Mathematical modeling of transmission dynamics and optimal control strategy for COVID-19 in India
Keywords:
Mathematical model, Stability analysis, Sensitivity analysis, optimal control.Abstract
Mathematical models are being used to investigate the dynamics of disease dissemination, forecast future trends, and access the most effective preventative measures to minimise the extent of epidemic outbreaks. This study formulates an eight compartmental epidemiological model to analyze the COVID-19 dynamics. The stability analysis of infection-free equilibrium is performed. The parameters are estimated by fitting this model to reported confirmed COVID-19 cases in India for 350 days. Sensitivity analysis is executed to identify the most sensitive parameters in this model. An optimal control analysis for India is implemented by incorporating
four controls: 1) Public awareness initiatives using the media and civic society to persuade uninfected people not to interact with infected ones, 2) the effort of vaccinating susceptible individuals by supposing all of the susceptible people who got their vaccination are promptly moved to the recovered class 3) encouraging those who are infected with COVID-19 disease to stay at home or join in quarantine centres, as well as encouraging the severe cases admit in the hospital. The results are demonstrated that employing all four control measures significantly reduced the proportion of COVID-19 infections.