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ABSTRACT 
Within the realm of information security, steganography and stegan analysis are related concepts. The 
goal of steganalysis is to find hidden data in digital media. Steganographic techniques are always 
developing, leading to ongoing changes in steganalysis based on CNN.  
An optimizer in CNN tunes the weights while training, to reduce errors and boost the efficiency of the 
model. It is a key for any deep neural network learning to be both successful and efficient. Steganalysis 
based on deep learning is not an exception to the rule. Various deep network types usually require 
different optimizers, which must be selected through several experiments. To enhance the model's 
training speed effectively across deep networks, NAdamBound approach is introduced, a hybrid 
optimizer that combines Nadam's Nesterov momentum technique with Adabound's dynamic bounding 
mechanism. This could give rise to both the rapid convergence qualities from Nesterov momentum and 
the adjustable learning rate benefits.Extensive experiments conducted on Steganalysis of real-world 
dataset proved NAdamBound produced 94%, 92.2% and 93.8% accuracy against WOW, S-UNIWARD and 
HILL which surpasses its corresponding fellow optimizers in reducing loss and boosting accuracy. 
 
Keywords: Steganalysis, Deep learning, Optimizer, Adam, AdaBound, Convolution Neural Network, Cyber 
Security 
 
INTRODUCTION 
With the goal of concealing sensitive information from prying eyes and preventing observable distortions 
and modifications to statistical properties, steganography is a technology that enables two parties to 
communicate covertly. Any digital media can be thought of as a carrier, but since digital images are 
communicated via the Internet in bulk, they are among the most widely used carriers. As a 
countermeasure to image steganography, image steganalysis looks for hidden data that has been 
implanted using a steganography technique. In their conflict and evolution, image steganography and 
image steganalysis[1] are rivals. After the advent of deep learning, many new architectures were 
introduced using CNN for effective detection in image steganalysis. The architectures use different types 
of CNN in feature extraction for achieving good accuracy.  
In order to accomplish a fast training procedure with an element-wise scaling term on learning rates, 
adaptive optimization techniques have been presented. For example, Adagrad[2], RMSProp[3], Adam[4]. 
However, the generalization is still less than that of SGD. They break to converge because of high learning 
rates and instability. Adabound [5] addressed this problem by placing dynamic bounds on these learning 
rates to guarantee that the convergence occurs to a specific range over time. Additionally, adding 
Nesterov momentum[6] to Adam (Nadam) could speed up convergence. Therefore, combining 
Adabound's dynamic learning rate bounds with Nadam's[7] momentum changes will speed up 
convergence, generalize, decrease loss, and ultimately increase accuracy. The advantages of Adabound, 
Nesterov Accelerated momentum, and Adam are combined in this work to present a novelNAdamBound 
approach. Furthermore, a lot of earlier studies employed pre-existing databases[8] for their 
investigations. This study's focus on a wide range of applications is made possible by the utilization of 
real-world data sets. 
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RELATED WORK 
Deep learning relies on optimization, which is essential to the performance of neural network models in a 
variety of applications. During training, it adjusts the parameters of a neural network. Its main aim is to 
improve performance by reducing the error or loss function of the model.  
In many scientific domains, Stochastic gradient descent-based optimization is fundamental. Every 
iteration process randomly selects batches of data rather than the complete dataset, enabling deeper 
learning model optimization that is both computationally viable and more efficient. The learning rate 
and initial parameters are chosen. The data is randomly jumbled in each iteration in order to approach a 
minimum. SGD takes longer to get to the local minima in terms of iterations. The calculation cost remains 
low even when the number of repetitions is increased. SGD might not converge to the precise global 
minimum and might produce a suboptimal solution as a result of the noisy updates. 
Adagrad employs varying learning rates for every iteration. Learning rate decreases with increasing 
parameter modification. Real-world datasets contain both dense and sparse features, therefore this 
change is really helpful. Adagrad has the advantage of eliminating the requirement for manual learning 
rate modification. The learning rate may eventually drop to a very low level. Small learning rates 
ultimately stop the model from learning new information, which compromises the model's accuracy. 
RMSProp mostly concentrates on quickening the optimization process to attain the local minimum by 
reducing the quantity of function evaluations applied. Compared to gradient descent algorithms and its 
variations, it converges faster and requires less adjustment. The issue with RMSProp is that not all 
applications can use the recommended value, and the learning rate must be explicitly defined. There is 
also no bias-correction phrase in RMSProp. When the bias is not corrected, excessively large step sizes 
and frequently divergence may occur. 
Adaptive learning is the backbone of Adadelta [9], which addresses major issues with Adagrad and 
RMSProp optimizer. It deals with problems pertaining to historical gradient formation and learning rate 
tuning. Adadeltaimproves convergence and stability during training by dynamically adjusting the learning 
rate in response to accumulated gradient information. 
The Adamoptimizer, also known as the Adaptive Moment Estimation optimizer, is a Stochastic Gradient 
Descent (SGD) extender. Individual learning rates are dynamically computed by theAdamoptimizer using 
the second moments of the previous gradients. During training, the Adam optimizer reaches an adaptive 
learning rate that allows it to effectively traverse the optimization space. This adaptivity aids in the neural 
network's quicker convergence and enhanced performance. 
Similar to Adam, Adabound adjusts learning rates depending on gradients, but it also adds dynamic 
bounds to these rates to guarantee that they eventually converge to a specific range. By keeping learning 
rates steady, it aids in improving generalization. By adding Nesterov momentum, Nadam improves on 
Adam by projecting future values of the parameter space and modifying gradients appropriately. 
With bounded learning rates of Adabound, the current study provides better generalization, even to 
unknown data, and faster convergence with Nesterov sped up Adaptive Moment, or Adam. 
 

Algorithm 1:Subsuming Nesterov momentum and Adaptive Bounding into ADAptive Moment 
estimationfor Stochastic optimization. (NAdamBound) 

 
Default settings: 
Initial learning rate α = 0.001;  
momentum for the first moment β1 = 0.9;  
momentum for the second momentβ2 = 0.999;  
To prevent division by zeroε = 10⁻⁸;  
lower bound for learning rateη_lower=1e-5;  
upper bound for learning rateη_upper=1 
 
Requisite:  
α: Step size;  
β1, β2 ∈ [0, 1): Exponential decay rates for moment estimates;  
f(θ): Stochastic objective scalar function;  
θ₀: Initial parameter vector;  
η_lower, η_upper: Lower and upper bound for learning rate clipping;  
m0 , n0 , t ← 0    (initialize 1st moment vector, 2nd moment vector, time step) 

Whileθt not converged do 
 t ← t + 1  

 gₜ ←  ∇θ fₜ(θₜ₋₁)  (Obtain Gradients w.r.t. stochastic objective at timestep t) 
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 mₜ ←  β1 · mₜ₋₁ + (1 − β1) · gₜ (Upgrade biased 1st moment estimate) 
 nₜ ←  β2 · nₜ₋₁ + (1 − β2) · gₜ²  (Upgrade biased 2nd raw moment estimate) 
 m̂ₜ ←  mₜ / (1 − β1t)   (Evaluate bias-corrected 1st moment estimate) 
 n ₜ ←  nₜ / (1 − β2t)   (Evaluate bias-corrected 2nd raw moment estimate) 

 m̃ₜ ←
β1·m ₜ

1−β1t +
(1−β1)·gₜ

1−β1t  (Evaluate Nesterov-accelerated gradient) 

 η_lowerₜ ← η_lower · (1 − 1 / (1 + γ · t))  
 η_upperₜ ← η_upper · (1 + 1 / (1 + γ · t))    (dynamic learning rate bounds) 

 ηₜ ←  clip (α / (√n ₜ +  ε), η_lowerₜ, η_upperₜ) (Evaluate and clip the effective learning rate) 
 θₜ ←  θₜ₋₁ −  ηₜ ·  m̃ₜ   (Upgrade parameters) 

end While 
return 𝛉ₜ      (derived parameter) 

 
Steps involved 
1. Initialize first and second moment vector and time step 
2. Gradient with respect to the stochastic objective is obtained 
3. First and second moment estimates calculated 
4. Bias correction applied 
5. Nesterov momentum used for updating parameters 
6. Dynamic learning rate bounds calculated 
7. Learning rate clipped within bounds 
8. Model parameters updated 

NAdamBound pseudocode is given in Algorithm 1. f(θ) is the objective scalar function differentiable with 
respect to θ (parameters). The initial parameter vector is θ₀. The initialisation of the moving averages mₜ 
and nt is done as (vectors of) 0’s. The stochastic function is realized at successive time steps(t←t+1). The 
gradient is denoted with gₜ ← ∇θ fₜ(θₜ₋₁) evaluated at timestep t (partial derivative of fₜ with respect to θ). 
The exponential moving averages of the gradient and squared gradient (mₜ and nt) i.e., the first and 
second moments of the gradients are updated. The exponential decay rates β1, β2 ∈ [0, 1] are controlled 
by the hyper parameters.  
Since the moving averages mₜ and nt are initialized to 0, the moment estimates of the bias tend to zero in 
the early stages.  Bias correction is done for the first moment estimate (m̂ₜ) and second raw moment 
estimate (n ₜ). Nesterov's accelerated gradient (NAG)[6] can be reformulated as a type of improved 
momentum. NAG has an evidently better bound over gradient descent on convex and non-stochastic 
objectives. The initial moment adjustment is supplemented with the Nesterov term, which combines 
momentum with a forward-looking "lookahead" derived from the present gradient denoted by m̃ as 
inNADAM. 
The learning rate ηₜ is constrained adaptively within lower η_lowerₜ and upper η_upperₜbounds as in 
ADABOUND. This prevents the learning rate from drastically decreasing or increasing over time. To 
prevent gradient explosion, gradients on learning rates higher than a threshold are trimmed, which is an 
approach inspired by gradient clipping. The behaviour is initially similar to ADAM then gradually changes 
to SGD as the constraints get more and more limited because the bounds have little effect on learning 
rates. The bounded learning rate performs parameter updating, which contributes to training stability, 
particularly as convergence drops down approaching the end of optimization.  
 
Experiment 
An optimizer is an essential component in deep learning that calibrates the parameters of a neural 
network while training. Its main aim is to improve performance by reducing the error or loss function of 
the model. In this study, the NAdam Bound optimizer is employed to improve accuracy, accelerate up 
convergence, enhance generalization and reduce loss. Four optimization algorithms are tested: Adam, 
Nadam, Adabound and NAdamBound. 
The DDS_SE-Net architecture[10], that performs well on real-world datasets, is the one employed in the 
present research. In its feature extraction stage, DDS_SE-Net makes use of the Dilation[11], Depthwise 
Separable Convolution[12], Squeeze and Excitation blocks[13]. In order to avoid over fitting and save 
computing costs, separable convolutions incorporate both depth-wise and point-wise convolutions. 
Dilations lower the processing cost by assisting in the detection of characteristics at different scales. SE 
blocks[14]are introduced in order to adaptively balance the channels. 
The analyses were carried out using a real-world dataset made up of 5000 photos that were gathered 
online (Cover). Three spatial steganographic algorithms, WOW[15], S-UNIWARD[16]and HILL[17] and 
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with payloads of 0.4bpp and 0.2bpp, were used to produce stego visuals. The findings were summarized 
using 4000 image pairings for training and 1000 pairs for testing. The stego pictures generated, together 
with the cover images, were loaded into the DDS_SE-Net architecture, and the outcomes were recorded. 
 

    

    

    

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. Image samples of (a) Cover (b) Stego with WOW 0.4bpp (c) Stego with S-Uniward 0.4bpp (d) 
Stego with HILL 0.4bpp 

 
RESULTS AND DISCUSSION 
For the WOW, S-UNIWARD, and HILL steganography algorithms, Table 1 shows the results of the DDS_SE-
Net. Payloads of 0.4 and 0.2 bpp were employed as a comparison. The NAdamBound optimizer's results 
are contrasted with those of the Adam, Adabound, and Nadam optimizers. Figure displays a comparison 
of the accuracy of the suggested optimizer with three other optimizers. 
From Table 1 it could be noted that the accuracy of all stochastic optimization algorithms is equally good 
with slight changes. The test results are tabulated and it could be seen that all optimization algorithms 
perform well against WOW steganographic algorithm than HILL and S-UNIWARD. Adam or adaptive 
moment estimation, is a computationally advantageous method that works well with huge data and/or 
parameter sets. It gave 92.9% accuracy with 0.4bpp payload and 93.2% accuracy with 0.2bpp payload 
against WOW. Adabound performance is enhanced evidently with approximately 0.43% improvement in 
the test accuracy than that of Adam against WOW with 0.4bpp. Accuracy of Nadam is more or less equal 
to that of Adam with both payloads. Novel NAdamBound optimizer produced 94% and 93.2% with 0.4 
and 0.2bpp against WOW which is 1.18% increase than Adam, 0.75% more than AdaBound and 1.18% 
more than Nadam optimizer bpp being 0.4. 
 

Table 1. Comparison of Evaluation Metrics of NAdamBound with Adam, AdaBound and Nadam using 
DDS_SE-Net against WOW, S-UNIWARD, and HILL with 0.4bpp and 0.2bpp 

Steganographic 
algorithm 

Optimizer Payload Accuracy Precision Recall F1 
Score 

Loss 

WOW Adam 0.4 92.9 91.5 94.0 92.7 21.0 

0.2 93.2 91.5 94.0 92.7 21.0 

AdaBound 0.4 93.3 93.6 93.1 93.3 21.0 

0.2 93.0 92.4 93.5 92.9 21.2 

Nadam 0.4 92.9 91.7 93.9 92.7 21.4 

0.2 92.1 92.6 92.0 92.3 23.0 

NAdamBound 0.4 94.0 95.0 94.6 94.7 20.0 

0.2 93.2 93.9 92.4 93.1 19.2 

S-UNIWARD  Adam 0.4 89.2 91.4 86.9 89.0 31.9 

0.2 89.0 90.4 87.9 89.1 30.0 
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AdaBound 0.4 91.4 90.0 91.8 90.9 26.4 

0.2 91.2 90.4 91.6 91.4 25.2 

Nadam 0.4 88.0 86.9 89.0 87.9 24.3 

0.2 91.3 92.0 92.8 92.4 20.1 

NAdamBound 0.4 92.2 91.7 92.0 91.8 19.6 

0.2 92.1 93.3 90.9 92.1 19.8 

HILL Adam 0.4 89.8 91.5 87.9 89.6 30.3 

0.2 90.7 91.9 90.4 91.1 18.0 

AdaBound 0.4 92.0 90.9 92.8 91.8 18.4 

0.2 91.0 91.3 91.6 91.4 18.2 

Nadam 0.4 92.3 91.8 93.2 92.5 19.2 

0.2 91.0 91.7 90.9 91.3 19.4 

NAdamBound 0.4 93.8 93.5 94.6 94 18.0 

0.2 92.4 93.2 92.9 93 17.8 

 
Against S-UNIWARD, Adam produced an accuracy of 89.2% and 89% with 0.4bpp and 0.2bpp 
respectively. Whereas Adabound produced 91.4% and 91.2 % with 0.4 and 0.2bpp which is an increase of 
2.47% than Adam. Nadam produced 1.3% decrease with 0.4bpp and 2.5% increase with 
0.2bpp.NAdamBound optimizer produced 92.2% and 92.1% with 0.4 and 0.2bpp against S-UNIWARD 
which is 3.25% and 3.3% increase than Adam, 0.9% and 0.98% more than AdaBound and 4.5% and 
0.87% more than Nadam optimizer with 0.4 and 0.2 bpp respectively. 
Against HILL, Adam produced 89.8% and 90.7% accuracy with 0.4bpp and 0.2bpp respectively. 
Adabound produced 92% and 91 % with 0.4 and 0.2bpp which is an increase of     2.4% with 0.4bpp than 
Adam. Nadam produced 2.7% increase with 0.4bpp.NAdamBound optimizer produced 93.8% and 92.4% 
with 0.4 and 0.2bpp against S-UNIWARD which is 4.2% and 1.8% increase than Adam, 1.9% and 1.5% 
more than AdaBound and 1.6% and 1.5% more than Nadam optimizer with 0.4 and 0.2 bpp respectively. 
With the three parent algorithms, Adam, Nadam, and AdaBound, the proposed NAdamBound algorithm is 
distinct. The key distinction here is that, unlike the previous studies, which relied on pre-existing 
steganography datasets for their research, the present study's investigations were conducted using real-
world data, providing superior generality. The displayed findings are from testing. Figure 2 displays a 
comparison of the measures such as Accuracy, Precision, Recall, and F1-score with respect to the other 
optimization techniques. Using real-world datasets, NAdamBound outperforms the other methods in 
terms of accuracy. The reduction in loss employing the current study in comparison to earlier 
researches is shown in Figure 3. 
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(b) 

 

 
(c) 

Figure 2. Comparison of Evaluation Metrics of NAdamBound with Adam, AdaBound and Nadam using 
DDS_SE-Net against (a) WOW, (b) S-UNIWARD, and (c )HILL with 0.4bpp and 0.2bpp 

 

 
Figure 3. Comparison of Loss% of NAdamBound with other architectures against WOW, S-UNIWARD and 

HILL with 0.4bpp 
 

CONCLUSION 
A significant concept in cyber security is Steganalysis. Steganalysis based on deep learning has gained 
popularity since it handles large amounts of data and produces remarkable outcomes. In order to 
facilitate a smooth and progressive transition from adaptive techniques to SGD, this paper proposes a 
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Novel NAdamBound optimizer for steganalysis that uses dynamic limits on learning rates preventing 
oscillations in them and integrates Nesterov momentum into adaptive moment estimation (Adam) which 
aids in accelerated convergence. This facilitates a possible quicker optimization process with a gradually 
decreasing loss, which raises accuracy.Comparing with parent optimization techniques, NAdamBound 
gave around 1% to 2% increase in accuracy overall against various spatial steganographic algorithms and 
payloads. This study's strong generalization capacity is further demonstrated by the use of datasets 
gathered from actual real-world situations. The need for first order gradients also results in a decrease in 
total memory use. Additionally, the DDS_SE-Net design minimizes computing costs and time consumption 
by preventing overfitting. Future studies will focus on other dataset kinds and deep models, paving the 
path for advancements in Steganalysis. 
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