A Homeomorphic Image of the Space of Quasi- Continuous Functions by

Bhagath kumar Soma¹ , V. Srinivasa kumar2, KusumaTummala³

¹Soma Assistant Professor, Department of Basic Sciences, Gokaraju Rangaraju Institute of Engineering and Technology, Bachupally,Kukatpally,Hyderabad-500090,Telangana State, India. Email: somabagh@gmail.com ²Assistant Professor, Department of Mathematics, JNTUH College of Engineering, JNTU, Kukatpally, Hyderabad-500085, Telangana State, India. Email: srinu_vajha@yahoo.co.in ³Assistant Professor, Department of Mathematics, VNR Vignana Jyothi Inistitute of Engineering and Technology, Hyderabad,500090, Telangana State, India. Email: kusumatummala9@gmail.com

ABSTRACT

In this present work, the concept of Quasi-continuity is defined on a closed and bounded interval $[0,1]$. It

is established that the set of all such Quasi- continuous functions forms a commutative Banach algebra under the supremum norm. Properties of some maps on the space of Quasi-continuous functions are established. An isometrical isomorphic image of the space of Quasi-continuous functions is investigated. The notion of sequential quasi- continuity is introduced.

Keywords: Quasi-continuity, Continuity, Sequential quasi –continuity, Banach space, Linear map, Isometrical isomorphism.

1. INTRODUCTION

The notion of Quasi-continuous real functions of several real variable was introduced firstly by Kempistyin his classical research article[1]of 1932. Later, many authors defined Quasi-continuity according to their convenience and proposed many results. So one can find various types of Quasicontinuous functions in the literature $\lceil 4 \rceil$. Basically any type of Quasi-continuity is a weaker form of continuity, i.e., every continuous function is Quasi-continuous but the converse is not necessarily true.

The present work also introduces a notion of Quasi-continuity on the closed unit interval $[0,1]$

.Throughout this work, I stands for the closed unit interval $[0,1]$. Let X be a commutative Banach

algebra over the field $\mathbb R$ of all real numbers. X^3 denote the product space $X \times X \times X$ with coordinate wise linear operations and norm $\|(x, y, z)\| = \max\{\|x\|, \|y\|, \|z\|\}$. Clearly the space X^3

forms a commutative Banach algebra overℝ.

The main aim of this work is to investigate a homeomorphic image of the space of all Quasi-continuous bounded functions from I into X and to find an isometrical isomorphic image of this space.

2. Preliminaries

This section is devoted to introduce Quasi-continuity from I into X and to present a few definitions which are needed for further study of this paper.

Definition-1.1: Let $f : I \to X$. We say that $f(p+)$ exists at a point $P \in [0,1)$ and write $f(p+) = L$

if, for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that
 $f(x) - L \| < \varepsilon \quad \forall \quad x \in (p, p + \delta) \subset I$,where $L \in X$.

We say that $f(p-) = l$ at a point $p \in (0,1]$ if, for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $||f(x)-l|| < \varepsilon \quad \forall \quad x \in (p-\delta, p) \subset I$, where $l \in X$.

$$
||f(x)-l|| < \varepsilon \quad \forall \quad x \in (p-\delta, p) \subset I \text{ , where } l \in X \text{ .}
$$

Definition-1.2: By a Quasi-continuous function, we mean that a function $f: I \rightarrow X$ satisfying the following conditions.

- (a) $f(0+)$ and $f(1-)$ exist.
- (b) $f(p+)$ and $f(p-)$ exist at every $p \in (0,1)$.

Notation-1.3:

1. We denotethe set of all quasi-continuous bounded functions from I into X by the symbol $\mathscr{Q}(I,X)$

and the set of all continuous bounded functions from I into X by the symbol $\,C\big(I,X\big)$

2. For our convenience, we take $f(0-) = f(0)$ and $f(1+) = f(1)$ where $f \in \mathcal{L}(I,X)$

Definition-1.4 [2]:Let V and W be any two linear spaces over the same field K of scalars. A mapping $T: V \to W$ is said to be linearif $T(cx + dy) = cT(x) + dT(y)$ for all x and y in V and scalars c and d in K .

Definition \cdot **1.5[2]:**Let V and W be any two normed linear spaces over the same field K of scalars. A linear map $\;T\!:\!V\rightarrow\!W\;$ is said to be bounded if there exists a real number $\;M\,{\geq}\,0\;$

Such that
$$
||T(x)|| \le M ||x|| \quad \forall \quad x \in V
$$
.

Definition – 1.6 [5]:Let N and N' be normed linear spaces. An isometric isomorphism of N into N' is a one-to-one linear transformation T of N into N' such that $\|T(x)\| = \|x\|$ for every x in N and N is said to be isometrically isomorphic to $\;\;N'$ if there exists an isometric isomorphism of $\;N\;$ into $\;N'$.

3.The Space of Quasi- continuous functions

In this section, we investigate an isometrical isomorphic image of the space of all quasi-continuous bounded real functions from *I* into *X* .

Proposition-2.1:The set $\mathcal{Q}(I, X)$ of all Quasi-continuous bounded functions from I into X forms a commutative Banach algebra with identity under the supremum norm over the field ℝ of real numbers with respect to pointwise linear operations.

with respect to pointwise linear operations.
Definition-2.2:Fix $f \in \mathcal{L}(I, X)$. Define $\Psi_f : I \to X^3$ by $\Psi_f(x) = (f(x), f(x+), f(x-))$ for all $x \in I$.

Proposition-2.3:Let $f \in \mathcal{L}(I,X)$. If $\Psi_f \in C\big(I,X^3\big)$ then $f \in C\big(I,X\big)$.

Proof:Suppose that $\Psi_f \in C\big(I,X^3\big)$. Let $p\in I$ and $\varepsilon\!>\!0$ be given.

Since
$$
\Psi_f
$$
 is continuous at p , there exists a $\delta > 0$ such that
\n
$$
\|\Psi_f(x) - \Psi_f(p)\| < \varepsilon \quad \forall \quad x \in (p - \delta, p + \delta) \subset I
$$
\n
$$
\Rightarrow \|(f(x), f(x+), f(x-)) - (f(p), f(p+), f(p-))\| < \varepsilon \quad \forall \quad x \in (p - \delta, p + \delta)
$$
\n
$$
\Rightarrow \|(f(x) - f(p), f(x+)-f(p+), f(x-)-f(p-))\| < \varepsilon \quad \forall \quad x \in (p - \delta, p + \delta)
$$
\n
$$
\Rightarrow \max \{\|f(x) - f(p)\|, \|f(x+)-f(p+)\|, \|f(x-)-f(p-)\| \} < \varepsilon \quad \forall \quad x \in (p - \delta, p + \delta)
$$
\n
$$
\Rightarrow \|f(x) - f(p)\| < \varepsilon \quad \forall \quad x \in (p - \delta, p + \delta)
$$
\nHence for every $\varepsilon > 0$ there exists a $\delta > 0$ such that
\n
$$
\|f(x) - f(p)\| < \varepsilon \quad \forall \quad x \in (p - \delta, p + \delta)
$$
\n
$$
\Rightarrow \quad f \text{ is continuous at } p.
$$
\nThus the continuity of Ψ_f at p implies the continuity of f at p .

Remark-2.4:If f is continuous at every point of I then it can be easily seen that \mathcal{H}_f is continuous on *I* .

Proposition-2.5:Let $B = \{ \Psi_f : f \in \mathcal{Q}(I,X) \}$. Then B forms a normed linear space withthe norm $\|\Psi_{f}\| = \sup\{\|\Psi_{f}(x)\| : x \in I\}.$

Proposition-2.6:Define $F: \mathcal{Q}(I, X) \to \mathcal{B}$ by $F(f) = \Psi_f$. Then F is a one-to-one continuous linear mapping from $\mathcal{L}(I, X)$ onto \mathcal{B} .Also $||F(f)|| = ||f||$.Proof:Clearly $F: \mathcal{L}(I, X) \to \mathcal{B}$ is surjective.
For $f, g \in \mathcal{L}(I, X)$, $\Psi_{f+g}(x) = ((f+g)(x), (f+g)(x+), (f+g)(x-))$ surjective.

$$
\begin{aligned}\n\text{surjective.} \\
\text{For } f, g \in \mathcal{L}(I, X), \Psi_{f+g}(x) = ((f+g)(x), (f+g)(x+), (f+g)(x-)) \\
&= (f(x), f(x+), f(x-)) + (g(x), g(x+), g(x-)) = \Psi_f(x) + \Psi_g(x) \quad \forall \ x \in I \\
\text{Hence } \Psi_{f+g} = \Psi_f + \Psi_g \quad \forall \ f, g \in \mathcal{L}(I, X) \\
\Rightarrow F(f+g) = F(f) + F(g) \quad \forall \ f, g \in \mathcal{L}(I, X). \\
\text{Let } c \in R. \text{ Then it is easy to see that } F(cf) = \Psi_{cf} = c\Psi_f = cF(f) \quad \forall \ f \in \mathcal{L}(I, X). \\
\text{Hence } F \text{ is linear.} \\
\text{Also we have } \Psi_{fg}(x) = ((fg)(x), (fg)(x+), (fg)(x-)) \\
&= (f(x), f(x+), f(x-)) (g(x), g(x+), g(x-)) \\
&= \Psi_f(x) \Psi_g(x) \quad \forall \ x \in I.\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Hence } F(fg) = \Psi_{fg} = \Psi_f \Psi_g = F(f) F(g).\n\end{aligned}
$$

Now we prove that F is $1-1$. For this, suppose that For $F(f) = F(g) \Rightarrow \Psi_f = \Psi_g$
 $\Rightarrow \Psi_f(x) = \Psi_g(x) \forall x \in I$ $f(x) = \Psi_{f}(x) = \Psi_{g}(x) \forall x \in I$
 $\Rightarrow (f(x), f(x+), f(x-)) = (g(x), g(x+), g(x-)) \forall x \in I$

$$
\Rightarrow (f(x), f(x+), f(x-)) = (g(x), g(x+), g(x-)) \forall x \in I
$$

\Rightarrow f(x) = g(x) \forall x \in I
\Rightarrow f = g.

Hence F is $1-1$.

Now we prove that F is continuous. Supposethat $f_n \in \mathcal{Q} \big(I,X \big)$, $n=1,2,3,......$, and

$$
f\in \mathcal{L}(I,X).
$$

Let $f_n \to f$ uniformly on *I*. Then for a given $\varepsilon > 0$ there exists an integer $N > 0$ such that $(x)-f(x)$ $\|f_n(x)-f(x)\| < \frac{\varepsilon}{3}$ for all $n \ge N$ and all $x \in I$.

Fix $x \in I$ and also fix a positive integer *n* such that $n \geq N$. Since f_n is Quasi-continuous at *x*, both $f_n(x+)$ and $f_n(x-)$ exist. Then there exists a $\delta_i > 0$ such that $\|f_n(t) - f_n(x+\) \| < \frac{\varepsilon}{3} \quad \forall \quad t \in (x, x + \delta_1) \subset I.$

Since f is also Quasi-continuous at x , both $f(x+)$ and $f(x-)$ exist. So there exists a $\delta_2 > 0$ such that $||f(t)-f(x+)|| < \frac{\varepsilon}{3} \quad \forall \quad t \in (x, x + \delta_2) \subset I$. Put $\delta = \min \{ \delta_1, \delta_2 \}$. Then for $t \in (x, x + \delta)$, we have If $\delta = \min \{\delta_1, \delta_2\}$. Then for $t \in (x, x + \delta)$, we have
 $f_n(x+) - f(x+) \ = \|f_n(x+) - f_n(t) + f_n(t) - f(t) + f(t) - f(x+) \|$ $\|f_n(x+) - f(x+\) \| = \|f_n(x+) - f_n(t) + f_n(t) - f(t) + f(t)$
 $\le \|f_n(x+) - f_n(t) \| + \|f_n(t) - f(t) \| + \|f(t) - f(x+\) \|$

$$
\langle \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.
$$

\nHence $||f_n(x+) - f(x+)|| \le \varepsilon$.
\nThis holds for every $x \in I$ and for every positive integer $n \ge N$.
\nSimilarly $||f_n(x) - f(x-)|| \le ||\varepsilon||$ for all $n \ge N$ and all $x \in I$.
\n $n \ge N \Rightarrow ||F(f_n) - F(f)|| = ||\Psi_{f_n} - \Psi_f||$
\n $= \sup \{ ||\Psi_{f_n}(x) - \Psi_f(x)|| : x \in I \}$
\n $= \sup \{ ||f_n(x), f_n(x+) , f_n(x-)/ - (f(x), f(x+), f(x-))|| : x \in I \}$
\n $\le \varepsilon$
\n $\Rightarrow F(f_n) \rightarrow F(f)$ as $n \rightarrow \infty$
\nHence *F* is continuous on $\mathcal{L}(I, X)$.
\nHence *F* is a one-to-one continuous linear mapping from $\mathcal{L}(I, X)$ onto *B*. This shows that
\n $\mathcal{L}(I, X)$ is homeomorphic to *B*.
\nNow it remains to prove that $||F(f)|| = ||f||$ for every $f \in \mathcal{L}(I, X)$. We have
\n $||F(f)|| = ||\Psi_f|| = \sup \{ ||\Psi_f(x)|| : x \in I \}$
\n $\ge ||\Psi_f(x)||$ for all $x \in I$
\n $= ||(f(x), f(x+), f(x-))||$
\n $= \max \{ ||f(x)||, ||f(x+)||, ||f(x-)|| \}$
\n $= \max \{ ||f(x)||, ||f(x)||, ||f(x+)||, ||f(x-)|| \}$
\n $= ||\Psi_f(x)||$
\n $\le \sup \{ ||\Psi_f(x)|| : x \in I \}$
\n $= ||f(f)||$
\n $= ||\Psi_f||$
\n $= ||F(f)||$
\n $= ||F(f)||$
\n $= ||F(f)||$
\n $= ||F(f)||$
\n $= ||f|| = \sup \{ ||f(x)|| : x \in I \} \le ||F(f)||$

Proposition-2.7: The set $\mathcal{B} = \{ \Psi_f : f \in \mathcal{L}(I,X) \}$ is a commutative Banach algebra with identity Ψ_{e} under the norm defined by $\|\Psi_{f}\| = \sup\{\|\Psi_{f}(x)\|: x \in I\}$, where $\Psi_{e}(x) = (1,1,1) \quad \forall x \in I$. \mathcal{P}_e under the norm defined by $\|\Psi_f\| = \sup \{\|\Psi_f(x)\| : x \in I\}$, where $\Psi_e(x) = (1,1,1)$
Proposition-2.8:Fix $x \in I$. Define $\varphi_x(f) = \Psi_f(x) = (f(x), f(x+), f(x-))$ $\forall f \in \mathcal{L}(I, X)$.

Then $(a) \varphi_{\mathbf{x}} : \mathcal{L}(I, X) \to X^3$ is linear (b) $\|\varphi_{\mathbf{x}}\| \geq \|x\|$ \forall $x \in I$. (c) $\varphi_{\scriptscriptstyle \chi}$ is bounded $\mathbf{Proof:}\big(a\big)$ The linearity of $\mathbf{\ \varphi}_{_{\mathbf{x}}}$ is easy to verify. *b* **b b** *c c c c c c <i>c c* $=\max\{\|f(x)\|,\|f(x+\)|,\|f(x-\)|\}$ \geq $|| f(x) || \forall f \in \mathcal{Q}(I,X)$ \Rightarrow $\|\varphi_x(f)\| \geq \|f(x)\| \forall f \in \mathcal{L}(I, X)$ Now it follows that $\|\varphi_x\| = \sup \{ \|\varphi_x(f)\| : \|f\| \leq 1 \}$ \geq $\|\varphi_x(f)\| \forall f \in \mathscr{L}(I,X)$ with $\|f\| \leq 1$ \geq $\|f(x)\| \forall f \in \mathcal{L}(I, X)$ with $\|f\| \leq 1$ \Rightarrow $\|\varphi_x\| \geq \|f(x)\| \forall f \in \mathcal{L}(I, X) \text{ with } \|f\| \leq 1 \rightarrow$ (1) Let $u: I \to X$ be defined by $u(x) = x \ \forall \ x \in I$ Clearly $u \in \mathcal{L}(I, X)$. It is easy to see that $||u|| = 1$. From (1), $\|\varphi_x\| \ge \|u(x)\| = \|x\|$ \Rightarrow $\|\varphi_{x}\| \geq \|x\|$ \Rightarrow $\|\varphi_x\| \le \|\mathcal{X}\|$
Also $\|\varphi_x(f)\| = \|(f(x), f(x+), f(x-))\|$ $=\left\| \varphi_{\epsilon}(x) \right\|$ \leq sup $\{\|\Psi_{f}(x)\| : x \in I\}$ $=$ $\|\Psi_{\ell}\|$ $=$ *F(f)* \Rightarrow $\|\Psi_x(f)\| \leq$ $\|F(f)\| =$ $\|f\|$ \Rightarrow $\|\Psi_x(f)\| \leq \|f\|$ \forall $f \in \mathcal{L}(I, X)$ $\Rightarrow \varphi_x$ is bounded.

4.Sequential Quasi-continuity

In this section, the notion of sequential quasi-continuity is introduced and it is shown to be equivalent to quasi-continuity.

Definition-3.1:We say that a function $f: I \to X$ is sequentially quasi-continuous at a point $x \in I$ if for any sequence $x_n \to x$ in *I*, the subsequential limits of the sequence $\{f(x_n)\}$ are $f(x), f(x+)$ or $f(x-)$ only. If f is sequentially quasi-continuous at every point of I then we say that f is sequentially quasi-continuouson I .

REFERENCES

- [1] Kempisty, .S., Sur les functions quasicontinues, Fund. Math. XIX, pp. 184 197, 1932.
- [2] Kreyszig , E., Introductory Functinal Analysis with Applications, John Wiley and Sons, New York, 1978.
- [3] Munkeres, J.R.,Topology, PHI, New Delhi, 1975.
- [4] Ramabhadrasarma, I. andSrinivasakumar, V., On Various types of Quasi-continuity, ActaCienciaIndica,Vol.XXXiv m, No.4, pp.2209-2216, 2008.
- [5] Simmons, G. F., Introduction to Topology and Modern Analysis,Tata McGraw Hill, New York, 1963.
- [6] Van Rooij, A.C.M. andSchikhof,W.H.,A second course on Real functions, Cambridge University Press,Cambridge, 1982.