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ABSTRACT 
In this paper, we define the new notation of Algebraic structures of 𝜗 −Translations and 
𝜗 −Multiplication in 𝑍 −Sub Algebra of doubt 𝑄 − fuzzy 𝑍 −Algebra. And also defined the𝜗 −translations 
and 𝜗 −Multiplications in 𝑍 −Ideal of doubt 𝑄-fuzzy 𝑍 −algebra and discussed some of their properties in 
detail by doubt  𝑄 − fuzzy𝑍 −algebras. 
 

Keywords: 𝑍–Algebra, 𝑍–Ideal, 𝑍 −Sub Algebra, 𝑄 −Fuzzy Set, Fuzzy𝑍–Ideal, 𝑍 −Algebra, Fuzzy 
𝑍 −Sub Algebra, and Fuzzy 𝜗 − Translation, Fuzzy 𝜗 −Multiplication. 
 
1. INTRODUCTION 
In 1965, Zadeh L A [15], initiated by the concept of fuzzy sets. Several researchers explored on the 
generalization of the notion of fuzzy subset. The study of fuzzy subsets and its applications to various 
mathematical contents has given rise to what is now commonly called fuzzy mathematics. Iseki K and 
Tanaka S [3], introduced the concept of an introduction to the theory of BCK-algebras in 1978. In1980, 
Iseki K [4], first introduced the notation on BCI-algebras. KyoungJa Lee, Young Bae Jun and MyungImDoh 
[5], introduced the concept of fuzzy translations and fuzzy multiplication of BCK/BCI-algebras in 2009. 
Abu Ayub Ansari and Chandramouleeswaran M [1], introduced the concept of fuzzy translation of fuzzy 
𝛽 − ideals of 𝛽 −algebras in 2014. In 2014, Priya and Ramachandran T [11], introduced the new notation 
of fuzzy translation and multiplication on PS-algebras. Prasanna A, Premkumar M and Ismail Mohideen S 
[6]& [7], introduced the concept of fuzzy translation and multiplication on B-algebras in 2018 and also 
derived from Fuzzy Translation and Fuzzy Multiplication in BG – Algebras in 2019. In 2021, Premkumar 
[8] derived the new notation of Algebraic Properties on Fuzzy Translation and Multiplication in BP– 
Algebras. Premkumar [9] & [10], introduced the new concept of Algebraic Properties on 𝜔 − Fuzzy 
Translation and Multiplication in 𝐵𝐻– Algebras in 2020 and also derived from the concept of 
Characteristics of κ − 𝑄 − Fuzzy Translation and Fuzzy Multiplication in T-Ideals in T-Algebra in 2022. 
Sowmiya[13] & [14]initiated by the concept on Fuzzy Z-ideals in Z-algebras and also Fuzzy Algebraic 
Structure in Z-Algebras in 2019. In 2009, A new structure and construction of Ǭ-fuzzy groups  developed 
by Solairaju[12]. 
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We define the new notation of Algebraic structures of 𝜗 −Translations and 𝜗 −Multiplication in 𝑍 −Sub 
Algebra of doubt𝑄 − fuzzy𝑍 −algebras. And also defined the𝜗 −translations and 𝜗 −Multiplications in 
𝑍 −Ideal of doubt𝑄 − fuzzy𝑍 −algebrasand discussed some of their properties. 
 
2. Preliminaries 
Definition 2.1:  
A Z-algebra (ὧ,∗ ,0)  be a Z-algebra. A fuzzy set 𝐴 in ὧ with a membership function  Ѯ𝐴   is said to be a 

fuzzy-Z-sub algebra of a Z-algebra ὧ if , for all ŕ, š 𝑖𝑛 ὧ the following condition is satisfied   

Ѯ ŕ ∗ š ≥  Ѯ ŕ  ⋀ Ѯ š   

 
Definition 2.2:  
A Z-algebra (ὧ,∗ ,0)  be a Z-algebra. A fuzzy set 𝑉 in ὧ with a membership function  Ѯ𝐴   is said to be a 

fuzzy-Z-sub algebra of a Z-algebra ὧ if, for all ŕ, š 𝑖𝑛 ὧ  the following condition is satisfied   
(i) Ѯ 0 ≥ Ѯ ŕ  

(ii) Ѯ ŕ ≥  Ѯ ŕ ∗ š  ⋀ Ѯ š   

 
Definition: 2.3 

Let Ǭ and G a set and a group respectively. A mapping 𝜇:Ѽ × Ǭ → [0,1] is called Ǭ- 𝐹𝑆 in G. For any Ǭ-𝐹𝑆𝜇 

in G and ŧ ∈ [0,1] we define the set 𝑈 𝜇; ŧ =  Ք ∈ Ѽ    / 𝜇 Ք, ɋ ≥ ŧ, ɋ ∈ Ǭ   which is called an upper cut of 

“𝜇” and can be use to the characterization of 𝜇. 
 
3. Algebraic Structures of 𝝑 −Translation and 𝝑 −Multiplication in doubt𝑸 −Fuzzy Z-Subalgebra 

Let ὧ be a Z-algebra. For any fuzzy set Ѯ of ὧ, we define T=1-𝑠𝑢𝑝 Ѯ(ŕ, 𝑞)/ŕ ∈ ὧ  𝑎𝑛𝑑  𝑞 ∈ 𝑄 , unless 

otherwise we specified. 
 
Definition: 3.1 

Let Ѯand 𝑄 −be two fuzzy subsets of ὧand 𝜗 ∈  0, 𝑇 . A mapping Ѯ𝜗
𝑇

:ὧ × 𝑄 →  0,1  is said to be a 

doubt𝑄 −fuzzy 𝜗 − translation of  Ѯ if it satisfies Ѯ𝜗
𝑇

= Ѯ ŕ, 𝑞 + 𝜗, ∀ ŕ ∈ ὧ and 𝑞 ∈ 𝑄. 

 
Definition: 3.2 

Let Ѯand 𝑄 −be two fuzzy subsets of ὧand 𝜗 ∈  0,1 . A mapping Ѯ𝜗
𝑀

:ὧ × 𝑄 →  0,1  is said to be a 

doubt𝑄 −fuzzy 𝜗 − multiplication of  Ѯ if it satisfiesѮ𝜗

𝑀
= 𝜗 Ѯ ŕ, 𝑞  , ∀ ŕ ∈ ὧ and 𝑞 ∈ 𝑄. 

 
Example: 3.2.1 
Let ὧ = 0,1,2,3  be the set with the following table. 
 

* 0 1 2 3 

0 0 1 2 3 

1 1 0 1 1 

2 2 2 0 2 

3 3 3 3 0 

 

Then  ὧ,∗ ,0  is a Z – algebra.  

Define doubt𝑄-fuzzy set Ѯ is of ὧ by Ѯ ŕ =  
0.4   𝑖𝑓 ŕ ≠ 1
0.3   𝑖𝑓 ŕ = 1

  

Thus Ѯ is a doubt𝑄-fuzzy Z-sub algebra of X. 

Hence 𝑇 = 1 − 𝑠𝑢𝑝 Ѯ ŕ, 𝑞 /ŕ ∈ ὧ  𝑎𝑛𝑑 𝑞 ∈ 𝑄  = 1-0.4 = 0.6,  

Choose 𝜗 = 0.2 ∈  0,1  and 𝜗 = 0.3 ∈  0,1 . 
Then the mapping Ѯ0.2𝑇 ∶ ὧ → [0,1] is defined by 

 Ѯ0.2𝑇 =  
0.2 + 0.4 = 0.6   𝑖𝑓 ŕ ≠ 1
0.2 + 0.3 = 0.5   𝑖𝑓 ŕ = 1

  

Which satisfies  Ѯ0.2𝑇(ŕ) = Ѯ ŕ + 0.2, ∀ ŕ ∈ ὧ, is a fuzzy 0.2-translation. 

The mapping 𝛾0.3𝑀 ∶ ὧ → [0,1] is defined by  

 Ѯ
0.3𝑀 =  

0.3 ∗ 0.4 = 0.12  𝑖𝑓 ŕ ≠ 1
0.3 ∗ 0.3 = 0.09   𝑖𝑓 ŕ = 1
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Which satisfies  Ѯ0.3𝑀  ŕ =  Ѯ ŕ  0.3 , ∀ ŕ ∈ ὧ 𝑎𝑛𝑑 𝑞 ∈ 𝑄, is a fuzzy 0.3-Multiplication 

 
Theorem: 3.3 
If Ѯ of ὧ is a doubt 𝑄 − fuzzy Z-sub-algebra and 𝜗 ∈  0,1 , then the doubt 

𝑄 − fuzzy  𝜗 −translation. Ѯ𝜗
𝑇

(ŕ, 𝑞)of Ѯ is also a doubt𝑄 − fuzzy Z- sub algebra of ὧ. 

Proof 
Let ŕ, š ∈ ὧ,𝜗𝜖[0, 𝑇] and 𝑞 ∈ 𝑄 
Then,  Ѯ(ŕ ∗ š, 𝑞) ≤ Ѯ ŕ, 𝑞 ∨  Ѯ(š, 𝑞) 
Now,  

Ѯ
𝜗

𝑇
 ŕ ∗ š, 𝑞 = Ѯ ŕ ∗ š, 𝑞 + 𝜗 

≤ [Ѯ ŕ, 𝑞 ∨  Ѯ(š, 𝑞)] + 𝜗 

= (Ѯ ŕ, 𝑞 + 𝜗) ∨ ( Ѯ š, 𝑞 + 𝜗)  

= Ѯ𝜗
𝑇

(ŕ, 𝑞) ∨ Ѯ𝜗
𝑇

(š, 𝑞) . ∀ ŕ, š ∈ ὧ and 𝑞 ∈ 𝑄 

 
Theorem: 3.4 

Let Ѯand 𝑄 be a two fuzzy subset of ὧ such that the doubt𝑄 − fuzzy 𝜗 −translation Ѯ
𝜗

𝑇
(ŕ, 𝑞) of Ѯ is a 

doubt𝑄 − fuzzy sub algebra of ὧ, for some 𝜗𝜖[0, 𝑇], then Ѯ is a doubt𝑄 − fuzzy Z-sub algebra of ὧ. 
Proof 

Assume that Ѯ𝜗
𝑇
 ŕ, 𝑞 is a doubt𝑄 − fuzzy sub algebra of ὧ for some 𝜗𝜖 0, 𝑇  

Let ŕ, š ∈ ὧ and 𝑞 ∈ 𝑄 we have 

Ѯ ŕ ∗ š, 𝑞 + 𝜗 = Ѯ𝜗
𝑇
 ŕ ∗ š, 𝑞  

≤  Ѯ𝜗
𝑇

(ŕ, 𝑞) ∨ Ѯ𝜗
𝑇

(š, 𝑞)  

        =  (Ѯ ŕ, 𝑞 + 𝜗) ∨ ( Ѯ š, 𝑞 + 𝜗)  

        =  [Ѯ ŕ, 𝑞 ∨  Ѯ(š, 𝑞)] + 𝜗 

⟹ Ѯ ŕ ∗ š, 𝑞 ≤  Ѯ ŕ, 𝑞 ∨  Ѯ(š, 𝑞) , ∀ŕ, š ∈ ὧ and 𝑞 ∈ 𝑄 

Hence, Ѯ is doubt𝑄 − fuzzy sub algebra of ὧ. 
 
Theorem: 3.5 
For any doubt𝑄 − fuzzy Z- sub algebra Ѯ of ὧ and 𝜗𝜖[0,1], if the doubt𝑄 − fuzzy 

𝜗 −multiplicationѮ𝜗
𝑀

(ŕ, 𝑞) of Ѯ is a doubt𝑄 − fuzzy Z-sub algebra of ὧ. 

Proof 
Let ŕ, š ∈ ὧ,𝜗𝜖 0, 𝑇  and 𝑞 ∈ 𝑄 
Then Ѯ ŕ ∗ š, 𝑞 ≤  Ѯ ŕ, 𝑞 ∨  Ѯ(š, 𝑞) 
Now,  

Ѯ
𝜗

𝑀
 ŕ ∗ š, 𝑞 = 𝜗Ѯ ŕ ∗ š, 𝑞  

≤ 𝜗 [Ѯ ŕ, 𝑞 ∨  Ѯ(š, 𝑞)] 

≤  𝜗 Ѯ ŕ, 𝑞 ∨ 𝜗 Ѯ(š, 𝑞)  

=  Ѯ
𝜗

𝑀
(ŕ, 𝑞) ∨ Ѯ

𝜗

𝑀
(š, 𝑞)  

⟹ Ѯ
𝜗

𝑀
 ŕ ∗ š, 𝑞 ≤  Ѯ

𝜗

𝑀
(ŕ, 𝑞) ∨ Ѯ

𝜗

𝑀
(š, 𝑞)  

Therefore, Ѯ𝜗
𝑀

 is a doubt𝑄 − fuzzy Z- sub algebra of ὧ. 

 
Theorem: 3.6 

For any fuzzy subsetѮ of ὧ, 𝑞 ∈ 𝑄 and 𝜗𝜖 0,1 , if the doubt𝑄 − fuzzy 𝜗 −multiplication  Ѯ
𝜗

𝑀
(ŕ, 𝑞) of Ѯ is a 

doubt𝑄 − fuzzy Z-sub algebra of ὧ, then so is Ѯ. 
Proof 

Assume that  Ѯ
𝜗

𝑀
(ŕ, 𝑞) of Ѯ is a doubt𝑄 −  fuzzy Z- sub algebra of ὧ for some 𝜗𝜖 0, 𝑇  

Let ŕ, š ∈ ὧand 𝑞 ∈ 𝑄 we have 

𝜗Ѯ ŕ ∗ š, 𝑞 =Ѯ𝜗
𝑀
 ŕ ∗ š, 𝑞  

≤  Ѯ𝜗
𝑀

(ŕ, 𝑞) ∨ Ѯ𝜗
𝑀

(š, 𝑞)  

=  𝜗 Ѯ ŕ, 𝑞 ∨ 𝜗 Ѯ š, 𝑞   

= 𝜗  [Ѯ ŕ, 𝑞 ∨  Ѯ(š, 𝑞)] 
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⟹  Ѯ ŕ ∗ š, 𝑞 ≤  𝜗  [Ѯ ŕ, 𝑞 ∨  Ѯ(š, 𝑞)] 
Hence, Ѯ is a doubt𝑄 − fuzzy Z- sub algebra of ὧ. 
 
4. Algebraic Structures of 𝝑 −Translation and 𝝑 −Multiplication in 𝑸 − Fuzzy Z-Ideal 
Theorem:4.1 

If the doubt𝑄 − fuzzy 𝜗 − translation Ѯ𝜗
𝑇

(ŕ) of Ѯ is a doubt𝑄 − fuzzy Z-Ideal, then it satisfies the 

conditionѮ𝜗
𝑇

(š ∗  ŕ ∗ š , 𝑞) ≤ Ѯ𝜗
𝑇

(ŕ, 𝑞). 

Proof: 

Ѯ𝜗
𝑇
 š ∗  ŕ ∗ š , 𝑞 = Ѯ š ∗  ŕ ∗ š , 𝑞 + 𝜗 

≤  Ѯ(0 ∗  š ∗  ŕ ∗ š ), 𝑞 + 𝜗 ∨  Ѯ 0, 𝑞 + 𝜗  

≤  Ѯ 0 ∗  š ∗  š ∗ ŕ  , 𝑞 + 𝜗 ∨  Ѯ 0, 𝑞 + 𝜗  

=  Ѯ 0 ∗   š ∗ š ∗ ŕ , 𝑞 + 𝜗 ∨  Ѯ 0, 𝑞 + 𝜗  

=  Ѯ 0 ∗  š ∗ ŕ , 𝑞 + 𝜗 ∨  Ѯ 0, 𝑞 + 𝜗  

=  Ѯ  š ∗ ŕ ∗ 0, 𝑞 + 𝜗 ∨  Ѯ 0, 𝑞 + 𝜗  

≤  Ѯ  š ∗ ŕ ∗ 0, 𝑞 + 𝜗 ∨  Ѯ ŕ, 𝑞 + 𝜗  

≤  Ѯ𝜗
𝑇
 0, 𝑞  ∨  Ѯ𝜗

𝑇
(ŕ, 𝑞)  

= Ѯ𝜗
𝑇
 ŕ, 𝑞 . 

   ⇒ Ѯ
𝜗

𝑇
(š ∗  ŕ ∗ š , 𝑞) ≤ Ѯ

𝜗

𝑇
(ŕ, 𝑞) ∀ ŕ, š ∈ ὧ and 𝑞 ∈ 𝑄 

 
Theorem:4.2 

If Ѯ is a doubt𝑄 − fuzzy Z- ideal of ὧ, then the doubt𝑄 − fuzzy 𝜗 −translation Ѯ𝜗

𝑇
(ŕ, 𝑞) of Ѯ is a doubt𝑄 −

 fuzzy Z- ideal of ὧ, for all 𝜗𝜖 0, 𝑇  . 
Proof 
Let Ѯ be a doubt𝑄 −  fuzzy Z-ideal of ὧ and let 𝜗𝜖 0, 𝑇  and 𝑞 ∈ 𝑄 

Then,(i)Ѯ𝜗
𝑇

(0, 𝑞)= Ѯ 0, 𝑞 + 𝜗 

≤  Ѯ ŕ, 𝑞 + 𝜗 

=Ѯ𝜗
𝑇

(ŕ, 𝑞) 

(ii)  Ѯ𝜗
𝑇
 ŕ, 𝑞 = Ѯ ŕ, 𝑞 + 𝜗 

≤  Ѯ ŕ ∗ š, 𝑞 ∨  Ѯ š, 𝑞  + 𝜗 

=   Ѯ ŕ ∗ š, 𝑞 + 𝜗 ∨ (Ѯ š, 𝑞 + 𝜗)  

=  Ѯ𝜗
𝑇
 ŕ ∗ š, 𝑞 ∨  Ѯ𝜗

𝑇
(š, 𝑞)  

⇒ Ѯ𝜗
𝑇
 ŕ, 𝑞 ≤  Ѯ𝜗

𝑇
 ŕ ∗ š, 𝑞  ∨  Ѯ𝜗

𝑇
(š, 𝑞)  

Hence Ѯ𝜗
𝑇

(ŕ, 𝑞) of  Ѯ is a doubt𝑄 −  fuzzy Z- ideal of ὧ,  ∀ 𝜗𝜖 0, 𝑇 and 𝑞 ∈ 𝑄 

 
Theorem: 4.3 

 LetѮ is a fuzzy subset of ὧand 𝑞 ∈ 𝑄 such that the doubt 𝑄 − fuzzy 𝜗 −translation Ѯ
𝜗

𝑇
(ŕ, 𝑞) of Ѯ is a 

doubt𝑄 − fuzzy Z- ideal of ὧ, for some  𝜗𝜖 0, 𝑇  , then Ѯ is a doubt𝑄 − fuzzy Z- ideal of ὧ. 
Proof 

Assume that  Ѯ𝜗
𝑇

 is a doubt𝑄 − fuzzy Z- ideal of ὧ for some 𝜗𝜖 0, 𝑇 . 

Let ŕ, š ∈ ὧ and 𝑞 ∈ 𝑄 
Then,  

(i) Ѯ 0, 𝑞 + 𝜗 = Ѯ
𝜗

𝑇
(0, 𝑞) 

≤ Ѯ
𝜗

𝑇
(ŕ, 𝑞) 

= Ѯ ŕ, 𝑞 + 𝜗 
And so⇒Ѯ 0, 𝑞 ≤ Ѯ ŕ, 𝑞  

(ii) Ѯ ŕ, 𝑞 + 𝜗 = Ѯ𝜗
𝑇
 ŕ, 𝑞  

≤  Ѯ𝜗
𝑇
 ŕ ∗ š, 𝑞  ∨  Ѯ𝜗

𝑇
(š, 𝑞)  

=   Ѯ ŕ ∗ š, 𝑞 + 𝜗 ∨ (Ѯ š, 𝑞 + 𝜗)  

=  Ѯ ŕ ∗ š, 𝑞  ∨  Ѯ š, 𝑞  + 𝜗 
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and so Ѯ ŕ, 𝑞 ≤   ŕ ∗ š, 𝑞  ∨  Ѯ š, 𝑞   

Hence Ѯ is a doubt𝑄 − fuzzy Z-ideal of ὧ. 
 
Theorem:4.4 
Let  𝜗𝜖 0, 𝑇 , 𝑞 ∈ 𝑄 and let Ѯ be a doubt𝑄 − fuzzy Z-ideal of ὧ. If ὧ is a Z-algebra, then the fuzzy 

𝜗 −translation Ѯ𝜗
𝑇

 of Ѯ is a doubt𝑄 − fuzzy Z-sub-algebra of ὧ. 

Proof 
Let ŕ, š ∈ ὧ and 𝑞 ∈ 𝑄 
Now, we have  

Ѯ𝜗
𝑇
 ŕ ∗ š, 𝑞 = Ѯ ŕ ∗ š, 𝑞 + 𝜗 

≤  Ѯ  ŕ ∗ š,  ∗ š, 𝑞  ∨  Ѯ(š, 𝑞) + 𝜗 

= {Ѯ(š ∗ (ŕ ∗ š), 𝑞)   ∨   Ѯ(š, 𝑞) } + 𝜗  by Theorem 3.7 

≤  Ѯ 0, 𝑞  ∨  Ѯ(š, 𝑞) + 𝜗 

≤  Ѯ ŕ, 𝑞  ∨  Ѯ(š, 𝑞) + 𝜗 

≤   Ѯ ŕ, 𝑞 + 𝜗  ∨   Ѯ š, 𝑞 + 𝜗   

=  Ѯ𝜗
𝑇
 ŕ, 𝑞  ∨  Ѯ𝜗

𝑇
 š, 𝑞   

Hence Ѯ𝜗
𝑇

 is a doubt 𝑄 − fuzzy Z-sub-algebra of ὧ. 
 
Theorem:4.5 

If the doubt𝑄 − fuzzy 𝜗 −translation Ѯ𝜗
𝑇

 of Ѯ is a doubt 𝑄 − fuzzy Z-sub-algebra of ὧ, 𝜗𝜖 0, 𝑇 , then Ѯ is a 
doubt𝑄 − fuzzy Z-sub-algebra of ὧ. 
Proof 

Let us assume that Ѯ𝜗
𝑇

 of Ѯ is a doubt𝑄 − fuzzy Z-ideal of ὧ and 𝑞 ∈ 𝑄 

Then  

Ѯ ŕ ∗ š, 𝑞 + 𝜗 = Ѯ𝜗
𝑇
 ŕ ∗ š, 𝑞  

≤  Ѯ𝜗
𝑇
  ŕ ∗ š ∗ š, 𝑞 ∨ Ѯ𝜗

𝑇
 š, 𝑞   

=  Ѯ𝜗
𝑇
 š ∗  ŕ ∗ š , 𝑞 ⋀Ѯ𝜗

𝑇
 š, 𝑞     by Theorem 3.7 

≤  Ѯ𝜗
𝑇
 0, 𝑞 ∨ Ѯ𝜗

𝑇
 š, 𝑞   

≤  Ѯ𝜗
𝑇
 ŕ, 𝑞 ∨ Ѯ𝜗

𝑇
 š, 𝑞   

 = {(Ѯ(ŕ, 𝑞) + 𝜗) ∨ (Ѯ(š, 𝑞) + 𝜗)} 

=  Ѯ ŕ, 𝑞 ∨ Ѯ š, 𝑞  + 𝜗 

⇒Ѯ ŕ ∗ š, 𝑞 ≤  Ѯ ŕ, 𝑞 ∨ Ѯ š, 𝑞   

Hence Ѯ is a doubt𝑄 − fuzzy Z-sub algebra of ὧ. 
 
Theorem:4.6 

Let Ѯ is a fuzzy subset of ὧand 𝑞 ∈ 𝑄 such that the doubt𝑄 − fuzzy 𝜗 −MultiplicationѮ𝜗
𝑀

(ŕ, 𝑞) of Ѯ is a 

doubt𝑄 − fuzzy Z- ideal of ὧ, for some  𝜗𝜖(0,1] , then Ѯ is a doubt𝑄 − fuzzy Z- ideal of ὧ. 
Proof 

Assume that  Ѯ𝜗
𝑀

 is a doubt𝑄 − fuzzy Z- ideal of ὧ for some 𝜗𝜖 0, 𝑇 . 

Let ŕ, š ∈ ὧand 𝑞 ∈ 𝑄 

(i) 𝜗Ѯ(ŕ, 𝑞) = Ѯ𝜗

𝑀
(0, 𝑞) 

                       ≤ Ѯ𝜗
𝑀

(ŕ, 𝑞) 

                                     = 𝜗 Ѯ ŕ, 𝑞  
   And so                   ⇒Ѯ 0, 𝑞 ≤ Ѯ ŕ, 𝑞  

(ii) 𝜗 Ѯ ŕ, 𝑞 = Ѯ
𝜗

𝑀
 ŕ, 𝑞  

≤  Ѯ𝜗
𝑀
 ŕ ∗ š, 𝑞 ∨ Ѯ𝜗

𝑀
(š, 𝑞)  

=   𝜗 Ѯ ŕ ∗ š, 𝑞  ∨ (𝜗 Ѯ š, 𝑞 )  

= 𝜗  Ѯ ŕ ∗ š, 𝑞  ∨  Ѯ š, 𝑞   

         And so⇒ Ѯ ŕ, 𝑞 ≤  Ѯ ŕ ∗ š, 𝑞  ∨  Ѯ š, 𝑞   
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Hence Ѯ is a doubt𝑄 − fuzzy Z-ideal of ὧ. 
 
Theorem: 4.7 

If Ѯ is a doubt𝑄 − fuzzy Z- ideal of ὧ, then the doubt𝑄 − fuzzy 𝜗 −multiplicationѮ
𝜗

𝑀
(ŕ, 𝑞) of Ѯ is a doubt 

𝑄 − fuzzy Z- ideal of ὧ , for all 𝜗𝜖(0,1] . 
Proof 
Let Ѯ be a doubt𝑄 − fuzzy Z-ideal of ὧ and let 𝜗𝜖(0,1] and 𝑞 ∈ 𝑄 
Then 

(i) Ѯ𝜗
𝑀
 0, 𝑞 =  𝜗 Ѯ(ŕ, 𝑞) 

≤  𝜗Ѯ ŕ, 𝑞  

 = Ѯ𝜗
𝑀

(ŕ, 𝑞) 

⇒Ѯ
𝜗

𝑀
 0, 𝑞 ≤ Ѯ

𝜗

𝑀
(ŕ, 𝑞) 

 

(ii) Ѯ𝜗
𝑀
 ŕ, 𝑞 =  𝜗 Ѯ ŕ, 𝑞  

≤ 𝜗  Ѯ ŕ ∗ š, 𝑞  ∨  Ѯ š, 𝑞   

              = 𝜗  Ѯ ŕ ∗ š, 𝑞  ∨   Ѯ š, 𝑞   

=   𝜗 Ѯ ŕ ∗ š, 𝑞  ∨  𝜗 Ѯ š, 𝑞    

≤  Ѯ𝜗
𝑀
 ŕ ∗ š, 𝑞  ∨ Ѯ𝜗

𝑀
(š, 𝑞)  

⇒ Ѯ𝜗
𝑀
 ŕ, 𝑞 ≤  Ѯ𝜗

𝑀
 ŕ ∗ š, 𝑞 ∨  Ѯ𝜗

𝑀
(š, 𝑞)  

 

Hence Ѯ𝜗
𝑀

 of Ѯ is a doubt 𝑄 −  fuzzy Z-ideal of ὧ,  ∀ŕ, š ∈  0,1 . 
 
Theorem:4.8 
Let 𝜗𝜖(0,1] and let Ѯ be a doubt𝑄 − fuzzy Z-ideal of a Z-algebra ὧ. Then the doubt 𝑄 − fuzzy  

𝜗 −multiplication Ѯ𝜗
𝑀

(ŕ) of Ѯ is a doubt𝑄 − fuzzy Z- sub algebra of ὧ. 

Proof 
Let ŕ, š ∈ ὧ and 𝑞 ∈ 𝑄 
Now, we have  

Ѯ𝜗
𝑀
 ŕ ∗ š, 𝑞 = 𝜗 Ѯ ŕ ∗ š, 𝑞  

≤ 𝜗  Ѯ  ŕ ∗ š ∗ š), 𝑞 ∨  Ѯ(š, 𝑞)  

=  𝜗 Ѯ   š ∗  ŕ ∗ š  , 𝑞 ∨  𝜗Ѯ š, 𝑞   

= 𝜗 Ѯ 0, 𝑞 ∨  Ѯ(š, 𝑞)  

≤ 𝜗 Ѯ ŕ, , 𝑞  ∨  Ѯ(š, 𝑞)  

≤   𝜗 Ѯ ŕ, 𝑞  ∨  𝜗 Ѯ š, 𝑞    

=  Ѯ𝜗
𝑀
 ŕ, 𝑞  ∨ Ѯ𝜗

𝑀
 š, 𝑞   

Hence Ѯ𝜗
𝑀

 is a doubt𝑄 − fuzzy Z-sub-algebra of ὧ, ∀ŕ, š ∈  0,1 and 𝑞 ∈ 𝑄 
 
Theorem:4.9 

If the doubt𝑄 − fuzzy 𝜗 −translation Ѯ
𝜗

𝑀
 of Ѯ is a doubt𝑄 − fuzzy Z-sub-algebra of ὧ, 𝜗𝜖(0,1], then Ѯ is a 

doubt𝑄 − fuzzy Z-sub-algebra of ὧ. 
Proof 

Let us assume that Ѯ𝜗
𝑀

 of Ѯ is a doubt𝑄 − fuzzy Z-ideal of ὧ and 𝑞 ∈ 𝑄 

Then  

𝜗 Ѯ ŕ ∗ š, 𝑞 = Ѯ𝜗
𝑀
 ŕ ∗ š, 𝑞  

≤  Ѯ
𝜗

𝑀
  ŕ ∗ š ∗ š, 𝑞  ∨  Ѯ

𝜗

𝑀
 š, 𝑞   

=  Ѯ𝜗
𝑀
 š ∗  ŕ ∗ š , 𝑞  ∨  Ѯ𝜗

𝑀
 š, 𝑞   

=  Ѯ𝜗
𝑀
 0, 𝑞  ∨  Ѯ𝜗

𝑀
 š, 𝑞   

≤  Ѯ𝜗
𝑀
 ŕ, 𝑞  ∨  Ѯ𝜗

𝑀
 š, 𝑞   
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=   𝜗 Ѯ ŕ, 𝑞   ∨   𝜗 Ѯ š, 𝑞    

⇒Ѯ ŕ ∗ š, 𝑞 ≤  Ѯ ŕ, 𝑞  ∨   Ѯ š, 𝑞   

Hence Ѯ is a doubt 𝑄 − fuzzy Z-sub algebra of ὧ. 
 
Theorem:4.10 
Intersection and union of any two𝜗 −translation of a doubt𝑄 − fuzzy Z-ideal of Ѯ of ὧ is also a doubt 𝑄 −  
fuzzy Z-ideal of ὧ. 
Proof 

Let Ѯ
𝜗

𝑇
 and Ѯ

𝛿

𝑇
 be two 𝜗 − translations of a doubt𝑄 −  fuzzy Z-ideal of Ѯ of ὧ, where 𝜗, 𝛿 ∈  0,1  and 𝑞 ∈

𝑄 

Then by theorem 3.14,Ѯ𝜗
𝑇

 and Ѯ𝛿
𝑇

 are doubt  𝑄 −  fuzzy Z-ideals of ὧ. 

Now,  (Ѯ
𝜗

𝑇
∩ Ѯ

𝛿

𝑇
) ŕ, 𝑞 =  Ѯ

𝜗

𝑇
 ŕ, 𝑞  ∨ Ѯ

𝛿

𝑇
 ŕ, 𝑞   

=   Ѯ ŕ, 𝑞 + 𝜗 ∨  Ѯ ŕ, 𝑞 + 𝛿   

=  Ѯ ŕ, 𝑞 + 𝜗 

= Ѯ𝜗
𝑇
 ŕ, 𝑞  

And (Ѯ
𝜗

𝑇
∪ Ѯ𝛿

𝑇
) ŕ, 𝑞 = Ѯ𝜗

𝑇
 ŕ, 𝑞  ∧   Ѯ𝛿

𝑇
 ŕ, 𝑞   

=   Ѯ ŕ, 𝑞 + 𝜗 ∧  Ѯ ŕ, 𝑞 + 𝛿   

=  Ѯ ŕ, 𝑞 + 𝛿 

= Ѯ𝛿
𝑇
 ŕ, 𝑞  

Hence Ѯ𝜗
𝑇

∩ Ѯ𝛿
𝑇

 and Ѯ𝜗
𝑇
∪  Ѯ𝛿

𝑇
 are doubt 𝑄 −  fuzzy Z-ideals of ὧ. 

 
CONCLUSION 
In this paper we have discussed 𝜗 −Translation and 𝜗 −Multiplication on Z-Algebras through Z- sub 
algebras anddiscussed with some other properties. And also derived from the 𝜗 −Translation and 
𝜗 −Multiplication on Z- Ideals of 𝑄 −Fuzzy Z-Algebra. 
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