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Abstract

Here we present multivariate quantitative approximations of Banach
space valued continuous multivariate functions on a box or RN, N € N,
by the multivariate normalized, quasi-interpolation, Kantorovich type and
quadrature type neural network operators. We examine also the case of
approximation by iterated operators of the last four types. These ap-
proximations are achieved by establishing multidimensional Jackson type
inequalities involving the multivariate modulus of continuity of the en-
gaged function or its high order Fréchet derivatives. Our multivariate
operators are defined by using a multidimensional density function in-
duced by the Gudermannian sigmoid function. The approximations are
pointwise and uniform. The related feed-forward neural network is with
one hidden layer.
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1 Introduction

G.A. Anastassiou in [2] and [3], see chapters 2-5, was the first to establish
neural network approximations to continuous functions with rates by very specif-
ically defined neural network operators of Cardaliaguet-Euvrard and ”Squash-
ing” types, by employing the modulus of continuity of the engaged function or
its high order derivative, and producing very tight Jackson type inequalities.
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He treats there both the univariate and multivariate cases. The defining these
operators "bell-shaped” and ”squashing” functions are assumed to be of com-
pact support. Also in [3] he gives the Nth order asymptotic expansion for the
error of weak approximation of these two operators to a special natural class of
smooth functions, see chapters 4-5 there.

Motivations for this work are the article [17] of Z. Chen and F. Cao, and [4],
51, (6], [7), [8], 9, [20], [11], [12], [14], [15], 18], [19].

Here we perform multivariate Gudermannian sigmoid function based neural
network approximations to continuous functions over boxes or over the whole
RY, N € N, and also iterated approximations. All convergences here are with
rates expressed via the multivariate modulus of continuity of the involved func-
tion or its high order Fréchet derivative and given by very tight multidimensional
Jackson type inequalities.

We come up with the ”"right” precisely defined multivariate normalized,
quasi-interpolation neural network operators related to boxes or RV, as well
as Kantorovich type and quadrature type related operators on RY. Our boxes
are not necessarily symmetric to the origin. In preparation to prove our results
we establish important properties of the basic multivariate density function in-
duced by Gudermannian sigmoid function and defining our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

Nn(x)=chU(<aj-x>—|—bj), zeR’, seN,
=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and z,
and o is the activation function of the network. In many fundamental network
models, the activation function is the Gudermannian sigmoid function. About
neural networks see [20], [21], [22].

2 Background

See also [13], [24].
Here we consider gd (x) the Gudermannian function [24], which is a sigmoid
function, as a generator function:

o (z) = 2arctan (tanh (g)) = /Oz coiilt =:gd(z), x € R. (1)

Let the normalized generator sigmoid function

f(x>::20<x>=2[ i 4Am1dt, eR (@)

T T cosht w et +et
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Here
2

!
xTr) =
f'(@) m cosh

hence fis strictly increasing on R.
Notice that tanh (—2) = —tanhx and arctan (—z) = — arctanz, = € R.

So, here the neural network activation function will be:

>0, VxeR,

Wir)=2fle+)—flz-1], zeR ®3)

e

By [3], we get that
W(z)=W(-z), VzeR, (4)

i.e. it is even and symmetric with respect to the y-axis. Here we have f (+o00) =
1, f(—o0) = =1 and f(0) = 0. Clearly it is

fl=2)=—=f(2), Ve eR, ()

an odd function, symmetric with respect to the origin. Since x4+ 1 >z —1, and
f(x+1)> f(x—1), we obtain W (z) >0,V z €R.
By [13], we have that

W (0) = %gd(l) ~ 0.2757, (6)

By [13] W is strictly decreasing on (0, 400), and strictly increasing on (—o0, 0),
and W' (0) = 0.
Also we have that

lim W (z) = lim W (z) =0, (7)

T—+00 r——00

that is the z-axis is the horizontal asymptote for W.

Conclusion, W is a bell shaped symmetric function with maximum W (0) =
0.2757.

We need

Theorem 1 (/13]) It holds that
Y W(—i)=1, VazeR (8)

Theorem 2 ([/13]) We have that

/_O;W(a:)dle. )

So W (x) is a density function.
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Theorem 3 ([15]) Let 0 < a < 1, and n € N with n'=* > 2. It holds

i W (nz —k) < 2 = 2¢7 . (10)

men'™=2)  gen'™?
k= —o0
{ s nx — k| > ntme

Denote by |-] the integral part of the number and by [-] the ceiling of the
number.

Theorem 4 ([13]) Let [a,b] C R and n € N, so that [na] < |nb]. It holds

1 2T

=~ 4.824 11
b] < de) e (11)
> W(nz—k)
k=[na]
V€ la,b.
We make
Remark 5 ([15])
(i) We have that
|nb]
lim > W (nz—k)#1, (12)
k=[na]

for at least some x € [a, b].
(i) Let [a,b] C R. For large n we always have [na] < [nb|. Alsoa < £ <,
iff [na] <k < |nb].

In general it holds
[nb]

> Wnz—k) <1 (13)
k=[na]
We introduce

N
Z(x1,man) =2 (x) = [[W(z:), 2= (21,...an) eRY, NeN. (14)

=1

It has the properties:
(i) Z(z) >0, Vz eRY,
(ii)

Z Z({L’—k‘):z Z Z Z Z(ml—kl,...,$N—kN):1, (15)

k=—o00 ki=—oco kg=—00 kny=—0o0
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where k 1= (k1,....,k,) € ZN, ¥V x € RV,

hence
(iii)
(o)
> Zna-k)=1, (16)
k=—o0
VzeRN;neN,
and
(iv)
/ Z (@) dz = 1, (17)
RN
that is Z is a multivariate density function.
Here denote ||z||  := max {|z1], ..., |zn|}, 2 € RV, also set 0o := (00, ..., 00),
—00 := (—00,...,—00) upon the multivariate context, and

[na] := ([na1], ..., [nan]),
(18)

[nb] := (|nb1], ..., [nbN]),

where a := (ay,...,an), b:= (b1,...,bn) .
We obviously see that

[nb] [nb] N
Z Z (nx — k) = Z (HW(mcl—kl)> =

k=[na] k=[na] \i=1

[nb1] [nbn] N N [nb; ]

ki=[na1] kn=[nan] \i=1 i=1 \k;=[na;]
For 0 < < 1and n €N, a fixed z € RV, we have that

Lnb]

Z Z (nx — k) =

k=[na|
[nb] [nb]
Z Z (nx —k) + Z Z (nx —k). (20)
k= [na] k = [na]
15 -2l < 55 15 =2l > 5

In the last two sums the counting is over disjoint vector sets of k’s, because the

k 1
Be—a| > o5,

condition H% — xHOO > n%; implies that there exists at least one
where r € {1,..., N}.
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(v) As in [10], pp. 379-380, we derive that

o (10)  2¢2
> Z(nz—k) < ——, 0<B<1, meN, (21)
me

(i

with n € N:n'=% > 2z e [T, [as, bi] .
(vi) By Theorem 4 we get that

1 or \V
0< < ( ) =~ (4.824)N (22)
nb ’
St Z e —k)  \9d(2)
Ve (Hj\il [ai,bi]), n € N.
It is also clear that
(vii)
Z Z (nx —k) < 761,B , (23)
e
k= —o0
15 ==l >7m
0<B<l,neN:n'A>22cRY meN.
Furthermore it holds
[nb|
lim Y Z(nx—k)#1, (24)

k=[na]

for at least some z € (Hf\il [a;, bz]) .

Here (X, ””’v) is a Banach space.

Let f € C (Hf\;l [ai, bi] 7X) , ¢ = (x1,...,ZN) € va:l [a;,bi], n € N such
that [na;] < |nb;|,i=1,...,N.

We introduce and define the following multivariate linear normalized neural
network operator (z := (z1,...,ZN) € (vazl (@i, bz]))

ZW’JM Z (nx — k)
An(faxla'"wrN) = An(fa'r) = u [I. }]J ( ) =
an [na] (nz - k)
|nb1 | b2 | |nbn | k
ZIﬂZ[naﬂ Zkzj(naz] ZkN N[naN] ( nl 1ty ) (Hz 1 W (nml - kl))
Hf\;( IE:LilHna g W (na; — ki) )

For large enough n € N we always obtain [na;| <
a; S ]:z S bu lﬂ [naz-‘ S kz S I_nszy Z - 17"'7N'

|nbi], i = 1,...,N. Also
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When g € C (Hz 1 lai, bl]) we define the companion operator

T ZlEanna] ( ) Z (TLIIJ - k)

Ay (g,x) = ~ (26)
i ey Z (2 = K)
Clearly ﬁn is a positive linear operator. We have that
~ N
A, (Lz)=1, Vz e <H [ai,bi]> .
i=1
Notice that A, (f) € C (TT; lai,bi], X ) and A, (9) € C (TTX, lai,bi])
Furthermore it holds
Lan
k [nal ||f(n)|| k) e
[A4n (f, 2)Il, < =4 (£l ), (27)
Y Z[E’anna_‘ (’I’L.’I} _ k) ( Y )
Vze Hf\/:l [ai,bi] .
N
Clearly ||fIl, € C (T, [as:bil)
So, we have that
l4n (£ @), < A (711, ) (28)
Vo el o bl VneNV feC (T, o b], X).
Let ce X and g C (Hi:l [a;, b ]) then cg € C (H2 1 lag, by ,X) .
Furthermore it holds
Ay (cg, @) = cAy (g,2), vﬂ:eﬂaz, il (29)
Since A,, (1) =1, we get that
Ap(c)=¢, VceX. (30)

We call ;1” the companion operator of A,,.
For convinience we call

[nb]
A (foa) = > f(> (nz — k) =

k=[na]

lnbi]  Lnbo] Lnbx | N
DD D f<nn) (HW(nxiki)>, (31)
=1

ki=[nai] ka=[naz2] kn=[nan]
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Vae (HiN:l [ai,bi]) .
That is
n (f, ) . - bJA* (f7 ) , (32)
D ope ' fnal Z (nx — k)

Ve (Hf\il [ai,bi]), n € N.

Hence

A5 (f,2) = £ (@) (S0 Z (2 = )

A, (f,x) — = 33
(f.2) ~ (&) S Trers (3)
Consequently we derive
(22) N Lnb)
|40 (f,2) = f(@)ll, < (4820)" | A; (fow) = f(z) Y Z(nw—k)|| , (34)
k=[na]

~

Vae (HL . [al,bl])

We will estimate the right hand side of (34).

For the last and others we need
Definition 6 (/11], p. 274) Let M be a convex and compact subset of (]RN, ||Hp) ,
p € [1,00], and (X, H||7) be a Banach space. Let f € C (M,X). We define the

first modulus of continuity of f as

wi (f,6):= " sup  [f(z)=F@,, 0<d<diam(M). (35)
z,y € M :
= yll, <o

If 6 > diam (M), then
wi (f,0) = w1 (f, diam (M) . (36)

Notice wy (f,d) is increasing in 6 > 0. For f € Cp (M, X) (continuous and
bounded functions) wy (f,d) is defined similarly.

Lemma 7 ([11], p. 27}) We have wy (f,0) — 0 asd | 0, iff f € C(M,X),

where M is a convex compact subset of (RN7 H'Hp), p € [1,00].
Clearly we have also: f € Cy (RN , X ) (uniformly continuous functions),

iff wy (f,0) — 0 as § | 0, where wy is defined similarly to (35). The space
Cp (RN , X ) denotes the continuous and bounded functions on R¥.
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When f € Cp (RN,X) we define,

B, (f,z) == By (f,21,...,2N) = i f (:) Z (nx — k) :=

k=—o0
ki ke hw al
SIS f( n) (me_ki)), (37)
k1=—00 kg=—00 kny=—o00 i=1

n €N,V az e RN, N €N, the multivariate quasi-interpolation neural network
operator.

Also for f € Cp (RN , X ) we define the multivariate Kantorovich type neural
network operator

Co (fr2) 1= Ch (fr21, 0 an) = Y <nNA"f(t)dt>Z(nx_k):

k=——oo k

oo oo [e'e} k1+1 ko+1 kp 1

DR ( A A f(th...,tN)dtl...dtN)
2 N

k1=—00 ky=—00 _ kg iy

) (H W (nx; — k2)> , (38)

Again for f € Cp (]RN , X ) , N € N, we define the multivariate neural net-
work operator of quadrature type D,, (f,z), n € N, as follows
Let 0 = (0y,....,05) € NV, r = (ry,...,7n) € Zﬂ\:, W,
0 On

601 6o
that S w.= Y > o > Wy ppen =1 kEZN

; and
r=0 r1=07r2=0 rny=0

neN, VzeRVN,

= Wry,ro,...TN > Oa such

0
k r
Ok (f) = Sk oy (f) i= D w0 f ( + ) =
= n  nb
AN k k k
53 Y vt (B B ) g

PICERT) T
n n
r1=07r2=0 rny=0 n92 TL@N
r._ (TL T2 N
where  := (91, s e 01\1) .
We set

D, (f,z):= D, (f,z1,....,aN) = Z Onk () Z (nx — k) = (40)

k=—o0
[eS) oo oo N
Z Z Z 5n,k1,k2,m,kN (f) (HW(nxz — k2)> 5
k1=—00 ka=—00 kny=—00 =1
9
565
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vV eRY,

In this article we study the approximation properties of A,,B,,C,, D,
neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator 1.

3 Multivariate general Neural Network Approx-
imations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

Theorem 8 Let f € C(Hil\il [ai,bi]7X>, 0<pB<lze€ (va:l [ai,bi]),
m,N,n € N with n*=% > 2. Then

1)
|An (fsz) — f (x)HA, < (4-824)N w1 <f7 nl@) + W (n),
(41)
and
2)
140 () =71, <2 (42)

. . Il L .
We notice that lim A, (f) =" f, pointwise and uniformly.
n—oo

Above w1 is with respect to p = oco.
Proof. We observe that

[nb]
Ax) = A, (f,x) = f(x) Y Z(ne—k)=

k=[na]
[nd] 3 Lnb]
k_ZM:a] f (n) Z (na — k) — k%ﬂ £ @) Z (na — k) =
nb] By
1}31 <f ("> -/ m) Z{nw k). (43)
Thus " k
lA@), < k_%] ‘f <n) — f(2) WZ(M k)=
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5 l1(3)-r@| zoe-n'<

k= [na]
| —af > 5
42
w ( nlﬁ) + l‘l{ZH (44)
So that
1A @I, < wi (f 1) el L0 S (45)
L "nf mer'™?

Now using (34) we finish the proof. m
We make

Remark 9 ([11], pp. 263-266) Let (RN, H-||p), N € N; where |||, is the Ly-

norm, 1 < p < oo. RN is a Banach space, and (RN)J denotes the j-fold product

space RN x ... x RN endowed with the maz-norm [zl (gryi = max [z, where
1<A<) P

x:=(21,...,%;) € (RN)j.
Let (X, ||||V) be a general Banach space. Then the space Lj := L; ((RN)J ;X)

of all j-multilinear continuous maps g : (RN)j — X, 73=1,....,m, 1s a Banach
space with norm

lg @)ll,

— 46
Y R

lgll ==1llgll., == sup llg(@)ll, = sup

Hz\l(w)j =1

Let M be a non-empty convex and compact subset of RY and xo € M is
fized.

Let O be an open subset of RN : M C O. Let f: O — X be a continuous
function, whose Fréchet derivatives (see [23]) f9) : O — L; = L, ((RN)j ;X)
exist and are continuous for 1 < j <m, m € N.

Call (z — zo) = (x — xg, ..., & — x0) € (RN)j, zeM.

11
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We will work with f|pr.
Then, by Taylor’s formula ([16]), ([23], p. 124), we get

f (m) = i f(J) (x0)3(|x - xO)J + R, (117,1‘0) , all x € M, (47)
Jj=0 ’

where the remainder is the Riemann integral

Ry (z,20) := /01 % (f(m) (zo + u(x — x0)) — (:EO)) (x — 20)" du,

(m—1)! )
here we set fO) (z0) (x — 20)° = f (x0) .
We consider
wimwy (fR) = sup £ (@) - £ (), (49)
T, yeM:
le—yll, <h
h > 0.
We obtain
H (f(m) (o +u (2 —z0)) — £ (960)) (= — HCO)mH <
gl
£ (o + (@ = 20)) = £ (o) - & = wolly’ <
m [wlz =0l
wlke = aally | “F5 7 . (50
by Lemma 7.1.1, [1], p. 208, where [-] is the ceiling.
Therefore for all x € M (see [1], pp. 121-122):
"ulle —2ol,] (1—w)™ "
< o m p
R e e e
=, (|2 = ao]],) (51)
by a change of variable, where
sy (=5 NS L \m

is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

" ™ hpm!
<t ey e
q)m(t)_<(m+1)!h+2m!+8(m—1)! , VEER, (53)

12
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with equality true only att = 0.
Therefore it holds

(B oz < w [0l el Rl -l TN
m AT H0]lly = (m+1)lh 2m! g(m—1)! |’ '
(54)
We have found that
9 () (w — o)
HOEDY . <
7=0 I
¥
m—+1 m m—1
- - hllz — o
o) (Il o=l PN
“1 (f ’ ( meDh T 2w T 8m—1) o0, (55)
Y x,x9 € M.
Here 0 < wy (f(m),h) < 00, by M being compact and f™ being continuous
on M.
One can rewrite (55) as follows:
Y9 (wo) (- = wo)
FO=> : <
=0 I
.
m+1 m m—1
- A
O A NV
“1 (f ’ ( m+ O T 2ml  8mo1p ) e (56)

a pointwise functional inequality on M.
Here (- — z0)” maps M into (]RN)J and it is continuous, also fU) (xo) maps
(]RN)] into X and it is continuous. Hence their composition fU (z) (- — xq)’

18 continuous from M into X.

Clearly f ()=3"7% W € C(M,X), hence Hf () =20 W €
C(M). K
Let {ZN}NeN be a sequence of positive linear operators mapping C (M) into
C(M).

Therefore we obtain

v

Iy Hf(~) N e N OE
i=0 '

o (o) | B =) 0 (B (120l e

(m+1)h 2m]!

13
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+h( N (I =aolly ™)) (o)

8(m —1)! ’

VNeN,Vzxye M.

Clearly (57) is valid when M = ]J—VI [a;,b;] and L, = A,,, see (26).

All the above is preparation fo;ritlhe following theorem, where we assume
Fréchet differentiability of functions.

This will be a direct application of Theorem 10.2, [11], pp. 268-270. The
operators A, A, fulfill its assumptions, see (25), (26), (28), (29) and (30).

We present the following high order approximation results.

N
Theorem 10 Let O open subset of (RN, ||-||p), p € [1, 0], such that [] [ai,b;] C
i=1

O C RV, and let (X7 ||H7) be a general Banach space. Let m € N and f €

C™(0,X), the space of m-times continuously Fréchet differentiable functions

from O into X. We study the approzimation of f| . Let zg € (H [a;, l])
T [ai;bi]

andr > 0. Then
1)

(A0 () (20) = 30 (40 (79 @0) 207 ) ()| <
7=0

1 (f(m),r (( n (|| ;n!0||m+ )) ($0)>ml+l> ((~ (” e ”mﬂ)) (wo)>(m’il)

S|

1 r - mr?
-+ — 58
[(m+1)+2+ 8}’ (58)
2) additionally if f9) (zg) =0, j = 1,...,T, we have

1(An () (z0) = f (o)l <
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rm/!

and
4)
H”A" —fll Hoo H[a“b =
S8RV 1
| (M(% (st )l ])
rm)!
(.- o|m+l>><xo>H;f;2ﬁM o
1 mr?
{(m +1) +3 2" 8}
We need
~ N
Lemma 11 The function (An (|| - x0||;n>) (zo0) is continuous in xy € (H [a;, Z])
m € N. =
Proof. By Lemma 10.3, [11], p. 272. =
We give
Corollary 12 (to Theorem 10, case of m = 1) Then
1)
(A () o) = (@)l < || (4n (/O o) (- = 20))) (o) +
e (0 (5 (=) 0)") (B (=) ) 0
[1 +r+ Cﬂ
and
15
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2)
i () - 71 Hw i e
o (el |
o [ 10| (Ea (-2l @ s
H(Zn (H' - xolli)) (zo) :zoeﬁ[wi] [1 tr+ ?ﬂ ) (63)
r > 0. h
‘We make

Remark 13 We estimate 0 < o < 1, myn € N:nl=® > 2,

~ Lnbj H oH Z (nxo — k) (22)
Ao (I = ol () — Zh=ined . <
( e8] ) Z}E anaJ (’n,l'() _ k’)

N [nb] L m+1
(4.824)" H ~ — 0 Z (nxo — k) = (64)
k=[na] S
nb m
(4.824) LZJ Hk — 0 - Z (nxo — k) +
k= [na] ! =
{: 15 = woll < 5
[nd] m+1 ;
Z HS — I Z (nxg — k) (2<3)
k = [na] OO
{ [

1 2% ||b — af ™ } (65)

N
(4.824) {na<m E e

(where b—a = (by — a1,....,by —an)).

16
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N
We have proved that (V xo € [] [ai, bi])
i=1

~ 1 2¢2 b — a| ™t
L m-+1 N 00 _.
A (I = 2ol ) (o) < (4.829) {na(mHﬁ s o1 (n)
(66)

O<a<l,mneN:nl~>2)
And, consequently it holds

[ CEESIED] <

N
00,20€ [] [ai,bi]
i=1

N 1 2¢2[|b — a7
(4.824) {na(m+1) + p— =¢,(n) —0, asn— 4oo. (67)

So, we have that ¢, (n) — 0, as n — +oo. Thus, when p € [1,00], from
Theorem 10 we have the convergence to zero in the right hand sides of parts (1),
(2). ) |
Next we estimate H (An (f(j) (o) (- — :r())j>) (xo)H
We have that

Y

S F0) (2o) (5 = wo)’ Z (nao — k)

;{n ) L j _ k=[na]
(40 (79 @0) (- = 20)’) ) (a0) ST
(68)
When p =00, j =1,...,m, we obtain
19 o) (=20 )' | <59 @£ - (69
v
We further have that
(3. (2 - ) o, &
[nb] ‘ k J
s | 55 1060 (£-a0) | Zan-0) <
k=[na] " ol
N [nb) , k J
s | Y Hf(” (wo)H Hn — x OOZ(mJO k)| = (70)

k=[na]

|nb] j

(4.824)N Hf(j) (xO)H 3 Hz —xo|| Z(nwo—k) | =
=Tna] s
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J
Z (nxg — k)

Lnb]

+ Z Hs—xo
Lty )

1
— ol , > 7=

J (23)
<

Z (nxg — k) (71)

1 282b—al’,

(4.824) HfU) (mo)H {W n } 0, asn — oo,

7('6”170‘

That is B |
H (An (f(j) (zo) (- — xo)3>) (mO)H'y — 0, as n — o0.

Therefore when p = oo, for j =1,...,m, we have proved:

| (4 (59 @0) (= 20)') ) (@0)| <

Y

(4.824) Hf(j) (xO)H {nlaj + M’O} < (72)

ﬂ_enl—a

; 1 2¢|b—al’

7T€n17a

and converges to ZETO, as n — Q.

We conclude:

In Theorem 10, the right hand sides of (60) and (61) converge to zero as
n — oo, for any p € [1, c0].

Also in Corollary 12, the right hand sides of (62) and (63) converge to zero
as m — oo, for any p € [1,00].

Conclusion 14 We have proved that the left hand sides of (58), (59), (60),
(61) and (62), (638) converge to zero as n — oo, for p € [1,00]. Consequently
Ay, — I (unit operator) pointwise and uniformly, as n — oo, where p € [1,00].
In the presence of initial conditions we achieve a higher speed of convergence,
see (59). Higher speed of convergence happens also to the left hand side of (58).

We further give
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Corollary 15 (to Theorem 10) Let O open subset of (RN, ||||..), such that
N
H [ai,b;] € O CRY, and let (X [ ) be a general Banach space. Let m € N

and f e C™(0,X), the space of m-times continuously Fréchet differentiable
functions from O into X. We study the approzimation of f| . Let xp €

I1 [ai,bs]

i=

[T [ai, bs]
i=1
neEN:nl"@>2 0<a<l,j=1,..,m. Then

1)

N
( ) and r > 0. Here p; (n) as in (67) and py; (n) as in (72), where

(4 (1)) <x0>—§jj( (£9 (o) (- = m0)’) ) (w0)| <
7=0

wi (0,7 (1 (m) 757

rm!
2) additionally, if f9) (z9) =0, j =1,...,
1(An () (z0) = f (o)l <

) F) |  E a)

m, we have

w ("”),r n T m r o omr?
1 (f T(T:!I( ) ) (¢, (n))(erl) [(mi 0 + 3 + 3 ] , (74)
3)
i 0= | 01 % Z el
L (07 (o) (n ml“ m
v Tfjf! ) (1 (m)(57) (73)
{(m:—l)_kg_kmgw =:pz(n) — 0, as n — oo.

We continue with

Theorem 16 Let f € Cp (RN,X), 0<pB <1, zeRN mN,neN wih
n' =8 > 2, wy is for p=o0. Then

1
IIBn(f,x)—f(w)IIVSwl(f,nlﬂ>+4€7‘r’e”,i”BH Aa(n),  (76)

2
182 (= 11| < 2= (). (1)
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Given that f € (Cu (RN, X)NCp (RN, X)), we obtain lim B, (f) = f, uni-

Fformly. e
Proof. We have that
Bo(f,2) kﬁlf( )2 nm—m—f@ﬁilme—M=(m)
kf;(f(ﬁ)f@QZﬁmky
Hence
1B, ( )—fmmv_k§;Mf(z>—f®)Wme—@=
> ‘V(ﬁ)—f@)wzmw—m+
Nl
{ 15 -2l <75
> W(S) 1@ zma-w <
(TR V
a(rm)ezinf, X zee-n'?
k=—00
%~ I|| > 2

proving the claim. m
We give

Theorem 17 Let f € Cp (RN,X), 0<pB <1, zeRYN mN,necN wih
n'=P > 2, wy is for p=oo. Then

1)
Loy e
G (f.0) = £ @), Seon (£ 5+ 25 )+ — Ll = dat). (60
2)
liCa =11, _ =26 ). (81)
Given that f € (CU (RN,X) NCp (]RN,X)) , we obtain WILH;OC’n (f) = f, uni-
formly. /
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Proof. We notice that

ko+1
n

k+1 kny+1
n

LTf(t)dt

k141
n

k1 ko kN
n n n

1
/ / / (t1+ tg-i—k ,tN-i-kN) dtl...dt]\]:/’f(t—f'k) dt.
n 0 n

Thus it holds (by (38))

f (tla t27 ceey tN

)dtydts...dty =

(82)

Cy (f,m)zkioo (nzv/oif<t+z> dt)Z(nm_k). (83)
We observe that
1Cn (f;2) = f (@), =
ki:w(nNAif(HS)dt)Zm_ k_zoof (nz — )7:
S r(er ) s o] -
k_ioo (mv/oi (f (H—fb) —f( )) dt)Z(m:—k) Wg (84)
k_ioo (mv/oi f(t—l—i)—f(x) 7dt)Z(m:—k):
i (nw/oi ’f(t—i—];)—f(x) dt)Z(na:—k)+
(s S % ”
i (nN/Oi ‘f<t+z>f(x)7dt)Z(nsck)g
T
> (nN/ (f,||t| H’“— w) dt>z<m_k>+
U s
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21, > Z(me—k)| <
k= —0o0
15 =2l > 5
12|71,
1 1 | oo
w1 <f7n+nﬁ>+7re”15’ (85)

proving the claim. m
We also present

Theorem 18 Let f € Cp (IR{N,X), 0<pB <1, zeRN mN,necN wih
n'=P > 2, wy is for p=oco. Then

1)
Loy e
IDu () = @l e (124 L) 4 — = =) 59
2)
[1Dw (5= 11| < 2. (87)
Given that [ € (CU (RN7X) NCg (RN,X)) , we obtain 7}LII;ODH (H=1
uniformly.

Proof. Similar to the proof of Theorem 17, as such is omitted. m
We make

Definition 19 Let f € Cp (RY,X), N € N, where (X, ””w) is a Banach
space. We define the general neural network operator

Fo(fx)= > Lu(f)Z(nz—k)=

k=—o00
Cp (f7x)7 Zflnk(f):an%n f(t)dt’ (88)

Clearly l,,i (f) is an X-valued bounded linear functional such that ||l (f)]., <

4 S
i, -
Hence F, (f) is a bounded linear operator with HHF" (f)”’YHoo < H”f”'YHoo
We need
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Theorem 20 Let f € Cp (RN7X), N > 1. Then F, (f) € Cp (RN,X).

Proof. Lengthy and similar to the proof of Theorem 21 of [14], as such is
omitted. m

Remark 21 By (25) it is obvious that

14, (1),
A, (f)eC ]JX[ [ai, bi], X |, given that f € C _ [a;, b;] ,X)

1=1 =1
Call L,, any of the operators A,, By, Cy, D,,.

Clearly then

< [lis)| < o< and

o0

2

2 —
lz2 DI = [0z @0l < [1maon]|_ < Jisn) . @9)
etc.
Therefore we get
s ol | < s veen, (90)
the contraction property.
Also we see that
Jizs @l < e o s o< e o] < i - on
Here Lk are bounded linear operators.
Notation 22 Here N € N, 0 < 8 < 1. Denote by
(4.820)N | if L, = Ay,
= 2
N {L Zan:B'anaDna (9 )
1 .
L nB Zan = An; Bny
A {,{ L if Ly = Cy. Dy, 93
N
C aiabi ,X ’ g Ln:An;
Q:= (il;ll[ ] > / (94)
Cg ( N,X) ’ Zan = B7L>Cn7Dna
and
N .
Y = il;ll [aiy bi], if Ly = An, (95)
N

’ Zan = BnacnaDn-

We give the condensed
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Theorem 23 Let f € Q,0< <1, z€Y;n, m N €N withn'=? >2. Then

(1)
42 | I1£11,|
[Ln (f,2) = f ()|, < en |wi (f,0(n)) + ngoo =:7(n), (96)
where wy 1s for p = oo,
and
(ii)
J1zn () = f1L|_ < 7(0) =0, asn— 0. (97)

For f uniformly continuous and in  we obtain

lim L, (f) = f,

n—oo

pointwise and uniformly.

Proof. By Theorems 8, 16, 17, 18. =
Next we talk about iterated neural network approximation (see also [9]).
We give

Theorem 24 All here as in Theorem 23 and r € N, 7(n) as in (96). Then

lizns =11, < 7. (98)

So that the speed of convergence to the unit operator of L) is not worse than of
L,.

Proof. As similar to [14] is omitted. m
We also present

Theorem 25 Let f € Q; m, N, my,ms,....mr EN:m; <ms <..<m,,0<
g <1 m}fﬁ >2,i=1,.,m,x €Y, and let (Lyy,..., Lm,.) as (Amyyery Am,.)
or (Bmys -y Bm,) or (Cinyy oty Crn) 07 (Dipnyy ooy D), p = 00. Then

[ Lo (Lin,—y (oL (L, ) (2) = f ()], <

v =

oo

H||Lm7‘ (L (o-Lomy (Lo, 1)) — £,
<

S [1wr = 11,
=1

12|71,
,
7,500 <

1
mei

en Y fwr (frp (ma)) +
i=1
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ae? | |
+——=.

=
me™

ren |wi (f, ¢ (ma)) (99)

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated operator is not worse than the speed of Ly, .

Proof. As similar to [14] is omitted. m
We also give

Theorem 26 Let all as in Corollary 15, and r € N. Here o5 (n) is as in (75).
Then

4ns = sL)| < v f1ans = 71| < res o). (100)
Proof. As similar to [14] is omitted. m

Application 27 A typical application of all of our results is when (X, “”v) =

(C,|]), where C are the complex numbers.
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