The Edge-to-Edge Steiner Number of a Graph

V.Mary Gleeta1, S.Jency²

¹Assistant Professor, PG and Research Department of Mathematics, Tirunelveli Dakshina Mara Nadar Sangam College, T.Kallikulam-627113, India, Email: gleetass@gmail.com

²Research Scholar,Register Number:21113042092010, Department of Mathematics, Holy Cross College (Autonomous), Nagercoil-629004, India, Email[: jenijencyjs@gmail.com](mailto:jenijencyjs@gmail.com)

Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India

ABSTRACT

For a non-empty set Wof edges in a connected graphG,the edge-to-vertex Steiner distance d_{ev} (W) of Wis the minimum size of a tree containing V(W) and is called an edge-to-vertex Steiner tree with respect to W or a Steiner W_{ev} - tree.A set W \subseteq E is called an edge-to-edge Steiner set if every edge of G lies on a Steiner W_{ev} - tree of G. The edge-to-edge Steiner number s_{ee} (G)of Gis the minimum cardinality of its edge-to-edge Steiner sets and any edge-to-edge Steiner sets of cardinalitys $_{ee}$ (G) is called a minimum edge-to-edge Steiner set of G or a S_{ep} -set of G. The edge-to-edge Steiner number of certain classes of graphs are determined. We characterize a connected graph of size $m \geq 3$ with an edge-to-edge Steiner numberm or m − 1.

Keywords: Steiner distance, Steiner number, edge-to-vertex Steiner distance, edge-to-vertex Steiner set, edge-to-edge Steiner set.

1. INTRODUCTION

Let $G = (V, E)$ be a graph having a vertex set $V(G)$ and an edge set $E(G)(V(G))$ and $E(G)$ correspondingly). In addition, we state that a graph G has size $m = |E(G)|$ and order $n = |V(G)|$. We refer to [1] for the fundamental terms used in graph theory. A vertex v is adjacent to another vertex u if and only if there exists an edge $e = uv \in E(G)$. If $uv \in E(G)$, then u is a neighbor of v, and the set of neighbors of vis denoted by $N_G(v)$. The degree of a vertexv $\in V$ is $deg_G(v) = |N_G(v)|$. If $deg_G(v) = n - 1$, thenv is said to be a universal vertex. A vertex v is called an extreme vertex if the subgraph induced by v is complete.

The distance $d(u, v)$ between two verticesuand v in a connected graph Gis the length of a shortest u −vpath in G.For a nonempty set W of vertices in a connected graph G,the Steiner distance d(W) of W is the smallest size of a connected subgraph of G containing W.The Steiner distance for a graph Gisstudied in [3,8,11,13]. Let S(W) stand for the collection of all vertices on Steiner W-trees. If S(W) = $V(G)$, then a set $W \subseteq V(G)$ is referred to as a Steiner set of G.A Steiner set of minimum cardinality is a minimum Steiner set or simply as-set and its cardinality is the Steiner number $s(G)$ of G. The Steiner number was introduce in [3] and further studied in [8-13,15].

Definition 1.1.[15] Consider a connected graph $G = (V, E)$ with at least three vertices. For a non-empty set Wof edges in a connected graphG, the edge-to-vertex Steiner distance $d_{ev}(W)$ of W is the minimum size of a tree containing V(W) and is called an edge-to-vertex Steiner tree with respect to W or a Steiner W_{ev} tree. There might be more than one Steiner W_{ev}-tree in G for a specific set $W \subseteq E(G)$. However, $V(W) \subseteq V(T_1) \cap V(T_2)$ despite the possibility that T_1 and T_2 are Steiner W_{ev}-trees.

Example 1.2. Let G be a graph shown in figure 1.1. Let $W = \{v_1v_6, v_2v_5, v_3v_4\}$. Figures 1.1(a) and 1.1(b) show the two Steiner W_{ev} -trees.

Remark 1.3.[11] If the edges $e = uv$ and $f = vw$ are adjacent in G, then the Steiner W_{ev}-tree is a path between u, v and w.

Theorem 1.4.[14]Each end edge of the connected graph G belongs to every edge-to-vertex Steiner (edgeto-edge geodetic) set of G.

Theorem 1.5.[11]For the star $G = K_{1,m}$ (m ≥ 2), s_{ev} (G) = m.

2.The Edge-to-Edge Steiner Number of a Graph

Definition 2.1.A connected graph $G = (V, E)$ with at least three vertices. A set $W \subseteq E$ is called an edge-toedge Steiner set if every edge of G lies on a Steiner W_{ev}-tree of G. The edge-to-edge Steiner numbers_{ee} (G) is the minimum cardinality of its edge-to-edge Steiner sets.Any edge-to-edge Steiner set with cardinality s_{ee} (G) is a minimum edge-to-edge Steiner set of G or as_{ee}-set of G.

Example 2.2. Let G be a graph shown in figure 1.1. Let $W_1 = \{v_1v_6, v_2v_5, v_3v_4\}$. For the graph G in Figure 1.1, W_1 is an edge-to-edge Steiner set of G since each edge of G is contained in one of the two Steiner W_{ev} . trees, and as a result, $s_{ee}(G) \leq 3$. No edge-to-edge Steiner set of G is a two elements subset of E, hence s_{ee} (G) = 3.

Remark 2.3. For the graph G given in Figure 1.1, $W_1 = \{v_1v_6, v_3v_4\}$ is a s_{ev} -set of G. Consequently, there is a difference between the edge-to-edge Steiner number and the edge-to-vertex Steiner number.

Theorem 2.4. For a connected graphG of size $m \geq 3$, $2 \leq s_{ee}(G) \leq m$.

Proof. A s_{ee}-set requires a minimum of two edges, therefore $s_{ee}(G) \geq 2$. Let W = E. Let uvbe any edge of G. Let T be aW_{ev}-tree of G. Then T is a spanning tree of G. If uv \in E(T), thenW is an edge-to-edge Steiner set of G. If uv $\notin E(T)$, letu = u₀, u₁, u₂,, u_n = v be the unique path in T. Thenu and vlie on different components of T – uu₁. LetT' be the tree obtained from T – uu₁ by joining the edge uv. Then T'is a spanning tree of G such that $|T| = |T'|$. Since uv $\in E(T')$, W is an edge-to-edge Steiner set of Gand sos_{ρ} (G) \leq m. Therefore, $2 \leq s_{ee}$ (G) \leq m.

Remark 2.5.The bounds in Theorem 2.4 are sharp. For $G = C_{2k}$ ($k \ge 2$), s_{ee} (G) = 2 and for $G = K_{1,m}$, s_{ee} (G) = m. Also the bounds in Theorem 2.4 can be strict. For the graph G is given in Figure 1.1, s_{ee} (G) = 3 and m = 7. Thus $2 < s_{ee}$ (G) $< m$.

Theorem 2.6.Every edge-to-edge Steiner set contains at least one extreme edge that is incident with v if v is an extreme vertex of a connected graph G.

Proof. Assume that v in G is an extreme vertex and that $deg_G(v) = k$. Let $N(v) = \{v_1, v_2, ..., v_k\}$ represent the area around v in G. Let W represent a edge-to-edge Steiner set of G. Assume that for any i, (1 ≤ i ≤ k), $vv_i \notin W$. vv_i is located on a Steiner W_{ev} -tree of G for 1 ≤ i ≤ k since W is an edge-to-edge Steiner set of G. Assume that T is a Steiner W_{ev} - tree of Wwhere $vv_i \in T$. Supposedeg(v) = l. For l = 1, the result is obviously trivial, therefore let $l = 2$. Let $N_T(v) = \{u_1, u_2, ..., u_l\}$ represent the area around v in T. Given that v is an extreme vertex of G, it follows that for any i, j with $1 \le i$; j $\le k-1$ and i ≠ j, $u_iu_j \in E(G)$. Let T' be a tree in G that was created by removing the vertex v from the originaltree T and adding the edges u_iu_{i-1} (1 ≤ i ≤ k − 1) to it. Then, V (W) ⊆ V (T["]) and |V (T") | = |V(T) | − 1, which is a contradiction to W and a Steiner set of G that extends from edge-to-edge. Therefore there is at least one extreme edge that is incident with v in every edge-to-edge Steiner set.

Corollary 2.7.Each end vertex of G belongs to every edge-to-edge Steiner set of G.

Proof. This follows from Theorem 2.6.

Theorem 2.8. LetG be a connected graph with k end-vertices and a size of $m \ge 3$, then $max[2, k] \le$ $s_{ee}(G) \leq m$.

Proof. This follows from Theorem 2.4 and Corollary 2.7.

Corollary 2.9. Let W be the edge-to-edge Steiner set of a connected graphG, which has cut edges. Then each of the two components of G – e contains an element of W for each cut edge e of G that is not an end edge.

Proof. Let the cut edge of G be e = uv. Suppose G_1 and G_2 are the two parts of G – e that have the relationship $u \in V(G_1)$ and $v \in V(G_2)$. Let W represent an edge-to-edge Steiner set of G. Assume that W doesn't have any G_1 edges. Every edge of G resides on a Steiner W_{ev} -tree since W is an edge-to-edge Steiner set of G. A Steiner W_{ev}-tree with $V(G_1) \in V(T)$ is called T. Then, in T, u occurs twice. As a result, T must be present in the cycle. T is not a tree, which is a contradiction. Therefore there is at least one edge each from G_1 and G_2 in every edge-to-edge Steiner set of G.

Corollary 2.10.Let G be a connected graph with a cut edge e. Then elies in every Steiner Wev -tree.

Theorem 2.11. Let W be a s_{ee}-set of G and G be a connected graph. Then, none of the cut edges of G that are not end edges belong to W.

Proof. Let W be any s_{ee}-set of G. Assume that the cut edge, $e = uv$, which is not G is an end edge and that e ∈ W. Assume that G_1 and G_2 two parts are G – e. Suppose W' = W – {uv}. We assert that W' is a Steiner set of G that spans its entire edge. According to Corollary 2.10, each Steiner W_{ev}-tree contains e because e is a cut edge of G. Since each Steiner W_{ev}-tree is a Steiner W_{ev}-tree of G, it follows that e \notin W'. Thus W' is an edge-to-edge Steiner set of G such that $|W'| < |W|$. Which is a contradiction to W an edge-to-edge Steiner set of G. Thus, the theorem is implied.

Corollary 2.12. The set of all end-edges of any non-trivial tree T is the unique minimum edge-to-edge Steiner set of T, and for any non-trivial tree T with k end-vertices, $s_{ee}(T) = k$. **Proof.** This follows from Corollary 2.7 and Theorem 2.11.

Observation 2.13 (i) For the complete graph $G = K_n (n \ge 3)$, $s_{ee}(G) = \{$ \lim_{n} if $n = 3$ $\frac{\pi}{2}$ if n is even n+1 $\frac{1}{2}$ if n is odd .

(ii) For the cycle $G = C_n (n \ge 4)$, $s_{ee}(G) = \begin{cases} 2 & \text{if } n \text{ is even} \\ 3 & \text{if } n \text{ is odd} \end{cases}$ (iii) For the complete bipartite graph $G = K_{s,s}$ (s \geq 2), s_{ee} (G) = s.

Theorem 2.14. If G is a connected graph with m ≥ 4 such that G is not a star, then $s_{ee}(G) \leq m - 1$. **Proof.** Assume that e is an edge that is not an end-edge of G. Let $W = E(G) - \{e\}$. Then $V(W) = V$. Since s_{ee} (G) $\leq m-1$, thenW is a edge-to-edge Steiner set of G.

Theorem 2.15. For any connected graph G of size $m \ge 2$, $s_{ee}(G) = m$ if and only ifGis either K₃ or the star $K_{1,m}$.

Proof. Lets_{ee} (G) = m. Assume that m = 2. Therefore= $P_3 \cong K_{1,2}$. Suppose m = 3. Then G is either K_3 or P_4 . If $G = K_3$ thens_{ee} $(G) = 3 = m$. If $G = P_4$, then s_{ee} $(G) = 2 = m - 1$, which is not the case. Let $m \ge 4$. If G

is not a star. Then by Theorem 2.14, s_{ee} (G) \leq m $-$ 1, which is a contradiction. Therefore G is the star, $K_{1,m}$. The converse is obvious.

Theorem 2.16. Let G be a connected graph of size m \geq 4which is not a tree. Then s_{ee} (G) $\leq m - 2$. **Proof.** By Observation 2.13(ii), the graph G is a cycle C_n (n ≥ 4). Therefore s_{ee} (G) $\leq m-2$. Let C: $v_1, v_2, v_3, \dots, v_k, v_1$ ($k \ge 3$) be the smallest cycle in the graph G.If it is not a cycle, let v be a vertex such that v is not on C and v is next to v_1 (say). Therefores_{ee} (G) $\leq m-2$, $W = E(G) - \{v_1v_2, v_1v_k\}$ is an edgeto-edge Steiner set.

Remark 2.17.The bound in Theorem 2.16 is sharp. For the graph G given in Figure 2.1, $W = \{v_1v_2, v_3v_4\}$ is a s_{ee} -set of G so that $s_{\text{ee}}(G) = 2 = m - 2$.

Figure 2.1

Theorem 2.18. For any connected graph G with m ≥ 4, s_{ee} (G) = m − 1 if and onlyif G isa double star. **Proof.** Let $s_{ee}(G) = m - 1$. Let $m = 3$. If G is a tree, then $G = P_4$ or $K_{1,3}$. By Corollary 2.12, if $G = K_{1,3}$, then $s_{ee}(G) = 3 = m$, which is a contradiction. If $G = P_4$ then it is a double star and meets the criteria of this theorem. If G is not a tree then $G = K_3$. Therefore by Theeorem 2.15 $s_{ee}(G) = m$, which is a contradiction. Let $m \ge 4$. If G is not a tree then by Theorem 2.16, $s_{ee}(G) \le m - 2$ contradicts itself. G is therefore a tree. We assert that $d \leq 3$. Assume $d > 4$. Theorem 2.11 states that since G is a tree and has at least two internal edges, the statement s_{ee} (G) ≤ m – 2 is false.As a result, d ≤ 3. If d = 2, then G is the star K_{1,m}. By Corollary 2.12, S_{ee} (G) = m, which contradicts the hypothesis. If d = 3 then G is a double star and complies with the theorem's conditions. Therefore G is either P_4 or a double star. The converse is obvious.

3. CONCLUSIONS

In this article we studied the edge-to-edge Steiner number of a graph. We extend this concept to other distance related parameters in graphs.

REFERENCES

- [1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
- [2] G. Chartrand. H.Galvas, R.C. Vandell and F. Harary, The forcing domination number of a graph, J. Comb. Math.Comb. Computt., 25 (1997) 161 - 174.
- [3] G. Chartrand, P. Zhang, The Steiner number of a graph, Discrete Math., 242 (2002),41-54.
- [4] G. Chartrand, F. Harary, and P. Zhang, "On the geodetic number of a graph," Networks, vol. 39, no. 1, pp. 1–6, 2002.
- [5] G. Chartrand, E. M. Palmer, and P. Zhang, "The geodetic number of a graph: A survey," Congr. Numerantium, vol. 156, pp. 37–58, 2002.
- [6] G. Chartrand and P. Zhang, "The forcing geodetic number of a graph," Discuss. Math., Graph Theory, vol. 19, no. 1, pp. 45–58, 1999.
- [7] V. Filipovıc, A. Kartelj, J. Kratica, Edge metric dimension of some generalized Petersen graphs,Results in Mathematics, 74 (2019), 1–15.
- [8] M. B. Frondoza and S. R. Canoy Jr., The edge Steiner number of a graph, Bulletin of theMalaysian Mathematical Sciences Society,35 (2012),53 - 69.
- [9] C. Hernando, T. Jiang, M. Mora, I. M. Pelayo and C. Seara, On the Steiner, geodetic and hull number of graphs, Discrete Math., 293 (2005), 139 - 154.
- [10] Ismael G. Yero and Juan A. Rodriguez-Velazquez, Analogies between the geodetic number and the Steiner number of some classes of graphs, FILOMAT, 29:8 (2015), 1781-1788.
- [11] J. John , The vertex Steiner number of a graph, Transactions on Combinatorics, 9(3) (2020), 115-124.
- [12] J. John, The total edge Steiner number of a graph, Annals of the University of Craiova-Mathematics and Computer Science Series, 48(1) (2021), 78-87.
- [13] M. Raines and P. Zhang, The Steiner distance dimension of graphs,Australian Journal of Combinatorics, 20 (1999), 133–144.
- [14] A. P. Santhakumaran and J. John, "Edge geodetic number of a graph," J. Discrete Math. Sci. Cryptography, vol. 10, no. 3, pp. 415–432, 2007.
- [15] A. P. Santhakumaran, "The edge-to vertex geodetic number of a graph," Journal of Advanced Mathematics and Application, vol.4, no.2, pp.177-181(5), 2015.