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ABSTRACT 
Cloud computing provides on-demand access to a shared pool of specially configured computing 
resources. Scheduling tasks in these dynamic environments is challenging due to fluctuating workload 
demands, varying resource availability, and differing task priorities. Traditional optimization algorithms 
often fail to adapt effectively to these conditions. In this paper, we introduce the Q-Whale algorithm 
(QWA) and SARSA-Whale algorithm (SWA), a novel hybrid approach that integrates the Whale 
Optimization Algorithm (WOA) with Reinforcement learning techniques to address these challenges. The 
Q-Whale algorithm combines WOA's exploration capabilities with Q-learning's adaptive decision-making 
to optimize task scheduling in real time. Our experiments in dynamic computing environments show that 
the hybrid algorithm enhances resource utilization, reduces makespan, and meets task deadlines more 
effectively than traditional methods. 
 
Keywords:Virtual Machines, Reource Management, Quality of Service, Genetic Algorithm, Hybrid 
Reinforcment  Learning (HRL) 
 
INTRODUCTION 
Cloud computing offers various services on demand, allowing access to computing resources such as 
servers, applications, services, storage, and networks. According to the National Institute of Standards and 
Technology (NIST), these resources must be efficiently provisioned and released with minimal effort from 
brokers or service providers to meet the diverse demands of users. Companies are continually upgrading 
their infrastructure to keep pace with the rapid development and increasing service requirements of cloud 
computing. Every request in a cloud environment needs to be processed quickly and accurately, 
necessitating high-performance computing devices like data centers and virtual machines (VMs). Recent 
research in cloud computing has focused on optimizing resource utilization, improving task scheduling, 
enhancing cloud security, reducing costs, and boosting overall cloud performance[12,17]. 
Cloud service providers, especially those offering Infrastructure as a Service (IAAS), are responsible for 
distributing high-performing resources to data centers. To maximize resource utilization, jobs are 
assigned to multiple VMs that operate in parallel. In a virtual environment, task assignments to VMs must 
consider success rates, costs, processing times, and makespan. Consequently, extensive research has been 
conducted on quality of service (QoS) parameters to optimize cloud resource scheduling. Parallel 
scheduling of VMs aims to minimize makespan by optimizing processing times while using minimal 
resources. This approach ensures that tasks are completed efficiently and effectively, maximizing the 
overall performance of the cloud environment. Task scheduling is crucial for optimizing resource 
utilization and performance in dynamic computing environments, such as cloud computing systems. The 
dynamic nature of these environments[5]—with fluctuating workload demands, varying resource 
availability, and evolving task priorities—creates significant challenges for traditional task scheduling 
algorithms. These challenges often result in suboptimal solutions, inefficient resource utilization, and 
missed task deadlines. 
To address these issues, researchers have been exploring hybrid approaches that integrate optimization 
algorithms with machine learning techniques. These hybrid methods aim to harness the strengths of both 
types of algorithms: optimization algorithms excel at exploring large solution spaces, while machine 
learning techniques provide adaptive decision-making capabilities in dynamic environments[5]. By 
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combining these approaches, researchers seek to develop more robust and efficient task scheduling 
solutions that can better handle the complexities of modern computing environments. 
 
BACKGROUND 
In this subsection, we highlight the known algorithms and terminologies available in the domain. They are 
as follows – 
 
Task scheduling in dynamic computing environments 
Optimizing resource utilization and performance in dynamic computing environments, such as cloud 
computing systems, hinges on effective task scheduling. Traditional task scheduling algorithms often 
struggle to adapt to the constantly changing conditions in these environments, which can result in 
suboptimal solutions and inefficient resource use. The dynamic nature of cloud computing involves 
fluctuating workload demands, varying resource availability, and shifting task priorities, all of which 
complicate the scheduling process. To address these challenges, researchers have investigated a range of 
approaches, including optimization algorithms, machine learning techniques, and hybrid methods that 
combine the strengths of both. Optimization algorithms are designed to explore a wide array of potential 
solutions to find the best possible scheduling outcomes. However, they can be limited by their inability to 
adapt swiftly to changes. On the other hand, machine learning techniques excel at making adaptive, data-
driven decisions, but they may require extensive training and can be resource-intensive. Hybrid 
approaches seek to integrate the exploratory power of optimization algorithms with the adaptive 
capabilities of machine learning. These methods aim to provide more robust and efficient task scheduling 
solutions, capable of responding dynamically to the ever-changing demands of cloud computing 
environments. By leveraging the strengths of both optimization and machine learning, hybrid approaches 
hold promise for significantly improving resource utilization and overall performance in dynamic 
computing settings. 
 
Genetic Algorithms (GA) 
Genetic Algorithms (GA) are population-based optimization techniques inspired by the principles of 
natural selection and genetics. The evolutionary algorithms simulate the process of evolution[14,18,19], 
using mechanisms such as selection, crossover, and mutation to evolve a population of potential solutions 
over successive generations. GAs are particularly effective at exploring large solution spaces, making them 
well-suited for complex optimization problems where finding near-optimal solutions is critical. In task 
scheduling, GAs have been widely utilized due to their robustness and adaptability. They excel in handling 
the multifaceted challenges of scheduling, such as balancing workload distribution, minimizing processing 
times, and optimizing resource allocation. The iterative process of selection and refinement allows GAs to 
efficiently navigate through vast and complex search spaces, honing in on high-quality solutions that meet 
specific performance criteria. Furthermore, GAs' ability to adapt to changing conditions makes them 
highly effective in dynamic computing environments like cloud computing systems, where workload 
demands and resource availability are constantly shifting. By leveraging the evolutionary strategies of 
natural selection and genetics, GAs provide a powerful approach to solving a wide range of optimization 
problems, ensuring efficient and effective task scheduling and resource utilization in various 
computational settings.  
 
Whale Optimization Algorithm (WOA) 
The Whale Optimization Algorithm (WOA) is a nature-inspired optimization technique modeled after the 
social behavior of humpback whales. This algorithm mimics the whales' hunting strategy, particularly the 
bubble-net feeding method, to perform optimization tasks. Due to its ability to effectively explore large 
solution spaces and rapidly converge towards optimal solutions, WOA has been successfully applied to a 
wide range of optimization problems, including task scheduling. In task scheduling, WOA's efficiency lies 
in its capacity to balance exploration and exploitation during the search process. This balance ensures that 
the algorithm can both identify promising areas of the solution space and fine-tune solutions to achieve 
optimal performance. As a result, WOA has demonstrated considerable success in improving resource 
utilization, reducing processing times, and meeting deadlines in dynamic computing environments such as 
cloud computing systems. The robustness and adaptability of WOA make it a valuable tool in addressing 
the complex and evolving challenges of task scheduling, where traditional algorithms often fall short. By 
leveraging the natural strategies of humpback whales, WOA provides a powerful approach to optimizing 
performance and resource use in various computational settings.  
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Reinforcement learning techniques 
Reinforcement learning techniques, including Q-learning and SARSA, have become increasingly popular 
for solving dynamic decision-making problems. These methods empower agents to learn optimal policies 
by interacting with their environment, allowing them to make informed decisions based on feedback from 
their actions. In task scheduling for dynamic computing environments, reinforcement learning techniques 
are particularly advantageous[5,17]. These environments are characterized by constantly changing 
workload demands, resource availability, and task priorities. Traditional scheduling algorithms often 
struggle to adapt to these fluctuations, but reinforcement learning offers a robust solution. Q-learning and 
SARSA, for example, enable agents to continuously improve their scheduling policies by learning from the 
outcomes of their decisions. Through trial and error, these agents can identify the most efficient ways to 
allocate resources and schedule tasks, even as conditions change. This adaptive learning process ensures 
that the scheduling strategy evolves to meet current demands, optimizing resource utilization and 
performance. By leveraging the strengths of reinforcement learning, task scheduling systems can become 
more responsive and efficient, leading to improved overall performance in dynamic computing 
environments such as cloud computing systems. The ability of these techniques to handle complexity and 
variability makes them an excellent choice for modern, dynamic task scheduling challenges. 
Traditional task scheduling typically relies on First-Come, First-Served (FCFS) or Round Robin 
approaches. However, the increasing complexity and dynamic nature of modern computing environments 
require more sophisticated scheduling algorithms to optimize performance, reduce execution time, and 
minimize costs, including energy consumption and carbon emissions. 
Genetic algorithms, which are based on evolutionary principles, offer robust solutions for complex task 
scheduling. Meanwhile, Whale Optimization Algorithm (WOA) is known for its fast convergence and 
ability to balance exploration and exploitation of the search space, making it effective even under highly 
variable task loads. In environments with fluctuating and uncertain load conditions, reinforcement 
learning techniques like Q-learning and SARSA are particularly valuable, as they leverage feedback 
mechanisms to adapt and optimize scheduling in real-time.The dynamic nature of task scheduling and the 
variability in demand necessitate solutions that approach optimal performance. While various algorithms 
excel in specific aspects, none fully integrates all necessary factors into a single framework. This paper 
explores hybrid approaches to address the challenges of uncertainty, complexity, and variability in task 
scheduling, aiming to enhance efficiency and achieve optimal solutions that reduce execution time, lower 
energy consumption, and promote green computing. 

 
RELATED WORK 
In this section, we explain the previous works in the same domain.  

 
Hybrid optimization algorithms 
Previous research has investigated hybrid optimization algorithms [4,19] that integrate various 
techniques, including the Whale Optimization Algorithm (WOA), Genetic Algorithms (GA), and 
reinforcement learning, to tackle task scheduling challenges. These hybrid approaches [7] aim to harness 
the unique strengths of each individual algorithm while mitigating their respective limitations, resulting in 
enhanced performance and efficiency. Hybrid optimization algorithms combine the exploratory 
capabilities of WOA, the adaptive and evolutionary strategies of GA, and the decision-making process of 
reinforcement learning techniques. WOA excels at searching large solution spaces effectively, GA offers 
robust mechanisms for evolving solutions through genetic operations, and reinforcement learning 
provides adaptive learning from environmental feedback. By integrating these diverse methodologies, 
hybrid algorithms can address the complexities and dynamic nature of task scheduling more 
comprehensively. For instance, while WOA can quickly identify promising areas within the solution space, 
GA can refine these solutions through its crossover and mutation processes, and reinforcement learning 
can continuously adapt and optimize the scheduling strategy based on real-time feedback. This synergy 
allows hybrid algorithms to achieve higher levels of resource utilization, minimize processing times, and 
meet task deadlines more reliably than single-method approaches. The combination of these powerful 
techniques ensures that hybrid optimization algorithms are well-equipped to handle the fluctuating 
demands and resource availability inherent in dynamic computing environments such as cloud computing 
systems. Consequently, these hybrid methods represent a significant advancement in the field of task 
scheduling, offering more efficient and effective solutions to modern computational challenges. 

 
Multi-Objective Optimization 
Research in multi-objective optimization [8,13] for task scheduling aims to simultaneously optimize 
several conflicting objectives, such as makespan, resource utilization, and energy consumption. This 
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approach recognizes that optimizing for a single criterion often leads to suboptimal outcomes in other 
areas, necessitating a balanced strategy that considers multiple factors. In dynamic computing 
environments, such as cloud computing systems, achieving this balance is particularly challenging due to 
the ever-changing workload demands and resource availability. Various algorithms and techniques have 
been developed to address these multi-objective task scheduling problems effectively.  
One common approach involves evolutionary algorithms, which are well-suited for handling multiple 
objectives. For instance, the Non-dominated Sorting Genetic Algorithm (NSGA-II) and the Multi-Objective 
Particle Swarm Optimization (MOPSO) are popular methods that maintain a diverse set of solutions, 
allowing for a comprehensive exploration of the trade-offs between different objectives. These algorithms 
use techniques such as Pareto dominance to identify and evolve a set of optimal solutions that provide a 
balanced compromise among the various objectives.Research on other optimization techniques[9,21] 
include hybrid algorithms that combine elements of heuristic methods, metaheuristic strategies, and 
machine learning. These hybrid approaches leverage the strengths of individual methods to enhance 
performance and adaptability. For example, integrating reinforcement learning with evolutionary 
algorithms can improve the adaptability of the scheduling strategy in real-time, dynamically optimizing 
resource allocation as conditions change.  
By focusing on multi-objective optimization, researchers aim to develop task scheduling solutions that not 
only minimize processing times and maximize resource utilization but also reduce energy consumption 
and other operational costs. This holistic approach ensures that the overall performance and efficiency of 
the computing environment are optimized, leading to more sustainable and cost-effective operations. The 
advancements in this field contribute significantly to the capability of dynamic computing systems to meet 
the diverse and evolving demands of modern applications. 
 
Real-time task scheduling 
Research in real-time task scheduling, as indicated by studies [6,9,11], centers on the optimization of task 
assignments and resource allocations in immediate response to stringent deadlines and performance 
demands. This area of study is crucial for applications where timely execution is critical, such as in 
industrial automation, real-time analytics, and mission-critical systems. Research in real-time task 
scheduling, as indicated by studies [9,11], centers on the optimization of task assignments and resource 
allocations in immediate response to stringent deadlines and performance demands. This area of study is 
crucial for applications where timely execution is critical, such as in industrial automation, real-time 
analytics, and mission-critical systems. Real-time task scheduling poses unique challenges due to the need 
for quick decision-making in dynamically changing environments. To address these challenges, 
researchers employ various techniques, including online learning, dynamic programming, and heuristic 
algorithms. Online learning algorithms continuously adapt and improve scheduling decisions based on 
real-time feedback and observations. By learning from past experiences, these algorithms can make 
informed decisions even in unpredictable environments. Dynamic programming techniques break down 
complex scheduling problems into smaller subproblems, allowing for efficient computation of optimal 
solutions. Heuristic algorithms, on the other hand, offer practical and fast solutions by employing rules of 
thumb or approximation methods to quickly generate schedules. Moreover, recent advancements in 
machine learning and artificial intelligence have further enriched the capabilities of real-time task 
scheduling systems. Techniques such as reinforcement learning enable agents to learn optimal scheduling 
policies through trial and error interactions with the environment. This adaptive learning process 
empowers systems to dynamically adjust scheduling decisions based on changing conditions, ensuring 
that deadlines are consistently met while optimizing resource utilization and performance. The 
significance of real-time task scheduling extends beyond individual applications to broader domains such 
as cloud computing, edge computing, and internet-of-things (IoT) systems, where responsiveness and 
efficiency are paramount. By continually refining scheduling strategies and leveraging innovative 
techniques, researchers strive to develop robust and adaptable solutions capable of meeting the evolving 
demands of real-time computing environments. 
 
Power-aware task scheduling 
Research in power-aware task scheduling, as evidenced by studies [13,15,16], seeks to reduce power or 
energy consumption in computing systems while still meeting performance requirements. This area of 
study is crucial for addressing the growing concerns about energy efficiency and sustainability in 
computing environments. Power-aware task scheduling involves optimizing the allocation of tasks to 
resources while considering power constraints. This optimization process aims to minimize energy 
consumption without compromising performance. To achieve this goal, researchers employ a variety of 
techniques, including optimization algorithms, machine learning methods, and dynamic voltage and 
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frequency scaling (DVFS). Optimization algorithms are used to find the most energy-efficient task 
assignments and resource allocations. These algorithms explore different scheduling strategies to identify 
solutions that strike a balance between power consumption and performance metrics such as makespan 
or response time. Machine learning techniques, on the other hand, leverage data-driven approaches to 
learn from past behavior and make intelligent decisions about task scheduling. By analyzing patterns and 
trends in workload and resource usage, machine learning models can predict optimal scheduling policies 
that minimize energy usage. Dynamic voltage and frequency scaling (DVFS) is another key technique used 
in power-aware task scheduling. DVFS adjusts the operating voltage and frequency of computing 
components, such as processors and memory, dynamically based on workload demands. By scaling down 
voltage and frequency during periods of low activity, DVFS reduces power consumption without 
sacrificing performance. Conversely, during peak workload periods, DVFS can increase voltage and 
frequency to ensure that tasks are completed efficiently. Power-aware task scheduling is essential for a 
wide range of computing systems, including data centers, cloud computing environments, and mobile 
devices. By implementing energy-efficient scheduling policies, organizations can reduce operational costs, 
minimize environmental impact, and extend the battery life of mobile devices. Continued research in this 
area is crucial for developing innovative strategies to address the growing demand for energy-efficient 
computing solutions. 
Research on dynamic virtual machine consolidation has increasingly focused on minimizing execution 
time, makespan which reducing energy consumption, and enhancing environmental sustainability. 
Various individual and hybrid approaches have been explored, each addressing one or more of these 
factors depending on the algorithms employed. However, the complexity of fluctuating conditions 
requires comprehensive strategies that account for all relevant factors to achieve truly optimal results. 
The author identifies two critical elements for optimization: the speed at which exploration can be 
controlled, and the ability to maintain effective exploitation. Leveraging feedback mechanisms or prior 
experiences is essential in balancing these elements and guiding the system toward an optimal solution. 
 
RESEARCH METHODOLOGY 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

Figure 1. Overall flow of the proposed methodology 
 
In this paper, the author presents a comprehensive approach to cloud-based task scheduling and resource 
management, illustrated through a high-level architectural design. This architecture, depicted in the 
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Figure, leverages reinforcement learning (RL) techniques, specifically the Q-Whale and SARSA-Whale 
algorithms, to optimize task scheduling within a cloud infrastructure. The primary objective of this system 
is to ensure efficient resource utilization while minimizing the Makespan, which is the total time required 
to complete all submitted tasks. At the heart of this architecture lies the Hybrid RL Scheduler (HRLS), 
which utilizes advanced RL algorithms, Q-Whale and SARSA-Whale (S-Whale), to manage the dynamic and 
complex nature of task scheduling in cloud environments. Q-Whale is a variant of the model-free Q-
learning algorithm, designed to maximize cumulative rewards by selecting the best possible action based 
on the current state. In contrast, S-Whale is based on the SARSA algorithm, which stands for State-Action-
Reward-State-Action and follows an on-policy learning approach, updating its policy based on the actions 
actually taken rather than the theoretically optimal actions. Tasks are submitted by users through the 
System Access Interface, which acts as the system's entry point. These tasks are then managed by the Task 
Manager, a critical component responsible for monitoring task statuses, tracking available resources, and 
balancing the workload across the system. The Task Manager includes a Task Monitor, which oversees 
task execution; a Resource Monitor, which manages computational resources; and a Load Balancer, which 
ensures tasks are evenly distributed across available resources, preventing any single resource from 
becoming overburdened. 
The HRLS works in close coordination with the Resource Provisioning module, responsible for allocating 
appropriate resources—such as virtual machines (VMs) within the Data Center—based on the scheduler’s 
decisions. This real-time interaction is vital for adjusting resource allocation dynamically, ensuring 
efficient execution of tasks across all available VMs (VM1, VM2, …, VMn). Once tasks are scheduled and 
resources are provisioned, they are executed within the Data Center. The system's performance is 
measured by the Makespan, with the overarching goal of minimizing this metric to enhance overall 
efficiency and throughput. This architecture, integrating the Q-Whale and S-Whale algorithms, represents 
a sophisticated and effective approach to cloud task scheduling. It underscores the critical role of 
reinforcement learning in optimizing resource management and task execution in cloud computing 
environments. By improving resource utilization, reducing operational costs, and minimizing task 
completion times, this system enhances the responsiveness and efficiency of cloud services. In the Figure, 
the requests are characterized as cloudlets or tasks, which users submit through an interface. These tasks 
are then allocated to selected virtual machines (VMs) across multiple data centers by the task manager, 
following the scheduling policy determined by the hybrid algorithm. The system’s performance is 
evaluated using the makespan metric. As referenced in [4,10], the makespan refers to the time at which 
the last task in a set is completed, making it a key indicator of the effectiveness of scheduling 
methodologies. A lower makespan reflects superior and more optimal task scheduling for virtual 
machines (VMs) or servers. The program logic for calculating the makespan can be explained through the 
following steps: 
1. Initialize Makespan=0, Finishtime; 
2. Repeat it until all task get success status  
3. If (Finishtime>Makespan) 
4. Then Makespan=Finishtime 

Here Finishtime refer to maximum time taken by any task assign to VMs.  
In this section, we also explain various algorithms that were used in the proposed methodology. The Q-
Whale algorithm, drawing inspiration from the hunting behaviors of killer whales, emerges as a 
metaheuristic approach used to tackle optimization challenges, particularly within the realm of cloud 
computing. Its primary objective is to minimize the makespan, representing the aggregate duration 
required to fulfill a specified set of tasks. In the context of cloud computing, the makespan signifies the 
duration taken to execute a batch of tasks across multiple VMs or servers. Efficient distribution of tasks 
among the available resources is crucial in cloud computing scenarios, aiming to minimize the makespan. 
By leveraging the Q-Whale algorithm, which combines exploration capabilities akin to killer whale hunting 
behaviors with optimization techniques, cloud computing systems can effectively allocate tasks across 
VMs or servers, thereby reducing the overall makespan. This optimization enhances system performance, 
resource utilization, and ultimately, user satisfaction. 
 
Q-Whale algorithm 
The Q-Whale algorithm, as outlined in [3], offers a strategic approach to minimize makespan in cloud 
computing environments. Here's a detailed breakdown of how this algorithm can be implemented: 
a. Initialization: The process begins by establishing an initial population of solutions. In the context of 

cloud computing, this entails randomly allocating tasks to virtual machines (VMs) or servers within 
the infrastructure. 

b. Evaluation: Each solution's makespan is computed by simulating the task execution on the assigned 
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resources and measuring the cumulative time required for completion. 
c. Selection: Solutions exhibiting shorter makespan values are prioritized as promising candidates for 

further consideration. This selection process aims to identify the most efficient task-resource 
allocations. 

d. Reproduction: New solutions are generated through the application of genetic operators, such as 
crossover and mutation. These operations facilitate the exploration of alternative task-resource 
assignment configurations by combining or modifying existing solutions. 

e. Replacement: To maintain population diversity and prevent premature convergence, a subset of 
solutions in the population is replaced with the newly generated alternatives. This step fosters 
continual exploration of the solution space. 

f. Termination: The iterative process of evaluation, selection, reproduction, and replacement continues 
until a predefined termination condition is met. This condition could be based on reaching a 
maximum number of iterations, achieving a specified level of improvement, or surpassing a 
predetermined time threshold. 

Throughout this iterative optimization process, the Q-Whale algorithm dynamically adapts and evolves 
the population of solutions. By iteratively refining the assignment of tasks to resources, it endeavors to 
converge towards an optimal or near-optimal solution for the cloud computing workload. This iterative 
refinement, driven by the algorithm's exploration and exploitation capabilities, contributes to the 
continuous improvement of makespan and overall system performance in cloud computing environments. 
 
Whale Optimization Algorithm (WOA) 
The Whale Optimization Algorithm (WOA), referenced in [4,7,18], stands as a nature-inspired 
optimization technique emulating the social interactions of humpback whales. WOA operates by 
maintaining a population of candidate solutions, colloquially termed "whales," which are iteratively 
refined to approach optimal or near-optimal solutions. Its notable strength lies in effectively balancing 
exploration and exploitation throughout the optimization process. During the exploration phase, WOA 
navigates the solution space to uncover new promising regions, while in the exploitation phase, it 
leverages these discovered areas to further refine solutions. This dual strategy allows WOA to dynamically 
adapt its approach, promoting both thorough exploration and efficient exploitation of the solution space. 
D = |C X* — X(t)|  
(1) 
X (t + 1) = X*(t)— A. D(2) 
where t is the current iteration, X* is the best solution acquired so far, X is the current solution. A and C are 
coefficients computed as following: 
A = 2a.r — a (3) 
C = 2. r (4) 
where a is linearly reduced from 2 to 0 over the trajectory of iterations as showing in Eq. (3) and r is a 
random number between 0 and 1. 
The spiral updating position mechanism involves computing the distance between the current solution 
(whale) and the best solution (victim) by using the spiral equation as following: 
X(t + 1)= D' .ebl. cos(2Pl)+ X*(t)            (5) 
X(t)=X* -D exp(b.l).Cos(2πl)          (6) 
where D is the distance between the whale and the victim, b is a constant for defining the shape of the 
logarithmic spiral, and l is a random number between - 1 and 1. Humpback whales use both mechanisms 
simultaneously. To model this behavior, a probability of 50% is introduced to select one of the 
mechanisms to update the whales’ location during the search. The mathematical model is as follows: 

𝑋 𝑡 + 1 =   
𝑆ℎ𝑟𝑖𝑛𝑘𝑖𝑛𝑔𝑒𝑛𝑐𝑖𝑟𝑐𝑙𝑖𝑛𝑔𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2), 𝑖𝑓𝑝 < 0.5

𝑆𝑝𝑖𝑟𝑎𝑙𝑠ℎ𝑎𝑝𝑒𝑑𝑝𝑎𝑡ℎ𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛(6), 𝑖𝑓𝑝 ≥ 0.5
                                              (7) 

where p is a random number in [0,1] 
While in the exploration phase, WOA involves a global search. The whales search randomly based on the 
location of each other. Therefore, a search agent’s location is updated randomly instead of depending on 
the best search agent identified so far. This technique is used when the random values of A are greater 
than one to cause the search agent to move away from a reference whale.The mathematical model for the 
exploration phase is as follows:  
D = |C.Xrand — X|                            (8) 
X(t + 1)= Xrand — A.D                          (9) 
WOA's effectiveness extends to a wide array of optimization problems, particularly those featuring 
nonlinear and multimodal objective functions. Its adaptive nature renders it well-suited for addressing 
dynamic optimization challenges, such as task scheduling in dynamic computing environments. In this 
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context, WOA continually updates the movement of whales around the target, akin to their hunting 
behavior, resulting in a mathematical model that guides the optimization process effectively. This 
adaptability enables WOA to respond to changing conditions and evolving objectives, ensuring robust 
performance in dynamic scenarios. 
 
Q-learning algorithm 
Q-learning [1,2] is a reinforcement learning technique used for decision-making in dynamic and uncertain 
environments. In Q-learning, an agent learns a policy for selecting actions based on its interactions with 
the environment. The agent maintains a Q-table (or Q-function), which stores Q-values representing the 
expected cumulative rewards for taking specific actions in given. 
Q-learning [3] has been successfully applied to various decision-making problems, including robotic 
control, game playing, and resource allocation. In the context of task scheduling, Q-learning can learn an 
optimal policy for assigning tasks to computing resources based on the current state of the system, task 
characteristics, and environmental factors. 
Q-table utilizes a state-action pair to index a Q value as a cumulative reward and is denoted as Q(s, a) 
where s is the state, and a is the action. The Q-table is dynamically updated depending on a given state-
action pair’s reward/ punishment.  
Q(t+1)(st, at)= Q(st, at)+ α(r + γ max(Q(s’, a’)) — Q(st, at))                  (10) 
where γ is the discount factor within [0,1], r is reward/ punishment and α is the learning rate within [0,1] 
and calculated as follows: 
α = 1 - 0.9 * (t/Epoch)                    (11) 
The value of the parameter a is an indication to perform exploration or exploitation. If the value is close to 
1, the recently acquired data are given a greater priority, meaning exploration is performed for all defined 
states. Whereas, if the value is close to 0, the current data are given greater priority to be exploited. The 
value of the parameter c is an indication of whether to take the current reward/punishment or the 
previous one, and it was set to 0. 
The value of parameter r is set as follows: r(t) = 1, 
 if the current action improves the solution r(t) = —1 
otherwise                                                (12) 
SARSA algorithm SARSA [1,20] is an on-policy algorithm designed to teach a machine learning model a 
new Markov decision process policy in order to solve reinforcement learning challenges. It’s an algorithm 
where, in the current state (S), an action (A) is taken and the agent gets a reward (R), and ends up in the 
next state (S1), and takes action (A1) in S1. Therefore, the tuple (S, A, R, S1, A1) stands for the acronym 
SARSA. 
In the SARSA update equation depends on current value and target value. Target value based on 
behaviour policy, the Q-value is chosen using S’ and A’, the next state and the action chosen in the next 
state, respectively. This stands in contrast to Q-learning, which updates the equation where the max of 
Q(S’, a) is taken. 
Q(t+1)(st, at)= Q(st, at)+ α(r + γ(Q(s’, a’)) — Q(st, at))                       (13) 
The remaining process of the code is similar to the Q-learning code. 

 
Q-Whale algorithm 
The Q-Whale algorithm, as referenced in [2,9], merges the exploratory prowess of the Whale Optimization 
Algorithm (WOA) with the adaptive decision-making capabilities of Q-learning techniques to refine task 
scheduling in dynamic computing environments. In this innovative approach, WOA takes charge of 
traversing the solution space and crafting potential scheduling solutions. These solutions undergo 
thorough evaluation, assessing metrics such as makespan, resource utilization, and meeting deadlines to 
gauge their quality. Q-learning, a reinforcement learning technique detailed in [11], contributes to the 
exploration process by furnishing feedback on the efficacy of the generated solutions. Drawing from past 
experiences, Q-learning influences the selection of actions, or task scheduling decisions, generated by 
WOA. By favoring actions associated with higher rewards, Q-learning steers the exploration towards 
regions of the solution space that promise superior outcomes. This fusion of WOA and Q-learning aims to 
elevate the efficiency, resource utilization, and overall system performance in task scheduling endeavors 
within dynamic computing environments. Unlike conventional task scheduling algorithms, this hybrid 
methodology embraces adaptability and learning, enabling it to dynamically adjust to evolving conditions 
and achieve superior outcomes. Through iterative refinement and informed decision-making, the Q-Whale 
algorithm stands poised to revolutionize task scheduling practices in the realm of dynamic computing. The 
pseudo code of Q-Whale algorithm is as follows:  
1. Initialize Q(s, a) arbitrarily 
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2. Repeat for each episode: 
    2.1. Initialize s 
     2.2. Repeat for each step of episode: 
        2.2.1. Choose a from s using policy derived from Q (e.g., ϵ-greedy) 
        2.2.2. Take action a, observe r, s_{t+1} 
        2.2.3. Q(s, a) ← Q(s, a) + α [r_{t+1} + γ max_a Q(s_{t+1}, a) - Q(s, a)] 
        2.2.4. s ← s_{t+1} 
    2.3. Until s is terminal 
3. Schedule cloudlets using the WOA scheduler: 
    3.1. Create a WOA scheduler object. 
    3.2. Pass cloudlets and VMs to the scheduler. 
    3.3. Execute the scheduling algorithm. 
4. Start the simulation: 
    4.1. Initialize CloudSim. 
    4.2. Start the simulation. 
5. Print the simulation results: 
    5.1. Retrieve the list of finished cloudlets from the broker. 
    5.2. Print the details of each cloudlet, including its ID, status, completion time, etc. 
The Q-Whalealgorithmspresents several advantages over conventional task scheduling algorithms and 
alternative hybrid methodologies. These advantages encompass: 
a. Adaptability to Dynamic Environments: The Q-Whale algorithm adeptly navigates the dynamic 

landscape of computing environments by melding the exploratory prowess of WOA with the adaptive 
decision-making of Q-learning. This adaptability empowers the algorithm to swiftly respond to 
fluctuations in workload demands, shifts in resource availability, and evolving task priorities in real-
time. 

b. Efficient Exploration and Exploitation: Through the fusion of WOA and Q-learning, these algorithms 
efficiently explores the solution space while striking a delicate balance between exploration and 
exploitation. WOA's exploration phase uncovers promising regions, while Q-learning's exploitation 
phase refines solutions based on accumulated experiences, facilitating enhanced convergence 
towards optimal solutions. 

c. Optimization of Multiple Objectives: The Q-Whale algorithm excels in simultaneously optimizing 
multiple objectives, such as minimizing makespan, maximizing resource utilization, and meeting task 
deadlines. By holistically considering diverse objectives, it offers a comprehensive approach to task 
scheduling optimization, thereby enhancing overall system performance. 

d. Learning from Past Experiences: Leveraging Q-learning, the Q-Whale algorithm assimilates insights 
from past encounters to refine its decision-making process. By iteratively updating Q-values in 
response to observed rewards, the algorithm iteratively improves its policy, resulting in more 
informed decision-making and superior solution quality over time. 

e. Effective Resource Utilization: With a focus on maximizing resource utilization, the Q-Whale 
algorithm efficiently allocates tasks across available computing resources. By integrating WOA and Q-
learning, it identifies optimal task-resource assignments that minimize idle time and optimize 
computing resource usage, thereby enhancing overall efficiency. 

f. Scalability and Robustness: The scalability and robustness of the Q-Whale algorithm render it well-
suited for diverse computing environments, including large-scale cloud computing systems. Capable 
of tackling complex scheduling challenges involving numerous tasks and resources, it maintains 
efficiency and effectiveness across varying scales of operation. 

g. Experimental Validation: Empirical validations and experiments conducted within dynamic 
computing environments underscore the efficacy of the Q-Whale algorithm. Demonstrating tangible 
improvements in resource utilization, makespan reduction, and task deadline adherence compared 
to conventional task scheduling methods and alternative hybrid approaches, these experimental 
findings attest to the real-world superiority of the Q-Whale algorithm. 

 
SARSA-Whale algorithm 
The SARSA-Whale algorithm, an on policy learning algorithm which work almost similar to Q-whale and 
perform better specially in high load conditions claimed in this paper also merges the exploratory 
prowess of the Whale Optimization Algorithm (WOA) with the adaptive decision-making capabilities of Q-
learning techniques to refine task scheduling in dynamic computing environments. In this innovative 
approach which specially presented in this paper with its psuedo code, WOA takes charge of traversing 
the solution space and crafting potential scheduling solutions. These solutions undergo thorough 
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evaluation, assessing metrics such as makespan, resource utilization, and meeting deadlines to gauge their 
quality. SARSA, a reinforcement learning technique detailed in [11], contributes to the exploration process 
by furnishing feedback on the efficacy of the generated solutions. Drawing from past experiences, Q-
learning influences the selection of actions, or task scheduling decisions, generated by WOA. By favoring 
actions associated with higher rewards, Q-learning steers the exploration towards regions of the solution 
space that promise superior outcomes. This fusion of WOA and Q-learning aims to elevate the efficiency, 
resource utilization, and overall system performance in task scheduling endeavors within dynamic 
computing environments. Unlike conventional task scheduling algorithms, this hybrid methodology 
embraces adaptability and learning, enabling it to dynamically adjust to evolving conditions and achieve 
superior outcomes. Through iterative refinement and informed decision-making, the Q-Whale algorithm 
stands poised to revolutionize task scheduling practices in the realm of dynamic computing. The pseudo 
code of Q-Whale algorithm is as follows:  
The psuedo code for SARSA-Whale Algortihm 
1. Initialize Q(s, a) arbitrarily 
2. Repeat for each episode: 
    2.1 Initialize state s 
    2.2 Choose action a from state s using policy derived from Q (e.g., ϵ-greedy) 
    2.3 Repeat for each step of the episode: 
i. Take action a, observe reward r and next state s_{t+1} 
       ii. Choose action a' from state s_{t+1} using policy derived from Q (e.g., ϵ-greedy) 
       iii. Update Q-value: 
Q(s, a) ← Q(s, a) + α [r + γ Q(s_{t+1}, a') - Q(s, a)] 
        iv. Set state s to s_{t+1} 
        v. Set action a to a' 
    2.4 Until state is terminal 
3. Schedule cloudlets using the Whale Optimization Algorithm (WOA): 
   3.1 Create a WOA scheduler object. 
   3.2 Pass cloudlets and VMs to the scheduler. 
   3.3 Execute the scheduling algorithm using WOA: 
i. Initialize the whale population and parameters. 
       ii. Calculate the fitness of each whale. 
       iii. Update the position of each whale: 
            - If the whale is near the prey: 
             Update the whale's position towards the prey. 
            - If the whale is searching for prey: 
                Perform a random search based on a spiral position update. 
        iv. Evaluate the new positions and update the best solution found. 
        v. Repeat until the stopping criterion is met (e.g., maximum iterations or convergence). 
4. Output the scheduled cloudlets with optimized VM allocation. 
The SARSA-Whale algorithm offers several distinct advantages over conventional task scheduling 
algorithms and alternative hybrid methodologies: 
a. Dynamic Learning Adaptability: SARSAWhale excels in dynamically adjusting to environmental changes 
by leveraging SARSA's on-policy learning approach. This allows the algorithm to continually refine its 
policies based on ongoing experiences, effectively adapting to shifting workloads and varying resource 
conditions in real-time. 
b. Integrated Policy Optimization: Unlike traditional methods that may rely solely on exploration or 
exploitation, SARSAWhale integrates WOA’s global exploration capabilities with SARSA’s real-time policy 
adjustments. This integration ensures that the algorithm not only explores new potential solutions but 
also optimizes policies based on current operational feedback. 
c. Enhanced Decision-Making Efficiency: SARSAWhale’s real-time decision-making process benefits from 
SARSA’s immediate feedback mechanism. This leads to more efficient decision-making compared to 
methods that update policies less frequently or rely on delayed feedback, improving overall task 
scheduling performance. 
d. Versatility in Scheduling Strategies: The SARSAWhale algorithm can adapt its scheduling strategies to a 
wide range of scenarios by leveraging SARSA’s flexibility in policy updates. This versatility allows it to 
handle diverse scheduling problems, including those with complex constraints and dynamic resource 
availability. 
e. Robust Exploration of Solution Space: By combining WOA’s robust exploration capabilities with SARSA’s 
on-policy learning, SARSAWhale ensures a comprehensive search of the solution space. This approach 
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minimizes the risk of premature convergence and enhances the likelihood of discovering high-quality 
solutions. 
f. Real-Time Adaptation to Task Priorities: SARSAWhale’s real-time learning mechanism allows it to 
promptly adjust to changing task priorities. This ensures that the algorithm can effectively reallocate 
resources and adjust schedules to accommodate urgent tasks or shifting deadlines. 
g. Improved Convergence Speed: The synergy between WOA’s exploration and SARSA’s on-policy learning 
leads to faster convergence towards optimal solutions. SARSAWhale's ability to refine policies in real-time 
accelerates the process of finding high-quality task schedules compared to methods that update policies 
less frequently. 
h. Experimental Validation of Robust Performance: Experimental results in various computing 
environments demonstrate the SARSAWhale algorithm’s ability to outperform traditional scheduling 
methods and other hybrid approaches. Its effectiveness in improving task scheduling efficiency and 
resource utilization is well-documented through empirical studies. 

 
EXPERIMENTAL RESULTS 
In this section, we present the experimental results. The results are calculated and compared based on 
makespan. Figure 2 compares the performance of various algorithms: SARSA, Q-learning, Whale, SARSA 
Whale, and Q-Whale. For the simulation, we deployed 10 VMs across 3 data centers. Each data centre 
contains 2 hosts, with each host having a single CPU. The VMs are configured with 100 MIPS (Millions of 
Instructions Per Second) in a homogeneous setup, while in a heterogeneous setup, the MIPS values vary: 
low-performing VMs have 1000 MIPS, medium-performing VMs have 2000 MIPS, and high-performing 
VMs have 4000 MIPS. Additionally, each VM is allocated 2 GB of RAM. These parameters define the 
computational resources and network characteristics of the simulated environment, which influence the 
performance and behavior of the VMs during the simulation. The variability in VM configurations, 
particularly in terms of RAM and MIPS, allows us to test a range of scenarios. This helps us understand the 
performance and scalability of the data centre under different conditions. Figure 1 shows that QWhale 
performs the best. 

 

 
Figure 2. Performance of various algorithms for VM count =10 

 
Figure 3 presents the results of our analysis for 100 tasks. Among the different approaches, Q-Whale 
demonstrates the best performance for 100 virtual machines (VMs), with SARSA-Whale following closely 
as the second-best. The Whale algorithm significantly outperforms both SARSA and Q-learning, achieving 
a makespan of 27.55 seconds. As we scale our deployment to 250 VMs, Q-Whale continues to lead, 
achieving an improved makespan of 18.7 seconds. This trend persists with further scaling; Q-Whale 
maintains its superior performance, reporting a makespan of 12.8 seconds when the deployment is 
expanded to 500 and then 1,000 VMs. 
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Figure 3. Performance of various algorithms for tasks = 100 and varying VM counts. 

 
Figure 4 illustrates a comparison of makespan across different approaches when 500 tasks are assigned. 
Among these, Q-Whale consistently exhibits the best performance, particularly in scenarios involving 100 
virtual machines (VMs), where it outperforms other methods. SARSA-Whale ranks as the second-best 
approach in this setup, with the reported makespan for the 100 VM deployment being 95.98 seconds. As 
the deployment is scaled up to 250, 500, and ultimately 1,000 VMs, Q-Whale continues to maintain its 
lead, delivering superior performance compared to the other algorithms. This demonstrates Q-Whale's 
ability to effectively manage the increased computational load, maintaining an optimal balance between 
exploration and exploitation, which is crucial for achieving minimal makespan across varying scales of VM 
deployments. 

 

 
Figure 4. Performance of various algorithms for tasks = 500 and varying VM counts. 
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In Figure 5, we show the results for 1000 tasks analysis. For 100 VMs, Q-Whale outperforms all other 
algorithms, with SARSA-Whale being the second-best. Whale is significantly better than SARSA and Q-
learning. We achieve a makespan of 157.8 seconds. When we scale the deployment to 250 VMs, Q-Whale 
and SARSA-Whale again show the best performance, with Q-Whale slightly ahead. The reported makespan 
is 82.42 seconds. Q-Whale and SARSA-Whale continue to outperform the other algorithms, with Q-Whale 
leading when we deploy 500 VMs for conducting same 1000 tasks. The makespan we achieve for Q-Whale 
us 58.3 seconds. Finally, we make 1000 VMs for performing 1000 tasks, Q-Whale achieves the best 
performance with 44.97 seconds makespan, closely followed by SARSA-Whale which has a makespan of 
47.6 seconds. Whale also performs well compared to SARSA and Q-learning. 

 

 
Figure 5. Performance of various algorithms for tasks = 1000 and varying VM counts. 

 
In Figure 6, we had 5000 tasks analysis. When we have 100 VMs, Q-Whale performs the best with the 
shortest makespan of 729.1 seconds, followed closely by SARSA-Whale and Whale which have values 
769.7 seconds and 795.62 seconds. SARSA and Q-learning have much higher makespan. When we have 
250 VMs Q-Whale and SARSA-Whale again outperform the other algorithms, with Q-Whale being slightly 
better. The makespan for Q-Whale is 312.1 seconds. When we have 500 VMs, Q-Whale and SARSA-Whale 
maintain their superior performance, with the Whale algorithm still performing significantly better than 
SARSA and Q-learning. The reported makespan value for Q-Whale is 215.2 seconds. When we have 1000 
VMs, SARSA-Whale achieves the best performance, closely followed by Q-Whale. Whale also shows good 
performance compared to SARSA and Q-learning. 

 

 
Figure 6. Performance of various algorithms for tasks = 5000 and varying VM counts. 
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Overall Observations and Insights 
Our analysis reveals several key observations regarding the performance of the algorithms tested:  
Superior Performance of Q-Whale: The Q-Whale algorithm consistently demonstrates the best 
performance across various VM counts and task numbers. It achieves the lowest makespan in all tested 
scenarios, indicating highly efficient task scheduling.  
Strong Performance of SARSA-Whale: SARSA-Whale emerges as the second-best performer, 
consistently close to Q-Whale. Its performance across different configurations shows it is a robust and 
reliable algorithm for task scheduling specially when we are increasing the cloudlets against limited 
number of Vms. 
Competent Performance of Whale Algorithm: The Whale algorithm also performs well, outperforming 
both SARSA and Q-learning. This indicates its strong capability in exploring and exploiting the solution 
space effectively. 
Inefficiency of SARSA and Q-learning: SARSA and Q-learning generally exhibit higher makespans 
compared to the other algorithms, reflecting lower efficiency in task scheduling. Their performance 
highlights the limitations of using standalone reinforcement learning techniques for dynamic 
environments. 
Advantages of Hybrid Approaches: The results clearly indicate that combining Whale optimization with 
reinforcement learning techniques like Q-learning and SARSA (resulting in the Q-Whale and SARSA-Whale 
algorithms) significantly enhances scheduling performance. These hybrid approaches leverage the 
strengths of both components, leading to better optimization and adaptability in dynamic computing 
environments. 

 
CONCLUSION 
Our experimental results provide compelling empirical evidence of the superiority of hybrid algorithms, 
particularly Q-Whale and SARSA-Whale, in the context of task scheduling. These algorithms combine the 
exploration strengths of Whale Optimization with the adaptive decision-making capabilities of 
reinforcement learning, resulting in significantly lower makespans, enhanced resource utilization, and 
overall improved system performance. 
The integration of Whale Optimization's efficient search strategies with the feedback-driven learning 
processes of algorithms like Q-learning and SARSA enables these hybrids to adapt dynamically to the 
complexities of task scheduling in cloud computing environments. Their ability to balance exploration and 
exploitation makes them exceptionally well-suited for deployment in environments characterized by high 
variability and unpredictability, ensuring that resources are utilized optimally while maintaining high 
levels of system efficiency. 
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