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ABSTRACT 
Alzheimer's Disease (AD) is a progressive neurodegenerative disease with a significant impact on 
healthcare. This study suggests a machine learning (ML)-based Explainable Artificial Intelligence (XAI) 
framework for early AD prediction. The system incorporates SHAP (Shapley Additive explanations) for 
interpretability in order to overcome the "black box" aspect of existing machine learning models. Using 
the OASIS dataset, we quickly investigate different classifiers for AD prediction by utilizing PyCaret, a low-
code tool. With a classification accuracy of 96%, the Naive Bayes classifier was the most successful of the 
assessed models. In order to comprehend feature importance and get insights into model thinking, SHAP 
analysis is applied. The approach also selects features, determining the most important variables for AD 
prediction by utilizing SHAP values. The model's transparency is increased by this combination method, 
which uses SHAP for interpretability and feature selection and PyCaret for effective exploration. 
Clinicians gain deeper understanding of the model's decision-making process and the factors most critical 
for AD prediction. This study breaks new ground by demonstrating the efficacy of PyCaret and SHAP in 
building an interpretable and accurate framework for early AD prediction. 
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1. INTRODUCTION
Brain is an exceptionally complex organ which is in charge of numerous body functions. Neurological 
disorders are caused due to many factors such as age, genetics, lifestyle etc. There are more than 600 
types of neurological disorders with various causes. Most common types of neurological disorders are 
Alzheimer’s Disease (AD), Parkinson’s disease and Stroke [1]. These diseases act on different facet of 
nervous system. Each disease has its own causes, symptoms, diagnosis methods and treatments. 
Symptoms of such diseases gradually worsen over time. Even though these diseases have no cure, they 
can be controlled or symptoms can be mitigated if diagnosed on time and provides adequate treatment 
[1]. 
AD is a progressive neurological disorder that causes the brain to shrink and brain cells to die [2]. It is 
caused by a combination of factors affecting the brain such as genetic, lifestyle and environment. It is the 
common cause of dementia. Dementia is a state of continuous decline in thinking, social and behavioral 
skills which affects the ability of a person to function independently [2]. Early signs of AD include 
forgetting recent conversations and events. When the disease progresses, the patient suffers from 
memory impairment and they no longer would have the ability to do day-to-day activities. No treatment 
could cure this disease. Instead, early detection of this disease and medications could improve the 
patient’s condition or atleast slow down the progression of the disease to a certain extent. Brain Imaging 
(MRI) helps the doctors to find out the shrinkage of brain tissues. MRI findings says if a patient is affected 
with AD or not. Machine Learning (ML) techniques are the proved techniques which can accurately 
predict the progress of a patient from mild cognitive impairment to AD [3].   
In healthcare, the ability to predict a disease at an early stage could revolutionize the treatment and 
prevention strategies. Even though ML models excel in analyzing vast datasets and predict the diseases 
with greater accuracy surpassing traditional statistical methods, their black-box nature always acts as a 
barrier for explaining the decision-making process. ML models which gives mere results without 
explaining how they arrived at that particular decision are called black box models [4]. This black box 
nature of the complex models makes it untrusty to use by the clinicians [5]. For the wide acceptability of 
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complex ML models, Explainable Artificial Intelligence (XAI) evolved. XAI method makes the ML methods 
understandable by human beings [6]. They are integrated into critical decision-making processes which 
makes the model more transparent and trustworthy to the end users.    
Medical data are collected from different patients around the world in different formats using various 
sources. So, the data will be a mixture of noisy, irrelevant as well as important data. These high 
dimensional data, if not processed properly, will affect the computational efficiency of the model. Many 
studies on feature selection techniques for AD have taken place [7-9]. Different from existing studies, a 
novel XAI framework is proposed in this paper combining ML models and SHAP algorithm to predict AD 
at an early stage by using only the prime features. Apart from providing explanations to the results, SHAP 
performs feature selection and reduces the dimensionality of the original dataset. The data is then fed to 
the classifier which diagnosis AD. A good classification performance exhibited by the classifiers with 
SHAP based feature selection can be effectively used by the doctors as a reference for the diagnosis of AD. 
Here, Brain MRI dataset from OASIS project is implemented to test the feasibility of the framework.  
The main contributions of this paper are:  
1. This work leverages PyCaret's user-friendly approach to streamline the machine learning 

workflow.This low-code library offers a vast collection of pre-built algorithms, enabling rapid 
experimentation and comprehensive evaluation through a variety of performance metrics for the 
prediction of AD. 

2. The model identifies the patients at high risk. OASIS dataset is used to assess the performance of the 
complex model.  

3. SHAP identifies the features (variables) which are high indicators for the prediction. Utilizing SHAP 
values enhances the interpretability of our model, fostering trust in its predictions and facilitating 
communication with medical professionals. The SHAP insights can be used in positive or negative 
result decision-making process.  

4. SHAP explanation is not just limited to the average impact of the model but also exploring 
interactions and individual prediction explanations. Local explanations improve the clinical 
understanding of prediction.  

5. An effective feature selection technique using SHAP is employed, to reduce variables in the dataset, 
which in turn increases computational efficiency. By leveraging SHAP values, we provide a nuanced 
understanding of feature importance. Analyzing feature importance allows us to delve into the 
"why" behind the predictions, providing valuable insights beyond just performance metrics. 

The rest of the paper is organized as follows. Section 2 briefs out recent literatures.In Section 3, the 
background of this research is detailed such as, the need for explanations, PyCaret Library, intuition 
behind SHAP and some of the feature selection approaches used in this experiment. Section 4details the 
proposed methodology with an overview, algorithms and explanations. Section 5 describes the 
experiments carried out and the results achieved. A detailed discussion and comparison of results has 
been carried out in Section 6.Section 7 concludes the paper with the scope for future improvements. 
 
2. RELATED WORKS 
There's a growing body of research demonstrating the potential of ML techniques for accurate AD 
diagnosis. This is because ML approaches are more accurate in diagnosis, rely on non-invasive techniques 
and have data analysis power. 
[10] suggests a novel ML-based approach to distinguish between AD patients, people with MCI, and 
healthy controls using structural magnetic resonance imaging (sMRI) data. Three ML algorithms were put 
into practice and contrasted by the authors: Regularised Extreme Learning Machine (RELM), Import 
Vector Machine (IVM), and Support Vector Machine (SVM). According to their results, RELM is more 
accurate in differentiating between the AD, MCI, and healthy control groups. 
The potential of ML to forecast the course of AD in individuals with mild cognitive impairment (MCI) is 
examined in [11]. Researchers examined 116 papers that used ML to analyse neuroimaging (MRI, PET) 
data from the ADNI database, adhering to PRISMA principles. The results show that Support Vector 
Machines and Convolutional Neural Networks were able to predict the development of AD in patients 
with MCI with a promising accuracy of 75.4% and 78.5%, respectively. Moreover, research integrating 
complicated models (deep learning) with multimodal data (MRI & PET) showed better results. These 
findings point to the possibility of ML as a useful tool for doctors in identifying individuals at risk for AD 
progression. 
[12]highlights the value of early intervention and determines the best criteria for AD prediction by 
analysing data from the Open Access Series of Imaging Studies (OASIS). Using a variety of ML algorithms, 
such as Random Forests and Decision Trees, the authors outperform previous techniques, obtaining an 
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83% test accuracy. These results demonstrate the potential of ML for better AD diagnosis, which could 
result in earlier treatment and better patient outcomes. 
The challenge of diagnosing Early Mild Cognitive Impairment (EMCI) in AD is addressed in [13]. The 
authors suggest a unique DL strategy in response to the problem that many ML models have in 
differentiating between EMCI and typical cognition. This approach uses a Convolutional Neural Network 
with Long Short-Term Memory (LSTM) architecture to integrate multimodal data, such as MRI scans, PET 
scans, and results from neuropsychological tests. The model distinguishes between EMCI patients and 
normal controls with an astounding 98.5% accuracy rate. These results point to the possibility of accurate 
early detection of AD by deep learning with multimodal data, which could open the door to earlier 
intervention and better patient outcomes. 
The model proposed in [14] makes use of an extensive dataset that includes clinical evaluations, 
neuroimaging scans (MRI, fMRI, and PET), and demographic data from both AD patients and healthy 
individuals. It combines characteristics from multiple sources to produce a two-fold strategy: 1) 
identifying AD phases and setting AD apart from healthy controls, and 2) forecasting the course of the 
disease and the clinical outcomes that AD patients will experience in the future. The outcomes show good 
classification and prognostic accuracy, indicating the framework's potential for early diagnosis, 
customised patient stratification, and individualised therapy regimens in the management of AD. 
[15] proposes a model that makes use of several algorithms, including GaussianNB and Random Forest, 
and highlights the significance of early diagnosis and treatment. Using a Voting Classifier method, the 
model trained on the OASIS dataset has a high validation accuracy of 96%. According to these results, ML 
has a great deal of potential to raise the detection rates of AD, which could improve patient outcomes and 
lower mortality. 
[16] investigates the early diagnosis of AD and associated dementias (ADRD) using ML in real-world 
electronic health records (EHRs). Researchers contrasted knowledge-driven versus data-driven machine 
learning techniques after analysing data from more than a million patients. The best results were 
obtained by gradient boosting trees trained using the data-driven approach, with AUC scores above 0.9 
for ADRD prediction up to five years prior to diagnosis. These results point to the possibility of using ML 
in conjunction with EHR data to identify high-risk patients in order to improve patient outcomes and 
initiate early intervention. 
[17] looks into how well ML algorithms predict the conversion of MCI patients to AD. Using multimodal 
data from the ADNI database, researchers compared three algorithms: Random Forest, Gradient Boosting, 
and XGBoost. All algorithms performed to some extent, although biomarkers associated with AD and 
neuropsychology had the best accuracy (90%) in predicting conversion. The results of this study imply 
that a combination of several ML techniques and a range of data sources, such as biological and clinical 
measurements, can result in a prediction of AD progression in MCI patients that is more accurate and 
dependable. 
Even though ML classifiers could produce good classification accuracy, those were not interpretable. The 
emerging Explainable AI (XAI) techniques aim to provide explanations for complex models, allowing 
doctors to understand the reasoning behind a prediction. 
[18] addresses the discrepancy in the diagnosis and course of AD between research and clinical practice. 
Conventional research constraints encompass dependence on singular data categories, distinct diagnosis 
and progression models, and incomprehensibility in intricate models. The authors suggest a two-layer 
model that integrates 11 data modalities from more than 1000 ADNI individuals and uses Random Forest 
classification. With its excellent accuracy (94% for diagnosis and 87% for progression), this model 
provides interpretability using decision-tree based explanations and SHAP algorithms. The goal of these 
plain-spoken explanations is to increase doctor confidence and comprehension of the model's 
predictions. This method has the potential to close the gap between research and practice and enhance 
clinical decision-making in AD diagnosis and progression management by combining accuracy with 
interpretability. 
[19] uses a large dataset of medical, cognitive, and lifestyle variables from over 12,000 people to explore 
the difficulties of early AD diagnosis. The study highlights the significance of a strong experimental design 
and data preparation in order to tackle imbalances, redundancies, and missing data. After training, an 
XGBoost model obtained a competitive F1-score of 0.84. That being said, interpretability is the main 
priority. Model predictions were explained by using SHAP values, which showed the positive and negative 
effects of important features. This interpretability scheme challenges preexisting hypotheses and 
provides clinicians with insightful information. The work emphasises the importance of explainable 
machine learning in revealing associations between characteristics and diagnoses, which may help in the 
early identification of AD. 
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The problem of early detection of mild cognitive impairment (MCI) employing cognitive tests at the 
bedside, such as clock drawing, is addressed in [20]. Even while DL models seem promising, clinical 
adoption is still hindered by interpretability. The authors present a unique framework that integrates soft 
labels, self-attention processes, and data from several drawing tasks (clock drawing, cube copying, and 
trail creating) into a DL model. According to medical professionals, this method increases interpretability 
and accuracy (from 75% to 81%) and may be a useful tool for early MCI detection with improved clinical 
integration. 
Current methods for predicting amnestic mild cognitive impairment (aMCI) conversion to AD often lack 
complexity. [21] addresses this by employing interpretable machine learning (IML) to develop a more 
accurate and informative prediction model. They recruited a large cohort of aMCI patients and analyzed 
neuropsychological test results, APOE genotype, and clinical data. The findings demonstrate that an 
extreme gradient boosting model achieved the best performance, identifying factors like age, education, 
cognitive scores, and genetic risk as crucial predictors. Notably, the IML approach allows for individual 
patient analysis, pinpointing the specific factors most relevant to their risk of conversion to AD. This 
personalized approach holds promise for improved clinical decision-making and targeted interventions. 
[22] proposes a promising approach for AD stage prediction that addresses the challenges of limited data 
and lack of interpretability. The proposed approach, EfficientNetB7 for AD stage prediction (CN, AD, 
EMCI, MCI, LMCI) utilizes data augmentation to address limited data and XAI for model interpretability. 
EfficientNetB7 with Score-CAM or Grad-CAM++ achieves high accuracy (96.34%) and interpretability for 
AD stage prediction. The use of data augmentation and Explainable Artificial Intelligence (XAI) techniques 
can potentially improve the accuracy and trustworthiness of machine learning models for AD diagnosis. 
PyCaret is a relatively new framework. There are fewer research papers specifically focusing on AD 
prediction using PyCaret compared to other machine learning frameworks. 
[23] examined hippocampus volume, APOE genotype, and cognitive function in MCI patients using 
longitudinal data from the ADNI database. Two separate ML models were able to predict which MCI 
patients would develop AD with a cross-validation accuracy of 70%. Impaired memory was found to be a 
consistent predictor of this accuracy, which was maintained across several models and validation 
techniques. These results, which are higher than chance predictions, point to the potential of ML in 
helping to create instruments that will help doctors detect patients who are at risk of acquiring AD. 
[24] investigates the use of resting-state fMRI (rs-fMRI) data from five datasets to identify individuals 
with MCI from healthy controls using the XGBoost algorithm. Through SHAP analysis, the significance of 
interpretability is addressed while attaining a maximum accuracy of 65.14%. The results indicate that 
distinct brain regions have differing importance depending on the rs-fMRI analysis techniques used, 
pointing to a complex effect of MCI on brain function. The work shows the potential of XGBoost with 
interpretable models for MCI diagnosis using rs-fMRI data, despite limits in overall accuracy. 
[25] uses wearable lifelog data to investigate the potential of Automated Machine Learning (AutoML) for 
detecting cognitive decline in senior populations. PyCaret in Google Colaboratory is used in the study to 
examine data from individuals with high-risk dementia. They determine that Gradient Boosting, Random 
Forest, and Voting Classifier are the best models by comparing them. The study also identifies "Average 
heart rate per minute during sleep" and "Average respiration per minute during sleep" as critical 
variables for precise prediction. These results imply that wearable data and ML together have potential 
for better management of cognitive decline in the elderly and prophylactic approaches. 
Traditional ML and DL methods have achieved promising accuracy in predicting AD, their inherent "black 
box" nature limits our understanding of the decision-making process. This lack of interpretability hinders 
clinical adoption and trust in these models. Conversely, XAI techniques offer a compelling solution by 
providing insights into the model's reasoning. However, XAI techniques can often be complex and time-
consuming to implement. PyCaret, a low-code machine learning library, streamlines the development 
process, allowing researchers to focus on the interpretability aspect. This paper presents a novel 
approach that leverages the strengths of both PyCaret's efficiency and XAI techniques' interpretability. By 
combining these advancements, we can achieve not only high accuracy in AD prediction but also gain 
valuable insights into the underlying factors that contribute to the disease. This interpretability can foster 
trust in the model's predictions, paving the way for its integration into clinical decision-making, 
ultimately leading to better patient outcomes.  
 
3. Preliminaries 
3.1 Need for Explanations 
Zero knowledge about the reasoning behind predictions and lack of clarity in its decisions make the ML 
models unadoptable by the clinicians. Moreover, these models might perpetuate biases or hidden errors. 
XAI techniques tackles the black box nature of the ML models by making the results more understandable 
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and interpretable. XAI models provide interpretable results which could be analyzed and evaluated by the 
clinicians along with their expertise promoting accuracy and transparency in the decision-making process. 
Also, the insights from explanations in disease prediction can lead to novel discoveries and better patient 
outcomes. XAI enhances interpretability of the results thereby building trust. Establishing trust is crucial 
for the societal acceptance of algorithmic decision-making. In AD prediction, XAI techniques can show 
which factors the model deems important and how much each factor contributed to the final prediction. 
 
3.2 PyCaret 
The aim of the proposed method is to understand why a person is predicted with high chance of AD.  
Instead of using different ML models to train the dataset and get the prediction, an open-source, low code 
ML library in Python-PyCaret is availed here which is used for automating the workflows in ML. PyCaret 
replaces hundreds of lines of code with a few lines and speeds up the experiment cycle exponentially [26]. 
It can train and deploy both supervised and unsupervised ML models. It speeds up the experiment cycle 
thereby increasing productivity and efficiency [26]. 

 

3.3 SHAP Explanations 
Now a days, AI makes most of the decisions for us. So, it is crucial, atleast in some scenarios, to 
understand why AI is making a particular decision. Complex black box ML models ignores why it made a 
particular decision. This makes the model untrusty to use by the clinicians. Although they can be quite 
effective at predicting predictions, machine learning models frequently lack transparency. It is difficult for 
us to comprehend how the model makes its decisions. In contrast to the black-box concepts in ML models, 
XAI explains the results of the solutions [3]. XAI ensures the social right of human beings for 
“explanation”. The goal of XAI is to understand how exactly does the model work to make a particular 
prediction, to know the relationship between input and output and to recognize the impact of each 
feature on prediction [27-28].  Interpretable ML algorithms can be broadly categorized as model-specific 
and model-agnostic approaches [29]. Model-specific approaches are specific to certain models whose 
parameters as well as internal structure can be interpreted. As the internal working of the model is 
known, the decision taken by such models can be easily interpreted. Linear Regression, Decision Tree and 
other white-box models falls under this category [29]. For complicated black-box models, model agnostic 
approaches are applied as post-hoc methods. Here, the explanation is separated from the model. Model-
agnostic methods generate explanations in human-understandable way as even non-experts can 
understand. LIME and SHAP are examples of such models [29].  
A strong foundation for analysing machine learning models is offered by SHAP (SHapley Additive 
exPlanations). It enables us to comprehend the role that every feature (data point) plays in a model's 
finalprediction.Through a variety of charts, we may use SHAP to obtain important insights on how 
models’ function. Comprehending the significance of features is crucial in determining which features 
exert the greatest impact on the model's aggregate forecasts.We can see how different features interact 
with one another to influence the prediction with the aid of SHAP. For example, a loan acceptance 
prediction model may consider both income and credit score; SHAP can show how these factors interact 
to affect the outcome. SHAP can be a valuable tool for identifying potential biases in the model by 
analysing the consistent effects of particular feature values on the predictions. As SHAP is a model 
agnostic approach, it can be applied on any ML model.SHAP, in short, enables us to transcend the "black-
box" approach to machine learning. We can increase the reliability of our models' outputs and, eventually, 
boost their efficacy by deciphering their internal mechanisms. 
SHAP is based on game theory [30] and is helpful to explain individual predictions [31]. An instance x is 
predicted by computing the contribution of individual features to the prediction. SHAP computes shapley 
values from coalitional game theory where the feature values of an instance act as players [29]. Shapley 
value explains the marginal contribution of each feature in a dataset. Apart from individual contribution, 
their interaction among others (i.e., subsets) must also be considered [31]. Shapley values for each feature 
is calculated by including as well as excluding the feature in the subset and finding out the difference. 
Hence, shapley value calculates a feature’s contribution for each subset and then averages these 
contributions. This gives the marginal contribution of a feature to the entire dataset and hence it is also 
called as marginal value. And these marginal contributions are used to find out the actual contributions of 
each feature [30]. We can find out the shapley values of each feature using the equation 

∅i f, x =  
 Z′ !  F− Z′ −1 ! 

F!Z′⊆x ′  [fx Z′ − fx(Z′\i)](1) 

In eqn. (1) [10], ∅i f, x  represents the shapley value for feature i of the given instance x in the black box 
model f. Let us see what each variable in the eqn. (1) represents.  
z’- a subset of attributes (i.e., different possible combination of inputs), 
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x’- the simplified input data (for image data) 
F- total number of features in the dataset 
fx Z′ - Output of black box model with the subset attributes z’ (Prediction) 
fx (Z′\i)-  Output of black box model with the subset attributes z’ excluding feature i.  
[fx Z′ − fx(Z′\i)]- this finds out the contribution of feature i for the prediction 
 Z′ !  F− Z′ −1 ! 

F!
 – calculates the weight. Contribution of each feature is multiplied by this weight. 

If, by adding a new feature in the subset increases the weight, then that feature is considered to have 
strong contributions to the prediction. SHAP provides both global and local interpretability to the model. 
 
3.3.1 Global Explanability 
When feature importance scores are averaged across all instances, we get global interpretation. Global 
explanation intimates the contribution of each feature to the output either positively or negatively [29]. 
Feature Imporatnce Plot, Summary Plot, SHAP Dependence Plot etc. are commonly used to deliver global 
explanations.  

 

3.3.2 Local Explanability 
Local explanation is achieved through individual SHAP values of predictors. It shows the contribution of 
each feature for that particular observation and explains the reason for that decision/prediction [29].  
Force plot, Waterfall Plot, Local bar Plot, Individual SHAP value plot etc. delivers local explanation to the 
model. 

 

3.4 Feature Selection 
Data redundancy is a major problem in high-dimensional datasets. Feature selection is a crucial step in an 
ML pipeline that involves choosing a subset of relevant features from the original set of input features 
[32]. It improves the performance of a model by reducing the dimensions of the dataset. It focuses on the 
most informative and important features. Different standard techniques exist for feature selection and the 
main 3 categories are: Filter, Wrapper and Embedded [32].  
Filter techniques considers the inherent properties of features and select the most important features as a 
subset from the original dataset [33]. Information gain, Chi-square test, Fisher’s score, correlation 
coefficient, variance threshold etc. are example of filter techniques [33]. Wrapper methods follows greedy 
search technique and they act like surrogate models. They train the algorithm in an iterative manner 
using a specific set of features and the features will be added or removed in each cycle based on previous 
output [33]. Forward feature selection, backward feature elimination, exhaustive feature selection, etc. 
falls under wrapper method [33]. Embedded methods include interactions of features and the selection is 
performed during training [34]. These methods are faster and combines the advantages of filter and 
wrapper methods. L1 and L2 Regularization, Random forest importance etc. are embedded methods [34]. 
Feature selection process improves the model performance as well as enhances the model 
interpretability. Here, SHAP is designated to select important features from the given datasets. The need 
for model interpretation motivated to pick SHAP as feature selection mechanism. As a preprocessing 
technique, SHAP helps to explain the decisions while constructing the ML models. 

 
4. METHODOLOGY 
4.1 Overview 
The proposed system is designed in 2-phases. Fig. 1 shows Phase I and Fig. 2 shows Phase II of the 
proposed system. In Phase I, longitudinal brain MRI dataset from OASIS (Open Access Serie of Imaging 
Studies) [35] is considered for the prediction of AD.  They generated longitudinal MRI data from 150 
individuals with or without AD. The imaging was done on older adults aged between 60 and 96 years. We 
employed PyCaret to analyze the dataset containing relevant features for AD prediction. The dataset is 
preprocessed and prepared for analysis within the PyCaret environment. Various ML classifiers are trained 
and evaluated with PyCaret’s built-in functions and the instances are classified as either Demented or Non-
Demented. Later, the model performance is assessed using common metrices such as accuracy, precision, 
recall and F1-score.  The analysis identifies the most effective model for AD classification in our dataset. 
The results are explained using SHAP. The variables which influenced high and low for the prediction are 
found out. SHAP provides both global and local explanations. 
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Fig.1 Architecture of Proposed Model- Phase I 

 
In Phase II, the explainable results by SHAP are analysed to find out the important features responsible for 
the prediction. The impact of each feature on the prediction can be found out from the SHAP- values. Thus, 
prime features are extracted and the features with very low or no impact on the predictions are discarded.  
This reduces the dimensionality of the dataset and serves as the new dataset for Phase II. The new reduced 
dataset is used for training the classifiers in Phase II and then the classification accuracy of each model is 
calculated. Here again PyCaret library is employed for AD prediction. The classification accuracy of each 
model is reported and compared with those models in Phase I. The classifiers in Phase II, predicted 
diseases with greater accuracy and performed better in all the ways than in Phase I. 
 

 
Fig 2. Architecture of Proposed Model- Phase II 
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4.2 Algorithm 
Algorithm 1 details the working of Phase I. The original OASIS Brain MRI dataset, Do, with n features, f(x1, 
x2,…,xn),is considered for the experiment. The dataset containing relevant features is preprocessed and 
analyzed in the PyCaret environment. Several classifiers in the PyCaret library is trained using the OASIS 
dataset and each instance is predicted either as Demented or Non-Demented. Then the performance of 
these classifiers is evaluated and compared to select the best model in Phase I, BM1. Predictions for new 
inputs are obtained and Cp1 represents the predicted class (demented or non-demented) for Phase I. The 
predictions are explained using SHAP plots. Feature Importance plot, GI, and SHAP Summary Plot, GS, gives 
global explanation to the model. From these plots, most relevant features contributed for the prediction 
are extracted and builds a new dataset called Prime feature dataset Dp, with featuresf(x1, x2,…,xm) where 
m<n. As the irrelevant features are discarded in Dp, it contains lesser number of features than in the 
original dataset, Do. SHAP Force Plot, GF, interprets individual instances thus giving local explanation to the 
model. 
 
Algorithm 1: Phase I- Explainable AD prediction Using PyCaret and Prime feature selection 
Input: OASIS MRI Dataset (Do), Input features f(x1, x2,…,xn) 
Output: Best Model (BM1),  
Output Class (Cp1 -Demented or Non-demented),  
Prime feature Dataset (Dp),  
Output features f(x1, x2,…,xm), 
SHAP Global Explanations: (GI)- SHAP Feature Importance plot and (GS)- SHAP Summary Plot, 
SHAP Local Explanations: (GF)- SHAP Force plot 
Step 1: Input Do to PyCaret models for preprocessing and training 
Step 2:Obtain the predictions Cp1, for the input f(x1, x2,…,xn) 

Step 3: Evaluate and Compare the performance accuracy of the ML models and select the Best Model BM1 
Step 4: Obtain the predictions Cp1, for the input f(x1, x2,…,xn) 

Step 5: Obtain SHAP Global explanation for the best ML model and Create Prime feature dataset 
Step 5.1: Plot Feature Importance Graph GI 
Step 5.2: Draw SHAP Summary Plot GS 

Step 5.3: Select the Prime features from these graphs and create a new dataset Dp with only the prime 
features f(x1, x2,…,xm) where m<n 
Step 6: Obtain SHAP Local explanations for the best ML model 
Step 6.1: Draw Force Plot for individual instances GF 
ReturnCp1, BM1, Dp,  f(x1, x2,…,xm), GI, GS,and GF 
Phase II is demonstrated in Algorithm 2. Here, the input dataset is the Prime feature Dataset, Dp, with the 
features f(x1, x2,…,xm). The reduced feature dataset is then used to train the classifiers in the PyCaret 
library. The predictions are made and the performance of the classifiers are evaluated and compared in 
Phase II also and the best model, BM2, is chosen. Predictions for new inputs are obtained from BM2, and Cp2 
represents the predicted class (demented or non-demented) for Phase II. Again, a performance comparison 
is carried out between classifiers in Phase I and Phase II to show that all the ML models in Phase II 
outperformed Phase I models because of the positive impact of the reduced and relevant dataset, Dpin 
Phase II. A model which performed uniformly good in both Phase I and Phase II is selected as a consistent 
Model, CM. 
 
Algorithm 2: Phase II- AD prediction from Prime feature dataset Using PyCaret with improved 
performance accuracy 
Input: Prime feature Dataset (Dp), Input features f(x1, x2,…,xm) 
Output: Best Model (BM2),  
Output Class (Cp2- Demented or Non-demented), 
Consistent Model (CM) 
Step 1: Input Dp to PyCaret models for training 
Step 2: Obtain the predictions Cp2, for the input f(x1, x2,…,xm) 

Step 3: Evaluate and Compare the performance accuracy of the ML models and select the Best Model BM2 

of Phase II 
Step 4: Obtain the prediction Cp2, for new input f(x1, x2,…,xm) 

Step 5: Compare the performance accuracy of the ML models in Phase I and Phase II and select a 
Consistent Model CM 
ReturnCp2, BM2, and CM 
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4.3 Classification Using PyCaret 
Initially the PyCaret environment has been setup to transform the pipeline for modeling and deployment. 
The data is pre-processed in the next step by encoding categorical values and imputing missing values. The 
PyCaret library simplifies model training by including functions which automates data pre-processing, data 
preparation and many other functions. The classification module (pycaret.classification) in PyCaret is a 
supervised ML module responsible for binary classification. PyCaret trains all the models in the library and 
rank them using stratified cross-validation for metric evaluation [26]. To evaluate the performance, we can 
analyze and compare the scores of the models from the scoring grid. PyCaret is used in Phase I and Phase II 
and analyzes the performance differences of all the models. 
 
4.4 Explanations Using SHAP  
Once the model prediction and evaluation are over, the results are explained using SHAP. SHAP, being a 
model agnostic interpretation method, helps to achieve the explanations of ML models employed. SHAP 
draws inspiration from game theory, specifically Shapley values, to explain how much each feature 
contributes to a specific prediction.It is more flexible to use as we can separate the model from 
explanations. SHAP draws insights from each ML models in predicting AD. It measures the positive or 
negative impact of each features along with its magnitude on a prediction. SHAP finds out the importance 
of all features in the OASIS MRI dataset for predicting AD risk by calculating the absolute Shapley values. 
Shapley value is calculated by taking the average of marginal contributions of each feature across all 
permutations. The intuition is that, the higher the Shapley value, the more important the feature is for the 
prediction. By this way, SHAP extracts relevant features from ML models.  
SHAP gives both global and local explanation to the models. The average of absolute Shapley values of each 
feature across the dataset gives the global importance of features. These explanations are consistent with 
local explanations as the global value is contributed by local values from each instance. The SHAP value 
exposes contribution of each predictor to the output either positively or negatively. The most powerful 
aspect of SHAP is its ability to explain individual predictions. Every instance has its own SHAP value which 
gives local interpretation to that observation. We can take a single instance and say why is it predicted 
demented or non-demented and the contribution of each feature for this prediction. SHAP also offers 
several ways to visualize these explanations. In Phase I, the results are explained both locally and globally 
using SHAP. 
 
4.5 Prime Feature Selection  
SHAP explanations help to choose necessary and sufficient features to make the prediction.  SHAP also aids 
in removing irrelevant features thus reducing the dimensionality of the data. Other feature selection 
algorithms have explainability issues. Especially in medical dataset, we cannot remove a few features 
simply without giving proper explanation. The weakness of feature selection techniques discussed in 
Section 3.4 is that they can’t give appropriate explanation on why specific features are picked or removed. 
Filter methods does not consider the characteristics of a model for filtering the features whereas wrapper 
methods support a model’s prediction.  
In Phase II, a new dataset is built – Prime Feature Dataset- which consists of only the relevant features 
which is necessary for AD prediction. As SHAP is grounded by strong mathematical formulae, it helps to 
eliminate irrelevant features more sensibly. The contributions of each feature to the prediction are 
considered and sorted in descending order of their importance and applied it as feature selection 
approach. Now the prime feature dataset is a dimensionality reduced dataset with only the useful and 
needful features for AD prediction. With fewer features, the model performs more accurately with less 
complexity and computational cost.  
 
4.6 Disease Prediction with Improved Performance 
The prime feature dataset is trained and tested using PyCaret library.The classifier predicts each new 
observation as demented or non-demented. When the models are evaluated, all of them have exhibited a 
very good performance. Compared with the results of Phase I, all the models in Phase II enhanced their 
performance in terms of accuracy, precision, recall and F1-score. Hence, SHAP can be appraised as a 
preprocessing tool for feature selection in disease predictions. In the future, it can be applied in other 
domains too where model transparency is required. 
 
5. Experiments and Results 
The framework developed is mainly meant for classifying AD into demented and non-demented classes 
where the results are explained using SHAP. Other than explanation, SHAP shows the relevance of each 
feature input on the output which helps us to eliminate irrelevant features. Experimental results show that 
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the new models developed up on the prime features are more accurate than the previous models. The 
experiment is performed using brain MRI dataset from OASIS [35]. 
 
5.1 Performance Analysis  
There are 18 different ML classifiers and different plots provided by the PyCaret module to analyze the 
performance of the models. PyCaret trains all these models using stratified cross-validation and ranks the 
models. The performance of the supervised ML models for AD prediction are quantitatively evaluated 
using evaluation metrics such as average Accuracy, AUC, Recall, F1 Score, Kappa, MCC and TT (Training 
Time). Table I shows the performance score for each trained model. From the scoring grid, it can be 
concluded that the best results are achieved by the Naïve Bayes (NB) algorithm. Eventhough, Ridge 
Classifier (Ridge), Random Forest Classifier (RF), Linear Discriminant analysis (LDA) and ExtraTrees 
Classifier (ET) also have produced same accuracy that of NB, considering all other metrics together, NB 
came in the top list.  
Accuracy measures the proportion of correct predictions made by the model and helps to understand and 
compare the models in a simpler way. Since the dataset is imbalanced, AUC (Area Under the ROC Curve) is 
useful as it is independent of class distribution. Recall identifies all relevant cases especially when missing 
important positives are costly in our problem. F1 score combines and balances the strengths of precision 
and recall. Kappa values are more robust than accuracy in imbalanced datasets. MCC is also a very 
important metric for imbalanced dataset which considers four types of predictions- True Positives (TP), 
True Negatives (TN), False Positives (FP) and False Negatives (FN)- thereby providing a more 
comprehensive evaluation.  Both F1 score and MCC gives a balanced view of precision and recall. A 
combination of these metrics provided by the PyCaret library gives a more complete picture of each 
model’s performance. Phase I classifiers made use of all the features provided by the dataset for the 
prediction of AD.  

 
Table 1. Analysis of Classifiers in Phase I 

Model 
Accurac
y 

AUC Recall 
Precisio
n 

F1 
Score 

Kappa MCC 
TT 
(Sec) 

Naive Bayes 
(nb) 

0.9089 0.9350 0.8150 1.0000 0.8885 0.8169 0.8388 0.0140 

Ridge Classifier 
(ridge) 

0.9089 0.9200 0.8150 1.0000 0.8885 0.8169 0.8388 0.0220 

Random Forest 
Classifier (rf) 

0.9089 0.9420 0.8350 0.9800 0.8935 0.8169 0.8333 0.1080 

Linear 
Discriminant 
Analysis (lda) 

0.9089 0.9160 0.8150 1.0000 0.8885 0.8169 0.8388 0.0270 

Extra Trees 
Classifier (et) 

0.9089 0.9395 0.8350 0.9800 0.8935 0.8169 0.8333 0.1000 

Gradient 
Boosting 
Classifier (gbc) 

0.9000 0.9200 0.8800 0.9348 0.8959 0.8000 0.8175 0.090 

Logistic 
Regression (lr) 

0.8889 0.8730 0.8150 0.9550 0.8713 0.7769 0.7925 1.4120 

Light Gradient 
Boosting 
Machine 
(lightgbm) 

0.8789 0.9120 0.8350 0.9267 0.8692 0.7569 0.7728 0.1810 

Extreme 
Gradient 
Boosting 
(xgboost) 

0.8689 0.9120 0.8350 0.9067 0.8603 0.7369 0.7511 0.0550 

Ada Boost 
Classifier (ada) 

0.8589 0.9200 0.8350 0.8900 0.8512 0.7169 0.7328 0.0650 

Decision Tree 
Classifier (dt) 

0.8367 0.8375 0.8550 0.8331 0.8363 0.6741 0.6879 0.0140 

Quadratic 
Discriminant 
Analysis (qda) 

0.7589 0.7830 0.8750 0.7687 0.7925 0.5169 0.5474 0.0220 
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Model 
Accurac
y 

AUC Recall 
Precisio
n 

F1 
Score 

Kappa MCC 
TT 
(Sec) 

K Neighbors 
Classifier (knn) 

0.6344 0.6990 0.6500 0.6716 0.6445 0.2702 0.2673 0.0250 

SVM - Linear 
Kernel (svm) 

0.5056 0.5000 0.1000 0.0500 0.0667 0.0000 0.0000 0.0170 

Dummy 
Classifier 
(dummy) 

0.5056 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0180 

 
Table 2. Analysis of Classifiers in Phase II 

Model 
Accurac
y 

AUC Recall 
Precisio
n 

F1 
Score 

Kappa MCC 
TT 
(Sec) 

Naive Bayes 
(nb) 

0.9575 0.9932 0.9458 1.0000 0.9721 0.9014 0.9017 0.0040 

Ridge 
Classifier 
(ridge) 

0.9471 0.9411 0.9397 1.0000 0.9689 0.8785 0.8785 0.0050 

Random 
Forest 
Classifier (rf) 

0.9357 0.9871 0.9257 1.0000 0.9614 0.9143 0.9152 0.0870 

Extra Trees 
Classifier (et) 

0.9214 0.9872 0.9016 1.0000 0.9482 0.8952 0.8954 0.0980 

Linear 
Discriminant 
Analysis (lda) 

0.9281 0.9660 0.8980 1.0000 0.9462 0.8649 0.8482 0.0120 

Gradient 
Boosting 
Classifier (gbc) 

0.9176  0.9783  0.8786  0.9689  0.9215 0.8354  0.8522  0.0210 

Logistic 
Regression (lr) 

0.9105  0.9668  0.8786  0.9624 0.9185 0.8206  0.8319  1.000 

Light Gradient 
Boosting 
Machine 
(lightgbm) 

0.9024 0.9143 0.8365 0.9532  0.8910 0.8091 0.8117 0.0820 

Ada Boost 
Classifier (ada) 

0.8871 0.8914 0.8333 0.9441 0.8852 0.7602 0.7512 0.0150 

Extreme 
Gradient 
Boosting 
(xgboost) 

0.8754 0.9479 0.8459 0.9246 0.8835 0.7932 0.7864 0.0050 

Decision Tree 
Classifier (dt) 

0.8501 0.9707 0.8120 0.8696 0.8398 0.8037 0.8098 0.0040 

Quadratic 
Discriminant 
Analysis (qda) 

0.8097 0.8787 0.8495 0.8640 0.8566 0.6115 0.6254 0.0010 

KNeighbors 
Classifier 
(knn) 

0.7157  0.7143  0.7714  0.8230 0.7963 0.4298  0.4471  0.0050 

SVM - Linear 
Kernel (svm) 

0.5229  0.5205  0.5839  0.7064  0.6393 0.0406  0.0366  0.0070 

Dummy 
Classifier 
(dummy) 

0.5133  0.5000  0.1000  0.5133  0.1673 0.0000  0.0000  0.0080 

 
After getting explanations from SHAP for the Phase I results, certain irrelevant features are removed from 
the original dataset and created a new dataset called prime feature dataset. Now, this acts as the input 
features for Phase II classifiers. Table II shows the performance of classifiers in Phase II. It is 
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experimentally proved that all the classifiers in Phase II has shown an improved performance along all the 
metrics. 
 

Table 3. Performance Accuracy Comparison of Top Ten Classifierswith All features and Only Prime 
Features Included 

Model 

Accuracy in % with 
all features 
included  
(Phase I) 

Accuracy in % with 
only prime 
features included 
(Phase II) 

Naive Bayes (nb) 91 96 
Ridge Classifier (ridge) 91 95 
Random Forest Classifier (rf) 91 94 
Linear Discriminant Analysis (lda) 91 93 
Extra Trees Classifier (et) 91 92 
Gradient Boosting Classifier (gbc) 90         92 
Logistic Regression (lr) 89         91 
Light Gradient Boosting Machine 
(lightgbm) 

88         90 

Extreme Gradient Boosting (xgboost) 87 
88 
 

Ada Boost Classifier (ada) 86 89 
 

Because accuracy is easy to interpret, calculate, understand and gives the general picture of the model, we 
use the performance accuracies of top 10 models from each phase for a quick comparison and is depicted 
in Table III. The formula to calculate Accuracy= (Number of correct predictions)/(Total number of 
predictions). i.e.,  

Accuracy =
(TP +TN )

 TP +TN +FP +FN 
 (2) 

It can be observed that all the models in Phase II have shown an improved performance accuracy than in 
Phase I. 
 
5.2 SHAP Explanations 
Model agnostic explanations for the classification models are provided by SHAP. We can see important 
patterns in the behaviour of the model by utilising SHAP to create several plots. The best classifier among 
the PyCaret classifiers in both Phase I and Phase II is NB and is considered as the Consistent Model. So, 
SHAP explainability plots for the NB classifier is depicted here, though plots for other models can also be 
drawn. SHAP is used for both global and local explanation of the decisions taken by NB in AD. 
 
5.2.1 Global Explaination 
The impact of each feature on the model output is shown in Fig. 3 using SHAP Feature Importance 
plot.The shapley values of features across all the observations are aggregated and then sorted. Feature 
Importance plot lists the features in the descending order of their importance. As top features have higher 
shapley values, they contribute more to the prediction compared to the bottom ones and hence they have 
high predictive power.  
Here, the feature CDR has more impact on the model than any other features whereas Hand and Visit has 
the least importance.  It is also obvious that the impact of features on the classes Demented and Non-
Demented are equal. 
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Fig 3. Feature Importance SHAP plot for AD prediction 
The SHAP summary plot in Fig. 4 reveals the users both the positive as well as negative relationships of all 
the input features with the target variable. It displays the average impact of each feature on the model's 
prediction. The Feature Names (X-axis) lists all features used by the model. Dot Position (Y-axis) 
represents the feature's average impact on the model's prediction. All the observations in the AD training 
dataset are shown as dots in this plot. Features with higher absolute values (further from zero) have a 
stronger influence. This plot allows us to quickly identify the most influential features for the model's 
overall predictions.Here, the features are ranked in descending order of their importance. Color Bar 
indicates the feature effect. Red represents a positive influence (increasing the prediction value), and blue 
represents a negative influence (decreasing the prediction value). i.e., red color indicates high feature 
value and blue color indicates a low value of the feature for that observation. From the plot we can 
interpret that a high value of CDR has a positive as well as high impact on AD prediction (Red color 
indicates a high value and the position in X-axis shows its positive impact). 
 

 
Fig 4. SHAP Summary Plot for AD Prediction 

 
5.2.2 Local Explanation 
When a model makes a prediction, it is for the entire dataset. To make the predictions more sensible, each 
individual observation needs to be explained. This makes the model more adoptable. Individual SHAP 
value plots for observations aids us to explain each observation in detail. The mean value of all the 
features in the training dataset of AD is shown in the Table IV. Shapley values of each feature will be 
calculated and compared against their mean values before the model takes a decision. 
 

Table 4. Mean Values of the Features of AD Training Dataset 
Sl. No. Features Mean Values 

1 Visit 1.870445 

2 MR Delay  591.445344 

3 M/F  0.408907 

4 Age  76.744939 

5 EDUC  14.619433 

6 SES  2.554656 

7 MMSE  27.303644 

8 CDR  0.273279 

9 eTIV  1481.214575 

10 nWBV  0.731158 

11 ASF  1.200911 

12 Hand  1.000000 

 
SHAP value plots are a visual representation of feature contributions to a model's prediction for a single 
data point. They depict features as forces pulling the prediction in a specific direction (positive or 
negative) based on their individual impact. The strength of the force corresponds to the feature's 
importance in influencing the prediction. This plot uses arrows to visualize features as forces, with the 
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length and direction of the arrow indicating the feature's influence.Two observations from the AD 
training dataset – one from demented category and the other from non-demented category- are shown 
below and interpreted using individual SHAP value plots. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5. SHAP Value Plot for AD Prediction- Non-Demented Class 
 
Fig. 5 shows individual SHAP value plot for obseravtion 1 in the training dataset. The ouput value 0 in the 
plot represents the prediction for this observation, which means that this person is classified as non-
demented. The base value represents the mean of the model output. Red color shows the variables which 
drives the prediction higher and blue color indicates the fetaures which drives the prediction lower. Here, 
the features CDR, MMSE, nBW, etc. in blue color have contributed for classifying the observation as a 
negative class (non-demented). The feature CDR correlates positively to the prediction and its value 0 
which is lesser than the mean value 0.273279 drives the prediction negatively. The variable EDUC 
negatively corelates to prediction and hence its value 18 which is greater than the mean value 14 pushed 
it towards the class non-demented. 
 

Fig 6. SHAP Value Plot for AD Prediction- Demented Class 
 
Consider the individual SHAP value plot for another observation -Observation 2 which is depicted in Fig. 6. 
It has an output of 1 which means that the patient is classified as demented. Variable CDR is having value 1 
which is greater than 0.273279, its mean value. CDR has a positive impact on dementia classification and 
pushes prediction to the right in this case. The variables shown in red color, MMSE, EDUC, nWBV, etc. have 
low values compared to their mean values. As these features are negatively corelated to the label, their low 
values have pushed the prediction to the right. Similarly, the individual SHAP value plot for all 
observations can be produced and hence local interpretability can be achieved.  
 
DISCUSSIONS 
In this section, the performance metrics and SHAP interpretations are discussed and the performance 
accuracies in Phase I and Phase II are evaluated.  
While our PyCaret model successfully predicts AD, understanding the rationale behind these predictions is 
crucial. This is where SHAP comes in. SHAP provides a framework for interpreting the impact of individual 
features on the model's predictions. The performance score of classifiers of PyCaret library in training and 
classification of AD in Phase I and Phase II is given in Table I and II respectively. In Phase I, the 
classification is done on the original dataset, whereas in Phase II, the classification is made on prime 
feature dataset, which is obtained by removing irrelevant features from the original dataset with the help 
of SHAP values. So, by using SHAP as a feature selection approach, it not only gives explanation but also 
shows important features required for the prediction task. Among the 18 classifiers, NB exhibited a 
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consistent performance in both the Phases. In Phase I, NB exhibited 91% accuracy in AD classification 
whereas in Phase II, NB could produce an accuracy of 96%. The same model predicted AD with different 
accuracies when the number of features differed. This indicates that with reduced number of features and 
including only the relevant features, a model could improve the prediction accuracy. From the score grid it 
can also be observed that all the classifiers could improve their performance in terms of all the metrics. 
The prime thing to be noticed from Table III is that the classification accuracy of all the ML models in Phase 
II has been improved and shown a supreme performance than in Phase I. NB improved its accuracy score 
from 91% to 96%, Ridge from 91% to 95%, RF from 91% to 94%, LDA from 91% to 93% and so on. High 
accuracy is definitely a good metric for evaluating a model which indicates that both individuals with and 
without AD is identified effectively. Considering the imbalanced nature of the dataset, we also analyze 
other metrics. AUC measures the ability of a model to discriminate between demented and non-demented 
cases. Models with AUC values closer to 1 can be considered as effective models.  Recall identifies the 
proportion of TP identified by the model. High Recall avoids false negative cases and signifies that the 
model could capture all the patients with AD. High Precision enhances the accurate identification of AD 
minimizing false positives. F1-Score gives a balanced metric between precision and recall and the models 
with a score closer to 1 indicates that they are the best ones. Kappa considers the agreement occurring by 
chance and is more robust than accuracy for imbalanced datasets. MCC is a balanced measure as it 
considers all 4 cases- TP, TN, FP and FN. It is a valuable addition to imbalanced datasets for comprehensive 
evaluation. TT (Sec) represents the total time taken by the ML model to train on the dataset. This column 
allows us to compare the computational efficiency of different classifiers. By analyzing Table I and II, it is 
vivid that all the scores mentioned here has got an improved value for all the classifiers in Phase II 
compared to Phase I. Hence, we can say that all the classifiers performed well in SHAP reduced feature 
dataset than in the original dataset and hence SHAP can be considered as a feature selection technique.  
Furthermore, the classification results by the classifiers in Phase I are explained by computing the SHAP 
values of each predictors. In section 4, the benefits of SHAP to interpret models in AD is demonstrated. 
Both global and local interpretation to the NB model is achieved by SHAP plots. SHAP explains predictions 
of ML modelsbased on shapley values. These values appraise the contribution of each variable in the 
model. Global explanation for the model is achieved through feature importance plots and summary plots. 
When we analyze feature importance SHAP plot, Fig. 3, it can be noticed that the features in the SHAP plot 
are ranked in descending order and hence the top features in the SHAP plot contribute more to the model 
and have high predictive power compared to the bottom features. This is done using shapley values which 
indicates the marginal contribution of a given feature for the prediction. This plot summarizes the average 
SHAP value for each feature across all patients. Positive values indicate the feature generally pushes the 
prediction towards AD (higher probability), while negative values suggest it pushes the prediction towards 
healthy (lower probability). Features with higher absolute SHAP values (further from zero) have a stronger 
influence on the model's overall predictions. So, the feature position in horizontal location shows if the 
value results in a lower or higher prediction. From Fig. 3, we can conclude that CDR, MMSE, eTIV, nWVB 
and ASF are the features which have contributed more to the model prediction.  
SHAP Summary plot in Fig. 4 also shows variable importance. SHAP Summary plot is made of all instances 
in the train data. These plots take the mean absolute value of each feature over all observations of the 
dataset to create a global measure of feature importance. SHAP plot shows the positive and negative 
relationship of the features with the label. Red color indicates a high value and blue color indicates a low 
value of the feature for a particular observation. Feature importance plot and SHAP summary plot gives 
global interpretation to the model. These plots are helpful for explaining the output of any ML model. Fig. 4 
explains the feature impact in AD prediction as that CDR, eTIV, nWBV, EDUC and MMSE are the top 5 
features which contributes more for the prediction whereas the feature Hand contributes very less for the 
prediction.  
SHAP value discovers patterns in data and explains model decisions. Feature importance deduced from 
SHAP values can be inferred for feature selection. By using SHAP, a major preprocessing technique- 
feature selection- benefits from explainability. SHAP explanations are supported by mathematical 
formulae. It is also established that when a model classifies a dataset after SHAP feature selection, the 
model could improve its performance accuracy. Also, finding out the most important features from 
feature importance plots and removing irrelevant features from the dataset, reduces computational time 
and ends in faster results so that the patients doesn’t need to wait for a long time. To provide local 
explanation to the model, individual SHAP value plots are employed. This plot explores the relationship 
between a specific feature and the model's prediction for a single patient. It reveals how changes in that 
feature value affect the predicted probability of AD. Each individual observation’s prediction can be 
explained to make sense of it.They are particularly useful for analyzing and explaining a specific 
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prediction you're interested in, providing a deeper dive into its reasoning.Fig. 5 and Fig. 6 explains two 
observations among which one is in demented category and the other one is non-demented. The 
horizontal line in these plots marks the base value of the model. The feature values are also displayed 
next to the line. Features that cause increase in the prediction are represented in red color, while those 
that decrease in prediction are depicted in blue. When a feature exhibits a positive correlation with the 
label, having a value greater than its mean will make a positive contribution to the prediction. Likewise, 
when a feature demonstrates a negative correlation with the label, having a value greater than its mean 
will result in a negative contribution to the prediction. 
Let us interpret the individual SHAP plot, Fig.5, drawn for an observation which is classified as non-
demented. The features such as CDR, MMSE, nWBV, ASF, EDUC, SES, Age and eTIV contributes more for 
the prediction. Among these features, CDR, Age, MMSE, nWBV, ASF and eTIV are positively corelated to 
the prediction, i.e., as the value of these features increases it push the prediction towards the class 
demented. Rest of the features are negatively corelated to the model output, which means that when the 
value of these features decreases, it drives the prediction towards the class demented.  The absolute shap 
values of these features will be compared against their mean values which is shown in Table 2. In the Fig. 
5, it can be seen that the values for CDR (=0 ),  MMSE (=30), nWBV (=0.812), Age (=65) are all lesser than 
their mean value, and EDUC (=18) is greater than its mean value. That means these variables contributes 
to make the prediction as non-demented.  For eg,  a high value in EDUC contributes negatively to AD 
prediction, which states that as the number of years of education increases, the chance for AD decreases. 
Similarly, Fig. 6 provides the explanation for a Demented class. As EDUC is negatively corelated to 
dementia and has a value 11, which is lesser than the mean value, this feature pushed the observation to 
the class demented. Likewise, the values of CDR (=1), MMSE (=22), ASF (=1.214), eTIV (=1,445), 
nWBV(=0.722) are higher or very closer to their mean values and hence pushed the prediction towards 
the class demented. Thus, SHAP helps explain why the model predicts AD for a specific patient by 
revealing which features contributed most significantly to that prediction.Shap value plots are beneficial 
toShow a large number of feature effects clearly, display the cumulative effect of interactions, explore 
feature effects for a range of feature values, identify outliers and to identify typical prediction paths. 
Both the accuracies and inaccuracies from the model disseminates some explanation which makes the 
users or clinicians understand more about the model. The reason behind NB model classifying a person 
into demented or non-demented category is clearly understood from the plots. Like so, SHAP transforms 
any black-box model into glass-box model. By incorporating feature selection method in model 
classification and explaining the predictions improves the prognosis of AD. This approach can be 
effectively used to predict any diseases and explain the results. The proposed framework can be extended 
to use in other domains also where model transparency is vital such as loan approval, detection of spam 
emails, etc.  
 
Comparison of the proposed method with SOTA methods 
Our model, with a broader focus on overall disease prediction, might prioritize different features 
compared to the State-of-the-Art (SOTA) methods discussed in the Literature Review. The SHAP analysis 
in our framework revealed that features like CDR, MMSE, eTIV, nWVB and ASF emerged as the most 
influential features for predicting AD. While there is some overlap with existing research, some key 
differences are noteworthy.Previous research on Alzheimer's disease prediction has primarily focused on 
feature selection techniques like filter, wrapper, and embedded methods. This paper presents a novel 
approach that utilizes SHAP for identifying the most significant features.Additionally, while numerous ML 
algorithms exist, implementing and comparing each one can be time-consuming. This work leverages 
PyCaret, a low-code library that streamlines the process. PyCaret offers a comprehensive suite of pre-
built ML algorithms, enabling rapid experimentation and providing a variety of performance metrics for 
evaluation. 
Out of all the reviewed articles, six articles used ML or ensembled techniques[10], [12], [15-17], [19], [21]  
and five articles employed DL or transfer learning  methods[11], [14], [18], [20], [22]for AD prediction. It 
is worth noting that five articles [18-22] leveraged various explainable methods alongside DL or 
ensemble approaches and only three articles [23-25] utilized PyCaret for their analysis. No prior research 
has combined PyCaret's efficient exploration of ML algorithms with SHAP for feature selection and 
interpretability in the context of AD prediction. This work fills this gap by proposing a novel and 
insightful methodology. 
Table V summarizes the performance of previous studies on AD prediction. The proposed model 
outperforms these methods in terms of accuracy, precision, recall, F1-score, and interpretability. These 
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findings suggest that the proposed XAI framework, combining PyCaret's efficient exploration and SHAP's 
interpretability, has the potential to offer a reliable and explainable approach to AD prediction. 

 
 
 

Table 5. Comparison of the Proposed Method with SOTA Methods 
Research 
Study 

Year Proposed Model Accuracy 
(%) 

Dataset Explainabilit
y method 

Proposed 
Pycaret 
method 

2024 NB (Pycaret) 96 OASIS SHAP 

[22] 2024 EfficientNetB7 96 ADNI CAMs 

[15] 2023 Voting Classifier 96 OASIS NO 

[16] 2023 Gradient Boosting 
Tree 

93.9 
(AUC) 

EHR data from 
OneFlorida+ Clinical 
Research 
Consortium 

SHAP 

[14] 2023 Ensemble Method 91 ADNI SHAP 

[17] 2023 Voting Classifier 90 ADNI NO 

[19] 2022 XGBoost 84.2 ADNI SHAP 

[12] 2022 RF 83 OASIS NO 
[20] 2022 CNN+ 

multi-input+ 
self-attention 
mechanism+ 
soft labelling 

81 Live Patients from 
King Chulalongkorn 
Memorial Hospital 

GradCAM 

[21] 2022 XGBoost 80.7 Live Patients at 
Samsung Medical 
Center 

ICE+ SHAP 

[23] 2022 Ensemble 74.9 ADNI NO 

[24] 2022 XGBoost 65.14 From the Second 
Affiliated Hospital of 
Hangzhou Normal 
Uni-versity 

SHAP 

[18] 2021 RF 93.95 ADNI SHAP 

[11] 2021 CNN 
SVM 

78.5 
75.4 

ADNI NO 

[10] 2021 RELM 77.62  
(for 
binary 
classificat
ion) 

ADNI NO 

 
The major accomplishments of this paper are: 
 Achieves high classification accuracy (96%) for AD prediction using Naive Bayes classifier in the 

OASIS dataset.  
 Integrates SHAP for interpretability, addressing the "black-box" challenge of ML models.  
 Utilizes SHAP values for feature selection, identifying the most significant features for AD prediction.  
 Offers a transparent and explainable framework for early AD diagnosis, aiding clinicians in decision-

making. 
 
CONCLUSION 
Early detection of AD slows down its progression and the patients can lead a healthy life. ML models have 
been adopted in AD prediction and is increasingly common in predicting many other diseases. But the 
major challenge lies in the interpretability of the model which limits the adoption of the model. 
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Advancements in XAI techniques helps us to peep into the black-box models. In the proposed XAI 
framework, different ML models are analyzed using PyCaretfor predicting AD at an early stage and a 
popular interpretability technique, SHAP is employed for the model explanation. Instead of using 
individual ML models separately PyCaret gives a list of important and mostly used classifiers under the 
umbrella which makes the users convenient to use with less code and time. The models are evaluated on 
Brain MRI OASIS dataset using metrics such as Auuracy, Precision, Recall, AUC, F1-Score etc. In the 
experiment, best and consistent results are provided by NB among the other classifiers in the PyCaret 
library. SHAP, a model agnostic approach, provides robust explanation for the model on the basis of solid 
algorithms by integrating game theory. ML and SHAP is an exceptional duo which identifies important 
features and explore the relationships among data. 
In this work, SHAP is also analyzed as a feature selection method which prioritize and picks features 
based on their contribution to model output. The experimental results show that, models which used 
datasets after feature selection using SHAP performed superior. Hence, SHAP can be considered in the 
future as a preprocessing approach in other domains too where model interpretability is crucial. SHAP 
also helps to build trust in the ML models by making the model decisions more transparent to the 
clinicians. It is a step towards a future where AI empowers healthcare professionals in the fight against 
AD. 
We also note the directions for future work. First, Although the PyCaret library is promising in terms of 
performance, flexibility and ease of use, it is no way perfect. Second, the experiments for AD prediction 
should also be conducted in image datasets with multiclass classification. Future research can explore even 
more sophisticated XAI techniques to gain a deeper understanding of the disease and identify potential 
targets for intervention. Finally, instead of post-hoc filtering, incorporating causal knowledge helps to 
determine the cause and effect relationships.  
 
Author Contributions 
Archana Menon P conceived the original idea, implemented the frame work, performed analytical 
calculations and wrote the manuscript. Dr. R. Gunasundari was involved in planning, verifying the results, 
reviewing the manuscript and supervising the entire work. Both the authors discussed the results and 
contributed to the final manuscript. 
 
REFERENCES 
[1] Masters, C., Bateman, R., Blennow, K. et al. Alzheimer's disease. Nat Rev Dis Primers 1, 15056 (2015). 

https://doi.org/10.1038/nrdp.2015.56 
[2] Alzheimer’s and dementia,Alzheimer’s Disease and Dementia. Available at: 

https://www.alz.org/alzheimer_s_dementia (Accessed: 17 July 2023). 
[3] Alzheimer's Association National Plan Care and Support Milestone Workgroup, et al. "Report on 

milestones for care and support under the US National Plan to Address Alzheimer's 
Disease." Alzheimer's & Dementia 12.3 (2016): 334-369. 

[4] Holzinger, A.; Langs, G.; Denk, H.; Zatloukal, K.; Müller, H. Causability and explainability of artificial 
intelligence in medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1312.  

[5] Watson, David S., et al. "Clinical applications of machine learning algorithms: beyond the black 
box." Bmj 364 (2019). 

[6] Sheu RK, Pardeshi MS. A Survey on Medical Explainable AI (XAI): Recent Progress, Explainability 
Approach, Human Interaction and Scoring System. Sensors (Basel). 2022 Oct 21;22(20):8068. doi: 
10.3390/s22208068. PMID: 36298417; PMCID: PMC9609212. 

[7] K. Tejeswinee, Gracia Jacob Shomona, R. Athilakshmi, Feature Selection Techniques for Prediction of 
Neuro-Degenerative Disorders: A Case-Study with Alzheimer’s And Parkinson’s Disease, Procedia 
Computer Science, Volume 115, 2017, Pages 188-194, ISSN 1877-0509, 
https://doi.org/10.1016/j.procs.2017.09.125. 

[8] Muhammed Niyas K.P., Thiyagarajan P., Feature selection using efficient fusion of Fisher Score and 
greedy searching for Alzheimer’s classification, Journal of King Saud University - Computer and 
Information Sciences, Volume 34, Issue 8, Part A, 2022, Pages 4993-5006, ISSN 1319-1578, 
https://doi.org/10.1016/j.jksuci.2020.12.009. 

[9] Alshamlan H, Omar S, Aljurayyad R, Alabduljabbar R. Identifying Effective Feature Selection Methods 
for Alzheimer's Disease Biomarker Gene Detection Using Machine Learning. Diagnostics (Basel). 
2023 May 17;13(10):1771. doi: 10.3390/diagnostics13101771. PMID: 37238255; PMCID: 
PMC10217314. 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 6, 2024

 
 

                                                                                 816                                                      Archana Menon P et al 798-817 

[10] M. Sudharsan, G. Thailambal, Alzheimer's disease prediction using machine learning techniques and 
principal component analysis (PCA), Materials Today: Proceedings, Volume 81, Part 2, 2023, Pages 
182-190, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2021.03.061 

[11] Grueso, S., Viejo-Sobera, R. Machine learning methods for predicting progression from mild cognitive 
impairment to Alzheimer’s disease dementia: a systematic review. Alz Res Therapy 13, 162 (2021). 
https://doi.org/10.1186/s13195-021-00900-w 

[12] Kavitha C, Mani V, Srividhya SR, Khalaf OI and Tavera Romero CA (2022) Early-Stage Alzheimer's 
Disease Prediction Using Machine Learning Models. Front. Public Health 10:853294. doi: 
10.3389/fpubh.2022.853294 

[13] Bogdanovic, B., Eftimov, T. & Simjanoska, M. In-depth insights into Alzheimer’s disease by using 
explainable machine learning approach. Sci Rep 12, 6508 (2022). https://doi.org/10.1038/s41598-
022-10202-2 

[14] Kasula, Balaram Yadav. "A Machine Learning Approach for Differential Diagnosis and Prognostic 
Prediction in Alzheimer's Disease." International Journal of Sustainable Development in Computing 
Science [Online], 5.4 (2023): 1-8. Web. 10 Jun. 2024. 

[15] Uddin, K.M.M., Alam, M.J., Jannat-E-Anawar et al. A Novel Approach Utilizing Machine Learning for 
the Early Diagnosis of Alzheimer's Disease. Biomedical Materials & Devices 1, 882–898 (2023). 
https://doi.org/10.1007/s44174-023-00078-9 

[16] Li Q, Yang X, Xu J, Guo Y, He X, Hu H, Lyu T, Marra D, Miller A, Smith G, DeKosky S, Boyce RD, Schliep 
K, Shenkman E, Maraganore D, Wu Y, Bian J. Early prediction of Alzheimer's disease and related 
dementias using real-world electronic health records. Alzheimers Dement. 2023 Aug;19(8):3506-
3518. doi: 10.1002/alz.12967. Epub 2023 Feb 23. PMID: 36815661; PMCID: PMC10976442. 

[17] Raffaella Franciotti, Davide Nardini, Mirella Russo, Marco Onofrj, Stefano L. Sensi, Comparison of 
Machine Learning-based Approaches to Predict the Conversion to Alzheimer’s Disease from Mild 
Cognitive Impairment, Neuroscience, Volume 514, 2023, Pages 143-152, ISSN 0306-4522, 
https://doi.org/10.1016/j.neuroscience.2023.01.029 . 

[18] El-Sappagh, S., Alonso, J.M., Islam, S.M.R. et al. A multilayer multimodal detection and prediction 
model based on explainable artificial intelligence for Alzheimer’s disease. Sci Rep 11, 2660 (2021). 
https://doi.org/10.1038/s41598-021-82098-3 

[19] Bogdanovic, B., Eftimov, T. & Simjanoska, M. In-depth insights into Alzheimer’s disease by using 
explainable machine learning approach. Sci Rep 12, 6508 (2022). https://doi.org/10.1038/s41598-
022-10202-2 

[20] Ruengchaijatuporn, N., Chatnuntawech, I., Teerapittayanon, S. et al. An explainable self-attention 
deep neural network for detecting mild cognitive impairment using multi-input digital drawing 
tasks. Alz Res Therapy 14, 111 (2022). https://doi.org/10.1186/s13195-022-01043-2 

[21] Chun MY, Park CJ, Kim J, Jeong JH, Jang H, Kim K, Seo SW. Prediction of conversion to dementia using 
interpretable machine learning in patients with amnestic mild cognitive impairment. Front Aging 
Neurosci. 2022 Aug 5;14:898940. doi: 10.3389/fnagi.2022.898940. PMID: 35992586; PMCID: 
PMC9389270. 

[22] Jahan, S., Saif Adib, M.R., Mahmud, M., Kaiser, M.S. (2023). Comparison Between Explainable AI 
Algorithms for Alzheimer’s Disease Prediction Using EfficientNet Models. In: Liu, F., Zhang, Y., Kuai, 
H., Stephen, E.P., Wang, H. (eds) Brain Informatics. BI 2023. Lecture Notes in Computer Science(), vol 
13974. Springer, Cham. https://doi.org/10.1007/978-3-031-43075-6_31 

[23] Rye, I., Vik, A., Kocinski, M. et al. Predicting conversion to Alzheimer’s disease in individuals with 
Mild Cognitive Impairment using clinically transferable features. Sci Rep 12, 15566 (2022). 
https://doi.org/10.1038/s41598-022-18805-5 

[24] Hu M, Yu Y, He F, Su Y, Zhang K, Liu X, Liu P, Liu Y, Peng G, Luo B. Classification and Interpretability of 
Mild Cognitive Impairment Based on Resting-State Functional Magnetic Resonance and Ensemble 
Learning. Comput Intell Neurosci. 2022 Aug 19;2022:2535954. doi: 10.1155/2022/2535954. PMID: 
36035823; PMCID: PMC9417789 

[25] Choi, Hyunchul, et al. “Cognitive Impairment Prediction Model Using AutoML and Lifelog.” Journal of 

the Korea Society of Computer and Information, vol. 28, no. 11, 한국컴퓨터정보학회, Nov. 2023, pp. 

53–63, doi:10.9708/JKSCI.2023.28.11.053 
[26] Moez Ali, PyCaret: An open source, low-code machine learning library in Python, PyCaret 3.0 - Docs. 

(n.d.), 2020. https://pycaret.gitbook.io/docs/#citation.  
[27] Antoniadi, Anna Markella, et al. "Current challenges and future opportunities for XAI in machine 

learning-based clinical decision support systems: a systematic review." Applied Sciences 11.11 
(2021): 5088. 

https://doi.org/10.1016/j.matpr.2021.03.061
https://doi.org/10.1007/978-3-031-43075-6_31


Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 6, 2024

 
 

                                                                                 817                                                      Archana Menon P et al 798-817 

[28] Opening the blackbox:- Azodi, Christina B., Jiliang Tang, and Shin-Han Shiu. "Opening the black box: 
interpretable machine learning for geneticists." Trends in genetics 36.6 (2020): 442-455. 

[29] Molnar, C. (2022). Interpretable Machine Learning: A Guide for Making Black Box Models 
Explainable (2nd ed.). christophm.github.io/interpretable-ml-book/ 

[30] Shapley, L. S.. "17. A Value for n-Person Games". Contributions to the Theory of Games (AM-28), 
Volume II, edited by Harold William Kuhn and Albert William Tucker, Princeton: Princeton 
University Press, 1953, pp. 307-318. https://doi.org/10.1515/9781400881970-018 

[31] Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 
31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 
December 2017; pp. 4765–4774 

[32] Kaushalya Dissanayake, Md Gapar Md Johar, "Comparative Study on Heart Disease Prediction Using 
Feature Selection Techniques on Classification Algorithms", Applied Computational Intelligence and 
Soft Computing, vol. 2021, Article ID 5581806, 17 pages, 2021. 
https://doi.org/10.1155/2021/5581806 

[33] Shardlow, Matthew. "An analysis of feature selection techniques." The University of 
Manchester 1.2016 (2016): 1-7. 

[34] Ang JC, Mirzal A, Haron H, Hamed HN. Supervised, Unsupervised, and Semi-Supervised Feature 
Selection: A Review on Gene Selection. IEEE/ACM Trans Comput Biol Bioinform. 2016 Sep-
Oct;13(5):971-989. doi: 10.1109/TCBB.2015.2478454. Epub 2015 Sep 14. PMID: 26390495. 

[35] Marcus DS, Fotenos AF, Csernansky JG, Morris JC, Buckner RL. Open access series of imaging studies: 
longitudinal MRI data in nondemented and demented older adults. J Cogn Neurosci. 2010 
Dec;22(12):2677-84. doi: 10.1162/jocn.2009.21407. PMID: 19929323; PMCID: PMC2895005. 

 
 


