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Abstract

In this paper, we study a nonlinear system of second order ordinary differ-
ential equations with nonlocal integral multi-strip coupled boundary conditions.
Leray-Schauder alternative criterion, Schauder fixed point theorem and Banach
contraction mapping principle are employed to obtain the desired results. Ex-
amples are constructed for the illustration of the obtained results. We emphasize
that our results are new and enhance the literature on boundary value problems
of coupled systems of ordinary differential equations. Several new results appear
as special cases of our work.
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1 Introduction

This paper is concerned with the following coupled system of nonlinear second-order
ordinary differential equations:{

u′′(t) = f(t, u(t), v(t)), t ∈ [a, b],
v′′(t) = g(t, u(t), v(t)), t ∈ [a, b],

(1.1)

supplemented with the nonlocal integral multi-strip coupled boundary conditions of
the form:

∫ b

a

u(s)ds =
m∑
j=1

γj

∫ ηj

ξj

v(s)ds+ λ1,

∫ b

a

u′(s)ds =
m∑
j=1

ρj

∫ ηj

ξj

v′(s)ds+ λ2,∫ b

a

v(s)ds =
m∑
j=1

σj

∫ ηj

ξj

u(s)ds+ λ3,

∫ b

a

v′(s)ds =
m∑
j=1

δj

∫ ηj

ξj

u′(s)ds+ λ4,

(1.2)

where f, g : [a, b] × R × R → R are given continuous functions, a < ξ1 < η1 < ξ2 <
η2 < · · · < ξm < ηm < b, and γj, ρj, σj and δj ∈ R+ (j = 1, 2, . . . ,m), λi ∈ R (i =
1, 2, 3, 4).

Mathematical modeling of several real world phenomena lead to the occurrence
of nonlinear boundary value problems of differential equations. During the past few
decades, the topic of boundary value problems has evolved as an important and inter-
esting area of investigation in view of its extensive applications in diverse disciplines
such as fluid mechanics, mathematical physics, etc. For application details, we refer
the reader to the text [1], while some recent works on boundary value problems of
ordinary differential equations can be found in the papers ([2]-[5]).

Much of the literature on boundary value problems involve classical boundary con-
ditions. However, these conditions cannot cater the complexities of the physical and
chemical processes occurring within the domain. In order to cope with this situation,
the concept of nonlocal boundary conditions was introduced. Such conditions relate
the boundary values of the unknown function to its values at some interior positions
of the domain. For a detailed account of nonlocal nonlinear boundary value problems,
for instance, see ([6]-[16]) and the references cited therein.

Computational fluid dynamics (CFD) technique are directly concerned with the
boundary data [1]. However, the assumption of circular cross-section in the fluid flow
problems is not justifiable in many situations. The concept of integral boundary con-
ditions played a key role in resolving this issue as such conditions can be applied to
arbitrary shaped structures. Integral boundary conditions are also found to be quite
useful in the study of thermal and hydrodynamic problems. In fact, one can find numer-
ous applications of integral boundary conditions in the fields like chemical engineering,
thermoelasticity, underground water flow, population dynamics, etc. ([17]-[20]). For
some recent results on boundary value problems integral boundary conditions, we refer
the reader to a series of articles ([21]-[32]) and the references cited therein.
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Motivated by the importance of nonlocal and integral boundary conditions, we
introduce a new kind of coupled integral boundary conditions (1.2) and solve a nonlin-
ear coupled system of second-order ordinary differential equations (1.1) equipped with
these conditions. Our main results rely on Leray-Schauder alternative and Banach
contraction mapping principle.

The rest of the paper is organized as follows. In Section 2, we present an auxiliary
lemma. The main results for the problem (1.1) and (1.2) are discussed in Section 3.
We also construct examples illustrating the obtained results. The paper concludes with
some interesting observations.

2 An auxiliary lemma

The following lemma plays a key role in defining the solution for the problem (1.1)−
(1.2).

Lemma 2.1 For f1, g1 ∈ C([a, b],R), the solution of the linear system of differential
equations

u′′(t) = f1(t), t ∈ [a, b],

v′′(t) = g1(t), t ∈ [a, b], (2.1)

subject to the boundary conditions (1.2) is equivalent to the system of integral equations

u(t) =

∫ t

a

(t− s)f1(s)ds

− 1

A3

{∫ b

a

[1

2
A1(b− a)(b− s) + L1 + (b− a)A2(t− a)

]
(b− s)f1(s)ds

+

∫ b

a

[1

2
A1(b− s)

m∑
j=1

γj(ηj − ξj) + L2 + A2(t− a)
m∑
j=1

ρj(ηj − ξj)
]

×(b− s)g1(s)ds
}

+
1

A3

{ m∑
j=1

∫ ηj

ξj

∫ s

a

[
γjA1(b− a)(s− p) + ρjL1 (2.2)

+ρj(b− a)A2(t− a)
]
g1(p)dpds+

m∑
j=1

∫ ηj

ξj

∫ s

a

[
σjA1

m∑
j=1

γj(ηj − ξj)(s− p)

+δjL2 + δjA2(t− a)
m∑
j=1

ρj(ηj − ξj)
]
f1(p)dpds

}
+ Ω1(t),

v(t) =

∫ t

a

(t− s)g1(s)ds−
1

A3

{∫ b

a

[A1

(
(b− a)2 − A2

)
2
∑m

j=1 γj(ηj − ξj)
(b− s)
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+L3 + A2(t− a)
m∑
j=1

δj(ηj − ξj)
]
(b− s)f1(s)ds

+

∫ b

a

[1

2
A1(b− a)(b− s) + L4 + A2(b− a)(t− a)

]
(b− s)g1(s)ds

}
+

1

A3

{ m∑
j=1

∫ ηj

ξj

∫ s

a

[
(s− p)

A1

(
(b− a)2 − A2

)
∑m

j=1(ηj − ξj)
+ ρjL3 (2.3)

+δjA2(t− a)
m∑
j=1

ρj(ηj − ξj)
]
g1(p)dpds

+
m∑
j=1

∫ ηj

ξj

∫ s

a

[
σjA1(b− a)(s− p) + δjL4 + δjA2(b− a)(t− a)

]
f1(p)dpds

}
+Ω2(t),

where

A1 = (b− a)2 −
( m∑
j=1

ρj

)( m∑
j=1

δj(ηj − ξj)2
)
, (2.4)

A2 = (b− a)2 −
( m∑
j=1

γj

)( m∑
j=1

σj(ηj − ξj)2
)
, A3 = A1A2 6= 0, (2.5)

L1 = (b− a)
m∑
j=1

γj(ηj − ξj)
((ηj − a)2

2
− (ξj − a)2

2

)( m∑
j=1

σj +
m∑
j=1

δj

)
− (b− a)4

2
− (b− a)2

2

( m∑
j=1

γj

)( m∑
j=1

δj(ηj − ξj)2
)
, (2.6)

L2 =
m∑
j=1

γj

((ηj − a)2

2
− (ξj − a)2

2

)(( m∑
j=1

ρj

)( m∑
j=1

σj(ηj − ξj)2
)

+ (b− a)2
)

− (b− a)3

2

m∑
j=1

(ηj − ξj)(ρj + γj), (2.7)

L3 =
m∑
j=1

((ηj − a)2

2
− (ξj − a)2

2

)(
(b− a)2(σj + δj)− A2δj

)
+

(b− a)3

2

[ A2 − (b− a)2∑m
j=1 γj(ηj − ξj)

−
m∑
j=1

δj(ηj − ξj)
]
, (2.8)

L4 =
(b− a)∑m

j=1(ηj − ξj)

m∑
j=1

((ηj − a)2

2
− (ξj − a)2

2

)[
σj

m∑
j=1

ρj(ηj − ξj)2
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+(b− a)2 − A2

]
− (b− a)4

2
+

(b− a)2

2
∑m

j=1 γj

m∑
j=1

ρj

(
A2 − (b− a)2

)
, (2.9)

Ω1(t) =
1

A3

{
A1(b− a)λ1 +

[
L1 + A2(b− a)(t− a)

]
λ2 + A1

m∑
j=1

γj(ηj − ξj)λ3

+
[
L2 + A2(t− a)

m∑
j=1

ρj(ηj − ξj)
]
λ4

}
, (2.10)

Ω2(t) =
1

A3

{A1

(
(b− a)2 − A2

)
∑m

j=1 γj(ηj − ξj)
λ1 +

[
L3 + A2(t− a)

m∑
j=1

δj(ηj − ξj)
]
λ2

+ A1(b− a)λ3 +
[
L4 + A2(b− a)(t− a)

]
λ4

}
. (2.11)

Proof. Integrating the linear system (2.1) twice from a to t, we get

u(t) = c1 + c2(t− a) +

∫ t

a

(t− s)f1(s)ds, (2.12)

v(t) = c3 + c4(t− a) +

∫ t

a

(t− s)g1(s)ds, (2.13)

where c1, c2, c3 and c4 are arbitrary real constants.
Using the boundary conditions (1.2) in (2.12) and (2.13), together with notations (2.4),
we obtain

(b− a)c1 +
(b− a)2

2
c2 −

m∑
j=1

γj(ηj − ξj)c3 −
m∑
j=1

γj

((ηj − a)2

2
− (ξj − a)2

2

)
c4

= −
∫ b

a

(b− s)2

2
f1(s)ds+

m∑
j=1

γj

∫ ηj

ξj

∫ s

a

(s− p)g1(p)dpds+ λ1,

(2.14)

(b−a)c2−
m∑
j=1

ρj(ηj−ξj)c4 = −
∫ b

a

(b−s)f1(s)ds+
m∑
j=1

ρj

∫ ηj

ξj

∫ s

a

g1(p)dpds+λ2, (2.15)

−
m∑
j=1

σj(ηj − ξj)c1 −
m∑
j=1

σj

((ηj − a)2

2
− (ξj − a)2

2

)
c2 + (b− a)c3 +

(b− a)2

2
c4

= −
∫ b

a

(b− s)2

2
g1(s)ds+

m∑
j=1

σj

∫ ηj

ξj

∫ s

a

(s− p)f1(p)dpds+ λ3,

(2.16)

−
m∑
j=1

δj(ηj − ξj)c2 + (b− a)c4 = −
∫ b

a

(b− s)g1(s)ds+
m∑
j=1

δj

∫ ηj

ξj

∫ s

a

f1(p)dpds+ λ4.

(2.17)
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Solving the equations (2.15) and (2.17) for c2 and c4, we find that

c2 =
1

A1

[
−
∫ b

a

(b− s)
(

(b− a)f1(s) +
m∑
j=1

ρj(ηj − ξj)g1(s)
)
ds

+
m∑
j=1

ρj

∫ ηj

ξj

∫ s

a

(
(b− a)g1(p) +

m∑
j=1

δj(ηj − ξj)f1(p)
)
dpds

+(b− a)λ2 +
m∑
j=1

ρj(ηj − ξj)λ4
]
, (2.18)

c4 =
1

A1

[
−
∫ b

a

(b− s)
( m∑
j=1

δj(ηj − ξj)f1(s) + (b− a)g1(s)
)
ds

+
m∑
j=1

δj

∫ ηj

ξj

∫ s

a

( m∑
j=1

ρj(ηj − ξj)g1(p) + (b− a)f1(p)
)
dpds

+
m∑
j=1

δj(ηj − ξj)λ2 + (b− a)λ4

]
. (2.19)

Using (2.18) and (2.19) in (2.14) and (2.16) and then solving the resulting equations
for c1 and c3, we obtain

c1 =
1

A3

{
−
∫ b

a

[1

2
(b− a)A1(b− s) + L1

]
(b− s)f1(s)ds

−
∫ b

a

[1

2
A1(b− s)

m∑
j=1

γj(ηj − ξj) + L2

]
(b− s)g1(s)ds

+
m∑
j=1

∫ ηj

ξj

∫ s

a

[
A1γj(b− a)(s− p) + ρjL1

]
g1(p)dpds

+
m∑
j=1

∫ ηj

ξj

∫ s

a

[
A1

m∑
j=1

γjσj(ηj − ξj)(s− p) + δjL2

]
f1(p)dpds

+A1(b− a)λ1 + L1λ2 + A1

m∑
j=1

γj(ηj − ξj)λ3 + L2λ4

}
,

c3 =
1

A3

{
−
∫ b

a

[A1

(
(b− a)2 − A2

)
2
∑m

j=1 γj(ηj − ξj)
(b− s) + L3

]
(−s)f1(s)ds

−
∫ b

a

[1

2
A1(b− a)(b− s) + L4

]
(b− s)g1(s)ds
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+
m∑
j=1

∫ ηj

ξj

∫ s

a

[A1

(
(b− a)2 − A2

)
∑m

j=1 γj(ηj − ξj)

m∑
j=1

γj(s− p) + ρjL3

]
g1(p)dpds

+
m∑
j=1

∫ ηj

ξj

∫ s

a

[
σjA1(b− a)(s− p) + δjL4

]
f1(p)dpds

+
A1

(
(b− a)2 − A2

)
∑m

j=1 γj(ηj − ξj)
λ1 + L3λ2 + A1(b− a)λ3 + L4λ4

}
.

Inserting the values of c1, c2, c3 and c4 in (2.12) and (2.13), we get the solutions (2.2)
and (2.3). The converse follows by direct computation. This completes the proof. 2

3 Main results

Let us introduce the space X = {u(t)|u(t) ∈ C([a, b])} equipped with norm ‖u‖ =
sup{|u(t)|, t ∈ [a, b]}. Obviously (X , ‖ · ‖) is a Banach space and consequently, the
product space (X × X , ‖u, v‖) is a Banach space with norm ‖(u, v)‖ = ‖u‖ + ‖v‖ for
(u, v) ∈ X × X .

By Lemma 2.1, we define an operator T : X × X → X ×X as

T (u, v)(t) := (T1(u, v)(t), T2(u, v)(t)),

where

T1(u, v)(t) =

∫ t

a

(t− s)f(s, u(s), v(s))ds+
1

A3

{
−
∫ b

a

[1

2
A1(b− a)(b− s)

+L1 + (b− a)A2(t− a)
]
(b− s)f(s, u(s), v(s))ds

−
∫ b

a

[1

2
A1(b− s)

m∑
j=1

γj(ηj − ξj) + L2 + A2(t− a)
m∑
j=1

ρj(ηj − ξj)
]

×(b− s)g(s, u(s), v(s))ds+
m∑
j=1

∫ ηj

ξj

∫ s

a

[
γjA1(b− a)(s− p) (3.1)

+ρjL1 + ρj(b− a)A2(t− a)
]
g(p, u(p), v(p))dpds

+
m∑
j=1

∫ ηj

ξj

∫ s

a

[
σjA1

m∑
j=1

γj(ηj − ξj)(s− p) + δjL2

+δjA2(t− a)
m∑
j=1

ρj(ηj − ξj)
]
f(p, u(p), v(p))dpds

}
+ Ω1(t),

T2(u, v)(t) =

∫ t

a

(t− s)g(s, u(s), v(s))ds+
1

A3

{
−
∫ b

a

[A1

(
(b− a)2 − A2

)
2
∑m

j=1 γj(ηj − ξj)
(b− s)
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+L3 + A2(t− a)
m∑
j=1

δj(ηj − ξj)
]
(b− s)f(s, u(s), v(s))ds

−
∫ b

a

[1

2
A1(b− a)(b− s) + L4 + A2(b− a)(t− a)

]
(b− s)

×g(s, u(s), v(s))ds+
m∑
j=1

∫ ηj

ξj

∫ s

a

[
(s− p)

A1

(
(b− a)2 − A2

)
∑m

j=1(ηj − ξj)
(3.2)

+ρjL3 + δjA2(t− a)
m∑
j=1

ρj(ηj − ξj)
]
g(p, u(p), v(p))dpds

+
m∑
j=1

∫ ηj

ξj

∫ s

a

[
σjA1(b− a)(s− p) + δjL4 + δjA2(b− a)(t− a)

]
×f(p, u(p), v(p))dpds

}
+ Ω2(t).

In order to prove our main results, we need the following assumptions.

(H1) There exist real constants mi, ni ≥ 0, (i = 1, 2) and m0 > 0, n0 > 0 such that
∀u, v ∈ R, we have

|f(t, u, v)| ≤ m0 +m1|u|+m2|v|,
|g(t, u, v)| ≤ n0 + n1|u|+ n2|v|.

(H2) There exist nonnegative functions α(t), β(t) ∈ L(0, 1) and u, v ∈ R, such that

|f(t, u, v)| ≤ α(t) + ε1|u|p1 + ε2|v|p2 , ε1, ε2 > 0, 0 < p1, p2 < 1,

|g(t, u, v)| ≤ β(t) + d1|u|l1 + d2|v|l2 , d1, d2 > 0, 0 < l1, l2 < 1.

(H3) There exist `1 and `2 such that for all t ∈ [a, b] and ui, vi ∈ R, i = 1, 2, we have

|f(t, u1, v1)− f(t, u2, v2)| ≤ `1(|u1 − u2|+ |v1 − v2|),

|g(t, u1, v1)− g(t, u2, v2)| ≤ `2(|u1 − u2|+ |v1 − v2|).

For the sake of convenience in the forthcoming analysis, we set

q1 =
(b− a)2

2
+

1

|A3|

{
|A1|

(b− a)4

6
+ |L1|

(b− a)2

2
+ |A2|

(b− a)4

2

+|A1|
( m∑
j=1

γj

)( m∑
j=1

σj(ηj − ξj)
)((ηj − a)3

3!
− (ξj − a)3

3!

)
+

m∑
j=1

δj|L2|
((ηj − a)2

2
− (ξj − a)2

2

)
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+|A2|(b− a)
( m∑
j=1

ρj

)( m∑
j=1

δj(ηj − ξj)
)((ηj − a)2

2
− (ξj − a)2

2

)}
, (3.3)

q̄1 =
1

|A3|

{
|A1|

(b− a)3

6

m∑
j=1

γj(ηj − ξj) + |L2|
(b− a)2

2
+ |A2|

(b− a)3

2

m∑
j=1

ρj(ηj − ξj)

+|A1|(b− a)
m∑
j=1

γj

((ηj − a)3

3!
− (ξj − a)3

3!

)
+

m∑
j=1

ρj|L1|
((ηj − a)2

2
− (ξj − a)2

2

)
+|A2|(b− a)2

m∑
j=1

ρj

((ηj − a)2

2
− (ξj − a)2

2

)}
, (3.4)

q2 =
1

|A3|

{∣∣∣A1

(
(b− a)2 − A2

)
∑m

j=1 γj(ηj − ξj)

∣∣∣(b− a)3

6
+ |L3|

(b− a)2

2
+ |A2|

(b− a)3

2

×
m∑
j=1

δj(ηj − ξj) + |A1|(b− a)
m∑
j=1

σj

((ηj − a)3

3!
− (ξj − a)3

3!

)
+

m∑
j=1

δj|L4|
((ηj − a)2

2
− (ξj − a)2

2

)
+|A2|(b− a)2

m∑
j=1

δj

((ηj − a)2

2
− (ξj − a)2

2

)}
, (3.5)

q̄2 =
(b− a)2

2
+

1

|A3|

{
|A1|

(b− a)4

6
+ |L4|

(b− a)2

2
+ |A2|

(b− a)4

2

+
∣∣∣A1

(
(b− a)2 − A2

)
∑m

j=1(ηj − ξj)

∣∣∣ m∑
j=1

((ηj − a)3

3!
− (ξj − a)3

3!

)
+

m∑
j=1

ρj|L3|
((ηj − a)2

2
− (ξj − a)2

2

)
+|A2|(b− a)

( m∑
j=1

δj

)( m∑
j=1

ρj(ηj − ξj))
((ηj − a)2

2
− (ξj − a)2

2

)}
, (3.6)

λ̄1 = sup
t∈[a,b]

|Ω1(t)|, λ̄2 = sup
t∈[a,b]

|Ω2(t)|. (3.7)

Moreover, we set

Q1 = q1 + q2, Q2 = q̄1 + q̄2, λ̄ = λ̄1 + λ̄2, (3.8)

where qi, q̄i and λ̄i (i=1,2) are given in the equations (3.3)− (3.7) and

Q0 = min{1− (Q1m1 +Q2n1), 1− (Q1m2 +Q2n2)}, mi, ni ≥ 0 (i = 1, 2). (3.9)
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3.1 Existence of solutions

In this subsection, we discuss the existence of solutions for the problem (1.1)-(1.2) by
using standard fixed poit theorems.

Lemma 3.1 (Leray-Schauder alternative [33]). Let T : K → K be a completely con-
tinuous operator (i.e., a map that restricted to any bounded set in K is compact). Let
ω(T ) = {x ∈ K : x = ϕT (x) for some 0 < ϕ < 1}. Then either the set ω(T ) is
unbounded, or T has at least one fixed point.

Theorem 3.2 Assume that condition (H1) holds. In addition it is assumed that

Q1m1 +Q2n1 < 1 and Q1m2 +Q2n2 < 1, (3.10)

where Q1 and Q2 are given by (3.8). Then there exist at least one solution for problem
(1.1)− (1.2) on [a, b]

Proof. First of all, we show that the operator T : X × X → X ×X is completely
continuous. Notice that the operator T is continuous as the functions f and g are
continuous. Let Υ ⊂ X × X be bounded. Then there exist positive constants κf and
κg such that |f(t, u(t), v(t))| ≤ κf , |g(t, u(t), v(t))| ≤ κg, ∀(u, v) ∈ Υ. Then, for any
(u, v) ∈ Υ, we can obtain

|T1(u, v)(t)| = sup
t∈[a,b]

∣∣∣ ∫ t

a

(t− s)f(s, u(s), v(s))ds− 1

A3

{∫ b

a

[1

2
A1(b− a)(b− s)

+L1 + (b− a)A2(t− a)
]
(b− s)f(s, u(s), v(s))ds

+

∫ b

a

[1

2
A1(b− s)

m∑
j=1

γj(ηj − ξj) + L2 + A2(t− a)
m∑
j=1

ρj(ηj − ξj)
]

×(b− s)g(s, u(s), v(s))ds
}

+
1

A3

{ m∑
j=1

∫ ηj

ξj

∫ s

a

[
γjA1(b− a)(s− p)

+ρjL1 + ρj(b− a)A2(t− a)
]
g(p, u(p), v(p))dpds

+
m∑
j=1

∫ ηj

ξj

∫ s

a

[
σjA1

m∑
j=1

γj(ηj − ξj)(s− p) + δjL2

+δjA2(t− a)
m∑
j=1

ρj(ηj − ξj)
]
f(p, u(p), v(p))dpds

}
+ Ω1(t)

∣∣∣
≤ κf

{(b− a)2

2
+

1

|A3|

[
|A1|

(b− a)4

6
+ |L1|

(b− a)2

2
+ |A2|

(b− a)4

2

+|A1|
( m∑
j=1

γj

)( m∑
j=1

σj(ηj − ξj)
)((ηj − a)3

3!
− (ξj − a)3

3!

)
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+
m∑
j=1

δj|L2|
((ηj − a)2

2
− (ξj − a)2

2

)
+|A2|(b− a)

( m∑
j=1

ρj

)( m∑
j=1

δj(ηj − ξj)
)((ηj − a)2

2
− (ξj − a)2

2

]}
+κg

{ 1

|A3|

[
|A1|

(b− a)3

6

m∑
j=1

γj(ηj − ξj) + |L2|
(b− a)2

2

+|A2|
(b− a)3

2

m∑
j=1

ρj(ηj − ξj)

+|A1|(b− a)
m∑
j=1

γj

((ηj − a)3

3!
− (ξj − a)3

3!

)
+

m∑
j=1

ρj|L1|
((ηj − a)2

2
− (ξj − a)2

2

)
+|A2|(b− a)2

m∑
j=1

ρj

((ηj − a)2

2
− (ξj − a)2

2

)]}
+ λ̄1

≤ κfq1 + κg q̄1 + λ̄1,

which implies that
‖T1(u, v)‖ ≤ κfq1 + κg q̄1 + λ̄1.

Similarly, it can be found that

‖T2(u, v)‖ ≤ κfq2 + κg q̄2 + λ̄2.

Consequently, we get ‖T (u, v)(t)‖ ≤ κfQ1 + κgQ2 + λ̄ (Q1 , Q2 and λ̄ are given by
(3.8)), which implies that the operator T is uniformly bounded. Next, we show that
T is equicontinuous. For t1, t2 ∈ [a, b] with t1 < t2, we have

|T1(u, v)(t2)− T1(u, v)(t1)|

≤ κf

∣∣∣ ∫ t1

a

[
(t2 − s)− (t1 − s)

]
ds+

∫ t2

t1

(t2 − s)ds
∣∣∣

+
(t2 − t1)
|A1|

{
κf

[ ∫ b

a

(b− a)(b− s)ds+
( m∑
j=1

δj

)∫ ηj

ξj

∫ s

a

m∑
j=1

ρj(ηj − ξj)dpds
]

+κg

[ ∫ b

a

m∑
j=1

ρj(ηj − ξj)(b− s)ds+
m∑
j=1

∫ ηj

ξj

∫ s

a

ρj(b− a)dpds
]

+(b− a)λ2 +
m∑
j=1

ρj(ηj − ξj)λ4
}
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≤ κf

[
(t2 − t1)(t1 − a) +

(t2 − t1)2

2

]
+

(t2 − t1)
|A1|

{
κf

[(b− a)3

2

+
( m∑
j=1

ρj

)( m∑
j=1

δj(ηj − ξj)
)((ηj − a)2

2
− (ξj − a)2

2

)]
+κg

[ m∑
j=1

ρj(ηj − ξj)
(b− a)2

2
+ (b− a)

m∑
j=1

ρj

((ηj − a)2

2
− (ξj − a)2

2

)]
+(b− a)λ2 +

m∑
j=1

ρj(ηj − ξj)λ4
}
→ 0 independent of u and v as (t2 − t1)→ 0.

Similarly, one can obtain

|T2(u, v)(t2)− T2(u, v)(t1)|

≤ κg

[
(t2 − t1)(t1 − a) +

(t2 − t1)2

2

]
+

(t2 − t1)
|A1|

{
κf

[ m∑
j=1

δj(ηj − ξj)
(b− a)3

6

+(b− a)
m∑
j=1

δj

((ηj − a)2

2
− (ξj − a)2

2

)]
+κg

[(b− a)3

2
+
( m∑
j=1

δj

)( m∑
j=1

ρj(ηj − ξj)
)((ηj − a)2

2
− (ξj − a)2

2

)]
+

m∑
j=1

δj(ηj − ξj)λ2 + (b− a)λ4

}
→ 0 independent of u and v as (t2 − t1)→ 0.

Finally, we will verify that the set ω = {(u, v) ∈ X × X|(u, v) = ϕT (u, v), 0 < ϕ < 1}
is bounded. Let (u, v) ∈ ω. Then (u, v) = ϕT (u, v) and for any t ∈ [a, b], we have

u(t) = ϕT1(u, v)(t), v(t) = ϕT2(u, v)(t).

Then

|u(t)| ≤ q1(m0 +m1‖u‖+m2‖v‖) + q̄1(n0 + n1‖u‖+ n2‖v‖) + λ̄1

= q1m0 + q̄1n0 + (q1m1 + q̄1n1)‖u‖+ (q1m2 + q̄1n2)‖v‖+ λ̄1,

and

|v(t)| ≤ q2(m0 +m1‖u‖+m2‖v‖) + q̄2(n0 + n1‖u‖+ n2‖v‖) + λ̄2

= q2m0 + q̄2n0 + (q2m1 + q̄2n1)‖u‖+ (q2m2 + q̄2n2)‖v‖+ λ̄2.

Hence, we have

‖u‖+ ‖v‖ ≤ (q1 + q2)m0 + (q̄1 + q̄2)n0 + [(q1 + q2)m1 + (q̄1 + q̄2)n1]‖u‖
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+[(q1 + q2)m2 + (q̄1 + q̄2)n2]‖v‖+ λ̄1 + λ̄2,

which, in view of (3.9) and (3.10), yields

‖(u, v)‖ ≤ Q1m0 +Q2n0 + λ̄

Q0

,

for any t ∈ [a, b], which proves that the set ω is bounded. Hence, by Lemma 3.1, the
operator T has at least one fixed point. Therefore, the problem (1.1) − (1.2) has at
least one solution on [a, b]. This completes the proof. 2

Next, we apply Schauder fixed point theorem to prove the existence of solutions
for the problem (1.1)-(1.2) by imposing the the sub-growth condition on the nonlinear
functions involved in the problem.

Theorem 3.3 Assume that (H2) holds. Then, there exist at least one solution on [a, b]
for the problem (1.1)− (1.2).

Proof. Define a set Y in the Banach space X × X by

Y = {(u, v) ∈ X × X : ‖(u, v)‖ ≤ y},

where

y > max{7λ̄, 7Q1α(t), 7Q2β(t), (7Q1ε1)
1

1−p1 , (7Q1ε2)
1

1−p2 , (7Q2d1)
1

1−l1 , (7Q2d2)
1

1−l1 }.

In order to show that T : Y → Y. We have

|T1(u, v)(t)| = sup
t∈[a,b]

∣∣∣ ∫ t

a

(t− s)f(s, u(s), v(s))ds− 1

A3

{∫ b

a

[1

2
A1(b− a)(b− s)

+L1 + (b− a)A2(t− a)
]
(b− s)f(s, u(s), v(s))ds

+

∫ b

a

[1

2
A1(b− s)

m∑
j=1

γj(ηj − ξj) + L2 + A2(t− a)
m∑
j=1

ρj(ηj − ξj)
]

×(b− s)g(s, u(s), v(s))ds
}

+
1

A3

{ m∑
j=1

∫ ηj

ξj

∫ s

a

[
γjA1(b− a)(s− p)

+ρjL1 + ρj(b− a)A2(t− a)
]
g(p, u(p), v(p))dpds

+
m∑
j=1

∫ ηj

ξj

∫ s

a

[
σjA1

m∑
j=1

γj(ηj − ξj)(s− p) + δjL2

+δjA2(t− a)
m∑
j=1

ρj(ηj − ξj)
]
f(p, u(p), v(p))dpds

}
+ Ω1(t)

∣∣∣
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≤
(
α(t) + ε1|u|p1 + ε2|v|p2

)
q1 +

(
β(t) + d1|u|l1 + d2|v|l2

)
q̄1 + λ̄1,

which implies that

‖T1(u, v)‖ ≤
(
α(t) + ε1|u|p1 + ε2|v|p2

)
q1 +

(
β(t) + d1|u|l1 + d2|v|l2

)
q̄1 + λ̄1.

Analogously, we have

‖T2(u, v)‖ ≤
(
α(t) + ε1|u|p1 + ε2|v|p2

)
q2 +

(
β(t) + d1|u|l1 + d2|v|l2

)
q̄2 + λ̄2.

In consequence,

‖T (u, v)‖ ≤
(
α(t) + ε1|u|p1 + ε2|v|p2

)
Q1 +

(
β(t) + d1|u|l1 + d2|v|l2

)
Q2 + λ̄ ≤ y,

where Q1 , Q2 and λ̄ are given by (3.8). Therefore, we conclude that T : Y → Y, where
T1(u, v)(t) and T2(u, v)(t) are continuous on [a, b].

Now we prove that T is completely continuous operator by fixing that

G = max
t∈[a,b]

|f(t, u(t), v(t))|, H = max
t∈[a,b]

|g(t, u(t), v(t))|.

Letting t, τ ∈ [a, b] with a < t < τ < b and (u, v) ∈ Y, we get

|T1(u, v)(τ)− T1(u, v)(t)|

≤ G
[
(τ − t)(t− a) +

(τ − t)2

2

]
+

(τ − t)
|A1|

{
G
[(b− a)3

2

+
( m∑
j=1

ρj

)( m∑
j=1

δj(ηj − ξj)
)((ηj − a)2

2
− (ξj − a)2

2

)]
+H

[ m∑
j=1

ρj(ηj − ξj)
(b− a)2

2
+ (b− a)

m∑
j=1

ρj

((ηj − a)2

2
− (ξj − a)2

2

)]
+(b− a)λ2 +

m∑
j=1

ρj(ηj − ξj)λ4
}
→ 0 as (τ − t)→ 0.

In a similar manner, one can obtain

|T2(u, v)(τ)− T2(u, v)(t)|

≤ H
[
(τ − t)(t− a) +

(τ − t)2

2

]
+

(τ − t)
|A1|

{
G
[ m∑
j=1

δj(ηj − ξj)
(b− a)3

6

+(b− a)
m∑
j=1

δj

((ηj − a)2

2
− (ξj − a)2

2

)]
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+H
[(b− a)3

2
+
( m∑
j=1

δj

)( m∑
j=1

ρj(ηj − ξj)
)((ηj − a)2

2
− (ξj − a)2

2

)]
+

m∑
j=1

δj(ηj − ξj)λ2 + (b− a)λ4

}
→ 0 as (τ − t)→ 0.

Thus the operator T Y ⊂ Y is equicontinuous and uniformaly bounded set. Hence T
is a completely continuous operator. So, by Schauder fixed point theorem, there exist
a solution to the problem (1.1)− (1.2). 2

3.2 Uniqueness of solutions

Here we establish the uniqueness of solutions for the problem (1.1) − (1.2) by means
of Banach’s contraction mapping principle.

Theorem 3.4 Assume that (H3) holds and that

Q1`1 +Q2`2 < 1, (3.11)

where Q1 and Q2 are given by (3.8). Then the problem (1.1)−(1.2) has a unique solution
on [a, b].

Proof. Define supt∈[a,b] |f(t, 0, 0)| = N1, supt∈[a,b] |g(t, 0, 0)| = N2 and

r ≥ Q1N1 +Q2N2 + λ̄

1− (Q1`1 +Q2`2)
.

Then we show that T Br ⊂ Br, where Br = {(u, v) ∈ X × X : ‖(u, v)‖ ≤ r}. For any
(u, v) ∈ Br, t ∈ [a, b], we find that

|f(s, u(s), v(s))| = |f(s, u(s), v(s))− f(s, 0, 0) + f(s, 0, 0)|
≤ |f(s, u(s), v(s))− f(s, 0, 0)|+ |f(s, 0, 0)|
≤ `1(‖u‖+ ‖v‖) +N1 ≤ `1‖(u, v)‖+N1 ≤ `1r +N1,

and

|g(s, u(s), v(s))| = |g(s, u(s), v(s))− g(s, 0, 0) + g(s, 0, 0)|
≤ |g(s, u(s), v(s))− g(s, 0, 0)|+ |g(s, 0, 0)|
≤ `2(‖u‖+ ‖v‖) +N2 ≤ `2‖(u, v)‖+N2 ≤ `2r +N2.

Then, for (u, v) ∈ Br, we obtain

|T1(u, v)(t)| ≤ sup
t∈[a,b]

∣∣∣ ∫ t

a

(t− s)f(s, u(s), v(s))ds+
1

A3

{
−
∫ b

a

[1

2
A1(b− a)(b− s)
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+L1 + (b− a)A2(t− a)
]
(b− s)f(s, u(s), v(s))ds

−
∫ b

a

[1

2
A1(b− s)

m∑
j=1

γj(ηj − ξj) + L2 + A2(t− a)
m∑
j=1

ρj(ηj − ξj)
]

×(b− s)g(s, u(s), v(s))ds+
m∑
j=1

∫ ηj

ξj

∫ s

a

[
γjA1(b− a)(s− p)

+ρjL1 + ρj(b− a)A2(t− a)
]
g(p, u(p), v(p))dpds

+
m∑
j=1

∫ ηj

ξj

∫ s

a

[
σjA1

m∑
j=1

γj(ηj − ξj)(s− p) + δjL2

+δjA2(t− a)
m∑
j=1

ρj(ηj − ξj)
]
f(p, u(p), v(p))dpds

}
+ Ω1(t)

∣∣∣
≤ [`1r +N1]×

{(b− a)2

2
+

1

|A3|

{
|A1|

(b− a)4

6
+ |L1|

(b− a)2

2

+|A2|
(b− a)4

2
+

m∑
j=1

δj|L2|
((ηj − a)2

2
− (ξj − a)2

2

)
+|A1|

( m∑
j=1

γj

)( m∑
j=1

σj(ηj − ξj)
)((ηj − a)3

3!
− (ξj − a)3

3!

)
+|A2|(b− a)

( m∑
j=1

ρj

)( m∑
j=1

δj(ηj − ξj)
)((ηj − a)2

2
− (ξj − a)2

2

)}
+[`2r +N2]×

{ 1

|A3|

{
|A1|

(b− a)3

6

m∑
j=1

γj(ηj − ξj) + |L2|
(b− a)2

2

+|A2|
(b− a)3

2

m∑
j=1

ρj(ηj − ξj) + |A1|(b− a)

×
m∑
j=1

γj

((ηj − a)3

3!
− (ξj − a)3

3!

)
+

m∑
j=1

ρj|L1|
((ηj − a)2

2
− (ξj − a)2

2

)
+|A2|(b− a)2

m∑
j=1

ρj

((ηj − a)2

2
− (ξj − a)2

2

)}
+ λ̄1

≤ q1(`1r +N1) + q̄1(`2r +N2) + λ̄1.

Hence
‖T1(u, v)‖ ≤ q1(`1r +N1) + q̄1(`2r +N2) + λ̄1.

Likewise, we find that

‖T2(u, v)‖ ≤ q2(`1r +N1) + q̄2(`2r +N2) + λ̄2.
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From the above estimates, it follows that that ‖T (u, v)‖ ≤ r.

Next we show that the operator T is a contraction. For (u1, v1), (u2, v2) ∈ X ×X ,
we have

|T1(u1, v1)(t)− T1(u2, v2)(t)|

≤ sup
t∈[a,b]

{∫ t

a

(t− s)
∣∣∣f(s, u1(s), v1(s))− f(s, u2(s), v2(s))

∣∣∣ds
+

1

|A3|

{∫ b

a

[1

2
|A1|(b− a)(b− s) + L1 + (b− a)|A2|(t− a)

]
(b− s)

×
∣∣∣f(s, u1(s), v1(s))− f(s, u2(s), v2(s))

∣∣∣ds
+

∫ b

a

[1

2
|A1|(b− s)

m∑
j=1

γj(ηj − ξj) + L2 + |A2|(t− a)
m∑
j=1

ρj(ηj − ξj)
]

×(b− s)
∣∣∣g(s, u1(s), v1(s))− g(s, u2(s), v2(s))

∣∣∣ds}
+

1

|A3|

{ m∑
j=1

∫ ηj

ξj

∫ s

a

[
γj|A1|(b− a)(s− p) + ρjL1 + ρj(b− a)|A2|(t− a)

]
×
∣∣∣g(p, u1(p), v1(p))− g(p, u2(p), v2(p))

∣∣∣dpds
+

m∑
j=1

∫ ηj

ξj

∫ s

a

[
σj|A1|

m∑
j=1

γj(ηj − ξj)(s− p) + δjL2 + δj|A2|(t− a)
m∑
j=1

ρj(ηj − ξj)
]

×
∣∣∣f(p, u1(p), v1(p))− f(p, u2(p), v2(p))

∣∣∣dpds}
≤ `1(|u1 − u2|+ |v1 − v2|)×

{(b− a)2

2
+

1

|A3|

[
|A1|

(b− a)4

6
+ |L1|

(b− a)2

2

+|A2|
(b− a)4

2
+ |A1|

( m∑
j=1

γj

)( m∑
j=1

σj(ηj − ξj)
)((ηj − a)3

3!
− (ξj − a)3

3!

)
+

m∑
j=1

δj|L2|
((ηj − a)2

2
− (ξj − a)2

2

)
+|A2|(b− a)

( m∑
j=1

ρj

)( m∑
j=1

δj(ηj − ξj)
)((ηj − a)2

2
− (ξj − a)2

2

)]}
+`2(|u1 − u2|+ |v1 − v2|)×

{ 1

|A3|

[
|A1|

(b− a)3

6

m∑
j=1

γj(ηj − ξj) + |L2|
(b− a)2

2

+|A2|
(b− a)3

2

m∑
j=1

ρj(ηj − ξj) + |A1|(b− a)
m∑
j=1

γj

((ηj − a)3

3!
− (ξj − a)3

3!

)
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+
m∑
j=1

ρj|L1|
((ηj − a)2

2
− (ξj − a)2

2

)
+ |A2|(b− a)2

m∑
j=1

ρj

((ηj − a)2

2
− (ξj − a)2

2

)]}
≤ (`1q1 + `2q̄1)(|u1 − u2|+ |v1 − v2|),

which yields

‖T1(u1, v1)− T1(u2, v2)‖ ≤ (`1q1 + `2q̄1)(|u1 − u2|+ |v1 − v2|).

Similarly,

‖T2(u1, v1)− T2(u2, v2)‖ ≤ (`1q2 + `2q̄2)(|u1 − u2|+ |v1 − v2|).

So, it follows from the above inequalities that

‖T (u1, v1)− T (u2, v2)‖ ≤ (Q1`1 +Q2`2)(‖u1 − u2‖+ ‖v1 − v2‖),

where Q1 and Q2 are given by (3.8). By the given assumption (3.11), it follows that
the operator T is a contraction. Thus, by Banach’s contraction mapping principle, we
deduce that the operator T has a fixed point, which corresponds to a unique solution
of the problem (1.1)-(1.2) on [a, b]. 2

Example 3.5 Consider the following second order system of ordinary differential equa-
tions 

u′′(t) =
1

10 + t2

( |u|
1 + |u|

+ v(t)
)

+ e−t, t ∈ [2, 3],

v′′(t) =
1

3
√

32 + t2

(
u(t) + tan−1 v(t)

)
+ cos (t− 2), t ∈ [2, 3],

(3.12)

subject to the boundary conditions

∫ 3

2

u(s)ds =
3∑
j=1

γj

∫ ηj

ξj

v(s)ds+ 2,

∫ 3

2

u′(s)ds =
3∑
j=1

ρj

∫ ηj

ξj

v′(s)ds+ 1,∫ 3

2

v(s)ds =
3∑
j=1

σj

∫ ηj

ξj

u(s)ds+
3

2
,

∫ 3

2

v′(s)ds =
3∑
j=1

δj

∫ ηj

ξj

u′(s)ds+
1

2
,

(3.13)

where a = 2, b = 3,m = 3, λ1 = 2, λ2 = 1, λ3 = 3/2, λ4 = 1/2, γ1 = 2/5, γ2 =
21/40, γ3 = 13/20, ρ1 = 1/3, ρ2 = 1/2, ρ3 = 2/3, σ1 = 3/7, σ2 = 5/7, σ3 = 1, δ1 =
3/8, δ2 = 5/8, δ3 = 7/8, ξ1 = 15/7, η1 = 16/7, ξ2 = 17/7, η2 = 18/7, ξ3 = 19/7, η3 =
20/7.

Using the given data, we find that `1 = 1
7
, `2 = 1

9
, A1 ≈ 0.827806 6= 0, A2 ≈ 0.793367 6=

0, A3 ≈ 0.656754, |L1| = 0.03337, |L2| ≈ 0.225389, |L3| ≈ 0.027121, |L4| ≈ 0.185097,
q1 ≈ 1.963984, q2 ≈ 1.422591, q̄1 ≈ 1.290164 and q̄2 ≈ 1.851349. Also Q1`1 + Q2`2 ≈
0.832853 < 1 (Q1 and Q2 are given by (3.8)). Thus, all the conditions of Theorem
3.4 are satisfied. Hence it follows by the conclusion of Theorem 3.4 that the problem
(3.12)− (3.13) has a unique solution on [2, 3].
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4 Conclusions

The salient features of this work includes (i) considering a coupled system of nonlinear
ordinary differential equations on an arbitrary domain (ii) a new kind of integral multi-
strip coupled boundary conditions. The results obtained for the given problem are new
and significantly contribute to the existing literature on the topic. As a special case,
our results correspond to the uncoupled integral boundary conditions of the form:∫ b

a

u(s)ds = λ1,

∫ b

a

u′(s)ds = λ2;

∫ b

a

v(s)ds = λ3,

∫ b

a

v′(s)ds = λ4,

if we take all γj = 0, ρj = 0, σj = 0, δj = 0 (j = 1, . . . ,m) in the results of this paper.
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Explicit identities involving truncated exponential
polynomials and phenomenon of scattering of their zeros
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Abstract : In this paper, we study differential equations arising from the generating functions of

truncated exponential polynomials. We give explicit identities for the truncated polynomials. Using

numerical investigation, we observe the behavior of complex roots of the truncated polynomials

en(x). By means of numerical experiments, we demonstrate a remarkably regular structure of the

complex roots of the truncated polynomials en(x).

Key words : Differential equations, complex roots, truncated polynomials.
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1. Introduction

Recently, many mathematicians have studied in the area of the Bernoulli numbers and poly-

nomials, Euler numbers and polynomials, tangent numbers and polynomials, Genocchi numbers

and polynomials, Laguerre polynomials, and Hermite polynomials. These numbers and polynomials

possess many interesting properties and arising in many areas of mathematics, physics, and applied

engineering(see [1-14]). By using software, many mathematicians can explore concepts much more

easily than in the past. The ability to create and manipulate figures on the computer screen enables

mathematicians to quickly visualize and produce many problems, examine properties of the figures,

look for patterns, and make conjectures. This capability is especially exciting because these steps are

essential for most mathematicians to truly understand even basic concept. Numerical experiments

of Euler polynomials, Bernoulli polynomials, tangent polynomials, Genocchi polynomials, Laguerre

polynomials, and Hermite polynomials have been the subject of extensive study in recent year and

much progress have been made both mathematically and computationally. Using computer, a re-

alistic study for the zeros of truncated polynomials en(x) is very interesting. The main purpose

of this paper is to observe an interesting phenomenon of ‘scattering’ of the zeros of the truncated

polynomials en(x) in complex plane. Throughout this paper, we always make use of the following

notations: N = {1, 2, 3, · · · } denotes the set of natural numbers, N0 = {0, 1, 2, 3, · · · } denotes the set

of nonnegative integers, Z denotes the set of integers, R denotes the set of real numbers, C denotes

the set of complex numbers. We first give the definitions of the truncated exponential polynomi-

als. It should be mentioned that the definition of truncated exponential polynomials en(x) can be

found in [1, 3]. The truncated exponential polynomials en(x) are defined by means of the generating

function: (
1

1− t

)
ext =

∞∑
n=0

en(x)t
n, |t| < 1. (1.1)

We recall that G. Dattoli and M. Migliorati(see [3]) studied some properties of truncated exponential

polynomials en(x). The truncated exponential polynomials en(x) satisfy the following relations

d

dx
en(x) = en−1(x),

en+1(x) =

(
1 +

x

n+ 1

(
1− d

dx

))
en(x).
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The Miller-Lee polynomials G
(k)
n (x)(see [1]), are defined by means of the following generating func-

tion (
1

1− t

)k+1

ext =
∞∑

n=0

G(k)
n (x)tn. (1.2)

Differential equations arising from the generating functions of special polynomials are studied by

many authors in order to give explicit identities for special polynomials. In this paper, we study linear

differential equations arising from the generating functions of truncated exponential polynomials

en(x). We give explicit identities for truncated exponential polynomials en(x).

2. Differential equations associated with truncated exponential polynomials

In this section, we study linear differential equations arising from the generating functions of

truncated exponential polynomials. Let

F = F (t, x) =

(
1

1− t

)
ext. (2.1)

Then, by (2.1), we get

F (1) =
d

dt
F (t, x) =

d

dt

(
1

1− t

)
ext

=

(
1

1− t

)2

ext + x

(
1

1− t

)
ext

=

(
1

1− t
+ x

)
F (t, x),

(2.2)

and

F (2) =

(
d

dt

)2

F (t, x)

=

(
1

1− t

)2

extF (t, x) +

(
1

1− t
+ x

)
F (t, x)F (1)

=

((
2

1− t

)2

+

(
2x

1− t
+ x2

))
F (t, x).

(2.3)

Continuing this process, we can guess that

F (N) =

(
d

dt

)N

F (t, x)

=

(
N∑
i=0

ai(N,x)(1− t)−i

)
F (t, x), (N = 0, 1, 2, . . .).

(2.4)
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Taking the derivative with respect to t in (2.4), we obtain

F (N+1) =
dF (N)

dt

=

(
N∑
i=0

iai(N, x)(1− t)−i−1

)
F (t, x) +

(
N∑
i=0

ai(N, x)(1− t)−i

)
F (1)(t, x)

=

(
N∑
i=0

iai(N, x)(1− t)−i−1

)
F (t, x)

+

(
N∑
i=0

ai(N, x)(1− t)−i

)(
(1− t)−1 + x

)
F (t, x)

=

(
N∑
i=0

(i+ 1)ai(N, x)(1− t)−i−1

)
F (t, x) +

(
N∑
i=0

xai(N, x)(1− t)−i

)
F (t, x)

=

(
N∑
i=0

xai(N,x)(1− t)−i

)
F (t, x) +

(
N+1∑
i=1

iai−1(N, x)(1− t)−i

)
F (t, x).

(2.5)

On the other hand, by replacing N by N + 1 in (2.4), we get

F (N+1) =

(
N+1∑
i=0

ai(N + 1, x)(1− t)−i

)
F (t, x). (2.6)

By (2.5) and (2.6), we have(
N∑
i=0

xai(N, x)(1− t)−i

)
F (t, x) +

(
N+1∑
i=1

iai−1(N, x)(1− t)−i

)
F (t, x)

=

(
N+1∑
i=0

ai(N + 1, x)(1− t)−i

)
F (t, x)..

(2.7)

Comparing the coefficients on both sides of (2.7), we obtain

a0(N + 1, x) = xa0(N,x),

aN+1(N + 1, x) = (N + 1)aN (N, x),
(2.8)

and

ai(N + 1, x) = xai(N,x) + iai−1(N, x), (1 ≤ i ≤ N). (2.9)

In addition, by (2.2) and (2.4), we get

F = F (0) = a0(0, x)F (t, x) = F (t, x). (2.10)

Thus, by (2.10), we obtain

a0(0, x) = 1. (2.11)

It is not difficult to show that

(1− t)−1F (t, x) + xF (t, x)

=
1∑

i=0

ai(1, x)(1− t)−iF (t, x)

= a0(1, x)F (t, x) + a1(1, x)(1− t)−1F (t, x).

(2.12)

Thus, by (2.12), we also get

a0(1, x) = x, a1(1, x) = 1. (2.13)
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From (2.8), we note that

a0(N + 1, x) = xa0(N,x) = x2a0(N − 1, x) = · · · = xN+1,

and

aN+1(N + 1, x) = (N + 1)aN (N, x) = · · · = (N + 1)!. (2.14)

For i = 1, 2, 3 in (2.9), we get

a1(N + 1, x) =

N∑
k=0

xka0(N − k, x),

a2(N + 1, x) = 2

N−1∑
k=0

xka1(N − k, x), and

a3(N + 1, x) = 3

N−2∑
k=0

xka2(N − k, x).

Continuing this process, we can deduce that, for 1 ≤ i ≤ N,

ai(N + 1, x) = i

N−i+1∑
k=0

xkai−1(N − k, x). (2.15)

Now, we give explicit expressions for ai(N + 1, x). By (2.14) and (2.15), we get

a1(N + 1, x) =

N∑
k1=0

xk1a0(N − k1, x) = xN (N + 1),

a2(N + 1, x) = 2
N−1∑
k1=0

xk1a1(N − k1, x) = 2!
N−1∑
k1=0

xN−1(N − k1),

and

a3(N + 1, x) = 3
N−2∑
k2=0

xk2a2(N − k2, x)

= 3!

N−2∑
k2=0

N−k2−2∑
k1=0

xN−k2−2(N − k2 − k1 − 1).

Continuing this process, we have

ai(N + 1, x) = i!
N−i+1∑
ki−1=0

N−ki−1−i+1∑
ki−2=0

· · ·
N−ki−1−···−k2−i+1∑

k1=0

xN−ki−···−k2−i+1

× (N − ki−1 − ki−2 − · · · − k2 − k1 − i+ 2).

(2.16)

Note that, here the matrix ai(j, x)0≤i,j≤N+1 is given by

1 x x2 x3 · · · xN+1

0 1! 2x · · · · (N + 1)xN

0 0 2! · · · · ·
0 0 0 3! · · · ·
...

...
...

...
. . .

...

0 0 0 0 · · · (N + 1)!


Therefore, by (2.16), we obtain the following theorem.
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Theorem 1. For N = 0, 1, 2, . . . , the functional equation

F (N) =

(
N∑
i=0

ai(N, x)

(
1

1− t

)i
)
F

has a solution

F = F (t, x) =

(
1

1− t

)
ext,

where
a0(N, x) = xN ,

aN (N, x) = N !,

ai(N, x) = i!
N−i∑

ki−1=0

N−ki−1−i∑
ki−2=0

· · ·
N−ki−1−···−k2−i∑

k1=0

xN−ki−1−···−k2−i

× (N − ki−1 − ki−2 − · · · − k2 − k1 − i+ 1),

(1 ≤ i ≤ N).

From (1.1), we note that

F (N) =

(
d

dt

)N

F (t, x) =
∞∑
k=0

(k +N)!

k!
ek+N (x)tk. (2.17)

From Theorem 1, (1.2), and (2.17), we can derive the following equation:

∞∑
k=0

(k +N)!

k!
ek+N (x)tk =

(
N∑
i=0

ai(N, x)

(
1

1− t

)i
)
F

=
N∑
i=0

ai(N,x)

(
1

1− t

)i+1

ext

=
N∑
i=0

ai(N,x)

( ∞∑
k=0

G
(i)
k (x)tk

)

=
∞∑
k=0

(
N∑
i=0

ai(N, x)G
(i)
k (x)

)
tk.

(2.18)

By comparing the coefficients on both sides of (2.18), we obtain the following theorem.

Theorem 2. For k = 0, 1, . . . , and N = 0, 1, 2, . . . , we have

ek+N (x) =
k!

(k +N)!

N∑
i=0

ai(N, x)G
(i)
k (x), (2.19)

where
a0(N, x) = xN ,

aN (N, x) = N !,

ai(N, x) = i!
N−i∑

ki−1=0

N−ki−1−i∑
ki−2=0

· · ·
N−ki−1−···−k2−i∑

k1=0

xN−ki−1−···−k2−i

× (N − ki−1 − ki−2 − · · · − k2 − k1 − i+ 1),

(1 ≤ i ≤ N).

Let us take k = 0 in (2.19). Then, we have the following corollary.
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Corollary 3. For N = 0, 1, 2, . . . , we have

eN (x) =
1

N !

N∑
i=0

ai(N, x)G
(i)
0 (x).

For N = 1, 2, . . . , the functional equation

F (N) =

(
N∑
i=0

ai(N, x)

(
1

1− t

)i
)
F

has a solution

F = F (t, x) =

(
1

1− t

)
ext.

Here is a plot of the surface for this solution.
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Figure 1: The surface for the solution F (t, x)

In Figure 1(left), we plot of the surface for this solution. In Figure 1(right), we shows a higher-

resolution density plot of the solution.

3. Zeros of the truncated exponential polynomials

This section aims to demonstrate the benefit of using numerical investigation to support theo-

retical prediction and to discover new interesting pattern of the zeros of the truncated exponential

polynomials en(x). By using computer, the truncated exponential polynomials en(x) can be de-

termined explicitly. We display the shapes of the truncated exponential polynomials en(x) and

investigate the zeros of the truncated exponential polynomials en(x). We investigate the beautiful

zeros of the truncated exponential polynomials en(x) by using a computer. We plot the zeros of

the en(x) for n = 20, 30, 40, 50 and x ∈ C(Figure 2). In Figure 2(top-left), we choose n = 20. In

Figure 2(top-right), we choose n = 30. In Figure 2(bottom-left), we choose n = 40. In Figure

2(bottom-right), we choose n = 50.

Stacks of zeros of en(x) for 1 ≤ n ≤ 40, forming a 3D structure are presented(Figure 3). In

Figure 3(top-left), we plot stacks of zeros of en(x) for 1 ≤ n ≤ 40. In Figure 3(top-right), we draw

x and y axes but no z axis in three dimensions. In Figure 3(bottom-left), we draw y and z axes but

no x axis in three dimensions. In Figure 3(bottom-right), we draw x and z axes but no y axis in

three dimensions.

Our numerical results for approximate solutions of real zeros of the truncated exponential

polynomials en(x) are displayed(Tables 1, 2).
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Figure 2: Zeros of en(x)

Table 1. Numbers of real and complex zeros of en(x)

degree n real zeros complex zeros

1 1 0

2 0 2

3 1 2

4 0 4

5 1 4

6 0 6

7 1 6

8 0 8

9 1 8

10 0 10

11 1 10

12 0 12

13 1 12

14 0 14

How many zeros does en(x) have? We are not able to decide if en(x) has n distinct solutions(see

Table 1, Table 2). We would also like to know the number of complex zeros Cen(x) of en(x), Im(x) ̸=
0. Since n is the degree of the polynomial en(x), the number of real zeros Ren(x) lying on the real

line Im(x) = 0 is then Ren(x) = n − Cen(x), where Cen(x) denotes complex zeros. See Table 1 for

tabulated values of Ren(x) and Cen(x).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.2, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

242 RYOO 236-245



-10

0

10

20ReHwL

-10

0

10ImHwL

0

10

20

30

40

s

-10

0

10

20ReHwL

-10

0

10ImHwL

-10 0 10 20

ReHwL

-10

0

10

ImHwLL

-10010

ImHwL

0

10

20

30

40

s

-10 0 10 20

ReHwL

0

10

20

30

40

s

-10 20

Figure 3: Stacks of zeros of en(x) for 1 ≤ n ≤ 40

Conjecture 5. Prove that en(x) = 0 has n distinct solutions.

Using computers, many more values of n have been checked. It still remains unknown if the

conjecture fails or holds for any value n. Since n is the degree of the polynomial en(x), the number

of real zeros Ren(x) lying on the real plane Im(x) = 0 is then Ren(x) = n − Cen(x), where Cen(x)

denotes complex zeros. See Table 1 for tabulated values of Ren(x) and Cen(x) .

Conjecture 6. Prove that the numbers of complex zeros Cen(x) of en(x), Im(x) ̸= 0 is

Cen(x) = 2
[n
2

]
,

where [ ] denotes taking the integer part.

Conjecture 7. For n ∈ N0, if n ≡ 1 (mod 2), then Ren(x) = 1, if n ≡ 0 (mod 2), then

Ren(x) = 0.

The plot of real zeros of the truncated exponential polynomials en(x) for 1 ≤ n ≤ 50 structure

are presented(Figure 4). It is expected that en(x), x ∈ C, has Im(x) = 0 reflection symmetry analytic

complex functions (see Figure 2, Figure 3, Figure 4). For a ∈ R, we expect that en(x), x ∈ C, has
not Re(x) = a reflection symmetry analytic complex functions. We observe a remarkable regular

structure of the complex roots of the truncated exponential polynomials en(x). We also hope to

verify a remarkable regular structure of the complex roots of the truncated exponential polynomials

en(x)(Table 1). Next, we calculated an approximate solution satisfying en(x) = 0, x ∈ C. The
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Figure 4: Real zeros of en(x) for 1 ≤ n ≤ 50

results are given in Table 2.

Table 2. Approximate solutions of en(x) = 0, x ∈ C

degree n x

1 −1.0000

2 −1.0000− 1.0000i, −1.0000 + 1.0000i

3 −1.5961, −0.7020− 1.8073i, −0.7020 + 1.8073i

4 −1.7294− 0.8890i, −1.7294 + 0.8890i

−0.2706− 2.5048i, −0.2706 + 2.5048i

5 −2.1806, −1.6495− 1.6939i, −1.6495 + 1.6939i

0.2398− 3.1283i, 0.2398 + 3.1283i

6 −2.3618− 0.8384i, −2.3618 + 0.8384i, −1.4418− 2.4345i

−1.4418 + 2.4345i, 0.8036− 3.6977i, 0.8036 + 3.6977i
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1. Introduction

Many mathematicians have studied in the area of the Bernoulli numbers and polynomials,

Euler numbers and polynomials, Genocchi numbers and polynomials, tangent numbers and poly-

nomials(see [1-16]). In [2], L. Carlitz introduced the degenerate Bernoulli polynomials. Recently,

Feng Qi et al.[3] studied the partially degenerate Bernoull polynomials of the first kind in p-adic

field. In this paper, we obtain some interesting properties for generalized degenerate tangent num-

bers and polynomials. Throughout this paper we use the following notations. Let p be a fixed odd

prime number. By Zp we denote the ring of p-adic rational integers, Q denotes the field of rational

numbers, Qp denotes the field of p-adic rational numbers, C denotes the complex number field, and

Cp denotes the completion of algebraic closure of Qp, N denotes the set of natural numbers and

Z+ = N∪ {0}. Let r be a positive integer, and let ζ be rth root of 1. Let χ be Dirichlet’s character

with conductor d ∈ N with d ≡ 1(mod 2). Then the generalized twisted (h, q)-tangent numbers

associated with associated with χ, T
(h)
n,χ,q,ζ , are defined by the following generating function

2
∑d−1

a=0 χ(a)(−1)aζaqhae2at

ζdqhde2dt + 1
=

∞∑
n=0

T
(h)
n,χ,q,ζ

tn

n!
. (1.1)

We now consider the generalized twisted (h, q)-tangent polynomials associated with χ, T
(h)
n,χ,q,ζ(x),

are also defined by (
2
∑d−1

a=0 χ(a)(−1)aζaqhae2at

ζdqhde2dt + 1

)
ext =

∞∑
n=0

T
(h)
n,χ,q,ζ(x)

tn

n!
. (1.2)

When χ = χ0, above (1.1) and (1.2) will become the corresponding definitions of the twisted (h, q)-

tangent numbers T
(h)
n,q,w and polynomials T

(h)
n,q,w(x). If q → 1, above (1.1) and (1.2) will become

the corresponding definitions of the generalized twisted tangent numbers Tn,χ,w and polynomials

Tn,χ,w(x). We recall that the classical Stirling numbers of the first kind S1(n, k) and S2(n, k) are

defined by the relations(see [7])

(x)n =
n∑

k=0

S1(n, k)x
k and xn =

n∑
k=0

S2(n, k)(x)k,
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respectively. Here (x)n = x(x− 1) · · · (x− n+1) denotes the falling factorial polynomial of order n.

The numbers S2(n,m) also admit a representation in terms of a generating function

∞∑
n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
. (1.3)

We also have
∞∑

n=m

S1(n,m)
tn

n!
=

(log(1 + t))m

m!
. (1.3)

The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =
n−1∏
k=0

(x− λk) (1.5)

for positive integer n, with the convention (x|λ)0 = 1. We also need the binomial theorem: for a

variable x,

(1 + λt)x/λ =
∞∑

n=0

(x|λ)n
tn

n!
. (1.6)

2. On the generalized degenerate twisted (h, q)-tangent polynomials

In this section, we define the generalized degenerate twisted (h, q)-tangent numbers and poly-

nomials, and we obtain explicit formulas for them. Let χ be Dirichlet’s character with conductor

d ∈ N with d ≡ 1(mod 2), and let ζ be rth root of 1. For h ∈ Z, the generalized degenerate

twisted (h, q)-tangent polynomials associated with associated with χ, T
(h)
n,χ,q,ζ(x|λ), are defined by

the following generating function

2
∑d−1

a=0(−1)aχ(a)ζaqha(1 + λt)2a/λ

ζdqdh(1 + λt)2/λ + 1
(1 + λt)x/λ =

∞∑
n=0

T
(h)
n,χ,q,ζ(x|λ)

tn

n!
(2.1)

and their values at x = 0 are called the generalized degenerate twisted (h, q)-tangent numbers and

denoted T
(h)
n,χ,q,ζ(λ).

From (2.1) and (1.2), we note that

∞∑
n=0

lim
λ→0

T
(h)
n,χ,q,ζ(x|λ)

tn

n!
= lim

λ→0

2
∑d−1

a=0(−1)aχ(a)ζaqha(1 + λt)2a/λ

ζdqdh(1 + λt)2/λ + 1
(1 + λt)x/λ

=

(
2
∑d−1

a=0 χ(a)(−1)aζaqhae2at

ζdqhde2dt + 1

)
ext

=

∞∑
n=0

T
(h)
n,χ,q,ζ(x)

tn

n!
.

Thus, we get

lim
λ→0

T
(h)
n,χ,q,ζ(x|λ) = T

(h)
n,χ,q,ζ(x), (n ≥ 0).

From (2.1) and (1.6), we have

∞∑
n=0

T
(h)
n,χ,q,ζ(x|λ)

tn

n!
=

2
∑d−1

a=0(−1)aχ(a)ζaqha(1 + λt)2a/λ

ζdqdh(1 + λt)2/λ + 1
(1 + λt)x/λ

=

( ∞∑
m=0

T
(h)
n,χ,q,ζ(λ)

tm

m!

)( ∞∑
l=0

(x|λ)l
tl

l!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
T

(h)
l,χ,q,ζ(λ)(x|λ)n−l

)
tn

n!
.

(2.2)
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By comparing coefficients of
tm

m!
in the above equation, we have the following theorem:

Theorem 1. For n ≥ 0, we have

T
(h)
n,χ,q,ζ(x|λ) =

n∑
l=0

(
n

l

)
T

(h)
l,χ,q,ζ(λ)(x|λ)n−l.

For χ = χ0, we have

∞∑
n=0

T
(h)
n,χ,q,ζ(x|λ)

tn

n!
=

2

ζqh(1 + λt)2/λ + 1
(1 + λt)x/λ

=
∞∑

m=0

T
(h)
n,q,ζ(x|λ)

tm

m!
.

(2.3)

Theorem 2. For n ≥ 0 and χ = χ0 , we have

T
(h)
n,χ,q,ζ(x|λ) = T

(h)
n,q,ζ(x|λ).

For d ∈ N with d ≡ 1(mod2), we have

∞∑
n=0

T
(h)
n,χ,q,ζ(x|λ)

tn

n!
=

2
∑d−1

a=0(−1)aχ(a)ζaqha(1 + λt)2a/λ

ζdqdh(1 + λt)2d/λ + 1
(1 + λt)x/λ

=
2

ζqh(1 + λt)2d/λ + 1
(1 + λt)x/λ

d−1∑
l=0

(−1)lχ(l)(1 + λt)2l/λ

=
∞∑

n=0

(
dn

d−1∑
l=0

(−1)lχ(l)T
(h)

n,qd,ζd

(
2l + x

d

∣∣λ
d

))
tn

n!
.

(2.4)

By comparing coefficients of
tm

m!
in the above equation, we have the following theorem:

Theorem 3. Let χ be Dirichlet’s character with conductor d ∈ N with d ≡ 1(mod 2). Then

we have

(1) T
(h)
n,χ,q,ζ(x|λ) = dn

d−1∑
l=0

(−1)lχ(l)T
(h)

n,qd,ζd

(
2l + x

d

∣∣λ
d

)
,

(2) T
(h)
n,χ,q,ζ(λ) = dn

d−1∑
l=0

(−1)lχ(l)T
(h)

n,qd,ζd

(
2l + x

d

)
.

For m ∈ Z+, we obtain we can derive the following relation:

∞∑
m=0

ζdqhdT
(h)
m,χ,q,ζ(2d|λ)

tm

m!
+

∞∑
m=0

T
(h)
m,χ,q,ζ(2d|λ)

tm

m!

= 2
d−1∑
l=0

(−1)lχ(l)ζlqhl(1 + λt)2l/λ

=

∞∑
m=0

(
2

d−1∑
l=0

(−1)n−1−lχ(l)ζlqhl(2l|λ)m

)
tm

m!
.

(2.5)

By comparing of the coefficients tm

m! on the both sides of (2.5), we have the following theorem.
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Theorem 4. For m ∈ Z+, we have

ζdqhdT
(h)
m,χ,q,ζ(2d|λ) + T

(h)
m,χ,q,ζ(λ) = 2

d−1∑
l=0

(−1)lχ(l)ζlqhl(2l|λ)m.

From (2.1), we have

∞∑
n=0

T
(h)
n,χ,q,ζ(x+ y|λ) t

n

n!
=

2
∑d−1

a=0(−1)aχ(a)ζaqha(1 + λt)2a/λ

ζdqdh(1 + λt)2d/λ + 1
(1 + λt)(x+y)/λ

=
2
∑d−1

a=0(−1)aχ(a)ζaqha(1 + λt)(2a+x)/λ

ζdqdh(1 + λt)2d/λ + 1
(1 + λt)y/λ

=

( ∞∑
n=0

T
(h)
n,χ,q,ζ(x|λ)

tn

n!

)( ∞∑
n=0

(y|λ)n
tn

n!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
T

(h)
l,χ,q,ζ(x|λ)(y|λ)n−l

)
tn

n!
.

(2.6)

Therefore, by (2.6), we have the following theorem.

Theorem 5. For n ∈ Z+, we have

T
(h)
m,χ,q,ζ(x+ y|λ) =

n∑
k=0

(
n

k

)
T

(h)
kχ,q,ζ(x|λ)(y|λ)n−k.

From Theorem 5, we note that T
(h)
n,χ,q,ζ(x|λ) is a Sheffer sequence.

By replacing t by
eλt − 1

λ
in (2.1), we obtain

2
∑d−1

a=0 χ(a)(−1)aζaqhae2at

ζdqhde2dt + 1
ext =

∞∑
n=0

T
(h)
n,χ,q,ζ(x|λ)

(
eλt − 1

λ

)n
1

n!

=
∞∑

n=0

T
(h)
n,χ,q,ζ(x|λ)λ

−n
∞∑

m=n

S2(m,n)λm tm

m!

=
∞∑

m=0

(
m∑

n=0

T
(h)
n,χ,q,ζ(x|λ)λ

m−nS2(m,n)

)
tm

m!
.

(2.7)

Thus, by (2.7) and (1.2), we have the following theorem.

Theorem 6. For n ∈ Z+, we have

T
(h)
m,χ,q,ζ(x) =

m∑
n=0

λm−nT
(h)
n,χ,q,ζ(x|λ)S2(m,n).

By replacing t by log(1 + λt)1/λ in (1.2), we have

∞∑
n=0

T
(h)
n,χ,q,ζ(x)

(
log(1 + λt)1/λ

)n 1

n!
=

2
∑d−1

a=0(−1)aχ(a)ζaqha(1 + λt)(2a+x)/λ

ζdqhd(1 + λt)2d/λ + 1

=
∞∑

m=0

T
(h)
m,χ,q,ζ(x|λ)

tm

m!
,

(2.8)

and

∞∑
n=0

T
(h)
n,χ,q,ζ(x)

(
log(1 + λt)1/λ

)n 1

n!
=

∞∑
m=0

(
m∑

n=0

T
(h)
n,χ,q,ζ(x)λ

m−nS1(m,n)

)
tm

m!
. (2.9)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.2, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

249 RYOO 246-251



Thus, by (2.8) and (2.9), we have the following theorem.

Theorem 8. For n ∈ Z+, we have

T
(h)
m,χ,q,ζ(x|λ) =

m∑
n=0

T
(h)
n,χ,q,ζ(x)λ

m−nS1(m,n).
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Abstract
In this paper, we will establish some new suffi cient condition for oscillation of

solutions of a certain class of first-order neutral delay difference equations of the
form

∆ (xn − pnxn−1) + qnx
γ
n−τ = 0,

where γ is a quotient of odd positive integers. We will consider the sublinear and
super linear cases. The results will be obtained by using the oscillation theorems of
second order delay difference equations.
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1 Introduction

In recent decades there has been much research activity concerning oscillation and nonoscil-
lation of first and second order delay and neutral delay difference equations, we refer the
reader to the papers [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
and the references cited therein. In the following, we recall some results of first order
neutral delay difference equations of sublinear and super linear types that motivate the
contents of this paper. Xiaoyan Lin in [12] studied the oscillatory behavior of solutions of
the neutral difference equations with nonlinear neutral term of the form

(1.1) ∆
(
xn − pnxαn−σ

)
+ qnx

β
n−τ = 0, for n ∈ Nn0 ,

where α and β are quotient of odd positive integers, τ and σ are nonnegative integers
and {pn} and {qn} are two sequences of nonnegative real numbers. The authors obtained
necessary and suffi cient conditions for existence of oscillatory solutions and studied the
two cases when 0 < α < 1 and when α > 1. As usual, a nontrivial solution xn of (1.1) is
called nonoscillatory if it eventually positive or eventually negative, otherwise it is called
oscillatory and ∆ is the forward difference operator defined by ∆xn = xn+1 − xn and
Ni = {i + 1, i + 2, ...}. Lalli [11] established several suffi cient conditions for oscillation of
the equation

(1.2) ∆ (xn + pxn−δk) + qnf (xn−τ ) = Fn, n ≥ n0,

1
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where δ = ±1, p is a nonnegative real number, k ∈ N = {1, 2, ...}, τ is a sequence of
nonnegative integers with limn→∞ τn =∞, and {Fn}, {qn} are sequences of real numbers
and f is a real valued function satisfying xf (x) > 0 for x 6= 0. El-Morshedy et al. [6]
considered the equation

(1.3) ∆g (xn + pnxσn) + f (n, xτn) = 0,

where 0 ≤ pn < p < 1, σn and τn are sequences of integers such that limn→∞ σn =
limn→∞ =∞ and σn+1 > σn for all n ≥ n0. They established several suffi cient conditions
for oscillation when the function f satisfies the condition

f (n, x)

h (x)
≥ qn, x 6= 0 and n ≥ n0,

where qn ≥ 0 for n ≥ n0, h ∈ C (R,R) and xh(x) > 0 for all x 6= 0. Recently Murugesan
and Suganthi [13] discussed the oscillatory behavior of all solutions of the first order
nonlinear neutral delay difference equation

[∆ (rn (anxn − pnxn−τ ))] + qnxn−σ = 0,

where rn and an are sequences of positive real numbers pn and qn are sequences of non-
negative real numbers, τ and σ are positive integers. Following this trend in this paper,
we will consider the first order neutral delay difference equation

(1.4) ∆ (xn − pnxn−1) + qnx
γ
n−τ = 0, for n ∈ Nn0 ,

Our aim in this paper is to establish some new suffi cient conditions for oscillation of (1.4)
by using a new technique when 0 < pn ≤ p ≤ 1 and we will consider the sublinear and
the super linear cases. The new technique depends on the application of an invariant
substitution which transforms the first nonlinear neutral difference equation to a second
nonlinear difference equation. This allows us to obtain several suffi cient conditions for
oscillation of (1.4) by employing the oscillation conditions of second order delay difference
equations by using the Riccati technique.

2 Main results

In this section, we prove the main results but before we do this, we apply an invariant
substitution which transforms the first order neutral equation to a non-neutral second
order difference equations. This substitution is given by

(2.1) yn+1 = xn

n∏
i=1

1

pi
, where

n∏
i=1

pi = O (n) ,

This gives us that

(2.2) xn = yn+1

n∏
i=1

pi, xn−1 = yn

n−1∏
i=1

pi, and xn−τ = yn−τ+1

n−τ∏
i=1

pi.

From (2.2), we have

(2.3) xn − pnxn−1 = ∆yn

n∏
i=1

pi.

2
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Substituting (2.3) into (1.4), we obtain

(2.4) ∆

(
∆yn

n∏
i=1

pi

)
+ qn

n−τ∏
i=1

piyn−τ+1 = 0.

Setting dn =
∏n

i=1
pi, and Qn = qndn−τ then (2.4) becomes

(2.5) ∆ (dn∆yn) +Qny
γ
n−(τ−1) = 0, n ∈ N0.

In this section, we intend to use the Riccati transformation technique for obtaining several
new oscillation criteria for (1.4). First we state some fundamental lemmas for second order
difference equations that will be used in the proofs of the main results (see [15]).

Lemma 2.1 Assume that pn is a real sequence with 0 < pn ≤ p < 1 for all n ∈ N.
Furthermore assume that

(2.6)
∞∑
n=1

1

dn
=∞.

Let y be a positive solution of (2.5). Then
(I ). ∆y(n) ≥ 0, y(n) ≥ n∆y(n) for n ≥ N ,
(II ). y is nondecreasing, while y(n)/n is nonincreasing for n ≥ N.

Lemma 2.2 Assume that pn is a real sequence with 0 < pn ≤ p < 1 for all n ∈ N.
Furthermore assume that (2.6) holds. If yn be a nonoscillatory solution of (2.5) such that
yn ≥ 0, ∆yn ≤ 0, then limn→∞ yn = 0 and hence

(2.7) lim
n→∞

xn
dn

= 0,

where xn is a solution of (1.4).

Throughout this paper, we will assume that the real sequences pn, qn are nonnegative,
γ is a quotient of odd positive integers, τ is a nonnegative integer. Now, we state and prove
the suffi cient conditions which ensure that each solution of equation (1.4) is oscillatory or
satisfies (2.7). We start with the case when 0 < γ ≤ 1.

Theorem 2.3 Assume that (H1) holds and ∆dn ≥ 0. Furthermore, assume that there
exists a positive sequence ρn such that,

(2.8) lim
n→∞

sup
n∑

i=n0

[
ρiQi −

di−τ+1β
1−γ (i+ 2− τ)

1−γ
(∆ρi)

2

ρi

]
=∞,

where dn =
∏n

i=1
pi and Qn = qndn−τ . Then every solution of (1.4) oscillates for all

0 < γ ≤ 1.

Proof. Assume to the contrary that xn be a nonoscillatory solution of (1.4) such that
xn−1, xn−τ , xn > 0 for all large n ≥ n1 > n0 suffi ciently large. We shall consider only
this case, since the substitution yn = −xn transforms equation (1.4) into an equation of
the same form. From (2.1) we see that yn is a positive solution of (2.5) such that yn > 0
and yn−τ+1 > 0 for n > n1 > n0 suffi ciently large. From equation (2.5), we have

(2.9) ∆ (dn∆yn) = −Qnyγn−τ+1 ≤ 0, n ≥ n1,

3
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and then dn∆yn is an eventually nonincreasing sequence. We first show that dn∆yn ≥
0 for n ≥ n0. In fact, if there exists an integer n1 ≥ n0 such that dn1∆yn1 = c < 0 then
(2.9) implies that dn∆yn ≤ c for n ≥ n1 that is ∆yn ≤ c/dn, and hence

(2.10) yn ≤ yn1 + c
n−1∑
i=n1

1

di
→ −∞, as n→∞,

which contradicts the fact that yn > 0 for n ≥ n0 then dn∆yn ≥ 0. Also since ∆dn ≥ 0,
we can prove that ∆2yn > 0 for n ≥ n1. Therefore we have

(2.11) yn > 0, ∆yn ≥ 0, and ∆2yn ≤ 0, for n ≥ n1.

From (2.9) and (2.11)

(2.12) dn−τ+1∆yn−τ+1 ≥ dn+1∆ (yn+1) and yn−τ+1 ≥ yn−τ .

Defining the sequence un by the Riccati substitution

(2.13) un = ρn
dn∆yn
yγn−τ+1

, for n > n1.

This implies that un > 0, and

∆un = dn+1∆yn+1∆

[
ρn

yγn−τ+1

]
+ ρn

∆ (dn∆yn)

yγn−τ+1
.

Hence

(2.14) ∆un = dn+1∆yn+1

[
∆ρn

(
yγn−τ+1

)
− ρn

(
∆yγn−τ+1

)
yγn−τ+1y

γ
n−τ+2

]
+ ρn

∆ (dn∆yn)

yγn−τ+1
.

From this, (2.5) and (2.14) we see that

(2.15) ∆un ≤
∆ρn
ρn+1

un+1 −
[
dn+1∆yn+1ρn∆yγn−τ+1

yγn−τ+2y
γ
n−τ+1

]
− ρnQn.

From (2.5) and (2.14), we have

(2.16) ∆un ≤ −ρnQn +
∆ρn
ρn+1

un+1 −
dn+1∆yn+1ρn∆yγn−τ+1

y2γn−τ+2
.

By using the inequality (see [8]),

(2.17) xγ − yγ ≥ γxγ−1 (x− y) , for all x 6= y > 0 where 0 < γ ≤ 1,

we have

∆yγn−τ+1 =
(
yγn+2−τ − y

γ
n+1−τ

)
≥ γ (yn+2−τ )

γ−1
(yn−τ+2 − yn−τ+1)(2.18)

= γ (yn+2−τ )
γ−1

(∆yn−τ+1).

Substituting (2.18) into (2.16), we obtain that

(2.19) ∆un ≤ −ρnQn +
∆ρn
ρn+1

un+1 − ρndn+1
γ (yn+2−τ )

γ−1
(∆yn−τ+1)∆yn+1

y2γn−τ+2
.

4
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From (2.12) and (2.19), we have that

∆un ≤ −ρnQn +
∆ρn
ρn+1

un+1 −
γρnd

2
n+1 (∆yn+1)

2

dn−τ+1 (yn+2−τ )
1−γ (

yγn−τ+2
)2 .

Hence,

(2.20) ∆un ≤ −ρnQn +
∆ρn
ρn+1

un+1 −
γρn(

ρn+1
)2
dn−τ+1 (yn+2−τ )

1−γ (un+1)
2
.

From (2.11), we conclude that

yn ≤ yn0 + ∆yn0 (n− n0) , n ≥ n1,

and consequently there exists a n2 ≥ n2 and appropriate constant β ≥ 1 such that

yn ≤ βn, for n ≥ n2,

and this implies that

yn+2−τ ≤ β (n+ 2− τ) , for n ≥ n3 = n2 + τ + 2,

and then

(2.21)
1

(yn+2−τ )
1−γ ≥

1

(β (n+ 2− τ))
1−γ .

Substituting (2.21) into (2.20) we obtain

(2.22) ∆un ≤ −ρnQn +
∆ρn
ρn+1

un+1 −
γρn(

ρn+1
)2
dn−τ+1β

1−γ (n+ 2− τ)
1−γ (un+1)

2

Hence

∆un ≤ −ρnQn +
dn−τ+1β

1−γ (n+ 2− τ)
1−γ

(∆ρn)
2

ρn

−

 √
ρn

ρn+1

√
(β (n+ 2− τ))

1−γ
dn−τ+1

un+1 −
∆ρn

√
dn−τ+1β

1−γ (n+ 2− τ)
1−γ

2ρn

2

Then, we have

(2.23) ∆un ≤ −
[
ρnQn −

dn−τ+1β
1−γ (n+ 2− τ)

1−γ
(∆ρn)

2

ρn

]
Summing (2.23) from n3 to n we obtain

−un3 < un+1 − un3 ≤ −
n∑

i=n3

[
ρiQi −

di−τ+1β
1−γ (i+ 2− τ)

1−γ
(∆ρi)

2

ρi

]
which yields

n∑
i=n3

[
ρiQi −

di−τ+1β
1−γ (i+ 2− τ)

1−γ
(∆ρi)

2

ρi

]
< c1,

for all large n, and this contrary to (2.8). The proof is complete.
From the Theorem 2.3, we can obtain different condition for oscillation of all solutions

of (1.4) by different choices of ρn. For example if we take ρn = nλ, n ≥ n0 and λ > 1 is a
constant we have the following result.

5
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Corollary 2.4 Assume that all the assumptions of Theorem 2.3 hold, except that the
condition (2.8) is replaced by

lim
n→∞

sup
n∑

s=n0

[
sλQs −

ds−τ+1β
1−γ (s+ 2− τ)

1−γ (
∆sλ

)2
sλ

]
=∞.

Then every solution of (1.4) oscillates for all 0 < γ ≤ 1.

Remark 2.5 When γ = 1 the equation (1.4) reduced to linear delay difference equation

∆ (xn − pnxn−1) + qnxn−τ = 0, for n ∈ Nn0 ,

and the condition (2.8) in Theorem 2.3 reduced to

(2.24) lim
n→∞

sup
n∑

i=n0

[
ρiQi −

di−τ+1 (∆ρi)
2

ρi

]
=∞,

where dn =
∏n

i=1
pi and Qn = qndn−τ for all 0 < γ ≤ 1.

Now, we consider the case when γ ≥ 1.

Theorem 2.6 Assume that (2.6) holds. Furthermore, assume that there exists a positive
sequence {ρn}∞n=1 such that for every positive constant M ,

(2.25) lim
n→∞

sup
n∑

l=n0

[
ρlql −

(dl−σ)
γ

(∆ρl)
2

23−γ (M)
γ−1

(dl+1)
2γ−2

ρl

]
=∞,

where σ = τ − 1. Then every solution of (1.4) oscillates for all γ ≥ 1.

Proof. Suppose to the contrary that xn is a nonoscillatory solution of (1.4). Without
loss of generality, we may assume that xn is an eventually positive solution of (1.4) such
that xn−1, xn−τ , xn > 0 for all large n ≥ n1 > n0 suffi ciently large. We shall consider
only this case, since the substitution yn = −xn transforms equation (1.4) into an equation
of the same form. As in the proof of Theorem 2.3, we have by (2.6) that

(2.26) yn > 0, ∆yn ≥ 0, ∆(dn (∆yn)) ≤ 0, n ≥ n1.

Define the sequence un by

(2.27) un := ρn
dn∆yn
yγn−σ

.

Then un > 0, and

(2.28) ∆un = dn+1∆yn+1∆

[
ρn
yγn−σ

]
+
ρn∆(dn∆yn)

yγn−σ
.

In view of (2.5), (2.28), we have

(2.29) ∆un ≤ −ρnqn +
∆ρn
ρn+1

un+1 −
ρndn+1∆yn+1∆y

γ
n−σ

yγn+1−σy
γ
n−σ

.

From (2.26), we see that

(2.30) dn−σ∆yn−σ ≥ dn+1∆yn+1, and yn+1−σ ≥ yn−σ.

6
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Substituting (2.30) into (2.29), we have

(2.31) ∆un ≤ −ρnqn +
∆ρn
ρn+1

un+1 −
ρndn+1∆yn+1∆y

γ
n−σ(

yγn+1−σ
)2 .

Now, by using the inequality

xγ − yγ > 21−γ(x− y)γ , for all x > y > 0 and γ > 1,

we find that

(2.32) ∆yγn−σ = yγn+1−σ − y
γ
n−σ > 21−γ(yn+1−σ − yn−σ)γ = 21−γ (∆yn−σ)

γ
.

Substituting (2.32) into (2.31), we have

(2.33) ∆un ≤ −ρnqn +
∆ρn
ρn+1

un+1 − 21−γρndn+1
∆yn+1 (∆yn−σ)

γ(
yγn+1−σ

)2 .

From (2.30) and (2.33), we obtain

(2.34) ∆un ≤ −ρnqn +
∆ρn
ρn+1

un+1 − 21−γρn
(dn+1)

γ+1

(dn−σ)
γ

(∆yn+1)
γ+1(

yγn+1−σ
)2 .

Hence,

(2.35) ∆un ≤ −ρnqn +
∆ρn
ρn+1

un+1 −
(dn+1)

γ+1

(dn−σ)
γ

21−γρn (∆yn+1)
2γ(

yγn+1−σ
)2

(∆yn+1)
γ−1 .

From the definition of un, we get that

(2.36) ∆un ≤ −ρnqn +
∆ρn
ρn+1

un+1 −
21−γρn(
ρn+1

)2 (dn+1)
γ−1

(dn−σ)
γ

u2n+1

(∆yn+1)
γ−1 .

Since {dn (∆yn)} is a positive and nonincreasing sequence, there exists a n2 ≥ n1 suffi -
ciently large such that dn (∆yn) ≤ 1/M for some positive constant M and n ≥ n1, and
hence by (2.26), we have

1

(∆yn+1)
γ−1 > (Mdn+1)

γ−1
.

Substituting the last inequality into (2.36), we obtain

(2.37) ∆un ≤ −ρnqn +
∆ρn
ρn+1

un+1 −
(
M

2

)γ−1
ρn (dn+1)

2γ−2(
ρn+1

)2 1

(dn−σ)
γ u

2
n+1,

so that

∆un ≤ −ρnqn +
(dn−σ)

γ
(∆ρn)2

23−γ (M)
γ−1

(dn+1)
2γ−2

ρn
−


√(

M
2

)γ−1
(dn+1)

2γ−2
ρn

ρn+1
√

(dn−σ)
γ un+1 −

√
(dn−σ)

γ
∆ρn

2

√(
M
2

)γ−1
(dn+1)

2γ−2
ρn

2

< −
[
ρnqn −

(dn−σ)
γ

(∆ρn)2

23−γ (M)
γ−1

(dn+1)
2γ−2

ρn

]

7
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Then, we have

(2.38) ∆un < −
[
ρnqn −

(dn−σ)
γ

(∆ρn)2

23−γ (M)
γ−1

(dn+1)
2γ−2

ρn

]
.

Summing (2.38) from n2 to n, we obtain

−un2 < un+1 − un2 < −
n∑

l=n2

[
ρlql −

(dl−σ)
γ

(∆ρl)
2

23−γ (M)
γ−1

(dl+1)
2γ−2

ρl

]
,

which yields
n∑

l=n2

[
ρlql −

(dl−σ)
γ

(∆ρl)
2

23−γ (M)
γ−1

(dl+1)
2γ−2

ρl

]
< c1,

for all large n. This contradicts (2.25). The proof is complete.
From Theorem 2.6, we can obtain different conditions for oscillation of all solutions of

(1.4) when (2.6) holds by different choices of {ρn}. For example, let ρn = nλ, n ≥ n0 and
λ > 1 is a constant. From Theorem 2.6 we have the following result.

Corollary 2.7 Assume that all the assumptions of Theorem 2.6 hold, except the condition
(2.25) is replaced by

(2.39) lim
n→∞

sup

n∑
s=n0

[
sλqs −

(ds−σ)
γ

((s+ 1)λ − sλ)2

23−γ (M)
γ−1

(ds+1)
2γ−2

sλ

]
=∞.

Then, every solution of (1.4) oscillates for all γ ≥ 1.

As a variant of the Riccati transformation technique used above, we will derive some
oscillation criterion which can be considered as a discrete analogy of the Philos condition
for oscillation of second order differential equation by introducing the following class of
sequences that will be used in this chapter and later. Let

£0 = {(m,n) : m > n ≥ n0}, £ = {(m,n) : m ≥ n ≥ n0}.

The double sequence Hm,n ∈ Σ if:
(I). H(m,m) = 0 on £,
(II). H(m,n) > 0 on £0;
(III). ∆2Hm,n = Hm,n+1 − Hm,n ≤ 0 for m ≥ n ≥ 0, and there exists a double

sequence hm,n such that

hm,n = −∆2Hm,n√
Hm,n

, for m > n ≥ 0.

Theorem 2.8 Assume that (2.6) hold. Let {ρn}∞n=1 be a positive sequence and Hm,n ∈ Σ.
If

(2.40) lim
m→∞

sup
1

Hm,0

m−1∑
n=0

[
Hm,nρnqn −Bn

(
hm,n −

∆ρn
ρn+1

√
Hm,n

)2]
=∞,

where

Bn :=
(dn−σ)

γ
ρ2n+1

23−γMγ−1 (dn+1)
2γ−2

ρn
.

Then every solution of (1.4) oscillates for all γ ≥ 1.

8

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.2, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

259 SAKER 252-265



Proof. We proceed as in the proof of Theorem 2.6, we may assume that (1.4) has a
nonoscillatory solution xn such that xn > 0. As in the proof of Theorem 2.6 we get that
(2.26) holds. Define {un} by (2.27) as before, then we have un > 0 and there is some
M > 0 such that (2.37) holds. For the sake of convenience, let us set

−
ρn =

21−γ (M)
γ−1

(dn+1)
2γ−2

ρn
(dn−σ)

γ .

Then, we have from (2.37) that

(2.41) ρnqn ≤ −∆un +
∆ρn
ρn+1

un+1 −
−
ρn(

ρn+1
)2u2n+1.

Therefore, we get

(2.42)
m−1∑
n=n1

Hm,nρnqn ≤ −
m−1∑
n=n1

Hm,n∆un +
m−1∑
n=n1

Hm,n
∆ρn
ρn+1

un+1 −
m−1∑
n=n1

Hm,n

−
ρnu

2
n+1(

ρn+1
)2 .

The rest of the proof is similar to the proof of [15, Theorem 2.3.6].
As an immediate consequence of Theorem 2.8, we get the following:

Corollary 2.9 Assume that all the assumptions of Theorem 2.8 hold, except that the
condition (2.40) is replaced by

lim
m→∞

sup
1

Hm,0

m−1∑
n=n0

Hm,nρnqn =∞,

lim
m→∞

sup
1

Hm,0

m−1∑
n=n0

(dn−σ)
γ
ρ2n+1

(M)
γ−1

(dn+1)
2γ−2

ρn

(
hm,n −

∆ρn
ρn+1

√
Hm,n

)2
<∞.

Then every solution of (1.4) oscillates for all γ ≥ 1.

By choosing the sequence Hm,n in appropriate manners, we can derive several oscilla-
tion criteria for (1.4). For instance, let us consider the double sequence {Hm,n} defined
by

(2.43)

Hm,n = (m− n)λ, λ ≥ 1,m ≥ n ≥ 0,

Hm,n =
(

log m+1
n+1

)λ
, λ ≥ 1,m ≥ n ≥ 0,

Hm,n = (m− n)(λ) λ > 2, m ≥ n ≥ 0,


where (m− n)(λ) = (m− n)(m− n+ 1)...(m− n+ λ− 1), and

∆2(m− n)(λ) = (m− n− 1)(λ) − (m− n)(λ) = −λ(m− n)(λ−1).

Then Hm,m = 0 for m ≥ 0 and Hm,n > 0 and ∆2Hm,n ≤ 0 for m > n ≥ 0. Hence we
have the following result which gives new suffi cient conditions for the oscillation of (1.4)
of Kamenev type.

Corollary 2.10 Assume that all the assumptions of Theorem 2.8 hold, except that the
condition (2.40) is replaced by

(2.44) lim
m→∞

sup
1

mλ

m−1∑
n=0

[
(m− n)λρnqn −

ρ2n+1

4
−
ρn

V 2m,n

]
=∞,

9
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where

Vm,n :=

(
λ(m− n)

λ−2
2 − ∆ρn

ρn+1

√
(m− n)λ

)
.

Then every solution of (1.4) oscillates for all γ ≥ 1.

Corollary 2.11 Assume that all the assumptions of Theorem 2.8 hold, except that the
condition (2.40) is replaced by

(2.45) lim
m→∞

sup
1

(log(m+ 1))λ

m−1∑
n=0

[(
log

m+ 1

n+ 1

)λ
ρnqn −

ρ2n+1

4
−
ρn

2

R2m,n

]
=∞,

where

Rm,n =

 λ

n+ 1

(
log

m+ 1

n+ 1

)λ−2
2

− ∆ρn
ρn+1

√(
log

m+ 1

n+ 1

)λ .

Then, every solution of (1.4) oscillates for all γ ≥ 1.

Corollary 2.12 Assume that all the assumptions of Theorem 2.8 hold, except that the
condition (2.40) is replaced by

(2.46) lim
m→∞

sup
1

m(λ)

m−1∑
n=0

(m− n)(λ)

[
ρnqn −

ρ2n+1

4
−
ρn

U2n

]
=∞,

where

Un :=

(
λ

m− n+ λ− 1
− ∆ρn
ρn+1

)2
.

Then, every solution of (1.4) oscillates for all γ ≥ 1.

In the following theorem, we consider the case when 0 < γ < 1.

Theorem 2.13 Assume that (2.6) holds and ∆dn ≥ 0. If

(2.47)
∞∑

n=n0

(
n− σ
dn

)γ
qn =∞.

Then every solution of (1.4) oscillates for all 0 <γ < 1.

Proof. Proceeding as in Theorem 2.6, we assume that (1.4) has a nonoscillatory solution,
say xn > 0 and xn−τ > 0 for all n ≥ n0. From the proof of Theorem 2.6 we know that
∆yn > 0, then yn is nondecreasing sequence. Since ∆dn ≥ 0 we obtain that ∆2yn ≤ 0
and then ∆yn is a nonincreasing for all n ≥ n1 ≥ n0. Then, we have yn ≥ (n − n1)∆yn
which implies that yn ≥ n

2∆yn for n ≥ n2 ≥ 2n1 + 1. Then

(2.48) yn−σ ≥
n− σ

2
∆yn−σ ≥

n− σ
2

∆yn+1, for n ≥ N = n2 + σ.

From (2.5) and (2.48) by dividing by zn+1 = (dn∆yn+1)
γ > 0 and summing from 2N to

k, we obtain

(2.49)
k∑

n=2N

(
n− σ
2dn

)γ
qn ≤ −

k∑
n=2N

∆(zn)

(zn+1)
γ , k ≥ 2N.

10
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Since
yγ − zγ ≤ γyγ−1(y − z) for γ < 1 and y > z > 0,

we see that

∆
(
z1−γn

)
=
(
z1−γn+1

)
−
(
z1−γn

)
≤ (1− γ)(z(n+ 1))−γ∆z(n).

Substituting in (2.49), we see that

k∑
n=2N

(
n− σ
2dn

)γ
qn ≤ −

k∑
n=2N

∆
(
z1−γn

)
(1− γ)

= −

(
z1−γk−1

)
(1− γ)

+

(
z1−γ2N

)
(1− γ)

<

(
z1−γ2N

)
(1− γ)

<∞, as n→∞

which contradicts (2.47). The proof is complete.
Now, we consider the case when

(2.50)
∞∑
n=0

(
1

dn

)
<∞,

holds and establish some oscillation criteria for (1.4) in the sublinear and superlinear
cases.

Theorem 2.14 Assume that (2.50) holds and there exist positive sequences {ρn}∞n=1 such
that (2.25) holds for every positive constant M , and

(2.51)
∞∑
n=0

(
1

dn

n−1∑
i=n0

qi

)
=∞.

Then every solution of (1.4) oscillates or limn→∞ xn/dn = 0 for all γ ≥ 1.

Proof. Suppose that {xn} is a nonoscillatory solution of (1.4). Without loss of generality
we may assume that {xn} is eventually positive. From (2.5), we have

(2.52) ∆(dn∆yn) ≤ −qnyγn−σ ≤ 0, n ≥ n0,

and so {dn(∆yn)} is an eventually nonincreasing sequence. Since {qn} has a positive
subsequence, either {∆yn} is eventually negative or eventually positive. If {∆yn} is
eventually positive, we are then back to the case where (2.26) holds. Thus the proof of
Theorem 2.6 goes through, and we may conclude that {yn} cannot be eventually positive,
which is not possible. If {∆yn} is eventually negative, then limn→∞ yn = b ≥ 0.We assert
that b = 0. If not then yγn−σ → bγ > 0 as n → ∞, and hence there exists n1 ≥ n0 > 0
such that yγn−σ ≥ bγ . Therefore from (2.52) we have

∆(dn∆yn) ≤ −qnbγ .

The rest of the proof is similar to the proof of [15, Theorem 2.3.7] and hence is omitted.

By choosing {ρn}∞n=1 in appropriate manners, we may obtain different oscillation crite-
ria. For instance, let ρn = nλ for n ≥ 0 and λ > 1. Then we have the following oscillation
conditions of all solutions of (1.4) when (2.50) holds.

11
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Corollary 2.15 Assume that all assumptions of Theorem 2.14 hold, except that the condi-
tion (2.25) is replaced by (2.39). Then, every solution of (1.4) oscillates or limn→∞ xn/dn =
0 for all γ ≥ 1.

Theorem 2.16 Assume that (2.50) and (2.51) hold. Furthermore, assume that there ex-
ists a double sequence Hm,n ∈ Σ such that (2.40) holds. Then every solution of (1.4)
oscillates or limn→∞ xn/dn = 0 for all γ ≥ 1.

Indeed, suppose that {xn} is an eventually positive solution of (1.4). Then as seen in
the proof of Theorem 2.3, either {∆xn} is eventually positive or is eventually negative.
In the case when {∆yn} is eventually positive, we may follow the proof of Theorem 2.8
and obtain a contradiction. If {∆yn} is eventually negative, then we may follow the proof
of Theorem 2.14 to show that {yn} converges to zero.
By choosing Hm,n in appropriate manners, we can derive several oscillation criteria for

(2.5) when (2.50) holds. For instance, let us consider the double sequence Hm,n defined
again by (2.43). Hence we have the following results.

Corollary 2.17 Assume that all the assumptions of Theorem 2.16 hold, except that
the condition (2.40) is replaced by (2.44). Then, every solution of (1.4) oscillates or
limn→∞ xn/dn = 0 for all γ ≥ 1.

Corollary 2.18 Assume that all the assumptions of Theorem 2.16 hold, except that the
condition (2.40) is replaced by( 2.45) or (2.46). Then, every solution of (1.4) oscillates
or limn→∞ xn/dn = 0 for all γ ≥ 1.

Theorem 2.19 Assume that (2.50) and (2.47) hold. Let {ρn}∞n=1 such that (2.51) holds.
Then every solution of (1.4) oscillates or limn→∞ xn/dn = 0 for all 0 <γ < 1.

Indeed, suppose that {xn} is an eventually positive solution of (1.4). Then as seen in
the proof of Theorem 2.6, either {∆yn} is eventually positive or is eventually negative.
In the case when {∆yn} is eventually positive , we may follow the proof of Theorem 2.13
and obtain a contradiction. If {∆yn} is eventually negative, then we may follow the proof
of Theorem 2.14 to show that {xn/dn} converges to zero.
From Theorem 2.14 if ρn = 1, we see that the Riccati inequality associated with the

equation (1.4) is given by

(2.53) ∆un + ρnqn +
1

an
u2n+1 ≤ 0,

where

(2.54) An =
2γ−1 (dn−σ)

γ

(M)
γ−1

(dn+1)
2γ−2 > 0,

for every positive constant M > 0. Using the inequality (2.53) and proceeding as in the
proof [15, Theorem 2.3.8], we can prove the following Hille and Nehari type results.

Theorem 2.20 Assume that (H1) holds and ∆dn ≥ 0. Furthermore, assume that

lim inf
n→∞

n

An

∞∑
n+1

q(s) >
1

4
,

or

lim inf
n→∞

n

An

∞∑
n+1

qs+ lim inf
n→∞

1

n

n−1∑
N

s2

An
qs > 4.

Then every solution of (1.4) is oscillatory.

12
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RICCATI TECHNIQUE AND OSCILLATION OF SECOND ORDER
NONLINEAR NEUTRAL DELAY DYNAMIC EQUATIONS

S. H. SAKER1, AND A. K. SETHI2

Abstract. In this paper, by using the Riccati technique which reduces the higher order
dynamic equations to a Riccati dynamic inequality, we will establish some new suffi cient
conditions for oscillation of the second order nonlinear neutral dynamic equation

(r(t)((x(t) + p(t)x(τ(t)))∆)γ)∆ + q(t)xα(δ(t)) + v(t)xβ(η(t)) = 0,

on time scales where γ, α β are quotient of odd positive integers.

Mathematics Subject Classification(2010): 34C10, 34K11, 39A21, 34A40, 34N05.

Keywords: Oscillation, nonoscillation, neutral, delay dynamic equations, time scales,
neutral delay equations

1. Introduction

The theory of time scales has been introduced by Stefan Hilger in [14] in 1988 in his Ph.D
thesis in order to unify continuous and discrete analysis. In the last decades the subject is
going fast and simultaneously extending to the other areas of research and many researchers
have contributed on different aspects of this new theory, see the survey paper by Agarwal et al.
[1] and the references cited therein. In the last few years, there has been an increasing interest
in obtaining suffi cient conditions for the oscillation or nonoscillation of solutions of different
classes of dynamic equations on a time scale T which may be an arbitrary closed subset of real
numbers R, and as special cases contains the continuous and the discrete results as well, we
refer the reader to papers ([3],[6], [7], [21]) and the references cited therein.

Following this trend, in this paper, we are concerned with oscillation of a certain class of
nonlinear neutral delay dynamic equations of the form

(1.1) (r(t)((x(t) + p(t)x(τ(t)))∆)γ)∆ + q(t)xα(δ(t)) + v(t)xβ(η(t)) = 0, for t ∈ [t0,∞)T,

where γ, α, β are quotient of odd positive integers, r ∈ Crd([t0,∞)T, (0,∞)) and p, q ∈
Crd([t0,∞)T,R+) with 0 ≤ p(t) < 1, q(t), v(t) ≥ 0 and τ , δ, η ∈ Crd([t0,∞)T,R+) and
τ(t) ≤ t, δ(t) ≤ t, η(t) ≤ t with limt→∞ τ(t) = ∞ = lim

t→∞
δ(t) = ∞ = limt→∞ η(t). By a

solution of (1.1), we mean a nontrivial real-valued function x(t) ∈ C1
rd([Tx,∞),R), Tx ≥ t0

which has the properties that r(z∆)γ)∆ ∈ C1
rd([Tx,∞),R) such that x(t) satisfies (1.1) for all

[Tx,∞)T.

We mention here that the neutral delay differential equations appear in modelling of the
networks containing lossless transmission lines (as in high-speed computers where the lossless
transmission lines are used to interconnect switching circuits), in the study of vibrating masses
attached to an elastic bar, as the Euler equation in some variational problems, theory of au-
tomatic control and in neuromechanical systems in which inertia plays an important role, we
refer the reader to the papers by Boe and Chang [4], Brayton and Willoughby [8] and to the
books by Driver [9], Hale [13] and Popov [16] and reference cited therein.

For more details of time scale analysis we refer the reader to the two books by Bohner and
Peterson [5], [6] which summarize and organize much of the time scale calculus. Throughout
the paper, we will denote the time scale by the symbol T. For example, the real numbers R,
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2 S. H. SAKER1, AND A. K. SETHI2

the integers Z and the natural numbers N are time scales. For t ∈ T, we define the forward
jump operator σ : T→ T by σ(t) := inf{s ∈ T : s > t}. A time-scale T equipped with the order
topology is metrizable and is a Kσ −space; i.e. it is a union of at most countably many compact
sets. The metric on T which generates the order topology is given by d(r; s) := |µ(r; s)| , where
µ(.) = µ(.; τ) for a fixed τ ∈ T is defined as follows: The mapping µ : T → R+ = [0,∞) such
that µ(t) := σ(t)− t is called graininess.

When T = R, then σ(t) = t and µ(t) ≡ 0 for all t ∈ T. If T = N, then σ(t) = t+1 and µ(t) ≡ 1
for all t ∈ T. The backward jump operator ρ : T→ T is defined by ρ(t) := sup{s ∈ T : s < t}.
The mapping : ν : T→ R+

0 such that ν(t) = t − ρ(t) is called the backward graininess. If
σ(t) > t, we say that t is right-scattered , while if ρ(t) < t, we say that t is left-scattered. Also,
if t < supT and σ(t) = t, then t is called right-dense, and if t > inf T and ρ(t) = t, then t is
called left-dense. A function f : T→ R is called right-dense continuous (rd−continuous) if it is
continuous at right-dense points in T and its left-sided limits exist (finite) at left-dense points
in T. For a function f : T → R, we define the derivative f∆ as follows: Let t ∈ T. If there
exists a number α ∈ R such that for all ε > 0 there exists a neighborhood U of t with

|f(σ(t))− f(s)− α(σ(t)− s)| ≤ ε|σ(t)− s|,

for all s ∈ U , then f is said to be differentiable at t, and we call α the delta derivative of f at
t and denote it by f∆(t). For example, if T = R, then

f∆(t) = f
′
(t) = lim

∆t→0

f(t+ ∆t)− f(t)

∆t
, for all t ∈ T.

If T = N, then f∆(t) = f(t+ 1)− f(t) for all t ∈ T. For a function f : T→ R (the range R of
f may be actually replaced by any Banach space) the (delta) derivative is defined by

f∆(t) =
f(σ(t))− f(t)

σ(t)− t ,

if f is continuous at t and t is right—scattered. If t is not right—scattered then the derivative is
defined by

f∆(t) = lim
s→t

f(σ(t))− f(s)

t− s = lim
t→∞

f(t)− f(s)

t− s ,

provided this limit exists. A function f : [a, b] → R is said to be right—dense continuous
(rd−continuous) if it is right continuous at each right—dense point and there exists a finite left
limit at all left—dense points, and f is said to be differentiable if its derivative exists. The space
of rd−continuous functions is denoted by Cr(T, R). A useful formula is

fσ = f + µf∆, wherefσ := f ◦ σ.

A time scale T is said to be regular if the following two conditions are satisfied simultaneously:
(a). For all t ∈ T, σ(ρ(t)) = t,
(b). For all t ∈ T, ρ(σ(t)) = t.

Remark 1.1. If T is a regular time scale, then both operators and are invertible with σ−1 = ρ
and ρ−1 = σ.

The following formulae give the product and quotient rules for the derivative of the product
fg and the quotient f/g (where ggσ 6= 0) of two differentiable function f and g. Assume f ;
g : T→ R are delta differentiable at t ∈ T, then

(fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ,(1.2) (
f

g

)∆

=
f∆g − fg∆

ggσ
.(1.3)
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SECOND ORDER NONLINEAR NEUTRAL DELAY DYNAMIC EQUATIONS 3

The chain rule formula that we will use in this paper is

(1.4) (xγ(t))
∆

= γ

1∫
0

[hxσ + (1− h)x]
γ−1

dhx∆(t),

which is a simple consequence of Keller’s chain rule [5, Theorem 1.90]. Note that when T = R,
we have

σ(t) = t, µ(t) = 0, f∆(t) = f
′
(t),

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt.

When T = Z, we have

σ(t) = t+ 1, µ(t) = 1, f∆(t) = ∆f(t),

∫ b

a

f(t)∆t =
b−1∑
t=a

f(t).

When T =hZ, h > 0, we have σ(t) = t+ h, µ(t) = h,

f∆(t) = ∆hf(t) =
(f(t+ h)− f(t))

h
,

∫ b

a

f(t)∆t =

b−a−h
h∑
k=0

f(a+ kh)h.

When T = {t : t = qk, k ∈ N0, q > 1}, we have σ(t) = qt, µ(t) = (q − 1)t,

f∆(t) = ∆qf(t) =
(f(q t)− f(t))

(q − 1) t
,

∫ ∞
t0

f(t)∆t =
∞∑
k=0

f(qk)µ(qk).

When T = N2
0 = {t2 : t ∈ N}, we have σ(t) = (

√
t+ 1)2 and

µ(t) = 1 + 2
√
t, f∆(t) = ∆0f(t) = (f((

√
t+ 1)2)− f(t))/1 + 2

√
t.

When T = Tn = {tn : n ∈ N} where (tn} is the harmonic numbers that are defined by t0 = 0
and tn =

∑n
k=1

1
k , n ∈ N0, we have

σ(tn) = tn+1, µ(tn) =
1

n+ 1
, f∆(t) = ∆1f(tn) = (n+ 1)f(tn).

When T2={
√
n : n ∈ N}, we have σ(t) =

√
t2 + 1,

µ(t) =
√
t2 + 1− t, f∆(t) = ∆2f(t) =

(f(
√
t2 + 1)− f(t))√
t2 + 1− t

.

When T3={ 3
√
n : n ∈ N}, we have σ(t) = 3

√
t3 + 1 and

µ(t) =
3
√
t3 + 1− t, f∆(t) = ∆3f(t) =

(f( 3
√
t3 + 1)− f(t))

3
√
t3 + 1− t

.

Now, we pass to the antiderivative and the integration on time scales for detla differentiable
functions. For a, b ∈ T, and a delta differentiable function f, the Cauchy integral of f∆ is
defined by ∫ b

a

f∆(t)∆t = f(b)− f(a).

An integration by parts formula reads

(1.5)
∫ b

a

f(t)g∆(t)∆t = f(t)g(t)|ba −
∫ b

a

f∆(t)gσ(t)∆t,

and infinite integrals are defined as∫ ∞
a

f(t)∆t = lim
b→∞

∫ b

a

f(t)∆t.
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It is well known that rd−continuous functions possess antiderivative. If f is rd−continuous and
F∆ = f , then ∫ σ(t)

t

f(s)∆s = F (σ(t))− F (t) = µ(t)F∆(t) = µ(t)f(t).

Note that the integration formula on a discrete time scale is defined by∫ b

a

f(t)∆t =
∑
t∈(a,b)

f(t)µ(t).

We say that a solution x of (1.1) has a generalized zero at t if x (t) = 0 and has a generalized
zero in (t, σ(t)) in case x (t)xσ (t) < 0 and µ(t) > 0. To investigate the oscillation properties of
(1.1) it is proper to use the notions such as conjugacy and disconjugacy of the equation (1.1).
Equation (1.1) is disconjugate on the interval [t0, b]T, if there is no nontrivial solution of (1.1)
with two (or more) generalized zeros in [t0, b]T.

Equation (1.1) is said to be nonoscillatory on [t0,∞]T if there exists c ∈ [t0,∞]T such that
this equation is disconjugate on [c, d]T for every d > c. In the opposite case (1.1) is said to be
oscillatory on [t0,∞]T. A solution x (t) of (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative, otherwise it is oscillatory. We say that (1.1) is right disfocal
(left disfocal) on [a, b]T if the solutions of (1.1) such that x∆ (a) = 0 (x∆ (b) = 0) have no
generalized zeros in [a, b]T.

In recent two decades some authors have been studied the oscillation of the second order
nonlinear neutral delay dynamic equations on time scales and established several suffi cient
conditions for oscillation of some different types of equations by employing the Riccati transfor-
mation technique. For example, Saker [18] has studied the oscillation of second order neutral
delay dynamic equations of Emden-fowler type of the form

[a(t)(y(t) + r(t)y(τ(t))]∆ + p(t)|y(δ(t))|γsigny(δ(t))) = 0,

on time scale T, where, γ > 1, a(t), p(t), r(t) and δ(t) are real-valued function defined on T.
Also Saker [19] studied the oscillation of the superlinear and sublinear neutral delay dynamic
equations of the form

[a(t)([y(t) + p(t)y(τ(t)))]∆)γ ]∆ + q(t)yγ(δ(t))) = 0,

on time scale, where γ > 0 is a quotient of odd positive integers. The main results has been
obtained under the conditions τ(t) : T → T, δ(t) : T → T, τ(t) ≤ t, δ(t) ≤ t for all t ∈ T and
lim
t→∞

τ(t) = lim
t→∞

δ(t) =∞,
∫∞
t0

1
a(t)

1
γ ∆t =∞, a∆(t) ≥ t and 0 ≤ p(t) < 1.

Thandapani et. al [24] studied the oscillation of second order nonlinear neutral dynamic
equations on time scale of the form

(r(t)((y(t) + p(t)y(t− τ))∆)γ)∆ + q(t)yβ(t− δ) = 0, t ∈ T,
where T is a time scales. They obtained their results under the conditions γ ≥ 1 and β > 0
are quotients of odd positive integers, τ , δ are fixed nonnegative constants such that the delay
function τ(t) = t − τ < t and δ(t) = t − δ < t satisfying τ : T→ T and δ : T→ T for all
t ∈ T, q(t) and τ(t) real valued rd-continuous functions defined on T, p(t) is a positive and
rd-continuous function T such that 0 ≤ p(t) < 1.
Sun et al. [22] studied the oscillation of a second order quasiliniear neutral delay dynamic

equation on time scales of the form

(r(t)((x(t) + p(t)x(τ(t)))∆)γ)∆ + q1(t)xα(τ1(t)) + q2(t)xβ(τ2(t)) = 0,

on time scale T, where α, β, γ are quotients of odd positive integers, r, p, q1, q2 are rd-continuous
function on T and r, q1, q2 are positive, −1 < −p0 ≤ p(t) < 1, p0 > 0, the delay functions
τ i : T → T satisfying τ i(t) ≤ t for t ∈ T and τ i(t) → ∞ as t → ∞, for i = 0, 1, 2 and there
exists a function τ : T→ T which satisfying τ(t) ≤ τ1(t), τ(t) ≤ τ2(t), τ(t)→∞ as t→∞.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.2, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

269 SAKER 266-278



SECOND ORDER NONLINEAR NEUTRAL DELAY DYNAMIC EQUATIONS 5

Gao et al. [12] established some oscillation theorems for second order neutral functional
dynamic equations on time scale of the form

(r(t)((x(t) + p(t)x(τ(t)))∆)γ)∆ + q1(t)xα(δ(t)) + q2(t)xβ(η(t)) = 0,

where γ, α, β are ratios of odd positive integers by using the comparison theorems for oscillation.
Sethi [26] considered the second order sublinear neutral delay dynamic equations of the form

(r(t)((x(t) + p(t)x(τ(t)))∆)γ)∆ + q(t)xγ(α(t)) + v(t)xγ(η(t)) = 0,

under the assumptions:

(H0)
∫∞

0

(
1
r(t)

) 1
γ

∆t = +∞,

(H1).
∫∞

0

(
1
r(t)

) 1
γ

∆t <∞,
where 0 < γ ≤ 1 is a quotient of odd positive integers, q, v → [0,∞) and p, q, v : T → T

are rd-continuous functions and τ , σ, η : T→ T are positive rd-continuous functions such that
limt→∞ τ(t) = ∞ = lim

t→∞
α(t) = ∞ = limt→∞ η(t) and obtained some suffi cient conditions for

oscillation. Our aim in this paper is to establish some new suffi cient conditions for oscillation
of the equation (1.1) by employing the Riccati technique and some basic lemmas studied the
behavior of nonoscillatory solutions. Our motivation of the present work has come under two
ways. First is due to the work in [17] and [22] and second is due to the work in [10].

2. Main Results

In this section, we establish some suffi cient conditions for oscillation of all solutions of (1.1)
under the hypothesis (H0). Throughout the paper, we use the notation

(2.1) z(t) = x(t) + p(t)x(τ(t)).

Lemma 2.1. [2] Assume that (H0) holds and r(t) ∈ C1
rd([(a,∞),R+) such that r∆(t) ≥ 0. Let

x(t) be an eventually positive real valued function such that (r(t)(x∆(t))γ)∆ ≤ 0, for t ≥ t1 > t0.
Then x∆(t) > 0 and x∆∆(t) < 0 for t ≥ t1 > t0.

Lemma 2.2. [2] Assume that the assumptions of Lemma 2.1 holds and let τ(t) be a positive
continuous function such that τ(t) ≤ t and lim

t→∞
τ(t) = ∞. Then there exists tl > t1 such that

for each l ∈ (0, 1)
x(τ(t))

x(δ(t))
≥ l τ(t)

δ(t)
.

Proof. Indeed, for t ≥ t1

u(δ(t))− u(τ(t)) =

∫ δ(t)

τ(t)

u∆(s)∆s ≤ (δ(t)− τ(t)))u∆(τ(t),

which implies that
u(δ(t))

u(τ(t))
≤ 1 + (δ(t)− τ(t)))

u∆(τ(t)

u(τ(t))
.

On the other hand, it follows that

u(τ(t))− u(t1)) =

∫ τ(t)

t1

u∆(s)∆s ≥ (u(t)− t1)u∆(τ(t)).

That is for each l ∈ (0, 1), there exists a tl > t1 such that

l(τ(t)) ≤ u(τ(t))

u∆(τ(t))
, t ≥ tl.

Consequently,
u(δ(t))

u(τ(t))
≤ 1 + (δ(t)− τ(t)))

u∆(τ(t))

u(τ(t))
≤ δ(t)

lτ(t)
.

The proof is complete. �
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In the following, for simplicity, we denote

a1(t) :=

∫ ∞
t

[q(s)(1− p(δ(s))]
(
lδ(s)

σ(s)

)α
∆s+

∫ ∞
t

[v(s)(1− p(δ(s)))]
(
lδ(s)

δ(s)

)α
∆s,

and

A1(t,K1) :=

[
a1(t) +K1

∫ ∞
t

(
1

r(s)

) 1
γ

(aδ1(s))1+ 1
γ ∆s

] 1
γ

, for t ∈ [t0,∞)T,

where K1 > 0 is an arbitrary constant.

Theorem 2.1. Assume that (H0) holds and let 0 ≤ p(t) ≤ a < 1, r∆(t) > 0 and γ < α < β,
η(t) ≥ δ(t) and δ∆(t) ≥ 1 for t ∈ [t0,∞)T. If

(H1). lim sup
t→∞

a1(t) <∞,

(H2).
∫∞
t0

( 1
r(s) )

1
γAσ1 (s,K1)∆s =∞.

Then every solution of (1.1) oscillates on [t0,∞)T.

Proof. Suppose the contrary that x(t) is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that x(t) > 0 for t ≥ t0. Hence there exists t ∈ [t0,∞)T such that
x(t) > 0, x(τ(t)) > 0, x(δ(t)) > 0 and x(η(t)) > 0 for t ≥ t1. Using (2.1), we see that (1.1)
becomes

(2.2) (r(t)(z∆(t))γ)∆ = −q(t)xα(δ(t))− v(t)xβ(η(t)) ≤ 0, for t ≥ t2.

So r(t)(z∆(t))γ is nonincreasing on [t1,∞)T, that is, either z∆(t) > 0 or z∆(t) < 0. By Lemma
2.1, it follows that z∆(t) > 0 for t ≥ t2. Hence there exists t3 > t2 such that

z(t)− p(t)z(τ(t)) = x(t) + p(t)x(τ(t))− p(t)x(τ(t))

−p(t)p(τ(t))p(τ(τ(t)))

= x(t)− p(t)p(τ(t))p(τ(τ(t))) ≤ x(t),

which implies that
x(t) ≥ (1− p(t))z(t), for t ∈ [t3,∞)T.

Therefore (1.1) can be written as

(r(t)(z∆(t))γ)∆ + q(t)(1− p(δ(t)))αzα(δ(t)) + v(t)(1− p(η(t)))αzα(η(t)) ≤ 0,

where γ < α < β. Define w(t) by the Riccati transformation

(2.3) w(t) = r(t)
(z∆(t))γ

zα(t)
, for t ∈ [t3,∞)T.

By using the product and quotient rules, we see that

(2.4) w∆(t) =
(r(z∆)γ)∆

(zσ)α
− (r(z∆)γ)σ(zα)∆

zα(zσ)α
, for t ∈ [t3,∞)T.

Now, since η(t) > δ(t) and due to (2.3) and (2.4), we have

w∆(t) ≤ −q(1− pδ)α − v(1− pδ)α (zδ)α

(zσ)α
− wσ(zα)∆

zα
, for t ∈ [t3,∞)T,

Now, by using the chain rule [6], we get that

(zα(t))∆ = α

∫ 1

0

[(1− h)z(t) + hz(σ(t))]α−1dhz∆(t)

≥
{

α(z(t))]α−1z∆(t), α > 1,

α(z(σ(t)))]α−1z∆(t), 0 < α ≤ 1.
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Since z(t) is nondecreasing function on [t3,∞)T, then for t ≥ t3,

(zα(t))∆

zα(t)
≥
{
α z

∆(t)
z(t) , for α > 1

α (z(σ(t)))α−1

zα(t) z∆(t), for 0 < α ≤ 1.

Using the fact that t ≤ σ(t), we have

(zα)∆

zα
≥ αz

∆

zσ
, α > 0 on [t3,∞)T.

Therefore (2.4) yields that

(2.5) w∆ ≤ −q(1− pδ)α − v(1− pδ)α (zσ)α

(zδ)α
− αwσ z

∆

zσ
, t ≥ t3.

Now, since
(
r

1
γ z∆

)
is nonincreasing on [t3,∞)T, then for t ≤ σ(t), we have that

(2.6) z∆ ≥ r−
1
γ (wσ)

1
γ (zσ)

α
γ , t ≥ t3.

Substituting (2.6) into (2.5), we get

w∆ ≤ −q(1− pδ)α (zδ)α

(zσ)α
− v(1− pδ)α (zδ)α

(zσ)α
− αr−

1
γ (wσ)1+ 1

γ (zσ)
α

γ
− 1, t ≥ t3.

Since z(t) is nondecreasing on [t3,∞)T, then there exists t4 > t3 and C > 0 such that

(z(σ(t)))
α
γ−1 ≥ (z(t))

α
γ−1 ≥ C, for t ≥ t4.

By using Lemma 2.2, it follows from the last inequality that

w∆(t) ≤ −q(1− p(δ(t)))α
(
lδ(t)

σ(t)

)α
− v(1− p(δ(t)))α

(
lδ(t)

σ(t)

)α
−αCr−

1
γ (t)(wσ(t))1+ 1

γ , t ≥ tl > t4.

Integrating the above inequality from t to u (t < u) for t, u ∈ [t4,∞)T, we obtain

−w(t) ≤ w(u)− w(t)

≤ −
∫ u

t

[
q(1− pδ)α

(
lδ(t)

σ(t)

)α
+ v(1− pδ)α

(
lδ(t)

σ(t)

)α
+ αCr−

1
γ (t)(wσ(t))1+ 1

γ

]
∆s,

that is,

w(t) ≥ a1(t) +K1

∫ ∞
t

r−
1
γ (s)w(σ(s))1+ 1

γ ∆s, t ≥ t1,

where K1α = Cα. Indeed, w(t) > a1(t) implies that

w(t) ≥ a1(t) +K1

∫ ∞
t

r−
1
γ (s)(a1(σ(s)))1+ 1

γ ∆s = Aγ1(t,K1).

Since t ≤ σ(t) we see
r(z∆)γ ≥ (r(z∆)γ)σ,

which implies that
r(z∆)γ

(zσ)α
≥ (r(z∆)γ)σ

(zσ)α
= wσ ≥ (Aγ1(t, k1))σ,

that is,
(zσ)δz∆ ≥ r−

1
γ (Aσ1 (t, k1)), t ∈ [t5,∞]T,

where δ = (αγ ) > 1. Using the chain rule, we have

(z1−δ(t))∆ = (1− δ)
∫ 1

0

[(1− h)z(t) + hz(σ(t))]δdhz∆(t)

≤ (1− δ)(z(σ(t)))−δz∆(t),
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that is,
(z1−δ(σ(t)))∆

1− δ ≥ z(σ(t))−δz∆(σ(t)).

Hence
(z1−δ(t))∆

1− δ ≥ (z(σ(t)))−δz∆(t),

and then due to (2.6), we see that

(z1−δ(t))∆

1− δ ≥ r−
1
γ (t)(Aσ1 (t, k1)), t ∈ [t5,∞)T.

Integrating above inequality from t5 to t, we get∫ t

t5

r(s)−
1
γ

(
Aσ1 (s,K1)

) 1
γ

∆s <∞,

which is a contradiction to (H2). The proof is complete. �

Theorem 2.2. Let 0 ≤ p(t) ≤ p(t) ≤ 1, r∆(t) ≥ 0 for t ∈ [t0,∞)T and γ = α = β, η(t) ≥ σ(t)
and assume that (H0), and (H1) hold. Furthermore assume that

(H3). lim sup
t→∞

(∫ t
t0
r−

1
γ (s)A1(s,K1)∆s

)
> 1.

Then every solution of (1.1) oscillates.

Proof. Proceeding as in the proof of Theorem 2.1, we have

w(t) ≥ Aγ1(t,K1) for t ∈ [t4,∞)T.

Using the fact that r
1
γ z∆ is nonincreasing on [t4,∞)T, we get

z(t) = z(t4) +

∫ t

t4

z∆(s)∆s = z(t4) +

∫ t

t4

r−
1
γ (s)

(
r(s)−

1
γ z∆(s)

)
∆s

≥ r
1
γ (t)z∆(t)r−

1
γ (s)∆s,

that is,

(2.7)
r(t)

1
γ z∆(t)

z(t)
≤
(∫ t

t4

r(s)−
1
γ ∆s

)−1

, t ≥ t4,

Consequently,

A1(t,K1) ≤ w
1
γ (t) =

r(t)
1
γ z′(t)

z(t
≤
(∫ t

t2

r−
1
γ (s)∆s

)−1

,

implies that (∫ t

t4

r−
1
γ (s)∆s

)
A1(t,K1) ≤ 1,

which contradicts (H3). Hence the theorem is proved. �

Theorem 2.3. Let 0 ≤ p(t) ≤ p(t) ≤ 1, r∆(t) ≥ 0 for t ∈ [t0,∞)T and γ > α > β, η(t) ≥ σ(t)
and assume that (H0) and (H2) hold. Furthermore assume that

(H4). lim sup
t→∞

(a1(t))
(γ−α)
αγ

(∫ t
t0
r−

1
γ (s)∆s

)[
a1(t) +K1

∫∞
t

(
1
r(s)

) 1
γ

(aσ1 (s))1+ 1
γ ∆s

] 1
γ

=∞.

Then every solution of (1.1) oscillates.

Proof. Proceeding as in the proof of Theorem 2.1, we obtain (2.2) and (2.3) and hence w(t) >
a1(t), for t ∈ [t4,∞). Consequently, it follows from (2.3) that

r
1
γ z∆ > z

α
γ a

1
γ

1 , for t ≥ t4.
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We have (rz∆)γ)∆ ≤ 0 implies that there exists a constant C > 0 and t5 > t4 such that

r
1
γ z∆ ≤ C, for t ≥ t5, that is C ≥ r

1
γ z∆ > z

α
γ a

1
γ

1 and hence

(2.8) z(t) ≤ C
γ
α a1(t)−

1
α , for t ∈ [t5,∞)T,

which implies that

(2.9) (zσ)
(α−γ)
γ ≥ C

(α−γ)
α (aσ1 )

(γ−α)
αγ for t ∈ [t5,∞)T.

Due to (2.5), (2.6) and using Lemma 2.2, we have that

w∆(t) ≤ −q(1− p(δ(t)))α
( lδ(t)
σ(t)

)α
− v(1− p(δ(t)))α

( lδ(t)
σ(t)

)α
−αCr−

1
γ (t)(wσ(t))1+ 1

γ (zσ(t))
(α−γ)
α .

Integrating the last inequality as in the proof of Theorem 2.1 and using (2.8), we obtain for
t ≥ t1 ≥ t5 that

(2.10) w(t) ≥ a1(t) +K3

∫ ∞
t

r−
1
γ (s)(a1(s))1+ 1

γ ∆s, for t ∈ [tl,∞)T,

where K1 = αC
(α−γ)
γ . Substitute (2.9) into (2.3), it is easy to verify that

(2.11) (z(t)
(α−γ)
γ

r
1
γ (t)z∆(t)

z(t)
≥
[
a1(t) +K1

∫ ∞
t

r−
1
γ (s)(aσ1 (s))1+ 1

γ ∆s
] 1
γ

.

Using (2.7) and (2.9) in (2.11), we can find

C
α−γ
α a1(t)

(γ−α)
αγ

(∫ t

t2

r−
1
γ (s)∆s

)−1

≥
[
a1(t)

+K1

∫ ∞
t

r−
1
γ (s)(aσ1 (s))1+ 1

γ ∆s
] 1
γ

, for t ∈ [t1,∞)T.

Therefore, for t ≥ t1 we have

(a1(t))
(γ−α)
αγ

(∫ t

t2

r−
1
γ (s)∆s

)[
a1(t) +K1

∫ ∞
t

r−
1
γ (s)(aσ1 (s))1+ 1

γ ∆s
] 1
γ ≤ C

α−γ
α ,

which contradicts (H4). This completes the proof of theorem. �

Theorem 2.4. Let 0 ≤ p(t) ≤ 1, r∆(t) ≥ 0 for t ∈ [t0,∞)T and γ < β < α, η(t) ≥ σ(t). If
(H0), (H2) and (H3) hold. Then every solution of (1.1) oscillates.

Proof. The proof of the theorem follows from Theorem 2.1. Hence the details are omitted. �

Theorem 2.5. Let 0 ≤ p(t) ≤ 1, r∆(t) ≥ 0 for t ∈ [t0,∞)T and α > γ > β, η(t) ≥ σ(t). If
(H0), (H2) and (H3) hold. Then every solution of (1.1) oscillates.

Proof. The proof of the theorem follows from Theorem 2.1. �

Theorem 2.6. Let 0 ≤ p(t) ≤ 1, r∆(t) ≥ 0 for t ∈ [t0,∞)T and α < β < γ, η(t) ≥ σ(t). If
(H0), (H1) and (H4) hold. Then every solution of (1.1) oscillates.

Proof. The proof of the theorem follows from Theorem 2.1 and Theorem 2.3. �

Theorem 2.7. Let 0 ≤ p(t) ≤ 1, r∆(t) ≥ 0 for t ∈ [t0,∞)T and α < γ < β, η(t) ≥ σ(t). If
(H0), (H1) and (H4) hold. Then every solution of (1.1) oscillates.

Proof. The proof of the theorem follows from Theorem 2.1 and Theorem 2.3. �
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In the following theorems we will denote

a2(t) =

∫ ∞
t

[
λQ(s)

(
lδ(t)

δ(t)

)α
+ µV (s)

(
lδ(t)

σ(t)

)α ]
∆s, t ∈ [t0,∞)T,

and

A2(t,K2) =

[
λ

1 + aα
a2(τ−1(t)) +

µa2(τ−1(t))

1 + aα
+K2

∫ ∞
τ−1(t)

(
1

r(s)

) 1
γ

((a2(τ−1δ(s)))1+ 1
γ ∆s

] 1
γ

,

where K2 is an arbitrary positive constant and a > 0 λ, µ > 0 are positive constants, Q(t) =
min{q(t), q(τ(t))}, V (t) = min{v(t), v(τ(t))}. From the definitions of τ , δ, η, we see that τ−1,
δ−1, η−1 : T→ T and τ−1, δ−1, η−1 are rd-continuous functions and τ−1(t) ≥ t, δ−1(t) ≥ t and
η−1(t) ≥ t.

Theorem 2.8. Let 1 ≤ p(t) ≤ p < ∞, r∆(t) ≥ 0 τ(δ(t)) = δ(τ(t)), τ(η(t)) = η(τ(t)) and
γ < α < β, η(t) ≥ δ(t) and If (H0) holds and the following conditions hold:

(H5). lim sup
t→∞

a2(t) <∞,

(H6).
∫∞
t0

( 1
r(s) )

1
γAσ2 (s,K2)∆s =∞,

Then every solution of (1.1) oscillates.

Proof. Let x(t) be a nonoscillatory solution of (1.1) such that x(t) > 0 for t ≥ t0. Proceeding as
in the proof of Theorem 2.1, we get (2.2) for t ∈ [t2,∞), that is either z∆(t) > 0 or z∆(t) < 0.
By lemma 2.1, it follows that z∆(t) > 0. From (1.1), it is easy to see for t ≥ t1, that

(r(t)(z∆(t))γ)∆ + pβ(r(τ(t))(z∆(τ(t))γ)∆ + q(t)xα(δ(t))

+ pβq(τ(t))xα(δ(τ(t)) + v(t)xβ(η(t)) + pβv(τ(t))xβ(η(τ(t)) = 0.(2.12)

By assuming that there exists λ > 0 such that uγ(x) + uγ(y) ≥ λuγ(x + y), x, y ∈ R+, and
there exists µ > 0 such that uγ(x) + uγ(y) ≥ µuγ(x + y), x, y ∈ R+, we obtain (note that
γ < α < β) that

(r(t)(z∆(t))γ)∆ + pα(r(τ(t))(z∆(τ(t))γ)∆ + λQ(t)zα(δ(t)) + µV (t)zα(η(t)) ≤ 0.

for t ∈ [t2,∞)T, where z(t) ≤ x(t) + px(τ(t)). Define w(t) as in (2.3). Upon using the fact that

w∆(t) =
(r(z∆)γ)∆

(zδ)α
− r(z∆)γ)δ(zα)∆

zα(zδ)α

and
(zα)∆

(zσ)α
≥ α (z∆)

zσ
, α > 0 for t ∈ [t3,∞)T.

By using the fact that z(t) is nondecreasing and using (2.12) into (2.11) we obtain

w∆ ≤ (r(z∆)γ)∆

(zσ)α
− αwσ z

∆

zρ
, t ≥ t3.

Due to (2.6) and (z(σ(t)))
α
γ ≥ C, there exists t4 > t3 such that, for t ∈ [t4,∞)T,

(2.13) w∆ ≤ (r(z∆)γ)∆

(zσ)α
− αCr−

1
γ (wσ)1+ 1

γ .

From (2.13), we find

w∆ + aαwτ∆ ≤ (r(z∆)γ)∆

(zσ)α
− αCr−

1
γ (wσ)1+ 1

γ + aα
(r(z∆)γ)τ∆

(zσ∆)α
− αC(rτ )−

1
γ (wστ )1+ 1

γ ,
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that is,

w∆ + aαwτ∆ ≤ (r(z∆)γ)∆

(zσ)α
+ aα

(r(z∆)γ)τ∆

(zσ∆)α

− αC
[
r−

1
γ (wσ)1+ 1

γ + aα(rτ )−
1
γ (wστ )1+ 1

γ

]
.

Applying Lemma 2.2 on the above inequality, we get

w∆ + aαwτ∆ ≤ −λQ
(
lδ

σ

)α
− µV

(
lδ

σ

)α
−αC

[
r−

1
γ (wσ)1+ 1

γ + aα(rτ )−
1
γ (wστ )1+ 1

γ

]
for t ∈ [t1,∞)T, that is

(2.14) w∆ + aαwτ∆ ≤ −λQ(t)

(
lδ

σ

)α
− µV (t)

(
lδ

σ

)α
− αCr−

1
γ (1 + aα)(wσ)1+ 1

γ ,

where we used the fact that r∆(t) ≥ 0 and w(t) is a decreasing function due to (2.6) and (2.14)
on [t1,∞)T. Integrating (2.14) from t to v for t, v ∈ [t1,∞)T, it is easy to verify that

w∆ + aαwτ(t) ≥
∫ ∞
t

λQ(s)

(
lδ

σ

)α
∆s+

∫ ∞
t

µV (s)

(
lδ

σ

)α
∆s

+ αC(1 + aα)

∫ ∞
t

[
r(s)−

1
γw(σ(s))1+ 1

γ

]
∆s,

that is,

w∆ + aαwτ(t) = a2(t) + αC(1 + aα)

∫ ∞
t

[
r(s)−

1
γw(σ(s))1+ 1

γ

]
∆s,

which implies that

(2.15) (1 + aα)w(τ(t)) ≥ a2(t) + αC(1 + aα)

∫ ∞
t

r−
1
γ (s)w(σ(s))1+ 1

γ ∆s.

Then (H2) and (2.15) yield that

w(t) ≥ (a2(τ−1(t))

(1 + aα)
+ αC

∫ ∞
τ−1(t)

r−
1
γ (s)w(σ(s))1+ 1

γ ∆s.

Indeed

w(t) ≥ (a2(τ−1(t))

(1 + aα)
.

Hence the last inequality becomes

w(t) ≥ (a2(τ−1(t))

(1 + aα)
+ αC

∫ ∞
τ−1(t)

[
r−

1
γ (s)

(
1

1 + aα

)1+ 1
γ

(a2(τ−1(σ(s)))1+ 1
γ

]
∆s

=
(a2(τ−1(t))

(1 + aα)
+K2

∫ ∞
τ−1(t)

[
r−

1
γ (s)(a2(τ−1(σ(s)))1+ 1

γ

]
∆s

= Aγ2(t,K2),K2 = αC

(
1

1 + aα

)1+ 1
γ

.

Proceeding as in the proof of theorem 2.1, we obtain∫ t

t4

r−
1
γ (s)Aσ2 (s,K2)∆s <∞,

a contradiction due to (H6). The proof is complete. �
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Theorem 2.9. Let 1 ≤ p(t) ≤ p <∞, r∆(t) ≥ 0 for t ∈ [t0,∞)T, τ(δ(t)) = δ(τ(t)), τ(η(t)) =
η(τ(t)) and γ = α = β, η(t) ≥ δ(t). If (H0), (H5)− (H7) and

(H7). lim sup
t→∞

( ∫ t
t0
r−

1
γ (s)A2(s,K2)∆s

)
> 1.

Then every solution of (1.1) oscillates.

Proof. The proof of the theorem follows from Theorem 2.2 and Theorem 2.8. Hence the details
are omitted. �

Theorem 2.10. Let 1 ≤ p(t) ≤ a < ∞, r∆(t) ≥ 0 τ(σ(t)) = σ(τ(t)), τ(η(t)) = η(τ(t)),
γ > α > β, η(t) ≥ δ(t). If (H0), (H2), (H5)− (H7) and

(H8). lim sup
t→∞

(a1(t))
(γ−α)
αγ

( ∫ t
t0
r−

1
γ (s)∆s

)[
a1(t) +K3

∫∞
t

(
1
r(s)

) 1
γ

(aσ1 (s))1+ 1
γ ∆s

] 1
γ

=∞.

Then every solution of (1.1) oscillates.
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Abstract. We provide the semilocal convergence analysis of the Newton-
Secant solver with a decomposition of a nonlinear operator under classical Lip-
schitz conditions for the first order Fréchet derivative and divided differences.
We have weakened the sufficient convergence criteria, and obtained tighter er-
ror estimates. We give numerical experiments that confirm theoretical results.
The same technique without additional conditions can be used to extend the
applicability of other iterative solvers using inverses of linear operators. The
novelty of the paper is that the improved results are obtained using parameters
which are special cases of the ones in earlier works. Therefore, no additional
information is needed to establish these advantages.

Keywords: Newton-Secant solver; semilocal convergence analysis; Fréchet
derivative; divided differences; decomposition of nonlinear operator

AMS Classification: 45B05, 47J05, 65J15, 65J22

1 Introduction

One of the important problems in Computational Mathematics including Math-
ematical Biology, Chemistry, Economic, Physics, Engineering and other disci-
plines is finding solutions of nonlinear equations and systems of nonlinear equa-
tions [1-14]. For most of these problems, to find the exact solution is difficult
or impossible. Therefore, the development and research of numerical methods
for solving nonlinear problems is an urgent task.
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A popular solver for dealing with nonlinear equations is Newton’s [2, 3, 4].
But it is not applicable, if functions are nondifferentiable. In this case, we can
apply solvers with divided differences [1, 2, 3, 7, 8, 10, 11]. If it is possible to
decompose into differentiable and nondifferentiable parts, it is advisable to use
combined methods [2, 3, 5, 6, 12, 13, 14].

Consider a nonlinear equation

F (x) +G(x) = 0, (1)

where the operators F and G are defined on a open convex set D of a Banach
space E1 with values in a Banach space E2 , F is a Fréchet differentiable oper-
ator, G is a continuous operator for which differentiability is not assumed. It is
necessary to find an approximate solution x∗ ∈ D that satisfies equation (1).

In this paper, we consider the Newton-Secant solver

xn+1 = xn − [F ′(xn) +G(xn−1, xn)]−1(F (xn) +G(xn)), n = 0, 1, .... (2)

This iterative process was proposed in [6] and studied in [2, 3, 13], and the

convergence order
1 +
√

5

2
was established. It is shown that (2) converges faster

than the Secant solver.
In this paper, we study solver (2) under the classical Lipschitz conditions for

first-order Fréchet derivative and divided differences. Our technique allows to
get the weaker convergence criteria, and tighter error estimates. This way, we
extended the applicability of the results obtained in [13].

2 Convergence Analysis

Let L(E1, E2) be a space of linear bounded operators from E1 into E2. Set
S(x, τ) = {y ∈ E1 : ‖y − x‖ < τ} and let S̄(x, τ) denote its closure.

Define quadratic polynomial ϕ by

ϕ(t) = α1t
2 + α2t+ α3

and parameters r, and r1 by

r =
1− (q0 + q̄0)a

p0 + q0 + 2p̄0 + q̄0 + ¯̄q0
,

r1 =
1− q̄0a

2p̄0 + q̄0 + ¯̄q0
,

where
α1 = p0 + q0 + 2p̄0 + q̄0 + ¯̄q0,

α2 = −[1− (q0 + q̄0)a+ (2p̄0 + q̄0 + ¯̄q0)c]

and
α3 = (1− q̄0a)c,
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where p0, p̄0, q0, q̄0, ¯̄q0, a and c are nonnegative numbers.
Suppose that (q0 + q̄0)a < 1 and ϕ

(
1
2r
)
≤ 0. Then, it is simple algebra to

show, function ϕ has a unique root r̄0 ∈ (0, r2 ], and

r ≤ r1,

γ̄ =
p0r̄0 + q0(r̄0 + a)

1− q̄0a− (2p̄0 + q̄0 + ¯̄q0)r̄0
∈ [0, 1)

and
r̄0 ≥

c

1− γ̄
.

Set D0 = D ∩ S(x0, r1).

Definition 2.1. We call an operator that acts from E1 into E2 and is denoted
by G(x, y) a first-order divided difference for the operator G by fixed points x
and y (x 6= y), if the equality

G(x, y)(x− y) = G(x)−G(y)

is satisfied.

Theorem 2.2. Suppose that:

1) F and G are nonlinear operators on an open convex set D of a Banach
space E1 into a Banach space E2;

2) F is a Fréchet-differentiable operator, and let G is a continuous operator;

3) G(·, ·) is the first-order divided differences of the operator G defined on the
set D;

4) the linear operator A0 = F ′(x0) + G(x−1, x0), where x−1, x0 ∈ D, is
invertible;

5) the following conditions are satisfied for all x, y,∈ D

‖A−10 (F ′(x0)− F ′(x))‖ ≤ 2p̄0‖x0 − x‖, (3)

‖A−10 (G(x−1, x0)−G(x, x0))‖ ≤ q̄0‖x−1 − x‖, (4)

‖A−10 (G(x, x0)−G(x, y))‖ ≤ ¯̄q0‖x0 − y‖, (5)

and for all x, y, u ∈ D0

‖A−10 (F ′(x)− F ′(y))‖ ≤ 2p0‖x− y‖, (6)

‖A−10 (G(x, y)−G(u, y))‖ ≤ q0‖x− u‖; (7)

6) a, c are nonnegative numbers such that

‖x0 − x−1‖ ≤ a, ‖A−10 (F (x0) +G(x0))‖ ≤ c, c > a, (8)

(q0 + q̄0)a < 1, ϕ
(1

2
r
)
≤ 0; (9)
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7) S̄(x0, r̄0) ⊂ D.

Then, the solver (2) is well-defined and the sequence generated by it converges
to the solution x∗ of equation (1), so that for each n ∈ {−1, 0, 1, 2, ...}, the
following inequalities are satisfied

‖xn − xn+1‖ ≤ tn − tn+1, (10)

‖xn − x∗‖ ≤ tn − t̄∗, (11)

where sequence {tn}n≥−1 defined by the formulas

t−1 = r̄0 + a, t0 = r̄0, t1 = r̄0 − c,

tn+1 − tn+2 = γ̄n(tn − tn+1), n ≥ 0,

γ̄n =
p̃0(tn − tn+1) + q̃0(tn−1 − tn+1)

1− q̄0a− 2p̄0(t0 − tn+1)− q̄0(t0 − tn)− ¯̄q0(t0 − tn+1)
, 0 ≤ γ̄n < γ̄

(12)
is decreasing, nonnegative, and converges to t̄∗, so that r̄0− c/(1− γ̄) ≤ t̄∗ < t0,
where

p̃0 =

{
p̄0, n = 0
p0, n > 0

, q̃0 =

{
q̄0, n = 0
q0, n > 0.

Proof. We use mathematical induction to show that, for each k ≥ 0 the
following inequalities are satisfied

tk+1 ≥ tk+2 ≥ r̄0 −
1− γ̄k+2

1− γ̄
c ≥ r̄0 −

c

1− γ̄
≥ 0, (13)

tk+1 − tk+2 ≤ γ̄(tk − tk+1). (14)

Setting k = 0 in (12), we get

t1 − t2 =
p̃0(t0 − t1) + q̃0(t−1 − t1)

1− q̄0a− 2p̄0(t0 − t1)− ¯̄q0(t0 − t1)
(t0 − t1) ≤ γ̄(t0 − t1),

t0 ≥ t1, t1 ≥ t2 ≥ t1−γ̄(t0−t1) ≥ r̄0−(1+γ̄)c = r̄0−
(1− γ̄2)c

1− γ̄
≥ r̄0−

c

1− γ̄
≥ 0.

Suppose that (13) and (14) are true for k = 0, 1, ..., n− 1. Then, for k = n,
we obtain

tn+1 − tn+2 =

(
p̃0(tn − tn+1) + q̃0(tn−1 − tn+1)

)
(tn − tn+1)

1− q̄0a− 2p̄0(t0 − tn+1)− q̄0(t0 − tn)− ¯̄q0(t0 − tn+1)

≤ p̃0tn + q̃0tn−1
1− q̄0a− 2p̄0t0 − q̄0t0 − ¯̄q0t0

(tn − tn+1) ≤ γ̄(tn − tn+1),

tn+1 ≥ tn+2 ≥ tn+1 − γ̄(tn − tn+1) ≥ r̄0 −
1− γ̄n+2

1− γ̄
c ≥ r̄0 −

c

1− γ̄
≥ 0.
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Thus, {tn}n≥0 is a decreasing nonnegative sequence, and converges to t̄∗ ≥ 0.
Let us prove that the method (2) is well-defined, and for each n ≥ 0 the

inequality (10) is satisfied.
Since t−1 − t0 = a, t0 − t1 = c and conditions (8) are fulfilled then

x1 ∈ S(x0, r̄0) and (10) is satisfied for n ∈ {−1, 0}. Let conditions (8) be
satisfied for k = 0, 1, ..., n. Let us prove that the method (2) is well-defined for
k = n+ 1.

Denote An = F ′(xn) + G(xn−1, xn). Using the Lipschitz conditions (3) –
(5), we have

‖I −A−10 An+1‖ = ‖A−10 (A0 −An+1)‖ ≤ ‖A−10 (F ′(x0)− F ′(xn+1))‖

+‖A−10 (G(x−1, x0)−G(xn, x0) +G(xn, x0)−G(xn, xn+1))‖

≤ 2p̄0‖x0 − xn+1‖+ q̄0(‖x−1 − x0‖+ ‖x0 − xn‖) + ¯̄q0‖x0 − xn+1‖

≤ 2p̄0‖x0 − xn+1‖+ q̄0a+ q̄0‖x0 − xn‖+ ¯̄q0‖x0 − xn+1‖

≤ q̄0a+ 2p̄0(t0 − tn+1) + q̄0(t0 − tn) + ¯̄q0(t0 − tn+1)

≤ q̄0a+ 2p̄0r̄0 + q̄0r̄0 + ¯̄q0r̄0 < 1.

According to the Banach lemma on inverse operators [2] An+1 is invertible,
and

‖A−1n+1A0‖ ≤ (1− q̄0a− 2p̄0‖x0 − xn+1‖ − q̄0‖x0 − xn‖+ ¯̄q0‖x0 − xn+1‖)−1.

By the definition of the divided difference and conditions (6), (7), we obtain

‖A−10 (F (xn+1) +G(xn+1))‖

= ‖A−10 (F (xn+1) +G(xn+1)− F (xn)−G(xn)−An(xn − xn+1))‖

≤ ‖A−10 (
∫ 1

0
{F ′(xn+1 + t(xn − xn+1))− F ′(xn)}dt)‖‖xn − xn+1‖

+‖A−10 (G(xn+1, xn)−G(xn−1, xn))‖‖xn − xn+1‖

≤ (p̃0‖xn − xn+1‖+ q̃0(‖xn − xn+1‖+ ‖xn−1 − xn‖))‖xn − xn+1‖.

In view of condition (10), we have

‖xn+1 − xn+2‖ = ‖A−1n+1(F (xn+1) +G(xn+1))‖

≤ ‖A−1n+1A0‖‖A−10 (F (xn+1) +G(xn+1))‖

≤ p̃0‖xn − xn+1‖+ q̃0(‖xn − xn+1‖+ ‖xn−1 − xn‖)
1− q̄0a− 2p̄0‖x0 − xn+1‖ − q̄0‖x0 − xn+1‖+ ¯̄q0‖x0 − xn‖

‖xn − xn+1‖

≤
(
p̃0(tn − tn+1) + q̃0(tn−1 − tn+1)

)
(tn − tn+1)

1− q̄0a− 2p̄0(t0 − tn+1)− q̄0(t0 − tn)− ¯̄q0(t0 − tn+1)
= tn+1 − tn+2.

Thus, the method (2) is well-defined for each n ≥ 0 . Hence it follows that

‖xn − xk‖ ≤ tn − tk, −1 ≤ n ≤ k. (15)
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Therefore, the sequence {xn}n≥0 is fundamental, so it converges to some
x∗ ∈ S̄(x0, r̄0). Inequality (11) is obtained from (15) for k → ∞. Let us
show that x∗ solves the equation F (x) +G(x) = 0. Indeed, we get in turn that

A−10 (F (xn+1) +G(xn+1)) ≤
(
p̃0‖xn − xn+1‖

+q̃0(‖xn − xn+1‖+ ‖xn−1 − xn‖)
)
‖xn − xn+1‖ → 0, n→∞.

Hence, F (x∗) +G(x∗) = 0. tu

Remark 2.3. The order of convergence of method (2) is equal to
1 +
√

5

2
.

Proof. In view of tn − tn+1 ≤ γ̄(tn−1 − tn), and (12), we obtain

tn+1 − tn+2 =

(
p̃0(tn − tn+1) + q̃0(tn − tn+1 + tn−1 − tn)

)
(tn − tn+1)

1− q̄0a− 2p̄0(t0 − tn+1)− q̄0(t0 − tn)− ¯̄q0(t0 − tn+1)

≤ p̃0γ̄(tn−1 − tn) + q̃0(1 + γ̄)(tn−1 − tn)

1− q̄0a− 2p̄0(t0 − tn+1)− q̄0(t0 − tn)− ¯̄q0(t0 − tn+1)
(tn − tn+1)

=

(
p̄0γ̄ + q̄0(1 + γ̄)

)
(tn − tn+1)(tn−1 − tn)

1− q̄0a− 2p̄0(t0 − tn+1)− q̄0(t0 − tn)− ¯̄q0(t0 − tn+1)

≤ p̃0γ̄ + q̃0(1 + γ̄)

1− q̄0a− 2p̄0t0 − q̄0t0 − ¯̄q0t0
(tn − tn+1)(tn−1 − tn).

Denote C̄ =
p̄0γ̄ + q̄0(1 + γ̄)

1− q̄0a− 2p̄0t0 − q̄0t0 − ¯̄q0t0
. Clearly,

tn+1 − tn+2 ≤ C̄(tn−1 − t̄∗)(tn − t̄∗). (16)

Since, for each k > 2, the estimate is satisfied

tn+k−1 − tn+k ≤ γ̄k−2(tn+1 − tn+2),

we get

tn+1 − tn+k = tn+1 − tn+2 + tn+2 − tn+3 + . . .+ tn+k−1 − tn+k

≤ (1 + γ̄ + . . .+ γ̄k−2)(tn+1 − tn+2)

=
1− γ̄k−1

1− γ̄
(tn+1 − tn+2) ≤ 1

1− γ̄
(tn+1 − tn+2).

In view of (16), for k →∞, we have

tn+1 − t̄∗ ≤
C̄

1− γ̄
(tn−1 − t̄∗)(tn − t̄∗)

Hence, it follows that the order of convergence of the sequence {tn}n≥0 is

equal to
1 +
√

5

2
, and, according (11), the sequence {xn}n≥0 converges with the

same order. tu
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Remark 2.4. (a) The following conditions were used for each x, y, u, v ∈ D
in [13]

‖A−10 (F ′(y)− F ′(x))‖ ≤ 2P0‖y − x‖, (17)

‖A−10 (G(x, y)−G(u, v))‖ ≤ Q0(‖x− u‖+ ‖y − v‖), (18)

r0 ≥
c

1− γ
, Q0a+ 2P0r0 + 2Q0r0 < 1,

γ =
P0r0 +Q0(r0 + a)

1−Q0a− 2P0r0 − 2Q0r0
, 0 ≤ γ < 1.

(19)

But, then we have

p̄0 ≤ P0,

q̄0 ≤ Q0,

¯̄q0 ≤ Q0,

since D0 ⊆ D, (3) and (4), (5), (7) are weaker than (17) and (18) respectively
for r̄0 ≤ r0. Notice that sufficient convergence criteria (9) imply (19) but not
necessarily vice versa, unless if p̄0 = P0, q̄0 = ¯̄q0 = Q0 and r̄0 = r0.

A simple inductive argument shows that

γ̄n ≤ γn, (20)

tn − tn+1 ≤ sn − sn+1, (21)

where

s−1 = r0 + a, s0 = r0, s1 = r0 − c,

sn+1 − sn+2 = γn(sn − sn+1), n ≥ 0,

γn =
P0(sn − sn+1) +Q0(sn−1 − sn+1)

1−Q0a− 2P0(s0 − sn+1)−Q0(2s0 − sn − sn+1)
, 0 ≤ γn ≤ γ.

Notice that the corresponding quadratic polynomial ϕ1 to ϕ is defined simi-
larly by

ϕ1(t) = b1t
2 + b2t+ b3

where

b1 = 3P0 + 3Q0,

b2 = −[1− 2Q0a+ (2P0 + 2Q0)c]

and

b3 = (1−Q0a)c.

We have by these definitions that

α1 < b1, α2 < b2, but α3 > b3.
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Therefore, we cannot tell, if r0 < r̄0 or r̄0 < r0 or r0 = r̄0. But, we have

γ ≤ γ̄ ⇒ r0 ≤ r̄0,

sn ≤ tn,

s∗ ≤ t̄∗ = lim
n→∞

tn

(22)

and
γ̄ ≤ γ ⇒ r̄0 ≤ r0 ⇒ C̄ ≤ C,

tn ≤ sn,

t̄∗ ≤ s∗ = lim
n→∞

sn,

(23)

It is simple algebra to show that ϕ(r) ≥ 0, and for rmin = − α2

2α1
(solving

ϕ′(t) = 0), rmin ≥
r

2
, rmin ≤

r1
2

. Hence, one may replace the second inequation

in (9) by ϕ(λr) ≤ 0 for some λ ∈ (0, 12 ] to obtain a better information about the
location of r̄0, if λ 6= 1

2 , especially in the case when we do not actually need to
compute r̄0.

(b) The Lipschitz parameters p̄0, q̄0, ¯̄q0 can become even smaller, if we define
the set D1 = D ∩ S(x1, r1 − c) for r1 > c to replace D0 in Theorem 2.2., since
D1 ⊆ D0.

3 Numerical experiments

Let us define function F +G : R→ R, where

F (x) = ex−0.5 + x3 − 1.3, G(x) = 0.2x|x2 − 2|.

The exact solution of F (x) +G(x) = 0 is x∗ = 0.5. Let D = (0, 1). Then

F ′(x) = ex−0.5 + 3x2,

G(x, y) =
0.2x(2− x2)− 0.2y(2− y2)

x− y
= 0.2(1− x2 − xy − y2).

A0 = ex0−0.5 + 3x20 + 0.2(1− x2−1 − x−1x0 − x20),

|A−10 (F ′(x)− F ′(y))| ≤ e0.5 + 3|x+ y|
|A0|

|x− y|,

|A−10 (G(x, y)−G(u, v))| = 0.2

|A0|
|(u+ x+ y)(u− x) + (v + y + u)(v − y)|.

Let x0 = 0.57, x−1 = 0.571. Then, we have a = 0.001, c ≈ 0.0660157,
p̄0 ≈ 1.4118406, q̄0 ≈ 0.1901483, ¯̄q0 ≈ 0.2282491, r1 ≈ 0.3083854,

D0 = D ∩ S(x0, r1) = (0.2616146, 0.8783854),
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p0 ≈ 1.5362481, q0 ≈ 0.2340358, P0 ≈ 1.6982621, Q0 ≈ 0.2664386, and
r ≈ 0.1994221, ϕ( 1

2r) ≈ −0.0051722 < 0. So, p̄0 < P0, q̄0 < Q0, ¯̄q0 < Q0.

By solving inequalities ϕ(t) ≤ 0 and ϕ1(t) ≤ 0, we get

t ∈ [0.0824903, 0.1596319]⇒ r̄
(1)
0 ≈ 0.0824903, r̄

(2)
0 ≈ 0.1596319,

t ∈ [0.0924062, 0.1211750]⇒ r
(1)
0 ≈ 0.0924062, r

(2)
0 ≈ 0.1211750.

Then r̄0 = r̄
(1)
0 ≈ 0.0824903, r0 = r

(1)
0 ≈ 0.0924062, and

S(x0, r̄0) = (0.4875097, 0.6524903), γ̄ ≈ 0.1997151 < 1, C̄ ≈ 0.8023108,

S(x0, r0) = (0.4775938, 0.6624062), γ ≈ 0.2855916 < 1, C ≈ 1.2998717.

In Table 1, there are results that confirm estimates (10), (11) and (21).
Table 2 shows that sequences {tn} and {sn} converge to t̄∗ ≈ 0.0073550 and
s∗ ≈ 0.0144209, respectively, and confirms (20) and (23).

Table 1: Obtained results for ε = 10−7

n |xn−1 − xn| tn−1 − tn sn−1 − sn |xn − x∗| tn − t̄∗ sn − s∗
1 0.0660157 0.0660157 0.0660157 0.0039843 0.0091195 0.0119695
2 0.0040123 0.0087609 0.0113203 0.0000281 0.0003586 0.0006492
3 0.0000281 0.0003573 0.0006452 1.761e-08 0.0000013 0.0000040
4 1.761e-08 0.0000040 0.0000040 7.438e-14 1.440e-10 1.033e-09

Table 2: Obtained results for ε = 10−7

n tn sn γ̄n−2 γn−2
-1 0.0834903 0.0934062
0 0.0824903 0.0924062
1 0.0164746 0.0263904
2 0.0077136 0.0150701 0.1327096 0.1714793
3 0.0077136 0.0144249 0.0407873 0.0569927
4 0.0073550 0.0144209 0.0035475 0.0061771
5 0.0073550 0.0144209 0.0001136 0.0002592

4 Conclusions

We investigated the semilocal convergence of Newton-Secant solver under clas-
sical center and restricted Lipschitz conditions. This technique weakens the
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sufficient convergence criteria without adding more conditions and uses con-
stants that are specializations of earlier ones. Moreover, tighter estimate errors
are obtained. The theoretical results are confirmed by numerical experiments.
Our technique can be used to extend the applicability of other iterative methods
using inverses of linear operators [1-14] along the same lines.
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1. INTRODUCTION

Di¤erence equations appear as natural descriptions of observed evolution phenom-
ena because most measurements of time evolving variables are discrete and as such
these equations are in their own right important mathematical models. More im-
portantly, di¤erence equations also appear in the study of discretization methods
for di¤erential equations. Several results in the theory of di¤erence equations have
been obtained as more or less natural discrete analogues of corresponding results
of di¤erential equations.
The study of these equations is quite challenging and rewarding and is still in

its infancy.
We believe that the nonlinear rational di¤erence equations are of paramount

importance in their own right, and furthermore, that results about such equations
o¤er prototypes for the development of the basic theory of the global behavior of
nonlinear di¤erence equations.
Recently there has been a lot of interest in studying the global attractivity,

boundedness character, periodicity and the solution form of nonlinear di¤erence
equations.
El-Owaidy et al [1] investigated the global asymptotic behavior and the peri-

odic character of the solutions of the di¤erence equation

xn+1 =
�xn�1

� + 
xpn�2
; n = 0; 1; 2; :::

where the parameters �; �; 
 and p are non-negative real numbers.
Other related results on rational di¤erence equations can be found in refs.

[2-15].
In this paper, we investigate the global asymptotic behavior and the periodic

character of the solutions of the di¤erence equation

xn+1 =
�xn�1

� + 

kP
i=1

xp�1n�2mi

kQ
j=1

xn�2mj

; n = 0; 1; 2; ::: (1.1)

where the parameters �; �; 
 and p are positive real numbers, k 2 f1; 2; :::g;
fmigki=1 be positive integers such that mi > mi�1 ; i = 2; :::k and the initial
conditions x�2mk

; x�2mk+1; :::; x0 are non-negative real numbers.
The results in this work are consistent with the results in [1] when k = 1 and

m1 = 1:

2
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The results in this work are consistent with the results in [3] when k = 2;
m1 = 1 and m2 = 2:
We need the following de�nitions.

De�nition 1. Let I be an interval of real numbers and let

f : Ik+1 ! I

be a continuously di¤erentiable function. Consider the di¤erence equation

xn+1 = f(xn; xn�1; :::; xn�k); n = 0; 1; :::; (1.2)

with x�k; x�k+1; :::; x0 2 I: Let x be the equilibrium point of Eq.(1.2). The
linearized equation of Eq.(1.2) about the equilibrium point x is

yn+1 = c1yn + c2yn�1 + :::+ ck+1yn�k (1.3)

where
c1 =

@f
@xn
(x; x; :::; x) , c2 =

@f
@xn�1

(x; x; :::; x); :::; ck+1 =
@f

@xn�k
(x; x; :::; x):

The characteristic equation of Eq.(1.3) is

�k+1 �
k+1X
i=1

ci�
k�i+1 = 0: (1.4)

(i) The equilibrium point x of Eq.(1.2) is locally stable if for every � > 0;
there exists � > 0 such that for all x�k; x�k+1; :::; x�1,x0 2 I with

jx�k � xj+ jx�k+1 � xj+ :::+ jx0 � xj < �;

we have
jxn � xj < � for all n � �k:

(ii) The equilibrium point x of Eq.(1.2) is locally asymptotically stable if x is
locally stable and there exists 
 > 0; such that for all x�k; x�k+1; :::; x�1, x0 2
I with

jx�k � xj+ jx�k+1 � xj+ :::+ jx0 � xj < 
;

we have
lim
n!1

xn = x:

3
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(iii) The equilibrium point x of Eq.(1.2) is global attractor if for all x�k; x�k+1; :::; x�1,
x0 2 I; we have

lim
n!1

xn = x:

(iv) The equilibrium point x of Eq.(1.2) is globally asymptotically stable if x is
locally stable, and x is also a global attractor of Eq.(1.2).
(v) The equilibrium point x of Eq.(1.2) is unstable if x is not locally stable.

De�nition 2. A positive semicycle of fxng1n=�k of Eq.(1.2) consists of a �string�
of terms fxl; xl+1; :::; xmg ; all greater than or equal to x; with l � �k and m <1
and such that either l = �k or l > �k and xl�1 < x and eitherm =1 orm <1
and xm+1 < x:
A negative semicycle of fxng1n=�k of Eq.(1.2) consists of a �string�of terms

fxl; xl+1; :::; xmg ; all less than x; with l � �k and m < 1 and such that either
l = �k or l > �k and xl�1 � x and either m =1 or m <1 and xm+1 � x:

De�nition 3. A solution fxng1n=�k of Eq.(1.2) is called nonoscillatory if there
exists N � �k such that either

xn � x 8n � N or xn < x 8n � N ;

and it is called oscillatory if it is not nonoscillatory.

(a) A sequence fxng1n=�k is said to be periodic with period p if

xn+p = xn for all n � �k: (1.5)

(b) A sequence fxng1n=�k is said to be periodic with prime period p if it is
periodic with period p and p is the least positive integer for which (1.5) holds.
We need the following theorem.

Theorem 1.1. (i) If all roots of Eq.(1.4) have absolute value less than one, then
the equilibrium point x of Eq.(1.2) is locally asymptotically stable.

(ii) If at least one of the roots of Eq.(1.4) has absolute value greater than one,
then x is unstable.

The equilibrium point x of Eq.(1.2) is called a saddle point if Eq.(1.4) has
roots both inside and outside the unit disk.

4
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2. Main results

In this section, we investigate the dynamics of Eq.(1.1) under the assumptions
that all parameters in the equation are positive and the initial conditions are
non-negative.

The change of variables xn =
�
�



� 1
p+k�1

yn reduces Eq.(1.1) to the di¤erence
equation

yn+1 =
ryn�1

1 +
kP
i=1

yp�1n�2mi

kQ
j=1

yn�2mj

; n = 0; 1; 2; ::: (2.1)

where r = �
�
> 0:

Note that y1 = 0 is always an equilibrium point of Eq.(2.1). When r > 1;

Eq.(2.1) also possesses the unique positive equilibrium y2 =
�
r�1
k

� 1
k+p�1 :

Theorem 2.1. The following statements are true
(i) If r < 1; then the equilibrium point y1 = 0 of Eq.(2.1) is locally asymptot-

ically stable.
(ii) If r > 1; then the equilibrium point y1 = 0 of Eq.(2.1) is a saddle point.

(iii) When r > 1; then the positive equilibrium point y2 =
�
r�1
k

� 1
k+p�1of

Eq.(2.1) is unstable.

Proof: The linearized equation of Eq.(2.1) about the equilibrium point y1 = 0
is

zn+1 = rzn�1; n = 0; 1; 2; :::

so, the characteristic equation of Eq.(2.1) about the equilibrium point y1 = 0 is

�2mk+1 � r�2mk�1 = 0;

and hence, the proof of (i) and (ii) follows from Theorem A.
For (iii), we assume that r > 1; then the linearized equation of Eq.(2.1) about

the equilibrium point y2 =
�
r�1
k

� 1
k+p�1has the form

zn+1 = zn�1� (r�1)(p+k�1)
rk

zn�2m1�
(r�1)(p+k�1)

rk
zn�2m2�:::�

(r�1)(p+k�1)
rk

zn�2mk
; n =

0; 1; 2; :::

5
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so, the characteristic equation of Eq.(2.1) about the equilibrium point y2 =�
r�1
k

� 1
k+p�1 is

f (�) = �2mk+1 � �2mk�1 +
(r � 1)(p+ k � 1)

rk

kP
i=1

�2mk�2mi = 0;

It is clear that f (�) has a root in the interval (�1;�1); and so, y2 =
�
r�1
k

� 1
k+p�1

is an unstable equilibrium point.

This completes the proof.

Theorem 2.2. Assume that r < 1; then the equilibrium point y1 = 0 of Eq.(2.1)
is globally asymptotically stable.

Proof: We know by Theorem 2.1 that the equilibrium point y1 = 0 of Eq.(2.1)
is locally asymptotically stable. So, let fyng1n=�2mk

be a solution of Eq.(2.1). It
su¢ ces to show that limn!1 yn = 0: Since

0 � yn+1 =
ryn�1

1 +
kP
i=1

yp�1n�2mi

kQ
j=1

yn�2mj

� ryn�1 < yn�1:

So, the even terms of this solution decrease to a limit (say L1 � 0), and the odd
terms decrease to a limit (say L2 � 0), which implies that

L1 =
rL1

1 + kLk+p�12

and L2 =
rL2

1 + kLk+p�11

:

If L1 6= 0) Lk+p�12 = r�1
k
< 0; which is a contradiction, so L1 = 0; which implies

that L2 = 0:
So, limn!1 yn = 0; which the proof is complete.

Theorem 2.3. Assume that r = 1; then Eq.(2.1) possesses the prime period two
solution

:::; �; 0; �; 0; ::: (2.2)

with � > 0: Furthermore, every solution of Eq.(2.1) converges to a period two
solution (2.2) with � � 0:

6
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Proof: Let
:::; �;  ; �;  ; :::

be period two solutions of Eq.(2.1). Then

� =
r�

1 + k k+p�1
; and  =

r 

1 + k�k+p�1
;

so,

k� =
(r � 1)(��  )

 k+p�2 � �k+p�2
� 0;

If k + p > 2, then we have r � 1 � 0:
If r < 1; then this implies that � < 0 or  < 0; which is impossible, so r = 1:
If k + p < 2, then we have r � 1 � 0:
If r > 1; then we have either � =  = 0; which is impossible or � =  =�

r�1
k

� 1
k+p�1 ; which is impossible, so r = 1:

If k + p = 2, then we have(r � 1)(��  ) = 0; which implies that r = 1:
To complete the proof, assume that r = 1 and let fyng1n=�2k be a solution of

Eq.(2.1), then

yn+1 � yn�1 =

�yn�1

 
kP
i=1

yp�1n�2mi

kQ
j=1

yn�2mj

!

1 +
kP
i=1

yp�1n�2mi

kQ
j=1

yn�2mj

� 0; n = 0; 1; 2; :::

So, the even terms of this solution decrease to a limit (say � � 0), and the
odd terms decrease to a limit (say 	 � 0). Thus,

� =
�

1 + k	k+p�1
and 	 =

	

1 + k�k+p�1
;

which implies that k�	k+p�1 = 0 and k�k+p�1	 = 0: Then the proof is complete.

Theorem 2.4. Assume that r > 1; and let fyng1n=�2mk
be a solution of Eq.(2.1)

such that

y�2mk
; y�2mk+2; :::; y0 � y2 and y�2mk+1; y�2mk+3; :::; y�1 < y2; (2.3)

or
y�2mk

; y�2mk+2; :::; y0 < y2 and y�2mk+1; y�2mk+3; :::; y�1 � y2: (2.4)

Then fyng1n=�2mk
oscillates about y2 =

�
r�1
k

� 1
k+p�1with a semicycle of length one.

7
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Proof: Assume that (2.3) holds. (The case where (2.4) holds is similar and
will be omitted.) Then,

y1 =
ry�1

1 +
kP
i=1

yp�1�2mi

kQ
j=1

y�2mj

<
ry2

1 + ky2
k+p�1 = y2

and
y2 =

ry0

1 +
kP
i=1

yp�1�2mi+1

kQ
j=1

y�2mj+1

>
ry2

1 + ky2
k+p�1 = y2

and then the proof follows by induction.

Theorem 2.5. Assume that r > 1; then Eq.(2.1) possesses an unbounded solu-
tion.

Proof: From Theorem 2.4, we can assume without loss of generality that the
solution fyng1n=�2kof Eq.(2.1) is such that

y2n�1 < y2 =

�
r � 1
k

� 1
k+p�1

and y2n > y2 =

�
r � 1
k

� 1
k+p�1

; for n � �mk+1:

Then
y2n+1 =

ry2n�1

1 +
kP
i=1

yp�12n�2mi

kQ
j=1

y2n�2mj

<
ry2n�1

1 + ky2
k+p�1 = y2n�1

and
y2n+2 =

ry2n

1 +
kP
i=1

yp�12n�2mi+1

kQ
j=1

y2n�2mj+1

>
ry2n

1 + ky2
k+p�1 = y2n

from which it follows that

lim
n!1

y2n =1 and lim
n!1

y2n+1 = 0:

Then, the proof is complete.
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Abstract

In this paper, we define some general classes of weighted analytic function spaces in the unit
disc. For the new classes, we investigate boundedness and compactness of the weighted composition
operator uCφ under some mild conditions on the weighted functions of the classes.

1 Introduction

Let H(D) denote the class of analytic functions in the unit disk D. As usual, two quantities Lf and Mf ,
both depending on analytic function f on the unit disk D, are said to be equivalent, and written in the
form Lf ≈ Mf , if there exists a positive constant C such that

1
C

Mf ≤ Lf ≤ C Mf .

The notation A . B means that there exists a positive constant C1 such that A ≤ C1B.
For 0 < α < ∞. The weighted type space H∞

α is the space of all f ∈ H(D) such that

‖f‖H∞
α

= sup
z∈D

(1− |z|2)α|f(z)| < ∞.

and H∞
α, 0 denotes the closed subspace of H∞

α such that f ∈ H∞
α satisfies

(1− |z|2)α|f(z)| → 0 as |z| → 1.

Let the Green’s function g(z, a) = ln | 1−āz
a−z | = ln 1

|ϕa(z)| , where ϕa(z) = 1−āz
a−z stands for Möbius transfor-

mation. The following classes of weighted function spaces are defined in [7]:

Definition 1.1 Let K : [0,∞) → [0,∞) be a nondecreasing function and let f be an analytic function
in D then f ∈ NK if

‖f‖2NK
= sup

a∈D

∫

D
|f(z)|2K(g(z, a))dA(z) < ∞,

AMS 2010 classification: 30H30, 30C45, 46E15.
Key words and phrases: analytic classes, weighted composition operators.
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2

where dA(z) defines the normalized area measure on D, so that A(D) ≡ 1.
Now, if

lim
|a|→1

∫

D
|f(z)|2K(g(z, a))dA(z) = 0,

then f is said to belong to the class NK,0.

Clearly, if K(t) = tp, then NK = Np (see [19]) , since g(z, a) ≈ (1 − |ϕa(z)|2). For K(t) = 1 it gives the
Bergman space A2 (see [17]).
It is easy to check that ‖ · ‖NK

is a complete semi-norm on NK and it is Möbius invariant in the sense
that

‖f ◦ ϕa‖NK = ‖f‖NK , a ∈ D,

whenever f ∈ NK and ϕa ∈ Aut(D) is the group of all Möbius maps of D. If NK consists of just the
constant functions, we say that it is trivial.

We assume from now that all K : [0,∞) → [0,∞) to appear in this paper is right-continuous and
nondecreasing function such that the integral

∫ 1/e

0

K(log(1/ρ))ρ dρ =
∫ ∞

1

K(t)e−2t dt < ∞.

From a change of variables we see that the coordinate function z belongs to NK space if and only if

sup
a∈D

∫

D

(1− |a|2)2
|1− āz|4 K

(
log(1/|z|)) dA(z) < ∞.

Simplifying the above integral in polar coordinates, we conclude that NK space is nontrivial if and only
if

sup
t∈(0,1)

∫ 1

0

(1− t)2

(1− tr2)3
K

(
log(1/r)

)
rdr < ∞. (1)

An important tool in the study of NK space is the auxiliary function φK defined by

φK(s) = sup
0<t<1

K(st)
K(t)

, 0 < s < ∞.

The following condition has played a crucial role in the study of NK space:
∫ ∞

1

φK(s)
ds

s2
< ∞, (2)

and ∫ 1

0

φK(s)
ds

s
< ∞. (3)

The test function in NK can be stated as follows (see [7]):

Lemma 1.1 For w ∈ D we define

hw(z) =
1− |w|2

(1− wz)2
.

Suppose that condition (1) is satisfied. Then hw ∈ NK and

sup
w∈D

‖hw‖NK
≤ 1.
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3

2 Analytic NK, ω and H∞
α, ω-spaces

Let ω : (0, 1] −→ [0, ∞) be any reasonable and right continuous nondecreasing function and K :
[0, ∞) −→ [0, ∞) be right continuous nondecreasing function too. Then, we give the following definitions.

Definition 2.1 Let 0 < α < ∞. The weighted type space H∞
α, ω is defined by

H∞
α,ω := {f ∈ H(D) : sup

z∈D

(1− |z|2)α

ω(1− |z|2) |f(z)| < ∞}.

If

lim
|z|−→1

(1− |z|2)α

ω(1− |z|2) |f(z)| = 0,

we say that f belongs to H∞
α, ω,0.

Definition 2.2 The analytic NK,ω -space is defined by

NK,ω := {f ∈ H(D) : sup
a∈D

∫

D
|f(z)|2 K(g(z, a))

ω2(1− |z|2)dA(z) < ∞}.

If

lim
|a|−→1

∫

D
|f(z)|2 K(g(z, a))

ω2(1− |z|2)dA(z) = 0,

we say that f belongs to the class NK,ω,0.

Clearly, if K(t) = tp and ω ≡ 1, then NK,1 = Np.
For K(t) = 1 and ω ≡ 1, it gives the Bergman space A2.

In the study of the space NK,ω, we assume the following condition holds:

∫ 1

0

K(log 1
r )

ω2(1− r2)
r dr < ∞. (4)

Throughout this paper, we always assume that condition (4) is satisfied, so that the NK,ω space we study
is not trivial.

Remark 2.1 It should be remarked that the weight function ω(1− |z|) is used to define and study some
general classes of function spaces, see [10, 15, 21] and others.

For a point a ∈ D and 0 < r < 1, let D(a, r) denote an Euclidean disk with center (1−r2)a
1−r2|a|2 and radius

(1−|a|2)r
1−r2|a|2 (see [20]). Suppose also that E(a, r) = {z ∈ D : |z − a| < r(1− |a|) }.
Now, we will prove the following lemma:

Lemma 2.1 Let ω : (0, 1] −→ [0, ∞) be any reasonable and right continuous nondecreasing function
and let K : [0,∞) → [0,∞) be right continuous nondecreasing function. Then

NK,ω ⊂ H∞
1, ω.

Proof: Suppose that f ∈ NK, ω, and let C be a constant such that

sup
a∈D

∫

D
|f(z)|2 K(g(z, a))

ω2(1− |z|2) dA(z) = C < ∞.
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By the fact that K is nondecreasing, for all r, 0 < r < 1, we have

C ≥
∫

D
|f(z)|2 K(g(z, a))

ω2(1− |z|2) dA(z)

≥
∫

D(a,r)

|f(z)|2
K

(
log 1

|ϕa(z)|
)

ω2(1− |z|2) dA(z)

≥
∫

E(a,r)

|f(z)|2
K

(
log 1

|ϕa(z)|
)

ω2(1− |z|2) dA(z)

≥ K
(
log 1

r

)

ω2(1− |a|2)
∫

E(a,r)

|f(z)|2 dA(z).

Since |f(z)|2 is subharmonic it follows that,

C ≥ K
(
log 1

r

)

ω2(1− |a|2)
∫

E(a,r)

|f(z)|2 dA(z)

≥ K
(
log 1

r

)

ω2(1− |a|2)2r2π(1− |a|2)2|f(a)|2.

For r0 ∈ (0, 1), there exists a constant λ such that

|f(a)|2(1− |a|2)2
ω2(1− |a|2) ≤ λ

∫

D(a,r0)

|f(z)|2dA(z)

≤ C λ

K(log 1/r0)
.

Since r0 is fixed, then

sup
a∈D

|f(a)|(1− |a|2)
ω(1− |a|2) ≤

√
C λ

K(log 1/r0)
.

Thus f ∈ H∞
1, ω in D. Hence, NK, ω ⊂ H∞

1, ω.

We will prove the following lemmas on NK, ω- spaces:

Lemma 2.2 Let ω : (0, 1] −→ [0, ∞), K : [0,∞) → [0,∞) and X, Y ∈ {H∞
α, ω,NK, ω}. Suppose that

uCφ(X) ⊂ Y. Then uCφ : X → Y is compact if and only if for every bounded sequence {fj} ∈ X which
converges to 0 uniformly on compact subset of D, we have

lim
j→∞

‖uCφfj‖Y = 0.

Proof: This is an extension of a well-known result on the compactness of the composition operator on
the Hardy spaces (see [9], Proposition 3.11). We see that any bounded sequence in H∞

α, ω forms a normal
family. Also by Lemma 2.1 we have the relation

‖f‖H∞
1, ω

≤ ‖f‖NK, ω

and the growth estimate for f ∈ H∞
1, ω imply that any bounded sequence in NK, ω forms a normal family.

Hence a similar argument by using Montel’s theorem also proves this lemma, and so we omit its proof.

Now, for α ∈ (0,∞), θ ∈ [0, 2π) and r ∈ (0, 1], we put

fθ,r(z) :=
∞∑

k=0

2αk(reiθ)2
k

z2k

(z ∈ D).

Using the function fθ,r, we have the following result:
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Lemma 2.3 The function fθ,r(z) belongs to H∞
α, ω and ‖fθ,r‖H∞

α, ω
. 1 which is independent of θ and r.

In particular, fθ,r ∈ H∞
α, ω. 0 if r ∈ (0, 1).

Proof: The proof is similar to the corresponding results in [27], with some simple modifications, so it
will be omitted.

Lemma 2.4 Let ω : (0, 1] −→ [0, ∞), K : [0,∞) → [0,∞) with ω(kt) = kω(t) , k > 0. Suppose that
condition (4) is satisfied. For all z, w ∈ D, we define the function hw(z) by

hw(z) =
(1− |w|2)(1− |z|)

(1− wz)2
.

Then hw(z) ∈ NK,ω and supw∈D ‖hw‖NK,ω . 1.
Proof: First, we have that

‖hw‖NK, ω
= sup

w∈D

∫

D

∣∣∣∣
(1− |w|2)
(1− wz)2

∣∣∣∣
2 (1− |z|)2
ω2(1− |z|2)K(g(z, w)dA(z).

Since, 1− |w| ≤ |1− w̄z| ≤ 1 + |w| < 2 and 1− |z| ≤ |1− w̄z| ≤ 1 + |z| < 2 where z, w ∈ D, then

‖hw‖NK, ω
≤ 4 sup

w∈D

∫

D

K(g(z, w)
ω2(1− |z|2)dA(z) = 4 sup

w∈D

∫

D

K(log 1
|ϕw(z)| )

ω2(1− |z|2) dA(z).

Now, let z = ϕw(z), then

‖hw‖NK, ω ≤ 4 sup
w∈D

∫

D

K(log 1
|z| )

ω2(1− |ϕw(z)|2)
(1− |w|2)2
|1− wz|4 dA(z)

≤ 16 sup
w∈D

∫

D

K(log 1
|z| )

|1− wz|2ω2(1− |ϕw(z)|2) dA(z).

Since,

1− |ϕw(z)|2 =
(1− |w|2)(1− |z|2)

|1− wz|2 .

Then, we obtain that

‖hw‖NK, ω
≤ 16 sup

w∈D

∫

D

K(log 1
|z| )

|1− wz|2 ω2
( (1−|w|2)(1−|z|2)

|1−wz|2
) dA(z)

= 16 sup
w∈D

∫

D

K(log 1
|z| )

|1− wz|2(1− |w|2)2 ω2
( (1−|z|2)
|1−wz|2

) dA(z)

≤ 16 sup
w∈D

∫

D

K(log 1
|z| )

|1− wz|2(1− |w|2)2 ω2
( (1−|z|2)

(1−|w|)2
) dA(z)

= 16 sup
w∈D

∫

D

(1− |w|)4K(log 1
|z| )

|1− wz|2(1− |w|2)2 ω2(1− |z|2) dA(z)

≤ c

∫ 1

0

K(log 1
r )

ω2(1− r2)
r dr < ∞,

where c is a positive constant. Then,
sup
w∈D

‖hw‖NK,ω
. 1.

This completes the proof.
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3 Weighted composition operator on H∞
α, ω and NK, ω spaces

Let φ be an analytic self-map of the unit disk D. For any u ∈ H(D) and φ : D → D, the weighted
composition operator uCφ : H(D) → H(D) is defined by uCφf = u.(f ◦ φ). This class of operators has
been appeared in the studies of isometries of many holomorphic function spaces. In fact, many isometries
of holomorphic function spaces are described as weighted composition operators. For more information
and various studies on weighted composition operators, we refer to [8, 12, 13, 16, 18, 25, 27, 28, 29]
and others.

In this section we study weighted composition operators acting on NK, ω-space.
Let φ ∈ H(D) to denoted a non-constant function satisfying φ(D) ⊂ D. First, in the following result, we
describe boundedness for the NK, ω-class. The results in this section generalizing some results in [19].

Theorem 3.1 Let u ∈ H(D), suppose that ω : (0, 1] −→ [0, ∞), K : [0,∞) → [0,∞) be nondecreasing
right continuous functions with ω(kt) = kω(t) , k > 0, also suppose that condition (4) is satisfied and
α ∈ (0,∞). Then uCφ : NK, ω → H∞

α, ω is bounded if and only if

sup
z∈D

|u(z)|(1− |z|2)α

(1− |φ(z)|2)ω(1− |z|2)) < ∞. (5)

Proof: First assume that (5) holds. Then

‖uCφf‖H∞
α, ω

= sup
z∈D

|u(z)|f(φ(z))
∣∣∣∣
(1− |z|2)α

ω(1− |z|2)

∣∣∣∣

. sup
z∈D

|u(z)|(1− |z|2)α

(1− |φa(z)|2)ω(1− |z|2) sup
z∈D

|f(φ(z))| (1− |φa(z)|2)
ω(1− |φ(z)|2)

. ‖f‖H∞
1, ω

sup
z∈D

|u(z)|(1− |z|2)α

(1− |φa(z)|2)ω(1− |φa(z)|2)
≤ λ‖f‖NK, ω ,

where λ is a positive constant.

Conversely, assume that uCφ : NK, ω → H∞
α, ω is bounded, then

‖uCφf‖H∞
α, ω

. ‖f‖NK, ω
.

Fix a z0 ∈ D, and let hw be the test function in Lemma 2.4 with w = φ(z0). Then

1 & ‖hw‖NK, ω
≥ λ1‖uCφhw‖H∞

α, ω

≥ |u(z0)|(1− |w|2)
|1− wφa(z0)|2)ω(1− |z0|2) (1− |z0|2)α

=
|u(z0)|(1− |z0|2)α

(1− |φa(z0|2))ω(1− |z0|2) ,

where λ1 is a positive constant. The proof of Theorem 3.1 is therefore established.

Theorem 3.2 Let u ∈ H(D), suppose that ω : (0, 1] −→ [0, ∞), K : [0,∞) → [0,∞) be nondecreasing
right continuous functions with ω(kt) = kω(t) , k > 0, also suppose that condition (4) is satisfied and
α ∈ (0,∞). Then the weighted composition operator uCφ : H∞

α, ω → NK, ω is bounded if and only if

sup
a∈D

∫

D

|u(z)|2ω2(1− |φ(z)|2)
(1− |φ(z)|2)2α(ω2(1− |z|2))K(g(z, a))dA(z) < ∞. (6)

Proof: First we assume that condition (6) holds and let

sup
a∈D

∫

D

|u(z)|2ω2(1− |φ(z)|2)
(1− |φ(z)|2)2α(ω2(1− |z|2))K(g(z, a))dA(z) < C,
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where C is a positive constant. If f ∈ H∞
α, ω, then for all a ∈ D we have

‖uCφf‖NK, ω
= sup

a∈D

∫

D
|u(z)|2|f(φ(z)|2 K(g(z, a)

ω2(1− |z|2)dA(z)

= sup
a∈D

∫

D

|u(z)|2
ω2(1− |z|2)

(1− |φ(z)|2)2α|f(φ(z)|2
ω2(1− |φ(z)|2) .

ω2(1− |φ(z)|2)K(g(z, a))
(1− |φ(z)|2)2α

dA(z)

≤ ‖f‖2H∞
α, ω

sup
a∈D

∫

D

|u(z)|2ω2(1− |φ(z)|2)
(1− |φ(z)|2)2α ω2(1− |z|2)K(g(z, a))dA(z)

≤ C‖f‖2H∞
α, ω

.

Conversely, assume that uCφ : H∞
α, ω → NK, ω is bounded, then

‖uCφf‖2NK, ω
. ‖f‖2H∞

α, ω
.

fixing a point z0 ∈ D , with w = φ(z0) then we set that

fw(z) =
ω
(
1− wφ(z0)

)

(1− wz)α
,

it is easy to check that ‖fw‖H∞
α, ω

. 1. Then,

‖uCφfw‖2NK, ω
= sup

a∈D

∫

D

|u(z0)|2ω2(1− |φ(z0)|2)K(g(z0, a))(
1− φ(z0)φ(z0)

)2α
ω2(1− |z0|2)

dA(z0)

= sup
a∈D

∫

D

|u(z0)|2ω2(1− |φ(z0)|2)K(g(z0, a))(
1− |φ(z0)|2

)2α
ω2(1− |z0|2)

dA(z0)

. ‖fw‖2H∞
α, ω

.

Theorem 3.3 Let u ∈ H(D), suppose that ω : (0, 1] −→ [0, ∞), K : [0,∞) → [0,∞) be nondecreasing
right continuous functions with ω(kt) = kω(t) , k > 0, also suppose that condition (4) is satisfied and
α ∈ (0,∞). Then, the operator uCφ : NK, ω → H∞

α, ω is compact if and only if

lim
r→1

sup
|φ(z)|>r

|u(z)|(1− |z|2)α

(1− |φ(z)|2)ω(1− |z|2) = 0. (7)

Proof: First assume that uCφ : NK, ω → H∞
α, ω is compact and suppose that there exists ε0 > 0 a

sequence (zn) ⊂ D such that

|u(zn)|(1− |zn|2)α

(1− |φ(zn)|2)ω(1− |zn|2) ≥ ε0 whenever |φ(zn)| > 1− 1
n

.

Clearly, we can assume that
wn = φ(zn) −→ w0 ∈ ∂D as n →∞.

Let hwn
=

(1− |wn|2)
(1− wnz)2

be the test function in Lemma 2.4. Then hwn
→ hw0 with respect to the compact

open topology. Define fn = hwn − hw0 . Then ‖fn‖NK, ω ≤ 1 (see Lemma 2.4) and fn → 0 uniformly on
compact subsets of D. Thus, ufn ◦ φ → 0 in H∞

α, ω by assumption. But, for n big enough, we obtain

‖uCφfn‖H∞
α, ω

≥ |u(zn)|
∣∣hwn

(φ(zn))− hw0(φ(zn))
∣∣ (1− |zn|2)α

ω(1− |zn|2)

≥ |u(zn)|(1− |zn|2)α

(1− |φ(zn)|2)ω(1− |zn|2)︸ ︷︷ ︸
≥ ε0

∣∣∣∣1−
(1− |wn|2)(1− |w0|2)∣∣1− w0 wn

∣∣
∣∣∣∣

︸ ︷︷ ︸
= 1

,
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which is a contradiction.

Conversely, assume that for all ε > 0 there exists r ∈ (0, 1) such that

|u(z)|(1− |z|2)α

(1− |φ(z)|2)ω(1− |z|2) < ε whenever |φ(z)| > r.

Let (fn)n be a bounded sequence in NK, ω norm which converges to zero on compact subsets of D. Clearly,
we may assume that |φ(z)| > r. Then

‖uCφfn‖H∞
α, ω

= sup
z∈D

|u(z)||fn(φ(z))| (1− |z|
2)α

ω(1− |z|2)

= sup
z∈D

|u(z)|(1− |z|2)α

(1− |φ(z)|2)ω(1− |z|2)
∣∣fn(φ(z))

∣∣(1− |φ(z)|2).

It is not hard to show that
||.||H∞

1, ω
. ||.||NK,ω

.

Thus, we obtain that

‖uCφfn‖H∞
α, ω

≤ ε ‖fn‖H∞
1, ω

≤ ε ‖fn‖NK, ω
≤ ε.

It follows that uCφ is a compact operator. This completes the proof of the theorem.

Remark 3.1 It is still an open problem to extend the results of this paper in Clifford analysis, for several
studies of function spaces in Clifford analysis, we refer to [1, 2, 3, 4, 5, 6] and others.

Remark 3.2 It is still an open problem to study properties for differences of weighted composition oper-
ators between NK, ω and H∞

α, ω classes. For more information of studying differences of weighted compo-
sition operators, we refer to [14, 22, 23, 26] and others.
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1

HERMITE-HADAMARD TYPE INEQUALITIES FOR THE

ABK-FRACTIONAL INTEGRALS

ARTION KASHURI

Abstract. The author introduced the new fractional integral operator calledABK-fractional

integral and proved four identities for this type. By applying the established identities,

some integral inequalities connected with the right hand side of the Hermite-Hadamard type
inequalities for the ABK-fractional integrals are given. Various special cases have been

identified. The ideas of this paper may stimulate further research in the field of integral

inequalities.

1. Introduction

The class of convex functions is well known in the literature and is usually defined in the
following way:

Definition 1.1. Let I be an interval in R. A function f : I −→ R, is said to be convex on I if
the inequality

f(λe1 + (1− λ)e2) ≤ λf(e1) + (1− λ)f(e2) (1.1)

holds for all e1, e2 ∈ I and λ ∈ [0, 1]. Also, we say that f is concave, if the inequality in (1.1)
holds in the reverse direction.

The following inequality, named Hermite-Hadamard inequality, is one of the most famous in-
equalities in the literature for convex functions.

Theorem 1.2. Let f : I ⊆ R −→ R be a convex function and e1, e2 ∈ I with e1 < e2. Then the
following inequality holds:

f

(
e1 + e2

2

)
≤ 1

e2 − e1

∫ e2

e1

f(x)dx ≤ f(e1) + f(e2)

2
. (1.2)

This inequality (1.2) is also known as trapezium inequality.

The trapezium inequality has remained an area of great interest due to its wide applications in
the field of mathematical analysis. Authors of recent decades have studied (1.2) in the premises
of newly invented definitions due to motivation of convex function. Interested readers see the
references [2],[4]-[20],[22]-[27].

In [8], Dragomir and Agarwal proved the following results connected with the right part of
(1.2).

Lemma 1.3. Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, e1, e2 ∈ I◦ with e1 < e2.
If f ′ ∈ L[e1, e2], then the following equality holds:

f(e1) + f(e2)

2
− 1

e2 − e1

∫ e2

e1

f(x)dx =
(e2 − e1)

2

∫ 1

0

(1− 2t)f ′(te1 + (1− t)e2)dt. (1.3)

12010 Mathematics Subject Classification: Primary: 26A09; Secondary: 26A33, 26D10, 26D15, 33E20.
Key words and phrases. Hermite-Hadamard inequality, Hölder inequality, power mean inequality, Katugam-

pola fractional integral, AB-fractional integrals.
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2 A. KASHURI

Theorem 1.4. Let f : I◦ ⊆ R→ R be a differentiable mapping on I◦, e1, e2 ∈ I◦ with e1 < e2.
If |f ′| is convex on [e1, e2], then the following inequality holds:∣∣∣∣f(e1) + f(e2)

2
− 1

e2 − e1

∫ e2

e1

f(x)dx

∣∣∣∣ ≤ (e2 − e1)

8
(|f ′(e1)|+ |f ′(e2)|) . (1.4)

Now, let us recall the following definitions.

Definition 1.5. Xp
c (e1, e2) (c ∈ R), 1 ≤ p ≤ ∞ denotes the space of all complex-valued

Lebesgue measurable functions f for which ‖f‖Xpc <∞, where the norm ‖ · ‖Xpc is defined by

‖f‖Xpc =

(∫ e2

e1

∣∣tcf(t)
∣∣p dt
t

) 1
p

(1 ≤ p <∞)

and for p =∞
‖f‖X∞c = ess sup

e1≤t≤e2

∣∣tcf(t)
∣∣.

Recently, in [12], Katugampola introduced a new fractional integral operator which generalizes
the Riemann-Liouville and Hadamard fractional integrals as follows:

Definition 1.6. Let [e1, e2] ⊂ R be a finite interval. Then, the left and right side Katugampola
fractional integrals of order α (> 0) of f ∈ Xp

c (e1, e2) are defined by

ρIα
e+1
f(x) =

ρ1−α

Γ(α)

∫ x

e1

tρ−1

(xρ − tρ)1−α f(t)dt, x > e1 (1.5)

and
ρIα
e−2
f(x) =

ρ1−α

Γ(α)

∫ e2

x

tρ−1

(tρ − xρ)1−α f(t)dt, x < e2, (1.6)

where ρ > 0, if the integrals exist.

In [3], Atangana and Baleanu produced two new fractional derivatives based on the Caputo
and the Riemann-Liouville definitions of fractional order derivatives. They declared that their
fractional derivative has a fractional integral as the antiderivative of their operators. The
Atangana-Baleanu (AB) fractional order derivative is known to possess nonsingularity as well
as nonlocality of the kernel, which adopts the generalized Mittag-Leffler function, see [15],[21].

Definition 1.7. The fractional AB-integral of the function f ∈ H∗ (e1, e2) is given by

AB
e1 Iνt f(t) =

1− ν
B (ν)

f (t) +
ν

B (ν) Γ (ν)

∫ t

e1

(t− u)
ν−1

f(u)du, t > e1, (1.7)

where e1 < e2, 0 < ν < 1 and B (ν) > 0 satisfies the property B (0) = B (1) = 1.

Similarly, we give the definition of the (1.7) opposite side is given by

AB
e2 Iνt f(t) =

1− ν
B (ν)

f (t) +
ν

B (ν) Γ (ν)

∫ e2

t

(u− t)ν−1
f(u)du, t < e2.

Here, Γ(ν) is the Gamma function. Since the normalization function B (ν) > 0 is positive, it
immediately follows that the fractional AB-integral of a positive function is positive. It should
be noted that, when the order ν → 1, we recover the classical integral. Also, the initial function
is recovered whenever the fractional order ν → 0.

Motivated by the above literatures, the main objective of this paper is to establish some new
estimates for the right hand side of Hermite-Hadamard type integral inequalities for new frac-
tional integral operator called the ABK-fractional integral operator. Various special cases will
be identified. The ideas of this paper may stimulate further research in the field of integral
inequalities.
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HERMITE-HADAMARD TYPE INEQUALITIES FOR THE ABK-FRACTIONAL INTEGRALS 3

2. Hermite-Hadamard inequalities for ABK-fractional integrals

Now, we are in position to introduce the left and right side ABK-fractional integrals as follows.

Definition 2.1. Let [e1, e2] ⊂ R be a finite interval. Then, the left and right side ABK-
fractional integrals of order ν ∈ (0, 1) of f ∈ Xp

c (e1, e2) are defined by

ABK ρ

e+1
Iνt f(t) =

1− ν
B (ν)

f(t) +
ρ1−νν

B(ν)Γ(ν)

∫ t

e1

uρ−1

(tρ − uρ)1−ν f(u)du, t > e1 ≥ 0 (2.1)

and

ABK ρ

e−2
Iνt f(t) =

1− ν
B (ν)

f(t) +
ρ1−νν

B(ν)Γ(ν)

∫ e2

t

uρ−1

(uρ − tρ)1−ν f(u)du, t < e2, (2.2)

where ρ > 0 and B (ν) > 0 satisfies the property B (0) = B (1) = 1.

Remark 2.2. Since the normalization function B (ν) > 0 is positive, it immediately follows that
the fractional ABK-integral of a positive function is positive. It should be noted that, when the
ρ → 1, we recover the AB-fractional integral. Also, using the same idea as in [12], the ABK-
fractional integral operators are well-defined on Xp

c (e1, e2) . Finally, using the same idea as in
[1], the interested reader can find new nonlocal fractional derivative of it with Mittag-Leffler
nonsingular kernel, several formulae and many applications.

Let represent Hermite-Hadamard’s inequalities in the ABK-fractional integral forms as follows:

Theorem 2.3. Let ν ∈ (0, 1) and ρ > 0. Let f : [eρ1, e
ρ
2] → R be a function with 0 ≤ e1 < e2

and f ∈ Xp
c (eρ1, e

ρ
2) . If f is a convex function on [eρ1, e

ρ
2], then the following inequalities for the

ABK-fractional integrals hold:

2 (eρ2 − e
ρ
1)
ν

B (ν) Γ (ν + 1) ρ2−ν f

(
eρ1 + eρ2

2

)
+

1− ν
B (ν)

[f(eρ1) + f(eρ2)]

≤
[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]
(2.3)

≤
(

(eρ2 − e
ρ
1)ν + ρ(1− ν)Γ(ν)

ρB (ν) Γ(ν)

)
[f(eρ1) + f(eρ2)] .

Proof. Let t ∈ [0, 1]. Consider xρ, yρ ∈ [eρ1, e
ρ
2], defined by xρ = tρeρ1 + (1 − tρ)eρ2, yρ = (1 −

tρ)eρ1 + tρeρ2. Since f is a convex function on [eρ1, e
ρ
2], we have

f

(
xρ + yρ

2

)
≤ f (xρ) + f (yρ)

2
.

Then, we get

2f

(
eρ1 + eρ2

2

)
≤ f (tρeρ1 + (1− tρ)eρ2) + f ((1− tρ)eρ1 + tρeρ2) . (2.4)

Multiplying both sides of (2.4) by ν
B(ν)Γ(ν) t

ρν−1, then integrating the resulting inequality with

respect to t over [0, 1], we obtain

2

ρB (ν) Γ (ν)
f

(
eρ1 + eρ2

2

)

≤ ν

B (ν) Γ (ν)

∫ 1

0

tρν−1f (tρeρ1 + (1− tρ)eρ2) dt+
ν

B (ν) Γ (ν)

∫ 1

0

tρν−1f ((1− tρ)eρ1 + tρeρ2) dt

=
ν

B (ν) Γ (ν)

∫ e2

e1

(
eρ2 − xρ

eρ2 − e
ρ
1

)ν−1

f(xρ)
xρ−1

eρ2 − e
ρ
1

dx
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4 A. KASHURI

+
ν

B (ν) Γ (ν)

∫ e2

e1

(
yρ − eρ1
eρ2 − e

ρ
1

)ν−1

f(yρ)
yρ−1

eρ2 − e
ρ
1

dy

Therefore, it follows that

2 (eρ2 − e
ρ
1)
ν

B (ν) Γ (ν + 1) ρ2−ν f

(
eρ1 + eρ2

2

)
+

1− ν
B (ν)

[f(eρ1) + f(eρ2)]

≤
[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]
and the left hand side inequality of (2.3) is proved.
For the proof of the right hand side inequality of (2.3) we first note that if f is a convex function,
then

f (tρeρ1 + (1− tρ)eρ2) ≤ tρf(eρ1) + (1− tρ) f(eρ2)

and

f ((1− tρ)eρ1 + tρeρ2) ≤ (1− tρ) f(eρ1) + tρf(eρ2).

By adding these inequalities, we have

f (tρeρ1 + (1− tρ)eρ2) + f ((1− tρ)eρ1 + tρeρ2) ≤ f(eρ1) + f(eρ2). (2.5)

Then multiplying both sides of (2.5) by ν
B(ν)Γ(ν) t

ρν−1 and integrating the resulting inequality

with respest to t over [0, 1], we obtain

ν

B (ν) Γ (ν)

∫ 1

0

tρν−1f (tρeρ1 + (1− tρ)eρ2) dt+
ν

B (ν) Γ (ν)

∫ 1

0

tρν−1f ((1− tρ)eρ1 + tρeρ2) dt

≤ ν

B (ν) Γ (ν)
[f(eρ1) + f(eρ2)]

∫ 1

0

tρν−1dt

i.e. [
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]
≤

(
(eρ2 − e

ρ
1)ν + ρ(1− ν)Γ(ν)

ρB (ν) Γ(ν)

)
[f(eρ1) + f(eρ2)] .

The proof of this theorem is complete. �

Corollary 2.4. If we take ρ → 1 in Theorem 2.3, then the following Hermite-Hadamard’s
inequalities for the AB-fractional integrals hold:

2 (e2 − e1)
ν

B (ν) Γ (ν + 1)
f

(
e1 + e2

2

)
+

1− ν
B (ν)

[f(e1) + f(e2)]

≤
[
AB
e1 Iνe2f(e2) + AB

e2 Iνe1f(e1)
]

(2.6)

≤
(

(e2 − e1)ν + (1− ν)Γ(ν)

B (ν) Γ(ν)

)
[f(e1) + f(e2)] .

Remark 2.5. If in Corollary 2.4, we let ν → 1, then the inequalities (2.6) become the inequalities
(1.2).

3. The ABK-fractional inequalities for convex functions

For establishing some new results regarding the right side of Hermite-Hadamard type inequal-
ities for the ABK-fractional integrals we need to prove the following four lemmas.

Lemma 3.1. Let ν ∈ (0, 1) and ρ > 0 and f : [eρ1, e
ρ
2] → R be a differentiable mapping on

(eρ1, e
ρ
2) with 0 ≤ e1 < e2. Then the following equality for the ABK-fractional integrals exist:(

(eρ2 − e
ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]
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=
(eρ2 − e

ρ
1)
ν+1

ρνB (ν) Γ (ν)

∫ 1

0

[(1− tρ)ν − tρν ] tρ−1f ′ (tρeρ1 + (1− tρ)eρ2) dt. (3.1)

Proof. Integrating by parts, we get

I1 =

∫ 1

0

(1− tρ)ν tρ−1f ′ (tρeρ1 + (1− tρ) eρ2) dt

=
(1− tρ)ν

ρ(eρ1 − e
ρ
2)
f (tρeρ1 + (1− tρ) eρ2)

∣∣∣∣1
0

− ν

eρ1 − e
ρ
2

∫ 1

0

(1− tρ)ν−1
tρ−1f (tρeρ1 + (1− tρ) eρ2) dt

=
f(eρ2)

ρ(eρ2 − e
ρ
1)
− ν

eρ1 − e
ρ
2

∫ 1

0

(1− tρ)ν−1
tρ−1f (tρeρ1 + (1− tρ) eρ2) dt.

Similarly,

I2 =

∫ 1

0

tρ(ν+1)−1f ′ (tρeρ1 + (1− tρ) eρ2) dt

=
tρ(ν+1)−1

ρ(eρ1 − e
ρ
2)
f (tρeρ1 + (1− tρ) eρ2)

∣∣∣∣1
0

− ν

eρ1 − e
ρ
2

∫ 1

0

tρ(ν+1)f (tρeρ1 + (1− tρ) eρ2) dt

= − f(eρ1)

ρ(eρ2 − e
ρ
1)
− ν

eρ1 − e
ρ
2

∫ 1

0

tρ(ν+1)f (tρeρ1 + (1− tρ) eρ2) dt.

Thus, by multiplying I1 and I2 with
(eρ2 − e

ρ
1)
ν+1

ρνB (ν) Γ (ν)
, using definition of the ABK-fractional

integrals and subtracting them, we get the result. �

Remark 3.2. If in Lemma 3.1, we let ρ → 1, then we get the following equality for the AB-
fractional integrals:(

(e2 − e1)
ν

B (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(e1) + f(e2)]−

[
AB
e1 Iνe2f(e2) + AB

e2 Iνe1f(e1)
]

=
(e2 − e1)

ν+1

B (ν) Γ (ν)

∫ 1

0

[(1− t)ν − tν ] f ′ (te1 + (1− t)e2) dt. (3.2)

Remark 3.3. If in Lemma 3.1, we let ρ, ν → 1, then we obtain the equality (1.3).

Lemma 3.4. Let ν ∈ (0, 1) and ρ > 0 and f : [eρ1, e
ρ
2] → R be a differentiable mapping on

(eρ1, e
ρ
2) with 0 ≤ e1 < e2. Then the following equality for the ABK-fractional integrals exist:(

(eρ2 − e
ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]
=

(eρ2 − e
ρ
1)
ν+1

ρν−1B (ν) Γ (ν)

∫ 1

0

tρ(ν+1)−1
[
f ′ ((1− tρ)eρ1 + tρeρ2)− f ′ (tρeρ1 + (1− tρ)eρ2)

]
dt. (3.3)

Proof. The proof is similarly as Lemma 3.1, so we omit it. �

Remark 3.5. If in Lemma 3.4, we let ρ → 1, then we get the following equality for the AB-
fractional integrals:(

(e2 − e1)
ν

B (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(e1) + f(e2)]−

[
AB
e1 Iνe2f(e2) + AB

e2 Iνe1f(e1)
]

=
(e2 − e1)

ν+1

B (ν) Γ (ν)

∫ 1

0

tν
[
f ′ ((1− t)e1 + te2)− f ′ (te1 + (1− t)e2)

]
dt. (3.4)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.2, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

313 KASHURI  309-326



6 A. KASHURI

Lemma 3.6. Let ν ∈ (0, 1) and ρ > 0 and f : [eρ1, e
ρ
2]→ R be a twice differentiable mapping on

(eρ1, e
ρ
2) with 0 ≤ e1 < e2. Then the following equality for the ABK-fractional integrals exist:(

(eρ2 − e
ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]
=

ν (eρ2 − e
ρ
1)
ν+2

ρν−1B (ν) Γ (ν + 2)
×

{∫ 1

0

[
1− tρ(ν+1)

]
tρ−1f ′′ ((1− tρ)eρ1 + tρeρ2) dt

−
∫ 1

0

tρ(ν+2)−1f ′′ (tρeρ1 + (1− tρ)eρ2) dt

}
.

Proof. By using twice integration by parts the proof is similarly as Lemma 3.1, so we omit
it. �

Remark 3.7. If in Lemma 3.6, we let ρ → 1, then we get the following equality for the AB-
fractional integrals:(

(e2 − e1)
ν

B (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(e1) + f(e2)]−

[
AB
e1 Iνe2f(e2) + AB

e2 Iνe1f(e1)
]

=
ν (e2 − e1)

ν+2

B (ν) Γ (ν + 2)

×

{∫ 1

0

[
1− tν+1

]
f ′′ ((1− t)e1 + te2) dt−

∫ 1

0

tν+1f ′′ (te1 + (1− t)e2) dt

}
.

Lemma 3.8. Let ν ∈ (0, 1) and ρ > 0 and f : [eρ1, e
ρ
2]→ R be a twice differentiable mapping on

(eρ1, e
ρ
2) with 0 ≤ e1 < e2. Then the following equality for the ABK-fractional integrals exist:(

(eρ2 − e
ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]
=

ν (eρ2 − e
ρ
1)
ν+2

ρνB (ν) Γ (ν + 2)

∫ 1

0

[
1− (1− tρ)ν+1 − tρ(ν+1)

]
tρ−1f ′′ (tρeρ1 + (1− tρ)eρ2) dt. (3.5)

Proof. By using twice integration by parts and Lemma 3.1, we get the desired result. �

Remark 3.9. If in Lemma 3.8, we let ρ → 1, then we get the following equality for the AB-
fractional integrals:(

(e2 − e1)
ν

B (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(e1) + f(e2)]−

[
AB
e1 Iνe2f(e2) + AB

e2 Iνe1f(e1)
]

=
ν (e2 − e1)

ν+2

B (ν) Γ (ν + 2)

∫ 1

0

[
1− (1− t)ν+1 − tν+1

]
f ′′ (te1 + (1− t)e2) dt. (3.6)

Using Lemmas 3.1, 3.4, 3.6 and 3.8, we can obtain the following the ABK-fractional integral
inequalities.

Theorem 3.10. Let ν ∈ (0, 1) and ρ > 0 and f : [eρ1, e
ρ
2] → R be a differentiable mapping

on (eρ1, e
ρ
2) with 0 ≤ e1 < e2. If |f ′|q is convex on [eρ1, e

ρ
2] for q > 1 and 1

p + 1
q = 1, then the

following inequality for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e
ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ ν (eρ2 − e

ρ
1)
ν+1

ρν+ 1
qB (ν) Γ (ν)

× p
√
D(p, ρ, ν)

q

√∣∣f ′(eρ1)
∣∣q +

∣∣f ′(eρ2)
∣∣q

2
, (3.7)
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where

D(p, ρ, ν) :=

∫ 1
2

0

[
(1− tρ)pν − tpρν

]
tρ−1dt+

∫ 1

1
2

[
tpρν − (1− tρ)pν

]
tρ−1dt

=
2

ρ(pν + 1)

{
1−

(
1− 1

2ρ

)pν+1

− 1

2ρ(pν+1)

}
.

Proof. Using Lemma 3.1, convexity of |f ′|q , Hölder inequality and properties of the modulus,
we have ∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ ν (eρ2 − e

ρ
1)
ν+1

ρνB (ν) Γ (ν)

×
(∫ 1

0

∣∣∣(1− tρ)ν − tρν∣∣∣ptρ−1dt

) 1
p
(∫ 1

0

tρ−1
∣∣∣f ′ (tρeρ1 + (1− tρ)eρ2)

∣∣∣qdt) 1
q

≤ ν (eρ2 − e
ρ
1)
ν+1

ρνB (ν) Γ (ν)

(∫ 1
2

0

[
(1− tρ)pν − tpρν

]
tρ−1dt+

∫ 1

1
2

[
tpρν − (1− tρ)pν

]
tρ−1dt

) 1
p

×
(∫ 1

0

tρ−1
(
tρ
∣∣f ′(eρ1)

∣∣q + (1− tρ)
∣∣f ′′(eρ2)

∣∣q) dt) 1
q

=
ν (eρ2 − e

ρ
1)
ν+1

ρν+ 1
qB (ν) Γ (ν)

× p
√
D(p, ρ, ν)

q

√∣∣f ′(eρ1)
∣∣q +

∣∣f ′(eρ2)
∣∣q

2
.

The proof of this theorem is complete. �

Corollary 3.11. With the notations in Theorem 3.10, if we take |f ′| ≤ K, the following
inequality for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ νK (eρ2 − e

ρ
1)
ν+1

ρν+ 1
qB (ν) Γ (ν)

× p
√
D(p, ρ, ν). (3.8)

Corollary 3.12. With the notations in Theorem 3.10, if we take ρ→ 1, the following inequality
for the AB-fractional integrals holds:∣∣∣∣( (e2 − e1)

ν

B (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(e1) + f(e2)]−

[
AB
e1 Iνe2f(e2) + AB

e2 Iνe1f(e1)
]∣∣∣∣

≤ ν (e2 − e1)
ν+1

B (ν) Γ (ν)
× p
√
D(p, 1, ν)

q

√∣∣f ′(e1)
∣∣q +

∣∣f ′(e2)
∣∣q

2
. (3.9)

Theorem 3.13. Let ν ∈ (0, 1) and ρ > 0 and f : [eρ1, e
ρ
2] → R be a differentiable mapping on

(eρ1, e
ρ
2) with 0 ≤ e1 < e2. If |f ′|q is convex on [eρ1, e

ρ
2] for q ≥ 1, then the following inequality

for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e
ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ ν (eρ2 − e

ρ
1)
ν+1

ρνB (ν) Γ (ν)
[D(1, ρ, ν)]

1− 1
q (3.10)
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×
{
E(ρ, ν)

∣∣f ′(eρ1)
∣∣q + (F (ρ, ν)− E(ρ, ν))

∣∣f ′(eρ2)
∣∣q

+ G(ρ, ν)
∣∣f ′(eρ1)

∣∣q + (F (ρ, ν)−G(ρ, ν))
∣∣f ′(eρ2)

∣∣q} 1
q

,

where

E(ρ, ν) :=

∫ 1
2

0

[
(1− tρ)ν − tρν

]
t2ρ−1dt =

1

ρ

[
β

(
1

2ρ
; 2, ν + 1

)
− 1

2ρ(ν+2)(ν + 2)

]
;

F (ρ, ν) :=

∫ 1
2

0

[
(1− tρ)ν − tρν

]
tρ−1dt =

∫ 1

1
2

[
tρν − (1− tρ)ν

]
tρ−1dt

=
1

ρ(ν + 1)

[
1−

(
1− 1

2ρ

)ν+1

− 1

2ρ(ν+1)

]
;

G(ρ, ν) :=

∫ 1

1
2

[
tρν − (1− tρ)ν

]
t2ρ−1dt =

1

ρ

[
1− 1

2ρ(ν+2)

ν + 2
+ β

(
1

2ρ
; 2, ν + 1

)
− β(2, ν + 1)

]
,

where β(· ; ·, ·), β(·, ·) are respectively the incomplete and complete beta functions and D(1, ρ, ν)
is defined as in Theorem 3.10 for value p = 1.

Proof. Using Lemma 3.1, convexity of |f ′|q , the well-known power mean inequality and prop-
erties of the modulus, we have∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ ν (eρ2 − e

ρ
1)
ν+1

ρνB (ν) Γ (ν)

(∫ 1

0

∣∣∣(1− tρ)ν − tρν∣∣∣tρ−1dt

)1− 1
q

×
(∫ 1

0

∣∣∣(1− tρ)ν − tρν∣∣∣tρ−1
∣∣∣f ′ (tρeρ1 + (1− tρ)eρ2)

∣∣∣qdt) 1
q

≤ ν (eρ2 − e
ρ
1)
ν+1

ρνB (ν) Γ (ν)
[D(1, ρ, ν)]

1− 1
q

×

{∫ 1
2

0

[
(1− tρ)ν − tρν

]
tρ−1

(
tρ
∣∣f ′(eρ1)

∣∣q + (1− tρ)
∣∣f ′(eρ2)

∣∣q) dt
+

∫ 1

1
2

[
tρν − (1− tρ)ν

]
tρ−1

(
tρ
∣∣f ′(eρ1)

∣∣q + (1− tρ)
∣∣f ′(eρ2)

∣∣q) dt} 1
q

=
ν (eρ2 − e

ρ
1)
ν+1

ρνB (ν) Γ (ν)
[D(1, ρ, ν)]

1− 1
q

×
{
E(ρ, ν)

∣∣f ′(eρ1)
∣∣q + (F (ρ, ν)− E(ρ, ν))

∣∣f ′(eρ2)
∣∣q

+ G(ρ, ν)
∣∣f ′(eρ1)

∣∣q + (F (ρ, ν)−G(ρ, ν))
∣∣f ′(eρ2)

∣∣q} 1
q

.

The proof of this theorem is complete. �
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Corollary 3.14. With the notations in Theorem 3.13, if we take |f ′| ≤ K, the following
inequality for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ νK (eρ2 − e

ρ
1)
ν+1

ρνB (ν) Γ (ν)
[D(1, ρ, ν)] . (3.11)

Corollary 3.15. With the notations in Theorem 3.13, if we take ρ→ 1, the following inequality
for the AB-fractional integrals holds:∣∣∣∣( (e2 − e1)

ν

B (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(e1) + f(e2)]−

[
AB
e1 Iνe2f(e2) + AB

e2 Iνe1f(e1)
]∣∣∣∣

≤ ν (e2 − e1)
ν+1

B (ν) Γ (ν)
[D(1, 1, ν)]

1− 1
q

×
{
E(1, ν)

∣∣f ′(e1)
∣∣q + (F (1, ν)− E(1, ν))

∣∣f ′(e2)
∣∣q (3.12)

+ G(1, ν)
∣∣f ′(e1)

∣∣q + (F (1, ν)−G(1, ν))
∣∣f ′(e2)

∣∣q} 1
q

. (3.13)

Theorem 3.16. Let ν ∈ (0, 1) and ρ > 0 and f : [eρ1, e
ρ
2] → R be a differentiable mapping

on (eρ1, e
ρ
2) with 0 ≤ e1 < e2. If |f ′|q is convex on [eρ1, e

ρ
2] for q > 1 and 1

p + 1
q = 1, then the

following inequality for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e
ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ (eρ2 − e

ρ
1)
ν+1

ρν−1B (ν) Γ (ν)
× 1

p
√
p(ρ(ν + 1)− 1) + 1

1
q
√
ρ+ 1

(3.14)

×

{
q

√
|f ′(eρ1)|q + ρ|f ′(eρ2)|q + q

√
ρ|f ′(eρ1)|q + |f ′(eρ2)|q

}
.

Proof. Using Lemma 3.4, convexity of |f ′|q , Hölder inequality and properties of the modulus,
we have ∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ (eρ2 − e

ρ
1)
ν+1

ρν−1B (ν) Γ (ν)
×
(∫ 1

0

tp(ρ(ν+1)−1)dt

) 1
p

×

{(∫ 1

0

∣∣∣f ′ (tρeρ1 + (1− tρ)eρ2)
∣∣∣qdt) 1

q

+

(∫ 1

0

∣∣∣f ′ ((1− tρ)eρ1 + tρeρ2)
∣∣∣qdt) 1

q

}

≤ (eρ2 − e
ρ
1)
ν+1

ρν−1B (ν) Γ (ν)
×
(∫ 1

0

tp(ρ(ν+1)−1)dt

) 1
p

×

{(∫ 1

0

(
tρ
∣∣f ′(eρ1)

∣∣q + (1− tρ)
∣∣f ′(eρ2)

∣∣q) dt) 1
q

+

(∫ 1

0

(
(1− tρ)

∣∣f ′(eρ1)
∣∣q + tρ

∣∣f ′(eρ2)
∣∣q) dt) 1

q

}

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.2, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

317 KASHURI  309-326



10 A. KASHURI

=
(eρ2 − e

ρ
1)
ν+1

ρν−1B (ν) Γ (ν)
× 1

p
√
p(ρ(ν + 1)− 1) + 1

1
q
√
ρ+ 1

×

{
q

√
|f ′(eρ1)|q + ρ|f ′(eρ2)|q + q

√
ρ|f ′(eρ1)|q + |f ′(eρ2)|q

}
.

The proof of this theorem is complete. �

Corollary 3.17. With the notations in Theorem 3.16, if we take |f ′| ≤ K, the following
inequality for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ 2K (eρ2 − e

ρ
1)
ν+1

ρν−1B (ν) Γ (ν)
× 1

p
√
p(ρ(ν + 1)− 1) + 1

. (3.15)

Corollary 3.18. With the notations in Theorem 3.16, if we take ρ→ 1, the following inequality
for the AB-fractional integrals holds:∣∣∣∣( (e2 − e1)

ν

B (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(e1) + f(e2)]−

[
AB
e1 Iνe2f(e2) + AB

e2 Iνe1f(e1)
]∣∣∣∣

≤ 2 (e2 − e1)
ν+1

p
√
pν + 1B (ν) Γ (ν)

× q

√
|f ′(e1)|q + |f ′(e2)|q

2
. (3.16)

Theorem 3.19. Let ν ∈ (0, 1) and ρ > 0 and f : [eρ1, e
ρ
2] → R be a differentiable mapping on

(eρ1, e
ρ
2) with 0 ≤ e1 < e2. If |f ′|q is convex on [eρ1, e

ρ
2] for q ≥ 1, then the following inequality

for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e
ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ ν (eρ2 − e

ρ
1)
ν+1

ρν q
√
ν + 2B (ν) Γ (ν + 2)

(3.17)

×

{
q

√
|f ′(eρ1)|q + (ν + 1)|f ′(eρ2)|q + q

√
(ν + 1)|f ′(eρ1)|q + |f ′(eρ2)|q

}
.

Proof. Using Lemma 3.4, convexity of |f ′|q , the well-known power mean inequality and prop-
erties of the modulus, we have∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ (eρ2 − e

ρ
1)
ν+1

ρν−1B (ν) Γ (ν)
×
(∫ 1

0

tρ(ν+1)−1dt

)1− 1
q

×

{(∫ 1

0

tρ(ν+1)−1
∣∣∣f ′ (tρeρ1 + (1− tρ)eρ2)

∣∣∣qdt) 1
q

+

(∫ 1

0

tρ(ν+1)−1
∣∣∣f ′ ((1− tρ)eρ1 + tρeρ2)

∣∣∣qdt) 1
q

}

≤ (eρ2 − e
ρ
1)
ν+1

ρν−1B (ν) Γ (ν)
×
(∫ 1

0

tρ(ν+1)−1dt

)1− 1
q
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×

{(∫ 1

0

tρ(ν+1)−1
(
tρ
∣∣f ′(eρ1)

∣∣q + (1− tρ)
∣∣f ′(eρ2)

∣∣q) dt) 1
q

+

(∫ 1

0

tρ(ν+1)−1
(
(1− tρ)

∣∣f ′(eρ1)
∣∣q + tρ

∣∣f ′(eρ2)
∣∣q) dt) 1

q

}

=
ν (eρ2 − e

ρ
1)
ν+1

ρν q
√
ν + 2B (ν) Γ (ν + 2)

×

{
q

√
|f ′(eρ1)|q + (ν + 1)|f ′(eρ2)|q + q

√
(ν + 1)|f ′(eρ1)|q + |f ′(eρ2)|q

}
.

The proof of this theorem is complete. �

Corollary 3.20. With the notations in Theorem 3.19, if we take |f ′| ≤ K, the following
inequality for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ 2νK (eρ2 − e

ρ
1)
ν+1

ρνB (ν) Γ (ν + 2)
. (3.18)

Corollary 3.21. With the notations in Theorem 3.19, if we take ρ→ 1, the following inequality
for the AB-fractional integrals holds:∣∣∣∣( (e2 − e1)

ν

B (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(e1) + f(e2)]−

[
AB
e1 Iνe2f(e2) + AB

e2 Iνe1f(e1)
]∣∣∣∣

≤ ν (e2 − e1)
ν+1

q
√
ν + 2B (ν) Γ (ν + 2)

(3.19)

×

{
q
√
|f ′(e1)|q + (ν + 1)|f ′(e2)|q + q

√
(ν + 1)|f ′(e1)|q + |f ′(e2)|q

}
.

Theorem 3.22. Let ν ∈ (0, 1) and ρ > 0 and f : [eρ1, e
ρ
2]→ R be a twice differentiable mapping

on (eρ1, e
ρ
2) with 0 ≤ e1 < e2. If |f ′′|q is convex on [eρ1, e

ρ
2] for q > 1 and 1

p + 1
q = 1, then the

following inequality for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e
ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ ν (eρ2 − e

ρ
1)
ν+2

ρν−1B (ν) Γ (ν + 2)
×

{
1

ρ
p

√
p(ν + 1)

p(ν + 1) + 1

q

√
|f ′′(eρ1)|q + |f ′′(eρ2)|q

2
(3.20)

+
1

p
√
p(ρ(ν + 2)− 1) + 1

q

√
|f ′′(eρ1)|q + ρ|f ′′(eρ2)|q

ρ+ 1

}
.

Proof. Using Lemma 3.6, convexity of |f ′′|q , Hölder inequality and properties of the modulus,
we have ∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ ν (eρ2 − e

ρ
1)
ν+2

ρν−1B (ν) Γ (ν + 2)
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×

{(∫ 1

0

∣∣∣1− tρ(ν+1)
∣∣∣ptρ−1dt

) 1
p
(∫ 1

0

tρ−1
∣∣∣f ′′ ((1− tρ)eρ1 + tρeρ2)

∣∣∣qdt) 1
q

+

(∫ 1

0

tp(ρ(ν+2)−1)dt

) 1
p
(∫ 1

0

∣∣∣f ′′ (tρeρ1 + (1− tρ)eρ2)
∣∣∣qdt) 1

q

}

≤ ν (eρ2 − e
ρ
1)
ν+2

ρν−1B (ν) Γ (ν + 2)

×

{(∫ 1

0

∣∣∣1− tρ(ν+1)
∣∣∣ptρ−1dt

) 1
p
(∫ 1

0

tρ−1
(
(1− tρ)

∣∣f ′′(eρ1)
∣∣q + tρ

∣∣f ′′(eρ2)
∣∣q) dt) 1

q

+

(∫ 1

0

tp(ρ(ν+2)−1)dt

) 1
p
(∫ 1

0

(
tρ
∣∣f ′′(eρ1)

∣∣q + (1− tρ)
∣∣f ′′(eρ2)

∣∣q) dt) 1
q

}

=
ν (eρ2 − e

ρ
1)
ν+2

ρν−1B (ν) Γ (ν + 2)
×

{
1

ρ
p

√
p(ν + 1)

p(ν + 1) + 1

q

√
|f ′′(eρ1)|q + |f ′′(eρ2)|q

2

+
1

p
√
p(ρ(ν + 2)− 1) + 1

q

√
|f ′′(eρ1)|q + ρ|f ′′(eρ2)|q

ρ+ 1

}
.

The proof of this theorem is complete. �

Corollary 3.23. With the notations in Theorem 3.22, if we take |f ′′| ≤ K, the following
inequality for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ νK (eρ2 − e

ρ
1)
ν+2

ρν−1B (ν) Γ (ν + 2)
×

{
1

ρ
p

√
p(ν + 1)

p(ν + 1) + 1
+

1
p
√
p(ρ(ν + 2)− 1) + 1

}
. (3.21)

Corollary 3.24. With the notations in Theorem 3.22, if we take ρ→ 1, the following inequality
for the AB-fractional integrals holds:∣∣∣∣( (e2 − e1)

ν

B (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(e1) + f(e2)]−

[
AB
e1 Iνe2f(e2) + AB

e2 Iνe1f(e1)
]∣∣∣∣

≤ ν (e2 − e1)
ν+2

B (ν) Γ (ν + 2)
×

[
p
√
p(ν + 1) + 1

]
p
√
p(ν + 1) + 1

q

√
|f ′′(e1)|q + |f ′′(e2)|q

2
(3.22)

Theorem 3.25. Let ν ∈ (0, 1) and ρ > 0 and f : [eρ1, e
ρ
2]→ R be a twice differentiable mapping

on (eρ1, e
ρ
2) with 0 ≤ e1 < e2. If |f ′′|q is convex on [eρ1, e

ρ
2] for q ≥ 1, then the following inequality

for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e
ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ ν (eρ2 − e

ρ
1)
ν+2

ρν−1B (ν) Γ (ν + 2)
(3.23)

×

{(
ν + 1

ρ(ν + 2)

)1− 1
q

q

√
(ν + 1)(ν + 4)

2ρ(ν + 2)(ν + 3)

∣∣f ′′(eρ1)
∣∣q +

(ν + 1)

2ρ(ν + 3)

∣∣f ′′(eρ2)
∣∣q
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+

(
1

ρ(ν + 2)

)1− 1
q

q

√
1

ρ(ν + 3)

∣∣f ′′(eρ1)
∣∣q +

1

ρ(ν + 2)(ν + 3)

∣∣f ′′(eρ2)
∣∣q}.

Proof. Using Lemma 3.6, convexity of |f ′′|q , the well-known power mean inequality and prop-
erties of the modulus, we have∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ ν (eρ2 − e

ρ
1)
ν+2

ρν−1B (ν) Γ (ν + 2)

×

{(∫ 1

0

[
1− tρ(ν+1)

]
tρ−1dt

)1− 1
q
(∫ 1

0

[
1− tρ(ν+1)

]
tρ−1

∣∣∣f ′′ ((1− tρ)eρ1 + tρeρ2)
∣∣∣qdt) 1

q

+

(∫ 1

0

tρ(ν+2)−1dt

)1− 1
q
(∫ 1

0

tρ(ν+2)−1
∣∣∣f ′′ (tρeρ1 + (1− tρ)eρ2)

∣∣∣qdt) 1
q

}

≤ ν (eρ2 − e
ρ
1)
ν+2

ρν−1B (ν) Γ (ν + 2)
×

{(∫ 1

0

[
1− tρ(ν+1)

]
tρ−1dt

)1− 1
q

×
(∫ 1

0

[
1− tρ(ν+1)

]
tρ−1

(
(1− tρ)

∣∣f ′′(eρ1)
∣∣q + tρ

∣∣f ′′(eρ2)
∣∣q) dt) 1

q

+

(∫ 1

0

tρ(ν+2)−1dt

) 1
p
(∫ 1

0

tρ(ν+2)−1
(
tρ
∣∣f ′′(eρ1)

∣∣q + (1− tρ)
∣∣f ′′(eρ2)

∣∣q) dt) 1
q

}

=
ν (eρ2 − e

ρ
1)
ν+2

ρν−1B (ν) Γ (ν + 2)

×

{(
ν + 1

ρ(ν + 2)

)1− 1
q

q

√
(ν + 1)(ν + 4)

2ρ(ν + 2)(ν + 3)

∣∣f ′′(eρ1)
∣∣q +

(ν + 1)

2ρ(ν + 3)

∣∣f ′′(eρ2)
∣∣q

+

(
1

ρ(ν + 2)

)1− 1
q

q

√
1

ρ(ν + 3)

∣∣f ′′(eρ1)
∣∣q +

1

ρ(ν + 2)(ν + 3)

∣∣f ′′(eρ2)
∣∣q}.

The proof of this theorem is complete. �

Corollary 3.26. With the notations in Theorem 3.25, if we take |f ′′| ≤ K, the following
inequality for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ νK (eρ2 − e

ρ
1)
ν+2

ρνB (ν) Γ (ν + 2)
. (3.24)

Corollary 3.27. With the notations in Theorem 3.25, if we take ρ→ 1, the following inequality
for the AB-fractional integrals holds:∣∣∣∣( (e2 − e1)

ν

B (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(e1) + f(e2)]−

[
AB
e1 Iνe2f(e2) + AB

e2 Iνe1f(e1)
]∣∣∣∣

≤ ν (e2 − e1)
ν+2

B (ν) Γ (ν + 2)
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×

{(
ν + 1

ν + 2

)
q

√
(ν + 4)

∣∣f ′′(e1)
∣∣q + (ν + 2)

∣∣f ′′(e2)
∣∣q

2(ν + 3)

+
1

(ν + 2) q
√
ν + 3

q

√
(ν + 2)

∣∣f ′′(e1)
∣∣q +

∣∣f ′′(e2)
∣∣q}.

Theorem 3.28. Let ν ∈ (0, 1) and ρ > 0 and f : [eρ1, e
ρ
2]→ R be a twice differentiable mapping

on (eρ1, e
ρ
2) with 0 ≤ e1 < e2. If |f ′′|q is convex on [eρ1, e

ρ
2] for q > 1 and 1

p + 1
q = 1, then the

following inequality for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e
ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ ν (eρ2 − e

ρ
1)
ν+2

ρν+1B (ν) Γ (ν + 2)
p

√
p(ν + 1)− 1

p(ν + 1) + 1

q

√∣∣f ′′(eρ1)
∣∣q +

∣∣f ′′(eρ2)
∣∣q

2
. (3.25)

Proof. Using Lemma 3.8, convexity of |f ′′|q , Hölder inequality and properties of the modulus,
we have∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ ν (eρ2 − e

ρ
1)
ν+2

ρνB (ν) Γ (ν + 2)

×
(∫ 1

0

∣∣∣1− (1− tρ)ν+1 − tρ(ν+1)
∣∣∣ptρ−1dt

) 1
p
(∫ 1

0

tρ−1
∣∣∣f ′′ (tρeρ1 + (1− tρ)eρ2)

∣∣∣qdt) 1
q

≤ ν (eρ2 − e
ρ
1)
ν+2

ρν+ 1
pB (ν) Γ (ν + 2)

p

√
p(ν + 1)− 1

p(ν + 1) + 1
×
(∫ 1

0

tρ−1
(
tρ
∣∣f ′′(eρ1)

∣∣q + (1− tρ)
∣∣f ′′(eρ2)

∣∣q) dt) 1
q

=
ν (eρ2 − e

ρ
1)
ν+2

ρν+1B (ν) Γ (ν + 2)
p

√
p(ν + 1)− 1

p(ν + 1) + 1

q

√∣∣f ′′(eρ1)
∣∣q +

∣∣f ′′(eρ2)
∣∣q

2
.

The proof of this theorem is complete. �

Corollary 3.29. With the notations in Theorem 3.28, if we take |f ′′| ≤ K, the following
inequality for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ νK (eρ2 − e

ρ
1)
ν+2

ρν+1B (ν) Γ (ν + 2)
p

√
p(ν + 1)− 1

p(ν + 1) + 1
. (3.26)

Corollary 3.30. With the notations in Theorem 3.28, if we take ρ→ 1, the following inequality
for the AB-fractional integrals holds:∣∣∣∣( (e2 − e1)

ν

B (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(e1) + f(e2)]−

[
AB
e1 Iνe2f(e2) + AB

e2 Iνe1f(e1)
]∣∣∣∣

≤ ν (e2 − e1)
ν+2

B (ν) Γ (ν + 2)
p

√
p(ν + 1)− 1

p(ν + 1) + 1

q

√∣∣f ′′(e1)
∣∣q +

∣∣f ′′(e2)
∣∣q

2
. (3.27)

Theorem 3.31. Let ν ∈ (0, 1) and ρ > 0 and f : [eρ1, e
ρ
2]→ R be a twice differentiable mapping

on (eρ1, e
ρ
2) with 0 ≤ e1 < e2. If |f ′′|q is convex on [eρ1, e

ρ
2] for q ≥ 1, then the following inequality
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for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e
ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ ν (eρ2 − e

ρ
1)
ν+2

ρνB (ν) Γ (ν + 2)

(
ν

ρ(ν + 2)

)1− 1
q

(3.28)

× q

√
C(ρ, ν)

∣∣f ′′(eρ1)
∣∣q +

(
ν

ρ(ν + 2)
− C(ρ, ν)

) ∣∣f ′′(eρ2)
∣∣q,

where

C(ρ, ν) :=
1

ρ

(
ν + 1

2(ν + 3)
− β(2, ν + 2)

)
.

Proof. Using Lemma 3.8, convexity of |f ′′|q , the well-known power mean inequality and prop-
erties of the modulus, we have∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ ν (eρ2 − e

ρ
1)
ν+2

ρνB (ν) Γ (ν + 2)

×
(∫ 1

0

[
1− (1− tρ)ν+1 − tρ(ν+1)

]
tρ−1dt

)1− 1
q

×
(∫ 1

0

[
1− (1− tρ)ν+1 − tρ(ν+1)

]
tρ−1

∣∣∣f ′′ (tρeρ1 + (1− tρ)eρ2)
∣∣∣qdt) 1

q

≤ ν (eρ2 − e
ρ
1)
ν+2

ρνB (ν) Γ (ν + 2)

(
ν

ρ(ν + 2)

)1− 1
q

×
(∫ 1

0

[
1− (1− tρ)ν+1 − tρ(ν+1)

]
tρ−1

(
tρ
∣∣f ′′(eρ1)

∣∣q + (1− tρ)
∣∣f ′′(eρ2)

∣∣q) dt) 1
q

=
ν (eρ2 − e

ρ
1)
ν+2

ρνB (ν) Γ (ν + 2)

(
ν

ρ(ν + 2)

)1− 1
q

q

√
C(ρ, ν)

∣∣f ′′(eρ1)
∣∣q +

(
ν

ρ(ν + 2)
− C(ρ, ν)

) ∣∣f ′′(eρ2)
∣∣q.

The proof of this theorem is complete. �

Corollary 3.32. With the notations in Theorem 3.31, if we take |f ′′| ≤ K, the following
inequality for the ABK-fractional integrals holds:∣∣∣∣( (eρ2 − e

ρ
1)
ν

ρνB (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(eρ1) + f(eρ2)]−

[
ABK ρ

e+1
Iνeρ2
f(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)

]∣∣∣∣
≤ ν2K (eρ2 − e

ρ
1)
ν+2

ρν+1B (ν) Γ (ν + 3)
. (3.29)

Corollary 3.33. With the notations in Theorem 3.31, if we take ρ→ 1, the following inequality
for the AB-fractional integrals holds:∣∣∣∣( (e2 − e1)

ν

B (ν) Γ (ν)
+

1− ν
B (ν)

)
[f(e1) + f(e2)]−

[
AB
e1 Iνe2f(e2) + AB

e2 Iνe1f(e1)
]∣∣∣∣

≤ ν (e2 − e1)
ν+2

B (ν) Γ (ν + 2)

(
ν

ν + 2

)1− 1
q
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× q

√
C(1, ν)

∣∣f ′′(e1)
∣∣q +

(
ν

ν + 2
− C(1, ν)

) ∣∣f ′′(e2)
∣∣q.

Theorem 3.34. Let ν ∈ (0, 1) and ρ > 0. Let f and g be real valued, nonnegative and convex
functions on [eρ1, e

ρ
2], where 0 ≤ e1 < e2. Then the following inequality for the ABK-fractional

integrals holds:[
ABK ρ

e+1
Iνeρ2
f(eρ2)g(eρ2) + ABK ρ

e−2
Iνeρ1
f(eρ1)g(eρ1)

]
≤

(
1− ν
B (ν)

+
ν
(
ν2 + ν + 2

)
(eρ2 − e

ρ
1)
ν

ρB (ν) Γ (ν + 3)

)
M(eρ1, e

ρ
2) +

2ν2 (eρ2 − e
ρ
1)
ν

B (ν) Γ (ν + 3)
N(eρ1, e

ρ
2), (3.30)

where
M(eρ1, e

ρ
2) = f(eρ1)g(eρ1) + f(eρ2)g(eρ2)

and
N(eρ1, e

ρ
2) = f(eρ1)g(eρ2) + f(eρ2)g(eρ1).

Proof. Since f and g are convex on [eρ1, e
ρ
2], then

f(tρeρ1 + (1− tρ)eρ2) ≤ tρf(eρ1) + (1− tρ)f(eρ2) (3.31)

and
g(tρeρ1 + (1− tρ)eρ2) ≤ tρg(eρ1) + (1− tρ)g(eρ2). (3.32)

From (3.31) and (3.32), we get

f(tρeρ1 + (1− tρ)eρ2)g(tρeρ1 + (1− tρ)eρ2) ≤ t2ρf(eρ1)g(eρ1) + (1− tρ)2f(eρ2)g(eρ2)

+ tρ(1− tρ)[f(eρ1)g(eρ2) + f(eρ2)g(eρ1)].

Similarly,

f((1− tρ)eρ1 + tρeρ2)g((1− tρ)eρ1 + tρeρ2) ≤ (1− tρ)2f(eρ1)g(eρ1) + t2ρf(eρ2)g(eρ2)

+ tρ(1− tρ)[f(eρ1)g(eρ2) + f(eρ2)g(eρ1)].

By adding the above two inequalities, it follows that

f(tρeρ1 + (1− tρ)eρ2)g(tρeρ1 + (1− tρ)eρ2) + f((1− tρ)eρ1 + tρeρ2)g((1− tρ)eρ1 + tρeρ2)

≤ (2t2ρ − 2tρ + 1)[f(eρ1)g(eρ1) + f(eρ2)g(eρ2)] + 2tρ(1− tρ)[f(eρ1)g(eρ2) + f(eρ2)g(eρ1)].

Multiplying both sides of above inequality by ν
B(ν)Γ(ν) t

ρν−1 and integrating the resulting in-

equality with respest to t over [0, 1], we obtain

ν

B (ν) Γ (ν)

∫ 1

0

tρν−1f(tρeρ1 + (1− tρ)eρ2)g(tρeρ1 + (1− tρ)eρ2)dt

+
ν

B (ν) Γ (ν)

∫ 1

0

tρν−1f((1− tρ)eρ1 + tρeρ2)g((1− tρ)eρ1 + tρeρ2)dt

≤ ν

B (ν) Γ (ν)

∫ 1

0

tρν−1(2t2ρ − 2tρ + 1)[f(eρ1)g(eρ1) + f(eρ2)g(eρ2)]dt

+
ν

B (ν) Γ (ν)

∫ 1

0

tρν−12tρ(1− tρ)[f(eρ1)g(eρ2) + f(eρ2)g(eρ1)]dt

=
νM(eρ1, e

ρ
2)

B (ν) Γ (ν)

∫ 1

0

tρν−1(2t2ρ − 2tρ + 1)dt+
2νN(eρ1, e

ρ
2)

B (ν) Γ (ν)

∫ 1

0

tρν−1tρ(1− tρ)dt

=
ν(ν2 + ν + 2)

ρB (ν) Γ (ν + 3)
M(eρ1, e

ρ
2) +

2ν2

B (ν) Γ (ν + 3)
N(eρ1, e

ρ
2).

By the change of variables and with simple integral calculations, we get the desired result. �
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Corollary 3.35. With the notations in Theorem 3.34, if we choose f = g, the following
inequality for the ABK-fractional integrals holds:[

ABK ρ

e+1
Iνeρ2
f2(eρ2) + ABK ρ

e−2
Iνeρ1
f2(eρ1)

]
≤

(
1− ν
B (ν)

+
ν
(
ν2 + ν + 2

)
(eρ2 − e

ρ
1)
ν

ρB (ν) Γ (ν + 3)

)
M1(eρ1, e

ρ
2) +

2ν2 (eρ2 − e
ρ
1)
ν

B (ν) Γ (ν + 3)
N1(eρ1, e

ρ
2),(3.33)

where

M1(eρ1, e
ρ
2) = f2(eρ1) + f2(eρ2), N1(eρ1, e

ρ
2) = 2f(eρ1)f(eρ2).

Corollary 3.36. With the notations in Theorem 3.34, if we take ρ→ 1, the following inequality
for the AB-fractional integrals holds:[

AB
e1 Iνe2f(e2)g(e2) + AB

e2 Iνe1f(e1)g(e1)
]

≤

(
1− ν
B (ν)

+
ν
(
ν2 + ν + 2

)
(e2 − e1)

ν

B (ν) Γ (ν + 3)

)
M(e1, e2) +

2ν2 (e2 − e1)
ν

B (ν) Γ (ν + 3)
N(e1, e2). (3.34)

Remark 3.37. With the notations in our theorems given in Section 3, if we take ρ, ν → 1, then
we get some classical integral inequalities.
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A unified convergence analysis for single
step-type methods for non-smooth operators
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Abstract

This paper is devoted to the approximation of solutions for nonlinear equations
by using iterative methods. We present a unified convergence analysis for some
Newton-type methods. We consider both semilocal and local analysis. In the first
one, the hypotheses are imposed on the initial guess and in the second on the
solution. The results can be applied for smooth and non-smooth operators. In the
numerical section we study two applications, first one, it is devoted to a nonlinear
integral equation of Hammerstein type and in second one, we approximate the
solution of a nonlinear PDE related to image denoising.

1 Introduction

There are several situations in which the modeling of a problem leads us to calculate a
solution of an equation

F (x) = 0. (1)

This equation can represent a differential equation, ordinary or partial, an integral equa-
tion, an integro-differential equation or a simple system of equations. In general, math-
ematical methods that obtain exact solutions of (1) are not known, so that iterative
methods are usually used to solve (1) [9, 10, 1, 2, 3, 4, 5, 7, 12]. For a greater generality,
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in this study, we consider F : D ⊂ X → Y, where X, Y are Banach spaces and D is a
nonempty, open and convex set. And we pay attention to F is continuous and Fréchet
non-differentiable. In this case, to approximate a solution of (1), iterative methods using
divided differences are usually applied instead of using derivatives [12]-[11]. It is common
to approximate derivatives by divided differences for obtaining derivative free iterative
schemes. So, given an operator G : D ⊂ X → Y, let us denote by L(X, Y ) the space of
bounded linear operators from X into Y , an operator [x, y;G] ∈ L(X, Y ) is called a first
order divided difference for the operator G on the points x and y (x 6= y) in D if

[x, y;G](x− y) = G(x)−G(y). (2)

Steffensen’s method [13] is the most used iterative method using divided differences
in the algorithm, which is{

x0 given in D,

xn+1 = xn − [xn, xn + F (xn);F ]−1F (xn), n ≥ 0.
(3)

As we can see in [14], Steffensen’s method has a problem of accessibility that can be
solved by using a procedure of decomposition ([15]) for operator F , the Fréchet differen-
tiable part and the non-differentiable part. So, we consider

F (x) = F1(x) + F2(x) (4)

where F1, F2 : D ⊂ X → Y , F1 is Fréchet differentiable and F2 is continuous and Fréchet
non-differentiable. Thus, in [14], we consider the method of Newton-Steffensen, given by
the following algorithm{

x0 given in D,

xn+1 = xn − (F ′1(xn) + [xn, xn + F (xn);F2])−1 (F1(xn) + F2(xn)), n ≥ 0,
(5)

withX = Y , which improves significantly the accessibility of method (3) and has quadratic
convergence.

By using this procedure of decomposition for operator F , we see that we can also con-
sider the application of iterative methods that use derivatives when F is non-differentiable.
So, for example, we can consider the well-known Newton’s method, which algorithm is{

x0 given in D,

xn+1 = xn − [F ′(xn)]−1F (xn), n ≥ 0,
(6)

Obviously, Newton’s method is not applicable, under form (6), when F is not Fréchet
differentiable. However, if we consider decomposition of F given in (4), we can use the
following algorithm{

x0 given in D,

xn+1 = xn − [F ′1(xn)]−1(F1(xn) + F2(xn)), n ≥ 0,
(7)

2
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which is known as method of Zincenko [17].
The main aim of this paper consists of defining one-point iterative methods of Newton-

type, as we can see previously, to obtain a general study for the convergence, local and
semilocal, for these type of iterative methods. Moreover, in view of the last two consid-
erations, with these one point iterative methods we can to improve the accessibility of
one-point iterative methods that use divided differences and, in addition, to extend the
application of iterative methods that use derivatives when F is Fréchet non-differentiable.
For this aim, we consider the one-point iterative methods of Newton-type given by the
following algorithm {

x0 given in D,

xn+1 = xn − L−1
n (F1(xn) + F2(xn)), n ≥ 0,

(8)

where Ln := L(xn) with L(.) : D → L(X, Y ). Clearly, method (8) can be used to solve
equations containing a nondifferentiable term.

There are a lot of iterative methods that can be written as algorithm (8), in addition to
modifications of Steffensen and Newton given in (5) and (7), where L(x) = F ′1(x)+[x, x+
F2(x);F2] and L(x) = F ′1(x), respectively. At the same time, we can also consider two
interesting cases. Firstly, the generalized Steffensen methods [6], that are very used in the
approximation of solutions of non-differentiable operators equations and the algorithm is{

x0 given in D,

xn+1 = xn − [xn − aF (xn), xn + bF (xn);F ]−1F (xn), n ≥ 0.

Then, it is clear that we can define the generalized Newton-Steffensen method from 8)
with L(x) = F ′1(x) + [x − aF2(x), x + bF2(x);F2], so we have the final iterative function
given as:{

x0 given in D,

xn+1 = xn − (F ′1(xn) + [xn − aF2(xn), xn + bF2(xn);F2])−1F (xn), n ≥ 0.
(9)

where a, b ∈ R.
In the same way as Newton’s method, from Stirling method [16],{

x0 given in D,

xn+1 = xn − [F ′1(xn − F (xn))]−1F (xn), n ≥ 0,
(10)

we can define a modification of Newton-type, that can be applied to Fréchet non-differentiable
operators. For this, just consider (8) with L(x) = F ′1(x−F (x)). In both cases, we choose
X = Y . Obviously, we can include a lot of iterative methods in (8) if F is Fréchet
differentiable.

So, in this paper, we study the convergence of algorithm (8). We analyze the semilocal
and local convergences, so that we have a study of convergence of a lot of iterative methods
that are usually used and can be written by algorithm (8).
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Section 2 is devoted to the theoretical analysis about local and semilocal convergence
for a very general single step Newton-like methods. In Section 3 we make a comparison
for the behavior of some of these methods by solving a non-differentiable problem. In
Section 4, we consider an application related to image denoising. Finally, in Section 5 we
give some conclusions.

2 Convergence Analysis for single step Newton-like

methods

In this section, we present both semilocal and local convergence analysis. In the first one,
the hypotheses are imposed on the initial guess and in the second on the solution. The
results can be applied for smooth and non-smooth operators.

2.1 Local Convergence Analysis

In this section, we first present the local followed by the semilocal convergence of method
(8). Let v0 : [0,+∞) → [0,+∞) be a nondecreasing continuous function with v0(0) = 0.
Suppose that the equation

v0(t) = 1 (11)

has at least one positive root r0. Let also v : [0, r0) → [0,+∞) be a nondecreasing

continuous function. Define function v̄ on the interval [0, r0) by v̄(t) = v(t)
1−v0(t)

− 1.
Suppose equation

v̄(t) = 0 (12)

has at least one positive root. Denote by r the smallest such root. It follows that for each
t ∈ [0, r)

0 ≤ v0(t) < 1 (13)

and
0 ≤ v̄(t) < 1. (14)

The local convergence analysis of method (8) uses the conditions (A):

• (a1) There exist a solution x∗ ∈ D of equation (4), and B ∈ L(X, Y ) such that
B−1 ∈ L(Y,X).

• (a2) Condition (11) holds and for each x ∈ D

‖B−1(L(x)−B)‖ ≤ v0(‖x− x∗‖),

where v0 is defined previously and r0 is given in (11).

Set D0 = D ∩ Ū(x∗, r0).
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• (a3) For L : D0 → L(X, Y ), any solution y of equation (4) and each x ∈ D0

‖B−1(F1(x) + F2(x)− L(x)(x− y))‖ ≤ v(‖x− y‖)‖x− y‖,

where v is defined previously.

• (a4) Ū(x∗, r) ⊂ D, where r is given in (12).

• (a5) There exist r∗ ≥ r such that

ξ :=
v(r∗)

1− v0(r)
∈ [0, 1).

Set D1 = D ∩ Ū(x∗, r∗).

Remark 1 • Condition (a3) can be replaced by the stronger: for each x, y, z ∈ D0

‖B−1(F1(x) + F2(x)− L(x)(x− y))‖ ≤ v1(‖x− y‖)‖x− y‖,

where function v1 is as v. But for each t ≥ 0

v(t) ≤ v1(t).

• Linear operator B does not necessarily depend on the solution x∗. It is used to
determine the invertibility of linear operator L(·) appearing in the method. The
invertibility of B can be assured by an additional condition of the form ||I−B|| < 1
or some other way. A possible choice for B is B = B(x∗) or B = F

′
1(x∗).

• It follows from the definition of r0 and r that r0 ≥ r.

We can present the local convergence analysis of method (8) based on the aforemen-
tioned conditions (A).

Theorem 2 Suppose that the conditions (A) hold. Then, sequence xk generated by
method (8) for x0 ∈ U(x∗, r) − x∗ is well defined in U(x∗, r), remains in U(x∗, r) and
converges to x∗. Moreover, the following estimates hold.

‖xk+1 − x∗‖ ≤
v(‖xk − x∗‖)

1− v0(‖xk − x∗‖)
‖xk − x∗‖ ≤ ‖xk − x∗‖ < r. (15)

The vector x∗ is the only solution of equation (4) in D1, where D1 is given in (a5).

Proof We base the proof on k and mathematical induction. Let x ∈ U(x∗, r). Using
(8), (a1) and (a2), we have in turn that

‖B−1(L(x)−B)‖ ≤ v0(‖x− x∗‖) ≤ v0(r) < 1. (16)

5
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It follows by (16) and the Banach lemma on invertible operators [] that L(x)−1 ∈ L(Y,X)
and

‖L(x)−1B‖ ≤ 1

1− v0(‖x− x∗‖)
. (17)

In particular, estimate (17) holds for x = x0, so x1 is well defined by method (8) for k = 0.
We also get by method (8) (for k = 0), (a1), (a3), (14) and (17) (for k = 0) that

‖x1 − x∗‖ = ‖x0 − x∗ − L(x0)−1(F1(x0) + F2(x0))‖
= ‖[−L(x0)−1B][B−1(F1(x0) + F2(x0)− L(x0)(x0 − x∗))]‖
≤ ‖L(x0)−1B‖‖B−1(F1(x0) + F2(x0)− L(x0)(x0 − x∗))‖

≤ v(‖x0 − x∗‖)
1− v0(‖x0 − x∗‖)

‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (18)

which shows estimate (15) for k = 0, and x1 ∈ U(x∗, r).
Simply, replace x0, x1 by xi, xi+1 in the preceding estimates to complete the induction

for estimate (15). Then, in view of the estimate

‖xi+1 − x∗‖ ≤ ξ‖xi − x∗‖ < r, (19)

where

ξ =
v(‖x0 − x∗‖)

1− v0(‖x0 − x∗‖)
∈ [0, 1),

we deduce that limi→+∞ xi = x∗ and xi+1 ∈ U(x∗, r). Moreover, to show the uniqueness
part, let y∗ ∈ D1 with F1(y∗) +F2(y∗) = 0. Using (a3), (a5) and estimate (18), we obtain
in turn that

‖xi+1 − y∗‖ ≤ ‖L(xi)
−1B‖‖B−1(F1(xi) + F2(xi)− L(xi)(xi − y∗))‖

≤ v(‖xi − y∗‖)
1− v0(‖xi − x∗‖)

‖xi − y∗‖

≤ ξ‖xi − y∗‖ < ξi+1‖x0 − y∗‖, (20)

which shows limi→+∞ xi = y∗. But, we showed limi→+∞ xi = x∗. Hence, we conclude that
x∗ = y∗.

�

2.2 Semilocal Convergence Analysis

As in the local case it is convenient to define some functions and parameters for the
semilocal analysis. Let w0 : [0,+∞) → [0,+∞) be a continuous and nondecreasing
function.

Suppose that equation
w0(t) = 1. (21)
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has at least one positive root. Denote by ρ0 the smallest such root. Let also w : [0, ρ0)×
[0, ρ0) → [0,+∞) be a nondecreasing continuous function. Moreover, for η ≥ 0, define
parameters C1 and C2 by

C1 =
w(η, 0)

1− w0(η)
,

C2 =
w( η

1−C1
, η)

1− w0( η
1−C1

)

and function C : [0, ρ0)→ [0,+∞) by C(t) = w(t,t)
1−w0(t)

. Suppose that equation

(
C1C2

1− C(t)
+ C1 + 1)η − t = 0 (22)

has as least one positive root. Denote by ρ the smallest such root.
Next, we show the semilocal convergence analysis of method (8) in an analogous way,

under the conditions (H):

• (h1) There exists x0 ∈ D and B ∈ L(X, Y ) such that B−1 ∈ L(Y,X).

• (h2) Condition (21) holds and for each x ∈ D

‖B−1(L(x)−B)‖ ≤ w0(‖x− x0‖),

where w0 is as defined previously, and ρ0 is given in (21).

Set D2 = D
⋂
Ū(x0, ρ0).

• (h3) For L(·) : D2 → L(X, Y ), and each x, y ∈ D2

‖B−1(F1(y)− F1(x) + F2(y)− F2(x)− L(x)(y − x))‖
≤ w(‖y − x0‖, ‖x− x0‖)‖y − x‖,

where w is as defined previously.

• (h4) Ū(x0, ρ) ⊆ D and condition (22) holds for ρ, where ‖x1 − x0‖ ≤ η.

• (h5) There exists ρ∗ ≥ ρ such that

ξ0 :=
w(ρ, ρ∗)

1− w0(ρ)
∈ [0, 1).

Set D2 = D
⋂
Ū(x∗, ρ∗).
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Then, as in the local case but using the (H) instead of the (A) conditions, we have in
turn the estimates:

‖x2 − x1‖ ≤
w(‖x1 − x0‖, ‖x0 − x0‖)

1− w0(‖x1 − x0‖)
= C1‖x1 − x0‖,

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ ≤ (1 + C1)‖x1 − x0‖

=
1− C2

1

1− C1

‖x1 − x0‖

<
‖x1 − x0‖

1− C1

η < ρ,

‖x3 − x2‖ ≤
w(‖x2 − x0‖, ‖x1 − x0‖)

1− w0(‖x2 − x0‖)
‖x2 − x1‖

≤
w( η

1−C1
, η)

1− w0( η
1−C1

)
‖x2 − x1‖ = C2‖x2 − x1‖

‖x3 − x0‖ ≤ ‖x3 − x2‖+ ‖x2 − x1‖+ ‖x1 − x0‖
≤ C2‖x2 − x1‖+ C1‖x1 − x0‖+ ‖x1 − x0‖
≤ (C2C1 + C1 + 1)‖x1 − x0‖,

‖x4 − x3‖ ≤
w(‖x3 − x0‖, ‖x2 − x0‖)

1− w0(‖x3 − x0‖)
‖x3 − x2‖

≤ C(ρ)‖x3 − x2‖ ≤ C(ρ)C2‖x2 − x1‖
≤ C(ρ)C2C1‖x1 − x0‖,

...

‖xi+1 − xi‖ ≤ C(ρ)‖xi − xi−1‖ ≤ C(ρ)i−2‖x3 − x2‖
‖xi+1 − x0‖ ≤ ‖xi+1 − xi‖+ ...+ ‖x4 − x3‖+ ‖x3 − x0‖

≤ C(ρ)‖xi − xi−1‖+ ...+ C(ρ)‖x3 − x2‖
+(C2C1 + C1 + 1)‖x1 − x0‖

≤ C(ρ)i−2‖x3 − x2‖+ ...+ C(ρ)‖x3 − x2‖
+(C2C1 + C1 + 1)‖x1 − x0‖

≤ (
1− C(ρ)i−1

1− C(ρ)
C2C1 + C1 + 1)‖x1 − x0‖

< (
C1C2

1− C(ρ)
+ C1 + 1)η ≤ ρ, (23)
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‖xi+j − xi‖ ≤ ‖xi+j − xi+j−1‖+ ‖xi+j−1 − xi+j−2‖+ ...+ ‖xi+1 − xi‖
≤ (C(ρ)i+j−3 + ...+ C(ρ)i−2)‖x3 − x2‖

≤ C(ρ)i−2 1− C(ρ)j−1

1− C(ρ)
‖x3 − x2‖

≤ C(ρ)i−2 1− C(ρ)j−1

1− C(ρ)
C2C1‖x1 − x0‖

≤ C(ρ)i−2 1− C(ρ)j−1

1− C(ρ)
C2C1η. (24)

It follows from (23) that xi ∈ U(x0, ρ) and from (24) that sequence xi is complete in
X and as such it converges to some x∗ ∈ Ū(x0, ρ). By letting i→ +∞ in the estimate

‖B−1(F1(xi) +F2(xi))‖ = ‖B−1(F1(xi) +F2(xi)−F1(xi−1)−F2(xi−1)−Bi−1(xi− xi−1))‖

≤ w(‖xi − x0‖, ‖xi−1 − x0‖)‖‖xi − xi−1‖
1− w0(‖xi − x0‖)

≤ w(ρ, ρ)

1− w0(ρ)
‖xi − xi−1‖,

we obtain F1(x∗) + F2(x∗) = 0. The uniqueness part is omitted as identical to the one in
the local convergence case.

Hence, we arrived at the semilocal convergence result for method (8).

Theorem 3 Suppose that the conditions (H) hold. Then, sequence xk generated by
method (8) for x0 ∈ D is well defined in U(x0, ρ) remains in U(x0, ρ) and converges
x∗ ∈ Ū(x0, ρ) to a solution of equation (4). Moreover, the vector x∗ is the only solution
of equation (4) in D3, where D3 is defined previously.

The same comments introduced in the previous remark are valid.
We emphasize the theoretical importance of this theorem because it presents a unified

studied of the local and semilocal convergence of a big variety of Newton-Type methods
and Steffensen type methods, so the study is applicable to differentiable an non differen-
tiable equations.

3 Numerical Experiments

In this section, we consider a nonlinear integral equation of Hammerstein type, which can
be used to describe applied problems in the fields of electro-magnetics, fluid dynamics,
in the kinetic theory of gases and, in general, in the reformulation of boundary value
problems. These equations are of the form:

x(s) = f(s)−
∫ b

a

K(s, t)Φ(x(t))dt, a ≤ s ≤ b, (25)
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where x(s), f(s) ∈ C[a, b], with −∞ < a < b <∞, and Φ is a polynomial function. One
of the most used techniques to solve this kind of equations consists of expressing them as
a nonlinear operator in a Banach space and solving the following operator equation:

F (x)(s) = x(s)− f(s) +

∫ b

a

K(s, t)Φ(x(t))dt = 0, (26)

where F : D ⊆ C[a, b] → C[a, b] with D a non-empty open convex subset of C[a, b] with
the max-norm ‖ν‖ = maxs∈[a,b] |ν(s)|.

We consider (25), where K is the Green function in [a, b] × [a, b], and then use a
discretization process to transform equation (26) into a finite dimensional problem by
approximating the integral by an adequate quadrature formula∫ b

a

q(t) dt '
p∑
i=1

wiq(ti),

where the nodes ti and the weights wi are known.
If we denote the approximations of x(ti) and f(ti) by xi and fi, respectively, with

i = 1, 2, . . . , p, then equation (26) is equivalent to the following system of nonlinear
equations:

xi = fi +

p∑
j=1

aij Φ(xj), j = 1, 2, . . . , p, (27)

where

aij = wjK(ti, tj) =

{
wj

(b−ti)(tj−a)

b−a , j ≤ i,

wj
(b−tj)(ti−a)

b−a , j > i.

Now, system (27) can be written as

F(x) ≡ x− f− A z = 0, F : ∆ ⊆ Rp −→ Rp, (28)

where
x = (x1, x2, . . . , xp)

T , f = (f1, f2, . . . , fp)
T , A = (aij)

p
i,j=1,

z = (Φ(x1),Φ(x2), . . . ,Φ(xp))
T .

After that, we choose a = 0, b = 1, K(s, t) as the Green function in [0, 1]× [0, 1] and
Φ(x(t)) = x(t)3 + |x(t)| in (25). Then, the system of nonlinear equations given in (28) is
of the form

F(x) = x− f− A (vx + wx) = 0, F : Rp −→ Rp, (29)

where
vx = (x3

1, x
3
2, . . . , x

3
p)
T , wx = (|x1|, |x2|, . . . , |xp|)T .

It is obvious that the function F defined in (29) is nonlinear and non-differentiable. So,
we consider F(x) = F1(x) + F2(x) where:

F1(x) = x− f− Avx and F2(x) = −Awx.
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As in Rp we can consider divided difference of first order that do not need that the
function F is differentiable (see [16]), we use the divided difference of first order given by
[u,v;G] = ([u,v;G]ij)

p
i,j=1 ∈ L(Rp,Rp), where

[u,v;G]ij =
1

uj − vj
(Gi(u1, . . . , uj, vj+1, . . . , vp)−Gi(u1, . . . , uj−1, vj, . . . , vp)) , (30)

if uj 6= vj, in other case [u,v;G]ij = 0, for u = (u1, u2, . . . , up)
T and v = (v1, v2, . . . , vp)

T .
Now, to compare the behavior of different methods we consider the case f = 0 in

(29). Obviously, for this problem, x∗ = 0 is a solution of F(x) = 0. Then, the system of
nonlinear equations given in (29) is of the form

F(x) = x− A z, zj = x3
j + |xj|, j = 1, . . . , p. (31)

The numerical results are obtained by using MATLAB 2018 and working with variable
precision arithmetic with 100 digits. In Table 1 we can see the results obtained by using
the methods mentioned in our study. First of all we take nodes and weights of Trape-
zoidal rule with n = 10 subintervals for approximatting the integral and starting guess
x0(t) = 1/2 ∀t ∈ [0, 1]. We compare the distance between consecutive iterates of the first
7 iterations of each method. In the case of the Newton-Steffensen General method (9),
the parameters involved are a = 0.5 and b = 1.5.

Stirling (10) Zincenko (7) Steffensen (3) New-Steff. (5) New-Steff. Gen.(9)
1 1.5887 1.1637 7.4375 2.9044 2.9044
2 6.0578e− 01 3.0210e− 01 2.7350e− 01 1.3867 1.3867
3 4.7941e− 01 1.2065e− 01 1.8235e− 02 3.2041e− 01 1.2942e− 01
4 4.1942e− 01 4.9511e− 02 5.5411e− 05 2.8725e− 04 2.8725e− 04
5 3.5456e− 01 2.0403e− 02 2.8134e− 09 1.3552e− 12 1.3552e− 12
6 1.9024e− 01 8.4133e− 03 3.0173e− 18 3.1538e− 37 3.3246e− 37
7 2.9676e− 02 3.4697e− 03 3.9490e− 36 1.7796e− 111 2.1782e− 111

Table 1: Results with different methods in the first iterations.

In Table 2 we work with same conditions, we obtain the iterations that each method
needs to satisfy the stopping criterion ||xk+1 − xk|| ≤ 10−40. It should be noted that the
first two methods never meet the required tolerance because they are not convergent and,
therefore, the methods end when the required iterations are completed (in this case 15
iterations at most). Second, we observe a good approximation to the order of convergence
of each method p in case the method converges. In the last two rows of Table 2 we compare
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Stirling (10) Zincenko (7) Steffensen (3) New-Steff. (5) New-Steff. Gen.(9)

k 15 15 8 7 7
p 1.0000 1.0000 1.9994 3.0142 3.0148

||xk−1 − xk|| 2.3258e− 04 2.9041e− 06 6.9382e− 72 1.7796e− 111 2.1782e− 111
||F (xk)|| 9.5985e− 05 1.1977e− 06 1.2745e− 107 7.8863e− 219 6.8587e− 219

Table 2: Numerical results for comparing the proposed methods.

the difference between the last iterates of each method and we also see the norm of the
function evaluted in the last iteration.

Now, we also want to use the Gauss-Legendre quadrature to approximate the integral
of equation (25). Moreover, by using the Newton-Steffensen method we compare two
different possibilities for implementing the divided differences given in (30), that is, in
Tables 1 and 2 we obtain the divided difference like [xn, xn + F1(xn) + F2(xn), F2] but
we want to compare with [xn, xn + F2(xn), F2]. The results in Table 3 show that the
use of first form used for obtaining the divided differences gives better residual errors,
which was expected because F1(xn) + F2(xn) tends to zero quicker than F2(xn). Even
in some different example the value F2(xn) could not tend to zero, in this case only first
form of obtaining the divided differences considered would work. In Table 3 we have also
included the computational time, as can be observed in the last row, notice that the use
of Gauss-Legedre quadrature needs much more time than the trapezoidal rule although
in some cases reaches better accuracy.

||xn − xn−1||
Iterations Trapezoidal rule Gauss− Legendre

n [x, x+ F1 + F2, F2] [x, x+ F2, F2] [x, x+ F1 + F2, F2] [x, x+ F2, F2]
1 2.9044 2.9044 2.7204 2.7204
2 1.3867 1.3867 1.1355 1.1355
3 3.2041e− 01 1.2942e− 01 6.6978e− 02 6.6978e− 02
4 2.8725e− 04 2.8725e− 04 3.4608e− 05 3.4608e− 05
5 1.3552e− 12 1.3552e− 12 2.1448e− 15 2.1448e− 15
6 3.1538e− 37 3.3489e− 28 1.124e− 45 1.124e− 45
7 1.7796e− 111 1.3651e− 43 8.0773e− 137 7.8571e− 137

Table 3: Results with Trapezoidal rule and Gauss-Legendre method by using different
form of obtaining the divided differences.
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Trapezoidal rule Gauss− Legendre
n [x, x+ F1 + F2, F2] [x, x+ F2, F2] [x, x+ F1 + F2, F2] [x, x+ F2, F2]
k 7 8 7 7
p 3.0142 unstable 3.0099 3.0103

||xk−1 − xk|| 1.7796e− 111 4.3463e− 59 8.0772e− 137 7.8571e− 137
||F (xk)|| 7.8863e− 219 1.0160e− 74 1.3057e− 243 1.5367e− 138
time 17.796129 20.6134 282.5403 309.3090

Table 4: Numerical results and computational time for comparing the proposed methods.

4 Approximating the solution of a nonlinear PDE

related to image denoising

In some steps of the manipulation of an image, some random noise is usually introduced.
This noise makes the later steps of processing the image difficult and inaccurate.

In many applications like astrophysics, astronomy or meteorology we have to manipu-
late images contaminated by noise. The image processing becomes difficult and inaccurate.
For these reasons, usually some image denoising strategies are developed. In this paper,
we center our attention in the PDE framework.

Let f : Ω→ R be a signal or image which we would like to denoise.

The usual PDE frameworks start with constrained optimization problems like

Minimize in u : R(u)

subject to ‖u− f‖2
L2(Ω) = |Ω|σ2.

where n = u − f denotes the noise. If there is no good estimate of the variance of the
noise, then we may consider the unconstrained optimization problem.

Different linear regularization functionals R(u) can be consider, the most used is
‖∇u‖L2 . This type of functionals introduce diffusion near the edges of the images, this is
their main limitation.

The TV norm does not penalize discontinuities in u, and thus allows us to improve
the approximation near the edges. ∫

Ω

|∇u(x)|dx.

For the linear model its Euler–Lagrange equation, with Neumann’s boundary condi-
tions for u, is

−4u+ λ(u− f) = 0, (32)
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which comes from the corresponding unconstrained problem with the norm ‖∇u‖2
L2(Ω)

and where the positive parameter λ determines the relative importance of the smoothness
of u and the quality of the approximation to the given signal f ..

For the TV- model we have

−∇ · ( ∇u
|∇u|

) + λ(u− f) = 0. (33)

In practice, the term |∇u| is replaced by
√
|∇u|2 + ε, but even after this regularization,

Newton’s method does not work satisfactorily in the sense that its domain of convergence
is very small. This is especially true if the regularizing parameter ε is small.

On the other hand, while the singularity and nondifferentiability of the term w =
∇u/|∇u| is the source of numerical problems, w itself is usually smooth because it is in
fact the unit vector normal to the level sets of u. The numerical difficulties arise only
because we linearize it the wrong way.

Thus we should introduce a new variable w; namely

w =
∇u√
|∇u|2

,

and replace (33) by the equivalent system of nonlinear PDEs:

−∇ · w + λ(u− f) = 0,

w
√
|∇u|2 −∇u = 0.

Without the inclusion of the above regularization parameter ε, this system is nonlinear
and nondifferentiable .

4.1 Discretization and numerical implementation

We present a comparison between the nonlinear model and the linear model using a simple
finite difference discretization procedure.

For a regular mesh of size h = 1/m, m ∈ N (xi = i · h, i = 0, . . . ,m), if in each
iteration k we approximate the divergence and the gradient operators (these operators
are the same in 1D) by

∇ · v(xi) = ∇v(xi) ≈
vi − vi−1

h
,

we obtain a nonlinear system for the unknowns wi and ui.

That is,

−wi − wi−1

h
− λ(ui − fi) = 0, w1 = wm = 0,

wi ·
√

(
ui − ui−1

h
)2 − ui − ui−1

h
= 0, u0 = f0, um = fm,
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for i = 1, . . . ,m− 1.

We then consider the nonlinear and nondifferentiable operator

F2i−1(u,w, λh) = wi − wi−1 + λh(ui − fi) = 0,

F2i(u,w, λh) = wi
√

(ui − ui−1)2+− (ui − ui−1) = 0, 1 ≤ i ≤ m− 1,

with λh = hλ, w0 = wm = 0, u0 = f0 and um = fm.
For the discretization of the linear model we can consider the system

−ui+1 − 2ui + ui−1

h2
− λ(ui − fi) = 0, u0 = f0, um = fm,

for i = 1, . . . ,m− 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

Figure 1: Original signal with a jump sin-
gularity.
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0.8

1

1.2

1.4

Figure 2: Solid lines = nonlinear model,
starred lines = linear model and + lines
= signal with noise. Noise level = 0.3,
λ = 10.

In Figure 2, the solid lines are the function reconstructed by the nonlinear model
approximated by the linearization based on a dual variable, solving the nonlinear system
of equations by Steffensen’s method 3 and the starred lines are given by the standard
linear model, solving the associated linear system of equations by Gauss’s method. The
line with ‘+’ is the noisy signal. The linear model introduces too much diffusion, giving
a continuous function.
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5 Conclusions

We have to point out the generalization of this study in which we have analyzed the local
and semilocal convergence for Newton type methods and Steffensen like methods, so we
can consider Newton-Steffensen’s methods. The main idea it is to apply these kind of
study to non-differentiable equations by taking in to account the advantages of consider
the decomposition of the nonlinear equation into a sum of the differentiable part and the
one non-differentiable.
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Abstract

In the present paper, a theorem concerning local property of |A, pn|k summability of

factored Fourier series, which generalizes a result dealing with |N̄ , pn|k summability of

factored Fourier series, has been obtained. Also, some results have been given.
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1 Introduction

Let
∑
an be an infinite series with its partial sums (sn) and (pn) be a sequence of positive

numbers such that

Pn =
n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1) .

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal

entries. Then A defines the sequence-to-sequence transformation, mapping the sequence

s = (sn) to As = (An(s)), where

An(s) =
n∑
v=0

anvsv, n = 0, 1, ...

1
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The series
∑
an is said to be summable |A, pn|k, k ≥ 1, if (see [21])

∞∑
n=1

(
Pn
pn

)k−1
|An(s)−An−1(s)|k <∞.

If we take anv = pv
Pn

, then |A, pn|k summability reduces to |N̄ , pn|k summability (see [2]).

If we take anv = pv
Pn

and pn = 1 for all values of n (resp. anv = pv
Pn

and k = 1), |A, pn|k
summability reduces to |C, 1|k summability (see [11]) (resp. |N̄ , pn|) summability. Also, if

we take pn = 1 for all values of n, then |A, pn|k summability reduces to |A|k summability

(see [22]). Furthermore, if we take anv = pv
Pn

, then |A|k summability reduces to |R, pn|k
summability (see [4]).

A sequence (λn) is said to be convex if ∆2λn ≥ 0 for every positive integer n, where

∆2λn = ∆(∆λn) and ∆λn = λn − λn+1 (see [24]).

Let f(t) be a periodic function with period 2π, and integrable (L) over (−π, π).

Without any loss of generality we may assume that the constant term in the Fourier

series of f(t) is zero, so that ∫ π

−π
f(t)dt = 0

and

f(t) ∼
∞∑
n=1

(ancosnt+ bnsinnt) =
∞∑
n=1

Cn(t),

where (an) and (bn) denote the Fourier coefficients. It is well known that the convergence

of the Fourier series at t = x is a local property of the generating function f (i.e. it

depends only on the behaviour of f in an arbitrarily small neighbourhood of x), and

hence the summability of the Fourier series at t = x by any regular linear summability

method is also a local property of the generating function f (see [23]).

2 Known Results

There are many different applications of Fourier series. Some of them can be find in [1],

[5]-[10], [12]-[20]. Furthermore, Bor [3] has proved the following theorem.

2
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Theorem 1 Let k ≥ 1 and (pn) be a sequence such that

Pn = O(npn), (1)

Pn∆pn = O(pnpn+1). (2)

Then the summability |N̄ , pn|k of the series
∑ Cn(t)λnPn

npn
at a point can be

ensured by local property, where (λn) is a convex sequence such that
∑
n−1λn is

convergent.

3 Main Result

The purpose of this paper is to generalize Theorem 1 by using the definition of |A, pn|k
summability. Now, let us introduce some further notations. Let A = (anv) be a normal

matrix, we associate two lower semimatrices Ā = (ānv) and Â = (ânv) as follows:

ānv =
n∑
i=v

ani, n, v = 0, 1, ... (3)

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (4)

and it is well known that

An(s) =
n∑
v=0

anvsv =
n∑
v=0

ānvav (5)

and

∆̄An(s) =
n∑
v=0

ânvav. (6)

Now, we will prove the following theorem.

Theorem 2 Let k ≥ 1 and A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (7)

an−1,v ≥ anv, for n ≥ v + 1, (8)

3
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ann = O

(
pn
Pn

)
, (9)

|ân,v+1| = O (v |∆vânv|) , (10)

where ∆v(ânv) = ânv − ân,v+1. Let the sequence (pn) be such that the conditions (1) and

(2) of Theorem 1 are satisfied. Then the summability |A, pn|k of the series
∑ Cn(t)λnPn

npn
at

a point can be ensured by local property, where (λn) is as in Theorem 1.

Here, if we take anv = pv
Pn

, then we get Theorem 1.

We should give the following lemmas for the proof of Theorem 2.

Lemma 3 ([13]) If the sequence (pn) is such that the conditions (1) and (2) of Theorem

1 are satisfied, then

∆

(
Pn
npn

)
= O

(
1

n

)
. (11)

Lemma 4 ([10]) If (λn) is a convex sequence such that
∑
n−1λn is convergent, then (λn)

is non-negative and decreasing, and n∆λn → 0 as n→∞.

Lemma 5 Let k ≥ 1 and let the sequence (pn) be such that the conditions (1) and (2) of

Theorem 1 are satisfied. If (sn) is bounded and the conditions (7)-(10) are satisfied, then

the series

∞∑
n=1

anλnPn
npn

(12)

is summable |A, pn|k, where (λn) is as in Theorem 1.

Remark 6 Since (λn) is a convex sequence, therefore (λn)k is also convex sequence and

∑ 1

n
(λn)k <∞. (13)

4
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4 Proof of Lemma 5

Let (Mn) denotes the A-transform of the series
∑ anλnPn

npn
. Then, we have

∆̄Mn =
n∑
v=1

ânv
avλvPv
vpv

by (5) and (6).

Now, we get

∆̄Mn =
n−1∑
v=1

∆v

(
ânvλvPv
vpv

) v∑
r=1

ar +
ânnPnλn
npn

n∑
v=1

av

=
n−1∑
v=1

∆v

(
ânvλvPv
vpv

)
sv +

annPnλn
npn

sn

=
annPnλn
npn

sn +
n−1∑
v=1

Pvλv∆v(ânv)

vpv
sv +

n−1∑
v=1

ân,v+1∆λvPv
vpv

sv

+
n−1∑
v=1

ân,v+1λv+1∆

(
Pv
vpv

)
sv

= Mn,1 +Mn,2 +Mn,3 +Mn,4

by applying Abel’s transformation. For the proof of Lemma 5, it is sufficient to show that

∞∑
n=1

(
Pn
pn

)k−1
|Mn,r|k <∞, for r = 1, 2, 3, 4.

First, we have

m∑
n=1

(
Pn
pn

)k−1
|Mn,1|k =

m∑
n=1

(
Pn
pn

)k−1 ∣∣∣∣annPnλnnpn
sn

∣∣∣∣k
= O(1)

m∑
n=1

(
Pn
pn

)k−1 ( pn
Pn

)k 1

nk

(
Pn
pn

)k
(λn)k|sn|k

= O(1)
m∑
n=1

1

n
(λn)k = O(1) as m→∞,

by (9), (1) and (13).

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.2, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

348 OZARSLAN 344-354



From Hölder’s inequality, we have

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,2|k =

m+1∑
n=2

(
Pn
pn

)k−1 ∣∣∣∣∣
n−1∑
v=1

Pvλv∆v(ânv)

vpv
sv

∣∣∣∣∣
k

≤
m+1∑
n=2

(
Pn
pn

)k−1{n−1∑
v=1

(
Pv
vpv

)
|∆v(ânv)| (λv)|sv|

}k

≤
m+1∑
n=2

(
Pn
pn

)k−1{n−1∑
v=1

(
Pv
vpv

)k
|∆v(ânv)|(λv)k|sv|k

}{
n−1∑
v=1

|∆v(ânv)|
}k−1

.

By (4) and (3), we have that

∆v(ânv) = ânv − ân,v+1

= ānv − ān−1,v − ān,v+1 + ān−1,v+1

= anv − an−1,v. (14)

Thus using (8), (3) and (7)

n−1∑
v=1

|∆v(ânv)| =
n−1∑
v=1

(an−1,v − anv) ≤ ann. (15)

Hence, we get

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,2|k = O(1)

m+1∑
n=2

(
Pn
pn

)k−1
ak−1nn

{
n−1∑
v=1

(
Pv
pv

)k 1

vk
|∆v(ânv)|(λv)k

}

= O(1)
m∑
v=1

(
Pv
pv

)k 1

vk
(λv)

k
m+1∑
n=v+1

|∆v(ânv)| .

Here, from (14) and (8), we obtain

m+1∑
n=v+1

|∆v(ânv)| =
m+1∑
n=v+1

(an−1,v − anv) ≤ avv.

Then,

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,2|k = O(1)

m∑
v=1

(
Pv
pv

)k 1

vk
(λv)

kavv

6
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= O(1)
m∑
v=1

(
Pv
pv

)k−1 1

vk
(λv)

k

= O(1)
m∑
v=1

vk−1
1

vk
(λv)

k

= O(1)
m∑
v=1

1

v
(λv)

k = O(1) as m→∞,

by (9), (1) and (13).

Now, by (1) and Hölder’s inequality, we have

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,3|k =

m+1∑
n=2

(
Pn
pn

)k−1 ∣∣∣∣∣
n−1∑
v=1

ân,v+1∆λvPv
vpv

sv

∣∣∣∣∣
k

= O(1)
m+1∑
n=2

(
Pn
pn

)k−1{n−1∑
v=1

|ân,v+1|∆λv|sv|
}k

= O(1)
m+1∑
n=2

(
Pn
pn

)k−1{n−1∑
v=1

|ân,v+1|∆λv|sv|k
}{

n−1∑
v=1

|ân,v+1|∆λv

}k−1
.

Now, (4), (3), (7) and (8) imply that

ân,v+1 = ān,v+1 − ān−1,v+1 =
n∑

i=v+1

ani −
n−1∑
i=v+1

an−1,i

=
n∑
i=0

ani −
v∑
i=0

ani −
n−1∑
i=0

an−1,i +
v∑
i=0

an−1,i

= 1−
v∑
i=0

ani − 1 +
v∑
i=0

an−1,i

=
v∑
i=0

(an−1,i − ani) ≥ 0 (16)

and from this, using (4), (3) and (8), we have

|ân,v+1| = ān,v+1 − ān−1,v+1

=
n∑

i=v+1

ani −
n−1∑
i=v+1

an−1,i

= ann +
n−1∑
i=v+1

(ani − an−1,i)

≤ ann.

7
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Hence, we get

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,3|k = O(1)

m+1∑
n=2

(
Pn
pn

)k−1
ak−1nn

n−1∑
v=1

|ân,v+1|∆λv

{
n−1∑
v=1

∆λv

}k−1

= O(1)
m+1∑
n=2

(
Pn
pn

)k−1
ak−1nn

{
n−1∑
v=1

|ân,v+1|∆λv

}

= O(1)
m∑
v=1

∆λv

m+1∑
n=v+1

|ân,v+1|.

Now, by (16), (3) and (7), we find

m+1∑
n=v+1

|ân,v+1| ≤ 1. (17)

Thus,

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,3|k = O(1)

m∑
v=1

∆λv = O(1) as m→∞,

by Lemma 4.

Since ∆
(
Pv
vpv

)
= O

(
1
v

)
by Lemma 3 and also by using (10), we have that

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,4|k =

m+1∑
n=2

(
Pn
pn

)k−1 ∣∣∣∣∣
n−1∑
v=1

ân,v+1λv+1∆

(
Pv
vpv

)
sv

∣∣∣∣∣
k

= O(1)
m+1∑
n=2

(
Pn
pn

)k−1{n−1∑
v=1

1

v
|ân,v+1|(λv+1)|sv|

}k

= O(1)
m+1∑
n=2

(
Pn
pn

)k−1 n−1∑
v=1

1

v
|ân,v+1|(λv+1)

k|sv|k
{
n−1∑
v=1

|∆v(ânv)|
}k−1

.

From (15) and (9),

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,4|k = O(1)

m+1∑
n=2

(
Pn
pn

)k−1
ak−1nn

n−1∑
v=1

1

v
|ân,v+1|(λv+1)

k

= O(1)
m∑
v=1

1

v
(λv+1)

k
m+1∑
n=v+1

|ân,v+1|.

Again using (17),

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,4|k = O(1)

m∑
v=1

1

v
(λv+1)

k = O(1) as m→∞,

by (13). Hence the proof of Lemma 5 is completed.

8
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5 Proof of Theorem 2

The convergence of the Fourier series at t = x is a local property of f (i.e., it depends

only on the behaviour of f in an arbitrarily small neighbourhood of x), and hence the

summability of the Fourier series at t = x by any regular linear summability method is

also a local property of f . Since the behaviour of the Fourier series, as far as convergence

is concerned, for a particular value of x depends on the behaviour of the function in the

immediate neighbourhood of this point only, hence the truth of Theorem 2 is a consequence

of Lemma 5.

6 Conclusions

For anv = pv
Pn

and pn = 1 for all values of n, then we get a result concerning |C, 1|k
summability factors of Fourier series. If we take anv = pv

Pn
and k = 1, then we get a result

concerning |N̄ , pn| summability factors of Fourier series (see [13]).
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Analysis of Solutions of Some Discrete Systems of
Rational Difference Equations
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Abstract

The major objective of this article is to determine and formulate the analytical
solutions of the following systems of rational recursive equations:

xn+1 =
xn−1yn−3

yn−1 (±1∓ xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1 (∓1± yn−1xn−3)
, n = 0, 1, ...,

where the initial conditions x−3, x−2, x−1, x0, y−3, y−2, y−1 and y0 are required to
be arbitrary non-zero real numbers. We also introduce some graphs describing these
exact solutions under a suitable choice of some initial conditions.

Keywords: difference equations, system of recursive equations, periodicity, local stability,
global stability.
Mathematics Subject Classification: 39A10.

1 Introduction

The global interest in exploring the qualitative behaviours of discrete systems of recursive
equations has been recently emerged due to the significance of difference equations in mod-
elling a considerable number of discrete phenomena. More specifically, recursive equations
are utilized in describing some real life problems that originate in genetics in biology, queuing
problems, enegineering, physics, etc. Some experts put effort to analyse dynamical systems
of difference equations. Take, for instance, the following ones. Almatrafi et al. [1] studied
the local stability, global attractivity, periodicity and solutions for a special case for the
difference equation

xn+1 = axn−1 −
bxn−1

cxn−1 − dxn−3

.

Clark and Kulenovic [6] investigated the global attractivity of the system

xn+1 =
xn

a+ cyn
, yn+1 =

yn
b+ dxn

.
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The author in [8] explored the equilibrium points and the stability of a discrete Lotka-Volterra
model shown as follows:

xn+1 =
αxn − βxnyn

1 + γxn
, yn+1 =

δyn + εxnyn
1 + ηyn

.

The positive solutions of the system

un+1 =
αun−1

β + γvpnv
q
n−2

, vn+1 =
α1vn−1

β1 + γ1u
p1
n u

q1
n−2

.

were obtained in [14] by Gűműş and Őcalan. Moreover, Kurbanli et al. [18] solved the
dynamical systems of recursive equations given by

xn+1 =
xn−1

ynxn−1 − 1
, yn+1 =

yn−1

xnyn−1 − 1
, zn+1 =

xn
ynzn−1

.

In [19] Mansour et al. presented the analytical solutions of the system

xn+1 =
xn−1

α− xn−1yn
, yn+1 =

yn−1

β + γyn−1xn
.

Finally, the author in [23] demonstrated the dynamics of the system

xn+1 =
xn−2

B + ynyn−1yn−2

, yn+1 =
yn−2

A+ xnxn−1xn−2

.

To attain more information on the qualitative behaviours of dynamical difference equations,
one can refer to refs [1–5, 7, 9–13, 15–17, 20–22]

In this paper, the rational solutions of the following discrete systems of difference equa-
tions will be discovered and given in four different theorems:

xn+1 =
xn−1yn−3

yn−1 (±1∓ xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1 (∓1± yn−1xn−3)
, n = 0, 1, ...,

where the initial values are as described previously.

2 Main Results

2.1 First System xn+1 = xn−1yn−3

yn−1(1−xn−1yn−3)
, yn+1 = yn−1xn−3

xn−1(1−yn−1xn−3)

This subsection concentrates on obtaining the solutions of a dynamical system of fourth
order difference equations given by the form:

xn+1 =
xn−1yn−3

yn−1 (1− xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1 (1− yn−1xn−3)
, n = 0, 1, ... , (1)

where the initial values are as shown previously. The following fundamental theorem presents
the solutions of system (1).
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Theorem 1 Assume that {xn, yn} is a solution to system (1) and let x−3 = α, x−2 =
β, x−1 = γ, x0 = δ, y−3 = ε, y−2 = η, y−1 = µ and y0 = ω.Then, for n = 0, 1, ... we have

x4n−3 =
γnεn

n−1

Π
i=0

[(2i)αµ− 1]

αn−1µn
n−1

Π
i=0

[(2i+ 1) γε− 1]

, x4n−2 =
δnηn

n−1

Π
i=0

[(2i) βω − 1]

βn−1ωn
n−1

Π
i=0

[(2i+ 1) δη − 1]

,

x4n−1 =
γn+1εn

n−1

Π
i=0

[(2i+ 1)αµ− 1]

αnµn
n−1

Π
i=0

[(2i+ 2) γε− 1]

, x4n =
δn+1ηn

n−1

Π
i=0

[(2i+ 1) βω − 1]

βnωn
n−1

Π
i=0

[(2i+ 2) δη − 1]

.

And

y4n−3 =
αnµn

n−1

Π
i=0

[(2i) γε− 1]

γnεn−1
n−1

Π
i=0

[(2i+ 1)αµ− 1]

, y4n−2 =
βnωn

n−1

Π
i=0

[(2i) δη − 1]

δnηn−1
n−1

Π
i=0

[(2i+ 1) βω − 1]

,

y4n−1 =
αnµn+1

n−1

Π
i=0

[(2i+ 1) γε− 1]

γnεn
n−1

Π
i=0

[(2i+ 2)αµ− 1]

, y4n =
βnωn+1

n−1

Π
i=0

[(2i+ 1) δη − 1]

δnηn
n−1

Π
i=0

[(2i+ 2) βω − 1]

.

Proof. For n = 0, our results hold. Next, let n > 1 and suppose that the relations hold for
n− 1. That is

x4n−7 =
γn−1εn−1

n−2

Π
i=0

[(2i)αµ− 1]

αn−2µn−1
n−2

Π
i=0

[(2i+ 1) γε− 1]

, x4n−6 =
δn−1ηn−1

n−2

Π
i=0

[(2i) βω − 1]

βn−2ωn−1
n−2

Π
i=0

[(2i+ 1) δη − 1]

,

x4n−5 =
γnεn−1

n−2

Π
i=0

[(2i+ 1)αµ− 1]

αn−1µn−1
n−2

Π
i=0

[(2i+ 2) γε− 1]

, x4n−4 =
δnηn−1

n−2

Π
i=0

[(2i+ 1) βω − 1]

βn−1ωn−1
n−2

Π
i=0

[(2i+ 2) δη − 1]

.

And

y4n−7 =
αn−1µn−1

n−2

Π
i=0

[(2i) γε− 1]

γn−1εn−2
n−2

Π
i=0

[(2i+ 1)αµ− 1]

, y4n−6 =
βn−1ωn−1

n−2

Π
i=0

[(2i) δη − 1]

δn−1ηn−2
n−2

Π
i=0

[(2i+ 1) βω − 1]

,

y4n−5 =
αn−1µn

n−2

Π
i=0

[(2i+ 1) γε− 1]

γn−1εn−1
n−2

Π
i=0

[(2i+ 2)αµ− 1]

, y4n =
βn−1ωn

n−2

Π
i=0

[(2i+ 1) δη − 1]

δn−1ηn−1
n−2

Π
i=0

[(2i+ 2) βω − 1]

.
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Now, it can be obviously observed from system (1) that

x4n−3 =
x4n−5y4n−7

y4n−5 (1− x4n−5y4n−7)

=

γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1
n−2
Π
i=0

[(2i+2)γε−1]

αn−1µn−1
n−2
Π
i=0

[(2i)γε−1]

γn−1εn−2
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1
n−2
Π
i=0

[(2i+2)αµ−1]

[
1−

γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1
n−2
Π
i=0

[(2i+2)γε−1]

αn−1µn−1
n−2
Π
i=0

[(2i)γε−1]

γn−1εn−2
n−2
Π
i=0

[(2i+1)αµ−1]

]

=

γε
n−2
Π
i=0

[(2i)γε−1]

n−2
Π
i=0

[(2i+2)γε−1]

αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1
n−2
Π
i=0

[(2i+2)αµ−1]

[
1−

γε
n−2
Π
i=0

[(2i)γε−1]

n−2
Π
i=0

[(2i+2)γε−1]

]

=
γnεn

n−2

Π
i=0

[(2i) γε− 1]
n−2

Π
i=0

[(2i+ 2)αµ− 1]

αn−1µn
n−2

Π
i=0

[(2i+ 1) γε− 1]

[
n−2

Π
i=0

[(2i+ 2) γε− 1]− γε
n−2

Π
i=0

[(2i) γε− 1]

]

= −
γnεn

n−2

Π
i=0

[(2i+ 2)αµ− 1]

αn−1µn
n−1

Π
i=0

[(2i+ 1) γε− 1]

=
γnεn

n−1

Π
i=0

[(2i)αµ− 1]

αn−1µn
n−1

Π
i=0

[(2i+ 1) γε− 1]

.

Now, system (1) gives us that

y4n−3 =
y4n−5x4n−7

x4n−5 [1− y4n−5x4n−7]

=

αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1
n−2
Π
i=0

[(2i+2)αµ−1]

γn−1εn−1
n−2
Π
i=0

[(2i)αµ−1]

αn−2µn−1
n−2
Π
i=0

[(2i+1)γε−1]

γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1
n−2
Π
i=0

[(2i+2)γε−1]

[
1−

αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1
n−2
Π
i=0

[(2i+2)αµ−1]

γn−1εn−1
n−2
Π
i=0

[(2i)αµ−1]

αn−2µn−1
n−2
Π
i=0

[(2i+1)γε−1]

]

=

αµ
n−2
Π
i=0

[(2i)αµ−1]

n−2
Π
i=0

[(2i+2)αµ−1]

γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1
n−2
Π
i=0

[(2i+2)γε−1]

[
1−

αµ
n−2
Π
i=0

[(2i)αµ−1]

n−2
Π
i=0

[(2i+2)αµ−1]

]

=
αnµn

n−2

Π
i=0

[(2i)αµ− 1]
n−2

Π
i=0

[(2i+ 2) γε− 1]

γnεn−1
n−2

Π
i=0

[(2i+ 1)αµ− 1]

[
n−2

Π
i=0

[(2i+ 2)αµ− 1]− αµ
n−2

Π
i=0

[(2i)αµ− 1]

]
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= −
αnµn

n−2

Π
i=0

[(2i+ 2) γε− 1]

γnεn−1
n−1

Π
i=0

[(2i+ 1)αµ− 1]

=
αnµn

n−1

Π
i=0

[(2i) γε− 1]

γnεn−1
n−1

Π
i=0

[(2i+ 1)αµ− 1]

.

Hence, the rest of the results can be similarly proved.

2.2 Second System xn+1 = xn−1yn−3

yn−1(−1+xn−1yn−3)
, yn+1 = yn−1xn−3

xn−1(−1+yn−1xn−3)

Our leading duty in this subsection is to determine the solutions of the following discrete
systems:

xn+1 =
xn−1yn−3

yn−1 (−1 + xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1 (−1 + yn−1xn−3)
. (2)

The initial values of this system are arbitrary real numbers.

Theorem 2 Suppose that {xn, yn} is a solution to system (2) and assume that x−3 =
α, x−2 = β, x−1 = γ, x0 = δ, y−3 = ε, y−2 = η, y−1 = µ and y0 = ω.Then, for n = 0, 1, ...
we have

x4n−3 =
γnεn

αn−1µn (γε− 1)n
, x4n−2 =

δnηn

βn−1ωn (δη − 1)n
,

x4n−1 =
γn+1εn (αµ− 1)n

αnµn
, x4n =

δn+1ηn (βω − 1)n

βnωn
.

And

y4n−3 =
αnµn

γnεn−1 (αµ− 1)n
, y4n−2 =

βnωn

δnηn−1 (βω − 1)n
,

y4n−1 =
αnµn+1 (γε− 1)n

γnεn
, y4n =

βnωn+1 (δη − 1)n

δnηn
.

Proof. It is obvious that all solutions are satisfied for n = 0. Next, we suppose that n > 1
and assume that the solutions hold for n− 1. That is

x4n−7 =
γn−1εn−1

αn−2µn−1 (γε− 1)n−1 , x4n−6 =
δn−1ηn−1

βn−2ωn−1 (δη − 1)n−1 ,

x4n−5 =
γnεn−1 (αµ− 1)n−1

αn−1µn−1
, x4n−4 =

δnηn−1 (βω − 1)n−1

βn−1ωn−1
.

And

y4n−7 =
αn−1µn−1

γn−1εn−2 (αµ− 1)n−1 , y4n−6 =
βn−1ωn−1

δn−1ηn−2 (βω − 1)n−1 ,

y4n−5 =
αn−1µn (γε− 1)n−1

γn−1εn−1
, y4n−4 =

βn−1ωn (δη − 1)n−1

δn−1ηn−1
.
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We now turn to illustrate the first result. System (2) leads to

x4n−3 =
x4n−5y4n−7

y4n−5 (−1 + x4n−5y4n−7)

=

γnεn−1(αµ−1)n−1

αn−1µn−1
αn−1µn−1

γn−1εn−2(αµ−1)n−1

αn−1µn(γε−1)n−1

γn−1εn−1

[
−1 + γnεn−1(αµ−1)n−1

αn−1µn−1
αn−1µn−1

γn−1εn−2(αµ−1)n−1

]
=

γnεn

αn−1µn (γε− 1)n−1 [−1 + γε]
=

γnεn

αn−1µn (γε− 1)n
.

Similarly, it is easy to see from system (2) that

y4n−3 =
y4n−5x4n−7

x4n−5 (−1 + y4n−5x4n−7)

=

αn−1µn(γε−1)n−1

γn−1εn−1
γn−1εn−1

αn−2µn−1(γε−1)n−1

γnεn−1(αµ−1)n−1

αn−1µn−1

[
−1 + αn−1µn(γε−1)n−1

γn−1εn−1
γn−1εn−1

αn−2µn−1(γε−1)n−1

]
=

αnµn

γnεn−1 (αµ− 1)n−1 [−1 + αµ]
=

αnµn

γnεn−1 (αµ− 1)n
.

The remaining solutions of system (2) can be clearly justified in a similar technique. Thus,
the proof is complete.

2.3 Third System xn+1 = xn−1yn−3

yn−1(1−xn−1yn−3)
, yn+1 = yn−1xn−3

xn−1(−1+yn−1xn−3)

The central point of this subsection is to resolve a system of fourth order rational recursive
equations given by the form:

xn+1 =
xn−1yn−3

yn−1 (1− xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1 (−1 + yn−1xn−3)
, (3)

where the initial values are as described previously.

Theorem 3 Let {xn, yn} be a solution to system (3) and suppose that x−3 = α, x−2 =
β, x−1 = γ, x0 = δ, y−3 = ε, y−2 = η, y−1 = µ and y0 = ω. Then, for n = 0, 1, ... we have

x4n−3 =
(−1)n γnεn

αn−1µn
n−1

Π
i=0

[(2i+ 1) γε− 1]

, x4n−2 =
(−1)n δnηn

βn−1ωn
n−1

Π
i=0

[(2i+ 1) δη − 1]

,

x4n−1 =
(−1)n γn+1εn (αµ− 1)n

αnµn
n−1

Π
i=0

[(2i+ 2) γε− 1]

, x4n =
(−1)n δn+1ηn (βω − 1)n

βnωn
n−1

Π
i=0

[(2i+ 2) δη − 1]

.

And
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y4n−3 =
(−1)n αnµn

n−1

Π
i=0

[(2i) γε− 1]

γnεn−1 (αµ− 1)n
, y4n−2 =

(−1)n βnωn
n−1

Π
i=0

[(2i) δη − 1]

δnηn−1 (βω − 1)n
,

y4n−1 =
(−1)n αnµn+1

n−1

Π
i=0

[(2i+ 1) γε− 1]

γnεn
, y4n =

(−1)n βnωn+1
n−1

Π
i=0

[(2i+ 1) δη − 1]

δnηn
.

Proof. The results are true for n = 0. Next, we suppose that n > 1 and assume that the
relations hold for n− 1. That is

x4n−7 =
(−1)n−1 γn−1εn−1

αn−2µn−1
n−2

Π
i=0

[(2i+ 1) γε− 1]

, x4n−6 =
(−1)n−1 δn−1ηn−1

βn−2ωn−1
n−2

Π
i=0

[(2i+ 1) δη − 1]

,

x4n−5 =
(−1)n−1 γnεn−1 (αµ− 1)n−1

αn−1µn−1
n−2

Π
i=0

[(2i+ 2) γε− 1]

, x4n−4 =
(−1)n−1 δnηn−1 (βω − 1)n−1

βn−1ωn−1
n−2

Π
i=0

[(2i+ 2) δη − 1]

.

And

y4n−7 =
(−1)n−1 αn−1µn−1

n−2

Π
i=0

[(2i) γε− 1]

γn−1εn−2 (αµ− 1)n−1 , y4n−6 =
(−1)n−1 βn−1ωn−1

n−2

Π
i=0

[(2i) δη − 1]

δn−1ηn−2 (βω − 1)n−1 ,

y4n−5 =
(−1)n−1 αn−1µn

n−2

Π
i=0

[(2i+ 1) γε− 1]

γn−1εn−1
, y4n−4 =

(−1)n−1 βn−1ωn
n−2

Π
i=0

[(2i+ 1) δη − 1]

δn−1ηn−1
.

Now, we establish the proofs of two relations. Firstly, system (3) gives us that

x4n−3 =
x4n−5y4n−7

y4n−5 (1− x4n−5y4n−7)

=

(−1)n−1γnεn−1(αµ−1)n−1

αn−1µn−1
n−2
Π
i=0

[(2i+2)γε−1]

(−1)n−1αn−1µn−1
n−2
Π
i=0

[(2i)γε−1]

γn−1εn−2(αµ−1)n−1

(−1)n−1αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1

[
1− (−1)n−1γnεn−1(αµ−1)n−1

αn−1µn−1
n−2
Π
i=0

[(2i+2)γε−1]

(−1)n−1αn−1µn−1
n−2
Π
i=0

[(2i)γε−1]

γn−1εn−2(αµ−1)n−1

]

=

γε
n−2
Π
i=0

[(2i)γε−1]

n−2
Π
i=0

[(2i+2)γε−1]

(−1)n−1αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1

[
1−

γε
n−2
Π
i=0

[(2i)γε−1]

n−2
Π
i=0

[(2i+2)γε−1]

]
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=
(−1)−n+1 γnεn

n−2

Π
i=0

[(2i) γε− 1]

αn−1µn
n−2

Π
i=0

[(2i+ 1) γε− 1]

[
n−2

Π
i=0

[(2i+ 2) γε− 1]− γε
n−2

Π
i=0

[(2i) γε− 1]

]
=

− (−1)−n+1 γnεn

αn−1µn
n−1

Π
i=0

[(2i+ 1) γε− 1]

=
(−1)n γnεn

αn−1µn
n−1

Π
i=0

[(2i+ 1) γε− 1]

.

Next, it can be noticed from system (3) that

y4n−3 =
y4n−5x4n−7

x4n−5 (−1 + y4n−5x4n−7)

=

(−1)n−1αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1

(−1)n−1γn−1εn−1

αn−2µn−1
n−2
Π
i=0

[(2i+1)γε−1]

(−1)n−1γnεn−1(αµ−1)n−1

αn−1µn−1
n−2
Π
i=0

[(2i+2)γε−1]

[
−1 +

(−1)n−1αn−1µn
n−2
Π
i=0

[(2i+1)γε−1]

γn−1εn−1

(−1)n−1γn−1εn−1

αn−2µn−1
n−2
Π
i=0

[(2i+1)γε−1]

]

=
(−1)−n+1 αnµn

n−2

Π
i=0

[(2i+ 2) γε− 1]

γnεn−1 (αµ− 1)n−1 [−1 + αµ]
=
− (−1)n−1 αnµn

n−1

Π
i=0

[(2i) γε− 1]

γnεn−1 (αµ− 1)n

=
(−1)n αnµn

n−1

Π
i=0

[(2i) γε− 1]

γnεn−1 (αµ− 1)n
.

The proofs of the remaining relations can be likewise achieved. Therefore, they are omitted.

2.4 Fourth System xn+1 = xn−1yn−3

yn−1(−1+xn−1yn−3)
, yn+1 = yn−1xn−3

xn−1(1−yn−1xn−3)

Our fundamental task in this subsection is to develop fractional solutions to the system of
recursive equations given by the form:

xn+1 =
xn−1yn−3

yn−1 (−1 + xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1 (1− yn−1xn−3)
, (4)

where the initial conditions are required to be non-zero real numbers.

Theorem 4 Assume that {xn, yn} is a solution to system (4) and suppose that x−3 =
α, x−2 = β, x−1 = γ, x0 = δ, y−3 = ε, y−2 = η, y−1 = µ and y0 = ω. Then, for
n = 0, 1, ... we have

x4n−3 =
(−1)n γnεn

n−1

Π
i=0

[(2i)αµ− 1]

αn−1µn (γε− 1)n
, x4n−2 =

(−1)n δnηn
n−1

Π
i=0

[(2i) βω − 1]

βn−1ωn (δη − 1)n
,

x4n−1 =
(−1)n γn+1εn

n−1

Π
i=0

[(2i+ 1)αµ− 1]

αnµn
, x4n =

(−1)n δn+1ηn
n−1

Π
i=0

[(2i+ 1) βω − 1]

βnωn
.

And
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y4n−3 =
(−1)n αnµn

γnεn−1
n−1

Π
i=0

[(2i+ 1)αµ− 1]

, y4n−2 =
(−1)n βnωn

δnηn−1
n−1

Π
i=0

[(2i+ 1) βω − 1]

,

y4n−1 =
(−1)n αnµn+1 (γε− 1)n

γnεn
n−1

Π
i=0

[(2i+ 2)αµ− 1]

, y4n =
(−1)n βnωn+1 (δη − 1)n

δnηn
n−1

Π
i=0

[(2i+ 2) βω − 1]

.

Proof. The relations hold for n = 0. Next, we let n > 1 and assume that the formulas hold
for n− 1. That is

x4n−7 =
(−1)n−1 γn−1εn−1

n−2

Π
i=0

[(2i)αµ− 1]

αn−2µn−1 (γε− 1)n−1 , x4n−6 =
(−1)n−1 δn−1ηn−1

n−2

Π
i=0

[(2i) βω − 1]

βn−2ωn−1 (δη − 1)n−1 ,

x4n−5 =
(−1)n−1 γnεn−1

n−2

Π
i=0

[(2i+ 1)αµ− 1]

αn−1µn−1
, x4n−4 =

(−1)n−1 δnηn−1
n−2

Π
i=0

[(2i+ 1) βω − 1]

βn−1ωn−1
.

And

y4n−7 =
(−1)n−1 αn−1µn−1

γn−1εn−2
n−2

Π
i=0

[(2i+ 1)αµ− 1]

, y4n−6 =
(−1)n−1 βn−1ωn−1

δn−1ηn−2
n−2

Π
i=0

[(2i+ 1) βω − 1]

,

y4n−5 =
(−1)n−1 αn−1µn (γε− 1)n−1

γn−1εn−1
n−2

Π
i=0

[(2i+ 2)αµ− 1]

, y4n−4 =
(−1)n−1 βn−1ωn (δη − 1)n−1

δn−1ηn−1
n−2

Π
i=0

[(2i+ 2) βω − 1]

.

We now turn to verify the proof of two relations. It can be obviously seen from system (4)
that

x4n−3 =
x4n−5y4n−7

y4n−5 (−1 + x4n−5y4n−7)

=

(−1)n−1γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1

(−1)n−1αn−1µn−1

γn−1εn−2
n−2
Π
i=0

[(2i+1)αµ−1]

(−1)n−1αn−1µn(γε−1)n−1

γn−1εn−1
n−2
Π
i=0

[(2i+2)αµ−1]

[
−1 +

(−1)n−1γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1

(−1)n−1αn−1µn−1

γn−1εn−2
n−2
Π
i=0

[(2i+1)αµ−1]

]

=
(−1)−n+1 γnεn

n−2

Π
i=0

[(2i+ 2)αµ− 1]

αn−1µn (γε− 1)n−1 [−1 + γε]
=
− (−1)n−1 γnεn

n−1

Π
i=0

[(2i)αµ− 1]

αn−1µn (γε− 1)n

=
(−1)n γnεn

n−1

Π
i=0

[(2i)αµ− 1]

αn−1µn (γε− 1)n
.
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Further, it can be attained from system (4) that

y4n−3 =
y4n−5x4n−7

x4n−5 (1− y4n−5x4n−7)

=

(−1)n−1αn−1µn(γε−1)n−1

γn−1εn−1
n−2
Π
i=0

[(2i+2)αµ−1]

(−1)n−1γn−1εn−1
n−2
Π
i=0

[(2i)αµ−1]

αn−2µn−1(γε−1)n−1

(−1)n−1γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1

[
1− (−1)n−1αn−1µn(γε−1)n−1

γn−1εn−1
n−2
Π
i=0

[(2i+2)αµ−1]

(−1)n−1γn−1εn−1
n−2
Π
i=0

[(2i)αµ−1]

αn−2µn−1(γε−1)n−1

]

=

αµ
n−2
Π
i=0

[(2i)αµ−1]

n−2
Π
i=0

[(2i+2)αµ−1]

(−1)n−1γnεn−1
n−2
Π
i=0

[(2i+1)αµ−1]

αn−1µn−1

[
1−

αµ
n−2
Π
i=0

[(2i)αµ−1]

n−2
Π
i=0

[(2i+2)αµ−1]

]

=
(−1)−n+1 αnµn

n−2

Π
i=0

[(2i)αµ− 1]

γnεn−1
n−2

Π
i=0

[(2i+ 1)αµ− 1]

[
n−2

Π
i=0

[(2i+ 2)αµ− 1]− αµ
n−2

Π
i=0

[(2i)αµ− 1]

]
=

(−1)n αnµn

γnεn−1
n−1

Π
i=0

[(2i+ 1)αµ− 1]

.

Other results can be proved in a similar way. Thus, the remaining proofs are omitted.

2.5 Numerical Examples

This subsection aims to present graphical confirmations to the whole solutions obtained in
the previous subsections. Here, we plot the solutions (by using MATLAB software) under
specific selections of some initial conditions.
Example 1. This example shows the paths of the solutions of system (1). The initial
conditions of this example are given as follows: x−3 = 3, x−2 = 1, x−1 = 5, x0 = 2, y−3 =
1, y−2 = 3, y−1 = 5 and y0 = 5. See Figure 1.
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Figure 1: The behaviour of the solution of system (1).

Example 2. In Figure 2, we illustrate the behaviour of the solution of system (2) under
the following selection of initial conditions: x−3 = 3.4, x−2 = 0.7, x−1 = 2, x0 = 3, y−3 =
1.5, y−2 = 1.5, y−1 = 0.5 and y0 = 1.22.
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Figure 2: The behaviour of the solution of system (2).

Example 3. Figure 3 illustrates the curves of the solutions of system (3) when we assume
that x−3 = 0.7, x−2 = 2.1, x−1 = 1, x0 = 0.5, y−3 = 0.1, y−2 = 0.2, y−1 = 2.2 and
y0 = 0.5.
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Figure 3: The behaviour of the solution of system (3).

Example 4. The solutions of system (4) are depicted in Figure 4 under the following initial
data: x−3 = 0.2, x−2 = 1, x−1 = 0.3, x0 = 0.2, y−3 = 3, y−2 = 1, y−1 = 2 and y0 = 0.3.
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Figure 4: The behaviour of the solution of system (4).
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The ELECTRE multi-attribute group decision making
method based on interval-valued intuitionistic fuzzy sets

Cheng-Fu Yang∗

School of Mathematics and Statistics of Hexi University, Zhangye Gansu,734000, P. R. China

Abstract

In this paper, based on the ELECTRE method and new ranking for the interval-valued intuitionistic
fuzzy set (IVIFS), the IVIF ELECTRE method to solve multi-attribute group decision-making problems
with interval-valued intuitionistic fuzzy input data is proposed, it is extending the intuitionistic fuzzy set
(IF) ELECTRE method. This method firstly use AHP (Analytic hierarchy process) to find the weights
of attribute, and use new ranking method for IVIFS and similarity measure between IVIFS to determine
the weights of decision makers (DMs), then give the concordance set, midrange concordance set, weak
concordance set and cosponging discordance set, midrange discordance set, weak discordance set. From
this, the concordance matrix, discordance index, concordance dominance matrix and discordance domi-
nance matrix are proposed. Finally, the ranking order of all the alternatives Ai(i = 1, 2, . . . , n) and the best
alternative are obtained. A numerical example is taken to illustrate the feasibility and practicability of the
proposed method.
Keywords: Interval-valued intuitionistic fuzzy sets; ELECTRE method; Multi-attribute group decision
making

1 Introduction
Since the multi-attribute decision making (MADM) was introduced in 1960‘s, it has been a hot topic

in decision making and systems engineering, and been proven as a useful tool due to its broad applications
in a number of practical problems. But in some real-life situations, a decision maker (DM) may not be
able to accurately express his/her preferences for alternatives due to that (1) the DM may not possess a
precise or sufficient level of knowledge of the problem; (2) the DM is unable to discriminate explicitly the
degree to which one alternative are better than others. In order to handle inexact and imprecise data, in
1965 Zadeh [38] introduced fuzzy set (FS) theory. In 1983 Atanassov [1,2] generalized FS to intuitionistic
fuzzy set (IFS) by using two characteristic functions to express the degree of membership and the degree of
non-membership of elements of the universal set. Since IFS tackled the drawback of the single membership
value in FS theory, IFS has been widely applied to the multi-attribute decision making (MADM) [4,7,8,10-
14,20,22,23,28] and multi-attribute group decision making (MAGDM) [18,19,21].

In 1989 Atanassov and Gargov [3] further generalized the IFS in the spirit of the ordinary interval-
valued fuzzy set (IVFS) and defined the concept of interval-valued intuitionistic fuzzy set (IVIFS), which
enhances greatly the representation ability of uncertainty than IFS. Similar to the IFS, IVIFSs were also
∗Corresponding author Address: School of Mathematics and Statistics of Hexi University, Zhangye, Gansu,734000, P. R. China.

Tel.:+86 0936 8280868; Fax:+86 0936 8282000. E-mail: ycfgszy@126.com (C.F.Yang).
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used in the problems of MADM [6,15-17,28,32] and MAGDM [29,31,33,34]. In these researches, some are
extension of classic decision making methods in IVIFS environment. For example, Li [15] developed the
closeness coefficient-based nonlinear-programming method for interval-valued intuitionistic fuzzy MAD-
M with incomplete preference information, Li [16] proposed the TOPSIS-based nonlinear-programming
methodology for MADM with IVIFSs, Li [17] proposed the linear-programming method for MADM with
IVIFSs. These decision methods under interval-valued intuitionistic fuzzy environments also generalize the
classic decision making methods, such as TOPSIS and LINMAP. In [32], Wang et al. proposed a expect to
apply ELECTRE and PROMETHEE motheds to MADM and MAGDM with IVIFS.

In this paper, based on the new ranking method of interval in [27] and similarity measure of IVIFSs in
[35, 37], the IF ELECTRE [30] method is applied to MAGDM with IVIFS, and obtain IVIFS ELECTRE
method for solving MAGDM problems under IVIF environments.

This paper is organized as follows. Section 2 briefly reviews the analytic hierarchy process (AHP).
Section 3 and Section 4 introduce the new ranking method of intervals and similarity measure between
IVIFSs, respectively. Section 5 formulates an MAGDM problem in which the evaluation of alternatives
in each attribute is expressed by IVIF sets, and also develops an extended ELECTRE method. Section
6 demonstrates the feasibility and applicability of the proposed method by applying it to the MAGDM
problem of the air-condition. Finally, Section 7 presents the conclusions.

2 Analytic hierarchy process (AHP)
AHP was introduced for the first time in 1980 by Thomas L. Saaty [24]. For years, AHP has been used

in various fields such as social sciences, health planning and management. Many researchers have preferred
to use AHP to find the weights of attribute [25,26]. Due to the fact that attribute weights in the decision-
making problems are various, it is not correct to assign all of them as equalled [5]. To solve the problem
of indicating the weights, some methods like AHP, eigenvector, entropy analysis, and weighted least square
methods were used. For the calculation of attribute weight in AHP the following steps are used:

(i) Arrange the attribute in n × n square matrix form as rows and columns.
(ii) Using pairwise comparisons, the relative importance of one attribute over another can be expressed

as follow:
If two attribute have equal importance in pairwise comparison enter 1; if one of them is moderately more

important than the other enter 3 and for the other enter 1/3; if one of them is strongly more important enter 5
and for the other enter 1/5; if one of them is very strongly more important enter 7 and for the other enter 1/7,
and if one of them is extremely important enter 9 and for the other enter 1/9. 2, 4, 6 and 8 can be entered as
intermediate values. Thus, pairwise comparison matrix is obtained as a result of the pairwise comparisons.
Note that all elements in the comparison matrix are positive, in other words ai j > 0 (i, j = 1, 2, . . . , n).

(a) To find the maximum eigenvalue λ of the comparison matrix.
(b) Calculate consistency index CI = λ−n

n−1 and consistency ratio CR = CI
RI , where RI is the random

consistency index given by Saaty.(Table 1)
(c) If CR ≥ 0.1, then adjusts elements ai j (i, j = 1, 2, . . . , n) of the comparison matrix, (a) and (b)

choices are done iteratively until CR < 0.1.
(d) Compute eigenvector of the maximum eigenvalue of the comparison matrix.
(e) Normalized eigenvector.

Table1:Random consistency index RI.
n 1 2 3 4 5 6 7 8 9 10 11

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
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3 Ranking method for intervals
Let x = [a, b] ⊆ [0, 1] and y = [c, d] ⊆ [0, 1] be two intervals. Since the location relations between

x = [a, b] and y = [c, d] include the following six cases, Wan and Dong [27] calculated the occurrence
probability for the fuzzy(or random) event x ≥ y, denoted by P(x ≥ y), under different cases.

Case1: a < b ≤ c < d,

P(x ≥ y) = 0. (1)

Case2: a ≤ c < b < d or a < c < b ≤ d,

P(x ≥ y) =
(b − c)2

2(b − a)(d − c)
. (2)

Case3: a ≤ c < d < b or a < c < d ≤ b or a ≤ c < d ≤ b,

P(x ≥ y) =
2b − d − c
2(b − a)

. (3)

Case4: c ≤ a < b < d or c < a < b ≤ d,

P(x ≥ y) =
b + a − 2c
2(d − c)

. (4)

Case5: c ≤ a < d < b or c < a < d ≤ b,

P(x ≥ y) =
2bd + 2ac − 2bc − a2 − d2

2(b − a)(d − c)
. (5)

Case6: c ≤ d ≤ a < b or c < a < b ≤ d,

P(x ≥ y) = 1. (6)

In order to rank intervals ãi = [ai, bi] (i = 1, 2, . . . , n), Wang and Dong [27] construct the matrix of
possibility degree as P = (Pi j)n×n, where Pi j = P(ãi ≥ ã j) (i = 1, 2, . . . , n; j = 1, 2, . . . , n). Then, the
ranking vector ω = (ω1, ω2, ..., ωn)T is derived as follows:

ωi = (
n∑

j=1

Pi j +
n
2
− 1)/(n(n − 1)) (i = 1, 2, · · · , n). (7)

The larger the value of ωi, the bigger the corresponding intervals ãi = [ai, bi]. In other words, for the
two intervals ãi = [ai, bi] and ã j = [a j, b j], if ωi ≥ ω j, then [ai, bi] ≥ [a j, b j].

4 Similarity measure between IVIFSs
Definition 1.[3] An IVIFS A in the universe set of discourse X is defined as

A = {〈x, µA(x), νA(x)〉 |x ∈ X } ,

where µA(x) ⊆ [0, 1] and νA(x) ⊆ [0, 1] denote respectively the membership degree interval and the non-
membership degree interval of x to A,with the condition:
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supµA(x)+ supνA(x) ≤ 1,∀x ∈ X.
Since IVIFS is composed of two ordered interval pairs, Xu [31,32] called them interval-valued intuition-

istic fuzzy numbers(IVIFNs) and simply denoted by G = ([a, b], [c, d]), where [a, b] ⊆ [0, 1], [c, d] ⊆ [0, 1]
and b + d ≤ 1.
Definition 2.[37] Let Gi = ([ai, bi], [ci, di]) (i = 1, 2) be two IVIFNs, the normalized Hamming distance
between G1 and G2 can be defined as:

d(G1,G2) =
1
4

(|a1 − a2| + |b1 − b2| + |c1 − c2| + |d1 − d2| +
∣∣∣π′1 − π′2∣∣∣ +

∣∣∣π′′1 − π′′2 ∣∣∣), (8)

where πGi = [π′i , π
′′
i ] = [1 − bi − di, 1 − ai − ci] (i = 1, 2) is called the degree of indeterminacy or called the

degree of hesitancy of the IVIFN Gi.
Definition 3.[35, 37] Let Gi = ([ai, bi], [ci, di]) (i = 1, 2) be two IVIFNs, then

s(G1,G2) =

 1, i f G1 = G2 = Gc
2,

d(G1,Gc
2)

d(G1,G2)+d(G1,Gc
2) , otherwise (9)

is called the degree of similarity between G1 and G2, where Gc
2 = ([c2, d2], [a2, b2]) is denoted as the

complement of G2.
Definition 4.[37] Let A and B be two IVIFSs in X, then

s(A, B) =
1
n

n∑
j=1

s(GA
j ,G

B
j ) =

1
n

n∑
j=1

d(GA
j , (G

B
j )c)

d(GA
j ,G

B
j ) + d(GA

j , (G
B
j )c)

(10)

is called the degree of similarity between A and B , where GA
j and GB

j are j-th IVIFNs of A and B , respec-
tively.
Definition 5.[6, 27] Let Gi (i = 1, 2, . . . , n) be a collection of the IVIFNs, where Gi = ([ai, bi], [ci, di]). If

Yω(G1,G2, · · · ,Gn) =

n∑
j=1
ω jG j

n∑
j=1
ω j

, (11)

whereω = (ω1, ω2, ..., ωn)T is the weight vector, then the function Yω is called the weighted average operator
for the IVIFNs. Particularly, if ω j ( j = 1, 2, . . . , n) are crisp values, then the weighted average operator Yω
is calculated as follows:

Yω(G1,G2, · · · ,Gn) =

n∑
j=1
ω jG j

n∑
j=1
ω j

=




n∑
j=1
ω ja j

n∑
j=1
ω j

,

n∑
j=1
ω jb j

n∑
j=1
ω j

 ,


n∑
j=1
ω jc j

n∑
j=1
ω j

,

n∑
j=1
ω jd j

n∑
j=1
ω j


 . (12)

5 MAGDM problems and ELECTRE method with IVIFSs

5.1 Problems description for MAGDM with IVIFSs
Assume that there are m alternatives {A1, A2, . . . , Am} and k experts {p1, p2, . . . , pk}, each alternative Ai

has n attributes {a1, a2, . . . , an}. For each alternative Ai, each expert gives evaluation on different attribute.
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The multi-attribute group decision making (MAGDM) is choose the best one from all alternatives according
to these evaluations. Assume that Gt

Mi j = [at
i j, b

t
i j] and Gt

Ni j = [ct
i j, d

t
i j] are respectively the membership

degree and non-membership degree of alternative Ai ∈ A on an attribute a j given by DM pt to the fuzzy
concept ”excellent”. In other words, the evaluation of Ai on a j given by pt is an IVIFN as follows:

Gt
i j = (Gt

Mi j,G
t
Ni j), (13)

where [at
i j, b

t
i j] ⊆ [0, 1], [ct

i j, d
t
i j] ⊆ [0, 1] and bt

i j + dt
i j ≤ 1 (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ t ≤ k).

5.2 Determination of the weights of DMs
Since the different DMs play different roles during the process of decision making, thus the importance

of DMs should be taken into consideration. The weight vector of DMs is denoted by z = (z1, z2, . . . , zk)T .
In the following, an approach determined the weights of DMs is given.

Suppose that the evaluation of alternative Ai given by DM pt on each attribute are respectively the
IVIFNs Gt

i1,G
t
i2, ...,G

t
in. By Eq.(12), the individual overall attribute value of Ai given by pt is obtained as

follows:

Et
i = ([at

i, b
t
i], [c

t
i, d

t
i]) = Yω(Gt

i1,G
t
i2, · · ·G

t
in), (14)

where ω = (ω1, ω2, ..., ωn)T is the weight vector of attributes.
Let Et = (Et

1, E
t
2, . . . , E

t
m) and Eu = (Eu

1, E
u
2, . . . , E

u
m) are evaluation vectors of all alternatives given by

DMs pt and pu, respectively. Using Eqs.(8-10), the similarity degree stu between Et and Eu is obtained, and
the similarity matrix S is constructed as follows:

S = (stu)k×k. (15)

Obviously, S is a non-negative symmetric matrix, by the Perron-Frobenius theorem [12], there exists
the maximum module eigenvalue λ > 0, and the corresponding eigenvector x = (x1, x2, . . . , xk)T satisfies
that xt > 0 (t = 1, 2, . . . , k) and λx = S x.

Let z = λx = S x, then each component of z is the weight of corresponding expert. The normalized
vector z, the weight zt (t = 1, 2, . . . , k) of DM pt is obtained as follows:

zt =
xt

(x1 + x2 + · · · + xk)
(t = 1, 2, · · · , k). (16)

5.3 ELECTRE methods based on IVIFS
Based on the idea of ELECTRE method, a new approach, named as IVIF ELECTRE, is formulated to

solve a MCDM problem under interval-valued intuitionistic fuzzy environment. For each pair of alternatives
k and l (k, l = 1, 2, . . . ,m and k , l), each attribute in the different alternatives can be divided into two
distinct subsets. The concordance set Ekl of Ak and Al is composed of all attribute for which Ak is preferred
to Al. In other words, Ekl = { j|xk j ≥ xl j}, where J = { j| j = 1, 2, . . . , n}, xk j and xl j denoted the evaluation
of DM in the jth attribute to alternative Ak and Al, respectively. The complementary subset, which is the
discordance set, is Fkl = { j|xk j < xl j}. In the proposed IVIF ELECTRE method, we can classify different
types of concordance and discordance sets using the concepts of score function, accuracy function and
hesitation degree, and use concordance and discordance sets to construct concordance and discordance
matrices, respectively. The decision makers can choose the best alternative using the concepts of positive
and negative ideal points.

5
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Xu [31] and Xu and Chen [36] defined the score function S (G) and accuracy function H(G) for an
IVIFN G=([a,b],[c,d]) as follows:

S (G) = 1
2 (a + b − c − d), (17)

H(G) = 1
2 (a + b + c + d). (18)

Here, we define the hesitation degree for an IVIFN G=([a,b],[c,d]) as follows:

π(G) = 1 − 1
2 (a + b + c + d). (19)

From (18) and (19), easy to see that a higher accuracy degree H(G) correlates with a lower hesitancy
degree π(G).

Considering the better alternative has the higher score degree or higher accuracy degree in cases where
alternatives have the same score degree. A higher score degree refers to a larger membership degree or
smaller non-membership degree, and a higher accuracy degree refers to a smaller hesitation degree. Based
on this, using the above three functions to compare IVIF values of different alternatives. The concordance
set can be classified as concordance set, midrange concordance set and weak concordance set. Similarly,
The discordance sets can also be classified as the discordance set, midrange discordance set, and weak
discordance set.

Next, the concordance set, midrange concordance set, weak concordance set, discordance set, midrange
discordance set, weak discordance set are defined respectively as follows.

Let Gk j = ([ak j, bk j], [ck j, dk j]) and Gl j = ([al j, bl j], [cl j, dl j]) denote the jth attribute value of alternative
Ak and Al, respectively. The concordance set Ckl is composed of all attribute for which Ak is preferred to
Al,i.e.,

Ckl = { j|[ak j, bk j] ≥ [al j, bl j], [ck j, dk j] < [cl j, dl j] and [π′k j, π
′′
k j] < [π′l j, π

′′
l j]}, (20)

where J = { j| j = 1, 2, . . . , n}.
The midrange concordance set C′kl is defined as

C′kl = { j|[ak j, bk j] ≥ [al j, bl j], [ck j, dk j] < [cl j, dl j] and [π′k j, π
′′
k j] ≥ [π′l j, π

′′
l j]}. (21)

The major difference between (20) and (21) is the hesitancy degree; the hesitancy degree at the kth
alternative with respect to the jth attribute is higher than the lth alternative with respect to the jth attribute
in the midrange concordance set. Thus, Eq. (20) is more concordant than (21).

The weak concordance set C′′kl is defined as

C′′kl = { j|[ak j, bk j] ≥ [al j, bl j] and [ck j, dk j] ≥ [cl j, dl j]}. (22)

The degree of non-membership at the kth alternative with respect to the jth attribute is higher than the lth
alternative with respect to the jth attribute in the weak concordance set; thus, Eq. (21) is more concordant
than (22).

The discordance set is composed of all attribute for which Ak is not preferred to Al. The discordance set
Dkl is formulated as follows:

Dkl = { j|[ak j, bk j] < [al j, bl j], [ck j, dk j] ≥ [cl j, dl j] and [π′k j, π
′′
k j] ≥ [π′l j, π

′′
l j]}, (23)

The midrange discordance set D′kl is defined as

D′kl = { j|[ak j, bk j] < [al j, bl j], [ck j, dk j] ≥ [cl j, dl j] and [π′k j, π
′′
k j] < [π′l j, π

′′
l j]}. (24)
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The weak discordance set D′′kl is defined as

D′′kl = { j|[ak j, bk j] < [al j, bl j] and [ck j, dk j] < [cl j, dl j]}. (25)

The IVIF ELECTRE method is an integrated IVIFS and ELECTRE method. The relative value of the
concordance set of the IVIF ELECTRE method is measured through the concordance index. The concor-
dance index ekl between Ak and Al is defined as:

ekl = min
j∈C∗
{wC∗ × d(Gk j,Gl j)}, (26)

where d(Gk j,Gl j) is defined in (8), denoted the distance between jth attribute of alternatives Ak and Al, and
wC∗ is equal to wC , wC′ or wC′′ , which denoted the weight of the concordance, midrange concordance, and
weak concordance sets, respectively.

The concordance matrix E is defined as follows:

E =


− e12 · · · · · · e1m

e21 − e23 · · · e2m

· · · · · · − · · · · · ·

e(m−1)1 · · · · · · − e(m−1)m
em1 em2 · · · em(m−1) −

 , (27)

where the maximum value of ekl is denoted by e∗, which is the positive ideal point, and a higher value of ekl

indicates that Ak is preferred to Al.
the discordance index is defined as follows:

hkl = max
j∈D∗
{wD∗ × d(Gk j,Gl j)}, (28)

where d(Gk j,Gl j) is defined in (8), denoted the distance between jth attribute of alternatives Ak and Al, and
wD∗ is equal to wD, wD′ or wD′′ , which denoted the weight of the discordance, midrange discordance, and
weak discordance sets, respectively.

The discordance matrix H is defined as follows:

H =


− h12 · · · · · · h1m

h21 − h23 · · · h2m

· · · · · · − · · · · · ·

h(m−1)1 · · · · · · − h(m−1)m
hm1 hm2 · · · hm(m−1) −

 , (29)

where the maximum value of hkl is denoted by h∗, which is the negative ideal point, and a higher value of
Hkl indicates that Ak is less favorable than Al.

The concordance dominance matrix calculation process is based on the concept that the chosen alter-
native should have the shortest distance from the positive ideal solution, thus, the concordance dominance
matrix K is defined as follows:

K =


− k12 · · · · · · k1m

k21 − k23 · · · k2m

· · · · · · − · · · · · ·

k(m−1)1 · · · · · · − k(m−1)m
km1 km2 · · · km(m−1) −

 , (30)
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where kkl = e∗ − ekl, which refers to the separation of each alternative from the positive ideal solution. A
higher value of kkl indicates that Ak is less favorable than Al.

The discordance dominance matrix calculation process is based on the concept that the chosen alter-
native should have the farthest distance from the negative ideal solution, thus, the discordance dominance
matrix L is defined as follows:

L =


− l12 · · · · · · l1m

l21 − l23 · · · l2m

· · · · · · − · · · · · ·

l(m−1)1 · · · · · · − l(m−1)m
lm1 lm2 · · · lm(m−1) −

 , (31)

where lkl = h∗ − hkl, which refers to the separation of each alternative from the negative ideal solution. A
higher value of lkl indicates that Ak is preferred to Al.

In the aggregate dominance matrix determining process, the distance of each alternative to both positive
and negative ideal points can be calculated to determine the ranking order of all alternatives. The aggregate
dominance matrix R is defined as follows:

R =


− r12 · · · · · · r1m

r21 − r23 · · · r2m

· · · · · · − · · · · · ·

r(m−1)1 · · · · · · − r(m−1)m
rm1 rm2 · · · rm(m−1) −

 , (32)

where
rkl =

lkl

kkl + lkl
,

rkl refers to the relative closeness to the ideal solution, with a range from 0 to 1. A higher value of rkl

indicates that the alternative Ak is simultaneously closer to the positive ideal point and farther from the
negative ideal point than the alternative Al, thus, it is a better alternative.

Let T k = 1
m−1

m∑
l=1,l,k

rkl, k = 1, 2, · · · ,m, (33)

and T k is the final value of evaluation. All alternatives can be ranked according to T k. The best alternative
T ∗, which is simultaneously the shortest distance to the positive ideal point and the farthest distance from
the negative ideal point, can be generated and defined as follows:

T ∗ = max
1≤k≤m

{T k}, (34)

where A∗ is the best alternative.

5.4 Group decision making method
In the following we shall utilize the AHP and interval-valued intuitionistic fuzzy weighted average op-

erator Y ( i.e. Eq. (12)) to propose a new MAGDM method with IVIFN information. The detailed steps are
summarized as follows:
Step 1. DMs use IVIFSs to represent the evaluation information in the each attribute of alternatives;
Step 2. Use AHP to calculate the weight of attribute;
Step 3. Calculate the individual overall attribute value of each alternative by Eq.(14);
Step 4. Obtain the similarity matrix of the DMs according to Eq.(10);
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Step 5. Derive the weight value of each DM from Eq.(16);
Step 6. Using the weight of DM to integrate the same attribute value of different DMs of each alternative in
terms of Eq.(14);
Step 7. By the possibility degree ranking method for intervals in Section 3, calculate the ranking vector of
the membership degree interval, the non-membership degree interval and the hesitancy degree interval of
between the difference alternatives on each attribute, respectively.
Step 8. Obtain the concordance, midrange concordance, weak concordance, discordance, midrange discor-
dance and weak discordance set according to Eqs.(20)-(25), respectively;
Step 9. Compute the concordance matrix, discordance matrix, concordance dominance matrix, discordance
dominance matrix and aggregate dominance matrix in terms of Eqs.(26)-(32);
Step 10. Obtain the ranking order of all alternatives and the best alternative according to Eqs.(33)-(34).

6 Numerical example
In this section, we use the air-condition system selection problem given by [27] to verify the feasibility

of the proposed method. The problem is described as follows:
Suppose there exist three air-condition systems {A1, A2, A3}, four attributes a1 (economical), a2(function),

a3(being operative) and a4(longevity) are taken into consideration in the selection problem. Three expert-
s (DMs) {p1, p2, p3} participate in the decision making. The membership degrees and non-membership
degrees for the alternative Ai on the attribute a j given by expert pt were listed in Tables 2 − 4.

Table 2: IVIFNs given by the expert p1.
Attribute A1 A2 A3

a1 ([0.4, 0.8], [0.0, 0.1]) ([0.5, 0.7],[0.1, 0.2]) ([0.5, 0.7],[0.2, 0.3])
a2 ([0.3, 0.6], [0.0, 0.2]) ([0.3, 0.5],[0.2, 0.4]) ([0.6, 0.8],[0.1, 0.2])
a3 ([0.2, 0.7], [0.2, 0.3]) ([0.4, 0.7],[0.0, 0.2]) ([0.4, 0.7],[0.1, 0.2])
a4 ([0.3, 0.4], [0.4, 0.5]) ([0.1, 0.2],[0.7, 0.8]) ([0.6, 0.8],[0.0, 0.2])

Table 3: IVIFNs given by the expert p2.
Attribute A1 A2 A3

a1 ([0.5, 0.9], [0.0, 0.1]) ([0.7, 0.8], [0.1, 0.2]) ([0.5, 0.6], [0.1, 0.4])
a2 ([0.4, 0.5], [0.3, 0.5]) ([0.5, 0.6], [0.2, 0.3]) ([0.6, 0.7], [0.1, 0.2])
a3 ([0.5, 0.8], [0.0, 0.1]) ([0.5, 0.8], [0.0, 0.2]) ([0.4, 0.8], [0.1, 0.2])
a4 ([0.4, 0.7], [0.1, 0.2]) ([0.5, 0.6], [0.3, 0.4]) ([0.2, 0.6], [0.2, 0.3])

Table 4: IVIFNs given by the expert p3.
Attribute A1 A2 A3

a1 ([0.3, 0.9], [0.0, 0.1]) ([0.3, 0.8], [0.1, 0.2]) ([0.2, 0.6], [0.1, 0.2])
a2 ([0.2, 0.5], [0.1, 0.4]) ([0.5, 0.6], [0.1, 0.3]) ([0.2, 0.6], [0.2, 0.3])
a3 ([0.4, 0.7], [0.1, 0.2]) ([0.2, 0.8], [0.0, 0.2]) ([0.3, 0.6], [0.1, 0.3])
a4 ([0.3, 0.6], [0.3, 0.4]) ([0.3, 0.5], [0.2, 0.3]) ([0.4, 0.7], [0.1, 0.2])

In the following, we will illustrate the decision making process.
(1) Calculation of weights of attributes

In order to find the weights of attributes, A commission, which is organized by sampling method,
determined the importance of attribute by using AHP. A 4 × 4 size matrix is formed because 4 attribute are
considered in this study. All the diagonal elements of the matrix will be 1, the elements of symmetrical
position with respect to the diagonal are reciprocal, in other words, if ai j is ith row and jth column element
of matrix, then its symmetrical position is filled using a ji = 1/ai j formula.
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The comparison matrix W is obtained as follows:

W =


1 2 1

3
1
4

1
2 1 1

3
1
6

3 3 1 1
3

4 6 3 1

 .
By computing the eigenvalues and the eigenvectors of W, we obtained that the maximum eigenvalue

of W was 4.0875, the corresponding eigenvector was ω = (0.1905, 0.1230, 0.4046, 0.8849)T , consistency
index CI=0.0292 and consistency ratio CR = 0.0324 < 0.1.

Normalized eigenvectors, the four attributes weights are obtained as follows:
ω1 = 0.1213, ω2 = 0.0765, ω3 = 0.2517, ω4 = 0.5505.
(2) Calculate the individual overall attribute value of each alternative

By Eq.(14), the individual overall attribute value of each alternative can be obtained as in Table 5.

Table 5: The individual overall attribute values of the alternatives for weight vector of attributes.
Et

i A1 A2 A3
p1 ([0.2870,0.5393],[0.2705,0.3782]) ([0.2393,0.4095],[0.4128,0.5456]) ([0.5375,0.7627],[0.0571,0.2121])
p2 ([0.4373,0.7341],[0.0780,0.1857]) ([0.5242,0.6746],[0.1926,0.3178]) ([0.3173,0.6580],[0.1551,0.2793])
p3 ([0.3175,0.6539],[0.1980,0.3133]) ([0.2901,0.6196],[0.1299,0.2627]) ([0.3353,0.6551],[0.1077,0.2328])

(3) Calculation of the similarity matrix and the weight vector of DMs
The similarity matrix for the DMs is constructed by Eq.(10) as follows:

S =

 1 0.5415 0.6059
0.5415 1 0.7577
0.6059 0.7577 1

 .
Because the maximum eigenvalue of S is 2.2746, the corresponding eigenvector is x = (0.5373, 0.5878, 0.6048)T ,
the expert′s weights are obtained from Eq.(16) as follows: z1 = 0.3106, z2 = 0.3398, z3 = 0.3496.
(4) Integrate the attribute value of different DMs

By Eq.(14), the attribute value of different DMs are respectively integrated as in Table 6.

Table 6: The attribute value of different DMs in the different alternatives and different attributes.
A1 A2 A3

a1 ([0.3990,0.8689],[0,0.1]) ([0.4980,0.7689],[0.1,0.2]) ([0.3951,0.6311],[0.1311,0.2990])
a2 ([0.2990,0.5311],[0.1369,0.3719]) ([0.4379,0.5689],[0.1650,0.3311]) ([0.4602,0.6961],[0.1350,0.2350])
a3 ([0.3719,0.7340],[0.0971,0.1971]) ([0.3641,0.7689],[0,0.2]) ([0.3650,0.6990],[0.1,0.2350])
a4 ([0.3340,0.5719],[0.2631,0.3631]) ([0.3058,0.4408],[0.3893,0.4893]) ([0.3942,0.6971],[0.1029,0.2340])

(5) Calculate the ranking vector
The ranking vector of the membership degree interval, the non-membership degree interval and the

hesitancy degree interval of between the difference alternatives on each attribute is calculated by Eqs.(1-7),
respectively, as in Table 7.
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Table 7: The attribute value of different DMs in the different alternatives and different attributes.
membership degree interval non-membership degree interval hesitancy degree interval

A1 A2 A1 A2 A1 A2
0.5006 0.4994 0.25 0.75 0.5873 0.4127

A1 A3 A1 A3 A1 A3a1 0.6286 0.3714 0.25 0.75 0.5388 0.4612
A2 A3 A2 A3 A2 A3

0.6808 0.3192 0.3207 0.6793 0.4341 0.5659
A1 A2 A1 A2 A1 A2

0.3214 0.6786 0.5135 0.4865 0.5878 0.4122
A1 A3 A1 A3 A1 A3a2 0.27295 0.72705 0.6477 0.3523 0.59905 0.40095
A2 A3 A2 A3 A2 A3

0.34565 0.65435 0.6764 0.3236 0.5173 0.4827
A1 A2 A1 A2 A1 A2

0.48325 0.51675 0.6177 0.3823 0.4723 0.5277
A1 A3 A1 A3 A1 A3a3 0.52875 0.47125 0.4246 0.5754 0.4995 0.5005
A2 A3 A2 A3 A2 A3

0.54255 0.45745 0.3426 0.6574 0.5273 0.4727
A1 A2 A1 A2 A1 A2

0.66115 0.33885 0.25 0.75 0.56895 0.43105
A1 A3 A1 A3 A1 A3a4 0.35955 0.64045 0.75 0.25 0.44015 0.55985
A2 A3 A2 A3 A2 A3

0.2633 0.7367 0.75 0.25 0.365 0.635

(6) Determine the concordance, midrange concordance, weak concordance, discordance, midrange discor-
dance and weak discordance set

Applying Eqs.(20-25) and Table 7, the concordance, midrange concordance, weak concordance, discor-
dance, midrange discordance and weak discordance set is calculated, respectively, as follows:

C =

 − − 3
2 − 1
2 2 −

 , C′ =

 − 1, 4 1
3 − 3
4 4 −

 , C′′ =

 − − −

− − −

− − −

 ,
D =

 − 2 2
− − 2
3 1 −

 , D′ =

 − 3 4
1, 4 − 4
1 3 −

 , D′′ =

 − − −

− − −

− − −

 .
For example, c13 = {3}, which is in the 1st (horizontal) row and the 3rd (vertical) column of the concordance
set, is ”3.” c12 = {−}, which is in the 1st row and 2nd column of the concordance set, is ”empty,” and so
forth.
(7) Compute the concordance matrix, discordance matrix, concordance dominance matrix, discordance
dominance matrix and aggregate dominance matrix

We give the relative weights as: [ωC , ωC′ , ωC′′ , ωD, ωD′ , ωD′′ ] = [1, 2
3 ,

1
3 , 1,

2
3 ,

1
3 ]. By Eqs.(26)-(32), the

concordance matrix, discordance matrix, concordance dominance matrix, discordance dominance matrix
and aggregate dominance matrix are obtained, respectively, as follows:

E =

 − 0.08575 0.02235
0.04759 − 0.05697
0.09643 0.07862 −

 , H =

 − 0.1039 0.16309
0.09967 − 0.18088
0.12298 0.1204 −

 ,
K =

 − 0.01068 0.07408
0.04884 − 0.03946

0 0.01781 −

 , L =

 − 0.07698 0.01779
0.08121 − 0
0.0579 0.06048 −

 .
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R =

 − 0.8782 0.1936
0.6246 − 0

1 0.7725 −


(8) Compute the ranking order of all alternatives and obtain the best alternative

Applying Eq.(33),

T =

 0.5359
0.3123
0.88625


The optimal ranking order of alternatives is given by A3 � A1 � A2. The best alternative is A3. The

ranking order given by [27] is identical. The best air-condition system is A3.
This example shows the effectiveness of the ranking method proposed in this paper.

7 Conclusion
Regarding the MAGDM problem, the IVIF theory provides a useful and convenient way to reflect the

ambiguous nature of subjective judgments and assessments. In this paper, firstly, using the normalized
Hamming distance between IVIFS to construct similarity matrix and obtain the wights of DMs. Then,
using possibility degree of IVIF to calculate the ranking vector. Based on this, the concordance and dis-
cordance sets, concordance and discordance matrices etc. are obtained. Finally, by computing the ranking
order of all alternatives, decision makers can choose the best alternative, the example verify the correctness
of the method.
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The interior and closure of fuzzy topologies induced by the
generalized fuzzy approximation spaces

Cheng-Fu Yang∗

School of Mathematics and Statistics of Hexi University, Zhangye Gansu,734000, P. R. China

Abstract

With respect to the Alexandrov fuzzy topologies induced by the generalized fuzzy approximation
spaces, Wang defined interior of fuzzy set. In this paper, we give the closure of fuzzy set and discuss
some properties of the interior and closure.
Keywords: Alexandrov fuzzy topology; the generalized fuzzy approximation spaces; interior; closure;
properties

1 Introduction
In his classical paper [36], Zadeh introduced the notation of fuzzy sets and fuzzy set operation. Subse-

quently, Chang [2] applied some basic concepts from general topology to fuzzy sets and developed a theory
of fuzzy topological spaces. Pu etc.[18] defined a fuzzy point which took a crisp singleton, equivalently, an
ordinary point, as a special case and gave the concepts of interior and closure operator w.r.t. fuzzy topology.
Later, Lai and Zhang [11] modified the second axiom in Chang’s definition of fuzzy topology to define an
Alexandrov fuzzy topology.

The concept of Rough sets were introduced by Z. Pawlak [19] in 1982 as an powerful mathematical
tool for uncertain data while modeling the problems in many fields [17,20,27]. Because the rough sets
defined with equivalence relations limited the application of it. Thus many authors changed the equivalence
relations into different binary relations to expand the application of it [23,35,37,38]. In recent years, the
rough sets has been combined with some mathematical theories such as algebra and topology [1,5,6,8,10,
14, 16, 21, 25, 26, 28, 29]. With respect to different binary relations, the topological properties of rough
sets were further investigated in [7,14,33,34].

In 1990, Dubois and Prade [3] combining fuzzy sets and rough sets proposed rough fuzzy sets and fuzzy
rough sets. Afterward Morsi and Yakout [15] investigated fuzzy rough sets defined with left-continuous t-
norms and R-implicators with respect to fuzzy similarity relations. Radzikowska and Kerre [24] defined
a broad family of fuzzy rough sets based on t-norms and fuzzy implicators, which are called generalized
fuzzy rough sets here. In recent years, the topological properties of fuzzy rough sets were further studied
in many literatures [4,9,12,13,22]. Recently, with respect to the lower fuzzy rough approximation operator
determined by a fuzzy implicator, Wang [30] studied various fuzzy topologies induced by different fuzzy
relations and proved that I-lower fuzzy rough approximation operators were the interior operator w.r.t. some
Alexandrov fuzzy topology.
∗Corresponding author Address: School of Mathematics and Statistics of Hexi University, Zhangye, Gansu,734000, P. R. China.

E-mail: ycfgszy@126.com
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In this paper, we give closure operator w.r.t. some Alexandrov fuzzy topology given by Wang in [30].
Combined with the definition of Wang’s interior, discuss some properties of the interior and closure of fuzzy
set.

2 Preliminary
Definition 2.1.[36] A fuzzy set A in X is a set of ordered pairs:

A = {(x, A(x)) : x ∈ X}

where A(x) : X → [0, 1] is a mapping and A(x) states the grade of belongness of x in A. The family of all
fuzzy sets in X is denoted by F (X).

Let α ∈ [0, 1], then a fuzzy set A ∈ F (X) is a constant, while A(x) = α for all x ∈ X, denoted as αX .

Deflnition 2.2.[36] Let A, B be two fuzzy sets of F (X)
(1) A is contained in B if and only if A(x) ≤ B(x) for every x ∈ X.
(2) The union of A and B is a fuzzy set C, denoted by A ∪ B = C, whose membership function C(x) =

A(x) ∨ B(x) for every x ∈ X.
(3) The intersection of A and B is a fuzzy set C, denoted by A ∩ B = C, whose membership function
C(x) = A(x) ∧ B(x) for every x ∈ X.
(4) The complement of A is a fuzzy set, denoted by Ac, whose membership function Ac(x) = 1 − A(x) for
every x ∈ X.

A binary operation T : [0, 1] × [0, 1]→ [0, 1] (resp. S : [0, 1] × [0, 1]→ [0, 1]) is called a t-norm (resp.
t-conorm) on [0, 1] if it is commutative, associative, increasing in each argument and has a unit element 1
(resp. 0).

A mapping I : [0, 1] × [0, 1] → [0, 1] is called a fuzzy implicator on [0, 1] if it satisfies the boundary
conditions according to the Boolean implicator, and is decreasing in the first argument and increasing in the
second argument.

Definition 2.3.[30] A fuzzy implicator I is said to satisfy
(1) the left neutrality property ((NP), for short), if I(1, b) = b for all b ∈ [0, 1];
(2) the confinement principle ((CP), for short), if I(a, b) = 1⇔ a ≤ b, for all a, b ∈ [0, 1];
(3) the regular property ((RP), for short), if NI is an involutive negation, where NI is defined as NI(a) =

I(a, 0) for all a ∈ [0, 1].

Definition 2.4. [11] A subset τ ⊆ F (X) is called an Alexandrov fuzzy topology if it satisfies:
(1) αX ∈ τ for all α ∈ [0, 1],
(2) ∩i∈ΛAi ∈ τ for all {Ai}i∈Λ ⊆ τ,
(3) ∪i∈ΛAi ∈ τ for all {Ai}i∈Λ ⊆ τ.

Every member of τ is called a τ-open fuzzy set. A fuzzy set is τ-closed if and only if its complement
is τ-open. In the sequel, when no confusion is likely to arise, we shall call a τ-open (τ-closed) fuzzy set
simply an open (closed) set.

Definition 2.5. [18,31]. Let τ ⊆ F (X) be a fuzzy topology. Then the interior of A ∈ F (X) w.r.t. fuzzy
topology τ denoted as Ao is defined as follows:

Ao = ∪{B ∈ τ|B ⊆ A}.

2

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.2, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

384 Cheng-Fu Yang 383-389



The operator Ao is called an interior operator w.r.t. fuzzy topology τ.
According to definition of the fuzzy topology, obviously Ao is an open set.

Definition 2.6. [18]. Let τ ⊆ F (X) be a fuzzy topology. Then the closure of A ∈ F (X) w.r.t. fuzzy
topology τ denoted as A is defined as follows:

A = ∩{B|B ⊇ A, Bc ∈ τ}

The operator A is called a closure operator w.r.t. fuzzy topology τ.
According to De Morgan’s Law and definition of the fuzzy topology, A is a closed set.

3 Fuzzy topologies induced by the generalized fuzzy approximation
spaces

A fuzzy set R ∈ F (X × Y) is called a fuzzy relation from X to Y . If X = Y , then R is a fuzzy relation on
X. For every fuzzy relation R on X, a fuzzy relation R−1 is defined as R−1(x, y) = R(y, x) for all x, y ∈ X. Let
R be a fuzzy relation from X to Y . Then the triple (X,Y,R) is called a fuzzy approximation space. When
X = Y and R is a fuzzy relation on X, we also call (X,R) a fuzzy approximation space.

Definition 3.1.[30]. Let R be a fuzzy relation on X. Then R is said to be
(1) reflexive if R(x, x) = 1 for all x ∈ X;
(2) symmetric if R(x, y) = R(y, x) for all x, y ∈ X;
(3) T -transitive if T (R(x, y),R(y, z)) ≤ R(x, z) for all x, y, z ∈ X.

If T = ∧, then T -transitive is said to be transitive for short. A fuzzy relation R is called a fuzzy tolerance
if it is reflexive and symmetric, and a fuzzy T -preorder if it is reflexive and T -transitive. Similarly, a fuzzy
relation R is called a fuzzy preorder if it is reflexive and transitive.

Definition 3.2.[24,30,32]. Let (X,Y,R) be a fuzzy approximation space. Then the following mappings
R, R : F (Y)→ F (X) are defined as follows: for all A ∈ F (Y) and x ∈ X,

R(A)(x) = ∧
y∈Y

I(R(x, y), A(y)) and R(A)(x) = ∨
y∈Y

T (R(x, y), A(y)).

The mappings R and R are called I−lower and T−upper fuzzy rough approximation operators, respectively.
The pair (R(A),R(A)) is called a generalized fuzzy rough set of A w.r.t. (X,Y,R). Also known as generalized
fuzzy approximation spaces.

Let R be a fuzzy relation on X. Then a fuzzy set A ∈ F (X) is said to be
(1) I-lower definable w.r.t. fuzzy relation R if R(A) = A; the family of all I − lower definable fuzzy sets
w.r.t. R is denoted as DI(R).
(2) T -upper definable w.r.t. fuzzy relation R if R(A) = A; the family of all T − upper definable fuzzy sets
w.r.t. R is denoted as DT (R).

Proposition 3.3.[30]. Let (X,R) be a fuzzy approximation space and R be reflexive. Then
(1)DI(R) is an Alexandrov fuzzy topology, if I satisfies (NP).
(2)DT (R) is an Alexandrov fuzzy topology.

Let (X,R) be a fuzzy approximation space. In [30] Wang defined

RI(R) = {R(A)|A ∈ F (X)} and RT (R) = {R(A)|A ∈ F (X)}.
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To discuss the properties of generalized fuzzy rough sets, Radzikowska and Kerre [19] introduced the
following auxiliary conditions: for a fuzzy implicator I and a t-norm T ,
(C1) I(a, I(b, c)) = I(T (a, b), c) for all a, b, c ∈ [0, 1],
(C2) I(a, I(b, c)) ≥ I(T (a, b), c) for all a, b, c ∈ [0, 1],
(C3) I(a, I(b, c)) ≤ I(T (a, b), c) for all a, b, c ∈ [0, 1].

If (C1) (resp. (C2), (C3)) holds for I and T , then we say that I satisfies (C1) (resp. (C2), (C3)) for T .

Proposition 3.4.[30]. Let (X,R) be a fuzzy approximation space and R be a fuzzy T -preorder. Then
(1) RI(R) is an Alexandrov fuzzy topology and RI(R) = DI(R), if I satisfies (NP) and (C2) for T .
(2) RT (R) is an Alexandrov fuzzy topology and RT (R) = DT (R).

The above DI(R), DT (R), RI(R) and RT (R) are called fuzzy topologies induced by the generalized
fuzzy approximation spaces.

4 The interior and closure of fuzzy set
Proposition 4.1.[30]. Let R be a fuzzy T -preorder on X, and I satisfy (NP) and (C2) for T . Then R is

the interior operator w.r.t. Alexandrov fuzzy topology DI(R).

Proposition 4.2. Let R be a fuzzy T -preorder on X, and I satisfy (NP) and (C2) for T . Then A is an
open set w.r.t. Alexandrov fuzzy topology DI(R) iff R(A) = Ao = A.

Proof. Suppose A is an open set w.r.t. Alexandrov fuzzy topology DI(R), again A ⊆ A, due to defini-
tion of Ao, A ⊆ Ao. On the other hand,

∀x ∈ X, R(A)(x) = ∧
y∈X

I(R(x, y), A(y)) ≤ I(R(x, x), A(x)) = I(1, A(x)) = A(x).

This means R(A) = Ao ⊆ A. Thus R(A) = Ao = A.
Conversely, suppose R(A) = Ao = A, Ao is an open set, thus A is an open set.

Proposition 4.3. Let R be a fuzzy T -preorder on X, and I satisfy (NP) and (C2) for T . Then for any
A ∈ F(X), [R(Ac)]c is the closure operator w.r.t. Alexandrov fuzzy topology DI(R).
Proof. For any A ∈ F(X), since R(Ac) is an open set, thus (R(Ac))c is a closed set. Again

∀x ∈ X, R(Ac)(x) = ∧
y∈X

I(R(x, y), Ac(y))≤ I(R(x, x), Ac(x)) = I(1, Ac(x)) = Ac(x),

this means (R(Ac))c ⊇ A.
On the other hand, for any A ⊆ B ∈ F(X) and Bc ∈ DI(R). By Proposition 4.2, R(Bc) = Bc, and

∀x ∈ X, R(Ac)(x) = ∧
y∈X

I(R(x, y), Ac(y)) ≥ ∧
y∈X

I(R(x, x), Bc(x)) = R(Bc)(x).

We obtain R(Ac) ⊇ R(Bc) = Bc. This means (R(Ac))c ⊆ B. By Definition of the closure, for any A ∈ F(X),
[R(Ac)]c is the closure operator w.r.t. Alexandrov fuzzy topology DI(R) i.e. [R(Ac)]c = A.

Proposition 4.4. Let R be a fuzzy T -preorder on X, and I satisfy (NP) and (C2) for T . Then A is a
closed set w.r.t. Alexandrov fuzzy topology DI(R) iff (R(Ac))c = A = A.

Proof. Suppose A is a closed set w.r.t. Alexandrov fuzzy topology DI(R), then Ac is an open set. Therefore
R(Ac) = Ac, and then A = (R(Ac))c = A.

4
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Conversely, suppose A = (R(Ac))c = A, A is a closed set, thus A is a closed set.

Proposition 4.5. Let R be a fuzzy T -preorder on X, I satisfy (NP) and (C2) for T . Then for any A, B ∈ F(X)
the following formula hold w.r.t. Alexandrov fuzzy topology DI(R).
(1) A ⊆ A;
(2) A = A;
(3) If A ⊆ B, then A ⊆ B;
(4) A ∪ B = A ∪ B.

Proof. (1) For all x ∈ X,

A(x) = (R(Ac))c(x) = 1 − R(Ac)(x) = 1 − ∧
y∈X

I(R(x, y), Ac(y))

≥ 1 − I(R(x, x), Ac(x))= 1 − I(1, Ac(x))= 1 − Ac(x) = A(x),

thus A ⊆ A.
(2) Since A is a closed set, By Proposition 4.4, A = A.
(3) By A ⊆ B, we obtain Ac ⊇ Bc. According to Definition 3.2, obviously R(Ac) ⊇ R(Bc), and then
A = (R(Ac))c ⊆ (R(Bc))c = B.
(4) Since A ⊆ A ∪ B, B ⊆ A ∪ B, by (2)
A ⊆ A ∪ B and B ⊆ A ∪ B. Thus A ∪ B ⊆ A ∪ B.

On the other hand, by (1) A ⊆ A, B ⊆ B. Thus A∪ B ⊆ A∪ B. And then A ∪ B ⊆ A ∪ B. Again A∪ B is

a closed set, according to Proposition 4.4 A ∪ B = A ∪ B. Thus A ∪ B ⊆ A ∪ B.
Thereby A ∪ B = A ∪ B.

Proposition 4.6. Let R be a fuzzy T -preorder on X, I satisfy (NP) and (C2) for T . Then for any A ∈ F(X),
the following formula hold w.r.t. Alexandrov fuzzy topology DI(R).
(1) A = [(Ac)o]c; (2) Ao = [Ac]c;
(3) [A]c = [Ac]o; (4) Ac = [Ao]c.
Proof. (1) By Proposition 4.2, (Ac)o = R(Ac), thus [(Ac)o]c = [R(Ac)]c = A.

(2),(3),(4) can be proven in a similar way as for item (1).

Proposition 4.7. Let R be a fuzzy T -preorder on X, I satisfy (NP) and (C2) for T . Then for any A, B ∈ F(X)
and A ⊆ B, the following holds w.r.t. Alexandrov fuzzy topology DI(R).
(1) Ao ⊆ Bo; (2) Aoo = Ao; (3) (A ∩ B)o = Ao ∩ Bo.

Proof. (1) ∀x ∈ X, R(A)(x) = ∧
y∈X

I(R(x, y), A(y)) ≤ ∧
y∈X

I(R(x, y), B(y)) = R(B)(x). Thus Ao ⊆ Bo.

(2) Since Ao is a open set, by Proposition 4.2, Aoo = Ao.
(3) By Proposition 4.6 (2) and Proposition 4.5 (4),
(A ∩ B)o = ((A ∩ B)c)c = (Ac ∪ Bc)c = (Ac ∪ Bc)c = (Ac)c ∩ (Bc)c = Ao ∩ Bo.
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Abstract

We generalize the weighted Lim’s geometric mean of positive definite
matrices to positive invertible operators on a Hilbert space. This mean
is defined via a certain bijection map and parametrized over Hermitian
unitary operators. We derive an explicit formula of the weighted Lim’s ge-
ometric mean in terms of weighted metric/spectral geometric means. This
kind of operator mean turns out to be a symmetric Lim-Pálfia weighted
mean and satisfies the idempotency, the permutation invariance, the joint
homogeneity, the self-duality, and the unitary invariance. Moreover, we
obtain relations between weighted Lim geometric means and Tracy-Singh
products via operator identities.

Keywords: positive invertible operator, metric geometric mean, spectral geo-
metric mean, Lim’s geometric mean, Tracy-Singh product
Mathematics Subject Classifications 2010: 47A64, 47A80.

1 Introduction

Recall that the Riccati equation for positive definite matrices A and B:

XA−1X = B (1)

has a unique positive solution

X = A]B := A
1
2

(
A− 1

2BA− 1
2

) 1
2

A
1
2 , (2)

known as the metric geometric mean of A and B. This kind of mean was
introduced by Ando [2] as the maximum (with respect to the Löwner partial
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Weighted Lim’s Geometric Mean of Operators

order) of positive semidefinite matrices X satisfying(
A X
X B

)
> 0.

The above two definitions of the metric geometric mean are equivalent. See a
nice discussion about the Riccati equation and the metric geometric mean of
matrices in [4].

Fiedler and Pták [3] modified the notion of the metric geometric mean to
the spectral geometric mean:

A♦B = (A−1]B)
1
2A(A−1]B)

1
2 . (3)

One of the most important properties of the spectral geometric mean is the
positive similarity between (A♦B)2 and AB. This shows that the eigenvalues
of A♦B coincide with the positive square roots of the eigenvalues of AB.

Lee and Lim [5] introduced the notion of metric geometric means and spectral
geometric means on symmetric cones of positive definite matrices and developed
various properties of these means. Lim [6] provided a new geometric mean of
positive definite matrices varying over Hermitian unitary matrices, including
the metric geometric mean as a special case. The new mean has an explicit
formula in terms of metric and spectral geometric means. He established basic
properties of this mean including the idempotency, joint homogeneity, permu-
tation invariance, non-expansiveness, self-duality, and a determinantal identity.
He also gave this new geometric mean for the weighted case. Lim and Pálfia [7]
presented a unified framework for weighted inductive means on the cone of pos-
itive definite matrices. The metric geometric mean, spectral geometric mean,
and Lim geometric mean [6] are basic examples of the two-variable weighted
mean.

In this paper, we extend the notion of weighted Lim’s geometric mean [6] to
the case of Hilbert-space operators via a certain bijection map (see Section 2).
This operator mean is parametrized over Hermitian unitary operators. An ex-
plicit formula of the weighted Lim’s geometric mean is given in term of weighted
metric geometric means and spectral geometric means. This kind of operator
mean serves the idempotency, the permutation invariance, the joint homogene-
ity, the self-duality, and the unitary invariance. Moreover, we establish certain
operator identities involving Lim weighted geometric means and Tracy-Singh
products (see Section 3). Our results include certain literature results involving
weighted metric geometric means.

2 Lim’s geometric mean of operators

In this section, we discuss the notion of Lim’s geometric mean of positive in-
vertible operators on any complex Hilbert space.

Throughout, let H be a complex Hilbert space. Denoted by B(H) the Ba-
nach space of bounded linear operators on H. The set of all positive invertible
operators on H is denoted by P.
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First of all, we recall the notions of metric/spectral geometric means of
operators. Recall that for any t ∈ [0, 1], the t-weighted metric geometric mean
of A,B ∈ P is defined by

A]tB = A
1
2

(
A− 1

2BA− 1
2

)t
A

1
2 (4)

For briefly, we write A]B for A]1/2B. The spectral geometric mean of A,B ∈ P
is defined by

A♦B = (A−1]B)
1
2A(A−1]B)

1
2 . (5)

We list some basic properties of metric and spectral geometric means.

Lemma 1 (e.g. [1, 3, 4]). Let A,B ∈ P and t ∈ [0, 1]. Then

(i) A]tA = A,

(ii) (αA)]t(βB) = α1−tβt(A]tB),

(iii) A]tB = B]1−tA,

(iv) (A]tB)−1 = A−1]tB
−1,

(v) (Riccati Lemma) A]B is the unique positive invertible solution of XA−1X =
B,

(vi) (T ∗AT )]t(T
∗BT ) = T ∗(A]tB)T for any invertible operator T ∈ B(H),

(vii) (T ∗AT )♦(T ∗BT ) = T ∗(A♦B)T for any unitary operator T ∈ B(H).

For a Hermitian unitary operator U ∈ B(H), we set

P+
U := {X ∈ P : UXU = X}, P−

U := {X ∈ P : UXU = X−1}

Lemma 2. Let U ∈ B(H) be a Hermitian unitary operator. Then the map

ΦU : P+
U × P−

U → P, (A,B) 7→ A
1
2BA

1
2 (6)

is bijective with the inverse map given by

X 7→ (X](UXU), X♦(UX−1U)). (7)

Proof. The proof is quite similar to [6, Theorem 2.6]. Let A1, A2 ∈ P+
U and

B1, B2 ∈ P−
U such that ΦU (A1, B1) = ΦU (A2, B2), i.e. A

1
2
1 B1A

1
2
1 = A

1
2
2 B2A

1
2
2 .

Since Ai ∈ P+
U , we have

UA−1
i U = (UAiU)−1 = A−1

i ,

UA
1
2
i U = (UAiU)

1
2 = A

1
2
i .
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and thus A−1
i , A

1
2
i ∈ P+

U for i = 1, 2. It follows that

B−1
1 = UB1U

= U
(
A

− 1
2

1 A
1
2
2 B2A

1
2
2 A

− 1
2

1

)
U

=
(
UA

− 1
2

1 U
)(
UA

1
2
2 U
)(
UB2U

)(
UA

1
2
2 U
)(
UA

− 1
2

1 U
)

= A
− 1

2
1 A

1
2
2 B

−1
2 A

1
2
2 A

− 1
2

1

= A
− 1

2
1 A

1
2
2

(
A

− 1
2

2 A
1
2
1 B1A

1
2
1 A

− 1
2

2

)−1

A
1
2
2 A

− 1
2

1

=
(
A

− 1
2

1 A2A
− 1

2
1

)
B−1

1

(
A

− 1
2

1 A2A
− 1

2
1

)
,

i.e. A
− 1

2
1 A2A

− 1
2

1 is a solution of XB−1
1 X = B−1

1 . Since B−1
1 ]B1 = I is the

unique solution ofXB−1
1 X = B−1

1 (Lemma 1 (v)), we conclude A
− 1

2
1 A2A

− 1
2

1 = I.
This implies that A1 = A2 and then B1 = B2. Hence, ΦU is injective. Next,
let X ∈ P. and consider A = X](UXU) and B = X♦(UX−1U) = A− 1

2XA− 1
2 .

Consider

UAU = U
(
X](UXU)

)
U = (UXU)](U2XU2)

= (UXU)]X = X](UXU) = A

and

UBU = U
(
A− 1

2XA− 1
2

)
U =

(
UA− 1

2U
)
(UXU)

(
UA− 1

2U
)

= A
1
2X−1A

1
2 = B−1.

This implies that A ∈ P+
U and B ∈ P−

U . We have that there exist A ∈ P+
U and

B ∈ P−
U such that ΦU (A,B) = A

1
2BA

1
2 = X. Thus, ΦU is surjective. Therefore

ΦU is bijective.

By the bijectivity of ΦU , we can define the t-weighted Lim geometric mean
of operators as follows:

Definition 3. Let U ∈ B(H) be a Hermitian unitary operator and t ∈ [0, 1].
Let X = ΦU (A1, B1), Y = ΦU (A2, B2) ∈ P. The t-weighted Lim geometric mean
of X and Y is defined by

GU (t;X,Y ) = ΦU (A1]tA2, B1]tB2). (8)

We denote GU (X,Y ) = GU (1/2;X,Y ) the Lim geometric mean.

The next theorem gives an explicit formula of GU (X,Y ).

Theorem 4. Let U be a Hermitian unitary operator and t ∈ [0, 1]. Let X,Y ∈
P. We have

GU (t;X,Y ) = (A1]tA2)
1
2 (B1]tB2)(A1]tA2)

1
2 , (9)

where A1 = X](UXU), A2 = Y ](UY U), B1 = X♦(UX−1U) and B2 = Y♦(UY −1U).
In particular, GI(X,Y ) = X]tY .
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Proof. Since fU is surjective, there exist A1, A2 ∈ P+
U and B1, B2 ∈ P−

U such
that X = ΦU (A1, B1) and Y = ΦU (A2, B2). By using the inverse map (7), we
have

(A1, B1) = Φ−1
U (X) = (X](UXU), X♦(UX−1U))

(A2, B2) = Φ−1
U (Y ) = (Y ](UY U), Y♦(UY −1U)).

For the case U = I, we have P+
I = P and P−

I = {I}. It follows that B1 = B2 = I.
By Lemma 1, we have A1 = X]X = X and A2 = Y ]Y = Y . Hence,

GI(t;X,Y ) = (X]tY )
1
2 (I]tI)(X]tY )

1
2 = X]tY.

Now, we give the definition of the Lim-Pálfia weighted mean [7] in the case
of operators.

Definition 5. The (two-variable) Lim-Pálfia weighted mean of positive invert-
ible operators is the map M : [0, 1]× P× P→ P satisfying

(i) M(0, X, Y ) = X,

(ii) M(1, X, Y ) = Y ,

(iii) (Idempotency) M(t,X,X) = X for all t ∈ [0, 1].

We say that M is symmetric if

(iv) (Permutation invariancy) M(t,X, Y ) = M(1− t, Y,X) for all t ∈ [0, 1].

Theorem 6. The t-weighted Lim geometric mean of operators is a symmetric
Lim-Pálfia weighted mean.

Proof. Let U ∈ B(H) be a Hermitian unitary operator and t ∈ [0, 1]. Let
X,Y ∈ P. Write X = ΦU (A1, B1) and Y = ΦU (A2, B2). We have by Lemma 1
that

GU (0;X,Y ) = ΦU (A1]0A2, B1]0B2) = ΦU (A1, B1) = X,

GU (1;X,Y ) = ΦU (A1]1A2, B1]1B2) = ΦU (A2, B2) = Y,

GU (t;X,X) = ΦU (A1]tA1, B1]tB1) = ΦU (A1, B1) = X.

This implies that GU is a Lim-Pálfia weighted mean. Using Lemma 1 again, we
get

GU (t;X,Y ) = ΦU (A1]tA2, B1]tB2)

= ΦU (A2]1−tA1, B2]1−tB1)

= GU (1− t;Y,X).

Thus, GU is symmetric.

Corollary 7. The t-weighted metric geometric mean of operators is a symmetric
Lim-Pálfia weighted mean.
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Theorem 8. Let U ∈ B(H) be a Hermitian unitary operator and t ∈ [0, 1]. Let
X = ΦU (A1, B1) and Y = ΦU (A2, B2). We have

(i) GU (t;X, I) = ΦU (A1−t
1 , B1−t

1 ) and GU (t; I, Y ) = ΦU (At2, B
t
2),

(ii) (Joint Homogeneity) GU (t;αX, βY ) = α1−tβtGU (t;X,Y ) for any α, β > 0,

(iii) (Self-duality) GU (t;X,Y )−1 = GU (t;X−1, Y −1),

(iv) (Unitary invariance) GU (t;T ∗XT, T ∗Y T ) = T ∗GU (t;X,Y )T where T ∈
B(H) is a unitary operator such that UT = TU ,

(v) GU (t;UXU,UY U) = UGU (t;X,Y )U ,

(vi) GU (X,X−1) = I.

Proof. The first assertion is immediate from Definition 3. For the joint homo-
geneity, note that

αX = αΦU (A1, B1) = α
(
A

1
2
1 B1A

1
2
1

)
= A

1
2
1 (αB1)A

1
2
1 = ΦU (A1, αB1).

Similarly, βY = ΦU (A2, βB2). Using Lemma 1, we obtain

GU (t;αX, βY ) = ΦU (A1]tA2, (αB1)]t(βB2)) = ΦU (A1]tA2, α
1−tβt(B1]tB2))

= α1−tβtΦU (A1]tA2, B1]tB2) = α1−tβtGU (t;X,Y ).

For the self-duality, consider

X−1 = ΦU (A1, B1)−1 =
(
A

1
2
1 B1A

1
2
1

)−1

= A
− 1

2
1 B−1

1 A
− 1

2
1 = ΦU (A−1

1 , B−1
1 ).

Similarly, Y −1 = ΦU (A−1
2 , B−1

2 ). Applying Lemma 1, we get

GU (t;X,Y )−1 = ΦU (A1]tA2, B1]tB2)−1 = ΦU ((A1]tA2)−1, (B1]tB2)−1)

= ΦU (A−1
1 ]tA

−1
2 , B−1

1 ]tB
−1
2 ) = GU (t;X−1, Y −1)

Now, let us prove the assertion (iv). Since T is unitary, we have by Lemma
1 that

(T ∗XT )][U(T ∗XT )U ] = (T ∗XT )][T ∗(UXU)T ]

= T ∗[X](UXU)]T

= T ∗A1T,

(T ∗XT )♦[U(T ∗XT )−1U ] = (T ∗XT )♦[UTX−1T ∗U ]

= (T ∗XT )♦[T ∗(UX−1U)T ]

= T ∗[X♦(UX−1U)]T

= T ∗B1T.
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Similarly,

(T ∗Y T )][U(T ∗Y T )U ] = T ∗A2T and (T ∗Y T )♦[U(T ∗Y T )−1U ] = T ∗B2T

Then T ∗XT = ΦU (T ∗A1T, T
∗B1T ) and T ∗Y T = ΦU (T ∗A2T, T

∗B2T ). Thus

GU (t;T ∗XT, T ∗Y T )

= [(T ∗A1T )]t(T
∗A2T )]

1
2 [(T ∗B1T )]t(T

∗B2T )][(T ∗A1T )]t(T
∗A2T )]

1
2

= [T ∗(A1]tA2)T ]
1
2 [T ∗(B1]tB2)T ][T ∗(A1]tA2)T ]

1
2

= [T ∗(A1]tA2)
1
2T ][T ∗(B1]tB2)T ][T ∗(A1]tA2)

1
2T ]

= T ∗(A1]tA2)
1
2 (B1]tB2)(A1]tA2)

1
2T

= T ∗GU (t;X,Y )T.

Setting T = U , we get the result in the assertion (v). For the last assertion,
since X−1 = ΦU (A−1

1 , B−1
1 ), we have

GU (X,X−1) = ΦU (A1]A
−1
1 , B1]B

−1
1 ) = ΦU (I, I) = I.

3 Weighted Lim geometric means and Tracy-
Singh products

In this section, we investigate relations between Weighted Lim geometric means
and Tracy-Singh products of operators. Let us recalling the notion of Tracy-
Singh product.

3.1 Preliminaries on the Tracy-Singh product of operators

The projection theorem for Hilbert space allows us to decompose

H =
n⊕
i=1

Hi (10)

where all Hi are Hilbert spaces. For each i = 1, . . . , n, let Pi be the natural
projection map from H onto Hi. Each operator A ∈ B(H) can be uniquely
determined by an operator matrix

A = [Aij ]
n,n
i,j=1

where Aij : Hj → Hi is defined by Aij = PiAP
∗
j for each i, j = 1 . . . , n.

Recall that the tensor product of A,B ∈ B(H) is the operator A ⊗ B ∈
B(H⊗H) such that for all x, y ∈ H,

(A⊗B)(x⊗ y) = (Ax)⊗ (By).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.2, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

396 Ploymukda 390-400



Weighted Lim’s Geometric Mean of Operators

Definition 9. Let A = [Aij ]
n,n
i,j=1 and B = [Bij ]

n,n
i,j=1 be operators in B(H). The

Tracy-Singh product of A and B is defined to be

A�B =
[
[Aij ⊗Bkl]kl

]
ij

(11)

which is a bounded linear operator from
⊕n,n

i,j=1 Hi ⊗Hj into itself.

Lemma 10 ([9, 10, 11]). Let A,B,C,D ∈ B(H).

(i) (A�B)(C �D) = (AC)� (BD).

(ii) If A,B ∈ P, then A�B ∈ P.

(iii) If A,B ∈ P, then (A�B)α = Aα �Bα for any α ∈ R.

(iv) If A and B are Hermitian, then A�B is also.

(v) If A and B are unitary, then A�B is also.

Lemma 11 ([8]). Let A,B,C,D ∈ P and t ∈ [0, 1]. Then

(A�B)]t(C �D) = (A]tC)� (B]tD).

For each i = 1, . . . , k, let Hi be a Hilbert space and decompose

Hi =

ni⊕
r=1

Hi,r

where all Hi,r are Hilbert spaces. We set �1
i=1Ai = A1. For k ∈ N − {1} and

Ai ∈ B(Hi) (i = 1, . . . , k), we use the notation

k

�
i=1

Ai = ((A1 �A2)� · · ·�Ak−1)�Ak.

3.2 The compatibility between weighted Lim geometric
means and Tracy-Singh products

The following theorem provides an operator identity involving t-weighted Lim
geometric means and Tracy-Singh products.

Theorem 12. Let U, V be Hermitian unitary operators, X1, X2, Y1, Y2 ∈ P and
t ∈ [0, 1].

GU (t;X1, Y1)� GV (t;X2, Y2) = GU�V (t;X1 �X2, Y1 � Y2). (12)

Proof. Write

X1 = ΦU (A1, B1), Y1 = ΦU (C1, D1), X2 = ΦV (A2, B2), Y2 = ΦV (C2, D2),
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where A1, C1 ∈ P+
U , B1, D1 ∈ P−

U , A2, C2 ∈ P+
V , B2, D2 ∈ P−

V . Since U and
V are Hermitian unitary operators, we have by Lemma 10 that U � V is also
a Hermitian unitary operator. Thus GU�V (t;X1 �X2, Y1 � Y2) is well-defined.
By Lemma 10, we get

(U � V )(A1 �A2)(U � V ) = (UA1U)� (V A2V ) = A1 �A2

and

(U � V )(B1 �B2)(U � V ) = (UB1U)� (V B2V ) = B−1
1 �B−1

2

= (B1 �B2)−1.

Thus A1�A2 ∈ P+
U�V and B1�B2 ∈ P−

U�V . Similarly, we have C1�C2 ∈ P+
U�V

and D1 �D2 ∈ P−
U�V . Using Lemma 10, we get

X1 �X2 = ΦU (A1, B1)� ΦV (A2, B2)

=
(
A

1
2
1 B1A

1
2
1

)
�
(
A

1
2
2 B2A

1
2
2

)
= (A

1
2
1 �A

1
2
2 )(B1 �B − 2)(A

1
2
1 �A

1
2
2 )

= (A1 �A2)
1
2 (B1 �B2)(A1 �A2)

1
2

= ΦU�V (A1 �A2, B1 �B2).

Similarly, Y1 � Y2 = ΦU�V (C1 � C2, D1 �D2). Then

GU�V (t;X1 �X2, Y1 � Y2) = ΦU�V
(
(A1 �A2)]t(C1 � C2), (B1 �B2)]t(D1 �D2)

)
.

We have by applying Lemmas 10 and 11 that

GU (t;X1, Y1)� GV (t;X2, Y2)

= ΦU (A1]tC1, B1]tD1)� ΦV (A1]tC2, B2]tD2)

=
[
(A1]tC1)

1
2 (B1]tD1)(A1]tC1)

1
2

]
�
[
(A2]tC2)

1
2 (B2]tD2)(A2]tC2)

1
2

]
=
[
(A1]tC1)

1
2 � (A2]tC2)

1
2

][
(B1]tD1)� (B2]tD2)

][
(A1]tC1)

1
2 � (A2]tC2)

1
2

]
=
[
(A1]tC1)� (A2]tC2)

] 1
2
[
(B1]tD1)� (B2]tD2)

][
(A1]tC1)� (A2]tC2)

] 1
2

= ΦU�V
(
(A1]tC1)� (A2]tC2), (B1]tD1)� (B2]tD2)

)
= ΦU�V

(
(A1 �A2)]t(C1 � C2), (B1 �B2)]t(D1 �D2)

)
= GU�V (t;X1 �X2, Y1 � Y2).

Corollary 13. Let k ∈ N and t ∈ [0, 1]. For each 1 6 i 6 k, let Ui ∈ B(H) be
a Hermitian unitary operator and Xi, Yi ∈ P. Then

k

�
i=1

GUi(t;Xi, Yi) = GU
(
t;

k

�
i=1

Xi,
k

�
i=1

Yi

)
, (13)

where U =�k
i=1 Ui.
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Proof. Since Ui is a Hermitian unitary operator for all i = 1, . . . , k, we have by
Lemma 10 that�k

i=1 Ui is also. Using the positivity of the Tracy-Singh product,

we get�k
i=1Xi,�k

i=1 Yi ∈ P. Hence, the right hand side of (13) is well-defined.
We reach the result by applying Thoerem 12 and induction on k.

From Corollary 13, setting Ui = I for all i = 1, . . . , k, we have

k

�
i=1

(Xi]tYi) =

( k

�
i=1

Xi

)
]t

( k

�
i=1

Yi

)
.

This equality were proved already in [8, Corollary 1].
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