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ABSTRACT 
Microgrids are not a prospective future solution but an existing paradigm, ensuring the energy sufficiency 
through decentralized and resilient power generating systems. Considering the techno-economical 
benefits, SPV is widely used in the present day as decentralised power sources. Along with the energy 
security, SPV contributes the system complexity in the active distribution system, which adds further 
complexities in the protection systems to identify the faults. To address this complex issue, this paper 
proposes a new technique for fault detection in a solar-integrated distribution grid system that combines 
Modified Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (MCEEMDAN) for 
feature extraction and sophisticated machine learning classifiers for classification. The Modified 
MCEEMDAN approach successfully decomposes fault signals into intrinsic mode functions (IMFs), 
allowing for the extraction of entropy-based features that represent the nonlinear properties of these 
signals. Several entropy measures, including Approximate Entropy and Sample Entropy, were 
investigated to improve fault classification performance. The findings show that the XGBoost classifier 
beat other models, obtaining an accuracy of 97.5% using approximation entropy features, demonstrating 
its ability to detect flaws. This study emphasizes the importance of feature selection in optimizing 
computing efficiency and model performance. The results provide important insights into the integration 
of signal processing methods and machine learning for improved problem identification in electrical 
systems, opening the way for future advances in the reliability and efficiency of power distribution 
networks. The entire analysis is done on a IEEE-33 bus distribution system modelled in Matlab Simulink. 
 
Keywords: Deep learning, Fault identification, Modified Complete Ensemble Empirical Mode 
Decomposition with Adaptive Noise (MCEEMDAN), SPV, Active Distribution Network. 
 
1. INTRODUCTION 
The distribution network structure is becoming increasingly complex, and it is inevitably impacted by a 
variety of defects in real-world operating conditions [1]. The most critical mission in distribution network 
troubleshooting technology is the identification and detection of faults whenever a failure occurs. Fault 
classification algorithms have garnered considerable attention in recent years. Nevertheless, these 
classification algorithms are primarily employed on transmission lines. The malfunction classification 
methods for the transmission system cannot be directly applied to the distribution system due to the 
distinct operation schemes of the electric systems. The neutral grounding mode, fault resistance, and 
other factors can all affect the characteristics of the electric signal. These factors contribute to the 
complexity of defect identification in the distribution network. The distribution network's fault 
identification is of immense importance in terms of the reliability of the power supply, the safety and 
stable operation of the system, and the time required to recover from a failure. 
Power outages in transmission lines are mostly caused by unanticipated and irregular faults[2]. Power 
system problems are inevitable and must not be disregarded. Fault detection and classification are crucial 
for ensuring the stability of both traditional and intelligent power grids[3]. Transmission line faults and 
equipment breakdowns may result in substantial interruptions to the power system, resulting in power 
outages and equipment damage. Hence, it is crucial to ensure precise and prompt identification and 
categorization of faults in order to maintain the stability and safety of the smart grid[4]. A smart grid is a 
sophisticated and ever-changing system that necessitates ongoing surveillance and upkeep to guarantee 
dependability and effectiveness. Fault detection and categorization are essential activities in the 
operation and administration of smart grids. According to [5], most of the problems in the transmission 
part of the power system occur in transmission lines. Short-circuit faults are common and considered the 
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most severe form, presenting significant dangers to transmission lines[6]. These dangers include 
reducing the operational lifetime of components, increasing power losses, causing cable heat, and 
damaging insulators. 
Over the last two decades, there has been a swift advancement in numerous domains related to 
identifying, classifying, and detecting power system malfunctions. Growing numbers of researchers are 
now able to conduct studies with a high breadth and depth because of advancements in signal processing 
techniques, artificial intelligence and machine learning, global positioning system (GPS), and 
communications, which have allowed the boundaries of conventional fault protection techniques to be 
stretched. Precisely identifying and categorising transmission line defects can lower the cost of replacing 
power lines and improve the likelihood of power grid safety. Customers experience power outages due to 
transmission line failures [7]. 
 
1.1 Overview of Fault Identification and classification 
Transmission line faults can result in a variety of disruptions, including overheating, mechanical stress, 
and unbalanced power flow. Furthermore, reliable fault detection and classification (FDC) is crucial to 
maintaining grid system stability. While the process of recovering from failure phases is contingent upon 
human intervention and the detection and classification method employed to pinpoint the specific type of 
failure and its location within the network. This is important because a quick and accurate FDC 
guarantees prompt repair, increases the likelihood of separating problematic phases from the 
transmission system, and improves the transient stability and power quality of the interconnected power 
network. Many algorithms are used to classify faults in transmission lines. Two popular approaches are 
artificial intelligence (AI) and machine learning (ML), which are chosen for their ability to learn quickly, 
produce accurate results, and identify patterns in input training data [8]. Historical fault classification 
methods are classified as well-known and contemporary methods. The popular methods include fuzzy 
logic-based approaches for fault classification, commonly referred to as hybrid methods, and Wavelet 
Transform (WT) based analysis combined with Artificial Neural Networks.  
In the last several decades, solar energy has become a well-liked solution for energy shortages and a 
competitive substitute for fossil fuels. This ecologically benign and renewable energy source offers a 
limitless and sustainable supply of power [9]. Consequently, solar energy has the capacity to supply all of 
the world's energy needs. It is mainly dependent on the weather, though, and any changes in that regard 
could have a big effect on its output power[10].  
Artificial neural networks (ANNs) have gained attention for their ability to learn complex functions 
through nonlinear transformations. Deep learning methods have made them effective in tasks like voice 
and picture recognition, and fault detection. Convolutional neural networks (CNNs) are a supervised 
learning approach that can be tailored to address complex issues in exploratory geophysics due to their 
high architectural flexibility. CNNs are particularly useful for identifying seismic faces of interest, which 
are unique edges in seismic data. CNNs have shown remarkable effectiveness in detecting faults, but most 
studies have used hierarchical or shallow neural networks. Further research is needed to fully explore the 
potential of deep neural networks for defect diagnostics.  
The feature extraction of deep learning is characterized by a remarkable performance in the areas of 
image classification, speech recognition, and machine translation, which is achieved through the use of 
multiple levels of abstraction[11]. Deep Neural Networks (DNNs) can automatically extract spatial and 
temporal features from input data without any traditional signal processing stages by utilizing special 
layers and supervised training of multiple samples. This allows them to complete tasks such as 
classification and regression. There is no doubt that the efficacy of features extracted through DNNs is 
significantly superior to that achieved through artificial feature engineering, as evidenced by the 
performance of deep learning in speech recognition and image classification. 
 
1.2 Relevance of Deep Learning in Power Systems 
Faults in power transmission lines may arise due to a variety of factors, including short circuits, tree or 
animal contact, lightning strikes, earthquakes, conductor clashing, and equipment corrosion. Some are 
under human influence, while others are naturally occurring. When protective relays identify a defect, 
they must clear it promptly [12]. While defects may develop for a variety of causes, locating and analysing 
them remains a key problem. Reducing post-fault analysis time allows for speedier system maintenance 
and restoration, perhaps leading to lower failure costs. To improve power system dependability, it's 
crucial to quickly and efficiently classify problem types and locations.  advocated fault-location 
observability and a novel approach for transmission networks using synchronised phasor measuring 
units (PMUs). developed deterministic and stochastic methods for locating faults in power systems using 
a low number of PMUs [13]. 
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Fault type and location categorization involves three steps: (1) importing transient fault data, (2) pre-
processing using suitable methods, and (3) analysing the data. To convert three-phase voltage and 
current fault signals, pre-data processing methods such as Transform, wavelet transform, and Fast 
Fourier Transform (FFT) may be utilised. Fault data may be analysed using several methods, including 
machine learning and waveform-based correlation coefficients. Several academics have published articles 
on using machine learning and deep neural networks to detect and locate power system issues.Fault 
techniques are classified into model-based, knowledge-based, and data-driven approaches, which rely on 
numerical data analysis and interpretation rather than personal observation or experience [14].  
Data-driven strategies base ideas and solutions on verifiable facts, rather than assumptions or personal 
experience. Various machine learning algorithms, including decision trees, support vector machines, and 
k-nearest neighbours (k-NN), have been suggested for fault classification[15]. The study found that 
processing high-dimensional data requires computational complexity and reduction strategies for 
reconstruction. However, reducing data dimensions might lead to information loss and undermine the 
accuracy of outcomes. In Ref [16], the authors suggest a way to extract PV cell attributes from thermal 
images and compare the results using the SVM algorithm. In [17] the author presents a strategy for 
distinguishing PQ disturbances from pure sinusoidal signals using time-domain descriptor fusion (FTDD). 
The recommended technique is evaluated using multiclass SVM and Naive Bayes (NB) classifiers. [18] 
developed the Modified Multi-Class Support Vector Machines (MMC-SVM) approach to categorise open-
circuit faults in power distribution networks. Simulation findings indicate the usefulness and resilience of 
the proposed machine learning model [19]. 
In [20], a classification technique is suggested that utilizes convolutional neural networks (CNNs) with 
varying sample frequencies. The use of wavelet transform for extracting fault harmonics in the input of 
CNNs has been observed. However, the accuracy of the classification judgements and the results are 
affected by data generalization difficulties, as mentioned in[21]. Deep neural networks use convolutional 
neural networks (CNNs) as a powerful technique for image categorization. CNNs are also employed as 
fundamental components of ResNet and VGG16. Convolutional Neural Networks (CNNs) have the 
capability to categories extensive picture collections collected from ImageNet. Various convolutional 
layers, pooling layers, and fully connected layers are used to extract the fundamental characteristics of 
the data from the pictures and categories them via supervised learning. 
 
1.3 Background 
1.3.1 MCEEMDAN 
Complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) is noise assisted EMD 
technique. It decomposes Non stationary signals (Time Series Data) into Intrinsic mode 
functions(IMF).CEEMDAN is an EMD algorithm that provides an exact reconstruction of the original signal 
and a better spectral separation of the IMFs. While the EMD and EEMD are unable to accurately identify 
the various oscillatory modes that are present in the signal. Consequently, the issue of mode blending 
arises. As a result, an IMF inaccurately displays various physical processes that are depicted in the mode. 
The CEEMDAN algorithm has several disadvantages, including the presence of residual noise in the 
decomposed modes and the decomposition of the provided signal into spurious modes [23]. The modified 
CEEMDAN (MCEEMDAN) scheme has been devised to address this issue.The MCEEMDAN accurately finds 
oscillatory modes in non-linear and non-stationary signals. The CEEMDAN and MCEEMDAN algorithms 
are identical, save for noise reduction capabilities. The MCEEMDAN approach effectively addresses 
spurious modes and residual noise issues. This approach extracts many intrinsic mode functions (IMFs) 
and selects the most suited one for further analysis to determine fault index. 
 
1.3.1.a. Partial Mean of Multi-Scale Permutation Entropy 
Bandt and Pompe introduced the concept of permutation entropy (PE) as a means to quantify the time 
series complexity. Probabilistic analysis (PE) may evaluate signals by comparing neighboring data, 
without taking into account the particular value of the signal [24][25]. The method has the benefits of 
straightforward procedures, consistent resilience, and considerable practicality, enabling the 
measurement of nonlinear signals. One may succinctly outline the procedural stages of PE as follows: 

For a time -series { ( ), 1,2,..., }x i i N  of length N, the phase space reconstruction can be described as 

(1) { (1), (1 ),...., (1 ( 1) )}X x x x m     (1) 

( ) { ( ), ( ),...., ( ( 1) )}X i x i x i x i m     (2) 
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Figure 1. Process of coarse-grained time series with s = 3. 

 

( ( 1) ) { ( ( 1) ),X N m x N m      ( ( 2) ),...., ( )}x N m x N  (3) 

where m and τ represent the embedding dimension and time delay, respectively. In the paper, the m is set 
to 5, and the τ is set to 1. 
The m-dimension space vector in reconstructed X(i) can be rearranged in ascending order as 

1 2( ( 1) ) ( ( 1) ) ...x i j x i j       ( ( 1) )mx i j    (4) 

Where 1 2, .... mj j j denote the index value in the sequence. If there existed 

1 2( ( 1) ) ( ( 1) ),i ix i j c i j       the permutation could be arranged according to j value size 

determination. The sequence can be ordered as 
1 2 1 2( ( 1) ) ( ( 1) ) . ( )i i i ix i j x i j j j x i        when 

1 2i ij j . This can let vector X(i) get a symbol sequence S(g) as follows: 

1 2( ) [ , ...., ]mS g j j j                                                                                                                                      (4.1) 

Where 1 , !. ( ) !g k k m S g m   ) is one of the m! symbol sequences (m different symbols have m! 

kinds of arranging form). 
According to the Shannon entropy, the PE for the time series can be defined as 

1

( ) 1
k

p g g

g

H m P n P


  (5) 

Where ( 1,2,..., )gP g k  can denote the probability of each symbol sequence presence. As 

0 1 ( !),pH n m  the PE can be normalised as 

( )

1 ( !)

p

p

H m
H

n m
 (6) 

Where 0 1,pH  The power spectral density (PE) may characterize the nuanced fluctuations in the 

signal. The use of multi-scale permutation entropy (MPE) may enhance the precision of signal analysis. It 
represents an enhancement compared to the PE. In the computation of Mean Percentage Error (MPE), the 
coarse-graining of time series is the most critical step. 

( 1) 1

1
( ) ( ),1

js
s

i j s

N
y j x i j

s S  

   (7) 

where s is the scale factor, and ys(j) is the sequence with a coarse grain size. Figure 1 outlines the 
procedure for computing the coarse-grained time series when s is equal to 3. The Mean Precondition 
Error (MPE) may be defined by computing the Precondition Error (PE) of each coarse-grained sequence 
 

( )( , , , ) ( , , )sMPE x s m PE y m  (8) 

The partial mean of multi-scale permutation entropy can be calculated to enhance the MPE's integrated 
analysis capabilities. The mean value and variation tendency of a sequence can be described using the 

partial mean. Under various scales, the PE of a time series can be transformed into a sequence PEM  as 

[ (1), (2),...., ( )]PE PE PE PEM M M M s (9) 

The skewness Ske can be expressed as 

3( )PEm PEn
ke

PEt

M M
S

M


 (10) 
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Where,
PEmM  is the mean value, PEnM  is the median level, and 

PEtM is the standard deviation. The 

partial mean of multi-scale permutation entropy 
MMPEP can be defined as 

(1 / 3\)MMPE ke PEmP S M  (11) 

The original sequence is more regular as the value of 
MMPEP  decreases. The complexity degree of the time 

series can be determined by modifying the
MMPEP . Several experiments have demonstrated that the

MMPEP  can effectively differentiate between normal and aberrant signals when it is set to 0.8∼0.9. This 

paper establishes a threshold value of 0.85.  
 
1.3.2 IEEE -33 Bus system 
The IEEE 33 Bus system is a standardised test case used in power engineering research to assess the 
performance and dependability of distribution networks. It is made up of 33 buses (nodes) and 32 radial 
lines (branches) that represent a typical distribution network. Baran and Wu suggested a 33-bus 
distribution system in 1989.  It is often used to evaluate many electrical engineering issues, including load 
flow analysis, fault analysis, and network optimisation. The system is distinguished by its single feeder 
and radial architecture, which means that all lines originate from a single substation and stretch outward, 
like a tree structure. The IEEE 33-Bus radial distribution system is used to test and evaluate different 
kinds of DG units. This system is made up of 33 buses and 32 lines, with a voltage of 12.66kV, a load 
capacity of 3.715MW, and 2.3MVar[26]. The distributed generating unit utilised represents 30% of the 
total load. The DG unit voltage is 12.66kV, and the system's lower and higher voltages are set at 0. 95p.u 
and 1.05p.u. This will allow us to see how the different DG units affect the electricity system's load ability 
margin. To provide a clear assessment of the various DG units' effects on the distribution system, the 
research will be conducted with a set optimum location and DG penetration level. The DG unit location 
was decided using an optimisation approach with a set penetration level (30% of the total load). This 
arrangement serves as a critical benchmark for academics and engineers developing and testing new 
algorithms, methods, and technologies to improve the efficiency, stability, and resilience of electrical 
distribution networks.  
 
2. LITERATURE REVIEW 
In [27]the authors discussed the development and deployment of Machine Learning (ML)-based 
algorithms for fault classification and detection in electrical distribution systems. The methodology uses 
higher computational accuracy than traditional algorithms. The parameters for fault detection include 
fundamental frequency, fault voltage, and current components. The Wavelet Decomposition technique is 
used to break down transient signals during faults. The performance of the algorithms is investigated 
using an IEEE 33 bus system and faults generated in Matlab/Simulink. K Nearest Neighbour (KNN), 
Decision Tree (DT), and Support Vector Machine (SVM) methodologies are used. The results show 
exceptional accuracy. 
Study in [28] proposed a fault diagnostic model for distribution systems based on deep graph learning, 
considering the physical structure of the power network as a significant constraint during training. This 
model enhanced information perception and resistance to abnormal data input and unknown application 
conditions. A spatiotemporal convolutional block enhances waveform feature extraction, making it more 
effective in dealing with fault waveform changes and spatial effects. A multi-task learning framework is 
constructed for fault location and fault type analysis, improving performance and generalization ability. 
The model's effectiveness is verified using IEEE 33-bus and IEEE 37-bus test systems, and its anti-
interference and generalization performance is evaluated under different fault conditions, topological 
changes, and interference factors. Experimental results showed that the proposed model outperforms 
other state-of-the-art methods. 
The authors in [29]applied deep learning, specifically the Faster R-CNN model, to improve the efficiency 
and reliability of drone imagery-based inspections for component identification and defect detection of 
transmission lines. The research found that deep learning is highly effective in identifying defects in high-
voltage transmission line components, with a recognition speed of 0.17 seconds per image and a 
recognition rate of 96.8% for pressure-equalizing rings. 
The paper presented a data-driven fault location identification and types classification application using 
continuous wavelet transformation and convolutional neural networks optimized through Bayesian 
optimization in [30]. The application can identify short-circuit faults and classify them into eleven types. 
Its intrinsic models understand spatial characteristics and convert them into frequency domain temporal 
measurements, increasing network visibility in real-time. Simulations using synthetic data replicated fault 
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occurrence scenarios under noise conditions and load variability, achieving an accuracy of 91.4% for fault 
detection, 93.77% for correct branch identification, and 94.93% for fault type classification. 
The study in [31] utilized transmission line voltage and current data to identify and classify power 
transmission issues, employing Artificial Neural Network (ANN) and Convolutional Neural Network 
(CNN) models to evaluate their accuracy. This study uses Kaggle voltage and current data to locate power 
transmission issues. Data is analysed and fed into two Deep Learning (DL) networks: an ANN and a CNN. 
These models identify defects using input data. The CNN exceeds the ANN in accuracy. This shows that 
CNNs handle voltage and current data better for power transmission line problem detection and 
classification. 
The article examined an adaptive scheme that accurately detects volatile changes in micro grids under 
normal and fault conditions in [33]. The scheme uses a two-level SVM classifier model to identify mode of 
operation, variations in renewable energy generation, random addition of EV charging load, and fault 
occurrence. The model uses RMS values of three-phase voltage and current measurements as data inputs. 
The efficacy of the scheme is tested on an IEEE 9-bus micro grid test bed using simulation experiments 
and real-time experiments on hardware-in-loop simulators, OPAL-RT, and Raspberry Pi microcontrollers. 
 
2.1 Deep Learning Approaches in Fault Identification 
[34]focuses on to detect and classify defects in electrical distribution networks using deep learning 
techniques. It considers fault voltage, fundamental frequency, and current components for fault 
identification and categorization. An IEEE 33 bus system is used to model distribution networks, and fault 
conditions are created in simulation. Discrete Wavelet Transform (DWT) and Deep Learning (DL) 
approaches are used to detect and classify faults in distribution systems. The proposed Deep Neural 
Network (DNN) model has high accuracy in recognizing and classifying faults. Simulations are conducted 
using MATLAB software. 
A reinforcement learning algorithm has been developed to address the challenge of managing voltage 
profile in distribution systems due to complex network configurations[35]. The algorithm involves 
placing distributed generation units at different locations in IEEE 33 bus radial distribution networks, 
resulting in a 69% reduction in active power losses. The method uses a convolutional neural network, a 
long short-term memory network, and attention mechanisms to detect and classify faults. The algorithm's 
performance is compared with other deep learning techniques and the time taken for fault detection is 
determined. 
The study in [36]aims to enhance fault detection, diagnosis, identification, and location in large-scale 
multi-machine power systems by introducing novel Deep Learning models for fault region identification, 
fault type classification, and fault location prediction. Three new Deep Recurrent Neural Networks 
(DRNN) models with Long Short-Term Memory (LSTM) are used to analyse transient data from pre- and 
post-fault cycles. The proposed algorithms show superior performance in fault detection, classification, 
and location prediction, achieving high accuracy and robustness compared to existing techniques. 
The electrical power system is complex and susceptible to faults, especially in the secondary distribution 
network. Various methods have been explored for fault detection and classification, including 
mathematical approaches, expert systems, and artificial neural networks integrated with SCADA and PMU 
systems. However, there is limited research on the application of deep learning approaches in fault 
detection and classification. This study compared several deep learning approaches, revealing that 
Recurrent Neural Network (RNN) is the most efficient in detecting and classifying faults in the electrical 
secondary distribution network, with accuracy increasing with complexity as depict in [37]. 
 
2.2 Modified CEEMDAN and its Applications in Fault Detection 
The data mining method for fault diagnosis in distribution networks is limited due to the unbalanced fault 
sample problem. A fault identification method for distribution networks is proposed by combining 
modified complete ensemble empirical mode decomposition with adaptive noise (MCEEMDAN) and 
conditional generative adversarial network (CGAN)[38]. The MCEEMDAN decomposes the electric signal 
into intrinsic mode functions, transforming the raw time-domain signal into a two-dimensional gray-level 
image. The fault gray image is labelled and put into CGAN to generate new samples for data augmentation. 
The proposed method effectively learns distribution characteristics and improves fault recognition 
accuracy. It has good stability, fast convergence speed, and high precision, making it suitable for fault 
identification in distribution networks. 
A method for single-phase grounding fault line selection in small current grounding systems is proposed 
using modified CEEMDAN and convolutional neural network. The algorithm uses random forest and 
multiscale permutation entropy to modify the Complete Ensemble Empirical Mode Decomposition 
Adaptive Noise algorithm (CEEMDAN)[39]. The zero-sequence current of each line is decomposed into 
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intrinsic mode functions using the modified CEEMDAN (MCEEMDAN) algorithm. The colour images are 
fused into the GoogLeNet network, and fault line selection is realized as a probability output using the 
Softmax function. The method has strong feature extraction ability, high recognition accuracy, and good 
anti-noise and robustness. 
A novel fault diagnosis method for rolling bearings is proposed, based on wavelet thresholding denoising, 
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) energy entropy, and 
particle swarm optimization least-squares support vector machine (PSO-LSSVM). This method reduces 
noise-induced interference in vibration signals, obtains multiple groups of intrinsic mode functions 
(IMFs), and selects feature vectors by combining correlation coefficient and variance contribution rate. 
The energy entropy of the selected IMF component is then used in the PSO-LSSVM classifier for fault 
diagnosis and classification. The method achieves a 100% identification rate for various fault states of 
rolling bearings as shown in [40]. 
The paper proposed a fault diagnosis approach for gas pressure regulators, which is crucial for optimizing 
safety and reliability in natural gas pipeline networks[41]. The approach combines complete ensemble 
empirical mode decomposition with adaptive noise (CEEMDAN) and fuzzy c-means (FCM) clustering to 
classify three typical faults of gas regulators. The CEEMDAN approach decomposes intrinsic mode 
functions (IMFs), establishes feature vectors using the Hilbert marginal spectrum (HMS) of IMFs, and uses 
cluster centers and feature clustering algorithm to distinguish fault types. The experimental results 
showed high performance, with membership degrees optimized to be within 0.9 to 1. 
 
2.3 Research Gap 
Despite significantadvances in fault identification and classification by using different deep learning 
models in electrical distribution systems essential insufficient studies still exist. While some studied have 
incorporated convolutional neural networks(CNN), Graph learning, Recurrent Neural Network(RNN) to 
enhance fault detection, classification, limited research has focused on integrating modified CEEMDAN 
with deep learning for fault identification. Moreover, the challenge of handling noise, variability in fault 
conditions and complex signals in micro grids with distributed solar energy has not thoroughly 
addressed.Although some studieshave done in CEEMDAN and its modifications for fault identification 
they have not thoroughly examined and they do not fully utilize the potential deep learning models such 
as CNN and LSTM inconjunction with signal decomposition with CEEMDAN to improve accuracy and 
robustness in complex micro grid environments.  Additionally, there is a need for further research to 
explore the Modified CEEMDAN with advanced deep learning frameworks to enhance fault identification 
and classification in solar integrated micro grids. 
 
3. METHODOLOGY 
The main contribution of this study is the proposal of entropy-based features from the time-frequency (T-
F) decomposed fault signals, which aid in accurately quantifying and capturing the faults' properties. 
These features are lead to precise recognition performance of a deep learning model. In this paper, we 
looked at the T-F signal analysis tool Modified MCEEMDAN, which helps us pinpoint frequency rhythms 
important to the defects by breaking down the fault signals into mode functions. The Modified 
MCEEMDAN, an enhanced form of EMD, effectively addresses mode mixing difficulties and noisy IMFs.  
The popular deep learning models are used to categorize the entropy characteristics and choose a model 
that greatly aids in properly finding flaws. 
 
A. Selection of relevant mode function for fault prediction 
The T-F analysis of fault signals using Modified MCEEMDAN methodologies has proved its fault prediction 
capability, as evidenced by its mode functions, i.e., IMFs, in the preceding background section we have 
briefy discussed about the Modified MCEEMDAN method which is for feature extraction or the fault and 
no fault classes, as shown in Fig 2. It is worth observing that the faults of interest exhibit various 
oscillatory characteristics in terms of their amplitudes and frequencies, as shown in Fig. 11(a-e). Thus, the 
mode functions carry the discriminating characteristics of each fault. But MCEEMDAN was used to 
decompose all of the mode functions are irrelevant to their fault signals. As a result, choosing relevant 
mode functions while eliminating unnecessary ones is critical for reducing the suggested system's 
computing cost. We used a periodogram-based technique to determine the number of mode functions 
that represent the bulk of the frequency rhythms associated with fault signals 
 
B. Entropy based feature extraction using mode function  
In the previous section, we demonstrated the suitability of Modified MCEEMDAN decomposition for fault 
analysis of the signals. We have employed entropy features to further localize the discriminating 
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characteristics of the T-F decomposed fault signals (mode functions), which assist us in capturing the 
non-linear characteristics of the mode functions. Entropy is a widely used non-linear time series metric 
that is utilized in numerous applications to analyse fault signals. This research examined the entropy 
computations of the T-F decomposed time-series fault signals using Modified MCEEMDAN. The results of 
this investigation may assist in resolving the mode-mixing and noise issues associated with conventional 
EMD-IMFs. Over the mode functions, various forms of entropies have been examined, including 
approximate, sample, and permutation entropy. The equations that are detailed below are used to 
calculate the entropy metrics for each mode function. 
 
 Approximate Entropy (ApEn) 
ApEn is a regularity statistic that quantifies the irregularity of time series variations for mode functions 
(IMFs).  
Mathematically, the following equation is used to compute it:  

1

( )
( , , ) 1

( )

m

m

X r
ApEn m r N n

X r

 
  

 
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Xm   and Xm+1are, respectively, the subsequence means of lengths m and m+1. 
 
 Sample Entropy (SaEn) 
SaEn measures the time series complexity of the IMFs. If template vectors of lengths m and m+1, 
respectively, are represented by the counters Xm and Xm+1, which are calculated as follows. 
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 
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We choose m=2 and r=0.2 to compute the ApEn and SaEn of IMFs, as per previous work. The suggested 
strategy improved performance with these settings. 
 
C. Analysis of the discriminating capabilities of the entropy features 
Before moving on to the fault classification task, it is critical to demonstrate the discriminating skills 
(ability to detect distinct faults) of the various suggested entropy characteristics (ApEn and SaEn) in the 
Modified MCEEMDAN domain. This section compares the ability of various entropies to pinpoint fault-
relevant features in other fault signal patterns. We generated the F-score to assess the discriminating 
capability of the entropy characteristics of various signal patterns. The F-score for a channel profile may 
be defined using its entropy feature vector. 
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Where X
−

w
(c)

   and Xw
−

 are the fault category's and other fault categories' average attributes. X
−

k,w
(c)

 represent 

the characteristics of the kth fault signal sample of the cth category, and nc indicates the total number of 
samples in the cth category. The (F-score) is calculated for entropy characteristics to examine if the 
predicted values of a quantitative variable change across feature types. The characteristics with the 
highest F-score show strong discrimination ability and may be used to categorize problems. Additionally, 
we used the post-hoc analysis of the ANOVA test to carry out the statistical analysis, as shown in Fig. 8. 
 
D. Classification using Machine learning model 
The next step after constructing the feature matrix is to classify the faults. We investigated well-known 
deep learning techniques for identifying entropy features, including probabilistic, neural network, 
distance, and ensemble models. The findings demonstrate that ensemble-based classifiers perform well, 
with XGBoost beating all of the investigated models as reported in the results section. 
 
E. Tools & Techniques 
In this study TensorFlow/Keras used to train the MCEEMDAN model. Scikit-learn is utilised for data 
preparation, which includes cleaning, normalization, and noise reduction, as well as producing evaluation 
metrics like accuracy, precision, recall, and F1-score. Pandas and NumPy are crucial for data processing, 
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huge dataset management, and integration with other tools like as TensorFlow and Scikit-learn. 
Visualization tools like as Matplotlib and Seaborn help in model performance analysis by generating 
confusion matrices and ROC curves.  
To integrate Solar into an IEEE-33 bus system for load flow analysis, utilize MATLAB/SIMULINK software.  
The IEEE 33-bus distribution system's bus voltage and branch loss are analysed using the MATLAB 
programming environment. According to one source, this program used to simulate and evaluate the 
performance of a PV-integrated IEEE-33 bus test system. This complete technique guarantees reliable 
model assessment and fault identification in the solar-integrated IEEE 33-bus system. 
 
F. Library facilities 

 Utilise TensorFlow/Keras to construct and train the model. 
 Scikit-learn is used for data pre-processing and evaluating metrics. 
 Pandas and NumPy are utilised for the purpose of manipulating and analysing data. 
 Used MATLAB2023a version to build the model. 

 
4. RESULTS 
4.1 Confusion Matrices 

 

 
Figure 2. Confusion metrics of  XgBoost 

 

 
Figure 3.Confusion metrics of ANN 
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Figure 4.Confusion metrics of LS-SVM 

 

 
Figure 5.Confusion metrics of CNN 

 
The confusion matrices for the XGBoost,LS-SVM, and CNN, ANN models demonstrate their performance in 
fault detection for the solar-integrated IEEE 33-bus system. The XGBoost model outperforms the other 
models in terms of true positive and false negative rates, showing that it is more accurate at identifying 
flaws. The XGBoost matrix performs moderately, with somewhat greater false negatives, indicating worse 
accuracy and recall compared to its modified equivalent. The LS-SVM and CNN, ANN models perform 
comparably poorly, as shown by their confusion matrices with larger false positives and false negatives, 
indicating that these models are less successful at detecting flaws in non-stationary and non-linear data. 
Overall, the Modified XGBoost surpasses the other models by providing higher fault detection accuracy 
and resilience in this setting. 
 
4.2 ROC CURVES 
The Receiver Operating Characteristic (ROC) curve is a graphical diagram that shows the diagnostic 
capabilities of a binary classifier when its discrimination threshold is changed. The ROCcurve is created 
by calculating the true positive rate (TPR) and false positive rate (FPR) for each conceivable threshold (in 
practice, at predetermined intervals) and then plotting TPR vs FPR. 
 

 
Figure 6. ROC curve of XGBoost 
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Figure 7. ROC curve of ANN 

 

 
Figure 8. ROC curve of LS-SVM 

 

 
Figure 9. ROC curve of CNN 

 
The ROC curve study shows that the XGBoost model surpasses the other classifiers in defect 
identification, with an AUC (Area Under the Curve) of 0.96, indicating superior discriminative capacity. 
ANN follows with an AUC of 0.93, demonstrating strong but slightly lesser performance than XGBoost. LS-
SVM gets an AUC of 0.90, indicating high classification capabilities but not as resilient as earlier models. 
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Finally, CNN has the lowest AUC of 0.88, showing a lesser ability to discern between fault and no-fault 
scenarios. Overall, XGBoost is the best classifier, continuously surpassing ANN, LS-SVM, and CNN in terms 
of accuracy and reliability in defect identification. 
 
4.3 Evaluation Metrics 
Evaluation metrics are critical for determining the success of machine learning models. They give 
quantitative measurements for model selection and Hyperparameter adjustment. Different tasks need 
different metrics, and knowing which one to employ is critical to properly interpreting model findings. 
 

Table 1. Evaluation Metrics of different Models 

Model Accuracy Precision Recall F1 Score 

XGBoost 0.95 0.93 0.96 0.94 
LS-SVM 0.89 0.87 0.9 0.88 
CNN 0.87 0.84 0.86 0.85 

 

 
Figure 10. Performance metrics of various models 

 
This table presents the performance metrics for the different models tested for fault classification. 
XGBoost has an excellent 95% accuracy, as well as good precision (0.93), recall (0.96), and an F1 score of 
0.94, showing that it is adept at precisely finding flaws while reducing mistakes. In comparison, the LS-
SVM model performs somewhat worse, with an accuracy of 89% and metrics for precision (0.87), recall 
(0.90), and F1 score (0.88). The CNN model has the lowest performance of the three, with an accuracy of 
87% and precision, recall, and F1 scores of 0.84, 0.86, and 0.85, respectively. These findings show 
XGBoost as the preferred model owing to its improved ability to balance accuracy and precision in defect 
identification. 
 

Table 2. Entropy Table for various faulty conditions 
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fault 3 039 95 96 1 26 98 1 59 

 

 
(a)  

(b) 

 
(c)  

 
(d) 

 
(e) 

Figure 11 (a-e). Various IMFs obtained after CEEMDAN for five fault categories of a single participant 
show variations in the amplitudes. 

 
The above table and graphs presents the Approximate Entropy (ApEn) and Sample Entropy (SaEn) values 
for voltage and current across various fault conditions, including AG (single-phase), AB (phase-to-phase), 
ABC (three-phase), ABCG (three-phase-to-ground), and a 'no fault' scenario. For voltages, ApEn values 
range from 0.012 to 0.0147, indicating lower complexity under fault conditions, while SaEn shows slightly 
higher variability, particularly in the A-phase. Current measurements reflect even lower entropy values, 
suggesting less complexity in fault-induced current signals. The 'no fault' condition displays higher 
entropy values in both voltage and current, signifying a more complex signal structure during normal 
operation. These results demonstrate that entropy measures, particularly when derived using the 
Modified MCEEMDAN method, effectively capture and distinguish between fault and no-fault conditions, 
providing valuable insights for fault detection and system diagnostics. 
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Table 3. Reported accuracy (%) of the MCEEMDAN approach with All features with various classifiers. 

Classifiers ApEn SaEn 

Naive Bayes 64.5 67.3 

ANN 69.6 66.5 
KNN 70.3 72.9 
ELM 73.89 74.2 

LS-SVM 78.8 81.1 

DT 81.3 84.4 
RF 83.2 84.2 

Adaboost 85.6 86.5 

XGBoost 97.5 95.61 

 

 
Figure 12. Reported accuracy (%) of the MCEEMDAN method using All-Channel features and several 

classifiers 
 
This table compares the performance of several classifiers based on two entropy features: approximate 
entropy (ApEn) and sample entropy (SaEn). Each classifier's accuracy is expressed as a percentage. 
Notably, XGBoost performs very well, obtaining the greatest accuracy of 97.5% with ApEn and 95.61% 
with SaEn, suggesting a significant capacity to identify faults efficiently. Other classifiers, such as 
Adaboost and Random Forest (RF), exhibit competitive results; nonetheless, XGBoost surpasses all 
models investigated in this research. 
 
4.4 Discussion  
The findings of this investigation demonstrate the XGBoost classifier's strong performance, especially 
when combined with features acquired using the Modified CEEMDAN approach. By successfully 
decomposing fault signals into intrinsic mode functions, Modified CEEMDAN improved the extraction of 
entropy-based characteristics that are critical for discriminating between various fault states. The high 
accuracy of 97.5% attained by XGBoost, particularly with approximation entropy features, demonstrates 
the model's ability to use these properly chosen features to improve fault classification.  
The comparison research found that, although other classifiers such as LS-SVM and ANN performed well, 
they fell behind XGBoost, which consistently shown superior accuracy and recall. This emphasizes the 
significance of integrating sophisticated feature extraction techniques with strong classification 
algorithms in improving fault detection accuracy in complicated systems like as the solar-integrated IEEE 
33-bus system. The research underlines the need of further exploring feature extraction approaches and 
machine learning models to improve problem detection and ensure dependable performance under 
changing operating settings. 
 
5. CONCLUSION 
Finally, this work proved the efficacy of integrating the Modified CEEMDAN feature extraction approach 
with sophisticated machine learning classifiers for defect detection in a solar-integrated IEEE 33-bus 
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system. The Modified CEEMDAN technique established a strong foundation for decomposing fault signals 
into intrinsic mode functions, allowing for the extraction of entropy-based characteristics that accurately 
define fault signals' nonlinear and dynamic properties.  
The results showed that the XGBoost classifier beat other models, with an outstanding 97.5% accuracy 
using approximation entropy features. This performance demonstrates the classifier's capacity to harness 
the discriminative potential of the retrieved features, resulting in enhanced fault classification skills. The 
comparison research revealed that, although other classifiers, such as LS-SVM and ANN, performed 
satisfactorily, they lacked the accuracy and dependability of XGBoost.  
Furthermore, the research emphasized the relevance of feature selection in reducing computing costs 
while improving model performance. The use of entropy measures, such as Approximate Entropy and 
Sample Entropy, proven to be helpful in capturing the intricacies of fault signals, allowing for more 
accurate detection and categorization.  
Overall, this study provides important insights into the integration of modern signal processing methods 
with machine learning approaches for defect detection in electrical systems. It emphasizes the possibility 
for future breakthroughs in this subject by investigating more feature extraction techniques and 
classification algorithms. Future research might look at the applicability of this framework to various 
kinds of electrical systems and failure scenarios, thereby improving the reliability and efficiency of power 
distribution networks. 
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