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ABSTRACT 
For a non-empty set Wof edges in a connected graphG,the edge-to-vertex Steiner distance dev (W)of Wis 
the minimum size of a tree containing V(W) and is called an edge-to-vertex Steiner tree with respect to W 
or a Steiner Wev  - tree.A set W ⊆ E is called an edge-to-edge Steiner set if every edge of G lies on a Steiner 
Wev  - tree of G. The edge-to-edge Steiner number see (G)of Gis the minimum cardinality of its edge-to-edge 
Steiner sets and any edge-to-edge Steiner sets of cardinalitysee (G) is called a minimum edge-to-edge 
Steiner set of G or a see -set of G. The edge-to-edge Steiner number of certain classes of graphs are 
determined. We characterize a connected graph of size m ≥ 3with an edge-to-edge Steiner numberm or 
m −  1. 
 
Keywords: Steiner distance, Steiner number, edge-to-vertex Steiner distance, edge-to-vertex Steiner set, 
edge-to-edge Steiner set. 
 
1. INTRODUCTION 
Let G =  (V, E) be a graph having a vertex set V(G) and an edge setE(G)(V(G) andE(G) correspondingly). 
In addition, we state that a graph G has size m =  |E(G)| and order n =  |V (G) |. We refer to [1] for the 
fundamental terms used in graph theory. A vertex v is adjacent to another vertex u if and only if there 
exists an edge e = uv ∈ E(G).If uv ∈  E(G), then u is a neighbor of v, and the set of neighbors of vis denoted 
by NG(v). The degree of a vertexv ∈ V is degG v =  NG(v) . If degG (v)  =  n − 1, thenv is said to be a 
universal vertex. A vertex v is called an extreme vertex if the subgraph induced by v is complete. 
The distance d(u, v)between two verticesuand v in a connected graph Gis the length of a shortest 
u − vpath in G.For a nonempty set W of vertices in a connected graph G,the Steiner distance d(W) of W is 
the smallest size of a connected subgraph of G containing W.The Steiner distance for a graph Gisstudied in 
[3,8,11,13]. Let S(W) stand for the collection of all vertices on Steiner W-trees. If S(W) =  V(G), then a set 
W ⊆ V G  is referred to as a Steiner set of G.A Steiner set of minimum cardinality is a minimum 
Steiner set or simply as-set and its cardinality is the Steiner number s(G) of G. The Steiner 
number was introduce in [3] and further studied in [8-13,15]. 

 
Definition 1.1.[15] Consider a connected graph G =  (V, E) with at least three vertices. For a non-empty 
set Wof edges in a connected graphG,the edge-to-vertex Steiner distance dev (W) of W is the minimum size 
of a tree containing V(W) and is called an edge-to-vertex Steiner tree with respect to W or a Steiner Wev  - 
tree. There might be more than one Steiner Wev -tree in G for a specific set W ⊆ E(G). However, 
V (W)  ⊆ V (T1) ∩ V (T2) despite the possibility that T1  and T2are Steiner Wev -trees. 
Example 1.2.Let G be a graph shown in figure 1.1.Let W = {v1v6, v2v5, v3v4}. Figures 1.1(a) and 1.1(b) 
show the two Steiner Wev -trees. 
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Remark 1.3.[11] If the edges e = uv and f = vw are adjacent in G, then the Steiner Wev -tree is a path 
between u, v and w. 
Theorem 1.4.[14]Each end edge of the connected graph G belongs to every edge-to-vertex Steiner (edge-
to-edge geodetic) set of G. 
Theorem  1.5.[11]For the star G = K1,m m ≥ 2 , sev  G = m. 

 
2.The Edge-to-Edge Steiner Number of a Graph 
Definition 2.1.A connected graph G = (V, E)with at least three vertices. A set W ⊆ E is called an edge-to-
edge Steiner set if every edge of G lies on a Steiner Wev -tree of G. The edge-to-edge Steiner numbersee (G) 
is the minimum cardinality of its edge-to-edge Steiner sets.Any edge-to-edge Steiner set with cardinality 
see (G) is a minimum edge-to-edge Steiner set of G or asee -set of G.  
Example 2.2.Let G be a graph shown in figure 1.1.Let W1 = {v1v6, v2v5, v3v4}. For the graph G in Figure 
1.1,W1  is an edge-to-edge Steiner set of G since each edge of G is contained in one of the two Steiner Wev -
trees, and as a result, see (G) ≤ 3. No edge-to-edge Steiner set of G is a two elements subset of E, hence 
see (G)  =  3. 
Remark 2.3.For the graph G given in Figure 1.1,W1 = {v1v6, v3v4} is a sev -set of G. Consequently, there is a 
difference between the edge-to-edge Steiner number and the edge-to-vertex Steiner number. 
 
Theorem 2.4. For a connected graphG of size m ≥  3, 2 ≤  see (G) ≤ m. 
Proof. A see -set requires a minimum of two edges, therefore see (G) ≥ 2. Let W = E. Let uvbe any edge of 
G. Let T be aWev -tree of  G. Then T is a spanning tree of G. If  uv ∈ E(T), thenW is an edge-to-edge Steiner 
set of G. If  uv ∉ E(T), letu = u0, u1 , u2, …… , un = v be the unique path in T. Thenu and vlie on different 
components of T − uu1 . LetT′ be the tree obtained fromT − uu1 by joining the edge uv. Then T′is a 
spanning tree of G such that |T| = |T′|. Since uv ∈ E(T′),W is an edge-to-edge Steiner set of Gand 
sosee (G) ≤ m. Therefore, 2 ≤ see (G) ≤ m. 
Remark 2.5.The bounds in Theorem 2.4 are sharp. For G = C2k k ≥ 2 , see  G = 2 and for G = K1,m ,
see  G = m. Also the bounds in Theorem 2.4 can be strict. For the graph G is given in Figure 1.1, see  G = 3 
and m = 7. Thus 2 < see (G) < m. 
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Theorem 2.6.Every edge-to-edge Steiner set contains at least one extreme edge that is incident with v if v 
is an extreme vertex of a connected graph G. 
Proof. Assume that v  inG  is an extreme vertex and that degG (v)  =  k . Let N v = {v1, v2 , …… , vk} 
represent the area around v in G. Let W represent a edge-to-edge Steiner set of G. Assume that for any 
i, (1 ≤ i ≤ k), vvi ∉ W. vviis located on a Steiner Wev -tree of G for 1 ≤ i ≤ k since W is an edge-to-edge 
Steiner set of G. Assume that T is a Steiner Wev - tree of Wwhere vvi ∈  T.Supposedeg(v)  =  l. For l =  1, 
the result is obviously trivial, therefore let l =  2. Let NT v = {u1 , u2, …… , ul} represent the area around v 
in T. Given that v is an extreme vertex of G, it follows that for any i, j with 1 ≤ i;  j ≤  k − 1 and i ≠  j, 
uiuj ∈ E(G). Let T′ be a tree in G that was created by removing the vertex v from the originaltree T and 

adding the edges uiui−1 (1 ≤ i ≤ k − 1) to it. Then, V (W) ⊆ V (T′′) and |V (T′′) | = |V(T) | − 1, which is a 
contradiction to W and a Steiner set of G that extends from edge-to-edge. Therefore there is at least one 
extreme edge that is incident with v in every edge-to-edge Steiner set. 
Corollary 2.7.Each end vertex of G belongs to every edge-to-edge Steiner set of G. 
Proof. This follows from Theorem 2.6. 
 
Theorem 2.8. LetG be a connected graph with k end-vertices and a size of m ≥ 3, then max{2, k} ≤
see (G) ≤ m. 
Proof. This follows from Theorem 2.4 and Corollary 2.7. 
 
Corollary 2.9. Let W be the edge-to-edge Steiner set of a connected graphG, which has cut edges. Then 
each of the two components of G − e contains an element of W for each cut edge e of G that is not an end 
edge. 
Proof. Let the cut edge of G be e = uv. Suppose G1 and G2 are the two parts of G − e that have the 
relationship u ∈ V(G1) and v ∈  V(G2). Let W represent an edge-to-edge Steiner set of G. Assume that W 
doesn't have any G1 edges. Every edge of G resides on a Steiner Wev -tree since W is an edge-to-edge 
Steiner set of G. A Steiner Wev -tree with V(G1) ∈ V(T) is called T. Then, in T, u occurs twice. As a result, T 
must be present in the cycle. T is not a tree, which is a contradiction. Therefore there is at least one edge 
each from G1 and G2 in every edge-to-edge Steiner set of G.  
Corollary 2.10.Let G be a connected graph with a cut edge e. Then elies in every Steiner Wev -tree. 
 
Theorem 2.11. Let W be a see -set of G and G be a connected graph. Then, none of the cut edges of G that 
are not end edges belong to W. 
Proof. Let W be any see -set of G. Assume that the cut edge, e =  uv, which is not G is an end edge and that 

e ∈  W. Assume that G1 and G2two parts are G − e. Suppose W′ = W − {uv}. We assert that W′ is a Steiner 
set of G that spans its entire edge. According to Corollary 2.10, each Steiner Wev -tree contains e because e 
is a cut edge of G. Since each Steiner Wev -tree is a Steiner Wev -tree of G, it follows that e ∉ W′. Thus W′ is 
an edge-to-edge Steiner set of G such that |W′ | < |W|.Which is a contradiction to W an edge-to-edge 
Steiner set of G. Thus, the theorem is implied. 
 
Corollary 2.12. The set of all end-edges of any non-trivial tree T is the unique minimum edge-to-edge 
Steiner set ofT, and for any non-trivial tree T with k end-vertices, see (T)  =  k. 
Proof. This follows from Corollary 2.7 and Theorem 2.11. 

Observation 2.13 (i) For the complete graph G = Kn n ≥ 3 , see  G =  

n               if n = 3
n

2
       if n is even

n+1

2
     if n is odd

 . 

(ii) For the cycle G = Cn n ≥ 4 , see  G =  
2     if n is even
3      if n is odd

 . 

(iii) For the complete bipartite graph G = Ks,s s ≥ 2 , see  G = s. 

 
Theorem 2.14. If G is a connected graph with m ≥ 4 such that G is not a star, then see (G)  ≤  m − 1. 

Proof. Assume that e is an edge that is not an end-edge of G. Let W =  E G – {e}. ThenV(W)  =  V. Since 
see (G) ≤  m − 1, thenW is a edge-to-edge Steiner set of G. 
 
Theorem 2.15. For any connected graph G of size m ≥ 2, see (G)  =  m if and only ifGis either K3  or the 
star K1,m . 

Proof. Letsee (G)  =  m. Assume that m = 2. Therefore= P3 ≅ K1,2. Suppose m = 3. Then G is eitherK3  or 

P4. If G = K3 thensee (G) = 3 = m. IfG = P4, then see (G) = 2 = m − 1, which is not the case. Let m ≥ 4. IfG 
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is not a star. Then by Theorem 2.14, see (G) ≤ m − 1, which is a contradiction. Therefore G is the star, K1,m . 

The converse is obvious. 
 
Theorem 2.16. Let G be a connected graph of size m ≥ 4which is not a tree. Then see (G)  ≤  m − 2. 
Proof. By Observation 2.13(ii), the graph G  is a cycle Cn  (n ≥ 4) . Therefore see (G) ≤  m − 2 . Let 
C: v1, v2, v3, …… , vk , v1  (k ≥ 3) be the smallest cycle in the graph G.If it is not a cycle, let v be a vertex such 
that v is not on C and v is next to v1 (say). Thereforesee  G ≤  m −  2, W = E G − {v1v2, v1vk} is an edge-
to-edge Steiner set. 
Remark 2.17.The bound in Theorem 2.16 is sharp. For the graph G given in Figure 2.1,W = {v1v2 , v3v4} is 
a see -set of G so that see  G = 2 = m − 2. 

 

 
Theorem 2.18. For any connected graph G with m ≥  4, see  G = m − 1 if and onlyif G isa double star. 

Proof. Let see  G =  m –  1. Let m =  3. If G is a tree, then G = P4  or K1,3 . By Corollary 2.12, if G = K1,3, then 

see (G) = 3 =  m, which is a contradiction. If G = P4  then it is a double star and meets the criteria of this 
theorem. If G is not a tree then G = K3.Therefore by Theeorem 2.15see (G) = m, which is a contradiction. 
Let m ≥  4. If G is not a tree then by Theorem 2.16, see (G) ≤ m −  2 contradicts itself. G is therefore a tree. 
We assert that d ≤ 3. Assume d > 4. Theorem 2.11 states that since G is a tree and has at least two 
internal edges, the statement see  G ≤ m − 2 is false.As a result, d ≤ 3. If d = 2, then G is the star K1,m . By 
Corollary 2.12, see (G)  =  m, which contradicts the hypothesis. If d =  3 then G is a double star and 
complies with the theorem's conditions. ThereforeG is eitherP4 or a double star. The converse is obvious. 
 
3. CONCLUSIONS 
In this article we studied the edge-to-edge Steiner number of a graph. We extend this concept to other 
distance related parameters in graphs. 
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