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ABSTRACT

Let G = (V,E) be a simple graph. A set S € V is a dominating set of G, if for every vertex in V\S is
adjacent to atleast one vertex in S. A subset S of V is called a twain secure perfect dominating set of G
(TSPD-set) if for every vertex v € V\S is adjacent to exactly on evertex u € S and (S\{u}) U {v}is a
dominating set of G. The minimum cardinality of a twain secure perfect dominating set of G is called the
twain secure perfect domination number of G and is denoted by Yisp (G).Let Dygp, (Sy, 1) denote the family of

all twain secure perfect dominating sets of S, with cardinality i, for Yiesp (Sn) = 1 < n. Let dis, (Sp, 1) =
[Desp (Sn, D]- In this article, we derive a recursive formula for di, (Sy,1)and construct D, (S,,1). We
consider the polynomial Dy, (Sy,X) = Zinzytsp (s,) desp (S, 1) x', which we refer to as the twain secure

perfect domination polynomial of stars using this recursive formula. In this research, we use a recursive
technique to generate all twain secure perfect dominating sets of stars and twain secure perfect
domination polynomials of stars.

Keywords: Star, twain secure perfect dominating set, twain secure perfect domination number, twain
secure perfect domination polynomial.

1. INTRODUCTION

A finite undirected connected graph without loops or multiple edges is referred to as a graph
G = (V,E).G’s order and size are shown by the numbers n and m, respectively. For fundamental terms
and definitions, see [2]. There are two vertices. If uv is one of G’s edges, then u and v are considered
adjacent. A vertexv in a graph G has an open neighborhood defined as the set N; (V) = {u € V(G) : uv €
E(G)}, and a closed neighborhood defined as Ng[V] = Ng(V) U {v}. A subset S € V (G) is called a
dominating set if every vertex v € V (G)\S is adjacent to a vertex u € S.The domination number, y(G), of
a graph G denotes the minimum cardinality of such dominating sets of G.A minimum dominating set of a
graph G is hence often called as a y-set of G [1]. A dominating set S is called a secure dominating set if
foreach v € V\S thereexists u € N(v) NS suchthat (S\{u}) U {v} is a dominating set. The secure
domination number y (G) is the minimum cardinality of a secure dominating set of G. Cockayne et al
introduce the concept of secure domination of graphs[3]. A dominating set S is called a perfect
dominating set if every vertex in V\S isadjacenttoexactlyonevertexinS.Theperfect domination
numberyp(G)is the minimum cardinality of a perfect dominating set of G.The concept of perfect

domination of graphs is introduced by Weichsel [4]. In this sequel we introduce the concept of twain
secure perfect domination of stars in this work. A dominating set S is called a twain secure perfect
dominating set of G (TSPD-set) if for every vertex v € V\S isadjacenttoexactlyonevertex u € S and
(S\{u}) U {v}isadominating setof G.Thetwain secure perfect domination numberof G, representedas
Yisp (G), isthelowestcardinalityofatwainsecureperfectdominatingsetof G.Considerthe star graph S,, which

has n vertices. The twain secure perfect domination number of S, is denoted byytsp (S,)- Denote by
Disp (Sy,1) the family of all twain secure perfect dominating sets of S, with cardinality i, where
Yisp (Sn) < i < n. Let disp (Sp, 1) = |Disp (S, 1) | Following that Dy, (S, x) = Z{’zytsp sy esp (Snr D) x'is the

twain secure perfect domination polynomial of S,. The families of the twain secure perfect dominating
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sets of stars are built using a recursive technique in the following section. We refer to the set {1,2,...,n} in
this article as [n].

2. Twain Secure Perfect Dominating Sets of Stars

The family of twain secure perfect dominating sets of S,with cardinality i is denoted by Dy, (Sy,1). Also,
twain secure perfect dominating sets of stars will be examined. The following lemmas are necessary to
support the primary findings of this article.

Lemma 2.1.

1 forn=1

For every,n € N,ytSp Sy = {n— Lforn> 1

Lemma 2.2.

Let S, be a star with n vertices and Dy, (S,,1) bethefamilyoftwain secure perfect dominating sets with
cardinality i.Then Dy, (S,,1) # @ifand only ifn —1 < i < n.Also Dy, (S,,1) = @ifand onlyifi < n—1
ori > n.

Proof:

By the definition of twain secure perfect domination number, the cardinality of the minimum twain
secure perfect dominating set of star is n — 1.Therefore Dy, (Sy,i) # @ if and only if n—1 < i <
n.Suppose, i < n—1, then there is no twain secure perfect dominating sets in Dy, (S, 1). Therefore
Disp (Sp,1) = @ifand only ifi < n— 1.Clearlyifi > n, then Dy, (S, 1) = 0.

Lemma 2.3.

In the event that Y is inside Dy, (S,—1,1 — 1),then there is a {x} € [n] such thatY U {x} € Dy, (Sy, 1).

Proof:

The twain secure perfect dominating set of G are indicated by Y.Y has at least one vertex labeled n — 1 or
n—2,SinceY € Dy, (Sp—1,1—1). Inthe eventwheren—1 € Y, Y U {x} € Z;(say),a twain secure perfect
dominating set of S,.ThusZ; € Dy, (Sp,1). In the event where n—2 € Y, Y U {x} € Z,(say),a twain
secure perfect dominating set of S,. Thus Z, € Dy, (Sy,1). Y U {x} is a twain secure perfect dominating set
of S,,, in each scenario. Consequently, Y U {x} € Dy, (S, 1)-

Lemma 2.4.

Foreveryn > 4,

)] If Digp (Sp—1,1 = 1) # @,Dysp (Sp—2,1 — 1) # @,then Dy, (S, 1) # @.

(ii) If Dgp (Sn—1,1 — 1) = @,Dys, (Sp—z,1 — 1) = @,then Dy, (Sy,, 1) = @.

Proof:

)] Suppose Dy, (S, 1) = @, then by lemma 2.2,i < n—1ori > n.Ifi > n,theni—1 > n—1,

which gives Dy, (S4-1,i—1) = 0. Also, i—1 > n—1 > n— 2, which impliesi—1 > n-2,
which gives Dy, (Sp—2,i—1) =@. This is a contradiction to Dy, (Sy—1,i—1) # @ and
Dtsp (Sp—2,i—=1) # 2.

Hence Dy, (S,, 1) # @.

(ii) Suppose Dy, (Sy,1) # @, then by lemma 2.2, n—1 < i < n. Which impliesn—-2 <i -1 <

n — 1. This gives D, (Sh—1,i—1) #@. Also n -3 <i— 2 < n — 2.Which implies
n—-3<i—-2<i—-—1<n-2Which gives n —3 <i -1 < n — 2.Therefore,
Disp (Sn—2,1 — 1) # @. Which is a contradiction to D, (Sy—1,i — 1) = @ and Dy, (Sp—,i — 1) = 0.

Hence Dy, (S, 1) = @.

Lemma 2.5.

In case Dygp (S, 1) # 6,

8] Disp (Sn—1,1— 1) # @and Dy, (S,—2,1— 1) = @ ifand only ifi = n.

(i) Disp (Sn—1,1— 1) # @and Dy, (Sp—2,1— 1) # @ ifand only ifi = n— 1.

Proof:

8] Assume that Dy, (S,—1,1 — 1) # @and Dy, (Sp—3,1 — 1) = @. Since Dy, (Sy—2,1 — 1) = @, by lemma
22,i—1 >n—2o0ri—1 < n-—3.Sincei—1 > n—2,

i>n (1)
Since Dy, (Sy-1,i — 1) # @, by lemma 2.2, wehaven — 2 < i—1 < n— 1. Which gives
i<n (2)

From (1) and (2),i = n.
Conversely, assume that, i = n. Which givesi—1 = n—1 > n — 2.Which impliesi—1 > n— 2,
bylemma2.2, Dy, (Sp—2,i — 1) = @.Sincei — 1 = n— 1, bylemma 2.2,Dy, (S,-1,i — 1) # 0.
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(i) Assume that D (Sp—1,1— 1) # @and Dy, (S,—2,i — 1) # @. By lemma 2.2, we have n — 2 < i—
l1<n-1landn—-3<i—1<n— 2. Which gives n—2< i—1 < n— 2. This impliesi =
n-—1.

Conversely, assume that i = n—1, which implies i —1 = n — 2. Which gives D, (S,-4,i—1) #
@and Dy (Sp—p,1— 1) # @.

Theorem 2.6
Foreveryn = 3andi = n—1
(i) If Dtsp (Sn—lii - 1) # Qand Dtsp (Sn—Z'i - 1) = Q' then Dtsp (Sn' i) = {[n]}
(ii) If Digp (Sn—1,1—1) # @ and Dy, (Sp—2,i— 1) # @ then Dy, (Sp,1) = (X U {njju{Yu{n-—
1}}}, where X € Dy (Sp—1,i— 1) and Y € Dy, (2,1 — ).
Proof:
)] We have Dy, (Sp—1,1— 1) # @ and Dy, (S,—2,i — 1) = @, by lemma 2.5(i), i = n. Therefore
Desp (S 1) = {[]}.
(i) Constructionof Dy, (Sp, 1) followsfrom Dig, (Sp—q,i — 1)and Dy, (S,—3,i— 1). Let Xbe the
twain secure perfect dominating set of S,_;with cardinality i— 1.The elements of
Disp (Sp—1,1 — 1) belongs to Dy, (Sy,1) by adjoining n. Let Y be the twain secure perfect
dominating set of S,_, with cardinality i — 1. The elements of Dy, (S,_,,1— 1) belongs to
Dysp (Sn, 1) by adjoining n — 1. Thus
{X UMP U Y U{n—1}}} € Dy (S ) 3)
Where X € Dy, (Sp—1,i— 1) and Y € Dy, (Sp—2,i — 1).
Conversely, Suppose Z € Dy, (Sy,1). Here all the elements of D, (S, 1) ends withn — 1 or
n.Suppose n — 1 € Z, then Z = Y U{n — 1}, for some Y € D, (S,—,i —1). Suppose
n € Z,thenZ = X U {n}, for some X € D, (Sy—1,i —1).Thus
Digp (S 1) € (X UM} U (Y U {n— 1}}} 4)
Where X € Dy, (Sp—1,i— 1) and Y € Dy, (Sp—2,1 = 1).
From (3) and (4),
Desp (Snyi1) = ({X U {n}} U{Y U{n—1}}}, where X € Dy, (Sy—1,i — 1)and Y € Dy, (Sp—z,1 —
1).
Theorem2.7.)
Dy, (Sp, 1)isafamilyoftwainsecureperfectdominatingsetswith ~ cardinality ~ ithenforevery n = 4,
|Dtsp (Sn' l)l = IDtsp (Sn—l'i - 1)' + |Dtsp (Sn—Zli - 1)'
Proof:
It follows from Theorem 2.6.

3. Twain Secure Perfect Domination Polynomials of Stars

Definition 3.1.

The family of all twain secure perfect dominating sets of S, with cardinality i is denoted as Dy, (S, 1). Let
disp (Sp, 1) should equal |Dygp, (Sy, ). Then the twain secure perfect domination polynomial of S, is defined
as Digp (Sp, %) = Zin=vtsp s, Gesp (Sns 1) x!, where Yisp (S,)is the twain secure perfect domination number of

S,

Theorem 3.2.
Foreveryn > 4,Dy, (Sy,X) = X[Dysp (Sp—1,%)] + x"~! with initial valueD, (S3,x) = 2x? +x3.

Table 1. d;,, (S,, 1), the number of twain secure perfect dominating sets of S, with cardinality i.

n\i |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1

2 2 1

3 0 2 1

4 0 0 3 1

5 0 0 0 4 1

6 0 0 0 0 5 1

7 0 0 0 0 0 6 1

8 0 0 0 0 0 0 7 1
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9 0 0 0 0 0 0 0 8 1

10 0 0 0 0 0 0 0 0 9 1

11 0 0 0 0 0 0 0 0 0 10 1

12 0 0 0 0 0 0 0 0 0 0 11 1

13 0 0 0 0 0 0 0 0 0 0 0 12 1

14 0 0 0 0 0 0 0 0 0 0 0 0 13 1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 14 1
Theorem 3.3.

For the coefficients of Dy, (Sy, X), the following characteristics are true.

)] disp (Sp,n) = 1, foreveryn € N.
(ii) dsp (Sn41,n) = n, foreveryn = 2.
Proof:
)] Since Dy, (Sy,n) = {[n]}, we have the result.
(i) To prove dis, (Sp41,n) = n, forevery n = 2. We apply induction on n.
Whenn = 2.
L.H.S: dis, (S3,2) = 2 (From table)
RHS:n = 2.
L.H.S=R.H.S.
The result is true for n = 2.Now assume that the result is true for all natural numbers less than
n and we prove that it for n.By theorem 2.7 and the induction hypothesis, dis, (Sy41,10) =
digp Snyn—1) +dep (Sp-y,n—1)=n -1+ 1=n
Thus dp, (Sp41,n) = n, for everyn = 2.
CONCLUSION

Twain secure perfect dominating sets and polynomials of star graphs are examined and certain
properties obtained in this study. Thus, the study can be applied to any S,,.
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