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Abstract

The paper presents iterative methods for solving interval linear system
of equations. We present a generalization of interval Jacobi method and
interval Gauss-Seidel method by generalizing interval diagonal matrices
to band interval matrices, and discuss the convergence analysis of the
proposed methods. More specifically, we prove that both the proposed
methods converge for any initial approximation if the coefficient interval
matrix of the system is either an interval strictly diagonally dominant
matrix, or interval M-matrix or interval H-matrix. Numerical experiment
are carried out to assess the effectiveness of the proposed methods.
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1 Introduction

Many practical problems involving uncertainties, such as uncertainty in engi-
neering or design problems, global optimization, mathematical programming
problems etc., get reduced to solving system of interval equations. We refer to
[12, 15, 16, 17, 20, 26] to find the literature on interval analysis dealing with
uncertainty. It is worthwhile to mention that the solution set enclosure of inter-
val linear systems, plays a significant role as data are impacted by uncertainty
in many real-world problems that involves interval linear systems. However, it
is well-known that the interval computations are NP-hard problems. In other
words, one cannot expect an algorithm for computing all computations for the
interval in less than exponential running time. So the research has been driven
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for finding a solution set enclosure for the interval linear equations with less
computations.

Interval Jacobi, interval Gauss-Seidel, Bauer-Skeel, Hansen-Bliek-Rohn, Kra-
wczyk iteration methods are among the oldest well-known iterative methods for
solving interval linear systems. In [2, 7, 19, 21], authors proved that the above
mentioned methods may not produce an optimal enclosure. However Hlad́ık [19]
in 2014, proposed a new interval operator that generalizes the interval Gauss-
Seidel method, by introducing a new parameter. He further proved both theo-
retically and numerically that incorporation of such parameter is more effective
than the Gauss-Seidel method, and provides tightening solution set enclosure of
interval linear systems. Parametric interval linear system of equations were in-
vestigated in [18, 6]. In [21], author studied the Hansen-Bliek-Rohn method and
the Bauer-Skeel method and their modification based on the preconditioning of
the system and on the residual form. The paper aims to develop the iterative
methods and their convergency to solve interval linear systems with uncertain
coefficients. More specifically, we generalize the interval Jacobi method and in-
terval Gauss-Seidel method for solving interval linear systems and analyze the
convergence of these methods.

Throughout the paper, the sets of all real intervals, the set of n-dimensional
real interval vectors, and the set ofm×n real interval matrices are denoted by IR,
IRn and IRm,n, respectively. We write bold letters to represent interval matri-
ces/vectors, whereas normal letters are used to represent real matrices/vectors.
A real interval matrix of order m× n for two real matrices A and A, is defined
as A = {A ∈ Rm,n : A ≤ A ≤ A}, with componentwise inequality A ≤ A.

Consider the following system of interval linear systems of equations

Ax = b (1)

with A ∈ IRn,n and b ∈ IRn are given interval matrix and interval vector
respectively, x ∈ IRn is unknown. The solution set of (1) is enclosed by

Σ(A,b) := {x̃ ∈ Rn : Ãx̃ = b̃ for some Ã ∈ A, b̃ ∈ b}

The smallest interval enclosure of Σ(A,b) with regard to inclusion is repre-
sented by the interval Σ := �Σ(A,b) = [inf(Σ(A,b)), sup(Σ(A,b))], is known
as the interval hull of the solution set Σ(A,b).

Let D, − E and −F be respectively, represent the diagonal part, strictly
lower triangular and strictly upper triangular parts of the interval matrix A, so
that A = D− E− F. If 0 /∈ Aii, then the interval Jacobi method and interval
Gauss-Seidel method (see [3, 30]) for solving (1) are respectively, given by

x(k+1) = D−1(E + F)x(k) + D−1b

x(k+1) = (D−E)−1Fx(k) + (D−E)−1b, (2)

We write HJ = D−1(E + F) and HGS = (D−E)−1F to represent the iteration
matrices for the interval Jacobi and interval Gauss-Seidel method, respectively.
Details of interval Jacobi and Gauss-Seidel method for solving interval linear
equations can be found in [3].
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It is known from the literature that M -matrices, L-matrices, strictly di-
agonally dominant (SDD) and symmetric positive definite (SPD) matrices are
among the classes of matrices for which both Jacobi and Gauss-Seidel methods
converge for any initial guess for a given linear system of equations Ax = b.
In [4], Salkuyeh generalized the Jacobi and Gauss-Seidel method by general-
izing the diagonal matrix to a band matrix, which are given by the following
iteration relations

x(k+1) = T−1m (Em + Fm)x(k) + T−1m b (3)

x(k+1) = (Tm − Em)−1Fmx
(k) + (Tm − Em)−1b (4)

where m ≥ 0 and Fm = A− Tm − Em and

Tm =



a1,1 . . . a1,m+1 0
...

. . .
. . .

am+1,1 an−m,n
. . .

. . .

0 an,n−m an,n

 , Em =


0 . . . 0

−am+2,1

...
. . .

...
−an,1 . . . −an−m−1,n


Salkuyeh proved that if the coefficient matrix of a system of linear equations is
either SDD or an M -matrix, then the generalized Jacobi (GJ) and generalized
Gauss-Seidel (GGS) methods converge. In [22], authors proved the convergence
of GJ and GGS methods for H-matrices, however both methods may fail to
converge for SPD and for L-matrices.

In this paper we generalize the interval Gauss-Seidel and interval Jacobi
methods similar to equation (3) and (4), respectively, to obtain a tighter en-
closure of the solution set. As mentioned earlier, the iteration schemes defined
in (3) and (4) converge for SDD, M -matrices and for H-matrices, so motivated
by these results we verify the convergence criteria of both generalized interval
Jacobi and interval Gauss-Seidel methods for these classes of interval coefficient
matrices.

This paper is organized as follows: In Section 2, we provide the notations
and basic definitions related to interval analysis and define various classes of
interval matrices under consideration. We also listed a few well-known results
that are used in our study. Section 3 introduces the generalization of interval
Jacobi method and discuss the convergence analysis of the method for solving
(1) for various classes of interval coefficient matrices. In section 4, we describe
the generalized interval Gauss-Seidel method and its convergence analysis for
various classes of interval coefficient matrices. Numerical experiments are car-
ried out for the proposed methods in Section 5. Finally, Section 6 ends with
some concluding remarks.

2 Notation and preliminaries

In accordance with the standard notations, intervals are marked by boldface
throughout this article. To represent the lower and upper bounds of inter-
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vals respectively, the underscores and overscores notations are used. So, any
interval x is written as x = [x, x]. For the interval x, magnitude and migni-
tude are defined respectively as, |x| := max{|x| : x ∈ x} = max{|x|, |x|} and
〈x〉 := min{|x| : x ∈ x} = min{|x|, |x|}. Magnitude and mignitude of interval
matrix A are defined componentwise, and denoted by corresponding notations
as defined for intervals. For a given interval matrix A = (Aij) ∈ IRn,n, we
denote |A| := (|A|ij) ∈ Rn,n, and the comparison matrix of A is represented
by 〈A〉, which has entries 〈A〉ii = 〈Aii〉 and 〈A〉ij = −|Aij |, for i 6= j. Note
that both |A| and 〈A〉 are real matrices. Next we provide some properties
of the interval matrices, and define various classes of interval matrices under
consideration.

Definition 2.1. [3, 10, 11] An interval matrix A ∈ IRn,n is said to be regular
if every A ∈ A is nonsingular. For a regular A, the inverse A−1 is defined as

A−1 := �{A−1 : A ∈ A}

where �Σ := [inf Σ, sup Σ] denotes the hull of Σ, which is the tightest enclosure
for Σ. It is to be noted that the smallest interval matrix A−1 includes the set
{A−1 : A ∈ A}.

Definition 2.2. [3] For any real intervals x = [x, x],y = [y, y], interval addition,
subtraction and multiplication are defined as

(i) x + y = [x+ y, x+ y]

(ii) x− y = [x− y, x− y]

(iii) The interval multiplication xy is displayed in the following table:

∗ y ≥ 0 y 3 0 y ≤ 0

x ≥ 0 [xy, xy] [xy, xy] [xy, xy]

x 3 0 [xy, xy] [min{xy, xy},max{xy, xy}] [xy, xy]

x ≤ 0 [xy, xy] [xy, xy] [xy, xy]

Definition 2.3. [3] If A,B ∈ IRm,n, addition and subtraction for interval
matrices are defined as

(i) A + B = �{A+B : A ∈ A, B ∈ B}

(ii) A−B = �{A−B : A ∈ A, B ∈ B}

If A = [A,A] and B = [B,B], then

A + B = [A+B, A+B] and A−B = [A−B, A−B ]

4
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Definition 2.4. [3] If A ∈ IRm,n and B ∈ IRn,p, then AB ∈ IRm,p is defined
as

AB = �{ÃB̃ : Ã ∈ A, B̃ ∈ B}

If A = (Aij) and B = (Bij) , then (AB)ik =
n∑
j=1

AijBjk

Definition 2.5. [3, 14] Let A ∈ IRn,n and 0 /∈ Aii for all i. If the comparison
matrix 〈A〉 of A is strictly diagonally dominant,that is, if for all i, 〈Aii〉 >∑
j 6=i
|Aij | then A is known to be an interval strictly diagonally dominant (SDD)

matrix.

Definition 2.6. [1, 3] A real matrix A ∈ Rn,n is called an L-matrix if it has
positive diagonal entries and nonpositive off-diagonal entries. An interval matrix
A = [A,A] is an interval L-matrix if each A ∈ A is an L-matrix, equivalently,
if Aii > 0 for all i and Aij ≤ 0, for i 6= j.

Definition 2.7. [1] A matrix A ∈ Rn,n is said to be a Z-matrix if A has
nonpositive off-diagonal entries. If a Z-matrix A can be written as A = αI−B,
where α > ρ(B), the spectral radius of B, then A is called an M -matrix. Instead
of nonsingular M -matrix we write M -matrix for convenience. A Z-matrix A
becomes an M -matrix if and only if there exists a u > 0 such that Au > 0.

We now state the characterization of M -matrices.

Theorem 2.8. [1] Let A ∈ Rn,n be a Z-matrix. Then following equivalent
conditions hold:

(i) A is an M -matrix.

(ii) A−1 ≥ 0.

(iii) There exists u > 0 such that Au > 0.

Definition 2.9. [3] An interval M -matrix is a square interval matrix A ∈ IRn,n
such that Aik ≤ 0, that is, every element in Aik is nonpositive, for all i 6= k
and Au > 0 for some real u > 0.

Definition 2.10. [3] An interval H-matrix A ∈ IRn,n is an interval matrix
whose comparison matrix 〈A〉 is an M -matrix. Equivalently, we say that A is
an interval H-matrix if and only if 〈A〉u > 0 for some u > 0.

Definition 2.11. [1] A splitting of a real n×nmatrixA is defined asA = M−N ,
with nonsingular M . A splitting A = M −N of the matrix A is said to be

(i) regular if M−1 ≥ 0 and N ≥ 0.

(ii) weak regular if M−1 ≥ 0 and M−1N ≥ 0.

(iii) M -splitting if M is a M -matrix and N ≥ 0.
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Definition 2.12. A splitting of a square interval matrix A ∈ IRn,n is defined
as A = M−N, with regular M.

Next we state few basic results on matrices, that are required to establish
our results in the subsequent sections.

Proposition 1. [3, 23] If A,B ∈ Rn,n, and |A| ≤ B, then ρ(A) ≤ ρ(B).

Theorem 2.13. [1] Let A be an M -matrix and let A = M −N be a regular or
weak regular splitting of A, then ρ(M−1N) < 1.

Theorem 2.14. [27] Let M -splitting of A be A = M−N . Then ρ(M−1N) < 1
if and only if A is a nonsingular M -matrix.

Theorem 2.15. [1, 13, 23] Let A be a nonnegative matrix. Then

(i) If α ∈ R and Ax ≥ αx, for some positive x ∈ Rn, then ρ(A) ≥ α .

(ii) If Ax ≤ αx for some x ≥ (6=)0 , then ρ(A) ≤ α.

Theorem 2.16. [23] If A is nonnegative matrix, then ρ(A) is an eigenvalue of
A and there is a nonnegative nonzero vector x such that Ax = ρ(A)x.

For convenience we have provided some well-known results on interval ma-
trices that will be used to check the convergence of the mentioned methods in
next sections of this paper.

Theorem 2.17. [3] Let A,B ∈ IRn,n. Then following conditions hold:

(i) If A is an M -matrix and B ⊆ A, then B is an M -matrix. Each Ã ∈ A in
particular, is an M -matrix.

(ii) A = [A, A] is an M -matrix if and only if A and A are M -matrices.

(iii) Every M -matrix A = [A, A] is regular with A−1 = [A
−1
, A−1] ≥ 0 and

|A−1| = 〈A〉−1.

Theorem 2.18. [14] For an interval matrix A we have

(i) if A is interval triangular (lower/upper) matrix, then A is an interval
H-matrix.

(ii) if A is an interval H-matrix, then |A−1| ≤ 〈A〉−1. Equality holds if A is
an interval M -matrix.

Proposition 2. [3] For A,B ∈ IRn,n and C ∈ IRn,q, the properties listed
below hold:

(i) 〈A〉 = 〈Ã〉, for some Ã ∈ A.

(ii) |AB| ≤ |A||B|

(iii) 〈A±B〉 ≥ 〈A〉 − |B|.
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(iv) |A| − |B| ≤ |A±B| ≤ |A|+ |B|.

(v) |AC| ≥ 〈A〉|C|.

Theorem 2.19. [14] Let C,D ∈ IRn,n satisfy ρ(|C||D|) < 1. Then for any
g ∈ IRn, the following statements hold:

(i) The equation x = C(Dx + g) has a unique solution x ∈ IRn

(ii) For any initial vector x0 ∈ IRn, the iteration

x(k+1) = C(Dx(k) + g), k = 0, 1, ...

converges to the solution x of the equation x = C(Dx + g).

3 Generalized Interval Jacobi method

In this section, we propose a generalization of the interval Jacobi method for
solving interval linear system similar to that of generalized Jacobi method intro-
duced by Salkuyeh [5] and Saha et al. [22] for solving linear systems of matrix
equations. Furthermore, we study the convergence properties of the proposed
method for solving interval linear system with the coefficient matrix as either
an interval SDD matrix, an interval M -matrix or an interval H-matrix.

In Section 2 the splitting of A for interval Jacobi method for solving (1) is
given in equation (2) as A = M−N with M = D, N = E + F.

We now propose generalized interval Jacobi (GIJ) method for solving interval
linear system similar to (3) and (4), which was introduced by Salkuyeh [4] for
general matrices.

Let A = [aij , aij ] be a square interval matrix of order n. Consider an interval

band matrix Tm = [tij , tij ] of 2m+ 1 bandwidth, which is characterized as

tij =

{
[aij , aij ], if |i− j| ≤ m
0, elsewhere

For 1 ≤ m < n, interval matrix A is decomposed as A = Tm − Em − Fm,
with strict lower part -Em and strict upper part -Fm of A. The interval matrices
Tm, Em and Fm are expressed as follows

7
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Tm =



[a11, a11] . . . [a1,m+1, a1,m+1] 0
...

. . .
. . .[

am+1,1, am+1,1

] [
an−m,n, an−m,n

]
. . .

. . .

0 [an,n−m, an,n−m] [an,n, an,n]


,

Em =


0 . . . 0

−[am+2,1, am+2,1]
...

. . .
...

−[an,1, an,1] . . . −[an−m−1,n, an−m−1,n]

 ,

Fm =


0 −[a1,m+2, a1,m+2] . . .− [a1,n, a1,n]
...

. . .
...

0 . . . −[an−m−1,n, an−m−1,n]

 (5)

Definition 3.1. Let Tm, Em and Fm be the interval matrices specified in (5).
For any 1 ≤ m < n decompose A as

A = Tm −Em − Fm (6)

which is corresponding to splitting

A = Mm −Nm (7)

with Mm = Tm and Nm = Em + Fm. Then generalized interval Jacobi (GIJ)
method to solve (1) is defined as,

x(k+1) = M−1
m

(
Nmx(k) + b

)
(8)

For GIJ method L = T−1m (Em + Fm) is the iteration interval matrix. By
decomposing Tm = D + Rm, A can also be written as

A = D + Rm −Em − Fm (9)

Remark 3.2. From (6), we can decompose 〈A〉 as

〈A〉 = 〈Tm〉 − |Em| − |Fm| = 〈D〉 − |Rm| − |Em| − |Fm| (10)

and is associated with the splitting

〈A〉 = 〈Mm〉 − |Nm| (11)

with M̃1 = 〈Mm〉 = 〈Tm〉 = 〈D〉 − |Rm| and Ñ1 = |Nm| = |Em|+ |Fm|.

8
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Notation. Throughout the paper following notations are used:

Rm = (Rij), Em = (Eij), Fm = (Fij)

R̃i =
n∑

j=1
j 6=i

|Rij |, Ẽi =
n∑

j=1
j 6=i

|Eij |, F̃i =
n∑

j=1
j 6=i

|Fij |

3.1 Convergence analysis of GIJ method

In this section we discuss the convergence criterion of GIJ method for solving
interval linear system (1) with various classes of coefficient interval matrices. In
particular we show that the GIJ method is convergent for interval SDD matrices,
interval M -matrices and interval H-matrices using the idea of interval splitting
as well as the various characterizations of interval M - and interval H-matrices.

Throughout the section we consider the splitting of A defined in (7) and
(10). More specifically, we write Mm := Tm and Nm := Em + Fm. It is
known that GIJ method converges if ρ(|M−1

m ||Nm|) < 1 due to Theorem 2.19.
Since computing the inverse of interval matrix is NP-hard, so we use the matrix
L̃m = 〈Mm〉−1|Nm| = M̃−11 Ñ1 to check the convergence of GIJ method. The
following theorem provides a relation between the spectral radius of the iteration
matrix L̂m = |M−1

m ||Nm| with L̃m = 〈Mm〉−1|Nm| = M̃−11 Ñ1.

Theorem 3.3. Let L̂m = |M−1
m ||Nm| and L̃m = 〈Mm〉−1|Nm| = M̃−11 Ñ1. If

Mm is an interval H-matrix (or interval M -matrix) then the following results
hold

(i) L̂m ≤ L̃m (equality holds if Mm is an interval M -matrix)

(ii) ρ(L̂m) ≤ ρ(L̃m).

Proof. (i) As Mm is given an interval H-matrix, from Theorem 2.18 we have
that

L̂m = |M−1
m ||Nm| ≤ 〈Mm〉−1|Nm| = L̃m

(ii) It follows from (i) and from Proposition 1.

Remark 3.4. The above theorem shows that if ρ(L̃m) < 1, then GIJ converges.
This idea has been used to check the convergence of GIJ method in case Mm is
an interval H-(or M -) matrix.

Remark 3.5. [3, 29] Interval SDD matrices are a special case of interval H-
matrices, that is, interval SDD matrices A = (aij) that satisfy for all i, 〈Aii〉 >∑
j 6=i
|Aij |, are H-matrices.

Following theorem gives an upper bound for the spectral radius of the matrix
L̃m of GIJ method to solve linear interval equations with interval SDD matrix
as coefficient interval matrix.

9
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Theorem 3.6. For any 1 ≤ i ≤ n, let 〈T〉i = 〈Dii〉 − R̃i > 0. Then

ρ(L̃m) ≤ max
i∈N

Ẽi + F̃i
〈T〉i

Proof. Suppose that λ is an eigenvalue of the matrix L̃m satisfying

|λ| > max
i∈N

Ẽi + F̃i
〈T〉i

=
Ẽi + F̃i

〈Dii〉 −
n∑

j=1
j 6=i

|Rij |
, for all 1 ≤ i ≤ n (12)

which implies that

|λ〈Dii〉| = |λ|〈Dii〉 > Ẽi + F̃i + |λ|
n∑

j=1
j 6=i

|Rij | (13)

Now det(λI − L̃m) = 0 implies det(〈Tm〉−1) det(C1) = 0 where C1 =
λ〈Tm〉 − |Em| − |Fm|, which again implies that det(C1) = 0. This is a con-
tradiction to the fact that C1 is SDD and hence nonsingular. Thus,

ρ(L̃m) ≤ max
1≤i≤n

Ẽi + F̃i
〈T〉i

Following results show the convergence of GIJ for interval SDD matrices.

Theorem 3.7. For interval SDD matrix A, GIJ method (8) converges for any
initial guess.

Proof. Let A be an interval SDD matrix. Decompose A as in (6). As A is a
SDD matrix, so is the matrix Mm, that is

〈Dii〉 >
∑
j 6=i

|Rij |

Then Mm is an interval SDD matrix and hence an H-matrix due to the Re-
mark 3.5.

Suppose λ is an eigenvalue of L̃m and |λ| ≥ 1. Then we have that

det(λI − L̃m) = 0⇒ det(λ〈Mm〉 − |Nm|) = 0

⇒ det(λ〈D〉 − λ|Rm| − |Nm|) = 0

⇒ det

(
〈D〉 − |Rm| −

1

λ
|Nm|

)
= 0

⇒ det

(
〈D〉 − |Rm| −

1

λ
|Em| −

1

λ
|Fm|

)
= 0

10
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This shows that the matrix Q = (〈D〉 − |Rm| − 1
λ |Em| − 1

λ |Fm|) is singular.
As |λ| ≥ 1, that is, 1

|λ| ≤ 1 and hence A is SDD implies that Q is SDD, a

contradiction to the fact that Q is singular. Thus ρ(L̃m) < 1 and the result
holds for interval SDD matrix.

Next two theorems provide the convergence criteria of GIJ method for two
important classes under consideration, namely, the classes of intervalM -matrices
and interval H-matrices.

Theorem 3.8. GIJ method converges for interval M -matrix A, for any m ≤ n.

Proof. Let A be an interval M -matrix of order n. Then by Theorem 2.17 (iii),
〈A〉−1 ≥ 0. Since 〈A〉 is a Z-matrix, Theorem 2.8 implies that 〈A〉 is an

M -matrix. Let 〈A〉 = M̃1 − Ñ1 be the splitting of 〈A〉 defined in (11). As
〈A〉 is M -matrix, there exists u > 0 such that 〈A〉u > 0 which implies that

〈Mm〉u > 0, that is, M̃1u > 0. Thus M̃1 is an M -matrix, by Theorem 2.8.

Also, Ñ1 ≥ 0. Therefore, 〈A〉 = M̃1 − Ñ1 is regular splitting, and hence by

Theorem 2.13, ρ(L̃m) < 1. It is obvious that Mm is an interval M -matrix and
hence Remark 3.4 implies that GIJ converges, for any initial guess.

Theorem 3.9. GIJ method for solving interval linear system converges for
interval H-matrix A.

Proof. Let A be an interval H-matrix, so that the matrix 〈A〉 is an M -matrix.

Then as shown in Theorem 3.8, it can be proved that ρ(L̃m) < 1, which implies
that GIJ method converges for interval H-matrix.

4 Generalized interval Gauss-Seidel method

The interval Gauss-Seidel method for solving system of interval linear equations
was introduced by Neumaier [3] and Moore [25]. In [4, 22], authors considered
generalized Gauss-Seidel method (a particular case of AOR method) and dis-
cussed convergence properties thoroughly for various classes of matrices, like,
SDD, SPD, M -matrices, L-matrices and for H-matrices as the coefficient matri-
ces of the linear system. Using the similar approach we now propose generalized
version of interval Gauss-Seidel (GIGS) method for solving interval linear sys-
tems. It is shown in [22] that generalized Gauss-Seidel may not converge for
SPD and for L-matrices. Since general matrices are particular case of interval
matrices, so this section is emphasised on checking the convergence of gener-
alized interval Gauss-Seidel (GIGS) method, only for interval SDD matrices,
interval M -matrices and for interval H-matrices. We now begin with defining
iteration steps for generalized interval Gauss-Seidel method.

Definition 4.1. Consider the decomposition of A, defined in equation (7) and
the splitting

A = Mm −Nm (14)
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where Mm = Tm − Em and Nm = Fm. Then the iteration step for GIGS
method to solve the interval linear system (1), is defined as,

x(k+1) = M−1
m

(
Nmx(k) + b

)
(15)

Further decompose 〈A〉 same as in (10) and consider the associated splitting
(11) where

M1 = 〈Mm〉 = 〈Tm〉 − |Em|, N1 = |Nm| = |Fm| (16)

Now we emphasize on the convergence of GIGS method for interval SDD-
matrices, interval matrices H-matrices and for interval M -matrices.

4.1 Convergence analysis of GIGS method

Convergence analysis of GIGS method is similar to that of GIJ method discussed
in Section 3. For interval Gauss-Seidel method the splitting of A is considered
as A = M−N with M = D−E and N = F and the iteration matrix is given
by M−1N. If Ǵ := |M−1||N| and C := 〈M〉−1|N|, then from Theorem 2.19, it
is known that interval Gauss-Seidel method converges if ρ(Ǵ) < 1.

Following two results are immediate consequences of Theorem 2.18 and hence
the proofs are skipped.

Theorem 4.2. If M is interval H-matrix then the following results hold

(i) Ǵ ≤ C.

(ii) ρ(Ǵ) ≤ ρ(C) (equality holds if M is an interval M -matrix).

Theorem 4.3. Consider the splitting as given in equation (14) and (16). Let

G̃ = |Mm
−1| · |Nm| and Cm = 〈Mm〉−1|Nm| = M−11 N1. If Mm is an interval

H-matrix (or interval M -matrix) then the following results hold:

(i) G̃ ≤ Cm (equality holds if Mm is an interval M -matrix).

(ii) ρ(G̃) ≤ ρ(Cm).

Remark 4.4. From the above results, it is obvious that if ρ(Cm) < 1 (with C0 =
C), then GIGS method converges, which will be used to prove the convergence
of GIGS method in the succeeding results.

All through this section, we stick to the following notations:

(i) Ǵ := |M−1||N|, with M = D−E and N = F

(ii) C := 〈M〉−1|N|.

(iii) G̃ := |Mm
−1| · |Nm|, with Mm = Tm −Em and Nm = Fm

(iv) Cm := 〈Mm〉−1|Nm| = M−11 N1

12
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We begin our results with the following theorem that presents a spectral bound
of Cm and hence for G̃.

Theorem 4.5. Let A be an interval SDD matrix. Suppose Cm = 〈Tm −
Em〉−1|Fm|. Let R̃i, Ẽi, F̃i be defined same as in Notation 3, and, let 〈T〉i =

〈Dii〉 − R̃i. If 〈T〉i > Ẽi, ∀i ∈ N then ρ(Cm) ≤ max
i∈〈n〉

(
F̃i

〈T〉i − Ẽi

)
, where

〈n〉 = {1, 2, . . . , n}.

Proof. Let λ be an eigenvalue Cm. Choose x 6= 0 ∈ Rn such that

Cmx = λx ⇒ 〈Tm −Em〉−1|Fm|x = λx

⇒ (λ〈Tm〉 − λ|Em| − |Fm|)x = 0

⇒ [(λ〈D〉 − λ|Rm| − λ|Em| − |Fm|]x = 0

⇒
[
〈D〉 − |Rm| − |Em| −

1

λ
|Fm|

]
x = 0

Therefore the matrix Q = 〈D〉 − |Rm| − |Em| − 1
λ |Fm| is singular, which

implies Q is not SDD. Hence there exists an i ∈ N such that

〈Dii〉 ≤ R̃i + Ẽi +

∣∣∣∣ 1λ
∣∣∣∣ F̃i

After simplification we get

|λ| ≤ max
i∈〈n〉

F̃i

(|Dii| − R̃i)− Ẽi
which implies that

ρ(Cm) ≤ max
i∈〈n〉

F̃i

〈T〉i − Ẽi

Note that above theorem provides a spectral upper bound of Cm and hence of
the iteration matrix G̃ of the GIGS method.

Lemma 4.6. If A = Tm −Em − Fm be an interval SDD-matrix, then Mm =
Tm −Em is an interval H-matrix.

Proof. As A is an interval SDD matrix, the comparison matrix 〈A〉 of A satisfies
〈Aii〉 >

∑
j 6=i
|Aij |, for all i. Then

〈Aii〉 >
∑
j 6=i

|Aij | ≥
∑
j 6=i

|i−j|≤m

|Aij |+
∑

i>j+m

|Aij |

which shows that Mm is an interval SDD matrix, hence an interval H-matrix
by Remark 3.5.

13
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Theorem 4.7. GIGS method given in (2) converges for interval SDD matrix
A, for any initial guess.

Proof. Let A be an interval SDD matrix. Consider the splitting of A as men-
tioned in equation (14). Then Mm = Tm − Em is an interval H-matrix by
Lemma 4.6. Thus it suffices to show ρ(Cm) < 1.

Suppose that λ is an eigenvalue of Cm and |λ| ≥ 1. Take Q = 〈D〉 − |Rm| −
|Em| − 1

λ |Fm|. Now 1
|λ| ≤ 1 and A is SDD imply that Q is SDD. Again as

shown in Theorem 4.5, we can prove that det(Q) = 0, which contradicts the
fact that Q is SDD. Hence ρ(Cm) < 1 and thus the result holds for interval SDD
matrix.

The successive two theorems analyze the convergence of GIGS method for
interval M -matrices.

Theorem 4.8. GIGS method for solving (1) converges for interval M -matrix
A.

Proof. Let A be an interval M -matrix, then 〈A〉 is an M -matrix by Theo-
rem 2.17(iii). Consider the decomposition of A and 〈A〉 respectively, defined in
(6) and (10). As A = Mm −Nm is interval M -matrix, there exists v > 0 such
that Av > 0 which signifies that Mmv > 0, because Nm ≥ 0. Hence Mm is an
interval M -matrix. We need to show ρ(G̃) < 1.

Since 〈A〉 = M1 −N1, where M1 and N1 mentioned in equation (16), is an
M -matrix, we can choose u > 0 such that 〈A〉u > 0 which leads to M1u > 0
that shows M1 is an M -matrix. By Definition 2.11, 〈A〉 = M1 − N1 is an M -
splitting with nonsingular M1, so Theorem 2.14 gives ρ(Cm) < 1. Also using

Theorem 4.3 for interval M -matrix Mm we have ρ(G̃) = ρ(Cm). Thus we get

ρ(G̃) = ρ(Cm) < 1.

Theorem 4.9. Let A be an interval M -matrix. Then ρ(Cm) ≤ ρ(C), for any
m ≥ 1.

Proof. By Lemma 4.6, C = 〈M〉−1|N| is a nonnegative matrix and hence by
Perron-Frobenius Theorem ρ(C) is an eigenvalue of C and there is an x ≥ (6=)0
such that Cx = λx, that is, λ〈M〉x = |N|x.

Let us write |E| = |Em|+ |RE
m| and |F| = |Fm|+ |RF

m|. We now have that

λ〈Mm〉x = λ (〈D〉 − |Em|)x

= λ
(
〈D〉 − |E|+ |RE

m|
)
x

= λ〈M〉x+ λ|RE
m|x

≥ |N|x = |F|x

=
(
|Fm|+ |RF

m|
)
x ≥ |Fm|x = |Nm|x

14
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As 〈Mm〉−1 ≥ 0, so we have that λx ≥ 〈Mm〉−1|Nm|x and hence by Theo-
rem 2.15 we get

ρ(Cm) = ρ
(
〈Mm〉−1|Nm|

)
≤ λ = ρ(C).

Note that Theorem 4.9 leads to the fact that if interval GS method converges,
then GIGS method converges for any choice of bandwidth m.

Next theorem is for special case of interval M -matrices, which provides a
comparison of spectral radii of iterative matrices of GIGS for different band-
width. A similar result for AOR method for linear system was presented by
Salkuyeh [5].

Theorem 4.10. Let A be an interval M -matrix. If Ck = 〈Mk〉−1|Nk|, then
for any m ≥ p, ρ(Cm) ≤ ρ(Cp).

Proof. As A is interval M -matrix and so is 〈Mp〉, so Cp is nonnegative matrix.
Thus by Perron-Frobenius theorem we can choose an eigenvector x ≥ (6=)0
associated with the eigenvalue λ = ρ(Cp), so that Cpx = λx, that is, (|Np| −
λ〈Mp〉)x = 0.

If we write Tp = D + Rp and Tm = D + Rm, then

|A| = |D|+ |Rm| − |Em| − |Fm| = |D|+ |Rp| − |Ep| − |Fp|

which implies that R+L+U = 0, where R = |Rm|− |Rp|, L = |Ep|− |Em| and
U = |Fp| − |Fm|. Since m ≥ p, so we must have R ≤ 0, L ≥ 0 and U ≥ 0. We
now have that

Cmx− λx = 〈Mm〉−1 (|Nm| − λ〈Mm〉)x
= 〈Mm〉−1 (|Fm| − λ〈D〉+ λ|Rm|+ λ|Em|)x
= 〈Mm〉−1 (|Fp| − U − λ〈D〉+ λR+ λ|Rp|+ λ|Ep| − λL)x

= 〈Mm〉−1 (|Np| − λ〈Mp〉)x− 〈Mm〉−1 (U + λL− λR)x

= −〈Mm〉−1 (U + λL− λR)x

≤ 0

Hence Cmx ≤ λx and hence ρ(Cm) ≤ λ = ρ(Cp) by Theorem 2.15.

Following example validates the above two theorems.

Example 4.11. Consider the interval M -matrix

A =


4 [−1, 0] [−1, 0] [−1, 0]

[−1, 0] 5 [−1, 0] [−1, 0]
[−1, 0] [−1, 0] 4 [−1, 0]
[−1, 0] [−1, 0] [−1, 0] 5


Then we have that ρ(C) = 0.4640, ρ(C1) = 0.2749 < 1 and ρ(C2) = 0.1111 < 1
that is ρ(C2) < ρ(C1) < ρ(C) < 1 which shows that the above results hold.
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We conclude the section by checking the convergence property of GIGS
method for interval linear system with coefficient matrix as interval H-matrices.

Theorem 4.12. GIGS method converges for interval H-matrices.

Proof. Let A be an interval H-matrix, then 〈A〉 is an M -matrix. It suffices to

prove ρ(G̃) < 1, where G̃ = |Mm
−1| · |Nm|.

As 〈A〉 = M1 − N1, with M1 and N1 are defined in (16), is an M -matrix,
so as shown in Theorem 4.8, we can find u > 0 such that M1u > 0. Thus
〈A〉 = M1 − N1 is regular splitting with M−11 ≥ 0 and N1 > 0. Hence by
Theorem 2.13, ρ(M−11 N1) < 1. Since Mm is an interval H-matrix, we have

ρ(G̃) ≤ ρ(Cm) due to Theorem 4.3. Thus we get ρ(G̃) ≤ ρ(Cm) < 1 by
Remark 3.4. Hence GIGS method converges for any initial guess.

However, for interval L-matrices GIGS and GIJ methods may not converge.
For simplicity we consider examples of interval L-matrix with constant entries
to see the convergence behavior of both the methods for interval L-matrices.

Example 4.13. Consider the interval L-matrix (with constant entries)

A =

 2 −3 −6
−3 1 −4
−4 −5 3


If m = 1 then for GIGS method we get ρ(G̃) = 1.0459 > 1 and for GIJ method

we get ρ(L̂m) = 2.0725 > 1. Thus it shows GIGS method and GIJ method do
not converge for A.

Example 4.14. Consider the interval L-matrix (with constant entries)

A =

 1 −1 −1
−3 2 −3
−2 −1 2


If m = 1 then GIGS method gives ρ(G̃) = 0.6364 < 1 but GIJ method gives

ρ(L̂m) = 1. In this case GIGS converges but GIJ method doesn’t converge for
A.

5 Numerical Illustration

In this section numerical examples are considered to compare the convergence
of generalized interval Jacobi method and generalized interval Gauss-Seidel
method. In particular, examples are considered with coefficient matrix A as an
interval SDD matrix, interval M -matrix, and an interval H-matrix. The compu-
tations are carried out in MATLAB(2021b) with the interval toolbox INTLAB
v12 [28] and on a PC-Intel(R) Core(TM) i7-5700U CPU @1.80 GHz, 8 GB RAM.
The computations are rounding to four digits and the stopping criteria is chosen
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as ‖qdist(x(k+1),x(k))‖ ≤ 10−6, where qdist(x,y) := max{|x− y|, |x− y|} repre-
sents a measure of distance between the intervals x = [x, x] and y = [y, y], and
in case x, y ∈ IRn, then qdist(x,y) = [qdist(x1,y1), . . . , qdist(xn,yn)] ∈ Rn,
where xi represents the i-th entry of the interval vector x.

We now furnish examples for various classes of interval coefficient matrices,
and provide comparisons of our proposed methods with IJ and IGS methods ,
in terms of no. of iterations, time (in seconds) and rk = ‖(qdist(x(k),x)‖, where
x is the enclosure obtained by using verifylss.

Example 5.1. Consider the interval linear system (1) with the coefficient in-
terval matrix as interval strictly diagonally dominant matrix mentioned in Neu-
maier book [3] .

A :=

 3 [−2, 2] 0
0 3 [−2, 2]

[−2, 2] 0 3


and

b :=

 [−1, 1]
[−1, 1]

2


Then the function verifylss from the package INTLAB produces the enclosure

x = ([−1.2282, 1.2282], [−1.3423, 1.3423], [−0.1599, 1.4932])T

Taking the initial guess as x0 = ([0, 3], [0, 3], [0, 3])T , generalized interval Jacobi
converges after 13 iterations and yields the enclosure

xGIJ = ([−1.2106, 1.2106], [−1.3158, 1.3158], [−0.1404, 1.4737])T

whereas the generalized interval Gauss-Seidel converges after 1 iteration and
produces the enclosure

xGIGS = ([−1.2398, 1.2398], [−1.3481, 1.3481], [−0.1714, 1.5048])T

Table 1 compares GIJ and GIGS methods (taking m = 1) with IJ and IGS
methods (with m = 0) with the initial guess taken as x0 = ([0, 3], [0, 3], [0, 3])T .

Iterative method No. of iterations r time in second
GIJ 13 0.0372 0.0225

GIGS 1 0.0173 0.0147
IJ 35 0.0372 0.0437

IGS 24 0.0372 0.0237

Table 1: Numerical result for the interval SDD-matrix with m = 1

From the above table we can see that the generalized interval Jacobi method
gives the tightest solution set enclosure.
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Example 5.2. Consider the interval linear system (1) with the coefficient in-
terval M -matrix

A :=

 4 [−2, 0] [−1, 0]
[−1, 0] [3, 4] −1

[−2,−1] [−1, 0] 5


and

b :=

 1.2
1.5
5


then the verifylss function yields the enclosure

x = ([−0.2935, 1.6658], [0.0677, 1.7258], [0.5795, 2.0115])T

Taking initial guess as x0 = ([−1, 2], 1, [2, 3])T , generalized interval Jacobi con-
verges after 16 iterations and provides the enclosure

xGIJ = ([−0.2935, 1.6658], [0.0677, 1.7258], [0.5795, 2.0115])T

whereas generalized interval Gauss-Seidel converges after 9 iterations and gives
the enclosure

xGIGS = ([−0.2936, 1.6658], [0.0676, 1.7259], [0.5795, 2.0116])T

Table 2 provides a comparison of GIJ and GIGS methods (taking m = 1)
with IJ and IGS methods (with m = 0) with the initial guess taken as x0 =
([−1, 2], 1, [2, 3])T .

Iterative method No. of iterations r time in seconds
GIJ 16 3.23× 10−5 0.0272

GIGS 9 1.25× 10−4 0.0211
IJ 30 2.38× 10−5 0.0443

IGS 18 2.46× 10−5 0.0236

Table 2: Numerical result for the interval M -matrix with m = 1

This shows that in case of interval M -matrices, generalized interval Jacobi
method gives the tightest enclosure of the solution set.

Example 5.3. Consider the interval linear system (1) with the following coef-
ficient interval H-matrix

A :=

 [4, 5] [−2, 2] [−1, 0]
[0, 1] [3, 5] [−1, 1]

[−1, 1] [1, 3] 5


and
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b :=

 [0.1, 0.5]
[−0.3,−0.1]

[0.3, 0.4]


Then the function verifylss from the package INTLAB generates the enclosure

x = ([−0.2425, 0.3967], [−0.3567, 0.2375], [−0.1857, 0.3734])T

Taking the initial guess as x0 = (1, 5, 4)T , generalized interval Jacobi converges
after 15 iteartions and yields the enclosure

xGIJ = ([−0.2426, 0.3968], [−0.3567, 0.2375], [−0.1857, 0.3734])T

whereas the generalized interval Gauss-Seidel converges after 9 iterations and
produces the enclosure

xGIGS = ([−0.2425, 0.3967], [−0.3567, 0.2374], [−0.1857, 0.3734])T

We now produce a comparison in Table 3 of GIJ and GIGS methods (taking
m = 1) with IJ and IGS methods (with m = 0) with the initial guess taken as
x0 = (1, 5, 4)T .

Iterative method No. of iterations r time in seconds
GIJ 15 3.96× 10−5 0.0247

GIGS 9 9.73× 10−6 0.0209
IJ 45 1.11× 10−5 0.0475

IGS 24 1.27× 10−5 0.0294

Table 3: Numerical result for the interval H-matrix with m = 1

For this example the most tightest enclosure of solution set provided by the
generalized interval Gauss-Seidel method.

6 Conclusion

In this paper, we proposed a generalized interval Jacobi (GIJ) method and
generalized interval Gauss-Seidel method (GIGS). These methods are gener-
alization of interval Jacobi and interval Gauss-Seidel methods, discussed by
Neumaier [3, 25] to solve interval linear system. The GIJ and GIGS methods
are proposed similar to that introduced by Salkuyeh in [4], by generalizing the
diagonal interval matrix to a band interval matrix. We proved that both the
proposed methods converge for interval SDD matrix, interval M -matrix, and
for interval H-matrix. Further we found that for interval M -matrices, GIGS
method converges for any choice of bandwidth m if interval GS method con-
verges. At last we consider numerical examples to observe that GIJ gives a
tighter enclosure for interval M - coefficient matrices, whereas GIGS provides a
tighter enclosure of the solution set for interval H-matrices. This leads to the
open problem that the same can be concluded in general.
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