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ABSTRACT 
In this paper, we use Reduced Differential Transform Method (RDTM) to compute analytical and semi 
analytical approximate solutions of fractional order Airy’s ordinary differential equations and fractional 
order Airy’s and Airy’s type partial differential equations subjected to certain initial boundary conditions. 
We compare the  solutions obtain by RDTM with exact solutions . we find out convergent series solutions 
by taking different fractional values. RDTM gives series solutions easily by dropping calculus work and 
computed mathematical results in order to easily solve fractional order Airy’s type differential equations. 
 
Keywords: Reduced Differential Transform(RDTM) Method, Airy’s fractional order Partial differential 
equations, Series solutions 
 
INTRODUCTION 
Reduced Differential Transform Method is an alternative approach to overcome the demerit of complex 
calculation of Differential Transform Method, capable of reducing the size of the calculation. As a special 
advantage of (RDTM) rather than DTM, the reduced differential transform recursive equations produce 
exactly all the Poisson series coefficients of solutions, whereas the differential transform recursive 
equations produce exactly all the Taylor series coefficients of solutions. We notice that the Reduced 
Differential Transform Method technique[10,11] gives accurate and  converge solutions [1,2,7,10] 
 
METHODOLOGY 
Consider a function of two variables ),( tsf  and suppose that it can be represented as product of two 

single variables, i.e. )()(),( 21 tftftsf   on the basis of properties of differential transform the function 

),( tsf can be represented as  
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The basic definitions of Reduced Differential Transform Method are introduced as follows. 
Definition: If the function u(x, t) is analytic and differential continuously with respect to time t and space 
x in the domain of interest  then let, 
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Where the t – dimensional spectrum function )(xU k is the transformed function. ),( txU represent 

transformed function.  

Definition: The differential inverse transform of )(xU k is defined as , 
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Then combining equations (1) and (2) we write  
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From the above definition, it can be found that the concept of Reduced Differential Transform Method is 
derived from the power series expansion. The fundamental operation performed by Reduced Differential 
Transform Method are given table1 
 

Table 1 
function DTM form of function 
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Time Fractional Airy’s Equations: one dimensional fractional Airy’s partial differential equation  in Caputo 
sense 

                              
∂∝

∂t∝
u x, t = β

∂3

∂x3 u x, t , x ∈ R, t > 0,   0 <∝< 1                                      (4) 

Where β = ±1  with conditions  u x, 0 = ∅ x , xϵR   (5) 
Applying RDTM on (4),(5)  we get 
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u x, t  = RD  β
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∂x3 u x, t                                              (6) 

and 
RD u(x, 0) = RD ∅(x)                                                                                                                   (7) 
By applying table(1) we get, 
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RxxxU  ),()(0                              (9) 

Putting ( 9 )  in ( 8 ) we get 
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Putting these equations  in (2), we get 
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Example1:Consider one dimensional time fractional Airy partial differential equation for 1  
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subjected to the condition 

                                                                  
xexxu  cos)0,(                                                 (11) 

Applying RDTM on equations ( 10,11 ) we get 
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Using RDTM on   (11) 

                                                        
Rxexxuxu x  ,cos)()0,( 0

                                  (13) 

Using equations ( 12) and (13 )we get )(xU k  
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Thus the fractional differential inverse transform of )(xU k  gives 
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Example 2 Consider one dimensional time fractional Airy partial differential equation for 1  
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subjected to the condition                    
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Applying RDTM on equations ( 14,15 ) we get 
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Using equations (16 ) and (17)we get )(xU k  
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For k = 1,  
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Thus the fractional differential inverse transform of )(xU k  gives 
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CONCLUSION 
In this study we have discussed the reduced differential transform method to find the solution of one 
dimensional time fractional Airy’s and Airy’s type partial differential equation based on the basic Caputo’s 
definition of fractional derivatives. The answers show that the RDTM technique gives the approximate 
series solutions. The accuracy of the solutions can be improve by increasing number of terms in series 
solutions. The techniques used in this work can also be applied to solve linear and non-linear time 
fractional partial differential equation and multi-dimensional physical problems emerging in various 
fields of engineering and applied sciences. 
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