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ABSTRACT 
Recently, wavelet theory has emerged as a reliable and promising tool in the fields of engineering and 
research. Wavelets are effectively employed in swift algorithms for informal execution. This study offers a 
comprehensive stability analysis of a wavelet lifting method utilising both orthogonal and biorthogonal 
wavelets to address the dynamic stability issue. The application of the Reynolds equation to the 
lubrication of micropolar fluids is exceptionally innovative. Wavelet approaches are recognised for their 
ability to effectively address issues involving both spatial and temporal variations. Consequently, they are 
appropriate for addressing dynamic fluid equations, including the Reynolds equation. 
 
Keywords: Stability analysis, Lifting scheme; Orthogonal and biorthogonal wavelets; Reynolds equation; 
Micro-polar fluid lubrication. 
 
1. INTRODUCTION 
Micropolar fluids indeed present a fascinating area of study within fluid dynamics, particularly due to 
their unique characteristics involving suspended particles with rotational inertia and microstructure 
effects. Here are some points that can further elaborate on the significance and applications of micropolar 
fluids [1, 2]: 
I. Definition and Characteristics:Micropolar fluids are characterized by the inclusion of 

microstructural effects such as local rotational inertia and couple stresses. Unlike classical Newtonian 
fluids, which assume a continuum without internal structure, micropolar fluids model the internal 
rotation and translation of small particles within the fluid. 

II. Origin and Development: The theory of micropolar fluids was introduced by Eringen as an extension 
of continuum mechanics to incorporate microstructural effects. This includes the inertia of rotational 
motion and the interaction between rotation and translation of fluid elements, which are not 
accounted for in classical fluid dynamics. 

III. Applications:Micropolar fluid models find applications in a wide range of fields, including: 
 Lubricants: Studying the behavior of micropolar lubricants is crucial for understanding friction and 

wear mechanisms at small scales, relevant for improving efficiency in machinery. 
 Suspensions and Colloids: Understanding the flow properties of suspensions and colloidal fluids, 

where particles exhibit complex interactions and contribute significantly to the overall rheology. 
 Biological Fluids: Modeling blood flow, where the suspension of red blood cells affects viscosity and 

flow patterns, is another critical application. 
 Polymer Dynamics:Micropolar fluid theory aids in understanding the flow behavior of polymer melts 

and solutions, where polymer chains can exhibit rotational and translational degrees of freedom. 
IV. Advantages in Non-Newtonian Flow:Micropolar fluid models are particularly useful in describing 

non-Newtonian behavior, where shear-thinning or shear-thickening effects are observed due to the 
microstructural interactions. This makes micropolar fluids applicable to a broader range of industrial 
and biological fluids compared to classical fluid models. 

V. Numerical and Theoretical Challenges: Solving equations for micropolar fluids often involves 
complex mathematical formulations, requiring advanced numerical techniques like the wavelet lifting 
scheme you mentioned. These methods are crucial for accurately capturing the microscale effects 
while maintaining computational efficiency. 
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Micropolar fluid theory has gained significant attention in research due to its applicability across various 
industrial processes and phenomena that classical Navier-Stokes theory struggles to adequately describe. 
Micropolar fluid theory has been employed by researchers to examine various bearing systems, including 
slider bearings. Slider bearings are mechanical devices that facilitate and direct the motion of machine 
components, such as shafts or rods, by minimising friction and wear via fluid lubrication. Journal 
bearings, squeeze film bearings, and porous bearings have demonstrated certain advantages of 
micropolar fluids over Newtonian lubricants, including enhanced load-carrying capacity and prolonged 
time of approach for squeeze film bearings. Naduvinamani and Marali [7], Naduvinamani et al. [8], and 
Naduvinamani and Santosh [9] investigated the effects on modified Reynolds equations for micropolar 
fluid lubrication utilising the finite difference method [FDM]. This work proposes a stability analysis of 
the wavelet lifting scheme for solving the modified Reynolds equation in micropolar fluid lubrication. 
Wavelet analysis has fundamentally transformed signal and image processing since its emergence in the 
1980s. This is a comprehensive examination of its importance, evolution, and uses by Stromberg [10], 
Grossmann and Morlet [11], and Meyer [12]. The multiresolution approximation by Mallat and Meyer 
resulted in the orthogonal wavelet family developed by Daubechies.Wavelets have found widespread 
applications in numerous engineering fields, chiefly owing to their efficacy in signal analysis, time-
frequency analysis, and numerical approaches for resolving systems of equations.Early research on 
wavelet-based approaches is documented in Dahmen et al.[16]. A compilation of the discrete wavelet 
transforms (DWT) and the recently announced wavelet-based multigrid technique as referenced in [17-
19]. Shiralashetti and Kantli [20, 21] proposed a modified wavelet multigrid approach for solving 
boundary value problems. The biorthogonal wavelet approach is also utilised for solving elliptic partial 
differential equations [22]. The integration of wavelet transforms and multigrid approaches provides an 
effective toolkit for efficiently addressing intricate computational challenges. It utilises the capacity of 
wavelets to depict signals at various resolutions and the iterative enhancement of multigrid techniques to 
attain precise solutions with diminished computing expense. The wavelet-based lifting approach was 
presented by Sweldens [24], enabling advancements in the properties of established wavelet transforms. 
The approach offers numerous numerical advantages, including a diminished number of operations, 
which are essential in the context of iterative solvers. Shiralashetti and Kantli [25, 26] offer a wavelet-
based lifting technique as an innovative method to address complex issues in elastohydrodynamic 
lubrication and nonlinear partial differential equations. Its implementation in practical situations 
illustrates its potential advantages regarding precision, computational efficiency, and relevance to 
intricate engineering and scientific challenges. This demonstrates the method's potential to substantially 
enhance computational techniques in these domains. 
The rest of the article is ordered as follows:Preliminaries of waveletsare given in section 2. Section 
3devotes the mathematical formulation of problem.Numerical stabilityof the problem is presented in 
section 4. Section 5 results and discussion. Finally, concludingremarks of the paper are discussed in 
section 6. 
 
2. Preliminaries of wavelets 
The orthogonality and smoothness conditions required for scaling and wavelet functions form the basis 
for the simultaneous construction of orthogonal and biorthogonal wavelet coefficients. The value of the 
filter coefficients is constrained by dilation equations due to these circumstances. We possess two distinct 
functions that delineate the refinement relation. These functions are referred to as scaling functions and 

wavelet functions, both of which encompass coefficients 
{ }fmh

 and 
{ }fmg

. The coefficients dictate the 
form of the scaling and wavelet functions, which furthermore function as signal filters. The coefficients 
dictate the application in which the specific wavelet can be utilised. Although a substantial amount of 
information exists regarding filter design for certain applications, it remains inaccessible to the typical 
reader. This is because nearly all methods utilise frequency domain and complex analytical concepts to 
develop the filter. 
 
2.1. Wavelet filters 
The primary categories of filters are finite impulse response (FIR) filters. The primary attributes of these 
filters are their advantageous time-localization properties. These filters are derived from wavelets with 
compact support and are designed such that, 

10 for 0 andfnh n n L    

in which 1L is the length of the filter. 

The minimum requirements for these compact FIR filters are: 
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a) The length of the scaling filter fnh must be even. 

b) 2fn

n

h   

c) 2( ) ( ),fn fn m

n

h h m   

in which ( )m  is the Kronecker delta, such that, it is equal to 1 for 0m  or 0 for 1m  . 

 
2.2.Haar wavelet filter coefficients 

We know that low pass filter coefficients
0 1

2 2
, ,

2 2

T

T

f f fh h h
 

     
 

and high pass filter 

coefficients
0 1

2 2
, ,

2 2

T

T

f f fg g g
 

     
 

play an important role in the decomposition.  

 
2.3.Daubechies wavelet filter coefficients 
Daubechies introduced scaling functions that satisfy the aboverequirements and distinguished by having 

the shortest possible support. The scaling function   has support  10, 1L  , while the corresponding 

wavelet   has support in the interval  1 11 / 2, / 2L L . We have filter coefficients [27], 

0 1 2 3

1 3 3 3 3 3 1 3

4 2 4 2 4 2 4 2
, , , , , ,

T

T

f f f f fh h h h h
    

     
 

are low pass filter coefficients 

and 0 1 2 3

1 3 3 3 3 3 1 3

4 2 4 2 4 2 4 2
, , , , , ,

T

T

f f f f fg g g g g
    

      
 

are the high pass 

filter coefficients. 
 
2.4. Biorthogonal (CDF (2, 2)) wavelet filter coefficients 
In numerous filtering applications, symmetrical filter coefficients are required to achieve enhanced 
accuracy. All orthogonal wavelet systems, with the exception of Haar, lack symmetrical coefficients. 
However, Haar is inadequate for numerous applications in science and engineering. A biorthogonal 
wavelet system can be designed to possess this characteristic. This serves as the impetus for the design of 
such wavelet systems. The subsequent biorthogonal (CDF (2, 2)) wavelet filter coefficients are as follows: 
[28, 29], 

Low pass filters: 0 1 2

1 1 1
, , , ,

2 2 2 2 2
f f f fh h h h

 
     

 
 and  

0 1 2 3 4

2 2 3 2 2 2
, , , , , , , ,

8 4 4 4 8
f f f f f fh h h h h h

  
     

 

      . 

Similarly, high pass filters: 4( 1)m

fm f mg h     and 
1

2( 1)m

fm f mg h

  . 

 
3. Mathematical formulation of the problem 
The basic equations governing the flow of micropolar lubricants [1] under the usual assumptions of 
lubrication theory for thinfilms are [30] 

2

3

2
0

2

vu p

y y x


 

  
    

   
                                     (3.1) 

0
p

y





                   (3.2) 
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2

1

2
0

2

vw p

y y z


 

  
    

   
(3.3) 

2

1
12

2 0
v w

v
y y

  
 

  
 

                              (3.4) 

2

3
32

2 0
v u

v
y y

  
 

  
 

                              (3.5) 

0
  

  
  

u v w

x y z
               (3.6) 

where u, v and w are the velocity components of the lubricant in thex, y and z direction, respectively and 

 1 2 3, ,v v v are micro rotational velocity components. And also   is the spin viscosity,   is the viscosity 

coefficient for micropolar fluids, pis the pressure and   is the Newtonian viscosity coefficient. 

The flow of micropolar lubricants in a porousmatrix governed by the modified Darcy law, which 
account for the polar effects is given by 

 
* *k

q p
 


 


(3.7) 

where  * * * *, ,q u v w is the modified Darcy velocity vector, k is the permeability of the porous matrix, 

*p  is the pressure in the porous matrix and 
*u , 

*v , 
*w  are the modified Darcy’s velocity components in 

the x , y , z  directions,respectively, they are 

 

*
* k p

u
x 

 


 
, 

 

*
* k p

v
y 

 


 
, 

 

*
* k p

w
z 

 


 
. 

Due to continuity of the fluid in the porous matrix, the pressure 
*p  satisfies the Laplace equation 

2 * 2 * 2 *

2 2 2
0

  
  

  

p p p

x y z
.                                                  (3.8) 

The relevant boundary conditionsfor the velocity components are 

(i) At the bearing surface  0y  

0 u w , *v v (3.9a) 

1 3 0v v                                (3.9b) 

(ii) At the journalsurface  y h  

0 u w , 
h

v
t





(3.10a) 

1 3 0v v  (3.10b) 

The generalized Reynolds type equation is given by Naduvinamani et al. [8] 

 
 

 
 

12 12
, , , , 12 6

kH p kH p h h
f h l f h l U

x x z z t x

 
   

   

           
                             

(3.11) 

where 

  3 2 2, , 12 6 coth
2

h
f h l h l h lh

l


 

 
    

 
(3.12) 

and 1
x

h a
L

 
  

 
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where U  is the sliding velocity, H is the porous layer thickness, 

1/2

2




 

 
  

 
is the coupling 

number, h is the film thickness function and 

1/2

4
l





 
  
 

 is the characteristic length.  

Introducing the following non-dimensional quantities; 

0

0

2

1 1 1 1 13

0 0

, , , , , ,


      m

mm m

phh Ut x z kH l
h P t x z l

h LU L L B h h
 

where L  is length of the bearing, t is the time and B is the width of the bearing. 

After using the above quantities, the above modified Reynolds equation can be expressed in a non-
dimensional form as 

   
2 2

1 1 1 1 1 12 2 2

1 1 1 1

1 1 1
, , 12 , , 12 6

1 1

P P
f h l f h l

x x z z

 
    

  

                 
             

                    
(3.13) 
where 

  3 2 2 1
1 1 1 1 1 1 1 1

1

, , 12 6 coth
2

h
f h l h l h l h

l


 

 
    

 
(3.14) 

and  1 11h x  , where 
0m

a

h

 
 
 

is the slider-profile parameter, a is the difference between the 

inlet and outlet film thickness and 
B

L
  is aspect ratio of the bearing. The steady and dynamic 

characteristics of the porous bearings are obtained by using the perturbations in steady-state minimum 

film thickness at the outlet 
0mh . 

The boundary conditions for the fluid film pressure are 

0P   at  
1 1 1 10, 1, 0, 1   x x z z (3.15) 

The modified Reynolds equation is solved numerically by using FDM. In finite increment format, the Eq. 
(4.13) can be expressed as 

, 1 1, 2 1, 3 , 1 4 , 1 5i j i j i j i j i jP c P c P c P c P c                                      (3.16) 

The coefficients 0c to 5c are defined as 

2
2 2

1 1 02
1 ,

2

1
12

1i j
c b f c


 



  
   

  
                              (3.17) 

2
2 2

2 1 02
1 ,

2

1
12

1i j
c b f c


 



  
   

  
                              (3.18) 

2

3 4 1 , 02

1
12

1
i jc c f c






  
    

  
                              (3.19) 

 
22

5 1 06c z c                                 (3.20) 

where 
2 2 2

2 2

0 1 1 1 ,2 2 2
1 , 1 ,

2 2

1 1 1
12 12 2 12

1 1 1
i j

i j i j
c b f f f

  
   

   

          
             

          
     (3.21) 

and 
1 1b z x   . 

The fluid film pressure P is calculated by using FDM.  

The load carrying capacity W  isobtained by integrating the fluid film pressure over the film region. 
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2

2

0 0 0


 

 

  
x L z B

m x z

UL B
W pdxdz

h
,                              (3.22) 

which is in non-dimensional form 
1 1

1 1

1 12

0
1 1 12

0 0

x z

m

x z

Wh
W Pdx dz

UL B

 

 

    ,                          (3.23) 

1

, 1 1

0 0 

  
MM

i j

i j

P x z  

where 1M  and 
1 1M   are the grid-point numbers in the 1x and 1z directions respectively, having 

   11 1N M M    equations with N unknowns to determine. 

 
4. Numerical Method and Stability of the problem 
By applying the FDMto Eq. (3.16), which gives the system of algebraic equations,  

Au F (4.1) 

where A  is N N  coefficient matrix, F  is 1N   matrix and u  is 1N   matrix to be determined. 

By solving Equation (4.1), we derive an approximate solution. The needed answer is the sum of the 
approximate solution and the error, as the approximate solution contains some error. Numerous 
techniques exist to mitigate such errors and provide an accurate solution. Among them are multigrid, 
wavelet multigrid, modified wavelet multigrid, and biorthogonal wavelet multigrid approaches, among 
others. We are currently employing an advanced technique utilising orthogonal and biorthogonal 
wavelets known as the wavelet lifting scheme. Recently, lifting techniques have proven to be highly 
beneficial in signal analysis and image processing within the realms of science and engineering. However, 
it currently encompasses approximations in numerical analysis. This discussion pertains to the algorithm 
[23] of the wavelet lifting method as follows. 
 
4.1. Wavelet lifting schemes 
Daubechies and Sweldens [30] shown that any wavelet filter may be expressed as a series of lifting 
steps.Additional information regarding the benefits and other significant structural advantages of the 
lifting technique is available in [23, 24]. The novel methodologies are exemplified through various 
numerical problems, with the findings shown in the subsequent section. 
 
4.2. Numerical Stability 
For the purpose of establishing the validity and applicability of these wavelet algorithms, the numerical 
stability of the Haar Wavelet Lifting Scheme (HWLS), the Daubechies Wavelet Lifting Scheme (DWLS), and 
the Biorthogonal Wavelet Lifting Scheme (BWLS) is demonstrated in this article. 
 Within the context of demonstrating the utility of the technique, we take into consideration the modified 
Reynolds equation. With the assistance of the equation (3.16), we are able to ascertain the pressure of the 
fluid layer, and the answers to this equation are presented in the figures that follow for a number of 
different factors. 

 
(a)l1=0 (Newtonian)   (b)l1=0.2 

Figure 1.Comparison of numerical solutions of fluid film pressure P of problem for N=256 for 1.6  , 

2.5  , 0.25   and 0.5  . 
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(a) 0.25  (b) 0.5   

Figure 2. Comparison of numerical solutions of fluidfilm pressurePof test problem for N=256 for 1.6 

, 2.5  , 
1 0.15l   and 0.2  . 

 
(a) 0.05  (b) 0.075   

Figure 3.Comparison of numerical solutions of fluidfilm pressurePof test problem for N=256 for 1.6  , 
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Table 1. The maximum residual with CPU time (in seconds) versus grid points of problem. 

N Method maxRes  Setup time 
Running 
time 

Total time 

 FDM 8.8080e-03 3.6203e+00 7.5332e-02 3.6956e+00 

8X8 
HWLS 8.9070e-03 7.1466e-04 1.3209e-03 2.0355e-03 
DWLS 8.9070e-03 6.0348e-04 6.1302e-03 6.7337e-03 
BWLS 8.9060e-03 5.0632e-04 1.3305e-03 1.8368e-03 

 FDM 5.8205e-03 3.3504e+00 4.9923e-02 3.4003e+00 

16X16 
HWLS 5.8105e-03 6.9447e-04 1.2805e-03 1.9750e-03 
DWLS 5.8105e-03 5.9766e-04 6.0915e-03 6.6892e-03 
BWLS 5.8100e-03 4.8202e-04 2.6753e-03 3.1573e-03 

 FDM 9.5308e-04 1.0617e+01 5.6666e-02 1.0674e+01 

32X32 
HWLS 9.5350e-04 6.7155e-04 1.2716e-03 1.9432e-03 
DWLS 9.5355e-04 5.8500e-04 6.0871e-03 6.6721e-03 
BWLS 9.5208e-04 4.8545e-04 2.7050e-03 3.1905e-03 
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per the definition. The characteristic length 1l  
is the second parameter, responsible for delineating the 

interaction between the micropolar fluid and the film gap. The permeability parameter   
is utilised to 

analyse the influence of permeability on the static and dynamic qualities of bearings. It has been observed 

that 
1 0l 

 
the issue can be simplified to the corresponding Newtonian scenario.  

 Figure 1 illustrates the variation in the non-dimensional fluid film pressure P for several distinct values 

of characteristic length 1l . Consequently, 1l  an increase in values has led to a slight rise in P. The variation 

in non-dimensional fluid sheet pressure P is depicted in Figure 2, illustrating its dependence on different 
coupling number   values. Moreover, it has been found that the film pressure significantly escalates 

with an increase in the value of  . Figure 3 illustrates the fluctuation of the non-dimensional pressure P 

for various values of   the permeability parameter. The pressure P decreases as the values   
in the 

equation grow. 
Figure 4 illustrates the variance in dimensionless load-carrying capacity as a function of the profile 
parameter for several distinct values of the characteristic length. Moreover, it has been found that it 
expands as the values increase. An important element to examine is the critical value of 1.6, which is the 
point at which W1 attains its maximum. Furthermore, it is crucial to emphasise that the influence of 
characteristic length l1 increases W1 relative to the Newtonian scenario, where l1 is zero.  
Figure 5 illustrates the variation of W1 in relation to the profile parameter   for various values of the 

coupling number. The observation that the critical value decreases as the value grows is noteworthy. 
Figure 6 illustrates the variation of W1 in relation to different values of the permeability parameter ψ. 
The value of W1 grows as the value of ψ falls. Furthermore, it is essential to note that the critical value at 
which W1 attains its maximum value is. An elevation in ψ leads to an augmentation in value ψ. 
 
CONCLUSIONS 
This research aims to present an efficient wavelet lifting approach that incorporates both orthogonal and 
biorthogonal wavelets inside its framework. To illustrate the consistency of our methodology, we utilise 
this scheme to analyse the dynamic Reynolds equation that regulates micropolar fluid lubrication. The 
accuracy of our methodology is corroborated by numerical results presented in tables and figures, 
demonstrating the method's extensive applicability across many scientific and technical disciplines. 
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