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ABSTRACT 
Sustainability is essential to current software development in order to guarantee the lifespan and quality 
of software systems. The present study delves into the many aspects of software sustainability, 
emphasizing architectural choices, sustainability measurements, and the use of software in scholarly 
investigations. It presents the idea of "sustainability debt," which results from poor design decisions and 
lowers the calibre of software. The significance of gathering and organizing architectural knowledge (AK) 
is covered in the article as a means of reducing this debt and enhancing decision-making. The paper 
discusses metrics for code complexity and maintainability as well as architectural metrics for modularity 
and design smells that are used to assess software sustainability at various abstraction levels. It also looks 
at new architectural knowledge measures that evaluate how long-lasting design choices are and how they 
affect the development of software. The study also emphasizes the importance of software in research 
and the problems associated with a lack of recognition and training in this area. It examines programs like 
the Software Sustainability Institute's Open Call for Projects and its endeavours to advance software 
practices and talent development. To sum up, attaining software sustainability requires a thorough 
strategy that incorporates strategic architectural choices, efficient use of metrics, and continuous 
enhancements in software processes. The study urges ongoing efforts to tackle these issues in order to 
maintain software systems' dependability and support long-term objectives for research and 
development. 
 
Keywords: Software Sustainability, Architectural Decisions, Technical Debt, Metrics for Sustainability, 
Code Metrics, Architecture Metrics, Software Development in Research, Architectural Knowledge, 
Software Quality, Research Software Engineering 

 
1. INTRODUCTION  
Sustainability is the ability of development to meet existing requirements while also allowing future 
generations to meet their own needs. Within the field of sustainable software engineering, sustainability 
is understood to mean creating software for long-lasting systems that can accommodate the needs of both 
current and future generations while integrating the three pillars of sustainability—environment, 
economy, and society—in order to meet deadlines [1]. 
Sustainability development has been defined by a number of scholars, each with their own interpretation, 
point of view, and definition. [2], for instance, concentrate on how IT alters behaviour that impacts 
society and the environment in a way that is more sustainable. The concepts developed by [2] were 
expanded upon by [3] by adding the aspect of positive and negative influence on sustainable 
development. Next, in order to achieve sustainability, [4] added the components of ethical use of financial, 
human, and ecological resources. Subsequently, [5] added that resource usage can enhance the energy 
efficiency utilized in software product production, leading to sustainability. 
The first study to look at this was [6]. They found that the sustainability of a long-lived software system 
depends on how well its resources are used. Later, in order to determine the qualities that would be 
utilized as indicators to assess the sustainability in software products, [6] take into consideration the 
composite and non-functional requirement that is employed in software quality standard. [5] concur that 
this concept relates to the quality attributes component of the software sustainability assessment. 
Researchers have used all of these concepts to develop their own definitions and interpretations of 
sustainability in software engineering, incorporating the original goal of sustainability to fulfil current 
requirements as well as those of future generations. 
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A. Overview  
The definition of sustainability is "to be a sustainable action" and it emphasizes the idea, scope, and 
methods of sustainability development. The Bruntland Commission introduced sustainability 
development in 1987 with the goal of enhancing everyone's quality of life on Earth by using natural 
resources beyond what the environment can sustain without causing harm. In order to meet the 
requirements of both the sustainability definition, which states that needs must be met for both the 
present and future generations, as well as the necessity of finding creative ways to change institutional 
structures that indirectly affect individual behaviour [7]. This indicates that action must be taken to alter 
practices and policies at all levels, from the individual to the global. Since the 1980s, the notions of 
sustainable development have advanced quickly, with a strong emphasis on the environment, society, and 
economy as the three pillar dimensions. The concept of sustainable development is not new; it has been 
applied to the nation's growth in a number of areas, including manufacturing, building, disaster recovery, 
soil and erosion, ecosystems and biodiversity, and so on. 
Since its inception in early 2010, software engineering has acknowledged sustainability as an important 
concern. The use of software systems started in the new development era, when sustainability ideals 
were first applied to software development [8]. The majority of software processes and products are 
created with the intention of making money, whereas the development of current software systems is 
typically done with no intention of making money. Additionally, software development procedures and 
products prioritize social benefit over environmental considerations. These development trends are some 
of the reasons why software engineering needs sustainable development to solve the issue and 
incorporate all aspects of sustainability as a single, cohesive team [9]. 
 
B. Sustainability in Software Engineering  
Numerous publications in the form of comprehensive literature reviews on various software engineering 
subjects, including the relationship between sustainability and software engineering, can be found in the 
literature. The goal of this study is to present a review of the literature on sustainability in software 
engineering [10]. It includes studies on sustainable development initiatives, limitations in previous 
research, methods and methodologies employed, and case studies that are currently available. The 
inquiry will concentrate on the form of sustainable development that software engineering has created 
since this field's introduction. 
According to the investigation's findings, a number of scholars have developed their own theories on 
sustainable development in software engineering through a variety of contributions, including framework 
models, strategy models, requirements engineering techniques, method models, and goal models. A 
framework for sustainable software engineering was created by [11] and offered as a way to direct the 
creation of sustainable processes and products. A green strategy model was presented by [12] to help 
company strategy decision makers. The researcher offered a more comprehensive perspective on 
software engineering sustainability. Theoretical work by [12], a specialist in the field of corporate 
organization and quantitative goal modelling methodologies, was employed by [13]. [13] employed the 
suggested concepts to manage software engineering's environmental sustainability. 
The requirements engineering methodologies were first suggested by [14] as a means of achieving 
sustainability in software engineering. They offered a blueprint for incorporating sustainability into the 
process of developing software. The concepts started by [14] were most recently carried out by [4] in 
their requirements engineering for sustainable systems. According to the research, requirements 
engineering has a significant impact on future hardware and software systems, thus it is important to 
write requirements carefully in order to guide the development of more sustainable new living systems. 
[4] made a contribution to the other paper about requirements engineering as a means of supporting 
environmental sustainability. The researchers have detailed a set of guidelines about sustainability and 
the environment in their most recent article. These guidelines are intended to facilitate the creation of ICT 
systems by integrating environmental informatics knowledge into an appropriate requirement 
engineering approach. [15], however, have persisted in their attempt to put forth a detailed guideline 
regarding social sustainability in requirements engineering. The concepts put out by the researcher are 
founded on the social effects of software systems, which touch on a wide range of topics that are either 
directly or indirectly related to social sustainability. There aren't any publications that address economic 
sustainability, though. 
The majority of the research' conclusions concentrated on software sustainability creation and 
management. Too few articles, meanwhile, have been contributed to the examination of software 
sustainability. None of them have thoroughly examined the metric evaluation for every feature and sub-
attribute that has been identified for the purpose of measuring the sustainability standard. As a result, the 
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concept of mandating and rationalizing the basis for software sustainability assessment will be examined 
in the upcoming work as part of SLR. 
 
2. Software And Sustainability 
Software sustainability needs to be comprehended before it can be quantified. The term "sustainability" 
in contemporary English describes a system's "ability to endure." The Latin root of the word sustainer 
meant to both survive and uphold, to provide means of support for [something]. This shows that the 
ability to sustain and longevity as a measure of time are important components at the core of 
comprehending sustainability. There is a tight relationship between these two ideas. The term "need," 
which is essential to this definition, refers to both evolution and the acknowledgment of shifting 
stakeholder requirements in the present as well as the future. 
Regarding software, there are at least two different points of view on the subject: software engineering 
for sustainability (SE4S) and sustainable software. Software endurance, also known as technical 
sustainability, is the emphasis of the former, whereas the latter addresses issues external to software 
systems in an effort to promote sustainability in one or more aspects [16]. A five-pronged approach 
including environmental, economic, social, and technological considerations is advocated for in the 
Karlskrona Manifesto. Recognizing software sustainability as a new and important subject, it takes into 
account both viewpoints. These dimensions have the following definitions: 
 The economic dimension is concerned with capital, assets, and added value, which includes revenue, 

capital investment, prosperity, and wealth development.  
 In the environmental dimension, we talk about the long-term effects of human activities on the 

natural world, including things like ecosystems, resources, the weather, trash, pollution, and so on.  
 The term "individual dimension" describes how well people are as persons, which encompasses 

things like mobility, agency, education, independence, self-respect, mental and physical health, and 
so forth.  

 The social component addresses the elements that undermine social trust as well as societal 
communities, which include person groups and organizations. The ideas that are examined here 
include democracy, employment, social justice, and equity.  

 System upkeep, data integrity, and obsolescence are all parts of the technological dimension. 
Included in this concept is the notion of the useful life of data, systems, and infrastructure, as well as 
how these things should adapt to new circumstances. 

However, there are interdependencies among these dimensions, and for a system that is being studied, 
trade-offs may need to be made. Take a car sharing system, for instance, which consists of a fleet of 
shared private vehicles, an application that runs on both the client and server sides, allowing users to 
interact and plan rides, and a server that stores all of the necessary data. With respect to the five factors, 
we can determine the following specifics: 
 Economic: Users can save money by offering rides in their cars or by sharing rides instead of buying 

a car, which can add up to savings for the user community. The sustainability of the service is 
contingent upon its economic viability, meaning that it must generate adequate revenue streams to 
sustain its operations. A software system's development, maintenance, and operations cost-
effectiveness will be impacted by decisions like adopting architectural patterns to prevent technical 
debt and using open-source components.  

 Environmental: Energy is needed by both IT systems and automobiles, which has an effect on the 
environment through pollutants, for example. Additionally, each hardware item has a lifespan that 
requires it to be made, acquired from someplace, maintained, and finally recycled or disposed of. 
Sharing systems frequently result in lower overall resource utilization, which lessens their impact on 
the environment.  

 Individual: Individual users may gain by having access to personal mobility and from having a 
stronger sense of responsibility associated with eco-friendly behaviour. 

 Social: Depending on the system and its workings, a new user community focused on assisting one 
another in selecting less carbon-intensive forms of transportation may emerge, or social ride-sharing 
networks may deteriorate as gradually developing human connections are supplanted by routing 
algorithms.  

 Technical: Over time, both the cars and the connected IT system require maintenance. Longevity of 
the system will depend on a number of aspects, including technical debt, the architecture's capacity 
for evolution, and the lifecycles of supporting technologies. 

Relationships between particular dimensions appear immediately; nevertheless, each of these 
dimensions, as well as the ways in which they intersect, need to be examined in terms of their 
implications for a long-term system vision and the means by which this can be guaranteed [17]. The 
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scientific community is becoming more and more conscious of the need to shift toward a more all-
encompassing understanding of sustainability that takes these various aspects into account. Furthermore, 
the effects of these five aspects on sustainability appear in three orders of influence, which are as follows: 
 Third-order impacts, such improved urban air quality, less problems with downtown parking, etc., 

result from widespread, long-term system usage. The development, production, installation, and use 
of the software and hardware components of the car-sharing system all constitute first-order 
effects.  

 A second-order effect occurs when the system's usage leads to different kinds of behaviour or 
expectations from the first-order system, like users coming together to form communities and 
reduce their individual environmental impacts. Finally, a third-order effect occurs when users form 
communities and reduce their individual environmental impacts. 

Divergent opinions exist within the software engineering community over the definition of sustainability, 
which contributes to its lack of widespread understanding in the profession. A formal definition of 
software sustainability, however, has been proposed in other contributions; this definition focuses on the 
longevity of the software system. As a result, the term has been used to describe a desirable quality of 
software or a first-class non-functional need. One example of a composite non-functional necessity is 
software sustainability, which is defined as "a measure of a system's extensibility, interoperability, 
maintainability, portability, reusability, scalability, and usability," according to [5]. The idea of the 
software system's evolution is directly tied to a number of the metrics. The justification for incorporating 
usability as a sustainability statistic is its direct correlation with perceived utility as viewed by 
stakeholders, which consequently links sustainability to the issue of need. Furthermore, a number of the 
quality criteria indicate the "effort required" to reach a specific result. This implies that sustainability is 
closely related to other quality criteria including cost and energy efficiency, resource utilization over the 
course of the software's lifetime, and alignment with the environmental and economic components of 
sustainability. In the realm of software engineering, a consensus on what sustainability means is still 
developing, hence further investigation is needed to support or contradict this viewpoint. It is argued that 
context, such as that suggested by [6], and (social) structure are necessary for the idea of sustainability, in 
addition to the simultaneous evaluation of multiple interrelated elements of sustainability. Similarly, it is 
stated that the goal should be to define how various cultures use the terminology in order to have a 
shared and common understanding, rather than aiming for broad conformity of definitions.  
Software sustainability evaluation techniques and reference models for developing such software have 
dominated the literature on software engineering. Sustainable software, defined as a system that requires 
less maintenance work to modify or consumes less energy while functioning, saves resources. Several 
reference models have been presented in the area of software engineering and sustainability to design 
such software. For example, the GREENSOFT model was put up by [6] as a conceptual reference model for 
software that includes sustainability standards and measurements, software engineering extensions, and 
a product life cycle model for software products from birth to death. Software systems are considered 
throughout the model's lifecycle, from creation to deactivation and disposal, and it incorporates both 
short-term and long-term sustainability metrics and measures. [18] put forth a development model that 
incorporates a set of criteria to assess the environmental sustainability of every software engineering 
step, with the goal of promoting software engineering that is both ecologically sustainable and socially 
responsible. Although the primary focus of these approaches is environmental sustainability, they also 
recognize that other sustainability dimensions, like those suggested by [19], several elements need to be 
taken into account in order to ascertain the impact of software systems on sustainable development. 
Making use of a generalized sustainability reference meta-model with examples drawn from specific 
software systems and processes, they offer a methodology to assist software developers in 
comprehending the interconnectedness of environmental sustainability with individual, social, economic, 
and technical aspects of sustainability.  
Apart from the creation of several reference models for sustainable software, other methods have also 
been suggested for assessing software sustainability. These methods centre on assessing the lifespan of 
software systems. In order to model and integrate stakeholders' sustainability issues, [20] put out a 
structure that may be used as a classification system for sustainability. When creating software systems, 
this framework may help you consider different design approaches that might affect sustainability. 
Although it's unknown how far this method can be applied outside the case study that served as the basis 
for the taxonomy's development, it offers a helpful starting point for investigating its limitations and 
generalizability. [21] focuses on ensuring a system's economic viability throughout its lifespan, 
emphasizing sustainability from an economic perspective. They introduce TechSuRe, a method that 
integrates sustainability considerations into software development by assessing time, cost-benefit, and 
risk factors. One approach involves evaluating "sustainability risk," which considers nine factors, 
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including market risk, production lifetime, and technology evolution. This evaluation projects the 
expected financial viability of the technology. [22] further develops this by using scenario analysis, 
architecture compliance, and metric tracking to assess architecture sustainability in two ways: (i) 
designing sustainable systems and (ii) enabling software architecture to evolve without compromising its 
core structure. This multi-perspective method helps to avoid architecture degradation and to track 
changes in requirements and technology. For various stakeholders, including managers, architects, and 
programmers, [23] created a library of sustainability principles that covered the software development 
life-cycle from system design to maintenance. The guidelines include software engineering approaches, 
strategies, and instruments to improve system lifespan in an economical manner. Both strategies ignore 
the meaning of various sustainability characteristics in favour of concentrating on the technical and 
financial aspects of sustainable software systems. Furthermore, elicitation and modelling of sustainability 
requirements has been the subject of other relevant work on sustainability in the field of requirements 
engineering and software.  
In this paper, we identify the five dimensions that express pertinent issues and offer a framework for the 
concepts and indicators needed to comprehend the resilience of real-world cyber-physical and socio-
technical systems. More precisely, we centre the conversation on two facets of sustainable software 
design. To achieve this, we narrow our attention to three ideas: 
1. Software sustainability: The community and the running organization will be concerned about 

how long the software-intensive system can last.  
2. Software architecture sustainability: In turn, the longevity of that software system depends on its 

architecture and their flexibility. This is sometimes referred to as architecture sustainability (i.e., the 
extent to which the software system's architecture permits ongoing upkeep and development over 
time without necessitating significant and costly restructuring).  

3. Sustainable Software Architecture: Design Decisions: There's a growing emphasis on decision-
making as this architecture mirrors the basic design decisions that arrange the system and its parts. 
Because architectural judgments have far-reaching consequences and are expensive to change, 
architects are fundamentally concerned with the decision's legitimacy. The sustainability of software 
architecture design decisions has been used to characterize this idea. 

 
3. Software Architectures and Sustainability 
Software systems' ability to function over the long term, maintain efficiency, and evolve appropriately in a 
constantly changing execution environment is strongly influenced by their architectural design. Software 
architectures are essential to a software system's ability to survive and develop, according to [24]. The 
ability of an architecture to withstand modifications brought about by changes in the environment, 
requirements, technologies, business strategies, and goals over the course of software system life cycles is 
known as architecture sustainability. Nonetheless, architectural drift and erosion are two connected 
phenomena that undermine the sustainability of any system architecture. When the source code deviates 
from the intended architecture, architectural erosion frequently occurs. Architectural drift, on the other 
hand, is defined as a system's code deviating from the underlying architecture. Both issues can occur 
during the system's evolution and maintenance cycles and are the result of haphazard, unintentional 
additions, deletions, and modifications to architectural design decisions. Architecture erosion and drift 
can result from a variety of causes, including a build-up of poor or subpar design choices and issues with 
communication between the development and design teams. Despite growing in importance over the last 
fifteen years, as a distinct subfield of software engineering, software architectures is only starting to gain 
traction in the industry [25]. In spite of software architectures' vital role in software system design, the 
subject of software architecture sustainability has only lately emerged as a separate discipline of study. 
Investigating the function of architectural metrics and technical debt in gauging the sustainability of 
architectural designs has been the main emphasis of this. 
One way to make flexible software architectures in advance is to create them in an open source style that 
can accommodate more changes in the future without drastically changing the system's core, sustainable 
software architectures at a low cost. Adherence to recognized design principles—such as conceptual 
integrity and the separation of concerns—as well as avoiding making bad evolution decisions are crucial 
for this [26]. Templates for designing sustainable architectures can be found in the rise of software 
reference architectures. These architectures represent the architectural knowledge of structures, 
elements, and relationships of many successful architectural implementations, though they are limited to 
a specific domain or family of software systems. Continua for healthcare IT, SOA-related OASIS Standards, 
and IBM's Service-Oriented Solution Stack (S3), AUTOSAR for the automotive industry, and the most 
current Industrial Internet Reference Architecture (IIRA) are examples of well-known reference 
architectures. For instance, standardization, knowledge reuse, interoperability facilitation, and improved 
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communication among interested parties (car manufacturers, suppliers, and other businesses in the 
electronics, semiconductor, and software industries) are just a few of the major advantages that 
AUTOSAR has brought about [27]. However, many reference architectures do not sufficiently or clearly 
consider sustainability. Reference architectures function at a higher degree of abstraction for a collection 
of systems in particular areas, whereas software architectures make up the design solution for particular 
systems. Both architectural styles incorporate aspects of reusable knowledge about important design 
choices that support standardization and the long-term viability of tested solutions. Their durability is 
one of the most obvious and conspicuous signs of these architectural solutions' effectiveness. This is 
contingent upon their capacity to identify signs of degradation and their resistance to design 
deterioration. In order to handle this, AUTOSAR has an update strategy that includes version control and 
release management for its documentation. This is because each document is updated continuously, 
incorporating elements from several releases. Figure 1 displays the major AUTOSAR evolution stages and 
releases. 
 

 
Figure 1. AUTOSAR Evolution and Key Releases [28] 

 
Figure 2 illustrates how new versions are continuously delivered by other reference architectures as well. 
Even while improvements and extensions are included in new editions, this has led to a notable rise of 
documentation. This is comparable to IIRA. 
 

 
Figure 2. Revisions to the Reference Architectures [29] 

 
Despite the many reference designs proposed for various application areas, many of them have either not 
been adopted or have not been maintained. For example, the Service Oriented Paradigm was the primary 
focus of [30] examination of sixteen reference designs for systems development. The findings revealed 
that thirteen of them were completely inactive, with no website, initiatives, or related papers to be found. 
Having said that, reference designs should be flexible enough to integrate extra design choices that stick 
around for when new challenges arise and these architectures need to be adjusted to fit new needs, such 
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smart vehicle features. In a larger sense, some of the main elements that contribute to the sustainability of 
reference designs include: 
 For an architecture to be considered long-lasting, it must:  
 Be consistent with other technologies in the target domains (e.g., communication protocols, domain 

standards, and architectural styles);  
 Get updates and releases often;  
 Adapt to new requirements without affecting previous decisions;  
 Have a community around it, which can be strengthened through collaboration with businesses, 

research facilities, and academic institutions. 
 

4. Software Architecture Decisions And Sustainability  
One facet of the umbrella term "sustainability debt" is the practice of tracking and reporting the ways in 
which technical debt impacts sustainability as a result of software design choices. This idea was discussed 
in [31], and it brings attention to the fact that previous design choices have an unintended effect on all 
five aspects of sustainability, including the monetary problem of long-term expenses. Thus, design choices 
have a big impact on how long systems and their architecture last. The quality of optimal design decisions 
alone, however, is not enough to ensure the sustainability of designs; other factors that must be 
considered include the economic, individual, social, and technical aspects of capturing those decisions, 
such as a lack of incentive or motivation, inadequate tools, architectural knowledge (AK) capture is not 
without its difficulties, such as the time and energy it takes, the fact that it interrupts the design flow, 
stakeholders' lack of comprehension, and the difficulty of deciding what data is relevant and valuable to 
capture (especially in Agile projects with minimal documentation). The massive and ongoing effort 
required to efficiently store massive volumes of codified information is believed to be the root source of 
the many challenges associated with gathering AK. This data may be difficult to manage and put to good 
use. It is therefore necessary to compile a lasting set of design choices that are easy to maintain and have 
practical applications. For instance, in order to minimize the effort required for AK documentation, [32] 
suggested use configurable AK templates to record a small number of important architectural design 
decisions. Sustainable decision-making, then, requires both lightweight, minimalistic approaches to 
reduce paperwork and emphasize key decisions and timeless, strategic knowledge to lengthen the life of 
systems and their designs. To circumvent this problem and enable designers to make greener 
architectural design choices, [33] published a meta-model and principles for creating flexible 
Architectural Knowledge Management (AKM) systems.  
Their method introduces a flexible and configurable meta-model that addresses the rigidity of earlier 
approaches. It incorporates AKM tools for maintaining a minimal set of AK, configurable entities to extend 
and customize new AK, and metrics to assess the sustainability of design decisions. The method links 
quality attributes like timeliness, changeability, complexity, and cost to these metrics, ensuring the 
sustainability of the AK [34]. The authors of [33] propose updating the meta-model from [33] to include 
additional AK-related features by enhancing the sustainability model and its extensions. 
 

 
Figure 3. Enhanced Meta-Model for Long-Term Decisions and Sustainability Estimators in AK [35] 
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On the other side, better decision networks may be built with fewer AK items recorded, which means less 
effort and maintenance expenses. Some of the quality parameters prescribed by the Sustainability of the 
Design Decision Model package include the number of options and edges. One way to gauge a decision 
network's complexity is by looking at these characteristics. Ripple effect measurements are among the 
additional evolution-related metrics that are used to evaluate the effects of modifications and identify the 
decisions that are changed most frequently. Two new components, J-GraphT and Neo4j, were added to 
the Sustainability of the Design Decision Model package to visualize decision networks and assess 
sustainability based on network complexity. Similarly, [33] employed three architectural templates—
short (seven items), medium (ten items), and long (fourteen items)—to evaluate the time, effort, and 
quality involved in documenting key architectural design decisions. Sixty-four volunteers in all were split 
into eleven groups at random during the experiment: two groups had five people and nine groups had six. 
Over a four-week timeframe, each group of three software architects—junior, senior, and cognitive—was 
tasked with documenting the major design choices made for a particular system. As part of our research 
approach, we conducted an exploratory case study to determine the potential outcomes and collaboration 
dynamics among stakeholders while using different AK templates to document architectural design 
choices. We omitted test and control groups since our goal was to estimate the participants' average 
effort in recording the AK using each template and the number of alternative alternatives they gathered. 
We were really evaluating a separate variable here. Since fewer options were easier to manage 
throughout evolution cycles, participants were more productive when given fewer to choose from, and 
the results showed that medium and short templates captured the AK better than long ones [36].  
Groups using the shorter template spent less time overall than those using the medium or long templates, 
as seen in Figure 4. However, because group G1 collected a significantly higher number of decisions than 
groups G7 and G10, their team members spent nearly three times as much using the identical template. In 
comparison to groups that used the short template, those that used the medium template yielded the 
predicted results; nevertheless, it took longer for group G4 to record the same number of choices 
compared to groups G3, G6, and G11. The team members' inflated claims in several of the individual tests 
we administered to confirm the results are the root cause of this cognitive dissonance. Last but not least, 
group G5 performs abnormally well in comparison to G2 because its members worked less hard to record 
more decisions than G2 did. This discrepancy may have resulted from a test taker providing an inaccurate 
response. 
 

 

 
Figure 4. Using three distinct templates to record architectural design decisions for effort [37] 
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We evaluated the capturing effort by counting how hard each group worked to capture the different 
numbers of possible options. According to the findings, it took less work for groups to capture two to four 
design possibilities than for those to capture more than four. Consequently, an increase in the number of 
options for decisions led to an exponential rise in the amount of time needed to decide, consider, and 
record more options, which might have a significant effect on agile projects. Additionally, when 
comparing judgments with two or four possibilities to those with more than four, groups G2 and G10 had 
lower values for capturing effort. The overall capturing effort is reduced since fewer choices with more 
than four possibilities are captured compared to those with two to four, which means that the total 
number of decision points caught is less. 
 

 
Figure 5. Counting the number of alternate decisions made by each group [38] 

 
The entire amount of work required to capture decisions with varying numbers of alternative decisions is 
displayed in Figure 6. The findings show that the amount of time required for decision-making and 
evaluation activities grows in direct proportion to the number of choices examined. 
 

 
Figure 6. Total amount of time used to record judgments with various numbers of options [39] 

 
Groups also used Enterprise architectural design patterns that were suitable for the task at hand, 
according to the results, indicating that a large number of the choices were well-founded in recognized 
knowledge and good technical practice.  
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Software architecture results from multiple decisions, but these design choices are often easily forgotten, 
increasing the expenses of upkeep and evolution as well as contributing to design erosion. It is often 
known that accumulating, disseminating, and repurposing AK can help reduce the loss of architectural 
knowledge. Even though the discipline of architectural knowledge management (AK) dates back to the 
early 1990s and has produced a variety of models, techniques, and research tools, the expense of 
gathering pertinent knowledge has prevented AK management from being widely used. Including 
decision-viewpoints and their justifications as premium components in architectural descriptions is 
essential to architectural sustainability. Understanding architectural design decisions is essential to the 
system's evolution since it allows one to gauge how sustainable the AK is during architectural 
modifications and estimates the amount of maintenance and documentation work that will be required 
when new requirements lead to new decisions. 
 
5. Sustainability Estimation Metrics 
It is necessary to evaluate a system's prospective quality loss using relevant measurements and indicators 
that can detect a decline in quality over the course of evolution cycles. Software developers have kept 
technical debt under control in order to lower the remediation costs associated with technical debt 
management, since the various dimensions of this debt have emerged as a quality indication of 
inadequate design decisions and coding techniques. Therefore, in order to quantify software 
sustainability in both design and code, we need to identify the origins and sources of the debt as well as 
those "hot-spots" in long-lived systems. Many methods have looked into modularity measurements as a 
technical debt indicator, however when the debt is not paid back, many other quality criteria are 
frequently impacted. In this section, we won't bore you with a laundry list of all the metrics that can be 
used for sustainability or other quality indicators; instead, we'll focus on highlighting the ones that can be 
chosen depending on quality goals to estimate technical sustainability from different angles and levels of 
abstraction. 
Code and architecture metrics: The most widely used methods for finding "code smells" and improving 
system maintainability are software metrics, which assess system quality by looking at flaws in source 
code. Nevertheless, a wide range of code metrics are available to estimate various kinds of errors and 
poor programming habits that impact crucial quality aspects like complexity, maintainability, and 
reusability, among others. It is common practice to integrate metrics used to evaluate the complexity, 
coupling, cohesion, and dependencies across modules in order to estimate technical debt ratios and 
provide relevant indicators of code quality. More than forty criteria, including those related to evolution 
problems, were proposed by [40] as a means of estimating the software sustainability of software 
architecture. [14] subsequent research [2013] reduced the number of measures to twelve. In his work, 
[41] developed the idea of a "architectural bad smell" to describe design flaws like as anti-patterns, code 
odours, architectural incompatibilities, and bugs. Architectural refactoring is the consequence of a series 
of design issues, and the authors identify four of these smells. One of the major problems for system 
maintainability, according to the open-source systems research by Le et al., is to analyse the development 
of architectural degradation. 
Architecture knowledge metrics: As a relatively new area of study, evaluating the long-term viability of 
architectural expertise and practice has only yielded a handful of measures. One possible architectural 
choice measure is the quantity of design issues addressed and the number of solutions investigated for 
each problem, as suggested in [42]. [33] provided an enhanced taxonomy of quality attributes and metrics 
for sustaining and improving design decisions.  
Decision network complexity, they argue, may help estimate sustainability, with the amount of 
traceability links and design decision granularity playing a role. They also suggest assessing the work 
required to capture AK items, like the study's findings, in order to find out how much AK has to be 
collected so that the set of design choices can withstand evolution and maintenance cycles. In the end, the 
impact of redesign decisions is evaluated using metrics for change-proneness, instability, and ripple 
effect. The ability of a software system to endure the domino effect is one way that stability is defined in 
this context. [43] A design pattern's stability may be evaluated using instability and change-proneness 
metrics; classes' resistance to changes is a good indicator of how stable they are when involved in a 
change. This is a promising and unexplored area of research, as seen by these early attempts to predict 
AK's sustainability. 
Aggregated metric sets: When estimating the sustainability of the system architecture, a combination of 
measures frequently produces more meaningful results in terms of more precise quality indicators. In a 
recent study, [42], for example, categorized software measures that could affect the estimation of design 
sustainability, ranging from modularization to volatility. The authors [44] provide novel measures (i.e., 
Architectural Smell Density, BDCC: Bi-Directional Component Coupling, and ASC: Architectural Smell 
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Coverage) and suggest different combinations of metrics to evaluate technological sustainability and 
identify when architecture begins to corrode or decay. They state that to assess the dispersed parasitic 
functionality as a maintenance concern that affects modifiability and reusability, it is suitable to combine 
Component-level Interlacing Between Concerns (CIBC) metrics with Concern Diffusion over Architectural 
Components (CDAC). This paves the way for the correlation between olfactory perception and building 
characteristics. However, not all tools provide fine-grained indications of technical debt and other quality 
qualities, thus it might be challenging to find the correct mix of measures.  
In Table 1, we overview metrics for estimating and understanding system sustainability at various 
abstraction levels, which can be used individually or combined to align attributes with smells. The 
categorization is based on previous research that outlines the basic work on architectural level criteria 
[44,45,46]. If you want to estimate technical sustainability based on a given quality trait, you may use the 
metrics in Table 1 to figure out which ones to combine. We do not, however, offer precise correlations 
that show which tangible measures are used to quantify each unique quality trait. It should be noted that 
this table does not address discrepancies between various measures. 
 

Table 1. Overview of software metrics for architectural and knowledge abstraction-level system 
sustainability estimation [47] 

Architecture level metrics 
Category Smells Metrics Quality Attributes 
Maintenance 
 

unclear and underutilized 
interfaces, depending on 
how large or tiny a module's 
functionality is; smells 
related to functional 
delegation 

Index of Module 
Interaction API function 
use index, attribute 
concealing factor, Module 
Size Boundedness Index, 
Module Size Uniformity 
Index 

Complexity, Modularity, 
Analysability, 
Effectiveness, 
Understandability  

Odors that impact 
redundant functioning and 
component coupling 

Finding clones, Linking up 
with an item, coherence 
ratio of interaction, Quality 
of Modularization 

Reusability, Complexity, 
Modifiability, 
Modularity 

Smells when one 
component implements an 
excessive number of 
worries, or when numerous 
components realize the 
same worry; Determine 
which components have an 
appropriate proportion of 
techniques. 

Concern spreading about 
architectural elements 
interlacing between issues 
at the component level, 
number of issues with 
each part, Properly Scaled 
Methods Index 
 

Reusability, 
Modifiability, 
Understandability, 
Modularity 

Determine whether 
components have cyclic 
dependencies, cross-layer 
relationships, and an 
excessive number of 
dependencies. 

Layer Organization Index, 
API Function Usage Index, 
Cyclic Dependency Index, 
Dependency of cumulative 
components, overly 
intricate structure 

Modularity, 
Understandability, 
Changeability, 
Modifiability 

Maintenance Other pervasive odors that 
might harm any area of the 
building 

Coverage of architectural 
odors, Density of 
architectural scent 

Cost 

Evolution 
 

Components that change 
too often 

number of components 
that a change affects, 
Rigidity, the ripple effect, 
separation from the main 
sequence, Index of Module 
Interaction Stability 

Stability, Evolvability 

Probability of components 
evolving in tandem 

Component of a 
bidirectional coupling 

Complexity, 
Evolvability 

Architecture Knowledge Level Metrics 
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Maintenance An excessive number of 
choices and trail 
connections 

EdgeCount and NodeCount Stability and 
Complexity 

There are too many 
Architecture Knowledge 
(AK) pieces and options for 
decisions. 

AK capturing effort cost Price 

Evolution 
 

A shift affects a lot of 
choices. 

Instability, change 
proneness, and ripple 
impact 

Variability, 
Consistency,  

Too many changes and 
outdated choices 

Volatility of decisions Accuracy 

 
5. Sustainability In Academia 
Software is becoming more important to modern society. With the shift towards data-intensive, large-
scale computational science and engineering, software is now fundamental to the expansion of human 
knowledge. Software's growing relevance in research has led to requests for its classification as a first-
class scientific tool. However, as seen in [48] (where 59% of respondents deemed software to be 
essential), software is relevant to research, 56% of researchers generated code and 21% had no software 
development expertise. Thus, this raises major concerns about the software's quality, the research 
output's legitimacy and validity, and the sustainability of vital codebases for research communities.  
Metrics that measure software architectural sustainability reveal several challenges. Expertise in 
developing software artifacts is necessary for making appropriate use of these indicators, comprehending 
them, and identifying and fixing sustainability issues. Developing, deploying, and sustaining reusable 
software presents several challenges, yet scientific progress relies on accessible and high-quality software 
at all levels. The significance of creating and updating software to back up an increasing amount of 
research has been emphasized by academics at all levels, from undergraduates to senior faculty and 
research leaders. However, there is growing recognition that the education and research pipeline lacks 
software development skills. 
In October 2016, a Knowledge Exchange Workshop on Research Software Sustainability brought together 
major European players in the research and higher education infrastructure and service provisioning 
industries. From this gathering, five initiatives were developed to make research software more 
sustainable:  
a. Researchers should be aware that software is crucial to their work.  
b. The financing it gets and the research it allows should determine the worth of research software as a 

research object.  
c. With their influence, funders should push for software sustainability.  
d. The research community needs to be equipped with skills related to software sustainability.  
e. Organizations, whether central or distributed, should be established to serve as hubs for software 

sustainability expertise. 
Some of these issues have prompted many attempts to find solutions. By providing postdoctoral and PhD 
researchers with computer science foundations, Software Carpentry aims to fill the skills gap. Originally 
hosted by the US National Laboratories, Software Carpentry has expanded into a worldwide volunteer 
initiative since its 1998 inception. The program's two-day practical courses educate participants on 
techniques commonly used in the software industry, including version control, program design, and task 
automation. In a similar vein, Data Carpentry was founded in 2014 [49] to address the increasing need for 
researchers to improve their skills in data analysis and management. Data Carpentry follows the same 
two-day course structure as its parent organization but is specifically tailored to research data. These 
programs have been widely requested and embraced (400 workshops for more than 12,000 academics 
were held between January 2013 and July 2015, for instance), and they have significantly improved the 
chronic shortage of skills in the research community. Nevertheless, they are efforts to solve a problem 
that, looking back, should have been tackled earlier in the research and practitioner career path. 
Therefore, we need to consider training and education, especially for first-year students majoring in 
computer science and engineering. 
Attracting software talent in academia is already a challenge, and the "hotchpotch" of solutions put up to 
meet the needs of different departments (such as HR and finance), university cultures, and funding 
limitations only makes things worse. It is challenging to find and keep such important employees since 
software specialists are often linked to professions that are not indicative of their work and lack a clear 
career path. Furthermore, funding assessment committees have a skewed preference for hiring 
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"traditional" academics rather than software specialists. As a result, there aren't enough of these 
specialists in high positions, which would help to increase role recognition and bring about institutional 
and cultural change. Therefore, these Research Software Engineers (RSEs) need a recognized career path 
in order to recover expenses and have their work evaluated using metrics relevant to their position 
(rather than merely publications). In addition, this would assist convince review panels that hiring 
software specialists is a legitimate practice and increase knowledge and recognition for the profession. 
Enhancing the sustainability and repeatability of the software supporting contemporary research while 
expanding access to essential skills would be possible with a supported recruitment and retention 
procedure.  
The Policy team looks at software-related community concerns and launches awareness-building and 
problem-solving efforts. The Software team provides direct assistance in evaluating and enhancing 
research software and procedures. The Software team regularly hosts an "Open Call for Projects" to 
prioritize submissions, focusing on their value to the broader research community. This is done because 
of the scope of prospective work in the field of software enhancement. The evaluations are presented in 
the form of a report including observations and recommendations based on the subject's past 
performance. The evaluations, structured like software reviews, assess the program, its development, 
operational infrastructure, and management processes. Figure 7 shows the locations where the Software 
team supported Open Call projects from May 2013 to October 2015. Nineteen projects from the Institute's 
Open Call's first five cycles are included in this research. 
 

 
Figure 7. Areas where the Institute Software team provided support for open-call projects between May 

2013 and October 2015 [50] 
 
This study lends credence to the previously established cultural and technological problems, most 
notably the urgent need to fill the knowledge gap in research software creation, deployment, and 
maintenance. These findings are typical of the problems that the research community frequently 
highlights. As was previously said, there is a connection between architectural concerns and other issues 
including system evolution (which is connected to several of these domains), code maintainability, and 
modifiability (including extensibility). When focusing solely on software architecture, independent of 
processes and infrastructure, it ranks among the top five areas needing improvement and is a concern in 
over 25% of projects. 
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6. CONCLUSION  
Sustainable software practices are vital given the growing use of software in both daily applications and 
cutting-edge research. The present study has investigated several aspects of software sustainability, with 
a particular emphasis on software design choices, sustainability measurements, and the dynamic function 
of software in scholarly investigations. Software architecture choices have a significant effect on 
sustainability. As was said, design decisions affect software systems' overall sustainability in addition to 
its lifespan and functionality. The idea of "sustainability debt" draws attention to the negative effects that 
previous choices might have on sustainability in terms of social, technological, and economic aspects. 
Effectively managing and capturing architectural knowledge (AK) with the use of tools and meta-models 
may help reduce this debt and promote more environmentally friendly decision-making procedures. 
Metrics are essential for controlling technical debt, recognizing it, and determining the sustainability of 
software. These methods provide important insights into the quality and sustainability of software 
systems, ranging from code metrics that assess complexity and maintainability to architectural 
knowledge metrics that assess decision networks. By directing developers and researchers toward more 
sustainable methods, the integration of diverse indicators aids in the analysis and resolution of possible 
sustainability challenges. A paradigm change has occurred as a result of the incorporation of software 
into research, making it an essential part of contemporary scientific investigation. Even with these 
developments, issues like poor software skill recognition and a lack of formal training in software 
development still exist. In order to solve these issues, programs like the Open Call for Projects and 
institutions like the Software Sustainability Institute are essential. They draw attention to the need of 
improved software processes, skill development, and professional recognition for software developers. In 
conclusion, attaining software sustainability requires a multifaceted strategy that includes careful 
consideration of architectural choices, reliable measurements, and a constant drive to enhance software 
processes. Given the continued importance of software in both study and daily life, taking care of these 
issues will guarantee that software systems continue to be dependable, maintainable, and able to assist 
long-term objectives. For software to continue to be a significant resource for innovation and discovery in 
the future and to be sustainable, researchers, developers, and institutions must work together. 
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