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Abstract

In this paper, we have projected the theoretical and numerical investigation of the
mathematical model representing the yellow fever virus transmission from infected
mosquitoes to humans or vise-versa through mosquito bites in the framework of the
Caputo derivative. Theoretical aspects of the dynamics of susceptible individuals, ex-
posed individuals, infected individuals, toxic infected individuals, recovered and im-
mune individuals, and susceptible mosquitoes and infected mosquitoes have been ana-
lyzed by using the theory of fractional calculus such as boundedness, uniqueness and
existence of the solutions. Sufficient conditions for the global stability of the virus-free
point of equilibrium are inspected. T validate the theoretical results numerical analysis
is performed using the generalized Adams-Bashforth-Moultan method.
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1 Introduction

Infectious illness outbreaks have become the greatest threat to mankind over time, re-
sulting in the loss of many lives. They may also bring economic and political upheaval
if they are not handled properly. Yellow fever (YF) virus which belongs to a family
of about 70 viruses was the first human virus discovered. YF is an intense viral dis-
ease spread by infected female ’Aedes aegypti’ mosquitoes. These mosquitoes are also
the vector of Zika virus, dengue and chikungunya [1, 2]. In Africa, sylvatic and peri-
domestic Aedes species transmit rural and intermediate YF. The incubation period of
the virus on the infected individuals is generally 3 to 6 days [3]. Vomiting, nausea, lack
of appetite, muscle pain with backache, slight fever, headache, jaundice, and weariness
are some of the symptoms that patients experience [4]. Nonetheless, these symptoms
fade after four or five days, while other individuals may continue to the infection’s tox-
icity phase, in which 50 percent of instances lead to death within eight to ten days [5].
Although YF is compartmentalized as viral hemorrhagic fever, it causes 1000 times
more risk to death than the virus like Ebola [1].

Among the scientific community, the study of disease dynamics has remained a
popular issue [6, 7]. To help humankind in fighting against YF by understanding its
dynamics mathematically, a few mathematicians have contributed their expertise in
modeling this infection [8,9]. In the recent times, fractional derivatives namely the Ca-
puto, Riemann-Liouville, Grünwald Letnikov, Jumarie, and Caputo-Fabrizio are inves-
tigated by the researchers in search of new behavioral findings while representing real
world problems using such derivatives. Notably, many results associated with mem-
ory, hereditary, longrange memory, random walk, anomalous diffusion, non-Markovian
processes, and others made the concept of fractional derivatives a highly significant to
take into account [10–14]. Over the years, theories of these derivatives have also been
developed to a great extent [15–18]. Many phenomena related to mathematical biol-
ogy and their interdisciplinary fields [18, 19] have been studied using these fractional
derivatives [20, 21]. They have been used to model many complex phenomena of dis-
ease dynamics [22–24].

This work aims to examine the qualitative nature of the yellow fever virus math-
ematical model with interaction of seven categories of the population namely suscep-
tible , YF exposed, YF infected, toxic-infected individuals, recovered and immune
individuals, susceptible mosquitoes, and infected mosquitoes incorporating the Caputo
fractional derivative. Adams-Bashforth-Moulton method has been used to perform the
numerical simulation [25–29]. The rest of the paper is structured as follows: in Section
2, we provide some elementary definitions, theorems and lemmas of fractional calcu-
lus which is followed by the formulation of the model in Section 3. Sections 4, 5, 6
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dispense the existence and uniqueness, boundedness, the existence of various points
of equilibrium and their local stability respectively. Sections 7 depicts the numerical
method and simulation in detail. Finally, we discuss the concluding remarks in Section
8.

2 Some Essential Theorems

In the present work, we have used the Caputo fractional derivatives because it supports
the integer order initial condition. In this section, we have presented certain theorems
those have been applied to determine the theoretical results corresponding to the solu-
tion of the projected model. The Caputo fractional derivative is denoted by CD.

Definition 2.1. [15] (Caputo Fractional Derivative) Suppose g(t) is k times continu-
ously differentiable function and g(k)(t) is integrable in [t0,T ]. The fractional derivative
of the order α established by Caputo sense for g(t),is

C
t0

Dα
t g(t) =

1
Γ(k−α)

∫ t

t0

g(k)(τ)
(t− τ)α+1−k dτ

where Γ(·) refers to Gamma function, t> a and k is a positive integer with the property
that k−1 < α < k.

Lemma 1. [17] Consider the system

C
t0

Dα
t v(t) = g(t,v), t> t0, (1)

choosing the initial condition as v(t0), where 0 < α ≤ 1 and g : [t0,∞)×Ω → Rn,Ω ∈
Rn. When g(t,v) holds the locally Lipchitz conditions concerning to v, Eq.1 has a
unique solution on [t0,∞)×Ω.

Lemma 2. [18] We assume that g(t) is a continuous function on [t0,+∞) satisfying

C
t0

Dα
t g(t)≤−λg(t)+ξ , g(t0) = g0,

where t0 ≥ 0 is the initial time, 0 < α ≤ 1, λ ̸= 0, (λ ,ξ ) ∈ R2. Then,

g(t)≤ (g(t0)−
ξ

λ
)Eα [−λ (t− t0)

α ]+
ξ

λ

Lemma 3. [18] Let v(t) ∈ R+ be a derivable and continuous function. Then, at any
time t> t0,

C
t0

Dα
t (v(t)− v∗− v∗ln

v(t)
v∗

)≤ (1− v∗

v
)Ct0

Dα
t v(t), v∗ ∈ R+, ∀α ∈ (0,1).

3
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3 Model Formulation

Yusuf and Daniel’s [9] work has inspired the mathematical model described in this
study. We observe that fractional derivatives influence coexistence. When a new virus
emerges, it is never completely eradicated from the world. A fraction of humans will
always be infected by that virus in some part of the universe. This nature of the virus’s
existence prompts us to model YF infection by incorporating fractional derivatives. In
this paper, the YF virus mathematical model has been proposed within the population
of humans and mosquitoes. It has been assumed that both populations mix freely with-
out any barriers. Since there is a high risk of YF transmission from travelers, their
vaccination is essential. It is assumed that some portion of the travelers is vaccinated.
Again, a part of the infected population may become toxic. It is also assumed that
once an individual becomes toxic, he or she does not recover. In the present model,
the human population has been subdivided into five different compartments namely:
SH(t),EH(t), IH(t),TH(t),RH(t) which represents the density of susceptible, YF ex-
posed, YF infected, toxic-infected individuals, and recovered and immune individuals
respectively. In the same way, the mosquito population is divided into two categories:
SV (t), IV (t) represent the density of susceptible mosquitoes and infected mosquitoes
respectively. We have considered the Caputo sense fractional derivative to represent
the projected model. The present model is as follows:

C
t0Dα

t SH = r+(1−σ)λ −θβ1SH IV −ρSH −dSH , (2)
C
t0Dα

t EH = θβ1SH IV −µEH −dEH ,

C
t0Dα

t IH = (1−ξ )µEH −ψIH − (d +Λ)IH ,

C
t0Dα

t TH = ξ µEH − (d +Λ)TH

C
t0Dα

t RH = ψIH +σλ +ρSH −dRH ,

C
t0Dα

t SV = ν −θβ2SV IH −φSV ,

C
t0Dα

t IV = θβ2SV IH −φ IV .

with initial condition SH(t0)= SH(0), EH(t0)=EH(0), IH(t0)= IH(0), TH(t0)= TH(0),
RH(t0) = RH(0), where t0 is the initial time. All the parameters r,σ ,λ ,θ ,β1,ρ,d,µ,ξ ,
ψ,Λ,ν ,β2,φ are non-negative. Where, r is the birth rate of human, σ is the vaccinated
proportion of immigrants, λ is the arrival rate of immigrants per individual per time,
and θ is the daily biting rate. β1 and β2 represent the transmission probability of
YF from mosquitoes to human and from human to mosquitoes respectively. ρ is the
effective vaccination rate of susceptible humans, d is the natural death rate of human, µ

is the rate at which EH progresses to IH , ξ is the proportion of EH which converts to the
toxic case, ψ is the recovery rate of human, Λ is the death rate of human-induced due
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to YF, ν is the birth rate of mosquitoes, and φ is the natural death rate of the vectors.

4 Existence of the solutions

The existence of the solution of the model 2 is demonstrated using the Fixed-Point The-
orem. Due to the complex and non-local nature of the system 2, there are no precise
algorithms or approaches for evaluating the exact solutions. However, the existence of
the solution is assured if certain conditions are met. To initiate the process of establish-
ing the existence of the solution, the system 2 is rewritten as:

C
t0Dα

t [SH(t)] =P1(t,SH),
C
t0Dα

t [EH(t)] =P2(t,EH),
C
t0Dα

t [IH(t)] =P3(t, IH),

C
t0Dα

t [TH(t)] =P4(t,TH),
C
t0Dα

t [RH(t)] =P5(t,RH),
C
t0Dα

t [SV (t)] =P6(t,SV ),

C
t0Dα

t [IV (t)] =P7(t, IV ). (3)

The above system can be transformed into Volterra type integral equation as:

SH(t)−SH(0) =
1

Γ(α)

∫ t

0
P1(τ,SH(τ))(t − τ)α−1dτ,

EH(t)−EH(0) =
1

Γ(α)

∫ t

0
P2(τ,EH(τ))(t − τ)α−1dτ,

IH(t)− IH(0) =
1

Γ(α)

∫ t

0
P3(τ, IH(τ))(t − τ)α−1dτ,

TH(t)−TH(0) =
1

Γ(α)

∫ t

0
P4(τ,TH(τ))(t − τ)α−1dτ,

RH(t)−RH(0) =
1

Γ(α)

∫ t

0
P5(τ,RH(τ))(t − τ)α−1dτ,

SV (t)−SV (0) =
1

Γ(α)

∫ t

0
P6(τ,SV (τ))(t − τ)α−1dτ,

IV (t)− IV (0) =
1

Γ(α)

∫ t

0
P7(τ, IV (τ))(t − τ)α−1dτ. (4)

Theorem 4.1. In the region Ω× [t0,T ], where

Ω= {(SH , EH , IH , TH , RH , SV , IV )∈R7 : max{|SH |, |EH |, |IH |, |TH |, |RH |, |SV |, |IV |}≤M},

and T < +∞, the Lipschitz condition is satisfied and contraction occurs by the kernel
P1 if 0 ≤ θβ1M+ρ +d < 1.

Proof: We consider the two functions SH and S̄H such as:

||P1(t,SH)−P1(t, S̄H)||= ||(r+(1−σ)λ −θβ1SH IV −ρSH −dSH)

5
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− (r+(1−σ)λ −θβ1S̄H IV −ρ S̄H −dS̄H)||.

≤ (θβ1M+ρ +d)||SH(t)− S̄H(t)||

= ζ1||SH(t)− S̄H(t)||, (5)

where ζ1 = θβ1M+ρ + d. As a result, the Lipschitz condition is met for P1 and if
0 ≤ ζ1 < 1, then P1 follows contraction. Similarly, it can be shown and illustrated in
case of the other equations as follows:

||P2(t,EH)−P2(t, ĒH)|| ≤ ζ2||EH(t)− ĒH(t)||, ||P3(t, IH)−P3(t, ĪH)|| ≤ ζ3||IH(t)− ĪH(t)||,

||P4(t,TH)−P4(t, T̄H)|| ≤ ζ4||TH(t)− T̄H(t)||, ||P5(t,RH)−P5(t, R̄H)|| ≤ ζ5||RH(t)− R̄H(t)||,

||P6(t,SV )−P6(t, S̄V )|| ≤ ζ6||SV (t)− S̄V (t)||, ||P7(t, IV )−P7(t, ĪV )|| ≤ ζ7||IV (t)− ĪV (t)||,
(6)

where ζ2 = (µ +d), ζ3 = (ψ +d+Λ), ζ4 = (d+Λ), ζ5 = (ψ +d+Λ), ζ6 = (θβ2M+

φ) and ζ7 = φ . Pi, i = 2,3,4,5,6,7 are the contraction if 0 < ζi < 1, i = 2,3,4,5,6,7.
Using system 4, the recursive form can now be written as follows:

κ1,n(t) = SHn(t)−SHn−1(t) =
1

Γ(α)

∫ t

0
(P1(τ,SHn−1)−P1(τ,SHn−2))(t − τ)α−1dτ,

κ2,n(t) = EHn(t)−EHn−1(t) =
1

Γ(α)

∫ t

0
(P2(τ,EHn−1)−P2(τ,EHn−2))(t − τ)α−1dτ,

κ3,n(t) = IHn(t)− IHn−1(t) =
1

Γ(α)

∫ t

0
(P3(τ, IHn−1)−P3(τ, IHn−2))(t − τ)α−1dτ,

κ4,n(t) = THn(t)−THn−1(t) =
1

Γ(α)

∫ t

0
(P4(τ,THn−1)−P4(τ,THn−2))(t − τ)α−1dτ,

κ5,n(t) = RHn(t)−RHn−1(t) =
1

Γ(α)

∫ t

0
(P5(τ,RHn−1)−P5(τ,RHn−2))(t − τ)α−1dτ,

κ6,n(t) = SVn(t)−SVn−1(t) =
1

Γ(α)

∫ t

0
(P6(τ,SVn−1)−P6(τ,SVn−2))(t − τ)α−1dτ,

κ7,n(t) = IVn(t)− IVn−1(t) =
1

Γ(α)

∫ t

0
(P7(τ, IVn−1)−P7(τ, IVn−2))(t − τ)α−1dτ. (7)

The prerequisites are: SH0(t)= SH(0), EH0(t)=EH(0), IH0(t)= IH(0), TH0(t)=TH(0),
RH0(t) = RH(0), SV0(t) = SV (0), IV0(t) = IV (0).
By applying the norm to the first equation of the system 7, we obtained

||κ1,n(t)||= ||SHn(t)−SHn−1(t)||

= || 1
Γ(α)

∫ t

0
(P1(τ,SHn−1)−P1(τ,SHn−2))(t − τ)α−1dτ||

≤ 1
Γ(α)

∫ t

0
||(P1(τ,SHn−1)−P1(τ,SHn−2))(t − τ)α−1dτ||. (8)

6
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Using Lipchitz condition 5, we get

||κ1,n(t)|| ≤
1

Γ(α)
ζ1

∫ t

0
||κ1,n−1(τ)dτ||. (9)

Similarly,

||κ2,n(t)|| ≤
1

Γ(α)
ζ2

∫ t

0
||κ2,n−1(τ)dτ||, ||κ3,n(t)|| ≤

1
Γ(α)

ζ3

∫ t

0
||κ3,n−1(τ)dτ||,

||κ4,n(t)|| ≤
1

Γ(α)
ζ4

∫ t

0
||κ4,n−1(τ)dτ||, ||κ5,n(t)|| ≤

1
Γ(α)

ζ5

∫ t

0
||κ5,n−1(τ)dτ||,

||κ6,n(t)|| ≤
1

Γ(α)
ζ6

∫ t

0
||κ6,n−1(τ)dτ||, ||κ7,n(t)|| ≤

1
Γ(α)

ζ7

∫ t

0
||κ7,n−1(τ)dτ||.

(10)

As a result, it yields
SHn(t) = ∑

n
i=1 κ1,i, EHn(t) = ∑

n
i=1 κ2,i, IHn(t) = ∑

n
i=1 κ3,i, THn(t) = ∑

n
i=1 κ4,i,

RHn(t) = ∑
n
i=1 κ5,i, SVn(t) = ∑

n
i=1 κ6,i, IVn(t) = ∑

n
i=1 κ7,i.

This theorem will be used to illustrate the next theorem.

Theorem 4.2. The solution of the fractional model 2 exists and will be unique, if we
acquire some tα such that

1
Γ(α)

ζitα < 1, i = 1,2,3, ...,7.

Proof: Applying equations 9 and 10 recursively, we have

||κ1,n(t)|| ≤ ||SHn(0)||
[

1
Γ(α)

ζ1t
]n

, ||κ2,n(t)|| ≤ ||EHn(0)||
[

1
Γ(α)

ζ2t
]n

,

||κ3,n(t)|| ≤ ||IHn(0)||
[

1
Γ(α)

ζ3t
]n

, ||κ4,n(t)|| ≤ ||THn(0)||
[

1
Γ(α)

ζ4t
]n

,

||κ5,n(t)|| ≤ ||RHn(0)||
[

1
Γ(α)

ζ5t
]n

, ||κ6,n(t)|| ≤ ||SVn(0)||
[

1
Γ(α)

ζ6t
]n

,

||κ7,n(t)|| ≤ ||IVn(0)||
[

1
Γ(α)

ζ7t
]n

. (11)

As a result, the existence and continuity are established. To illustrate that the above
relations formulate the solution of the model 2, we assume the following:

SH(t)−SH0(t) = SHn(t)−∆1n(t), EH(t)−EH0(t) = EHn(t)−∆2n(t), (12)

IH(t)− IH0(t) = IHn(t)−∆3n(t), TH(t)−TH0(t) = THn(t)−∆4n(t), (13)

RH(t)−RH0(t) = RHn(t)−∆5n(t), SV (t)−SV0(t) = SVn(t)−∆6n(t), (14)

7

146

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 31, NO.1, 2023, COPYRIGHT 2023 EUDOXUS PRESS, LLC

Chandrali Baishya et al 140-157



IV (t)− IV0(t) = IVn(t)−∆7n(t). (15)

In order to achieve the desired outcomes, set that

||∆1n(t)||= || 1
Γ(α)

∫ t

0
(P1(τ,SH)−P1(τ,SHn−1))dτ|| (16)

This implies,

||∆1n(t)|| ≤
1

Γ(α)
ζ1||SH −SHn−1 ||t. (17)

Continuing the same procedure recursively, we get

||∆1n(t)|| ≤
(

1
Γ(α)

ζ1t
)n+1

M. (18)

At certain tα , we have

||∆1n(t)|| ≤
(

1
Γ(α)

ζ1tα

)n+1

M. (19)

From equation [?], we observe that ||∆1n(t)|| approaches to 0 as n tends to ∞, provided(
1

Γ(α)ζ1tα

)
< 1. Similarly, it may be demonstrated that

||∆2n(t)||, ||∆3n(t)||, ||∆4n(t)||, ||∆5n(t)||, ||∆6n(t)||, ||∆7n(t)|| tends to 0. Hence the proof.
We shall now demonstrate the uniqueness for the solution of the system 2. Let us as-
sume that there is a different set of solutions, namely ŜH , ÊH, ÎH , T̂H , R̂H , ŜV , ÎV for
the system 2. Then, as a result of the first equation, we have

SH(t)− ŜH(t) =
1

Γ(α)

∫ t

0
(P1(t,SH)−P1(t, ŜH))dτ. (20)

Using the norm, the equation above becomes:

||SH(t)− ŜH(t)||=
1

Γ(α)

∫ t

0
||(P1(t,SH)−P1(t, ŜH))dτ||. (21)

By applying the Lipschitz condition,

||SH(t)− ŜH(t)|| ≤
1

Γ(α)
ζ t||SH − ŜH ||.

This results in,

||SH(t)− ŜH(t)||
(

1− (1−α)

Γ(α)
ζ t
)
≤ 0.

Since
(

1 − 1
Γ(α)ζ1t

)
> 0, we much have ||SH(t)− ŜH(t)|| = 0. This implies

SH(t) = ŜH(t).

8
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5 Boundedness

In this Section, we have established the boundedness of the solution of the system 2.

Theorem 5.1. The solution of the system 2 is uniformly bounded.

Proof. Considering the function, L(t)= SH(t)+EH(t)+IH(t)+TH(t)+RH(t)+SV (t)+
IV (t).
and applying fractional derivative on it, we get

C
t0Dα

t L(t)+dL(t) = C
t0Dα

t [SH(t)+EH(t)+ IH(t)+TH(t)+RH(t)+SV (t)+ IV (t)]

+d[SH(t)+EH(t)+ IH(t)+TH(t)+RH(t)+SV (t)+ IV (t)]

= r+λ −Λ(IH +TH)+ν −φ(SV + IV )+d(SV + IV )

≤ r+λ +ν +dSV +dIV . (22)

The solution exists and is unique in
0= {(SH ,EH , IH ,TH ,RH ,SV , IV )/max{|SH |, |EH |, |IH |, |TH |, |RH |, |SV |, |IV |} ≤M}.
The above inequality yields,

C
t0Dα

t L(t)+dL(t)≤ r+λ +ν +2dM.

By the Lemma 2, we get

C
t0Dα

t L(t)≤ (L(t0)−
1
d
(r+λ +ν+2dM)Eα [−η(t−t0)α ]+

1
d
(r+λ +ν+2dM)→ r+λ +ν+2dM

as t → ∞. Therefore, all the solution of the system 2 that initiates in 0 remained
bounded in
Θ = {(SH ,EH , IH ,TH ,RH ,SV , IV ) ∈ 0+|L(t)≤ r+λ +ν +2dM+ ε, ε > 0}.

6 Existence of points of equilibrium

In this section, we find the points of equilibrium of the system 2. We have the following
points of equilibrium for the fractional order system 2:

1. The disease-free equilibrium point is ℑ̄ = ( r+λ (1−σ)
d+ρ

,0,0,0, ρ(r+λ )+dλσ

d2+dρ
, ν

φ
,0)

and it always exists.

2. The endemic equilibrium point ℑ̃=(S̃H , ẼH , ˜IH , T̃H , R̃H , S̃V , ĨV ) exists if νθ 2µβ1β2(1−
ξ )(r+λ (1−σ))> φ 2(d+µ)(d+ρ)(d+Λ+ψ). Coexistence equilibrium point
can be obtained by solving the algebraic equations given below:

r+(1−σ)λ −θβ1S̃H ĨV −ρ S̃H −dS̃H = 0, θβ1S̃H ĨV −µẼH −dẼH = 0,

9
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(1−ξ )µẼH −ψ ˜IH − (d +Λ) ˜IH = 0, ξ µẼH − (d +Λ)T̃H = 0,

ψ ˜IH +σλ +ρ S̃H −dR̃H = 0, ν −θβ2S̃V ˜IH −φ S̃V = 0,

θβ2S̃V ˜IH −φ ĨV = 0.

Solving these equations we obtain,

S̃H =
r+λ (1−σ)

d +ρ + ĨV θβ1
,

ẼH =
ĨV θβ1(r+λ (1−σ))

(d +µ)(d +ρ + ĨV θβ1)
,

T̃H =
ĨV θ µξ β1(r+λ (1−σ))

(d +µ)(d +Λ+ψ)(d +ρ + ĨV θβ1)
,

R̃H =
1
d

(
λσ +

ρ(r+λ (1−σ))

d +ρ + ĨV θβ1
+

ĨV φ 2ψ

θβ2(ν − ĨV φ)

)
,

˜IH =
ĨV φ 2

θβ2(ν − ĨV φ)
,

S̃V =
ν(ν − ĨV φ)

φ(ν − ĨV φ)+ ĨV φ 2 ,

ĨV =
−φ 2(d +µ)(d +ρ)(d +Λ+ψ)+νθ 2µβ1β2(1−ξ )(r+λ (1−σ))

θφ 2β1(d +µ)(d +Λ+ψ)+θ µβ2(1−ξ )(r+λ (1−σ))
.

Clearly, ĨV > 0 if νθ 2µβ1β2(1−ξ )(r+λ (1−σ))> φ 2(d+µ)(d+ρ)(d+Λ+

ψ) and hence the endemic equilibrium point exists if this condition is satisfied.

7 Numerical Simulation

Here, we have evaluated the model 2 numerically taking into consideration the influ-
ences of various parameters on the dynamics of YF transmission. We have considered
the initial values as: SH0(t)= 0.62, EH0(t)= 0.23, IH0(t)= 0.1, TH0(t)= 0.05, RH0(t)=
0, SV0(t) = 0.9, IV0(t) = 0.1. Values of the parameters are considered as:r = 4.94

105 , θ =

3, β1 = 0.6, β2 = 0.5, σ = 0.5
106 , λ = 1

106 , ρ = 0.01, d = 4.94
105 , µ = 0.31, ξ = 0.15, ψ =

0.143, Λ = 3.5
10 , ν = 0.051, φ = 0.051. It is assumed that 50 of the immigrants are

vaccinated. From the Figures 1 it is visible that, the daily biting rate θ influences the
infected human and infected mosquito population. For α = 1, these populations tends
to grow and reaches the peak, and thereafter they start to decrease and tend to extinc-
tion. As the fractional values are incorporated, it is notable that, there is a delay in
extinction of the IH and IV population. As the value of α further decreases, we notice
that infections in human and mosquitoes are never eradicated. In fact a small portion
of population are always with infection.
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Figure 1: Profile of IH and IV for distinct values of θ for (A) α = 1, (B) α = 0.65, (C)
α = 1, (D) α = 0.65
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Figure 2: Profile of IH and IV for distinct values of β1 for (A) α = 1, (B) α = 0.65, (C)
α = 1, (D) α = 0.65
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Figure 3: Profile of IH and IV for distinct values of β2 for (A) α = 1, (B) α = 0.65, (C)
α = 1, (D) α = 0.65
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Figure 4: Profile of IH and RH for distinct values of (A) ρ and α = 1, (B) ρ and
α = 0.65, (C) ψ and α = 1, (D)ψ and α = 0.65

The variations in the profiles of IH and IV for different values of β1 are depicted in
Figures 2. Figures 3 shows the variation in the profile of IH and IV for distinct values of
β2. From the above graphs it is visible that, as the value of β1 and β2 increases, the IH

and IV population tends to grow and attains maximum value. Subsequently, they start
decreasing and reach nullity which results in extinction of the IH and IV population. But
decrease in the value of fractional derivative results in existence of the infection among
the populations for longer duration. Figure 4 represents the varied profile of IH for
discrete values of effective vaccination rate of susceptible population. From the figure
it is notable that, as the vaccination rate increases, the infected host population keeps
on decreasing. Further, as the time progress, the infection extincts due to the influence
of vaccination. As the fractional values are introduced, a fall in the infected population
peak is notable. Figure 4 also depicts the profile of RH for different recovery rate ψ

and various fractional values. It may be observed that, as the value of recovery rate ψ

is increased, the total recovery population also increases and leads to reduction of the
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Figure 5: Profile of TH for distinct values of ξ for (A) α = 1, (B) α = 0.95, (C)
α = 0.85, (D) α = 0.65

epidemic in the host population.Figure 5 presents the dynamics of the toxic population
as the proportion of exposed population deteriorates into toxic case at the rate ξ . As
the value of ξ increases, the population of toxic ones grows. Further, since there is no
recovery in toxic population, they die and hence population tends to extinction.

8 Conclusion

The fractional dynamics of the YF model is investigated in the present work in Ca-
puto sense. Boundedness, existence, continuity, and uniqueness of the solution have
been established. In the figures we have demonstrated the profile of the infected hu-
man and infected vectors under the influence of the biting rate, transmission rate from
mosquitoes to human and human to mosquitoes, vaccination rate of susceptible popu-
lation, recovery rate, and toxicity rate in presence of the Caputo fractional derivatives.
We have observed that the Caputo derivative provides more realistic information than
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that of the classical derivative. The reseason behind this claim is that it does not show
the extinction of the infection from the environment. Graphical representations es-
tablish that the Adams-Bashfort-Moulton predictor-corrector method gives expected
depiction of the results for analyzing the dynamics of the projected model. Numerical
analysis of disease dynamics in the framework of various fractional derivatives can en-
rich the applications of mathematics for betterment of humankind as a future direction
of studies of fractional calculus.
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