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Abstract

Here we examine the multivariate quantitative approximations of Ba-
nach space valued continuous multivariate functions on a box or RV,
N € N, by the multivariate normalized, quasi-interpolation, Kantorovich
type and quadrature type neural network operators. We research also the
case of approximation by iterated operators of the last four types, that
is multi hidden layer approximations. These approximations are achieved
by establishing multidimensional Jackson type inequalities involving the
multivariate modulus of continuity of the engaged function or its high or-
der Fréchet derivatives. Our multivariate operators are defined by using a
multidimensional density function induced by a parametrized hyperbolic
tangent sigmoid function. The approximations are pointwise, uniform
and L,. The related feed-forward neural networks are with one or multi
hidden layers.
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L, approximations.

1 Introduction

G.A. Anastassiou in [2] and [3], see chapters 2-5, was the first to establish neu-
ral network approximations to continuous functions with rates by very specif-
ically defined neural network operators of Cardaliaguet-Euvrard and ”Squash-
ing” types, by employing the modulus of continuity of the engaged function or
its high order derivative, and producing very tight Jackson type inequalities.
He treats there both the univariate and multivariate cases. The defining these
operators ”bell-shaped” and ”squashing” functions are assumed to be of com-
pact support. Also in [3] he gives the Nth order asymptotic expansion for the
error of weak approximation of these two operators to a special natural class of
smooth functions, see chapters 4-5 there.

Motivations for this work are the article [22] of Z. Chen and F. Cao, and
[4)-[19], [23], [24].

Here we perform a parametrized hyperbolic tangent sigmoid function based
neural network multivariate approximation to continuous functions over boxes or
over the whole RN, N € N, and also iterated, multi layer and L, approximations.
All convergences here are with rates expressed via the multivariate modulus of
continuity of the involved function or its high order Fréchet derivative and given
by very tight multidimensional Jackson type inequalities.

We come up with the "right” precisely defined multivariate normalized,
quasi-interpolation neural network operators related to boxes or RV, as well
as Kantorovich type and quadrature type related operators on RY. Our boxes
are not necessarily symmetric to the origin. In preparation to prove our results
we establish important properties of the basic multivariate density function in-
duced by a parametrized hyperbolic tangent sigmoid function.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

Nn(x):cha(<aj-x>+bj), reR’, seN,
=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and z,
and o is the activation function of the network. In many fundamental neural
network models, the activation function is based on the hyperbolic tangent
sigmoid function. About neural networks read [25]-[27].
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2 Background

We consider here the generalized hyperbolic tangent function tanh Az, x € R,

A>0: \ \
eAT _ g AT

It is tanh A0 = 0,—1 < tanh Az < 1,V & € R, and tanh A (—z) = — tanh \z.
Furthermore we have tanh A (c0) = 1 and tanh A (—o0) = —1, and tanh Az is
strictly increasing on R, with

d A

—tanh Ao = —— > 0. 2

dz AT o ~ @)

The induced activation function will be

0 (z) = i (tanh A (x +1) —tanh A (z — 1)) > 0,Vz € R, (3)

with 6 (z) =60 (—x).
Clearly 0 () is differentiable and thus it is continuous.

Proposition 1 0 (x) is strictly decrasing on (0,00) and strictly increasing on
(—00,0]. We have that 8 (—o0) = 0 (c0) = 0. So that 0 has the bell shape with
horizontal asymptote the x-axis. The maximum of 0 is

tanh A

0(0) = 22 ()
We mention
Theorem 2 (/20]) It holds
Y O@-i)=1, VzeR (5)
Theorem 3 (/20]) We have that
/ 0(z)dz = 1. (6)

So that 0 is a density function on R.

Theorem 4 (/20]) Let 0 < o < 1, A > 0 and n € N. It holds

o0

Z 0 (nx —k) < ethe=2wn (" (7)

k= —o00
tnx — k| > ntme
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Denote by |-] the integral part of the number and by [-] the ceiling of the
number.

Theorem 5 (/20]) Let « € [a,b] C R and n € N, so that [na] < |nb|. Then

1 4 1 n
Lnb) tanh2)\ 0 (1)
>, O(nx—k)
k=[na]
We make
Remark 6 (/20])
(i) We have that
Lnb]
nl;r{:o k; ] 0 (nx —k) #1, 9)

for at least some x € [a,b].

(ii) Let [a,b] C R. For large n we always have [na] < |nb]. Also a < % <,
iff [na] <k < |nb|.

In general it holds

[nb]
Z 0 (nx—k) <1. (10)
k=[na]
We introduce
N
Z (21, ..,xn) = Z (x) := H0 (z;), == (x1,...,x5) ERNY, NeN. (11)
i=1

It has the properties:
(i) Z(x) >0, VzeRY,
(i)

Yo Z@-ky= > Y . > Z@—ky..ay—ky)=1, (12)
k=—o0 ki1=—00 ko=—00 kn=—o0
where k := (k1,....,k,) € ZN, ¥V 2 € RV,
hence

(iii)

o0

Z Z(nzx —k) =1, (13)

k=—o00

VzeRN:neN,
and
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(iv)
/ Z (x)dr =1, (14)
RN
that is Z is a multivariate density function.
Here denote ||z||_ := max {|z1], ..., |zn|}, 2 € RV, also set 0o := (00, ..., 0),
—00 := (—00, ..., —00) upon the multivariate context, and

[na] := ([na1], ..., [nan]),
(15)
[nb| := (|nb1], ..., |Inbn]),

where a := (ay, ...,an), b := (b1, ...,bn) .
We obviously see that

[nb] [nb] N
Z Z (nx — k) = Z <H0(nml —ki)> =

k=[na] k=[na] \i=1

|nby | [nbn ) N N [nb;]
i=1

ki=[na1] kn=[nan] i=1 \k;=[na;]
For 0 < < 1and n €N, a fixed 2 € RV, we have that

[nb]

Z Z (nx — k) =

k=[na]
[nb] [nb)]
Z Z (nz — k) + Z Z (nx —k). (17)
k = [na] = [na
15 - el < 75 15 - 2lle > 55

In the last two sums the counting is over disjoint vector sets of k’s, because the
condition || £ — z|| . > - implies that there exists at least one B2 — g, | > 5,
where r € {1,..., N}.

(v) As in, Theorem 4 we derive that

Lnt] (7 (1-8)
> Z(nx—k) <ePe 7 0<pB<1, A>0.  (18)
{ k = [na]
1% ==l > 77

withneN:n' % >2 x¢ Hf\;l [a;, b;] .
(vi) By Theorem 5 we get that

1 4 \"
1
U< Z,Erin 14 (nz — k) = (tanhZ/\) ’ ()
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A>0,Vae (ITY, o bi]), neN,
It is also clear that
(vii)
Z Z (nx—k) < erem 2 (20)

e

15 =2l > 75

A>0,0<pf<1,neN:n"8>2 2RV,
Furthermore it holds

[nb]
nh_}rrgo k; ] Z (nx — k) # 1, (21)

for at least some z € (Hf\il [a;, bz]) .

Here (X, ||||7) is a Banach space.

Let f € C(Hg\;l [ai,bi],X) , ¢ = (x1,...,xN) € Hf\]:l [ai,b;], n € N such
that [na;] < [nb;|,i=1,...,N.

We introduce and define the following multivariate linear normalized neural
network operator (x := (z1,...,xN) € (Hfil [ai,bi])):

Sk f (£) Z (e — k)
An (faxla“wa) = A’ﬂ (f’x) = : l—Lnl;IJ -
Zk [na] (na: - k)
nb nb nb N
Z[Lﬁ_ﬂnal] Z]|;2:2Hna2-‘ ZILcN N[JnaN] (%, s kTN) (Hi:l 0 (nx; — kz)) (22)
nb; '
Hi]\il ( IEi:]'Jnaﬂ 0 <nxl a kl))
<

For large enough n € N we always obtain [na;]
a; < % < by, iff [na;] < ki < [nbi),i=1,..,N.

When geC (]—L 1 lai, bl]) we define the companion operator

A (g.0) s St 9 )Z(m—k)
k= Ma]

(23)

Clearly ﬁn is a positive linear operator. We have that

Avn (1,(1’,‘) =1, Vz e <H [ai,bi}> .

i=1

Notice that A, (f) € C (Hz . laz, b ,X) and A, (¢) € C (Ht ) [az,bi]) .
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Furthermore it holds

IE:nbemﬂ Hf( )H Z (nx — k) - (”f” ;l:)
n '\{7 K

[An (f, )l < " (24)
T b
Vel [ai b
N
Clearly ||, € C (T}, [as,bi)
So, we have that
1A (£,2)], < An (111, 2) (25)
Vo eI, fabl, ¥ n e N,V f e C (T, [as,bi, X)
Let ce X and ge C (Hi:l [ai7bi}) then cg € C (HZ 1 lai, bi ,X) .
Furthermore it holds
Ap (cg, ) = CAn 97 , Vo€ H a;,b 1 . (26)
Since A, (1) = 1, we get that
Ap(c)=¢, VceX. (27)

We call /Nl,,, the companion operator of A,,.
For convenience we call

Lnb]

A (f, @) Zf() (nz — k) =

k=[na

lnbi]  |nb] Lnbx |

)DEED DRI f(];lk;:) <ﬂ9(nxiki)>, (28)

ki=[na1] ka=[naz] kn=[nan|

Vae (Hﬁil [ai,bi]).

That is N (f x) _ A (f, ) (29)
D ,E"”Hm (nz — k)
Ve (Hl 1[a1,b]) neN
Hence
A5 (f2) = f(2) (S 0 Z (na — k)
A (fr) = f (@) = WJ( = ) (30)

2 h—ina) £ (nz — k)
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Consequently we derive

1 N [nb]|
Imﬂﬁm—fﬁﬂhg?<m£ﬁA) A (fa)—f@) S Ze—k)| .

k=[na]

(31)
vare (I lasbi])

We will estimate the right hand side of (31).
For the last and others we need

Definition 7 ([15], p. 274) Let M be a convex and compact subset of (RN, H||p),
p € [1,00], and (X, H||,y) be a Banach space. Let f € C(M,X). We define the

first modulus of continuity of f as
wi(f,0):== sup  |f (@)= fWIl,, 0<d<diam (M). (32)
z,y € M:
o —yll, <6

If 6 > diam (M), then
w1 (f,0) = wq (f, diam (M)) . (33)

Notice w; (f, ) is increasing in § > 0. For f € Cp (M, X) (continuous and
bounded functions) wy (f,d) is defined similarly.

Lemma 8 ([15], p. 27/) We have w1 (f,0) = 0 asd L O, iff f € C(M,X),

where M is a convex compact subset of (RNu ||‘||p), p € [1,00].

Clearly we have also: f € Cypy (RN , X ) (uniformly continuous functions),
iff wy(f,0) — 0 as § | 0, where w; is defined similarly to (32). The space
Cp (RN , X ) denotes the continuous and bounded functions on RY.

When f € Cp (RY, X) we define,

B, (f,x) == B, (f,x1, ..., an) = i f (5) Z (nx — k) ==

k=—o0

- G G ki ko kn al
f(,,...7) < 0 nmi—ki > s 34
kl;w kzgw kN;OO e 1;[1 ( ) (34)
n €N,V azeRY, N €N, the multivariate quasi-interpolation neural network
operator.

Also for f € Cp (RY, X) we define the multivariate Kantorovich type neural
network operator

Chn (fyx):=Ch(f, 21, .., zN) i= Z <nN/ ! f(t)dt)Z(nx—k‘):

k
k=—o00

n
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k

00 . . < ky41 ko41 ky+1
klzfoo k‘g:*OO k‘N:—OO

. f(tl,...,tN) dtl...dtN>
k1 ko kN

. (H 0 (nx; — ki)> , (35)

i=1
neN, VaeRN,
Again for f € Cp (RN , X ) , N € N, we define the multivariate neural net-
work operator of quadrature type D, (f,z), n € N, as follows.

Let 0 = (01,...,0n) € NV r = (ry,...,rn) € Zf, Wy = Wy, py,..ry > 0, such
[4 01 02 on
that > w,= Y > . > Wy g en =1; k€ ZY and
r=0

r1:O'r‘2:O ’I"NZO

’ k r
Ok () := On ks koo ke (f) = Zw,.f (n + n9> —
r=0

01 22} On

kq r1 ko T9 kn N
R — y—  —— s , 36
ZZ Zwrl’z""Nf(n_FnGl n+n€2 n +n9N> (36)
T1:0’I‘2:O ’I‘NZO
where 7 := %, g—z,..., %) .
We set
Dy (f,2) = Dy (fi1, . 2n) = 3 Ok (f) Z (nx — k) = (37)
k=—o0

. = e N
Z Z Z Onkr ko yoskery () (He(m;i _ ki)> 7
i=1

ki=—00 kg=—0c0 kny=—00
vV eRY.
In this article we study the approximation properties of A,, B,,C,, D,

neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.

3 Multivariate Parametrized Hyperbolic Tangent
Induced Banach Space Valued Network Ap-
proximations

Here we present several vectorial neural network approximations to Banach

space valued functions given with rates.
We give
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Theorem 9 Let f € C (Hfil [ai, b;) ,X) ,0< <1, A>0,z € (Hfil [ai,bl-]) ,N,n €
N with n'=# > 2. Then

1)
A s [y, 2 s
40 )= £ < (mmigr) [ (F28) + ot = a0,
(38)
and
2)
140 (1) = 711, <) (39)
We notice that lim A, (f) ”iﬁ f, pointwise and uniformly.
n—oo
Above wy is with respect to p = oo and the speed of convergence is max (ﬁ, ﬁ) =
L.
Proof. We observe that
[nb]
Aw)i= AL (o) = (&) Y. Z(na—k) =
k=[na]
[nd] i [nb]
Z f<n>Z(nx—k)— Z fx)Z(nx—k)=
k=[na] k=[na]
[nb] I
> (1(&)-r@)z0w-n, (40)
k=[na]
Thus
[nb] &
2@l < 3 |r(5)-r@]| zoa-n-
k=[na] v
[nb] k
> G)-r@| zme-n+
k = [na] K
15 -2l <7
[nb| k (13)
> |r(E)-rw) zwe-n'<
n 2
— [nal
1% -2l > 75

10
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1 Lnb) (18)
a(p)eein, X 2o
k = [na]
1% ==l > 55
1 4x ,—22n (=9
wi (fo=g ) +2[Ir1L]|_ e L0<B<LA>0.  (41)
So that
N
[A @), <w (f, n3> t e (42)

Now using (31) we finish the proof. m
We make

Remark 10 ([15], pp. 263-266) Let (RN, H||p), N € N; where ||-[|,, is the Ly-

norm, 1 < p < oo. RN is a Banach space, and (]RN)J denotes the j-fold product
space RN x ... xRN endowed with the maz-norm %]l (gwys = max ||z, where
1<p<j p

z:=(x1,..,z) € (RN)j )
Let (X, ”Hv) be a general Banach space. Then the space V; :=V; ((RN)J ;X)

of all j-multilinear continuous maps g : (RN)j — X, 7=1,....,m, is a Banach
space with norm

lg (@)1,

_ 43
fal a4

lgll == llglly, == sup g (x)]l, = sup

ol vy =1

Let M be a non-empty convex and compact subset of RY and xo € M is
fized.

Let O be an open subset of RN : M C O. Let f: O — X be a continuous
function, whose Fréchet derivatives (see [28]) f9) : O — V; =V ((RN)J ;X)
exist and are continuous for 1 < j <m, m € N.

Call (z — x0) = (x — 20, ..., w — 3) € (RN), z € M.

We will work with f|p.

Then, by Taylor’s formula ([21]), ([28], p. 124), we get

IO S (m)j('x “00) | Ry (wao), allze M, (4d)
j=0 '

where the remainder is the Riemann integral
1 m—1
1—u m
R, (x,20) := /0 ((m—)l)' (f(m) (20 + u(x — x0)) — fO (xo)) (z — x0)" du,
(45)

11
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here we set fO) (z0) (x — 20)° = f (x0) .
We consider

wimwn (F0) = sup £ @) - £ (), (46)
T,yeEM:
lz—yll,<h
h > 0.
We obtain
| (70 (o +u e = 20)) = 5 @0) (& —20)"| <
£ (o + (@ = w0)) = £ (o) |- llz = o} <
m [tz = aoll,
olle - ol [ . (47)
by Lemma 7.1.1, [1], p. 208, where [-] is the ceiling.
Therefore for all x € M (see [1], pp. 121-122):
[Tl = oll,] (1= )™
o (ool <l =zl [ |20 | Bt
= wy, ([l = ol ) (48)

by a change of variable, where

sy =o"" 1§
B (£) = 2l oo = tl—gh)y |, VteR, (49
() /0 M m—1 7w ;O(\I Jh); ER, (49)
is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

|t|7n+l |t‘m h|t|m_1
D, (1) < <(m+1)!h+2m!+8(m—1)! , VteR, (50)

with equality true only at t = 0.
Therefore it holds

+1 -1
|l — ol [z — ol hllw— ol

||Rm(x,xo)||y§w< CES gt Y- >, VaeM.
(51)

We have found that

" F9) (x0) (# — 20)
PN SELACOLEED P

—
/ v

12

501 George A. Anastassiou 490-519



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 4, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

w (f<m> h) o= xOHmH (Nl aoll,” Alle zolly <oo, (52)
! ’ (m+1)!h 2m! 8(m—1)! ’
Y x,x9 € M.
Here 0 < wy (f(m), h) < 00, by M being compact and f™) being continuous
on M.

One can rewrite (52) as follows:

™ £(5) c—x0)
_Zf (o) (= 20)"||
‘ J!
Y
- = zoll ™l — ol Rl — ol

w1 (f(m)’h) < (m+ 13)!/1 + 2m! + 8(m — 1p)! ) V@0 € M, (53)

a pointwise functjonal inequality on M.
Here (- — z0)” maps M into (]RN)J and it is continuous, also fU) (xo) maps

(]RN)j into X and it is continuous. Hence their composition f9 (z) (- — xq)’

is continuous from M into X.

Clearly § ()= 3] o228 € € (M, X), henee | () = g £ | e
C(M). K
Let {gN}NeN be a sequence of positive linear operators mapping C' (M) into
C(M).

Therefore we obtain

_ ) () (o — )

Y

or (5, 1) (5 (”‘f”m“))@w (x (1= woliy)) o)

(m+ Dk - 2l

(3 (I = ol ™)) (o)
(N(SUHOD!>) - 51)

VNeN,Vage M.

Clearly (54) is valid when M = H [a;,b;] and S, = A,,, sce (23).

All the above is preparation for the following theorem, where we assume
Fréchet differentiability of functions.

This will be a direct application of Theorem 10.2, [15], pp. 268-270. The
operators A, A, fulfill its assumptions, see (22), (23), (25), and (26).

We present the following high order approximation results.

13
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N
Theorem 11 Let O open subset of (RN7 ||'Hp), p € [1,00], such that [] [as,b;] C
i=1

O C RY, and let (X7 ||H7) be a general Banach space. Let m € N and f €
C™(0,X), the space of m-times continuously Fréchet differentiable functions

from O into X. We study the approximation of f| [ . Letxg € (H [ai, l])
ai,bi =1
and r > 0. Then 1
1)
1
(J) (z —x T <
(An 2_;]( w (19 @) (= 20)') ) (w0)|| <

~

o (10,0 (A (I = 2ol #)) (20)) ™ )
Sl <Tm! DT (i)

[(m1+1)+2+msﬂ (55)

2) additionally if f9) (z9) =0, j = 1,...,m, we have

1(An () (o) = f (zo)ll, <

sl G (GG il o)) (A (1= ol )) ) ™

w | f0r - = @olly ) ) (o)) T m
( (( ( — )) ) ((Zn (H B CCOHZL-H)) (xo))(mﬂ)

(57)

and

4)

[EYCO RIS (I Bl S

14
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+

N
Tlloo,zo€ [T [ai,bi]

=1

_ . T
(A" (” — ol +1)> (xo)Hoo zo€ I [aibi]
’ =1 o

rm)!
(wi1)

H (g” (”' - xo\l?“)) (xo)’ oo,woejlljl[ai,bi]

1 +f+mr2
(m+1) 2 8 |

‘We need

~ N
Lemma 12 The function (An (H — x0||;")> (20) is continuous in xg € (H [a;, Z]) ,
=1
m € N.

Proof. By Lemma 10.3, [15], p. 272.

Remark 13 By Remark 10.4 [15], p.273, we get that

H(/Tn (||~ — :coHﬁ)) (SEO)HW,MEﬁl[%bi] < H( (” . Hm+1)) (ffo)‘ i:i:e)iﬁl[ai’bi],
forallk=1,...m (59)
[

We give

Corollary 14 (to Theorem 11, case of m = 1) Then

1)
(A () o) = £ @)l < || (4w (/O o) (- = 20)) ) (o) +

g (70 (A (1= a0l2)) 00) ) (A (1= 0l2) ) (o)) 0

[NE
[SE

T2
1 J—
[ +r+ 4},
and
2)
I = fIL| xS
| b
15
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+
00,70 € H [ai,b;]

i=1

(e (7 ) = a0))) o]

1
2

1

o ()5 =)
27"‘*)1 | An ” 'TOHP (:l:g) oo,a:o»’:'l]_\][[ai,bi]
i=1
_ ) 3 r’
G () L R (R B
r > 0.
‘We make

Remark 15 We estimate 0 < o<1, A>0, m,n € N:nl=® > 2,

nb m—+1
e m—+1 - Zl&ana] HE - xOH Z(?”L:L'O - k) (19)
A (I =20l ) (o) = - <
Zk [na] (TLJSO - k)
4 N [nb] k m—+1
<tanh2)\) 2 ano _ 2=k = (62)

k=[na]

4 N [nb] k m+1
L Z (nao — k
(tanh 2/\) Z Hn o o (o — k) +
{ k= [na|
Ik
H - xo”oo - nl"‘
[nb] m4+1
k (20)
Z Hn—mo Z(nxog—k) p <
k = [na] >
HI% = ol > 2w
4 N 1 4N h— m—+1
+ e H 1cf|/|300 , (63)
tanh 2 po(m+1) e2A(nt=7)
(where b—a = (by — a1, ...,by —an)).
N
We have proved that (V xzo € ] [as,b:])
i=1
N 4\ m—+1
~ 4 1 e*M b —all S,
_ m+1 _.
An (” Zollse ) (o) < <tanh 2)\) {na<m+1> T ) +A1(n)
(64)
16
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O<a<l,mneN:nl=*>2 X>0).
And, consequently it holds

10 (I =zl ™) @o)]| <

00,z0€ [] [ai,bi]
i=1

4\ 1 e b —a| T
<tanh 2)\) {na(erl) + o2\ (n1-P) } =Ai(n) =0, asn — +oo.
(65)
So, we have that Ay (n) — 0, as n — 4oo. Thus, when p € [1,00], from
Theorem 11 we have the convergence to zero in the right hand sides of parts (1),

(2).

Next we estimate H (,Zn (f(j) (o) (- — Jco)j>> (»’UO)H
We have that

Y

ZWJJ f(] () (ﬁ — :co) Z (nxo — k)

Zn f(j) L j _ Zk=[na]
( ( (1‘0) ( SL‘O) )) (l‘o) Z;Eanna] (m:o - k?)
(66)
When p =00, j =1,...,m, we obtain
J J
f9 (zo) (fL - 550) < Hf(j) (zo)H Hfl — xg (67)
We further have that
H( (f(J) (o) (- — :vo)j)) (xO)HV (19)
4 N [nb] ‘ i j
<tanh 2)\> Z 9 (o) (n - x0> Z (nzo — k) | <
k=[na] ~
4 N |nb] 4 i j
(i) (£ poale-nf za-n) - o
k=[na] oo
[nb] k j
(tanhQA) Hfu o H HZW Hn —xo| Z(nwo—k)| =
N [nd] j
(tani 2)\> Hf(j) (xo)H Z Hfl —xo|| Z(nwo—k)
{ k = [na] o
HI% = ol < 5
17
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[nb]

k 7 (20)
+ Z o %o OOZ(nxofk) < (69)
{ k = [na]

R
N 4 i

1 - L, eMlb—al

(€) Lo emb—ali,
(tanh2)\> Hf (xO)H {naj + o2\ (1 P) — 0, as n = oo.

That is -
H (Zln (fo‘) (zo) (- — wo)ﬂ)) (xO)Hw 0, as n — oo.

Therefore when p = oo, for j =1,...,m, we have proved:

(A (59 @0) (- =20) ) o) <

Y

N N j
A ' 1 Mol
@) — S E——_e S)
<tanh 2)\) Hf ’ <xO)H {naj + 62)\(”17;3) S

4\ 1, e b —al?
(tanh2>\) Hf(])(mo)Hoo{w*M =: Ag; (n) < oo, (70)

and CONveErges to Z€ero, as m — OQ.

We conclude:

In Theorem 11, the right hand sides of (57) and (58) converge to zero as
n — oo, for any p € [1, o0].

Also in Corollary 14, the right hand sides of (60) and (61) converge to zero
as n — oo, for any p € [1,00].

Conclusion 16 We have proved that the left hand sides of (55), (56), (57),
(58) and (60), (61) converge to zero as n — oo, for p € [1,00]. Consequently
A, — I (unit operator) pointwise and uniformly, as n — oo, where p € [1,00].
In the presence of initial conditions we achieve a higher speed of convergence,
see (56). Higher speed of convergence happens also to the left hand side of (55).

We further give

Corollary 17 (to Theorem 11) Let O open subset of (RN ,||-||.), such that

N
IT [ai, b)) € O CRYN, and let (X, H||7) be a general Banach space. Let m € N

i=1
and f € C™(0,X), the space of m-times continuously Fréchet differentiable
functions from O into X. We study the approzimation of f| . Let 2y €

[ai; i

i=

18
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N
(H [ai,bi]) and r > 0. Here Ay (n) as in (65) and Agj (n) as in (70), where

nlele T >2 0<a<1,A>0,j=1,..,m. Then
1)
m 1 J ;
(A, ZOJ( w (S (@0) (- = 20)?) ) (@0)|| <
w1 (f(m)ﬂ“(/\l (n))m’lﬂ) m 1 r mr?
rm) (A (n)>(m+1) [(m—F 1) * 2 + 8 ] ’ (1)
2) additionally, if f9) (x0) =0, j = 1,...,m, we have
[(Ar (f)) (o) — f (o)l <
w1 (f(m)»T(Al (n))%) o 1 r mr?
rm)! (A (n))(m+1) [(m—i— 1) * 2 + 8 ] ’ (72)
3)
14wy =11 _ SZAQJ,( i
a7, il = J]:
wr (7 (A <n>>m*+1 .
( o ) (A () (757)
1 r mr?
{(m_i_l)+2+8}::A3(n)—>0,asn—>oo. (73)

‘We continue with

Theorem 18 Let f € Cp (RN,X),O<5 <1, A>0,z€ RN, N,necN with
n'=P > 2, wy is for p=oc. Then

1)
iy e |

1B () = £ @), <o (1) + ™ = (), (7
2)

1B (1) = 111, <2 m). (75)

Given that f € (CU (RN,X) NCp (RN,X)), we obtain Um B, (f) = f, uni-

n— oo
formly. The speed of convergence above is max (n%, m) = n%j

19
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Proof. We have that

B, (f.1) Ejaf(:) Za— 1) F@) S Zina—F) = (76)
f=—oo p3y
k?%f?(i)fWOZOka

Hence
1B, (f,) - y—kZOOHf( ) s 2=
i Hf(z>_f(m)72(m:_k)+
b e
i Hf <:) — f(x)|| Z(nx—k) (1§3)

k= —o0o Y
h!—ﬂ > 5

o (1) +2 > zZie-n %

= -0
1
B

1y 2e |
w1 <f, nf3> + o) (77)

1% = ll. >

proving the claim. m
We give

Theorem 19 Let f € Cp (]RN,X),O <p<l,zeRY, A>0N,ncN with
n'=P > 2, wy is for p=oo. Then

1)
by 2 i
G o) = F @, <o (1.5 + nﬁ) b= = %), (1)
2)
1€ (=11, < 2. (79)
Given that f € (C’U (]RN,X) NCg (RN,X)) , we obtain nILH;oC” (f) = f, uni-
formly.
20

509 George A. Anastassiou 490-519



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 4, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Proof. We notice that

k141
n

LL Lot

Thus it holds (by (35))

oo

>

k=—oc0

Cn (f,x) =

We observe that

()

1Cn (f, ) = £ (@)

oo

P

1
n

)9

ko+1

kn+1
n

f (t17t27 ;tN

)dtydts...dty =

En
n

1

o tN + ]ZV) dty..dty = /0W f (t—|— D(gaét).
(nN/Oif<t+7]z> dt)Z(nx—k). (81)

Z f(x)Z (nx—k)

=—00

Z (nx —k) —
k

i (mv/oi f(t—l—z)—f(x) dt)Z(na:—k)+
k= —o0 g
{Hfb—meSJﬂ
i (mv/oi f(tJrfL)f(x) dt)Z(nxk)g
k= —00 y
{||§—ff||oo>n1ﬁ
i (nN/O <f7||t|| Hk—xoo)dt>2(nx—k)+
k=—00
{||Z—1‘||oo§nlﬁ
21
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2(|usi | S Z(ne—k) | <
k=—o00
15 =2l > 5
2¢ 111
1 1 v
w1 (f’n—i_?ﬁ) + W7 (83)

proving the claim. m
We also present

Theorem 20 Let f € Cp (RN,X),O <p<l,zeRY, A>0N,ncN with
n'=P > 2, wy is for p=oo. Then

Y
by 2 s
Datra) - sl <o (124 L)+ o o, e
2)
[1Dw (5= 11, < ). (85)
Given that [ € (CU (RN7X) NCg (RN,X)) , we obtain T}er;oDn (=1
uniformly.

Proof. We have that (by (37))

1Dy (f,2) = > () Z (nw — k) Z [(@)Z(nx - k)| =
k=—00 k=—o0 ~
N - k r
Ok (f) = [ (@) Z (na — )| = o (F(E+ ) —f@)) 2o —n)|| <

Y Y

kz@<;% <+ne>_f(l’) 7>Z(m_k):
kioo (Zwr (+ne)f(x)’y>Z(nxk)+
{||’“—:c||oon1ﬁ

22
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[eS) 2
3 (Zwr f<+;9>—f(x) )Z(nm—k)<
k= —oo r=0 ¥
{||Z—w||oo>nlﬂ
[eS) 6 k
Z (Zw, f(n—&-;g)—f(x) )Z(nx—k)+
k= —00 r=0 Y
{Hi‘;—meSr}ﬁ
21, _ > (@me-k)|<
k= —o0
15 =2l > 2
264)\
wl(f,i+7;>+M°:Q4 n),

proving the claim. m

Next we perform multi layer neural network approximations.
We make

Definition 21 Let f € Cp (RY,X), N € N, where (X, ””'y) is a Banach
space. We define the general neural network operator

Fo(fox)i= Y b (f) Z(nz—k) =

k=—o00

B, (f>$>7 if Lk (f) f(%)kiu
Co (fi2), if bk (f) Jem f @) dt, (86)

N
Dn (f,2), if lnk (f) = 6ni (f)

Clearly l,,x (f) is an X-valued bounded linear functional such that ||l ()], <

5 =
s
Hence F), (f) is a bounded linear operator with HHFn (f)”’VHOO < HHf”'VHoo
We need

Theorem 22 Let f € Cp (RY, X), N > 1. Then F, (f) € Cp (RY,X).

Proof. Lengthy and similar to the proof of Theorem 11 of [18], as such is
omitted. m

23
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Remark 23 By (22) it is obvious that H||An (NI

A ec (1,

Call K,, any of the operators Ay, By, Cy, Dy,.
Clearly then

%2

etc.

<

A

o0

2

=1

DL = e ol | < [ o <

Therefore we get
lzs ol < i vrenw,

the contraction property.
Also we see that

i )

= ik

e (16

I
Here KF are bounded linear operators.

Notation 24 Here N € N, 0 < 8 < 1. Denote by

el

4 AN .
tanh2)\) » if Kn = An,

’ ZfKn = Bn7CTL7D7l7

A5, if K= Ay, B,
A ‘{}, L. if Ky =Cy, Dy,
N
T .= C(H[Ch,bi],X), szn:An;
- =1
C (R ), ZfKn:BnaCnaDna
and
N .
Y = H [ai7bi] ’ 7’f Kn - An;

RN7 Zf Kn = B’rucn)Dn-
We give the condensed

Theorem 25 Let f e, 0<8<1l,z2€Y;n, A>0;, N €

Then
(i)
22 1171,
HKn (ﬁl‘)—f(.%‘)”,y <en |wi (f,A(n) + o2 (n1=7) =

24

513

|fH7H < oo, and
o0

Z],X), given that f € C (H [a;, z],X)

s
(33)
< s
(90)
(91)
92)
(93)

N with n*=8 > 2.
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where wy is for p = oo,
and
(1)
HHK" —fll H <7(n)—0, as n — co. (95)

For f uniformly continuous and in T' we obtain

lim K, (f) = f,

n—oo

pointwise and uniformly.

Proof. By Theorems 9, 18, 19, 20. =
Next we do iterated, multi layer neural network approximation. (see also

[10]).
‘We make
Remark 26 Letr € N and K,, as above. We observe that
Knf—f=(Knf—K ')+ (K, f =K% f) +

(02 = K2 0) v (KRS = Kouf) 4+ (Knf = ).
Then

s =1, | < |z

o+

lecz2r =2 ||+ |20 = Kt )+ [150s = 11| =
szt (s = o)l | s = L || s = 21|+t

e (xr = 21|+ |1 = 11, <7
That is

s = s, < 1as = 11, (96)
We give

Theorem 27 All here as in Theorem 25 and r € N, 7(n) as in (94). Then

s =11, < rr - (97)

So that the speed of convergence to the unit operator of K is not worse than of
K,.

Proof. As similar to [18] is omitted. m

25
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Remark 28 Let mi,ma,....mr E N:m; <ms < ...<m,, 0< B <1,A>0,
feT. Then

A(my) > A(me) > ...

>A(m,), A asin (91).
Therefore

wi (f, A(ma)) = wr (f, A (m2)) = .. = w1 (f, A (mr)) -
Assume further that mgl_ﬁ) >2,9=1,...,r. Then

64)\ 64)\ €4>\

e2Am{ ™ T T T T (T
Let K,,, as above, i =1,...,r, all of the same kind. We write
Ko, (mel (oo Ky (Kmlf))) —f=

K, (K, s (Ko (Kinyp)) = Ky, (Ko, (Ko f)) +
Ko, (Kpyoy (Ko ) = Koy, (Ko, (Ko f)) +
Ko, (K, (o Knzf)) = Ky (Ko, (Ko ) + o
Ko, (Kmy  f) = K f + K f — [ =
Koy (K ) (o Bony)) (Kony f = ) + Koy (K y (- Kong)) (K f — f) +
K (Ko (o Kony)) (Kmsf — )+ oo+ Koy (Ko o f = f) + K, f — [

Hence by the triangle inequality of H”H'VH we get
o0

15, (Ko B B ) = 11 <

HHKm,,Km,,_fl...sz (Ko, f — f)HwHOO n
HHKm,,Km,,_fl...sz (Ko, f — f)HwHOO n
HHKm,,, (K, (o Fny)) (s f — f)HvHoo -

1o, (B £ = DI | o+ [ 185en, £ = 11| <

(repeatedly applying (87))

18, 7 = 1L+ [, 7 = 11,

o =]+

[ .5,

S TN S (TN e

26
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|-

That is, we proved

[15m, (Kom s B B ) = ]| < [IKomed = £1L]| - (98)

We also present

|1, f = £ | =i |1t = 11
Yoo 00 e}

Theorem 29 Let f € T'; m, N, my,ma,....m, € N:m; < mg < ... < m,,
0<B<1,A>0; mglfﬁ) >2,i=1,..,r, 2 €Y, and let (Kp,,..., Km,) as
(Amys ooy A, ) 07 (Bmyy ooy Bm,.) or (Conyyooey Cin) 07 (Dpnyy ooy D), p = 00
Then

| Ko, (K (- Kny (Ko f))) (2) = f(2)]], <

15, (Ko B (o ) =

> [1#mer = 11| <
i=1

e\
CNZ 1 (fy A (mg)) + 6H|£H5>H <

2¢2 |11, _

AP (99)

reny |wi (f, A (ma)) +

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated multi layer operator is not worse than the speed of K, .

Proof. As similar to [18] is omitted. m
We continue with

Theorem 30 Let all as in Corollary 17, and r € N. Here Az (n) is as in (73).
Then
14ss = 71| < vl|1ans = 71| < ras ). (100)

Proof. As similar to [18] is omitted. m
Next we present some L, , p1 > 1, approximation related results.

i=1
with n'=# > 2, and Qy (n) as in (38), wy is for p = oo.Then

i1, gy =0 (T000) "
’- 1 i=1

We notice that hm HHA f=1l H i ,bi] =0

Theorem 31 Letpy > 1, f € C(H [ai,bi]7X) ,0<B<1,A>0; NyneN

i=

27
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Proof. Obvious, by integrating (38), etc. ®
It follows

Theorem 32 Let py > 1, f € Cp (R, X),0< B <1,A>0; N,n € N with
n'=8 > 2, and wy is for p = oo; Qo (n) as in (74) and P a compact set of RY.
Then )

1B =11l < Qa)1Pr5r (102)

where |P| < oo, is the Lebesgue measure of P. We notice that lim H |Brf — £l H =
n—o0 Tip., P

0 for f € (Cu (RN, X)NCp (RY, X)) .

Proof. By integrating (74), etc. m
Next come

Theorem 33 All as in Theorem 32, but we use Q3 (n) of (78). Then

Jicus =11, <P (103)

We have that lim HHCnf - f||~,
n— o0

P:()forfe (CU (RN,X)QCB (RN,X)).
P1,

Proof. By (78). =

Theorem 34 All as in Theorem 32, but we use Q4 (n) of (84). Then
1
1Das =11, < Qum) (Pl (104)
p1, P
We have that lim H”D”f_ fHVH L =0forf e (Cu (RY,X)NCp (RY,X)).
n—oo P1,

Proof. By (84). m

Application 35 A typical application of all of our results is when (X, ””v) =

(C,|]), where C is the set of the complex numbers.
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