Twain Secure Perfect Dominating Sets and Twain Secure Perfect Domination Polynomials of Stars

Vinisha C¹, K.Lal Gipson²

¹Research Scholar, Department of Mathematics & Research Centre, Scott Christian College (Autonomous), Nagercoil - 629 003, Kanyakumari District, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India, Email: cvinisha1999@gmail.com ²Assistant professor, Department of Mathematics & Research Centre, Scott Christian College (Autonomous), Nagercoil - 629 003, Kanyakumari District, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India, Email: lalgipson@yahoo.com

Received: 11.04.2024 Revised: 14.05.2024 Accepted: 21.05.2024

ABSTRACT

Let G=(V,E) be a simple graph. A set $S\subseteq V$ is a dominating set of G, if for every vertex in $V\setminus S$ is adjacent to atleast one vertex in S. A subset S of V is called a twain secure perfect dominating set of G (TSPD-set) if for every vertex $v\in V\setminus S$ is adjacent to exactly on evertex $u\in S$ and $(S\setminus \{u\})\cup \{v\}$ is a dominating set of G. The minimum cardinality of a twain secure perfect dominating set of G is called the twain secure perfect domination number of G and is denoted by $\gamma_{tsp}(G)$. Let $D_{tsp}(S_n,i)$ denote the family of all twain secure perfect dominating sets of S_n with cardinality G, for G is G in G i

Keywords: Star, twain secure perfect dominating set, twain secure perfect domination number, twain secure perfect domination polynomial.

1. INTRODUCTION

A finite undirected connected graph without loops or multiple edges is referred to as a graph G = (V, E). G's order and size are shown by the numbers n and m, respectively. For fundamental terms and definitions, see [2]. There are two vertices. If uv is one of G's edges, then u and v are considered adjacent. A vertexv in a graph G has an open neighborhood defined as the set $N_G(V) = \{u \in V (G) : uv \in V (G) \}$ E(G), and a closed neighborhood defined as $N_G[V] = N_G(V) \cup \{v\}$. A subset $S \subseteq V(G)$ is called a dominating set if every vertex $v \in V(G) \setminus S$ is adjacent to a vertex $u \in S$. The domination number, $\gamma(G)$, of a graph G denotes the minimum cardinality of such dominating sets of G.A minimum dominating set of a graph G is hence often called as a γ-set of G [1]. A dominating set S is called a secure dominating set if foreach $v \in V \setminus S$ there exists $u \in N(v) \cap S$ such that $(S \setminus \{u\}) \cup \{v\}$ is a dominating set. The secure domination number $\gamma_s(G)$ is the minimum cardinality of a secure dominating set of G. Cockayne et al introduce the concept of secure domination of graphs[3]. A dominating set S is called a perfect dominating set if every vertex in V\S isadjacenttoexactlyonevertexinS.Theperfect domination number $\gamma_n(G)$ is the minimum cardinality of a perfect dominating set of G.The concept of perfect domination of graphs is introduced by Weichsel [4]. In this sequel we introduce the concept of twain secure perfect domination of stars in this work. A dominating set S is called a twain secure perfect dominating set of G (TSPD-set) if for every vertex $v \in V \setminus S$ isadjacenttoexactlyonevertex $u \in S$ and $(S\setminus \{u\}) \cup \{v\} \\ is a dominating \ set of \ G. \\ The twain \ secure \ perfect \ domination \ number of \ G, \\ represented as$ $\gamma_{tsp}\left(G\right)\!,\,is the lowest cardinality of a twainsecure perfect dominating set of \ G. Consider the \ star \ graph \ S_n,\,which$ has n vertices. The twain secure perfect domination number of S_n is denoted by $\gamma_{tsp}(S_n)$. Denote by $D_{tsp}\left(S_{n},i\right)$ the family of all twain secure perfect dominating sets of S_{n} with cardinality i, where $\gamma_{tsp}^{-}(S_n) \leq i \leq \text{ n. Let } d_{tsp}(S_n,i) = |D_{tsp}(S_n,i)|. \text{ Following that } D_{tsp}(S_n,x) = \sum_{i=\gamma_{tsp}}^n (S_n,i) \, d_{tsp}(S_n,i) \, x^i \text{ is the } d_{tsp}(S_n,x) = \sum_{i=\gamma_{tsp}}^n (S_n,i) \, d_{tsp}(S_n,x) = \sum_{i=\gamma_{tsp}}^n (S_n,i) \, d_{tsp}(S_n,x) = \sum_{i=\gamma_{tsp}}^n (S_n,i) \, d_{tsp}(S_n,i) \, d_{tsp}(S_n,i) = \sum_{i=\gamma_{tsp}}^n (S_n,i) \, d_{tsp}(S_n,i) \, d_{tsp}(S_n,i) = \sum_{i=\gamma_{tsp}}^n (S_n,i) \, d_{tsp}(S_n,i) \, d_{tsp}(S_n,i)$ twain secure perfect domination polynomial of S_n. The families of the twain secure perfect dominating

sets of stars are built using a recursive technique in the following section. We refer to the set $\{1,2,...,n\}$ in this article as [n].

2. Twain Secure Perfect Dominating Sets of Stars

The family of twain secure perfect dominating sets of S_n with cardinality i is denoted by $D_{tsp}(S_n, i)$. Also, twain secure perfect dominating sets of stars will be examined. The following lemmas are necessary to support the primary findings of this article.

Lemma 2.1.

For every,
$$n \in N$$
, $\gamma_{tsp}(S_n) = \begin{cases} 1 & \text{for } n = 1 \\ n - 1 & \text{for } n > 1 \end{cases}$

Lemma 2.2.

Let S_n be a star with n vertices and $D_{tsp}(S_n,i)$ bethefamilyoftwain secure perfect dominating sets with cardinality i.Then $D_{tsp}(S_n,i) \neq \emptyset$ if and only if $n-1 \leq i \leq n$.Also $D_{tsp}(S_n,i) = \emptyset$ if and only if i < n-1 or i > n.

Proof:

By the definition of twain secure perfect domination number, the cardinality of the minimum twain secure perfect dominating set of star is n-1. Therefore $D_{tsp}(S_n,i)\neq\emptyset$ if and only if $n-1\leq i\leq n$. Suppose, i< n-1, then there is no twain secure perfect dominating sets in $D_{tsp}(S_n,i)$. Therefore $D_{tsp}(S_n,i)=\emptyset$ if and only if i< n-1. Clearly if i> n, then $D_{tsp}(S_n,i)=\emptyset$.

Lemma 2.3.

In the event that Y is inside $D_{tsp}(S_{n-1}, i-1)$, then there is a $\{x\} \in [n]$ such that $Y \cup \{x\} \in D_{tsp}(S_n, i)$.

Proof:

The twain secure perfect dominating set of G are indicated by Y. Y has at least one vertex labeled n-1 or n-2, Since $Y\in D_{tsp}(S_{n-1},i-1)$. In the event where $n-1\in Y,\ Y\cup \{x\}\in Z_1(say)$,a twain secure perfect dominating set of S_n . Thus $Z_1\in D_{tsp}(S_n,i)$. In the event where $n-2\in Y,\ Y\cup \{x\}\in Z_2(say)$,a twain secure perfect dominating set of S_n . Thus $Z_2\in D_{tsp}(S_n,i)$. Y $\cup \{x\}$ is a twain secure perfect dominating set of S_n , in each scenario. Consequently, $Y\cup \{x\}\in D_{tsp}(S_n,i)$.

Lemma 2.4.

For every $n \geq 4$,

- (i) If $D_{tsp}(S_{n-1}, i-1) \neq \emptyset$, $D_{tsp}(S_{n-2}, i-1) \neq \emptyset$, then $D_{tsp}(S_n, i) \neq \emptyset$.
- (ii) If $D_{tsp}(S_{n-1}, i-1) = \emptyset, D_{tsp}(S_{n-2}, i-1) = \emptyset$, then $D_{tsp}(S_n, i) = \emptyset$.

Proof:

(i) Suppose $D_{tsp}(S_n,i)=\emptyset$, then by lemma 2.2, i< n-1 or i> n. If i> n, then i-1> n-1, which gives $D_{tsp}(S_{n-1},i-1)=\emptyset$. Also, i-1> n-1> n-2, which implies i-1> n-2, which gives $D_{tsp}(S_{n-2},i-1)=\emptyset$. This is a contradiction to $D_{tsp}(S_{n-1},i-1)\neq\emptyset$ and $D_{tsp}(S_{n-2},i-1)\neq\emptyset$.

Hence $D_{tsp}(S_n, i) \neq \emptyset$.

(ii) Suppose $D_{tsp}(S_n,i) \neq \emptyset$, then by lemma 2.2, $n-1 \leq i \leq n$. Which implies $n-2 \leq i-1 \leq n-1$. This gives $D_{tsp}(S_{n-1},i-1) \neq \emptyset$. Also $n-3 \leq i-2 \leq n-2$. Which implies $n-3 \leq i-2 < i-1 \leq n-2$. Which gives $n-3 \leq i-1 \leq n-2$. Therefore, $D_{tsp}(S_{n-2},i-1) \neq \emptyset$. Which is a contradiction to $D_{tsp}(S_{n-1},i-1) = \emptyset$ and $D_{tsp}(S_{n-2},i-1) = \emptyset$. Hence $D_{tsp}(S_n,i) = \emptyset$.

Lemma 2.5.

In case $D_{tsp}(S_n, i) \neq \emptyset$,

- (i) $D_{tsp}(S_{n-1}, i-1) \neq \emptyset$ and $D_{tsp}(S_{n-2}, i-1) = \emptyset$ if and only if i = n.
- (ii) $D_{tsp}(S_{n-1},i-1) \neq \emptyset$ and $D_{tsp}(S_{n-2},i-1) \neq \emptyset$ if and only if i=n-1. Proof:
- (i) Assume that $D_{tsp}(S_{n-1},i-1) \neq \emptyset$ and $D_{tsp}(S_{n-2},i-1) = \emptyset$. Since $D_{tsp}(S_{n-2},i-1) = \emptyset$, by lemma 2.2, i-1 > n-2 or i-1 < n-3. Since i-1 > n-2, $i \geq n$ (1) Since $D_{tsp}(S_{n-1},i-1) \neq \emptyset$, by lemma 2.2, we have $n-2 \leq i-1 \leq n-1$. Which gives i < n (2)

From (1) and (2), i=n. Conversely, assume that, i=n. Which gives i-1=n-1>n-2. Which implies i-1>n-2, bylemma2.2, $D_{tsp}(S_{n-2},i-1)=\emptyset$. Since i-1=n-1, by lemma 2.2, $D_{tsp}(S_{n-1},i-1)\neq\emptyset$.

(ii) Assume that $D_{tsp}(S_{n-1},i-1)\neq\emptyset$ and $D_{tsp}(S_{n-2},i-1)\neq\emptyset$. By lemma 2.2, we have $n-2\leq i-1\leq n-1$ and $n-3\leq i-1\leq n-2$. Which gives $n-2\leq i-1\leq n-2$. This implies i=n-1.

Conversely, assume that i=n-1, which implies i-1=n-2. Which gives $D_{tsp}(S_{n-1},i-1)\neq\emptyset$ and $D_{tsp}(S_{n-2},i-1)\neq\emptyset$.

Theorem 2.6

For every $n \ge 3$ and $i \ge n-1$

- (i) If $D_{tsp}(S_{n-1}, i-1) \neq \emptyset$ and $D_{tsp}(S_{n-2}, i-1) = \emptyset$, then $D_{tsp}(S_n, i) = \{[n]\}$
- (ii) If $D_{tsp}(S_{n-1}, i-1) \neq \emptyset$ and $D_{tsp}(S_{n-2}, i-1) \neq \emptyset$ then $D_{tsp}(S_n, i) = \{\{X \cup \{n\}\}\} \cup \{Y \cup \{n-1\}\}\}$, where $X \in D_{tsp}(S_{n-1}, i-1)$ and $Y \in D_{tsp}(S_{n-2}, i-1)$.

Proof:

- (i) We have $D_{tsp}(S_{n-1},i-1) \neq \emptyset$ and $D_{tsp}(S_{n-2},i-1) = \emptyset$, by lemma 2.5(i), i=n. Therefore $D_{tsp}(S_n,i) = \{[n]\}$.
- (ii) Construction of $D_{tsp}(S_n,i)$ follows from $D_{tsp}(S_{n-1},i-1)$ and $D_{tsp}(S_{n-2},i-1)$. Let X be the twain secure perfect dominating set of S_{n-1} with cardinality i-1. The elements of $D_{tsp}(S_{n-1},i-1)$ belongs to $D_{tsp}(S_n,i)$ by adjoining n. Let Y be the twain secure perfect dominating set of S_{n-2} with cardinality i-1. The elements of $D_{tsp}(S_{n-2},i-1)$ belongs to $D_{tsp}(S_n,i)$ by adjoining n-1. Thus

$$\{\{X \cup \{n\}\} \cup \{Y \cup \{n-1\}\}\} \subseteq D_{tsp}(S_n, i)$$
 (3)

Where $X \in D_{tsp}(S_{n-1}, i-1)$ and $Y \in D_{tsp}(S_{n-2}, i-1)$.

Conversely, Suppose $Z \in D_{tsp}(S_n,i)$. Here all the elements of $D_{tsp}(S_n,i)$ ends with n-1 or n.Suppose $n-1 \in Z$, then $Z = Y \cup \{n-1\}$, for some $Y \in D_{tsp}(S_{n-2},i-1)$. Suppose $n \in Z$, then $Z = X \cup \{n\}$, for some $X \in D_{tsp}(S_{n-1},i-1)$. Thus

$$D_{tsp}(S_n, i) \subseteq \{ \{ X \cup \{n\} \} \cup \{ Y \cup \{n-1\} \} \}$$
 (4)

Where $X \in D_{tsp}(S_{n-1}, i-1)$ and $Y \in D_{tsp}(S_{n-2}, i-1)$.

From (3) and (4),

 $D_{tsp}\left(S_{n},i\right) = \{\{X \cup \{n\}\} \cup \{Y \cup \{n-1\}\}\}, \text{ where } X \in D_{tsp}\left(S_{n-1},i-1\right) \text{and } Y \in D_{tsp}\left(S_{n-2},i-1\right).$

Theorem 2.7.

$$\begin{split} & \text{IfD}_{tsp}\left(S_n,i\right) \text{isafamilyoftwainsecureperfectdominatingsets with} & \text{cardinality} & \text{i,thenforevery} & n \geq 4, \\ & |D_{tsp}\left(S_n,i\right)| = |D_{tsp}\left(S_{n-1},i-1\right)| + |D_{tsp}\left(S_{n-2},i-1\right)|. \\ & \text{Proof:} \end{split}$$

It follows from Theorem 2.6.

3. Twain Secure Perfect Domination Polynomials of Stars

The family of all twain secure perfect dominating sets of S_n with cardinality i is denoted as $D_{tsp}(S_n,i)$. Let $d_{tsp}(S_n,i)$ should equal $|D_{tsp}(S_n,i)|$. Then the twain secure perfect domination polynomial of S_n is defined as $D_{tsp}(S_n,x) = \sum_{i=\gamma_{tsp}}^n (S_n) d_{tsp}(S_n,i) x^i$, where $\gamma_{tsp}(S_n)$ is the twain secure perfect domination number of S_n .

Theorem 3.2.

For every $n \geq 4$, $D_{tsp}\left(S_n,x\right) = x[D_{tsp}\left(S_{n-1},x\right)] + x^{n-1}$ with initial value $D_{tsp}\left(S_3,x\right) = 2x^2 + x^3$.

n∖i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1														
2	2	1													
3	0	2	1												
4	0	0	3	1											
5	0	0	0	4	1										
6	0	0	0	0	5	1									
7	0	0	0	0	0	6	1								
8	0	0	0	0	0	0	7	1							

9	0	0	0	0	0	0	0	8	1						
10	0	0	0	0	0	0	0	0	9	1					
11	0	0	0	0	0	0	0	0	0	10	1				
12	0	0	0	0	0	0	0	0	0	0	11	1			
13	0	0	0	0	0	0	0	0	0	0	0	12	1		
14	0	0	0	0	0	0	0	0	0	0	0	0	13	1	
15	0	0	0	0	0	0	0	0	0	0	0	0	0	14	1

Theorem 3.3.

For the coefficients of $D_{tsp}\left(S_{n},x\right)\!$, the following characteristics are true.

- (i) $d_{tsp}(S_n, n) = 1$, for every $n \in N$.
- (ii) $d_{tsp}(S_{n+1}, n) = n$, for every $n \ge 2$.

Proof:

- (i) Since $D_{tsp}(S_n, n) = \{[n]\}$, we have the result.
- (ii) To prove $d_{tsp}(S_{n+1}, n) = n$, for every $n \ge 2$. We apply induction on n.

When n = 2.

L.H.S: $d_{tsp}(S_3, 2) = 2$ (From table)

R.H.S: n = 2.

L.H.S = R.H.S.

The result is true for n=2.Now assume that the result is true for all natural numbers less than n and we prove that it for n.By theorem 2.7 and the induction hypothesis, $d_{tsp}(S_{n+1},n)=d_{tsp}(S_n,n-1)+d_{tsp}(S_{n-1},n-1)=n-1+1=n.$

Thus $d_{tsn}(S_{n+1}, n) = n$, for every $n \ge 2$.

CONCLUSION

Twain secure perfect dominating sets and polynomials of star graphs are examined and certain properties obtained in this study. Thus, the study can be applied to any S_n .

REFERENCES

- [1] Alikhani S and Peng Y H, Dominating Sets and Domination Polynomials of Paths, International Journal of Mathematics and Mathematical Sciences, Vol. 2009, article ID 542040.
- [2] Buckley F and Harary F, Distance in Graphs, Addition-Wesley, Reduced City, CA.1990.
- [3] CockayneEJ, GroblerPJP, GrundlinghWR, Mungannga J, and Van Vuuren J H, Protection of a Graph, Util. Math. 67(2005), 19 32.
- [4] Lal Gipson K and Vijayan A, Dominating Sets and Domination Polynomials in Square of Paths, Open Journal in Discrete Mathematics, 3 (2013), 60 69.
- [5] Lal Gipson K and Vijayan A, Dominating Sets and Domination Polynomials in Square of Cycles, IOSR Journal of Mathematics (IOSR-JM), 3(2012), 04 14.
- [6] Lal Gipson K and Subha T,Secure Domination Polynomials of Paths, International Journal of Scientific & Technology Research, 9, (2020), 6517 6521.
- [7] Lal Gipson, Subha K and Subha T, Secure Domination Polynomials of Wheels", IOSR Journal of Mathematics (IOSR-JM), 18(2022),21 26.
- [8] Weichsel P W, Dominating Sets in n-cubes, J. Graph Theory 18(5) (1994), 479 488.