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Abstract. Research on Casson fluid is very important due to its ap-
plicability in the progress of industrial and engineering industries. Here,
a fractional order model of the Casson fluid over an oscillating plate
in the presence of thermal radiation with constant wall temperature
and concentration has been considered. The solution of this fractional
model is obtained with the help of Laplace transform technique in terms
of Wright function. The graphical analysis is also done by making sev-
eral variations in parametric values including fractional parameter, mass
Grashoff number, Prandtl number, velocity, temperature, concentration
profiles etc.

1. Introduction

The physical characteristic of non-Newtonian fluid is always a barrier for
researchers while solving the problems of non-Newtonian fluid. There is yet
no comprehensive model that covers every aspect of a non-Newtonian fluid.
Non-Newtonian fluid is widely used in the manufacturing and processing in-
dustries, thus researchers are constantly attempting to develop new models.
One of the models is the Casson fluid model. In 1959, Casson [22] was the
first to present the rheological data of pigment oil suspensions in printing ink.

Khalid et al. [1] studied the Casson fluid across an oscillating vertical plate
for Unsteady boundary layer flow with constant wall temperature.
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Mahantesh et al. [4] studied the convective flow of Casson fluid across an
oscillating plate using non-coaxial rotation and quadratic density fluctua-
tion as its boundary conditions. Using variables without dimensions, the
governing equations were first transformed into a non - dimensional form.
Analytical solutions of the dimensionless momentum, heat, and mass equa-
tions were achieved using the Laplace transform method.

Using an exponentially permeable decreasing sheet, Nadeem et al. [25] in-
vestigated the boundary layer MHD flow of Casson fluid. The Adomian
decomposition method was employed to arrive at the analytical answer to
the problem. The velocity distributions resulting from a number of fasci-
nating parameters were displayed and investigated.

The role of the magnetic flux on the three-dimensional Casson fluid flow
over the boundary layer of a stretching porous sheet was taken into account
in the study by Nadeem et al., [26] . It was discovered that the magnetic
field, Casson fluid parameter, and porosity parameter all reduced the veloc-
ity profiles in the x and y directions.

The effects of chemical processes and heat generation of MHD convection
Casson fluid flow model in a porous media using a revolving vertical plate
is provided in the study done by Khan et al. [5].

The unstable MHD free convection flow of Casson fluid through a porous
medium past a vertical plate that was moving exponentially was explored by
Mohan et al.[24] in the presence of thermal radiation, chemical interaction,
and a heat source or sink. They discovered that the velocity profiles decrease
when the heat flow, magnetic field parameter, prandtl number, heat source,
and Casson parameter increase in value.

Deka [3] has conducted studies of an unstable MHD casson fluid in nanopores
with heat transfer through an accelerating vertical plate. It has been dis-
covered that the Casson parameter increases skin friction and fluid velocity.
Along with the casson parameter, the surface shear stress also rises.

It is assumed that the Casson fluid, a shear-thinning fluid, has infinite vis-
cosity at zero rate of shear, zero viscosity at infinite rate of shear, and a yield
stress below which no flow occurs. A fluid behaves like a solid when it is un-
der conditions where the yield stress is greater than the shear stress. When
the applied yield stress is greater than the applied shear stress, the fluid
starts to flow. Casson fluid can take the form of things like honey, soup,
chocolate, tomato sauce, jelly, blood, sludge, fused polymers, etc. These
fluid models have been shown to have important uses in the biomechanics,
textile, cosmetic, polymer processing, and pharmaceutical industries.
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The Casson fluid flow across an oscillating plate with chemical reaction and
sliding phenomenon was expressed by Saqib et al. [16]. The investigation
concentrated on the mass and heat transport processes. The Laplace trans-
form method was used to analyse the mathematical model once it had been
transformed into dimensionless form. The profiles of velocity, temperature,
and concentration were plotted.

Fractional derivatives have recently piqued the interest of many scholars due
to the extensive coverage of derivatives and integrals of non-integer order. A
variety of physical phenomena or natural circumstances have been studied
with the help of fractional calculus, together with the rheological properties
of winding polymers, traffic modelling, electric circuits, signal and image
processing, electrical networks, stochastic processes and bioengineering.

Imran et al. [18] used two distinct fractional derivatives known as Caputo
and Caputo-Fabrizio to study the convection flow of Newtonian fluid.The
solutions to the concentration , temperature and velocity profiles were dis-
covered by using the Laplace transform approach. The results were graphi-
cally depicted to compare and contrast the two fractional derivatives.

Also, the Caputo time-fractional derivatives are used by Imran et al. [19]
to formulate fluid flows with Newtonian heating and arbitrary velocities.It
was possible to obtain the dimensionless form of the governing equations
by using the specified dimensionless variables. Using the Laplace transform
approach, the dimensionless equations were solved.

Numerous scholars have noted the impact of fractional parameters on tem-
perature and velocity characteristics. The computational analysis of frac-
tional diffusion equations occurring in oil pollution has been done by Singh
et al., [12].Research by Khan et al.,[11]gives the effect of fractional Caputo
time derivatives of general Cassonian fluids with oscillating boundary con-
ditions.

Ali et al. [9] employed the Caputo fractional derivative to examine the
blood flow in a horizontal cylinder that was simulated by a Casson fluid.
Magnetic particles were present in the fluid flow that was being driven by
an oscillating pressure gradient. With the use of finite Hankel and Laplace
transformations, the effects of magnetodynamics on Casson’s fluids have
been investigated and described.

The researchers observed that the fractional order fluid model performs no-
ticeably differently from the conventional model. Several recent important
analytical investigations on fluid problems can be found in preceding study
[7], [8], [24], and [24].
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Atangana-Baleanu and Caputo-Fabrizio are two fractional derivatives that
are compared in Sheikh et al. comparative analysis for the convection of
Casson’s liquid across an infinite vertical flat plate, together with heat and
mass transfer[20].

The researchers discovered that for a given unit of time, the velocities cal-
culated using the Caputo-Fabrizio and Atangana-Baleanu operators are the
same. Exact solutions for both situations were discovered using the Laplace
transform methodology, and the outcomes were compared graphically and
in tabular form.On the other hand, when time is less than unity, variance
occurs and further differences increase as time increases.
For more definitions and results about the fractional operators, the reader
can referes to [5], [13], [14].

2. Mathematical formulation of the problem

The present study takes into account the in compressible Casson fluid
flow past an infinitely vertical plate in a free convection flow that is un-
steady. Here, the flow range is y > 0, and y is the plate’s coordinate nor-
mal.Primarily, at a time τ = 0, the fluid and the plate are both at rest with a
uniform surface concentration of C∗

∞ and temperature T ∗
∞. The plate begins

to accelerate in its plane at time τ > 0 according to a velocity Aτ , where
unvarying A represents the plate’s acceleration. Both the concentration and
plate temperature are increased simultaneously to T ∗

∞and C∗
∞ respectively,

and then kept constant. The spatial variable y and the time variable t affect
the velocity and temperature.

Following the use of the Boussinesq approximation and unidirectional flow,
the momentum, energy, and concentration equations acquire the following
forms.

ρ∂u∗

∂τ∗ = µ
(
1 + 1

β

)
∂2u∗

∂y∗2 + ρgγ (T∗ − T∗
∞) + ρgβ′ (C∗ − C∗

∞) , (2.1)

ρcp
∂T∗

∂τ∗
= k

∂2T∗

∂y∗2
− ∂q∗r

∂y∗
, (2.2)

∂C∗

∂τ∗
=

1

Sc

∂2C∗

∂y∗2
. (2.3)

Here, β refers Casson parameter, u∗ represent fluid in the y-direction, and
time variable is denoted by τ∗. The fluid temperature near the plate is T ∗,
while T ∗

∞ refers plate’s temperature. ρ denotes fluid density,µ is dynamic
viscosity, Y refers to coefficients of the thermal expansion, q∗r present ra-
diative heat flux, cp is the heat constant pressure, Sc is Schmidt number, k
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denotes thermal conductivity.

C∗ is the concentration of the fluid near the plate, while C∗
∞ refers concen-

tration of the plate associated with initial and boundary conditions:

u∗ (y∗, 0) = 0, u∗ (0, τ∗) = Fτ∗∗;u∗ (∞, τ∗) = 0
T∗ (y∗, 0) = T∗

∞,T∗ (0, τ∗) = T∗
w,T

∗ (∞, τ∗) = T∗
∞

C∗ (y∗, 0) = C∗
∞,C∗ (0, τ∗) = C∗

w,C
∗ (∞, τ∗) = C∗

∞

 (2.4)

q∗r is the radiative heat flux in equation (2.2). When q∗r is differentiated in
terms of y using Rosseland’s approximation [2],[10],[27],[28], equation (2.2)
becomes:

ρcp
∂T ∗

∂τ∗
= k

∂2T ∗

∂y∗2
−
(
−16σT ∗

∞
3

3k∗

)
∂2T ∗

∂y∗2
. (2.5)

3. Problem Solution

The fundamental dimensional equations (2.1), (2.3), and (2.5) are changed
into dimensionless equations. The solutions are then derived by employing
the Laplace transform approach.
By employing appropriate dimensionless variables,

u =
u∗

(ϑA)
1
3

, t =
τ∗(A)

2
3

(ϑ)
1
3

, y =
y∗(A)

1
3

(ϑ)
2
3

,T =
T∗ − T∗

∞
T∗
w − T∗

∞
andC =

C∗ − C∗
∞

C∗
w − C∗

∞
.

(3.1)
The governing momentum (2.1), concentration (2.3) and energy (2.5) equa-
tions in the dimensionless form in view of (3.1) are

∂u

∂t
=

(
1 +

1

β

)
∂2u

∂y2
+GrT +GmC, (3.2)

Sc
∂C

∂t
=

∂2C

∂y2
, (3.3)

∂T

∂t
=

(
1 + N

Pr

)
∂2T

∂y2
. (3.4)

Also the boundary conditions (2.4) takes the form

u (y, 0) = 0, u (0, τ) = t; u (∞, τ) = 0
T (y, 0) = 0,T (0, τ) = 1,T (∞, τ) = 0
C (y, 0) = 0,C (0, τ) = 1,C (∞, τ) = 0.

 (3.5)

Next, equations (3.2), (3.3), and (3.4) are defined in terms of Caputo frac-
tional derivatives as:

Dα
t u =

(
1 +

1

β

)
∂2u

∂y2
+GrT +GmC, (3.6)

260

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Sapna Tyagi et al 256-269



6

ScD
α
t C =

∂2C

∂y2
, (3.7)(

Pr

1 + N

)
Dα

t T =
∂2T

∂y2
, (3.8)

where D denotes the differential operator, the fractional operator is α,
whereas Gr, N, Pr and Gm are the thermal Grashof number, radiation and
Prandtl number and mass Grashof number respectively.

4. Laplace Transform Technique

Unsteady differential equations are frequently solved using the Laplace trans-
form, an integral transform technique. The second order differential equa-
tions for the partial differential equations (3.2), (3.3), and (3.4)are generated
on using the Laplace transform technique.(

1 +
1

β

)
d2ū

dy2
− sαū (y, s) + GrT̄ +GmC̄ = 0, (4.1)

d2C̄

dy2
− sαScC̄ (y, s) = 0, (4.2)

d2T̄

dy2
−
(

Pr

1 + N

)
sαT̄ (y, s) = 0. (4.3)

Eq. (4.1), (4.2) and (4.3) are then solved by using the undetermined coeffi-
cient method and the solutions are presented as

ū (y, s) =
1

s2
e
−y

√
sα

z +
Gr0
sα+1

e
−y

√
sα

z +
Gm0

sα+1
e
−y

√
sα

z − Gr0
sα+1

e−y
√
asα−Gm0

sα+1
e−y

√
Scsα ,

(4.4)

T̄ (y, s) =
1

s
e−y

√
asα , (4.5)

C̄ (y, s) =
1

s
e−y

√
Scsα , (4.6)

where z =
(
1 + 1

β

)
, a =

(
Pr

1+N

)
,Gr0 = Gr

(az−1) andGm0 = Gm
(Scz−1) . The final

solution to the problem is provided by taking inverse Laplace of equations
(4.4), (4.5), and (4.6).

u (y, t) = tφ
(
2,−α

2 ;−y
√

sα

z t
−α

2

)
+ Gr0

Γ(α)t
α−1φ

(
1,−α

2 ;−y
√

sα

z t
−α

2

)
+Gm0

Γ(α) t
α−1φ

(
1,−α

2 ;−y
√

sα

z t
−α

2

)
− Gr0

Γ(α)t
α−1φ

(
1,−α

2 ;−y
√
at−

α
2

)
−Gm0

Γ(α) t
α−1φ

(
1,−α

2 ;−y
√
Sct

−α
2

)
,

(4.7)
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C (y, t) = φ
(
1,−α

2
;−y

√
Sct

−α
2

)
, (4.8)

T (y, t) = φ
(
1,−α

2
;−y

√
at−

α
2

)
, (4.9)

where φ (a,−ϱ; ζ) =
∞∑
n=0

(ζ)n

n!Γ(a−nϱ) is the Wright function.

Equations (4.7)–(4.9) are bounded by boundary conditions as in (3.5).

5. Result and Discussion

For the free convection flow of a generalised fractional Casson fluid over an
accelerating plate, equations (4.4), (4.5), and (4.6) show the closed form.
The graphs are generated with varied values of embedded parameters to
study how different parameters affect the profiles of velocity, concentration,
and temperature. The purpose of the graphs 1-3 is to investigate the impact
of the fractional parameter, Prandtl number Pr, and N radiation on temper-
ature profiles with different values.Figures 4–7 display the velocity profile
graphs, which were plotted with various fractional parameters, Casson fluid
parameters, mass Grashoff number Gm, and time t. In the meantime, Figure
8 shows validation of current solutions.

The Prandtl number’s impact on the temperature distribution is shown in
Figure 1. The graph shows that as the value of Pr rises, the temperature
profile rapidly falls. The thermal and momentum diffusivity relationship is
defined by Prandtl number. Further, the thermal boundary layer thickness
is more than the thickness of the momentum boundary layer when Pr ,
the Prandtl number is small because the fluid travels more slowly than
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heat transfer. Therefore, for higher Pr fluids, heat can flow from the sheet
more quickly. However, a bigger Prandtl number might result in a thinner
thermal boundary layer, which would then result in a weaker thermal force
for transport and a lower temperature profile.

Figure 2 displays the temperature profile of thermal radiation for constant
values of Pr and t and various values of N. It is evident that a rise in tem-
perature causes a rise in thermal radiation. The fluid temperature rises as a
result of the growing radiation parameter’s rising temperatures absorption.
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Figure 3 illustrates the effect of fractional parameters on temperature. As
shown in the figure, the temperature increases monotonically as falls. The
outcome here can be helpful for a few real-world issues. By using the com-
puted theoretical results and a suitable fractional mathematical model, the
expected outcome and the range for an experimental design are assessed.
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The impact of the Grashoff number Gm on the velocity profile is depicted
in Figure 4. It is possible to claim that when the value of Gm has been
increased, the velocity value also goes up gradually.

Figure 5 effects of time and alpha toward the velocity. The velocity increases
dramatically in figure 5.
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The impact of time t on velocity profiles is shown in Figure 6. The velocity
declines but at a different rate as the value of t rises. The velocity decreases
sharply in Figure 6. This tendency can be explained by the graphs’ trend
which indicates that as t increases, the energy produced by the fluid flow
will eventually fall as well.

The impact of the velocity profile by the Casson parameter is depicted in
Figure 7. The velocity initially suffers a falling tendency before progressively
increasing.
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Schmidt number S’s impact on the concentration profile may be seen in
Figure 8.The value of concentration decrease progressively as the value rise
up.

Figure 9 shows the effect of t and alpha on the concentration profile. As the
value of t and alpha increases, the value of concentration raised steadily.

6. Conclusion

An accelerating plate’s free convection flow of fractional order Casson fluid
flow has been investigated in the present study. The solutions for velocity
and temperature were obtained using the Laplace transform approach.The
impact of several parameters on fluid flow, including the Casson fluid pa-
rameter, fractional parameter, time, Schmidt number (S), thermal radiation
(N), and Prandtl number, is explored. Additionally, it is considered that
the obtained results are reliable and provide a new points of view on Casson
fluid flow.
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