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Analysis of Tripled System of Fractional
Differential Equation using Certain Fixed Points
Theorems with Fractional Boundary Condition
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Abstract

This paper presents the tripled system of differential equations of frac-
tional type with fractional integral boundary conditions as well as inte-
ger and fractional derivative. Here the Banach fixed points theorem and
Scheafer’s fixed points theorem are used as a main tool. To justify the
results we illustrate some examples.
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1 Introduction

Fractional differential equation are applicable in many streams of science
and engineering like as fitting of experimental data, e electromagnetics, physics,
viscoelasticity, lectro chemistry, biophysics, blood flow phenomena,porous me-
dia,biology, electrical circuits, etc. Therefore compare to models of integer order,
fractional order model become more practical and realistic. Thus there has been
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a significant developments in problems of boundary value for the existence and
uniqueness of fractional differential equations; see [1, 4, 5, 6, 8, 9, 10, 12]. and the
references therein. Many authors have worked on existence and uniqueness of
solution of tripled system of fractional differential equations [2, 3, 7, 11, 13, 14].
The tripled systems of fractional differential equation often exits in numerous
models such as Chemostats and Microorganism Culturing, Brine Tanks, Irregu-
lar Heartbeats, Chemical Kinetics, Lidocaine and Pesticides, Predator Prey etc.
[8] study fractional differential equations for Boundary value problems of non-
linear type and include nonlocal and integral boundary condition of fractional
type. Inspired by the problem [9],

D%z (a) = er(a, 22(a), 23(a)), a € [0,1]
CD%gy(a) = ea(a, z1(a), z3()), o ,1
D" x3(a) = e3(a, r1(a), 2(q)), o ,

Where ¢ D% Caputo fractional derivative with order a;, J9 represent the Riemann-
Liouville fractional integral whose order aq, as € (4,5], p1,p2,p3 € (0,4] ¢1, 2, g3 >
0,e1,€e2,:[0,1] x R — R are smooth functions and ~; # ;Eg_ti’; ,1=1,2,3.
Existence and uniqueness of solution for the mentioned above tripled system of
nonlinear fractional order differential equations is main focus of the paper.

2 Preliminaries

Firstly we introduce some notation, lemmas and definitions.
Definition 2.1 [6] Caputo derivative whose fractional order is a for smooth
function e : [0,00) — R is define as

C Gola) = 1 “ o — n—a—le(n)
Drele) = s [ (0= (1)t

gives e(n)(«) exist, where [a] represents the integer part of the real number a
and I' is the Euler’s Gamma function.

Definition 2.2 [12] Riemann-Liouville fractional integral of the order a > 0
for a smooth function

1 “ a—1
o /O (@ — )" Te(t)dt.

Lemma 2.1 [2] Let f,g > 0 and e € Li[a, b] then J/J9% = J/*9¢

J(a) =
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Lemma 2.2 [2] If e is continuous and n > 0, then
CDnJme =e
It follows from Lemmas 2.1 and 2.2 that if e is continuous and v > a, then

CD% = J1 %,
Lemma 2.3 [2] Let v > —1 and n > 0. Then

F(’Y + 1) Zn+’y

Jr = I
T Tty

Lemma 2.4 [2] Let v > 0 and m = [n] + 1, then

0, ify€0,1,2,...m—1

n r -n :
CpryY = %(z—a)7 , ifyeNandy > m

ory¢ Nyy>m—1

Lemma 2.5 [7] Let a > 0 then,
JYD WV (a) = V(a) 4 ho + hia + haa® 4+ - 4 hy_1a" 7!
for some h; € R, =0,1,2,...n — 1, n is smallest integer grater than or equal
to a.
3 Supporting Result

In this part, we establish the result required in our main proofs.
Lemma 3.1 Let y € H([0,1],R) and v # 25)  Then the problem

I'(5-p)
{CDax(oz) =y(a)a € [0,1] (3.1)
z(0) = 2/(0) = 2 (0) = 2" (0) = 0,¢ DPx(1) = y(J%)(1)
has unique solution
e = | a0 tyteya
(5 —p)I'(5+q)a® ! oo
i TG T, 0 o
I'(5—p)T(qg+5)a ! a—p1
24T'(a — p)I'(5 — p) = T'(g + 5)] /0 SRR (32)
Proof: From Lemma 2.2, (3.2) is similar to
z(a) = J%(a) — hg — hyoo — hga® — haa® — hya (3.3)
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for some h; € R, i from Oto4.
from x(0) = 0 it follows hg = 0 also 2/(0) =0 = hy = 0,2"(0) =0 =
he =0 and 2" (0) =0 = h3 = 0. Thus (3.3) becomes

z(a) = J%(a) — hya (3.4)
Now
I's
C a— 4—
DPz) = JPy(a) — cy—e—atP
( xz) = J 7 Py(a) C4F(5 p)a
I'5 d+q

Jz(a) = JPTy(a) — ¢4

From the boundary condition,
(“DPz)(1) = (J%)(1)
5}
I'(5+q)

=Py (1) — JPy(1)

I
= JPy(1) — ey ) =77 yY(1) — e

G -p
500G —p) —T(+49)
I'(G+¢lG-q)

T 24(7FP((55 —qzx)))r(—5 F+(5q )+ p () = I
On substituting the value of ¢4 in (3.4) we find solution (3.2). It clear from
lemma (3) that solution of the tripled system (1.1) is given by the integral

Cq

equation,
1 e}
z1(o) = Tar (a =) eq(t, wa(t), w3 (t))dt
1 Jo
Rya® !
_m/o (1= )+ ey (1, 2 (t), 25(8) )dt
Ria? ! i
+m/o (1 — )17 ey (t, 2o (t), s (1)) dt
1 “ az—1
xo(a) = T (a—1) e (t, xa(t), z3(t))dt
2 Jo
R a3 1 B
24;?%1@2)/0 (1 — )2+ Loy (b, mo(t), w3(t))dt
Rya?® !
+m/{) (1 —t)aQ_p2_1€2(t,ng(t),l‘g(t))dt
1 “ a3—1
z3(a) = Tas (=)™ Tes(t, za(t), z3(t))dt
3 Jo
R3a? !
—mx) (1 — )8+ Loy (¢, wa(t), a3 (t))dt
R 3 1
+F@Q33i[pn)/0 (1 _t)CLs*PS*leg(t’z2(t),$3(t))dt
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Where
I'(5 — pi)I'(gi +5)

Ri = )
¥l'(5 —pi) — T(q; +4)

for i =1, 2, 3.
Let X = H[0,1] then (X, ||.||x) is Banach space fit out with the norm.

[Xlx = (suplz(a)]: a € [0,1])

Let B =X x X x X then (B, ||.||s) is also a Banach space equipped with the
norm.

(@1, 22, 23)[| B = [[21]x + [[72]lx + ll2s]lx
Let us define an operation F': B — B

f(z1,m2,23)(a) = (frza(a)z3(a), fori(a)zs(a),

f3z1(a)za(a)
Where
fizz(a)zs(a) = o /O"‘(a ) ey (¢, 2o (b), s (1))t
al 1
_%/O (1 — t)BFa=Le, (¢, 2o(t), 23(t))dt
RlOAS 1 ay—py—1
+r(—w/ (L =" ea(t, @ (t), wa(t)) dt
fazi(a)xs(or) = F7@2/0 (@ — )2 (t, 2o (t), 5 (1)) dt
al 1
_%/O (1- t)q2+a2_1€2(t,ﬁcz(t),xg(t))dt
RQO&S 1 as—pa—1
gy ) (07 el @) st
Ty (@)aa(a) = - /0 (& — %5 ea(t, 2a(t). 2a(t))dt
O 1
_%/O (1 — £)83Fa3 ey (¢, (1), w3 (t))dt
RBQS 1 a37p3716 T "
*nag_pg)/o (1-1) 3(t, o (t), z3(t))dt

We see fixed point of F are solution of tripled system(1.1). To simplify and our
convenience we put.

1 v|Ri | R

A=

fori=1,2,3
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4 Main Theorem

We will use well know Banach fixed points theorem to prove our first result.

Theorem 4.1 Suppose that v; # ggg’jjg ,4 =1,2,3 and the following hypothesis

holds. (H 1) Assume that a non-negative continuous functions k; € C[0,1],i =
1, 2 exist such that

lei(o, y1) — ei(a, y2)|< ki(@)|yr — vel
lei(a, y2) — eila, y3)|< ki(a)|y2 — sl
lei(a, ys) — ei(a, y1)|< ki(a)lys — vl

Yy1,y2,ys € RandVa € [0,1]

<
<

with I; = supk;(a)i =1,2,3 a € [0,1] and I = maxl; and if I(m +n2+n3) <1

where 7,7 = 1,2,3 and defined by (7) then on [0, 1] the tripled system (1) has
a unique. We shall show F is contraction.
Proof. Let (x1,z9,x3), (21,25, 2%) € B then Vo € [0,1]

Ale2)@)l) = Aleb)aa)ls o [ a7

|Rilm
24F(ql + al)

1
| =0 e taa(v).as) = ex (0, 0

r(al—pn/o -1 Jex (¢, 22(t), 2(t)

le1(t, xa(t), x3(t) — e1(t, w5 (L), z5(t)|dt +

—€1 (tv ‘rIQ (t)v IIB (t) |dt

VR T Y
< I||zox —m/l’/ 7/ Oé—tal 1dt+7
< Hasea - syl [ (@ =t + g2

/1(1 B L /1(1 —~ t)‘“plldt]
0 I'(ar —p1) Jo

1 | R |R1|v1
< — 2ha5||X | =— + +
S llezws = a3 [Fal 24I'(q1 +a1)  T'(a1 —p1)
Thus
[ f1(z2)(w3) — fi(@y)(@y)]I< I l|wows — w523,
Similarly
[ fa(z1)(x3) — fo(ay)(25) < Inpllzias — zyas)|
and

| fa(z1)(22) — fo(a))(2h) < Impllwize — aab||
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||f(.%‘17.%'2,3;‘3) - f(xg,x/%xg)HBS
I(m +n2 +n3)||(x1, 22, 23) — (27, 75, 23) || B

As I(n1 + 12 +n3) < 1 therefore f is a contradiction and by Banach fixed point
result, f must have unique fixed point i.e. the tripled system (1.1) has unique

solution.
Theorem 4.2 Assume 7; # ll:gg:;s;,z = 1,2,3 and the following hypothesis
holds.

(H 2) there exist non negative continuous function ly,ls,l35 € C[0,1] such

that |e; (o, ¥)|< li(e) Yy € R and Yo € [0,1] with L; = sup l;(a),i = 1,2,3.
a€el0,1]

Then the tripled system (1.1) defined on [0, 1] has at least one solution
Proof: To prove this result we take help of Schaefer fixed point theorems.
Step-1 F' is smooth.
Since e, e5 and eg are smooth therefore f is also smooth.
Step-2 Under the mapping f bounded set of B are mapped into bounded sets
of B.
Let we = (21, %2,23) € B; ||(z1, %2, 23)||B< €
where £ > 0 Now for (z1,22,23) € we and Ya € [0, 1]

Aol o | (o= ) e (b, ma(8), (1))t

Fa1
R ! 3
o f, (0" 0ol
|R1| ! 1 t a;—p1—1 ¢ ¢ Oldt
Tlar—py Jy 179 e (t, wa(t), 23(1)]

o[ _ | R1]y1
<w |— [ (a—t)yu "t L
= [Fal /0 ( ) 24T (q1 + ay)

1 |R1| 1
/ (1—t)ntor—iqe 4 7/ (1 t)“lplldt}
0 r ) 0

(al — D1
- { 1 [Rilm IRl ]
SW1 |5
Fa; ~ 24(q1 +a1)  T'(a1 —p1)
Thus
| f1(z2)(z3)]| x < wim
similar
| f1(z1)(3)]| x < wane
and

[f1(z1)(22)l| x < wans

= [[fi(z1, 72, 23) || x < wim + wam2 + w33
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ie. ||fi(x1,ze,23)||x< 0o Step-3. F : B — B is completely continuous opera-
tor. Let (x1,x2,23) € we and g, g, a3 € [0,1] with aq < ap < ag, then

w1 “ a1—1 a1 —1
— — ) (g — )™ dt

o [ e = = e =y
win|Ri|a3 — ol [
U4T(q1 +a1)  Jo
wiy1|Ralllod — of[| [* Cpi1 w1
L) Plgp< — L gy —ag)™ (4.1
24T (g2 — p1) 0 ( ) ~ T(a1 +1) IC 1) (4.1)
(g —a)™ | wiy|Rillad —of|| | w|Ri|llag — o}
I'(a; +1) 24T'(qy +ay +1)  24T(a; —p1 + 1)

| f1(z2)(a2) — fi(z2) (1)<

a1

%} (a2 _ t)al_l 4

— 1 —¢)atar—lgy
Tar J, (1-1)

+ag' —afh)] + (4.2)

right- hand side tends to zero when oy — .

Thus || fiz2(a2) — fize(ar)||x— 0 as a3 — as.

Similarly || foz1(a2) — faz1(a1)||x— 0 as a; — az

||f3£L‘1(042) — fgl’l(al)”X‘) 0 as a1 — (9.

Thus || f(x1, 22, 23) () — f(z1, 22, 23) ()| B— 0 as ag — o

Similarly ||f(z1, 22, 23)(as) — f(z1, 22, 23)(a1)||p— 0 as a1 — a3

Combining step 1 to 3 and by reaction of Arzela - Ascoli theorem, F': B — B
is completely continuous operation.

Step-4

Let

'(/} = {(‘T17x27m3) €B: ($1,.’E2,.’E3) = ¢F(x1,x27$3)

for some ¢ € (0,1) we shall show that set ¢ is bounded. Let (x1,x2,z3) €
v = (z1,22,23)(a) = ¢f (21,22, 23) () for some ¢ € (0,1). Then we have
zi(a) = ofizaws(a)
z2(a) = ¢forazs(a)
r3(a) = @fsrars(a),Va € [0,1]

s @)= ofiaana(a)]< don | o [0 e
0

Fa1
71| R | /1 tai—1 ||
1 —t)ynte—lg 4
24F(q1 + al) 0 ( ) 24F(CL1 —Pl)

/01(1 — t)“l_’“_ldt]

< 1 MR | By |
- F(a1 + 1) 24F(ql “+a; + 1) 24F(a1 —P1 + 1)

Thus

lz1]| x < wim
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Similarly

|22l x < wamo

and

|lz3]| x < wansz

Hence, we get

(@1, 22, 23) [ x

<
|(z1,22,23)||B <

w1 + w2 + w3n3ne

oo

Thus Scheafer’s fixed point result present ¢ is bounded set. f must have mini-
mum one fixed point which is solution of tripled system (1.1).

Example 4.1. Take the following tripled system

cniz _ 1 |za()zs(al)
D: Il(a) T a2+16 1+\§02(a)13(a)\
CDizy(a) = ﬁtan_l(ml(a)xg(a)),a € [0,1]
13
D% 23(a) = 2i49 cot ™! (x1(a)x3()), a € [0,1]
< 5
£1(0) = 4(0) = a{(0) = 0 Dhin (1) = () (1)
$2(0)=$’2(0)=$2(0)—05sz 2(1 )Z%E(Jfﬂfz)(l) (4.4)
23(0) = 25(0) = 25(0),“ D3 x5(1) ZF(%(J)MB)(U
_ 17 . _1 . _5,. _15 145
a1 =3,P1=35,01= 35,71 = 5 F(g’f; ) = 160.875
(12:%»]92:%’(12:% _167&1‘?51219)*42296
a3 =2 ps =105 = 5,95 = & # FE} = 4558125
for o € [0,1] and y1,y2,y3 € R.
1
) e < _
lei(a, y1) — ei(a, y2)|< 02+16|y1 (]
1
lei(a, y2) — ei(a, y3)|< mhﬂ ]
1
) _ e < _
|el<a7y3) el(a7yl)|— 012+49|y3 y1|
So, we can take K = ﬁm,Kg = ﬁ%,Kg = ﬁ
1
I = sup Ki(a) = —
a€l0,1] ) 16
I Ks(a) 1
2= sup Ky(a) = —
a€l0,1] 25
I sup Ks(a) L
3= 3la) = —
acl0,1] 49
9
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and then, we have

1
I= I, 15,13} = —
maX{ 1,42, 3} ].6
Further,
I'(5—p)l 5 2786582
IR, | G-p)ll@+5) _ VT _ g a7

IT(5—p1) —T(q1 +5)| 1467322

Ry = P(5—pa)l(2 +5) _ 8968428y/w _
7 DG —pe) —T(ge +5) 9624241

Ry = I'(5—ps)l(gs+5)  7525863\/m 139
T T(5-ps) —D(gs+5) 9569341
1 O¢1|R1| R1 :|
I = T +
n |:F((Z1 + 1) 24F(q1 +a; + 1) 24I‘(a1 —p1+ 1)
1
= 15 [0.078+0.0034 +0.0007]
1
= 1 [0.08211]
= 0 00513
In, = [ | Ry Ry ]
2 a2 + 1) 24F(QQ “+ ag + 1) 24F(a2 —p2+ 1)
1
= 15 [0-4357+0.0046 + 0.0036]
1
= 15 [0-44066]
= 0.027
o3| R R ]
Ing = I
13 [ I(as+1)  24I'(gs+as+1) 24T'(as —ps+1)
= 1—6 [0.00742 + 0.0000127 + 0.00332]
1
= —10.01 2
16 [0.010752]
= 0.005376
and then

I(n1 + m2 + 13) = 0.005131 + 0.027 + 0.005376 = 0.0375087 < 1

Hence all assumptions of Theorem 4.1 are justify and consequently the tripled
system (4.4) must have unique solution defined on [0, 1].

10
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Example 4.2. Now consider the following tripled system

gDixl(a) = L‘).Siim(j((a))
CD1T7x2(Oé) - cos42j;r£’2z (o)
D¥1y(a) = =rizple) ;
21(0) = 24(0) = 27/(0) = 0, D3ay (1) = (T % 2)(1)
22(0) = 5(0) = 2'(0) = 0,% D3y(1) = 2(J35)(1) (4.5)
7
23(0) = 25(0) = 2'(0),¢ D3x3(1) = ?(ﬁxg)(l)
a=35.p1 =50 =% 0 =8 # {2 = 1023014.17
ag = py =3 gyo=9 ap = 0 9 ?%;f p5§ = 35.895.23
as =T ps =5 g3= 7% as = 0 § # [tk = 10557.42
for « € [0,1] and B € R, we get
cos B
B)l=
(o, Bl= 1552 < ——
sin B 1
B
|62(O&, )l |4+ 2|— 4+ a2
cos2mB 1
st B)|= | 1< 5

so we can take [;(a) = w%av la(a) = ﬁ, I3(a) = ﬁ and then, we have

1

wy = sup hi(a) = -

a€l0,1] 7

1

we = sup lao(a) = 1
a€l0,1]

1

9

wy = sup l3(a) =
«€l0,1]

Hence all assumption of Theorem 4.2 are satisfied therefor the tripled solution

(4.5).
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