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ABSTRACT 
The rapid growth of software development has brought along an increase in software defects, which can 
affect the quality, functionality, and performance of software applications. Software defects can result 
from various factors such as incomplete requirements, human errors, and the complexity of modern 
software systems. Since software development is time-consuming and costly, detecting and fixing these 
defects early is crucial. A primary method to control and reduce these defects is through software testing, 
particularly by testing each module in the software. However, manual testing alone cannot be fully 
effective in identifying defects, which is why defect prediction models have gained importance. The paper 
presents a comparative study of existing methods for software defect prediction by using various 
classification algorithms. The objective is to analyze how these algorithms perform in terms of accuracy, 
precision, recall, and other metrics when applied to software defect prediction tasks. Historical datasets, 
such as the NASA MDP (Metrics Data Program) datasets, which contain real-world defect data from NASA 
software projects, are used for training and testing these algorithms. By applying these datasets, 
researchers can evaluate the effectiveness of each algorithm in predicting defects. The proposed method, 
when compared with traditional classification algorithms, shows promising results, providing a new 
approach to improving software defect prediction. 
 
Keywords: Classifier, Confusion Matrix, Defect Prediction, Rule Mining, Software metrics, Machine 
Learning. 
 
I. INTRODUCTION 
A.Introduction to Software Defect Prediction 
Software defect prediction is a critical field in software engineering that focuses on predicting where and 
when defects are likely to occur in a software system. As software systems grow in complexity and size, 
the risk of introducing defects also increases, making it more difficult and expensive to detect and fix 
them. Defects, which may include bugs, vulnerabilities, and faults, can have serious implications for the 
functionality, security, and reliability of a software product. 
In traditional software development, software defects are identified during testing and debugging phases, 
but this approach is reactive rather than proactive. Detecting defects after they occur results in high costs 
in terms of time and resources. Moreover, defects found later in the development life cycle are more 
expensive to fix compared to those caught earlier. To mitigate this, software defect prediction (SDP) has 
emerged as an important area of research and practice. SDP involves using historical data and machine 
learning techniques to predict which parts of the software are likely to contain defects, allowing 
developers and testers to focus their efforts on these areas, ultimately leading to more efficient testing 
processes and better software quality. 
 
B. Types of Software Defect Prediction 
There are several types of SDP, depending on the goal of the prediction: 
 Within-project prediction: The prediction model is built using data from the same project in which it 

will be applied. For instance, if a team is working on a large project, they may use past versions of the 
project to predict defects in the current version. 
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 Cross-project prediction: This involves building a prediction model using data from one project and 
applying it to a different project. Cross-project prediction is challenging due to differences in coding 
standards, team structures, and project sizes, but it can be useful when historical data for a specific 
project is scarce. 

 Effort-aware defect prediction: In this approach, the model takes into account the amount of effort 
required to inspect and fix a defect. For example, if a certain code module is predicted to contain 
defects but is very large or complex; the model might prioritize it over smaller modules that are also 
predicted to have defects. 

 
C. Challenges in Software Defect Prediction 
Despite its many benefits, SDP comes with its own set of challenges: 
 Data Quality and Availability: Effective defect prediction requires high-quality data, but historical data 

is often incomplete or noisy. Missing data, incorrect defect labels, or inconsistent metrics can lead to 
inaccurate predictions. 

 Imbalanced Data: In many cases, the number of defect-prone modules is much smaller compared to 
non-defect-prone ones, creating an imbalanced dataset. This can bias the model toward predicting 
non-defect-prone modules more often, which reduces the effectiveness of the predictions. 

 Generalization Across Projects: Models trained on one project may not generalize well to other 
projects due to differences in development practices, technology stacks, or team structures. This 
makes cross-project defect prediction particularly difficult. 

 Overfitting: If a model is too complex, it may fit the training data perfectly but perform poorly on new 
data, which is known as overfitting. Balancing model complexity is crucial for building robust 
prediction models. 

 Interpretability: Some advanced machine learning models, such as deep neural networks, can make 
accurate predictions but are often difficult to interpret. Understanding why a certain module is 
predicted to be defect-prone is important for developers and testers to make informed decisions. 

 
D.Objective 
The primary objective of this research is to explore ways to enhance the prediction of software defects by 
addressing key areas of improvement. Firstly, it aims to efficiently remove noise in the dataset through 
the use of advanced filtering mechanisms, ensuring more accurate and reliable data for analysis. 
Secondly, the research focuses on developing a novel algorithm specifically designed to predict software 
defects with greater precision. By utilizing efficient classification algorithms, the study seeks to improve 
the accuracy of predictions, ensuring that the models are both robust and effective. Furthermore, it 
emphasizes the importance of employing appropriate metrics and evaluation methods to assess the 
performance of these algorithms. Another key goal is to lower the overall cost of software development 
by optimizing defect prediction and reducing the time spent tracking defects, thereby minimizing the 
effort required for identifying and fixing issues. Through these combined efforts, the research aims to 
make significant strides in improving the efficiency and effectiveness of software defect prediction 
processes. 
 
II. LITERATURE SURVEY 
Canaparo, M et. al.,(2022) demonstrated how combining multiple machine learning algorithms can help 
reduce the over fitting problem inherent in individual models. They developed a hybrid framework 
combining random forests and gradient boosting machines (GBMs), which improved predictive 
performance on the NASA MDP datasets. 
Abid, F., & Khan, I. A et. al.,(2022) tackled this problem by applying techniques such as SMOTE (Synthetic 
Minority Over-sampling Technique) and cost-sensitive learning, ensuring better model training on the 
imbalanced dataset. One of the major challenges in using NASA MDP datasets is the issue of class 
imbalance, where defective software modules are much fewer compared to non-defective ones. 
Zhang, Y., & Liu, J. et. al.,(2022) investigated how models trained on one dataset could be adapted for use 
on different NASA MDP datasets. They proposed a transfer learning framework where a model pre-
trained on one project was fine-tuned for a different project, yielding better generalization. 
Choudhary, R., & Gupta, K. et. al., (2023) introduced a hybrid approach combining genetic algorithms 
(GAs) with traditional feature selection methods to optimize feature sets from the NASA MDP datasets. 
Their approach helped reduce the complexity of models while maintaining high prediction accuracy. 
Verma, S., & Singh, A. et. al., (2023) proposed a hybrid model integrating multiple classifiers, including 
SVM, random forests, and Machine learning, to achieve higher prediction accuracy and robustness across 
different NASA projects. 
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Lee, D., & Chen, Y. et. al., (2023) emphasized the importance of data pre-processing steps such as 
normalization, outlier detection, and missing data imputation. By cleaning and preparing the NASA MDP 
datasets, they achieved better model generalization and stability across different software projects. 
Patel, R., & Mehta, N. et.al., (2023) used transfer learning to apply pre-trained models from one NASA 
project to another, leveraging shared patterns between projects to improve defect prediction accuracy. 
Similarly, domain adaptation techniques were applied to adjust the models to new datasets with limited 
labelled data. 
Fernandes, P., & Garcia, R. et al.,(2024) proposed a hybrid feature selection method that combined mutual 
information with genetic algorithms (GAs) to optimize feature sets from the NASA MDP datasets. 
Meanwhile, explain ability in machine learning models has seen advancements through SHAP (SHapley 
Additive explanations) values, which help explain the contribution of each feature to model predictions 
 
III. PROPOSED SCHEME 
A. Dataset 
The NASA Metrics Data Program (MDP) dataset is a widely used collection of software project data that 
was made available by NASA for research in software engineering, particularly in the area of software 
defect prediction. This dataset has become a standard benchmark for evaluating machine learning and 
data mining techniques aimed at predicting software defects. The NASA MDP dataset includes 
information about various NASA software projects, providing a rich source of metrics that can be used to 
assess and predict the likelihood of defects in software modules. 
Common Projects in NASA MDP Dataset: 

 CM1: 
o Represents a NASA spacecraft instrument. 
o Contains 498 instances and 21 attributes (metrics). 

 KC1: 
o Data from a storage management system written in C++. 
o Contains 2,108 instances and 21 attributes. 

 PC1: 
o Data from a flight software system. 
o Contains 1,109 instances and 21 attributes. 

 JM1: 
o Data from a real-time predictive ground system written in C. 
o Contains 10,885 instances and 21 attributes. 

 PC4: 
o Software written for flight simulations. 
o Contains 1,458 instances and 37 attributes. 

 
B. Overview 
Before developing a prediction model for software defects, it is crucial to first select the appropriate 
learning algorithm for building the model. The predictive performance of the chosen algorithm must be 
evaluated, particularly in terms of its ability to generalize to future data. Unfortunately, this step is often 
neglected, leading to unreliable prediction models. To address these issues, we propose a structured 
framework for software defect prediction that provides guidance in avoiding potential pitfalls. This 
framework is composed of two key components: 1) Scheme evaluation, and 2) Defect prediction. 
The details contained in Figure 3.1. During the evaluation phase of the program, the results of the 
historical data of the different learning programs are evaluated to determine whether the learning 
program is not good enough to predict the purpose or to select the best group of competing programs.In 
Figure 3.1, we can see that the historical data is divided into two parts: 
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Figure 3.1: Proposed framework 

 
Based on the initial performance report, the learning scheme is selected to build the prediction model for 
forecasting software defects. In Figure 3.1, it is shown that all historical data are used to create the 
forecast, which differs from the first stage as it helps enhance the model's generalization ability. Once a 
new software component is forecasted, it can be used to predict its likelihood of containing defects. 
MGF presented a controlled experiment [5], where they applied a naive Bayesian classifier with a log 
filter and attribute selection to the data, using appropriate datasets for evaluation. They employed two 
sets of data: one for training, which can be considered historical data, and the other for testing, treated as 
new data. This method classifies attributes without providing labels for the new data during the attribute 
selection process, improving the practical applicability of the model. 
 
C. Scheme Evaluation 
The evaluation process plays a critical role in the framework for software defect prediction. At this stage, 
different learning algorithms are assessed and used to build models that are then tested on their 
performance. The primary question in this evaluation process is how to divide historical data into 
training and testing sets. As previously mentioned, the test data must be independent of the model's 
configuration to ensure an unbiased assessment of the model’s ability to predict new data. Cross-
validation is typically used to estimate the accuracy of the prediction model. Circular cross-validation 
involves partitioning the dataset into complementary subsets, where one subset is used for training and 
another for validation. To reduce variability, multiple rounds of cross-validation are performed using 
different data partitions, with the results validated over two rounds. 
In our framework, we estimate the performance of each prediction model by first splitting each dataset 
into two parts: 60% of the data is used for training, and the remaining 40% is reserved for testing. To 
ensure reliable statistical results and minimize the impact of random variation, each experiment is 
repeated multiple times (M times), with each iteration using different splits of the data. Consequently, a 
total of M * N models are built during the evaluation period (where N represents the number of datasets), 
and M * N performance results are obtained for each learning algorithm. 
For each round, after splitting the data into training and test sets, both the training data and learning 
algorithm (S) are used to build a model. The learning scheme involves several steps, including data 
preprocessing, attribute selection, and applying the learning algorithm: 
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The training data undergoes preprocessing to handle issues like outliers, missing values, and 
discrepancies in attribute values. 
In this framework, we used the NASA preprocessing tool to prepare the data for analysis. 
 Attribute Selector: 

We considered the MDP dataset, evaluating all attributes provided by NASA for their relevance in 
predicting software defects. 
 
D. Algorithm 
Data: Historical Data Set 
Result: The mean performance values 
Step 1: M=12 :No of Data Set 
Step 2:  i=1; 
Step 3: while i<=M do 
Step 4: Read Historical Data Set D[i]; 
Step 5: Split Data set Intances using % split; 
Step 6: Train[i]=60% of D; % Training Data; 
Step 7:Learning(Train[i],scheme); 
Step 8: Test Data=D[i]-Train[i];% Test Data; 
Step 9: Result=TestClassi_er(Test[i],Learner); 
Step 10: end 
 
E.Difference between proposed work 
To summarize the key differences between our framework and others: 
 Our approach involves selecting all components of the learning pipeline, including the learning 

algorithm, attribute selector, and data preprocessing unit, rather than focusing on just one aspect. 
 We utilize a tailored mechanism to evaluate the performance of the data architecture, specifically 

using the NASA MDP dataset [9]. 
 We adopt a 60%/40% split for the training and test datasets, ensuring a balanced and effective 

evaluation of the prediction model. 
 
F.Performance Measurement 
Based on the confusion matrix given in used by many researchers, such as the measured yield, [14], [5]. 
Table 3.1 shows the confusion matrix for the problem of two kinds of values with positive and negative 
classes. 
 

Table 3.1 Confusion Matrix 
 Predicted Class 
 
Actual Class 

 Positive Negative 
Positive True Positive False Negative 
Negative False Positive True Negative 

 
The proposed program software defects are based on the accuracy of the prediction, 
Sensitivity, Specificity, Accuracy defined as: 

Accuracy=
TP+TN

TP+TN+FP+FN
 

Sensitivity= 
TP

TP+FN
 

Specificity = 
TN

FP+TN
 

 
IV. RESULTS AND DISCUSSION 
This section presents simulation results generated using the MATLAB software tool to implement and 
compile the classification algorithms. The proposed approach is further compared with an appropriate 
scheme. Based on the highest precision values, we selected one ranking algorithm out of eight 
classification algorithms. All evaluation metrics are analyzed, and the results are compared using various 
performance measurement parameters. 
 
A. Accuracy 
From the precision table 4.1, we can see different algorithms that allow different precision in different 
datasets. But the average yield is almost the same. Storage management software (KC1-3) proposed 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 6, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 633                                        S. S. Prasanna Vengatesan et al 628-634 

algorithm provides a better precision value. For the C programming language (MW1) database software 
only part of the application of higher precision values. 
 

Table 4.1 Accuracy 
Methods NB SVM DT RF Proposed 

CM1 83.94 87.68 89.13 86.23 89.13 

JM1 81.28 82.02 81.57 81.42 83.04 

KC1 83.05 86.87 84.84 84.84 87.91 

KC3 77.5 71.25 75 76.25 84.8 

MC1 99.34 99.27 99.25 99.22 99.34 

MC2 66 66.67 56.86 56.86 69.23 

MW1 79.25 77.36 85.85 86.79 89.14 

PC1 88.82 92.11 92.43 89.14 89.62 

PC2 94.29 99.05 99.37 99.21 99.37 

PC3 84.38 84.67 80.22 82.89 84.02 

PC4 87.14 91.79 90.18 90.36 92.27 

PC5 96.56 96.93 97.01 97.28 97.28 

 

 
Figure 4.1 Comparison of performance evaluation with proposed work 

 
V. CONCLUSION 
In this research, we explored the use of various machine learning algorithms for software defect 
prediction, including Support Vector Machine (SVM), Naive Bayes (NB), Decision Trees (DT), Random 
Forest (RF), and a proposed hybrid algorithm. The results of this study demonstrate that the proposed 
hybrid algorithm offers a significant improvement over traditional machine learning algorithms like SVM, 
NB, DT, and RF for software defect prediction. By integrating the strengths of multiple classification 
methods, the hybrid model provides higher accuracy, improved defect detection rates, and better overall 
performance. This makes it a valuable tool for software quality assurance, helping developers and testers 
identify defects earlier in the development cycle, thereby reducing costs and improving software 
reliability. In the future, further enhancements could be made to the hybrid algorithm by incorporating 
additional machine learning techniques, such as deep learning or neural networks, to handle even more 
complex datasets. Additionally, exploring other preprocessing and feature selection methods could 
further improve the performance of the model. Testing the hybrid algorithm on a broader range of 
software projects and domains would also help generalize the findings and ensure its effectiveness across 
different types of software systems. 
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