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Abstract

The main goal of this paper is to investigate the stability problems for
the following quadratic functional equation

f(x+y+z)+f(x+y−z)+f(x−y+z)+f(−x+y+z) = 4f(x)+4f(y)+4f(z)

on an unbounded restricted domain. As a consequence, we can apply the
obtained results to obtain some asymptotic behaviors of that equation in
normed spaces. Moreover, we introduce a new inequality that character-
izes the inner product spaces.

1 Introduction
In 1940, Stanisław Marcin Ulam proposed the following problem [25]:

Let (G1, .) be a group and let (G2, ∗) be a metric group with
the metric d(., .). Given a real number ε > 0, does there exist a
real number δ > 0 such that if a mapping h:G1 → G2 satisfies the
inequality d(h(x.y), h(x) ∗h(y)) ≤ δ for all x, y ∈ G1, then there is a
homomorphism H:G1 → G2 with d(h(x), H(x)) ≤ ε for all x ∈ G1?

This problem gave rise to what we now call Ulam’s stability of functional equa-
tions.

In a later year, an affirmative answer to the Ulam stability problem was
given by D. H. Hyers for Banach spaces (see [13]). Several generalizations of
this result are discussed. T. Aoki [5] for additive maps and by T.M. Rassias
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[19] for linear maps considering an unbounded Cauchy difference. P. Găvruţă
[12] provided a further generalization of the Rassias’ theorem by using a general
control function. During the last decades, the stability problems of several
functional equations have been extensively investigated by a number of authors
(see, [1, 19, 20, 21, 23]).

Throughout the paper, let (G,+) be an Abelian group and Y be a linear
space on the field K ∈ {R,C}.

Let us note that a mapping q:G → Y is called quadratic if q satisfies the
well-known quadratic functional equation

q(x+ y) + q(x− y) = 2q(x) + 2q(y), x, y ∈ G. (1.1)

Quadratic functional equation (1.1) was used by Jordan and von Neumann
[14] to characterize inner product spaces. Several other functional equations
are used for this characterization. Maurice Fréchet in [11] obtained a charac-
terization of the inner product spaces among normed linear spaces by using the
following functional equation

f(x+ y + z) + f(x) + f(y) + f(z) = f(x+ y) + f(y + z) + f(x+ z).

Theorem 1.1. [11] Let (X, ∥.∥) be a normed linear space. Then X is an inner
product space with respect to ∥.∥ if and only if

∥x+ y + z∥2+∥x∥2+∥y∥2+∥z∥2 = ∥x+ y∥2+∥x+ z∥2+∥y + z∥2 , x, y, z ∈ X.

Motivated by this idea, we deal with the following functional equation:

f(x+ y + z) + f(x+ y − z) + f(x− y + z) + f(−x+ y + z)

= 4f(x) + 4f(y) + 4f(z). (1.2)

This equation was first introduced and solved by S. Jung [15]. In fact, he
proved the following theorem

Theorem 1.2 ([15], Theorem 2.1.). Let X and Y be vector spaces over fields of
characteristic different from 2, respectively. If f :X → Y satisfies the functional
equations

f(x+ y) + f(x− y) = 2f(x) + 2f(y), (1.3)
f(x− y − z) + f(x) + f(y) + f(z) = f(x− y) + f(y + z) + f(z − x) (1.4)

and

f(x+ y + z) + f(x+ y − z) + f(x− y + z) + f(−x+ y + z)

= 4f(x) + 4f(y) + 4f(z), (1.5)

then each of the equations (1.3), (1.4), and (1.5) is equivalent to the other.
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Recently, EL-Fassi et al. [9] treated the Ulam-type stability of (1.2) in the
class of functions from an Abelian group into a Banach space. The method
used in [9, Theorem 4] based on a fixed point theorem [7, Theorem 1] and
the argument presented is all on the whole set. This aspect of the domain is
very important. However if we consider a subset of the domain which does not
present all the possibilities when we have on the whole set, is the stability of
the equation still valid? Many others studies this question about the stability
on restricted domains of some functional equations (see [24, 22]).

Inspired by the works of Hyers [13], Brzdęk [8] and Park [17], and by a direct
method, we investigate the stability of (1.2) on a restricted unbounded domain.
Then, using these results, we study an asymptotic behavior of this functional
equation. We also obtain a new criterion on characterization of inner product
spaces by involving our functional equation. Before we state it, let us recall the
definitions of quasi-norm and quasi-normed Abelian group.

We recall some basic facts concerning quasi-norm and quasi-normed Abelian
group.

Definition 1.3. [4] Let (G,+) be an Abelian group. A function ρ:G → R is
called a quasi-norm on G if:

1. 0 ≤ ρ(x) ≤ +∞ for all x ∈ G (positive definite);

2. ρ(x) = ρ(−x) for all x ∈ G (even);

3. ρ(x+ y) ≤ ρ(x) + ρ(y) for all x, y ∈ G (subadditivity);

4. ρ(0) = 0.

If ρ(x) < +∞ for all x ∈ G we say that ρ is a finite quasi-norm. The pair (G, ρ)
is called quasi-normed Abelian group if ρ is a quasi-norm on G.

A triplet (G,+, δ) is called metric Abelian group if (G,+) is an Abelian
group and δ is a translation invariant metric on G. This metric can be turned
into a quasi-norm ∥.∥δ :G → R, via ∥x∥δ = δ(x, 0) and the pair (G, ∥.∥δ) is a
quasi-normed Abelian group. For a more detailed definition of such terminology,
one can refer to [10, 18].

In this paper, assume that (G,+) be an Abelian group, Y be a linear space
on the field K ∈ {R,C}. For a given mapping f :G −→ Y , we define the function
∆f :G×G×G −→ Y by

∆f (x, y, z): = f(x+ y + z) + f(x+ y − z) + f(x− y + z)

+ f(−x+ y + z)− 4f(x)− 4f(y)− 4f(z), x, y, z ∈ G.

2 Stability in restricted domains
In this section we study the stability problem of the functional equation (1.2).
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Theorem 2.1. Let (G,+, δ) be a metric Abelian group, ∥.∥δ be the induced
quasi-norm of δ and (Y, ∥.∥) be a Banach space. Let ε ≥ 0, d > 0 be arbitrary
real numbers. Suppose that f : G→ Y is a function satisfies

∥∆f (x, y, z)∥ ≤ ε, ∥x+ y + z∥δ ≥ d. (2.1)

Then, there exists a unique quadratic function Q : G→ Y such that

∥Q(x)− f(x)∥ ≤ 5ε

8
, x ∈ G. (2.2)

Proof. Let f : G → Y be a function fulfilling (2.1). Taking x = y = z in (2.1),
we get

∥f(3x)− 9f(x)∥ ≤ ε, ∥3x∥δ ≥ d,

witch implies
∥f(3x)− 9f(x)∥ ≤ ε, ∥x∥δ ≥ d.

Therefore, ∥∥∥∥f(3n+1x)

9n+1
− f(3mx)

9m

∥∥∥∥ ≤
k=n∑
k=m

ε

9k+1
, (2.3)

for all natural numbers ; n ≥ m, and ∥x∥δ ≥ d. Therefore,
{

f(3nx)
9n

}∞

n=0
is

a Cauchy sequence for each x ∈ G with ∥x∥δ ≥ d. It is easily to infer that
the sequence

{
f(3nx)

9n

}
n

is Cauchy in the whole G. As Y is Banach space, this
Cauchy sequence is convergent. We define Q : G→ Y by

Q(x): = lim
n→+∞

f(3nx)

9n
, x ∈ G. (2.4)

For x ∈ G \ {0}, we choose N ∈ N so large that for all n ≥ N , ∥3nx∥δ ≥ d.
By (2.4), we see that

∥∆Q(x, y, z)∥ = lim
n→+∞

1

9n

∥∥∥f(3nx+ 3ny + 3nz) + f(3nx+ 3ny − 3nz)

+ f(3nx− 3ny + 3nz) + f(−3nx+ 3ny + 3nz)

− 4[f(3nx) + f(3ny) + f(3nz)]
∥∥∥

≤ lim
n→+∞

ε

9n
= 0.

Hence, Q fulfills equation (1.2) for all x ∈ G \ {0}.
Since

Q(0) = lim
n→+∞

f(0)

9n
= 0,

the function Q fulfills equation (1.2) for all x ∈ G. Since Q is a solution of
(1.2), we infer that Q is a quadratic function in G.
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Taking the limit as n→ +∞ and putting m = 0, we get from (2.3)

∥Q(x)− f(x)∥ ≤ ε

8
, ∥x∥δ ≥ d. (2.5)

Next, we extend (2.5) to the whole G. Let z ∈ G and choose ∥x∥δ ≥ ∥z∥δ+d
such that ∥y∥δ ≥ ∥z∥δ + d and ∥x+ y∥δ ≥ ∥z∥δ + d. Clearly, ∥x+ y∥δ ≥ d,
∥x+ z∥δ ≥ d and ∥x+ y + z∥δ ≥ d.Then by (2.5), we get

∥Q(x+ y + z)− f(x+ y + z)∥ ≤ ε

8
;

∥Q(x+ y − z)− f(x+ y − z)∥ ≤ ε

8
;

∥Q(x− y + z)− f(x− y + z)∥ ≤ ε

8
;

∥Q(−x+ y + z)− f(−x+ y + z)∥ ≤ ε

8
;

∥−4Q(x) + 4f(x)∥ ≤ 4ε

8
;

∥−4Q(y) + 4f(y)∥ ≤ 4ε

8
.

Adding these inequalities and applying (2.5) and (2.1), we get

∥4Q(z)− 4f(z)∥ ≤ ε+
3ε

2
.

Therefore
∥Q(z)− f(z)∥ ≤ 5ε

8
,

for z ∈ G.
It remains to prove the uniqueness of Q. Assume that Q′ : G→ Y is another

quadratic function that satisfies inequality (2.2). Then we have

∥Q(x)−Q′(x)∥ ≤ ∥Q(x)− f(x)∥+ ∥Q′(x)− f(x)∥

≤ 5ε

4
, x ∈ G,

Since Q and Q′ are quadratic, the last inequality implies that

∥Q(x)−Q′(x)∥ =
1

9n
∥Q(3nx)−Q′(3nx)∥

≤ 1

9n
× 5ε

4
, x ∈ G,n ∈ N \ {0} .

Taking the limit as n −→ ∞, we obtain Q(x) = Q′(x) for all x ∈ G. This
completes the proof.
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3 Asymptotic behavior of the equation
As a consequences, we can prove some corollaries concerning the asymptotic
behaviors of the functional equation (1.2).

Corollary 3.1. Let (G,+, δ) be a metric Abelian group, ∥.∥δ be the induced
quasi-norm of δ and (Y, ∥.∥) be a normed space. If a mapping f : G → Y
satisfies

lim sup
∥x+y+z∥δ→+∞

∆f (x, y, z) = 0, (3.1)

then f is a quadratic function on X.

Proof. Let f : G → Y be a mapping satisfies (3.1). Then, there exists a
sequence {dn}∞n=1 of positive real numbers such that

∥∆f (x, y, z)∥ ≤ 1

n
, ∥x+ y + z∥δ ≥ dn, n > 1.

Let Ỹ be the completion of Y . By Theorem 2.1, there exists a unique quadratic
function Qn : G→ Ỹ solution of (1.2) and such that

∥Qn(x)− f(x)∥ ≤ 5

8n
, x ∈ G, n > 1. (3.2)

Let l and m be integers satisfying m > l > 0. From (3.2) we obtain

∥Qm(x)− f(x)∥ ≤ 5

8m
≤ 5

8l
, x ∈ G.

Hence, the uniqueness of Qn implies that Ql = Qm holds for any l,m ∈ N.
Taking the limit as n −→ ∞ in (3.2), we infer that f is quadratic. Then the
result follows.

Using Theorem 2.1, we obtain the results.

Corollary 3.2. Let (G,+, δ) be a metric Abelian group, ∥.∥δ be the induced
quasi-norm of δ and (Y, ∥.∥) be a Banach space. Let ψ:G×G×G → [0,+∞).
If a mapping f : G→ Y satisfies

lim
∥x+y+z∥δ→+∞

ψ(x, y, z) = +∞;

lim sup
∥x+y+z∥δ→+∞

ψ(x, y, z) ∥∆f (x, y, z)∥ <∞,
(3.3)

then f is a quadratic function on G.

Proof. It follows from (3.3) that there exist constants s > 0 and R such that

ψ(x, y, z) ∥∆f (x, y, z)∥ < R, ∥x+ y + z∥δ ≥ s.

6
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Since lim
∥x+y+z∥δ→+∞

ψ(x, y, z) = +∞, then for an arbitrary ε > 0 there is M > 0

such that
ψ(x, y, z) ≥ R

ε
, ∥x+ y + z∥δ ≥M.

Then,
∥∆f (x, y, z)∥ < ε, ∥x+ y + z∥δ ≥ max {s,M} .

Let Ỹ be the completion of Y . Using theorem 2.1, there exists a unique quadratic
function Q : G→ Y solution of (1.2) and such that

∥Q(x)− f(x)∥ ≤ 5ε

8
, x ∈ G.

Since ε is arbitrary, we infer that Q(x) = f(x) for all x ∈ G.

Corollary 3.3. Let (G,+, δ) be a metric Abelian group, ∥.∥δ be the induced
quasi-norm of δ and (Y, ∥.∥) be a Banach space. Let p < 0 and λ > 0 be
arbitrary real numbers. If a mapping f : G→ Y satisfies

∥∆f (x, y, z)∥ ≤ λ ∥x+ y + z∥pδ , x, y, z ∈ G \ {0} .

Then f is a quadratic function on G \ {0}.

4 Application
Several functional equations were used to characterize inner product spaces from
normed spaces, for instance, see [14, 2, 6, 3, 16]. Quadratic functional equation
was used to characterize inner product spaces by making use the parallelogram
equality [14]:

∥x+ y∥2 + ∥x− y∥2 = 2 ∥x∥2 + 2 ∥y∥2 .

This characterization gave rise to what we now call Jordan-von Neumann char-
acterization. Other characterization is given by Fréchet in [11], he proved that
a normed space (X, ∥.∥) is an inner product space if and only if

∥x+ y + z∥2 + ∥x∥2 + ∥y∥2 + ∥z∥2 = ∥x+ y∥2

+ ∥x+ z∥2 + ∥y + z∥2 , x, y, z ∈ X.

Now, we can apply the functional equation (1.2) in a characterizations of
inner product spaces.
Let K be the field of real or complex numbers. Let (X, ∥.∥) be a normed space
over K and X0: = X \ {0}. Write

D(x, y, z) = ∥x+ y + z∥2 + ∥x+ y − z∥2 + ∥x− y + z∥2 + ∥−x+ y + z∥2

− 4 ∥x∥2 − 4 ∥y∥2 − 4 ∥z∥2 .

7
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Theorem 4.1. Let (X, ∥.∥) be a normed space over K. Suppose that

D(x, y, z) = 0, x, y, z ∈ X.

Then X is an inner product space.

Proof. Let X ̸= {0} be a normed space over K such that

∥x+ y + z∥2 + ∥x+ y − z∥2 + ∥x− y + z∥2 + ∥−x+ y + z∥2

− 4 ∥x∥2 − 4 ∥y∥2 − 4 ∥z∥2 = 0, (4.1)

for x, y, z ∈ X. Putting z = 0 in (4.1), we get

∥x+ y∥2 + ∥x+ y∥2 + ∥x− y∥2 + ∥−x+ y∥2 − 4 ∥x∥2 − 4 ∥y∥2 = 0,

for x, y ∈ X, then the Jordan-von Neumann characterization holds

∥x+ y∥2 + ∥x− y∥2 = 2 ∥x∥2 + 2 ∥y∥2 .

Consequently, X is an inner product space.

Theorem 4.2. Let (X, ∥.∥) be a normed space over K. Suppose that

sup
x,y,z∈X

|D(x, y, z)|
λ ∥x+ y + z∥p

<∞, x+ y + z ∈ X0, p < 0, λ > 0.

Then X is an inner product space.

Proof. Write f(x) = ∥x∥ for x ∈ X. From Corollary 3.3 we easily derive that f
is a quadratic function, which yields the statement.
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