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ABSTRACT 
software development, defects are an inherent aspect of the process and can arise at any phase, including 
requirements gathering, coding, or testing. These defects, whether they emerge during initial planning or 
late in the development cycle, pose significant challenges and can affect the final product's functionality 
and performance. Implementing software defect prediction (SDP) techniques is crucial in managing these 
challenges effectively. SDP can play a vital role in reducing associated costs by identifying potential issues 
early, thus allowing for more efficient allocation of resources and targeted testing efforts. This paper has 
proposed a ensemble learning model to identify the defects in the software at early stage of development. 
In order to improve the software defect prediction accuracy feature optimization was done by using 
bioinspird algorithm. Experiment was done on real dataset having data of multiple software. Results 
shows that use of ensemble model with optimize feature has increases the detection accuracy. 
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1. INTRODUCTION 
In the ever-evolving field of software development, striving for flawless and efficient software remains a 
constant challenge. Despite best efforts, software defects are an inevitable aspect of this intricate process. 
The topic of Software Defect Prediction (SDP) has garnered significant attention in academic literature, 
with various methods and techniques being developed to predict defects across different datasets. 
Software Defect Detection (SDD) is a crucial yet often underappreciated component of the development 
lifecycle. Even minor defects can lead to impaired software functionality, reduced system stability, or 
potentially catastrophic system crashes, all of which can significantly detract from the user experience 
[1]. Historically, SDD has been a labor-intensive and time-consuming task, demanding substantial effort 
from developers and quality assurance teams. Consequently, the pursuit of intelligent SDD has been a 
longstanding area of focus in software engineering research, aiming to streamline the detection process 
and improve the overall quality of software products. 
Research into dimensionality reduction techniques that incorporate global features, local features, and 
kernel-based feature subsets to address nonlinearity in software defect prediction remains limited. The 
presence of nonlinear relationships and high dimensionality in defect datasets can significantly affect the 
performance of predictive models. To address this issue, we propose a novel software defect prediction 
algorithm that utilizes learnable three-line hybrid feature fusion, inspired by the principles of three-line 
hybrid rice breeding. This approach aims to enhance the prediction process by effectively integrating 
diverse feature sets. In our prior work, we introduced an adaptive variable sparrow search algorithm 
(AVSSA), which demonstrated exceptional search efficiency in experimental evaluations (Tang et al., 
2023). 
Early detection of product errors enables software to be adapted to various conditions and enhances 
resource utilization. In the realm of computer programming, testing and debugging can be prohibitively 
costly, requiring extensive resources [12]. Effective defect prediction can reduce testing expenses and 
contribute to improved software quality [7, 8]. Prediction strategies range from traditional product 
measurements to advanced machine learning (ML) and Software Computing (SC) techniques [9]. Artificial 
intelligence (AI) systems play a crucial role in predicting software errors [13]. Various feature selection 
methods have been employed to identify optimal subsets of features for more accurate predictions, as 
irrelevant or redundant features can skew the performance of classification models [10, 14]. 
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The remainder of this paper is organized as follows: Section 2 provides an overview of the various defect 
models that have been proposed for software. This section offers a comprehensive review of these 
models, highlighting their methodologies and applications. In Section 3, we present a detailed description 
of the SDDELBOF model. This includes an in-depth explanation accompanied by a block diagram that 
illustrates the model's architecture and operational components. Moving to Section 4, we outline the 
experimental setup and procedures employed in our study. This section details the methodology used to 
test and validate the model. Finally, Section 5 presents the results of the experiments, discusses their 
implications, and draws conclusions based on the findings. 
 
2. RELATED WORK 
R. Haque and colleagues (2024) introduced an advanced method called heterogeneous cross-project 
defect prediction (HCDP), leveraging encoder networks alongside a transfer learning (ENTL) model to 
forecast software defects [18]. This methodology utilized encoder networks (ENs) to distill crucial 
features from both the source and target datasets. To mitigate the challenge of negative transfer in 
transfer learning (TL), an augmented dataset, enriched with pseudolabels and data from the source 
dataset, was employed. The model was initially trained using a single dataset and subsequently tested on 
sixteen datasets extracted from four public projects. The study also included a comparative analysis with 
conventional techniques, employing cost-sensitive learning (CL) to manage issues related to class 
imbalance. 
In a parallel effort, Y. Al-Smadi and co-authors (2023) proposed a novel approach for software defect 
prediction by deploying 11 machine learning (ML) techniques on 12 varied datasets [19]. They 
incorporated four diverse meta-heuristic algorithms—particle swarm optimization (PSO), genetic 
algorithm (GA), harmony search (HS), and ant colony optimization (ACO)—to identify the optimal set of 
features. To address the issue of data imbalance, they applied the synthetic minority oversampling 
technique (SMOTE). Furthermore, they utilized the Shapley additive explanation (SAE) framework to 
pinpoint the most influential features. 
A. Wang and colleagues (2023) developed an innovative approach called Federal Prototype Learning with 
Prototype Averaging (FPLPA), combining federated learning (FL) and prototype learning (PL) to predict 
heterogeneous software defects [20]. This method involved the use of the one-sided selection (OSS) 
algorithm to filter out noise from local training datasets, ensuring that the data used was clean and 
relevant. To select the most informative features, they applied the Chi-Squares Test algorithm, which 
identified the optimal subset of features necessary for accurate defect prediction. The team then 
introduced the Convolution Prototype Network (CPN) model, designed to create local prototypes that 
were more robust to heterogeneous data than traditional convolutional neural networks (CNNs). This 
approach was particularly effective in mitigating the impact of class imbalances within the software data, 
a common challenge in defect prediction. 
In the FPLPA framework, these prototypes served as the main communication medium between 
individual clients and the central server, with the local prototypes being developed in a way that ensures 
they cannot be reversed, thereby protecting privacy during the communication process. The final step 
involved refining the model by using the loss of both local and global prototypes as a form of 
regularization, ensuring that the model remained accurate and effective across different data 
distributions. The proposed method was rigorously tested using the AEEEM, NASA, and Relink datasets. 
Simulation results demonstrated its superiority over traditional methods, showcasing its effectiveness in 
accurately predicting software defects. 
In a related study, S. H. A. Hamid and colleagues explored the use of Deep Q-Networks (DQN) in software 
defect prediction, emphasizing the reduction of false positives while enhancing overall prediction 
performance. During the training phase, the model was guided by a reward policy designed to minimize 
incorrect predictions, thereby improving its ability to identify defect-prone software components 
accurately. This approach highlights the potential of reinforcement learning techniques, like DQN, in 
refining defect prediction models and achieving better predictive accuracy. 
T. Tahir and colleagues conducted a systematic mapping study (SMS) on secondary studies, specifically 
literature reviews, related to defect prediction. Their goal was to identify the most frequently used 
datasets, project attributes, metrics employed as predictors, and supervised learning methods utilized for 
training the data. Following this, they performed an empirical study focused on predicting defect density 
using cross-project data. They gathered data from 760 projects in the International Software 
Benchmarking Standards Group (ISBSG) dataset, version 11, which included both defect reports and 
functional size attributes. The team trained their prediction models using three approaches: i) the 
complete set of project attributes, ii) individual attributes, and iii) various subsets of attributes. They 
employed both classification and regression machine learning techniques to evaluate the effectiveness of 
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these models. 
S. Kwon and colleagues proposed a function-level just-in-time (JIT) software defect prediction (SDP) 
model. This model addresses the limitation of allocating limited testing resources by prioritizing defect-
prone functions. They utilized a pre-trained transformer-based deep learning model, trained on a large 
corpus of code snippets, to predict the likelihood of defects in modified functions at the commit level. The 
fine-tuned version of this pre-trained model can assess defect proneness for specific code changes. They 
evaluated the performance of three popular pre-trained models—CodeBERT, GraphCodeBERT, and 
UniXCoder—within both within-project and cross-project environments, particularly focusing on edge-
cloud systems. 
S. Kaliraj and colleagues tackled two significant challenges in software fault prediction. First, they 
addressed the issue of class imbalance, which can greatly affect the accuracy of predictive models. 
Through extensive experimentation with various classifiers across diverse datasets from different 
software projects, they highlighted how classifier performance varies and underscored the importance of 
addressing class imbalance for reliable predictions. Second, they evaluated the reliability of cross-project 
prediction, investigating how well predictive models trained on one project can generalize to others. 
Their study demonstrated that using datasets with characteristics similar to the target project is crucial 
for achieving accurate and reliable cross-project predictions. 
 
3. PROPOSED METHODOLOGY 
This study introduces a comprehensive methodology for detecting software defects during the final 
stages of development. The proposed approach, known as SDDELBOF (Software Defect Detection by 
Ensemble Learning and Bio-Inspired Optimized Features), initiates with a thorough process of dataset 
preparation and feature clustering. These preliminary steps are critical as they set the foundation for 
effective defect detection by ensuring that the data is well-structured and relevant features are identified 
and grouped accordingly. The methodology employs ensemble learning techniques combined with bio-
inspired optimization algorithms to enhance the accuracy of defect detection. Figure 1 provides a detailed 
block diagram of the software defect detection model, outlining each component of the system and its role 
in the overall process. This diagram visually represents the workflow from data preprocessing to the final 
detection and classification of software defects, highlighting the intricate steps involved in the 
methodology. 
 

 
Fig 1. SDDELBOF training model diagram. 
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Raw Dataset Cleaning  
To adapt the original unstructured data to the required format, the cleaning process involved 
restructuring the dataset into specific rows and columns. This process included removing irrelevant 
elements such as software versions, class names, and function names. Missing data or cells with null 
values were addressed by using either the column's average or a zero count [11]. The data's numeric 
range varied, with some metrics, like 'Data Access Metrics' and 'Cohesion across Methods,' falling 
between zero and one, while others, such as 'Inheritance Depth' and 'Measure of Aggregation,' were in the 
hundreds. For instance, the line count of code could reach into the thousands. Each column's values were 
individually normalized using Equation 1 [12]. 
NDi,j = Normalizeddata(SRD)-------------Eq. 1 

The values in columns PC are normalized from zero to one using Eq. 1.  
 
Feature optimization 
This work uses two of bio-inspired algorithms for the feature optimization. First one is Elephant herd [13, 
14] and other was artificial immune algorithm [15, 16]. Both of these algorithm have some common steps 
of feature clustering. Features were cluster into two group first was elected features fir for training of 
ensemble model and other was rejected features not fit for training. Each of those common steps 
(generate population, fitness, crossover, population update were detailed in the section:  
 
Generate Populationpreprocessed features were randomly classified into selected and rejected class. A 
binary vector represent the label 1 or 0 for each feature as per the selection or rejection class. For 
randomization Gaussian function was used.Each vector is terms as elephant in elephant herd algorithm 
[14]. Similarly each vector is terms as antibody in artificial immune algorithm [16]. Collection of vector is 
Pv population in the algorithm, hence this work have Pm number of population and for Fn number of 
features. 
 
PvGenerate_vectors(Pm, Fn) 
Fitness Since each of vector was randomly generated hence fitness value need to be evaluate for the 
same. As features were used for the training of model so temporary model was train by the selected 
feature vector. So each of algorithm uses common fitness function of training of model and test the 
trained model to get the accuracy of detection. Detection accuracy is the fitness value. 
PvfFitness(Pv, ND) ---------------Eq. 3 
 
Crossover Vectors need updation as per the fitness value. So each of elephant or antibody get update by 
the best feature vector. Modification was done on the basis of changing the feature value status from 
selection to rejection or rejction to selection as per best feature vector of current iteration.  
PvCrossover_updates(Pv, Pvf) 
 
Update Population Each of bioinspired algorithm generate new feature set by crossover operation. This 
step balance population by removing low fitness feature vector either parent or child. This step also check 
that maximum iteration count to get the final updated population and get cluster feature set. 
 
Training of Mathematical Model  
A bootstrap ensemble combines multiple learning model, each built from a bootstrap sample of the 
training data, to improve the accuracy and robustness of predictions. 
Bootstrap Sampling: This involves randomly selecting samples with replacement from the original 
dataset to create multiple subsets [17]. Each subset may have duplicate entries from the original data. 
This technique helps in creating a diverse set of training samples. 
Ensemble Learning: This involves combining the predictions of multiple models to obtain a more accurate 
and stable prediction. In the case of a Random Forest, it aggregates the results of multiple decision trees 
to make a final prediction. 
 
Proposed SDDELBOF Algorithm 
Input: SDRD // Software Defect Raw Dataset 
Output: ESDDM // Ensemble Software Defect Detection Model 
1. PDDataset_Cleaning(SDRD) 
2. ND=Normalizeddata(SRD) 
3. PvGenerate_vectors(Pm, Fn) 
4. Loop 1:T 
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5. PvfFitness(Pv, ND) 
6. PvCrossover_updates(Pv, Pvf) 
7. PvUpdateVectorPopulation(Pv, Pvf) 
8. End Loop 
9. BvFitness(Pv, ND) // Best Vector 
10. FsCluster(ND, Bv) 

11. ESDDM TrainEnsembleModel(Fs, ND) 
 

The raw dataset undergoes preprocessing to prepare it for analysis in the SDDELBOF model, which is 
designed for detecting software bugs. This preprocessing stage involves cleaning the data, handling 
missing values, and transforming the dataset into a suitable format for further analysis. After 
preprocessing, the model employs a bio-inspired optimization approach to select the most relevant and 
effective features for detecting software bugs. This feature selection is crucial, as it helps to enhance the 
model's accuracy and efficiency by focusing on the most informative aspects of the data. Additionally, the 
model utilizes ensemble learning techniques, which combine multiple machine learning algorithms to 
improve predictive performance and robustness. Once the model is trained with the optimized features, it 
becomes capable of predicting potential defects in the software, providing a powerful tool for identifying 
and addressing bugs during the development process. 
 
4. EXPERIMENT AND RESULTS 
The implementation of the model involved utilizing a MATLAB program on a computer equipped with a 4 
GB RAM and an i6 generation CPU. To assess the performance of the model, metrics including precision, 
recall, f-measure, and accuracy were employed for comparative analysis.Comparisonof proposed model 
was done with Hellinger Net [18] and [19]. It was found that use of elephant herd optimization perform 
better as compared to artificial immune genetic algorithm, hence comparison was doen with elephant 
herd optimized features.  
 
Dataset 
In order to conduct the experiments, the IC-DePress dataset served as the primary dataset for the 
program. The evaluation of the proposed model spanned across six separate projects, encompassing a 
total of 13,522 sessions within the dataset. A comparison of the proposed model was conducted using 
software fault detection methodologies as outlined in [20]. 
 
Results 
 

Table 1. Accuracy based Software Defect Detection models comparison. 
Software Hellinger Net SDDEHF SDDELBOF 

SoftCamel 83.12 91 98.43 
SoftIVY 83.55 91.45 97.64 

SoftJEdit 87.45 0.9275 99.19 

SoftLicene 73.34 82.28 98.51 
SoftPOI 69.04 0.8707 96.91 

 
Table 1 shows that SDDELBOF has high defect detection accuracy as compared to existing models. 
Bioinspired Optimized feature set were used for the training of ensemble model has increases the 
detection accuracy of the software defects. Accuracy values were improved by 9.401% as compared to 
SDDEHE model. 
 

Table 2. Precision based Software Defect Detection models comparison. 
Software Hellinger Net SDDEHF SDDELBOF 

S_Camel 0.9556 0.9616 0.9973 
S_IVY 0.9974 0.9769 0.9949 
S_JEdit 0.9825 0.9812 0.9969 
S_Licene 0.855 0.9135 0.9975 
S_POI 0.8898 0.9139 0.9862 

 
Precision values compared in the table 2 shows that use of ensemble model for the software defect 
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detection in SDDELBOF has increased precision values as compared to existing models. Further it was 
found that clustered features with normalization has increase the learning precision value by 4.53% as 
compared to SDDEHF model. 
 

Table 3. Recall based Software Defect Detection models comparison. 
Software Hellinger Net SDDEHF SDDELBOF 

S_Camel 0.8311 0.9322 0.9841 

S_IVY 0.8351 0.9248 0.9773 

S_JEdit 0.8736 0.9378 0.9938 

S_Licene 0.7417 0.831 0.98 

S_POI 0.6905 0.9 0.9695 

 
Table 3 shows recall values for the different softwares and it was found that SDDELBOF has improved the 
recall value 19.01% as compared to Hellinger Net model.  
 

Table 4. F-measure based Software Defect Detection models comparison. 
Software Hellinger Net SDDEHF SDDELBOF 
S_Camel 0.9078 0.9467 0.9906 

S_IVY 0.9102 0.95 0.986 

S_JEdit 0.9323 0.959 0.9953 

S_Licene 0.8156 0.8703 0.9887 

S_POI 0.8163 0.9069 0.9778 

 
Table 4 shows that SDDELBOF has high defect detection f-meausre as compared to existing models. 
Bioinspired Optimized feature set were used for the training of ensemble model has increases the 
detection f-measure of the software defects. F-measure values were improved by 6.18% as compared to 
SDDEHE model. 
 

Table 5. Reliability based Software Defect Detection models comparison. 
Software Hellinger Net SDDEHF SDDELBOF 
S_Camel 0.9469 0.9469 0.9468 
S_IVY 0.3951 0.4551 0.3969 
S_JEdit 0.9271 0.927 0.927 
S_Licene 0.598 0.6744 0.5968 
S_POI 0.607 0.6418 0.6055 

 
Reliability values compared in the table 5 shows that use of ensemble model for the software defect 
detection in SDDELBOF has increased reliability values as compared to existing models. Further it was 
found that clustered features with normalization has increase the learning efficiency of model. 
 
5. CONCLUSIONS 
This paper has developed a model that accurately identify software defects with less number of features. 
Whole work focuses on the feature optimization and learning of feature for defect prediction. Feature 
optimization was done by bioinspired algorithm elephant herd. Learning of optimized features were used 
for the training of ensemble model. Experiment was done on different dataset and compared with various 
model. Result shows that that use of ensemble model for the software defect detection in SDDELBOF has 
increased precision values by 4.53%,. Further it was found that clustered features with normalization has 
increase the learning detection accuracy by 9.401% .In future researcher can develop a unsupervised 
model.  
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