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ABSTRACT 
Anonymizing individual text samples before dissemination, is an open research problem in Natural 
Language Processing (NLP). Significant efforts have been devoted to constructing such mechanisms by 
employing Local Differential Privacy (LDP) in the model training phase. However, LDP requires 
substantial noise in the update rule and often comes at the expense of the output language's quality. In 
this study, we address this limitation by introducing Global Differential Privacy (GDP). Specifically, we 
first train a generative language model in a differentially private manner and subsequently sample data 
from it. To do so, a novel idea of Prompt Variance Loss (PVL) is introduced, that enables the model to 
generate correct samples for a given instruction, thereby giving remarkable results. Experiments 
demonstrate that the synthetic datasets maintain privacy without leaking sensitive information from the 
original data as well as exhibit high suitability for training models and doing further analysis on real-
world data. Notably, we show that training classifiers on private synthetic data outperforms directly 
training classifiers on real data with DP-SGD.  
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INTRODUCTION  
In the realm of machine learning, much emphasis has been laid on fostering trust, transparency, and 
accountability while deploying machine learning models across various domains and applications. Many 
authors have critically discussed the contrast between three fundamental aspects, interpretability, 
accuracy and privacy. The quest for interpretability and accuracy aims to uncover the inner workings of 
machine learning models, giving details about the rationale behind specific decisions, which not only builds 
trust in the model's predictions but also enables domain experts to understand and potentially act upon its 
outputs. However, this pursuit of interpretability and accuracy has a significant side-effect. As such, it can 
inadvertently breach privacy, because itunveils sensitive information about individual data points leading 
to compromising confidentiality and anonymity. Addressing this issue is a formidable challenge, 
particularly in the context of vast and complex datasets commonly encountered in contemporary 
applications. Despite its paramount importance, this issue has largely remained unexplored within the 
research landscape. 
In order to address this interplay among interpretability, privacy, and accuracy, several authors have given 
insights about Differential Privacy (DP), a seminal step towards measuring ‘privacy loss’ given by Dwork 
and Roth 2014. In simple words, the original model of DP measures privacy loss by considering adjacent 
datasets that differ by at most one record. The concept of privacy loss measures the degree to which an 
algorithm's output reveals the presence of an individual datapoint within the dataset. In a nutshell, it offers 
two main advantages. First, it ensures post-processing invariance that says that applying any data-
independent mechanism to a DP quantity does not alter the privacy level of the resulting quantity. Second, 
it ensures composability which states that combining DP quantities degrades privacy in a quantifiable way.  
In the present paper, we employ DP based optimization to craft highly accurate and fluent synthetic 
dataset that embody specific desired attributes such as sentiment or topic, while faithfully replicating the 
statistical properties of the personal or sensitive data. Experiments reveal that our synthetic datasets 
maintain data integrity, exhibiting high language quality and suitability for training models for subsequent 
analysis on real-world datasets. Thus, the paper offers a promising avenue for the development of ethically 
grounded and socially beneficial deep neural network classification model with DP-SGD as we combine 
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state-of-the-art deep learning methods with advanced privacy-preserving mechanisms, training neural 
networks with the concept of privacy budget. 
 
BACKGROUND AND LITERATURE REVIEW 
In this section we give formal introduction of Differential Privacy and explain the steps required to make a 
machine learning algorithm differentially private. To put in formal terms, consider an algorithm M and 
neighboring datasets Ɒ and Ɒꞌ   in such a manner that dataset Ɒꞌis obtained from Ɒ by removing one 
datapoint from Ɒ. By doing so, it is clear that datasets Ɒ and Ɒꞌ differ by a single entry only. Further, let M(Ɒ) 
and M(Ɒꞌ) denote outputs obtained by applying algorithm M on D and D’ respectively. Under this context, 
privacy loss (Lp) is defined as – 

ℒ (ο) = log
Pr(M(Ɒ)  = 0)

Pr(M(Ɒꞌ) = 0)
. . . . . . . . . . (1) 

where Pr(M(Ɒꞌ)=0) denotes the probability that M returns a specific output ‘o’. When the two probabilities 
in Eq. (1) exhibit similarity, even a highly proficient adversary, having knowledge of all entries in dataset Ɒ 
except for one, would find it challenging to identify the excluded datapoint, solely based on the algorithm's 
output. Conversely, if the two probabilities significantly diverge, it is straightforward to detect the absence 
of the single datapoint in datasetⱰꞌ thereby successfully quantifying how revealing an algorithm’s output is 
about the presence or absence of an individual entry in Ɒ. 

An algorithm M is termed as (ϵ, δ)-Differentially Private if and only if |Lℒ(o) | ≤ ϵ, ∀o with probability at least 
1 − δ. 
Making an algorithm differentially private requires,  introducing noise or randomness to the algorithm's 
computations in a controlled manner and ensuring that the presence or absence of an individual entry 
does not significantly alter the output. In general, following roadmap must be followed to achieve this – 
A. Define Sensitivity 
Sensitivity parameter (s) of the algorithm measures how much the output of the algorithm can alter when 
a single data point is present or absent in the input dataset. 
B. Introduce Noise or Randomness 
Noise or randomness is added to the algorithm's computations to mask individual contributions, based on 
the sensitivity of the algorithm and the desired level of privacy. This may be done using one of the 
following approaches – 
(i) Laplace Mechanism: Laplace-distributed noise is added to the output of the algorithm, proportional 
to the sensitivity of the function being computed. 
(ii) Gaussian Mechanism: The Gaussian-distributed noise is added to the output of the algorithm. 
(iii) Randomized Response Mechanism: The randomized response mechanism is commonly used for 
binary-valued data. It introduces randomization to the data before processing.  
C. Compute Cumulative Privacy Loss  
Given a sequence of computations of the algorithm, compute cumulative privacy loss introduced at each 
step, adjust the noise accordingly to maintain overall differential privacy guarantees.  
D. Evaluate Privacy Guarantee  
Assess the effectiveness of the differential privacy mechanism by measuring the privacy loss and the 
desired privacy guarantee. 
E. Iterate and Refine  
Adjust the privacy parameters and noise levels based on feedback and optimize the balance between 
privacy and utility. 
Some of the empirical works related to application of DP in neural networks was proposed in [3-5] where 
the concept of Differential Privacy Stochastic Gradient Descent (DP-SGD) for training deep neural 
networks with privacy guarantees has been introduced. An interesting study [6] explored DP in specific 
applications like human behavior prediction and text transformation, respectively. In [7] authors 
proposed privacy-and utility-preserving textual analysis via calibrated multivariate perturbations, while 
in [8], an overview of protecting user private-attribute information on social networks has been given. 
The idea of scalable and differentially private distributed aggregation in the shuffled model, authors in [9-
10] demonstrated scaling DP-SGD to large distributed settings and making it applicable for training deep 
neural networks on massive and distributed datasets. A comprehensive overview of privacy threats in 
machine learning and discusses various privacy-preserving techniques, including DP-SGD has been 
presented in [11].  
Wei et al. [12] investigated federated learning with differential privacy and Ma et al. [13] proposed RDP-
GAN, a Rényi-differential privacy based generative adversarial network.  [14] demonstrated the use of 
large language models as strong differentially private learners and authors have also explored privacy-
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preserving text representation learning using BERT[15]. Technical contributions as given in [16] 
introduced differentially private SGD with non-smooth losses, while in [17] authors have discussed 
stability and implicit bias of gradient methods. Fully adaptive composition in differential privacy 
addresses challenges in maintaining privacy guarantees in complex workflows [18-20]. 
Overall, the literature review reveals that there is a wide scope in integration of differential privacy into 
deep neural network training, spanning theoretical foundations, algorithmic developments, practical 
applications, and emerging challenges. These studies collectively contribute to advancing the state-of-the-
art in privacy-preserving deep learning classification model and pave the way for future research in this 
critical area. 
 
Privacy Guarantee Using Differentially Private Stochastic Gradient Descent (DP-SGD) 
In machine learning, Stochastic Gradient Descent (SGD) is considered as the most popular algorithm for 
minimizing the loss function to train the models. Rather than considering the entire dataset, SGD proceeds 
by updating parameters of the model by taking into account, either a single randomly chosen sample or a 
small subset from the dataset, at each iteration. Basic SGD gives understandable explanations for model 
decisions; however, does not concern about privacy preservation of training dataset. Differentially Private 
Stochastic Gradient Descent (DP-SGD) is the most important extension of basic SGD algorithm that ensures 
privacy guarantees for the training data by adding noise to the gradients computed during each iteration. 
This noise aids in protecting the privacy of individual data points thereby obscuring individual data 
contributions. By adding carefully calibrated noise to the gradients, DP-SGD ensures that the updates to the 
parameters do not reveal sensitive or private information about datasets. 
The update rule for DP-SGD is given by the following formula: 
θt+1 = θt −  η∇L θt + N 0, σ2I  ……… . . (2) 

where – 

(i) θ
t 
is the parameter vector iteration t 

(ii) 𝜂 is the learning rate 
(iii) ∇L θt  is the gradient of the loss function L with respect to θ computed on a mini-batch of data. 

(iv)N(0, σ
2
I) is the noise term sampled from a Gaussian distribution with mean 0 and variance σ2  

(v)I is the identity matrix 
To transform SGD into DP-SGD, certain algorithmic modifications are required to be incorporated in the 
underlying optimizer function. Each of these are discussed below-  
 

 
Figure 1. Model of Synthetic Data Generation using GDP optimizer 

 
(A) Noise Addition 
Incorporate noise into the gradient computation. This noise is drawn from a Gaussian distribution and 
scaled appropriately to achieve the desired level of privacy. 
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(B) Privacy Budget Management 
Privacy budget is the mechanism to quantify maximum amount of privacy loss that is allowed during the 
model training process. This budget is directly proportional to the amount of noise added to the gradients 
and must be allocated judiciously to balance privacy and utility. 
(C) Hyper parameter Tuning 
DP-SGD introduces additional hyperparameters, such as the noise scale (σ) and privacy budget, 
thatdetermine the desired trade-off between privacy and model accuracy. 
In summary, DP-SGD is preferred over SGD when privacy is a concern, as it provides strong guarantees 
against privacy breaches without sacrificing model performance significantly. By adding noise to the 
gradient computations and carefully managing the privacy budget, DP-SGD ensures that the trained models 
are robust against privacy attacks while still providing useful insights from the data. 
 
Model of Synthetic Data Generation With Global Differential Privacy (GDP) 
This section introduces a novel approach to anonymizing individual text samples using global differential 
privacy. The model proceeds by training a generative language model in a differentially private manner, 
which is then used for sampling data from it. By employing natural language prompts and introducing 
Prompt-Variance Loss (PVL), highly accurate and fluent textual datasets are created that possess desired 
attributes, while also resembling statistical properties of the training data.   
This section gives deeper insights into the behavior and underlying mechanisms of the synthetic data 
generation model depicted in Fig. 1. Following are the components of the system pipeline – 
(i) Personal/Sensitive Data- This comprises of large-scale data generated by individuals, often shared 
with third parties, for research purpose. However, this may involve numerous privacy risks which cannot 
be solely mitigated by pseudonymization. A variety of deanonymization attacks have been reported, that 
later allowed re-identification of individuals from tabulated data, such as movie ratings. An example is 
given in first two columns of table 1, that tabulates negative and positive sentiments for three product 
categories.  
(ii) Prompt Template- Prompt template contains slots for verbal expressions of desired attribute values. 
A typical example of prompt template is shown in Table 1.  

 
Table 1. Prompt Template 

Generate [Sentiment Type] Review For [Product 
Category] 
Sentiment Type Negative or Positive 
Product Category Home Appliance, Stationery, 

Apparel 
 
(iii) Autoregressive Transformer- The Autoregressive Transformer model is a sophisticated 
architecture that can generate token sequences while remembering the context of previously generated 
tokens. Also, it allows parallelization during training leading to faster convergence, handles long-range 
dependencies and is scalable to process large datasets.  The model operates by predicting the probability 
distribution of the next token given the preceding tokens using a parameterized function as given in 
equation 3.  
P(yt  given  y < t) = softmax(fθ(y < t)). . . . . . . . . (3) 
where : 
a) yt  is the token to be predicted 
b) y < t represents the token preceding yt  
c) fθ is a parametrized function for prediction 
d) softmax is the function for output 

By fine-tuning the pre-trained Autoregressive Transformer on our private dataset D_Real, the model can 
be tailored to perform optimally for synthetic text generation D_Syn.  Fine-tuning involves adjusting the 
model's parametersθand refining them to better match the target dataset.  Formally it is expressed as-  
θfine −tuned = θpre −trained  −  η. ∇θpre −trained ℒ. . . . . . . . . (4) 

Where: 
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Table 2. Snapshot of Private and Synthetic Data 

 
a) 𝜂 is the learning rate  
b) ∇θpre −trained ℒ is the gradient of the loss function ℒ 

 
(iii) GDP-SGD – As elaborated in section III, Differentially Private Stochastic Gradient Descent (DP-SGD) 
ensures privacy guarantees for the training data by adding noise to the gradients computed during each 
iteration. DP-SGD ensures that the updates to the parameters do not disclose sensitive or private 
information about datasets. However, in the proposed model, we assume that the database operator is 
trustworthy and therefore introduce global differential privacy that leads to more accurate results with the 
same level of privacy protection. Also GDP is better suited for dataset of any scale. 
(iv) Synthetic Data – The synthetic data is a secure data twin ideal for data sharing with mathematical 
privacy guarantees as granted by DP-SGD. An example is given in the last two columns of table 1. Through 
experimentation, the authors demonstrate that the synthetic datasets they generate do not leak 
information from the original data. Furthermore, they show that these synthetic datasets exhibit high 
language quality and are highly suitable for training models for further analysis on real-world data. The 
authors also illustrate that training classifiers on private synthetic data yields better performance 
compared to directly training classifiers on real data with DP-SGD. 
(v) Prompt Variance Loss- In literature, Negative Log Likelihood (NLL) is recommended training 
objective for autoregressive language modeling during the parameter estimation process.  Mathematically 
if ℒ(θǀx)represents the likelihood function, where ‘θ’ is the parameter vector and ‘𝑥’ is the observed data, 
then NLL function is given by 
ℓ(θǀx) = −log ℒ (θǀx). . . . . . . . . . (4) 
This objective function encourages the model to generate correct data samples for a given prompt 
template, so that the D_Real and D_Syn text sequences are as similar as possible. 
 
EXPERIMENTS AND RESULTS 
(i) Dataset- In this study, we leveraged open source datasets namely, IMDb Movie Reviews and Amazon 
multiclass sentiment dataset for implementing the idea. The former consists of movie reviews written by 
various authors while the latter consists of more than two thousand product reviews from several 
categories including home appliances, apparels and stationery. The positive and negative sentiments, after 
converting into binary values are fed to the model for training.  During the training stage, differentially 
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private optimizer is used to fine-tune our model in order to generate each text sample within the original 
dataset and based on the prompt corresponding to the desired attributes. This leads to generation of a 
private twin dataset that is derived  using the same distribution of textual attributes as in the original 
dataset.  
(ii) Privacy Parameter Setting-The experiments were conducted considering three different global 
privacy levels: 1)ϵ = 2, 2) ϵ = 8, and 3) ϵ = 10. It is observed that a smaller privacy parameter ensures 
stronger privacy but greater noise addition. An ϵ = ∞ implies no privacy guarantee but also implies no 
noise. This non-private setting offers a baseline against which we assessed the performance of our model. 
The selection of these ε thresholds plays a significant role in experimentation and preliminary testing with 
the study dataset. In particular, careful attention was given to the selection of ϵ values so as to offer strong 
privacy but at the same time, not too strict that the added noise leads to completely useless synthetic data 
generation.  
(iii)Accuracy vs Privacy trade-off- Figure 2 show the trade-off between accuracy and privacy strength of 
the proposed model. Ten random subsets of increasing size, ranging from 100 to 1000 are taken for two 
sets of experiments each 1) training done on real/private data 2) training done on synthetic data. The 
model was trained over five epochs while using a differentially private optimizer, with a smaller learning 
rate each time. Educated conjectures over a couple of iteration was applied, for setting the value of 
hyperparameter so as to avoid large computational effort. Following observations immediately come from 
figure 2. The synthetic or twin datasets leads to a classification model that is as accurate as the one trained 
on real data. Even for small samples, the model can synthesize datasets that lead to high-performing 
classifier because we employed pretrained knowledge through our prompts. Therefore, apart from 
anonymization of sensitive datasets, our model can also be utilized for enlarging small datasets with a 
privacy guarantee. 
 

 
 

  
Figure 2. Accuracy of Classifier at different values of ϵ for different sample sizes 

 
CONCLUSION AND FUTURE DIRECTION 
This paper demonstrates creation of synthetic datasets using differentially private optimization method for 
publicly sharing textual data while safeguarding user’s privacy. The  experiments indicate that synthetic 
dataset generated has high quality and serves effectively as training data for subsequent classification 
tasks while diminishing the potential for original data leakage. Thus the model finds extensive applications 
in all domains where sensitive data is involved.  We examine the effects of privacy levels on different 
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samples and show that the model is more tolerant of the higher levels of noise than the smaller values. 
Nevertheless, several open questions for future research still need exploration. Although DP is based on 
the ground that the inclusion or exclusion of a single individual should not significantly change the results 
of any analysis conducted on the dataset, however models trained with DP-SGD are noisier than the 
benchmark because of successive gradient clipping and addition of noise.  
As a future work, the model shall be improvised for generating synthetic visual data using DP-SGD 
mechanism. For high-dimensional inputs such as images, it is expected that adding noise to the gradient 
shall lead to very low accuracies for private training. Hence, incorporate random projection matrices may 
be a good future idea to investigate. 
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