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In this article, we present M/M/1 retrial queueing system with feedback and
Server breakdown. Arrival follows Poisson process. An arrival finds the system
is full, the arrival enters into an orbit of size infinity. From the orbit the cus-
tomers try their luck. The time between two successive retrials is called retrial
time, it follows negative exponential distribution. Service time is exponentially
distributed. Once the server experiences an unanticipated failure, it should be
repaired and returned to normal functioning. Feedback is when unsatisfied cus-
tomers join the orbit again for a service. Matrix geometric method is engaged
to determined performance measures. Some graphical representations are also
acquired.

AMS subject classification number— 90B22, 60K30 and 60K25
Key Words — Retrial Queue, Arrival Rate, Server Breakdown, Feedback, Matrix
Geometric Method (MGM).

1 Introduction

Queueing model can be found in variety of real-life scenarios. Queueing system with
feedback have several uses in the manufacturing, computing and telecommunications
systems. In queueing theory in which customer arrives who finds the sever and waiting
places are engaged, may retry after an irregular measurement of time is known as retrial
queue. During the period of getting service the server may get sudden breakdown and
send to repair, at that time the customer wait to get complete service. After getting a
service the customer has to decide to leave the system or to continue the service. The
unsatisfied customer goes to the orbit for another service is called feedback. Artalejo
(2012) determined M/M/1 retrial queue with finite population. A survey of retrial
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queues was explored by Falin (1990). M/M/1 retrial queueing system with variable
service rates in priority service was analyzed by Ayyappan Govindan et al (2011).
Neuts (1981) discussed several matrix geometric stochastic model solutions. Praveen
Deora et al (2021) analyzed the cost analysis and optimization of machine repair model
with working vacation and feedback policy.

This model has been investigated by Choi, et al (1998) analyzed multi-server retrial
queue with feedback and loss. Choi and Kulkarni (1992) explored feedback retrial
queueing model. Chuen-Horng Lin and Jau-Chuan Ke (2011) determined multi server
retrial queue with loss and feedback. Retrial queue with server breakdown has been
investigated by Kalyanaraman and Seenivasan (2011) analyzed multi-server retrial
queue with breakdown and geometric loss. Seenivasan et al investigated different type
of queueing models and their characteristics behavior. With the help of that research
criteria we developed the concept using in retrial queueing model.

Following is an overview of the remaining sections of this article. Construction
of our model is presented in section 2. Section 3 includes some numerical examples.
Section 4 describes the system performance measures, as well as the summary follows
in the end part of this article. !

2 Construction of the model

In this article, we concentrated on retrial queue with server breakdown and Feedback.
Arriving customer follows Poisson process with rate A\. Assuming that the server is
free, the incoming customer will be served instantly, and if the server is occupied, he
will joining the orbit. After certain uneven estimations of time, customers from orbit
attempt their luck. In retrial, each customer is viewed as equivalent to a primary
customer. The retrial time is exponentially distributed with rate v. The service time
is exponential distributed with service rate p. Eventually when the server could open
to unforeseen breakdown with rate a and after it ought to be fixed and goes to normal
service with rate ¢. Server will wait unless there is no queue at the ending of the
vacation. A/ssuming that the served customer decide to leaves the framework forever
with rate 8 = (1 — 8) (or) he rejoins the orbit again for another service at a rate 8
(it is called feedback). Our model’s transition diagram is depicted in (Figure. 1).
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Figure 1. Transition Diagram

Let A(t), B(t) : t > 0 be a stochastic process with state space at time t,

A(t) = 0, server is idle,
A(t) = 1, server is working,
A(t) = 2, server gets breakdown.
B(t) indicates no. of customers in the orbit.
Lexicographical series is given by:
Q= (0,00U(1,0)U(4,5);i=0,1,j=1,2,..n > 1
Infinitesimal generated matrix Q:

Koo  Loo R

Noo Moo Loo

0 Noo Moo Loo

Q= 0 <+ Noo Moo
0 .ee ... Noo
Where
—(A) A 0 0 0 0
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0 ¢ A+ o) 0 0 A
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Noo=(0 0 0 |; Moo = B u (At a+p) a ;
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We define m;; = {A = i,B = j}=limy, o Pr{A(t) = 4,B(t) = j}, where j indi-
cates no. of customers in the orbit & i indicates the server state.
From the balance equation I1Q = 0.

moKoo + m1Noo = 0

7o Loo + m1 Moo + m2Noo = 0

71 Loo + m2Moo + m3Noo = 0

A~~~
=W N =
==

i Loo + mit1 Moo + mi42Noo = 0 (5)
And 7; = moR’ forj > 1. (6)
We can assuming that R is a rate matrix.

7o[Koo + RNoo] =0 (7
7o[R*Noo + RMoo + Loo] =0 (8)
The normalizing condition is

o[l -R] 'e=1 (9)

‘e’ is a column vector with all elements equal to 1.
IT partitioned as IT = (IIp, II1, II2) is a static prob. vector of the (reducible) generator
matrix is D = Lo + Moo + Noo.

-A+v) (A+v) 0
D= ( 7 —(pt+a) o > (10)
0 ¥ —¢
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And II could be displayed to be stationary in order that IID = 0 & Ile = 1.

My =14 22 0O+ V) Axvy g 0@+
on p e

The static condition adopts the format actually determined by the drift condition.
IMLgoe < IINgoe. Equation (10) determines D’s static probability. After obtaining rate
matrix R, our probability vectors IIj’s (j > 1) are calculated using Egs. (6) and (9).

3 Numerical Study

By changing the values of the parameter A & fixing all other parameters

Case i
0.3950 0.2226 0.0247)

IfA=0.10,4=20,8= 0.4,6/ =0.6,0=0.30, 9 =0.50, v =0.06 & R = <0.5926 0.1838 0.0370
0.4938 0.1868 0.1975

Table 1. Probability vectors
Hj 04 15 25 Total

mo | 0.2436 | 0.0203 | 0.0361 | 0.3000
w1 | 0.1261 | 0.0647 | 0.0139 | 0.2047
w2 | 0.0950 | 0.0426 | 0.0083 | 0.1459
w3 | 0.0668 | 0.0305 | 0.0056 | 0.1029
my | 0.0472 | 0.0215 | 0.0039 | 0.0726
ms | 0.0333 | 0.0152 | 0.0027 | 0.0512
me | 0.0235 | 0.0107 | 0.0019 | 0.0316
w7 | 0.0166 | 0.0076 | 0.0014 | 0.0256
ms | 0.0117 | 0.0053 | 0.0010 | 0.0180
me | 0.0083 | 0.0038 | 0.0007 | 0.0128
mo | 0.0058 | 0.0027 | 0.0005 | 0.0090
w11 | 0.0041 | 0.0012 | 0.0003 | 0.0063
w12 | 0.0029 | 0.0008 | 0.0002 | 0.0044
w13 | 0.0020 | 0.0006 | 0.0002 | 0.0031
m14 | 0.0014 | 0.0004 | 0.0001 | 0.0022
w15 | 0.0010 | 0.0003 | 0.0001 | 0.0016
w6 | 0.0007 | 0.0002 | 0.0001 | 0.0011
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mi7 0.0005 | 0.0001 | 0.0000 | 0.0007
T8 0.0004 | 0.0001 | 0.0000 | 0.0006
T19 0.0003 | 0.0001 | 0.0000 | 0.0004
20 0.0002 | 0.0001 | 0.0000 | 0.0003
Total 0.9999

The prob. vectors in table 1 were calculated by using the matrix R in Equation (7)
and Equation (9), we get the vector IIp = (0.2436 0.0203 0.0361). Utilizing Iy in
Equation (6), the rest of the vectors are obtained. Hence the sum of the probability

is affirmed to be 0.9999 ~ 1.

Case ii

IfA=0.15p=20,8=04,8 =0.6,a=0.30,¢=0.50,v=0.05& R = (

Table 2. Probability vectors

228

11, T T4 T Total
mo | 0.1364 | 0.0171 | 0.0338 | 0.1873
m | 0.0882 | 0.0473 | 0.0154 | 0.1509
m2 | 0.0760 | 0.0375 | 0.0101 | 0.1236
m3 | 0.0621 | 0.0309 | 0.0077 | 0.1006
m4 | 0.0505 | 0.0251 | 0.0062 | 0.0818
ms | 0.0411 | 0.0204 | 0.0050 | 0.0665
me | 0.0334 | 0.0166 | 0.0040 | 0.0540
m7 | 0.0272 | 0.0135 | 0.0033 | 0.0440
mg | 0.0221 | 0.0110 | 0.0027 | 0.0358
m9 | 0.0179 | 0.0089 | 0.0022 | 0.0290
w10 | 0.0146 | 0.0073 | 0.0018 | 0.0237
m11 | 0.0119 | 0.0059 | 0.0014 | 0.0192
w12 | 0.0096 | 0.0048 | 0.0012 | 0.0156
w13 | 0.0078 | 0.0039 | 0.0009 | 0.0126
m14 | 0.0064 | 0.0032 | 0.0008 | 0.0104
ms5 | 0.0052 | 0.0026 | 0.0006 | 0.0084
w6 | 0.0042 | 0.0021 | 0.0005 | 0.0068
w17 | 0.0034 | 0.0017 | 0.0004 | 0.0055
m1g | 0.0028 | 0.0014 | 0.0003 | 0.0045
)

0.6064 0.2264 0.0525

0.4548 0.2665 0.0394>
0.4665 0.2100 0.2711
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T19 0.0023 | 0.0011 | 0.0003 | 0.0037
T20 0.0018 | 0.0009 | 0.0002 | 0.0029
m21 0.0015 | 0.0007 | 0.0002 | 0.0024
T22 0.0012 | 0.0006 | 0.0001 | 0.0019
23 0.0010 | 0.0005 | 0.0001 | 0.0021
T24 0.0008 | 0.0004 | 0.0001 | 0.0013
T25 0.0007 | 0.0003 | 0.0001 | 0.0011
26 0.0005 | 0.0003 | 0.0001 | 0.0009
To7 0.0004 | 0.0002 | 0.0001 | 0.0007
Tag 0.0004 | 0.0002 | 0.0000 | 0.0006
29 0.0003 | 0.0001 | 0.0000 | 0.0004
T30 0.0002 | 0.0001 | 0.0000 | 0.0003
Total 0.9998

The prob. vectors in table 2 were calculated by using the matrix R in Equation (7)
and Equation (9), we get the vector Il = (0.1364 0.0171 0.0338). Utilizing Il in
Equation (6), the rest of the vectors are obtained. Hence the sum of the probability

is affirmed to be 0.9998 ~ 1.

Case iii

IfA=0.20, 4 =2.0,8=04,8 =0.6,a=0.30,¢=0.50,r=0.05& R = (

Table 3. Probability vectors

11, o T4 T Total
mo | 0.0849 | 0.0142 | 0.0305 | 0.1296
m | 0.0627 | 0.0348 | 0.0154 | 0.1129
m2 | 0.0579 | 0.0303 | 0.0106 | 0.0988
m3 | 0.0508 | 0.0268 | 0.0085 | 0.0861
my | 0.0443 | 0.0233 | 0.0072 | 0.0748
ms | 0.0386 | 0.0203 | 0.0062 | 0.0651
me | 0.0335 | 0.0177 | 0.0054 | 0.0566
m7 | 0.0292 | 0.0154 | 0.0047 | 0.0493
mg | 0.0253 | 0.0133 | 0.0040 | 0.0416
m9 | 0.0220 | 0.0116 | 0.0035 | 0.0371
w10 | 0.0192 | 0.0101 | 0.0031 | 0.0324
m11 | 0.0166 | 0.0088 | 0.0027 | 0.0281
w2 | 0.0145 | 0.0076 | 0.0023 | 0.0244

6
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0.6034 0.2543 0.0647

0.4827 0.2894 0.0517>
0.4310 0.2160 0.3319
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T3 0.0126 | 0.0066 | 0.0020 | 0.0212
T14 0.0109 | 0.0058 | 0.0017 | 0.0184
T15 0.0095 | 0.0050 | 0.0015 | 0.0160
T16 0.0083 | 0.0044 | 0.0013 | 0.0140
mi7 0.0072 | 0.0038 | 0.0011 | 0.0121
T8 0.0062 | 0.0033 | 0.0010 | 0.0105
T19 0.0054 | 0.0029 | 0.0009 | 0.0092
T20 0.0047 | 0.0025 | 0.0008 | 0.0080
T21 0.0041 | 0.0022 | 0.0007 | 0.0070
T22 0.0036 | 0.0019 | 0.0006 | 0.0061
23 0.0031 | 0.0016 | 0.0005 | 0.0052
24 0.0027 | 0.0014 | 0.0004 | 0.0045
25 0.0023 | 0.0012 | 0.0004 | 0.0039
T26 0.0020 | 0.0011 | 0.0003 | 0.0034
o7 0.0018 | 0.0009 | 0.0003 | 0.0030
Tog 0.0015 | 0.0008 | 0.0002 | 0.0025
29 0.0013 | 0.0007 | 0.0002 | 0.0022
T30 0.0012 | 0.0006 | 0.0002 | 0.0020
T31 0.0010 | 0.0005 | 0.0002 | 0.0017
T32 0.0009 | 0.0005 | 0.0001 | 0.0015
T33 0.0008 | 0.0004 | 0.0001 | 0.0013
T34 0.0007 | 0.0003 | 0.0001 | 0.0011
T35 0.0006 | 0.0003 | 0.0001 | 0.0010
36 0.0005 | 0.0003 | 0.0001 | 0.0009
37 0.0004 | 0.0002 | 0.0001 | 0.0007
38 0.0003 | 0.0002 | 0.0001 | 0.0006
T39 0.0003 | 0.0002 | 0.0000 | 0.0005
T40 0.0002 | 0.0001 | 0.0000 | 0.0003
Total 0.9980

The prob. vectors in table 3 were calculated by using the matrix R in Equation (7)
and Equation (9), we get the vector Il = (0.0849 0.0142 0.0305). Utilizing Il in
Equation (6), the rest of the vectors are obtained. Hence the sum of the probability

is affirmed to be 0.9980 ~ 1.

Case iv

IfA=0.25, 1 =208=0.48 =06, a=030,¢=0.50,r=005&R = (
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0.5926 0.2768 0.0741

0.4938 0.3055 0.0617)
0.3950 0.2161 0.3827
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Table 4. Probability vectors

231

11, T T4 T Total
mo | 0.0570 | 0.0119 | 0.0275 | 0.0964
m | 0.0416 | 0.0267 | 0.0149 | 0.0877
m2 | 0.0444 | 0.0247 | 0.0105 | 0.0796
m3 | 0.0407 | 0.0227 | 0.0086 | 0.0720
my | 0.0369 | 0.0206 | 0.0075 | 0.0650
ms | 0.0334 | 0.0186 | 0.0067 | 0.0587
me | 0.0301 | 0.0168 | 0.0060 | 0.0529
w7 | 0.0272 | 0.0152 | 0.0054 | 0.0478
mg | 0.0245 | 0.0137 | 0.0049 | 0.0431
me | 0.0221 | 0.0123 | 0.0044 | 0.0388
w10 | 0.0200 | 0.0111 | 0.0040 | 0.0351
m11 | 0.0180 | 0.0100 | 0.0036 | 0.0316
w12 | 0.0163 | 0.0091 | 0.0032 | 0.0286
w13 | 0.0147 | 0.0082 | 0.0029 | 0.0258
w14 | 0.0132 | 0.0074 | 0.0026 | 0.0232
ms | 0.0119 | 0.0067 | 0.0024 | 0.0210
w6 | 0.0108 | 0.0060 | 0.0021 | 0.0189
w17 | 0.0097 | 0.0054 | 0.0019 | 0.0170
m1g | 0.0088 | 0.0049 | 0.0017 | 0.0154
w9 | 0.0079 | 0.0044 | 0.0016 | 0.0139
mo | 0.0071 | 0.0040 | 0.0014 | 0.0125
w21 | 0.0064 | 0.0036 | 0.0013 | 0.0113
a2 | 0.0058 | 0.0032 | 0.0012 | 0.0102
m23 | 0.0052 | 0.0029 | 0.0010 | 0.0091
a4 | 0.0047 | 0.0026 | 0.0009 | 0.0082
w5 | 0.0043 | 0.0024 | 0.0008 | 0.0075
w2 | 0.0038 | 0.0021 | 0.0008 | 0.0067
m27 | 0.0035 | 0.0019 | 0.0007 | 0.0061
mag | 0.0033 | 0.0017 | 0.0006 | 0.0054
a9 | 0.0028 | 0.0016 | 0.0006 | 0.0050
w30 | 0.0025 | 0.0014 | 0.0005 | 0.0044
m31 | 0.0023 | 0.0013 | 0.0005 | 0.0041
w32 | 0.0021 | 0.0012 | 0.0004 | 0.0037
8

M.SEENIVASAN 224-235



T3 0.0019 | 0.0010 | 0.0004 | 0.0033
T34 0.0017 | 0.0009 | 0.0003 | 0.0029
T35 0.0015 | 0.0008 | 0.0003 | 0.0026
T36 0.0014 | 0.0008 | 0.0003 | 0.0025
m37 0.0012 | 0.0007 | 0.0002 | 0.0021
T3s 0.0011 | 0.0006 | 0.0002 | 0.0018
39 0.0010 | 0.0006 | 0.0002 | 0.0018
T40 0.0009 | 0.0005 | 0.0002 | 0.0016
Ta1 0.0008 | 0.0005 | 0.0002 | 0.0015
42 0.0007 | 0.0004 | 0.0001 | 0.0012
43 0.0007 | 0.0004 | 0.0001 | 0.0012
T44 0.0006 | 0.0003 | 0.0001 | 0.0010
a5 0.0005 | 0.0003 | 0.0001 | 0.0009
a6 0.0005 | 0.0003 | 0.0001 | 0.0009
Ta7 0.0004 | 0.0002 | 0.0001 | 0.0007
Total 0.9990
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The prob. vectors in table 4 were calculated by using the matrix R in Equation (7)
and Equation (9), we get the vector IIp = (0.0570 0.0119 0.0275). Utilizing Il in
Equation (6), the rest of the vectors are obtained. Hence the sum of the probability

is affirmed to be 0.9990 ~ 1.

4 Performance Measures

The following performance measures were discovered using steady-state probabilities.

e Pr{server is in idle} E(I) =1y

e Pr{server gets breakdown} E(BD) =

Pr{server is on busy period} E(B) =

J

J

232

Mg I8

Jm;

Jma;

=

2
Pr{No customer in the orbit} PNCO = Y mo

=0

(11)

(12)

(13)

Pr{Total no. of customers in the system} E(N) = E(I) + E(B) + E(BD) (14)

(15)

M.SEENIVASAN 224-235



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Table 5. Performance Measures

A 0.1 0.15 0.2 0.25
E) 0.6917 | 0.6327 | 0.5954 | 0.5660
E(B) | 0.7077 | 1.3304 | 2.0656 | 3.6330

E(BD) | 0.1297 | 0.3255 | 0.6596 | 1.0317
E(N) | 2.3764 | 4.3319 | 6.6537 | 9.8917
PNCO | 0.3000 | 0.1873 | 0.1296 | 0.0964

E(1)

A

Figure 2. Arrival rate versus E(I)

E(B)

Figure 3. Arrival rate versus E(B)

E(BD)

Figure 4. Arrival rate versus E(BD)
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E(N)

A

Figure 5. Arrival rate versus E(N)

ENCO

A

Figure 6. Arrival rate versus PNCO

The values of arrival rate have been varied from 0.1 to 2.5 As the arrival increases,
Prob. that server is on idle and Prob. that orbit has no customer are decreases(refer
Fig. 2 & Fig. 6). Similarly, if arrival rate increases, then Prob. that server is on
busy period, Prob. that server gets breakdown and Prob. that total customers in the
system are gradually increases (refer Fig. 3, Fig. 4 & Fig. 5).

5 Summary

This article focused on M/M/1 retrial queue with breakdown & feedback by utilizing
Matrix geometric method. Using this type of model we can able to manage the time
during the server breakdown and customer who is not satisfied are also able to get
a servers again without any issues. By this producing this method the steady state
probability vectors are obtained. From that some system performance measures are
also determined with graphical representations.

References

[1] Artalejo. J. R. Lopez-Herrero M. J., The single server retrial queue with finite
population, A BSDE approach, (2012).

[2] Ayyappan Govindan Muthu Ganapathy Subramanian and Gopal Sekar, Single
Server Retrial Queueing System with Variable Service Rates in Priority Service

11

234 M.SEENIVASAN 224-235



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO. 2, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

by Matrix Geometric Method, International Journal of Applied Mathematics &
Computation, vol.3, pp. 216-231, (2011).

[3] Choi. B. D. Kim. Y. C. and Lee. Y. W., The M/M/c retrial queue with Geometric
loss and Feedback, Computers Math. Applic. vol.36, pp. 41-52, (1998).

[4] Choi. B. D. Kulkarni. V. G., Feedback retrial queueing system, Stochastic Model
Relat. Fields, pp. 93-105, (1992).

[5] Chuen-Horng Lin Jau-Chuan Ke., On the multiserver retrial queue with geometric
loss and feedback, computational algorithm and parameter optimization, Interna-
tional Journal of Computer Mathematics, vol.88, pp. 1083-1101,(2011).

[6] Falin. G.I., A survey of retrial queues, Queueing Syst.,7, pp. 127-168, (1990).

[7] Kalyanaraman. R. Seenivasan. M., A multi Server Retrial Queue with Breakdown
and Geometric loss, International Journal of Computational Cognition, vol. 9, pp.
44 - 48, (2011).

[8] Neuts, M.F., Markov chains with applications queueing theory, which have a ma-
trix geometric invariant probability vector, Adv Appl Prob, Vol. 10, pp. 185-212,
(1978).

[9] Neuts. M.F., Matrix-Geometric solutions in stochastic models, vol. 2 of johnsHop-
kins’s series in the mathematical series, Johns HopkinsUniversity Press, Baltimore,

USA, (1981).

[10] Praveen Deora, Umesh Kumari, and DC Sharma, Cost analysis and optimization
of machine repair model with working vacation and feedback policy, International
Journal of Applied Computational Mathematics, Vol. 6, pp. 1-14, (2021).

[11] Praveen Kumar Agrawal, Anamika Jain, and Madhu Jain, M/M/1 queueing
model with working vacation and two type of server breakdown, Phys Conf Ser,
Vol. 1849, (2021).

[12] Seenivasan, M., Senthilkumar, R., Subasri K S., “M/M/2 Heterogeneous Queue-
ing System Having Unreliable Server with Catastrophes and Restoration”, Mate-
rials Today: Proceedings Vol. 51(8) Pp. 2332 — 2338, 2021.

[13] Seenivasan, M., Chakravarthy, V J., Abinaya, R., “Markovian Queueing Model
with Server Breakdown, Single Working Vacation and Catastrophe”, Springer Book
Series, vol-881, Pp. 409-421, 2022.

[14] Seenivasan, M., and Shiny Epciya, J. “M/M/1 queue Server Breakdown, Single
Working Vacation, Feedback and State Dependent Customer”, IEEE Xplore, Pp.
1-5, 2022.

[15] Seenivasan, M., and Chandiraleka. S. “Single Server Queueing Model with Mul-
tiple Working Vacation and with Server Breakdown”, IEEE Xplore, Pp. 1-5, 2022.

12

235 M.SEENIVASAN 224-235



