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Abstract

The Extended Jacobi Elliptic Function Technique (EJET) is a powerful
technique for finding the solutions for traveling waves form coming from
Non-Linear Waveguides (NLWs). As a result, solitary and shock-wave
profiles are obtained simultaneously with corresponding amplitudes and
speeds by this method for three types of nonlinear wave equations. A
class of nonlinear wave equations of particular interest in mathematical
physics have been used to investigate the legality and credibility of this
technique. A short script is considered a symbolic software package that
calculates traveling wave solutions in exact form.
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1 Introduction

Nonlinearity is a mesmerizing component of nature, with nonlinear wave phe-
nomena appearing in one way or another in nearly all scientific and engineering
fields such as physics (Plasma and Fluid), Ocean Engineering, Chemical Dy-
namics, Geochemistry and mathematical biology (Population Dynamics) [[1]-
[5]] .The nonlinear equations appear in different scenarios in daily real-life sit-
uations and very difficult to solve it [[6]-[8]]. Manny method are used to find
the solutions (solitary and shock-wave solution) of nonlinear wave phenomena
like Tanh-Coth Method [[5],[9]], Expansion method [[10]-[13]] the decomposition
method with Integral transformation [[14]-[16]] and so on.
The development of the present paper is as follows. In Section 2, we have outline
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of EJET for solving NLW. In Section-3 (Application 3.1), we apply this Tech-
nique to the second order nonlinear partial differential equations (SONLPDE).
And also applied in Section 4 (Application 3.2) K.G. equation and In Section
5 (Application 3.3) Population Dynamics equation. In section 6 discussion and
numerical Sketch and in section 6 result and conclusions.

2 Outline of Extended Jacobi Elliptic Function
Technique

We now present a brief strategy of the technique. Given non-linear wave equa-
tion

< (v, vt, vx, vtt, vxx....) = 0 (2.1)

can be converted to an ordinary differential equation (ODE)

P
(
v, v′, v′

′
, v′
′′
....
)

= 0 (2.2)

upon using a wave variable z = α (x− ct)where α and c are wave number and
wave speed respectively. Introducing a new independent variable

v(x, t) = v (α(x− ct)) = v(z)

By the Jacobi elliptic function expansion method, v (z) can be expressed as a
finite series in the form of Jacobi elliptic functions[[10],[17]-[18]] ,

u (z) =

n∑
i=0

λi(ψ (z))
i

(2.3)

is prepared and its highest degree is O {ψ (z)} = n. where

ψ = ψ (z)

satisfies the eq.(2.1) the following auxiliary equation:

∂

∂z
(ψ (z)) = ψ′ (z) = κ

√
pψ4(z) + q ψ2 (z) + r (2.4)

Where κ = ±1 and p, q and r are constants. It holds for ψ (z) as

∂2

∂z2
(ψ (z)) = ψ′

′
= 2pψ3(z) + q ψ(z)

∂3

∂z3
(ψ (z)) = ψ′

′′
=
(
6pψ2(z) + q

)
ψ′(z)

∂4

∂z4
(ψ (z)) = ψ′

′′′
(z) = 24p2ψ5(z) + 20p q ψ3(z) +

(
12pr + q2

)
ψ(z)

∂5

∂z5
(ψ (z)) = ψ′

′′′′
(z) =

(
120p2ψ4(z) + 60p q ψ2(z) + 12pr + q2

)
ψ′(z)

...


(2.5)
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we present many closed solutions for eq.(2.4) . In fact, these solutions as
ψ (z) = Jacobi elliptic functions, can be casted to hypothesis for more solu-
tions eq.(2.1).sn (ξ) = sn (ξ,m), dn (ξ) = dn (ξ,m)and cn (ξ) = cn (ξ,m)are the
Jacobi elliptic function with modulus m, where 0 < m < 1. These functions are
considerable the resulting formulas:

sn2 (ξ) + cn2 (ξ) = 1, dn2 (ξ) +m2sn2 (ξ) = 1
sn (ξ) = 1

ns(ξ) , cn (ξ) = 1
nc(ξ) , dn (ξ) = 1

nd(ξ)

cs (ξ) = sn(ξ)
cn(ξ) , ds (ξ) = dn(ξ)

sn(ξ) , sd (ξ) = ns(ξ)
dn(ξ)

sn′ (ξ) = d(sn(ξ))
dξ = cn (ξ) dn (ξ),dn′ (ξ) = d(dn(ξ))

dξ −m2cn (ξ) sn (ξ),

cn′ (ξ) = d(cn(ξ))
dξ − dn (ξ) sn (ξ)

when m→ 1 ; These functions convert to hyperbolic functions as follows:

sn (ξ)→ tanh (ξ), {cn (ξ) , dn (ξ)} → sech (ξ),
{sc (ξ) , sd (ξ)} → sinh (ξ),{cd (ξ) , dc (ξ)} → 1

{ds (ξ) , cs (ξ)} → cos ech (ξ),{nc (ξ) , nd (ξ)} → cosh (ξ),{ns (ξ)} → coth (ξ)

when m→ 0 These functions convert to trigonometric functions as follows:

{sn (ξ) , sd (ξ)} → sin (ξ), {cn (ξ) , cd (ξ)} → cos (ξ),
{sc (ξ)} → tan (ξ),{dn (ξ) , nd (ξ)} → 1

{ns (ξ) , ds (ξ)} → Cosec (ξ),{cs (ξ)} → cot (ξ){nc (ξ) , dc (ξ)} → Sec (ξ)

Its balancing the highest order derivative term and the nonlinear term and find
the value of n in eq. (2.3).

3 Application -3.1

We consider the second order nonlinear partial differential equations with combi-
nation Kortewegde Vries (KdV) Equation and BenjaminBonaMahony equation
(BBM) Equation of two famous and fundamental nonlinear wave equations.
This is as

θt + a θx + θθx + b2θx x x − c2θx x t = 0 (3.1)

Where θ = θ(x, t) unknow wave function with space variable x and time vari-
able t. a, b and c are arbitrary real constant. If a = 0, c = 0 then eq. (3.1)
is Kortewegde Vries (KdV) Equation, this is one of the most famous non-linear
wave equations, it was derived in fluid mechanics to describe shallow water
waves in a rectangular channel [[1],[28]]. If b = 0 then eq. (3.1) is Benjamin-
BonaMahony equation (BBM) Equation, also called regularized long-wave equa-
tion (RLWE), this serves as an approximate model in studying the dynamics of
small-amplitude surface water waves propagating unidirectionally [[1]]. Suppose
that the travelling wave solutions for eq. (3.1) are of the forms as follows

θ (x, t) = θ (z) = θ (k(x− ωt)

3
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where k and ω area constant, put in eq. (3.1) then

k (a− ω) θ′ + k θ θ′ + k3
(
b2 + c2ω

)
θ′
′′

= 0

Integral one time, take constant zero

k (a− ω) θ +
k2

2
θ2 + k3

(
b2 + c2ω

)
θ′
′

= 0 (3.2)

Balancing θ′
′

with θ2 in eq. (3.2) gives 2n = n+ 2 i.e.,n = 2, then

θ (z) =
2∑
i=0

λi(ψ (z))
i

=λ0 + λ1 ψ (z) + λ2 (ψ (z))
2

= λ0 + λ1 ψ + λ2 ψ
2

θ′
′
(z) = λ1 ψ

′′ + 2λ2
{
ψ′ 2 + ψ ψ′

′}
Put these values in eq. (3.2) with eq. (2.5)

(a− ω)
(
λ0 + λ1 ψ + λ2 ψ

2
)

+
k2

2

(
λ20 + λ21 ψ

2 + λ22 ψ
2 + 2λ0λ1 ψ + 2λ1λ2 ψ

3 + 2λ0λ2 ψ
2
)

+ k3
(
b2 + c2ω

) {
2λ2R+ λ1 q ψ + 2λ2q ψ

2 + ψ3 (2λ1p+ 2λ2q) + ψ46λ2p
}

= 0
(3.3)

equating all terms with the powers in ψ , and setting each of the obtained
coefficients for ψ to zero, yields the following set of algebraic equations for
λ0, λ1, λ2, k, ω, a, b and c

ψ0: λ0k (a− ω) +
k2λ2

0

2 + 2λ2 r k
3
(
b2 + c2ω

)
= 0

ψ1: λ1k (a− ω) + k2λ0λ1

2 + λ1 q k
3
(
b2 + c2ω

)
= 0

ψ2: λ2k (a− ω) +
k2(λ2

1+2λ0λ2)
2 + 2λ2 q k

3
(
b2 + c2ω

)
= 0

ψ3: 2λ2λ1 + k3
(
b2 + c2ω

)
(2λ1p+ 2λ2q) = 0

ψ4: λ22 + 6λ2pk
3
(
b2 + c2ω

)
= 0

One obtains solution

λ0 = −k
2(b2+c2ω)q+(a−ω)

k , λ1 = k2
(
b2 + c2ω

)√
−12p q

λ2 = −6k3
(
b2 + c2ω

)
p

then

θ (z) = −
k2
(
b2 + c2ω

)
q + (a− ω)

k

+
{
k2
(
b2 + c2ω

)√
−12p q

}
ψ(z)

−
{

6k3
(
b2 + c2ω

)
p
}

(ψ(z) )
2

We choose p q and r from [[17],[18]], such that
Solution -1 p : m2; q : −

(
1 +m2

)
then ψ(z) = sn(z) thus

4

369

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 3, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Ram Dayal Pankaj 366-376



θ (z) = −k
2(b2+c2ω)(1+m2)−(a−ω)

k +
{
k2
(
b2 + c2ω

)√
12m2 (1 +m2)

}
sn(z)−{

6k3
(
b2 + c2ω

)
m2
}

(sn(z) )
2

Solution -2 p : −m2 , q :
(
2m2 − 1

)
, then ψ(z) = cn(z) thus

θ (z) = −k
2(b2+c2ω)(2m2−1)+(a−ω)

k +
{
k2
(
b2 + c2ω

)√
12m2 (2m2 − 1)

}
cn(z)

+
{

6k3
(
b2 + c2ω

)
m2
}

(cn(z) )
2

Solution -3 p : − 1
4 , q :

(
1+m2

2

)
, r :

(
1−m2

2

)2
, then ψ(z) = mcn(z) ±

dn(z) thus

θ (z) = −k
2(b2+c2ω)(1+m2)+2(a−ω)

2k

+

{
k2
(
b2 + c2ω

)√
3
(
1+m2

2

)}
(mcn(z) ± dn(z))

+

{
3k3(b2+c2ω)

2

}
(mcn(z) ± dn(z))

2

Solution -4 p : m2

4 , q :
(
m2−2

2

)
, then ψ(z) = sn(z) + i cn(z) thus

θ (z) = −k
2(b2+c2ω)(m2−2)+2(a−ω)

2k

+

{
k2
(
b2 + c2ω

)√
3m2

(
2−m2

2

)}
{sn(z)± i cn(z)}

-

{
3m2k3(b2+c2ω)

2

}
(sn(z)± i cn(z))

2

4 Application -3.2

We consider nonlinear KleinGordon (NKG) [[19]-[20]]. The Klein-Gordon equa-
tions play a significant role in solid state physics, plasma physics, nonlinear
optics and quantum field theory

θtt − θxx + θ + β|θ|2θ = 0 (4.1)

the travelling wave solutions for Eq. (4.1) are of the forms as follows:

θ (x, t) = θ (z) ei(γ (ωx−t)) = θ (k(x− ωt) ei(γ (ωx−t))

where k and ω area constant, put in eq. (2.1) then(
k2ω2 − k2

)
θ′
′
+
{
γ2
(
ω2 − 1

)
+ 1
}
θ + βθ3 = 0 (4.2)

Balancing θ′
′

with θ3 in eq. (4.2) gives 3n = n+ 2 i.e.,n = 1, then

θ (z) =
1∑
i=0

λi(ψ (z))
i

=λ0 + λ1 ψ (z) = λ0 + λ1 ψ

5
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Put these values in eq. (4.2)

θ′
′
(z) = λ1 ψ

′′

Using eq. (2.5) and equating all terms with the powers in ψ , and setting each
of the obtained coefficients for ψ to zero, yields set of algebraic equations for
λ0, λ1k, ω and γ,
One obtains solution

λ20 = −k
2(ω2−1)q+{γ2(ω2−1)+1}

3β , λ21 = − 2k2(ω2−1)p
β

Then

θ (z) =
√
−k

2(ω2−1)q+{γ2(ω2−1)+1}
3β +

{√
− 2k2(ω2−1)p

β

}
ψ(z)

We choose p, q and r from [[17],[18]], such that
Solution -2.1 p : m2 , q : −

(
1 +m2

)
, then ψ(z) = sn(z) thus

θ (z) =



√
−{γ

2 (ω2 − 1) + 1} − k2 (ω2 − 1) (1 +m2)

3β

+

{√
−2k2 (ω2 − 1)m2

β

}
sn (k(x− ωt))


ei(γ (ωx−t))

Solution -2.2 p : −m2 , q :
(
2m2 − 1

)
, then ψ(z) = cn(z) thus

θ (z) =



√
−k

2 (ω2 − 1) (2m2 − 1) + {γ2 (ω2 − 1) + 1}
3β

+

{√
−2k2 (1− ω2)m2

β

}
cn (k(x− ωt))


ei(γ (ωx−t))

Solution -2.3 p :
(

1−m2

4

)
, q :

(
1+m2

2

)
, , then ψ(z) = cn(z)

1± sn(z) thus

θ (z) =



√
−k

2 (ω2 − 1) (1 +m2) + 2 {γ2 (ω2 − 1) + 1}
6β

+

{√
−2k2 (ω2 − 1) (1−m2)

4β

} (
cn (k(x− ωt))

1± sn(k(x− ωt))

)

ei(γ (ωx−t))

Solution -2.4 p : m2

4 , q :
(
m2−2

2

)
, then ψ(z) = sn(z) + i cn(z) thus

θ (z) =



√
−{2γ

2 (ω2 − 1) + 1}+ k2 (ω2 − 1) (m2 − 2)

6β

+

{√
−2k2 (ω2 − 1)m2

4β

}
( sn(z) + i cn(z))


ei(γ (ωx−t))

6
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5 Application -3.3

We consider Fisher equation

θt = δ1 θxx + δ2 θ (1− θ) (5.1)

introduced by Fisher [[21]] to describe the propagation of a virile mutant in an
infinitely long habitat. It also represents a model equation for the evolution of
a neutron population in a nuclear reactor [[22]-[23]] and a prototype model for
a spreading flame [[24]-[25]]. The travelling wave solutions for Eq. (5.1) are of
the forms as follows:

θ (x, t) = θ (z) = θ (k(x− ωt)

where k and area constant, put in eq. (5.1) then

kωθ′ + k2δ1 θ
′′ + δ2 θ − δ2 θ2 = 0 (5.2)

Balancing θ′
′

with θ2 in eq. (5.2) gives 2n = n+ 2 i.e.,n = 2, then

θ (z) =
2∑
i=0

λi(ψ (z))
i

=λ0 + λ1 ψ (z) + λ2 (ψ (z))
2

= λ0 + λ1 ψ + λ2 ψ
2

θ′
′
(z) = λ1 ψ

′′ + 2λ2
{
ψ′ 2 + ψ ψ′

′}
Put these values in eq. (5.2)

(kω + δ2)
(
λ0 + λ1 ψ + λ2 ψ

2
)

+ k2δ1

(
λ1 ψ

′′ + 2λ2

{
ψ′ 2 + ψ ψ′

′
})

− δ2
(
λ0 + λ1 ψ + λ2 ψ

2
)2

= 0 (5.3)

Using eq. (2.5) and collecting the coefficients of the same power ψi (z)(ψ′(z))
j

(j = 0, 1 i = 0, 1, 2, 3, 4...) and setting each of the attained coefficients to be zero
we have a set of over determined algebraic equations for λ0, λ1, λ2, k, ω, δ1 and δ2.
One obtains solution

λ0 = 4k2δ1q+δ2
2δ2

, λ2 = 4k2δ1p
δ2

, λ1 = 2λ2

Then

θ (z) = 4k2δ1q+δ2
2δ2

+ 4k2δ1p
δ2

ψ(z) + 4k2δ1p
2δ2

ψ2(z)

We choose p q and r from [[17]-[18]], such that
Solution -3.1 p : m2 , q : −

(
1 +m2

)
, then ψ(z) = sn(z) thus

θ (z) =
δ2−4k2δ1(1+m2)

2δ2
+ 4k2δ1m

2

δ2
sn(z) + 4k2δ1m

2

2δ2
sn2(z)

Solution -3.2 p : −m2 , q :
(
2m2 − 1

)
, then ψ(z) = cn(z) thus

θ (z) =
4k2δ1(2m2−1)+δ2

2δ2
− 4k2δ1m

2

δ2
cn(z)− 4k2δ1m

2

2δ2
cn2(z)

7
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Solution -3.3 p :
(
1
4

)
, q :

(
1−2m2

2

)
, , then ψ(z) = msn(z)±i dn(z)thus

θ (z) =
2k2δ1(1−2m2)+δ2

2δ2
+ k2δ1

δ2
{msn(z)± i dn(z)}+ k2δ1

2δ2
{msn(z)± i dn(z)}2

Solution -3.4 p : 1 , q :
(
2− 4m2

)
, , then ψ(z) = sn(z)dn(z)

cn(z) thus

θ (z) =
8k2δ1(1−2m2)+δ2

2δ2
+ 4k2δ1

δ2

sn(z)dn(z)
cn(z) + 4k2δ1

2δ2

{
sn(z)dn(z)
cn(z)

}2

6 Discussion and Numerical Sketch

It should be noted that, although many exact solutions are obtained in this
work, it has been proved that some solutions in applications 3.1, 3.2 and 3.3 are
equivalent to the solution of in the literature. like solution for 2.1 of application
3.2 [[26]] and solution for 3.2 of application 3.3 [[27]].

Figure 1: Travelling waves solution for 2 of 3.1 are plotted: bright solitary waves
m→ 1

Figure 2: Soliton solution for 2.1 of 3.2 are plotted: solitary waves,m→ 1

8
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Figure 3: Soliton solution for 3.1 of 3.3 are plotted: solitary waves,m→ 1

7 Result and Conclusions

The Extended Jacobi Elliptic Function Technique has been successfully applied
to obtain exact solution for three nonlinear wave equations. Moreover, the
soliton-like solutions and trigonometric-function solutions have been also ob-
tained as limiting cases on Jacobi Elliptic Function as m → 1 and m → 0.All
solutions were verified by Maple package program and fig. (1), fig. (2) and
fig. (3) are also new solitary wave solution for eq. (6), eq. (9) and eq. (11)
respectively.
The main advantage of this method over other methods is that it provides
exact solutions for all types, including Jacobian-elliptic functions. Finally, it
is pertinent to mention that the proposed method is also a straightforward,
short, promising and powerful method for other nonlinear evolution equations
in mathematical physics. The algorithm of the method is very applicative and
influential to investigate many solutions.
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