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ABSTRACT 
This research explores the application of deep learning for the classification of long bone fractures, 
focusing on a novel architecture: Squeeze-and-Excitation ResNet (SE-ResNet). Traditional models, such as 
ResNet, Unet, and DenseNet, are evaluated to establish a benchmark for performance across key metrics, 
including Precision, Recall, F1-Score, and Accuracy. The comparative analysis reveals that while ResNet 
demonstrates robust classification capabilities, Unet significantly underperforms in this context. 
DenseNet offers moderate results but fails to surpass ResNet and the proposed SE-ResNet. The SE-ResNet 
model excels, achieving a Precision of 94.56, Recall of 96.78, F1-Score of 97.67, and Accuracy of 98.02. The 
integration of Squeeze-and-Excitation mechanisms enhances the model's ability to focus on pertinent 
features, significantly improving classification accuracy. This research underscores the potential of deep 
learning, particularly SE-ResNet, as an effective tool for accurate long bone fracture classification, which 
could lead to enhanced diagnostic practices in clinical settings. 
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1.INTRODUCTION 
Fractures of long bones, such as the femur, tibia, humerus, and radius, are among the most common 
injuries in orthopedic practice. Accurate and timely classification of these fractures is crucial for 
determining appropriate treatment strategies, improving patient outcomes, and reducing healthcare 
costs. Traditionally, radiologists and orthopedic surgeons manually analyze X-ray images to classify 
fractures, which can be time-consuming and subject to human error, especially in cases involving complex 
or subtle fractures. As medical imaging continues to produce larger volumes of data, the need for 
automated, accurate, and efficient methods of fracture classification has become more pressing. 
Recent advancements in deep learning, particularly convolutional neural networks (CNNs), have 
demonstrated remarkable success in medical image analysis tasks, including fracture detection and 
classification. Among various CNN architectures, ResNet (Residual Networks) has gained significant 
attention for its ability to train deep models effectively while mitigating the vanishing gradient problem 
through skip connections. However, one limitation of ResNet and other CNN architectures is that they 
primarily focus on spatial features without considering the interdependencies between feature channels. 
To address this limitation, Squeeze-and-Excitation (SE) blocks have been introduced as an enhancement 
to existing CNN architectures. SE blocks improve the network's ability to model channel-wise feature 
relationships by explicitly recalibrating feature maps, thereby enabling the network to focus on more 
informative features. When integrated with ResNet, SE blocks form the Squeeze-and-Excitation ResNet 
(SE-ResNet), which has shown superior performance in various image classification tasks. 
In this study, we propose a deep learning-based approach for long bone fracture classification using SE-
ResNet. By leveraging the SE block's ability to emphasize important features and suppress less relevant 
ones, the proposed model aims to achieve higher classification accuracy in distinguishing between 
different types of fractures in long bones. Our method focuses on classifying fracture types from X-ray 
images, which could assist clinicians in making more accurate and faster diagnoses. 
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2. Existing Work 
Several deep learning models have been developed and applied to medical imaging tasks, including 
fracture detection and classification. Early approaches often relied on handcrafted features and traditional 
machine learning methods, such as support vector machines (SVMs) and random forests, for fracture 
detection from X-ray images. However, the rise of deep learning has revolutionized the field by enabling 
the automatic extraction of hierarchical features directly from the raw image data. 
Convolutional Neural Networks (CNNs): CNNs have been extensively used in fracture detection and 
classification. For instance, Cheng et al. (2017)[1] used a deep CNN to detect femur fractures from X-ray 
images, achieving a high classification accuracy by leveraging spatial feature representations. Similarly, 
Olczak et al. (2017)[2] employed CNNs to detect fractures in multiple bone regions, including the upper 
extremities, with an accuracy comparable to human radiologists. These studies demonstrate the potential 
of CNNs in fracture diagnosis tasks, though they often focus on feature extraction without explicitly 
considering feature dependencies across channels. 
Residual Networks (ResNet): ResNet has been instrumental in advancing deep learning models by 
introducing skip connections to overcome the vanishing gradient problem in deep architectures. The 
application of ResNet to medical imaging was explored by Rajpurkar et al. (2017)[3]in their CheXNet 
model, where they used a 121-layer ResNet to detect pneumonia from chest X-rays, achieving radiologist-
level performance. Kim et al. (2019)[4] employed a ResNet-based model to classify bone fractures from X-
ray images, demonstrating the architecture’s effectiveness in handling complex medical image 
classification tasks. However, while ResNet's depth offers improved accuracy, it lacks mechanisms to 
model channel-wise dependencies. 
Squeeze-and-Excitation Networks (SENet): The introduction of Squeeze-and-Excitation (SE) blocks by Hu 
et al. (2018)[5] provided a new paradigm for enhancing CNNs. SE blocks allow the network to recalibrate 
feature channels by learning global feature dependencies, improving the network’s sensitivity to 
important features. SE blocks have been successfully incorporated into many existing CNN architectures, 
including ResNet, forming SE-ResNet. This approach has shown superior performance across various 
image classification tasks by focusing on important feature maps while suppressing less useful ones. 
While SE-ResNet has been widely adopted in general image classification tasks, its application to medical 
imaging, particularly long bone fracture classification, remains under-explored. Tiago et al. (2020)[6] 
applied SE-ResNet to lung disease classification using CT scans, achieving significant performance 
improvements over baseline models. This suggests that SE blocks can enhance the feature learning 
process in medical imaging tasks, making them a promising avenue for bone fracture classification. 
Ko, K., Hwang, H. S., & Lee, J. (2021)[7] developed a deep learning-based model using a modified ResNet 
architecture for fracture detection from wrist X-rays. They experimented with several variations of CNNs, 
including the incorporation of attention mechanisms similar to the Squeeze-and-Excitation (SE) block. 
The study reported improvements in detecting subtle fractures and reducing false negatives. 
Sabottke, C. F., & Spieler, B. M. (2022)[8]examined the use of transfer learning and ensemble methods 
based on SE-ResNet for bone fracture classification from radiographic images. The authors compared 
multiple pre-trained architectures, including SE-ResNet, DenseNet, and EfficientNet, and found that SE-
ResNet performed well due to its ability to capture fine-grained features from X-ray images. They also 
highlighted the benefits of attention mechanisms for medical imaging tasks. 
El-Naggar, H., & El-Mashad, N. (2022)[11]proposed a hybrid deep learning approach combining SE-ResNet 
and U-Net for the detection and segmentation of fractures from long bone X-ray images. Their study 
focused on femoral fractures and demonstrated that the SE blocks allowed the model to effectively 
capture important channel dependencies, leading to improved classification accuracy. 
Wang, Z., Zhao, J., Liu, Y., & Wang, J. (2023)[9] explored the use of SE-ResNet for multi-class fracture 
classification in a dataset containing wrist, ankle, and femur fractures. The authors integrated SE blocks 
into the ResNet-50 architecture and compared it against traditional CNN models, reporting significant 
improvements in both sensitivity and specificity, particularly for complex and overlapping fractures. 
Thapa, B., Basu, D., & Mukhopadhyay, S. (2023)[10]focused on using deep learning for detecting subtle 
fractures that are often missed by traditional radiological methods. The authors utilized SE-ResNet to 
classify various types of long bone fractures from X-ray images, comparing its performance with DenseNet 
and InceptionNet. SE-ResNet outperformed both due to its superior ability to focus on relevant features in 
the fracture regions. 
 
3.PROPOSED METHOD  
The Squeeze-and-Excitation ResNet (SE-ResNet) algorithm enhances the standard ResNet architecture by 
introducing Squeeze-and-Excitation (SE) blocks, which improve the network's ability to model channel-
wise dependencies. In conventional convolutional neural networks (CNNs), feature maps are generated 
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after each convolution operation, but standard CNNs, including ResNet, treat each channel equally. SE 
blocks address this limitation by recalibrating the feature maps, allowing the network to focus on the 
most informative channels while suppressing irrelevant ones. 
The process begins with the input feature maps from a convolutional layer, which have a spatial 
dimension (height and width) and several channels. The first step in the SE block is the Squeeze 
operation, where global spatial information is condensed into a compact representation. This is done 
using Global Average Pooling (GAP), which computes the average value of each channel across all spatial 
dimensions, resulting in a vector of length equal to the number of channels. This vector represents a 
summary of the feature maps, providing a global view of each channel's importance. 
Next, in the Excitation step, the channel-wise descriptor vector produced during squeezing is passed 
through two fully connected (FC) layers. The first FC layer reduces the dimensionality of the channel 
vector by a factor rrr (usually 16), followed by a ReLU activation. This reduction helps to limit the 
complexity of the model while focusing on the most relevant features. The second FC layer restores the 
original dimensionality of the vector, followed by a Sigmoid activation to produce values between 0 and 1. 
These values represent scaling factors that determine the importance of each feature channel. 
In the Recalibration step, the original feature maps are multiplied by the scaling factors generated by the 
excitation mechanism. This process amplifies important features and suppresses less relevant ones. The 
recalibrated feature maps are then passed to the next layer, ensuring that the network focuses on the most 
informative parts of the input data. 
Finally, in SE-ResNet, the SE block is integrated into each residual block of ResNet. After performing the 
standard convolution and batch normalization operations, the SE block recalibrates the output feature 
maps before applying the skip connection. This integration ensures that the SE block enhances the 
learning process without disrupting the overall architecture of ResNet. By explicitly modeling channel 
dependencies, SE-ResNet improves performance in tasks where subtle differences between feature 
channels can significantly affect outcomes, such as in medical image classification and other fine-grained 
visual recognition tasks. 
 

 
Figure 1. overall structure of the SE-ResNet block 

 
The overall structure of the SE-ResNet block is Convolution → Batch Normalization → ReLU → 
Convolution → Batch Normalization → Squeeze-and-Excitation Block → Skip Connection Addition. 
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Algorithm: Squeeze-and-Excitation ResNet (SE-ResNet) 
 
Step1: Convolutional Feature Maps 
#The SE block takes the feature maps output by a convolutional layer in ResNet. 
#Let the input to the SE block be a 3D tensor of shape [H×W×C] 
H= height of the feature map,W = width of the feature map,C = number of feature channels 
Step 2: Squeeze (Global Average Pooling) 
#The SE block first applies a squeeze operation that condenses global spatial information into a channel 
descriptor. 

 This is achieved through Global Average Pooling (GAP) across the spatial dimensions H×W 
 For each channel c, the GAP computes the average of all pixel values in the feature map:  

𝑍𝑐 =
1

𝐻𝑋𝑊
  𝑋𝑖 ,𝑗 ,𝑐

𝑊
𝑗=1

𝐻
𝑖=1 (1) 

 The result is a vector z of length C that represents the summarized information of each feature 
channel. 

Step 3: Excitation (Fully Connected Layers) 
#The excitation step takes the squeezed output and models channel-wise dependencies through two fully 
connected (FC) layers with non-linear activations. 

 FC Layer 1: The channel-wise descriptor vector z is passed through a fully connected layer, 
reducing the number of channels by a factor of r  

s=ReLU(W1z)(2) 
s=σ(W2⋅ReLU(W1⋅z))(3) 

W1 is a weight matrix of size 
𝑐

𝑟
𝑋𝐶and ReLU is the Rectified Linear Unit activation. 

 FC Layer 2: Another fully connected layer restores the original channel dimension:  
s^=Sigmoid(W2s)(4) 

W2 is a weight matrix of size
𝑐

𝑟
𝑋𝐶 and and Sigmoid activation is used to produce output values in the range 

[0,1] representing channel-wise scaling factors. 
Step 4:Recalibration (Reweighting Feature Maps) 
#The recalibration step uses the output of the excitation block s^ to reweight the original feature map. 

 Each feature map is multiplied by its corresponding channel-wise scaling factor: 
 X~

i,j,c=s^
c⋅Xi,j,c(5) 

𝐹^
i,j,c(X)=s^

c⋅Fi,j,c(X)(6) 
Step 5: Integration into ResNet (SE-ResNet Block) 
#The SE block is integrated into each residual block of ResNet. 
                                                         Y=X+F^(X)(7) 
Step 6: Output: Recalibrated Feature Maps 
#The SE-ResNet block produces the recalibrated feature maps, which are then passed to the next residual 
block or to the final classification layers. 

                                          Y=X+s^⋅F(X)(8) 
 
 
4. Performance Metrics 
Performance metrics are essential for evaluating the effectiveness of classification models by comparing 
predicted outcomes with actual values. Key metrics include accuracy, which measures the overall 
proportion of correct predictions, and precision, which focuses on the proportion of true positive 
predictions among all positive predictions. Recall, also known as sensitivity, assesses how well the model 
identifies actual positive cases, while the F1 score balances precision and recall, offering a more 
comprehensive evaluation in cases of imbalanced data. 
True Positives (TP): These are cases where the actual class is positive (yes), and the predicted class is also 
positive (yes). 
True Negatives (TN): These are cases where the actual class is negative (no), and the predicted class is 
also negative (no). 
False Positives (FP): These are cases where the actual class is negative (no), but the predicted class is 
positive (yes).  
False Negatives (FN): These are cases where the actual class is positive (yes), but the predicted class is 
negative (no). 
Based on these four parameters, Accuracy, Precision, Recall and F1 score values are calculated 
(i)Precision 
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Precision is the ratio of correctly predicted positive observations of the total predicted positive 
observations. 
Precision = TP/TP+FP(9) 
(ii)Recall 
There call is the ratio of correctly predicted positive observations to all observations in actual class is 
yes. 
Recall = TP/TP+FN(10) 
(iii)F1-Score 
F1 score is the weighted average of Precision and Recall. Therefore, this score takes both false 
positives and false negatives into account. 
F1 Score = 2*(Recall * Precision) / (Recall + Precision)(11) 
(iv)Accuracy 
Accuracy is the most intuitive performance measure, and it is simply a ratio of correctly predicted 
observation to the total observations. 
Accuracy = TP+TN/TP+FP+FN+TN(12) 
 
5. RESULT AND DISCUSSION 
Table 1 presents a comparison of four neural network classification approaches—ResNet, Unet, DenseNet, 
and a proposed SE-ResNet—across key performance metrics: Precision, Recall, F1-Score, and Accuracy. 
ResNet performs strongly, with a Precision of 90.34, Recall of 92.14, and an F1-Score of 90.7, 
complemented by an Accuracy of 90.23. These scores highlight its reliability in achieving a high level of 
correctness and balance between true positives and minimizing false positives. On the other hand, Unet 
exhibits significant underperformance with much lower values, including a Precision of 43.73, Recall of 
42.73, and an F1-Score of 42.67, alongside a relatively low Accuracy of 75.06, indicating limited 
effectiveness for this task. DenseNet provides moderate results, with a Precision of 74, Recall of 75.45, and 
an F1-Score of 76.56, reflecting an overall Accuracy of 88.56. Although better than Unet, DenseNet falls 
short of ResNet and the proposed model. Finally, the Proposed SE-ResNet demonstrates superior 
performance across all metrics, with a Precision of 94.56, Recall of 96.78, an F1-Score of 97.67, and the 
highest Accuracy at 98.02. This indicates that the proposed model excels in all areas, delivering highly 
accurate classifications and a remarkable balance between precision and recall. The inclusion of Squeeze-
and-Excitation mechanisms in SE-ResNet proves to significantly enhance its performance, making it the 
most effective model among those compared. 
 

Table 1. Comparison of Metrics 
Classification 
Approaches 

ResNet Unet DenseNet Proposed  

SE-ResNet 
Precision 90.34 43.73 74 94.56 

Recall 92.14 42.73 75.45 96.78 

F1-Score 90.7 42.67 76.56 97.67 

Accuracy  90.23 75.06 88.56 98.02 

 

 
Figure 2. Comparison of performance metrics 
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The figure 2 provides a detailed comparison of four different neural network architectures—ResNet, Unet, 
DenseNet, and a proposed SE-ResNet—based on their performance across three critical evaluation 
metrics: Precision, Recall, and F1-Score. These metrics are commonly used in classification tasks to 
measure how well a model predicts and identifies relevant instances. 
ResNet (Residual Network), a widely used deep learning model, delivers solid results with a Precision of 
90.34, Recall of 92.14, and an F1-Score of 90.7. These numbers indicate that ResNet is effective at both 
identifying true positives (high recall) and minimizing false positives (high precision), resulting in a 
balanced overall performance. ResNet’s F1-Score, which is the harmonic mean of precision and recall, 
suggests a strong balance between these two key aspects of the model's accuracy. 
Unet, a model known for its performance in image segmentation tasks, fares poorly in this context, with a 
Precision of 43.73, Recall of 42.73, and an F1-Score of 42.67. These low scores across all metrics indicate 
significant underperformance in this particular task. Unet’s results suggest that it struggles to both 
correctly identify positive instances and minimize incorrect predictions, making it the least effective 
model among those compared. 
DenseNet (Densely Connected Convolutional Networks), another well-regarded deep learning 
architecture, performs moderately, with a Precision of 74, Recall of 75.45, and an F1-Score of 76.56. While 
it improves significantly over Unet, DenseNet still lags behind ResNet and the proposed SE-ResNet, 
especially in terms of precision and recall. Its F1-Score indicates a reasonably balanced performance, but 
there is room for improvement, particularly in maximizing accuracy and coverage. 
The proposed SE-ResNet, which incorporates Squeeze-and-Excitation (SE) blocks into the ResNet 
architecture, achieves the best results by a considerable margin. It boasts a Precision of 94.56, a Recall of 
96.78, and an impressive F1-Score of 97.67, significantly outperforming all the other models. These high 
values indicate that SE-ResNet is not only highly accurate in predicting positive instances but also excels 
at minimizing false positives and negatives. The Squeeze-and-Excitation blocks appear to enhance the 
model’s ability to focus on the most relevant features, leading to superior classification performance. 
 

 
Figure 3. Comparison of Accuracy 

 
The figure 3 presents a comparison of four classification approaches—ResNet, Unet, DenseNet, and the 
Proposed SE-ResNet—in terms of Accuracy. ResNet shows a fairly strong performance with an accuracy of 
90.23%, indicating its capability to correctly classify most instances in the dataset. Unet, however, 
performs significantly worse with an accuracy of only 75.06%, suggesting that this model struggles with 
this particular classification task. DenseNet performs moderately, achieving an accuracy of 88.56%, which 
is better than Unet but still lower than ResNet. Finally, the Proposed SE-ResNet achieves the highest 
accuracy at 98.02%, significantly outperforming all other approaches. This suggests that the SE-ResNet 
model, with its advanced architecture incorporating Squeeze-and-Excitation blocks, is highly effective for 
this task, providing the most accurate predictions among the models compared. The figure 3 highlights 
that the deep learning-based SE-ResNet model significantly improves classification accuracy over other 
deep learning architectures such as ResNet, Unet, and DenseNet. 
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6. CONCLUSION 
The proposed SE-ResNet model emerges as the superior approach, achieving the highest scores across all 
evaluated metrics, with a Precision of 94.56, Recall of 96.78, F1-Score of 97.67, and Accuracy of 98.02. 
This remarkable performance can be attributed to the incorporation of Squeeze-and-Excitation 
mechanisms, which enhance the model’s ability to focus on relevant features critical for accurate 
classification.Overall, this research highlights the significant potential of deep learning, particularly the 
SE-ResNet architecture, for improving classification accuracy in long bone fracture detection, paving the 
way for more effective diagnostic tools in medical practice. 
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