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ABSTRACT 
Image compression analysis have become most prominent feature to realizeto observe, process and store 
image and its features in local or cloud storages. Since the trend of ML and DL have become the important 
features that are effective in real time design, we tend to observe the loss and its data manipulation via 
manual or automatise the compression standard based on the applications. Since, storing of data in less 
memory stricture and its architecture have become the recent interests of the compression standard with 
its time features. Presently, we have observed most of the design are either hybrid or novel structures 
with its transformative analysis to reduce the performance parametric with less memory storage and also 
less time consumption. But the prominent change of the Image compression rate with its transformative 
approaches have depicted more loss in image while compression ration increases with pixel quality. So, 
as to provide such change in the image compression our proposed model implemented a novel intuitive 
orthogonal Transformation and Heuristic Projection Orthogonal Transformindicating loss less than 1% 
observed with HPOT-Dense-NN. The effective parametric with different image dataset such as CIFAR-10, 
MNIST and 100 sample real time datasets are considered to implicate the overall comparison with State 
of Arts (JPEG, JPEG-2000, GAN, LSTM and CNN).The overall bitrate, compression rate and PSNR with SSIM 
are implemented with the proposed design algorithms which have shown improved values better than 
SOA as tabulated. 
 
Keywords: Image Compression (IC), Dense neural Net (DNN), multi-layer perceptron (MLP), 
Convolutional Neural Net (CNN), Deep Neural Net (DNN), Machine Learning (ML), Deep learning (DL), 
Orthogonal Transforms (OT),Heuristic Projection Orthogonal Transform (HPOT). 
 
1. INTRODUCTION 
In this day and age of massive amounts of data, the quantity of the data itself is the primary worry of 
academics and experts. Data compression is necessary for the proper transmission and storage of data 
due to the restricted bandwidth of the channel and the limited space available in memory [1]. This makes 
it necessary to compress data in order to ensure that important information is not lost. Audio 
compression, picture compression, video compression, and document compression are only few of the 
different types of data compression that can be accomplished [2]. An image may contain information that 
is either valuable, redundant, or irrelevant depending on how it is interpreted. For the purpose of image 
compression, it is possible to disregard information that is not important. In order to bring out the details 
in photographs, it is essential to include redundant information, whereas information that is valuable is 
neither redundant nor irrelevant. We are unable to adequately rebuild or decompress images because we 
do not have all of the necessary information [3]. There are two primary groups to consider when 
discussing image compression. The first method is called lossless image compression, and it doesn't 
remove any of the original image's information. The second method is called lossy image compression. 
Lossless picture compression algorithms are particularly efficient for small-size data. Lossless approaches 
that are efficient for tiny data include Huffman coding, run-length encoding (RLE), arithmetic coding, 
Lempel-Ziv-Welch (LZW) Coding, and JPEG-LS [4]- [5]. The most significant disadvantage of the lossless 
compression techniques is that they are far less efficient at compression than the lossy compression 
approaches. For this reason, a large number of academics are focusing their attention on the compression 
of images using ML. There are a lot of studies that are concentrated on picture compression. Conventional 
image compression methods based on discrete cosine transform (DCT) and discrete wavelet transforms 
have been the subject of a number of studies that examine both their advantages and disadvantages 
(DWT). The prediction and transform-based picture compression techniques were analyzed and surveyed 
by in [5]. The importance of prediction and transform-based conventional methods for image 
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compression was underlined in this survey, as well as the applications of these techniques. Edge 
detection, gradient analysis, and block-based prediction were the foundations on which these prediction-
based algorithms were built. Wavelets, on the other hand, formed the foundation of transform-based 
algorithms. Throughout the survey, both comparative and in-depth analyses of entropy coding were 
presented. On the other hand, this did not include a discussion regarding end-to-end based image 
compression architectures that made use of ML. The authors of [6] looked at DCT- and DWT-based 
algorithms for their research. The survey did not address the recently discovered methods of image 
compression. Similarly, the authors of [7] analyzed a variety of lossy and lossless picture compression 
techniques. The essay discussed the benefits and downsides of three different types of picture 
compression frameworks: predictive, entropy coding, and discrete Fourier transform-based image 
compression. The survey did not cover any aspects of machine learning-based image compression 
architectures. The traditional DCT, DWT, and entropy-based techniques to image compression have been 
highlighted as being quite important in a number of recent surveys. 
Convolving using random filter kernels yields a large number of features, but many of these features are 
identical. As a result, the network's resources are being wasted by being used to repeatedly learn the 
same features. To add to that, certain features are superfluous and should not take up valuable processing 
time when training. Learning irrelevant information is undesirable for image reduction, since learning 
key features plays a critical role. There has to be a system in place to save the most informative bits of a 
feature while discarding the rest. The process should direct the attention of CNN layers onto the crucial 
parts of the image. In most cases, a deep CNN network would experience sluggish and insufficient training 
due to decreasing feature reuse [8]. Larger receptive fields take into account more distant pixels while 
calculating the final result. As a result, they choose for a more expansive network, which extracts 
numerous redundant characteristics and limits their capacity to generalize. Learning numerous duplicate 
features reduces the performance advantage of deepening or extending the network for compression-
decompression applications. Overfitting occurs when a network incorrectly learns a prior by focusing on 
these duplicated characteristics, wasting computational and memory resources. Yet, in comparison to the 
depth and breadth, cardinality, which denotes the size of the set of transformations, decreases the total 
number of parameters and enhances the representation power. 
 
1.1 Problem Statement 
1.2 Objectives 
a) To implement a Hybrid, Transform approach with Orthogonality feature. 
b) To realize a Deep and Machine learning models for Transformer approach based on Orthogonality 
c) Improvise a feature extraction model with hybrid interpolative approach for Image compression 

analysis for image size reduction 
d) Compare the SOA architectures for all performance metrics. 

 
1.3 Overview 
The design on Image compression, has realized the approach on orthogonality and its importance feature 
extractions, and transform approaches with introduction part. While in section -2 the work depicts the 
overall survey of different architectures of Image compression with ML and DL. The existing model with 
hybrid transformer approaches and existing orthogonality features are described to realize the gap and 
current research problems. In section -4 we have implicates four objectives indicating the current 
research problem and its analysis with effective weight prediction model based on Hybrid transform 
approach on Orthogonality. The proposed model on Deep learning effective reduces the overall 
compression loss by 1% for real time images with intuitive layer prediction weight feature. Finally, 
overall comparison with LSTM, Hybrid CNN, other GAN architectures with M-net, JPEG, JPEG-2000etc. are 
compared with proposed model indicating the structural difference. 
 
2. LITERATURE SURVEY 
In 2023, high-throughput, high-content, multispectral, and 3D imaging are all examples of cutting-edge 
microscopy methods that may generate hundreds of terabytes' worth of data each experiment. The 
efficient use of lossy image compression techniques, such as joint photographic experts’ group (JPEG) and 
JPEG 2000, is essential for dealing with these massive data sets. While these techniques may provide good 
visual quality with large compression ratios, they cannot guarantee the integrity of medical data and 
information. Using colour wavelet difference reduction, this research suggests a new and superior way for 
compressing medical images. The suggested approach expands upon the conventional wavelet difference 
reduction (WDR) technique by using mean co-located pixel difference to choose the optimal number of 
colour pictures that offer the maximum similarity in the spatial and temporal domains. Images with high 
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degrees of spatial and temporal coherence are compressed into a single volume and then analysed for 
things like PSNR and structural similarity index (SSIM). To test the efficacy of the suggested technique in 
the difficult area of histopathology microscope image analysis, 31 colorectal cancer slides are used. The 
visual quality of the medical picture is determined to be very good. The findings show that compared to 
JPEG 2000, the PSNR improvement might be as high as 22.65 dB. Our research has led us to develop a 
mobile and online platform for the purpose of compressing and transmitting real-time microscopic 
medical pictures, with compression gains of up to 10.33dB compared to a technique using discrete 
wavelet transform (DWT). 
As point cloud is one of the most fundamental ways of expressing 3D environments and objects, point 
cloud compression (PCC) is an essential enabler for immersive multimedia applications. Octree-based 
Geometry-based Point Cloud Compression has seen several recent proposals for improving its average 
reconstruction quality (G-PCC). It is found, however, that when compared to G-PCC, these methods have a 
significant performance degradation in terms of point-to-point (D1) Hausdorff distance (octree). In this 
paper, we provide an almost lossless approach to compressing the geometry of a point cloud by using an 
adaptive residual compensation scheme that involves adding and deleting points depending on their 
defect severity. It retains a significant gain in average reconstruction performance over G-PCC while 
allowing for control of D1 Hausdorff (D1h) distance. Our approach has been tested on the solid point 
clouds from the MPEG Cat1A dataset, and it has been shown to be successful, with average bitrate 
reductions of 78.5% D1 and 11.4% D1h Bjontegaard-delta over the octree-based G-PCC. 
Uses for point clouds nowadays range from the arts to autonomous vehicles. With the advent of these 
new uses comes the need of finding a way to compress the ever-increasing amounts of point cloud data in 
a way that is appropriate for both human display and machine processing. The goal of the JPEG Pleno 
Point Cloud activity is to establish a standard for point cloud coding that is based on learning, provides a 
single-stream, compact compressed domain representation, supports advanced flexible data access 
functionalities aimed at in-teractive human visualisation as well as effective performance for 3D 
processing and machine-related computer vision tasks, and so on. The JPEG Committee has been 
conducting a number of exploratory studies as part of this effort, with the goals of assessing the quality of 
currently implemented encoding standards, establishing reliable benchmarks, and investigating objective 
metrics against which novel, data-driven approaches to the problem can be evaluated. The essay 
introduces the reader to the JPEG Pleno Point Cloud project and then goes on to examine the difficulties of 
assessing and comparing other cloud coding methods, as well as some potential approaches to these 
issues. The JPEG Committee's methodology for assessing point cloud compression will be shown with 
experimental findings, and both the performance of state-of-the-art compression standards on point 
clouds and the sensitivity of the objective metrics used for this activity will be detailed. 
The high spectral resolution of hyperspectral pictures makes them superior to standard RGB and multi-
spectral photos for use in remote sensing. Images may be used to investigate phenomena seen rather than 
only verifying the existence of a certain feature. For both small and large satellites, the great spectral 
resolution presents a problem with data volume each observation. Time and power required for data 
downlinking is a major element in the latency of data and the imaging capabilities of a tiny earth 
observation satellite. Using satellite resources efficiently requires a well-thought-out image pipeline for 
acquiring, processing, and analysing observational data. Both in-flight and ground-based processing 
processes and technologies must be included into the imaging and processing pipeline. In this paper, we 
evaluate the speed and accuracy with which the compression ratio can be used to determine which 
HYPSO-1 satellite observations should be prioritised for downlinking and which data sets seem to be of 
less value due to over/under exposure or cloud coverage, using a sample of the first observations from 
the satellite. 
Point clouds generated by LiDAR in autonomous cars or robots may give more precise depth information 
of objects than 2D photos, but their vast amount of data makes them cumbersome for storage or 
transmission. In this work, we present R-PCC, a range image-based Point Cloud Compression technique 
that allows for either uniform or non-uniform accuracy loss during point cloud reconstruction. For the 
purposes of spatial redundancy and salient area categorization, we divide the original, massive point 
cloud into tiny, compact regions. Using a range picture, our technique preserves and aligns every point in 
the original point cloud inside the rebuilt point cloud, and the quantization module's settings limit the 
maximum reconstruction error. We demonstrate that our simpler FPS-based segmentation approach can 
outperform instance-based segmentation methods like DBSCAN in trials, and that our non-uniform 
compression framework significantly outperforms state-of-the-art large-scale point cloud compression 
methods in downstream tasks. As a reference point for range image-based point cloud compression, our 
real-time technique can achieve a compression ratio of 40 without compromising downstream 
operations. 
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Hyperspectral (HS) images have a high spectral information richness that may be used for a variety of 
purposes. The large amount of data included in an HS picture need compression before it can be stored or 
transmitted effectively. On the other hand, real-time compression is very difficult to achieve due to the 
complexity of the compression algorithms. In this paper, we offer a new approach for compressing 
hyperspectral images using a listless set partitioning. In order to compress data, the suggested approach 
makes advantage of inter and intra sub-band correlation in a zero-block cube tree structure. The findings 
demonstrate that the suggested compression algorithm has comparable coding efficiency to that of state-
of-the-art methods while maintaining a low coding complexity. This means it has the potential to compete 
with other, more expensive hyperspectral image sensors. 
In this study, we apply tensor analysis to the issue of signal and image processing. A brief overview of 
current techniques is provided within the context of the suggested approach; this covers both broad 
methods like princIOTl component analysis and independent component analysis and more narrow 
concerns like blind signal separation and picture compression. All of these techniques share the need of a 
singular value decomposition operation on the input data, which necessitates the use of a matrix or a 
succession of matrices to organise the information. Data may be presented concisely by cutting out 
unnecessary parts of the fundamental matrix format. Assuming that the data or signal sets are statistically 
independent, the results of a joint diagonalization of a succession of matrices are often adequate. Two 
examples are used to examine the supplied data and evaluate the value of the proposed method. 
High-performance computing (HPC) systems are becoming larger and more complicated; thus, they often 
incorporate data-compression methods to cut down on data volume and processing time. Nevertheless, 
without locating the sweet spot between compression ratio and data loss, the advantages of lossy 
compression over lossless compression begin to erode. Several lossy compression methods exist, 
however transform-based lossy algorithms make better use of spatial redundancy. Since its compression 
performance on scientific data sets is not well understood, the transform-based lossy compressor has 
gotten less attention. The key takeaway from this research is that measuring dominating coefficients at 
the block level exposes the correct balance in transform-based lossy compressors, which may affect 
compression ratios as a whole. This motivates us to use statistical features that capture data properties in 
order to define three alternative transformation-based lossy compression algorithms with distinct 
information compacting approaches. Thereafter, we construct many prediction models using the 
statistical traits and characteristics of dominating coefficients, and we assess the performance of each 
model utilising six HPC datasets derived from three large-scale production simulations. Based on our 
findings, the random forest classifier accurately captures the behaviour of dominating coefficients with an 
impressive prediction accuracy of about 99%. 
Navigation in autonomous cars is very dependent on their perception system. When it comes to 
comprehending the environment around a vehicle, semantic segmentation far surpasses object detection. 
Nevertheless, constructing a real-time perception system based on semantic segmentation is made more 
difficult by the fact that comprehensive picture segmentation requires more processing resources than 
object identification. The limitations of perception systems are not only due to the nature of the 
underlying deep learning model. Transferring data, even over a fast network like Ethernet, comes with 
some delay. In order to make decisions about driving autonomously, the video feed from a vehicle must 
be sent to an edge device for processing. This research looks at the impact compression has on the 
precision of semantic segmentation and how it might be used to reduce the transmission time of images 
at different JPEG compression settings. Although most studies on autonomous driving have been 
conducted in urban settings, we also want to utilise the Rellis-3D dataset to learn more about 
autonomous unmanned ground vehicles (UGVs) in the off-road domain. SwiftNet is a cutting-edge 
semantic segmentation model, and we determine its accuracy after training it on images with varying 
degrees of JPEG compression. Three photos are used to compare the transfer times of the various 
compression ratios. The results demonstrate a linear decline in precision with increasing compression 
ratios. SwiftNet with the greatest compression ratio of 16.96 obtains 67.9% mIoU when trained on the 
train set without compression, whereas the baseline gets 78.9% mIoU. By training SwiftNet on the 
relevant compression ratios, the accuracy of the higher compression ratios improves; the maximum 
compression ratio approaches 74.9% mIoU. Therefore, in all transfer cases, we see a favourable transfer 
speedup of these larger compression ratios when inducing JPEG compression: (a) 1870 pictures Picture 
(a), Video (b), and Picture (c) are all wrong. There is a 1.18x, 1.14x, and 1.06x acceleration in each case. 
Improving compression algorithms for multimedia files is a major focus of academic and corporate 
research over the last several decades. Compression ratio improvements have lagged far behind the 
exponential expansion of picture, audio, and video data, so there will always be a trade-off between size 
and quality. We want to accomplish data compression via the use of neural networks and believe that 
multilayer neural networks provide a more effective option. In this research, we replace the standard 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 6, 2024                           VOL. 33, NO. 2, 2024 

 

                                                                                 470                                                             R.Pushpalatha et al 466-484 

transformations with a lossy compression architecture that takes use of the benefits of convolutional 
autoencoder (CAE). The experimental findings show that compared to the conventional coding 
techniques, our approach achieves higher compression ratios. 
Compressing data before storing or sending it is a rapidly growing industry. With lossless compression, 
the compressed data does not need to be rebuilt precisely, but in lossy compression, data cannot be 
restored in their entirety. Compressing binary files, telemetry data, and high-fidelity medical and 
scientific photographs is a good example of a task for which lossless data compression is ideal. The 
optimal compression ratio cannot be guaranteed for each given data pattern by a single, universal 
approach. In this study, we offer a hybrid lossless hardware architecture that can compress a wide variety 
of data patterns without introducing any noticeable quality loss, including pictures, Gaussian distribution 
data, and repetitive data. It is recommended to profile data before compressing it in order to better 
choose suitable compression hardware. The suggested architecture is highly parallelized, allowing for 
compression and decompression of 64 bytes per cycle with little overhead. In addition, it offers a good 
compression ratio for both small and big blocks. 
The extensive information stored in the successive frames makes it feasible to do a variety of post-
capture actions (such as superresolution and HDR enhancement) that would not be possible with a single 
picture. As there will be more frames overall, it is crucial that these bursts be compressed well. To 
facilitate many downstream picture enhancing activities while simultaneously decreasing the file size, we 
offer a unique near-lossless compression approach in this study. We present a two-bitstream near-
lossless compression pipeline that limits distortion in the task space at the burst level and in the image 
space at the frame level using the Lipschitz condition. Super resolution is a prominent downstream job in 
burst processing, and experiments on a real-world dataset show that the suggested technique reduces 
rate-distortion in both the burst frame space and this space. 
Optimizing for l1 or l2 loss in RGB 444 format and measuring success using RGB PSNR are standard 
practises when it comes to assessing the efficacy of learnt image/video compression algorithms that 
preserve a high level of detail. It is generally known that optimising for a fidelity criteria leads to fuzzy 
pictures, which is often remedied by adding a content-based and/or adversarial loss terms. The problem 
with conditional generative models is that they lose accuracy. Here, we present a straightforward method 
for achieving this goal by proposing the use of gained variational auto-encoder (gained-VAE) in the luma-
chroma (YCrCb 444) domain for learnt flexible-rate coding, which allows for sharper pictures to be 
obtained without any loss of fidelity. Our ability to observe that Y PSNR correlates with image sharpness 
better than RGB PSNR allows us to implement image-adaptive luma-chroma bit allocation during 
inference, i.e. to increase Y PSNR at the expense of slightly lower chroma PSNR to obtain sharper images 
without introducing colour artefacts. In addition, we point out that the suggested inference-time image-
adaptive luma-chroma bit allocation technique may be implemented into any VAE-based image 
compression model. Compared to state-of-the-art models optimising RGB MSE at the same bpp, 
experimental findings reveal that sharper pictures with superior VMAF and Y PSNR may be produced by 
optimising models for YCrCb MSE using the suggested image-adaptive luma-chroma bit/quality 
allocation. 
The need of being able to identify tampering in JPEG pictures has grown with the use of this compression 
format. Many data-driven methods are used to spot tampering in an uncompressed setting; however, the 
performance drops dramatically when photos are recompressed, which is a result of lossy compression. 
In order to do this, we create a deep residual framework that is capable of detecting tampering in re-
compressed photos with the greatest quality possible (MDRNet). There are three stages that make up the 
framework: noise residual extraction, feature extraction, and classification. Initially, the front-end 
detector is greatly augmented by the noise residual extraction step, which adds three residual blocks with 
skip connections that may create noise residuals by reducing the picture content and amplifying the 
manipulation traces. The features of deep manipulation are then obtained using two efficient residual 
blocks and a cross feature learning approach, before being supplied to fully connected layers for 
classification. In order to improve forgery detection in real-world scenarios, experiments are conducted 
on 10 changes, each followed by a variety of quality variables. In addition, the proposed MDRNet 
outperforms state-of-the-art baselines in the toughest scenario of lossy post-JPEG compression. 
Because of the vast quantity of data they contain, hyper spectral pictures need more memory for storage, 
processing, and transmission. One of the more efficient methods of compressing hyper spectral pictures is 
to describe them as a three-dimensional tensor. The term "tensor" refers to a structure with several 
dimensions. Many fields, such as numerical linear algebra, chemometrics, data mining, signal processing, 
statics, data mining, and machine learning, make use of tensors. Several tensor decomposition algorithms 
have been developed for dimensional reduction of tensors; they may be used to Hyper spectral image 
compression. The Hyper spectral Image is compressed using the Discrete Wavelet Transform and the 
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Higher-Order Orthogonal Iterative Tucker Decomposition technique, as recommended. There were three 
more tensor decomposition methods compared to the simulation findings. Pavia University (610 x 340 x 
103), Indian Pines (145 x 145 x 200), Salinas (512 x 217 x 224), and Abu-beach (all true hyper spectral 
pictures) were utilised in the experiments (150 X 150 X 102). After processing, the PSNR and SSIM are 
used to assess the Hyper spectral pictures' perceptual quality. Good PSNR and SSIM at high compression 
are offered by the suggested technique, which distinguishes it from the other three approaches. 
Research on lossless picture compression has been fruitful for a long time. Several methods have been 
developed throughout time to approximate the smaller data set. In the past, techniques like the discrete 
wavelet transform (DWT) and the discrete cosine transform (DCT) were used to compress pictures, but 
now, many more options are available, including those based on machine learning and deep neural 
networks. In this study, we evaluate the effectiveness of many popular lossy image compression methods, 
such as Autoencoders, PrincIOTl Component Analysis (PCA), K-Means, and Discrete Wavelet Transform, 
using the Kodak Dataset (DWT). Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), 
Compression Ratio (CR), and Structural Similarity Index are the metrics utilised to evaluate the suggested 
research (SSIM). 
Lossy image compression is presently used extensively in many different applications. It's possible to 
provide a far higher compression ratio than with lossless compression, albeit distortions are produced 
ineluctably. These distortions have different characteristics depending on the coder used, the picture 
being compressed, and the compression settings. Visual perception and subsequent processing efficiency 
of compressed pictures are both impacted by distortions. As a result, it is important to have a firm grasp 
on the statistical and spatial spectral features of induced distortions in order to account for effects seen in 
compressed image processing and, maybe, enable their modelling. In this study, we outline the methods 
for analysing distortion qualities and provide an example using the AGU coder's compression of grayscale 
pictures. It is shown that the intensity of distortions is often higher in locally active regions, indicating 
that distortions have spatially variable statistics. Moreover, for all quantization steps and, accordingly, 
compression ratios evaluated, distortions are spatially uncorrelated. Tests are conducted with four 
representative examples of remote sensing imagery. 
In this work, we introduce the 16-point discrete cosine transform (DCT) that eliminates the need for an 
orthogonal multiplier. While designing the suggested transform, we prioritised making it computationally 
efficient so that it may be used for efficient picture compression. With just 38 adds and no multipliers or 
bit shifts, the proposed quick transform technique is very efficient. Measures of computational complexity 
and image coding performance were used to evaluate the suggested transform. From what we can tell, the 
suggested transform has the greatest cost-benefit ratio of any state-of-the-art convert currently available 
in the literature. Proposed 16-point system's efficacy The PSNR and SSIM were used to assess the quality 
of the DCT approximation. 
The massive amounts of data that future PolSAR flights are predicted to acquire may considerably 
increase the cost of storing different geospatial cloud-driven applications. This cost might be mitigated by 
the use of data compression methods, such as those specified by the JPEG2000 (JP2) standard. 
Nevertheless, the performance of the target application must be monitored once these strategies have 
been implemented. In this study, we examine how JP2 and JPEG compression affect the classification 
performance of PolSAR data and find that neither format has a noticeable effect on the performance of 
Deep Neural Networks (DNNs). 
As the Information Age has progressed, so has people's reliance on computers as a primary source and 
method of processing data. In today's digital world, sending many media files at once may be a real 
challenge for a computer system. Fast DCT-based JPEG picture compression is presented in this study. 
The algorithm explains how to encode and decode JPEG images. The image encoder can take a picture in 
BMP format, run it via JEPG, and produce a binary file suitable for real-time storage. With the proper 
decoding software, the picture may be recovered from its compressed state. Moreover, the JPEG format 
can be used to encode a static image during image transmission, capitalising on the fact that human vision 
is insensitive to chroma, and converting the original JPEG image's colour RBG into brightness y, chroma 
Cr, and CB to achieve compression while also effectively decreasing the amount of chroma data. 
The proliferation of smartphones and other portable electronic gadgets that serve as convenient methods 
of communication and entertainment is a clear indication of this trend. In light of the fact that the vast 
majority of currently available smartphones include an integrated biometric identification mechanism, it 
is imperative that these gadgets be protected. There is a wide variety of facial characteristics, and many of 
them are shared with other individuals, particularly close family members. The face authentication 
system and the recognition photos must thus be sent to the cloud for processing. In order to facilitate the 
implementation of a quick and effective facial image compression technique, which will be discussed in 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 6, 2024                           VOL. 33, NO. 2, 2024 

 

                                                                                 472                                                             R.Pushpalatha et al 466-484 

detail in the forthcoming publications, this research article has analysed the prior works based on the 
facial image compression paradigm for their improvements and limitations. 
Nowadays, online video makes up the vast bulk of the data sent over the internet. As the data rate needed 
to store uncompressed visual data is so high, lossy compression methods are used to reduce it. Cloud-
based analytics (classification, detection, etc.) are increasingly relying on the ever-growing volume of 
visual data being produced. Visual distortions created by image and video compression, particularly at 
lower data-rates, may significantly reduce performance on such analytical tasks. Moreover, many picture 
and video compression methods allocate additional bits to elements that are seen as more important by 
the human eye. These qualities, however, may not be the best option for semantic tasks. Here, we offer a 
method for compressing visual data in a way that improves performance on a specific analytical job. To 
discover the appropriate embeddings, we train a deep auto-encoder with a multi-task loss. For better 
accuracy in inference, we employ an approximation differentiable model of the quantizer during training. 
We demonstrate that our method outperforms JPEG compression when applied to an image classification 
issue, at a certain degree of compression. Furthermore, compared to the state-of-the-art method in this 
area, our method significantly exceeds the competition. 
This study proposes a system for point cloud geometry and attribute lossless and lossy coding that is 
based on a sphere projection. In order to simulate the local geometric structure of the original point 
cloud, we adaptively partition it into blocks and then generate a sphere that is a good match for each 
block. To convert a 3D point cloud to a collection of range pictures, we present the sphere coordination 
transform and the spherical projection technique. To further reduce the resulting range pictures, a new 
compact representation based on Morton codes is developed, which splits the images into occupancy 
images and attributes vectors. The experimental findings show that the suggested technique outperforms 
geometry-based point cloud compression for lossless compression of LiDAR point cloud datasets (G-PCC). 
The suggested technique outperforms Draco in terms of rate-distortion (R-D) for the object point clouds 
datasets while using lossy compression. 
In order to reduce the size of the data associated with a point cloud, current methods use geometric or 
video-based compression algorithms. We investigate a completely new strategy prompted by the most 
recent achievements in learning to represent point clouds. The 3D point cloud may be seen as a 2D 
manifold. To be more precise, we use an unique optimised mapping approach to fold a 2D grid onto a 
point cloud and then transfer characteristics from the point cloud onto the folded 2D grid. This mapping 
yields a picture, which allows for the use of conventional image processing methods on point cloud 
characteristics. As this mapping is inherently lossy, we offer a number of methods for improving it such 
that characteristics may be transferred to the 2D grid with as little disruption as possible. In addition, this 
method may be used in a versatile manner to point cloud patches to better adjust to regional geometric 
complexity. Here, we focus on point cloud attribute reduction, therefore we use a standard 2D image 
encoder to reduce the size of the resulting picture. First experiments with the suggested folding-based 
coding technique indicate promising results, with results competitive with the most recent MPEG 
Geometry-based PCC (G-PCC) codec. 
Comprehending the unique and difficult requirements of point cloud compression is no easy task. Existing 
video codec technology can be used by video-based systems for effective compression, but only if the 
cloud's 3D geometry and characteristics are provided in a suitable, regular 2D grid. We provide a 
technique for making square video blocks of uniform size that may be used to extract colour information 
from point clouds. Traditional video codecs may make effective use of colour compression when applied 
to a picture made up of our video blocks. The main emphasis is on creating a computationally efficient 
voxel-to-image projection technique. Comparison against MPEG's G-PCC reveals comparable 
performance, with average PSNR increases of 0.68dB and attribute (colour) bit rate reductions of -
15.10%. (TMC13 v5.1). 
In this paper, we shall analyze different features of compression using machine learning and DL 
algorithms with IOT and IHT structures. The proposed design with IOT and IHT is implemented with 
Intuitive Sigmoid Predictive Transform. For image compression, we have proposed two algorithms with a 
sigmoid prediction feature and Intuitive Filter Semantic Masking for residual error loss and compression 
ratio. An IOT algorithm with a dense layer architecture and a sigmoid predictive function is implemented 
on autoencoders to compress the images and image frames accordingly. Overall, three algorithms are 
proposed with layered features that estimates conditional probabilities on CNN, AE, and Dense-DL. 
 
3. image compression 
Cloud Storage is gaining more attraction as a part of cloud computing paradigm as it enables user to 
access their data whenever and wherever needed, once it is stored on cloud. Moreover, cloud provide 
huge storage which attracts corporate, business data as well as medical data to be stored on cloud. With 
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the advancement of information and computing technology, large scale datasets are being generated 
today. The example datasets are medical images, remote sensing images, satellite image database, etc. 
These are needed to be handled properly due to its privacy-sensitive nature. Thus, it is of critical 
importance that security should be embedded in this image services. With these feature analytics, the 
researchers in [4-20] have depicted multiple algorithms to realize the importance features of image 
compression indicating the different approaches.  
 
3.1 Machine Learning Algorithms 
3.1.1 K Means 
In a colored image, each pixel is of size 3 bytes (RGB), where each color can have intensity values from 0 
to 255. Following combinatorics, the total number of colors which can be represented is 256*256*256 
(equal to 16,777,216). Practically, we can visualize only a few colors in an image very less than the above 
number. So, the k-Means Clustering algorithm takes advantage of the visual perception of the human eye 
and uses few colors to represent the image. Colors having different values of intensity that are RGB values 
seem the same to the human eye. The K-Means algorithm takes this advantage and clubs similar looking 
colors (which are close together in a cluster). 
 
3.1.2 Algorithm 
The overall algorithm discrI HTion for the K -Means is decribed below: 
 

Algortihm 1: K-means 

a. Speciify the number of the clusters and denote as K 
b. Randomly assifn centroid values for K clusters 
c. Repeat: 
a. Expectation: Assigning eacj point to closest centroid value: 

i. 𝐹 𝑘 ∈ 𝐾 𝑖  = 𝑃(𝑖) 

b. Maximization: Compute the overall new Centroid Mean from F closer to the 𝑘𝑖  
d. Until: The change of values of the centroid is consistant 

1. Implementation 
a) Image Input: Load the image from the disk. 
b) Reshape Input Image: The size of the input image is (rows, cols, 3), flatten all the pixel values to a 

single dimension of size (rows*cols) and the dimension of each pixel is 3 representing RGB values. 
The size of the flatten image will be (rows*cols, 3). 

c) Clustering: Implement the k-Means clustering algorithm to find k-centroid points that represent its 
surrounding colour combination. 

d) Replace each pixel with its centroid points:All the colour combination of (rows*cols) number of 
pixels is now represented by its centroid points. Replace the value of each of the pixels with its 
centroid point. 

e) Reshape Compressed Image: Reshape the compressed image of (rows*cols, 3) dimensions to 
original (rows, cols, 3) dimensions. 

f) Output Compressed Image:Display the output image and store it to disk. 
Even though the overall design model with K-means clustering features with image compression have 
indicating the overall importance of how K is designed and randomly chosen depending upon the values 
of the clustering of the image features for compression. Though these are effective with simpler aspects of 
the applicating requirements indicating the overall changes in the design. Hence, proven less effective for 
high quality images. To encapsulate such feature hybrid algorithms have been introduced with DWT and 
DCT indicating the compression feature with depth compression and quantized error models. 
 
3.1.3 DCT-DWT 
The overall perspective of the DCT-DWT algorithm is to provide two stage compression model with DCT 
and DWT for better security features of the image in clouds or even in servers. The process of the 
transformation on the image is represented with flow diagram below indicating the working features on 
the images with its formulations. 
 
3.1.3.1 Flow diagram 
In figure 1, representing the overall structural flow model of the DCT-DWT hybrid design of the image 
compression method. In this design, the authors in [3-7] have depicted with different pre-processing 
filters and techniques for  
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Fig.1 Representing the Overall DCT+DWT Hybrid Block Diagram for Image Compression 

 
3.2 Deep Learning Algorithms 
3.2.1 Auto Encoders 
It is possible to train neural networks to compress and encode data and reconstruct the received data 
with minimal possible error changes. A Variable Auto Encoder structure for image reconstruction is 
illustrated in Figure 4. The Autoencoders are neural networks that are precise and feasible solution. The 
representation of encoded data with an autoencoder implicates the possibility of learning the optimal 
higher dimensional space in an unsupervised way. 
 

 
Fig 2. Representing the Variable Auto Encoder structure for image reconstruction. 

 
The Auto Encoder structure comprises two components: 
1. Encoder-Decoder. 
2. Bottleneck (Code Layer). 
Since the structure for efficient compression from the input phase to the output phase would reconstruct 
the different weights for encoder and decoder with bottleneck layer optimization, one such feature for 
this layer is estimated with the below formulations: 
𝑧 = 𝑔𝜃(𝑥)           (1) 
The reconstructed input is written as follows:  

𝑥 ′ = 𝑓𝜑(𝑔𝜃(𝑥))          (2) 

The overall reconstruction loss calculated using mean square error is given by eq (3): 

𝐿𝐴𝐸 𝜃, 𝜑 =
1

𝑛
 (𝑥𝑖 − 𝑥𝑖

′)2𝑁
𝑖=0         (3) 
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Table 1. The Summary of Selected State-of-the-Art Algorithms 

 
Table 1 depicts the overall comparison and its importance with the memory optimization feature on DL to 
be based on the state of arts (SOA). 
 In light of the above literature, it can be said that the overall compression efficiency matters for different 
resolutions. Hence, a predictive approach with other algorithms must be estimated with this efficiency 
and analyzed with the data accordingly. 
 
4. Interpolative Deep Intuitive Network 
As analysedwith state of art techniques, the design and its implementations on the image compression 
models have been realized with in this IDIN model indicating the improvement of the image compression 
feature in cloud systems. Presently, to realize such feature we have opted local cloud indicating the 
overall samples sizes about more than 2 GB files with varied resolutions. Our proposed work, postulates 

Sr. 
No. 

References Algorithm Pros Cons Research gap 

1 Zhang et.al [1] Residual 
Learning 

An intuitive 
algorithm remove 
Gaussian noise 
observed after 
compression 
 

There is no 
denoising 
feature with 
Gaussian.  

For any unusual 
cases, noises with 
random models on 
Rayleigh and passion 
distribution must be 
implemented. 

2 S. Perry et 
al[2], 
R. Birkeland 
et.al [5] 

Semantic-
oriented 
learning 

Image compression 
semantic 
compression model 
with detailed 
architecture 

Encoder and 
decoder 
structures are 
complex with 
more 
optimization of 
L1 and L2 
norms. 

Video compression-
based semantic 
models have to be 
developed with 
intuitive memory 
optimization 
algorithms. 

3 O. U. Ulaset.al 
[13], 
Y. Heet.al [23], 
Papadopoulos 
et.al [24] 

Switchable 
Texture-Based 
Video Coding 

Multi scaled 
architecture with 
MEMC 

More traffic 
usage for 
memory in DL 
to analyse the 
solution of 
compression, 
either lossy or 
lossless. 

QoE metric model 
generalization NPU 
neural processing 
unit 

4 Busson et.al 
[15], 
Chen et.al [16] 

Deep 
Learning-
Based 
Prediction 
Models 

This method uses a 
decoder to store and 
stream videos in low 
quality and display 
them in high quality 
without changing the 
MPEG compression 
algorithm, resulting 
in less disc space and 
bandwidth usage. 

It fails to 
achieve better 
results when 
compared with 
VVC and HVEC 
with different 
performance 
factors. 

To apply current 
trends coming from 
the DL field (e.g., 
spatial and channel-
wise attention, and 
transformer 
encoding) to extend 
the model. To test 
whether these 
techniques are useful 
for the DCT 
coefficients 
restoration task. 

5 Habibian et.al 
[17], Song et.al 
[22], 
Theis et.al [18] 

Rate-
Distortion 
Autoencoders 

To bridge the gap 
between semantic 
video understanding 
and compression by 
learning to allocate 
more bits to objects 
from categories of 
interest. 

None None 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 6, 2024                           VOL. 33, NO. 2, 2024 

 

                                                                                 476                                                             R.Pushpalatha et al 466-484 

two transform techniques indicating the overall adverse loss effect while compression via interpolative 
approach. The transform of IHT indicates the importance of the interpolative features on the pixel values 
to reduce the overall dimensionality with decomposition blocks sizes of 𝐾(𝑓, 𝑔) as the dimensionality 
matrix after decomposition. This outcome indicates the realized features of the pixel’s differences on the 
original images with diagonal orthogonal matrix decomposition via IOT technique which generates 
𝑍(𝑓, 𝑔) with orthogonality of diagonal matrix operations. All these observed values from IOT approach 
are then applied to the proposed AE inculcating the compression model with Interpolative deep dense 
model. This model comprises of encoder and decoder as the building block for compression and 
decompression feature. While the code block in proposed work, implicates how better filtered data 
outcomes are observed as the post processing. 
 
4.1 Design process 
a) To improvise a filter approach for Pre-processing the image data 
b) Indicate the overall filter loss via segmentation approach 
c) Implore the interpolation feature on the input images for dimensionality reduction via IHT 

technique. 
d) Implement a Transform for the reduced dimensionality model based on diagonal orthogonality 

principle. 
e) Effective AE network with IDDM model is implemented to indicate the best compression with least 

loss. 
f) Finally, tabulate with State of art techniques. 

 
4.1.1 Dataset 
The 1000 image samples are utilized with real-time as photographed from i-phone-14, also the images 
from CIFAR10K and MNIST datasets are used to test the effectiveness of the proposed method. We test 
the efficacy of the suggested strategy by analysing the MNIST dataset, which comprises pictures of 
numbers and characters for recognition characteristics, using IOT in conjunction with many other DL 
techniques. For best results when using CNN, Dense DL, and AE, it is recommended to use the suggested 
models that include IOT and IHT. To guarantee the distinguishable shifts in DL algorithms, the 
formulation for each layer is with IOT weights. 
 
4.1.2 Block Diagram 

 

 
Fig 3. Representing the Overallproposed block diagram for Encoder-Decoder Model for IOHPT-AE. 

 
4.1.3 Working Approach 
Figure 6 depicts the general architecture of the suggested model with encoder. As shown in equation 10, 
the sigmoid filter is used to clean up the three channels of the input pictures. The filtered output is then 
sent to an 8-layer architecture that uses convolutional layers with IHT-IOT, dense layers with IHT-IOT, 
and ReLU with batch normalizations layers, all of which have distinct potential connections. It's clear 
what has to change when going from IOT to IHT, and vice versa; otherwise, you can't transform a 1-
dimensional vector. To declare the IOT as error functionality in 2-D conv, we have used a similar method 
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to the one used to define the functionality of the 2-D conv layer, whose job it is to convert time scale to 
frequency scale. Using the observed weights on each RGB value for each picture and video frame, the IOT 
conducts compression. The state-of-the-art models, such as GAN, LSTM, BILSTM, etc., are compared to 
real-time pictures using Kaggle Website-based datasets. As can be seen in Figure 3, the resulting tangled 
image is 2-dimensional (displaying just grayscale), but the overall compression characteristic is enhanced 
thanks to IOT, as will be shown later. 
For its convolutional processing, the Conv-2d layer accepts images with input dimensions of 1280x720, 
1024x480, 640x480, and 1920x1080. Convolve stands for "changing domain," which may be either "high 
frequency component" or "low frequency component." Convolutional HC and LC traits are passed on to 
IOT or IHT. In the case of IOT, the HC or LC characteristics are determined by using the remainder 
theorem, which assigns certain values of remainders to the reconstruction of HC or LC. The picture is 
processed using the IOT-IHT function, and the three-layer architecture of the Encoder shows how integral 
connection is to the design. Although IOT and IHT tend to increase pixel-level compression, we apply 
convolution with a filter order of 8,16,32. Throughout the Encoder and decoder's training and testing 
phases, the general structure of filter values is represented. 
Similar to how 2D data may be compressed to 1D data using thick layers in the coding block. Although 
encryption is best accomplished with a thick layer, the ReLU is used to reduce the exponential rise in 
computation using a linear method. Data inside the network structure is normalized using the batch 
normalization layer. 
Decoder 
In Figure 3, we see a block diagram depicting the Decoder's implementation of a 2-layer model including 
CNN dense layers. In order to instantiate the various embedded places and clusters, the decoder portion 
of the image/frame is encoded with dense layers and normalized. Depending on the complexity and 
estimate loss determined using IOT, this facilitates the generation of entirely lossy/lossless pictures. To 
estimate the global loss function, we use eqn(12), a variant of the swish function provided by eqn(11) 
(11). Convolution's primary purpose, as seen in Figures 6 and 7, is to alter the Image's domain, whereas in 
the decoder, we first do inverse convolution, also known as "de-convolve," to transform the frequency 
domain into the time domain. An 8-layer decoder architecture is shown, with a progression in filter size 
from 8 to 16 to 32 to show how 2- and 3-dimensional results are obtained from 1-dimensional input 
vectors using inverse convolving. Starting with the Loss functions determined in Section 2, we create a 
custom layer architecture that details the various convolution and inverse convolution layers on E-D with 
IOT-IHT. Figure 13 depicts one of the two outputs produced by the AE decoding process at the beginning 
of the process. In order to improve the dense layer and its relative loss characteristics, the IOT method 
proposes assigning the feature weights to the activation layers of the custom model. Typical results from 
the Encoder-Decoder system need the development of loss functionality at each layer in order to analyses 
the model's potential for improvement. To begin, the Inverse Convolution Block uses the Loss 
Characteristic Formulation from IOT-2 to assess whether the Encoded Image should be converted to 2D 
Convoluted Data. We give a simple cutoff number that holds true throughout all time periods studied, 
which range from the present to the distant past. When applied to 1-dimensional RGB data, these 
thresholds determine the predicted loss for each area, ensuring that the proper colors are shown. With a 
loss of no more than one percent every iteration of the epoch, we implement the transformation from IOT 
to IHT. Because of the double transform capability, the design metrics may have their R, G, and B 
components converted independently before being merged during normalizations. Lastly, the Decoder 
layers' activation feature may be used to highlight the overall classification if necessary, and the 
compression normalization feature reduces the number of training epochs for a quicker result that allows 
the layers to function autonomously. 
 
4.2 Algorithms 
4.2.1 IoT Transform 

 

Algorithm 1: Interpolative Orthogonal Transform 

𝐼𝑛𝑝𝑢𝑡𝑠: 𝐼𝑚𝑎𝑔𝑒𝑠 (𝑋𝐼 , 𝑌𝐼  (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑖𝑚𝑔)) 
𝑂𝑢𝑡𝑝𝑢𝑡: 𝐿𝑜𝑠𝑠 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 
While 𝐸{(𝐿𝑜𝑔 𝑋𝐼 , 𝐿𝑜𝑔 𝑌𝐼 } < 𝜀 − 𝑥𝑖  || 𝐸{(𝐿𝑜𝑔 𝑋𝐼 , 𝐿𝑜𝑔 𝑌𝐼 } < 𝜀 − 𝑦𝑖  𝑑𝑜  
 𝑙𝑜𝑠𝑠𝑜𝑢𝑡 ← 0 
 𝑤ℎ 𝑖𝑙𝑒 (𝑙𝑜𝑔 𝑋𝐼 > 𝜎𝑚𝑖𝑛𝑥  , 𝑙𝑜𝑔 𝑌𝐼 < 𝜎𝑚𝑖𝑛𝑦 ) 

  𝑋𝑖 ← 𝑦𝑖 ∗ 𝑋𝑖         (From 11) 
  𝐸(𝑃 𝑥𝑖 = 𝑋𝑖 + 𝜇 ∗ 𝑊𝑖+1 (𝜇 is weight factor)    (From 14) 
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  𝐸 𝑙𝑜𝑠𝑠𝑚𝑥  =   𝑋𝐼 ∗ 𝐸(𝑃(𝑥𝑖))𝑑𝑥
∞

−∞
       

  𝐸 𝑙𝑜𝑠𝑠𝑚𝑦  =   𝑌𝐼 ∗ 𝐸(𝑃(𝑦𝑖))𝑑𝑦
∞

−∞
 

  𝑙𝑜𝑠𝑠𝑜𝑢𝑡  𝑖 =   (𝐸 𝑙𝑜𝑠𝑠𝑚𝑥 ∗ 𝑙𝑜𝑠𝑠𝑚𝑦  
2
− 𝐸 l𝑜𝑠𝑠𝑚𝑥

2  𝑁
𝑖=1 𝐸 𝑙𝑜𝑠𝑠𝑚𝑦

2  ) (26) 

            End 
End 
 

4.2.2 Iht Transform 
 

Algorithm 2: Interpolative Heuristic Transform. 

 
4.3 Formulations 
We are considering the image {𝑥 𝑖, 𝑗 } as the input images where 𝑖, 𝑗 represents the row and column of the 
image dataset. Here {[]} represents the set of images for the given set of iterations considered. The 
proposed transformation analysis for the images, considers the linear model of 3D space for color space 
on red, green, and blue image models. The overall prediction weights with higher dimension are 
considered for Images. With the ideal solutions of the Image compression and its design characteristics, 
we have proposed an IHT model on the current set of regions of space color models using the 3D and 2D 
scenarios. The desired color space equations and their prediction feature for frames as the linear model 
are given by eqn(16). 
𝑦 𝑖, 𝑗 =   (( 𝑊𝑖,𝑗

𝑇 𝑥 𝑖, 𝑗 ) + 𝑣(𝑖, 𝑗))𝑀
𝑗=1

𝑀
𝑖=1        (4) 

Here 𝑦(𝑖, 𝑗) represents the prediction model for each image, W is the weight formulation on  a set of the 
image, v is the generated predicted pixel values, and T represents the transpose of the matrix. 
𝑊𝑖 ,𝑗 = [𝑤10 , 𝑤02 , 𝑤30 ………𝑤𝐿−1]1 ∗ [𝑤01 , 𝑤02 , 𝑤03 ………𝑤𝐾−1]1     (5) 

Equation (5) presents the weight vector of the neural network model and has a length of L and K. The 
𝑥 𝑖, 𝑗  is an input frame observed from the input video in use. The estimated pixels values are obtained 
from the prediction algorithm as the Bayes model given by: 

𝑃  
𝑥

𝑣
 = 𝑝 𝑥 ∩ 𝑣 ∗

𝑝 𝑥 

𝑝 𝑣 
        (6) 

The probability of at least one prediction for the given frame is true 𝑝(𝑥 ∩ 𝑣), and for each set of 

predictions would be in input, the x would be 𝑃  
𝑥

𝑣
 . The random model with a finite set of A and C is the 

solution for each predicted value of x and v random variables. To yield the prediction on 
𝑣 (𝑅𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) on each pixel of x, we have 
𝑃 𝑣 = 𝐸{𝜇 ∗  (𝑥(𝑘, 𝑗))𝑘

𝑀
𝑘=1 +  𝛿 ∗  𝑥(𝑘, 𝑗)𝑗

𝐿
𝑗=1 }     (7) 

The parameters 𝜇 𝑎𝑛𝑑 𝛿are the step size of the linear prediction model in 2D for the conventional image 
(BW or RGB). Here, A and C are the values and weights observed from equation (7) when expanded in 
exponential form as:  

E P v  = E H i, j + G i, j  => E P H  + E P G      (8) 

The  P x ∩ v  is the intersection value for the prediction and input values where each value observed is 
estimated with V=C. Hence C is the solution value observed from equation (20). Hence, the resultant 
equation would be 

E{P  
x

v
 } = E{p x ∩ v } ∗

E{p x 

E{p v }
       (9) 

Wi,j =  α ∗ (
E{p A 

E{p C }
)        (10) 

v i, j = Wi,j ∗ E{P v }        (11) 

From equations (4) and (7-11) we have 

y i, j =   (( {α ∗ (
E{p A 

E p C  
)}′x i, j ) + δ ∗ (

E{p A 

E{p C }
) ∗ E{P v })M

j=1
M
i=1    (12) 

The terms in equation (12) depicts the α as contrast and δ as intensity values varying from (0,1) for each 
type of image or frame chosen. 

 
5. RESULTS AND DISCUSSION 
5.1 MNIST Dataset Results 
5.1.2  Existing Auto Encoder 
Image compression and reconstruction with Autoencoder have been utilized in many different features of 
input images that were considered with estimated weights. This structural design with the generic AE has 
utilised a specific layer features to create the image compression feature using encoding and decoding of 
the images. In MNIST, 60K images are gathered with different labels from 0-9, and a reconstruction 
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feature with output images are declared by estimating different weight equations as mentioned in 
equations (10-14). From Figure 8, we can observe that the simple AE based approach would not provide 
the correct labels with the reconstructed image. 
 

Fig 4. Samples of MNIST dataset a) Original image b) Decompressed image 
 
5.1.3 Proposed IHPT-DNN 
This AE implements both the functionality of IHPT on the different feature reconstruction models by 
transforming different images, and its encoding and decoding models as stated in section 3. The proposed 
model implements the reconstruction feature based on two different datasets, which are CIFAR-10 and 
MNIST. The image compression using the proposed AE utilizes three steps of the design model. 
At the dataset declaration stage, our design feature is to process the different images as described based 
on the label type and reconstruct the image accordingly. We instantiate the design on the training 
features with a transformed formulation as per the algorithm stated. We have used Algorithm-1 to 
remove noise and other distortions of the images. The original feature of the images with different class 
features from 0–9 is represented in fig.9. 

 

Fig 5. Representing the original Image for the MNIST database 

Fig 6. Representing the Training Loss curve with 10 and 100 Epochs 

. 
In the training model, we implicate the other features of the images by utilising the encoder and decoder 
structure for the model that must be designed. With this feature of explicit model creation utilising the 
Algorithm-2 as formulation from equations (16–24), the design weight equation with formulating the 
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different DL features and their weights is implicated. With the reconstruction feature on proposed 
Algorithm-2, we have estimated the design with different epochs ranging from 0-10 and 0-100, as 
depicted in fig. 9. Figure 9 represents the overall epochs estimation of loss achieved while implementing 
the different iterations observed while training the data. As we can see, for ten epochs, the error 
converges at 0.014, and for 100 epochs, at 0.0101. 
 
Testing phase 
 

Fig 7. Reconstructed image with 1 Epoch 

Fig 8.  Reconstructed Image with 100th Epoch. 
 
In the testing phase of our proposed IOT-IHT algorithms, different image features are reconstructed with 
different levels of segmentation and their feature modelling with noise removal filters. The sigmoid 
function with filter weights are improvised on the different epochs ranging from 1–10 and 1-100 for more 
precise image reconstruction via the proposed AE. For the initial epoch, we could observe in Figure 9, the 
blurred results of the input samples and their feature illustration. While in epoch five, we could see the 
correct response of the test dataset images with the noisy model. As the epoch increases, the image 
reconstruction with 100 epochs has similar results and outstanding SSIM values as mentioned in Table 2. 
 
5.2 CIFAR 10 Results 
The CIFAR-10 dataset  (CIFAR-10 and CIFAR-100 datasets (toronto.edu)) [26] has 60000 images. The 
proposed AE has been used for image compression on CIFAR-10 dataset to encapsulate different features 
of the images, attaining minimum loss as mentioned in Table 2. The overall estimated loss is observed 
with different testing ranges of inputs chosen during classification. So, the minimum overall loss is 
observed when 20% of images are used for testing and 80% for training. 
 

Table 1. MNIST database test loss. 
 
 
 
 
 
 
 
5.3 Training and Testing Phase 
In the training phase, collective features for training and testing datasets are utilized with the generated 
model. The layer implementation and its representation for the design are designated above. The above 
featured values of the layers are indicating the 8,16,32-bit compression feature based on the E-D 
structure in figure 6-7. Our design on CIFAR database utilized 32X32 compression filter as the 

SNO Image (% Test) Algorithm 
(Testing) 

Loss 

1 10% IHOPT-AE 0.03841 
2 20% IHOPT-AE 0.01737 
3 30% IHOPT-AE 0.01984 

http://www.cs.toronto.edu/~kriz/cifar.html
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convolution model indicating less reconstruction loss at 1%. We have tested with 10000 images other 
real time images with high resolutions depicting the overall pixelated values with 15x15 or 32x32. 
The training and testing phases comprise on the loss estimated values for each compression feature. This 
loss values are formulated in section 2.4.  

 

Fig 9. Representing the Reconstruction of Images for CIFAR10 with compression Image with 15x15 with 
12.5kb in BMP 

 
In the training phase, the design is estimated with different DL algorithms with its model created from the 
tensor flow library. The model created with the Tensor flow would emphasize the estimated parametric 
weights and its validation accuracy for compression of data with images.  
 

Table 2. Representing the Training and Testing Loss for IHOPT-CNN Model 
 
 
 
 
 
 

Table 3. Deep-dense layer loss estimation using IHT 
 
 
 
 
 
 
 

 
 
 
 
 

Iterations Training loss Testing loss 

1500 0.4657 0.5321 
3500 0.3452 0.4532 
4500 0.2115 0.3780 
6000 0.1985 0.2156 

Iterations Training loss Testing loss 
1500 0.4245 0.5834 
3500 0.119 0.2245 
4500 0.0185 0.0319 
6000 0.00462 0.0032 
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Table 4. Representing the CIFAR dataset Training and testing phase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
Fig 11. Representing the Overall 3 Imagesfrom Flicker8k dataset images are chosen for compression 

 

No of 
Epochs 
(Testing) 

Epoch avg. 
loss 
(Testing) 

Accuracy 
(Testing) 

No of 
Epochs 
(Trainin
g) 

Avg. loss 
(Training) 

Accuracy 
(Training) 

2 
4 
6 
8 
10 
12 
14 
16 
18 
 

0.01528781 
0.01151757 
0.00937661 
0.00946861 
0.00891677 
0.00913224 
0.00884325 
0.00861413 
0.00857244 

99.98471219 
99.98848243 
99.99062339 
99.99053139 
99.99108323 
99.99086776 
99.99115675 
99.99138587 
99.99142756 

1 
2 
3 
4 
5 
6 
7 
8 
9 

0.014813 
0.014083 
0.015076 
0.014269 
0.016616 
0.037616 
0.016883 
0.017671 
0.027874 

 

99.985187 
99.985917 
99.984924 
99.985731 
99.983384 
99.962384 
99.983117 
99.982329 
99.972126 
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In Figure 11, we have observed a 32-bit frame representing the eight epochs with each set of pixel 
reconstruction using IHT and IOT algorithms. Since the epochs are less, their iterations with the proposed 
model have resulted in different possible 32-bit frames of output. At the same time, the complete 
reconstruction of the image with 1280x720 and 720x720 is reconstructed with every single image. These 
reconstructed images are clustered with the conditional features on the epoch loss with a range from 
0.00009 to 0.001 is shown in Table 4. The resultant values for the design with different bits per pixel are 
utilized with the number of bits used to create the compression feature. Hence, the epochs from the range 
of 2–18 are presented with the average loss. The overall accuracy is calculated based on the formula as 
mentioned below. 
Accuracy + loss = 100 % design outcome 
The training of the AE, DL with IHT-IOT feature represents the overall least error observed which is less 
than 1% as shown in table-4. For testing twice of the epochs are needed to optimize the loss at 
reconstructed outputs as shown in figure 11. 
 
CONCLUSION  
This paper addresses the need for memory optimization problems effecting the layer errors and their 
occupancy while iterated with a greater number of consecutive operations. So, addressing this issue, we 
postulate a novel feature with IOT and IHT estimation features for weight prediction on the deep learning 
structures for compression of images and video frames. Since memory design and its improvements have 
been more frequently addressed and have raised the barrier of cost predominantly. Indicating such 
complexities in memory addressing and its involvement with data filtering is a difficult task. So, to resolve 
the complexity and add more functionality, an AE-IOT model is implicated for the compression feature. 
The functionality of the design is addressed with the types of algorithms utilized to reduce the output 
compression error and internally for each layer. This feature is depicted with the proposed AE-IOT 
encoder-decoder architecture shown in section 3. The proposed encoder and decoder models are used for 
reconstruction of images and video frames to estimate the coding layer model. The effective featured 
weights are demonstrated with equations (4) and (11) which have enhanced the Deep Learning 
architectures formulated with IOT and IOTalgorithms. The proposed network model with IOT-IHT 
ensures the learning feature with a rate of 10^(-2)  and 10^(-3) for IOT-CNN, IHT-DL model while IOT-AE 
have implemented with factor 10^(-7)as tabulated in tables 2-4. The experimental results tabulated with 
the performance characteristics are implicated to emphasize the effectiveness 
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