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ABSTRACT 
Low-density parity check (LDPC) decoders face challenges such as high computational complexity and 
limited scalability. This research explores the optimal implementation of an LDPC decoder on a Field 
Programmable Gate Array (FPGA) to improve communication efficiency. The decoder is implemented 
using the min sum algorithm in two approaches. The study highlights notable disparities in gate 
efficiency, pin count, and thermal dissipation metrics. The direct VHDL approach requires considerably 
fewer logic gates, at a reduction of 37.13%, and exhibits a minor improvement in core static thermal 
power dissipation, indicating a more streamlined design that might contribute to smaller and more 
economical FPGA designs. Conversely, the MATLAB to VHDL conversion is more effective in minimizing 
pin usage, with a 52.19% decrease, which could simplify design complexity and enhance scalability. 
Nonetheless, the direct VHDL method incurs higher input/output thermal power dissipation, marked by a 
27.39% increase, which introduces additional considerations for thermal management in system design. 
Application requirements, available resources, and the target trade-off between design complexity and 
resource efficiency all play a role in the method selection process. 
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1. INTRODUCTION 
Digital communication systems are widely used to transmit data through communication channels using 
digital signals. These systems use various encoding and decoding techniques to ensure accurate and 
reliable data transmission. The Low-Density Parity Check Code is one method that can be utilized to 
detect and correct errors that may be present in digital communications transmission networks. LDPC 
codes are widely utilized in contemporary communication systems due to the fact that they offer near- 
optimal performance and a minimal level of complexity [1]. 
Robert Gallagher's 1963 PhD thesis introduced LDPC linear error correcting codes [2]. However, it wasn't 
until the 1990s that LDPC codes gained significant attention due to their superior performance and low 
complexity. David Mackay and colleagues demonstrated actual LDPC coding applications. It is common 
practice to make use of LDPC codes in modern communication systems because of the efficient decoding 
algorithms and excellent error correction capability that they possess Therefore LDPC has become 
popular and is utilized by numerous standards for many applications [3]. Many popular communication 
standards make use of LDPC, including Wi-Fi [4], DVB-S2, IEEE 802.11n, 802.3an, 802.16a, and WiMAX [5, 
6]. 
The parity check matrix is necessary for LDPC encoding and decoding. Iteratively generates code words 
and corrects errors during encoding and decoding. Tanner graphs, which demonstrate LDPC codes, assist 
in explaining the parity check matrix, code structure, and interconnections [7-9]. 
Hard decision and soft decision are the main LDPC decoding methods [10]. After analyzing the incoming 
data and encoded bits, the decoder chooses one of these approaches. Decoding LDPC codes initially used 
belief propagation (BP) methods, but the check node and variable node processors' complicated 
operations increased computational complexity. The complexity was lowered by implementing the Min- 
Sum (MS) algorithm at check nodes. It is possible to reduce the amount of computational effort required 
and simplify computations by carrying out basic arithmetic operations. The Min-Sum technique was 
favored due to its computational simplicity and decoding performance [11, 12]. 
Due to their near-capacity performance, many prominent message-passing algorithms decode LDPC 
codes. Variations of message-passing technology are used by LDPC decoders to optimize calculations. 
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Offset MS (OMS) and Normalized MS are common Min-Sum (MS) methods. Both methods effectively 
handle the computational load while providing good decoding performance [13, 14]. 
Despite their widespread use and effectiveness, LDPC decoders face scalability, flexibility, and high 
computational demands. These issues often result in higher power consumption and processing delays, 
particularly with emerging standards like 5G. To enhance processing speed and decoding efficiency while 
minimizing computational complexity and power usage, advancements in design and implementation 
strategies are necessary. 
This paper's main focus is comparing two methods of implementing LDPC. The first is converting the min- 
sum algorithm from MATLAB to VHDL, and the second is the direct implementation in VHDL .The 
comparison is directed towards the efficiency of the conversion method, reducing computational 
demands, and optimizing processing speeds for LDPC decoders on FPGA. The min-sum algorithm was 
chosen for its simplified calculation procedure and decreased resource usage, rendering it an appropriate 
selection for assessing the effectiveness of the suggested implementations. ModelSim simulations 
confirmed the decoder functionality, and synthesis was carried out on an Altera Cyclone IVE FPGA using 
Quartus. The methodology is outlined in Figure 1. 

 

Figure 1. Methodology flowchart for LDPC decoder optimization 
 

Structure of the paper's remainder: The Min-Sum LDPC decoding algorithm's background and related 
work are covered in Section 2. Section 3 covers the LDPC decoding algorithm. Section 4 covers LDPC 
decoder implementations. Finally, Section 5: conclusions and future work. 

2. RELATED WORK 
LDPC codes have gained prominence in modern communication in recent years due to their remarkable - 
correction capabilities. LDPC codes are a type of linear error-correcting code characterized by a sparse 
parity-check matrix. The strength of LDPC codes comes from their iterative decoding process, which 
corrects errors by sending messages between variable nodes and check nodes in a Tanner graph 
representation. The demand for efficient error correction has spurred developments in LDPC decoder 
structures and algorithms, especially for FPGA implementations. This section highlights the latest LDPC 
decoder implementations, focusing on min-sum algorithm application in FPGA-based devices. 
Recent studies on FPGA-based LDPC decoders show that the Min-Sum algorithm balances resource 
efficiency and decoding performance. One study [15] implemented a Min-Sum Algorithm-based quasi- 
cyclic LDPC decoder. The partially parallel approach reconciles the conflict between hardware resource 
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usage and decoding efficiency. With a code length of 8,176 bits, the decoder can reach a bit error rate 
(BER) of 10^-3 at 4 dB and a throughput of 300 Mbps per iteration. Another study [16] implemented the 
Min-Sum algorithm within a Differential Chaos Shift Keying (DCSK) system on a Kintex7 FPGA, showing 
enhanced BER performance and real-time processing capabilities. Although increasing the spreading 
factor affected system performance, the study highlighted the algorithm's resource efficiency, making it 
suitable for real-time communication systems that require both performance and efficiency. 
Recent LDPC decoder designs for 5G applications have reduced complexity while maintaining 
performance. The reduced-complexity offset min-sum (smOMS) algorithm was introduced in [13] to 
reduce hardware resource utilization in partially parallel layered decoders. This approach approximates a 
second minimum with a weight parameter to improve irregular 5G NR code SNR. However, preserving 
SNR efficiency while reducing complexity, especially across code inconsistencies, remains a challenge. 
Similarly, [17] introduced a Simplified Offset Min-Sum (SOMS) algorithm to minimize computational 
demands for QC-LDPC codes further. This design achieved 5G-NR with 13.3 Gbps FPGAs. Advanced 
decoders are expensive to design and produce, making their use challenging. 
LDPC decoder optimization on FPGAs has improved power efficiency and flexibility. A study offered a 
partially parallel DVB-S2 decoder design that reduced FPGA power consumption by 2.5 W by addressing 
double-diagonal parity-check matrix submatrices. Although memory access conflicts and the complexity 
of parity-check operations were issues, the system maintained high decoding performance [18]. Nadal 
and Baghdadi [19] also provide an FPGA-based, high-speed LDPC decoder for 5G networks that can 
handle a variety of frame sizes and coding rates. It can decode at 10 Gb/s. When trying to keep data rates 
high across different configurations, however, striking a balance between the design's complexities and 
processing efficiency becomes quite difficult. 
Improvements in FPGA implementations have been motivated bythe development of high-throughput 
LDPC decoders for standards like 5G and DVB-S2X. Likhobabin et al. [20] created a DVB-S2X LDPC 
decoder using field-programmable gate arrays (FPGAs), which can achieve up to 10 Gbps at 250 MHz and 
has 360 cores. Despite the design's area efficiency and versatility, the complexity of managing QC-LDPC 
codes, particularly with long code words and large matrices, remained a significant challenge. Similarly, 
Selvakumari, Shantha [11] explored high-throughput architectures for a 5G NR LDPC decoder using the 
Min-Sum algorithm. Although additional iterations improved BER and FER, the reliance on multiple 
iterations could be problem in time-critical or power-limited scenarios. In FPGA implementations of LDPC 
decoders, memory efficiency and reduced resource utilization are two of the most important factors. In 
[21], the focus was on FPGA technology for the purpose of efficiently decoding LDPC codes in the 
logarithmic domain. The implementation utilized 67% of logic elements and 15% of memory bits, 
reflecting the complexity of the approach and its resource-intensive nature. A hardware-efficient 5G LDPC 
decoder using the Hybrid Offset Min-Sum (HOMS) algorithm was developed [22]. This approach lowered 
memory consumption by 10% and achieved 2.82 Gbps, although implementing the HOMS algorithm 
challenged. 
Based on the information from previous studies, there has been a tendency to overlook the 
comprehensive balancing of computational demands, processing speed, and thermal management in 
LDPC decoder implementations. Most methods strive to increase throughput or reduce complexity, but at 
the expense of other important variables. The study compares two implementation methods, MATLAB to 
VHDL conversion and direct VHDL coding, with a more integrated strategy that incorporates resource 
utilization, thermal dissipation, and system efficiency. This understanding helps design more balanced 
and effective FPGA-based LDPC decoders. 

3. LDPC DECODING ALGORITHM 
This section provides an introduction to fundamental aspects of LDPC coding, including the Tanner graph 
and definition. In addition, it discusses the Min-Sum Algorithm, the most prevalent hardware 
implementation method, which balances hardware resources with decoding performance. 

 
3.1 Representation of LDPC codes 
LDPC codes are efficient encoding and decoding codes because they detect and correct data transmission 
errors. The Parity Check Matrix (PCM) and Tanner graph commonly represented LDPC codes, revealing 
their structure and behavior [23]. 
First, the sparse binary matrix PCM in LDPC codes connects code bits and parity checks. A '1' in the matrix 
indicates a bit-parity check connection, while a '0' indicates no connection. This structure helps visualize 
and analyze code and clarifies bit-parity check relationships during encoding and decoding, enabling 
mistake discovery and rectification. PCM node degree is the number of nonzero entries in a row or 
column. These degrees classify LDPC codes as regular or irregular. Regular LDPC codes have uniform 
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node degrees, meaning each variable and check node has the same number of connections. In contrast, 
irregular LDPC codes feature varying node degrees, with different numbers of connections for variable 
and check nodes[24, 25].The parity check matrix in standard LDPC codes has fixed row and column 
weights. Although parity check matrix building techniques provide design and construction process 
flexibility due to their random nature, the complexity of hardware design is increased due to the lack of 
row and column regularity. In order to simplify hardware implementation, structured methods can 
generate matrices with simply described patterns and levels of distribution [26, 27]. 
Second, in an LDPC code, the Tanner graph, a bipartite graph, provides a visual representation of the 
connections between bits and parity checks. This graph divides into variable nodes for bits and check 
nodes for parity check equations, with edges indicating bit involvement in parity checks. By representing 
the LDPC code as a Tanner graph, the connections among the bits and the parity checks can be more 
easily visible, allowing for a deeper understanding of the code's functionality[28]. 

 
3.2 Min-sum decoding algorithm 
An LDPC code is defined by a sparse parity-check matrix and operates through iterative processes 
between two groups: check nodes (CNs) and variable nodes (VNs). With near-optimal decoding 
performance nearing the Shannon limit, the Belief Propagation (BP) algorithm is the most powerful 
message-passing method for LDPC decoding. Nevertheless, a substantial amount of computing complexity 
is required to achieve this level of high performance. One approach to this problem is the Min-Sum (MS) 
method, which simplifies the process while reducing computing requirements and improving error 
correction. The steps of the Min-Sum algorithm are as follows [29]: 

(1) Initialization: Soft information bits, also known as log likelihood ratios (LLRs), are initially used 
to initialize variable nodes from the channel. 
(2) Variable to check node: Following initialization, bit nodes update their check nodes with bits to 
verify the message. Where Qij is the bit node -to-check node message. 

P(ai = 0|bi) 
Qij = Li = log (1) 

P(ai = 1|bi) 
(3) Check node update: The Q message that the bit node sends is used to calculate the messages that 
the check node sends, with Rij standing for the message that the check node sends to the bit node. 

Rij = ∏j′∈V(i)\jsign(Qij) × min |Qij′| (2) 
To calculate Rij′s min |Qij′|, check node processing must omit V(j), therefore two minima must be found: 
Min1 and Min2. More specifically, min |Qij′| is: 

minj′∈V(i)\j |Qij′| = 
Min1, if j ≠ argmin(Min1i) 

Min2, if j = argmin(Min2i) 
(3) 

(4) Bit node update: Bit nodes determine their messages Qij using the following formula: 

Qijnew = Qijold + ∑ Ri′j 
i′∈C(j)\i 

(4) 

(5) A message from bit node V(i) to check node C(j) is calculated using all R messages from 
neighboring check nodes, except for the R message from check node C(j). This computation is similar to 
that of the check-to-bit messages. 
(6) Bit reliability calculation: Following the bit nodes' updates, a reliability value yi is determined 
using the following formula: 

yi = Qijold + ∑ Rij 
i∈C(j) 

(5) 

From Eq. (5), the Y vector represents:  
Y = (y1, y2, y3, … , yn) 

(7) Bit value determination: The following formula determines the bit values: 
1 if yi ≤ 0 

Zi = { 
0 if yi > 0 

(6) 

(8) Decoding verification: The procedure of decoding checks if H × ZT = 0. The procedure continues 
until either a valid code is found or the maximum number of iterations is achieved if this condition is not 
met. Figure 2 shows the steps of the Min-Sum decoding algorithm, which uses iterative message-passing 
to decode LDPC codes. 
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Figure 2. Flowchart of Min-Sum algorithm for LDPC decoding 

In contrast to the BP algorithm, the MS method's minimum function in the CN process produces an 
approximated message. Because of this, decoding performance is reduced. Many versions of the modified 
original MS algorithm, such as Offset Min-Sum (OMS) and Normalized Min-Sum (NMS), were devised to 
compensate for this performance reduction, both of which aim to reduce computational complexity while 
maintaining decoding performance [30]. The Simplified Offset Min-Sum (SOMS) form of the OMS 
algorithm reduces computing complexity and routing requirements, improving FPGA throughput and 
hardware efficiency [17]. However, optimizing error correction performance and resource utilization 
with NMSA on FPGA considerably improves processing efficiency [31]. 
The LDPC encoder on the transmitter side generates code words by adding parity bits to the message bits 
using the generator matrix G, creating error-correcting code words. Conversely, the receiver's LDPC 
decoder employs the parity-check matrix H to correct transmission errors, ensuring accurate message 
delivery. It identifies and corrects errors by comparing received bits against parity-check equations. This 
streamlined error-correction process guarantees the integrity of the message, as depicted in Figure 3. 

 
4. LDPC Decoder Implementations 
The LDPC decoder used in this study was applied in two different methodologies: MATLAB-to-VHDL and 
direct VHD. It operated in both approaches in a completely parallel processing mode and made use of a 5 
× 10 binary regular LDPC parity-check matrix and the min-sum algorithm. With 5 message bits and 10-bit 
code words, the architecture achieves a code rate of 0.5. The decoding process is designed to complete in 
5 iterations. 
The matrix used in the implementation is as follows: 

0  1 0  0 0  1 0  0 0  0 
⎡1  0 0  0 0  0 1  0 0  0

⎤
 

H = 0  0 
⎢0  0 
⎣0  0 

0  0 1  0 0  1 0  0 
0  1 0  0 0  0 1  0⎥ 
1  0 0  0 0  0 0  1⎦ 
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Figure 3. The communication process between sender and receiver, utilizing an LDPC encoder and 

decoder 

The decoder uses a sparse matrix to connect variable nodes (V1 to V10) and check nodes (C1 to C5), 
optimizing computation and communication for efficiency. As shown in Figure 4, LLRs are refined 
through a maximum of five iterations, stopping when parity is achieved, or when the maximum number of 
iterations is reached. 
The LDPC decoder was implemented using two approaches, both utilizing the same Altera Cyclone IV E 
FPGA board (model EP4CE15F23C6). These approaches are outlined below: 

 
4.1 The process of implementing the LDPC decoder from MATLAB to VHDL included several 

crucial steps 
The development of the LDPC decoder began with implementing and validating the algorithm in MATLAB. 
To assure functionality, MATLAB tools were used to write and test decoder logic. After validation, HDL 
Coder converted the MATLAB script to VHDL for FPGA execution. The algorithm had to be translated to 
the hardware description language and FPGA architecture. 
After translation, Altera's Quartus FPGA synthesis tool synthesized VHDL code. Mapping the code to the 
Altera Cyclone IV E FPGA board's design, specifically the EP4CE15F23C6 model, optimizing it for timing 
and resource limitations, and guaranteeing efficient operation within the FPGA's logic and resource limits 
was required. 
The final step involved using ModelSim simulations to verify that the VHDL code was prepared for FPGA 
deployment and accurately represented the original MATLAB design. This process is illustrated in Figure 
5. 

 

Figure 4. LDPC iterative decoding stages with a Tanner graph representation 
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Figure 5. LDPC decoder implementation diagram (MATLAB to VHDL) 

4.2 Implementing the LDPC decoder directly in VHDL required a series of essential steps 
The LDPC decoder was implemented directly by writing VHDL code specifically optimized for FPGA 
execution. This method provided precise control over the design, enabling efficient utilization of FPGA 
resources such as logic gates. Quartus synthesized the VHDL code, which was mapped onto the Altera 
Cyclone IV E FPGA (model EP4CE15F23C6) and optimized for performance and resource efficiency. 
Finally, the correctness, dependability, and readiness of the FPGA were validated by ModelSim 
simulations,the steps are depicted in Figure 6. 

 

Figure 6. LDPC decoder implementation design flow (direct VHDL) 

LDPC decoders use parallel processing and the Min-Sum algorithm in both implementation methods. It 
stores LLR input data, which indicates a bit's possibility of being '0' or '1', in buffers. One iteration 
controller verifies this data before each decoding cycle. During the cycle, variable nodes update bit values 
based on the LLR data, which are sent to check nodes for further refinement. Finally, the Bit Decision 
component determines the most likely value of each bit, ensuring accurate decoding. This process is 
illustrated in Figure 7. 

 

Figure 7. Parallel LDPC decoder architecture 
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The following pseudocode outlines the Min-Sum decoding process implemented in the LDPC decoder 
architecture: 

 

1: Procedure Min-Sum Decoding Process 
2: I=0 Initialization 
3: for each VN in parallel, do 
4: for each CN connected to VN, do 
5: Qij = LLR(VN) Initialize message from VN to CN 
6: end for 
7:  end for 
8:  repeat 
9: Step 1: Check Node Update 
10:  for each CN in parallel, do 
11: for each VN connected to CN, do 
12: Rij = Product of signs (Qij from all other VNs) 
13: Rij = Minimum (|Qij| from all other VNs) 
14: end for 
15: end for 
16: Step 2: Variable Node Update 
17: for each VN in parallel, do 
18: for each CN connected to VN, do 
19: Qij_new = LLR (VN) + Sum (Rij from all other CNs) 
20: end for 
21: end for 
22: Step3: Decision Making 
23: for each VN in parallel, do 
24: yi = LLR (VN) + Sum (Rij from all connected CNs) 
25: if yi ≤ 0 then 
26: Z = 1 
27: else 
28: Z = 0 
29: end if 
30: end for 
31: I =I+1 
32: Step4: Test 
33: if H * Z^T = 0 then 
34: Finished 
35: end if 
36: Until I = IMAX or H * Z^T = 0 
37: return Decoded Message(Z) 

 38: end procedure  
 

5. RESULTS AND DISCUSSION 
This section presents the performance evaluation of the LDPC decoder using MATLAB-to-VHDL 
conversion and direct VHDL coding. Simulations were conducted on a system with robust hardware and 
advanced software tools. 
Table 1 outlines the key specifications of the computing environment, including the processor, memory, 
and software tools. 

Table 1. Specifications of the computing environment 
Component Specification 

 
Hardware 

CPU IntelCorei7- 10750H 
Frequency 2.60 GHz 
RAM 16.0 GB 
Hard drive 476 GB 

 
Software 

Operating system Windows 11 pro-64-bit 

 
Tools 

MATLAB R2021a 
Quartus Prime 21.1, ModelSim 20.1 
(VHDL) 
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Additionally, the detailed characteristics of the FPGA board used for implementation, such as logic blocks, 
RAM, and operational frequencies, are summarized in Table 2. 
Figure 8 illustrates the MATLAB code to VHDL translation using an RTL (Register Transfer Level) diagram. 
The diagram shows the organized logic resulting from the VHDL translation, allowing for extensive 
decoder architecture exploration in Quartus. 
Additionally, Figure 9 shows the ModelSim implementation results, which are useful in understanding the 
hardware's dynamic behavior. These simulations provide a comprehensive evaluation of the system's 
behavior, particularly the internal states and outputs of the LDPC decoder. Decoding is based on 
probabilistic estimates, with each received signal (rx) representing the corresponding LLR for the 
received bit. Each LLR is treated independently while the signals are processed. The decoder's ability to 
refine bit estimates through iterative processing is indicated by the iteration signal (101), which 
represents the number of iterations performed. The decoder's best estimate as to the original transmitted 
message after all iterations is displayed by the VHat signal, which is the final decoded message. 

 
Table 2. Details of the FPGA board used for implementation 

No. Attribute Details 
1 Series Cyclone IV E 
2 Number of logic blocks 963 
3 Embedded block RAM - EBR 504 Kbit 
4 Number of I/Os 343 
5 Maximum operating frequency 200 MHz 
6 Operating supply voltage 1 V to 1.2 V 
7 Maximum operating temperature + 70 C 
8 Mounting style SMD/SMT 
9 Package/case FPGA-484 
10 Minimum operating temperature 0 C 
11 Packaging Tray 

 
The second approach concentrates onimplementing the LDPC decoder directly in VHDL, with the min- 
sum algorithm programmed within the VHDL environment. Instead of using MATLAB, the algorithmic 
functions are built directly into the hardware using this approach. 
Figure 10 illustrates the logic gates used in this direct VHDL implementation. Specifically, Figure 10 (a) 
shows the RTL layout, while Figure 10 (b) and Figure 10 (c) detail the horizontal and vertical phases of 
node selection, respectively. 
Additionally, Figure 11 presents the ModelSim simulation results, highlighting the hardware's dynamic 
performance. In this direct VHDL approach, the decoder processes inputs as vectors, managing multiple 
signals simultaneously for efficient LLR processing. The rx signals represent the LLRs for each received 
bit, with the VHat signals showing the final decoded message after each iteration. The entire decoding 
process is completed in five iterations, ensuring accurate message recovery. 
Regarding the outcomes of the comparison between the two methods, Table 3 presents a detailed 
comparison of key parameters between the two approaches, which are critical for assessing the 
performance and efficiency of the hardware designs. 

Table 3. The comparison between MATLAB to VHDL and direct VHDL implementations 

Key Metrics MATLAB to VHDL Direct VHDL Improvement 

Number of logic gates 1,702 gates (11%) 
1,070 gates 
(7%) 

37.13% fewer gates (Direct 
VHDL) 

Number of registers 0 0 ……….. 

Total pins 153 pins (44%) 
320 pins 
(93%) 

52.19% fewer pins (MATLAB to 
VHDL) 

Core static thermal power 
dissipation 

49.51 mW 49.47 mW 
0.08% improvement (Direct 
VHDL) 

Input/output thermal power 
dissipation 

53.55 mW 68.22 mW 27.39% increase (Direct VHDL) 

Total thermal power dissipation 103.06 mW 117.69 mW 14.20% increase (Direct VHDL) 
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Figure 12 highlights the differences in logic gates, total pins, core static thermal power dissipation, 
input/output thermal power dissipation, and overall thermal power dissipation between the methods. 
The MATLAB-to-VHDL approach excels in reducing input/output and total thermal power dissipation as 
well as minimizing the number of pins, while the direct VHDL approach is better at reducing gate count 
and core static thermal power dissipation. The choice of method depends on the specific application 
requirements, available resources, and the desired balance between resource efficiency and design 
complexity. 

 

Figure 8. The logic gates involved in the MATLAB-to-VHDL conversion process 
 

Figure 9. The wave of converting MATLAB to VHDL 
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(a) The implementation of the LDPC decoder system usingdirect VHDL 

 
 
 
 
 
 
 
 
 

 
(b) Horizontal setup block contents 

 
 
 
 
 
 
 
 
 

 
(c) Vertical setup block contents 

Figure 10. The direct method VHDL 
 

Figure 11. The wave of direct VHDL 
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Figure 12. Comparison of logic gates, pins, and thermal power dissipation between MATLAB-to-VHDL 

and direct VHDL implementations 
 

6. CONCLUSIONS 
The min-sum algorithm for LDPC decoders achieves a balance between computational efficiency and 
error-correction performance. Implementing these decoders on FPGA platforms increases their speed 
and adaptability. Two strategies for efficient decoding are discussed: MATLAB-to-VHDL conversion and 
direct VHDL encoding, both utilizing the min-sum algorithm. Direct VHDL implementation shows a 
superior result in logic gates, with 37.13% fewer gates needed than the MATLAB to VHDL conversion. 
However, MATLAB to VHDL conversion is better in terms of pin count, requiring 52.19% fewer pins than 
the direct VHDL approach. When looking at thermal power dissipation, the direct VHDL has a slight 0.08% 
improvement in core static thermal power dissipation over MATLAB to VHDL. Nevertheless, MATLAB to 
VHDL is more efficient in overall thermal power dissipation, with direct VHDL showing a 14.20% increase 
in total thermal power dissipation and 27.39% increase in input/output thermal power dissipation. 
Improving the overall efficiency of communication systems is possible through the reduction of 
computational complexity, which enhances response speed and enables effective operation at higher 
frequencies. Reducing heat losses also reduces power consumption, which in turn increases the device's 
lifetime. With communication standards evolving rapidly, these improvements are essential for a more 
efficient and durable wireless infrastructure. 
Future research will focus on optimizing LDPC decoders for upcoming communication standards, 
especially 6G networks where speed is crucial. These decoders could improve wireless infrastructure 
efficiency and dependability in power-constrained settings for next-generation communication systems. 
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