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Abstract

Any arriving customer who arrives and finds that the server is free, enters the
service station and the remaining customers connect into the orbit. When the
normal busy server is running, the system may at any time become defective
due to a disaster. All users are forced to quit the system due to a disaster,
which also brings about the failure of the main server. When a primary server
breaks, it is shipped out for repair, and the repair process starts instantly. The
server stops running as soon as the orbit is empty at a typical service finish
instant. During the working breakdown or working vacation, the replacement
server offers arriving customers a lower level of service. The arriving customer
receives service instantly if the server is idle. If not, he will choose whether
to leave the system without service or returning to receive service. Using the
supplementary variable technique, we calculate the steady state PGF for system
and orbit sizes. We generate performance measures and particular cases. With
the use of specific numerical examples, we analyse the model.

Keywords: Retrial queue, balking, disaster, working breakdown, working va-
cation.
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1 Introduction

Previously, various authors investigated queueing models with varying service
rates. These models drive almost made the assistance rate subject to the frame-
work’s circumstance, like lines in irregular conditions, lines with breakdown, and
working breakdown. Retrial lines with repeated tasks are distinguished in a re-
trial queueing system by the fact that an arriving customer sees the server busy
upon arrival and is encouraged to leave the support area and join a retry line
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known as orbit. After a specific measure of time has elapsed, the client in orbit
might make another assistance demand. It makes no difference to the other
customers in the orbit if any random customer in the orbit repeats the service
request. Such queues assume a novel part in PC and broadcast communications
frameworks. Rajadurai [8,9], estimated a Non-Markovian retrial queue includ-
ing calamity and working breakdown. Kalidass and Ramanath (2012) pioneered
“The concept of working breakdowns”. If a regular busy server fails due to a dis-
aster at any time, the system ought to be ready with a reinforcement (reserve)
server in the event that the primary server falls flat. It makes no difference to
the other customers in the orbit if any random customer in the orbit repeats the
service request. The main server rejoins the system and becomes operational as
soon as the repair is fulfilled. Furthermore, the operational breakdown service
can reduce customer complaints as the principal server is being repaired, as well
as the cost of customers who are waiting. As a result, a more sensible repair
strategy for problematic queueing framework is the working breakdown service.
Rajadurai et al [10], considered inconsistent queueing frameworks with different
highlights, one of which is that when a server falls flat, it is sent for fix, dur-
ing which time it stops offering support to essential clients until the assistance
channel is fixed, and the client who was simply being served before the server
disappointment trusts that the leftover help will finish.

2  Model Description

In this model the arrival follows Poisson process with rate A and the service
discipline is FIFO. Since there is no waiting area, this is assumed. When a
customer arrives and determines that the server is busy, they are joined to the
orbit. If an orbital customer is permitted access to the server. Laplace-Stieltjes
Transforms (LST) represent inter retrial times as Y*(#) and have an arbitrary
distribution function Y (¢). In normal service period (NS period), service time
have general distribution function S(t), with LST as S*(#). We assume that the
disaster occur only when the main service is in progress and disaster follows a
negative exponential distribution with rate §. When the disaster occurs all cus-
tomers are clear out and the primary server is dispatched for maintenance. The
repair time follows an exponential distribution with parameter 1. The server
gives a lower rate of service follows an arbitrary distribution function S, (t) to
arriving customers during the working breakdown period, with LST as S (6).
The server resumes normal operation after the repair is finished. As soon as the
service is finished and the orbit is empty, the server goes on vacation. The du-
ration of the vacation period is determined by an exponential distribution with
the parameter 6. If there are still users in the system at the time the vacation
ends, the server will begin a new busy period. Otherwise, he awaits the arrival
of a customer. The server gives a lesser rate of service follows an arbitrary
distribution function S, (t) to arriving customers during the working vacation
period, with LST as S} (). A vacation interruption occurred if the server quits
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his vacation to return to the normal busy period after discovering that there
is a customer in the orbit. Working breakdown and working vacation are both
regarded as low service in this situation (LS period). If the server is idle, the
customer arrives and gets served instantly. If not, he will choose whether to
leave the system with probability (1 —r) or joining the orbit with probability r.
Let Y9(t) denotes the elapsed retrial time, S°(¢) denotes the elapsed service
time in NS period , S? (¢) denotes the elapsed service time in LS period .
Let F(t) denotes the size of the orbit at time “¢”. and we use the subsequent
random variable as follows.
Let’s use the subsequent random variables.
F(t)- Size of the orbit at time “¢”.
At time “t” the four distinct states of the server are

0, if the server is idle in LS period

o) = 1, if the server is idle in NS period
~ )2, if the server is busy in LS period

3, if the server is busy in NS period

o generate bivariate Markov Process, {(F(t),O(t));¢t > 0} further supplemen-
tary variables T0(¢), S°(t), and S (¢) are introduced. The sequence of periods at
which a NS or LS periods completion occurs is {t,,,m = 1,2, 3, ...}. The Markov
chain that is formed by the random vector sequences Z,,, = {F (t;,+), O(tm+)}
is incorporated into the retrial queueing system. The concerned embedded
Markov chain is ergodic if and only if p < YT*(X)[ See Sennott et al.,[12]] where
p= %(1 — S8*(9)) pretaining to our model.

Following are the limiting probabilities

Qo1 = Jim P{O() =1, F(t) =0},
sz = lim P{O(1) =0, F(t) =0},
To(z) = lim P{O(t) =1, F(t) =m, = < TO(t) <  + dx},
x>0 m>1
Qmalz) = lim P{O(t) =3, F(t) =m, = < SO(t) < x + dx};
x>0, m>0,
Qma(r) = lim P{O(t) =2, F(t) =m, v < SO (t) < x4 da};

x>0, m>0.

246 P. Manoharan 244-255



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Following are the probability generating function

Y(z,2) = i Yo (2)2™; T(z,0) = i 1., (0)2™;
m=1 m=1
T*(0) _/000 efazr(:r)dx; Q4 (z,2) = i Q1 (x)2™;
m=0
01(z,0) = i;()Qm,l(O)zm; S*(0) _/000 e*%u(x)dm;
Da(z,2) = i Qp2(2)2™; Q2(2,0) = i Qn2(0)2™;
m=0 m=0

S (9) :/ e 9% 1 () dux;
0

We are using the following hazard rate functions. Let r(x) denotes the condi-
tional retrial completion rate of Y (x)

dY(x)
and T(.l?)dl‘ = m
Let p(x) denotes the conditional normal service completion rate of S(x)
dS(z)
d de = ——.
and p(x)dx = S(2)
Let pu,(x) denotes the conditional lower service completion rate of Sy, ()
dS,(x)
d p(z)de = ————.
and p, (z)dz T

The system was demonstrated in steady state by the following differential dif-
ference equations:

)\9071 = (9 + 77)9072, (1)

Ao+ = [ On@p@is+ [ s
—|—5/ Q1 (z)dz,m >0, (2)

0

Tnls) (@) a)m > 1, ®)
659(27;(@ = —(A 0+ p(@)41@) + A1 =) (z),m =0 (4)

dQZi’;(m) = —(A4+0+ p@)n1(@) + A1 —7)Qn1(2)
FArQp_11(x),m > 1, (5)

4
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BT (0t 4 04 ) 02(0) + AL = 1)02(2),m =0, (6)
B2 (4 04 @) 2(0) + A0~ ) 0)
—|—)\7"Qm_172(x),m Z 1. (7)
At z =0,
T,.(0) = /0 " Qs () a() i + /0 " Q2 (@)1 (@), > 1, (8)
Qo,l(O) = /OOO T1(.Z')’I"($)d$ + (9 + 77) /OOO Qo,g(a)‘)d.’ﬂ + )\Q()’l, m = O7 (9)
Dn1(0) = /000 Y1 (@)r(z)dx + (0 +n) /000 Qp2(z)da

+)\/ Yo (x)dz, m > 1, (10)
0

)\9072, m = 0,

11
0, m>1, (11)

Qm,2 (0) = {

The normalizing condition is

1 = Qo1+ Q2+ Z [/ Qm’l(l')dl‘—i-/ Qm,g(w)dm
0 0

m=0

+§:1 /OOO T, (2)de

Multiply the equations (2) - (8) by the proper powers of z

% +A+r@)Y(zz) = 0 (12)
%ﬁﬁﬂ) + A1 =72) = A1 —7) + 0+ p(@)(z2) = 0 (13)

T(z,0) = /000 Q4 (2, z)p(x)dx + /OO Qo (z, ) ooy (z)dx

0
—/ Qoyl(x)u(x)d:v—/ Qo.2(x) ooy (z)dx (15)
0 0

Using the equation (2) in equation (15), we get

T(z,0) = /000 O (2, z)p(x)dx + /000 Qo (2, ) o (z)dz + 6/000 Q1 (2, x)dx

—(A+ 0+, (16)
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Multiply the equations (10) — (11) by the proper powers of z

Q1(2,0) = % /000 Y (z,z)r(x)de + A /000 Y(z,z)dz + A1
++6) [ Oalealda a7)
92(270) == )\9072 (18)

Solving the first order linear differential equations (13), (14), (15) which yields,

Y(z,z) = Y(z,0)[1—"T(z)e (19)
Q(zz) = W(=0)[1— S(a)ePO" (20)
Da(z,2) = Qa(z,0)[1 — Sw(x)}e*B“’(Z)z (21)

where B(z) = (AMr(1 —2)+9) , By(z) = (Ar(l —2)+60+1n).
Substituting the equations (19) and (21)in equation (17), we get
T(2,0) [ .
00 = WT(M+zﬂ—T(Mﬂ+AQM+AQMU@)(M)

z

(n+6)(1 = S, (Bw(2))
By (2) '
Substituting the equations (20) and (21) in equation (16), we get

where, U(z) =

T(z,0) = (2 0)[S7(B(2)) +5(2)] + Qa(2,0)55(B(2)) — (A + 0 +n)Qo,».
(23)
o(1 — 5*(B(2)))

S+ Ar(l—=2)
Using equations (18) and (22) in equation (23) and get

where S(z)

(,0) DQO(Q) {1040+ MUR)IS"(B() + S(2)] + A(Ss(Bu(2) = 1)
~(0+m)}, (24)
Substituting the equation (24) in equation (22), we get
(2,0) ijfz) {ASLBu () = 1) = O+ T (V) + 2(1 = T (V)
+2[0+ 1+ AU () } (25)

where Drq(z) = z — [S*(B(z)) + S(2)][T*(A) + (1 — T*(A))]. Using the equa-
tions (24), (25) and (18) in equations (19), (20) and (21), then the limiting
PGF’s are Y(z,z), Q1(z,z), and Qa(z, z).
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3 Steady state results

If p < T*(A\), The PGF’s are listed below.
(i) The amount of orbiting customers as the server is not being utilized

1) = S {020 + 0+ n)ls* (B:) + S(2)
FA(SL (Bul2) — 1) = (6 + )] } (26)

(ii) The amount of orbiting customers as the server is regularly busy

%) = G {20 lOUG) + 64 )z + LB - )
O+l + 20T )] (27)

(iii) PGF is used to determine the total number of users in orbit (Cs(z)).

Cs(z) = Qo1+ Qo2+ T(2) + 2(2(2) + Qa2(2)),
Ci(z) = sz’&> {B()(= = (5"(B()) + ST (V) + 2(1 = T*(1)))

(M) (<U< )+ 50+ m)(S"(B(:) + 5(2))
HS5(Bul2) = 1) = (64 0) 20 = T ) B(:) + (1~ §°(B(=)
x((AU(2) + 0+ m)z + (A (Bu(2)) = 1) = (0 +m)(T*()
+2(1 =T (V))) 2 + B(2) (2 = (87(B(2)) + S()(T* (V)

21— T*(A)))) ?;Z(n))}

(iv) PGF is used to determine the total number of users in orbit (C,(z)).

Co(z) = Qo1+ Qo2+ T(2)+ Q(z)+ Qa(z2),
Cole) = s {B) (== (5" (BE) + SEIT W) +20 =T ()

(ML) 4 (W) + 50+ M) (BE) +5(:))
HSL(Bu(z) = 1) = £(0+m) 20~ T OW)B() + (1~ 5 (B(2))
x((AU(=) + 0+ m)z + (A (Bu(2)) = 1) = (0 +m)(C*()
+2(1= T () + B(2) (= = (S"(B(2) + S()(T* (V)

+2(1-1"(1)) (Ae[i(f?)) 3 (28)
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(v) The amount of orbiting customers as the server is lower speed service

/\QOQU(Z)

2(2) 0+n

Using normalizing condition , we find Qg1 , 0,2 by putting z =1 and

we apply L’s hospital rule,
Qo1+ Qo2+ T(1) + (1) + Q2(1)

()

=1,

AT

L (1-50))

Qoo =
T (A)(
A
7T*
*5

x (1 — S*(5))

N -
Ar

)
xT*(A)(1—7r)

()

Sw(0+n)(1—5%(5))

b2

A1
0+n
n+6

)

n+06
— 41
h +

r)(1 —S*(9)) +

)+ (1= 5u(

(A

- <5,

o TS

AT .
- 50)

0 +mn))
(1—7)
(0 +n)

(0 +n)

Qo1 =
T (A)(

AT

4]

n+0

Sw(0+n)(1—5%(5)) +

el

n+0 Ar
0+n
n+0

+1) +

A
()
A

x(1—S5%(0)) + ST*(A)(I —r)(1—5%(3))

A (1 n(- S

Ags
—gSw

0+
(6 +n)Y" ()

4 System Performance Measures

(1 =550 +m)

(1—r)

(0 +n)

(1—r)

(29)

When the server is not being utilized,the steady state probability is T(1)

(1= 550+ ) (1= 5°(6) + o]
(1= ()00, o
()1 - 570)
T = Ar
() - 31 - 5°0)
8

251

(32)
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When the server is busy, let (1) be the steady state probability.

(1 +0)T*(A) =TT (NS, (0 +n) — 1))

1—.5%(6)), A2
(1- 52 sy
(1) = - (33)
o[T*(A) = (1= 57(5)]
When the server is providing slower service, let 25(1) be the steady state prob-
ability.
Ao 2(1—S%(0 +
oy — A%nall=S(0+0) 51

0+mn

The busy cycle and busy period’s expected durations are E(T}) and E(T.). Then

1 1
Bm) = 3 901‘1]’
1
BT = M1
1

where the duration of the system’s empty state is indicated by the time Tj.

[ v s )+ A sie )

FED e )1 - ) (1= 8°(6)) - 5000 + )
x(1—58%(9)) + ﬁ'f*()\)(l —r)(1—-S;(0+mn)

FAT (- 1) (1L §%(6)) ~ $S50+ )T A1)
E(T) = £ = L (3)
(O + )T () = 3 (1 5°(5)]

_ TV + 1)+ (1 Si6 -+ )|
F 0 (- 1)1 - 57 6) — 50+ )
x(1—=8%(9)) + WAHT*(A)(I —r)(1—S;(0+mn)
FAT (1) (1 §%(6)) ~ S50+ )T N1 7)
B(T,) = - = L (36)
O+ )T ()~ (1~ 5(3)]
9
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5 Particular Cases

Case(i) Assuming that r = 1 then our model reduces to a non Markovian retrial
queue with single working vacation, vacation interruption, disaster and working
breakdown.

Case(ii) Assuming that if there is no disaster, then our model reduces to a non
Markovian retrial queue with Balking, single working vacation and vacation
interruption.

Case(iii) Assuming that if there is no disaster, r = 1, and no vacation, then
our model reduces to a non Markovian retrial queue.

6 Numerical results

In Figure 1 displays the appropriate line graphs and Table 1 contains the values
of E(T}) by fixing the values of u =4, p,, =2, A =3, 0 = 6, and r = 0.5 subject
to stability conditions and extending the value of n from 1 to 2 increased with
0.2 and 0 from the graph suggests that F(7}) decreases as 1 increases as would
be predicted.

n =2 | 0=41| 6=6
1.0 | 8.0714 | 5.1388 | 4.1767
1.2 | 6.3738 | 3.9925 | 3.2156
1.4 | 5.3334 | 3.2963 | 2.6343
1.6 | 4.6285 | 2.8277 | 2.2444
1.8 | 4.1185 | 2.4905 | 1.9645
10 12 14 16 18 20 2.0 | 3.7321 | 2.2361 | 1.7537

. i Table 1: E(T},) with turn over of 7

Figure 1: E(T}) with turn over of 7
In Figure 2 displays the appropriate line graphs and Table 2 contains the values
of E(T}) subject to stability conditions, by fixing the values of u = 2, p,, = 1,
A=4,0 =4, and r = 0.2, and extending the values of § from 1 to 2 increased-
with 0.2 and 7. The graph suggests that F(7},) decreases as expected when

increases.
o
7t 0 | m=2 | n=4|n=6
o 1.0 | 8.0714 | 5.1388 | 4.1767
3 st 1.2 | 6.3738 | 3.9925 | 3.2156
T 1.4 | 5.3334 | 3.2963 | 2.6343
af 1.6 | 4.6285 | 2.8277 | 2.2444
of ] 1.8 | 4.1185 | 2.4905 | 1.9645
TR 2.0 | 3.7321 | 2.2361 | 1.7537

Table 2: E(T}) with turn over of &
Figure 2: E(T}) with turn over of ¢

10
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In Figure 3 displays the appropriate line graphs and Table 3 contains the values
of E(Tp) by fixing the values of p = 3, pyy =2, A =3, 60 =1, and r = 04,
subject to stability conditions, and extending the values of § from 1 to 2 incre-
mented with 0.2 and 7. From the graph, it can be deduced that E(T,) decreases
as expected when 0 increases.

3.0 ‘ ‘ ‘ ‘ q
\ 5 | n=2|n=4]n=6
2.5} e 1.0 | 2.8708 | 2.0610 | 1.7847
g =4 1.2 | 2.7911 | 1.9492 | 1.6691
420} =6 1 1.4 | 2.7016 | 1.8505 | 1.5719
1.6 | 2.6137 | 1.7646 | 1.4896
1.5¢ 1 1.8 | 2.5316 | 1.6898 | 1.4194
10 12 14 16 18 20 2.0 | 2.4564 | 1.6245 | 1.3589

s
Figure 3: E(T,) with turn over of 8 Table 3: E(T,) with turn over of ¢
In Figure 4 displays the appropriate line graphs and Table 4 contains the values
of E(T}) subject to stability conditions, by fixing the values of u = 3, p, = 2,
A=3,60 =1, and r = 0.4, and extending the values of 1 from 1 to 2 increased
with 0.2 and §. The graph suggests that F(7.) decreases as 7 increases as would
be predicted.

sop A
a5 56 | n 6=4 6=6 6=28
=8 1.0 | 3.5452 | 3.2272 | 3.0440
330 1 1.2 | 3.0212 | 2.7388 | 2.5773
T sl ] 1.4 | 2.6499 | 2.3931 | 2.2472
20 1.6 | 2.3738 | 2.1363 | 2.0022
1.8 | 2.1609 | 1.9385 | 1.8135
10 12 14 16 18 20 2.0 | 1.9920 | 1.7818 | 1.6641

n

. . Table 4: E(T,) with turn over of 7
Figure 4: E(T.) with turn over of n

7 Conclusion

In this paper, non Markovian retrial queue, balking, disaster under working
breakdown and working vacation is analysed. We discovered the PGF for the
total and average number of people in invisible waiting area. We derived some

performance measures and deduced some particular cases and illustrated some
numerical results.

11
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