions spaces on various domains have been studied for the the boundedness

and compactness of weighted composition operators acting on them. Moreover, a number

of papers have been studied on these operators acting on different spaces of holomorphic

functions on various domains for more detail (see [1], [5], [7]-[11], [13], [15], [19]).

Consider a function K : [0,∞) → [0,∞) which is right continuous and increasing. The

Dirichlet type space DK consists of all functions f ∈ H(D) such that

‖f‖2DK = |f(0)|2 +

∫
D
|f ′(z)|2K

(
1− |z|2

)
dA(z) <∞.

For more about the Dirichlet type spaces we refer ([2], [3], [4], [12], [14], [16]). In this

paper we consider function K as a weight function satisfying the following two conditions:

(a) K1(t) =
∫ t
0
K(s)dss ≈ K(t), 0 < t < 1 ;

(b) K2(t) = t
∫∞
t
K(s)dss2 ≈ K(t), t > 0.

From condition (b), we get that K(2t) ≈ K(t) for 0 < t < 1. Also there exist C > 0

sufficiently small for which t−CK1(t) is increasing and K2(t)tC−1 is decreasing (see [4],
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[17], [18]).

This paper is entirely devoted to characterize the boundedness and compactness of oper-

ator Wψ,ϕ from Dirichlet type spaces to the Bers-type space and Bloch-type space.

Throughout this paper, C will represents a constant which may differ from one occurrence

to another. The notation A . B means that there exist C > 0 such that A ≤ CB. We

write A ≈ B if A . B and B . A.

The paper is organized in a systematic manner. Section 1 covers the introduction and lit-

erature part. Lemmas that are used to formulate our main theorems are kept in Section 2.

Section 3 contains the boundedness and compactness of the oparator Wψ,ϕ : DK → Bν .

Section 4 considers the boundedness and compactness of the oparator Wψ,ϕ : DK → Aν .

2. Auxiliary Results

To arrive at the main results we use some lemmas, as given below

Lemma 2.1. [4] Let K be a weight function. Then for any w ∈ D and ε > 0, we have

fz(w) =
(1− |z|2)ε/2√

K(1− |z|2)(1− wz̄)1+ε/2

is in DK . Moreover,

sup
z∈D
‖fz‖DK ≈ 1,

and fz converges to zero uniformly on compact subsets of D as |z| → 1−.

The following two lemmas can be proved easily by following the Lemma 2.1 and [4].

Lemma 2.2. [4] Let K be a weight function. Then for every f ∈ DK we have

|f(z)| ≤ C ‖f‖DK√
K(1− |z|2)(1− |z|2)

, z ∈ D.

Lemma 2.3. [4] Let K be a weight function and n be a positive integer. Then for every

f ∈ DK we have

|f (n)(z)| ≤ C ‖f‖DK√
K(1− |z|2)(1− |z|2)n+1

, z ∈ D.

The following criterion characterize the compactness. It was given for the first time in [6].

Since the proof is standard, so we omit it.

Lemma 2.4. Let ν be the standard weight and the operator Wψ,ϕ : DK → Bν is bounded.

Then Wψ,ϕ : DK → Bν is compact if and only if for any bounded sequence (fn)n∈N in DK
which converges to zero uniformly on compact subsets of D, we have

lim
n→∞

‖Wψ,ϕfn‖Bν = 0.
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3. Boundedness and compactness of weighted composition operator from

Dirichlet type space to Bloch-type space

Theorem 3.1. Let ν and K be two weight functions, ψ ∈ H(D) and ϕ be a self analytic

map on D. Then the operator Wψ,ϕ : DK → Bν is bounded if and only if the following

conditions are satisfied:

(i) M1 = sup
z∈D

ν(z)|ψ′(z)|√
K(1− |ϕ(z)|2)(1− |ϕ(z)|2)

<∞;

(ii) M2 = sup
z∈D

ν(z)|ψ(z)ϕ′(z)|√
K(1− |ϕ(z)|2)2(1− |ϕ(z)|2)2

<∞.

Furthermore, if the operator Wψ,ϕ : DK → Bν is bounded, then

M1 +M2 . ‖Wψ,ϕ‖DK→Bν . 1 +M1 +M2.

Proof. First suppose that condition (i) and (ii) hold. Using Lemma 2.2 we have,

ν(z)|(Wψ,ϕf)′(z))| ≤ ν(z)|ψ′(z)||f(ϕ(z))|+ ν(z)|ψ(z)ϕ′(z)||f ′(ϕ(z))|

.

(
ν(z)|ψ′(z)|√

K(1− |ϕ(z)|2)(1− |ϕ(z)|2)

+
ν(z)|ψ(z)ϕ′(z)|√

K(1− |ϕ(z)|2)(1− |ϕ(z)|2)2

)
‖f‖DK .(3.1)

Also,

|(Wψ,ϕf)(0)| = |ψ(0)||f(ϕ(0))|

.
|ψ(0)|√

K(1− |ϕ(0)|2)(1− |ϕ(0)|2)
‖f‖DK .(3.2)

From conditions (i), (ii) and equations (3.1) and (3.2), we get

‖Wψ,ϕf‖Bν = |ψ(0)||f(ϕ(0))|+ sup
z∈D

ν(z)|(Wψ,ϕf)′(z)|

.

(
|ψ(0)|√

K(1− |ϕ(0)|2)(1− |ϕ(0)|2)
+M1 +M2

)
‖f‖DK

.
(
1 +M1 +M2

)
‖f‖DK .

Therefore, Wψ,ϕ : DK → Bν is bounded and

‖Wψ,ϕ‖DK→Bν . 1 +M1 +M2.(3.3)

Conversely, suppose that Wψ,ϕ : DK → Bν is bounded. Let z = ϕ(ζ), ζ ∈ D and

gz(w) = τz(w)fz(w),(3.4)

where fz(w) is defined in Lemma 2.1 and τz(w) is defined as

τz(w) = 1− 1− |z|2

1− z̄w
.(3.5)
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Then τz ∈ H∞ as

sup
w∈D
|τz(w)| ≤ sup

w∈D

(
1 +

1− |z|2

1− |z||w|

)
≤ 3.

Therefore, gz ∈ DK and sup
w∈D
‖gz‖DK . 1. From equation (3.5) we have,

τz(z) = 0(3.6)

and

τ ′z(w) =
−z̄(1− |z|2)

(1− z̄w)2
.

Thus,

τ ′z(z) =
−z̄

(1− |z|2)
.(3.7)

Therefore, gz(z) = 0, using the value of fz(z) and from (3.7), we obtain

g′z(z) = τ ′z(z)fz(z) + τz(z)f
′
z(z)

=
−z̄√

K(1− |z|2)(1− |z|2)2
.

Using the above fact, we get

‖Wψ,ϕ‖DK→Bν & ‖Wψ,ϕgϕ(ζ)‖Bν
≥ ν(ζ)|ψ′(ζ)gϕ(ζ)(ϕ(ζ)) + ψ(ζ)ϕ′(ζ)g′ϕ(ζ)(ϕ(ζ))|

≥ ν(ζ)|ψ(ζ)ϕ′(ζ)g′ϕ(ζ)(ϕ(ζ))|

≥ ν(ζ)|ψ(ζ)ϕ′(ζ)||ϕ(ζ)|√
K(1− |ϕ(ζ)|2)(1− |ϕ(ζ)|2)2

.

When δ ∈ (0, 1) is fixed, we have

sup
|ϕ(ζ)|>δ

ν(ζ)|ψ(ζ)ϕ′(ζ)|√
K(1− |ϕ(ζ)|2)(1− |ϕ(ζ)|2)2

. ‖Wψ,ϕ‖DK→Bν .(3.8)

Taking fz(w) ≡ 1 ∈ DK , implies that

sup
w∈D

ν(w)|ψ′(w)| = ‖Wψ,ϕ(1)‖Bν . ‖Wψ,ϕ‖DK→Bν .(3.9)

Again taking f(w) = w ∈ DK , using the asymptotic estimate (3.9) and boundedness of ϕ,

we get

sup
w∈D

ν(w)|ψ(w)ϕ′(w)| . ‖Wψ,ϕ‖DK→Bν .(3.10)

Using (3.10) and the compactness of ϕ, we easily get

sup
|ϕ(ζ)|≤δ

ν(ζ)|ψ(ζ)ϕ′(ζ)|√
K(1− |ϕ(ζ)|2)(1− |ϕ(ζ)|2)2

.

(
1√

K(1− δ2)(1− δ2)2

)
‖Wψ,ϕ‖DK→Bν .(3.11)
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Further, from (3.8) and (3.11), we obtain

sup
ζ∈D

ν(ζ)|ψ(ζ)ϕ′(ζ)|√
K(1− |ϕ(ζ)|2)(1− |ϕ(ζ)|2)2

. ‖Wψ,ϕ‖DK→Bν .(3.12)

Again, for fz as defined in Lemma 2.1, we have

‖Wψ,ϕ‖DK→Bν & ‖Wψ,ϕfϕ(ζ)‖Bν
≥ ν(ζ)

∣∣ψ′(ζ)fϕ(ζ)(ϕ(ζ)) + ψ(ζ)ϕ′(ζ)f ′ϕ(ζ)(ϕ(ζ))
∣∣

≥ ν(ζ)|ψ′(ζ)|√
K(1− |ϕ(ζ)|2)(1− |ϕ(ζ)|2)

+
(1 + ε/2)ν(ζ)|ψ(ζ)||ϕ′(ζ)||ϕ(ζ)|√
K(1− |ϕ(ζ)|2)(1− |ϕ(ζ)|2)2

.

By using the boundedness of ϕ, we get

ν(ζ)|ψ′(ζ)|√
K(1− |ϕ(ζ)|2)(1− |ϕ(ζ)|2)

≤ ‖Wψ,ϕ‖DK→Bν + C
ν(ζ)|ψ(ζ)||ϕ′(ζ)||ϕ(ζ)|√

K(1− |ϕ(ζ)|2)(1− |ϕ(ζ)|2)2
.(3.13)

Taking the supremum over ζ ∈ D in (3.13) and using (3.12), we get

sup
ζ∈D

ν(ζ)|ψ′(ζ)|√
K(1− |ϕ(ζ)|2)(1− |ϕ(ζ)|2)

. ‖Wψ,ϕ‖DK→Bν .(3.14)

From (3.12) and (3.14), we obtain

M1 +M2 . ‖Wψ,ϕ‖DK→Bν .(3.15)

Hence, from (3.3) and (3.15), we get

M1 +M2 . ‖Wψ,ϕ‖DK→Bν . 1 +M1 +M2.

�

Theorem 3.2. Let ν be a standard weight, ψ ∈ H(D) and ϕ be a self analytic map on D.

Let K be a weight function. Assume that Wψ,ϕ : DK → Bν is bounded. Then the operator

Wψ,ϕ : DK → Bν is compact if and only if the following conditions are satisfied:

(i) lim
|ϕ(z)|→1

ν(z)|ψ′(z)|√
K(1− |ϕ(z)|2)(1− |ϕ(z)|2)

= 0;

(ii) lim
|ϕ(z)|→1

ν(z)|ψ(z)ϕ′(z)|√
K(1− |ϕ(z)|2)(1− |ϕ(z)|2)2

= 0.

Proof. First suppose that (i) and (ii) hold. Let (fn)n∈N be a bounded sequence of functions

in DK that converges to zero uniformly on compact subset of D. To prove the compactness

of Wψ,ϕ, we have to show that ‖Wψ,ϕfn‖Bν → 0 as n→∞.

Condition (i) and (ii) implies that for any ε > 0, there exists δ ∈ (0, 1) such that

ν(z)|ψ′(z)|√
K(1− |ϕ(z)|2)(1− |ϕ(z)|2)

< ε(3.16)
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and

ν(z)|ψ(z))ϕ′(z)|√
K(1− |ϕ(z)|2)(1− |ϕ(z)|2)2

< ε,(3.17)

whenever δ < |ϕ(z)| < 1.

Let A = {z ∈ D : |z| ≤ δ} be a compact subset of D. We have

‖Wψ,ϕfn‖Bν = |ψ(0)||fn(ϕ(0))|+ sup
ζ∈D

ν(ζ)|(Wψ,ϕfn)′(ζ)|

≤ |ψ(0)||fn(ϕ(0))|+ sup
ζ∈D

ν(ζ)|ψ′(ζ)||fn(ϕ(ζ))|

+ sup
ζ∈D

ν(ζ)|ψ(ζ)ϕ′(ζ)||f ′n(ϕ(ζ))|

≤ |ψ(0)||fn(ϕ(0))|+ sup
{ζ∈D:ϕ(ζ)∈A}

ν(ζ)|ψ′(ζ)||fn(ϕ(ζ))|

+ sup
{ζ∈D:δ<|ϕ(ζ)|<1}

ν(ζ)|ψ′(ζ)||fn(ϕ(ζ))|

+ sup
{ζ∈D:ϕ(ζ)∈A}

ν(ζ)|ψ(ζ)ϕ′(ζ)||f ′n(ϕ(ζ))|

+ sup
{ζ∈D:δ<|ϕ(ζ)|<1}

ν(ζ)|ψ(ζ)ϕ′(ζ)||f ′n(ϕ(ζ))|

≤ |ψ(0)||fn(ϕ(0))|+ ‖ψ‖Bν sup
z∈A
|fn(z)|+N sup

z∈A
|f ′n(z)|

+ C sup
{ζ∈D:δ<|ϕ(ζ)|<1}

ν(ζ)|ψ′(ζ)|√
K(1− |ϕ(ζ)|2)(1− |ϕ(ζ)|2)

‖fn‖DK

+ C sup
{ζ∈D:δ<|ϕ(ζ)|<1}

ν(ζ)|ψ(ζ)ϕ′(ζ)|√
K(1− |ϕ(ζ)|2)(1− |ϕ(ζ)|2)2

‖fn‖DK ,(3.18)

where we have |fn(ϕ(0))| < ε, sup
z∈A
|fn(z)| < ε and sup

z∈A
|f ′n(z)| < ε, for some N0 ∈ N and

for all n ≥ N0. Also we have used the fact that ψ ∈ Bν and N = sup
ζ∈D

ν(ζ)|ψ(ζ)ϕ′(ζ)| <∞.

Using the above fact in (3.18) and along with (3.16) and (3.17), we get ‖Wψ,ϕfn‖Bν < Cε,

for n ≥ N0. Since ε > 0 is arbitrary, so we have ‖Wψ,ϕfn‖Bν → 0 as n → ∞. Hence,

Wψ,ϕ : DK → Bν is compact.

Conversely, suppose that Wψ,ϕ : DK → Bν is compact. Let (ζn)n∈N be a sequence in D
such that |ϕ(ζn)| → 1 as n→∞. Suppose such a sequence does not exist, then (i) & (ii)

are vacuously satisfied. Let gn(w) = τϕ(ζn)(w)fϕ(ζn)(w), where fz and τz are defined earlier

in Lemma 2.1 and Theorem 3.1. Then, ‖τϕ(ζn)‖DK . 1, ‖fϕ(ζn)‖DK . 1 and (fϕ(ζn))n∈N

converges to zero uniformly on compact subset of D as n → ∞. So, ‖gn‖DK . 1 and

(gn)n∈N converges to zero uniformly on compact subset of D as n→∞.

Since Wψ,ϕ : DK → Bν is compact, so we have

‖Wψ,ϕgn‖Bν → 0 as n→∞.

Also, we have (as in Theorem 3.1),

‖Wψ,ϕgn‖Bν ≥
ν(ζn)|ψ(ζn)ϕ′(ζn)|ϕ(ζn)|√

K(1− |ϕ(ζn)|2)(1− |ϕ(ζn)|2)2
.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

133 MANISHA DEVI et al 127-135



MANISHA DEVI, AJAY K. SHARMA AND KULDIP RAJ

Using the above two facts, we get

lim
|ϕ(ζn)|→1

ν(ζn)|ψ(ζn)ϕ′(ζn)|√
K(1− |ϕ(ζn)|2)(1− |ϕ(ζn)|2)2

= 0.(3.19)

Using Lemma 2.1, we have sup
n∈N
‖fϕ(ζn)‖DK . 1 and fϕ(ζn) converges to zero uniformly on

compact subsets of D as n→∞. Since Wψ,ϕ : DK → Bν is compact. Therefore,

lim
n→∞

‖Wψ,ϕfϕ(ζn)‖Bν = 0.(3.20)

From (3.13), we obtain

ν(ζn)|ψ′(ζn)|√
K(1− |ϕ(ζn)|2)(1− |ϕ(ζn)|2)

≤ ‖Wψ,ϕfϕ(ζn)‖DK→Bν

+ C
ν(ζn)|ψ(ζn)ϕ′(ζn)|√

K(1− |ϕ(ζn)|2)(1− |ϕ(ζn)|2)2
,

which on combining with (3.19) and (3.20) gives

lim
|ϕ(ζn)|→1

ν(ζn)|ψ′(ζn)|√
K(1− |ϕ(ζn)|2)(1− |ϕ(ζn)|2)

= 0.(3.21)

Hence, the result follows from (3.19) and (3.21). �

4. Boundedness and compactness of weighted composition operator from

Dirichlet type space to Bers-type space

In this section, we consider the Bers-type spaces and characterize the boundedness and

compactness of operator Wψ,ϕ : DK → Aν . We omit the proofs as these are similar to

Theorem 3.1 and 3.2 of Section 3.

Theorem 4.1. Let ν be a weight and K be a weight function, ψ ∈ H(D) and ϕ be a self

analytic map on D. Then the operator Wψ,ϕ : DK → Aν is bounded if and only if the

following condition is satisfied:

l1 = sup
z∈D

ν(z)|ψ(z)|√
K(1− |ϕ(z)|2)(1− |ϕ(z)|2)

<∞.

Theorem 4.2. Let ν be a standard weight, ψ ∈ H(D) and ϕ be a self analytic map on D.

Let K be a weight function. Assume that the operator Wψ,ϕ : DK → Aν is bounded. Then

Wψ,ϕ : DK → Aν is compact if and only if the following condition is satisfied:

lim
|ϕ(z)|→1−

ν(z)|ψ(z)|√
K(1− |ϕ(z)|2)(1− |ϕ(z)|2)

= 0.
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OSCILLATION CRITERIA FOR DIFFERENTIAL EQUATIONS
WITH SEVERAL NON-MONOTONE DEVIATING ARGUMENTS

G. M. MOREMEDI1, H. JAFARI1, AND I. P. STAVROULAKIS∗,1

Abstract. Consider the first-order linear differential equation with several re-
tarded arguments x′ (t)+

∑m
i=1 pi (t)x (τ i (t)) = 0, t ≥ t0, where the functions

pi, τ i ∈ C
(
[t0,∞) , R+

)
, for every i = 1, 2, . . . ,m, τ i (t) ≤ t for t ≥ t0 and

limt→∞ τ i (t) = ∞. New oscillation criteria which essentially improve known
results in the literature are established.An example illustrating the results is
given.

1. Introduction

Consider the first-order linear differential equation with several non-monotone
retarded arguments

x′ (t) +

m∑
i=1

pi (t)x (τ i (t)) = 0, t ≥ t0, (1.1)

where the functions pi, τ i ∈ C ([t0,∞) ,R+) , for every i = 1, 2, . . . ,m, (here R+ =
[0,∞)), τ i (t) ≤ t for t ≥ t0 and limt→∞ τ i (t) =∞.
Let T0 ∈ [t0,+∞) , τ (t) = min {τ i (t) : i = 1, . . . ,m} and τ−1 (t) = sup {s : τ (s) ≤ t}.

By a solution of the equation (1.1) we understand a function x ∈ C ([T0,+∞) ,R),
continuously differentiable on [τ−1 (T0) ,+∞] and that satisfies (1.1) for t ≥ τ−1 (T0).
Such a solution is called oscillatory if it has arbitrarily large zeros, and otherwise
it is called non-oscillatory.
In the special case where m = 1 equation (1.1) reduces to the equation

x′ (t) + p (t)x (τ (t)) = 0, t ≥ t0, (1.2)

where the functions p, τ ∈ C ([t0,∞) ,R+) , τ (t) ≤ t for t ≥ t0 and limt→∞ τ (t) =
∞.
For the general theory of these equations the reader is referred to [13,16,18,19,32].
The problem of establishing suffi cient conditions for the oscillation of all solu-

tions to the differential equations (1.1) and (1.2) has been the subject of many
investigations. See, for example, [1-40] and the references cited therein.
In the case of monotone argumetns, a survey of the most interesting oscilla-

tion conditions for Eq.(1.2) can be found in [36]. While in the general case of
non-monotone arguments we mention the following interesting suffi cient oscillation
conditions.

2010 Mathematics Subject Classification. Primary 34K11; Secondary 34K06.
Key words and phrases. Oscillation, Retarded, Differential equations, Non-monotone

arguments.
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In 1994, Koplatadze and Kvinikadze [26] established the following: Assume

σ(t) := sup
s≤t

τ(s), t ≥ 0. (1.3)

Clearly σ(t) is non-decreasing and τ(t) ≤ σ(t) for all t ≥ 0. Let k ∈ N exist such
that

lim sup
t→∞

∫ t

σ(t)

p(s) exp

{∫ σ(t)

σ(s)

p(ξ)ψk(ξ)dξ

}
ds > 1− c(a), (1.4)

where a := lim inft→∞
∫ t
τ(t)

p(s)ds ≤ 1
e ,

ψ1(t) = 0, ψk(t) = exp

{∫ t

τ(t)

p(ξ)ψk−1(ξ)dξ

}
, k = 2, 3, ... for t ∈ R+. (1.5)

and

c(a) =

{
0 if a > 1

e ,
1
2

(
1− a−

√
1− 2a− a2

)
if 0 < a ≤ 1

e .
(1.6)

Then all solutions of equation (1.2) oscillate.

In 2011 Braverman and Karpuz [6] derived the following suffi cient oscillation
condition for Eq.(1.2)

lim sup
t→∞

∫ t

σ(t)

p(s) exp

{∫ σ(t)

τ(s)

p(ξ)dξ

}
ds > 1, (1.7)

while in 2014 Stavroulakis [37] improved the above condition as follows:

lim sup
t→∞

∫ t

σ(t)

p(s) exp

{∫ σ(t)

τ(s)

p(ξ)dξ

}
ds > 1− 1

2

(
1− a−

√
1− 2a− a2

)
(1.8)

In 2018 Chatzarakis, Purnaras and Stavroulakis [9] improved further these con-
ditions as follows: Assume that for some k ∈ N

lim sup
t→∞

t∫
σ(t)

p(s) exp

 σ(t)∫
τ(s)

Pk (u) du

 ds > 1, (1.9)

or

lim sup
t→∞

t∫
σ(t)

p(s) exp

 σ(t)∫
τ(s)

Pk (u) du

 ds > 1− 1− a−
√
1− 2a− a2
2

, (1.10)

where 0 < a ≤ 1
e , and

Pk (t) = p(t)

1 + t∫
τ(t)

p (s) exp

 t∫
τ(s)

p (u) exp

 u∫
τ(u)

Pk−1 (ξ) dξ

 du

 ds


with P0(t) = p(t). Then all solutions of Eq. (1.2) oscillate.

Concerning the differential equation (1.1) with several non-monotone arguments
the following related oscillation results have been recently published.
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Assume that there exist non-decreasing functions σi ∈ C ([t0,∞) ,R+) such that
τ i (t) ≤ σi (t) ≤ t, i = 1, 2, . . . ,m. (1.11)

In 2015 Infante, Kopladatze and Stavroulakis [21] proved that if

lim sup
t→∞

m∏
j=1

 m∏
i=1

t∫
σj(t)

pi (s) exp

 σi(t)∫
τ i(s)

m∑
i=1

pi (ξ) exp

 ξ∫
τ i(ξ)

m∑
i=1

pi (u) du

 dξ

 ds


1/m

>
1

mm
,

(1.12)
then all solutions of Eq. (1.1) oscillate.

Also in 2015 Kopladatze [27] improved the above condition as follows: Let there
exist some k ∈ N such that

lim sup
t→∞

m∏
j=1

 m∏
i=1

t∫
σj(t)

pi (s) exp

m σi(t)∫
τ i(s)

(
m∏
`=1

p` (ξ)

) 1
m

ψk (ξ) dξ

 ds


1
m

>
1

mm

[
1−

m∏
i=1

ci (αi)

]
,

(1.13)
where

ψ1 (t) = 0, ψi (t) = exp

 m∑
j=1

t∫
τj(t)

(
m∏
`=1

p` (s)

) 1
m

ψi−1 (s) ds

 , i = 2, 3, . . . ,

0 < αi := lim inf
t→∞

t∫
σi(t)

pi (s) ds <
1

e
, i = 1, 2, . . . ,m, (1.14)

and

ci (αi) =
1− αi −

√
1− 2αi − α2i
2

, i = 1, 2, . . . ,m, (1.15)

then all solutions of Eq. (1.1) oscillate.

In 2016 Bravermen, Chatzarakis and Stavroulakis [7] obtained the following it-
erative suffi cient oscillation conditions

lim sup
t→∞

t∫
h(t)

m∑
i=1

pi (u) ar (h (t) , τ i (u)) du > 1, (1.16)

or

lim sup
t→∞

t∫
h(t)

m∑
i=1

pi (u) ar (h (t) , τ i (u)) du > 1−
1− α−

√
1− 2α− α2
2

, (1.17)

or

lim inf
t→∞

t∫
h(t)

m∑
i=1

pi (u) ar (h (t) , τ i (u)) du >
1

e
, (1.18)
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where
h (t) = max

1≤i≤m
hi (t) and hi (t) = sup

t0≤s≤t
τ i (s) , i = 1, 2, . . . ,m,

0 < α := lim inf
t→∞

t∫
h(t)

m∑
i=1

pi (s) ds ≤
1

e
(1.19)

and

a1 (t, s) = exp

 t∫
s

m∑
i=1

pi (u) du

 ,

ar+1 (t, s) = exp

 t∫
s

m∑
i=1

pi (u) ar (u, τ i (u)) du

 , r ∈ N.

Also, in 2016 Akca, Chatzarakis and Stavroulakis [1] improved that result re-
placing condition (1.8) by the iterative condition

lim sup
t→∞

t∫
h(t)

m∑
i=1

pi (u) ar (h (u) , τ i (u)) du >
1 + lnλ0

λ0
(1.20)

where λ0 is the smaller root of the equation λ = eαλ,

0 < α := lim inf
t→∞

t∫
τ(t)

m∑
i=1

pi (s) ds ≤
1

e

and τ (t) = max
1≤i≤m

{τ i (t)} .

In 2017 Chatzarakis [8] derived the following results: Assume that for some
k ∈ N

lim sup
t→∞

t∫
h(t)

P (s) exp

 h(t)∫
τ(s)

Pk (u) du

 ds > 1, (1.21)

or

lim sup
t→∞

t∫
h(t)

P (s) exp

 h(t)∫
τ(s)

Pk (u) du

 ds > 1− 1− α−
√
1− 2α− α2
2

, (1.22)

or

lim sup
t→∞

∫ t

h(t)

p(s) exp

( ∫ t

τ(s)

Pk(u)du

)
ds >

2

1− α−
√
1− 2α− α2

, (1.23)

or

lim sup
t→∞

∫ t

σ(t)

p(s) exp

(∫ σ(s)

τ(s)

Pk(u)du

)
ds >

1 + lnλ1
λ1

− 1− α−
√
1− 2α− α2
2

,

(1.24)
or

lim inf
t→∞

∫ t

σ(t)

p(s) exp

(∫ σ(s)

τ(s)

Pk(u)du

)
ds >

1

e
, (1.25)
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where h(t), τ (t) , α are defined as above, λ1 is the smaller root of the transcendental
equation λ = eaλ, and

Pk (t) = P (t)

1 + t∫
τ(t)

P (s) exp

 t∫
τ(s)

P (u) exp

 u∫
τ(u)

Pk−1 (ξ) dξ

 du

 ds


with P0(t) = P (t) =

∑m
i=1 pi (t). Then all solutions of Eq. (1.1) oscillate.

Recently Bereketoglu et al [4] improved the above conditions as follows:
Assume that there exist non-decreasing functions σi ∈ C ([t0,∞) ,R+) such that

(1.11) is satisfied and for some k ∈ N

lim sup
t→∞

m∏
j=1

 m∏
i=1

 t∫
σj(t)

pi (s) exp

 σi(t)∫
τ i(s)

Pk (u) du

 ds



1/m

>
1

mm
, (1.26)

or

lim sup
t→∞

m∏
j=1

 m∏
i=1

 t∫
σj(t)

pi (s) exp

 σi(t)∫
τ i(s)

Pk (u) du

 ds



1/m

>
1

mm

[
1−

m∏
i=1

ci (αi)

]
,

(1.27)
where

Pk (t) =

m∑
j=1

pj (t)

1 +m
 m∏
i=1

t∫
σj(t)

pi (s) exp

 t∫
τ i(s)

Pk−1 (u) du

 ds


1/m
 ,

with

P0 (t) = m

[
m∏
`=1

p` (t)

]1/m
,

αi is given by (1.14) and ci (αi) by (1.15). Then all solutions of Eq.(1.1) oscillate.

In 2018 Attia et al [3] established the following oscillation conditions.
Assume that

0 < ρ := lim inf
t→∞

∫ t

g(t)

n∑
k=1

pk(s)ds ≤
1

e
,

and

lim sup
t→∞

(∫ t

g(t)

Q(v)dv + c(ρ)e
∫ t
g(t)

∑n
i=1 pi(s)ds

)
> 1,

where

Q(t) =
n∑
k=1

n∑
i=1

pi(t)

∫ t

τ i(t)

pk(s)e
∫ t
gk(t)

∑n
i=1 pi(s)ds+(λ(ρ)−ε)

∫ gk(t)
τk(s)

∑n
`=1 p`(u)duds, ε ∈ (0, λ(ρ)),

or

lim sup
t→∞

(∫ t

g(t)

Q1(v)dv + c(ρ)e
∫ t
g(t)

∑n
i=1 pi(s)ds

)
> 1,
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where

Q1(t) =
n∑
k=1

n∑
i=1

pi(t)

∫ t

τ i(t)

pk(s)e
∫ t
gk(t)

∑n
i=1 pi(s)ds+

∫ gk(t)
τk(s)

∑n
`=1(λ(q`)−ε`)p`(u)duds, ε` ∈ (0, λ(q`)),

and

q` = lim inf
t→∞

∫ t

τ`(t)

p`(s)ds, ` = 1, 2, ...,m

or

lim sup
t→∞

 n∏
j=1

(
n∏
k=1

∫ t

gj(t)

Rk(s)ds

) 1
n

+

∏n
k=1 c(βk)

nn
e
∑n
k=1

∫ t
gk(t)

∑n
`=1 p`(s)ds

 >
1

nn
,

where

Rk(s) = e
∫ s
gk(s)

∑n
i=1 pi(u)du

n∑
i=1

pi(s)

∫ s

τ i(s)

pk(u)e
(λ(ρ)−ε)

∫ gk(s)
τk(u)

∑n
`=1 p`(v)dvdu, ε ∈ (0, λ(ρ)),

and

0 < βk := lim inf
t→∞

∫ t

σi(t)

pi(s)ds ≤
1

e
.

Then Eq. (1.1) is oscillatory.

In this paper we further investigate the problem and derive oscillation conditions
which essentially improve all the above mentioned conditions.

2. Main Results

Our main results are the following two theorems

Theorem 1. Assume that there exist non-decreasing functions σi ∈ C ([t0,∞) ,R+)
such that (1.11) is satisfied and for some k ∈ N

lim sup
t→∞

m∏
j=1

 m∏
i=1

t∫
σj(t)

pi (s) exp

 σi(t)∫
τ i(s)

Pk (u) du

 ds


1/m

>
1

mm
, (2.1)

where

Pk (t) = P (t)

1 + t∫
σi(t)

P (s) exp

 t∫
τ i(s)

P (u) exp

 u∫
τ i(u)

Pk−1 (ξ) dξ

 du

 ds


(2.2)

with

P0 (t) = P (t) =
m∑
i=1

pi (t) .

Then all solutions of Eq.(1.1) oscillate.

Proof. Suppose for the sake of contradiction that Eq.(1.1) has a non-oscillatory
solution x (t) . Since −x (t) is also a solution to (1.1), we confine ourselves only to
the case that x (t) is an eventually positive solution of Eq.(1.1). Then there exists
t1 > t0 such that x (t) > 0, x (τ i (t)) > 0, x (σi (t)) > 0. Thus, from Eq.(1.1) it
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follows that x′ (t) ≤ 0 for all t ≥ t1 and therefore x (t) is non-increasing and taking
into account that τ i (t) ≤ t, it follows

x′ (t) +
m∑
i=1

pi (t)x (t) ≤ 0, t ≥ t1. (2.3)

Dividing the last inequality by x (t) and integrating from τ i (t) to t for suffi ciently
large t, we have

x (τ i (t)) ≥ x (t) exp

 t∫
τ i(t)

m∑
`=1

p` (ξ) dξ

 , i = 1, 2, ...,m. (2.4)

Dividing (1.1) by x (t) and integrating from τ i (s) to t, s ≤ t, we obtain

x (τ i (s)) = x (t) exp

 t∫
τ i(s)

m∑
`=1

p` (u)
x (τ `(u))

x (u)
du

 , i = 1, 2, ...,m. (2.5)

Combining the last two relations, we obtain

x (τ i (s)) ≥ x (t) exp

 t∫
τ i(s)

m∑
`=1

p` (u) exp

 u∫
τ i(u)

m∑
`=1

p` (ξ) dξ

 du

 . (2.6)

Now, integrating (1.1) from τ i (t) to t and using (2.6) for suffi ciently large t, we
have

x (τ i (t)) ≥ x (t)

1 + t∫
τ i(t)

m∑
`=1

p` (s) exp

 t∫
τ i(s)

m∑
`=1

p` (u) exp

 u∫
τ i(u)

m∑
`=1

p` (ξ) dξ

 du

 ds

 .
(2.7)

Multiplying the last inequality by pi (t) [cf.10,3,4] and taking the sum over i
( i = 1, 2, ...,m) , we have

x′ (t) + P1 (t)x (t) ≤ 0, t ≥ t1, (2.8)

where

P1 (t) = P (t)

1 + t∫
τ i(t)

P (s) exp

 t∫
τ i(s)

P (u) exp

 u∫
τ i(u)

P0(ξ)dξ

 du

 ds

 .
Observe that (2.8) resembles with (2.3), where

∑m
i=1 pi (t) [= P (t) = P0 (t)] is re-

placed by P1 (t) , and following the same steps as from (2.3) to (2.8), for suffi ciently
large t we find

x′ (t) + P2 (t)x (t) ≤ 0, (2.9)

where

P2 (t) = P (t)

1 + t∫
τ i(t)

P (s) exp

 t∫
τ i(s)

P (u) exp

 u∫
τ i(u)

P1(ξ)dξ

 du

 ds

 .
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Repeating the above procedure, it follows by induction, that for suffi ciently large t

x′ (t) + Pk (t)x (t) ≤ 0, (2.10)

where Pk (t) is given by

Pk (t) = P (t)

1 + t∫
τ i(t)

P (s) exp

 t∫
τ i(s)

P (u) exp

 u∫
τ i(u)

Pk−1(ξ)dξ

 du

 ds

 .
Dividing (2.10) by x (t) and integrating from τ i (s) to σi (t) , s ≤ t, for suffi ciently

large t, we get

x (τ i (s)) ≥ x (σi (t)) exp

 σi(t)∫
τ i(s)

Pk (u) du

 . (2.11)

On the other hand, integrating (1.1) from σj (t) to t for suffi ciently large t, we have

x (σj (t)) = x (t) +
m∑
i=1

t∫
σj(t)

pi (s)x (τ i (s)) ds. (2.12)

Combining (2.12) with (2.11) and using the arithmetic mean-geometric mean in-
equality, we obtain

x (σj (t)) ≥ m
[
m∏
i=1

x (σi (t))

]1/m  m∏
i=1

 t∫
σj(t)

pi (s) exp

 σi(t)∫
τ i(s)

Pk (u) du

 ds



1/m

.

Now, taking the product on both sides of the last inequality, we find

m∏
j=1

x (σj (t)) ≥ mm

 m∏
j=1

x (σj (t))


 m∏
j=1

 m∏
i=1

t∫
σj(t)

pi (s) exp

 σi(t)∫
τ i(s)

Pk (u) du

 ds


1/m
 .

Hence

lim sup
t→∞

m∏
j=1

 m∏
i=1

t∫
σj(t)

pi (s) exp

 σi(t)∫
τ i(s)

Pk (u) du

 ds


1/m

≤ 1

mm

which contradicts (2.1). �

For the next theorem we need the following lemma (See [39,13,26,27,4]).

Lemma 1. Let there exist non-decreasing functions σi ∈ C ([t0,∞) ,R+) such that
condition (1.11) is fulfilled and equation (1.1) has an eventually positive solution
x : [t0,+∞)→ (0,+∞). Then

lim inf
t→∞

x (t)

x (σi (t))
≥ ci (αi) , i = 1, 2, . . . ,m,

where αi and ci (αi) are given by (1.14) and (1.15).
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Theorem 2. Assume that there exist non-decreasing functions σi ∈ C ([t0,∞) ,R+)
such that (1.11) is satisfied and for some k ∈ N

lim sup
t→∞

m∏
j=1

 m∏
i=1

 t∫
σj(t)

pi (s) exp

 σi(t)∫
τ i(s)

Pk (u) du

 ds



1/m

>
1

mm

[
1−

m∏
i=1

ci (αi)

]
,

(2.13)
where Pk (u) is given by (2.2), αi by (1.14) and ci (αi) by (1.15). Then all solutions
of Eq.(1.1) oscillate.

As in the proof of Theorem 1, we assume, for the sake of contradiction, that
Eq.(1.1) has a non-oscillatory solution x (t) and derive (2.11) and (2.12). Combining
(2.12) with (2.11) and using the arithmetic mean-geometric mean inequality for
suffi ciently large t, we get

x (σj (t)) ≥ x (t)+m
[
m∏
i=1

x (σi (t))

]1/m  m∏
i=1

t∫
σj(t)

pi (s) exp

 σi(t)∫
τ i(s)

Pk (u) du

 ds


1/m

.

Taking the product on both sides of the last inequalities and using Lemma 1, as in
proof of [4, Theorem 2], we find

lim sup
t→∞

m∏
j=1

 m∏
i=1

t∫
σj(t)

pi (s) exp

 σi(t)∫
τ i(s)

Pk (u) du

 ds


1/m

≤

≤ 1

mm

1− lim inf
t→∞

xm (t)
m∏
i=1

x (σi (t))


≤ 1

mm

[
1−

m∏
i=1

ci (αi)

]
which contradicts (2.13).
Remark 1. It is clear that the left-hand sides of both conditions (2.1) and (2.13)

are identically the same and also the right-hand side of (2.13) reduces to (2.1) when
ci (αi) = 0.Thus, it seems that Theorem 2 is exactly the same as Theorem 1, when
ci (αi) = 0. One may notice, however, that the condition (1.14) is required in
Theorem 2 but not in Theorem 1.

In the case of monotone arguments we have the following theorem.

Theorem 3. Let τ i be non-decreasing functions and for some k ∈ N

lim sup
t→∞

m∏
j=1

 m∏
i=1

t∫
τj(t)

pi (s) exp
 τ i(t)∫
τ i(s)

Pk (u) du

 ds



1/m

>


1
mm

or
1
mm

[
1−

m∏
i=1

ci (αi)

]
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where

Pk (t) = P (t)

1 + t∫
τ i(t)

P (s) exp

 t∫
τ i(s)

P (u) exp

 u∫
τ i(u)

Pk−1(ξ)dξ

 du

 ds

 .
with

P0 (t) = P (t) =
m∑
j=1

pj (t) ,

αi is given by (1.14), and ci (αi) by (1.15). Then all solutions of (1.1) osillate.

3. Corollaries and Examples

In the case m = 2, Eq.(1.1) reduces to the equation

x′ (t) + p1 (t)x (τ1 (t)) + p2 (t)x (τ2 (t)) = 0. (3.1)

From Theorems 1 and 2 the following corollary is immediate

Corollary 1. Assume that (1.11) holds and for for k ∈ N

lim sup
t→∞

2∏
j=1

 2∏
i=1

t∫
σj(t)

pi (s) exp

 σi(t)∫
τ i(s)

Pk (u) du

 ds


1/2

>


1
4
or

1
4

[
1−

2∏
i=1

ci (αi)

] ,

where,

Pk (t) = P (t)

1 + t∫
σi(t)

P (s) exp

 t∫
τ i(s)

P (u) exp

 u∫
τ i(u)

Pk−1(ξ)dξ

 du

 ds

 ,
P0 (t) = 2 (p1 (t) p2 (t))

1/2
,

and for i = 1, 2, αi is given by (1.14) and ci (αi) by (1.15). Then all solutions of
Eq.(3.1) oscillate.

Corollary 2. Assume that there exist a non-decreasing function σ (t) such that
τ (t) ≤ σ (t) ≤ t and for some k ∈ N

lim sup
t→∞

t∫
σ(t)

p (s) exp

 σ(t)∫
τ(s)

Pk (u) du

 ds >

 1
or

1− c (α)
(3.2)

where

Pk (t) = p(t)

1 + t∫
σ(t)

p (s) exp

 t∫
τ(s)

p (u) exp

 u∫
τ(u)

Pk−1 (ξ) dξ

 du

 ds

 , P0(t) = p(t),

0 < α := lim inf
t→∞

t∫
σ(t)

p (s) ds ≤ 1
e
, (3.3)

and

c (α) =
1− α−

√
1− 2α− α2
2

Then all solutions of Eq.(1.2) oscillate.
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The following example (cf.[6],[21],[4]) is given to illustrate our results. It is to be
pointed out that in this example it is shown that our conditions essentially improve
all the related known conditions in the literature.

Example 1. (Cf. [6],[21],[4]) Consider the equation

x′ (t) + px (τ (t)) = 0, t ≥ 0, p > 0. (3.4)

with the retarded argument

τ (t) =

 t− 1, t ∈ [3n, 3n+ 1],
−3t+ (12n+ 3) , t ∈ [3n+ 1, 3n+ 2],
5t− (12n+ 13) , t ∈ [3n+ 2, 3n+ 3].

For this equation, as in [6,21,4], one may choose the funtion

σ (t) =

 t− 1, t ∈ [3n, 3n+ 1],
−3n, t ∈ [3n+ 1, 3n+ 2.6],
5t− (12n+ 13) , t ∈ [3n+ 2.6, 3n+ 3].

If we choose tn = 3n + 3, (cf. [6, Example 1] and [21, Example 4.2]), then for
k = 1, the condition (2.1) of Theorem 1 (or the condition (3.2) of Corollary 2)
reduces to

lim sup
t→∞

t∫
σ(t)

p exp

 σ(t)∫
τ(s)

P1 (u) du

 ds ≥ lim
n→∞

3n+3∫
3n+2

p exp

 3n+2∫
5s−(12n+13)

P1 (u) du

 ds,

where

P1(t) = p

1 + t∫
σ(t)

p exp

 t∫
τ(s)

p exp

 u∫
τ(u)

pdξ

 du

 ds


≥ p

1 + 3n+3∫
3n+2

p exp

 3n+3∫
5s−(12n+13)

p exp(p)du

 ds


= p

[
1 +

(
e6pe

p − epep

5

)
e−p
]

Therefore

lim sup
t→∞

t∫
σ(t)

p exp

 σ(t)∫
τ(s)

P1 (u) du

 ds ≥ p

5P1

(
e5P1 − 1

)
,

where P1 = p
[
1 +

(
e6pe

p
−epe

p

5

)
e−p
]
.For p = 0.255, P1 ≈ 0.484721, and so

p

5P1

(
e5P1 − 1

)
≈ 1.082293 > 1.

Therefore all solutions of Eq.(3.4) oscillate.

Observe, however, that when we consider the conditions stated in [6], [37] [21],
[27], [7], [1] and[4] for the above equation (3.4), we obtain the following:
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1. Observe that, for tn = 3n+ 3,∫ 3n+3

σ(3n+3)

p exp

{∫ σ(3n+3)

τ(s)

pdξ

}
ds =

∫ 3n+3

3n+2

p exp

{∫ 3n+2

5s−(12n+13))
pdξ

}
ds =

e5p − 1
5

and condition (1.7) reduces to
e5p − 1
5

> 1.

But, for p = 0.255
e5p − 1
5

≈ 0.51574 < 1

therefore the condition (1.7) is not satisfied.

2. Similarly, in the condition (1.8),

a = lim inf
t→∞

t∫
τ(t)

p (s) ds = lim
n→∞

3n+3∫
3n+2

pds = p

and

c (a) = c (p) =
1− p−

√
1− 2p− p2
2

.

and, as before, (1.8) reduces to

e5p − 1
5

> 1− 1− p−
√
1− 2p− p2
2

Taking p = 0.255 the left-hand side of (1.8) is equal to 0.51574 while the right-hand
side is 0.95345. Therefore this condition is not satisfied.

3. The condition (1.12) reduces to

lim sup
t→+∞

t∫
σ(t)

p exp

 σ(t)∫
τ(s)

p exp

 ξ∫
τ(ξ)

pdu

 dξ

 ds > 1, (3.5)

and, as in [20,Example 4.2], the choice of tn = 3n+ 3, leads to the inequality(
e5pe

p − 1
)

5ep
> 1. (3.6)

Observe, however, that for p = 0.255,(
e5pe

p − 1
)

5ep
≈ 0.64849 < 1.

Therefore the condition (3.6) is not satisfied.

4. The condition (1.13), for k = 2, reduces to

lim sup
t→∞

t∫
σ(t)

p exp

 σ(t)∫
τ(s)

p ψ2 (ξ) dξ

 ds > 1− c (α) , (3.7)
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where ψ2 (ξ) = 1, and for tn = 3n+ 3, as before, it leads to

e5p − 1
5

>
1− p−

√
1− 2p− p2
2

For p = 0.255, we have
e5p − 1
5

≈ 0.51574,

while the right-hand side
1− c (p) ≈ 0.95345.

Therefore the condition (3.7) is not satisfied.

5. The condition (1.16) for r = 1 reduces to

lim sup
t→∞

t∫
h(t)

pa1 (h (t) , τ (s)) ds > 1, (3.8)

where

h (t) = σ (t) and a1 (t, s) = exp

 t∫
s

pdu

 .

That is, to the condition

lim sup
t→∞

t∫
σ(t)

p exp

 σ(t)∫
τ(s)

pdξ

 ds > 1, (3.9)

and, as before, for tn = 3n+ 3 and p = 0.255, we have

e5p − 1
5

≈ 0.51574 < 1. (3.10)

Therefore the condition (3.8) is not satisfied.

6. Similarly, condition (1.20) for r = 1 reduces to

lim sup
t→∞

t∫
σ(t)

p exp

 σ(t)∫
τ(s)

pdξ

 ds >
1 + lnλ0

λ0
, (3.11)

where λ0 is the smaller root of the equation λ = epλ. As before, for tn = 3n + 3
and p = 0.255, we have

e5p − 1
5

≈ 0.51574,

while
1 + lnλ0

λ0
≈ 0.94664

Therefore the condition (3.11) is not satisfied.

7. For k = 1, condition (1.26) reduces to
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lim sup
t→∞

t∫
σ(t)

p exp

 σ(t)∫
τ(s)

P1 (u) du

 ds > 1. (3.12)

If we choose tn = 3n+ 3,

P1(t) = p

1 +
t∫

σ(t)

p exp

 t∫
τ(s)

pdu

 ds

 = p

1 +
3n+3∫
3n+2

p exp

 3n+3∫
5s−(12n+13)

pdu

 ds


= p

(
1 +

e6p − ep
5

)
.

and, as before, (3.12) reduces to

p

5P1

(
e5P1 − 1

)
> 1.

For p = 0.255 we find P1 ≈ 0.424232 and so
p

5P1

(
e5P1 − 1

)
≈ 0.882491 < 1.

Therefore the condition (3,12) is not satisfied
We conclude, therefore, that for p = 0.255 no one of the conditions (1.7), (1.8),

(1.12), (1.13) for k = 2, (1.16) and (1.20) for r = 1, and (1.26) is satisfied.
It should be also pointed out that not only for this value of p = 0.255 but for all

values of p > 0.255 , especially for all values of p ∈ [0.255, 0.358], (cf. [21, Example
4.2]),

p

5P1

(
e5P1 − 1

)
> 1

and therefore all solutions of (3.4) oscillate. Observe, however, that for p = 0.358

e5p − 1
5

≈ 0.99789 < 1,

also for p = 0.3 (
e5pe

p − 1
)

5ep
≈ 0.974101 < 1,

e5p − 1
5

≈ 0.696337 < 0.912993 ≈ 1 + lnλ0
λ0

,

and for p = 0.263, P1 ≈ 0.44944 and so
p

5P1

(
e5P1 − 1

)
≈ 0.99024 < 1.

Therefore for all values of p ∈ [0.255, 0.358] the conditions of Corollary 2 are sat-
isfied and so all solutions to Eq.(3.4) oscillate, while no one of the above mentioned
conditions is satisfied for these values of p ∈ [0.255, 0.358].
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Abstract

The present paper is concerned with Hyers�Ulam stability of the second-order linear di�erence

equation ∆2
hx(t) + α∆hx(t) + βx(t) = f(t) on hZ, where ∆hx(t) = (x(t + h) − x(t))/h and hZ =

{hk| k ∈ Z} for the stepsize h > 0; α and β are real numbers; f(t) is a real-valued function on hZ.
The purpose of this paper is to �nd an explicit HUS constant for the second-order linear di�erence

equation whose characteristic equation has real roots. It is clari�ed that an HUS constant changes

by the in�uence of the stepsize.

Keywords: Hyers�Ulam stability; HUS constant; second-order linear di�erence equation; stepsize.
2010 Mathematics Subject Classi�cation: Primary 39B82; Secondary 39A06; 65Q10.

1 Introduction

Hyers�Ulam stability is originated from in the �eld of functional equations. In 1940, this problem was
posed by Ulam [32, 33]. In the next year, it was solved by Hyers [9]. After that, there has been an
increasing interest in studying Hyers�Ulam stability of functional equations, di�erential equations and
di�erence equations (see [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27,
31, 34, 36]). In this paper, we will deal with Hyers�Ulam stability of the second-order nonhomogeneous
linear di�erence equation

∆2
hx(t) + α∆hx(t) + βx(t) = f(t) (1.1)

on hZ, where

∆hx(t) =
x(t+ h)− x(t)

h
and hZ = {hk| k ∈ Z}

for the stepsize h > 0; α and β are real numbers; f(t) is a real-valued function on hZ. If 1−αh+βh2 = 0
holds, then we no longer have a second-order di�erence equation. For this reason, we assume that

1− αh+ βh2 ̸= 0. (1.2)

It is well-known that the global existence and uniqueness of solutions of (1.1) are guaranteed for the
initial-value problem. We say that (1.1) has �Hyers�Ulam stability� on hZ if there exists a constant
K > 0 with the following property: Let ε > 0 be a given arbitrary constant. If a function ϕ : hZ → R
satis�es

∣∣∆2
hϕ(t) + α∆hϕ(t) + βϕ(t)− f(t)

∣∣ ≤ ε for all t ∈ hZ, then there exists a solution x : hZ → R
of (1.1) such that |ϕ(t)− x(t)| ≤ Kε for all t ∈ hZ. We call such K an �HUS constant� for (1.1) on hZ.
In addition, we call the minimum of HUS constants for (1.1) on hZ the �best HUS constant�. Recently,
the best HUS constant of various functional equations and linear operators has been discovered by Popa

1
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and Ra³a (see [28, 29, 30] and the references cited therein). When h→ 0, (1.1) becomes the second-order
linear di�erential equation

x′′ + αx′ + βx = f(t), (1.3)

that is, (1.1) is an approximation of the ordinary di�erential equation (1.3). In 2010, Li and Shen [18]
proved that (1.3) has HUS on a �nite interval I if characteristic equation has two di�erent positive roots.
In 2014, Xue [35] extended their results. Since the solution of the di�erence equation with small stepsize
is a good approximate solution of the di�erential equation, studying Hyers�Ulam stability of di�erence
equation (1.1) will contribute to computer science.

In 2018, the author [22] dealt with Hyers�Ulam stability of the �rst-order nonhomogeneous linear
di�erence equation

∆hx(t)− ax(t) = f(t) (1.4)

on hZ, where a is a real number and f(t) is a real-valued function on hZ. We say that (1.4) has �Hyers�
Ulam stability� on hZ if there exists a constant K > 0 with the following property: Let ε > 0 be a given
arbitrary constant. If a function ϕ : hZ → R satis�es |∆hϕ(t) − aϕ(t) − f(t)| ≤ ε for all t ∈ hZ, then
there exists a solution x : hZ → R of (1.4) such that |ϕ(t) − x(t)| ≤ Kε for all t ∈ hZ. Noticing that
if f(t) ≡ 0 with a = 0 or a = −2/h, then (1.4) does not have Hyers�Ulam stability on hZ (see [21]); if
a = −1/h, then we no longer have a �rst-order di�erence equation. For this reason, we assume that

a ̸= 0, − 1

h
and − 2

h
.

In [22], the author proved that (1.4) has Hyers�Ulam stability on hZ, and the best HUS constant for
(1.4) on hZ is

B(a, h) =


1

|a|
, if a > 0 or 0 < h < −1

a
,

1

|a+ 2/h|
, if −1

a
< h < −2

a
or −2

a
< h.

This constant is rewritten as

B(a, h) =
1

||a+ 1/h| − 1/h|
. (1.5)

Let Φ(t) be an antidi�erence of ϕ(t) on hZ, that is, ∆hΦ(t) = ϕ(t) holds on hZ, and let C be an arbitrary
real constant. We denote Φ(t) +C by ∆−1

h ϕ(t). We can obtain the above fact according to the following
results.

Theorem A (see [22, Corollary 2.5]). Suppose that a > 0 or a < −2/h. Then (1.4) has Hyers�Ulam
stability with an HUS constant B(a, h) on hZ, where B(a, h) is the constant given by (1.5). Furthermore,
if a function ϕ : hZ→ R satis�es |∆hϕ(t)− aϕ(t)− f(t)| ≤ ε for all t ∈ hZ, then

lim
t→∞

{
ϕ(t)(ah+ 1)−

t
h −∆−1

h f(t)(ah+ 1)−
t+h
h

}
exists, and there exists a unique solution

x(t) =
[
∆−1
h f(t)(ah+ 1)−

t+h
h

+ lim
t→∞

{
ϕ(t)(ah+ 1)−

t
h −∆−1

h f(t)(ah+ 1)−
t+h
h

}]
(ah+ 1)

t
h

of (1.4) such that |ϕ(t)− x(t)| ≤ B(a, h)ε for all t ∈ hZ.

Theorem B (see [22, Corollary 2.6]). Suppose that −1/h < a < 0 or −2/h < a < −1/h. Then (1.4) has
Hyers�Ulam stability with an HUS constant B(a, h) on hZ, where B(a, h) is the constant given by (1.5).
Furthermore, if a function ϕ : hZ→ R satis�es |∆hϕ(t)− aϕ(t)− f(t)| ≤ ε for all t ∈ hZ, then

lim
t→−∞

{
ϕ(t)(ah+ 1)−

t
h −∆−1

h f(t)(ah+ 1)−
t+h
h

}
2
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exists, and there exists a unique solution

x(t) =
[
∆−1
h f(t)(ah+ 1)−

t+h
h

+ lim
t→−∞

{
ϕ(t)(ah+ 1)−

t
h −∆−1

h f(t)(ah+ 1)−
t+h
h

}]
(ah+ 1)

t
h

of (1.4) such that |ϕ(t)− x(t)| ≤ B(a, h)ε for all t ∈ hZ.

Remark 1.1. We can con�rm that the best HUS constant for (1.4) on hZ is greater than or equal to
B(a, h) by the following example. Consider the �rst-order nonhomogeneous linear di�erence equation

∆hϕ(t)− aϕ(t)− f(t) = ε(−1)
mt
h (1.6)

on hZ, where ε > 0 and m ∈ {1, 2}. Let

ϕ0(t) = (ah+ 1)
t
h ∆−1

h f(t)(ah+ 1)−
t+h
h ,

ϕm(t) =
ε(−1)

mt
h

{(−1)m − 1} /h− a
and ϕ(t) = ϕ0(t) + ϕm(t) for all t ∈ hZ. Then ϕ(t) is a solution of (1.6). Now we will check this fact.
Since

f(t)(ah+ 1)−
t+h
h = ∆hϕ0(t)(ah+ 1)−

t
h

=
1

h

{
ϕ0(t+ h)(ah+ 1)−

t+h
h − ϕ0(t)(ah+ 1)−

t
h

}
=
ϕ0(t+ h)− (ah+ 1)ϕ0(t)

h
(ah+ 1)−

t+h
h

= (∆hϕ0(t)− aϕ0(t))(ah+ 1)−
t+h
h

holds, ϕ0(t) is a solution of (1.4). From

∆h(−1)
mt
h =

1

h

{
(−1)

m(t+h)
h − (−1)

mt
h

}
=

(−1)m − 1

h
(−1)

mt
h , (1.7)

we have

∆hϕm(t) =
ε {(−1)m − 1} (−1)

mt
h

{(−1)m − 1} − ah
= ε(−1)

mt
h + aϕm(t).

That is, ϕm(t) is a solution of (1.6) with f(t) ≡ 0. Using the above facts, we obtain

∆hϕ(t)− aϕ(t) = ∆h(ϕ0(t) + ϕm(t))− a(ϕ0(t) + ϕm(t)) = f(t) + ε(−1)
mt
h .

This means that ϕ(t) is a solution of (1.6). Therefore,

|∆hϕ(t)− aϕ(t)− f(t)| = ε

holds for all t ∈ hZ. Since ϕ0(t) is a solution of (1.4), and (ah+ 1)t/h is a solution of (1.4) with f(t) ≡ 0,
the general solution of (1.4) is written as

x(t) = c(ah+ 1)
t
h + ϕ0(t)

for all t ∈ hZ, where c is an arbitrary constant. Noticing that c = 0 holds if and only if |ϕ(t) − x(t)| is
bounded on hZ. When c = 0, we have

|ϕ(t)− x(t)| = |ϕm(t)| = ε

|a+ {1− (−1)m} /h|

for all t ∈ hZ and m ∈ {1, 2}. This means that the best HUS constant for (1.4) on hZ is greater than or
equal to

max

{
1

|a|
,

1

|a+ 2/h|

}
= B(a, h).

3
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Remark 1.2. Theorems A, B and Remark 1.1 imply that the best HUS constant for (1.4) on hZ is B(a, h)
given by (1.5).

The purpose of this paper is to �nd an HUS constant for (1.1) on hZ. In addition, we will �nd an
explicit solution x(t) of (1.1) such that |ϕ(t)− x(t)| is less than or equal to HUS constant multiplied by
ε on hZ, where ϕ(t) is a function satisfying

∣∣∆2
hϕ(t) + α∆hϕ(t) + βϕ(t)− f(t)

∣∣ ≤ ε on hZ. In the next
section, we will present main theorems and their proofs, and give an HUS constant for (1.1) on hZ. In
Section 3, we will classify HUS constants for (1.1) on hZ by coe�cients α and β. For illustration of the
obtained results, we will take an example.

2 HUS constant for the second-order linear di�erence equations

We can easily see that the quadratic equation

λ2 + αλ+ β = 0 (2.1)

is the characteristic equation for the second-order homogeneous linear di�erence equation

∆2
hx(t) + α∆hx(t) + βx(t) = 0 (2.2)

on hZ, where α and β are real numbers with (1.2). In fact, we consider the funtion x(t) = (λh + 1)t/h

on hZ, where λ is a root of (2.1). Notice that since (1.2), non of λ is equal to −1/h. On the other hand,
if λ ̸= −1/h then (1.2) holds. Clearly, ∆hx(t) = λ(λh + 1)t/h and ∆2

hx(t) = λ2(λh + 1)t/h hold on hZ.
Therefore, if (2.1) holds then x(t) is a solution of (2.2). Conversely, (2.1) is satis�ed whenever x(t) is a
solution of (2.2) on hZ. Thus, (λh+ 1)t/h is a solution of (2.2) on hZ if and only if (2.1) holds.

Throughout this paper, we de�ne

Λ1 = {λ ∈ R|λ > 0}, Λ2 =

{
λ ∈ R

∣∣∣ − 1

h
< λ < 0

}
,

and

Λ3 =

{
λ ∈ R

∣∣∣ − 2

h
< λ < − 1

h

}
, Λ4 =

{
λ ∈ R

∣∣∣λ < − 2

h

}
.

First, the following simple result is obtained by using Theorems A and B.

Theorem 2.1. Suppose that (2.1) has real roots λ1 and λ2 with λi ∈
∪4
j=1 Λj for i ∈ {1, 2}. Then (1.1)

has Hyers�Ulam stability with an HUS constant B(λ1, h)B(λ2, h) on hZ, where B(·, h) is the constant
given by (1.5).

Proof. Assume that a function ϕ : hZ→ R satis�es∣∣∆2
hϕ(t) + α∆hϕ(t) + βϕ(t)− f(t)

∣∣ ≤ ε
for all t ∈ hZ. Let ψ(t) = ∆hϕ(t) − λ1ϕ(t) for t ∈ hZ. From λ1 + λ2 = −α, λ1λ2 = β and the above
assumption, we get the inequality

|∆hψ(t)− λ2ψ(t)− f(t)| =
∣∣∆2

hϕ(t) + α∆hϕ(t) + βϕ(t)− f(t)
∣∣ ≤ ε (2.3)

for all t ∈ hZ. Using Theorems A and B, we can �nd a solution u : hZ→ R of

∆hu(t)− λ2u(t) = f(t) (2.4)

such that |ψ(t)− u(t)| ≤ B(λ2, h)ε for all t ∈ hZ. Namely, we have

|∆hϕ(t)− λ1ϕ(t)− u(t)| ≤ B(λ2, h)ε (2.5)

for all t ∈ hZ. Using Theorems A and B again, there exists a solution v : hZ→ R of

∆hv(t)− λ1v(t) = u(t) (2.6)
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such that |ϕ(t)− v(t)| ≤ B(λ1, h)B(λ2, h)ε for all t ∈ hZ. Since u(t) is a solution of (2.4), we have

∆2
hv(t) + α∆hv(t) + βv(t) = ∆2

hv(t)− (λ1 + λ2)∆hv(t) + λ1λ2v(t)

= ∆h(∆hv(t)− λ1v(t))− λ2(∆hv(t)− λ1v(t))

= ∆hu(t)− λ2u(t) = f(t)

for all t ∈ hZ. Therefore we can conclude that v(t) is a solution of (1.1).

More explicitly, we can obtain the following result.

Theorem 2.2. Let ε > 0 be a given arbitrary constant, and let B(·, h) be the constant given by (1.5).
De�ne

F (t) = ∆−1
h f(t)(λ2h+ 1)−

t+h
h

for t ∈ hZ. Suppose that (2.1) has real roots λ1 and λ2 with λi ∈
∪4
j=1 Λj for i ∈ {1, 2}. If a function

ϕ : hZ→ R satis�es ∣∣∆2
hϕ(t) + α∆hϕ(t) + βϕ(t)− f(t)

∣∣ ≤ ε
for all t ∈ hZ, then one of the following holds:

(i) if λ1, λ2 ∈ Λ1 ∪ Λ4, then the limiting values

c1 = lim
t→∞

{
(∆hϕ(t)− λ1ϕ(t))(λ2h+ 1)−

t
h − F (t)

}
and

d1 = lim
t→∞

{
ϕ(t)(λ1h+ 1)−

t
h −∆−1

h (F (t) + c1) (λ2h+ 1)
t
h (λ1h+ 1)−

t+h
h

}
exist, and there exists a unique solution

x(t) =
{

∆−1
h (F (t) + c1) (λ2h+ 1)

t
h (λ1h+ 1)−

t+h
h + d1

}
(λ1h+ 1)

t
h

of (1.1) such that |ϕ(t)− x(t)| ≤ B(λ1, h)B(λ2, h)ε for all t ∈ hZ;

(ii) if λ1 ∈ Λ1 ∪ Λ4 and λ2 ∈ Λ2 ∪ Λ3, then the limiting values

c2 = lim
t→−∞

{
(∆hϕ(t)− λ1ϕ(t))(λ2h+ 1)−

t
h − F (t)

}
and

d2 = lim
t→∞

{
ϕ(t)(λ1h+ 1)−

t
h −∆−1

h (F (t) + c2) (λ2h+ 1)
t
h (λ1h+ 1)−

t+h
h

}
exist, and there exists a unique solution

x(t) =
{

∆−1
h (F (t) + c2) (λ2h+ 1)

t
h (λ1h+ 1)−

t+h
h + d2

}
(λ1h+ 1)

t
h

of (1.1) such that |ϕ(t)− x(t)| ≤ B(λ1, h)B(λ2, h)ε for all t ∈ hZ;

(iii) if λ1, λ2 ∈ Λ2 ∪ Λ3, then the limiting values c2 and

d3 = lim
t→−∞

{
ϕ(t)(λ1h+ 1)−

t
h −∆−1

h (F (t) + c2) (λ2h+ 1)
t
h (λ1h+ 1)−

t+h
h

}
exist, and there exists a unique solution

x(t) =
{

∆−1
h (F (t) + c2) (λ2h+ 1)

t
h (λ1h+ 1)−

t+h
h + d3

}
(λ1h+ 1)

t
h

of (1.1) such that |ϕ(t)− x(t)| ≤ B(λ1, h)B(λ2, h)ε for all t ∈ hZ.

5
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Proof. Assume that a function ϕ : hZ→ R satis�es∣∣∆2
hϕ(t) + α∆hϕ(t) + βϕ(t)− f(t)

∣∣ ≤ ε
on hZ. Let ψ(t) = ∆hϕ(t)−λ1ϕ(t) for t ∈ hZ. Using the above assumption with λ1+λ2 = −α, λ1λ2 = β,
we have (2.3) for t ∈ hZ.

First we prove case (i). Using λ2 ∈ Λ1 ∪ Λ4 and Theorem A, we see that

lim
t→∞

{
ψ(t)(λ2h+ 1)−

t
h − F (t)

}
= lim
t→∞

{
(∆hϕ(t)− λ1ϕ(t))(λ2h+ 1)−

t
h − F (t)

}
= c1

exists, and there exists a unique solution

u(t) = (F (t) + c1) (λ2h+ 1)
t
h

of (2.4) such that |ψ(t)−u(t)| ≤ B(λ2, h)ε for all t ∈ hZ. That is, (2.5) holds on hZ. Using λ1 ∈ Λ1 ∪Λ4

and Theorem A again, we conclude that the limiting value

lim
t→∞

{
ϕ(t)(λ1h+ 1)−

t
h −∆−1

h (F (t) + c1) (λ2h+ 1)
t
h (λ1h+ 1)−

t+h
h

}
= d1

exists, and there exists a unique solution

v(t) =
{

∆−1
h (F (t) + c1) (λ2h+ 1)

t
h (λ1h+ 1)−

t+h
h + d1

}
(λ1h+ 1)

t
h

of (2.6) such that |ϕ(t) − v(t)| ≤ B(λ1, h)B(λ2, h)ε for all t ∈ hZ. Using the same argument as in the
proof of Theorem 2.1, we see that v(t) is a solution of (1.1). Noticing that v(t) is a unique solution of
(1.1) such that |ϕ(t)− v(t)| ≤ B(λ1, h)B(λ2, h)ε for all t ∈ hZ.

Next we prove case (ii). Using λ2 ∈ Λ2 ∪ Λ3 and Theorem B, we see that the limiting value

lim
t→−∞

{
ψ(t)(λ2h+ 1)−

t
h − F (t)

}
= lim
t→−∞

{
(∆hϕ(t)− λ1ϕ(t))(λ2h+ 1)−

t
h − F (t)

}
= c2

exists, and there exists a unique solution

u(t) = (F (t) + c2) (λ2h+ 1)
t
h

of (2.4) such that (2.5) holds for all t ∈ hZ. Using λ1 ∈ Λ1 ∪ Λ4 and Theorem A, we can conclude that
the limiting value

lim
t→∞

{
ϕ(t)(λ1h+ 1)−

t
h −∆−1

h (F (t) + c2) (λ2h+ 1)
t
h (λ1h+ 1)−

t+h
h

}
= d2

exists, and there exists a unique solution

v(t) =
{

∆−1
h (F (t) + c2) (λ2h+ 1)

t
h (λ1h+ 1)−

t+h
h + d2

}
(λ1h+ 1)

t
h

of (2.6) such that |ϕ(t) − v(t)| ≤ B(λ1, h)B(λ2, h)ε for all t ∈ hZ. Repeating the same argument as in
the proof of Theorem 2.1, v(t) is a unique solution of (1.1) such that |ϕ(t) − v(t)| ≤ B(λ1, h)B(λ2, h)ε
for all t ∈ hZ.

We prove case (iii). As in the same argument of the preceding paragraph, using λ2 ∈ Λ2 ∪ Λ3 and
Theorem B, we see that c2 exists, and there exists a unique solution

u(t) = (F (t) + c2) (λ2h+ 1)
t
h

6
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of (2.4) such that (2.5) holds on hZ. Using λ1 ∈ Λ2 ∪Λ3 and Theorem B again, we can �nd the limiting
value

lim
t→−∞

{
ϕ(t)(λ1h+ 1)−

t
h −∆−1

h (F (t) + c2) (λ2h+ 1)
t
h (λ1h+ 1)−

t+h
h

}
= d3

and a unique solution

v(t) =
{

∆−1
h (F (t) + c2) (λ2h+ 1)

t
h (λ1h+ 1)−

t+h
h + d3

}
(λ1h+ 1)

t
h

of (2.6) such that |ϕ(t)− v(t)| ≤ B(λ1, h)B(λ2, h)ε for all t ∈ hZ. By the same argument as in the proof
of Theorem 2.1, v(t) is a unique solution of (1.1) such that |ϕ(t)−v(t)| ≤ B(λ1, h)B(λ2, h)ε for all t ∈ hZ.

A natural question now arises. Is B(λ1, h)B(λ2, h) the best HUS constant for (1.1) on hZ? A partial
answer to this question is as follows.

Theorem 2.3. Suppose that (2.1) has real roots λ1 and λ2 with λi ∈
∪4
j=1 Λj for i ∈ {1, 2}. Then the

best HUS constant for (1.1) on hZ is greater than or equal to

max

{
1

|λ1λ2|
,

1

|(λ1 + 2/h)(λ2 + 2/h)|

}
.

Before to prove this theorem, we will give a lemma.

Lemma 2.1. Suppose that (2.1) has two roots λ1 and λ2 with λi ̸= −1/h for i ∈ {1, 2}. De�ne

F (t) = ∆−1
h f(t)(λ2h+ 1)−

t+h
h

and
Y (t;λ1, λ2) =

{
∆−1
h F (t)(λ2h+ 1)

t
h (λ1h+ 1)−

t+h
h

}
(λ1h+ 1)

t
h (2.7)

for t ∈ hZ. Then Y (t;λ1, λ2) is a solution of (1.1).

Proof. Since

F (t)(λ2h+ 1)
t
h (λ1h+ 1)−

t+h
h

= ∆hY (t;λ1, λ2)(λ1h+ 1)−
t
h

=
1

h

{
Y (t+ h;λ1, λ2)(λ1h+ 1)−

t+h
h − Y (t;λ1, λ2)(λ1h+ 1)−

t
h

}
=

1

h
{Y (t+ h;λ1, λ2)− (λ1h+ 1)Y (t;λ1, λ2)}(λ1h+ 1)−

t+h
h

= (∆hY (t;λ1, λ2)− λ1Y (t;λ1, λ2))(λ1h+ 1)−
t+h
h

holds, we have
∆hY (t;λ1, λ2)− λ1Y (t;λ1, λ2) = F (t)(λ2h+ 1)

t
h

for all t ∈ hZ. Using this equality, we obtain

∆2
hY (t;λ1, λ2)− λ1∆hY (t;λ1, λ2)

= ∆hF (t)(λ2h+ 1)
t
h

=
1

h

{
F (t+ h)(λ2h+ 1)

t+h
h − F (t)(λ2h+ 1)

t
h

}
=

1

h

(
F (t+ h)− 1

λ2h+ 1
F (t)

)
(λ2h+ 1)

t+h
h

=

(
∆hF (t) +

λ2
λ2h+ 1

F (t)

)
(λ2h+ 1)

t+h
h

= f(t) + λ2F (t)(λ2h+ 1)
t
h

= f(t) + λ2(∆hY (t;λ1, λ2)− λ1Y (t;λ1, λ2))

for all t ∈ hZ. This means that Y (t;λ1, λ2) is a solution of (1.1).

7
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Proof of Theorem 2.3. We have only to show that for a given φ(t) satisfying∣∣∆2
hφ(t) + α∆hφ(t) + βφ(t)− f(t)

∣∣ ≤ ε
on hZ, we �nd an explicit solution x(t) of (1.1) such that

|φ(t)− x(t)| = max

{
1

|λ1λ2|
,

1

|(λ1 + 2/h)(λ2 + 2/h)|

}
for all t ∈ hZ.

We now consider the second-order di�erence equation

∆2
hφ(t) + α∆hφ(t) + βφ(t)− f(t) = ε(−1)

mt
h (2.8)

on hZ, where ε > 0 and m ∈ {1, 2}. Let

φm(t) =
ε(−1)

mt
h{

(−1)m − 1

h
− λ1

}{
(−1)m − 1

h
− λ2

}
and φ(t) = Y (t;λ1, λ2) + φm(t) for all t ∈ hZ, where Y (t;λ1, λ2) is the function given by (2.7). Note
here that Y (t;λ1, λ2) is a solution of (1.1) from Lemma 2.1. Now, we will check that φ(t) is a solution of
(2.8). From (1.7), we have

∆2
h(−1)

mt
h =

{
(−1)m − 1

h

}2

(−1)
mt
h .

Using this, we get

∆2
hφm(t) + α∆hφm(t) + βφm(t)

=

[{
(−1)m − 1

h

}2

+ α
(−1)m − 1

h
+ β

]
ε(−1)

mt
h{

(−1)m − 1

h
− λ1

}{
(−1)m − 1

h
− λ2

}
= ε(−1)

mt
h

for all t ∈ hZ. That is, φm(t) is a solution of (2.8) with f(t) ≡ 0. Using the above facts, we obtain

∆2
hφ(t) + α∆hφ(t) + βφ(t)

= ∆2
hY (t;λ1, λ2) + α∆hY (t;λ1, λ2) + βY (t;λ1, λ2)

+ ∆2
hφm(t) + α∆hφm(t) + βφm(t)

= f(t) + ε(−1)
mt
h .

This means that φ(t) is a solution of (2.8). Therefore,∣∣∆2
hφ(t) + α∆hφ(t) + βφ(t)− f(t)

∣∣ = ε

holds for all t ∈ hZ. Let x0(t) be the general solution of (1.1) with f(t) ≡ 0. That is, x0(t) is written by

c1(λ1h+ 1)
t
h + c2(λ2h+ 1)

t
h or c1(λ1h+ 1)

t
h + c2t(λ1h+ 1)

t
h ,

where c1 and c2 are arbitrary constants. Since Y (t;λ1, λ2) is a solution of (1.1), the general solution of
(1.1) is written as

x(t) = x0(t) + Y (t;λ1, λ2)

for all t ∈ hZ. Noticing that c1 = c2 = 0 holds if and only if |φ(t) − x(t)| is bounded on hZ. When
c1 = c2 = 0, we have

|φ(t)− x(t)| = |φm(t)| = ε∣∣∣∣λ1 +
1− (−1)m

h

∣∣∣∣ ∣∣∣∣λ2 +
1− (−1)m

h

∣∣∣∣
8
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for all t ∈ hZ and m ∈ {1, 2}. This means that the best HUS constant for (1.1) on hZ is greater than or
equal to

max

{
1

|λ1λ2|
,

1

|(λ1 + 2/h)(λ2 + 2/h)|

}
.

Theorems 2.1 and 2.3 imply the following result.

Corollary 2.4. Suppose that (2.1) has real roots λ1 and λ2. If λ1, λ2 ∈ Λ1

∪
Λ2 or λ1, λ2 ∈ Λ3

∪
Λ4,

then (1.1) has Hyers�Ulam stability with the best HUS constant B(λ1, h)B(λ2, h) on hZ, where B(·, h) is
the constant given by (1.5).

Proof. From Theorem 2.1, (1.1) has Hyers�Ulam stability with an HUS constant B(λ1, h)B(λ2, h) on hZ.
Since

max

{
1

|λ1λ2|
,

1

|(λ1 + 2/h)(λ2 + 2/h)|

}
=

1

|λ1λ2|

if λ1, λ2 ∈ Λ1

∪
Λ2, and

max

{
1

|λ1λ2|
,

1

|(λ1 + 2/h)(λ2 + 2/h)|

}
=

1

|(λ1 + 2/h)(λ2 + 2/h)|

if λ1, λ2 ∈ Λ3

∪
Λ4, we conclude that

max

{
1

|λ1λ2|
,

1

|(λ1 + 2/h)(λ2 + 2/h)|

}
= B(λ1, h)B(λ2, h).

From Theorem 2.3 it follows that B(λ1, h)B(λ2, h) is the best HUS constant.

From Corollary 2.4, we obtain the following.

Corollary 2.5. Suppose that (2.1) has exactly one real root λ with λ ∈
∪4
j=1 Λj. Then (1.1) has Hyers�

Ulam stability with the best HUS constant B2(λ, h) on hZ, where B(·, h) is the constant given by (1.5).

3 Classi�cation of HUS constants by the coe�cients

According to Theorem 2.1, we see that the following fact.

Remark 3.1. An HUS constant for (1.1) on hZ is rewritten as

B(λ1, h)B(λ2, h) =



1

|λ1λ2|
if λ1, λ2 ∈ Λ1 ∪ Λ2,

1

|λ1(λ2 + 2/h)|
if λ1 ∈ Λ1 ∪ Λ2, λ2 ∈ Λ3 ∪ Λ4,

1

|(λ1 + 2/h)(λ2 + 2/h)|
if λ1, λ2 ∈ Λ3 ∪ Λ4,

where λ1 and λ2 are real roots of (2.1) satisfying λi ̸= 0, −1/h and −2/h for i ∈ {1, 2}.
Unfortunately, HUS constants in the right-hand side of the equation are implicit expressions. In this

section, we will decide HUS constants more explicitly. To be speci�c, we will classify HUS constants for
(1.1) on hZ by coe�cients α and β. Let S be the set

S =

{
(α, β) ∈ R2

∣∣∣ β ≤ α2

4
, β ̸= 1

h
α− 1

h2
, β ̸= 2

h
α− 4

h2
, β ̸= 0

}
.

9
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Since β = α/h − 1/h2 is the tangent line to the curve β = α2/4 at (2/h, 1/h2), S is divided into three
sets as follows (see Figure 1):

S1 =

{
(α, β) ∈ R2

∣∣∣ 1

h
α− 1

h2
< β ≤ α2

4
, α <

2

h
, β ̸= 0

}
,

S2 =

{
(α, β) ∈ R2

∣∣∣ β < 1

h
α− 1

h2
, β ̸= 2

h
α− 4

h2
, β ̸= 0

}
,

S3 =

{
(α, β) ∈ R2

∣∣∣ 1

h
α− 1

h2
< β ≤ α2

4
, α >

2

h
, β ̸= 2

h
α− 4

h2

}
.

Note that β = 2α/h − 4/h2 is the tangent line to the curve β = α2/4 at (4/h, 4/h2); S1 ∩ S2, S2 ∩ S3

and S3 ∩ S1 are empty sets; S = S1 ∪ S2 ∪ S3 holds. The above-mentioned sets are used without notice
in this paper.
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Figure 1: The sets S1, S2 and S3 on the (α, β) plane.

The obtained result is as follows.

Corollary 3.1. If (α, β) ∈ S, then (1.1) has Hyers�Ulam stability with an HUS constant

B

(
−α+

√
α2 − 4β

2
, h

)
B

(
−α−

√
α2 − 4β

2
, h

)
on hZ, where B(·, h) is the constant given by (1.5). Furthermore, one of the following holds:

(i) if (α, β) ∈ S1, then the best HUS constant for (1.1) on hZ is 1/|β|;

(ii) if (α, β) ∈ S2, then an HUS constant for (1.1) on hZ is

1∣∣∣β +
(
−α+

√
α2 − 4β

)
/h
∣∣∣ ;

(iii) if (α, β) ∈ S3, then the best HUS constant for (1.1) on hZ is

1

|β − 2α/h+ 4/h2|
.

Proof. Suppose that (α, β) ∈ S. Let

µ1 =
−α+

√
α2 − 4β

2
and µ2 =

−α−
√
α2 − 4β

2
.

10

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

161 Onitsuka 152-165



Then µ1 and µ2 are real roots of (2.1) since β ≤ α2/4 holds. By β ̸= α/h− 1/h2, (1.2) is satis�ed, and
therefore, we have µ1 ̸= −1/h ̸= µ2. From β ̸= 2α/h − 4/h2 we see that µ1 ̸= −2/h ̸= µ2. In addition,

by β ̸= 0, non of µ1 and µ2 are equal to 0. Therefore, µ1, µ2 ∈
∪4
j=1 Λj . Using Theorem 2.1, (1.1) has

Hyers�Ulam stability with an HUS constant B (µ1, h)B (µ2, h).
Next, we will show that the assertions (i)�(iii). We consider the case (α, β) ∈ S1. From

1

h
α− 1

h2
< β ≤ α2

4

it follows that

0 ≤ α2 − 4β < α2 − 4

h
α+

4

h2
=

(
α− 2

h

)2

.

That is, 0 ≤
√
α2 − 4β <

√
(α− 2/h)

2
= |α− 2/h| holds, and therefore, we have

−α− |α− 2/h|
2

< µ2 ≤ µ1 <
−α+ |α− 2/h|

2
. (3.1)

By using α < 2/h, we obtain −1/h < µ2 ≤ µ1. This means that µ1, µ2 ∈ Λ1 ∪ Λ2. From Corollary 2.4
and Remark 3.1, the best HUS constant for (1.1) on hZ is

1

|µ1µ2|
=

1

|β|
.

Next, we consider the case (α, β) ∈ S2. Since

β <
1

h
α− 1

h2

holds, we have
√
α2 − 4β >

√
(α− 2/h)2 = |α− 2/h|. This means that

−
√
α2 − 4β < α− 2

h
<
√
α2 − 4β.

Using this inequality we obtain

µ2 < −
1

h
< µ1.

That is, µ1 ∈ Λ1 ∪ Λ2, µ2 ∈ Λ3 ∪ Λ4. From Remark 3.1, an HUS constant for (1.1) on hZ is

1

|µ1(µ2 + 2/h)|
=

1∣∣∣β +
(
−α+

√
α2 − 4β

)
/h
∣∣∣ .

Finally, we consider the case (α, β) ∈ S3. Using the same argument in the proof of the case (α, β) ∈ S1,
we have (3.1). By using α > 2/h, we obtain µ2 ≤ µ1 < −1/h. This and β ̸= 2α/h− 4/h2 imply that µ1,
µ2 ∈ Λ3 ∪ Λ4. From Corollary 2.4 and Remark 3.1, the best HUS constant for (1.1) on hZ is

1

|(µ1 + 2/h)(µ2 + 2/h)|
=

1

|µ1µ2 + 2(µ1 + µ2)/h+ 4/h2|
=

1

|β − 2α/h+ 4/h2|
.

This completes the proof of Corollary 3.1.

For illustration of the obtained result, we will present an example.

Example. We consider the second-order linear di�erence equation

∆2
hx(t) + 3∆hx(t) + x(t) = f(t) (3.2)

on hZ, where (1.2) and
1 ̸= 6

h
− 4

h2

11
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hold. Since (3, 1) ∈ S, Corollary 3.1 implies that (3.2) has Hyers�Ulam stability. Moreover, �xing the
stepsize gives an HUS constant. For example, if h = 1/3 then (3, 1) ∈ S1, and therefore, the best HUS
constant for (3.2) is one. If h = 1 then (3, 1) ∈ S2. So, we get an HUS constant 1/

(√
5− 2

)
. If h = 3

then (3, 1) ∈ S3, and thus, the best HUS constant for (3.2) is 9/5.

Remark 3.2. Under the assumption that (α, β) is included in the �rst quadrant and S, if the stepsize
is su�ciently small, then we can choose a h so that (α, β) ∈ S1. On the other hand, if the stepsize is
su�ciently large, then we can choose a h so that (α, β) ∈ S3. From Corollary 3.1 and Example 3, we see
that the best HUS constant for (1.1) on hZ is a�ected by the stepsize. In other words, it is concluded
that the best HUS constant changes by the in�uence of the stepsize.

Acknowledgment

The author was supported by JSPS KAKENHI Grant Number JP17K14226.

References

[1] R. P. Agarwal, B. Xu and W. Zhang, Stability of functional equations in single variable, J. Math.
Anal. Appl. 288 (2003), no. 2, 852�869.

[2] C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function,
J. Inequal. Appl. 2 (1998), no. 4, 373�380.

[3] D. R. Anderson and J. Otto, Hyers�Ulam stability of linear di�erential equations with vanishing
coe�cients, Communications Appl. Anal. 19 (2015), 15�30.

[4] J. Brzd¦k, K. Ciepli«ski and Z. Le±niak, On Ulam's type stability of the linear equation and related
issues, Discrete Dyn. Nat. Soc. 2014 (2014), Art. ID 536791, 14 pages.

[5] J. Brzd¦k, D. Popa and I. Ra³a, Hyers�Ulam stability with respect to gauges, J. Math. Anal. Appl.
453 (2017), no. 1, 620�628.

[6] J. Brzd¦k, D. Popa, I. Ra³a and B. Xu, Ulam stability of operators. Mathematical analysis and its
applications, Academic Press, 2018.

[7] J. Brzd¦k, D. Popa and B. Xu, Remarks on stability of linear recurrence of higher order, Appl. Math.
Lett. 23 (2010), no. 12, 1459�1463.

[8] O. Hatori, K. Kobayashi, T. Miura, H. Takagi and S.-E. Takahasi, On the best constant of Hyers�
Ulam stability, J. Nonlinear Convex Anal. 5 (2004), no. 3, 387�393.

[9] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27
(1941), 222�224.

[10] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables. (En-
glish summary) Progress in Nonlinear Di�erential Equations and their Applications, 34, Birkhäuser
Boston, Inc., Boston, MA, 1998.

[11] S.-M. Jung, Hyers�Ulam stability of linear di�erential equations of �rst order. III, J. Math. Anal.
Appl. 311 (2005), no. 1, 139�146.

[12] S.-M. Jung, Hyers�Ulam stability of a system of �rst order linear di�erential equations with constant
coe�cients, J. Math. Anal. Appl. 320 (2006), no. 2, 549�561.

[13] S.-M. Jung, Hyers�Ulam�Rassias stability of functional equations in nonlinear analysis, Springer
optimization and its applications, 48, Springer, New York, 2011.

12

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

163 Onitsuka 152-165



[14] S.-M. Jung, Hyers�Ulam stability of the �rst-order matrix di�erence equations, Adv. Di�erence Equ.
2015 (2015), Art. ID 2015:170, 13 pages.

[15] S.-M. Jung, Y. W. Nam, Hyers�Ulam stability of the delayed homogeneous matrix di�erence equation
with constructive method, J. Comput. Anal. Appl. 22 (2017), no. 5, 941�948.

[16] S.-M. Jung, Y. W. Nam, Hyers�Ulam stability of the �rst order inhomogeneous matrix di�erence
equation, J. Comput. Anal. Appl. 23 (2017), no. 8, 1368�1383.

[17] Y. Li, Hyers�Ulam stability of linear di�erential equations y′′ = λ2y, Thai J. Math., 8 (2010), no. 2,
215�219.

[18] Y. Li, Y. Shen, Hyers�Ulam stability of linear di�erential equations of second order, Appl. Math.
Lett., 23 (2010), no. 3, 306�309.

[19] T. Li and A. Zada, Connections between Hyers�Ulam stability and uniform exponential stability of
discrete evolution families of bounded linear operators over Banach spaces, Adv. Di�erence Equ.,
2016 (2016), Art. ID 2016:153, 8 pages.

[20] M. S. Moslehian and D. Popa, On the stability of the �rst-order linear recurrence in topological vector
spaces, Nonlinear Anal. 73 (2010), no. 9, 2792�2799.

[21] M. Onitsuka, In�uence of the stepsize on Hyers�Ulam stability of �rst-order homogeneous linear
di�erence equations, Int. J. Di�erence Equ. 12 (2017), no. 2, 281�302.

[22] M. Onitsuka, Hyers�Ulam stability of �rst-order nonhomogeneous linear di�erence equations with a
constant stepsize, Appl. Math. Comput. 330 (2018), 143�151.

[23] M. Onitsuka and T. Shoji, Hyers�Ulam stability of �rst-order homogeneous linear di�erential equa-
tions with a real-valued coe�cient, Appl. Math. Lett. 63 (2017), 102�108.

[24] D. Popa, Hyers�Ulam stability of the linear recurrence with constant coe�cients, Adv. Di�erence
Equ. 2005 (2005), no. 2, 101�107.

[25] D. Popa, Hyers�Ulam�Rassias stability of a linear recurrence, J. Math. Anal. Appl. 309 (2005), no.
2, 591�597.

[26] D. Popa and I. Ra³a, On the Hyers�Ulam stability of the linear di�erential equation, J. Math. Anal.
Appl. 381 (2011), no. 2, 530�537.

[27] D. Popa and I. Ra³a, Hyers�Ulam stability of the linear di�erential operator with nonconstant coef-
�cients, Appl. Math. Comput. 219 (2012), no. 4, 1562�1568.

[28] D. Popa and I. Ra³a, On the best constant in Hyers�Ulam stability of some positive linear operators,
J. Math. Anal. Appl. 412 (2014), no. 1, 103�108.

[29] D. Popa and I. Ra³a, Best constant in Hyers�Ulam stability of some functional equations, Carpathian
J. Math. 30 (2014), no. 3, 383�386.

[30] D. Popa and I. Ra³a, Best constant in stability of some positive linear operators, Aequationes Math.
90 (2016), no. 4, 719�726.

[31] S.-E. Takahasi, H. Takagi, T. Miura and S. Miyajima, The Hyers�Ulam stability constants of �rst
order linear di�erential operators, J. Math. Anal. Appl. 296 (2004), no. 2, 403�409.

[32] S. M. Ulam, A collection of mathematical problems. Interscience Tracts in Pure and Applied Math-
ematics, no. 8, Interscience Publishers, New York-London, 1960.

[33] S. M. Ulam, Problems in modern mathematics. Science Editions John Wiley & Sons, Inc., New York,
1964.

13

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

164 Onitsuka 152-165



[34] G. Wang, M. Zhou and L. Sun, Hyers�Ulam stability of linear di�erential equations of �rst order,
Appl. Math. Lett. 21 (2008), no. 10, 1024�1028.

[35] J. Xue, Hyers�Ulam stability of linear di�erential equations of second order with constant coe�cient,
Ital. J. Pure Appl. Math., 32, (2014), 419�424.

[36] A. Zada, O. Shah and R. Shah, Hyers�Ulam stability of non-autonomous systems in terms of bound-
edness of Cauchy problems, Appl. Math. Comput., 271, (2015), 512�518.

14

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

165 Onitsuka 152-165



Choquet-Iyengar type advanced inequalities

George A. Anastassiou
Department of Mathematical Sciences

University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we extend advanced known Iyengar type inequalities to Cho-
quet integrals setting with respect to distorted Lebesgue measures and
for monotone functions.

2010 Mathematics Subject Classi�cation: 26D10, 26D15, 28A25.
Keywords and phrases: Choquet integral, distorted Lebesgue measure,

analytic inequality, Iyengar inequality.

1 Background - I

In the year 1938, Iyengar [7] proved the following interesting inequality.

Theorem 1 Let f be a di¤erentiable function on [a; b] and jf 0 (x)j �M1. Then�����
Z b

a

f (x) dx� 1
2
(b� a) (f (a) + f (b))

����� � M1 (b� a)2

4
� (f (b)� f (a))

2

4M1
: (1)

In 2001, X.-L. Cheng [3] proved that

Theorem 2 Let f 2 C2 ([a; b]) and jf 00 (x)j �M2. Then�����
Z b

a

f (x) dx� 1
2
(b� a) (f (a) + f (b)) + 1

8
(b� a)2 (f 0 (b)� f 0 (a))

����� �
M2

24
(b� a)3 � (b� a)

16M2
�21; (2)

where

�1 = f
0 (a)� 2 (f (b)� f (a))

(b� a) + f 0 (b) :

In 2006, [6], the authors proved:
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Theorem 3 Let f 2 C2 ([a; b]) and jf 00 (x)j �M . Set

I =

Z b

a

f (x) dx� 1
2
(b� a) (f (a) + f (b)) + 1

8
(b� a)2 (f 0 (b)� f 0 (a)) : (3)

Then

�M (b� a)3

24
+
M

3

�
�3a + �

3
b

�
� I �

M (b� a)3

24
� M
3

"�
b� a
2

� �a
�3
+

�
b� a
2

� �b
�3#

; (4)

where

�a =
1

2M

�
f 0
�
a+ b

2

�
� f 0 (a)

�
+
b� a
4
; (5)

�b =
1

2M

�
f 0 (b)� f 0

�
a+ b

2

��
+
b� a
4
: (6)

In 1996, Agarwal and Dragomir [1] obtained a generalization of (1):

Theorem 4 Let f : [a; b] ! R be a di¤erentiable function such that for all
x 2 [a; b] with M > m we have m � f 0 (x) �M . Then�����

Z b

a

f (x) dx� 1
2
(b� a) (f (a) + f (b))

����� �
(f (b)� f (a)�m (b� a)) (M (b� a)� f (b) + f (a))

2 (M �m) : (7)

In [9], Qi proved

Theorem 5 Let f : [a; b] ! R be a twice di¤erentiable function such that for
all x 2 [a; b] with M > 0 we have jf 00 (x)j �M . Then�����
Z b

a

f (x) dx� (f (a) + f (b))
2

(b� a) +
�
1 +Q2

�
8

(f 0 (b)� f 0 (a)) (b� a)2
����� �

M (b� a)3

24

�
1� 3Q2

�
; (8)

where

Q2 =

�
f 0 (a) + f 0 (b)� 2

�
f(b)�f(a)

b�a

��2
M2 (b� a)2 � (f 0 (b)� f 0 (a))2

: (9)

Finally in 2005, Zheng Liu, [8], proved the following:
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Theorem 6 Let f : [a; b]! R be a di¤erentiable function such that f 0 is inte-
grable on [a; b] and for all x 2 [a; b] with M > m we have

m � f 0 (x)� f 0 (a)
x� a �M and m � f 0 (b)� f 0 (x)

b� x �M: (10)

Then�����
Z b

a

f (x) dx� (f (a) + f (b))
2

(b� a) +
�
1 + P 2

8

�
(f 0 (b)� f 0 (a)) (b� a)2

�
�
1 + 3P 2

48

�
(m+M) (b� a)3

���� � (M �m) (b� a)3

48

�
1� 3P 2

�
; (11)

where

P 2 =

�
f 0 (a) + f 0 (b)� 2

�
f(b)�f(a)

b�a

��2
�
M�m
2

�2
(b� a)2 �

�
f 0 (b)� f 0 (a)�

�
m+M
2

�
(b� a)

�2 : (12)

In [2] we extended (1) for Choquet integrals. Motivated by these results we
extend here Theorems 2-6 to the Choquet integrals setting.

2 Background - II

In the next assume that (X;F) is a measurable space and (R+) R is the set of
all (nonnegative) real numbers.
We recall some concepts and some elementary results of capacity and the

Choquet integral [4, 5].

De�nition 7 A set function � : F ! R+ is called a non-additive measure (or
capacity) if it satis�es
(1) � (?) = 0;
(2) � (A) � � (B) for any A � B and A;B 2 F :
The non-additive measure � is called concave if

� (A [B) + � (A \B) � � (A) + � (B) ; (13)

for all A;B 2 F . In the literature the concave non-additive measure is known
as submodular or 2-alternating non-additive measure. If the above inequality
is reverse, � is called convex. Similarly, convexity is called supermodularity or
2-monotonicity, too.

First note that the Lebesgue measure � for an interval [a; b] is de�ned by
� ([a; b]) = b� a, and that given a distortion function m, which is increasing (or
non-decreasing) and such that m (0) = 0, the measure � (A) = m (� (A)) is a
distorted Lebesgue measure. We denote a Lebesgue measure with distortion m

3
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by � = �m. It is known that �m is concave (convex) if m is a concave (convex)
function.
The family of all the nonnegative, measurable function f : (X;F)! (R+;B (R+))

is denoted as L+1, where B (R+) is the Borel �-�eld of R+. The concept of the
integral with respect to a non-additive measure was introduced by Choquet [4].

De�nition 8 Let f 2 L+1. The Choquet integral of f with respect to non-
additive measure � on A 2 F is de�ned by

(C)

Z
A

fd� :=

Z 1

0

� (fx : f (x) � tg \A) dt; (14)

where the integral on the right-hand side is a Riemann integral.
Instead of (C)

R
X
fd�, we shall write (C)

R
fd�. If (C)

R
fd� <1, we say

that f is Choquet integrable and we write

L1C (�) =

�
f : (C)

Z
fd� <1

�
:

The next lemma summarizes the basic properties of Choquet integrals [5].

Lemma 9 Assume that f; g 2 L1C (�).
(1) (C)

R
1Ad� = � (A), A 2 F :

(2) (Positive homogeneity) For all � 2 R+, we have (C)
R
�fd� = � �

(C)
R
fd�:

(3) (Translation invariance) For all c 2 R, we have (C)
R
A
(f + c) d� =

(C)
R
A
fd�+ c� (A) :

(4) (Monotonicity in the integrand) If f � g, then we have

(C)

Z
fd� � (C)

Z
gd�:

(Monotonicity in the set function) If � � �, then we have (C)
R
fd� � (C)

R
fd�:

(5) (Subadditivity) If � is concave, then

(C)

Z
(f + g) d� � (C)

Z
fd�+ (C)

Z
gd�:

(Superadditivity) If � is convex, then

(C)

Z
(f + g) d� � (C)

Z
fd�+ (C)

Z
gd�:

(6) (Comonotonic additivity) If f and g are comonotonic, then

(C)

Z
(f + g) d� = (C)

Z
fd�+ (C)

Z
gd�;

where we say that f and g are comonotonic, if for any x; x0 2 X, then

(f (x)� f (x0)) (g (x)� g (x0)) � 0:

4
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We next mention the amazing result from [10], which permits us to compute
the Choquet integral when the non-additive measure is a distorted Lebesgue
measure.

Theorem 10 Let f be a nonnegative and measurable function on R+ and � =
�m be a distorted Lebesgue measure. Assume that m (x) and f (x) are both con-
tinuous and m (x) is di¤erentiable. When f is an increasing (non-decreasing)
function on R+, the Choquet integral of f with respect to �m on [0; t] is repre-
sented as

(C)

Z
[0;t]

fd�m =

Z t

0

m0 (t� x) f (x) dx; (15)

however, when f is a decreasing (non-increasing) function on R+, the Choquet
integral of f is

(C)

Z
[0;t]

fd�m =

Z t

0

m0 (x) f (x) dx: (16)

Remark 11 We denote by


 (t; x) :=

�
m0 (t� x) , when f is increasing (non-decreasing),
m0 (x) , when f is decreasing (non-increasing).

(17)

So for f continuous and monotone we can combine (15) and (16) into

(C)

Z
[0;t]

fd�m =

Z t

0


 (t; x) f (x) dx: (18)

3 Main Results

We present the following advanced Choquet-Iyengar type inequalities: The next
is based on Theorem 2.

Theorem 12 Here f : R+ ! R+ is a monotone twice continuously di¤eren-
tiable function on R+, �m is a distorted Lebesgue measure, where m is such that
m (0) = 0, m is increasing and thrice continuously di¤erentiable on R+, t 2 R+.
Then
i) if f is increasing and

��(m0 (t� �) f)00 (x)
�� � M2, 8 x 2 [0; t], M2 > 0, we

have that �����(C)
Z
[0;t]

f (x) d�m (x)�
t

2
[m0 (t) f (0) +m0 (0) f (t)]+

t2

8
[(m0 (0) f 0 (t)�m0 (t) f 0 (0)) + (m00 (t) f (0)�m00 (0) f (t))]

���� �
M2

24
t3 � t

16M2
��21 ; (19)

5
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where

��1 = (m
0 (t) f 0 (0) +m0 (0) f 0 (t))� 2 (m

0 (0) f (t)�m0 (t) f (0))

t
�

(m00 (t) f (0) +m00 (0) f (t)) ; (20)

ii) if f is decreasing and
��(m0f)

00
(x)
�� � M3, 8 x 2 [0; t], M3 > 0, we have

that �����(C)
Z
[0;t]

f (x) d�m (x)�
t

2
(m0 (0) f (0) +m0 (t) f (t))+

t2

8
[(m00 (t) f (t)�m00 (0) f (0)) + (m0 (t) f 0 (t)�m0 (0) f 0 (0))]

���� �
M3

24
t3 � t

16M3
���21 ; (21)

where

���1 = [m00 (t) f (t) +m00 (0) f (0)]� 2 [m
0 (t) f (t)�m0 (0) f (0)]

t
+

[m0 (t) f 0 (t) +m0 (0) f 0 (0)] : (22)

Proof. i) If f is increasing and
��(m0 (t� �) f)00 (x)

�� � M2, 8 x 2 [0; t],
M2 > 0, we have that�����(C)

Z
[0;t]

f (x) d�m (x)�
t

2
(m0 (t) f (0) +m0 (0) f (t))+

t2

8

�
(m0 (t� �) f)0 (t)� (m0 (t� �) f)0 (0)

����� =�����(C)
Z
[0;t]

f (x) d�m (x)�
t

2
[m0 (t) f (0) +m0 (0) f (t)]+

t2

8
[(m0 (0) f 0 (t)�m0 (t) f 0 (0)) + (m00 (t) f (0)�m00 (0) f (t))]

���� (by (2) & (15))
�

M2

24
t3 � t

16M2
��21 ; (23)

where

��1 = (m
0 (t� �) f)0 (0)� 2 (m

0 (0) f (t)�m0 (t) f (0))

t
+ (m0 (t� �) f)0 (t) =

(m0 (t) f 0 (0) +m0 (0) f 0 (t))� 2 (m
0 (0) f (t)�m0 (t) f (0))

t
�

(m00 (t) f (0) +m00 (0) f (t)) : (24)

6
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ii) If f is decreasing and
��(m0f)

00
(x)
�� � M3, 8 x 2 [0; t], M3 > 0, we have

that �����(C)
Z
[0;t]

f (x) d�m (x)�
t

2
(m0 (0) f (0) +m0 (t) f (t))+

t2

8

�
(m0f)

0
(t)� (m0f)

0
(0)
����� =�����(C)

Z
[0;t]

f (x) d�m (x)�
t

2
(m0 (0) f (0) +m0 (t) f (t))+

t2

8
[(m00 (t) f (t)�m00 (0) f (0)) + (m0 (t) f 0 (t)�m0 (0) f 0 (0))]

���� (by (2) & (16))
�

M3

24
t3 � t

16M3
���21 ; (25)

where

���1 = [m00 (t) f (t) +m00 (0) f (0)] + [m0 (t) f 0 (t) +m0 (0) f 0 (0)]

�2 [(m
0f) (t)� (m0f) (0)]

t
: (26)

The theorem is proved.
The next result is based on Theorem 3.

Theorem 13 Here f : R+ ! R+ is a monotone twice continuously di¤eren-
tiable function on R+, �m is a distorted Lebesgue measure, where m is such that
m (0) = 0, m is increasing and thrice continuously di¤erentiable on R+, t 2 R+.
Then
i) if f is increasing and

��(m0 (t� �) f)00 (x)
�� � M1, 8 x 2 [0; t], M1 > 0, we

call:

I1 = (C)

Z
[0;t]

f (x) d�m (x)�
t

2
[m0 (t) f (0) +m0 (0) f (t)]+

t2

8
[(m0 (0) f 0 (t)�m0 (t) f 0 (0)) + (m00 (t) f (0)�m00 (0) f (t))] ; (27)

and

�
(1)
0 =

1

2M1

��
�m00

�
t

2

�
f

�
t

2

�
+m0

�
t

2

�
f 0
�
t

2

��
+(m00 (t) f (0)�m0 (t) f 0 (0))] +

t

4
; (28)

and
�
(1)
t =

1

2M1
[(�m00 (0) f (t) +m0 (0) f 0 (t))

+

�
m00
�
t

2

�
f

�
t

2

�
�m0

�
t

2

�
f 0
�
t

2

���
+
t

4
; (29)

7
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and we obtain

�M1
t3

24
+
M1

3

��
�
(1)
0

�3
+
�
�
(1)
t

�3�
� I1 �

M1t
3

24
� M1

3

"�
t

2
� �(1)0

�3
+

�
t

2
� �(1)t

�3#
; (30)

ii) if f is decreasing and
��(m0f)

00
(x)
�� �M2, 8 x 2 [0; t], M2 > 0, we call:

I2 = (C)

Z
[0;t]

f (x) d�m (x)�
t

2
(m0 (0) f (0) +m0 (t) f (t))+

t2

8
[(m00 (t) f (t)�m00 (0) f (0)) + (m0 (t) f 0 (t)�m0 (0) f 0 (0))] (31)

and

�
(2)
0 =

1

2M2

��
m00
�
t

2

�
f

�
t

2

�
+m0

�
t

2

�
f 0
�
t

2

��
� (m00 (0) f (0) +m0 (0) f 0 (0))] +

t

4
; (32)

and
�
(2)
t =

1

2M2
[(m00 (t) f (t) +m0 (t) f 0 (t))

�
�
m00
�
t

2

�
f

�
t

2

�
+m0

�
t

2

�
f 0
�
t

2

���
+
t

4
; (33)

and we obtain:

�M2t
3

24
+
M2

3

��
�
(2)
0

�3
+
�
�
(2)
t

�3�
� I2 �

M2t
3

24
� M2

3

"�
t

2
� �(2)0

�3
+

�
t

2
� �(2)t

�3#
: (34)

Proof. i) Here f is increasing and
��(m0 (t� �) f)00 (x)

�� � M1, 8 x 2 [0; t],
M1 > 0:
We call

I1 = (C)

Z
[0;t]

f (x) d�m (x)�
t

2
(m0 (t) f (0) +m0 (0) f (t))+

t2

8

�
(m0 (t� �) f)0 (t)� (m0 (t� �) f)0 (0)

�
=

(C)

Z
[0;t]

f (x) d�m (x)�
t

2
[m0 (t) f (0) +m0 (0) f (t)]+

t2

8
[(m0 (0) f 0 (t)�m0 (t) f 0 (0)) + (m00 (t) f (0)�m00 (0) f (t))] : (35)

8
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We set

�
(1)
0 =

1

2M1

�
(m0 (t� �) f)0

�
t

2

�
� (m0 (t� �) f)0 (0)

�
+
t

4
= (36)

1

2M1

��
�m00

�
t

2

�
f

�
t

2

�
+m0

�
t

2

�
f 0
�
t

2

��
+(m00 (t) f (0)�m0 (t) f 0 (0))] +

t

4
; (37)

and

�
(1)
t =

1

2M1

�
(m0 (t� �) f)0 (t)� (m0 (t� �) f)0

�
t

2

��
+
t

4
= (38)

1

2M1
[(�m00 (0) f (t) +m0 (0) f 0 (t))

+

�
m00
�
t

2

�
f

�
t

2

�
�m0

�
t

2

�
f 0
�
t

2

���
+
t

4
:

By Theorem 3 and (15) we get

�M1
t3

24
+
M1

3

��
�
(1)
0

�3
+
�
�
(1)
t

�3�
� I1 �

M1t
3

24
� M1

3

"�
t

2
� �(1)0

�3
+

�
t

2
� �(1)t

�3#
: (39)

ii) Next f is decreasing and
��(m0f)

00
(x)
�� �M2, 8 x 2 [0; t], M2 > 0:

We call

I2 = (C)

Z
[0;t]

f (x) d�m (x)�
t

2
(m0 (0) f (0) +m0 (t) f (t))+

t2

8

�
(m0f)

0
(t)� (m0f)

0
(0)
�
=

(C)

Z
[0;t]

f (x) d�m (x)�
t

2
(m0 (0) f (0) +m0 (t) f (t))+ (40)

t2

8
[(m00 (t) f (t)�m00 (0) f (0)) + (m0 (t) f 0 (t)�m0 (0) f 0 (0))] :

We set

�
(2)
0 =

1

2M2

��
m00
�
t

2

�
f

�
t

2

�
+m0

�
t

2

�
f 0
�
t

2

��
(41)

� (m00 (0) f (0) +m0 (0) f 0 (0))] +
t

4
;

and
�
(2)
t =

1

2M2
[(m00 (t) f (t) +m0 (t) f 0 (t)) (42)

9
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�
�
m00
�
t

2

�
f

�
t

2

�
+m0

�
t

2

�
f 0
�
t

2

���
+
t

4
:

By Theorem 3 and (16) we get

�M2t
3

24
+
M2

3

��
�
(2)
0

�3
+
�
�
(2)
t

�3�
� I2 �

M2t
3

24
� M2

3

"�
t

2
� �(2)0

�3
+

�
t

2
� �(2)t

�3#
: (43)

The theorem is proved.
The next result is based on Theorem 4.

Theorem 14 Here f : R+ ! R+ is a monotone di¤erentiable function on R+,
�m is a distorted Lebesgue measure, where m is such that m (0) = 0, m is
increasing and twice di¤erentiable on R+, t 2 R+. Then
i) if f is increasing, and m1 � (m0 (t� �) f)0 (x) � M1, 8 x 2 [0; t], where

M1 > m1, we obtain:�����(C)
Z
[0;t]

f (x) d�m (x)�
t

2
(m0 (t) f (0) +m0 (0) f (t))

����� �
(m0 (0) f (t)�m0 (t) f (0)�m1t) (M1t�m0 (0) f (t) +m0 (t) f (0))

2 (M1 �m1)
: (44)

ii) if f is decreasing, and m2 � (m0f)
0
(x) � M2, 8 x 2 [0; t], where M2 >

m2, we obtain:�����(C)
Z
[0;t]

f (x) d�m (x)�
t

2
(m0 (0) f (0) +m0 (t) f (t))

����� �
(m0 (t) f (t)�m0 (0) f (0)�m2t) (M2t�m0 (t) f (t) +m0 (0) f (0))

2 (M2 �m2)
: (45)

Proof. i) Here f is increasing andm1 � (m0 (t� �) f)0 (x) �M1, 8 x 2 [0; t],
where M1 > m1: We get, by Theorem 4 and (15), that�����(C)

Z
[0;t]

f (x) d�m (x)�
t

2
(m0 (t) f (0) +m0 (0) f (t))

����� �
(m0 (0) f (t)�m0 (t) f (0)�m1t) (M1t�m0 (0) f (t) +m0 (t) f (0))

2 (M1 �m1)
: (46)

ii) Next f is decreasing and m2 � (m0f)
0
(x) � M2, 8 x 2 [0; t], where

M2 > m2. We get, by Theorem 4 and (16), that�����(C)
Z
[0;t]

f (x) d�m (x)�
t

2
(m0 (0) f (0) +m0 (t) f (t))

����� �
10
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(m0 (t) f (t)�m0 (0) f (0)�m2t) (M2t�m0 (t) f (t) +m0 (0) f (0))

2 (M2 �m2)
: (47)

The theorem is proved.
The next result is based on Theorem 5.

Theorem 15 Here f : R+ ! R+ is a monotone twice di¤erentiable function
on R+, �m is a distorted Lebesgue measure, where m is such that m (0) = 0, m
is increasing and thrice di¤erentiable on R+, t 2 R+. Then
i) if f is increasing, and

��(m0 (t� �) f)00 (x)
�� �M1, 8 x 2 [0; t], M1 > 0, we

call:
Q21 =h

(�m00 (t) f (0) +m0 (t) f 0 (0)) + (�m00 (0) f (t) +m0 (0) f 0 (t))� 2
�
m0(0)f(t)�m0(t)f(0)

t

�i2
M2
1 t
2 � (�m00 (0) f (t) +m0 (0) f 0 (t) +m00 (t) f (0)�m0 (t) f 0 (0))

2

and we obtain�����(C)
Z
[0;t]

f (x) d�m (x)�
t

2
[m0 (t) f (0) +m0 (0) f (t)]+

 �
1 +Q21

�
t2

8

!
(�m00 (0) f (t) +m0 (0) f 0 (t) +m00 (t) f (0)�m0 (t) f 0 (0))

����� �
M1t

3

24

�
1� 3Q21

�
; (49)

ii) if f is decreasing, and
��(m0f)

00
(x)
�� �M2, 8 x 2 [0; t], M2 > 0, we call:

Q22 =h
(m00 (0) f (0) +m0 (0) f 0 (0) +m00 (t) f (t) +m0 (t) f 0 (t))� 2

�
m0(t)f(t)�m0(0)f(0)

t

�i2
M2
2 t
2 � [m00 (t) f (t) +m0 (t) f 0 (t)�m00 (0) f (0)�m0 (0) f 0 (0)]

2

(50)
and we obtain�����(C)

Z
[0;t]

f (x) d�m (x)�
t

2
[m0 (0) f (0) +m0 (t) f (t)]+

 �
1 +Q22

�
t2

8

!
(m00 (t) f (t) +m0 (t) f 0 (t)�m00 (0) f (0)�m0 (0) f 0 (0))

����� �
M2t

3

24

�
1� 3Q22

�
: (51)

11

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 28, NO.1, 2020, COPYRIGHT 2020 EUDOXUS PRESS, LLC

176 Anastassiou 166-179



Proof. i) If f is increasing, and
��(m0 (t� �) f)00 (x)

�� � M1, 8 x 2 [0; t],
M1 > 0, we set:

Q21 =

�
(m0 (t� �) f)0 (0) + (m0 (t� �) f)0 (t)� 2

�
(m0(t��)f)(t)�(m0(t��)f)(0)

t

��2
M2
1 t
2 �

�
(m0 (t� �) f)0 (t)� (m0 (t� �) f)0 (0)

�2 =

�
(�m00 (t) f (0) +m0 (t) f 0 (0)) + (�m00 (0) f (t) +m0 (0) f 0 (t))� 2

�
m0(0)f(t)�m0(t)f(0)

t

��2
M2
1 t
2 � (�m00 (0) f (t) +m0 (0) f 0 (t) +m00 (t) f (0)�m0 (t) f 0 (0))

2 :

(52)
By Theorem 5 and (15) we derive�����(C)

Z
[0;t]

f (x) d�m (x)�
t

2
[m0 (t) f (0) +m0 (0) f (t)]+

 �
1 +Q21

�
t2

8

!
(�m00 (0) f (t) +m0 (0) f 0 (t) +m00 (t) f (0)�m0 (t) f 0 (0))

����� �
M1t

3

24

�
1� 3Q21

�
: (53)

ii) If f is decreasing, and
��(m0f)

00
(x)
�� �M2, 8 x 2 [0; t], M2 > 0, we set:

Q22 =

�
(m0f)

0
(0) + (m0f)

0
(t)� 2

�
(m0f)(t)�(m0f)(0)

t

��2
M2
2 t
2 �

�
(m0f)

0
(t)� (m0f)

0
(0)
�2 = (54)

h
(m00 (0) f (0) +m0 (0) f 0 (0) +m00 (t) f (t) +m0 (t) f 0 (t))� 2

�
m0(t)f(t)�m0(0)f(0)

t

�i2
M2
2 t
2 � [m00 (t) f (t) +m0 (t) f 0 (t)�m00 (0) f (0)�m0 (0) f 0 (0)]

2 :

By Theorem 5 and (16) we derive�����(C)
Z
[0;t]

f (x) d�m (x)�
t

2
[m0 (0) f (0) +m0 (t) f (t)]+

 �
1 +Q22

�
t2

8

!
(m00 (t) f (t) +m0 (t) f 0 (t)�m00 (0) f (0)�m0 (0) f 0 (0))

����� �
M2t

3

24

�
1� 3Q22

�
: (55)

The theorem is proved.
Finally we apply Theorem 6 to obtain:

12
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Theorem 16 Here f : R+ ! R+ is a monotone and continuously di¤erentiable
function on R+, �m is a distorted Lebesgue measure, where m is such that
m (0) = 0, m is increasing and twice continuously di¤erentiable on R+, t 2 R+.
We have
i) If f is increasing, and

m1 �
(m0 (t� �) f)0 (x)� (m0 (t� �) f)0 (0)

x
�M1; (56)

and

m1 �
(m0 (t� �) f)0 (t)� (m0 (t� �) f)0 (x)

t� x �M1; (57)

8 x 2 [0; t], with m1 < M1, we set:

P 21 =

�
(m0 (t� �) f)0 (0) + (m0 (t� �) f)0 (t)� 2

�
(m0(t��)f)(t)�(m0(t��)f)(0)

t

��2
�
M1�m1

2

�2
t2 �

�
(m0 (t� �) f)0 (t)� (m0 (t� �) f)0 (0)� (m1+M1)

2 t
�2 :

(58)
Then �����(C)

Z
[0;t]

f (x) d�m (x)�
((m0 (t� �) f) (0) + (m0 (t� �) f) (t))

2
t+

�
1 + P 21
8

��
(m0 (t� �) f)0 (t)� (m0 (t� �) f)0 (0)

�
t2 �

�
1 + 3P 21
48

�
(m1 +M1) t

3

����
� (M1 �m1) t

3

48

�
1� 3P 21

�
: (59)

ii) If f is decreasing, and

m2 �
(m0f)

0
(x)� (m0f)

0
(0)

x
�M2; (60)

and

m2 �
(m0f)

0
(t)� (m0f)

0
(x)

t� x �M2; (61)

8 x 2 [0; t], with m2 < M2, we set:

P 22 =

�
(m0f)

0
(0) + (m0f)

0
(t)� 2

�
(m0f)(t)�(m0f)(0)

t

��2
�
M2�m2

2

�2
t2 �

�
(m0f)

0
(t)� (m0f)

0
(0)� (m2+M2)

2 t
�2 : (62)

Then �����(C)
Z
[0;t]

f (x) d�m (x)�
((m0f) (0) + (m0f) (t))

2
t+

13
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�
1 + P 22
8

��
(m0f)

0
(t)� (m0f)

0
(0)
�
t2 �

�
1 + 3P 22
48

�
(m2 +M2) t

3

���� �
(M2 �m2) t

3

48

�
1� 3P 22

�
: (63)

Example 17 A well-known distortion function is m (t) = t
1+t , t 2 R

+. We
have m (0) = 0, m (t) � 0, m0 (t) = 1

(1+t)2
> 0, that is m is strictly increasing.

We have that m00 (t) = �2 (1 + t)�3, m(3) (t) = 6 (1 + t)
�4, and in general we

get that m(n) (t) = (�1)n+1 n! (1 + t)�(n+1), 8 n 2 N:
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SOME RESULTS ABOUT �I�STATISTICALLY PRE-CAUCHY
SEQUENCES WITH AN ORLICZ FUNCTION

HAF·IZE GÜMÜŞ, ÖMER K·IŞ·I, AND EKREM SAVAŞ

Abstract. In this study, we de�ne the concept of I�statistically convergence
for di¤erence sequences and we use an Orlicz function to obtain more general
results. We also show that an �I�statistically convergent sequence with an
Orlicz function is �I�statistically pre-Cauchy .

1. Introduction

In this part, we give a short literature data about I�statistical convergence,
statistical pre-Cauchy sequences and di¤erence sequence spaces. As is known, con-
vergence is one of the basic notions of Mathematics and statistical convergence
extends the notion. It is easy to see that any convergent sequence is statistically
convergent but not conversely. Statistical convergence was given by Zygmund [35]
in Warsaw in 1935 and then it was formally introduced by Fast [16] and Stein-
haus [33], independently. Later it was reintroduced by Schoenberg [32] : Even now,
this concept has very much applications in di¤erent areas such as number theory
by Erdös and Tenenbaum [10] ; measure theory by Miller [26] and summability
theory by Freedman and Sember [17] : Statistical convergence is also applied to
approximation theory by Gadjiev and Orhan [18], Anastassiou and Duman [1] and
Sakao¼glu and Ünver [19]. If we want to brie�y remember this concept by using the
characteristic function, we should give the following de�nitions:

De�nition 1.1. Let E be a subset of N; the set of all natural numbers. The natural
density of E is de�ned by

d(E) := lim
n

1

n

nP
j=1

�E(j)

whenever the limit exists where �(E) is characteristic function of E.

De�nition 1.2. ([16]) A number sequence (xn) is statistically convergent to x
provided that for every " > 0;

d fn 2 N : jxn � xj � "g = lim
n

1

n
jfk � n : jxk � xj � "gj = 0

2000 Mathematics Subject Classi�cation. 40G15, 40A35.
Key words and phrases. I�convergence, di¤erence sequences, statistical pre-cauchy sequences,

Orlicz function.
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vances in Pure and Applied Mathematics held in Kuşadas¬in 2017 and the �rst author supported
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2 HAF·IZE GÜMÜŞ, ÖMER K·IŞ·I, AND EKREM SAVAŞ

or equivalently there exists a subset K � N with d(E) = 1 and n0(") such that
n > n0(") and n 2 K imply that jxn � xj < ": In this case we write st� limxn = x:
Statistical convergent sequences are generally denoted by S:

I�convergence has emerged as a kind of generalization form of many types of
convergence. This means that, if we choose di¤erent ideals we will have di¤erent
convergences such as usual convergence and statistical convergence as we will see
from the examples below. In 2000, Koystro et. al. [24] introduced this concept
in a metric space and then many concepts studied for statistical convergence have
moved to ideal convergence. Before de�ning I�convergence, the de�nitions of ideal
and �lter will be needed.

De�nition 1.3. A non-empty family of sets I � 2N is called an ideal if and only
if i) ; 2 I, ii) for each A;B 2 I we have A [ B 2 I and iii) for each A 2 I and
each B � A we have B 2 I:
An ideal is called non-trivial if N =2 I and non-trivial ideal is called admissible if
fng 2 I for each n 2 N .
De�nition 1.4. A non-empty family of sets F � 2N is a �lter in N if and only
if i) ; =2 F ; ii) for each A;B 2 F we have A \B 2 F and iii) for each A 2 F and
each B � A we have B 2 F :
If I is a non-trivial ideal in N (i.e., N =2 I), then the family of sets

F (I) = fM � N : 9A 2 I :M = N n Ag
is a �lter in N.

Remark 1.1. Generally we will use ideals in our proofs but if the notion is more
familiar for �lters, we will use the notion of �lter.

De�nition 1.5. ([24]) Let I � 2N be a proper ideal on N: The real sequence x =
(xn) is said to be I�convergent to x 2 R provided that for each " > 0;

A(") = fk 2 N : jxn � xj � "g 2 I:
The set of all I�convergent sequences usually denoted by cI .
More investigations in this direction and more applications can be found in

Kostyrko, Salát and Wilezyński�s paper. We just want to give some well known
examples which we mentioned before.

Example 1.1. If I = If =fA � N : A is �niteg then we have the usual conver-
gence.

Example 1.2. If I = Id =fA � N : d(A ) = 0g then we have the statistical con-
vergence where d is the asymptotic density of A:

Following the statistical convergence and I�convergence located an important
role in this area, Das, Savaş and Ghosal [6] have introduced the concept of I�statistical
convergence as follows and they extend the important summability methods statis-
tical convergence and I�convergence using ideals.
De�nition 1.6. ([6])A sequence x = (xn) is said to be I�statistically convergent
to L for each " > 0 and � > 0;�

n 2 N : 1
n
jfk � n : jxk � Lj � "gj � �

�
2 I:
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We will denote the set of all I�statistically convergent sequences by SI :

Before giving information about the de�nitions and works of pre-Cauchy se-
quences, lets remember the de�nition of an Orlicz function. Orlicz function is a
function M : [0;1) ! [0;1) which is continuous, non decreasing and convex
with M (0) = 0, M (x) > 0 for x > 0 and M (x) ! 1 as x ! 1. An Orlicz
function M satis�es the �2-condition if there exits a constant K > 0 such that
M (2u) � KM (u) for all u � 0. We want to give a little note here that if convexity
of Orlicz function M is replaced by M(x + y) = M(x) +M(y) then we get the
modulus function which is familiar to us.
Lindendstrauss and Tzafriri [25] used the idea of Orlicz function to de�ne the

following sequence space.

lM :=

�
x 2 w :

1P
n=1

M

�
jxnj
�

�
<1 for some � > 0

�
which called an Orlicz sequence space. lM is a Banach space with the norm

kxk := inf
�
� > 0 :

1P
n=1

M

�
jxnj
�

�
� 1

�
:

The notion of statistically pre-Cauchy for real sequences was introduced by Con-
nor, Fridy and Kline [4] in 1994. They proved that statistically convergent sequences
are statistically pre-Cauchy and any bounded statistical pre-Cauchy sequence with
nowhere dense set of limit points is statistically convergent. Khan and Lohani [20]
handled this concept in a di¤erent way with the Orlicz function. More works on
statistically pre-Cauchy sequences are found in Dutta, Eşi and Tripathy [8] , Dutta
and Tripathy [9] and Khan and Tabassum [21] .
As an expected result, in 2012, Khan, Ebedullah and Ahmad [22] de�ned pre-

Cauchy sequences for I�convergence and they introduced the concept of I�pre-
Cauchy sequence. They established the criterion for arbitrary sequence to be
I�pre-Cauchy and they also gave another criterion for I�convergence.

De�nition 1.7. ([22]) Let x = (xn) be a sequence and let M be an Orlicz function
then x is I�pre-Cauchy if and only if

I � lim
n

1

n2
P

k;j�n
M

�
jxk � xj j

�

�
= 0

for some � > 0:

Yamanc¬and Gürdal [34] , Ojha and Srivastava [27] and Saha et. al. [28] have
some studies about this new de�niton.

De�nition 1.8. ([7]) A sequence x = (xn) is said to be I�statistically pre-Cauchy
if for any " > 0 and � > 0;�

n 2 N : 1
n2
jf(j; k) : jxk � xj j � "g ; j; k � nj � �

�
2 I:

In another direction, in 1981, l1(�); c(�) and c0(�) di¤erence sequence spaces
de�ned by K¬zmaz [23] where l1; c and c0 are bounded, convergent and null se-
quence spaces, respectively. In this study the sequence �x = (�xn) de�ned by
(�xn) = (xn � xn+1) for all n 2 N and some relations between these spaces for ex-
ample c0(�) � c(�) � l1(�) were obtained. In Et and Çolak�s paper [11] K¬zmaz�s
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results generalized for �m sequences such that,

c0(�
m) = fx = (xn) : �mx 2 c0g

c(�m) = fx = (xn) : �mx 2 cg
l1(�

m) = fx = (xn) : �mx 2 l1g

where m 2 N and �mx = (�mxn) = (�m�1xn ��m�1xn+1) i.e.
�mxn =

mP
v=0
(�1)v

�
m
v

�
xn+v. They proved that these spaces are Banach spaces with

the norm

k:k� =
mP
i=1

jxij+ k�mxk1 :

Following these de�nitions, Et [12] ; Et and Çolak [11] ; Et and Başar¬r [13] ;
Ayd¬n and Başar [2] ; Bektaş et. al. [3] ; Et and Eşi [14] ; Savaş [31] and many others
searched various properties of this concept. Et and Nuray [15] have introduced the
�m�statistical convergence and the set of all �m�statistical convergent sequences
was denoted by S(�m): Following this study, Gümüş and Nuray [19] have extended
�m�statistical convergence to �m�ideal convergence.

De�nition 1.9. ([19]) Let I � 2N be a non-trivial ideal in N. The sequence x =
(xn) of real numbers is said to be �I�convergent to x 2 R if for each " > 0 the set

fn 2 N : j�xn � xj � "g 2 I.

The space of all �I�convergent sequences is denoted by cI(�).

Before we get to the part where our main results are, we would like to give
some expressions that have already been proved before about I�convergence and
�I�convergence, without moving away from our aim. At the same time it will be
interesting to move these expressions to I�statistical convergence.

Proposition 1.1. Let I � 2N be an ideal in N and (�xn) be a real sequence. Then

c (�) � cI(�):

Note that the inverse of this proposition is not generally true as can be seen from
the following example.

Example 1.3. For the di¤erence sequence �x = (�xn) =
�
1; n is square
0; n is not square

;

x 2 cId(�) but x =2 c(�):

De�nition 1.10. Let I be an ideal in N. If fn+ 1 : n 2 Ng 2 I for any A 2 I,
then I is said to be a translation invariant ideal.

Corollary 1.1. If I is translation invariant and (xn) 2 cI then (xn+1) 2 cI .

Example 1.4. Id is a translation invariant ideal.

Proposition 1.2. If I � 2N is an admissible translation invariant ideal then cI �
cI(�).
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2. Main Results

In this section, we de�ne �I�statistical convergent and �I�statistically pre-
Cauchy sequences and we give some inclusion theorems.

De�nition 2.1. A sequence x = (xn) is said to be �I�statistically convergent to
L provided that �

n 2 N : 1
n
jfk � n : j�xk � Lj � "gj � �

�
2 I.

In our paper, the set of all �I�statistically convergent sequences will be denoted
by SI(�).

Now, lets evaluate this new de�nition for the If ideal in the example mentioned
above.

Example 2.1. For the ideal I = If ; SIf (�) = S(�).

De�nition 2.2. A sequence x = (xn) is said to be �I�statistically pre-Cauchy if,
for any " > 0 and � > 0;�

n 2 N : 1
n2
jf(j; k) : j�xk ��xj j � "; j; k � ngj � �

�
2 I.

Theorem 2.1. An �I�statistically convergent sequence is �I�statistically pre-
Cauchy.

Proof. Let x = (xn) be �I�statistically convergent to L: Let " > 0 and � > 0 be
given. We know that

A =

�
n 2 N : 1

n

���nk � n : j�xk � Lj � "

2

o��� � �� 2 I.
Then for all n 2 Ac where c stands for the complement,

1

n

���nk � n : j�xk � Lj � "

2

o��� < � i.e. 1
n

���nk � n : j�xk � Lj < "

2

o��� > 1� �:
Writing Bn =

�
k � n : j�xk � Lj < "

2

	
we observe that for j; k 2 Bn;

j�xk ��xj j � j�xk � Lj+ j�xj � Lj <
"

2
+
"

2
= ":

Hence Bn �Bn � f(j; k) : j�xk ��xj j < "; j; k � ng which implies�
jBnj
n

�2
� 1

n2
jf(j; k) : j�xk ��xj j < "; j; k � ngj :

Thus for all n 2 Ac;
1

n2
jf(j; k) : j�xk ��xj j < "; j; k � ngj �

�
jBnj
n

�2
> (1� �)2

i.e.
1

n2
jf(j; k) : j�xk ��xj j � "; j; k � ngj < 1� (1� �)2:

Let �1 > 0 be given. Choosing � > 0 so that 1� (1� �)2 < �1 we see that 8n 2 Ac;
1

n2
jf(j; k) : j�xk ��xj j � "; j; k � ngj < �1
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and so �
n 2 N : 1

n2
jf(j; k) : j�xk ��xj j � "; j; k � ngj � �1

�
� A:

Since A 2 I, we have the proof. �
Theorem 2.2. Let x = (xn) be a sequence and M be Orlicz function. Then x is
�I�statistically pre-Cauchy if and only if

I � lim
n

1

n2
P

k;j�n
M

�
j�xk ��xj j

�

�
= 0 for some � > 0:

Proof. First suppose that I � limn 1
n2

P
k;j�n

M
�
j�xk��xj j

�

�
= 0 for some � > 0:

For each " > 0 and n 2 N we have
1
n2

P
k;j�n

M
�
j�xk��xj j

�

�
= 1

n2

P
k;j�n

j�xk��xj j<"

M
�
j�xk��xj j

�

�

+ 1
n2

P
k;j�n

j�xk��xj j�"

M
�
j�xk��xj j

�

�

� 1
n2

P
k;j�n

j�xk��xj j�"

M
�
j�xk��xj j

�

�

� M(")
�
1
n2 jf(j; k) : j�xk ��xj j � "; j; k � ngj

�
Then for any � > 0;�

n 2 N : 1
n2 jf(j; k) : j�xk ��xj j � "; j; k � ngj � �

	
� n 2 N : 1

n2

P
k;j�n

M
�
j�xk��xj j

�

�
� �M(")

Thus x is �I�statistically pre-Cauchy.
Now conversely assume that x is �I�statistically pre-Cauchy and " > 0 be

given. Let � > 0 be such that M(�) < "
2 : Since Orlicz function is bounded, there

exists an integer B such that M(x) < B
2 for all x � 0: Then for each n 2 N;

1
n2

P
k;j�n

M
�
j�xk��xj j

�

�
= 1

n2

P
k;j�n

j�xk��xj j<�

M
�
j�xk��xj j

�

�

+ 1
n2

P
k;j�n

j�xk��xj j��

M
�
j�xk��xj j

�

�

� M(�) + 1
n2

P
k;j�n

j�xk��xj j��

M
�
j�xk��xj j

�

�

� "
2 +

B
2

�
1
n2 jf(j; k) : j�xk ��xj j � �; j; k � ngj

�
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Since x is �I�statistically pre-Cauchy, for � > 0;

A =

�
n 2 N : 1

n2
jf(j; k) : j�xk ��xj j � �; j; k � ngj � �

�
2 I.

Then for n 2 Ac;
1

n2
jf(j; k) : j�xk ��xj j � �; j; k � ngj < �

and so
1

n2
P

k;j�n
M

�
j�xk ��xj j

�

�
� "

2
+
B

2
�:

Let �1 > 0 be given. Then choosing "; � > 0 such that "
2 +

B
2 � < �1 we see that

for each n 2 Ac;
1

n2
P

k;j�n
M

�
j�xk ��xj j

�

�
< �1

i.e. (
n 2 N : 1

n2
P

k;j�n
M

�
j�xk ��xj j

�

�
� �1

)
� A 2 I.

�

Theorem 2.3. Let x = (xn) be a sequence and M be Orlicz function. Then x is
�I�statistically convergent to L if and only if

I � lim
n

1

n

nP
k=1

M

�
j�xk � Lj

�

�
= 0 for some � > 0:

Proof. Suppose that I � limn 1
n

nP
k=1

M
�
j�xk�Lj

�

�
= 0 for some � > 0: We have,

1
n

nP
k=1

M
�
j�xk�Lj

�

�
= 1

n

nP
k=1

j�xk�Lj<"

M
�
j�xk�Lj

�

�
+ 1

n

nP
k=1

j�xk�Lj�"

M
�
j�xk�Lj

�

�

� M(") 1n jfk � n : j�xk � Lj � "gj :
Then for any � > 0;�
n 2 N : 1n jfk � n : j�xk � Lj � "gj � �

	
�

�
n 2 N : 1n

nP
k=1

M
�
j�xk�Lj

�

�
�M("):�

�
Due to the statement we accepted at the beginning of the theorem, right hand

side belongs to the ideal. As we know from the second expression of ideal, left hand
side is also in ideal and this proves the theorem.
Since the second part of the theory is very similar to the second part of the

previous theorem, we can easily prove. �
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