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Daubechies Wavelet Method for Second Kind
Fredholm Integral Equations with Weakly Singular

Kernel ∗

Xin Luo † Jin Huang‡

Abstract

In this paper, the weakly singular Fredholm integral equations of the second
kind are solved by the periodized Daubechies wavelets method. In order to
obtain a good degree of accuracy of the numerical solutions, the Sidi-Israeli
quadrature formulae are used to construct the approximation of the singular
kernel functions. By applying the asymptotically compact theory, we prove the
convergence of approximate solutions. In addition, the sidi transformation can
be used to degrade the singularities when the kernel function is non-periodic.
At last, numerical examples show the method is efficient and errors of the
numerical solutions possess high accuracy order O (h3+α), where h is the mesh
size.

Keyword : Daubechies wavelets; weakly singular kernel; Fredholm integral
equation of the second; linear and nonlinear integral equations; convergence
rate.

1 Introduction

Many problems in science and engineering such as Lapalace’s equation, problems in
elasticity, conformal mapping, free surface flows and so on, result in Fredholm inte-
gral equations with singular or weakly singular (in general logarithmic) and periodic
kernels [11]. Therefore, singular or weakly Singular Fredholm linear equations and its
nonlinear counterparts are most frequently studied for decades.

∗This work is supported by Project (NO. KYTZ201505) Supported by the Scientific Research
Foundation of CUIT

†College of Applied Mathematics, Chengdu University of Information Technology, Chengdu
610225, P.R. China, corresponding author: luoxin919@163.com

‡School of Mathematical Sciences, University of Electronic Science and Technology of China,
Chengdu 611731, P.R.China
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Generally, the weakly singular Fredholm integral equation of the second can be
converted into the following form

u(x)−
∫ 1

0

k(x, y)g(u(y))dy = f(x), x ∈ [0, 1], (1.1)

where

k(x, y) = H1(x, y)|x− y|α(ln |x− y|)β + H2(x, y), α > −1, β ≥ 0, (1.2)

u(x) is an unknown function and f ∈ L2[0, 1], and Hj(x, y) (j = 1, 2) are continu-
ous on [0, 1]. The integral equation (1.1) is linear when g(u(y)) = u(y), and when
g(u(y)) 6= u(y) the equation is nonlinear.

As is known, several different orthonormal basis functions, for example, Chebyshev
polynomial [8], Fourier functions [2], and wavelets [3, 4, 5, 6, 7, 9, 10, 13, 14, 16, 17],
can be used to approximate the solutions of integral equations. However, for large
scale problems, the most attractive one among them may be the wavelet bases, in
which the kernel can be transformed to a sparse matrix after discretization. This
is mainly due to functions with fast oscillations, or even discontinuities, in localized
regions may be approximated well by a linear combination of relatively few wavelets
[3].

This paper is organized as follows: in Section 2, the periodized Daubechies wavelets
is introduced for solving weakly singular Fredholm integral equations of the second
in detail. In Section 3, the convergence and error analysis are investigated. In Sec-
tion 4, numerical examples are provided to verify the theoretical results. Some useful
conclusions are made in Section 5.

2 Periodized Daubechies wavelets method

2.1 Multiresolution analysis and function expansions

Wavelets are attractive for the numerical solution of integrations, because their van-
ishing moments property leads to operator compression. Especially, Daubechies
wavelets [12, 15] have many good properties and can deal with some types of kernels
arising from boundary integral formulation of elliptic PDEs, and the coefficient are
often numerically sparse. In fact, there are only O (n log n) significant elements. Sup-
posed that ψ and φ be the the wavelet of genus N and Daubechies scaling function
respectively. Thus their support are supp(φ) = supp(ψ) = [0, N−1]. For any j, k ∈ Z,
we introduce the notations φj,k(x) = 2j/2φ(2jx−k) and ψj,k(x) = 2j/2ψ(2jx−k), then
their periodic kin with period-1 can be described by

φ̃j,k(x) =
∑
n∈Z

φj,k(x + n), ψ̃j,k(x) =
∑
n∈Z

ψj,k(x + n), x ∈ R, 0 ≤ k < 2j. (2.1)

Here {φ̃j,k(x)}k∈Z and {ψ̃j,k(x)}k∈Z are orthogonal [17]. Defining the periodic spaces

Ṽj = span{φ̃j,k}2j−1
k=0 and W̃j = span{ψ̃j,k}2j−1

k=0 . A chain of spaces Ṽ0 ⊂ Ṽ1 · · · ⊂

2
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L2[0, 1] can be constructed, which subject to the following conditions: (a) ∪j≥0 Ṽj =
L2[0, 1], ∩j∈Z Ṽj = {0}; (b) h(x) ∈ Ṽj ⇔ h(2x) ∈ Ṽj+1; (c) Ṽj ⊕ W̃j = Ṽj+1, W̃j ⊥ Ṽj.
The Daubechies wavelets and scaling functions described above result in the wavelet
theory (i.e., multiresolution analysis (MRA)) of L2[0, 1].

Supposed that function p(x) ∈ L2[0, 1] be approximated by scaling series at reso-
lution J as

p(x) =
2J−1∑

k=0

cJ,kφ̃J,k(x) = Φt(x)c, x ∈ [0, 1], (2.2)

where
Φ(x) = [φ̃J,0(x), φ̃J,1(x), · · · , φ̃J,2J−1(x)], (2.3)

and

c = (cJ,0, cJ,1, · · · , cJ,2J−1)t, cJ,k =

∫ 1

0

p(x)φ̃J,k(x)dx. (2.4)

First, we calculate the wavelet coefficient cJ,k for nonsingular function p(x) ∈
L2[0, 1]. Let xi = i/2J , i = 0, 1, · · · , 2J−1. Substituting x = xi into Eq. (2.2), we
have

p(x) =
2J−1∑

k=0

cJ,kφ̃J,k(i/2
J) = 2J/2

2J−1∑

k=0

cJ,k

∑
n∈Z

φj,k(2
Jn + i− k). (2.5)

By using the relationship between supp(φ) and [0, 1], we know when J ≥ J0 only
finite terms of the inner summation in (2.5) contribute the following result

n =

{
0 or 1, if 2J −N + 2 ≤ N − 1,
0, if 0 ≤ k ≤ 2Js−N + 1.

Now we write (2.5) as the matrix form

p = Tc, (2.6)

where p = [p(0), p(1/2J), · · · , p((2J − 1)/2J)]t, T is the nonsingular matrix which
entries are the function values of φ(x) at integers (i.e., φ(0),φ(1),· · · ,φ(N−2)) appear
in it, and hence it satisfies

2J∑
i=1

Tij =
2J∑

j=1

Tij = 2J/2, i, j = 1, 2, · · · , 2J . (2.7)

Consequently, the function k(x, y) ∈ L2([0, 1]×[0, 1]) in Eq.(1.1) can be approximated
at resolution J as

k(x, y) = Φt(x)QΦ(y), (2.8)

where Q is the 2J × 2J coefficient matrix. Eq. (2.8) can be written as the following
form

Q = T−1KT−t, (2.9)

where K is the 2J × 2J kernel matrix with Ki,j = k(i/2J , j/2J).

3
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Secondly, if the function p(x) is singular on [0, 1], some values of p(x) at the
dyadic points xi = i/2J , i = 0, 1, · · · , 2J − 1 may be unbounded and then c can not
be immediately solved from the Eq.(2.6). In order to avoid the Eq.(2.6) being invalid,
we can use the method in the literature [17] to compute the values of p(x). Without
loss of generality, we assumed that function p(x) ∈ L2[0, 1] has only one singular point
xi = i/2J , i ∈ {0, 1, · · · , 2J − 1}. Then the function value p(xi) in Eq.(2.6) can be
computed via on the following ( see [17])

p(i/2J) = 2J

∫ 1

0

p(x)dx−
2J−1∑

j=0,j 6=i

p(j/2J), i ∈ {0, 1, · · · , 2J − 1}, (2.10)

where integration
∫ 1

0
p(x)dx can be calculated by Sidi-Israeli quadrature formulae

[11].

2.2 Kernel function approximation and discretization of sin-
gular integral equation

Motivated by the Eq.(2.10) and by thinking k(x, y) as a one-dimensional function of
variable x and y respectively, we also have

k(x,m/2J) = 2J

∫ 1

0

k(x, y)dy −
2J−1∑

j=0,j 6=m

k(x, j/2J), m ∈ {0, 1, · · · , 2J − 1}. (2.11)

The following Theorem 2.1 can be used to construct the kernel approximation of
Eq.(1.1).

Theorem 2.1 [11] Assume that the functions H1(x, y) and H2(x, y) are 2` times
differentiable on [a, b]. Assume also that the functions k(x, y) are periodic with period

T = b− a, and that they are 2` times differentiable on R̃ = (−∞,∞)\{x+ jT}∞j=−∞.
If k(x, y) = H1(x, y)|x − y|α(ln |x − y|)β + H2(x, y), s > −1, β = 0, 1, then the
quadrature rules of the following integral

I[k(x, y)] =

∫ b

a

k(x, y)dy, (2.12)

are

In[k(x, y)] = h

n∑

j=1,yj 6=x

k(x, yj) + 2[βζ
′
(−α)− ζ(−α)(ln h)β]H1(x, x)hα+1 + H2(x, x)h,

(2.13)
and the quadrature errors are

En[k(x, y)] = 2
`−1∑
µ=1

[βζ
′
(−α− 2µ)− ζ(−α− 2µ)(ln h)β]

H
(2µ)
1 (x, yj)

(2µ)!
h2µ+α+1 + o (h2`),

(2.14)

4
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where En[k(x, y] = I[k(x, y)]− In[k(x, y)], and the mesh size is h = (b− a)/n.
Let n = 2J and by (2.13), we can get the Nyström approximation for the kernel

function k(x, y)

kD(xi, yj) =

{
2[βζ

′
(−α)− ζ(−α)(ln h)β]H1(xi, xi)h

α + H2(xi, xi), if i = j,
k(xi, yj), if i 6= j.

(2.15)
Supposed that the kernel function k(x, y), u(x) and f(x) be approximated at

resolution J as

k(x, y) = Φt(x)QΦ(y), f(x) = Φt(x)b and u(x) = Φt(x)c, (2.16)

where c = [c(0), c(1/2J), · · · , c((2J − 1)/2J)]t is the expansion coefficient vector of
u(x). By the orthonormality of periodized wavelets, the integration of the product of
the same two scaling function vectors is achieved as

∫ 1

0

Φ(x)Φt(x)dx = I, (2.17)

where I is the 2J by 2J identity matrix. For the linear integral equation, we have

Φt(x)c−
∫ 1

0

Φt(x)QΦ(y)Φt(y)cdy = Φt(x)b. (2.18)

Substituting (2.15), (2.16) and (2.17) into (2.18), and by invoking (2.9), we get a
linear system

(I −KD(T tT )−1)uD = f, (2.19)

where f = [f(0), f(1/2J), · · · , f((2J − 1)/2J)]t and KD = T tQT . Similarly, the
nonlinear case for Eq. (1.1) can be transformed into the following by the wavelet
method

uD −KD(TT t)−1g(uD) = f, (2.20)

Eq. (2.20) is a system of nonlinear equations about u and can be computed by Newton
iteration method.

3 Convergence and error analysis

In this section, we mainly study the convergence and error for the linear case of (1.1)
by wavelet method.

We write Eq. (1.1) as the operate form

(I − K̃)u = f, (3.1)

where

(K̃u)(x) =

∫ 1

0

k(x, y)u(y)dy, (3.2)

5
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with the kernel

k(x, y) = H1(x, y)|x− y|α(ln |x− y|)β + H2(x, y), α > −1, β ≥ 0, (3.3)

and the approximation of K̃ is defined by

(K̃nu)(x) = h

n∑

j=1,yj 6=x

k(x, yj)u(yj) + ωn(x)u(x), (3.4)

where the weight function

ω(x) = 2[βζ
′
(−α)− ζ(−α)(ln h)β]H1(x, x)hα+1 + H2(x, x)h. (3.5)

Supposed that the approximation of (3.1) is

(I − K̃n)un(x) = g. (3.6)

Lemma 3.1 Supposed the the operator K̃n is defined by (3.4), then the operator
sequence {K̃n} is asymptotically compactly convergent to K̃, i.e.,

K̃n
a.c→ K̃, (3.7)

where
a.c→ denotes the asymptotically compact convergence.

Proof. Let the continuous kernel approximation of K̃ be defined by

kc
n(x, y) =

{
k(x, y), if |x− y| ≥ h,
H1(x, x)hα(ln h)β + H2(x, x), if |x− y| < h,

(3.8)

and the corresponding operator approximation be

(Kc
nu)(x) = h

n∑
j=1

kc
n(x, yj)u(yj). (3.9)

For any v ∈ C[0, 1], we have

‖(K̃ −Kc
n)v‖ = sup

‖v‖∞≤1

∫ 1

0

|(k(x, y)− kc
n(x, y))v(y)|dy

≤
∫ 1

0

|k(x, y)− kc
n(x, y)|dy‖v‖∞

≤
∫

|x−y|≤h

|H1(x, y)|||x− y|α(ln |x− y|)β − hα(ln h)β|dy‖v‖∞

≤ max
x,y∈C[0,1]

|H1(x, y)|
∫

|x−y|≤h

||x− y|α(ln |x− y|)β − hα(ln h)β|dy‖v‖∞

= O((lnh)βhα)‖v‖∞,
(3.10)

6
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hence, we can obtain

‖K̃ −Kc
n‖ = O((lnh)βhα) → 0, as h → 0. (3.11)

On the other hand, we know ω(x) → 0 as h → 0 by (3.5), then

‖Kc
n − K̃n‖ → 0, as h → 0. (3.12)

First, there exists a subsequence in {Kc
nyn} for any yn ⊂ C[0, 1] by (3.11),. Without

loss of generality, assumed that Kc
nyn → z and by (3.12), then

‖K̃nyn − z‖ ≤ ‖K̃nyn −Kc
nyn‖+ ‖Kc

nyn − z‖
≤ ‖K̃n −Kc

n‖‖yn‖+ ‖Kc
nyn − z‖ → 0,

(3.13)

that is to say, the sequence {K̃n} is asymptotically compactly convergent. Secondly,
for any y ∈ C[0, 1], we have

‖K̃ny − K̃y‖ ≤ ‖K̃n −Kc
n‖‖y‖+ ‖Kc

ny − K̃y‖ → 0. (3.14)

The proof of Lemma 3.1 is completed. ¤
Corollary 3.2 The operator sequence {K̃n(I − o(h)E)} is asymptotically com-

pactly convergent to K̃, i.e.,

K̃n(I − o(h)E)
a.c→ K̃. (3.15)

where E is a matrix and every element in it is one.
Proof. By Lemma 3.1, we know

K̃n
a.c→ K̃, (3.16)

that is,
‖K̃n − K̃‖→0. (3.17)

Hence, we immediately have

‖K̃n(I − o(h)E)− K̃‖ ≤ ‖K̃n − K̃‖+ ‖K̃n‖‖o(h)E‖→0. (3.18)

The proof of Corollary 3.2 is completed. ¤
Let x = (i− 1)h, i = 1, 2, · · · , 2J , where h = 1/2J . Using the trapezoidal rule to

approximate Eq.(2.17), then we have hTT t = I + o(h)E, where E is a matrix and
every element in it is one. By (hTT t)−1 = I + o(h)E, (2.15) and (2.19), we get

(I − K̃n(hT htT )−1)uD = f, (3.19)

which is equivalent to
(I − K̃n(I − o(h)E)uD = f. (3.20)

Hence, by the Corollary 3.2 we get the following remark.
Remark 1 According to the Corollary 3.2, the solutions uD of Eq.(3.20) by

7
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Daubechies wavelet method are convergent to the solutions un of Eq.(3.6) when h→0.
Theorem 3.3 The solutions of Eq.(3.6) have asymptotic expansions hold at nodes

un(x) = u(x) + σ1(x)hα+3 + σ2(x)hα+3lnh + o(hα+5lnh), (3.21)

where σj(x) ∈ C[0, 1], j = 1, 2 are independent of h, and σ2 = 0 when β = 0 and
α > −1, or β = 1 and α = 0.

Proof. We construct the auxiliary equation

(I − K̃)σ = P (x), (3.22)

where
P (x) = [βζ

′
(−α− 2)− ζ(−α− 2)(ln h)β](H1u)(2)h3+α. (3.23)

By invoking Eq.(2.14), we have

(K̃n − K̃)u(x) = −P (x) + o(h5+α ln h). (3.24)

Using (3.22), we get

(I − K̃n)(un − u− h3+ασ) = f − u + K̃nu + h3+α(I − K̃n)σ

= (K̃n − K̃)u + h3+α(I − K̃)σ + h3+α(K̃n − K̃)σ

= o(hα+5lnh),

(3.25)

that is,
un − u− h3+ασ = o(hα+5lnh). (3.26)

From (3.22), we obtain
σ = −σ1 − σ2(ln h)β, (3.27)

where

σ1 = −βζ
′
(−α−2)(I−K̃)−1(H1u)(2), and σ2 = ζ(−α−2)(I−K̃)−1(H1u)(2). (3.28)

Substituting (3.28) into (3.26), and by ζ(−2) = 0 (see [1]), we know that (3.21) holds.
The proof of Theorem 3.3 is completed. ¤

Remark 2 According to the Theorem 3.3 and Remark 1, the numerical solutions
uD of Eq.(3.19) possess high accuracy order O (h3+α) as h→0.

4 Numerical experiments

In this section, two numerical examples about the Fredholm equations are com-
puted by Daubechies wavelet method. Let erru

n(x) =
∣∣u(x) − un(x)

∣∣ be the er-
rors by Daubechies wavelet method using n (= 2J J = 3, · · · , 8) nodes, and let
EOC = log(errn/err2n)/ log 2 be the estimated order of convergence.

8
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If the kernel function k(x, y) of Eq.(1.1) is not periodic, we can apply the Sidi
transformation for Eq.(1.1) and make the kernel be periodic. The Sidi transformation
is defined by (see [18])

ψγ(t) =

∫ t

0

(sinπτ)γdτ
( ∫ 1

0

(sinπτ)γdτ
)−1

: [0, 1] → [0, 1], γ ≥ 1.

In the following three examples, the errors and error ratio of numerical solutions
at the selected points x1 = 0, x2 = 0.25 and x3 = 0.5 by Daubechies wavelet method
using transformation ψ6(t) are listed in tables.

Example 1. Consider the linear Fredholm equation of the first kind

u(x) +

∫ 1

0

ln|x− y|u(y)dy = g(x)

where g(x) = x2 ln x/2 + (1 − x2) ln(1 − x)/2 + x/2 − 1/4 and the exact solution is
u(x) = x. We use periodic Daubechies wavelet of genus D = 12 as basis functions to
compute the errors for Example 1 using different resolutions. The plots of computed
errors are shown in Figure 1 and the errors and error ratio of numerical solutions are
listed in Table 1. From the results in Table 1, we can see EOC ≈ 3.

Table 1: The Errors of u.

J 3 4 5 6 7 8
erru

n(x1) 2.058-02 2.111-03 3.214-04 3.935-05 4.896-06 6.116-07
EOC(x1) − 3.2857 2.715 3.030 3.007 3.001
erru

n(x2) 2.328-02 2.485-03 3.607-04 4.401-05 5.481-06 6.847-07
EOC(x2) − 3.228 2.784 3.035 3.006 3.001
erru

n(x3) 2.278-02 9.764-05 1.752-05 2.222-06 2.778-07 3.474-08
EOC(x3) − 7.866 2.478 2.979 3.000 3.000
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−0.02

−0.01
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Figure 1: The error distributions of Example 1 at different resolutions.
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Example 2. Solving the following non-periodic second kind Fredholm integral
equation with algebraic singular kernel

u(x) +

∫ 1

0

|x− y|−1/2u(y)dy = g(x),

where g(x) = x+2(x
√

(x)−x2/3/3+x
√

(1−x)+(1−x)2/3/3) and the exact solution
is u(x) = x. We also use periodic Daubechies wavelet of genus D = 12 as basis
functions to compute the errors using different resolutions. The plots of computed
errors are shown in Figure 2 and the errors and error ratio of numerical solutions are
listed in Table 2. From the results in Table 2, we can see EOC ≈ 2.5.

Table 2: The Errors of u.

J 3 4 5 6 7 8
erru

n(x1) 1.713-03 3.964-05 1.638-05 2.627-06 4.505-07 7.898-08
EOC(x1) − 5.433 1.275 2.640 2.544 2.512
erru

n(x2) 8.526-03 3.899-04 3.847-05 4.843-06 8.529-07 1.508-07
EOC(x2) − 4.451 3.341 2.990 2.505 2.500
erru

n(x3) 4.698-03 2.975-04 6.878-05 1.216-05 2.150-06 3.800-07
EOC(x3) − 3.981 2.113 2.499 2.500 2.500
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Figure 2: The error distributions of Example 2 at different resolutions.

Example 3. Solving the following nonlinear second kind Fredholm integral equa-
tion with weakly singular kernel

u(x) +

∫ 1

0

ln
∣∣x− y

∣∣g(u(y))dy = f(x),

10
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where

f(x) = (x− 0.5)2/3 +
1

3
(x2−x+1/3)−x(x2/3−x/2+0.25) ln(

x

1− x
)− 1

12
ln(1−x).

The exact solution is u(x) = (x− 0.5)2/3. The periodic Daubechies wavelets of genus
D = 12 as basis functions are used to compute the errors. The Newton iteration
method is used for solve Example 3 and the initial vector of u0 is given by u0 =
(1, 1, · · · , 1)t

2J×1. After 4 iterations the errors are shown in Fig.3. The errors and
error ratio of numerical solutions are listed in Table 3. From Table 3, we can see
EOC ≈ 3.

Table 3: The Errors of u.

J 3 4 5 6 7 8
erru

n(x1) 4.900-04 4.755-05 4.371-06 5.481-07 6.865-08 8.582-09
EOC(x1) − 3.365 3.443 2.996 2.997 3.000
erru

n(x2) 1.659-03 1.565-04 1.714-05 2.141-06 2.673-07 3.340-08
EOC(x2) − 3.407 3.190 3.001 3.002 3.001
erru

n(x3) 6.442-04 2.102-04 6.570-05 8.145-06 1.004-06 1.252-07
EOC(x3) − 1.616 1.678 3.012 3.019 3.003
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Figure 3: The error distributions of Example 3 at different resolutions.

5 Conclusions

In this paper, the Sidi-Israeli quadrature formula is used to construct the approxima-
tion of kernel functions and then the Daubechies wavelet method is used to solve Eq.
(1.1). when the kernel functions are not periodic, we can apply the Sidi transforma-
tion for Eq.(1.1) and make the kernels be periodic. Because the wavelet integrations
are completely avoided and the expansion coefficients obtained here are exact, which
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makes the wavelets method has a good degree of accuracy. In addition, the Daubechies
wavelets method is used for linear Fredholm integration equation, the discrete matrix
of the associated linear system can be transformed into a very sparse and symmetri-
cal one. Accordingly, many preconditioners can be used to reduce the computational
cost.
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Some �xed point results in ordered complete dislocated
quasi Gd metric space

Abdullah Shoaib1, Muhammad Arshad2, Tahair Rasham3

Abstract: In this paper, we discuss the �xed points of mappings satisfying
contractive type condition on a closed ball in an ordered complete dislocated
quasi G metric space. The notion of dominated mappings is applied to approx-
imate the unique solution of non linear functional equations. An example is
given to show the validity of our work. Our results improve/generalize several
well known recent and classical results.
2010 Mathematics Subjects Classi�cation: 46S70; 47H10; 54H25.
Keywords and phrases: �xed point; contractive dominated mappings; closed

ball; ordered complete dislocated quasi metric spaces.

1 Introduction and Preliminaries

Let T : X ! X be a mapping. A point x 2 X is called a �xed point of T if x =
Tx: Let x0 be an arbitrary chosen point in X. De�ne a sequence fxng in X by
a simple iterative method given by xn+1 = Txn; where n 2 f0; 1; 2; 3; :::g: Such
a sequence is called a picard iterative sequence and its convergence plays a
very important role in proving existence of �xed point of a mapping T . A self
mapping T on a metric space X is said to be a Banach contraction mapping if,

d(Tx; Ty) � kd(x; y)

holds for all x; y 2 X where 0 � k < 1: Recently, many results appeared in
literature related to �xed point results in complete metric spaces endowed with
a partial ordering . Ran and Reurings [17] proved an analogue of Banach�s �xed
point theorem in metric space endowed with partial order and gave applications
to matrix equations. Subsequently, Nieto et. al. [12] extended the results of [17]
for non decreasing mappings and applied this results obtain a unique solution
for a 1st order ordinary di¤erential equation with periodic boundary conditions.
On the other hand in 2005, Mustafa and Sims in [14] introduce the notion of a
generalized metric space as generalization the usual metric space. Mustafa and
others studied �xed point theorems for mappings satisfying di¤erent contrac-
tive conditions for further useful results can be seen in [3, 8, 9, 10, 15, 16, 21].
Recently, Arshad et. al. [4] proved a result concerning the existence of �xed
points of a mapping satisfying a contractive condition on closed ball in a com-
plete dislocated metric space. For further results on closed ball we refer the
reader to [5, 6, 7, 13, 20] and references their in. The dominated mapping [2]
which satis�es the condition fx � x occurs very naturally in several practical
problems . For example x denotes the total quantity of food produced over a
certain period of time and f(x) gives the quantity of food consumed over the
same period in a certain town, then we must have fx � x:
In this paper we have obtained �xed point results for dominated self- map-

pings in an ordered complete dislocated quasi Gd metric space on a closed ball
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under contractive condition to generalize, extend and improve some classical
�xed point results. We have used weaker contractive condition and weaker re-
strictions to obtain unique �xed point. Our results do not exists even yet in
metric spaces. An example shows how this result can be used when the corre-
sponding results cannot.

De�nition 1 Let X be a nonempty set and let Gd : X � X � X ! R+ be a
function satisfying the

following axioms:
(i) If Gd(x; y; z) = Gd(y; z; x) = Gd(z; x; y) = 0,then x = y = z;
(ii) Gd(x; y; z) � Gd(x; a; a) + Gd(a; y; z) for all x; y; z; a 2 X (rectangle

inequality).
Then the pair (X;Gd) is called the dislocated quasi Gd-metric space. It is

clear that if
Gd(x; y; z) = Gd(y; z; x) = Gd(z; x; y) = 0 then from (i) x = y = z: But if

x = y = z then Gd(x; y; z) may not be 0: It is observed that if Gd(x; y; z) =
Gd(y; z; x) = Gd(z; x; y) for all x; y; z 2 X; then (X;Gd) becomes a dislocated
Gd-metric space.

Example 2 If X = R+ [ f0g then Gd(x; y; z) = x + maxfx; y; zg de�nes a
dislocated quasi metric G on X.

De�nition 3 Let (X;Gd) be a Gd-metric space, and let fxng be a sequence
of points in X, a point x in X is said to be the limit of the sequence fxng if
limm;n!1Gd(x; xn; xm) = 0; and one says that sequence fxng is Gd-convergent
to x:Thus, if xn ! x in a Gd-metric space (X;Gd), then for any 2 > 0; there
exists n;m 2 N such that Gd(x; xn; xm) < 2; for all n;m � N:

De�nition 4 Let (X;Gd) be a Gd-metric space. A sequence fxng is called
Gd-Cauchy sequence if, for each 2 > 0 there exists a positive integer n? 2 N
such that Gd(xn; xm;xl) < 2 for all n; l;m � n?; i.e. if Gd(xn; xm; xl) ! 0 as
n;m; l!1:

De�nition 5 Gd-metric space (X;Gd) is said to be Gd-complete if every Gd-
Cauchy sequence in (X;Gd) is Gd-convergent in X:

Proposition 6 Let (X;Gd) be a Gd-metric space, then the following are equiv-
alent:

(1) fxng is Gd convergent to x:
(2) Gd(xn; xn; x)! 0 as n!1:
(3) Gd(xn; x; x)! 0 as n!1:
(4) Gd(xn; xm; x)! 0 as m n!1:

De�nition 7 Let (X;Gd) be a Gd-metric space then for x0 2 X, r > 0; the
closed ball with centre x0 and radius r is,

B(x0; r) = fy 2 X : Gd(x0; y; y) � rg:

2
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De�nition 8 [2] Let (X;�) be a partial ordered set. Then x; y 2 X are called
comparable if x � y or y � x holds.

De�nition 9 [2] Let (X;�) be a partially ordered set. A self mapping f on X
is called dominated if fx � x for each x in X:

Example 10 [2] Let X = [0; 1] be endowed with usual ordering and f : X ! X
be de�ned by fx = xn for some n 2 N. Since fx = xn � x for all x 2 X,
therefore f is a dominated map.

2 Fixed Points of Contractive Mapping

Theorem 11 Let (X;�; Gd) be an ordered complete dislocated quasi Gd metric
space, and T : X ! X be a dominated mapping. Suppose there exists a; b such
that a + 3b < 1 and for all comparable elements x; y and z in B(x0; r); with
x0 2 B(x0; r); r > 0;.

Gd(Tx; Ty; Tz) � a Gd(x; y; z) + b [Gd(x; Tx; Tx) (2.1)

+Gd(y; Ty; Ty) +Gd(z; Tz; Tz)]

where � =
a+ b

1� 2b
and Gd(x0; Tx0; Tx0) � (1� �)r: (2.2)

If for a nonincreasing sequence fxng in B(x0; r), fxng ! u implies that u � xn
and

G(x0; Tx0; Tx0) +G(v; Tv; Tv) +G(v; Tv; Tv)

� G(x0; v; v) +G(Tx0; T v; Tv) +G(Tx0; T v; Tv) (2.3)

then there exists a point x? in B(x0; r) such that Gd(x?; x?; x?) = 0 and x? =
Tx?:
Proof. Consider a picard sequence xn+1 = Txn with initial guess x0: As xn+1 =
Txn � xn for all n 2 f0g[N: By inequality (2:2), Gd(x0; x1; x1) � r. It implies
that x1 2 B(x0; r): Similarly x2 : : : xj 2 B(x0; r) for some j 2 N:

Gd(xj ; xj+1; xj+1) = Gd(Txj�1; Txj ; Txj) � a Gd(xj�1; xj ; xj)
+b[Gd(xj�1; Txj�1; Txj�1) +Gd(xj ; xj+1; xj+1)

+Gd(xj ; xj+1; xj+1)]

(1� 2b)Gd(xj ; xj+1; xj+1) � (a+ b)Gd(xj�1; xj ; xj)

Gd(xj ; xj+1; xj+1) � (a+ b)

(1� 2b)Gd(xj�1; xj ; xj)

...

Gd(xj ; xj+1; xj+1) � �jGd(x0; x1; x1): (2.4)

3
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Now by using the inequality (2:2) and (2:4) we have

Gd(xj ; xj+1; xj+1) � Gd(x0; x1; x1) +Gd(x1; x2; x2) + � � �+Gd(xj ; xj+1; xj+1)
Gd(xj ; xj+1; xj+1) � (1� �)r + �(1� �)r + � � �+ �j(1� �)r
Gd(xj ; xj+1; xj+1) � r(1� �)[1 + �+ �2 + � � �+ �j ]

Gd(xj ; xj+1; xj+1) � r(1� �) (1� �
j+1)

(1� �) � r

) Gd(xj ; xj+1; xj+1) � r:

Thus xj+1 2 B(x0; r). Hence xn 2 B(x0; r) for all n 2 N: Now inequality (2:4)
can be written as in the form of

Gd(xn; xn+1; xn+1) � �nGd(x0; x1; x1) for all n 2 N: (2.5)

By using inequality (2:5) we get

Gd(xn; xn+i; xn+i) � Gd(xn; xn+1; xn+1) + � � �+Gd(xn+i�1; xn+i; xn+i)

Gd(xn; xn+i; xn+i) � �n(1� �i)
(1� �) Gd(x0; x1; x1)! 0 as n!1 (2.6)

Notice that the sequence fxng is Cauchy sequence in (B(x0; r) ; Gd): Therefore
there exist a point x? 2 B(x0; r):

lim
n!1

Gd(xn; x
?; x?) = lim

n!1
Gd(x

?; x?; xn) = 0

Gd(x
?; Tx?; Tx?) � Gd(x

?; xn; xn) +Gd(xn; Tx
?; Tx?)

By assumption x? � xn � xn�1, therefore,

Gd(x
?; Tx?; Tx?) � Gd(x

?; xn; xn) +Gd(Txn�1; Tx
?; Tx?)

Gd(x
?; Tx?; Tx?) � Gd(x

?; xn; xn) + a Gd(xn�1; x
?; x?)

+b[Gd(xn�1; Txn�1; Txn�1) +Gd(x
?; Tx?; Tx?)

Gd(x
?; Tx?; Tx?)]

Gd(x
?; Tx?; Tx?) � Gd(x

?; xn; xn) + a Gd(xn�1; x
?; x?)

+b[Gd(xn�1; Txn�1; Txn�1) + 2Gd(x
?; Tx?; Tx?)

(1� 2b)Gd(x?; Tx?; Tx?) � Gd(x
?; xn; xn) + a Gd(xn�1; x

?; x?)

+b Gd(xn�1; xn; xn)

Taking limn!1 both sides and using (2:6) we have

(1� 2b)Gd(x?; Tx?; Tx?) � 0 + a(0) + b(0)

) Gd(x
?; Tx?; Tx?) � 0

) x? = Tx?: (2.7)

4
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Similarly Gd(Tx?; Tx?; x?) = 0 and Gd(Tx?; x?; Tx?) = 0 and hence x? =
Tx?:Now

Gd(x
?; x?; x?) = Gd(Tx

?; Tx?; Tx?) � a Gd(x?; x?; x?)
+3bGd(x

?; Tx?; Tx?)

(1� a� 3b)Gd(x?; x?; x?) � 0

) Gd(x
?; x?; x?) � 0:

This implies that Gd(x?; x?; x?) = 0:
Uniqueness:
Let y? be another point in B(x0; r) such that

y? = Ty?: (2.8)

Gd(y
?; y?; y?) = Gd(Ty

?; T y?; T y?) � a Gd(y?; y?; y?)
+3b[Gd(y

?; T y?; T y?)]

(1� a� 3b)Gd(y?; y?; y?) � 0

) Gd(y
?; y?; y?) � 0:

) Gd(y
?; y?; y?) = 0:

If x? and y? are comparable then

Gd(x
?; y?; y?) = Gd(Tx

?; T y?; T y?) � a Gd(x?; y?; y?)
+b[Gd(x

?; Tx?; Tx?) + 2Gd(y
?; T y?; T y?)]

(1� a)Gd(x?; y?; y?) � 0

) Gd(x
?; y?; y?) = 0:

Similarly, Gd(y?; y?; x?) = 0: This shows that x? = y?:
If x? and y? are not comparable then there exist a point v 2 B(x0; r) which is
a lower bound of both x? and y?: Now we will to prove that Tnv 2 B(x0; r):
Moreover by assumptions v � x? � xn � � � � � x0: Now by using (2:1), we have,

Gd(Tx0; T v; Tv) � a Gd(x0; v; v) + b [Gd(x0; x1; x1) + 2Gd(v; Tv; Tv)]:
By using (2:3); we have

Gd(Tx0; T v; Tv) � a Gd(x0; v; v) + b [Gd(x0; v; v) + 2Gd(x1; T v; Tv)]

(1� 2b)Gd(Tx0; T v; Tv) � (a+ b) Gd(x0; v; v)

Gd(Tx0; T v; Tv) � (a+ b)

(1� 2b) Gd(x0; v; v)

Gd(Tx0; T v; Tv) � � Gd(x0; v; v): (2.9)

Now,

Gd(x0; T v; Tv) � Gd(x0; x1; x1) +Gd(x1; T v; Tv)

Gd(x0; T v; Tv) � Gd(x0; x1; x1) + � Gd(x0; v; v) by (2:9)

Gd(x0; T v; Tv) � (1� �)r + �r
Gd(x0; T v; Tv) � r:

5
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It follows that Tv 2 B(x0; r): Now we will prove that Tnv 2 B(x0; r): By us-
ing mathematical induction to apply inequality (2:1): Let T 2v; T 3v; � � �T jv 2
B(x0; r) for some j 2 N: As

T jv � T j�1v � � � � � v � x? � xn � � � � � x0:

Then,

Gd(T
jv; T j+1v; T j+1v) = Gd(T (T

j�1v); T (T jv); T (T jv))

Gd(T
jv; T j+1v; T j+1v) � a Gd(T

j�1v; T jv; T jv) + b [Gd(T
j�1v; T jv; T jv)

+2Gd(T
jv; T j+1v; T j+1v)]

(1� 2b)Gd(T jv; T j+1v; T j+1v) � (a+ b)Gd(T
j�1v; T jv; T jv)

Gd(T
jv; T j+1v; T j+1v) � �Gd(T

j�1v; T jv; T jv)

Gd(T
jv; T j+1v; T j+1v) � �2Gd(T

j�2v; T j�1v; T j�1v)

Gd(T
jv; T j+1v; T j+1v) � �3Gd(T

j�3v; T j�2v; T j�2v)

...

Gd(T
jv; T j+1v; T j+1v) � �jGd(T

j�jv; T j�(j�1)v; T j�(j�1)v)

Gd(T
jv; T j+1v; T j+1v) � �jGd(v; Tv; Tv) (2.10)

Now,

Gd(xj+1; T
j+1v; T j+1v) � Gd(Txj ; T (T

jv); T (T jv))

Gd(xj+1; T
j+1v; T j+1v) � a Gd(xj ; T

jv; T jv)

+b [Gd(xj ; Txj ; Txj) + 2Gd(T
jv; T j+1v; T j+1v)]:

By using (2:4) and (2:10)

Gd(xj+1; T
j+1v; T j+1v) � a�jGd(x0; v; v)

+b[�jGd(x0; x1; x1) + 2�
jGd(v; Tv; Tv)]

Gd(xj+1; T
j+1v; T j+1v) � a�jGd(x0; v; v)

+b�j [Gd(x0; x1; x1) + 2Gd(v; Tv; Tv)]

By using the condition (2:3)

Gd(xj+1; T
j+1v; T j+1v) � a�jGd(x0; v; v)

+b�j [Gd(x0; v; v) + 2�Gd(x0; v; v)]

Gd(xj+1; T
j+1v; T j+1v) � �j(a+ b+ 2b�)Gd(x0; v; v)

Gd(xj+1; T
j+1v; T j+1v) � �j+1Gd(x0; v; v) (2.11)

6
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Now ,

Gd(x0; T
j+1v; T j+1v) � Gd(x0; xj+1;xj+1) +Gd(xj+1; T

j+1v; T j+1v)

Gd(x0; T
j+1v; T j+1v) � Gd(x0; x1;x1) + � � �+Gd(xj ; xj+1;xj+1)

+Gd(xj+1; T
j+1v; T j+1v)

Gd(x0; T
j+1v; T j+1v) � Gd(x0; x1;x1) + �Gd(x0; x1;x1)

+ � � �+ �j+1Gd(x0; v; v) by (2:5) and (2:11)
Gd(x0; T

j+1v; T j+1v) � Gd(x0; x1;x1)[1 + �+ �
2 + � � �+ �j ] + �j+1r as v 2 B(x0; r)

Gd(x0; T
j+1v; T j+1v) � (1� �)r (1� �

j+1)

(1� �) + �j+1r = r

Gd(x0; T
j+1v; T j+1v) � r:

It follows that T j+1v 2 B(x0; r) and hence T jv 2 B(x0; r): Now the inequality
(2:10) can be written as

Gd(T
nv; Tn+1v; Tn+1v) � �nGd(v; Tv; Tv)! 0 as n!1 (2.12)

Now,

Gd(x
?; y?; y?) = Gd(Tx

?; T y?; T y?)

Gd(x
?; y?; y?) � Gd(Tx

?; Tn+1v; Tn+1v) +Gd(T
n+1v; Ty?; T y?)

Gd(x
?; y?; y?) � a Gd(x

?; Tnv; Tnv) + b [Gd(x
?; Tx?; Tx?)

+2Gd(T
nv; Tn+1v; Tn+1v)] + a Gd(T

nv; Ty?; T y?)

+b [Gd(T
nv; Tn+1v; Tn+1v) + 2Gd(y

?; T y?; T y?)]

By using (2:7); (2:8) and (2:12) we have

Gd(x
?; y?; y?) � a Gd(x

?; Tnv; Tnv) + a Gd(T
nv; y?; y?)

Gd(x
?; y?; y?) � a [Gd(Tx

?; Tnv; Tnv) +Gd(T
nv; Ty?; T y?)]

Gd(x
?; y?; y?) � a [a Gd(x

?; Tn�1v; Tn�1v) + b Gd(x
?; Tx?; Tx?)

+2b Gd(T
n�1v; Tnv; Tnv) + a Gd(T

n�1v; y?; y?)

+b Gd(T
n�1v; Tnv; Tnv) + 2b Gd(y

?; T y?; T y?)]:

By using (2:7); (2:8) and (2:12) we have

Gd(x
?; y?; y?) � a2 [Gd(x

?; Tn�1v; Tn�1v) +Gd(T
n�1v; y?; y?)]

Gd(x
?; y?; y?) � a3 [Gd(x

?; Tn�2v; Tn�2v) +Gd(T
n�2v; y?; y?)]

...

Gd(x
?; y?; y?) � an [Gd(x

?; T v; Tv) +Gd(Tv; y
?; y?)]

Gd(x
?; y?; y?) ! 0 as n!1

Gd(x
?; y?; y?) = 0

x? = y?:

7
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This proves the uniqueness of the �xed point.

Now we give an example of an ordered complete dislocated quasi Gd-metric
space in which the contraction does not hold on the whole space rather it holds
on a closed ball only.

Example 12 Let X = R+[f0g be endowed with usual order and Gd : X�X�
X ! X be a complete dislocated quasi Gd metric space de�ned by,

Gd(x; y; z) =

�
0 if x = y = z

max f2x; y; zg otherwise:

�
Then (X;Gd) is a Gd complete G dislocated quasi metric space.
Let T : X ! X be de�ned by,

Tx =

�
x
5 if x 2 [0;

3
2 ]

x� 1
3 if x 2 [

3
2 ;1)

�
:

Clearly, T is a dominated mappings. Take x0 = 1
3 , r =

3
2 , B(x0; r) = [0;

3
2 ] and

� = 1
4 ; a+ 3b < 1; where a =

1
10 ; and b =

1
10 :

Gd(x0; Tx0; Tx0) � (1� �)r

Gd(
1

3
; T
1

3
; T
1

3
) = maxf2

3
;
1

15
;
1

15
g = 2

3

Since (1� �)r = (1� 1
4
)
3

2
=
9

8

) 2

3
� 9

8
) 16 � 27

Also if x; y and z 2 [ 32 ;1): We assume that x > y; and y > z; then

maxf2x� 2
3
; y � 1

3
; z � 1

3
g � 1

10
maxf2x; y; zg

1

10
[maxf2x; x� 1

3
; x� 1

3
g

+maxf2y; y � 1
2
; y � 1

2
g

+maxf2z; z � 1
2
; z � 1

2
g]

Gd(Tx; Ty; Tz) � a Gd(x; y; z) + b [Gd(x; Tx; Tx)

+Gd(y; Ty; Ty) +Gd(z; Tz; Tz)]

So the contractive conditions does not holds in X: Now if x; y and z 2 B(x0; r)
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then,

Gd(Tx; Ty; Tz) = maxf2x
5
;
y

5
;
z

5
g � 1

10
f2x; y; zg

+
1

10
[maxf2x; x

5
;
x

5
g+maxf2y; y

5
;
y

5
g

+maxfz; z
5
;
z

5
g]

) Gd(Tx; Ty; Tz) � a Gd(x; y; z) + b [Gd(x; Tx; Tx)
+Gd(y; Ty; Ty) +Gd(z; Tz; Tz)]:

Hence it satis�es all the requirements of Theorem11. If we take b = 0 in in-
equality (2:1) then we obtain the following corollary.

Corollary 13 Let (X;�; G) be an ordered complete dislocated quasi G�metric
space, T : X ! X be a dominated mapping and x0 be any arbitrary point in X.
Suppose there exists a 2 [0; 1) with,

G(Tx;Ty;Tz) � a G(x; y; z); for all x; y and z 2 Y = B(x0; r);

and
G(x0;Tx0;Tx0) � (1� a)r:

If for a nonincreasing sequence fxng ! u implies that u � xn. Then there exists
a point x? in B(x0;r) such that x? = Sx? and G(x?; x?; x?) = 0: Moreover if for
any three points x; y and z in B(x0; r) such that there exists a point v 2 B(x0;r)
such that v � x; v � y and v � z; that is, every three of elements in B(x0; r)
has a lower bound, then the point x? is unique.
Similarly if we take a = 0 in inequality (2:1) then we obtain the following corol-
lary.

Corollary 14 Let (X;�; G) be an ordered complete dislocated quasi G-metric
space T : X ! R be a mapping and x0 be an arbitrary point in X: Suppose there
exists b 2

�
0; 13

�
with

G(Tx; Ty; Tz) � b (G(x; Tx; Tx) +G(y; Ty; Ty) +G(z; Tz; Tz))

for all comparable elements x; y; z 2 B(x0;r) and

G(x0; Tx0; Tx0) � (1� �)r;

where � = b
1�2b . If for non increasing sequence fxng ! u implies that u � xn:

Then there exists a point x? in B(x0; r) such that x? = Sx?and G(x?; x?; x?) =
0: Moreover, if for any three points x; y; z 2 B(xo; r); there exists a point v in
B(x0; r) such that v � x and v � y, v � z:

9
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MIZOGUCHI- TAKAHASHI’S FIXED POINT THEOREM IN ν-

GENERALIZED METRIC SPACES

SALHA ALSHAIKEY *, SAUD M. ALSULAMI AND MONAIRAH ALANSARI

Abstract. Our main work is to prove Mizogchi- Takahashi theorem in ν-

generalized metric space in the sense of Brancairi. In the same setting we
prove two more theorems which are generalizations of the main one.

1. Introduction

A metric is defined as a mapping d : X ×X → [0,∞), for any non-empty set X
which satisfying the following axioms, for any x, y, z ∈ X

(i) d(x, y) = 0 iff x = y
(ii) d(x, y) = d(y, x)

(iii) d(x, y) ≤ d(x, z) + d(z, y).

We said that the pair (X, d) is a metric space. The theory of metric spaces form a
basic environment for a lot of concepts in mathematics such as the fixed point the-
orems which have an important rules in various branches of mathematical analysis.
One of the famous result of fixed point theorems is Banach Contraction Principle
which state that,

Theorem 1.1. [11](Banach Contraction Principle)
Let (X, d) be a complete metric space. Let T : X → X be a self map on X such
that

d(Tx, Ty) ≤ rd(x, y),

hold for any x, y ∈ X, where r ∈ [0, 1). Then T has a unique fixed point.

Many authors explored the importance of this theorem and extended it in differ-
ent directions. For examples, we refer the reader to the following papers [2, 9, 8, 6],
and the references therein. In (1969) Nadler extended theorem 1.1 for multi-valued
mapping. Recall that the set of all non- empty, closed and bounded subsets of X
is denoted by CB(X) and let A,B be any sets in CB(X). A Hausdorff metric is
defined as

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}

Theorem 1.2. [12](Nadler’s theorem) Let (X, d) be a complete metric space. Let
T : X → CB(X) be a multi-valued map. Assume that

H(Tx, Ty) ≤ rd(x, y),

holds for each x, y ∈ X and r ∈ [0, 1). Then T has a fixed point.

Key words and phrases. Mizoguchi-Takahashi’s theorem, ν- generalized metric
space,Generalized of MT- theorem, Fixed point theory.
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Many attempts have been done to generalize Nadler’s theorem. One of these
generalizations is Mizoguchi- Takahashi’s theorem which stats that:

Theorem 1.3. [10] Let (X, d) be a complete metric space. Let T : X → CB(X)
be a multi-valued mapping. Assume that

H(Tx, Ty) ≤ β(d(x, y))d(x, y),

hold for each x, y ∈ X, where β : [0,∞)→ [0, 1) is a function such that lim sups→t+ β(s) <
1. Then T has a fixed point.

Remark 1.4. The function β in theorem 1.3, which satisfies lim sups→t+ β(s) < 1
is called Mizoguchi- Takahashi function (MT- function for short).

Starting with Mizoguchi and Takahashi’s paper, many generalizations of their
theorem have been established see [3, 13]. Recently, Eldred et al [4], claimed that
Nadler’s and Mizoguchi- Takahashi’s theorems are equivalent. However, in [14],
Suzuki proved that their claim is not true and he shown that Mizoguchi- Takahashi’s
theorem (1.3) is a real extension of Nadler’s theorem. This is why we are interesting
in such theorem.

In another direction, in (2000) Branciari created a new concept of generalized
metric spaces by modifying the triangle inequality to involve more points.

Definition 1.5. [1] Let X be a non- empty set and d : X×X → [0,∞). For ν ∈ N,
a pair (X, d) is called a ν- generalized metric space if the following hold:

(M1) d(x, y) = 0 iff x = y
(M2) d(x, y) = d(y, x)
(M3) d(x, y) ≤ d(x, u1) + d(u1, u2) + ...+ d(uν , y),

for any x, u1, u2, ...uν , y ∈ X, such that x, u1, u2, ...uν , y are all different.

It is not difficult to show that the new space is not the same as the original
one. Moreover, the new space is hard to deal with because it does not satisfy all
topological properties that metric space has, see [15] for more details. Recently,
in [16], Suzuki proved Nadler’s theorem in ν- generalized metric spaces. The main
work of this paper is to prove Mizoguchi -Takahashi’s theorem in ν- generalized
metric spaces. Firstly, we will list all the necessary definitions and some results
that we will need. Then, we will be able to prove our main results.

2. Preliminary

Definition 2.1. A point x ∈ X is said to be a fixed point of multi-valued map T if
x ∈ Tx.

Definition 2.2. [1] Let (X, d) be a ν- generalized metric space. A sequence {xn}n∈N ∈
X is said to be Cauchy sequence if

lim
n

sup
n>m

d(xn, xm) = 0

Definition 2.3. [16] A sequence {xn}n∈N is said to be (
∑
, 6=)- Cauchy sequence if

all xn’s are different and
∞∑
j=1

d(xj , xj+1) <∞

Definition 2.4. [16] Let (X, d) be a ν- generalized metric space. We said that, X
is a (

∑
, 6=)- complete if every (

∑
, 6=)- Cauchy sequence converges.
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Lemma 2.5. [16, 5] Let (X, d) be a ν- generalized metric space.

• Every converge (
∑
, 6=)- Cauchy sequence is Cauchy.

• Let {xn}n∈N be a Cauchy sequence converges to some y ∈ X and {yn} ∈ X
be a sequence such that limn→∞ d(xn, yn) = 0. Then, {yn} also converges
to y.

Lemma 2.6. [14] Let β : [0,∞)→ [0, 1) is a MT-function. Then, for all s ∈ [0,∞),
there exist rs ∈ [0, 1) and εs > 0 such that β(t) ≤ rs for all t ∈ [s, s+ εs)

Lemma 2.7. [12] Let (X, d) be a metric space. For any A,B ∈ CB(X) and ε > 0,
there exist a ∈ A and b ∈ B such that d(a, b) ≤ H(A,B) + ε

3. Main Result

In this section we prove Mizoguchi -Takahashi’s theorem in ν -generalized metric
spaces and some of its generalizations in the space.

Theorem 3.1. Let (X, d) be a (
∑
, 6=) complete, ν- generalized metric space. and

let T be a multi-valued map defined from X into CB(X) satisfies the following:

(i) If {yn} ∈ Tx and {yn} converges to y then y ∈ Tx.
(ii) For any x, y ∈ X, H(Tx, Ty) ≤ α(d(x, y))d(x, y),

where α is MT-function. Then T has a fixed point.

Proof. Let define a function γ : [0,∞)→ [0, 1) as γ(t) =
1 + α(t)

2
. It is not difficult

to show that α(t) < γ(t), for any t ∈ [0,∞) and lims→t+ sup γ(s) < 1. Moreover,
for each x, y ∈ X and v ∈ Tx, there exist u ∈ Ty such that

d(v, u) ≤ γ(d(x, y))d(x, y).

Putting v = y, we will get that

d(y, u) ≤ γ(d(x, y))d(x, y)

Define f(x) = inf{d(x, b) : b ∈ Tx} and suppose that T does not have a fixed point
( i.e., for all x ∈ X, f(x) > 0). Let x1 ∈ X be arbitrary and choose x2 ∈ Tx1
satisfying

(1) d(x1, x2) <
1

γ(d(x1, x2))
f(x1).

Since Tx2 6= ∅, we can choose an arbitrary element x3 ∈ Tx2 such that

(2) f(x2) ≤ d(x2, x3) ≤ γ(d(x1, x2))d(x1, x2).

Also, as in equation (1), we have

(3) d(x2, x3) <
1

γ(d(x2, x3))
f(x2).

From (2) and (3), we have

d(x2, x3) ≤ min{γ(d(x1, x2))d(x1, x2),
1

γ(d(x2, x3))
f(x2)}.

Thus

γ(d(x2, x3))d(x2, x3) < f(x2) ≤ γ(d(x1, , x2))d(x1, x2) < f(x1).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.6, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

1049 ALSHAIKEY 1047-1054



4 SALHA ALSHAIKEY *, SAUD M. ALSULAMI AND MONAIRAH ALANSARI

Continuously, {xn}n∈N ∈ X is a sequence constructed such that xn+1 ∈ Txn and
satisfying
(4)
γ(d(xn+1, xn+2)d(xn+1, xn+2) < f(xn+1) ≤ γ(d(xn, xn+1))d(xn, xn+1) < f(xn),

and

(5) d(xn+1, xn+2) ≤ γ(d(xn+1, xn))d(xn+1, xn).

Since γ(t) < 1, we have d(xn+1, xn+2) < d(xn, xn+1). Hence, from (4) and (5), the
sequences {f(xn)} and {d(xn, xn+1)} are strictly decreasing. Next, we show that
{xn}n∈N is a (

∑
, 6=)- Cauchy sequence in two steps:

Step 1 we show that all terms different. Suppose not i.e suppose xn = xm for some
n > m, where m,n ∈ N. Hence

f(xm) = inf{d(xm, b) : b ∈ Txm}
= inf{d(xn, b) : b ∈ Txn}
= f(xn),

which contradicts {f(xn)} being strictly decreasing.
Step 2 We show that

∑
d(xn, xn+1) < ∞. Since {d(xn, xn+1)} is an decreasing

sequence in R and bounded below, it converges to some positive real number (say
δ). Also, we have lims→t+ sup γ(s) < 1, thus, there exist r ∈ [0, 1) and ε > 0 such
that γ(s) ≤ r for all s ∈ [δ, δ + ε). For any n ∈ N, we can choose µ ∈ N satisfying
δ ≤ d(xn, xn+1) ≤ δ + ε with n ≥ µ. So,

∞∑
n=1

d(xn, xn+1) ≤
µ∑
n=1

d(xn, xn+1) +

∞∑
n=µ+1

d(xn, xn+1)

≤
µ∑
n=1

d(xn, xn+1) +
∞∑
n=1

rnd(xµ, xµ+1)

<∞.

Thus {xn} is a (
∑
, 6=)- Cauchy sequence in (

∑
, 6=) complete ν- generalize metric

space. Then, it is converge to some z ∈ X and by lemma (2.5), {xn} is a Cauchy
sequence. From our assumption we choose {un} ∈ Tz satisfy

d(xn+1, un) ≤ H(Txn, T z) ≤ γ(d(xn, z))d(xn, z),

for any n ∈ N. But {xn} converges to z, so d(xn+1, un) → 0 as n → ∞. Thus we
have xn+1 → z and xn+1 → un. Therefore, by lemma(2.5) d(un, z) = 0 as n→∞.
So d(Tz, z) = 0 implies f(z) = 0 which is a contradiction. Therefore, there exist
z ∈ X such that f(z) = 0 and hence z ∈ Tz is a fixed point. �

Definition 3.2. [7] A multi- valued map T from X into CB(X) is called α- ad-
missible if for any x ∈ X and y ∈ Tx, α(x, y) ≥ 1 implies α(y, z) ≥ 1 for any
z ∈ Ty, where α : X ×X → [0,∞).

The up coming lemma proved in [18], for single-valued map here, we prove it for
multi- valued map.
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Lemma 3.3. Let (X, d) be a ν- generalized metric space. Let T be a multi-valued
mapping from X into 2X and {xn}n∈N be a sequence in X defined by xn+1 ∈ Txn
such that xn 6= xn+1. Assume that

(6) d(xn, xn+1) ≤ δd(xn−1, xn)

hold for any δ ∈ [0, 1). Then xn 6= xm ∀n 6= m ∈ N.

Proof. We prove that xn+` 6= xn for all n ∈ N and ` ≥ 1. Suppose the contrary
that is xn+` = xn for some n ∈ N and ` ≥ 1. By assumption, we have that
xn+`+1 = xn+1. Then from (6) we get
(7)
d(xn, xn+1) = d(xn+`, xn+`+1) ≤ δd(xn+`−1, xn+`) ≤ ... ≤ δ`d(xn, xn+1) < d(xn, xn+1)

which is contradiction. Thus, we get xm 6= xn for all m 6= n in N. �

Let Φ be the family of all functions ϕ : [0,∞) → [0,∞) which satisfying the
following conditions:

(a) ϕ(s) = 0 iff s = 0.
(b) ϕ is non-decreasing and lower semi-continuous

(c) lims→0+ sup
s

ϕ(s)
<∞.

Theorem 3.4. Let (X, d) be a (
∑
, 6=) complete ν- generalized metric space. Let

T : X → CB(X) be an α- admissible multi-valued mapping satisfying:

(i) There exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1
(ii) If (yn) ∈ Tx and (yn) converge to y then y ∈ Tx

(iii) α(x, y)H(Tx, Ty) ≤ φ(d(x, y))d(x, y) for any x, y ∈ X, and φ is MT-function.

Then T has a fixed point.

Proof. Let β : [0,∞) → [0, 1) as β(t) =
1 + φ(t)

2
such that lims→t+ supβ(s) < 1.

Clearly φ(t) < β(t) for each t ∈ [0,∞). Let x0 ∈ X and choose x1 ∈ Tx0 such that

α(x0, x1) ≥ 1. Assume x0 6= x1 so,
1− φ(d(x0, x1))

2
d(x0, x1) > 0. Since Tx1 6= ∅,

choose x2 ∈ Tx1 such that

d(x1, x2) ≤ H(Tx0, Tx1) +
1− φ(d(x0, x1))

2
d(x0, x1)

≤ α(x0, x1)H(Tx0, Tx1) +
1− φ(d(x0, x1))

2
d(x0, x1)

≤ φ(d(x0, x1))d(x0, x1) +
1− φ(d(x0, x1))

2
d(x0, x1)

≤ β(d(x0, x1))d(x0, x1).

Since T is α- admissible, x1 ∈ Tx0 and α(x0, x1) ≥ 1 then, α(Tx0, Tx1) ≥ 1 which

implies α(x1, x2) ≥ 1. Similarly assume x1 6= x2 we have
1− φ(d(x1, x2))

2
d(x1, x2) >

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.6, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

1051 ALSHAIKEY 1047-1054



6 SALHA ALSHAIKEY *, SAUD M. ALSULAMI AND MONAIRAH ALANSARI

0 and choose x3 ∈ Tx2 such that

d(x2, x3) ≤ H(Tx1, Tx2) +
1− φ(d(x1, x2))

2
d(x1, x2)

≤ α(x1, x2)H(Tx1, Tx2) +
1− φ(d(x1, x2))

2
d(x1, x2)

≤ φ(d(x1, x2))d(x1, x2) +
1− φ(d(x1, x2))

2
d(x1, x2)

≤ β(d(x1, x2))d(x1, x2).

Similarly, using the same method of proving theorem (3.1), we have our result.
�

Theorem 3.5. Let (X, d) be a (
∑
, 6=) complete ν- generalized metric space. Let

T : X → CB(X) be a multi-valued map satisfying:

ϕ(H(Tx, Ty)) ≤ α(ϕ(d(x, y)))ϕ(d(x, y)),

for each x, y ∈ X, where α is a MT- function and ϕ ∈ Φ. Then T has a fixed point.

Proof. Let γ : [0,∞)→ [0, 1) defined by γ(t) =
1 + α(t)

2
. Since ϕ is non- decreasing

function, then

max

{
sup
v∈Tx

ϕ(d(v, Ty)), sup
u∈Ty

ϕ(d(u, Tx))

}
= max

{
ϕ( sup
v∈Tx

d(v, Ty)), ϕ( sup
u∈Ty

d(u, Tx))

}
= ϕ (H(Tx, Ty)) ≤ γ(ϕ(d(x, y)))ϕ(d(x, y)).

(8)

There exist an element z ∈ Ty such that

ϕ(d(y, z)) ≤ γ(ϕ(d(x, y)))ϕ(d(x, y)),

for each x ∈ X and y ∈ Tx. Thus, in the same way a sequence {xn}n∈N ∈ X
defined as xn+1 ∈ Txn is constructed such that

(9) ϕ(d(xn, xn+1) ≤ γ(ϕ(d(xn−1, xn))ϕ(d(xn−1, xn))

for all n ∈ N. Since γ(t) < 1 for any t ∈ [0,∞), hence from (9) we get

(10) ϕ(d(xn, xn+1) < ϕ(d(xn−1, xn)).

Clearly {ϕ(d(xn−1, xn))} is decreasing sequence of positive real numbers. Hence
it is converge to some non- negative real number, say ε. By contradiction, it is
easy to show that ε = 0. Note that, ϕ is a non- decreasing function which implies
to d(xn, xn+1) < d(xn−1, xn). Thus the sequence {d(xn, xn+1)} is also decreasing.
Hence by lemma (3.3), the terms of the sequence all are different. Now, show that∑∞
n=0 d(xn, xn+1) < ∞. Note that the sequence {d(xn, xn+1)} is decreasing and

bounded. Thus, it is converges to a positive real number (say δ) which implies that
ϕ(δ) ≤ ϕ(d(xn, xn+1)). Thus,

ϕ(δ) ≤ lim
n→∞

ϕ(d(xn, xn+1)) = ε = 0.
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7

Since ϕ(s) = 0 if and only if s = 0 then, δ = 0. By lemma (2.6), there exist
r ∈ [0, 1) such that, ϕ(d(xn, xn+1)) ≤ rϕ(d(xn−1, xn)). Therefore,

∞∑
n=1

ϕ(d(xn, xn+1)) ≤
µ∑
n=1

ϕ(d(xn, xn+1)) +
∞∑

n=µ+1

ϕ(d(xn, xn+1))

≤
µ∑
n=1

ϕ(d(xn, xn+1)) +
∞∑
n=1

rnϕ(d(xµ, xµ+1))

<∞.

By defintion of ϕ, we have

lim
n→∞

sup
d(xn, xn+1)

ϕ(d(xn, xn+1))
≤ lim
s→0+

s

ϕ(s)
<∞.

Thus, the sequence {xn} is a (
∑
, 6=)- Cauchy sequence. Since X is a (

∑
, 6=)

complete ν- generalized metric space and by lemma (2.5), it is Cauchy and then it
is converge to some z ∈ X. From the definition of ϕ and its increasing we conclude
that,

ϕd(z, Tz)) ≤ lim
n→∞

inf ϕ(d(xn+1, T z) ≤ lim
n→∞

inf ϕ(H(Txn, T z))

≤ lim
n→∞

inf γ(ϕ(d(xn, z)))ϕ(d(xn, z)) ≤ lim
n→∞

inf ϕ(d(xn, z))

= lim
s→0+

ϕ(s) = lim
n→∞

ϕ(d(xn, xn+1)) = 0.

Therefore, ϕ(d(z, Tz)) = 0. Thus by the definition of ϕ and since Tz closed we
have z ∈ Tz is a fixed point. �
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On Multiresolution Analyses Of Multiplicity n

Richard A. Zalik ∗

Abstract

This paper studies multiresolution analyses in L2(Rd) that have more than one scal-
ing function and are generated by an arbitrary dilation matrix. It provides a further
analysis of a representation theorem obtained by the author for such MRA’s.

1 Introduction

The concept of multiresolution analysis of multiplicity n is due to Alpert [1, 2, 3] who
introduced his now well known dyadic multiresolution analysis with an arbitrary num-
ber of filters in L2(R). Alpert’s results motivated a number of papers, focused on the
univariate case, such as Hervé [12, 13], Donovan, Geronimo and Hardin [6, 7], Geronimo
and Marcellán [10], Goodman, Lee and Tang [9], Goodman and Lee [8], and Hardin,
Kessler and Massopoust [11]. Multiresolution analyses of multiplicity 1 (i.e., with a sin-
gle scaling function) with arbitrary expansive matrices in L2(R) were studied by Lemarié
[15, 16] and Madych [17], among others, and we should also mention Wojtaszczyk’s ex-
cellent textbook [25]. Properties of low pass filters and scaling functions in this context
were studied by San Antoĺın [19, 20, 21, 22] and Cifuentes, Kazarian and San Antoĺın
[5]. Saliani [18] extended these results to multiresolution analyses of multiplicity n gen-
erated by an expansive matrix. These results were further extended by Soto–Bajo [24]
to multiresolution analyses having an arbitrary (not necessarily finite) set of generator
functions. In [4], Behera studied multiwavelet packets and frame packets of L2(Rd) asso-
ciated with multiresolution analyses of multiplicity n generated by an expansive matrix.
In [26] the author presented a representation theorem for such multiresolution analyses,
in [27] he gave some simple examples for the case n = 1, and in [23] San Antoĺın and the
author obtained representation theorems for vector valued wavelets. Some of the authors
cited above have showed that by using more than one scaling function it is possible to
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construct wavelets that have a set of properties not available for wavelets associated
with a multiresolution analysis having a single scaling function; for instance in [6] they
constructed wavelets associated with more than two scaling functions having compact
support, arbitrary regularity, orthogonality, and symmetry. These results would indicate
that the further study of multiresolution analyses of multiplicity n may lead to other
interesting results.

In what follows, Z will denote the set of integers, Z+ the set of strictly positive
integers and R the set of real numbers; C will denote the set of complex numbers, and
I will stand for the identity matrix. Boldface lowcase letters will denote elements of Rd;
x · y will stand for the standard dot product of the vectors x and y; the vector norm
|| · || is defined by ||x||2 := x · x. If A is a matrix ||A|| will denote the matrix norm
induced by the vector norm || · ||. The inner product of two functions f, g ∈ L2(Rd) will
be denoted by 〈f, g〉, their bracket product by [f, g], and the norm of f by ||f ||; thus,

〈f, g〉 :=

∫
Rd

f(t)g(t) dt,

[f, g](t) :=
∑
k∈Zd

f(t + k)g(t + k),

and
||f || :=

√
〈f, f〉.

The Fourier transform of a function f will be denoted by f̂ . If f ∈ L(Rd),

f̂(x) :=

∫
Rd

e−i2πx·tf(t) dt.

Let A ∈ Cd×d and |a| := det(A). For every j ∈ Z and k ∈ Zd the dilation operator DA
j

and the translation operator Tk are defined on L2(Rd) by

DA
j f(t) := |a|j/2f(Ajt)

and
Tkf(t) := f(t + k)

respectively. Let T := [0, 1], and let Td denote the d–fold cartesian product of T. A
function f will be called Zd–periodic if it is defined on Rd and Tkf = f for every k ∈ Zd
.

Let u = {u1, · · · , um} ⊂ L2(Rd); then

T (u) = T (u1, · · · , um) := {Tku;u ∈ u,k ∈ Zd}

and
S(u) = S(u1, · · · , um) := spanT (u),

where the closure is in L2(Rd). S(u) is called a finitely generated shift–invariant space
or FSI and the functions u` are called the generators of S(u). In this case we will also
use the symbols T (u1, · · · , un) and S(u1, · · · , un) to denote S(u) and T (u) respectively.
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We also define

T (Aj ;u) = T (Aj ;u1, · · · , um) := {DA
j Tku`; ` = 1, · · ·m,k ∈ Zd},

and
S(Aj ;u) = Sj(A

j ;u1, · · · , um) := spanT (Aj ;u).

Given a sequence of functions u := {u1, · · · , um} in L2(Rd), by G[u1, · · · , um](x), Gu(x)
or G(x) we will denote its Gramian matrix, viz.

G(x) :=
(

[û`, ûj ](x)
)m
`,j=1

.

Let Λ ⊂ Z and u = {uk; k ∈ Λ} ⊂ S ⊂ L2(Rd). If S is a shift–invariant space then u
is called a basis generator of S, if for every f ∈ S there are Zd–periodic functions pk,
uniquely determined by f (up to a set of measure 0), such that

f̂ =
∑
k∈Λ

pkûk.

In what follows we will assume that A is a fixed matrix preserving the lattice Zd, i.e.
AZd ⊂ Zd. We will also assume that A is expansive, that is, there exist constants C > 0
and δ > 1 such that for every j ∈ Z+ and x ∈ Rd

||Ajx|| ≥ Cδj ||x||.

Lemma 1. A is expansive if and only if all its eigenvalues have modulus larger that 1.

Proof. Suppose first that all the eigenvalues of A have modulus larger that 1. If A is a
Jordan block, then A = λI+N, where N has 1’s on the superdiagonal and 0’s elsewhere,
and from e.g. [14, Lemma 3.1.4] we deduce that

Ajx =
d∑

k=0

(
j

k

)
λkN j−kx

whence the assertion readily follows, and therefore it also follows when A is in Jordan
canonical form. In general, if Q is the Jordan form of A, then Q = B−1AB and we
have

Cδj ||y|| ≤ ||Qjy|| = ||B−1AjBy|| ≤ ||B−1|| ||AjBy||.

Setting x = By the assertion readily follows.
Conversely, if A has an eigenvalue λ with modulus less or equal to 1 and v is an

eigenvector for λ with ||v|| = 1, then Av = λI; hence ||Ajv|| = |λ|j ≤ |λ|, and ||Ajv||
remains bounded. So A is not expansive.

The previous proof was suggested by Wayne Lawton. An elementary proof may be
found in San Antoĺın’s thesis [19, Lema A.12].
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A multiresolution analysis (MRA) of multiplicity n in L2(Rd) (generated by A) is a
sequence {Vj ; j ∈ Z} of closed linear subspaces of L2(Rd) such that:

(i) Vj ⊂ Vj+1 for every j ∈ Z.

(ii) For every j ∈ Z, f(t) ∈ Vj if and only if f(At) ∈ Vj+1.

(iii)
⋃
j∈Z Vj is dense in L2(Rd).

(iv) There are functions u := {u1, · · · , un} such that T (u) is an orthonormal basis of V0.

From [18, Lemma 17] we know that if {Vj ; j ∈ Z} is a multiresolution analysis, then⋂
j∈Z

Vj = {0}. (1)

This generalizes a result of Cifuentes, Kazarian and San Antoĺın, which was established
for multiresolution analyses of multiplicity 1 (cf. [5, Lemma 4]).

It follows from the definition of multiresolution analysis that there are Zd–periodic
functions p`,j ∈ L2(Td) such that the functions u` satisfy the scaling identity

û`(A
∗x) =

n∑
j=1

p`,j(x)ûj(x), j, ` = 1, · · · , n a.e.,

where A∗ is the transpose of A. The functions u` are called scaling functions for the
multiresolution analysis, and the functions p`,j are called the low pass filters associated
with u.

A finite set of functions ψ = {ψ1, · · · , ψm} ∈ L2(Rd) will be called an orthonormal
wavelet system if the affine sequence

{DA
j Tkψ`; j ∈ Z,k ∈ Zd, ` = 1, · · · ,m}

is an orthonormal basis of L2(Rd).
Let ψ := {ψ1, · · · , ψm} be an orthogonal wavelet system in L2(Rd) generated by a

matrix A, let M := {Vj ; j ∈ Z} be a multiresolution analysis and let Wj denote the
orthogonal complement of Vj in Vj+1. We say that ψ is associated with an MRA, if
T (ψ) is an orthonormal basis of W0.

2 Representation of orthonormal wavelets.

For k > 1 let diag {−eiω, 1, · · · , 1}k denote the k× k diagonal matrix with −eiω, 1, · · · , 1
as its diagonal entries. With the convention that Arg 0 = 0 we have

Theorem 1. Let M := {Vj ; j ∈ Z} be a multiresolution analysis of multiplicity n with
scaling functions u := {u1, · · · , un}, generated by a matrix A that preserves the lattice
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Zd. For 1 ≤ ` ≤ n, let {v`,1, · · · , v`,|a|} be an orthonormal basis generator of S(A, u`),

let e := (1, 0, · · · , 0) ∈ Rk, and

û`(x) =

|a|∑
j=1

b`,j(x)v̂`,j(x), (2)

b`(x) := (b`,1(x), · · · , b`,|a|(x))T , δ`(x) := eiArg b`,1(x), q`(x) := b`(x) + δ`(x)e,

v̂(x) := (v̂1,1(x), · · · , v̂1,|a|(x), · · · , v̂n,1(x), · · · , v̂n,|a|(x))T ,

and
Q`(x) := diag {−δ`(x), 1, · · · , 1}|a|

[
I− 2q`(x)q`(x)∗/q`(x)∗q`(x)

]
.

Let a := detA, m := |a|n, and let

Q(x) =
(
q`,k(x)

)m
`,k=1

be the m×m block diagonal matrix

Q1(x)⊕Q2(x)⊕ · · · ⊕Qm(x) =

 Q1(x) 0
. . .

0 Qn(x)

 .

If
(ŷ1(x), · · · , ŷm(x))T := Q(x)v̂(x),

then
y(`−1)|a|+1 = u`; 1 ≤ ` ≤ n, (3)

and
{y(`−1)|a|+k; 1 ≤ ` ≤ n, 2 ≤ k ≤ |a|}

is an orthonormal wavelet system associated with M .

The preceding theorem was proved in [26, Theorem 9] but there was arguably a gap
in the proof, which is bridged by the following

Lemma 2. Let m = n(|a| − 1), let {Vj ; j ∈ Z} be a multiresolution analysis and assume
that {u`; ` = 1, · · · , n} is an orthonormal basis generator of V0. Then

V1 = S(A, u1)⊕ S(A, u2)⊕ · · · ⊕ S(A, un).

Proof. From [26, Theorem 3] we know that there exist functions v`,k, ` = 1, · · ·n, such
that {v`,1, · · · v`,|a|} is an orthonormal basis generator of S(A, u`). Therefore {v`,k; 1 ≤
` ≤ n, 1 ≤ k ≤ |a|} is an orthogonal basis generator of S(A, u1) ⊕ S(A, u2) ⊕ · · · ⊕
S(A, un), which is a subspace of V1. But [26, Theorem 3] also tells us that every Riesz
generator of V1 has |a|n functions, and the assertion readily follows from [26, Theorem
1].
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We can actually say more: the following theorem elucidates the structure of a mul-
tiresolution analysis of multiplicity n:

Theorem 2. Let {Vj ; j ∈ Z} be a multiresolution analysis and assume that {u`; ` =
1, · · · , n} is an orthonormal basis generator of V0. Then
(a) If j > 0,

Vj = S(Aj , u1)⊕ S(Aj , u2)⊕ · · · ⊕ S(Aj , un).

(b)

L2(Rd) =

∞⋃
j=0

S(Aj ;u1)+
∞⋃
j=0

S(Aj ;u2)+ · · · · · ·+
∞⋃
j=0

S(Aj ;un)

Proof. From [26, Theorem 4] we know that every orthonormal basis generator of Vj , j >
0, must have n|a|j functions, and an argument similar to the one employed in the proof
of Lemma 2 yields (a).

To prove (b), let f ∈ L2(Rd) and let ε > 0 be given; then there is a j ∈ Z+ and a
g ∈ Vj such that ||f − g|| < ε. Since a fortiori g belongs to the closed set

∞⋃
j=0

S(Aj ;u1)+
∞⋃
j=0

S(Aj ;u2)+ · · · · · ·+
∞⋃
j=0

S(Aj ;un)

and ε is arbitrary, the assertion follows.

Theorem 3. Let m = n(|a| − 1), let the functions yk, k = 1 · · · |a|n be constructed as
in Theorem 1, and let qj = yj+` for ` = 1, · · ·n, j = `|a|, · · · , (` + 1)(|a| − 1). Then
{w1, · · ·wr} is an orthonormal wavelet system if and only if r = m and there exists an
orthogonal matrix Q(x) such that

(w1, · · ·wm)T = Q(x)(q1, · · · qm)T .

Proof. From Theorem 1 we know that {q1, · · · qm} is an orthonormal basis system or,
equivalently, that it is an orthonormal basis generator of S(u). The assertion now readily
follows from [26, Corollary 3 and Theorem 5].
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[15] P.G. Lemarié–Rieusset, Fonctions d‘ećhelle pour les ondelettes de dimension n.
C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 2, 145–148.
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[21] A. San Antoĺın, Lawton’s Condition on Regular Low Pass Filters, J. Concrete
Applic. Mathematics 8, No. 3 (2010), 416–425.
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Abstract

Here we give a very general fractional Bochner integral representation
formula for Banach space valued functions. We derive generalized left and
righ fractional Opial type inequalities, fractional Ostrowski type inequali-
ties and fractional Grüss type inequalities. All these inequalities are very
general having in their background Bochner type integrals.

2010 AMS Mathematics Subject Classi�cation : 26A33, 26B40, 26D10,
26D15, 46B25, 46E40.
Keywords and Phrases: Bamach space valued functions, vector generalized
fractional derivative, Caputo fractional derivative, generalized vector fractional
integral inequalities, Bochner integral, fractional vector representation formula.

1 Background

We need

De�nition 1 ([2]) Let [a; b] � R, (X; k�k) a Banach space, g 2 C1 ([a; b]) and
increasing, f 2 C ([a; b] ; X), � > 0.
We de�ne the left Riemann-Liouville generalized fractional Bochner integral

operator

�
I�a+;gf

�
(x) :=

1

� (�)

Z x

a

(g (x)� g (z))��1 g0 (z) f (z) dz; (1)

8 x 2 [a; b], where � is the gamma function.
The last integral is of Bochner type. Since f 2 C ([a; b] ; X), then f 2

L1 ([a; b] ; X). By [2] we get that I�a+;gf 2 C ([a; b] ; X). Above we set I0a+;gf :=
f and see that

�
I�a+;gf

�
(a) = 0:
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When g is the identity function id, we get that I�a+;id = I�a+, the ordinary
left Riemann-Liouville fractional integral

�
I�a+f

�
(x) =

1

� (�)

Z x

a

(x� t)��1 f (t) dt; (2)

8 x 2 [a; b],
�
I�a+f

�
(a) = 0:

We need

Theorem 2 ([2]) Let �; � > 0 and f 2 C ([a; b] ; X). Then

I�a+;gI
�
a+;gf = I

�+�
a+;gf = I

�
a+;gI

�
a+;gf: (3)

We need

De�nition 3 ([2]) Let [a; b] � R, (X; k�k) a Banach space, g 2 C1 ([a; b]) and
increasing, f 2 C ([a; b] ; X), � > 0.
We de�ne the right Riemann-Liouville generalized fractional Bochner inte-

gral operator

�
I�b�;gf

�
(x) :=

1

� (�)

Z b

x

(g (z)� g (x))��1 g0 (z) f (z) dz; (4)

8 x 2 [a; b], where � is the gamma function.
The last integral is of Bochner type. Since f 2 C ([a; b] ; X), then f 2

L1 ([a; b] ; X). By [2] we get that I�b�;gf 2 C ([a; b] ; X). Above we set I0b�;gf :=
f and see that

�
I�b�;gf

�
(b) = 0:

When g is the identity function id, we get that I�b�;id = I�b�, the ordinary
right Riemann-Liouville fractional integral

�
I�b�f

�
(x) =

1

� (�)

Z b

x

(t� x)��1 f (t) dt; (5)

8 x 2 [a; b], with
�
I�b�f

�
(b) = 0:

We need

Theorem 4 ([2]) Let �; � > 0 and f 2 C ([a; b] ; X). Then

I�b�;gI
�
b�;gf = I

�+�
b�;gf = I

�
b�;gI

�
b�;gf: (6)

We will use

De�nition 5 ([2]) Let � > 0, d�e = n, d�e the ceiling of the number. Let
f 2 Cn ([a; b] ; X), where [a; b] � R, and (X; k�k) is a Banach space. Let g 2
C1 ([a; b]) ; strictly increasing, such that g�1 2 Cn ([g (a) ; g (b)]) :

2
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We de�ne the left generalized g-fractional derivative X-valued of f of order
� as follows:�
D�
a+;gf

�
(x) :=

1

� (n� �)

Z x

a

(g (x)� g (t))n���1 g0 (t)
�
f � g�1

�(n)
(g (t)) dt;

(7)
8 x 2 [a; b]. The last integral is of Bochner type.
If � =2 N, by [2], we have that

�
D�
a+;gf

�
2 C ([a; b] ; X).

We see that�
In��a+;g

��
f � g�1

�(n) � g�� (x) = �D�
a+;gf

�
(x) ; 8 x 2 [a; b] : (8)

We set

Dn
a+;gf (x) :=

��
f � g�1

�(n) � g� (x) 2 C ([a; b] ; X) , n 2 N, (9)

D0
a+;gf (x) = f (x) ; 8 x 2 [a; b] :

When g = id, then
D�
a+;gf = D

�
a+;idf = D

�
�af; (10)

the usual left X-valued Caputo fractional derivative, see [3].

We will use

De�nition 6 ([2]) Let � > 0, d�e = n, d�e the ceiling of the number. Let
f 2 Cn ([a; b] ; X), where [a; b] � R, and (X; k�k) is a Banach space. Let g 2
C1 ([a; b]) ; strictly increasing, such that g�1 2 Cn ([g (a) ; g (b)]) :
We de�ne the right generalized g-fractional derivative X-valued of f of order

� as follows:

�
D�
b�;gf

�
(x) :=

(�1)n

� (n� �)

Z b

x

(g (t)� g (x))n���1 g0 (t)
�
f � g�1

�(n)
(g (t)) dt;

(11)
8 x 2 [a; b]. The last integral is of Bochner type.
If � =2 N, by [2], we have that

�
D�
b�;gf

�
2 C ([a; b] ; X).

We see that

In��b�;g

�
(�1)n

�
f � g�1

�(n) � g� (x) = �D�
b�;gf

�
(x) ; a � x � b: (12)

We set

Dn
b�;gf (x) := (�1)

n
��
f � g�1

�n � g� (x) 2 C ([a; b] ; X) , n 2 N, (13)

D0
b�;gf (x) := f (x) ; 8 x 2 [a; b] :

When g = id, then

D�
b�;gf (x) = D

�
b�;idf (x) = D

�
b�f; (14)

the usual right X-valued Caputo fractional derivative, see [3].
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We make

Remark 7 All as in De�nition 5. We have (by Theorem 2.5, p. 7, [5])�D�
a+;gf

�
(x)
 � 1

� (n� �)

Z x

a

(g (x)� g (t))n���1 g0 (t)
�f � g�1�(n) (g (t)) dt

�

�f � g�1�(n) � g
1;[a;b]

� (n� �)

Z g(x)

g(a)

(g (x)� g (t))n���1 dg (t) =�f � g�1�(n) � g
1;[a;b]

� (n� �+ 1) (g (x)� g (a))n�� : (15)

That is

�D�
a+;gf

�
(x)
 �

�f � g�1�(n) � g
1;[a;b]

� (n� �+ 1) (g (x)� g (a))n�� ; (16)

8 x 2 [a; b] :
If � =2 N, then

�
D�
a+;gf

�
(a) = 0.

Similarly, by De�nition 6 we derive�D�
b�;gf

�
(x)
 � 1

� (n� �)

Z b

x

(g (t)� g (x))n���1 g0 (t)
�f � g�1�(n) (g (t)) dt

�

�f � g�1�(n) � g
1;[a;b]

� (n� �)

Z g(b)

g(x)

(g (t)� g (x))n���1 dg (t) =�f � g�1�(n) � g
1;[a;b]

� (n� �+ 1) (g (b)� g (x))n�� : (17)

That is

�D�
b�;gf

�
(x)
 �

�f � g�1�(n) � g
1;[a;b]

� (n� �+ 1) (g (b)� g (x))n�� ; (18)

8 x 2 [a; b] :
If � =2 N, then

�
D�
b�;gf

�
(b) = 0.

Notation 8 We denote by

Dn�
a+;g := D

�
a+;gD

�
a+;g:::D

�
a+;g (n times), n 2 N; (19)

In�a+;g := I
�
a+;gI

�
a+;g:::I

�
a+;g; (20)

Dn�
b�;g := D

�
b�;gD

�
b�;g:::D

�
b�;g, (21)

and
In�b�;g := I

�
b�;gI

�
b�;g:::I

�
b�;g; (22)

(n times), n 2 N:

4
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We are motivated by the following generalized fractional Ostrowski type
inequality:

Theorem 9 ([2]) Let g 2 C1 ([a; b]) and strictly increasing, such that g�1 2
C1 ([g (a) ; g (b)]), and 0 < � < 1, n 2 N, f 2 C1 ([a; b] ; X), where (X; k�k)
is a Banach space. Let x0 2 [a; b] be �xed. Assume that F x0k := Dk�

x0�;gf , for
k = 1; :::; n; ful�ll F x0k 2 C1 ([a; x0] ; X) and

�
Di�
x0�;gf

�
(x0) = 0, i = 2; :::; n:

Similarly, we assume that Gx0k := Dk�
x0+;gf , for k = 1; :::; n; ful�ll Gx0k 2

C1 ([x0; b] ; X) and
�
Di�
x0+;gf

�
(x0) = 0, i = 2; :::; n:

Then  1

b� a

Z b

a

f (x) dx� f (x0)
 � 1

(b� a) � ((n+ 1)�+ 1) ��
(g (b)� g (x0))(n+1)� (b� x0)

D(n+1)�
x0+;g f


1;[x0;b]

+

(g (x0)� g (a))(n+1)� (x0 � a)
D(n+1)�

x0�;g f

1;[a;x0]

�
: (23)

In this work we will present several generalized fractional Bochner integral
inequalities.
We mention the following g-left generalized X-valued Taylor�s formula:

Theorem 10 ([2]) Let � > 0, n = d�e, and f 2 Cn ([a; b] ; X), where [a; b] � R
and (X; k�k) is a Banach space. Let g 2 C1 ([a; b]), strictly increasing, such that
g�1 2 Cn ([g (a) ; g (b)]). Then

f (x) = f (a) +

n�1X
i=1

(g (x)� g (a))i

i!

�
f � g�1

�(i)
(g (a))+

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t)
�
D�
a+;gf

�
(t) dt =

f (a) +
n�1X
i=1

(g (x)� g (a))i

i!

�
f � g�1

�(i)
(g (a))+ (24)

1

� (�)

Z g(x)

g(a)

(g (x)� z)��1
��
D�
a+;gf

�
� g�1

�
(z) dz; 8 x 2 [a; b] :

We mention the following g-right generalized X-valued Taylor�s formula:

Theorem 11 ([2]) Let � > 0, n = d�e, and f 2 Cn ([a; b] ; X), where [a; b] � R
and (X; k�k) is a Banach space. Let g 2 C1 ([a; b]), strictly increasing, such that
g�1 2 Cn ([g (a) ; g (b)]). Then

f (x) = f (b) +
n�1X
i=1

(g (x)� g (b))i

i!

�
f � g�1

�(i)
(g (b))+

5
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1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t)
�
D�
b�;gf

�
(t) dt =

f (b) +
n�1X
i=1

(g (x)� g (b))i

i!

�
f � g�1

�(i)
(g (b))+ (25)

1

� (�)

Z g(b)

g(x)

(z � g (x))��1
��
D�
b�;gf

�
� g�1

�
(z) dz; 8 x 2 [a; b] :

For the Bochner integral excellent resources are [4], [6], [7] and [1], pp. 422-
428.

2 Main Results

We give the following representation formula:

Theorem 12 All as in Theorem 10. Then

f (y) =
1

b� a

Z b

a

f (x) dx�
n�1X
k=1

�
f � g�1

�(k)
(g (y))

k! (b� a)

Z b

a

(g (x)� g (y))k dx+R1 (y) ;

(26)
for any y 2 [a; b], where

R1 (y) = �
1

� (�) (b� a)"Z b

a

�[a;y) (x)

�Z y

x

jg (x)� g (t)j��1 g0 (t)
�
D�
y�;gf

�
(t) dt

�
dx

Z b

a

�[y;b] (x)

�Z x

y

jg (x)� g (t)j��1 g0 (t)
�
D�
y+;gf

�
(t) dt

�
dx

#
: (27)

here �A stands for the characteristic function set A, where A is an arbitrary
set.
One may write also that

R1 (y) = �
1

� (�) (b� a)

�Z y

a

�Z y

x

(g (t)� g (x))��1 g0 (t)
�
D�
y�;gf

�
(t) dt

�
dx

(28)

+

Z b

y

�Z x

y

(g (x)� g (t))��1 g0 (t)
�
D�
y+;gf

�
(t) dt

�
dx

#
;

for any y 2 [a; b] :
Putting things together, one has

f (y) =
1

b� a

Z b

a

f (x) dx�
n�1X
k=1

�
f � g�1

�(k)
(g (y))

k! (b� a)

Z b

a

(g (x)� g (y))k dx

6
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� 1

� (�) (b� a)

"Z b

a

�[a;y) (x)

�Z y

x

jg (x)� g (t)j��1 g0 (t)
�
D�
y�;gf

�
(t) dt

�
dx

Z b

a

�[y;b] (x)

�Z x

y

jg (x)� g (t)j��1 g0 (t)
�
D�
y+;gf

�
(t) dt

�
dx

#
: (29)

In particular, one has

f (y)� 1

b� a

Z b

a

f (x) dx+
n�1X
k=1

�
f � g�1

�(k)
(g (y))

k! (b� a)

Z b

a

(g (x)� g (y))k dx = R1 (y) ;

(30)
for any y 2 [a; b] :

Proof. Here x; y 2 [a; b]. We keep y as �xed.
By Theorem 10 we get:

f (x) = f (y) +
n�1X
k=1

�
f � g�1

�(k)
(g (y))

k!
(g (x)� g (y))k + (31)

1

� (�)

Z x

y

(g (x)� g (t))��1 g0 (t)
�
D�
y+;gf

�
(t) dt; for any x � y:

By Theorem 11 we get:

f (x) = f (y) +
n�1X
k=1

�
f � g�1

�(k)
(g (y))

k!
(g (x)� g (y))k + (32)

1

� (�)

Z y

x

(g (t)� g (x))��1 g0 (t)
�
D�
y�;gf

�
(t) dt; for any x � y:

By (31), (32) we notice thatZ b

a

f (x) dx =

Z y

a

f (x) dx+

Z b

y

f (x) dx = (33)

Z y

a

f (y) dx+
n�1X
k=1

�
f � g�1

�(k)
(g (y))

k!

Z y

a

(g (x)� g (y))k dx+

1

� (�)

Z y

a

�Z y

x

(g (t)� g (x))��1 g0 (t)
�
D�
y�;gf

�
(t) dt

�
dx+

Z b

y

f (y) dx+
n�1X
k=1

�
f � g�1

�(k)
(g (y))

k!

Z b

y

(g (x)� g (y))k dx+

1

� (�)

Z b

y

�Z x

y

(g (x)� g (t))��1 g0 (t)
�
D�
y+;gf

�
(t) dt

�
dx:

7
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Hence it holds

1

b� a

Z b

a

f (x) dx = f (y) +
n�1X
k=1

�
f � g�1

�(k)
(g (y))

k! (b� a)

Z b

a

(g (x)� g (y))k dx+

(34)
1

� (�) (b� a)

�Z y

a

�Z y

x

jg (x)� g (t)j��1 g0 (t)
�
D�
y�;gf

�
(t) dt

�
dx+Z b

y

�Z x

y

jg (x)� g (t)j��1 g0 (t)
�
D�
y+;gf

�
(t) dt

�
dx

#
:

Therefore we obtain

f (y) =
1

b� a

Z b

a

f (x) dx�
n�1X
k=1

�
f � g�1

�(k)
(g (y))

k! (b� a)

Z b

a

(g (x)� g (y))k dx�

(35)
1

� (�) (b� a)

�Z y

a

�Z y

x

jg (x)� g (t)j��1 g0 (t)
�
D�
y�;gf

�
(t) dt

�
dx+Z b

y

�Z x

y

jg (x)� g (t)j��1 g0 (t)
�
D�
y+;gf

�
(t) dt

�
dx

#
:

Hence the remainder

R1 (y) := �
1

� (�) (b� a)

�Z y

a

�Z y

x

jg (x)� g (t)j��1 g0 (t)
�
D�
y�;gf

�
(t) dt

�
dx

+

Z b

y

�Z x

y

jg (x)� g (t)j��1 g0 (t)
�
D�
y+;gf

�
(t) dt

�
dx

#
=

� 1

� (�) (b� a)

"Z b

a

�[a;y) (x)

�Z y

x

jg (x)� g (t)j��1 g0 (t)
�
D�
y�;gf

�
(t) dt

�
dx

(36)

+

Z b

a

�[y;b] (x)

�Z x

y

jg (x)� g (t)j��1 g0 (t)
�
D�
y+;gf

�
(t) dt

�
dx

#
:

The theorem is proved.
Next we present a left fractional Opial type inequality:

Theorem 13 All as in Theorem 10. Additionally assume that � � 1, g 2
C1 ([a; b]), and

�
f � g�1

�(k)
(g (a)) = 0, for k = 0; 1; :::; n � 1. Let p; q > 1 :

1
p +

1
q = 1. ThenZ x

a

kf (w)k
�D�

a+;gf
�
(w)
 g0 (w) dw � 1

� (�) 2
1
q

� (37)

�Z x

a

�Z w

a

(g (w)� g (t))p(��1) dt
�
dw

� 1
p
�Z x

a

(g0 (w))
q �D�

a+;gf
�
(w)
q dw� 2

q

;

8 x 2 [a; b] :

8
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Proof. By Theorem 10, we have that

f (x) =
1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t)
�
D�
a+;gf

�
(t) dt; 8 x 2 [a; b] : (38)

Then, by Hölder�s inequality we obtain,

kf (x)k � 1

� (�)

�Z x

a

(g (x)� g (t))p(��1) dt
� 1

p
�Z x

a

(g0 (t))
q �D�

a+;gf
�
(t)
q dt� 1

q

:

(39)
Call

z (x) :=

Z x

a

(g0 (t))
q �D�

a+;gf
�
(t)
q dt; (40)

z (a) = 0.
Thus

z0 (x) = (g0 (x))
q �D�

a+;gf
�
(x)
q � 0; (41)

and
(z0 (x))

1
q = g0 (x)

�D�
a+;gf

�
(x)
 � 0; 8 x 2 [a; b] : (42)

Consequently, we get

kf (w)k g0 (w)
�D�

a+;gf
�
(w)
 � (43)

1

� (�)

�Z w

a

(g (w)� g (t))p(��1) dt
� 1

p

(z (w) z0 (w))
1
q ; 8 w 2 [a; b] :

Then Z x

a

kf (w)k
�D�

a+;gf
�
(w)
 g0 (w) dw � (44)

1

� (�)

Z x

a

�Z w

a

(g (w)� g (t))p(��1) dt
� 1

p

(z (w) z0 (w))
1
q dw �

1

� (�)

�Z x

a

�Z w

a

(g (w)� g (t))p(��1) dt
�
dw

� 1
p
�Z x

a

z (w) z0 (w) dw

� 1
q

=

(45)

1

� (�)

�Z x

a

�Z w

a

(g (w)� g (t))p(��1) dt
�
dw

� 1
p
�
z2 (x)

2

� 1
q

=

1

� (�)

�Z x

a

�Z w

a

(g (w)� g (t))p(��1) dt
�
dw

� 1
p

�

�Z x

a

(g0 (t))
q �D�

a+;gf
�
(t)
q dt� 2

q

� 2�
1
q : (46)

The theorem is proved.
We also give a right fractional Opial type inequality:

9
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Theorem 14 All as in Theorem 11. Additionally assume that � � 1, g 2
C1 ([a; b]), and

�
f � g�1

�(k)
(g (b)) = 0, k = 0; 1; :::; n� 1. Let p; q > 1 : 1p +

1
q =

1. Then Z b

x

kf (w)k
�D�

b�;gf
�
(w)
 g0 (w) dw � 1

2
1
q � (�)

� (47)

 Z b

x

 Z b

w

(g (t)� g (w))p(��1) dt
!
dw

! 1
p
 Z b

x

(g0 (w))
q �D�

b�;gf
�
(w)
q dw! 2

q

;

all a � x � b:

Proof. By Theorem 11, we have that

f (x) =
1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t)
�
D�
b�;gf

�
(t) dt; all a � x � b: (48)

Then, by Hölder�s inequality we obtain,

kf (x)k � 1

� (�)

 Z b

x

(g (t)� g (x))p(��1) dt
! 1

p
 Z b

x

(g0 (t))
q �D�

b�;gf
�
(t)
q dt! 1

q

:

(49)
Call

z (x) :=

Z b

x

(g0 (t))
q �D�

b�;gf
�
(t)
q dt; (50)

z (b) = 0.
Hence

z0 (x) = � (g0 (x))q
�D�

b�;gf
�
(x)
q � 0; (51)

and
�z0 (x) = (g0 (x))q

�D�
b�;gf

�
(x)
q � 0; (52)

and
(�z0 (x))

1
q = g0 (x)

�D�
b�;gf

�
(x)
 � 0; 8 x 2 [a; b] : (53)

Consequently, we get

kf (w)k g0 (w)
�D�

b�;gf
�
(w)
 �

1

� (�)

 Z b

w

(g (t)� g (w))p(��1) dt
! 1

p

(z (w) (�z0 (w)))
1
q ; 8 w 2 [a; b] : (54)

Then Z b

x

kf (w)k
�D�

b�;gf
�
(w)
 g0 (w) dw � (55)

1

� (�)

Z b

x

 Z b

w

(g (t)� g (w))p(��1) dt
! 1

p

(�z (w) z0 (w))
1
q dw �

10
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1

� (�)

 Z b

x

 Z b

w

(g (t)� g (w))p(��1) dt
!
dw

! 1
p
 
�
Z b

x

z (w) z0 (w) dw

! 1
q

=

(56)

1

� (�)

 Z b

x

 Z b

w

(g (t)� g (w))p(��1) dt
!
dw

! 1
p �

z2 (x)

2

� 1
q

=

1

2
1
q � (�)

 Z b

x

 Z b

w

(g (t)� g (w))p(��1) dt
!
dw

! 1
p

�

 Z b

x

(g0 (t))
q �D�

b�;gf
�
(t)
q dt! 2

q

: (57)

The theorem is proved.
Two extreme fractional Opial type inequalities follow (case p = 1, q =1).

Theorem 15 All as in Theorem 10. Assume that
�
f � g�1

�(k)
(g (a)) = 0,

k = 0; 1; :::; n� 1. ThenZ x

a

kf (w)k
D�

a+;gf (w)
 dw � D�

a+;gf
2
1

� (�+ 1)

�Z x

a

(g (w)� g (a))� dw
�
; (58)

all a � x � b:

Proof. For any w 2 [a; b], we have that

f (x) =
1

� (�)

Z w

a

(g (w)� g (t))��1 g0 (t)
�
D�
a+;gf

�
(t) dt; (59)

and

kf (x)k � 1

� (�)

�Z w

a

(g (w)� g (t))��1 g0 (t) dt
�D�

a+;gf

1

=

D�
a+;gf


1

� (�+ 1)
(g (w)� g (a))� : (60)

Hence we obtain

kf (w)k
D�

a+;gf (w)
 � D�

a+;gf
2
1

� (�+ 1)
(g (w)� g (a))� : (61)

Integrating (61) over [a; x] we derive (58).

Theorem 16 All as in Theorem 11. Assume that
�
f � g�1

�(k)
(g (b)) = 0, k =

0; 1; :::; n� 1. Then

Z b

x

kf (w)k
D�

b�;gf (w)
 dw �

D�
b�;gf

2
1

� (�+ 1)

 Z b

x

(g (b)� g (w))� dw
!
; (62)

all a � x � b:

11
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Proof. For any w 2 [a; b], we have

f (x) =
1

� (�)

Z b

w

(g (t)� g (w))��1 g0 (t)
�
D�
b�;gf

�
(t) dt; (63)

and

kf (x)k � 1

� (�)

 Z b

w

(g (t)� g (w))��1 g0 (t) dt
!D�

b�;gf

1

=

D�
b�;gf


1

� (�+ 1)
(g (b)� g (w))� : (64)

Hence we obtain

kf (w)k
D�

b�;gf (w)
 �

D�
b�;gf

2
1

� (�+ 1)
(g (b)� g (w))� : (65)

Integrating (65) over [x; b] we derive (62).
Next we present three fractional Ostrowski type inequalities:

Theorem 17 All as in Theorem 10. Thenf (y)� 1

b� a

Z b

a

f (x) dx+
n�1X
k=1

�
f � g�1

�(k)
(g (y))

k! (b� a)

Z b

a

(g (x)� g (y))k dx
 �
(66)

1

� (�+ 1) (b� a) �h
(g (y)� g (a))� (y � a)

D�
y�;gf


1 + (g (b)� g (y))� (b� y)

D�
y+;gf


1

i
;

8 y 2 [a; b] :

Proof. De�ne �
D�
y+;gf

�
(t) = 0, for t < y;
and�

D�
y�;gf

�
(t) = 0, for t > y:

(67)

Notice for 0 < � =2 N by Remark 7 we have�
D�
a+;gf

�
(a) = 0: (68)

Similarly it holds (0 < � =2 N) by Remark 7 that�
D�
b�;gf

�
(b) = 0: (69)

Thus �
D�
y+;gf

�
(y) = 0,

�
D�
y�;gf

�
(y) = 0; (70)

0 < � =2 N, any y 2 [a; b] :

12
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We observe that

kR1 (y)k
(28)
� 1

� (�) (b� a)

��Z y

a

�Z y

x

(g (t)� g (x))��1 g0 (t) dt
�
dx

�D�
y�;gf


1

(71)

+

 Z b

y

�Z x

y

(g (x)� g (t))��1 g0 (t) dt
�
dx

!D�
y+;gf


1

#
=

1

� (�) (b� a)

��Z y

a

(g (y)� g (x))�

�
dx

�D�
y�;gf


1

+

 Z b

y

(g (x)� g (y))�

�
dx

!D�
y+;gf


1

#
�

1

� (�+ 1) (b� a)

h
(g (y)� g (a))� (y � a)

D�
y�;gf


1+

(g (b)� g (y))� (b� y)
D�

y+;gf

1

i
: (72)

We have proved that

kR1 (y)k �
1

� (�+ 1) (b� a)

h
(g (y)� g (a))� (y � a)

D�
y�;gf


1 (73)

+(g (b)� g (y))� (b� y)
D�

y+;gf

1

i
;

any y 2 [a; b].
We have established the theorem.

Theorem 18 All as in Theorem 10. Here we take � � 1. Thenf (y)� 1

b� a

Z b

a

f (x) dx+

n�1X
k=1

�
f � g�1

�(k)
(g (y))

k! (b� a)

Z b

a

(g (x)� g (y))k dx
 �

1

� (�) (b� a)

h�D�
y�;gf

�
� g�1


1;[g(a);g(y)]

(y � a) (g (y)� g (a))��1

+
�D�

y+;gf
�
� g�1


1;[g(y);g(b)]

(b� y) (g (b)� g (y))��1
i
; (74)

8 y 2 [a; b] :

Proof. We can rewrite

R1 (y) = �
1

� (�) (b� a)

"Z y

a

 Z g(y)

g(x)

(z � g (x))��1
��
D�
y�;gf

�
� g�1

�
(z) dz

!
dx

(75)

+

Z b

y

 Z g(x)

g(y)

(g (x)� z)��1
��
D�
y+;gf

�
� g�1

�
(z) dz

!
dx

#
:

13
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We assumed � � 1, then

kR1 (y)k �
1

� (�) (b� a) �"Z y

a

 Z g(y)

g(x)

(z � g (x))��1
��D�

y�;gf
�
� g�1

�
(z)
 dz! dx (76)

+

Z b

y

 Z g(x)

g(y)

(g (x)� z)��1
��D�

y+;gf
�
� g�1

�
(z)
 dz! dx# �

1

� (�) (b� a)

" Z y

a

 Z g(y)

g(x)

��D�
y�;gf

�
� g�1

�
(z)
 dz! dx! (g (y)� g (a))��1

+

 Z b

y

 Z g(x)

g(y)

��D�
y+;gf

�
� g�1

�
(z)
 dz! dx! (g (b)� g (y))��1# �

1

� (�) (b� a)

h�D�
y�;gf

�
� g�1


1;[g(a);g(y)]

(y � a) (g (y)� g (a))��1 (77)

+
�D�

y+;gf
�
� g�1


1;[g(y);g(b)]

(b� y) (g (b)� g (y))��1
i
:

So when � � 1, we obtained

kR1 (y)k �
1

� (�) (b� a)

h�D�
y�;gf

�
� g�1


1;[g(a);g(y)]

(y � a) (g (y)� g (a))��1

(78)

+
�D�

y+;gf
�
� g�1


1;[g(y);g(b)]

(b� y) (g (b)� g (y))��1
i
:

Clearly here g�1 is continuous, thus
�
D�
y�;gf

�
� g�1 2 C ([g (a) ; g (y)] ; X), and�

D�
y+;gf

�
� g�1 2 C ([g (y) ; g (b)] ; X) : Therefore�D�
y�;gf

�
� g�1


1;[g(a);g(y)]

;
�D�

y+;gf
�
� g�1


1;[g(y);g(b)]

<1: (79)

The proof of the theorem now is complete.

Theorem 19 All as in Theorem 10. Let p; q > 1 : 1p +
1
q = 1, � >

1
q . Thenf (y)� 1

b� a

Z b

a

f (x) dx+
n�1X
k=1

�
f � g�1

�(k)
(g (y))

k! (b� a)

Z b

a

(g (x)� g (y))k dx

(80)

� 1

� (�) (b� a) (p (�� 1) + 1)
1
p

�h
(g (y)� g (a))��1+

1
p (y � a)

�D�
y�;gf

�
� g�1


q;[g(a);g(y)]

+(g (b)� g (y))��1+
1
p (b� y)

�D�
y+;gf

�
� g�1


q;[g(y);g(b)]

i
;

8 y 2 [a; b] :

14
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Proof. Here we use (75).
We get that

kR1 (y)k �
1

� (�) (b� a)

24Z y

a

 Z g(y)

g(x)

(z � g (x))p(��1) dz
! 1

p

�

 Z g(y)

g(x)

��D�
y�;gf

�
� g�1

�
(z)
q dz! 1

q

dx+

Z b

y

 Z g(x)

g(y)

(g (x)� z)p(��1) dz
! 1

p

�

 Z g(x)

g(y)

��D�
y+;gf

�
� g�1

�
(z)
q dz! 1

q

dx

35 �
1

� (�) (b� a)

" Z y

a

(g (y)� g (x))(��1)+
1
p

(p (�� 1) + 1)
1
p

dx

!�D�
y�;gf

�
� g�1


q;[g(a);g(y)]

(81)

+

 Z y

a

(g (x)� g (y))(��1)+
1
p

(p (�� 1) + 1)
1
p

dx

!�D�
y+;gf

�
� g�1


q;[g(y);g(b)]

#
:

(here it is �� 1 + 1
p > 0)

Hence it holds

kR1 (y)k �
1

� (�) (b� a) (p (�� 1) + 1)
1
p

� (82)

h
(g (y)� g (a))��1+

1
p (y � a)

�D�
y�;gf

�
� g�1


q;[g(a);g(y)]

+

(g (b)� g (y))��1+
1
p (b� y)

�D�
y+;gf

�
� g�1


q;[g(y);g(b)]

i
:

Clearly here�D�
y�;gf

�
� g�1


q;[g(a);g(y)]

;
�D�

y+;gf
�
� g�1


q;[g(y);g(b)]

<1:

We have proved the theorem.
Next we give some fractional Grüss type inequalities:

Theorem 20 Let f; h as in Theorem 10. Here R1 (y) will be renamed as
R1 (f; y), so we can consider R1 (h; y). Then
1)

�n (f; h) :=
1

b� a

Z b

a

f (x)h (x) dx�

�R b
a
f (x) dx

��R b
a
h (x) dx

�
(b� a)2

+

1

2 (b� a)2
n�1X
k=1

1

k!

"Z b

a

 Z b

a

�
h (y)

�
f � g�1

�(k)
(g (y))+

15
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f (y)
�
h � g�1

�(k)
(g (y))

�
(g (x)� g (y))k dx

�
dy
i
=

1

2 (b� a)

"Z b

a

(h (y)R1 (f; y) + f (y)R1 (h; y)) dy

#
=: Kn (f; h) ; (83)

2) it holds

k�n (f; h)k �
(g (b)� g (a))�

2� (�+ 1)

"
khk1

 
sup
y2[a;b]

�D�
y�;gf


1 +

D�
y+;gf


1

�!

+ kfk1

 
sup
y2[a;b]

�D�
y�;gh


1 +

D�
y+;gh


1

�!#
; (84)

3) if � � 1, we get:

k�n (f; h)k �
1

2� (�) (b� a) (g (b)� g (a))
��1 � (85)

(
khk1

 
sup
y2[a;b]

��D�
y�;gf

�
� g�1


1;[g(a);g(b)]

+
�D�

y+;gf
�
� g�1


1;[g(a);g(b)]

�!
+

kfk1

 
sup
y2[a;b]

��D�
y�;gh

�
� g�1


1;[g(a);g(b)]

+
�D�

y+;gh
�
� g�1


1;[g(a);g(b)]

�!)
;

4) if p; q > 1 : 1p +
1
q = 1, � >

1
q , we get:

k�n (f; h)k �
(g (b)� g (a))��1+

1
p

2� (�) (p (�� 1) + 1)
1
p

� (86)

(
khk1

 
sup
y2[a;b]

��D�
y�;gf

�
� g�1


q;[g(a);g(b)]

+
�D�

y+;gf
�
� g�1


q;[g(a);g(b)]

�!
+

kfk1

 
sup
y2[a;b]

��D�
y�;gh

�
� g�1


q;[g(a);g(b)]

+
�D�

y+;gh
�
� g�1


q;[g(a);g(b)]

�!)
:

All right hand sides of (84)-(86) are �nite.

Proof. By Theorem 10 we have

h (y) f (y) =
h (y)

b� a

Z b

a

f (x) dx�

n�1X
k=1

h (y)
�
f � g�1

�(k)
(g (y))

k! (b� a)

Z b

a

(g (x)� g (y))k dx+ h (y)R1 (f; y) ; (87)

16
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and

f (y)h (y) =
f (y)

b� a

Z b

a

h (x) dx�

n�1X
k=1

f (y)
�
h � g�1

�(k)
(g (y))

k! (b� a)

Z b

a

(g (x)� g (y))k dx+ f (y)R1 (h; y) ; (88)

8 y 2 [a; b] :
Then integrating (87) we �nd

Z b

a

h (y) f (y) dy =

�R b
a
h (y) dy

�
b� a

 Z b

a

f (x) dx

!
�

n�1X
k=1

1

k! (b� a)

Z b

a

Z b

a

h (y)
�
f � g�1

�(k)
(g (y)) (g (x)� g (y))k dxdy

+

Z b

a

h (y)R1 (f; y) dy; (89)

and integrating (88) we obtain

Z b

a

f (y)h (y) dy =

�R b
a
f (y) dy

��R b
a
h (x) dx

�
b� a �

n�1X
k=1

1

k! (b� a)

Z b

a

Z b

a

f (y)
�
h � g�1

�(k)
(g (y)) (g (x)� g (y))k dxdy

+

Z b

a

f (y)R1 (h; y) dy: (90)

Adding the last two equalities (89) and (90), we get:

2

Z b

a

f (x)h (x) dx =
2
�R b

a
f (x) dx

��R b
a
h (x) dx

�
b� a �

n�1X
k=1

1

k! (b� a)

""Z b

a

Z b

a

h (y)
�
f � g�1

�(k)
(g (y)) + f (y)

�
h � g�1

�(k)
(g (y))

#
�

(g (x)� g (y))k dxdy
i
+

Z b

a

(h (y)R1 (f; y) + f (y)R1 (h; y)) dy: (91)

Divide the last (91) by 2 (b� a) to obtain (83).
Then, we upper bound Kn (f; h) using Theorems 17, 18, 19, to obtain (84)-

(86), respectively.
We use also that a norm is a continuous function. The theorem is proved.

We make
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Remark 21 (in support of the proof of Theorem 20) Let � > 0, � =2 N, d�e = n.
We have�
D�
y+;gf

�
(x) =

1

� (n� �)

Z x

y

(g (x)� g (t))n���1 g0 (t)
�
f � g�1

�(n)
(g (t)) dt;

(92)
8 x 2 [y; b] ; and

�
D�
y�;gf

�
(x) =

(�1)n

� (n� �)

Z y

x

(g (t)� g (x))n���1 g0 (t)
�
f � g�1

�(n)
(g (t)) dt;

(93)
8 x 2 [a; y] ; both are Bochner type integrals.
By change of variables for Bochner integrals, see [6], Lemma B. 4.10 and

[7], p. 158, we get:

�
D�
y+;gf

�
(x) =

1

� (n� �)

Z g(x)

g(y)

(g (x)� z)n���1
�
f � g�1

�(n)
(z) dz =

�
D�
g(y)+

�
f � g�1

��
(g (x)) ; 8 x 2 [y; b] ; (94)

and

�
D�
y�;gf

�
(x) =

(�1)n

� (n� �)

Z g(y)

g(x)

(z � g (x))n���1
�
f � g�1

�(n)
(z) dz =

�
D�
g(y)�

�
f � g�1

��
(g (x)) ; 8 x 2 [a; y] : (95)

Here D�
g(y)+; D

�
g(y)� are the left and right X-valued Caputo fractional di¤eren-

tiation operators.
Fix w : w � x0 � y0; w; x0; y0 2 [a; b], then g (w) � g (x0) � g (y0). Hence�D�

y0+;gf
�
(w)�

�
D�
x0+;gf

�
(w)
 =�D�

g(y0)+

�
f � g�1

��
(g (w))�

�
D�
g(x0)+

�
f � g�1

��
(g (w))

 =
1

� (n� �)


Z g(x0)

g(y0)

(g (w)� z)n���1
�
f � g�1

�(n)
(z) dz

 � (96)

1

� (n� �)

Z g(x0)

g(y0)

(g (w)� z)n���1
�f � g�1�(n) (z) dz ��f � g�1�(n)

1;[g(a);g(b)]

� (n� �)

Z g(x0)

g(y0)

(g (w)� z)n���1 dz =�f � g�1�(n)
1;[g(a);g(b)]

� (n� �+ 1)

h
(g (y0)� z)n�� � (g (x0)� z)n��

i
! 0;
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as y0 ! x0, then g (y0)! g (x0), proving continuity of
�
D�
g(y)+

�
f � g�1

��
(g (x))

with respect to g (y), and of course continuity of
�
D�
y+;gf

�
(x) in y 2 [a; b] :

Similarly, it is proved that
�
D�
y�;gf

�
(x) is continuous in y 2 [a; b], the proof

is omitted.

Remark 22 Some examples for g follow:

g (x) = ex, x 2 [a; b] � R;
g (x) = sinx;

g (x) = tanx;

where x 2
h
��
2
+ ";

�

2
� "
i
, where " > 0 small.

Indeed, the above examples of g are strictly increasing and contimuous functions.
One can apply all of our results here for the above speci�c choices of g. We

choose to omit this job.
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Abstract

This paper deals with the regularity for solutions of second-order semilin-
ear impulsive differential equations contained the nonlinear convolution with
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given equations.
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1 Introduction

In this paper we are concerned with the regularity of the following second-order
semilinear impulsive differential system


w

′′
(t) = Aw(t) +

∫ t
0
k(t− s)g(s, w(s))ds+ f(t), 0 < t ≤ T,

w(0) = x0, w
′
(0) = y0,

∆w(tk) = I1
k(w(tk)), ∆w′(tk) = I2

k(w′(t+k )), k = 1, 2, ...,m

(1.1)

in a Banach space X. Here k belongs to L2(0, T ) and g : [0, T ]×D(A) → X is
a nonlinear mapping such that w 7→ g(t, w) satisfies Lipschitz continuous. In (1.1),
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2

the principal operator A is the infinitesimal generator of a strongly continuous cosine
family C(t), t ∈ R. The impulsive condition

∆w(tk) = I1
k(w(tk)), ∆w′(tk) = I2

k(w′(t+k )), k = 1, 2, ...,m

is combination of traditional evolution systems whose duration is negligible in com-
parison with duration of the process, such as biology, medicine, bioengineering etc.

In recent years the theory of impulsive differential systems has been emerging
as an important area of investigation in applied sciences. The reason is that it is
richer than the corresponding theory of classical differential equations and it is more
adequate to represent some processes arising in various disciplines. The theory of
impulsive systems provides a general framework for mathematical modeling of many
real world phenomena(see [1, 2] and references therein). The theory of impulsive
differential equations has seen considerable development. Impulsive differential sys-
tems have been studied in [3, 4, 5, 6], second-order impulsive integrodifferential
systems in [7, 8], and Stochastic differential systems with impulsive conditions in
[9, 10, 11].

In this paper, we allow implicit arguments about L2-regularity results for semilin-
ear hyperbolic equations with impulsive condition. These consequences are obtained
by showing that results of the linear cases [12, 13] and semilinear case [14] on the
L2-regularity remain valid under the above formulation of (1.1). Earlier works prove
existence of solution by using Azera Ascoli theorem. But we propose a different ap-
proach from that of earlier works to study mild, strong and classical solutions of
Cauchy problems by using the properties of the linear equation in the hereditary
part.

This paper is organized as follows. In Section 2, we give some definition, notation
and the regularity for the corresponding linear equations. In Section 3, by using
properties of the strict solutions of linear equations in dealt in Section 2, we will
obtain the L2-regularity of solutions of (1.1), and a variation of constant formula of
solutions of (1.1). Finally, we also give an example to illustrate the applications of
the abstract results..

2 Preliminaries

In this section, we give some definitions, notations, hypotheses and Lemmas. Let X
be a Banach space with norm denoted by || · ||.

Definition 2.1. [15] A one parameter family C(t), t ∈ R, of bounded linear opera-
tors in X is called a strongly continuous cosine family if
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c(1) C(s+ t) + C(s− t) = 2C(s)C(t), for all s, t ∈ R,

c(2) C(0) = I,

c(3) C(t)x is continuous in t on R for each fixed x ∈ X.

If C(t), t ∈ R is a strongly continuous cosine family in X , then S(t), t ∈ R is
the one parameter family of operators in X defined by

S(t)x =

∫ t

0

C(s)xds, x ∈ X, t ∈ R. (2.1)

The infinitesimal generator of a strongly continuous cosine family C(t), t ∈ R
is the operator A : X → X defined by

Ax =
d2

dt2
C(0)x.

We endow with the domain D(A) = {x ∈ X : C(t)x is a twice continuously differ-
entiable function of t} with norm

||x||D(A) = ||x||+ sup{|| d
dt
C(t)x|| : t ∈ R}+ ||Ax||.

We shall also make use of the set

E = {x ∈ X : C(t)x is a once continuously differentiable function of t}

with norm

||x||E = ||x||+ sup{|| d
dt
C(t)x|| : t ∈ R}.

It is not difficult to show that D(A) and E with given norms are Banach spaces.
The following Lemma is from Proposition 2.1 and Proposition 2.2 of [1].

Lemma 2.1. Let C(t)(t ∈ R) be a strongly continuous cosine family in X. The
following are true :

c(4) C(t) = C(−t) for all t ∈ R,

c(5) C(s), S(s), C(t) and S(t) commute for all s, t ∈ R,

c(6) S(t)x is continuous in t on R for each fixed x ∈ X,
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c(7) there exist constants K ≥ 1 and ω ≥ 0 such that

||C(t)|| ≤ Keω|t| for all t ∈ R,

||S(t1)− S(t2)|| ≤ K
∣∣∣∫ t1

t2

eω|s|ds
∣∣∣ for all t1, t2 ∈ R,

c(8) if x ∈ E, then S(t)x ∈ D(A) and

d

dt
C(t)x = AS(t)x = S(t)Ax =

d2

dt2
S(t)x,

c(9) if x ∈ D(A), then C(t)x ∈ D(A) and

d2

dt2
C(t)x = AC(t)x = C(t)Ax,

c(10) if x ∈ X and r, s ∈ R, then∫ s

r

S(τ)xdτ ∈ D(A) and A(

∫ s

r

S(τ)xdτ) = C(s)x− C(r)x,

c(11) C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R,

c(12) S(s+ t) = S(s)C(t) + S(t)C(s) for all s, t ∈ R,

c(13) C(s+ t) = C(t)C(s)− S(t)S(s) for all s, t ∈ R,

c(14) C(s+ t)− C(t− s) = 2AS(t)S(s) for all s, t ∈ R.

The following Lemma is from Proposition 2.4 of [15].

Lemma 2.2. Let C(t)(t ∈ R) be a strongly continuous cosine family in X with
infinitesimal generator A. If f : R → X is continuously differentiable, x0 ∈ D(A),
y0 ∈ E, and

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds, t ∈ R,

then w(t) ∈ D(A) for t ∈ R, w is twice continuously differentiable, and w satisfies

w
′′
(t) = Aw(t) + f(t), t ∈ R, w(0) = x0, w

′
(0) = y0. (2.2)

Conversely, if f : R → X is continuous, w(t) : R → X is twice continuously
differentiable, w(t) ∈ D(A) for t ∈ R, and w satisfies (2.2), then

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds, t ∈ R.
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Proposition 2.1. Let f : R→ X is continuously differentiable, x0 ∈ D(A), y0 ∈ E.
Then

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds, t ∈ R

is a solution of (2.2) belonging to L2(0, T ;D(A)) ∩W 1,2(0, T ;E). Moreover, we have
that there exists a positive constant C1 such that for any T > 0,

||w||L2(0,T ;D(A)) ≤ C1(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T ;X)). (2.3)

3 Nonlinear equations

This section is to investigate the regularity of solutions of a second-order nonlinear
impulsive differential system

w
′′
(t) = Aw(t) +

∫ t
0
k(t− s)g(s, w(s))ds+ f(t), 0 < t ≤ T,

w(0) = x0, w
′
(0) = y0,

∆w(tk) = I1
k(w(tk)), ∆w′(tk) = I2

k(w′(t+k )), k = 1, 2, ...,m

(3.1)

in a Banach space X.

Assumption (G) Let g : [0, T ]×D(A)→ X be a nonlinear mapping such that
t 7→ g(t, w) is measurable and

(g1) ||g(t, w1)− g(t, w2)||D(A) ≤ L||w1 − w2||,

for a positive constant L.

Assumption (I) Let I1
k : D(A) → X, I2

k : E → X be continuous and there
exist positive constants L(I1

k), L(I2
k) such that

(i1) ||I1
k(w1)− I1

k(w2)|| ≤ L(I1
k)||w1 − w2||D(A), for each w1, w2 ∈ D(A)

||I1
k(w)|| ≤ L(I1

k), for w ∈ D(A)

(i2) ||I2
k(w′1)− I2

k(w′2)|| ≤ L(I2
k)||w′1 − w′2||E, for each w′1, w

′
2 ∈ E

||I2
k(w′)|| ≤ L(I2

k)||, for w′ ∈ E.

For w ∈ L2(0, T : D(A)), we set

F (t, w) =

∫ t

0

k(t− s)g(s, w(s))ds
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where k belongs to L2(0, T ). Then we will seek a mild solution of (3.1), that is, a
solution of the integral equation

w(t) =C(t)x0 + S(t)y0 +

∫ t

0

S(t− s){F (s, w) + f(s)}ds

+
∑

0<tk<t

C(t− tk)I1
k(w(tk)) +

∑
0<tk<t

S(t− tk)I2
k(w′(t+k )), t ∈ R. (3.2)

Remark 3.1. If g : [0, T ]×X → X is a nonlinear mapping satisfying

||g(t, w1)− g(t, w2)|| ≤ L||w1 − w2||

for a positive constant L, then our results can be obtained immediately.

Lemma 3.1. Let w ∈ L2(0, T ;D(A)), T > 0. Then F (·, w) ∈ L2(0, T ;X) and

||F (·, w)||L2(0,T ;X) ≤ L||k||L2(0,T )

√
T ||w||L2(0,T ;D(A)).

Moreover if w1, w2 ∈ L2(0, T ;D(A)), then

||F (·, w1)− F (·, w2)||L2(0,T ;X) ≤ L||k||L2(0,T )

√
T ||w1 − w2||L2(0,T ;D(A)).

Lemma 3.2. If k ∈ W 1,2(0, T ), T > 0, then

A

∫ t

0

S(t− s)F (s, w)ds = −F (t, w) (3.3)

+

∫ t

0

(C(t− s)− I)

∫ s

0

d

ds
k(s− τ)g(τ, w(τ))dτ ds

+

∫ t

0

(C(t− s)− I)k(0)g(s, w(s))ds.

Theorem 3.1. Suppose that the Assumptions (G) and Assumption (I) are satisfied.
If f : R→ X is continuously differentiable, x0 ∈ D(A), y0 ∈ E, and k ∈ W 1,2(0, T ),
T > 0, then there exists a time T ≥ T0 > 0 such that the functional differential
equation (3.1) admits a unique solution w in L2(0, T0;D(A)) ∩W 1,2(0, T0;E).
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Proof. Let us fix T0 > 0 so that

C2 ≡ω−1KLT
3/2
0 (eωT0 − 1)||k||L2(0,T0) (3.4)

+ {ω−1K(eωT0 − 1) + 1}T 3/2
0 /
√

3L||KeωT0 + 1||||k||W 1,2(0,T0)

+ {ω−1K(eωT0 − 1) + 1}T0/
√

2L||KeωT0 + 1||||k(0)||

+ {w−1K(ewT0 − 1) + 2}
∑

0<tk<t

L(I1
k)KewT0

+ {2w−1K(ewT0 − 1) + 1}
∑

0<tk<t

L(I2
k) < 1

where K, L, L(I1
k) and L(I2

k) are constants in c(7), (g1) and Assumption (I) re-
spectively. Invoking Proposition 2.1, for any v ∈ L2(0, T0;D(A)) we obtain the
equation 

w
′′
(t) = Aw(t) + F (t, v) + f(t), 0 < t ≤ T0,

w(0) = x0, w
′
(0) = y0

∆w(tk) = I1
k(v(tk)), ∆w′(tk) = I2

k(v′(t+k )), k = 1, 2, ...,m

(3.5)

has a unique solution w ∈ L2(0, T0;D(A)) ∩W 1,2(0, T0;E). Let w1, w2 be the
solutions of (3.5) with v replaced by v1, v2 ∈ L2(0, T0;D(A)), respectively. Put

J(w)(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s){F (s, v) + f(s)}ds

+
∑

0<tk<t

C(t− tk)I1
k(v(tk)) +

∑
0<tk<t

S(t− tk)I2
k(v′(t+k )).

Then

J(w1)(t)− J(w2)(t) =

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds

+
∑

0<tk<t

C(t− tk){I1
k(v1(tk))− I1

k(v2(tk))}

+
∑

0<tk<t

S(t− tk){I2
k(v′1(t+k ))− I1

k(v′2(t+k ))},

=I1 + I2 + I3.

So, from Lemmas 3.1, 3.2, it follows that for 0 ≤ t ≤ T0,

||
∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||

≤ ω−1KLT0(eωT0 − 1)||k||L2(0,T0)||v1 − v2||L2(0,T0;D(A)),
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|| d
dt
C(t)

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||

≤ ||AS(t)

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||

= ||S(t)A

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||,

and

||A
∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||

≤ ||
∫ t

0

(C(t− s)− I)

∫ s

0

d

ds
k(s− τ)(g(τ, v1(τ))− g(τ, v2(τ)))dτ ds||

+ ||
∫ t

0

(C(t− s)− I)k(0)(g(s, v1(s))− g(s, v2(s)))ds||

≤ tL||Keωt + 1||||k||W 1,2(0,T0)||v1 − v2||L2(0,T0;D(A))

+
√
tL||Keωt + 1||||k(0)||||v1 − v2||L2(0,T0;D(A)).

Therefore, we have

||I1||L2(0,T0;D(A)) ≤ ω−1KLT
3/2
0 (eωT0 − 1)||k||L2(0,T0)||v1 − v2||L2(0,T0;D(A)) (3.6)

+ {ω−1K(eωT0 − 1) + 1}T 3/2
0 /
√

3L||KeωT0 + 1|| ||k||W 1,2(0,T0)||v1 − v2||L2(0,T0;D(A))

+ {ω−1K(eωT0 − 1) + 1}T0/
√

2L||KeωT0 + 1|| ||k(0)|| ||v1 − v2||L2(0,T0;D(A)).

By Assumption (i1), we obtain

||
∑

0<tk<t

C(t− tk){I1
k(v1(t−k ))− I1

k(v2(t−k ))}|| ≤
∑

0<tk<T0

KewT0L(I1
k)||v1 − v2||D(A),

|| d
dt
C(t)

∑
0<tk<t

C(t− tk){I1
k(v1)− I1

k(v2)}||

≤ ||AS(t)
∑

0<tk<t

C(t− tk){I1
k(v1)− I1

k(v2)}||

= ||S(t)A
∑

0<tk<t

C(t− tk){I1
k(v1)− I1

k(v2)}||,
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and

||A
∑

0<tk<t

C(t− tk){I1
k(v1(t−k ))− I1

k(v2(t−k ))}|| = ||
∑

0<tk<t

C(t− tk)A{I1
k(v1)− I1

k(v2)}||

≤
∑

0<tk<t

Kewt||I1
k(v1)− I1

k(v2)||D(A)

≤
∑

0<tk<t

KewtL(I1
k)||v1 − v2||D(A).

Therefore, we have

||I2||L2(0,T0;D(A)) ≤ {w−1K(ewT0 − 1) + 2}
∑

0<tk<t

L(I1
k)KewT0||v1 − v2||L2(0,T0;D(A)).

(3.7)

We also obtain from Assumption (i2),

||
∑

0<tk<t

S(t− tk){I2
k(v′1(t+k ))− I1

k(v′2(t+k ))}|| ≤
∑

0<tk<T0

Kw−1(ewT0 − 1)L(I2
k)||v1 − v2||D(A),

|| d
dt
C(t)

∑
0<tk<t

S(t− tk){I2
k(v′1)− I1

k(v′2)}||

≤ ||AS(t)
∑

0<tk<t

S(t− tk){I2
k(v′1)− I1

k(v′2)}||

= ||S(t)A
∑

0<tk<t

S(t− tk){I2
k(v′1)− I1

k(v′2)}||,

and

||A
∑

0<tk<t

S(t− tk){I2
k(v′1(t+k ))− I1

k(v′2(t+k ))}|| = ||
∑

0<tk<t

d

dt
C(t){I2

k(v′1)− I1
k(v′2)}||

≤
∑

0<tk<t

||I2
k(v′1)− I1

k(v′2)||E

≤
∑

0<tk<t

L(I2
k)||v′1 − v′2||E.
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Therefore, we have

||I3||L2(0,T0;D(A)) ≤ {w−1K(ewT0 − 1) + 2}
∑

0<tk<t

L(I1
k)KewT0||v1 − v2||L2(0,T0;D(A)).

(3.8)

Thus, from (3.6),(3.7), and (3.8), we conclude that

||J(w1)− J(w2)||L2(0,T0;D(A)) (3.9)

≤ ω−1KLT
3/2
0 (eωT0 − 1)||k||L2(0,T0)||v1 − v2||L2(0,T0;D(A))

+ {ω−1K(eωT0 − 1) + 1}L||k||L2(0,T0)

√
T0||v1 − v2||L2(0,T0;D(A))

+ {ω−1K(eωT0 − 1) + 1}T 3/2
0 /
√

3L||KeωT0 + 1|| ||k||W 1,2(0,T0)||v1 − v2||L2(0,T0;D(A))

+ {ω−1K(eωT0 − 1) + 1}T0/
√

2L||KeωT0 + 1|| ||k(0)|| ||v1 − v2||L2(0,T0;D(A))

+ {w−1K(ewT0 − 1) + 2}
∑

0<tk<t

L(I1
k)KewT0||v1 − v2||L2(0,T0;D(A))

+ {2w−1K(ewT0 − 1) + 1}
∑

0<tk<t

L(I2
k)||v1 − v2||W 1,2(0,T0;D(A)).

Moreover, it is easily seen that

||J(w1)− J(w2)||L2(0,T0;D(A))∩W 1,2(0,T0;E) ≤ C2||v1 − v2||L2(0,T0;D(A))∩W 1,2(0,T0;E).

So by virtue of the condition (3.4) the contraction mapping principle gives that the
solution of (3.1) exists uniquely in [0, T0]. �

Theorem 3.2. Suppose that the Assumptions (G) and (I) are satisfied. If f : R→
X is continuously differentiable, x0 ∈ D(A), y0 ∈ E, and k ∈ W 1,2(0, T ), T > 0,
then the solution w of (3.1) exists and is unique in L2(0, T ;D(A)) ∩W 1,2(0, T ;E),
and there exists a constant C3 depending on T such that

||w||L2(0,T0;D(A))∩W 1,2(0,T0;E) ≤ C3(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T ;X)). (3.10)

Proof. Let w(·) be the solution of (3.1) in the interval [0, T0] where T0 is a
constant in (3.4) and v(·) be the solution of the following equation

v
′′
(t) = Av(t) + f(t), 0 < t,

v(0) = x0, v
′
(0) = y0.
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Then

(w−v)(t) =

∫ t

0

S(t−s)F (s, w)ds+
∑

0<tk<t

C(t−tk)I1
k(w(tk))+

∑
0<tk<t

S(t−tk)I2
k(w′(t+k )),

and in view of (3.9)

||w − v||L2(0,T0;D(A))∩W 1,2(0,T0;E) ≤ C2||w||L2(0,T0;D(A))∩W 1,2(0,T0;E), (3.11)

that is, combining (3.11) with Proposition 2.1 we have

||w||L2(0,T0;D(A))∩W 1,2(0,T0;E) ≤
1

1− C2

||v||L2(0,T0;D(A))∩W 1,2(0,T0;E) (3.12)

≤ C1

1− C2

(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T0;X)).

Now from

A

∫ T0

0

S(T0 − s){F (s, w) + f(s)}ds

= C(T0)f(0)− f(T0) +

∫ T0

0

(C(T0 − s)− I)f
′
(s)ds

− F (T0, w) +

∫ T0

0

(C(T0 − s)− I)

∫ s

0

d

ds
k(s− τ)g(τ, w(τ))dτ ds

+

∫ T0

0

(C(T0 − s)− I)k(0)g(s, w(s))ds,

||A
∑

0<tk<t

C(t− tk)I1
k(w1)|| ≤ Kw−1(ewT0−1)KewT0

∑
0<tk<t

L(I1
k)||w(tk)||D(A),

||
∑

0<tk<t

S(t− tk)I2
k(v′1)|| ≤

∑
0<tk<t

L(I2
k)||w′(t+k )||E,

and since

d

dt
C(t)

∫ t

0

S(t− s){F (s, w) + f(s)}ds = S(t)A

∫ t

0

S(t− s){F (s, w) + f(s)}ds,

d

dt
C(t)

∑
0<tk<t

C(t− tk)I1
k(w) ≤ S(t)A

∑
0<tk<t

C(t− tk)I1
k(w).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.6, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

1092 Ah-ran Park 1082-1096



12

d

dt
C(t)

∑
0<tk<t

S(t− tk)I2
k(w′) ≤ S(t)A

∑
0<tk<t

S(t− tk)I2
k(w′).

We have

||w(T0)||D(A) = ||C(T0)x0 + S(T0)y0 +

∫ T0

0

S(T0 − s){F (s, w) + f(s)}ds

+
∑

0<tk<t

C(t− tk)I1
k(w) +

∑
0<tk<t

S(t− tk)I2
k(w′)||D(A)

≤ (ω−1K(eωT0 − 1) + 1){KeωT0 ||x0||D(A) + ||y0||E + T0L||k||L2(0,T0)||w||L2(0,T0;D(A))

+ ||KeωT0f(0)||+ ||f(0)||+ ||K(eωT0 + 1)
√
T0||f ||W 1,2(0,T ;X)

+ tL||Keωt + 1|| ||k||W 1,2(0,T0)||w||L2(0,T0;D(A))

+
√
tL||Keωt + 1|| ||k(0)||||w||L2(0,T0;D(A))}

+ {2 +Kw−1(ewT0 − 1)}
∑

0<tk<t

KewT0L(I1
k)

+ {1 + 2Kw−1(ewT0 − 1)}
∑

0<tk<t

L(I2
k).

Hence, from (3.12), there exists a positive constant C > 0 such that

||w(T0)||D(A) ≤ C(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T0;X)).

Since the condition (3.4) is independent of initial values, the solution of (3.1) can
be extended to the interval [0, nT0] for every natural number n. An analogous
estimate to (3.12) holds for the solution in [0, nT0], and hence for the initial value
(w(nT0), w

′
(nT0)) ∈ D(A)× E in the interval [nT0, (n+ 1)T0]. �

Example. We consider the following partial differential equation

w
′′
(t, x) = Aw(t, x) + F (t, w) + f(t), 0 < t, 0 < x < π,

w(t, 0) = w(t, π) = 0, t ∈ R
w(0, x) = x0(x), w

′
(0, x) = y0(x), 0 < x < π

∆w(tk, x) = I1
k(w(tk)) = (γk||w′′(tk, x)||+ tk), 1 ≤ k ≤ m,

∆w′(tk, x) = I2
k(w′(tk)) = δk||w′(tk, x)||,

(E)

where constants γk and δk(k = 1, · · · ,m) are small.
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Let X = L2([0, π];R), and let en(x) =
√

2
π

sinnx. Then {en : n = 1, · · · } is an

orthonormal base for X. Let A : X → X be defined by

Aw(x) = w′′(x),

where D(A) = {w ∈ X : w, w
′

are absolutely continuous, w
′′ ∈ X, w(0) = w(π) =

0}. Then

Aw =
∞∑
n=1

−n2(w, en)en, w ∈ D(A),

and A is the infinitesimal generator of a strongly continuous cosine family C(t),
t ∈ R, in X given by

C(t)w =
∞∑
n=1

cosnt(w, en)en, w ∈ X.

The associated sine family is given by

S(t)w =
∞∑
n=1

sinnt

n
(w, en)en, w ∈ X.

Let g1(t, x, w, p), p ∈ Rm, be assumed that there is a continuous ρ(t, δ) : R ×
R→ R+ and a real constant 1 ≤ δ such that

(f1) g1(t, x, 0, 0) = 0,

(f2) |g1(t, x, w, p)− g1(t, x, w, q)| ≤ ρ(t, |w|)|p− q|,

(f3) |g1(t, x, w1, p)− g1(t, x, w2, p)| ≤ ρ(t, |w1|+ |w2|)|w1 − w2|.

Let
g(t, w)x = g1(t, x, w,Dw,D2w).

Then noting that

||g(t, w1)− g(t, w2)||20,2 ≤ 2

∫
Ω

|g1(t, x, w1, p)− g1(t, x, w2, q)|2dx

+ 2

∫
Ω

|g1(t, x, w1, q)− g1(t, x, w2, q)|2dx

where p = (Dw1, D
2w1) and q = (Dw2, D

2w2), it follows from (f1), (f2) and (f3)
that

||g(t, w1)− g(t, w2)||20,2 ≤ L(||w1||D(A), ||w2||D(A))||w1 − w2||D(A)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.6, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

1094 Ah-ran Park 1082-1096



14

where L(||w1||D(A), ||w2||D(A)) is a constant depending on ||w1||D(A) and ||w2||D(A).
We set

F (t, w) =

∫ t

0

k(t− s)g(s, w(s))ds

where k belongs to L2(0, T ). Then, from the results in section 3, the solution w of
(E) exists and is unique in L2(0, T ;D(A))∩W 1,2(0, T ;E), and there exists a constant
C3 depending on T such that

||w||L2(0,T ;D(A)) ≤ C3(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T ;X)).
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Abstract

Very general univariate mixed Caputo  -fractional Ostrowski and Grüss
type inequalities for several functions are presented. Estimates are with
respect to k�kp, 1 � p � 1. We give also applications.
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Keywords and Phrases: Ostrowski and Grüss inequalities, right and left
Caputo  -fractional derivatives.

1 Introduction

In 1938, A. Ostrowski [5] proved the following important inequality.

Theorem 1 Let f : [a; b] ! R be continuous on [a; b] and di¤erentiable on
(a; b) whose derivative f 0 : (a; b) ! R is bounded on (a; b), i.e., kf 0k1 :=
sup
t2(a;b)

jf 0 (t)j < +1. Then

����� 1

b� a

Z b

a

f (t) dt� f (x)
����� �

"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
� (b� a) kf 0k1 ; (1)

for any x 2 [a; b]. The constant 14 is the best possible.

Since then there has been a lot of activity around these inequalities with
important applications to numerical analysis and probability.
In this article we are greatly motived and inspired by Theorem 1, see also

[2]. Here we present various  -fractional Ostrowski and Grüss type inequalities
for several functions and we give interesting applications.

1
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2 Background

Here we follow [1].
Let � > 0, [a; b] � R, f : [a; b] ! R which is integrable and  2 C1 ([a; b])

an increasing function such that  0 (x) 6= 0, for all x 2 [a; b]. Consider n = d�e,
the ceiling of �. The left and right fractional integrals are de�ned, respectively,
as follows:

I�; a+ f (x) :=
1

� (�)

Z x

a

 0 (t) ( (x)�  (t))��1 f (t) dt; (2)

and

I�; b� f (x) :=
1

� (�)

Z b

x

 0 (t) ( (t)�  (x))��1 f (t) dt; (3)

for any x 2 [a; b], where � is the gamma function.
The following semigroup property is valid for fractional integrals: if �; � > 0,

then

I�; a+ I�; a+ f (x) = I�+�; a+ f (x) , and I�; b� I�; b� f (x) = I�+�; b� f (x) :

We mention

De�nition 2 ([1]) Let � > 0, n 2 N such that n = d�e, [a; b] � R and f;  2
Cn ([a; b]) with  being increasing and  0 (x) 6= 0, for all x 2 [a; b]. The left
 -Caputo fractional derivative of f of order � is given by

CD�; 
a+ f (x) := In��; a+

�
1

 0 (x)

d

dx

�n
f (x) ; (4)

and the right  -Caputo fractional derivative of f is given by

CD�; 
b� f (x) := In��; b�

�
� 1

 0 (x)

d

dx

�n
f (x) : (5)

To simplify notation, we will use the symbol

f
[n]
 (x) :=

�
1

 0 (x)

d

dx

�n
f (x) ; (6)

with f [0] (x) = f (x) :

By the de�nition, whrn � = m 2 N, we have
CD�; 

a+ f (x) = f
[m]
 (x)

and
CD�; 

b� f (x) = (�1)m f [m] (x) :

(7)

If � =2 N, we have

CD�; 
a+ f (x) =

1

� (n� �)

Z x

a

 0 (t) ( (x)�  (t))n���1 f [n] (t) dt; (8)

2
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and

CD�; 
b� f (x) =

(�1)n

� (n� �)

Z b

x

 0 (t) ( (t)�  (x))n���1 f [n] (t) dt; (9)

8 x 2 [a; b] :
In particular, when � 2 (0; 1), we have

CD�; 
a+ f (x) = 1

�(1��)
R x
a
( (x)�  (t))�� f 0 (t) dt;

and
CD�; 

b� f (x) = �1
�(1��)

R b
x
( (t)�  (x))�� f 0 (t) dt

(10)

8 x 2 [a; b] :
Clearly the above is a generalization of left and right Caputo fractional

derivatives.
For more see [1].
Still we need from [1] the following left and right fractional Taylor�s formulae:

Theorem 3 ([1]) Let � > 0, n 2 N such that n = d�e, [a; b] � R and f;  2
Cn ([a; b]) with  being increasing and  0 (x) 6= 0, for all x 2 [a; b]. Then, the
left fractional Taylor formula follows,

f (x) =
n�1X
k=0

f
[k]
 (a)

k!
( (x)�  (a))k + I�; a+

CD�; 
a+ f (x) ; (11)

and the right fractional Taylor formula follows,

f (x) =

n�1X
k=0

(�1)k
f
[k]
 (b)

k!
( (b)�  (x))k + I�; b�

CD�; 
b� f (x) ; (12)

8 x 2 [a; b] :
In particular, given � 2 (0; 1), we have

f (x) = f (a) + I�; a+
CD�; 

a+ f (x) ;
and
f (x) = f (b) + I�; b�

CD�; 
b� f (x) ;

(13)

8 x 2 [a; b] :

Remark 4 For convenience we can rewrite (11)-(13) as follows:

f (x) =

n�1X
k=0

f
[k]
 (a)

k!
( (x)�  (a))k + (14)

1

� (�)

Z x

a

 0 (t) ( (x)�  (t))��1 CD�; 
a+ f (t) dt;
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and

f (x) =
n�1X
k=0

(�1)k f [k] (b)

k!
( (b)�  (x))k + (15)

1

� (�)

Z b

x

 0 (t) ( (t)�  (x))��1 CD�; 
b� f (t) dt;

8 x 2 [a; b] :
When � 2 (0; 1), we get:

f (x) = f (a) + 1
�(�)

R x
a
 0 (t) ( (x)�  (t))��1 CD�; 

a+ f (t) dt;

and
f (x) = f (b) + 1

�(�)

R b
x
 0 (t) ( (t)�  (x))��1 CD�; 

b� f (t) dt;

(16)

8 x 2 [a; b] :

Again from [1] we have the following:
Consider the norms k�k1 : C ([a; b])! R and k�k

C
[n]
 

: Cn ([a; b])! R, where

kfk
C
[n]
 

:=
nP
k=0

f [k] 1 :

We have

Theorem 5 ([1]) The  -Caputo fractional derivatives are bounded operators.
For all � > 0 (n = d�e) CD�; 

a+


1
� K kfk

C
[n]
 

(17)

and CD�; 
b�


1
� K kfk

C
[n]
 

; (18)

where

K =
( (b)�  (a))n��

� (n+ 1� �) > 0: (19)

3 Main Results

At �rst we present the following  -fractional Ostrowski type inequalities for
several functions:

Theorem 6 Let � > 0, n 2 N : n = d�e, [a; b] � R and fi;  2 Cn ([a; b]),
i = 1; :::; r; with  being increasing and  0 (x) 6= 0, for all x 2 [a; b]. Let
x0 2 [a; b] and assume that f [k]i (x0) = 0, for k = 1; :::; n� 1; i = 1; :::; r. Set

� (f1; :::; fr) (x0) := r

Z b

a

 
rY

k=1

fk (x)

!
d (x)� (20)

4
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rX
i=1

2664fi (x0)Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA d (x)

3775 :
Then

j� (f1; :::; fr) (x0)j �
rX
i=1

2664
2664CD�; 

x0�fi


1;[a;x0]

I�+1; a+

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA
3775 (21)

+

2664CD�; 
x0+fi


1;[x0;b]

I�+1; b�

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA
3775
3775 :

If 0 < � � 1, then (21) is valid without any initial conditions.

Proof. By Theorem 3 we have that

fi (x)� fi (x0) =
1

� (�)

Z x

x0

 0 (t) ( (x)�  (t))��1 CD�; 
x0+fi (t) dt; (22)

8 x 2 [x0; b] ;
and

fi (x)� fi (x0) =
1

� (�)

Z x0

x

 0 (t) ( (t)�  (x))��1 CD�; 
x0�fi (t) dt; (23)

8 x 2 [a; x0] ;
for all i = 1; :::; r:

Multiplying (22) and (23) by

0B@ rQ
j=1
j 6=i

fj (x)

1CA we obtain, respectively,

rY
k=1

fk (x)�

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x0) =

0B@ rQ
j=1
j 6=i

fj (x)

1CA
� (�)

Z x

x0

 0 (t) ( (x)�  (t))��1 CD�; 
x0+fi (t) dt; (24)

8 x 2 [x0; b] ;
rY

k=1

fk (x)�

0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x0) =

5
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0B@ rQ
j=1
j 6=i

fj (x)

1CA
� (�)

Z x0

x

 0 (t) ( (t)�  (x))��1 CD�; 
x0�fi (t) dt; (25)

8 x 2 [a; x0] ;
for all i = 1; :::; r:
Adding (24) and (25), separately, we obtain

r

 
rY

k=1

fk (x)

!
�

rX
i=1

2664
0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x0)

3775 =

1

� (�)

rX
i=1

2664
0BB@ rY
j=1
j 6=i

fj (x)

1CCAZ x

x0

 0 (t) ( (x)�  (t))��1 CD�; 
x0+fi (t) dt

3775 ; (26)

8 x 2 [x0; b] ;
and

r

 
rY

k=1

fk (x)

!
�

rX
i=1

2664
0BB@ rY
j=1
j 6=i

fj (x)

1CCA fi (x0)

3775 =

1

� (�)

rX
i=1

2664
0BB@ rY
j=1
j 6=i

fj (x)

1CCAZ x0

x

 0 (t) ( (t)�  (x))��1 CD�; 
x0�fi (t) dt

3775 ; (27)

8 x 2 [a; x0] :
Next we integrate (26) and (27) with respect to  (x), x 2 [a; b]. We have

r

Z b

x0

 
rY

k=1

fk (x)

!
d (x)�

rX
i=1

2664fi (x0)Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA d (x)

3775 =

1

� (�)

rX
i=1

2664Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA [Z x

x0

 0 (t) ( (x)�  (t))��1 CD�; 
x0+fi (t) dt]d (x)

3775 ;
(28)

and

r

Z x0

a

 
rY

k=1

fk (x)

!
d (x)�

rX
i=1

2664fi (x0)Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA d (x)

3775 =
6
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1

� (�)

rX
i=1

2664Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA [Z x0

x

 0 (t) ( (t)�  (x))��1 CD�; 
x0�fi (t) dt]d (x)

3775 :
(29)

Adding (28) and (29) we derive the identity:

� (f1; :::; fr) (x0) := r

Z b

a

 
rY

k=1

fk (x)

!
d (x)�

rX
i=1

2664fi (x0)Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA d (x)

3775 =

1

� (�)

rX
i=1

2664
2664Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA�Z x0

x

 0 (t) ( (t)�  (x))��1 CD�; 
x0�fi (t) dt

�
d (x)

3775
(30)

+

2664Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA�Z x

x0

 0 (t) ( (x)�  (t))��1 CD�; 
x0+fi (t) dt

�
d (x)

3775
3775 :

Hence it holds
j� (f1; :::; fr) (x0)j �

1

� (�)

rX
i=1

2664
2664Z x0

a

0BB@ rY
j=1
j 6=i

jfj (x)j

1CCA�Z x0

x

 0 (t) ( (t)�  (x))��1
���CD�; 

x0�fi (t)
��� dt� d (x)

3775

+

2664Z b

x0

0BB@ rY
j=1
j 6=i

jfj (x)j

1CCA�Z x

x0

 0 (t) ( (x)�  (t))��1
���CD�; 

x0+fi (t)
��� dt� d (x)

3775
3775 =: (�) :

(31)
We observe that

(�) � 1

� (�+ 1)

rX
i=1

2664
2664CD�; 

x0�fi


1;[a;x0]

Z x0

a

0BB@ rY
j=1
j 6=i

jfj (x)j

1CCA ( (x0)�  (x))� d (x)
3775

+

2664CD�; 
x0+fi


1;[x0;b]

Z b

x0

0BB@ rY
j=1
j 6=i

jfj (x)j

1CCA ( (x)�  (x0))� d (x)
3775
3775 = (32)

7
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rX
i=1

2664
2664CD�; 

x0�fi


1;[a;x0]

I�+1; a+

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA
3775+

2664CD�; 
x0+fi


1;[x0;b]

I�+1; b�

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA
3775
3775 :

By Theorem 4.10, p. 98 of [3], we get that I�+1; a+

0B@ rQ
j=1
j 6=i

jfj j

1CA 2 C ([a; b]) and

so at any x0 2 [a; b] is �nite, i = 1; :::; r. Similarly, by Theorem 4.11, p. 101 of

[3], we get that I�+1; b�

0B@ rQ
j=1
j 6=i

jfj j

1CA 2 C ([a; b]) and so at any x0 2 [a; b] is �nite,

i = 1; :::; r. Arguing similarly, we get that CD�; 
a+ fi;

CD�; 
b� fi 2 C ([a; b]), for all

i = 1; :::; r.
The theorem is proved.
We continue with

Theorem 7 All as in Theorem 6 with � � 1: Then

j� (f1; :::; fr) (x0)j �
rX
i=1

2664CD�; 
x0�fi


L1([a;x0]; )

I�; a+

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA

+
CD�; 

x0+fi


L1([x0;b]; )

I�; b�

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA
3775 : (33)

Proof. From (31) we get

(�) � 1

� (�)

rX
i=1

��CD�; 
x0�fi


L1([a;x0]; )0BB@Z x0

a

0BB@ rY
j=1
j 6=i

jfj (x)j

1CCA ( (x0)�  (x))��1 d (x)
1CCA
3775+

2664CD�; 
x0+fi


L1([x0;b]; )

0BB@Z b

x0

0BB@ rY
j=1
j 6=i

jfj (x)j

1CCA ( (x)�  (x0))��1 d (x)
1CCA
3775
3775
(34)

8
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=
rX
i=1

2664CD�; 
x0�fi


L1([a;x0]; )

I�; a+

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA+
CD�; 

x0+fi


L1([x0;b]; )

I�; b�

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA
3775 ; (35)

proving the theorem.
We continue with

Theorem 8 All as in Theorem 6 with p; q > 1 : 1p +
1
q = 1, � � 1. Then

j� (f1; :::; fr) (x0)j �
�
�
�+ 1

p

�
� (�) (p (�� 1) + 1)

1
p

rX
i=1

2664
2664CD�; 

x0�fi


Lq([a;x0]; )

I
�+ 1

p ; 

a+

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA
3775 (36)

+

2664CD�; 
x0+fi


Lq([x0;b]; )

I
�+ 1

p ; 

b�

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA
3775
3775 :

Proof. From (31) we obtain

(�) � 1

� (�)

rX
i=1

2664
2664Z x0

a

0BB@ rY
j=1
j 6=i

jfj (x)j

1CCA
�Z x0

x

( (t)�  (x))p(��1) d (t)
� 1
p
�Z x0

x

���CD�; 
x0�fi (t)

���q d (t)� 1
q

d (x)

#
+

2664Z b

x0

0BB@ rY
j=1
j 6=i

jfj (x)j

1CCA�Z x

x0

( (x)�  (t))p(��1) d (t)
� 1
p

(37)

�Z x

x0

���CD�; 
x0+fi (t)

���q d (t)� 1
q

d (x)

##
� 1

(p (�� 1) + 1)
1
p � (�)

9
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rX
i=1

2664
2664CD�; 

x0�fi


Lq([a;x0]; )

Z x0

a

0BB@ rY
j=1
j 6=i

jfj (x)j

1CCA ( (x0)�  (x))��1+ 1
p d (x)

3775

+

2664CD�; 
x0+fi


Lq([x0;b]; )

Z b

x0

0BB@ rY
j=1
j 6=i

jfj (x)j

1CCA ( (x)�  (x0))��1+ 1
p d (x)

3775
3775 =
(38)

�
�
�+ 1

p

�
� (�) (p (�� 1) + 1)

1
p

rX
i=1

2664
2664CD�; 

x0�fi


Lq([a;x0]; )

I
�+ 1

p ; 

a+

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA
3775

+

2664CD�; 
x0+fi


Lq([x0;b]; )

I
�+ 1

p ; 

b�

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA
3775
3775 ; (39)

proving the theorem.
We mention as motivation for Grüss type inequalities the following:

Theorem 9 (1882, µCeby�ev [4]) Let f; g : [a; b] ! R be absolutely continuous
functions with f 0; g0 2 L1 ([a; b]). Then����� 1

b� a

Z b

a

f (x) g (x) dx�
 

1

b� a

Z b

a

f (x) dx

! 
1

b� a

Z b

a

g (x) dx

!�����
� 1

12
(b� a)2 kf 0k1 kg

0k1 : (40)

The above integrals are assumed to exist.

Next follow  -Caputo fractional Grüss type inequalities for several functions.

Theorem 10 Let 0 < � � 1, [a; b] � R and fi;  2 C1 ([a; b]), i = 1; :::; r 2
N� f1g; with  being increasing and  0 (x) 6= 0, for all x 2 [a; b]. Assume that
sup

x02[a;b]

CD�; 
x0�fi


1;[a;x0]

<1, and sup
x02[a;b]

CD�; 
x0+fi


1;[x0;b]

<1, i = 1; :::; r:

Set

� (f1; :::; fr) := r ( (b)�  (a))
 Z b

a

 
rY

k=1

fk (x)

!
d (x)

!
�

rX
i=1

2664
 Z b

a

fi (x) d (x)

!0BB@Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA d (x)

1CCA
3775 : (41)

10

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.6, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

1106 Anastassiou 1097-1114



Then ��� (f1; :::; fr)�� � ( (b)�  (a))8>><>>:
rX
i=1

2664
2664 sup
x02[a;b]

CD�; 
x0�fi


1;[a;x0]

sup
x02[a;b]

I�+1; a+

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA
3775

+

2664 sup
x02[a;b]

CD�; 
x0+fi


1;[x0;b]

sup
x02[a;b]

I�+1; b�

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA
3775
3775
9>>=>>; : (42)

Proof. Here 0 < � � 1, i.e. n = 1. Then (30) is valid without any initial
conditions. Clearly � (f1; :::; fr) 2 C ([a; b]). Thus, by integrating (30) against
 we obtain

� (f1; :::; fr) =

Z b

a

� (f1; :::; fr) (x0) d (x0) =

r ( (b)�  (a))
 Z b

a

 
rY

k=1

fk (x)

!
d (x)

!
�

rX
i=1

2664
 Z b

a

fi (x) d (x)

!0BB@Z b

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA d (x)

1CCA
3775 =

1

� (�)

Z b

a

8>><>>:
rX
i=1

2664
2664Z x0

a

0BB@ rY
j=1
j 6=i

fj (x)

1CCA
�Z x0

x

 0 (t) ( (t)�  (x))��1 CD�; 
x0�fi (t) dt

�
d (x)

�
+ (43)2664Z b

x0

0BB@ rY
j=1
j 6=i

fj (x)

1CCA�Z x

x0

 0 (t) ( (x)�  (t))��1 CD�; 
x0+fi (t) dt

�
d (x)

3775
3775
9>>=>>; d (x0) :

Hence it holds

��� (f1; :::; fr)�� � 1

� (�)

Z b

a

8>><>>:
rX
i=1

2664
2664Z x0

a

0BB@ rY
j=1
j 6=i

jfj (x)j

1CCA

11
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�Z x0

x

 0 (t) ( (t)�  (x))��1
���CD�; 

x0�fi (t)
��� dt� d (x)�+

2664Z b

x0

0BB@ rY
j=1
j 6=i

jfj (x)j

1CCA
(44)�Z x

x0

 0 (t) ( (x)�  (t))��1
���CD�; 

x0+fi (t)
��� dt� d (x)��� d (x0) =: (��) :

Using (21) we derive
(��) � ( (b)�  (a))8>><>>:

rX
i=1

2664
2664 sup
x02[a;b]

CD�; 
x0�fi


1;[a;x0]

sup
x02[a;b]

I�+1; a+

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA
3775

+

2664 sup
x02[a;b]

CD�; 
x0+fi


1;[x0;b]

sup
x02[a;b]

I�+1; b�

0BB@ rY
j=1
j 6=i

jfj (x0)j

1CCA
3775
3775
9>>=>>; ; (45)

proving the theorem.
We make

Remark 11 Let � > 0, [a; b] � R; f 2 C ([a; b]) and  2 C1 ([a; b]) an increas-
ing function such that  0 (x) 6= 0, for all x 2 [a; b]. Let x0 2 [a; b]. We observe
the following���I�; a+ f (x0)

��� (2)� 1

� (�)

Z x0

a

 0 (t) ( (x0)�  (t))��1 jf (t)j dt �

kfk1;[a;x0]

� (�)

Z x0

a

( (x0)�  (t))��1 d (t) =
kfk1;[a;x0]

� (�+ 1)
( (x0)�  (a))� :

(46)
That is ���I�; a+ f (x0)

��� � kfk1;[a;x0]

� (�+ 1)
( (x0)�  (a))� : (47)

Similarly, we obtain���I�; b� f (x0)
��� (3)� 1

� (�)

Z b

x0

 0 (t) ( (t)�  (x0))��1 jf (t)j dt �

kfk1;[x0;b]

� (�)

Z b

x0

( (t)�  (x0))��1 d (t) =
kfk1;[x0;b]

� (�+ 1)
( (b)�  (x0))� : (48)

That is ���I�; b� f (x0)
��� � kfk1;[x0;b]

� (�+ 1)
( (b)�  (x0))� : (49)
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We make

Remark 12 Let � � 1, the rest as in Remark 11. We observe that���I�; a+ f (x0)
��� (2)� 1

� (�)

Z x0

a

 0 (t) ( (x0)�  (t))��1 jf (t)j dt �

( (x0)�  (a))��1

� (�)

Z x0

a

jf (t)j d (t) = ( (x0)�  (a))��1

� (�)
kfkL1([a;x0]; ) :

(50)
That is ���I�; a+ f (x0)

��� � ( (x0)�  (a))��1

� (�)
kfkL1([a;x0]; ) : (51)

Similarly, we get���I�; b� f (x0)
��� (3)� 1

� (�)

Z b

x0

 0 (t) ( (t)�  (x0))��1 jf (t)j dt �

( (b)�  (x0))��1

� (�)

Z b

x0

jf (t)j d (t) = ( (b)�  (x0))��1

� (�)
kfkL1([x0;b]; ) :

(52)
That is ���I�; b� f (x0)

��� � ( (b)�  (x0))��1

� (�)
kfkL1([x0;b]; ) : (53)

Next, we simplify our main theorems:

Proposition 13 All as in Theorem 6. Then

j� (f1; :::; fr) (x0)j �
1

� (�+ 2)

rX
i=1

2664
2664CD�; 

x0�fi


1;[a;x0]


rY
j=1
j 6=i

fj


1;[a;x0]

( (x0)�  (a))�+1

3775

+

2664CD�; 
x0+fi


1;[x0;b]


rY
j=1
j 6=i

fj


1;[x0;b]

( (b)�  (x0))�+1

3775
3775 : (54)

If 0 < � � 1, then (54) is valid without any initial conditions.

Proof. By (21), (47) and (49).
Next comes
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Proposition 14 All as in Theorem 6 with � � 1. Then

j� (f1; :::; fr) (x0)j �
1

� (�)

rX
i=1

2664
2664CD�; 

x0�fi


L1([a;x0]; )


rY
j=1
j 6=i

fj


L1([a;x0]; )

( (x0)�  (a))��1

3775

+

2664CD�; 
x0+fi


L1([x0;b]; )


rY
j=1
j 6=i

fj


L1([x0;b]; )

( (b)�  (x0))��1

3775
3775 : (55)

Proof. By (33), (51) and (53).
Next follows

Proposition 15 All as in Theorem 6 with p; q > 1 : 1p +
1
q = 1, � � 1. Then

j� (f1; :::; fr) (x0)j �
1

� (�)
�
�+ 1

p

�
(p (�� 1) + 1)

1
p

rX
i=1

2664
2664CD�; 

x0�fi


Lq([a;x0]; )


rY
j=1
j 6=i

fj


1;[a;x0]

( (x0)�  (a))�+
1
p

3775

+

2664CD�; 
x0+fi


Lq([x0;b]; )


rY
j=1
j 6=i

fj


1;[x0;b]

( (b)�  (x0))�+
1
p

3775
3775 : (56)

Proof. By (36), (47) and (49).
We continue with

Proposition 16 All as in Theorem 10. Then

��� (f1; :::; fr)�� � ( (b)�  (a))�+2

� (�+ 2)8>><>>:
rX
i=1

"
sup

x02[a;b]

CD�; 
x0�fi


1;[a;x0]

+ sup
x02[a;b]

CD�; 
x0+fi


1;[x0;b]

#
rY
j=1
j 6=i

fj


1;[a;b]

9>>=>>; :

(57)

14

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.6, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

1110 Anastassiou 1097-1114



Proof. By (42), (47) and (49).
Next we make some applications of our main results.
We need

Remark 17 We have that (r = 2)

� (f1; f2) (x0) = 2

Z b

a

f1 (x) f2 (x) d (x)� (58)

f1 (x0)

Z b

a

f2 (x) d (x)� f2 (x0)
Z b

a

f1 (x) d (x) ;

and (r = 3)

� (f1; f2; f3) (x0) = 3

Z b

a

f1 (x) f2 (x) f3 (x) d (x)�f1 (x0)
Z b

a

f2 (x) f3 (x) d (x)

(59)

�f2 (x0)
Z b

a

f1 (x) f3 (x) d (x)� f3 (x0)
Z b

a

f1 (x) f2 (x) d (x) ;

etc.
Furthermore we derive (r = 2)

� (f1; f2) = 2

"
( (b)�  (a))

 Z b

a

f1 (x) f2 (x) d (x)

!
�

 Z b

a

f1 (x) d (x)

! Z b

a

f2 (x) d (x)

!#
; (60)

and (r = 3)

� (f1; f2; f3) = 3 ( (b)�  (a))
 Z b

a

f1 (x) f2 (x) f3 (x) d (x)

!
�

 Z b

a

f1 (x) d (x)

! Z b

a

f2 (x) f3 (x) d (x)

!
�

 Z b

a

f2 (x) d (x)

! Z b

a

f1 (x) f3 (x) d (x)

!
�

 Z b

a

f3 (x) d (x)

! Z b

a

f1 (x) f2 (x) d (x)

!
; (61)

etc.

We give the special cases of fractional Ostrowski type inequalities.
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Proposition 18 Let � > 0, n 2 N : n = d�e, [a; b] � R and f1; f2 2 Cn ([a; b]).
Let x0 2 [a; b] and assume that f [k]1ex (x0) = f

[k]
2ex (x0) = 0, for k = 1; :::; n � 1.

Then�����2
Z b

a

f1 (x) f2 (x) e
xdx� f1 (x0)

Z b

a

f2 (x) e
xdx� f2 (x0)

Z b

a

f1 (x) e
xdx

����� �
1

� (�+ 2)

2X
i=1

2664
2664CD�;ex

x0� fi


1;[a;x0]


2Y
j=1
j 6=i

fj


1;[a;x0]

(ex0 � ea)�+1

3775

+

2664CD�;ex

x0+ fi


1;[x0;b]


2Y
j=1
j 6=i

fj


1;[x0;b]

�
eb � ex0

��+1
3775
3775 : (62)

If 0 < � � 1, then (62) is valid without any initial conditions.

Proof. Case of  (x) = ex, apply Proposition 13 for r = 2:
We continue with

Proposition 19 Let � > 0, n 2 N : n = d�e, [a; b] � (0;+1) and f1; f2; f3 2
Cn ([a; b]). Let x0 2 [a; b] and assume that f [k]i ln x (x0) = 0, for k = 1; :::; n � 1;
i = 1; 2; 3. Then�����3

Z b

a

f1 (x) f2 (x) f3 (x)

x
dx� f1 (x0)

Z b

a

f2 (x) f3 (x)

x
dx�

f2 (x0)

Z b

a

f1 (x) f3 (x)

x
dx� f3 (x0)

Z b

a

f1 (x) f2 (x)

x
dx

����� �
1

� (�+ 2)

3X
i=1

2664
2664CD�;ln x

x0� fi


1;[a;x0]


3Y
j=1
j 6=i

fj


1;[a;x0]

�
ln
�x0
a

���+13775

+

2664CD�;ln x
x0+ fi


1;[x0;b]


3Y
j=1
j 6=i

fj


1;[x0;b]

�
ln

�
b

x0

���+13775
3775 : (63)

If 0 < � � 1, then (63) is valid without any initial conditions.

Proof. Case of  (x) = lnx, apply Proposition 13 for r = 3:
Next we present the special cases of fractional Grüss type inequality:
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Proposition 20 Let 0 < � � 1, [a; b] � R and f1; f2 2 C1 ([a; b]). Assume that
sup

x02[a;b]

CD�;ex

x0� fi


1;[a;x0]

<1, and sup
x02[a;b]

CD�;ex

x0+ fi


1;[x0;b]

<1, i = 1; 2:

Then

2

������eb � ea�
 Z b

a

f1 (x) f2 (x) e
xdx

!
�
 Z b

a

f1 (x) e
xdx

! Z b

a

f2 (x) e
xdx

!����� ��
eb � ea

��+2
� (�+ 2)8>><>>:

2X
i=1

"
sup

x02[a;b]

CD�;ex

x0� fi


1;[a;x0]

+ sup
x02[a;b]

CD�;ex

x0+ fi


1;[x0;b]

#
2Y
j=1
j 6=i

fj


1;[a;b]

9>>=>>; :

(64)

Proof. Apply Proposition 16, for  (x) = ex, r = 2:
We �nish with another  -fractional Grüss type inequality:

Proposition 21 Let 0 < � � 1, [a; b] � (0;1) and fi 2 C1 ([a; b]), i = 1; 2; 3.
Assume that sup

x02[a;b]

CD�;ln x
x0� fi


1;[a;x0]

<1; sup
x02[a;b]

CD�;ln x
x0+ fi


1;[x0;b]

<1,

i = 1; 2; 3: Then�����ln
�
b

a

�3 Z b

a

f1 (x) f2 (x) f3 (x)

x
dx

!
�
 Z b

a

f1 (x)

x
dx

! Z b

a

f2 (x) f3 (x)

x
dx

!
�

 Z b

a

f2 (x)

x
dx

! Z b

a

f1 (x) f3 (x)

x
dx

!
�
 Z b

a

f3 (x)

x
dx

! Z b

a

f1 (x) f2 (x)

x
dx

!�����
(65)

�
�
ln
�
b
a

���+2
� (�+ 2)

(
3X
i=1

"
sup

x02[a;b]

CD�;ln x
x0� fi


1;[a;x0]

+

sup
x02[a;b]

CD�;ln x
x0+ fi


1;[x0;b]

#
3Y
j=1
j 6=1

fj


1;[a;b]

9>>=>>; :

Proof. By Proposition 16, for  (x) = lnx, r = 3:
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Abstract

This paper investigates and states some properties of sequential
conformable fractional derivative introduced by R. Khalil et. al. in [1].
Further some theorems of the classical power series are generalized for
the fractional power series(CFPS), where the CFPS technique is used
to �nd the solutions of conformable fractional deferential equation
with variable coe¢ cients.

1 Introduction

The correspondence between L�Höpital and Leibniz, in 1695, about what
might be a derivative of order 1/2, led to the introduction of a generalization
of integral and derivative operators, known as Fractional Calculus. Since
then, related to the de�nition of fractional derivatives have been many de-
�nitions. The most popular ones of these de�nitions are Riemann-Liouville
and Caputo de�nitions see [6],[7].
Recently, R. Khalil et al. [1] give a new de�nition of fractional derivative

and fractional integral. In their work they proved the product rule, the frac-
tional Rolle�s theorem and Mean Value Theorem utilizing the conformable
fractional derivative de�nition. New construction of the generalized Taylor�s
power series is obtained by Abdeljawad in[2]. In recent years, many re-
searchers have focused on the approximate analytical solutions of the system
of fractional di¤erential equations and some methods have been developed
such as fractional power series method(FPS) in [5] . FPS method is a simple
technique to �nd out the recurrence relation that determines the coe¢ cients

02000 Mathematics Subject Classi�cation. 26A33, 41A58 .
Key words and phrases. Conformable fractional derivatives ; Fractional power series.
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of the fractional power series, where this method is one of the most useful
techniques to solve linear system and non-linear system of fractional di¤er-
ential equations with a fast convergence rate and small calculation error.
In this work, we state some properties of sequential conformable frac-

tional derivative, then use the FPS technique to solve conformable fractional
di¤erential equation of order two.

2 Conformable fractional derivative

In this section, we present some de�nitions and some important properties
of the conformable fractional derivative. The de�nition of the conformable
fractional derivative is de�ned as follows;

De�nition 1 [1] Given a function f : [0;1) �! R. For � 2 (0; 1), the
conformable fractional derivative (CFD) of f of order � is de�ned by

T� (f) (t) = lim
"!0

f(t+ "t1��)� f(t)
"

; (1)

for all t > 0: If f is �di¤erentiable in some (0; a), a > 0, and limt!0+f
(�)(t)

exists, then de�ne
f (�)(0) = lim

t!0+
f (�)(t):

A function f is called �-di¤erentiable at t > 0 if the above limits exists.
For simplicity we sometimes use the notation f (�)(t) instead of T� (f) (t).
Consider the limit �! 1�. In this case , for t > 0, we obtain the classical

de�nition for the �rst derivative of a function f (�)(t) = f 0(t).

Theorem 2 [1]Let f : [0;1) �! R be a di¤erentiable function in the clas-
sical sense. Then f is �di¤erentiable at t , � 2 (0; 1) and

f (�)(t) = t1��f 0(t); t > 0:

Also, if f is continuously di¤erentiable at 0, then f (�)(0) = 0:

Note that the function could be �-di¤erentiable at a point t0 but not
di¤erentiable at that point, as in the following example.

Example 3 For some �xed �, with � 2 (0; 1), let f(t) = t�

�
; t > 0. Note

that f 0(0) does not exists but T�(f)(t) = 1 for t > 0, therefore f (�)(0) =
limt!0+ T�(f)(t) = 1.

2
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Theorem 4 [1]If a function f : [0;1) �! R is �-di¤erentiable at a >
0; � 2 (0; 1] ; then f is continuous at a.

We list some Important properties of the operator T� as follows.

Theorem 5 [1]Let � 2 (0; 1] and f; g be �di¤erentiable at a point t > 0.
Then

1. T�(�f + g) = �T�(f) + T�(g); for all � 2 R.

2. T�(fg) = fT�(g) + gT�(f).

3. T�(
f
g
) = gT�(f)�fT�(g)

g2
.

Important examples of CFD are listed as follows:

Example 6 [1]

1. T�(tp) = ptp��

2. T�(eat) = at1��eat; a 2 R:

3. T�(sin(at)) = at1�� cos(at); a 2 R:

4. T�(cos(at)) = �at1�� sin(at); a 2 R:

5. T�(e�(
1
�
t�)) = �e

1
�
t�.

6. T�(sin( 1�t
�)) = cos(

1

�
t�):

7. T�(cos( 1�t
�)) = � sin( 1

�
t�):

8. T�( 1�t
�) = 1:

There are some properties that are not satis�ed by operator T� as follows:

Theorem 7 [2]For �; � 2 (0; 1] and � + � 2 (1; 2], and the function f :
(0;1) �! R is twice di¤erentiable on (0;1).T� does not satisfy the Index
Law; T�T� = T�T�;where

T�T� (f) (t) = t
1�(�+�)

�
(1� �) f 0 (t) + t f 00 (t)

�
;

1. while,
T�T� (f) (t) = t

1�(�+�)
�
(1� �) f 0 (t) + t f 00 (t)

�
:

Proof. Calculating T�T�; T�T� gives that

T�T� (f) (t) 6= T�T� (f) (t) ;

for � 6= �:

3
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3 Sequential conformable fractional
�-derivatives

In this section the higher order of conformable fractional derivative will be
de�ned and the relation between CFD and polynomials will be given.

De�nition 8 The second order CFD operator T�, will be denoted by

T 2� = T� (T�) :

In general the nth order CFD operator T� is de�ned as

T n� = T�
�
T n�1�

�
:

Note that the operators commute for each positive integers n;m,

T n�T
m
� = Tm� T

n
� :

The calculation of the second and the third sequential orders of CF op-
erator T� can be found in [2].

Theorem 9 Given a function f : (0;1) �! R .Then

T 2� (f) (t) = T�T� (f) (t) = t
1�2�

�
(1� �) f 0 (t) + t f 00 (t)

�
;

where f is twice di¤erentiable, and twice �-di¤erentiable at t . Also

T 3� (f) (t) = t
1�3�

�
(1� �) (1� 2�) f 0 (t) + (3� 3�) t f 00 (t) + t2 f

000
(t)
�
;

where f is three times di¤erentiable at t and three times �-di¤erentiable at t
.

Lemma 10 If m and n are any positive integers and p a real number, then

Tm� (t
p) = �m�1i=0 (p� i �) tp�m�:

Proof.

T 2� (t
p) = T� (T�t

p)

= T�
�
ptp��

�
= p (p� �) tp�2�:

4
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Also,

T 3� (t
p) = T�

�
p (p� �) tp�2�

�
= p (p� �) (p� 2�) tp�3�:

Then

Tm� (t
p) = p (p� �) (p� 2�) : : : (p� (m� 1)�) tp�m�

= �m�1i=0 (p� i �) tp�m�:

Corollary 11 If n is positive integer , then

T n� (t
n) = �n�1i=0 (n� i �) tn(1��):

Corollary 12 If m and n are any positive integers and 0 < � < 1,then

Tm� (t
n�) = �m�1i=0 �

m (n� i ) t�(n�m):

Applying Lemma10 and using the linearity property of Theorem 5, we
get

Lemma 13 If Pn (t) = a0tn + a1tn�1 + a2tn�2 + � � � + an is a polynomial in
t of degree n, then

Tm� Pn (t) =
nX
j=0

aj �
m�1
i=0 (n� j � i �) tn�j�m�:

Changing variable from t! t�, we get the following result.

Corollary 14 If f (t) = a0t�n + a1t�(n�1) + a2t�(n�2) + � � �+ an , then

Tm� f (t) =

nX
j=0

aj �
m�1
i=0 (� (n� i )� j) t�(n�m)�j:

The following theorem presents the nth sequential CF �-derivative utiliz-
ing the limit de�nition as follows:

Theorem 15 Given a function f : [0;1) �! R. Then for 0 < � < 1 and n
a positive integer, the n th order of the ��conformable fractional derivative
of f of is as follows

T n� f (t) = lim
"!0

Pn
j=0

�
n
j

�
(�1)n�j f ((1 + "t��)jt)

"n
;

where t > 0.

5
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Proof. Since

T�f (t) = lim
"!0

f(t+ "t1��)� f(t)
"

= lim
"!0

f(t (1 + "t��))� f(t)
"

:

Let � = 1 + "t��, we get

T�f (t) = lim
�!1

f(�t)� f(t)
(� � 1) t� :

Thus

T 2�f (t) = lim
�!1

T�f(�t)� T�f(t)
(� � 1) t�

= lim
�!1

f(�2t)� 2f(�t) + f(t)
(� � 1)2 t2�

:

Again calculating the 3rd order of the ��conformable fractional derivative,
we get

T 3�f (t) = T�T
2
�f (t) = lim

�!1

T�f(�
2t)� 2T�f(�t) + T�f(t)
(� � 1)2 t2�

= lim
�!1

f(�3t)� 3f(�2t) + 3f(�t) + f(t)
(� � 1)3 t3�

= lim
�!1

P3
j=0

�
3
j

�
(�1)3�j f

�
�jt
�

(� � 1)3 t3�
:

Repeating this process n times, we get

T n� f (t) = lim
�!1

Pn
j=0

�
n
j

�
(�1)n�j f

�
�jt
�

(� � 1)n tn� :

Substituting " = (� � 1) t�, then

T n� f (t) = lim
"!0

Pn
j=0

�
n
j

�
(�1)n�j f ((1 + "t��)jt)

"n
:

6
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4 Conformable Fractional Power Series
Representation

Power series is an important tool in the study of elementary functions. Using
this power expansion gives us the ability to make an approximate study of
many di¤erential equations . In this section, we will recall some important
de�nitions and theorems of fractional power series theory .

De�nition 16 For � 2 (0; 1) a conformable fractional power series of the
form

1X
n=0

cn (t� t0)n� = c0 + c1 (t� t0)� + c2 (t� t0)2� + � � � � � � ;

where t > t0 � 0 tis called the conformable fractional power series (CFPS)
about t0;where cn denote the coe¢ cients of the series, where n 2 N:

Note that for CFPS, we have the value c0 forn = 0,at t = t0 , while cn = 0
for n � 1at t = t0 .Also note that for t0 = 0, then the CFPS becomes

1X
n=0

cnt
n� = c0 + c1t

� + c2t
2� + � � � � � �

Proposition 17 [4]If
P1

n=0 cnt
n�converges absolutely for t = t0 > 0, then

we it converges absolutely for t 2 (0; t0).

Theorem 18 The series
P1

n=0 cnt
n�converges,�1 < t < 1 has radius of

convergence R, if and only if the series
P1

n=0 cnt
n�; t � 0 has radius of

convergence R
1
� , R > 0:

Theorem 19 [2]Assume f is an in�nitely �-di¤erentiable function, for some
� 2 (0; 1] at a neighborhood of a point t0. Then f has the Taylor CFPS series
expansion as follows

f (t) =
1X
k=0

T k�f (t0) (t� t0)
k�

�kk!
; t 2

�
t0; t0 +R

1
�

�
; R > 0:

The next following examples doesn�t have the Taylor PS expansion about
t0 � 0 since there are not di¤erentiable there. But they have Taylor CFPS
expansion at t0.

7
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Example 20 [2]

1. e
1
�
(t�t0)� =

P1
k=0

(t�t0)k�
�kk!

, for t 2 [t0;1).

2. sin( 1
�
(t� t0)�) =

P1
k=0 (�1)

k (t�t0)(2k+1)�
�2k+12k+1!

, for t 2 [t0;1).

3. cos( 1
�
(t� t0)�) =

P1
k=0 (�1)

k (t�t0)(2k)�
�2k2k!

, for t 2 [t0;1).

4. 1

1� (t�t0)�
�

=
P1

k=0 (t� t0)
k� ; for t 2 [t0; t0 + 1) :

5 Solving CFD equation�s using CFPS

Example 21 Consider the following conformable fractional di¤erential equa-
tion

T 2�y (t)� t�y (t) = 0; (2)

with initial conditions,

y (0) = 0; T�y (0) = y0; (3)

where y0 is a real constant.
Now using CFPS technique, let

y (t) =
1X
n=0

cnt
n�:

Then

T 2�y (t) =

1�X
n=2

�2 (n) (n� 1) cnt(n�2)�

=

1X
n=0

�2 (n+ 1) (n+ 2) cn+2t
n�

and

t�y (t) =
1X
n=0

cnt
(n+1)�

=

1X
n=1

cn�1t
n� (4)

8
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Substituting T 2�y (t) and t
�y (t) in CFDE, we get

1X
n=0

�2 (n+ 1) (n+ 2) cn+2t
n� �

1X
n=1

cn�1t
n� = 0:

Then from Formula (), one can obtain

2�2c2 +
1X
n=1

�
�2 (n+ 1) (n+ 2) cn+2 � cn�1

�
tn� = 0:

Equating the coe¢ cients of tn� to zero in both sides gives the following;

c2 = 0; and cn+2 =
cn�1

�2 (n+ 1) (n+ 2)
; n = 1; 2; 3; : : : : (5)

Considering the initial conditions of the CFDE,

c0 = 0; and c1 =
1

�
y0:

Based on Equation 5;the coe¢ cients of tn� can be divided into two cate-
gories: zero terms

c2 = c3 = c5 = c6 = c8 = c9 = c11 = c14 = � � � = 0;

in general
c3n+2 = c3n+3, for n = 0; 1; 2; 3; : : :

and non zero terms

c3n+1 6= 0; for n = 0; 1; 2; 3; : : : ;

that is c1; c4; c7; c10; c13; c16 � � � , where

c4 =
c1

�2 (3:4)
=

y0
�3 (3:4)

;

c7 =
c4

�2 (6:7)
=

y0
�5 (3:4:6:7)

;

c10 =
c7

�2 (9:10)
=

y0
�7 (3:4:6:7:9:10)

;

c10 =
c10

�2 (9:10)
=

y0
�9 (3:4:6:7:9:10)

;

� � � � � � � � �

9
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Then, one can obtain the following CFPS as follows

y (t) = c1t
� + c4t

4� + c7t
7� + c10t

10� + � � � � � � � � �

=
1

�
y0t

� +
y0

�3 (3:4)
t4� +

y0
�5 (3:4:6:7)

t7� +
y0

�9 (3:4:6:7:9:10)
t10� + � � � � � �

=
1

�
y0

0BBBBB@1 +
1X
k=1

1

�2k

 
kY
i=0

(3i) (3i+ 1)

!t(3k+1)�
1CCCCCA :

Conclusion 22 The main aim of this work is to provide a reliable algorithm
for the solutions to the systems of fractional di¤erential equations by using
the CFPS.

Acknowledgement 23 The authors acknowledges Applied Science Private
University, Amman, Jordan for the fully �nancial support granted of this
research article.
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Abstract
Here we present multivariate Ostrowski-Sugeno Fuzzy type inequali-

ties. These are multivariate Ostrowski-like inequalities in the context of
Sugeno fuzzy integral and its special properties. They give tight upper
bounds to the deviation of a multivariate function from its Sugeno-fuzzy
multivariate averages.

2010 Mathematics Subject Classi�cation: Primary: 26D07, 26D10,
26D15, 41A44, Secondary: 26A24, 26D20, 28A25.
Keywords and phrases: Sugeno fuzzy integral, multivariate function

fuzzy average, deviation from fuzzy multivariate mean, Fuzzy multivariate Os-
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1 Introduction

The famous Ostrowski ([4]) inequality motivates this work and has as follows:����� 1

b� a

Z b

a

f (y) dy � f (x)
����� �

 
1

4
+

�
x� a+b

2

�2
(b� a)2

!
(b� a) kf 0k1 ;

where f 2 C1 ([a; b]), x 2 [a; b], and it is a sharp inequality.
Another motivation comes from author�s [2], pp. 507-508, see also [1]:

Let f 2 C1
�

kQ
i=1

[ai; bi]

�
, where ai < bi; ai; bi 2 R, i = 1; :::; k; and let

x0 := (x01; :::; x0k) 2
kQ
i=1

[ai; bi] be �xed. Then���������
1

kQ
i=1

(bi � ai)

Z b1

a1

:::

Z bi

ai

:::

Z bk

ak

f (z1; :::; zk) dz1:::dzk � f (x0)

��������� �

1
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kX
i=1

 
(x0i � ai)2 + (bi � x0i)2

2 (bi � ai)

! @f@zi

1
:

The last inequality is sharp, the optimal function is

f� (z1; :::; zk) :=
kX
i=1

jzi � x0ij�i , �i > 1:

Here �rst we give a survey about Sugeno fuzzy integral and its basic special
properties. Then we derive a set of multivariate Ostrowski-like inequalities to all
directions in the context of Sugeno integral whitin its basic important properties.
We �nish with an application to a special multivariate case.

2 Background

In this section, some de�nitions and basic important properties of the Sugeno
integral which will be used in the next section are presented. Also a preparation
for the main results Section 3 is given.

De�nition 1 (Fuzzy measure [6, 8]) Let � be a �-algebra of subsets of X, and
let � : �! [0;+1] be a non-negative extended real-valued set function. We say
that � is a fuzzy measure i¤:
(1) � (?) = 0;
(2) E;F 2 � : E � F imply � (E) � � (F ) (monotonicity),
(3) En 2 � (n 2 N), E1 � E2 � :::, imply lim

n!1
� (En) = � ([1n=1En)

(continuity from below);
(4) En 2 � (n 2 N), E1 � E2 � :::, � (E1) < 1; imply lim

n!1
� (En) =

� (\1n=1En) (continuity from above).

Let (X;�; �) be a fuzzy measure space and f be a non-negative real-valued
function on X. We denote by F+ the set of all non-negative real valued mea-
surable functions, and by L�f the set: L�f := fx 2 X : f (x) � �g, the �-level
of f for � � 0:

De�nition 2 Let (X;�; �) be a fuzzy measure space. If f 2 F+ and A 2 �,
then the Sugeno integral (fuzzy integral) [7] of f on A with respect to the fuzzy
measure � is de�ned by

(S)

Z
A

fd� := _��0 (� ^ � (A \ L�f)) ; (1)

where _ and ^ denote the sup and inf on [0;1], respectively.

The basic properties of Sugeno integral follow:

2
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Theorem 3 ([5, 8]) Let (X;�; �) be a fuzzy measure space with A;B 2 � and
f; g 2 F+. Then
1) (S)

R
A
fd� � � (A) ;

2) (S)
R
A
kd� = k ^ � (A) for a non-negative constant k;

3) if f � g on A, then (S)
R
A
fd� � (S)

R
A
gd�;

4) if A � B, then (S)
R
A
fd� � (S)

R
B
fd�;

5) � (A \ L�f) � �) (S)
R
A
fd� � �;

6) if � (A) <1, then � (A \ L�f) � �, (S)
R
A
fd� � �;

7) when A = X, then (S)
R
A
fd� = _��0 (� ^ � (L�f)) ;

8) if � � �, then L�f � L�f ;
9) (S)

R
A
fd� � 0:

Theorem 4 ([8], p. 135) Here f 2 F+, the class of all �nite nonnegative
measurable functions on (X;�; �). Then
1) if � (A) = 0, then (S)

R
A
fd� = 0; for any f 2 F+;

2) if (S)
R
A
fd� = 0, then � (A \ fxjf (x) > 0g) = 0;

3) (S)
R
A
fd� = (S)

R
X
f � �Ad�; where �A is the characteristic function of

A;
4) (S)

R
A
(f + a) d� � (S)

R
A
fd�+ (S)

R
A
ad�, for any constant a 2 [0;1):

Corollary 5 ([8], p. 136) Here f; f1; f2 2 F+. Then
1) (S)

R
A
(f1 _ f2) d� � (S)

R
A
f1d� _ (S)

R
A
f2d�;

2) (S)
R
A
(f1 ^ f2) d� � (S)

R
A
f1d� ^ (S)

R
A
f2d�;

3) (S)
R
A[B fd� � (S)

R
A
fd� _ (S)

R
B
fd�;

4) (S)
R
A\B fd� � (S)

R
A
fd� ^ (S)

R
B
fd�:

In general we have

(S)

Z
A

(f1 + f2) d� 6= (S)
Z
A

f1d�+ (S)

Z
A

f2d�;

and

(S)

Z
A

afd� 6= a (S)
Z
A

fd�, where a 2 R;

see [8], p. 137.

Lemma 6 ([8], p. 138) (S)
R
A
fd� = 1 i¤ � (A \ L�f) = 1 for any � 2

[0;1):

We need

De�nition 7 ([3]) A fuzzy measure � is subadditive i¤ � (A [B) � � (A) +
� (B), for all A;B 2 �:

We mention

3
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Theorem 8 ([3]) If � is subadditive, then

(S)

Z
X

(f + g) d� � (S)
Z
X

fd�+ (S)

Z
X

gd�; (2)

for all measurable functions f; g : X ! [0;1):
Moreover, if (2) holds for all measurable functions f; g : X ! [0;1) and

� (X) <1, then � is subadditive.
Notice here in (1) we have that � 2 [0;1):

We have

Corollary 9 If � is aubadditive, n 2 N, and f : X ! [0;1) is a measurable
function, then

(S)

Z
X

nfd� � n (S)
Z
X

fd�; (3)

in particular it holds

(S)

Z
A

nfd� � n (S)
Z
A

fd�; (4)

for any A 2 �:

Proof. By (2).
A very important property of Sugeno integral follows.

Theorem 10 If � is subadditive measure, and f : X ! [0;1) is a measurable
function, and c > 0, then

(S)

Z
A

cfd� � (c+ 1) (S)
Z
A

fd�; (5)

for any A 2 �:

Proof. Let the ceiling dce = m 2 N, then by Theorem 3 (3) and (4) we get

(S)

Z
A

cfd� � (S)
Z
A

mfd� � m (S)
Z
A

fd� � (c+ 1) (S)
Z
A

fd�;

proving (5).
From now on in this article we work on the fuzzy measure space (Q;B; �),

where Q � Rk, k � 1 is a convex compact subset, B is the Borel �-algebra on
Q, and � is a �nite fuzzy measure on B. Typically we take it to be subadditive.
The functions f we deal with here are continuous from Q into R+:
We make

Remark 11 Let f 2 C (Q;R+), and � is a subadditive fuzzy measure such that
� (Q) > 0, x 2 Q. We will estimate

E (x) :=

����(S)Z
Q

f (t) d� (t)� � (Q) ^ f (x)
���� (6)

4
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(by Theorem 3 (2))

=

����(S)Z
Q

f (t) d� (t)� (S)
Z
Q

f (x) d� (t)

���� :
We notice that

f (t) = f (t)� f (x) + f (x) � jf (t)� f (x)j+ f (x) ;

then (by Theorem 3 (3) and Theorem 4 (4))

(S)

Z
Q

f (t) d� (t) � (S)
Z
Q

jf (t)� f (x)j d� (t) + (S)
Z
Q

f (x) d� (t) ; (7)

that is

(S)

Z
Q

f (t) d� (t)� (S)
Z
Q

f (x) d� (t) � (S)
Z
Q

jf (t)� f (x)j d� (t) : (8)

Similarly, we have

f (x) = f (x)� f (t) + f (t) � jf (t)� f (x)j+ f (t) ;

then (by Theorem 3 (3) and Theorem 8)

(S)

Z
Q

f (x) d� (t) � (S)
Z
Q

jf (t)� f (x)j d� (t) + (S)
Z
Q

f (t) d� (t) ;

that is

(S)

Z
Q

f (x) d� (t)� (S)
Z
Q

f (t) d� (t) � (S)
Z
Q

jf (t)� f (x)j d� (t) : (9)

By (8) and (9) we derive that����(S)Z
Q

f (t) d� (t)� (S)
Z
Q

f (x) d� (t)

���� � (S)Z
Q

jf (t)� f (x)j d� (t) : (10)

Consequently it holds

E (x)
(by (6), (10))

� (S)

Z
Q

jf (t)� f (x)j d� (t) ; (11)

where t = (t1; :::; tk), x = (x1; :::; xk) :

We will use (11).

5
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3 Main Results

We make

Remark 12 Here Q :=
kQ
i=1

[ai; bi], where ai < bi; ai; bi 2 R, i = 1; :::; k;

x = (x1; :::; xk) 2
kQ
i=1

[ai; bi] is �xed, and f 2 C1
�

kQ
i=1

[ai; bi] ;R+
�
. Consider

gt (r) := f (x+ r (t� x)), r � 0. Note that gt (0) = f (x), gt (1) = f (t). Thus

f (t)� f (x) = gt (1)� gt (0) = g0t (�) (1� 0) = g0t (�) ; (12)

where � 2 (0; 1) :
I.e.

f (t)� f (x) =
kX
i=1

(ti � xi)
@f

@ti
(x+ � (t� x)) : (13)

Hence

jf (t)� f (x)j �
kX
i=1

jti � xij
���� @f@ti (x+ � (t� x))

����
�

kX
i=1

jti � xij
 @f@ti


1
: (14)

By (11) we get������(S)
Z

kQ
i=1

[ai;bi]

f (t) d� (t)� �
 

kY
i=1

[ai; bi]

!
^ f (x)

������ �
(S)

Z
kQ
i=1

[ai;bi]

jf (t)� f (x)j d� (t)
(14)
�

(S)

Z
kQ
i=1

[ai;bi]

 
kX
i=1

jti � xij
 @f@ti


1

!
d� (t)

(2)
�

kX
i=1

(S)

Z
kQ
i=1

[ai;bi]

jti � xij
 @f@ti


1
d� (t)

(5)
�

kX
i=1

� @f@ti

1
+ 1

�0@(S)Z kQ
i=1

[ai;bi]

jti � xij d� (t)

1A : (15)

Here � is a fuzzy subadditive measure with �
�

kQ
i=1

[ai; bi]

�
> 0:

6
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Therefore we get���������
1

�

�
kQ
i=1

[ai; bi]

� (S)Z kQ
i=1

[ai;bi]

f (t) d� (t)�

0BBB@1 ^ f (x)

�

�
kQ
i=1

[ai; bi]

�
1CCCA
���������
(15)
� (16)

kX
i=1

0BBB@
 @f@ti 1 + 1

�

�
kQ
i=1

[ai; bi]

�
1CCCA
0@(S)Z kQ

i=1

[ai;bi]

jti � xij d� (t)

1A :

Notice here

0B@1 ^ f(x)

�

 
kQ
i=1

[ai;bi]

!
1CA � 1, and

1

�

 
kQ
i=1

[ai;bi]

! (S) R kQ
i=1

[ai;bi]
f (t) d� (t)

(by Thm. 3 (1))
� 1;

where (S)
R

kQ
i=1

[ai;bi]
f (t) d� (t) � 0.

If f :
kQ
i=1

[ai; bi] ! R+ is a Lipschitz function of order 0 < � � 1, i.e.

jf (x)� f (y)j � K kx� yk�l1 , 8 x; y 2
kQ
i=1

[ai; bi], K > 0, where kx� ykl1 :=
kP
i=1

jxi � yij, denoted by f 2 Lip�;K
�

kQ
i=1

[ai; bi] ;R+
�
, then by (11) we get������(S)

Z
kQ
i=1

[ai;bi]

f (t) d� (t)� �
 

kY
i=1

[ai; bi]

!
^ f (x)

������ � (17)

(S)

Z
kQ
i=1

[ai;bi]

jf (t)� f (x)j d� (t) �

(S)

Z
kQ
i=1

[ai;bi]

K kt� xk�l1 d� (t)
(5)
�

(K + 1) (S)

Z
kQ
i=1

[ai;bi]

kt� xk�l1 d� (t) :

We have proved���������
1

�

�
kQ
i=1

[ai; bi]

� (S)Z kQ
i=1

[ai;bi]

f (t) d� (t)�

0BBB@1 ^ f (x)

�

�
kQ
i=1

[ai; bi]

�
1CCCA
��������� � (18)

7
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(K + 1)

�

�
kQ
i=1

[ai; bi]

� (S)Z kQ
i=1

[ai;bi]

kt� xk�l1 d� (t) :

We have established the following multivariate Ostrowski-Sugeno inequali-
ties.

Theorem 13 Here � is a fuzzy subadditive measure with �
�

kQ
i=1

[ai; bi]

�
> 0,

x 2
kQ
i=1

[ai; bi] :

1) Let f 2 C1
�

kQ
i=1

[ai; bi] ;R+
�
, then���������

1

�

�
kQ
i=1

[ai; bi]

� (S)Z kQ
i=1

[ai;bi]

f (t) d� (t)�

0BBB@1 ^ f (x)

�

�
kQ
i=1

[ai; bi]

�
1CCCA
��������� � (19)

kX
i=1

0BBB@
 @f@ti 1 + 1

�

�
kQ
i=1

[ai; bi]

�
1CCCA
0@(S)Z kQ

i=1

[ai;bi]

jti � xij d� (t)

1A :
2) Let f 2 Lip�;K

�
kQ
i=1

[ai; bi] ;R+
�
, 0 < � � 1, then���������

1

�

�
kQ
i=1

[ai; bi]

� (S)Z kQ
i=1

[ai;bi]

f (t) d� (t)�

0BBB@1 ^ f (x)

�

�
kQ
i=1

[ai; bi]

�
1CCCA
��������� � (20)

(K + 1)

�

�
kQ
i=1

[ai; bi]

� (S)Z kQ
i=1

[ai;bi]

kt� xk�l1 d� (t) :

We make

Remark 14 Let Q be a compact and convex subset of Rk, k � 1. Let f 2�
C (Q;R+) \ Cn+1 (Q)

�
, n 2 N and x 2 Q is �xed such that all partial deriva-

tives f� :=
@�f
@t� , where � = (�1; :::; �k), �i 2 Z

+, i = 1; :::; k; j�j =
�P
i=1

�i = j,

j = 1; :::; n ful�ll f� (x) = 0.
By [2], p. 513, we get that

jf (t)� f (x)j �

"�
kP
i=1

jti � xij
 @
@ti


1

�n+1
f

#
(n+ 1)!

; 8 t 2 Q: (21)

8
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Call
Dn+1 (f) := max

�:j�j=n+1
kf�k1 : (22)

For example, when k = 2 and n = 1, we get that24 2X
i=1

jti � xij
 @@ti


1

!2
f

35 =
(t1 � x1)2

@2f@t21

1
+ 2 jt1 � x1j jt2 � x2j

 @2f

@t1@t2


1
+ (t2 � x2)2

@2f@t22

1
;

(23)
and

D2 (f) = max
�:j�j=2

kf�k1 : (24)

Clearly, it holds24 2X
i=1

jti � xij
 @@ti


1

!2
f

35 � D2 (f) (jt1 � x1j+ jt2 � x2j)2 : (25)

Consequently, we derive that24 kX
i=1

jti � xij
 @@ti


1

!n+1
f

35 � Dn+1 (f) kt� xkn+1l1
; 8 t 2 Q: (26)

By (11) we get ����(S)Z
Q

f (t) d� (t)� � (Q) ^ f (x)
���� �

(S)

Z
Q

jf (t)� f (x)j d� (t)
(21)
� (27)

(S)

Z
Q

"�
kP
i=1

jti � xij
 @
@ti


1

�n+1
f

#
(n+ 1)!

d� (t)
(26)
�

(S)

Z
Q

Dn+1 (f) kt� xkn+1l1

(n+ 1)!
d� (t)

(5)
� (28)�

Dn+1 (f)

(n+ 1)!
+ 1

�
(S)

Z
Q

kt� xkn+1l1
d� (t) :

Here � is a fuzzy subadditive measure with � (Q) > 0:
By (27) and (28) we obtain���� 1

� (Q)
(S)

Z
Q

f (t) d� (t)�
�
1 ^ f (x)

� (Q)

����� �
9
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�
Dn+1(f)
(n+1)! + 1

�
� (Q)

(S)

Z
Q

kt� xkn+1l1
d� (t) : (29)

We have established the following multivariate Ostrowski-Sugeno general
inequality:

Theorem 15 Let Q be a compact and convex subset of Rk, k � 1. Let f 2�
C (Q;R+) \ Cn+1 (Q)

�
, n 2 N; x 2 Q be �xed: f� (x) = 0, all � : j�j = j,

j = 1; :::; n. Here � is a fuzzy subadditive measure with � (Q) > 0: Then���� 1

� (Q)
(S)

Z
Q

f (t) d� (t)�
�
1 ^ f (x)

� (Q)

����� ��
Dn+1(f)
(n+1)! + 1

�
� (Q)

(S)

Z
Q

kt� xkn+1l1
d� (t) : (30)

Corollary 16 All as in Theorem 15. Then���� 1

� (Q)
(S)

Z
Q

f (t) d� (t)�
�
1 ^ f (x)

� (Q)

����� ��
1 + 1

(n+1)!

�
� (Q)

(S)

Z
Q

24 kX
i=1

jti � xij
 @@xi


1

!n+1
f

35 d� (t) : (31)

Next we take again Q :=
kQ
i=1

[ai; bi], we set a := (a1; :::; ak), b := (b1; :::; bk),

and a+b
2 =

�
a1+b1
2 ; :::; ak+bk2

�
2

kQ
i=1

[ai; bi] :

Corollary 17 Let f 2
�
C

�
kQ
i=1

[ai; bi] ;R+
�
\ Cn+1

�
kQ
i=1

[ai; bi]

��
, n 2 N;

such that f�
�
a+b
2

�
= 0, all � : j�j = j, j = 1; :::; n. Here � is a fuzzy sub-

additive measure with �
�

kQ
i=1

[ai; bi]

�
> 0: Then

���������
1

�

�
kQ
i=1

[ai; bi]

� (S)Z kQ
i=1

[ai;bi]

f (t) d� (t)�

0BBB@1 ^ f
�
a+b
2

�
�

�
kQ
i=1

[ai; bi]

�
1CCCA
��������� ��

Dn+1(f)
(n+1)! + 1

�
�

�
kQ
i=1

[ai; bi]

� (S)Z kQ
i=1

[ai;bi]

t� a+ b2
n+1
l1

d� (t) : (32)
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Proof. By Theorem 15.
We make

Remark 18 By multinomial theorem we have that

kt� xkn+1l1
=

 
kX
i=1

jti � xij
!n+1

=

X
r1+r2+:::+rk=n+1

�
n+ 1

r1; r2; :::; rk

�
jt1 � x1jr1 jt2 � x2jr2 ::: jtk � xkjrk ; (33)

where �
n+ 1

r1; r2; :::; rk

�
=

(n+ 1)!

r1!r2!:::rk!
: (34)

By (27), (28) we get ����(S)Z
Q

f (t) d� (t)� � (Q) ^ f (x)
���� �

(S)

Z
Q

Dn+1 (f)

(n+ 1)!
kt� xkn+1l1

d� (t)
(by (33), (34))

=

(S)

Z
Q

" X
r1+r2+:::+rk=n+1

�
Dn+1 (f)

r1!r2!:::rk!

� kY
i=1

jti � xijri
!#

d� (t)
(2)
�

X
r1+r2+:::+rk=n+1

(S)

Z
Q

�
Dn+1 (f)

r1!r2!:::rk!

� kY
i=1

jti � xijri
!
d� (t)

(5)
�

X
r1+r2+:::+rk=n+1

�
Dn+1 (f)

r1!r2!:::rk!
+ 1

�
(S)

Z
Q

 
kY
i=1

jti � xijri
!
d� (t) : (35)

We have proved the following multivariate Ostrowski-Sugeno general inequal-
ity:

Theorem 19 Here all as in Theorem 15. Then���� 1

� (Q)
(S)

Z
Q

f (t) d� (t)�
�
1 ^ f (x)

� (Q)

����� �
X

r1+r2+:::+rk=n+1

0@
�
Dn+1(f)
r1!r2!:::rk!

+ 1
�

� (Q)

1A (S)Z
Q

 
kY
i=1

jti � xijri
!
d� (t) : (36)

We make
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Remark 20 In case k = 2, n = 1, by (27), (28) we get����(S)Z
Q

f (t) d� (t)� � (Q) ^ f (x)
���� �

(S)

Z
Q

D2 (f)

2
kt� xk2l1 d� (t) =

(S)

Z
Q

D2 (f)

2

h
(t1 � x1)2 + 2 jt1 � x1j jt2 � x2j+ (t2 � x2)2

i
d� (t) � (37)

(S)

Z
Q

D2 (f)

2
(t1 � x1)2 d� (t) + (S)

Z
Q

D2 (f) jt1 � x1j jt2 � x2j d� (t)

+ (S)

Z
Q

D2 (f)

2
(t2 � x2)2 d� (t) ��

1 +
D2 (f)

2

�
(S)

Z
Q

(t1 � x1)2 d� (t)+(1 +D2 (f)) (S)
Z
Q

jt1 � x1j jt2 � x2j d� (t)

+

�
1 +

D2 (f)

2

�
(S)

Z
Q

(t2 � x2)2 d� (t) :

We have proved

Corollary 21 Let Q be a compact and convex subset of R2. Let f 2 (C (Q;R+)
\C2 (Q)), x = (x1; x2) 2 Q be �xed: @f

@t1
(x1; x2) =

@f
@t2
(x1; x2) = 0. Here � is

a fuzzy subadditive measure with � (Q) > 0. Then���� 1

� (Q)
(S)

Z
Q

f (t) d� (t)�
�
1 ^ f (x)

� (Q)

����� ��
1 + D2(f)

2

�
� (Q)

(S)

Z
Q

(t1 � x1)2 d� (t)+
(1 +D2 (f))

� (Q)
(S)

Z
Q

jt1 � x1j jt2 � x2j d� (t)

(38)

+

�
1 + D2(f)

2

�
� (Q)

(S)

Z
Q

(t2 � x2)2 d� (t) :
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Abstract. In this paper, we consider subsethood measures introduced by Fan et al. [3]

and the interval-valued Choquet integral with respect to a fuzzy measure of interval-valued
fuzzy sets. Based on such a focus, we define three types of interval-valued subsethood

measures and provide four interval-valued fuzzy sets to animal product exports between
Korea and four selected trading partners.

In particular, we investigate a strong interval-valued subsethood measure defined by

the interval-valued Choquet integral which represents the degree of trade surplus between
Korea and three trading partners in terms of the model of trade transactions with the

United States and Korea

1. Introduction

Zadeh[18] first developed fuzzy sets and Murofushi-Sugeno [11] have studied fuzzy mea-
sures and Choquet integrals. Subsequently, using set-valued analysis theory developed by
Aumann[1], we studied interval-valued Choquet integrals and their related applications(see[5,
6, 7, 8, 9]). In particular, through the restudy of the interval-valued Choquet integral in
2004 by Zhang-Guo-Liu[21], this research has been developed in a much more systematical

1991 Mathematics Subject Classification. 28E10, 28E20, 03E72, 26E50 11B68.
Key words and phrases. Choquet integral, fuzzy measure, subsethood measures, the degree of trade surplus

in trade exports.
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manner. Xuechang [16], Zeng-Li[19] have examined fuzzy entropy, distance and similarity
measures, the likes of which form three key concepts of fuzzy set theory. Ruan-Kerre [12]
also introduced various fuzzy implication operators and the Choquet integral were suggested
for the first time by Choquet [2]. Further studied by Murofushi-Sugeno [9], Jang-Kwon [10],
and Jang [12] provide some interesting interpretations of fuzzy measures and the Choquet
integral. Subjective probability and Choquet expected utility were studied as an applica-
tion of Choquet integral and form another pivotal component of fuzzy sets and information
theories(see[13, 14, 15, 20]).

A subsethood measure refers to the degree to which a fuzzy set is a subset of another
fuzzy set. Many researchers have contributed to the area of a fuzzy subsethood measure that
is closely related to the various tools introduced above (see[6, 7, 8, 11]). Their efforts have
considered axiomatizing the properties of a subsethoods measure.

In this paper, we consider subsethood measures introduced by Fan et al. [3] and the
interval-valued Choquet integral with respect to a fuzzy measure of interval-valued fuzzy
sets. Based on such a focus, we define three types of interval-valued subsethood measures
and provide four interval-valued fuzzy sets to animal product exports between Korea and
four selected trading partners. In configuring the four interval-valued fuzzy sets, the original
data(see[4]) used had to be slightly modified to produce Table A4. In order to calculate the
interval-valued Choquet integral, the rules (46) and (48) were introduced.

Furthermore, we also investigate a strong interval-valued subsethood measure defined by an
interval-valued Choquet integral which represents the degree of trade surplus between Korea
and 3 trading partners in terms of the model of trade transactions with the United States and
Korea. The information for the above degree of surplus is of great significance in providing
accurate comparative figures on the size of trade that exists between the four countries that
trade with Korea.

2. Preliminaries and definitions

Throughout this paper, we write X to denote a set,

F (X) = {A|A = {(x,mA(x))| x ∈ X}, mA : X −→ [0, 1] is a function} (1)

stands for the set of fuzzy sets in X(see[18]). We note that mA expresses the membership of
a fuzzy set A, Ac is the complement of A, that is,

Ac = {(x,mAc(x))| mAc(x) = 1−mA(x), x ∈ X}. (2)

Recall that for A,B ∈ F (X), A ⊂ B if and only if mA(x) ≤ mB(x), for all x ∈ X, and for
A ∈ F (X), [A] = {x ∈ X| mA(x) > 0}, n(A) is the cardinal number of crisp set [A], and
M(A) is the fuzzy cardinal of A, that is, M(A) =

∑
x∈X mA(x). Now, we introduce three

types of subsethood measure in Fan et al. [3].

Definition 2.1. ([3]) Let c : F (X)× F (X) −→ [0, 1] be a function.
(1) c is called a strong subsethood measure if c has the following properties;

(S1) if A ⊂ B, then c(A,B) = 1;
(S2) if A 6= ∅ then c(A,B)
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(S3) if A ⊂ B ⊂ C, then c(C,A) ≤ c(B,A) and c(C,A) ≤ c(C,B). (3)

(2) c is called a subsethood measure if c has the following properties;

(C1) if A ⊂ B, then c(A,B) = 1;
(C2) c(X, ∅) = 0
(C3) if A ⊂ B ⊂ C, then c(C,A) ≤ c(B,A) and c(C,A) ≤ c(C,B). (4)

(3) c is called a weak subsethood measure if c has the following properties;

(W1) c(∅, ∅) = 1, c(∅, ∅) = 1, c(A,B) = 1; and c(X,X) = 1
(W2) if A 6= ∅ rmand A ∩B = ∅, then c(A,B) = 0;
(W3) if A ⊂ B ⊂ C, then c(C,A) ≤ c(B,A) and c(C,A) ≤ c(C,B). (5)

We also list the set-theoretical arithmetic operators for the set of subintervals of an unit
interval [0, 1] in R. We denote

I([0, 1]) = {a = [a−, a+]| a−, a+ ∈ [0, 1] and a− ≤ a+}. (6)

For any a ∈ [0, 1], we define a = [a, a].

Definition 2.2. ([5, 6, 7, 8, 9]) If a = [a−, a+], b = [b−, b+] ∈ I([0, 1]), and k ∈ [0, 1], then the
addition, scalar multiplication, minimum, maximum, inequality, subset, multiplication, and
division as follows;

(1) a+ b = [a− + b−, a+ + b+],
(2) ka = [ka−, ka+],
(3) a ∧ b = [a− ∧ b−, a+ ∧ b+],
(4) a ∨ b = [a− ∨ b−, a+ ∨ b+],
(5) a ≤ b if and only if a− ≤ b− and a+ ≤ b+,
(6) a < b if and only if a ≤ b and a 6= b,
(7) a ⊂ b if and only if b− ≤ a− and a+ ≤ b+,
(8) a⊗ b = [a−b−, a+b+], and
(9) a� b = [a−/b− ∧ a+/b+, a−/b− ∨ a+/b+].

From Definition 2.1 (9), the following theorem can be easily obtained.

Theorem 2.1. (1) If a = [a−, a+] ∈ I([0, 1]), then a� a = 1.
(2) If b = [b−, b+] ∈ I([0, 1]) and b− > 0, then 1� b = [1/b+, 1/b−].

Definition 2.3. ([5, 6, 8, 9, 21]) Let (X,Ω) be a measurable space. (1) A fuzzy measure on
X is a real-valued function µ : Ω −→ [0, 1] satisfies

(i) µ(∅) = 0
(ii) µ(E1) ≤ µ(E2) whenever E1, E2 ∈ Ω and E1 ⊂ E2. (7)
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(2) A fuzzy measure µ is said to be continuous from below if for any sequence {En} ⊂ Ω
and E ∈ Ω, such that

if En ↑ E, then lim
n→∞

µ(En) = µ(E). (8)

(3) A fuzzy measure µ is said to be continuous from above if for any sequence {En} ⊂ Ω
and E ∈ Ω such that

if En ↓ E, then lim
n→∞

µ(En) = µ(E). (9)

(5) A fuzzy measure µ is said to be continuous if it is continuous from below and continuous
from above.

Definition 2.4. ([5, 6, 8, 9, 21]) (1) Let A ∈ F (X). The Choquet integrals with respect to
a fuzzy measure µ of a fuzzy set A on a set E ∈ Ω is defined by

Cµ,E(A) = (C)

∫
E

mAdµ =

∫ 1

0

µE,mA(r)dr, (10)

where µE,mA(r) = µ({x ∈ X| mA(x) > r} ∩ E) and the integral on the right-hand side is an
ordinary one.

(2) A measurable function is said to be integrable if Cµ(A) = Cµ,X(A) exists.

It is well known that if X is a finite set, that is, X = {x1, x2, · · · , xn}, and A ∈ F (X),
then we have

Cµ(A) =
n∑
i=1

mA(x(i))
(
µ(E(i))− µ(E(i+1))

)
, (11)

where (·) indicate a permutation on {1, 2, · · · , n} such that mA(x(1)) ≤ mA(x(2)) ≤ · · · ≤
mA(x(n)) and also E(i) = {(i), (i+ 1), · · · , (n)} and E(n+1) = ∅.

Theorem 2.2. Let A,B ∈ F (X). (1) If A ≤ B, then Cµ(A) ≤ Cµ(B).
(2) If we define (mA ∨ mB)(x) = mA(x) ∨ mB(x) for all x ∈ X, then Cµ(A ∨ B) ≥

Cµ(A) ∨ Cµ(B).
(3) If we define (mA ∧ mB)(x) = mA(x) ∧ mB(x) for all x ∈ X, then Cµ(A ∧ B) ≥

Cµ(A) ∧ Cµ(B).

3. Three types of interval-valued subsethood measures defined by
interval-valued Choquet integral

In this section, we consider the interval-valued Choquet integral and list some properties
of them.
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Definition 3.1. ([5, 6, 8, 9, 21]) (1) The interval-valued Choquet integral of an interval-valued
measurable function f = [f−, f+] on E ∈ Ω is defined by

Cµ,E(f) = (C)

∫
E

fdµ =
{
Cµ,E(f) | f ∈ S(f)

}
, (12)

where S(f) is the family of measurable selection of f .
(2) f is said to be integrable if Cµ(f) = Cµ,X(f) 6= ∅.
(3) f is said to be Choquet integrably bounded if there is an integrable function g such

that

||f(x)|| = supr∈f(x)|r| ≤ g(x), for all x ∈ X. (13)

Theorem 3.1. ([5, 6, 21]) (1) If a closed set-valued measurable function f is integralble and
if E1 ⊂ E2 and E1, E2 ∈ Ω, then Cµ,E1(f) ≤ Cµ,E2(f).

(2) If a fuzzy measure µ is continuous , and a closed set-valued measurable function f is
Choquet integrably bounded, then Cµ(f) is a closed set.

(3) If the fuzzy measure µ is continuous, and an interval-valued measurable function f =
[f−, f+] is Choquet integrably bounded, then we have

Cµ(f) = [Cµ(f−), Cµ(f+)]. (14)

Let IF (X) be the set of all interval-valued fuzzy sets which are defined by

A = {(x,mA)|mA : X −→ I([0, 1])} . (15)

By using Theorem 2.2 and Theorem 3.1(3), we easily obtain the following theorem.

Theorem 3.2. Let A,B ∈ IF (X). (1) If A ≤ B, then Cµ(A) ≤ Cµ(B).

(2) If we define (mA ∨ mB)(x) = mA(x) ∨ mB(x) for all x ∈ X, then Cµ(A ∨ B) ≥
Cµ(A) ∨ Cµ(B).

(3) If we define (mA ∧ mB)(x) = mA(x) ∧ mB(x) for all x ∈ X, then Cµ(A ∧ B) ≥
Cµ(A) ∧ Cµ(B).

We denote mA = [mA− ,mA+ ] and define three types of interval-valued subsethood mea-
sures on IF (X)× IF (X) as follows:

Definition 3.2. Let c : IF (X)× IF (X) −→ I([0, 1]) be a function.
(1) c is called a strong interval-valued subsethood measure if c has the following properties;

(IS1) if A ⊂ B, then c(A,B) = 1;

(IS2) if A 6= ∅ then c(A,B)
(IS3) if A ⊂ B ⊂ C, then c(C,A) ≤ c(B,A) and c(C,A) ≤ c(C,B). (16)
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(2) c is called an interval-valued subsethood measure if c has the following properties;

(IC1) if A ⊂ B, then c(A,B) = 1;

(IC2) c(X, ∅) = 0
(IC3) if A ⊂ B ⊂ C, then c(C,A) ≤ c(B,A) and c(C,A) ≤ c(C,B). (17)

(3) c is called a weak interval-valued subsethood measure if c has the following properties;

(IW1) c(∅, ∅) = 1, c(∅, ∅) = 1, c(A,B) = 1; and c(X,X) = 1
(IW2) if A 6= ∅ rmand A ∩B = ∅, then c(A,B) = 0;
(IW3) if A ⊂ B ⊂ C, then c(C,A) ≤ c(B,A) and c(C,A) ≤ c(C,B). (18)

Let IF ∗(X) = {A ∈ IF (X)| A has the integrably bounded funstion mA}. Note that if
X is a finite set, then IF (X) = IF ∗(X). Finally, we give three types of interval-valued
subsethood measures defined by the Choquet integral with respect to a fuzzy measure on
IF ∗(X). By Theorem 3.1 (3), we note that for A = [A−, A+], B = [B−, B+] ∈ IF ∗(X),
Cµ(A) = [Cµ(A−), Cµ(A+)], Cµ(B) = [Cµ(B−), Cµ(B+)], and Cµ(A ∧ B) = [Cµ(A− ∧
B−), Cµ(A+ ∧B+)].

Theorem 3.3. Let X be a set. If we define an interval-valued function c1 : IF ∗(X) ×
IF ∗(X) −→ I([0, 1]),

c1(A,B) =

{
1, ifA = B = ∅,
Cµ(A∧B)

Cµ(A)
, if not,

(19)

then c1 is a strong interval-valued subsethood measure on IF ∗(X).

Proof. (IS1) If A ≤ B and B = ∅, that is, A = B = ∅, then by the definition of c1, we
have c1(AB) = 1. If A ≤ B and B 6= ∅, then mA ≤ mB . Thus, we have mA− ≤ mB− and
mA+ ≤ mB+ . Hence, we get

c1(A,B) =
Cµ(A ∧B)

Cµ(A)

=
[Cµ(A− ∧B−), Cµ(A+ ∧B+)]

[Cµ(A−), Cµ(A+)]

=
[Cµ(A−), Cµ(A+)]

[Cµ(A−), Cµ(A+)]
= 1. (20)

(IS2) If A 6= ∅ and A ∧ B = ∅, then we get 0 = m∅ = mA∧B and hence c1(A,B) =
Cµ(A∧B)

Cµ(A)
= 0.

(IS3) If A ≤ B ≤ C, then we have

mA ≤ mB ≤ mC (21)

and hence, by (21), we have

mC ∧mA ≤ mB ∧mA. (22)

Thus, by (21) and (22), we get

Cµ(B) ≤ Cµ(C), and Cµ(C ∧A)) ≤ Cµ(B ∧A). (23)
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Note that if C = ∅, then B = ∅. By using (23), we have

c1(C,A) =

{
1, ifC = ∅,
Cµ(C∧A)

Cµ(C)
, ifC 6= ∅

=

{
1, ifB = ∅,
Cµ(B∧A)

Cµ(B)
, ifB 6= ∅

= c1(B,A). (24)

From (21), we also get

Cµ(C ∧A)) ≤ Cµ(B ∧B). (25)

By using (25), we also have

c1(C,A) =

{
1, ifC = ∅,
Cµ(C∧A)

Cµ(C)
, ifC 6= ∅

=

{
1, ifB = ∅,
Cµ(C∧B)

Cµ(C)
, ifB 6= ∅

= c1(C,B). (26)

Therefore, c1 is a strong interval-valued subsethood measure.

Theorem 3.4. Let X be a set.If we define an interval-valued function c2 : IF ∗(X) ×
IF ∗(X) −→ I([0, 1]),

c2(A,B) =

{
1, ifA = B = ∅,
Cµ(B)

Cµ(A∨∧B)
, if not,

(27)

then c2 is an interval-valued subsethood measure on IF ∗(X).

Proof. (IC1) If A = B = ∅, then c2(A,B) = 1. Since A ≤ B, we have mA ≤ mB . Thus,
we get

c2(A,B) =
Cµ(B)

Cµ(A ∨B)
= 1. (28)

(IC2) By the definition of c2, we have

c2(X, ∅) =
Cµ(∅)

Cµ(X ∨ ∅)
= 0. (29)

(IC3) If A ≤ B ≤ C, then we have

mA ≤ mB ≤ mC (30)

and hence, by (30), we hsve

Cµ(C) ≥ Cµ(B), Cµ(C ∨A) = Cµ(C), and Cµ(B ∨A) = Cµ(B). (31)

Therefore by using (31), we have

c2(C,A) =
Cµ(A)

Cµ(C ∨A)
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=
Cµ(A)

Cµ(C)

≤ Cµ(A)

Cµ(B)

=
Cµ(A)

Cµ(B ∨A)
= c2(B,A), (32)

and

c2(C,A) =
Cµ(A)

Cµ(C ∨A)

=
Cµ(A)

Cµ(C)

≤ Cµ(B)

Cµ(C)

=
Cµ(B)

Cµ(C ∨B)
= c2(C,B). (33)

Therefore, c2 is an interval-valued subsethood measure.

The following definition c3 has some problem because of the definition of a complement of
interval-valued fuzzy set. So, we note that for interval-valued fuzzy sets A = [A−, A+], the

modified complement A
mc

of A is defined by

mA
mc(x) = [mA+(x), 1]. (34)

Through this definition A
mc

, we can take note of the followings:

(i) mA
mc = [mA+ , 1]

(ii) mA∨Amc = [mA− , 1]

(iii) if A ≤ B, then B
mc ≤ Amc. (35)

Theorem 3.5. Let X be a set. If we define an interval-valued function c3 : IF ∗(X) ×
IF ∗(X) −→ I([0, 1]),

c3(A,B) =
Cµ(A

mc
) ∨ Cµ(B)

Cµ(A ∨Amc ∨B ∨Bmc)
(36)

then c3 is an interval-valued subsethood measure on IF ∗(X).

Proof. (IW1) By the definition of c3, we get

c3(∅, ∅) =
Cµ(∅) ∨ Cµ(∅)

Cµ(∅ ∨ ∅
mc
∨ ∅ ∨ ∅

mc
)

=
Cµ(X) ∨ Cµ(∅)

Cµ(∅ ∨X ∨ ∅ ∨X)

=
Cµ(X)

Cµ(X)
= 1. (37)

Similarly, we have c3(∅, X) = 1 and c3(X,X) = 1.
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(IW2) By the definition of c3, we have

c3(X, ∅) =
Cµ(X

mc
) ∨ Cµ(∅)

Cµ(X ∨Xmc ∨ ∅ ∨ ∅
mc

)

=
Cµ(∅)
Cµ(X)

=
0

1
= 0. (38)

(IW3) If A ≤ B ≤ C, then we have

mA ≤ mB ≤ mC . (39)

Thus, by (35)(i) and (39), we have

mC
mc ≤ mB

mc ≤ mA
mc . (40)

From (40), we get

Cµ(C ∨ Cmc ∨A ∨Amc) = Cµ(C ∨Amc)
≥ Cµ(B ∨Amc)
= Cµ(B ∨Bmc ∨A ∨Amc) (41)

Therefore by using (41), we have

c3(C,A) =
Cµ(C

mc
) ∨ Cµ(A)

Cµ(C ∨ Cmc ∨A ∨Acm)

≤ Cµ(B
mc

) ∨ Cµ(A)

Cµ(B
cm ∨Bcm ∨A ∨Acm)

= c3(B,A). (42)

Similarly, we have

c3(C,A) ≤ c3(C,B). (43)

Therefore, c3 is a weak interval-valued subsethood measure.

4. Applications

In this section, by using the of Harmonized system (HS) product code data for product
categories (s1, . . . , s5) between Korea and its trading partners (that is, Korea-United States,
Korea-New Zealand, Korea-Turkey, and Korea-Indea) over the 2010-2013 period, we construct
four interval-valued fuzzy sets related with four countries and calculate a strong interval-valued
subsethood measure c1.

Note that the product code definitions have been provided by the UN Comtrade’s online
data base(see[22]) and the relevant categories are defined as follows:
s1. Live animals: animal products.
s2. Meat and edible meat offal.
s3. Fish and crustacreans, mollusks and other aguatic invertebrates.
s4. Dairy produce: bird’s eggs; natural honey; edible products of animal origin, not

elsewhere specified or included.
s5. Products of animal origin; not elsewhere specified or included.
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Firstly, we denote that s is year, a(s) is trade value, and u(a(s)) is the utility of a(s).
By using the u(a(s)) for the trade values of animal product exports between Korea and
selected trading partners for HS Product Codes i = 1, 2, 3, 4, 5 in Table A1 in [4], we can
calculate the Choquet integral of an utility on the set of trade values (in USD) that represent
Korea’s trading relationship with a particular country for years 2010, 2012, 2012, 2013. Let
S = {s1, s2, s3, s4, s5} and a(s) be the interval-valued trade value of s during four years and

u(a(s)) =

[√
a−(s)

100141401
,

√
a+(s)

100141401

]
(44)

be an interval-valued utility of a(s). The following table A1 is used to create four interval-
valued fuzzy sets required to draw a strong subsethood measure c1 defined by the interval-
valued Choquet integral.

Table A1: The u(a(s)) for the trade value of animal product exports between Korea and
selected trading partners for HS Product Codes si for i = 1, 2, 3, 4, 5.

TP s ā(s)(USD) ū(ā(s))

USA

s1 [144949, 364918] = ā(s(1)) [0.03542, 0.06037]
s2 [144949, 997539] = ā(s(3)) [0.03542, 0.09981]
s3 [74866073, 100141401] = ā(s(5)) [0.86464, 1.00000]
s4 [3722326, 5016833] = ā(s(4)) [0.19280, 0.22382]
s5 [1017895, 863858] = ā(s(2)) [0.09288, 0.10082]

NZ

s1 [1589, 6650] = ā(s(2)) [0.00398, 0.00815]
s2 [0, 0] = ā(s(1)) [0.00000, 0.00000]
s3 [46632301, 91263506] = ā(s(5)) [0.68240, 0.95464]
s4 [113751, 277350] = ā(s(3)) [0.03370, 0.05263]
s5 [218022, 393025] = ā(s(4)) [0.04666, 0.06265]

TR

s1 [150, 6900] = ā(s(4)) [0.00122, 0.00830]
s2 [0, 0] = ā(s(1)) [0.00000, 0.00000]
s3 [199874, 2532837] = ā(s(5)) [0.04468, 0.15904]
s4 [0, 0] = ā(s(2)) [0.00000, 0.00000]
s4 [0, 0] = ā(s(3)) [0.00000, 0.00000]

IND

s1 [450, 1300] = ā(s(2)) [0.00212, 0.00360]
s2 [12135, 50630] = ā(s(5)) [0.00992, 0.05551]
s3 [1865, 8695] = ā(s(3)) [0.00432, 0.00932]
s4 [12135, 30938] = ā(s(4)) [0.00992,0.02249]
s5 [0, 0] = ā(s(2)) [0.00000, 0.00000]

We remark that in order to calculate the interval-valued Choquet integrals for four interval-
valued fuzzy sets, we modified four interval-valued trading values for the United States and
the India (see Table 5 in [4]) as follows;

[286892, 364918] = a(s1) and [30005, 997539] = a(s2) (45)

are changed by[
286892 + 3005

2
, 364918

]
= a(s2) and

[
286892 + 3005

2
, 997539

]
= a(s2), (46)

and

[2656, 50630] = a(s2) and [21614, 30938] = a(s4) (47)
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are changed by[
2656 + 21614

2
, 50630

]
= a(s2) and

[
2656 + 21614

2
, 30938

]
= a(s4), (48)

From Table A1, we construct four interval-valued fuzzy sets from S to I([0, 1]), U =
U(USA), N = N(NZ), T = T (TR), and I = I(ID) as follows;

U = {(s1, [0.03542, 0.06037], (s2, [0.03542, 0.09981], (s3, [0.86464, 1.00000]),
(s4, [0, 19280, 0.22382]), (s5, [0.09288, 0.10082])}, (49)

N = {(s1, [0.00398, 0.00815], (s2, [0.00000, 0.00000], (s3, [0.68240, 0.95464]),
(s4, [0, 03370, 0.05263]), (s5, [0.04666, 0.06265])}, (50)

T = {(s1, [0.00122, 0.00830], (s2, [0.00000, 0.00000], (s3, [0.04468, 0.15904]),
(s4, [0, 00000, 0.00000]), (s5, [0.00000, 0.00000])}, (51)

and

I = {(s1, [0.00212, 0.00360], (s2, [0.00992, 0.05551], (s3, [0.00432, 0.00932]),
(s4, [0, 00992, 0.02249]), (s5, [0.00000, 0.00000])}, (52)

In order to calculate the interval-valued Choquet integral, the four interval-valued fuzzy
sets((49), (50), (51), (52)) were made to be increasing interval-valued fuzzy sets as follows:

U = {(s(1), [0.03542, 0.06037]), (s(2), [0.03542, 0.09981]), (s(3), [0.09288, 0.10082]),
(s(4), [0, 19280, 0.22382]), (s(5), [0.86464, 1.00000])}, (53)

N = {(s(1), [0.00000, 0.00000]), (s(2), [0.00398, 0.00815]), (s(3), [0, 03370, 0.05263]),
(s(4), [0.04666, 0.06265]), (s(5), [0.68240, 0.95464])}, (54)

T = {(s(1), [0.00000, 0.00000], (s(2), [0, 00000, 0.00000], (s(3), [0.00000, 0.00000]),
(s(4), [0.00122, 0.00830]), (s(5), [0.04468, 0.15904])}, (55)

and

I = {(s(1), [0.00000, 0.00000], (s(2), [0.00212, 0.00360], (s(3), [0.00432, 0.00932]),
(s(4), [0, 00992, 0.02249]), (s(5), [0.00992, 0.05551])}, (56)

Now, the more diversified export items, the higher fuzzy measure are defined as follows(see[4]):

µ(E(6)) = µ(∅) = 0, µ(E(5)) = µ1({s(5)}) = 0.1, µ(E(4)) = µ1({s(4), s(5)}) = 0.2,
µ(E(3)) = µ1({s(3), s(4), s(5)}) = 0.4, µ(E(2)) = µ1({s(2), s(3), s(4), s(5)}) = 0.7,
µ(E(1)) = µ1({s(1), s(2), s(3), s(4), s(5)}) = 1. (57)

By using two interval-valued fuzzy sets (53), (54) and the above fuzzy measure (57), we can
calculate a strong interval-valued subsethood measure for c1(U,N) as follows:

Cµ(U) = [Cµ(U−), Cµ(U+)]

Cµ(U ∧N) = [Cµ(U− ∧N−), Cµ(U+ ∧N+)], (58)

and

c1(U,N) =
Cµ(U ∧N)

Cµ(U)

=

[
Cµ(U− ∧N−)

Cµ(U−)
∧ Cµ(U+ ∧N+)

Cµ(U+)
,
Cµ(U− ∧N−)

Cµ(U−)
∨ Cµ(U+ ∧N+)

Cµ(U+)

]
, (59)

where

Cµ(U−) = mU−(s(1))(µ(E(1))− µ(E(2)))
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+mU−(s(2))(µ(E(2))− µ(E(3)))
+mU−(s(3))(µ(E(3))− µ(E(4)))
+mU−(s(4))(µ(E(4))− µ(E(5)))
+mU−(s(5))(µ(E(5)))− µ(E(6)), (60)

Cµ(U+) = mU+(s(1))(µ(E(1))− µ(E(2)))
+mU+(s(2))(µ(E(2))− µ(E(3)))
+mU+(s(3))(µ(E(3))− µ(E(4)))
+mU+(s(4))(µ(E(4))− µ(E(5)))
+mU+(s(5))(µ(E(5))− µ(E(6))), (61)

and

Cµ(U− ∧N−) = mU−∧N−(s(1))(µ(E(1))− µ(E(2)))
+mU−∧N−(s(2))(µ(E(2))− µ(E(3)))
+mU−∧N−(s(3))(µ(E(3))− µ(E(4)))
+mU−∧N−(s(4))(µ(E(4))− µ(E(5)))
+mU−∧N−(s(5))(µ(E(5))− µ(E(6)))

= (mU−(s(1)) ∧ µN−(s(1)))(µ(E(1)−)µ(E(2)))
+(mU−(s(2)) ∧mN−(s(2)))(µ(E(2))− µ(E(3)))
+(mU−(s(3)) ∧mN−(s(3)))(µ(E(3))− µ(E(4)))
+(mU−(s(4)) ∧mN−(s(4)))(µ(E(4))− µ(E(5)))
+(mU−(s(5)) ∧mN−(s(5)))(µ(E(5))− µ(E(6))), (62)

Cµ(U+ ∧N+) = mU+∧N+(s(1))(µ(E(1))− µ(E(2)))
+mU+∧N+(s(2))(µ(E(2))− µ(E(3)))
+mU+∧N+(s(3))(µ(E(3))− µ(E(4)))
+mU+∧N+(s(4))(µ(E(4))− µ(E(5)))
+mU+∧N+(s(5))(µ(E(5))− µ(E(6)))

= (mU+(s(1)) ∧mN+(s(1)))(µ(E(1))− µ(E(2)))
+(mU+(s(2)) ∧mN+(s(2)))(µ(E(2))− µ(E(3)))
+(mU+(s(3)) ∧mN+(s(3)))(µ(E(3))− µ(E(4)))
+(mU+(s(4)) ∧mN+(s(4)))(µ(E(4))− µ(E(5)))
+(mU+(s(5)) ∧mN+(s(5)))(µ(E(5))− µ(E(6))). (63)

Thus, by using (58) and (59), we get the following table A2 for the strong interval-valued
subsethood measure between United States and New Zealand.

Table A2: The c1(U,N) between United States and New Zealand.

Cµ(U) Cµ(U,N) c1(U,N)
[0.14557, 0.19060] [0.08084, 0.11470] [0.55534, 0.60178]

Given that c1(U, V ) represents the degree of trade surplus for the trading relationship for
Korea and USA, and Korea and New Zealand.

Finally, we can calculate c1(U, T ) and c1(U, I) in Table A1.
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Table A3: The c1(U, T ) between United States and Turkey.

Cµ(U) Cµ(U, T ) c1(U, T )
[0.14557, 0.19060] [0.00459, 0.01673] [0.03153, 0.08778]

Table A4: The c1(U, I) between United States and India.

Cµ(U) Cµ(U, I) c1(U, I)
[0.14557, 0.19060] [0.00348, 0.01074] [0.02393, 0.05635]

Tables A2, A3, and A4, demonstrate the results c1(U,N), c1(U, T ), c1(U, I). They highlight
the degree of trade surplus that exists with the three trading partners in terms of the model
of trade transactions with United States and Korea.

5. Conclusions

Using the concept of intervals, we defined three types of interval-valued subsethood mea-
sures in Definitions 3.2, 3.3 and 3.4. From these definitions, we proposed three types of
interval-valued subsethood measures defined by the interval-valued Choquet integrals with
respect to a continuous fuzzy measure in Theorems 3.2, 3.3, and 3.4. The fuzzy measure µ
in (57) means that if set E includes more categories between Korea and its trading partner,
then µ(E) receives a higher score. Moreover, intervals are also a very useful tool to express
the degree of trade surplus between Korea and its four trading partners analyzed over the
2010-2013 period.

In order to illustrate some applications of a strong interval-valued subsethood measure, we
provided the four interval-valued fuzzy sets which were aggregated in (49), (50), (51), and
(52) to animal product exports between Korea and four selected trading partners from 2010
to 2013. By using these interval-valued fuzzy sets, we obtained the strong interval-valued
subsethood measure c1(U,N), c1(U, T ), c1(U, I) which represent the degree of trade surplus
between Korea and 3 trading partners in terms of the model of trade transactions with the
United States and South Korea in Tables 2, 3, and 4. It was found that New Zealand was at
least 0.55534 to 0.60178 times smaller than the United States, while Turkey and India were
also smaller, with Turkey at least 0.03153 to 0.08778 times smaller and India being at least
0.2393 to 0.05635 times smaller than the United States between 2010 and 2013, in terms of
the trade values of animal product exports that exists between Korea and selected trading
partners.
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the fndings of this study.
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Abstract

Here we present M -fractional integral inequalities of Ostrowski and
Polya types.
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1 Introduction

We are inspired by the following results:

Theorem 1 ([2], p. 498, [1], [5]) (Ostrowski inequality)
Let f 2 C1 ([a; b]), x 2 [a; b]. Then����� 1

b� a

Z b

a

f (z) dz � f (x)
����� �

 
(x� a)2 + (b� x)2

2 (b� a)

!
kf 0k1 : (1)

Inequality (1) is sharp. In particular the optimal function is

f� (z) := jz � xj� (b� a) , � > 1: (2)

Theorem 2 ([6], [7, p. 62], [8], [9, p. 83]) (Polya integral inequality)
Let f (x) be di¤erentiable and not identically a constant on [a; b] with f (a) =

f (b) = 0. Then there exists at least one point � 2 [a; b] such that

jf 0 (�)j > 4

(b� a)2
Z b

a

f (x) dx: (3)

In this short work we present inequalities of types (1) and (3) involving the
left and right fractional local general M -derivatives, see [3], [4].

1
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2 Background

We need

De�nition 3 ([4]) Let f : [a;1) ! R and t > a, a 2 R. For 0 < � � 1 we
de�ne the left local general M -derivative of order � of function f , denoted by
D�;�
M;af (t), by

D�;�
M;af (t) := lim

"!0

f
�
tE�

�
" (t� a)��

��
� f (t)

"
; (4)

8 t > a, where E� (t) =
1P
k=0

tk

�(�k+1) , � > 0, is the Mittag-Le er function with

one parameter.
If D�;�

M;af (t) exists over (a; ),  2 R and lim
t!a+

D�;�
M;af (t) exists, then

D�;�
M;af (a) = lim

t!a+
D�;�
M;af (t) : (5)

Theorem 4 ([4]) If a function f : [a;1) ! R has the left local general M -
derivative of order � 2 (0; 1], � > 0, at t0 > a, then f is continuous at t0:

We need

Theorem 5 ([4]) (Mean value theorem) Let f : [; �] ! R with  > a, 0 =2
[; �] ; such that
(1) f is continuous on [; �] ;
(2) there exists D�;�

M;af on (; �) for some � 2 (0; 1]:
Then, there exists c 2 (; �) such that

f (�)� f () =
�
D�;�
M;af (c)

� � (� + 1) (c� a)�
c

(� � ) : (6)

We need

De�nition 6 ([3]) Let f : (�1; b] ! R and t < b, b 2 R. For 0 < � � 1 we
de�ne the right local general M -derivative of order � of function f , denoted as
�;�
M;bDf (t), by

�;�
M;bDf (t) := � lim"!0

f
�
tE�

�
" (b� t)��

��
� f (t)

"
; (7)

8 t < b.
If �;�M;bDf (t) exists over (; b),  2 R and lim

t!b�
�;�

M;b

Df (t) exists, then

�;�
M;bDf (b) = lim

t!b�
�;�

M;b

Df (t) : (8)
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Theorem 7 ([3]) If a function f : (�1; b] ! R has the right local general
M -derivative of order � 2 (0; 1], � > 0, at t0 < b, then f is continuous at t0:

We also need

Theorem 8 ([3]) (Mean value theorem) Let f : [; �] ! R with � < b, 0 =2
[; �] ; such that
(1) f is continuous on [; �] ;
(2) there exists �;�M;bDf on (; �) for some � 2 (0; 1]:
Then, there exists c 2 (; �) such that

f (�)� f () =
�
��;�M;bDf (c)

��� (� + 1) (b� c)�
c

�
(� � ) : (9)

Fractional derivatives D�;�
M;a and

�;�
M;bD possess all basic properties of the

ordinary derivatives and beyond, see [3], [4].

3 Main Results

We present the following M -fractional Ostrowski type inequality:

Theorem 9 Let a <  < � < b, 0 =2 [; �], f : [a; b] ! R, which is continuous
over [; �]. We assume that D�;�

M;a,
�;�
M;bD exist and are continuous over [; x0]

and [x0; �], respectively, where x0 2 [; �], for some � 2 (0; 1]: Then����� 1

� � 

Z �



f (x) dx� f (x0)
����� � � (� + 1)

2 (� � )24D
�;�
M;af (x)

x


1;[;x0]

(x0 � a)� (x0 � )2 +

�;�
M;bDf (x)

x


1;[x0;�]

(b� x0)� (� � x0)2
35 :

(10)

Proof. Let x 2 [; x0], the by Theorem 5, there exists c1 2 (x; x0), such
that

f (x0)� f (x) =
 
D�;�
M;af (c1)

c1

!
� (� + 1) (c1 � a)� (x0 � x) : (11)

Thus

jf (x)� f (x0)j =
�����D

�;�
M;af (c1)

c1

������ (� + 1) (c1 � a)� jx� x0j �D
�;�
M;af (x)

x


1;[;x0]

� (� + 1) (x0 � a)� jx� x0j ; (12)
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8 x 2 [; x0] :
Let now x 2 [x0; �], then by Theorem 8, there exists c2 2 (x0; x), such that

f (x)� f (x0) = �
 
�;�
M;bDf (c2)

c2

!
� (� + 1) (b� c2)� (x� x0) : (13)

Thus

jf (x)� f (x0)j =
�����
�;�
M;bDf (c2)

c2

������ (� + 1) (b� x0)� jx� x0j �
�;�
M;bDf (x)

x


1;[x0;�]

� (� + 1) (b� x0)� jx� x0j ; (14)

8 x 2 [x0; �] :
We have that����� 1

� � 

Z �



f (x) dx� f (x0)
����� = 1

� � 

�����
Z �



(f (x)� f (x0)) dx
����� �

1

� � 

Z �



jf (x)� f (x0)j dx = (15)

1

� � 

"Z x0



jf (x)� f (x0)j dx+
Z �

x0

jf (x)� f (x0)j dx
#
(by (12), (14))

�

1

� � 

24D
�;�
M;af (x)

x


1;[;x0]

� (� + 1) (x0 � a)�
Z x0



(x0 � x) dx

+


�;�
M;bDf (x)

x


1;[x0;�]

� (� + 1) (b� x0)�
Z �

x0

(x� x0) dx

35 =
� (� + 1)

2 (� � )

24D
�;�
M;af (x)

x


1;[;x0]

(x0 � a)� (x0 � )2+ (16)


�;�
M;bDf (x)

x


1;[x0;�]

(b� x0)� (� � x0)2
35 :

The theorem is proved.
Next we give two M -fractional Polya type inequalities:
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Theorem 10 All as in Theorem 9 and f (x0) = 0. Then�����
Z �



f (x) dx

����� �
Z �



jf (x)j dx � � (� + 1)

224D
�;�
M;af (x)

x


1;[;x0]

(x0 � a)� (x0 � )2 +

�;�
M;bDf (x)

x


1;[x0;�]

(b� x0)� (� � x0)2
35 :

(17)

Proof. Same as in the proof of Theorem 9, by setting f (x0) = 0:

Corollary 11 (to Theorem 10, case of x0 =
+�
2 ) All as in Theorem 9 and

f
�
+�
2

�
= 0. Then

Z �



jf (x)j dx � � (� + 1) (� � )2

824D
�;�
M;af (x)

x


1;[; +�2 ]

��
 + �

2

�
� a
��

+


�;�
M;bDf (x)

x


1;[ +�2 ;�]

�
b�

�
 + �

2

���35 :
(18)

Proof. Apply (17) for x0 = +�
2 :
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