Optimize input parameter for CNC Turning process for MRR and surface finish using Machine Learning

Authors

  • Roy Ranson D Cruz , Manish Thakur , Sunil Patidar , Ram Janm Singh Durvesh Deth , Swaraj Disawal

Keywords:

CNC Turning, Material Removal Rate (MRR), Machine Learning

Abstract

Optimizing machining parameters in CNC turning is crucial for enhancing productivity, improving surface quality, and reducing manufacturing costs. This study aims to optimize key input parameters cutting speed, feed rate, and depth of cut maximize Material Removal Rate (MRR) and achieve a superior surface finish using Machine Learning techniques.

References

Zhujani, F., Abdullahu, F., Todorov, G., & Kamberov, K. (2024, February 2).Optimization of Multiple Performance Characteristics for CNC Turning of Inconel 718. 2. Ntukidem, A., Achebo, O., Ozigaguna, U., Uwoghiren, F.O., & Obahiagbon, K.O. (2024, May 9). Optimization of Material Removal Rate in Computer Numerical Control Lathe Machine in Turning AISI 1040 Steel.

Downloads

Published

2024-10-12

How to Cite

Roy Ranson D Cruz , Manish Thakur , Sunil Patidar , Ram Janm Singh Durvesh Deth , Swaraj Disawal. (2024). Optimize input parameter for CNC Turning process for MRR and surface finish using Machine Learning. Journal of Computational Analysis and Applications (JoCAAA), 33(08), 2124–2133. Retrieved from https://eudoxuspress.com/index.php/pub/article/view/1991

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.